
AFIPS
CONFERENCE

PROCEEDINGS

VOLUME 34

1969
COMPUTER

CONFERENCE

May 14 -16, 1969
Boston, Massachusetts

The ideas and Opl1l10nS express herein are solely those of the authors and are
not necessarily representative of or endorsed by the 1969 Spring Joint Computer
Conference CommiHee or the American Federation of Information ProCeSSii1.g
Societies.

Library of Congress Catalog Card Number 55-44701
AFIPS Press

210 Summit Avenue
Montvale, New Jersey 07645

© 1969 by the American Federation of Information Processing Societies,
Montvale, New Jersey, 07645. All rights reserved. This book, or parts thereof,
may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

AMERICAN FEDERATION OF INFORMATION
PROCESSING SOCIETIES (AFIPS)

OFFICERS and BOARD of DIRECTORS of AFIPS

President

PAUL ARMER
Computation Center
Stanford University

Stanford, California, 94305

Vice President

RICHARD I. TANAKA
California Computer Products, Inc.

305 North Muller Street
Anaheim, California, 92803

R. G. CANNING
Canning Publications, Inc.

134 Escondido Avenue
Vista, California, 92083

L. C. HOBBS
Hobbs Associates, Inc.

P.O. Box 686
Corona del Mar, California, 92625

Society for Information
Display Director

WILLIAM BETHKE
RAOC (EME, W. Bethke)

Griffiss AFB NY 13440

ACM Directors

J. D. MADDEN
ACM HeadquarterS

211 East 43rd Street
New York, New York, 10017

IEEE Directors

KEITH W. UNCAPHER
The RAND Corporation

1700 Main Street

Secretary

ARTHUR I. RUBIN
Martin Marietta Corporation

P.O. Box 5837
Orlando, Florida, 32805

Treasurer

WALTER HOFFMAN
Computing Center

Wayne State University
Detroit, Michigan, 48202

B. A. GALLER
University of Michigan

1056 Ferdon Road
Ann Arbor, Michigan, 48104

SAMUEL LEVINE
Bunker-Ramo Corporation

445 Fairfield Avenue
Stamford, Connecticut, 06902

Santa Monica, California, 90406

American Society For Information
Science Director

HERBERT KOLLER
Leasco Systems & Research Corp.

4833 Rugby Avenue
Bethesda, Maryland, 200 14

Association for Computational
Linguistics Director

DONALD E. WALKER
Language & Text Processing

The Mitre Corporation
Bedford, Massachusetts, 01730

Executive Secretary

H. G. ASMUS
AFIPS Headquarters
210 Summit Avenue

Montvale, New Jersey, 07645

American Institute of Certified Public
Accountants Director

NOEL ZAKIN
Computer Technical Services

AICPA
666 Fifth Avenue

New York, New York, 10019

Special Libraries Association Director

BURTIN E. LAMKIN
Library & Information Retrieval Staff

Federal Aviation Agency
800 Independence Avenue, S.E.

Washington, D. C. 20003

Executive Director

BRUCE GILCHRIST
AFIPS Headquarters
210 Summit Avenue

Montvale, New Jersey, 07645

Simulation Councils Director

JOHN E. SHERMAN
Lockheed Missiles & Space Corp.

D59-10; B-151
P.O. Box 504

Sunnyvale, California, 94088

AFIPS Committee Chairmen

Abstracting

VINCENT E. GUILIANO
School of Information & Library Studies

Hayes C, Room 5
State University of New York

3435 !-v1ain Street
Buffalo, New York, 14214

Admissions

ROBERT W. RECTOR
Informatics, Inc.

5430 Van Nuys Boulevard
Sherman Oaks, California, 91401

Awards

ARNOLD A. COHEN
UNIVAC

2276 Highcrest Drive
Roseville, Minnesota, 55113

Constitution & Bylaws

ARTHUR I. RUBIN, MP 170
Martin Marietta Corporation

P.O. Box 5837
Orlando, Florida, 32805

Education

MELVIN A. SHADER
CSC-Infonet

150 N. Sepulveda Blvd.
El Segundo, California, 90245

Finance

WALTER L. ANDERSON
General Kinetics, Inc.

11425 Isaac Newton Square South
Reston, Virginia, 22070

1969 SPRING JOINT COMPUTER CONFERENCE COMMITTEE

Chairman

Harrison W. Fuller
Sanders Associates, Inc.

Vice Chairman

John E. Ward
Massachusetts Institute of Technology

Technical Program

Theodore H. Bonn, Chairman
Honeywell, Inc.

Richard F. Clippinger, Vice Chairman
Honeywell, Inc.

James H. Burrows
Mitre Corporation

Mark E. Connelly
Massachusetts Institute of Technology

John J. Donovan
Massachusetts Institute of Technology

Kent R. Groote
Raytheon Company

Robert Hengen
Telefile Computer Corporation

Henry S. McDonald
Bell Telephone Laboratories

Fred H. Scife
Control Data Corporation

Norman H. Taylor
Arthur D. Little, Inc.

Special Events

Allen Kluchman, Chairman
Data General Corporation

Jack Porter, Vice Chairman
Mitre Corporation

Mrs. Jack Porter, Ladies Program

Jack Nolan
M. I. T. Lincoln Laboratory

Cornelius Peterson
Computer Usage

Joseph Knight
M. I. T. Lincoln Laboratory

Treasurer

Brandt R. Allen
Harvard Business School

W. Burgess (Assistant)
Lybrand, Ross Bros., & Montgomery

Secretary

Albin A. Hastbacka
RCA

Local Arrangements

Charles Gardiner, Chairman
Itek

Morton· Elmer, Vice Chairman
Sanders Associates, Inc.

Charles R. Burgess
QEI Computer and Information Systems

Ralph B. Levy
Itek

Richard L. Libby
DASA

Edward Minnich
Sanders Associates, Inc.

John A. O'Brien
Itek

Harvey Rubenstein
Sylvania

David Thorndike
CH Sprague Leasing Company

Oliver Wolcott
Honeywell, Inc.

Public Relations

Norman M. Bryden, Chairman
Honeywell, . Inc.

D. Sweeney, Vice Chairman
Honeywell, Inc.

Aaron Levine, Consultant
Gilbert-Levine & Co., Inc.

Printing and Mailing

A. Dean Barrett, Chairman
Sanders Associates, Inc.

William Pizzo, Vice Chairman
Sanders Associates, Inc.

Kenneth Rabasca
Sanders Associates, Inc.

Donald Marchand
Sanders Associates, Inc.

Registration

Bruce M. Campbell, Chairman
IBM Corporation

Richard K. Goran, Vice Chairman
IBM Corporation

Exhibit Coordination

David Sudkin, Chairman
Viatron Computer Systems Corporation

R. G. Gould, Vice Chairman
Digital Equipment Corporation

Advisers

Frank E. Heart
Bolt, Beranek & Newman, Inc.

Hawley K. Rising
Bolt, Beranek & Newman, Inc.

Education Program

W. Feurzeig, Chairman
Bolt, Beranek & Newman, Inc.

Jordan Baruch
Educom

David Tiedeman
Harvard

Robert Haven
Project Local

Walter Koetke
Lexington School System

Marjorie Bloom
Bolt; Bera.nek & Newman, Inc.

Cynthia Soloman
Bolt, Beranek & Newman, Inc.

Liason

Jack L. Mitchell, IEEE
M. I. T. Lincoln Laboratory

Adrian Ruyle, ACM
M. I. T. Lincoln Laboratory

Maurice I. Stein, SCI
Adage, Inc.

Morton M. Astrahan,
AFIPS Conference Committee
IBM Corporation

Albert S. Hoagland,
AFIPS Conference Committee
IBM Corporation

H. G. Asmus, AFIPS Headquarters
Donald Cruzen, AFIPS Headquarters

ICC Conference

MORTON M. ASTRAHAN
IBM Corporation-ASDD

P.O. Box 66
Los Gatos, California, 95030

International Relations

EDWIN L. HARDER
Westinghouse Electric Corp.

1204 Milton Avenue
Pittsburgh, Pennsylvania, 15218

Publications

HARLAN E. ANDERSON
Time, Inc.

Time & Life Building
New York, New York, 10020

ICC Technical Program

DAVID R. BROWN
Stanford Research Institute
333 Ravenswood Avenue

Menlo Park, California, 94025

Conference

R. GEORGE GLASER
McKinsey and Co.
100 California St.

San Francisco, California, 94111
JCC General Chairman

1969 FICC

JERRY KooRY
Programmatics

12011 San Vicente
Los Angeles, California, 90049

IFIP Congress 71

HERBERT FREEMAN
New York University

School of Engineering and Science
University Heights

New York, New York, 10453

Public Relations

CARL E. DIESEN
Computer Center Division

U. S.Geological Survey
Washington, D. C., 20242

Social Implication of Information
Processing Technology

STANLEY ROTHMAN
TRW Systems, R3/2086

1 Space Park
Redondo Beach, California, 90278

Information Dissemination

GERALD L. HOLLANDER
Hollander Associates

P.O. Box 2276
Fullerton, California, 92633·

U.S. Committee for IFIP ADP Group

ROBERT C. CHEEK
Westinghouse Electric Corp.

3 Gateway Center
Pittsburgh, Pennsylvania, 15230

1970 SICC

HARRY L. COOKE
RCA Laboratories

Princeton, New Jersey, 08540

CONTENTS

OPERATING SYSTEMS
A modular approach to file system design , , , .. .

RTOS '- Extending OCj360 for real time spaceflight control

A PANEL SESSION - ON-LINE BUSINESS APPLICATIONS

On-line business applications
On-line business applications
On-line business applications
On-line business applications

A PANEL SESSION - COMPUTERS AND THE
UNDERPRIVILEGED

Computers and the underprivileged , , ,
A program for the underprivileged and overprivileged in the

Boston community .. :
What the JOBS program is all about
Computers and the underprivileged
Experimental and demonstration manpower projects ,

A PANEL SESSION - COMPUTERS IN SERVICE TO
LIBRARIES OF THE FUTURE

Computers in service to libraries of the future:
Library Requirements " .. .

Using computer technology - Frustrations abound
Computers in service to libraries of the future

SOFTWARE
Batch, conversational, and incremental compilers ,
TRANQUIL: A language for an array processing computer

SNAP - An experiment in natural language programminng

The compiled macro assembler

MODELS OF INTELLIGENCE
Some logical and numerical aspects of pattern recognition

and artificial intelligence
A model of visual organization for the game of GO
Assembly of computers to command and control a robot
Diagnosis and utilization of faulty universal tree circuits ,." ..

TECHNIQUES FOR DISPLAYS AND PICTURE PROCESSING
Solid state keyboard , , , ., ,.

1 S. E. Madnick
J. Alsop, II

15 J. L. Johnstone

29 J. T. Gilmore, Jr.
30 C. T. Casale
32 M. Greenberger
32 W. M. Zani

35 M. Bauman

36 J. J. Donovan
37 W. B. Lewis
37 A. L. Morton, Jr.
38 J. Seiler

41 W. N. Locke
42 H. D. Avram
44 H. W. Dillon

47 H. Katzan, Jr.
57 N. E. Abel

P. P. Budnick
D. j. Kuck
Y. Muraoka
R. S.:Northcote
R. B. Wilhelmson

75 M. P. Barnett
W. M. Ruhsam

89 W. D. Maurer

95 W. C. Naylor
103 A. L. Zobrist
113 L. L. Sutro
139 G. Cioffi

E. Fiorillo

149 E. A. Vorthmann
j. T. Maupin

Computer generated graphic segments in a raster display
Errors in frequency-domain processing of images "

Scan-display system of the Illiac III computer

COMPUTER AIDED DESIGN

Interactive toierance analysIs with graphic QISplay
A method of automatic fault-detection test generation for

four-phase MOS LSI circuits .. .
A method of diagnostic test generation

Programmed test patterns for multi-terminal devices

TIME-SHARING SYSTEMS

OS-3: The Oregon State open shop operating system

Virtual memory management in a paging environment

An operational analysis of a remote console system

A model for core space allocation in a time-sharing system

GRAPHIC APPLICATIONS

Picture-driven animation , .. .
Computer graphics displays of simulated automobile dynamics
Fast drawing of curves for computer display ,

A class of surfaces for computer display
POGO: Programmer-Oriented Graphics Operation

TOPICS OF CURRENT INTEREST

Computer-aided processing of the news ,

An on-line information system for management

Computers and Congress , .. .
Automatic checkout of small computers "
Cryptographic techniques for computers
Montessori techniques applied to programmer training in a

workshop environment ... :

161 R. A. Metzger
173 G. B. Anderson

T. S. Huang
187 L. A. Dunn

L. N. Goyal
B. H. McCormick
V. G. Tareski

20'7 L. A. O'Neill

215 Y. T. Yen
221 A. B. Carroll

M. Kato
Y. Koga
K. Naemura

229 F. J. McIntosh
W. W. Happ

241 J. W. Meeker
N. R. Crandell
F. A. Dayton
G. Rose

249 N. Weizer
G. Oppenheimer

257 H. D. Schwetman
J. R. DeLine

265 M. V. Wilkes

273 R. Baecker
289 C. M. Theiss
297 D. Cohen

T. M.· P. Lee
309 T. M. P~ Lee
32] B. W. Boehm

V. R. Lamb
R. L. Mobley
J. E. Rieber

3a 1 J. F. Reintjes
R. S. Marcus

339 G. F. Duffy
F. P. Gartner

35] E. S. Mesko
;{59 M. S. Horovitz
367 D. Van Tassel

373 E. R. Alexander

PAPERS RELATING TO MEMORY
. Variable topology random access memory organizations

Fault location in memory systems by program
Characteristics of faults in MOS arrays '" "'J

MANAGING LARGE-SCALE SOFfW ARE PROJECTS
A systematic approach to the development of system programs
Management of computer programmers
The management and organization of large scale software

development projects

INFORMATION RETRIEVAL AND LIBRARIES
Interactive search and retrieval methods using automatic

information displays .. , , "

The LEADER retrieval system

A PROGRESS REPORT ON PROJECT INTREX
System characteristics of intrex
An experimental computer-stored, augmented catalog of

professional literature

Remote text-access in a computerized 1ibrary information-
retrieval system

A combined display for computer-generated data and scanned
photographic images "

COMPUTERS AND COMMUNICATIONS
A study of multiaccess computer communications

A communications environment emulator "

APPLICATIONS OF COMUTERS IN THE URBAN ENVIRONMENT
Development of New York City's real property data base
Requirements for the development of computer-based urban

information systems
Automatic traffic signal control systems - the Metropolitan

Toronto experience ... "

A PANEL SESSION - EDUCATION OF COMPUTER
PROFESSIONAL

Inter-relating hardware alld software in computer science education
Let's not discriminate against good work in design

or experimentation '" ,

381. M. Fischler
A. Reiter

393 C. V. Ravi
403 H. R. Lambert

411 F. M. Trapnell
419 M. M. Gotterer

425 R. H. Kay

435 M. E. Lesk
G. Salton

447 D. J. Hillman
A. J. Kasarda

457 J. F. Reintjes

461 R. S. Marcus
P. Kugel
R. L. Kusik

475 D. R. Knudson
S. N. Teicher

483 D. R. Haring
J. K. Roberge

491 P. E. Jackson
C. D. Stubbs

505 J. M. Pearlman
R. Snyder
R. Caplan

513 R. Amsterdam

523 S. B. Lipner

529 J. D. Hodges, Jr.
D. W. Whitehead

537 J. B. Dennis

538 G. E. Forsythe

Applied computer science .. " , .
Identifying and developing curricula in software engineering

TOOLS FOR SYSTEM PROGRAMMING
SAL: Systems Assembly Language , ,
BCPL: A tool for compiler writing and system programming
EXDAMS: Extendable Debugging and Monitoring Systems

CENTRAL PROCESSOR SYSTEM DESIGN
Maximum-rate pipeline systems , ,
Systematic design for modular realization of control functions

Optimizing floating point arithmetic via post addition
shift probabilities , " ,

A PANEL SESSION - SOFTWARE TRANSFERABILITY
Program transferability , " , , .. .
Program transferability , , ,
Software compatibility , .. " ... , ,
Standardization of high-level languages '" , .
The transferability of computer programs and the data on

which they operate
Transferability of data and programs 'between computer systems

A PANEL SESSION - COMPUTER-ASSISTED INSTRUCTION:
CURRENT STATUS - FUTURE PROBLEMS

CAl problems and prospects " " ,'
CAl: Research requirements for instructional strategies
Instructional uses of computers to grow gracefully and effectively

DYNAMIC GRAPHIC - TODAY AND TOMMORROW

A picture is worth a thousand words - and costs
Computer animation for the academic community ,' ... ,

Graphics in time-sharing: A summary of the TX-2 experience

Teaching heart function - One application of medical
computer animation " ,

THE DARTMOUTH SYSTEM AND ITS APPLICATIONS

The many roles of computing on the campus
Design considerations for an educational time-sharing system

A flexible user validation language for time-sharing systems
Project IMPRESS: Time-sharing in the social sciences "
Secondary school use of the time-shared computer at

Dartmouth College " ,

539 L. Zadeh
540 A. J. Perlis

543 C. A. Lang
557 M. Richards
567 R. M. Balzer

581 L. W. Cotten
587 S. M. Altman

A. W. Lo

597 J. A. Field

605 J. A. Ward
606 R. W. Berner
607 J. A. Gosden
608 G. M. Hopper

609 E. Morenoff
611 J. D. Sable

613 W. Feurzeig
614 D. N. Hansen
614 E. C. Koenig

617 J. C. R. Licklid~r

623 W. H. Huggins
D. R. Entwisle

629 W. R. Sutherland
J. W. Forgie
M. V. Morello

637 A. H. Gott
A. F. Bowyer
B. R. Kubert
G. W. Nevatt

649 T. E. Kurtz
657 R. F. Hargraves, Jr.

A. Stephenson
665 J. S. McGeachie
673 E. D. Meyers, Jr.

681 J. H. Danver
J. M. Nevison

COMPUTER SYSTEMS VS. HEALTH SYSTEMS: WHO IS

WINNING?

Health information and planning systems: The need
for consolidation , "

Computer assisted instruction in the diagnosis of cardiac arrhythmias
Hospital automation: Something more than a computer

A Position paper - Computers in medicine: Automation vs.
improvement of status quo ' '"

MEAStJREMENT AND MODELING OF DIGITAL H.'<\RDW~lill/

SOFTWARE SYSTEMS

An analytic model of multiprogrammed computing

Measurement based automatic analysis of FORTRAN programs

Software measurements and their influence upon machine
language design " ... ' ,

More on simulation languages and design methodology for
computer systems

SCIENTIFIC APPLICATIONS

Calculating and plotting equipotential lines for objects with
cylindrical geometry .. ; .. .

A modular system for reactor calculations

Performance testing of function subroutines
Towards. ~ abstract mathematical theory of :iloating-"point arithmetic

A PANEL SESSION - SMALL COMPUTERS FOR DATA
TERMINAL NETWORK CONTROL

Small computers in data networks
The use of a small computer as a terminal controller for a

large computing system " ... " ,

COMPUTATION AND PROGRAM SPECIFICATION

A system for designing fast programming language translators
Generating parsers for BNF grammars
An extended BNF for specifying the syntax of declarations
A hierarchical graph model of the semantics of programs

691 P. F. Gross
703 E. J. Battersby
709 W. L. Bennett

C. F. StrQOOeI
B. C. Glueck, Jr.

715 A. R. Feinstein

717 R. R. Fenichel
A. J. Grossman

723 E. C. Russell
G. Estrin

733 L. Presser
M. A. Melkanoff

739 D. L. Parnas

745 W. W. Shrader
751 L. Just

A. Kennedy
P. Walker
A. Rago
G. Leaf

759 W. J. Cody, Jr.
765 D. W. Matula

773 C. B. Newport

775 H. B. Burner
R. Million
O. W. Richard
J. S. Sobolewski

777 V. Schneider
79:3 F. L. DeRemer
801 G. E. Whitney
813 T. W. Pratt

HYBRID COMPUTER SYSTEMS AND LANGUAGES
A flexible standard programming system for hybrid computation

A real-time programming language and its processor for digital
control of industrial processes

A new graphic display/plotter for small digital computers

Stability controls for the analysis of analogi digital hybrid loops

827 W. Giloi
D. Beckert
H. C. Liebig

843 L.Liang
849 G. A. Kom

S. Simons
R. Steinbach
C. Wiatrowski

859 R. Vichnevetsky

A modular approach to file
system design *

by STUART E. }IADNICK

M a8sachusetts Institute of Technology
Cambridge. Massachusetts

and

JOSEPH W. ALSOP, II

International Computation Incorporated
Cambridge, Massachusetts

IXTRODUCTIOK

A generalized model or "blue-print" for the design of
sophisticated file systems is presented in this paper.
The model exploits the concepts of "hierarchical
modularity" and "virtual memory."

Any general file system design model must, of course,
be modified and refined to satisfy the requirements of a
specific environment. The details of the file system
model are presented in three steps: (1) the basic
concepts and overview are discussed, (2) an example
environment consisting of a multi-computer network
with the added complexities of coordination, structured
file directories, and removable volumes is described ,
and (3) each of the hierarchical levels of the file system
is elaborated in terms of the assumed environment.

Basic concepts used in file system design

Two concepts are basic to the general file system
model to be introduced. These concepts have been
described by the terms "hierarchical modularity" and
"virtual memory." They will be discussed briefly
below.

Hierarchical modularity

The term "modularity" means many different things
to different people. In the context of this paper we

* Work reported herein was suppOlted (in part) by Project
MAC, an M.LT. research project sponsored bv the Advanced
Research Projects Agency, Department of "DefeI.se. under
Office of Xaval Research Contract Xonr-4102(Ol).

will be concerned with an organization similar to that
proposed by Dijkstra6 ,7, and Randell.14 The important
aspect of this organization is that all activities are
divided into sequential processes. A hierarchical
structure of these sequential processes results in a level
or ring organization wherein each level only communi
cates with its immediately superior and inferior levels.

The notions of "levels of abstraction" or "hier
archical modularity" can best be presented briefly by
an examp Ie. Consider an aeronautical engineer using a
matrix inversion package to solve space flight prob lems .
At his level of abstraction, the computer is viewed as a
matrix inverter that accepts the matrix and control
information as input and provides the inverted matrix
as output. The application programmer who wrote the
matrix inversion package need not have had any
knowledge of its intended usage (superior levels of
abstraction). He might view the computer as a "FOR
TRAN" machine", for example, at his level of ab
straction. He need not have any specific knowledge of
the internal operation of the FORTRAN system
(inferior level of abstraction), but only of the way in
which he can interact with it. Finally, the FORTRAK
compiler implementer operates at a different (lower)
level of abstraction. In the above example the inter
action between the 3 levels of abstraction is static
since after the matrix inversion program is completed,
the engineer need not interact, even indirectly, with the
applications programmer or compiler implementer. In
the form of hierarchical modularity used in the file
system design model, the multi-level interaction IS

continual and basic to the file system operation.

2 Spring Joint Computer Conference, 1969

Figure I-Hierarchical levels

There are several advantages to such a modular
organization. Possibly the most important is the
logical completeness of each level. It is easier for the
system designers and implementers to understand the
functions and interactions of each level and thus the
entire system. This is often a very difficult problem in
very complex file systems with tens or hundreds of
thousands of instructions and hundreds of inter
dependent routines.

Another by-product of this structure is "debugging"
assistance. For example, when an error occurs it can
usually be localized at a level and identified easily.
The complete verification (reliability checkout) of a
file system is usually an impossible task since it would
require tests using all possible data input and system
requests. In order to construct a finite set of relevant
tests, it is necessary to consider the internal structure
of the mechanism to be tested. Therefore, an important
goal is to design the internal structure so that at each
level, the number of test cases is sufficiently small that
they can all be tried without overlooking a situation.
In practice, level ° would be checked out and verified,
then levell, level 2, etc., each level being more power
ful, but because of the abstractions introduced, the
number of "special cases" remains within bounds.

Virtual memory

There are four very important and difficult file system
objectives: (1) a flexible and versatile format, (2) as
much of the mechanism as possible should be invisible,
(3) a degree of machine and device independence, and
(4) dynamic and automatic allocation of secondary
storage. There have been several techniques developed

to satisfy these objectives in an organized manner;
the concept exploited in this generalized file system has
been called "segmentation"5 or "named virtual memo
rv" . 3 Under this system each file is treated as an
~rdered sequence of addressable elements, where each
element is normally the same size unit as the main
storage, a byte or word. Therefore, each individual
file has the form of a "virtual" core memory, from
whence the name of the technique came. The size of
each file is allowed to be arbitrary and can dynamically
grow and shrink. There is no explicit data format
associated with the file; the basic operations of the file
system move a specified number of elements between
designated addresses in "real" memory and the "virtu
al" memory of the file system.

There are several reasons for choosing such a file
concept. In some systems the similarity between files
and main storage is used to establish a single mechanism
that serves as both a file system for static data and
program storage and a paging system3,5,8 for dynamic
storage management. "Virtual memory" provides a
very flexible and versatile format. When specific
formatting is desired, it can be accomplished by the
outermost file system level or by the user program.
For example, if a file is to be treated as a collection of
card-image records, it is merely necessary to establish a
routine to access 80 characters at a time starting at
byte locations 0,80, 160, Almost all other possible
formats can be realized by similar procedures.

Except for the formatting modules, the entire file
system mechanism, including allocations, buffering,
and physical location, is completely hidden and in
visible to the user. This relates closely to the objective
of device independence. In many file systems the user
must specify which device should be used, its record
size' (if it is a hardware formatable device), blocking
and buffering factors, and sometimes even the physical
addresses. Although the parameters and algorithms
chosen might, in some sense, be optimal, many changes
might be necessary if the program is required to run
with a different configuration or environment.

There are very serious questions of efficiency raised
by this file system strategy. lHost of these fears can be
eased by the following considerations. First, if a file is
to be used very seldom as in program development,
efficiency is not of paramount importance; if, on the
other hand, it is for long-ternl use as in a commercial
production program, the device-independence and
flexibility for change and upkeep will be very important.
Second, by relieving the programmer of the com
plexities of the formats, devices, and allocations, he is
able to utilize his energy more constructively and
creatively to develop clever algorithms relating to the

r------l
I I
I I
I I
I I
I I
I I
I I
I I

/~

/
~
I I
I I
I I
I I
I I
I I

READ I I
FROM L ____ :_;

FILE "9" FILE 9

MAIN STORAGE

Figure 2-"Real" memory and "virtual" file memory

logical structuring of his problem rather than clever
"tricks" to overcome the shortcomings or peculiarities
of the file system. Third, in view of· the complexity of
current direct-access devices, it is quite possible that
the file system will be better able to coordinate the
files than the average user attempting to specify
critical parameters.

Overview of file system design model

The file system design model to be presented in this
paper can be viewed as a hierarchy of six levels. _ In a
specific implementation certain levels may be further
sub-divided or combined as required. A ,recent study of
several modern file systems, which will be published in
a separate report, attempts to analyze the systems in
the framework of this basic model. In general all of
the systems studied fit into the model, although certain
leveh; in the model are occasionally reduced to trivial
fonn or are incorporated into other parts of the oper
ating systenl.

The six hierarchical levels are:

1. Input/Output Control System (IOCS)
2. Device Strategy)Iodules (DS)I)
:3. File Organization Strategy }Iodules (FOS)!)
4. Basic File System (BPS)
5. Logical File System (LFS)
6. Access :\Iethods and User Interface

The hierarchical organization can be described from
the "top" dO\vn or from the "bottom" up. The file
system would ordinarily be implemented by starting
at the lowest level, the Input/Output Control System,
and working up. It appears more meaningful, however,

:Modular Approach to File System Design 3

to present the file system organization starting at the
most abstract level, the access routines, and removing
the abstractions as the levels are "peeled away';.

In the following presentation the terms "file name",
"file identifier", and "file descriptor" will be introduced.
Detailed explanations cannot be provided until later
sections, the following analogy may be used for the
reader's assistance. A person's name (file name),
due to the somewhat haphazard process of assignment,
is not necessarily unique or manageable for computer
processing. A unique identifier (file identifier) is
usually aSf-'ligned to each person, such as a Social Se
curity number. This identifier can then be used to
locate efficiently the information (file descriptor)
known about that person.

Access Methods (AM)

This level consists of the set of routines that super
impose a format on the file. In general there will
probably be routines to simulate sequential fixed-

Level 6:
Access Methods (AM)
User Interfaces

Level 5:
Logical File System
(LFS)

Level 4:
Basic File System
(BFS)

Level 3:
File Organization
Strategy Modules (FOSM)

Level 2:
Device Strategy
Modules (DSM)

Level I:
Input/Output
Control System (IOCS)

Devices

Figure :3-Hiel'al'chical file systems

4 Spring Joint Computer Conference, 1969

length record files, sequential variable-length record
files, and direct-access fixed-length record files, for
example. lVlany more elaborate and specialized fonnat
routLTleS, also called access methods or d9Jta manage
ment, can be supplied as part of the file system. Obvi
ously, a user may write his own access methods to
augment this level.

Logical File System (LFS)

Routines above this level of abstraction associate
a symbolic name with a file. It is the function of the
Logical File System to use the symbolic file name to
find the corresponding unique "file identifier". Below
this level the symbolic file name abstraction is elimi
nated.

Table I-Example procedure to perform logical file system search

-;. VOLUrlE CdAidIC'l'E.! (&1,

)0 • - 1 TC l?A'fi;_LE~';TrI;

J~ J = ,} rlY ;i ".:,li"' {FIL,":_-,->:,":;L>:r.F;A"H .,: P,\"':I(Il);

Basic File System (BFS)

The Basic File System must convert the file identifier
into a file descriptor. In an abstract sense, the file
descriptor provides all infonnation needed to physi
cally locate the file, such as the "length" and "location"
of the file. The file descriptor is also used to verify
access rights (read-only, write-only, etc.), check read!
write interlocks, and set up system -wide data bases.
The Basic File System perfonns ~any of the functions
ordinarily associated with "opening" or "closing" a file.
Finally, based upon the file descriptor, the ap
propriate FOSlVI for the file is selected.

File Organization Strategy Modules (FOSM)

Direct-access devices physically do not resemble a
virtual memory. A file must be split into many separate

~-------11--n Record 4

}. ' '. DRecord7

} -- D Record 14

c __ nn_1 } · · D Record 2

File Virtual PhysiCO! Records
Memory

Figure 4---l\1:apping v"irtual memory' into ph:ysical records

physical records. Each record has a unique address
associated with it. The File Organization Strategy
Module maps a logical virtual memory address into
the corresponding physical record address and offset
within the record.

To read or write a portion of a file, it is necessary for
the FOSM to translate the logically contiguous virtual
memory area into the correct collection of physical
records or portion thereof. The list of records to be
processed is passed on to the appropriate DSM.

To minimize redundant or unnecessary I/O, the
FOSM allocates "hidden" file buffers as needed. If
the requested portion of virtual memory is contained
in a currently buffered record, the data can be trans
ferred to the designated user main storage area without
intervening I/O. Conversely output to the file may be
buffered. If a sufficiently large number of buffer areas
are allocated to a file, it is possible that all read and
write re.quests can be perfonned by merely moving
data in and out of the buffers. When a file is "closed",
the buffers are emptied by updating the physical
records on the secondary storage device and releasing
them for use by other files. Buffers are only allocated to
files that are actively in use (Le., "open").

Device Strategy Modules (DSM)

When a large portion of a file is to be read or written,
many records must be processed. The Device Strategy
Module considers the device characteristics such as
latency and access time to produce an optimal I/O
sequence from the FOSM requests.

The DSM also keeps track of the available records
on the device. It is responsible for allocating records
for a file that is being created or expanded, and de
allocating records for a file that is being erased or

truncated. The FOS}! requests that a record be
allocated when needed, the DS::\! selects the record.

Input/Output Control System (IOCS)

The Input/Output Control System coordinates all
physical I/O on the computer. Status of all outstanding
I/O in process is maintained, new I/O requests are
issued directly if the device and channel are available;
otherwise the request is que"!led and automatically
issued as soon as possible. Automatic error recovery is
attempted when possible. Interrupts from devices and
unrecoverable error conditions are directed to the
appropriate routine. Almost all modern operating
systems have an laCS.

File systems versus data management systems

In the literature there is often confusion between
systems as described above, "\vhich this paper calls
"file systems" and systems which will be called "data
management systems", such as Dl\I-1,8 GIM-1,13
and TD::\IS.17 The confusion is to be expected since
both types of systems contain all of the functional
levels described above. The systems differ primarily on
the emphasis placed on certain levels.

In general file systems, the file is considered the
most important item and emphasis is placed on the
directory organization (Logical File System) and the
lower hierarchical levels. It is expected that specialized
access methods will be written by users or supplied
with the system as needed.

In most data management systems, the individual
data items are considered the most important aspect,
therefore emphasis is placed on elaborate access
methods with minimal emphasis on the lower levels of
abstraction. Because of the heavy emphasis on a
single level, data management systems tend to appear
less hierarchical than file systems since the lower
levels are often absorbed into the access methods.

~~.1 ulti-computer -netwurk e;nvitO'tI/rneni

A general file system design model must, of course,
be modified and elaborated to satisfy the needs of any
specific desired file system environment. To illustrate
the refinement process, a unique file system design will
be presented for a multi-computer network.

Multi-computer networks are becoming an increas
ingly important area of computer technologyY There
are several significant reasons behind the growth of
multi-computer networks:

1. To increase the power of a computer instal
lation in a modular manner, especially if (a) it

Modular Approach to File System Design 5

is not possible to acquire a larger processor,
(b) reliability is important, or (c) there are
real-time or time-sharing constraints.

2. To serve the coordination requirements of a
network of regional computer centers.

3. To support the accessibility to a nation-wide
data base.

An example of the envl...rornnent to be considered. for
this paper can be illustrated in Figure 5. This type of
multi-computer network has been in limited use for
several years in many configurations. The IBM
7094/7044 Direct-Coupled System was probably one
of the earliest practical examples of such an inter
connected arrangement.

There are several implicit constraints imposed upon
the multi-computer system illustated in Figure 5:

1. Independence of Central Processors.
Each of the central processors operates inde
pendently such that there are no direct processor
to-processor data transfer nor signaling, and
furthermore there is no "master" processor.

2. Non-shared YIemory.
Each central processor has its own main storage
unit. These units are not shared with nor
accessed by another central processor.

3. Inter-locked Device Controllers.
The device controllers act as "traffic cops" to
the actual I/O direct access devices. They
control the traffic between a computer's I/O
channel and a selected I/O device. A single
device controller will only accept requests from
one channel at a time and will only select one
I/O device (among those under its control) at
a time. Once a device controller connects a.

CPU CPU CPU ---------- --------- ---------
MEMORY MEMORY MEMORY
---------- ---------- --- -------
CHANNELS CHANNELS CHANNELS

Figure 5-Example of multi-computer file system network

6 Spring Joint Computer Conference, 1969

channel with a device, the connection lemains
intact until the channel releases the device or
an I/O error occurs,

The environment described above, although well
within the boundaries of current technology, has not
been the subject of much investigation. Such con
figurations are presently very expensive and, therefore,
chosen only for very specialized situations. Even then
there are only two or three processors and very
specialized software and operational factors. A dis
cussion of the CP-67/CMS Time Sharing System 9,21
will serve to establish the relevance of the multi
computer network environment.

The CP-67/CMS Time Sharing System uses the
special hardware features of a single IBNI System/360
model 67 processor augmented by software to produce
an apparent environment corresponding to the multi
computer network illustrated in Figure 5, with many
independent central processors, device controllers, and
direct access I/O devices. In practice a typical single
processor 360/67 configuration w{)uld produce the
affect of about 30 active processors ("vii'tual" System/
360 model 65 processors each with a 256,000 byte
memory) and 50 active device controllers. ~10re

detailed descriptions of the CP-67/CMS System can
be found in the References. 1:n the traditional sense of
time-sharing, each user of the CP-67/CMS System is
provided with a "virtual" computer operated from a
simulated operator console (actually an augmented
remote terminal). Most importantly, each "virtual"
computer (i.e., user) operates logically independently
of all other" virtual" computers except for the specified
inter-connected I/O devices and device controllers.

Problems arising in multi-computer networks

There are many problems associated with the multi
computer file system network. Some of these problems
are unique to this environment. Other problems have
been solved in traditional file systems,2,17,20 but the
solutions require major revisions due to the peculiari
ties of the environment. The most significant problems
are listed briefly below.

1. No shared memory.
Usually file systems coordinate the status of
the files and devices by using main storage
accessible tables and data areas that describe
file status, access rights, interlocks, and allo
cation. There is no such common communication
area in main storage that can be accessed by all
the independent processors.

2, NQ inter-computer communication.
~1ulti-computer configurations usually provide

a mechanjsm for sending signals or data transfers
between the separate processors. With this
capability the non-shared memory problem
could be solved by either (a) electing one
processor to be the "master" processor that
coordinates the other processors, or (b) supply
all the processors with enough information
such that each processor knows what all the
other processors are doing. The concept of a
"master" processor opposes the intended ho
mogeneous, independent processor assumption.
The possibility of supplying status information
to all other processors, although reasonable for
a three or four processor configuration, was not
considered a feasible solution for a system
with hundreds of processors and devices and
thouS'tands of files. For these reasons inter-,
computer communication, although an available
capability, was not included as a required
capability of the multi-computer environment
described above.

3. No pre-arranged allocations.
For small specialized multi-computer file net
works, each processor can be "assigned" a spe
cific area of a device or set of devices that can be
used to write new files, all other processors can
only read from this area by convention. This
prevents the danger of two independent pro
cessors writing files at the same place. Such an
"arrangement" is not practical for a large, flex
ible multi-computer file network since the static
assignment of secondary storage space does not
take account of the dynamic and unpredictable
requirements of the independent processors.

4. Extendable device and file allocation.
The number of devices and sizes of devices as
well as the number and sizes of files are, within
reason, unlimited. For example, a specific
amount of secondary storage equivalent to
100,000 card images could be used to hold 10
files of 10,000 cards each or 1,000 files of 100
cards each. This consideration discourages
techniques that result in a strong efficiency or
main storage capacity dependency on the" size
and shape" of the file system. Of course, the
magnitude of the file system size will affect
the operation, but arbitrary restrictions such
as "no more than 64 files on a device" would be
discouraged unless essential.

5. R.emovable volumes.
It has become common to differentiate between
the I/O mechanism used to record or read in
formation, called a "device", and the physical

medium on which the information is stored,
called a "volume". For most drums and many
disk units, the device and volume are in
separable. But, for magnetic tape units and
many of the smaller disk units the volume,
magnetic tape reel and disk pack respectively,
are removable. It is intended that the file system
include files that are on unmounted volumes
(discoY'.Jlected from an I/O device) as well as
mounted volumes. Therefore, a configuration
that consists of ten disk units may have a file
system that encompasses hundreds of volumes,
only ten of which may be actively in use at a
time. Since removing and mounting a volume
takes several minutes of manual effort, it will
be assumed that the "working set" of volumes
(volumes that contain files that are ~ctively in
use) remains static for reasonable periods of
time and is less than or equal to the number of
devices available. The fact that volumes are
removable and interchangeable (i.e., may be
mounted on different devices at different times)
does affect the organization of the file ~stem.
For example, a scheme that involved.)i,nking
files together by means of pointers . (Cihained
addressing) could require mounting volumes just
to continue the path of the chain even though
little or no "logical" information was requested
from files on that volume. In the worst case, it
might· be necessary to mount and unmount all
the volumes of the file system to locate a de
sired file. Such a situation should definitely be
avoided if not totally eliminated by the file
system.

6. Structured file directories and file sharing.
In a traditional file system, the mapping between·
the symbolic file name and the corresponding
file was accomplished by means of a single
)laster File Directory. For modern file systems
with thousands of files scattered over hundreds
of volfu"'1l6s, it became desirable, ii not necessary,
to form groupings of files by means of Secondary
File Directories.4 These groupings are often
used by the system to associate users with files
they own (User File Directories). This capability
is also available to the user to arrange his files
into further sub-groups (libraries) or into sepa
rate project-related groupings. Occasionally it
becomes necessary for a file to be included in
two or more groupings (e.g., accessible by more
than one User File Directory) with potentially
different access privileges (protection) associ
ated with each grouping. l\Iany of these features

Modular Approach to File System Design 7

that are relatively easy to implement in a
traditional file system are complicated by the
introduction of independent processors and
removable volume~.

7. Fail-safe operation.
Reliable operation is a very important require
ment of a general purpose file system. There are
many known techniques for I/O error and
systematic backup and salvage procedures
that are applicable to this environment. The
important problem associated with the multi
computer network is that potential error con
ditions exist that are not normally found ill
traditional single computer file systems. For a
single computer system, a processor error
(including unexpected processor disconnection,
i.e., "turning off") is a rare occurrence. Such a
situation is remedied by repairing whatever
physical hardware is necessary and then running
a special "salvager" program to bring the file
system into a well-defined operational state.
In the environment of a multi-computer net
work, processors may be connected or dis
connected at any time without any awareness
by the other processors. To prevent any in
consistent file system operation by the other
processors and eliminate the need for usually
time-consuming salvage techniques, it is neces
sary to keep the file system in a well-defined
consistent state at all times.

A file system design

The purpose of the remainder of this paper is to apply
the organization presented in th, File System Design
IHodel section to solve the problems associated with a
multi-computer file system network. Discussion of
the Access ::\Iethods and Input/Output Control
System will be omitted. This is necessitated for brevity
and consideration of the facts that the Access)Iethods
are highly application oriented, as discussed in a
previous section, and that the Input/Output Control
System is usually a basic and common component of
all Operating Systems. The principal contribution of
this model lies in the structure of the four other levels.

Logical file system

To present the goals and requirements of the Logi
cal File System in a brief and demonstrative manner,
an example will be used. The reader should refer to
Figure 6 for the following discussion. It is important
that the peculiarities of the example, such as the
choice of file names (e.g., "FILE6" and "DIR4"), not

8 Spring Joint Computer Conference, 1969

VOLUME "Val I" VOLUME "VOl2"

(User 1)

Vall (3)

F1LE.3

D1R 2

Vall (2)

I111111111I

t VOll(6)

11/11111111

VOL 1(4)

111111/1111

VOL 1(5)

111/1/11111

(User 2)

VOl2(3)

DIR 3

FILE 5

FILE 6

VOL 2 (4)

I111111111I

VOLUME "VOL 3 "

(User 3)

VOL 3 (2)

D1R 4

DIR 3

VOL3(3)

11/1/111111

Figu!'e 6-Example of file directol'Y structure (to LFS)

be confused with the general characteristics of the
Logical File System.
. In Figure 6, there are 12 files illustrated. Associated
with each file is an identifier of the fomi "VOL1(3)".
The usage of this identifier will not be discussed until
later, in the meanwhile not.ice that each file's identifier
is unique. The 12 lftes are divided into 2 types, di
rectory files (i.e., VOL1(3), VOL2(3), VOL3(2) , and
VOL3(b»), and data files (i.e., VOL1(2), VOL1(6),
VOLl (4), VOLt U5), VOL2(4), VOL2(2), VOL3(4),
and VOI~1(3». The distinction between directory
files and data files i~ only a matter of usage, the Access
lVrethods may operate upon a directory file in the same
manner as a data file, furthermore, all lower levels
(e.g., Basic File System) treat all files as data files.
This factor vdll be elaborated shortly.

I t is the stated function of the Logical File System to
map a file name reference into a unique file identifier.
This mapping is a function of the requested file name
(symbolic file name path) and a starting point (base
directory) in the file directory structure. In Figure 6,
three example base directories are illustrated by
associating VOL1 (3) with user 1, VOL2U~) with user
2, and VOL3(2) with user 3. Therefore, user 1 refer
ences to the file name FILE2 yieldR the file VOLl (4).

A more complex example can be illustrated by
considering the file VOL3(4). User 3 can refer to this
file under the name FILE8. Alternatively, it can be
referenced by the name DIR3.FILE7. The file DIRa,
which is associated with VOL3(5) from user 3's base
directory, is interpreted as a lower level directory.
Then from file VOL3(5) , the file name FILE7 is mapped
into VOL3(4) as intended. The file VOL3(4) can be
referenced from user 2's base directory as DIR3.FILE8
or DIR3.DIR3.FILE7, for example. From user 1 's
base directory, it can be referenced as FILE3, DIR2.
DIR3.FILE8, DIR2.DIR3.DIR3.FILE7, or even
DIR2.DIR3.DIR4.DIR3.DIR3.FILE7.

Two important side effects of the base file directory
and file name path facilities are that (1) a specific
file may be referenced by many different names, and
(2) the same name may be used to reference many
different files.

The headings VOLUl\IE "VOL1", VOLUME "VOL-
2", and VOLUl\1E "VOL3" are intended to indicate
that the 12 files are scattered over 3 separately de
tachable volumes: VOL1 (containing VOL1(2), VOL1-
(3), VOL1(4), VOL1(5), and VOL1(6», VOL2 (con
taining VOL2(2), VOL2(3), and VOL2(4)), and VOL3
(containing VOL3(2), VOL3(3), VOL3(4), and VOL3-
(5»). If volume VOL2 were detached from the system,
user 1 could still reference VOL1(4) as FILE4 and
VOL3(4) as FILE3, but could not reference VOL3(4)
as DIR2.DIR3.FILE8 nor VOL1(5) as DIR2.DIR3.
DIR3.FILE6 since the path would logically require
passing through volume VOL2. Furthermore, user 3
is allowed to erase (Le., remove from file system structure)
the file VOL3(4) under the name FILE8, assuming
appropriate protection privileges, whether or not volume
VOL1 is mounted in spite of user 1 's reference to file
VOL3(4) under the name FILE3.

The Logical File System could be extremely com ~lex
if it had to specifically consider the physical addresses
of volumes, the device characteristics, and the location
of file directories on volumes, in addition to its obvious
requirement of searching file directories. These problems
are eliminated by introducing the file identifier and
the interface with the Basic File System.

The Basic File System processes requests that
specify a file in terms of a file identifier consisting of a
volume name and index, such as (VOL3, 4), rather than
a file name. A sample call from the Logical File System
to the Basic File System, in PL/I-like notation, is:

CALL BFS_READ (VOLUME,INDEX,CORE_
ADDR,FILE_ADDR,COUNT); where VOLUME is
the name of the volume containing the file, INDEX
is the corresponding unique index of the file, CORE_
ADDR is the main storage address into which data is

to be read, FILE_ADDR is the file virtual memory
address from which the data is to be read, and COUNT
is the number of bytes to be transmitted. Using these
features, the heart of the Logical File System (ignoring
opening and closing files, file access protection, illegal
file names, etc.) reduces to the PL/I-like code pre
sented in Table 1. It is assumed that the file name
has been broken down into an array of path element
names (e.g., if name is DIR2.DIR3.FILE8, then
PATH (1) = 'DIR2', PATH (2) = iDIR3', PATH(3)= ;
FILE8', and PATH_LENGTH = 3), that BASE_
VOLUl\IE and BASE_IKDEX initially specify the
(VOLU::'VIE,INDEX) identifier of the base directory,
and that each entry in a file directory is N bytes long
and formatted as indicated in the FILE_ENTRY
declaration.

Of course, the handling of access (protection) rights,
errors, and other responsibilities will make the Logical
File System much more complex, but it is important
to note that the design and implementation of the
Logical File System escapes all physical file organization
and device characteristic considerations and com
plexities.

Basic file system

The Basic File System must convert the file identifier
supplied from the Logical File System into a file
descriptor than can be processed by the File Organi
zation Strategy l\10dule. A file descriptor is essential1y
an entry in the Active FiJe Directory (AFD) that
contains information such as the volume name, physical
location of the file on the volume, and the length of
the file. Every file must have an associated file de
scriptor, but since the number of passive files (i.e., not
actively in use) might be very large, the file descriptors
are maintained on secondary storage until needed
(i.e., file is "opened"). In organizing the secondary
storage maintenance of the file descriptors there are
several important considerations:

1. There must be a unique file descriptor for each
file regardleSS' of how often the file appears in
file directories or what symbolic names are
used. This is required to maintain consistent
interpretation of a file's status.

2. The file descriptor information for a file must
reside on the same volume as the file. This is
reasonable since if either the file or its descriptor
is not accessible at some time by the system
(i.e., unmounted) the file cannot be used, this
possibility is minimized by placing them on
the same volume.

3. In the same manner that the Logical File

:Modular Approach to File System Design 9

System was simplified by using the facilities
of the lower hierarchical level, the file descriptors
should be maintained in a manner that allows
the File Organization Strategy Module to
process them as normal files.

These problems are solved by the use of the Volume
File Descriptor Directory (VFDD). There is a single
VFDD for each volume, it contains the file descriptors
for all files residing on the volwlle. The file descriptors
are of fixed length and are located within the VFDD
positionally according to the corresponding file
identifier's index.· In order to exploit the facilities
provided by the File Organization Strategy Module,
the VFD D can be processed by the lower levels as a
normal file. It is assigned a unique file identifier
consisting of the volume name and an index of 1,
in fact the file descriptor for a VFDD is stored (when
not in use) as its own first entry. Figure 7 presents
diagranunatically the logical file structure of Figure 6

VOll(l)

Vall (1) »»»>

Vall (2) »»»>

VOl1 (3) »»»>

VOL1 (4) »»»>

VOl1 (5) »»»>

VOll(6) »»»>

VFDD for "Vall"

VOl2 (1)

VOl2(1) >>>>>>>

VOL2(2) »»»>

VOl2 (3) »»»>

VOl2 (4) »>>>>>

VFDD for "VOL 2"

I .. _ _._
-. VUL.:Hl)

VOl3(1l »»»>
-------- ...

VOl3(2) »»»>

VOL3(3) »»»>

VOL3(4) »»»>

VOL3(5) »»»>

Vall (2)

I111111111 I

Vall (5)

11/1/111111

Vall (6)

\1111111111

VOl2(4)

I11111I111I

V0L3(3)

111//////11

VOl3(4)

1//111/1111

Vall (3)

FilE 3 I V0L3(4)
---------+---------
DIR 2 I VOL2(3)

---------+---------
FilE 2 I Vall (4)

--------- t--------
FilE 4 I Vall (6)

---------t---------
FilE 1 I Vall (2)

Vall (4)

\1/11111111

VOL 2(2)

DIR 3 I VOL3(2)
---------t---------
FilE S I VOl2(2)

--- ------ t---------
FILE 6 I VOl2(4)

VOL 3(2)

DIR 4 I VOl2(3)
---------t---------

DIR 3 I VOl3(5)
---------t---------
FilE 8 I VOL 3(4)

VOl3(S)

FilE 6 I VOL 1 (5)
---------t--------
FilE 2 I VOl3(3)

---------t---------
FILE 7 I VOL 3(4)

FigUl'e 7-Example of file directory structure (to BFS)

10 Spring Joint Computer Conference, 1969

with the added detail of the Volume File Descriptor
Directories and File Directory formats.

The File Organization Strategy Module processes
requests that specify a file in terms of a file descriptor
(the entry extracted from the VFDD) rather than a
file name or file identifier. A sample call from the
Basic File System to the File Organization Strategy
Module, in PL/I-like notation, is:

CALL FOSM_READ (DESCRIPTOR, CORE_
ADDR, FILE_ADDR, COUKT); where CORE_
ADDR, FILE _ADDR, and COUNT have the same
interpretation as discussed above.

The primary function of the Basic File System
reduces to the single request:

CALL FOSM:_READ (VFDD_DESCRIPTOR}
DESCRIPTOR,M*(IlXDEX-l),:Vl); where VFDD_
DESCRIPTOR is the descriptor of the VFDD as
sociated with the volume name supplied by the Logical
File System as part of the file identifier, INDEX is
from the specified file identifier, M is the standard
length of a VFDD entry, and DESCRIPTOR is the
desired file descriptor.

The Basic File System performs several other tasks,
such as protection validation and maintenance of the
core-resident Active File Directory that enables
efficient association between a file's identifier and de
scriptor for files that are in use (Le., "open"). But, as
in the Logical File System, the domain of the Basic
File System is sufficiently small and narrow that it
remains a conceptually simple level in the hierarchy.

File organization strategy modules

The Logical File System and Basic File System are,
to a great extent, application and device independent.
The File Organization Strategy l\'Iodules are usually
the most critical area of the file system in terms of
overall performance, for this reason it is expected that
more than one strategy may be used in a larg~ system.
Only one strategy will be discussed in this section, the
reader may refer to the papers listed in the Refer
ences2 ,12 ,17 ,20 for other possible alternatives.

The FOSM must map the logical file address onto a
physical record address or hidden buffer based upon the
supplied file descriptor information. In the simplest
cast', the mapping could be performed by including a
two-part table ill the file descriptor. The first part of
each entry would indicate a contiguous range of
virtual file addresses, the second part of each entry
would designate the corresponding physical record
address. It has been assumed, however, that all file
descriptors have a specific length, wherells the ma.pping

table is a function of the file's length and is potentially
quite large. Therefore, it is not feasible to include the
entire mapping table as part of the file descriptor.
One of the most powerful file organization strategies
utilizes index tables, Figure 8 illustrates such an
arrangement.

In this example it is assumed that each file is divided
into 1000 byte physical records. A file can be in one of
several index arrangements depending upon its current
length. If the file's length is in the range 1 to 999 bytes,
the file descriptor contains the address of the corre
sponding physical record. If the file is between 1000
and 499,999 bytes long, the file descriptor specifies
the address of an index table located on secondary
storage. Each entry of the index table (assumed to
require 2 bytes) designates the physical address of a
block of the file (blocks are ordered by virtual file
addresses: 0-999, 1000-1999, 2000-2999, etc.). Further
more, for files greater than 500,000 bytes, but less
than 250,000,000 bytes, there are 2 levels of index
tables as illustrated.

. I ~~~~n-m:uul
Descriptor I : I

INDEX STATE 1 999 L=J
»»»> I------~

Descriptor

»»»> 999
INDEX STATE 2

499,999 t----~----1

»»»> I-------...! »»»>

»»»>
Descriptor

»»»> »»»>

INDEX STATE 3

Figure 8-Example of file organization strategy

This strategy has several advantages. Under the
worst conditions of random access file processing only
from one to three I/O operations need to be performed.
By utilizing several hidden buffers for blocks of the
file as well as index tables, the number of I/O operations
required for file accesses can be drastically reduced.

Device strategy modules

The Device Strategy Modules convert "logical I/O
requests" from the File Organization Strategy Modules
into actual computer I/O command sequences that are
forwarded to the Input/Output Control System for
execution. The Device Strategy Modules handle two
rather different types of requests: (1) read or write
blocks, and (2) allocate or deallocat~ blocks.

When a request to transfer a large portion of a file
(10,000 bytes for example) is issued, it is unlikely that
a significant amount of the needed blocks are in hidden
buffers. It will, therefore, be necessary to request
I/O transfer for several blocks (e.g., about 10 blocks if
each block 1000 bytes long). The FOSl\1 will generate
logical I/O requests of the form: "read block 227 into
location 12930, read block 211 into location 13930,
etc." The DSM must consider the physical character
istics of the device such as rotational delay and "seek"
position for movable heads. It then decides upon an
optimal sequence to read the blocks and generate the
necessary physical I/O command sequence including
positioning commands. The Input/Output Control
System actually issues the physical I/O request, error
retry, and other housekeeping as discussed earlier.
The detailed strategy for choosing the optimal I/O
sequence is, of course, very device dependent and will
not be elaborated here.

The function of automatic block allocation is some
what more complex since it involves several separate
factors. Before describing the implementation of the
mechanisms, it is wise to review the desired character
istics:

1. A file is allowed to grow in size, the FOS.:\I will
request additional hlocks for the data portions
of a file or its index tables, as needed.

2. Common direct access devices contain from
8000 to 32000 separately allocatable blocks,
thus it is not feasible to store all allocation
information in main storage.

3. Since two independent processors may be
writing new files on the same volume at the
same time, it is necessary to provide interlocks
such that they do not accidentally allocate the
same block to more than one file, yet not require

Modular Approach to File System Design 11

one processor to wait until the other processor
finishes.

These problems can be solved by use of a special
Volume Allocation Table (VAT) on each volume. In
this scheme, a volume must be subdivided into arbitrary
contiguous areas. For direct access devices with movable
read/write heads, each discrete position (known as a
"cylinder") covers an area of about 40 to 160 blocks.
A cylinder is a reasonable unit of subdivision. For each
cylinder on the volume, there is a corresponding entry
in the VAT. Each entry contains a "bit map" that
indicates which blocks on that cylinder have not been
allocated. For example, if a cylinder consists of 40
blocks, the bit map in the corresponding VAT entry
would be 40 bits long. If the first bit is a "0", the first
block has not been allocated; if the bit is a "1", the
block has already been allocated. Likewise for the
second, third, and remaining bits.

When the FOS':'\{ first requests allocation of a block
on a volume, the DS':'\! selects a cylinder and reads
the corresponding VAT entry into main storage.
An available block, indicated by a "0" bit, is located
and then marked as allocated. As long as the volume
remains in use, the VAT entry will be kept in main
storage and blocks will be allocated on that cylinder.
When all the blocks on that cylinder have been allo
cated, the updated VAT entry is written out and a
new cylinder selected. With this technique the amount
of main storage required for allocation information
is kept to a minimUlll (about 40 to 160 bits per volume),
at the same time the numher of extra I/O operations
is minimized (about one per 40 to 160 blocks of allo
cation).

The problem of interlocking the independent pro
cessors still remains. As long as the processors are
allocating blocks 011 different cylinders using separate
VAT entries, they m:1y both proceed uninterrupted.
This condition can be accomplished by utilizing a
hardware feature known as "keyed records" available
on several computers including the IB~\I System/360.
Each of the VAT entries is a separate record con
sisting of a physical key area and a data area. The
data area contains the allocation information described
above. The key area is divided into two parts: the
identification number of the processor currently
allocating blocks on that cylinder and an indication if
all blocks on that cylinder have been allocated. A
VAT entry with a key of all zeroes would identify a
cylinder that was not currently in use and had blocks
available for allocation.

There are I/O instructions that will automatically
search for a record with a specified key, such as zero.
Since the device controller will not switch processors

"12 Spring Joint Computer Conference, 1969

in the midst of a continuous stream of I/O operations
from a processor (i.e., "chained I/O commands"), it
is possible to generate an uninterruptable sequence of
I/O commands that will (1) find an available cylinder
by searching the VAT for an entry with a key of zero
and (2) change the key to indicate the cylinder is in
use. This thus solves the multi-processor allocation
interlock problem.

CONCLUDING COl\1lVIENTS

To a large extent file systems are currently developed
and implemented in much the same manner as early
"horseless carriages", that is, each totally unique and
"hand-made" rather than "mass produced". Compilers,
such as FORTRAN, were once developed in this
primitive manner; but due to careful analysis of
operation (e.g., lexical, syntax, and semantic analysis,
etc.), compilers are sufficiently well understood that
certain software companies actually offer "do-it-yourself
FORTRAN kits". Since modern file systems often
outweigh all other operating system components such
as compilers, loaders, and supervisors, in terms of
programmer effort and number of instructions, it is
important that a generally applicable methodology
be found for file system development.

ThiEl paper presents a modular approach to the
design of general purpose file systems. I ts scope is
broad enough to encompass most present file systems of
advanced design and file systems presently planned, yet
basic enough to be applicable to more modest file
systems.

The file system strategy presented is intended to
serve two purposes: (1) to assist in the design of new
me systems and (2) to provide a structure by which
existing file systems may be analyzed and compared.

ACKNOWLEDGMENTS

The author acknowledges the many long and often
heated discussions with his colleague, lVIr. Allen
NIoulton, from which many of the basic ideas for this
file system design were molded.

Many colleagues generously contributed their time,
energy, and criticism to help produce this final docu
ment. Special thanks are due to Prof. John J. Donovan,
Prof. David Ness, and Prof. Robert 1\1. Graham, as
wen as, Stephen Zilles, Ben Ashton, Hoo-min Toong,
lVIichael l\tfark, Derek Henderson, Norm Kohn, and
Claude Hans.

REFERENCES

1 R E BLEIER
Treating hierarchical data structures in the SDC

time-shared data management system (TDMS)
PAC M 1967

2 F J CORBATO et al
The. compo-tiMe tirne-.'jhanng system
MIT Press Cambridge 1962

3 R C DALEY J B DENNIS
Virtual rnemory, processes and sharing in multics
C A C M May 1968

4 R C DALEY P G NEUMANN
A general purpose file system ofr secondary storage
Proc F J C C 1965

5 J B DENNIS
Segmentation and the design of multi-programmed
computer systems
j A C M October 1965

6 E W DIJKSTRA
The structure of the 'THE' multiprogramming system
A C M symposium on operating systems principles
Gatlinburg Tennsesee October 1967

7 E W DIJKSTRA
Complexity controlled by hierarchical ordering of function
and variability
Working paper for the NATO conference on computer
software engineering Garmisch Germany October 7-11 1968

8 P J DIXON DR J SABLE
DM-J-a generalized data management system
Proc S J C C 1967

9 IBM CAMBRIDGE SCIENTIFIC CENTER
CP-67 JCMS program logic manual
Cambridge Massachusetts April 1968

10 IBM CORPORATION
IBM System/360 ti'TY'.e sharing system access methods
Form Y28-2016-1 1968

11 S E MADNICK
Multi-processor software lockout
PAC M August 1968

12 S E MADNICK
Design strategies for file systems: a work:ingmodel
File/68 international seminar on file organization
Helsingor Denmark November 1968

13 D B NELSON R A PICK K B ANDREWS
Glllf-1-a gerU3lalized in/orlnation inanagernent Zangu,a,gc ar.,a
computer system
Proc S J C C 1967

14 B RANDELL
Towards a methodology of computer system design
Working paper for the NATO Conference on computer
software engineering Garmisch Germany October 7-11 1968

15 R L RAPPORT
Implementing multi-process primitives in a multiplexed
computer system
S M thesis MIT department of Electrical Engineering
August 1968

16 S ROSEN
Progratnm:i"ng systetns and languages
McGraw-Hill New York 1967

17 J H SALTZER
CTSS technical notes
MIT project MAC MAC-TR-16 August 1965

18 J H SALTZER
Traffic control in a multiplexed computer system
Sc.D thesis MIT department of electrical engineering
August 1968

19 A L SCHERR
An analysis of time-shared computer systems
MIT project MAC MAC-TR-18 June 1965

20 SCIENTIFIC DATA SYSTEMS
SDS 940 time-sharing system technical manual

l\iodular Approach to File 'System Desigu 13

Santa Monica California August 1968
21 L H SEAWRIGHT J A KELCH

A.n introduction to CP-67 JCMS
IBM Cambridge Scientific Center report 320-2032
Cambridge Massachusetts September 1968

R TOS-Extending OS /360 for
real time spaceflight control

by J. L. JOHNSTO~E

International Business Machines Corporation
Houston, Texas

INTRODUCTION

The Real Time Operating System/360 (RTOS/360),
a modified version of the standard IB::\1 System/360
Operating System (OS/360) *, was developed by the
Federal Systems Division (FSD) of IB::'VI for support of
the Real Time Computer Complex (RTCC) during
XASA's Apollo spaceflights. RTOS/360 is a real time,
mUlti-tasking, multi-jobbing operating system that
extends the basic features of OS/360 and adds addition
al features to:

• Process real time data
• Provide simplicity of use for the applications pro
grammer

• Ensure fast response system activity (requirements
range from one-tenth of a second to one second)

• Improve efficiency
• Provide support for special devices not supported
byOS/360

• Provide a fail-safe system
• Increase job shop throughput

The presence of these features in OS/360 does not deter
from its basic capabilities; Le., all the facilities of the
current IB::\1 released OS/360 that operate in a
standard or non-real time mode of execution are
available in RTOS/360.

Some of the major functional areas which were devel
oped at IB~1's FSD Houston Operations and added to
OS/360 in the formation of RTOS/360 were:

• Independent Task :Ylanagement

* IBM System/360 Operating System (OS/360) consists of a
comprehensive set of language translators and service programs
operating under the supervisory control and coordination of an
integrated set of control routines. The operating system is
designed for use with Models 30, 40, 50, 65, and 75 of Computing
System/360.

• System Task Capability
• Queue ~1anagement
• Data and Time Routing
• Time l\1anagement
• Real Time Input/Output Control System
• Data Tables
• Display Formatting Language (DFL)
• Real Time Linkages
• Large Core Storage Support
• Logging
• Simulated Input Control
• Fastime
• Fail-Safe Programs
• Background Utilities
• Houston Automatic Spooling Priority (HASP)
• Statistics Gathering System
• Job Accounting System
• Multi-jobbing

The RTOS environment

Although RTOS/360 can be used in a variety of
applications and computer system configurations, it is
pertinent prior to discussing its functional areas that
we establish the environment in which it was designed
to operate, i.e., the Rea.l Tit1le Computer Complex
(RTCC), the RTCC hardware, and the RTCC applica
tions programs.

TheRTCC

The RTCC is a ground-based computing and data
processing complex for NASA's manned spaceflight
program. It includes the computer equipment, associ
ated peripheral equipment and program packages to
monitor and support-in real time-Apollo missions,
simulations, and training exercises. l

RTCC is the core of NASA's Mission Control Center

-- 15 ---

16 Spring Joint Computer Conference, 1969

(MCC) at Houston, Texas. Flight controllers at lVICC
monitor every phase of a manned spaceflight, from
launch through orbit, reentry, and splashdown. During
a lunar mission, flight controllers also monitor and sup
port the astronauts during their flight to the moon,
the descent to the moon's surface, the liftoff and
rendezvous with the mother ship, and the return to
earth.

RTCC provides flight controllers with the informa
tion they need to monitor the flight and make decisions
regarding the mission. This simply means flight con
trollers sitting at consoles in Houston have precise
information in real time such as the status of every on
board system, the condition of the astronauts, their
position in space at any desired time up to 40 hours in
advance, or t.he effect that any planned maneuver
would have on the spacecraft or the astronauts.

The RTCC is called on to do many things during a
mission. Some of the more important or more common
requirements include:

• Process radar data during launch and provide
ilight controllers with present position and velocity

• Provide flight controllers with information on
whether or not the spacecraft will achieve orbit

• Process telemetry data and provide flight control
lers with vital information such as amount of
oxygen remaining in astronaut environmental
control system

• Compute the orbital path of the spacecraft from
radar data

• Predict the position of the spacecraft at some time
in the future

• Compute how and when the spacecraft must
accomplish a particular maneuver to change its
orbital characteristics

• Compute navigation information to update the
Apollo Guidance Computer on board the space
craft

• Process radar range data and let flight controllers
know the spacecraft is on correct lunar transfer
flight path, and if not, what maneuvers are neces
sary to get it back on the correct path

• Monitor the Apollo Guidance Computer during
reentry and predict the spacecraft landing point.

In addition to these tasks, and thousands more per
formed during a typical Apollo mission, the RTCC also
has a key role in flight controller and crew training.

To perform the different requirements of the RTCC,
each of five IBM System/360 Model 75 computers are
assigned a different role and the RTCC is engineered so
that these roles can be exchanged at any moment. This
unified set of computers allows NASA to run either two
actual missions at the same ti..1'fle, two simulated mis-

sions at the same time, or a simulated mission and an
actual mission at the same time. Figure 1, The RTCC,
demonstrates the five systems at work in the latter con
figuration. In the mission configuration, network data
flows into the RTCC from one of the Communications
Command and Telemetry Systems (CCATS)at MCC.
The data are then sent to the :NIission Operational Com
puter (MOC) in the RTCC, which processes all the
real time processing tasks of the Mission, and the
Dynamic Standby Computer (DSC), which performs
redundancy processing and is ready to function as the
~![OC, if necessary. In the simulation and training
exercise 1 an Apollo trainer, either at the MCC or Cape
Kennedy, is in a closed loop with one of the identical
Mission Operational Control Rooms (MOCR). (The
other lVIOCR is being used for the mission in progress.)
One simulation computer contains an application pro
gram which is generating simulated network data; the
other computer is being used as a simulated operational
computer. The fifth computer is a standby computer
for both exercises; however, it is not idle, but per
forming job shop checkout for future application pro
gram development.

The hardware configurations

There are several System/360 hardware configura
tions used in the development and execution of the com
puting systems developed for the real time applications
at NASA. Each configuration is supported by a single
RTOS/360 system. The configuration used on each
of the five computer systems in the RTCC itself con
sists of a System/360 Model 75 computer with a one
million byte main memory (IB¥ 2705). (See Figure 2,
System/360 Model 75 for :Mission Support.) An IBM
2361 Large Core Storage (LCS) acts as a four-million
byte exte,nsion of main memory as well as a buffering

MCC

GROUNORAMR

SHIP
COMMUNICA liON

I mls ~ I MISSION

Is~ I COMNre~
75

75 COMPUreR
~, ~ -r:,:,r~.::-

~~~·~~-=---~u· -r::1----
/ ~ ,~ S!MU .... TI~ 

r8~ I ".., I ,~ 
MCC 75 

slMU .... reo 
IEMOre 
SITE 

Figure I-The RTCC 



2705 CPU 

IMILUONBYT£S 

SELECTOR 
CHANNEL 

6 

(STORAGE 
CHANNEll 

Figure 2-8ystem/360 model 75 for mission support 

IlEAL 
TIME 
INTUFACE 

device for retrieving data and programs from the IB2VI 
2314 disk drives. The IBl\1 2701 provides a rapid de
mand response interface to the digital display (D/TV) 
system in the MOCR and RTCC. Real time acceptance 
and transmission of large amounts of data and control 
information are accomplished through the use of the 
IBM 2902 Multiplex Line Adapter (::.\lILA). A card 
reader/punch, an IB:'VI 1443 printer, three IB.:Vr 1403 
printers, two IBM 1052 consoles, and eight tape drives 
complete the configuration. 

Another System/360 l\:Iodel 75 configuration is used 
primarily for Simulation exercises. In addition to those 
devices given in the previous configuration, this Model 
75 configuration supports a special Apollo Simulation 
Processor Channel (ASPC), which receives data from a 
Multichannel Demultiplexor and Distributor (MDD), 
an IBl\1 2260 Display Device, and an IBlVI 2844 which 
acts as a control unit for the IBl\1 2314 disk drives. 
Several different System/360 :Model 50 configurations 
are also supported by RTOS/360 at the RTCC. 

The applications 

The applications programming packages used to 
perform in these various configurations include: 

• The Apollo lVlission Systems 
• The Ground Support Simulation Computer Sys-
tems 

• The Dynamic Network Data Generation Systems 
• The Simulation Checkout and Training Systems 
• The Operational Readiness and Confidence Test-
ing Systems. 

We've now placed RTOS/360 in its environment; i.e., 
the RTCC, the RTCC hardware configurations, and the 
RTCC applications used for real time processing under 
RTOS/360 control. 'Vith this environment in mind, we 
can now turn to a description of the various functional 

RTOS 17 

areas and features designed to extend OS/360 to form 
RTOS/360. First, let's look at the functional areas. 

Functional areas of RTOS/360 

Independent task management 

In OS/360, all processing is done in conjunction with 
units of work defined as tasks. Tasks are not programs 
in core storage nor are data for a program a task. A task 
is a unit of work (programs and data) requiring re
sources (CPU etc.) to complete its functions. A task 
exists only when a Task Control Block (TCB) is es
tablished and its location is known to the supervisor 
portion of the operating system. The TCB contains 
information on such things as pointers to data (I/O), 
the list of programs needed to operate under the task, 
the priority of the task, etc. In OS/360, the word "mul
tiprogramming" is replaced by "multi-tasking"; how
ever, the meaning is still the same, i.e., many tasks 
processing asynch.ronously-through various paths of 
logic with the usage of the CPU being switched ac
cording to the requirements of the system. (Figure 3, 
A Task, gives a graphic illustration of a task.) 

Some of the characteristics of an OS/360 task are not 
functionally oriented toward the types of work required 
to be performed by a real time system. An OS/360 task 
requires the existence of its creator in order to exist; 
i.e., it is dependent on its creator. This OS/360 concept 
has been extended within RTOS/360 to include tasks 
which are independent of their creators. This causes a 
distinction between dependent and independent tasks. 
(A dependent task is identical to an OS/360 task.) 
Therefore, an independent task does not require the 
existence of its creator in order to exist. 

How do the characteristics of an independent task 
render it more especially suited to real time systems? 
First, a real time system must be able to receive and 
process varying data loads rapidly and efficiently. In 
RTOS/360, an independent task may be defined for 
each type of data to be processed in real time and be 

r--- r-::I ---l 
I~I 

B PROGRAMS 

Figure 3-A task 



18 Spring Joint Computer Conference, 1969 

available to receive work at all times even if the data 
rate is low or random. The major distinction here 
between dependent and independent tasks is that the 
independent task will continue to exist in the system 
when it has no data to process. During this time it is 
dormant. The OS/360 task requires at least one load 
module executing in order to exist. Each independent task 
is assigned an area in main core called a resource table. 
This is a private area that can be used by the programs 
running under the task. Usually, information is stored in 
this area which is derived from the processing of earlier 
data. In this way, the task can "remember" information 
through periods of dormancy. When data are received by 
the system for an independent task, they are sent to the 
task in the form of a request. Each request has its own 
priority which in turn becomes the task's dispatching 
priority while processing that request. The 08/360 
task has only the priority of its creator. If an independ
ent task is processing a request when another request is 
generated for it, the new request is enqueued according 
to its priority. Requests in this queue will be given to 
the task as it completes the processing of higher priority 
or older requests. 

When an independent task becomes active, it is 
assigned a unique protect key. This protect key is 
given to all dependent tasks created by the independent 
task while processing a request. Therefore, a program 
running under an independent task or its descendents 
will be protected from all programs controlled by 
other active independent tasks or their descendents. 
Since dependent tasks are assigned the same protect 
key as their creator's, all tasks of a job step in OS/360 
have the same protect key. This is not practical in 
large real time, multiprogramming systems where 
many tasks handle various types of data. Independent. 
tasks ensure that unique protect keys will be assigned 
to unique functions. 

Figure 4, OS/360 Task Structure, represents the 
logical structure of tasks operating as a job step in 
OS/360. This structure is obviously pyramidal in form. 
All tasks depend either directly or indirectly on the 
Job Step Task. The Job Step Task can create depend
ent tasks (subtasks) which in turn can create tasks 
dependent upon them, etc. All tasks compete for system 
resources (CPU, I/O, etc.), and OS/360 awards those 
resources according to the priority assigned to each 
task. 

Figure 5, RTOS/360 Task Structure, represents the 
logical structure of tasks operating as a job step in 
RTOS/360. One can see that a new dimension has been 
added. The Job Step Task and its subtasks exist as in 
OS/360 while each independent task forms the basis of 
another set of tasks which operate independently of and 

ETC. 

ETC. 

JOB STEP 
TASK 

Figure 4-08/360 task structure 

ETC. 

Figure 5-RTOS/360 task structure 

parallel to the Job Step Task and each other. This 
structure is comparable to multi-jobbing in OS/360 
with each independent task analogous to the Job Step 
Task of each active job. However, in RTOS/360, all 
independent tasks and their subtasks function within 
a ";single job step, and all tasks in that job step are 
awarded the system resources according to their dis
patching priority. 

System task capability 

In the processing of real time data, it was found that 
many units of work (tasks) were unrelated to an existing 
task or could be performed asynchronously to existing 
tasks. T\lese tasks were really tasks of the system. 
Therefore, a capability was developed in RTOS/360 
for these systems tasks. System tasks perform services 
for the RTOS Supervisor or user-created tasks such as 
message writing and logging of real time input data. 
System tasks can be created and returned from within 
1/25th the system overhead time required for either an 
OS /360 defined dependent task or R TOS defined in
dependent task. This reduction in overhead to perform 
required system services in a real time environment 
can prove tremendously important during those CPU 
critical periods of high, real time, data processing. 



The large difference in overhead is due to the following: 

• All control blocks required for a System Task have 
been pre-allocated and pre-initialized for efficient 
utilization. 

_ • The entry point for a System Task is an absolute 
location instead of a load module name, as is the 
case for dependent and independent tasks. 

Queue management 

If an independent task is processing a work request 
all other requests for that task must be held by the 
system until the task is ready to begin processing a new 
request. Therefore, RTOSj360 must build and main
tain a queue of work requests which are waiting to be 
processed by an active independent task. Information 
concerning each request is held in a Real Time Queue 
Element (RTQEL). (Figure 6, Independent Task and 
RTQEL's, shows the logical structure of an independ
ent task and its RTQEL's which are waiting to be pro .. 
cessed.) Each active independent task will be processing 
one work request and that request is represented by the 
active RTQEL. All other work requests for the inde~ 
pendent task are placed in a queue of waiting RTQEL's. 
This queue is ordered by dispatching priority and, i~ the 
case of equal priorities, it is first-in first-out (FIFO). 
When the task completes processing ()f the ~ctive 
RTQEL, the top RTQEL in the que~ of waiting 
RTQEL's is made active and is given to the task. If 
there are no work requests (RTQEL's) waiting for the 
task, then the task is made dormant and waits in the 
system for the arrival of new work. All work requests 
for independent tasks can be optionally placed under 
queue management controls by directing each RTQEL 
into a Real Time Queue (RTQ). Each RTQ is created 
by a user macro instruction which defines the five 
attributes of the queue: 

• Its unique name, which identifies the RTQ. 
• Its length, which is the maximum number of 
RTQEL's to be held in the RTQ before an over
flow condition occurs. 

• The sequence in which RTQEL's are to be removed 
from the RTQ and given to independent tasks for 
processing (dispatching priority, FIFO, LIFO). 

• The overflow disposition which identifies the 
RTQEL to be removed from the RTQ and dis
carded if the queue overflows (newest, oldest, 
lowest priority RTQEL). 

• Whether the RTQ is currently able to give 
RTQEL's to independent tasks (enabled or dis
abled). 

Figure 7, Real Time Queue Element Control, gives 

RTOS 19 

Figure 6-Independent task and RTQEL's 

RTQC8 

TOPRTQEL 

ACTIVE 
RTQEL NEWEST RTQEL 

Figure 7-Real time queue element control 

an example of the logical structure of HTQEVs con-
t.l"()ll~cl h" on "RTf) Tho huo cd·h.ih.,,+.no " .... ;! A+h,,~ ,,,.'" "' ... ....., ...................... -J ......, ........ ~"' ..... ~ • ..L ....... "'" ~.L l' V c:..tiUU.&..LuuU\J..::! GtI.1..L\.A.. vuJ..1.\".I.J. vVU-

trol information pertaining to the R TQ are held in the 
Real Time Queue Control Block. In the example, the 
RTQEL's would be given to the independent task in 
order one, two, three, four, if they were not controlled 
by the RTQ. That is the sequence of their relative dis
patching priorities. However, the RTQ has a FIFO 
order attribute; therefore, the RTQEL's will be given 
to the task in the order three, one, two, four. 

If queue management is not used, the RTQEL's for 
independent tasks in the waiting queues can accumu
late indefinitely unless the tasks can process their work 
requests faster than they are generated. Queue man-

ETC. 



20 Spring Joint Computer Conference, 1969 

agement provides additional controls over the requests 
in the waiting queues by limiting the maximum number 
of RTQEVs held for independent tasks. It can also be 
used to indirectly control the system load by not giving 
work to an independent task until another independent 
task has completed processing. 

The number and structure of RTQ's is determined 
entirely by the user. An RTQ can contain work requests 
for any number of tasks, and any number of RTQ's can 
contain work requests for the same independent task. 
The point to be made here is that queue management is 
very versatile in that it can be used in many ways to 
regulate the system's \-vork flow. 

Data and time routing concept 

One of the characteristics of many real time, on-line 
systems is that they are driven by the arrival of data to 
be processed and by the passage of time; i.e., some pro
cessing is accomplished by the programming system 
because certain data have arrived while other processing 
is accomplished because certain reports and displays are 
required at specific times. Another characteristic found 
in the R TCC system is that much of the processing is 
very repetitive; i.e., the same kinds of data come again 
and again, representing different positions of the space
craft or different data points for the various telemetered 
activities that are being monitored. In developing 
RTOS/360, and the independent task concept, it was 
recognized that a mechanism was required which would 
examine all types of input data and cause them to be 
sent to the appropriate independent tasks for process
ing. This mechanism is called data routing, and it acts as 
an interface between the hardware interrupt servicing 
function and the resident nucleus of RTOS/360. Data 
routing is a simple mechanism which requires only that 
the applications programs execute a macro instruction 
to identify the directives to RTOS which link a type of 
input data to an independent task. When input data is 
received in the system via the 2902 ::\fLA, RTOS com
pares the data with the current data definitions estab
lished by the applications programs. If a match is found, 
the data are routed to the independent task that will 
process them. If no match is found, the message is dis
carded. Data routing can also be instructed to accumu
late a number of data messages (for example, input 
messages) for the same independent task and generate 
a request for the task only after the number of messages 
specified by the user have been received. In this case, all 
the accumulated messages will be sent to the independ
ent task as one request. 

As stated above, work requests may be gener,ated 
according to the passage of time also. For example, an 

independent task may be created to control a program 
which updates the position of a space vehicle every 
second. The only data necessary to perform this opera
tion is the position of the vehicle a.t the last second and 
some orbit and velocity parameters. Since this opera
tion is controlled by an independent task, the necessary 
data and parameters can be saved in the task's resource 
table while it is dormant (possibly out of main memory). 
Since data arrive in a random manner and not nece~
sarily sequentially or on a time cycle, there is no metllOd 
m:ing input data which will cause requests to be gener
ated for the task which must process a request each 
second. Therefore, time routing must be used to gener
ate the required results. To use time routing, a problem 
program requests that a certain independent task is to be 
activated Bot a certain time or cyclical when a given 
delta time has elapsed. RTOS/360 routing and time 
management functions will then activate the independ
ent task at the time requested. If the activation is to be 
continuous, it is left to the problem programmer to 
request the activation's end. 

The data and time routing functions (which operate 
under a system task) have been constructed so that 
their functions can be combined. For example, it is 
possible to request the accumulation of data under 
data routing with requests generated by time routing 
on some specified interval. Each request generated will 
contain all the data accumulated during the last inter
val. Another way of using the combined functions is 
that messages can be accumulated over a timed inter
val and request generated either when the interval ex
pires or when specified numbers of data messages have 
been received in the system, whichever event occurs 
first. 

Time management 

The System/360 ::\10del 75 computers used to sup
port X ASA's real time applications are equipped with a 
special high-resolution (lOJ,Ls accuracy) G::\1T (Green
wich ::\lean Time) clock and interval timer. In order to 
provide support for this special hardware, a time man
agement supervisor was developed for RTOS/360 which 
functions in parallel with the standard OS/360 time 
management routines. The time management supervisor 
maintains the system thne in a job step pseudo clock, 
and it controls the setting and interrupt processing from 
the G::\IT hardware to keep time and service interval 
timeout requests from the routing function and other 
areas of RTOS/360. Additional functions have been 
added to the time supervisor which provide optional 
controls over the job step pseudo clock. 



Real time input/output control system 
(RTIOCS) 

It was necessary to develop a Real Time Input/Out
put Control System in RTOS/360 which would service 
real time input/output requests rapidly and efficiently, 
perform special device-dependent data manipulation, 
and support the special real time input/output devices. 
at the RTCC. RTIOCS is comprised of five logical 
parts discussed in the following paragraphs. 

A real time access method performs device-dependent 
data manipu.lation and sends output messages to the 
special real time output devices at the RTCC. In addi
tion, standard sequential System/360 output devices 
(2400 tapes, 1403/1443 printers) may be substituted for 
the special RTCC devices simply by altering the UXIT 
designation on cards in the user's input job stream. The 
real time access method is also used to control the read
ing of information from the IB~.vI 2250 and 2260 graph
ic display units. This section of the real time access 
method functions closely with the graphic display 
attention control routine, and together, these two areas 
of the real time I/O control system provide RTOS/360 
users the ability to read information from the IB::'v12250 
or 2260 devices. Writing on the display devices is con
trolled by the real time access method alone. In this 
case, the displays are processed as normal real time 
output requests. 

The real time interrupt servicer and start-stop input 
routine provides software control over the real time 
input devices at the RTCC. The interrupt servicer 
passes input data to the data routing and logging func
tions in RTOS/360. The start-stop input routine ac
cepts data whenever an active routing request is pres
ent for each particular device. An OS/360 OPEN" / 
CLOSE is not required. 

The digital display control routine provides central
ized and simplified control of the special R TCC devices 
called digital television displays (D /TV). This control 
program is entered by user tasks signaling the change 
of status in one or more of the displays, The current 
status of the display is updated by the control routine, 
and it then gives control to the real time access method 
which updates the actual hardware display. 

The digital/TV display control routine provides a 
software support for the Philco digital/TV display 
system at the RTCC. This program services all digital/ 
TV display requests, maintains information indicating 
which displays are currently being viewed and the con-
8ol,.~ which is viewing them, controls the dynamic alloca· 
tion of the digital/TV channels, and generates work 
requests for the user tasks which create and update the 
actual numbers or figures wit: ':'1 each display. 

RTOS 21 

Data management-data tables 

The large amounts of data required to be accessed by 
the Mission Systems at the RTCC during spaceflights 
prompted a careful evaluation of the OS /360 Data 
i\1anagement methods. First, it was found that 
although the methods were adequate for the environ
ments for which they were designed, the RTCC real 
time environment nroduced a llnim]p, ~it.1Hdi{)n in urhinh ... . _____ ~ ___ _____ ....... _ .................. , ...... .&..&.""',1,1 

system overhead needed to be reduced for reading and 
writing data. Second, there was no efficient means to 
enable RTOS independent tasks to share data. Third, 
due to the critical importance of data in the system, a 
means to ensure data integrity and consistency had to 
be developed. Finally, an easy method had to be devel
oped to allow users a simple method of reading and 
writing data, thereby eliminating the need for compli
cated coding techniques. The resolution to these 
RTOS data management problems was the develop
ment of control programs to support data tables. 

Data tables are blocks or arrays of data maintained 
on direct access devices (2314 disk) in the partitioned 
format. (Data tables are treated as members of parti
tioned data sets.) Each datg table is identified by its 
unique EBCDIC name and is defined by its block size 
and number of blocks. A data table generation program 
employs these parameters in allocating direct access 
space for each table, providing the controls required to 
access it, and storing its initial data in the direct access 
space provided. 

The main utility of data tables is the additional 
facilities provided by the data table control programs. 
Here, the standard OS/360 Data i\1anagement OPEN/ 
CLOSE logic has been eliminated, thereby increasing 
the speed at which data can be read or updated. Data 
can be used commonly by any number of different 
tasks. The data table programs provide methods of 
"locking" data tables which ensure data integrity and 
consistency by delaying any tasks which try to write 
into a data table until the table is "unlocked." In this 
way, various portions of a table can be read through 
different requests and the user is ensured that no up
date has taken place between requests. 

Functional arear-Summary 

Briefly, we placed RTOS/360 in its environment and 
outlined the major modifications made to OS/360 in its 
functional areas of Task l\Ianagement, I/O l\Ianage
ment, Time }lanagement, and Data Ylanagement to 
extend it for real time spaceflight control. In addition, 
we have shown the addition of two new functional 
areas, Routing and Queue l\lanagement, which add 
additional controls necessary for RTOS/36G to effi-



22 Spring Joint Computer Conference, 1969 

ciently perform the strenuous requirements of real time 
processing. However, RTOS/360 development does not 
end here. Experience had taught us that many addition
al features and facilities would be necessary in an oper
ating system to process and develop real time program
ming packages. These features are outlined in the fol
lowing section. 

Special features and facilities of RTOS/360 

Large core storage support 

The IB1\1 2361 four-megabyte Large Core Storage 
(LCS) is supported in three modes of operation by 
RTOS/360. The first mode is to use the LCS as a means 
for imprO'lJing job shop operations~ This is accomplished 
by: (1) using the Le8 as assembler work space instead 
of tapes or disks, thereby improving assembler execu
tion time; (2) using the LCS as work storage for com
pilers to allow larger compilations to be performed in 
main memory, thereby decreasing compile time and 
increasing job throughput; (3) placing job control in
formation on the LCS, thereby job throughput is in
creased; (4) using the LCS as a system residence device 
for nonresident operating systems programs, thereby 
giving faster access to them and increasing throughput. 

The second mode is to use the LCS as an addressable 
extension of main 'Yne'Yfwry. This is especially applicable 
to large applications packages being developed on the 
one-half megabyte main memory System/360 Model 
50's. 

The third mode of operation was initiated by the fact 
that it was known from the initial development of the 
Apollo mission application package that the package 
would exceed the capacity of main memory and the 
LeS. (The Lunar Landing ~ii88ion p.xceeds six mega
bytes.) Therefore, an LCS algorithm was developed 
that dynamically allows the funneling of data and pro
grams into main memory (see Figure 8, Allocation of 
1:Iain l\:Iemory). Basically, this dynamic LCS alloca
tion means that the LCS is used as a high-speed dy
namically changing residence device for load modules and 
data tables which are heavily used but which cannot be 
contained in main storage for the duration of the need 
for them. A load module or data table will be put on the 
LCS when it is requested and is not presently on the 
LCS. As long as the load module or data table is fre
quently used, it will be retained on the LCS; when it 
appears that the load module or data table is no longer 
required on the LCS, it may be replaced with another 
load module or data table. 

It is possible to identify load modules and data tables 
with such low response requirements that they need 
never he placed on the LCS, i.e., residence on a direct 
access device is sufficient. Conversely, some load 

2314 DISK 

4 MEGABYTE 
LCS 

1 MEGABYTE 
MAIN 

MEMORY 

Figure 8-Allocation of main memory 

modules and data tables are very critical; therefore, 
these may be permanently "locked" on the LCS. 

To support the third mode of LCS operation, a Large 
Core Storage Access Method (LeSAM) was developed 
to provide the R TOS control program with a facility of 
moving blocks of storage from the LCS to main storage 
or from main storage to LCS. LCSAM will perform the 
data move either with the normal System/360 in
struction set or by performing a.n I/O operation through 
the storage channel, depending on the size of the block 
of data. 

Real time linkages 

Two problems encountered in large real time systems 
required the development of a feature in RTOS/360 
called Real Time Linkages. The first problem pertains 
to the fact that the system library subroutines refer
enced by standard OS/360 load modules (programs) 
must be included within each module when built by 
the 08/360 linkage editor. This requirement often 
results in a large duplication of system subroutines 
present in main core at one time. This duplication can 
be very wasteful since the amount of main core available 
is reduced, and the amount of time required to load a 
module is increased, and the amount of space required 
to hold the module on a direct access device is increased. 
Real time linkages solve this problem by allowing load 



modules to reference common resident reentrant library 
subroutines. 

A second problem pertains to the fact that certain 
constants (such as the diameter of the earth) used in the 
real time missions must be identical to all programs and 
be under close control by the coordinators of the total 
application mission system. The real time linkage 
mechanism solves this problem. 

By holding task priorities in a common parameter 
table, the system can be "tuned" by simply changing 
those priorities found in that single tab]e rather than 
performing a reassembly of a large number of programs. 

Real time linkages resolve all the external references 
that a load module cop.tains for system subroutines or 
common parameters when the module is loaded into 
core for execution. The system subroutines and common 
parameters are loaded into main core during real time 
initialization and held there for the duration of the run 
(job step). Therefore, the addresses of these routines 
and parameters can be inserted into the appropriate 
external address constant fields contained in a module 
as it is loaded so that the cost at execution is no greater 
than if they appeared in the load modules in the norma] 
fashion. 

Logging 

In most real time applications, especially those which 
require post-run analysis, it becomes important to per
form some type of recording activity which saves the data 
received, transmitted, and processed by the system. 
This feature is referred to as logging in RTOS/360. 
Logging automatically records all real time input and 
oatput messages on magnetic tape. Also, a macro in
struction has been provided which will write problem 
program generated information on the log tape if an 
application programmer wants a record of selected 
data or processing results. 

Simulated input control 

One important factor, which is almost essential in the 
develop~ent of real time systems, is the ability to send 
simulated input data to the applications programs. In 
real time environments, it is impossible to employ or 
always obtain the necessary equipment to produce 
"live" data for all applications program checkout. To 
solve this situation, RTOS/360 contains a feature 
termed Simulated Input Control (SIC), which allows 
the uer to run his development programs with simu
lated input data in an attempt to find most interface 
proble'llS between modules and programming errors 
prior t ) final checkout with actual data. 

The SIC programs which operate as part of RTOS/ 

RTOS 23 

360 obtain the simulated input data from cards or tape, 
or both. All data have a time of receipt associated with 
each data message which allows SIC to send each one to 
the data routing function when the time of receipt on 
the message equals the current internal computer time 
(job step pseudo clock time). This in turn generates 
requests for independent tasks which will process the 
data as if they were a real time message. For convenience, 
the SIC package has been designed so that magnetic 
tapes produced by the logging function can be used as 
SIC input sources without special editing. The SIC 
programs will pass over all output messages on the log 
tape and send only the input messages to the data 
routing function. 

Fastime 

Another special RTOS/360 function that has become 
very valuable at RTCC is Fastime. Fastime is often 
used in conjunction with SIC when testing new areas of 
the user's system. Its only function is to step the job 
step pseudo clock when there is no system activity. 
Fastime operates as the lowest priority task in the 
system so that it is entered when there is no other 
activity. If the Fastime program running under this 
task determines that there is no further work to be per
formed before the next routing request, the time manage
ment function is signaled to step the pseudo clock to the 
time of the next routing request. One can see that many 
hours of computer time can be saved because the system 
will not wait for the actual passage of time to generate a 
time queue if the system becomes inactive, as time 
queues will be generated immediately when idle C;PU 
time occurs. This function is further enhanced in SIC 
runs because the SIC programs use time queues in 
determining the exact moment a message is to be sent to 
data routing. Therefore, in a SIC run, time may be 
stepped to the time of the next data message. This mes
sage will be immediately sent to data routing and then 
to a task for processing. In this way, simulated data 
messages can be given to tasks as fast as the tasks can 
process them, thereby reducing the actual computer 
time to Mst new programs. By using Fastime with SIC, 
the checkout of an 80-minute orbit can be performed in 
about 10 minutes. Fastime and simulated input control 
have no place and are not used when the system is 
performing its real time production work. These func
tions are used only in testing new versions of the appli
cation systems. 

Display- formatting language 

There is a large variety of display devices at the 
RTCC that have different internal format requirements. 



24 Spring Joint Computer Conference, 1969 

There is a high probability of change in these devices, 
their internal formats, and the displays shown on them. 
This changeable character of the display devices in
creased the need for a series of display formatting 
programs. To meet this need, RTOS/360 programmers 
designed and developed a versatile display formatting 
language (DFL) which isolates the applications pro
grammers from the unique characteristics of each dis
play device and the internal format changes resulting 
from modifications to those devices. 

The display formatting process consists of two steps. 
First, the user must define his display by assembling the 
DFL format macro instruction with his program. The 
format macro instruction expands into a "format state
ment" or character stream when assembled. 

This character stream provides the display format 
controls used by the DFL conversion routines in the 
building of an actual output block for the desired dis
play. During execution, the applications programmer 
can prepare output data for a display by executing the 
DFL conversion macro instruction. When the conver
sion routines complete processing and return control to 
the calling program, the data are in converted form and 
ready to be sent to the device specified by a particular 
control card (DD card) in the job control language for 
the job step. The user can subsequently output the 
data to the display device via the real time access meth
od portion of the real time I/O control system. The con
version routines build output blocks for a particular 
device. The device is specified by identifying to the con
version routines the DD name of the DD card for the 
data set. From this information, the conversion rou
tines can identify the particular device whICh is to re
ceive the converted data and activate the appropriate 
conversion modules. This means that the DFL package 
provides complete device independence among those 
devices supported (see Figure 9, Device Independent 
I:ispla.y Language). 

Through the simple alteration of control cards in the 
mer's job stream, the user can alter his display devices. 
This feature can be very valuable when the actual dis
play devices are not readily available. The applications 
programmers can code and debug their display pro
grams using common or standard devices, such as IB:;VI 
1403 printers. When t.he display devices become avail
able, the programs will be ready for actual production 
work after changing the appropriate control cards. 
The d3vices currently supported by the DFL package 
are printers: IB.M 1403, IBNI 1443; display devices: 
IB1\'J 2250, IBl\l 2260, Raytheon l\lCVG, Philco 
RTCC Digital/TV; plotters: RTCC X-Y Plotboards, 
RTCC Scribers; and Teletypes. The device independ
ence feature and some of the devices supported by D FL 
are also shown in Figure 9. 

RTPUT 

~ RTPUT 

® ) 

aBJ 
ItAYTHEON COMMNY 
MCVG 

FORMAT STATEMENT 

\ 

\ 
HELP 

I 
ITPUT 

I 

! 

-- -\ 
IBM 2250 

DISPLAY UNIT 

I 
I 

RTPUT 
! 

PHILCO COlPOIATION 
TV 

Figure 9 ---Device independent display lang uage 

Fail-safe programs 

Because of the critical nat.ure of real time manned 
spaceflights, it is extremely important that RTOS/360 
be able to process abnormal conditions so that it is 
virtually impossible for a portion of a flight to go un
monitored because of a software, data, or hardware 
failure. Four areas of software support have been de
veloped and included in R TOS /360 to meet this need: 
selectover, high-speed restart, error recovery, and time-out. 

Selectover is performed by exchanging the operation
al roles of the :\'Iission Operational Computer (MOC) 
and the Dynamic Standby Computer (DSC) without 
interruption to the input/output data on the real time 
interfaces. During Selectover, the integrity of the mis
sion outputs is maintained. 

The Apollo mission support system operating under 
RTOS/360 in a System/360 lVIodel 75 with one mega
byte main storage and four megabytes LCS, may be re
started in less than 10 seconds on an alternate Model 
7!> computer system which may be idle, processing job 
shop, or performing real time test operations. This is 
accomplished through IBIVI Channel-to-Channel Adapt
ers (CCA) which link each comhination of two out of 
five machines. An Initial Program Load (IPL) sequence 
is generated from a remote console to the proper CCA 
on the operational computer system, simultaneously 



enabling the CCA path between the two systems. A 
special IPL hardware modification enables a restart 
even if the machine to be restarted is in manual state. 
All of allocated storage is then transferred over the 
CCA from the operational system to the selected stand
by system before resuming in the restarted system. A 
similar restart can be performed from magnetic tape by 
creating the tape on an operational computer and 
carrying it to the standby computer for IPL. (This 
operation takes about five minutes.) 

The error recovery package of R TOS allows the 
system to recover from errors due to the program errors, 
hardware-malfunctions, or abnormal conditions arising 
within the system itself. As recovery occurs, appro
priate messages and recommendations are printed 
which indicate the current status of the system. A part 
of the error recovery activity includes device switching, 
i.e., if one I/O device fails, RTOS will automatically 
(or by external signal) select another device of that 
type. When the control program detects an error con
dition, an end-of-tape, or when a user requests a device 
switch, Alternate Device Support (ADS) is invoked to 
locate an alternate unit of the same device type and 
perform the necessary adjustments to allow the alter
nate to replace the primary device. RTOS/360 pro
grams contain built-in logic which allows recovery 
from a situation where an alternate is unavailable. The 
computer operator is informed on the console type
writer of all device switching operations. Currently, 
device switching is provided for the 1052 typewriter, 
tapes, printers, and 2314 disks. 

Certain I/O device failures are such . that an inter
rupt to the CPU is never generated to signal the com
pletion of the I/O operation or an error condition. A 
software timeout facility exists in RTOS/360 which 
will check once per second to determine if an I/O opera
tion has not completed in a period of time which is 
normal for the particular device. When such an occur
rence is detected, the I/O operation will be purged and 
appropriate messages will be printed. Normal use of the 
device will be attempted on subsequent requests. 

Houston automatic spooling priority system 

The tremendous development effort required to meet 
critical mission schedules requires that the computer 
systems be used to the maximum at all times during job 
shop operations. It was known from the onset of Apollo 
development that either a large number of "peripheral" 
off -line support computers would be required to per
form such operations as loading jobs for execution and 
printing the vast amounts of output (usually large core 
and LCS dumps) or the Model 75 computers would 
have to be used to their maximum CPU availability. 

RTOS 25 

Since the former was far too expensive, a programming 
system was developed specifically for RTOS/360 that 
allowed all the peripheral functions normally associated 
with off-line support computers to be performed in the 
single l\10del 75 CPU. The system was called the Hous
ton Automatic Spooling Priority (HASP) system. 
HASP acts as a dependent task under RTOS/360 (co
habitates in a single CPU with other RTOS/360 opera
tions) and uses small amounts of prLlllsry CPU thne to 
operate the peripheral functions. These functions in
clude transferring the job stream to direct access to 
await execution, collecting job output on direct access, 
and printing and punching job output from direct 
access following job execution. Jobs awaiting any stage 
of processing (print, punch, or execution) are queued on 
a priority basis so that the effect of a true priority 
scheduler is gained not only for normal job execution 
but for associated peripheral functions as well. 

A complete "warm start" capability also exists in 
HASP so that untimely interruptions of the system will 
cause no loss of job input or output queued for pro
cessing under HASP. Sophisticated operator commu
nications exist that provide control over the number of 
input job streams, the number of output devices, and 
the order of job executions. 

Background utilities 

There are many utility functions in any data process
ing operation, especially a system which employs 
disks, that must be performed. These include: dumping 
direct access volumes to tape, restoring direct access 
volumes from tape, copying and comparing tapes, 
labeling tapes, changing volume serial numbers on 
direct access devices, etc. This is especially true when a 
large variety of applications systems are under develop
ment as in the RTCC. Utility operations usually re
quire the complete dedication of the computer while 
they are being performed. This dedication was found to 
be unrealistic from both the cost and time required; 
therefore, all utility operations were designed so that 
.'1 , , I· tll 1 ", 1 T"'\rnACt loon tney COUla operate III --oacKgrounu-- unuer 1\,.1VO/OUU 

control as dependent tasks. These background utilities 
execute asynchronously with the normal job processing 
and can be initiated and terminated by the computer 
operator at the console typewriter. 

Job accounting system 

With the large number of computers being used by a 
vast array of development groups, it was found tbt 
the R TCC required a means to report accounting and 
system measurement data. This was accomplished by 
the inclusion of a set of programs called the Job Ac-



26 Spring Joint Computer Conference, 1969 

counting System (JAS). Since all computer operations 
at the RTCC are under control of RTOS/360, JAS 
automatically generates, through punched cards, a 
data base for three types of reports which are valuable 
for both the accounting and system measurement pur
poses. The three report types are: 

• A Job Shop Analysis Report which provides job 
mix and computer system performance statistics. 

.A Computer Utilization Report which is used to 
charge compute! time to user. 

• A Management Report which provides information 
on program development costs through statistics 
on the use of the computer by individual program
mers. 

Statistics gathering and modeling activities 

Each Apollo mission presents the RTCC with a 
unique set of processing requirements. For example, 
real time data sources may change in number, arrival 
rate, or message size. These and other such factors 
cause changes in the performance of real time computing 
systems. So that changes do not cause the systems to 
perform below acceptable limits, performance of current 
systems is measured and that of future systems is 
modeled.2 

To measure the performance of a real time system 
and monitor its execution, a comprehensive Statistic 
Gathering System (SGS) was developed. SGS is a pro
gram and not a hardware device attached to the com
puter. It provides an accurate means of measuring 
performance on RTOS/360 by collecting: 

• Timing information on control program services 
and application programs 

• Percentage figures showing how definable system 
functions use the CPU resource 

• Elapsed time figures showing task response time in 
a multiprogramming environment. 

The SGS design for RTOS/3oo is patterned after an 
earlier version used with the Gemini 7094 Executive 
Control Program. 

The Real Time Computer Complex is not a project 
that is blessed with a firm definition of mission require
ments. Results of each mission impose requirements for 
future missions and, thus, levy new demands for real 
time support. It is essential to the orderly development 
of RTCC real time systems to anticipate problems in 
computer system configuration or system program 
design that could impair the success of future missions. 
To analyze future system performance, RTCC uses 
models written in the language of the General Purpose 
Simulation System (GPSS/3OO). 

r-----------------------~-l 

MASTER 
SCHEDUliR 

~~TIATOR JOt INITIATOR JOt INITIATOR ~~~:SOUND HASP 
TERMINATOR TERMINATOR TERMINATOR JOt SYSTEM 

L ________________________ J 

Figure Io-A multi-jobbing/multi-tasking RTOS/360 

Information obtained from SGS is used in these 
modeling activities. 

Multi-jobbing in RTOS 

Within this paper, it has been shown that RTOS/360 
in the real time environment is a multi-jobbing system 
in the broad sense; i.e., a real time job step can be pro
cessing several independent paths of logic (independ
ent tasl{s vthich could be termed jobs since the)T sb...are 
the system resources) at the same time the multi-tasks 
are performing, and the background utilities and HASP 
are also vying for the CPU. However, after careful in
vestigation of statistics obtained from SGS and JAS, it 
was found that large amounts of time were still spent in 
the I/O wait state, and that the full computing power 
of the System/3oo Model 75 was not being used. There
fore, the final feature to RTOS/360 was developed
real time mUlti-jobbing under RTOS/3oo control. 
The RTOS/360 multi-jobbing differs from the OS/360 
multi-jobbing in that RTOS/360 does not require parti
tioned memory nor, of course, a fixed number of tasks. 
An illustration of RTOS/360 multi-jobbing is shown in 
Figure 10, A Multi-jobbing/Multi-tasking RTOS/360. 

CONCLUDING REMARKS 

The development of real time control systems for 
~~ ASA's spaceflight programs has been an evolutionary 



process. For the Mercury Program, IBM devel?ped the 
Mercury Monitor, which performed only real tIme con
trol and occupied only a small portion of an IBM 7090 
computer. Next came the development of the real time 
Executive Control System for the Gemini program. 
Executive occupied about 13,000 words of an IBM 
7094-11 computer. The third system in this evolutionary 
process was the RTOS/360, which is presented in this 
paper. RTOSj360, a 150,000 byte system, was the first 
system not only containing real time control facilities, 
as in the Mercury Monitor and Executive, but also 
containing the complete gambit of operating system 
functions (assemblers, compilers, job shop processing 
techniques, etc.). 

Today, RTOS/360 has not only successfully su~ported 
several NASA Apollo Missions, but because of l~ real 
time facilities and special features, coupled with the 
current OS/360 System, is being used by other instal
lations outside the RTCC to meet their special require-

RTOS 27 

ments for a real time operating system. 

ACKNOWLEDGMENTS 

I wish to acknowledge the contributions of all those 
members of the RTOS departments whose documents 
and comments aided in the preparation of this paper. 
Special thanks go to Ray Strecker and Ken Adams, 
whose technical documents on RTOS were a major 
source oi iniormaiion. For ihe encouragement to write 
the paper, I wish to thank W. D. Pollan. 

REFERENCES 

1 J JOHNSTONE 
A real time executive SY8tem for manned 8paceflight 
Proc F J C C 1967 

2 W STA...~LEY H HERTEL. '; 
Statistics gathering and simulation for the apollo re4l ti1iU 
operating system 
IBM Systems Journal Vol 7 No 21968 





A panel session-On-line business applications 

On-line business applications 

by JOHN T. GILMORE, JR., Chairman of Session 

Keydata Corporation 
Watertown, Massachusetts 

For purposes of background and personal introduc
tion, I would like to begin by stating a few facts about 
Keydata and its services. 

Keydata Corporation was founded in 1959 by 
Charles Adams and myself and was originally called 
Adams Associates. Until 1965, when we became the 
first to offer time-shared business data processing 
services, our main activity was the design and im
plementation of real-time, graphic display, and on
line process control systems. That activity is now 
being carried on by our Keydata Associates Division. 

The Keydata system, centered in Watertown, 
Massachusetts, consists of a private dedicated tele
type network that extends as far west as Missouri and 
south to Delaware. The primary concentration, how
ever, is in New England and Metropolitan New 
York. Three kinds of computers are used. The 
UNIVAC 494, utilizing Fastrand and high-speed 
fixed-head drun1S, is the time-shared processor and 
wil1 be duplexed with another 494 before the end of 
this year. Honeywell DDP-516 computers, used as 
teletype line monitors and message concentrators, 
are strategically located geographical1y within the 
network to minimize communication costs. An IBM 
360 Model 40 is the batch-oriented off-line processor. 

Based on the kinds of service we are now providing, 
the system has a capacity of 800 to 1,000 lines with a 
response time of less than two seconds. Our present 
load is about 175 lines with access to more than 
630,000 records or 92 miHion characters. Our basic 
services are distribution accounting and accounts 
payable. Certain services are used by a small number 
of subscribers and other services are under develop
ment. 

We call our system a "business computer utility" 

because it provides the businessman with computer 
power and programs that serve as an efficient tool in 
operating his company. Like the telephone and 
electrical utilities, we provide our services through 
on-line tenninals located at his place of business and 
operated by his employees who are trained in his 
company's activities and who are not-and need not 
be-specialists in the service provided by the utility. 

Right now, the average businessman would be 
satisfied to have his conventional data processing needs 
fulfilled without costing him an ann and a leg and 
confusing the hell out of his employees. However, once 
this is accomplished and he realizes what else is possible, 
he'll roar like a lion. Will we in the computer field be 
readS for him? 

The businessman has as tough a problem to solve as 
the scientist-perhaps even tougher if one counts his 
variables and unstable conditions. His basic problem 
is his data base. He cannot watch it or experiment with 
it as easily as his brother scientist or engineer can. More 
often than not, his access to "current" infonnation in 
his data base is measured in several days to weeks-by 
which time it is far from being current. However, 
modern co~puter technology and on-line communica
tion techniques will enable him to keep his data base 
current and available in milliseconds. With this kind of 
luxury he could rapidly become as sophisticated a 
computer user as his scientific friend. When he does, 
and when there are many like him, the impact on the 
business community will probably cause the operations 
research textbooks to be rewritten and the economists 
to take a second look at their crystal ball! 

What it boils down to is this. On-line business appli
cations, whether on-line to one's own computer or to a 
computer utility, will provide a dynamically updated 

________________________________________ 29 ____________________________________ __ 



30 Spring Joint Computer Conference, 1969 

data base. Once that occurs, the businessman will be in 
a position to request the initiation of various operations 
either at will or automatically. This will provide him 
and his employees with the timely information essential 
to the efficient operation of his company. Changes in a 
data base will automatically cause reactions to other 
parts of the same data base and, through the use of 
communications, changes to other data bases, etc. 

For example, in performing its invoicing and in
ventory control function, our system signals the ter
minal operator when a re-order point is reached based 
on the quantity just processed in the invoice being 
prepared. The re-ordering of the item is now being done 
in the conventional manual way. But the time will soon 
come when the computer will communicate directly 
with vendors of the item, compare prices and delivery 
dates, and order a specific forecast-calculated quantity 
of the item from the vendor selected. The same re
order example might instead trigger a production 
order message to another terminal in the plant or 
perhaps directly to a process control computer. The 
examples could go on and on, but the main theme 
assumes a data base that is being dynamically pro
cessed. 

Among the questions I feel the panel should discuss 
are: 

• What are some of the problems in dynamic data 
base systems? What protection must be provided 
to safeguard information? What kind of reliability 
and availability criteria should there be? What 
kind of back-up procedures should be employed? 

• To the businessman, each successive stage of de
veloping what for him will be the optimum system 
has to be economically justified. V\rhat are some oi 
the major impasses? What are the intermediate 
payoffs? What kind of time period are we talking 
about for a sophisticated computer-oriented busi
ness community? 

• What industries or job groups may suffer from a 
drastic increase in on -line processing? What govern
ment intervention, if any, can be anticipated or 
perhaps urged? 

.l\-fost of us in the computer field see the computer 
and its p()wer as a valuable tool to the business 
community. Are we missing anything? For ex
ample, will it cause a major cleavage between the 
unskilled or semiskilled and the bright workers and 
managers who will use the computer tool to run the 
plants and offices? Will the leisure class ironically 
consist of the rich and the unemployed even more 
so than it does today? 

On -line business applications 

by CHARLES T. CASALE 
Paxon Corporation 
Sunnyvale, California 

If we look at business applications which are truly 
on-line today, we see far fewer than were predicted four 
or five years ago when time-sharing and on-line systems 
were promised as ultimate solutions. Why is this so? I 
believe there are several reason, intertwined, which 
have in tum caused secondary effects. I would like to 
review some of these briefly. 

On-line as a philosophy 

To some, on-line reaches the proportions of a religious 
belief: it is good for everyone, there are ceremonies, 
there are the articles of faith, and there are the mission
aries and prophets. In fact, there are large numbers of 
people who simply reject onlinism or say that they 
simply don't need it. At least not now. 

Much of the reason for apparent slippage in im
plementing on-line systems comes from the earlier 
prophetic statements of dire need. If dire need is "as
sumed, then it can be reasoned that an economic 
solution is not far behind. 

The degree of need 

There is real need for on-line, "instant verification" 
of credit cards at gasoline filling stations to capture 
voided or stolen cards. So far, we have no systems 
filling this need since we don't need the systems badly 
enough to pay the current price. The technology is 
there. On the other hand, the benefits of having quick 
retrieval of airline seat availability are worth the cost 
to the airline. So we have large airline seat reservation 
systems . 

How loud are the demands for on-line inquiry of the 
weekly payroll file? Or accounts payable? Or for change 
in status of major sales prospects? The promise of 
"instant data" in management information systems is 
proving illusory in many cases; the information just 
doesn't change that frequently, or to that degree, to 
warrant the expense and complexity of an on-line 
system. 

The transition period 

The transition from an "old style" manual system to 
a fully on-line automated system is an undertaking as 



enjoyable as crossing the Italian Alps by elephant in the 
winter. It can be done, but the participants and by
standers are loath to ever repeat the experience, at 
least in the foreseeable future. Hardly an issue of the 
popularized computer magazine 'goes by without at 
least one glamour or horror story of the transition pe-
riod. These periods take time, rub nerves raw, chew up 
valuable resources that others think could be used else
where, and are full of surprises. When finished, the 
accomplishment is indeed impressive ... so much so that 
we are reluctant to make any changes to the new sys
tem. This brings us to some other matters: 

Who is going to do the system? 

First, there is the jurisdictional problem. Secondly, 
there is the resources problem. Where do we find skilled 
people to plan and implement the system, who will 
maintain it, how will they explain it to its users? The 
shortage of skilled practitioners need not be restated. 
The shortage is responsible for delays in putting 
business systems on-line. Once installed, how do 
we keep it current? With what tools? Can the system 
grow gracefully, or must it be abandoned when it gets 
modestly larger? 

Profits and returns 

After the fact, what are the real bottom-line profits 
that the system gives me? Can I show a return on this 
sizeable investment comparable to my other business 
investments? Are the marginal benefits being used to 
justify more than their proportionate costs? 

Where do we go from here? What are the 
trends? 

I t would be useful to look at the major influencing 
factors that will accelerate or impede progress towards 
more and better on-line business systems. Some of 
these are in conflict, others are synergetic. 

Data transportation costs 

For a given quantity of data, rates decrease slowly. 
For the same costs, the quantity of data that can be 
pumped over common carriers increases much faster. 
Consequently) the threshold of economics for cost 
justification remains reJatively constant; but once 
justified, the marginal costs of transmitting additional 
data are small. This will be changed when the full 
impact of the Carterfone decision is implemented. The 
result will be a lower threshold caused by reduced 
termination costs. 

On-line Business Applications 31 

Central storage costs and central computer hardware costs 

These continue to decrease relatively, and each year 
sees a lower threshold of economic entry. However, 
logic and electronic costs are decreasing at a faster rate 
than storage costs. Consequently, main frame manu
facturers are adding more logic to a given storage size 
to do a more sophisticated job. Weare beginning to 
see parts of software systems being hardwired into 
Conlputer-s as a cheaper way to get the job done. This 
same phenomenon of rapidly declining logic costs has 
given rebirthto the mini-computer. 

The mini-computer 

What it lacks in capacity it makes up in muscle. With 
storage being the majority hardware expense and more 
logic being condensed onto one semi-conductor chip, 
the present types of mini-computers will tend to be
come off-the-sheJf components marketed by distributors 
and produced by the memory houses. What this means 
to on-line business systems is smaller subsystems 
operated relatively independent of the parent data base. 
Weare already seeing specialized subsystems based on 
"standard" mini-computers. 

Specialized subsystems 

Data acquisition, data distribution and highly struc
tured repetitive tasks can be performed more cheaply 
with specialized subsystems than by a general-purpose 
system. This is true only because of the continued de
creasing cost of logic and storage. We have seen the 
success of this in the keypunch replacement area, where 
no loss of system capability is experienced in using key
to-tape devices instead of the more generalized and 
flexible keypunches. 

The programmer gap 

::vruch has been said, and much is being done about it. 
~1eanwhile, there just aren't enough of them around to 
get done all of the jobs that are on the drawing boards. 
And it seems that the gap doesn't close as fast as many 
expect. 

Programming costs 

These are increasing because of personnel shortages 
and because there is a Parkinson effect about any pro
ductivity increase made in programming. While today's 
programmer can produce (via higher-level languages) 
ten times what he could ten years ago, the job is en
larged to an even greater multiple. Documentation de
mands are considerably greater and productivity in
creases have been significant. 



32 Spring Joint Computer Conference, 1969 

Consequences of these trends for on-line business systems. 

Large data bases will continue to prosper and flourish, 
as will their extensions, the time-shared terminals. In 
addition to this, an entire sub-industry will mushroom 
based on successful exploitation of the disparity in 
trends among decreasing hardware costs, rising soft
ware costs, and relatively level transportation costs. 
The results will be specialized subsystems, ranging 
from a few thousand dollars to several hundred thou
sand dollars. They will be application-oriented, limited
purpose and highly cost-justifiable. 

On-line business applications 

by MARTIN GREE~BERGER 

The Johns Hopkins University 
Baltimore, Maryland 

The federal government is destined to play a kev 
role in the future development of on-line business sy;
tems and the stn1.cture of the new industry grov.-mg up 
around them. Six points of contact already are evident: 

1. Anti-trust action (real and implied) as in the 
current cases against IB~1 and AT&T. 

2. Inquiries on the practices and policies of the 
conununications conunon carriers as in the re
cent FCC inquiry on the relationship between 
computers and conununications, and the now 
discharged Task Force on Telecolnmunications 
appointed by Lyndon Baines Johnson. 

3. Hearings on privacy and associated rights of the 
individual as conducted last year by Congress
man Ga1lagher and Senator Long. 

4. Legislation on copyrights and other possible 
mechanisms for protecting computer software. 

5. Encouragement of standardization and economy 
measures as in the Brooks Bill alid intended 
activities by the National Bureau of Standards 
the General Services Administration, and th~ 
Bureau of the Budget. 

6. Direct and indirect subsidies of development 
through research grants, purchase of services 
and equipment, and support of education. 

A great deal of government participation and in
:ol:e~ent .has go~e on in the past year, and every 
IndlCatlOn IS that Its pace and scope will intensify in 

the years ahead. It is helpful to review the main issues 
and examine the actions taken to date as a basis for 
distinguishing trends and anticipating future policy 
and legislation. The intelligent businessman today can
not afford to become fully preoccupied with hi~ own 
plans and problems in a framework shaped solely by 
competitive forces. The role and influence of the federal 
government should be studied and understood. 

On =Iine business applications 

by WILLIAM M. ZA~I 

Harvard Graduate School of Business Adminisfraliurl 
Allston, Yrassachusetts 

On-line computing systems are a relatively recent 
development in conunercial computer technology. 
Most of the experience to date with the use of such 
systems has been gained at universities, large govern
mental organizations and a few pioneering businesses 
like American Airlines, Westinghouse and Keydata 
Corporation. Today, from the literature and recent 
announcements of computer plans, it appears that on
line systems are ready to be implemented in many 
organizations to perfonn a large variety of tasks. 
There are experts predicting that by 1970 the majority 
of computer systems sold win be perfonning some on
line functions. Huge growth is expected to occur in 
computers capable of operating on an on-line or time
shared basis. 

Much of the growth in usage of on-line systems will 
be economically justified. The on-line systems have the 
pot~ntial to dramatically change business data pro
cessmg and the manner in which business will be con
ducted. On-line business systems can be used to im
prove decision making, the operations of a business and 
customer service. Certain aspects of decision making 
can be improved with on-line systems because a problem 
solver is 2 ble to test on-line to the computer several 
alternatives and get immediate feedback of results. 
The interaction of a problem solver with a computer may 
provide an understanding of a problem and its solution 
that is not possible to achieve with the long delays in the 
computer-generated answer cycle of systems without 
on-line capabilities. 

Operations of a business improve with on-line com
puter systems because the reduction in data processing 
delays can be used to reduce inventories, provide more 



efficient distribution systems and more effective pro
duction schedules. Westinghouse has implemented an 
on-line inventory control system for its distribution 
network, and was able to close seven warehouses and 
dramatically reduce the level of inventory required. 
On-line systems have the potential of improving cus
tomer service by insuring a complete stock of goods and 
enabling faster response to customer requests. Ameri
can Airlines was the first to use an on-line passenger 
seat reservation system. The company expected in
creased passenger sales to result from its ability to pro
cess customer requests more speedily and accurately. 

While much of the growth of on-line computer use 
will be justified, a significant portion of on-line use will 
not and cannot possibly be economically justified. 
Many companies will repeat the same mistakes in 
switching to on-line computers that were made when 
computers were first introduced into their organiza
tions. Many companies could not economically justify 
their original computers, but they purchased them 
because: 

• their competition had a computer and they felt 
they could not compete successfully without one; 

• the companies wanted to keep up-to-date with the 
latest management techniques, and 

· the computer offered many subjective advantages, 
such as quicker and more information. 

Companies, because of the potential advantages of 
on-line systems, are in danger of being caught up in a 
whirlwind of unnecessary and uneconomical change. 
While on-line business systems can be extremely 
valuable, this value is not automatically achieved nor 
is it applicable to every business situation. Before any 
company decides to implement an on-line system, it 
must examine the economics of the specific applications; 
otherwise, expensive mistakes can be made. The reasons 
for this follow. 

On-line Business Applications 33 

On-line computing systems do not automatically 
improve operating performance. They generally in
crease the speed of information flow in an organization, 
but if this speed is not used or needed it has no economic 
value. On-line systems will generate operating savings 
only if the reduction in information delays are mean
ingfully integrated into a management process, and if 
the reduced information delays can improve a company's 
operations. 

On-line systems do not necessarily provide a mar
keting advantage vis-a-vis competition which does no 
use such systems. The nature of the industry, tht 
competition and business may not provide an oppore 
tunity to gain a competitive advantage. It would be 
erroneous to impute the competitive advantage gained 
in the airline industry by American Airlines to com
panies that use on-line systems in all industries. The 
generalizations of competitive advantage from on-line 
systems must be made carefully and only after con
sidering whether: (1) on-line systems can improve cus-
tomer service, and (2) the improved service will result in 
increased sales. It is therefore not necessary to use on
line systems simply because competition is doing so. 
Depending on the nature of the industry, a company 
using traditional data processing equipment can satis
factorily compete with a company using on-line systems. 

In an evaluation of whether or not to implement an 
on-line system, it is not sufficient to state that on-line 
systems are better simply because they provide more 
rapid information flow. It must be shown how and why 
the quicker information can be used, and the potential 
savings that can be related to the faster availability of 
information. If a company does not have a clear idea of 
the specific benefits an on-line system will provide and 
how these benefits are to be achieved, on-line systems 
should be evaluated on a cost displacement basis; that 
is, the method of data processing that performs the 
required functions at the lowest cost should be selected. 





A panel session-Computers and the underprivileged 

JAMES H. BURROWS, Chairman of Session 

Th£ Mitre Corporation 
Bedford, Massachusetts 

Computers and the underprivileged 

by MILTON BAUMAN 

Price Waterhouse and Company 
Philadelphia, Pennsylvania 

A group from the Delaware Valley Chapter of AClVl 
have joined together to form the Urban Education 
Committee. :Members of the committee believe that, 
in these days of urban crisis, the data processing in
dustry offers a unique opportunity to the disadvantaged 
to become involved in the mainstream of the American 
way of life. 

Mter several abortive attempts to determine where 
to employ its professionalism, the Committee has de
cided upon several projects recommended to it by 
different groups within the city of Philadelphia. These 
projects include providing counseling on data processing 
to the Pennsylvania Employment Service and Phila
delphia high school counselors; providing advice and 
counsel to the Board of Education on the data pro
cessing curriculum taught in high schools; providing 
data processing consulting to the Philadelphia Urban 
Coalition; and; most. important, running a computer 
operator training course in a Philadelphia high school. 

The computer operator training course is being given 
to 20 high school seniors from Thomas Edison High 
School. The Philadelphia Board of Education was asked 
to provide the students. We requested that the students 
not be college bound, but be of such caliber that would 
probably insure the success of the training program. 
The Board of Education, in turn, asked the Principal 
of Thomas Edison to select the students whom he be
lieved showed leadership qualities and the intelligence 
necessary to successfully complete the progr~m. The 
20 students finally decided upon were selected from a 

--------------------------------------35 

group of 48 recommended by the Thomas Edison 
faculty. 

The training program meets Wednesdays and Sat
urdays. The curriculum is aimed at IB.:.v1 360/30 oper
ator training and extensive hands-on training will be 
provided. The curriculum is divided into two parts. The 
first sessions deals primarily with training on punched 
card equipment to provide the students with a back
ground in data processing and operations done on com
puters. The 360/30 training will concern itself primarily 
with IBM's Disc Operating System. 

The curriculum for the course was developed by a 
sub-committee composed of three members. We at
tempted to obtain curricula from other AClVl chapters 
who had gone down this road; but the other chapters 
had not, when w.e were beginning the program, formal
ized their curriculum to the point where we could use it. 
It became necessary, therefore, for the suo-coIIlmittee to 
collect operator training manuals from various com
puter manufacturing organizations and from private 
sources. 

Developing the curriculum was only one of several 
problems that were encountered when the program was 
started. Other problems were finding instructors (paid 
instructors, not volunteers), obtaining funds for paying 
for instructors and field trips, etc., finding machine 
time (both punched card and computer), and, finally, 
placing the students in jobs after graduation (we were 
advised that if students were trained and were not 
placed in jobs, the training would be at best worthless, 



36 Spring Joint Computer Conference, 1969 

or even worse than no training at all). I can report, at 
this juncture, money has been donated, that instructors 
have been hired, machine time has been donated, and 
12 of the 20 students have been placed in various com
panies throughout Philadelphia and the Delaware 
Valley. 

In summary, the technique used by the Delaware 
Valley Chapter in becoming involved in urban affairs 
was by becoming involved-headfirst. We collectively 
made up our minds to do "our thing" and, with a little 
urging from the Board of Education, we did it. We had 
a few anxious moments in getting started without having 
all of our problems resolved, but the fact that we had to 
resolve them in a short period of time made us devote 
that extra amount of effort necessary. If we had held 
off our program until all problems had soiutions, our 
course probably would not have started in 1968, but 
rather in 1969 or perhaps never. 

Our plans for the future include a similar program in 
a Camden High School (we do have a number of in
terested members from RCA at Cherry Hill, New 
Jersey) and expansion of our Philadelphia program to 
another high school. 

A program for the underprivileged and 
overprivileged in the Boston Community 

by JOH:\' .J. DO~()V AN 

M assachusetis Institute of Technology 
Cambridge, MaHsarhu:.;etts 

In response to the needs of the Boston Community, 
a new direction has been taken in the Lowell School, a 
school under the auspices of the Massachusetts Institute 
of Technology, which will offer education to the com
munity for no more than the cost of two bushels of 
wheat. The program focuses mainly on the needs of two 
sectors of our community. 

One sector is those individuals who are undereducated 
and underemployed, many of whom are the "llnder
class" of the ghetto, suffering from the crippling syn
drome of education-motivation-employment depriva
tion. The other sector is those senior men of industry 
who are very well educated but need retraining in some 

aspect of recent technology, e.g., lasers, computer sys
tems. 

A basic program for the first sector in computer pro
gramming was established. The tuition to the school was 
set at five dollars, a figure low enough to exclude an 
absolute minimum and yet still be a commitment on the 
part of the student. The response to our notice in local 
newspapers, radio and through public relations channels 
at 1V1.LT. was overwhelming. For lack of staff to screen 
applicants, the first five hundred were accepted. Al
though our largest interest was in providing access to 
education for ghetto dwellers of limited resources, our 
inability to screen applications resulted in a net of 
about 140 hardcore "deprived" out of the total of five 
hundred. Of these 140, about 70 percent were black. 

Five graduate students at N1.l. T. provided the in
struction and were assisted by ten l\1.I.T. undergrad
uate teaching assistants. The plan is to initiate a chain 
of lectures by asking successful teaching assistants each 
year to lecture the following year. We focused on the 
140 hardcore "deprived" assigning seven of the M.LT. 
teaching assistants, most of whom were black, to those 
students. These students were divided into smaller 
tutorial sections of ten to fifteen students headed by one 
of the teaching assistants. Teaching assistants were also 
available for consultation in the keypunch rooms. 

An -:.\tLl.T. student-run computer company has 
offered to assist in a placement service for these stu
dents. vVe feel that follow up to the program is very 
important and is presently very weak. 

An advanced systems programming course was 
offered to the second sector of the community, the 
highly educated sector. We accepted 80 into that pro
gram. We feel that these programs will tend to com
plement each other in t.ha,t t.he advanced program will 
be taught to people who may later assist or influence the 
hiring of those in the other program. 

The basic program will be expanded to include 
courses in computer maintenance, Boolean algebra, 
basic business algebra and other practical courses. As 
technology changes business trends change; the pro
gram will be modified to fit the needs for training in the 
changed environment. It is our overall purpose to offer 
courses broad enough to establish a basis for training in 
a particular area. We do not pretend to offer a substitute 
for the broad knowledge acquired from a college educa
tion. We do try to offer a program in a specialized area 
which has two undeniable attractions: job opportunities 
and subject excitement. Computer programming is such 
an area. 

o..-_______ "--......;;:.= _______ ~""~" -" _-~"~.~ ___________________ _ 



What the JOBS program is all about 

by WILLIAM B. LE\VIS 

U.S. Department of Labor 
Boston, Mass~,d1Usetts 

One of the thorniest problems in America today 
is that of the habitually unemployed people living 
within the inner core of our 50 largest cities. For a long 
time employers and organized labor have written them 
off as unemployables. The U.S. Department of Labor 
has, over· the years, tried various approaches to these 
hard-core jobless, with uncertain success. 

In January 1968, President Johnson announced a 
program of Job Opportunities in the Business Sector 
(JOBS). The new program looked to industry to apply 
its full resources and "know-how" in cooperation with 
the Government, to help break the cycle of unemploy
ment of the hard-core by making them permanent 
productive mem bel'S of the labor force. 

In announcing the JOBS program, the President 
said he was calling on American industry to establish a 
National Alliance of Businessmen (NAB) to launch it, 
help achieve its goals, and advise the Government. 
Under the leadership of Henry Ford II, NAB was 
created early in 1968 with leading local businessmen 
volunteering to spearhead the effort in the 50 largest 
cities of the country. 

The K AB goal for JOBS is to put 500,000 dis
advantaged persons in jobs by June 1971, with an 
interim goal of 100,000 to be placed by June 1969. 

The JOBS program involves a commitment by em
ployers to hire workers first and train them afterward
building on the accumulated evidence that initial place
ment in jobs at regular wages does much more to moti
vate a disadvantaged individual than a training period 
before employment with only a promise of a future job. 
The program puts at the disposal of industry the serv
ices and financial support of Government, which ex
perience has shown are essential if the disadvantaged 
unemployed are to receive the range and depth of serv
ices required to help them become productive workers. 

The cooperating companjes provide jobs and training 
for hard-core unemployed workers and bear as much of 
the cost as would be involved in their normal recrui t
ment and training operations. The extra cost of added 
training, counseling, remedial education, prevocational 
training, health services, and other specialized support 
needed to bring disadvantaged individuals to a satis
factory level of productivity and keep them on the job 
may be offset by funds provided through a Department 

Computers and the Underprivileged 37 

fo Labor contract. In order to encourage smaller com
panies to participate, an optional standardized program 
approach has been developed. Intensive efforts have 
also been made to give cooperating employers all pos
sible technical assistance in developing plans and formal 
proposals. 

The first-year NAB goal of 100,000 hard-core persons 
on the job has been reached by the JOBS program ahead 
of schedule. 

A full assessment of the JOBS program results is not 
possible at this early stage, but it is apparent that the 
start made is highly promising. The attitude of par
ticipating compames is generally either optimistic or 
enthusiatic, and they concur regarding the validity of 
the JOBS idea and intent. 

The immediate effect of the JOBS program has been 
to employ those formerly thought to be unemployable. 
However, the benefits of JOBS are more far reaching. 
The skills gained through the JOBS program open the 
doors to advancement to those formerly without hope. 
110reover, what the private employer's experience in 
the JOBS program has taught him about the problems 
of the hard-core and the possible solutions to their 
special problems will, in a large number of cases, have 
a spillover effect on the company's regular training and 
employment practices. 

Computers and the underprivileged. 

by ALLE~ L. MORTON, JR. 

Computer Personnel Development AssociaMon, Inc. 
Xew York. Xew York 

Statem.ent of objectives 

The Computer Personnel Development Association; 
Inc. (CPDA) is an organization that has been set up to 
secure openings in the computer field for individuals 
from ghetto areas. To prepare these people for work in 
a business environment, CPDA will provide orientation 
and training courses in data processing. The program 
is organized by professionals within the computer 
industry in collaboration with local community devel
opment groups who will help select participants for the 
program, and with industrial leaders who will locate and 
provide job opportunities for the participants. 

The long term objective of CPDA is to establish 
career paths in the computer industry for our students. 



38 Spring Joint Computer Conference, 1969 

This will be accomplished by providing continuous job 
training and career guidance in all areas of data pro
cessing. 

The following points define the broad areas of 
CPDA's capabilities. 

1. Computer Operations Training Program-Train
ing ghetto personnel judged capable of com
pleting a training program in computer opera
tions and functioning in this capacity within the 
data processing area. 

2. Computer Programmer Training Program
Training similar personnel who are in a position 
to complete a training course in computer pro
gramming and to function as programmers. 

3. Job Placem.ent and Development-Yloving grad
uates of the above programs from the training 
phase into jobs which will be identified prior to 
and concurrent with training. 

4. Career Guidance-Providing follovy up pro
cedures to smooth the students' transition from 
the training to the business environment. 

5. Related Personnel Services-~laking available 
to management on a consultant basis more 
precise selection and training procedures for 
minority group personnel. 

Implementation of the above program will provide 
an opportunity for untried minority group persons who 
show a potential for achievement. This program will 
serve as a source for desperately needed technicians in 
the data processing field as well as provide a program 
which realistically meets the job-related directive of 
the President's Bipartisan National Commission on 
Civil Disorders. 

OUf first project is a pilot program to train ann place 
computer operators. This program is limited in scope 
but can succeed only with the active support of in
dustry. 

Experimental and demonstration 
manpower projects 

by JOSEPH SEILER 

U .S.Department of Labo'f 
Washington, D.C. 

The U. S. Department of Labor's experimental and 
demonstration (E and D) program seeks to develop and 

test through actual project operation, new ideas and 
techniques to meet manpower problems more effec
tively. Projects focus on the particular problems which 
impede employment of Lhe unemployed and underem
ployed and which are not being met effectively by es
tablished manpower program methods. They seek, 
through innovative techniques and new types of organ
izational arrangements, to determine how the programs 
might better "reach" and help prepare such workers for 
jobs, place them, and retain and upgrade them in gain
ful employment. 

Because each project is specially designed, experi
mental and demonstration projects are not readily 
categorized. They differ widely, not alone by group or 
problem focused upon, but by technique or combination 
of techniques tried and, of great importance, by type of 
institution or combination of institutions enlisted to 
conduct the effort. 

The groups concentrated on have been primarily un
employed ghetto area youth, minorities with cultural, 
emotional and other handicaps to employment, low
income rual residents, and older workers with limited 
education. 

Although the E and D program's key objective is to 
stimulate and guide innovation rather than to provide 
services directly, it does provide significant assistance to 
the thousands of participants in its projects. 

~l any of the techniques for delivery of manpower 
services have been developed or refined in E and D
sponsored projects. Briefly, important concepts which 
E and D efforts have helped pioneer and introduce 
widely into manpower programming include: 

(a) outreach to identify, attract and retain participa
tion of the disadvantaged who do not come forward on 
their mvn for needed. manpnwer services; (h) multi-serv
ice programs and centers to provide comprehensive 
service on a coordinated readily -accessible basis; (c) 
work sampling to evaluate the potential of those with 
limited education and to build the confidence of those 
with limited communication skills; (d) prevocational 
training, work orientation and related preparation as 
an aid to effective skill training and employment; (e) 
use of nonprofessional and indigenous staff as a vital aid 
in manpower development for the disadvantaged; (f) 
new occupations, particularly as subprofessional aides 
in human service activities, to broaden opportunity for 
the undereducated; (g) use of community and minority 
organization capabilities to complement government 
agency manpower development efforts; (h) induce
ments for employer initiative and action to hire, orient, 
train, and retain workers customarily regarded as "un
acceptable"; (i) post-placement coaching and "high 
support" to enable employers and disadvantaged 



workers to overcome difficulties jeopardizing job re
tention in the initial months after hiring. 

1\Tore specifically, the following are major examples 
of types of E and D accomplishments: 

The major new Concentrated Employment Program 
(CEP) and Job Opportunities in the Business Sector 
(JOBS) manpower programs, initiated in part on the 
basis of E and D findings, were given significant start-up 
assistance by the E and D program: 

1. lUany features of the CEP have been designed 
from examples developed by E and D projects. 
The orientation, coaching, and employer in
volvement components particularly are based on 
E and D-developed models. Several E and D 
projects, most notably the JOBS NOW program 
in Chicago, provided the initial staff training 
and technical guidance for CEP personnel. And 
key staff needs in several of the initial CEPs were 
filled by personnel drawn from E and D projects. 
The E and D program also developed specific 
guide materials on job development methods, 
orientation and coaching to assist the new CEPs 
in such activities. 

2. The new JOBS program initiated with the 
National Alliance for Businessmen was similarly 
influenced by E and D pilot experience 0 The 
findings of several E and D projects shaped the 
guidelines for JOBS efforts, and materials de
veloped in the E and D program have served as 
basic resources for JOBS employer-contractors. 

New ways have been developed by E and D projects to 
open and improve employment opportunities for the 
disadvantaged in major occupations: 

1. E and D projects in Cincinnati and Washington 
have with union cooperation been exploring how 
to provide work preparation and experience for 
disadvantaged, particularly minority, youth to 
enable them to enter building trades apprentice
ships and employment in housing renovation and 
construction. These projects have been looked to 
as practical examples to aid development of 
Model City program guidelines for employment 
of neighborhood residents in ghetto rebuilding. 

2. A demonstration project with the Post Office 
Department has developed a technique which 
other Federal agencies are considering to help 
overcome test barriers to employment of the 
disadvantaged. Workers unable to pass civil 
service tests were recruited and hired on a tem
porary basis and, after special instruction while 

Computers and the Underprivileged 39 

employed, a high proportion were enabled to 
meet the test requirement for permanent em
ployment-and have performed effectively on 
the job. 

Techniques are being developed to help employers up
grade their unskilled workers. A pilot E and D effort 
provided brief but intensive in-plant training to workers 
in traditionally dead-end jobs to qualify them for up
grading to newly designed higher-level jobs which the 
employer might not otherwise fill from his own em
ployees. The employer response to this project has led 
to its extension for further development in new proj
ects in three major cities, preparatory to likely larger
scale application iOn the near future. 

Techniques are being developed to help identify the 
"real" job potentials of disadvantaged persons. The 
disadvantaged person's lack of skills and insufficient 
knowledge of his own capabilities combined with his 
usual very poor performance on paper-and-pencil tests 
all conspire to qualify him in the eyes of the counselor 
or personnel man for only the most menial dead-end 
jobs. 

Work sample tests, originally developed by sheltered 
workshops for physically and mentally disabled, have 
been shown by E and D to be useful with the disadvan
taged as a substitute for the unworkable written tests. 
The work-sample technique has been refined by the 
Philadelphia Jewish Employment and Vocational 
Service in an E and D project that has led to a ten-city. 
pilot operation that will further extend our knowledge of 
its utility as an approach to appraising the job potentials 
of the unemployed. 

Other interesting E and D efforts in their early stages 
are: 

1. Crime problems. E and D efforts on several proj
ects are designing systems with courts and police 
to develop training and employment as an alter
native to criminal prosecution and imprison 
ment. 

2. Job Zart{iuage facility. Projects are focusing, not on 
basic literacy as such, but on "job English" for 
Spanish speaking workers and on "occupational 
language" for workers with limited literacy 
backgrounds. 

3. Employer Based Day Care. One project is ex
ploring the feasibility and value of an employer 
sponsored day care center as an aid in recruitjng 
the inner-city unemployed for existing job vacan
cies, and as a means of enhancing employee job 
stability and performance. 



40 Spring Joint Computer Conference, 1969 

The E and D program's emphases will steadily shift 
as earlier findings are absorbed by established programs 
and attention is required by emerging new manpower 

problems and by a growing need for measurement and 
analysis of relative effectiveness of alternative ap
proaches. 



A panel session-Computers in service to libraries 
of ihe fuiure 

CALVIN N. MOOERS, Chairman of Session 

Rockford Research Institute Incorporated 
Cambridge, Massachusetts 

Computers in service to libraries of the 
future: Library requirements 

by w. N. LOCKE 

Massachusetts Institute of 'Pechnology 
Cambridge, Massachusetts 

An outstanding computer engineer recently compared 
libraries to the whaling industry, a relic of the romantic 
past. As whales disappeared, so will books, he said. We 
should stop building libraries, store all information on 
tape and retrieve it through consoles. 

This may be acceptable as a piece of blue skying but 
hardly comes to grips with the problems of information 
handling today and tomorrow. At a time when the 
world outpouring of written words is going up ten per
cent a year (an estimated 300,000 books and 100,000 
serial titles in 1968), it doesn't make much sense for 
librarians or anybody else to plan in terms of a replace
ment of print by any other form in the near future. 

So let's come down out of orbit and talk about 
mundane facts. Libraries cost dollars and serve people. 
For dollars they compete with other goods and services. 
The people they serve are as diverse as the population. 
Some just want. a quiet, comfortable place to read or 
think; others want a particular book or journal; still 
others want all the information you have on some 
special topic; some need items that have tQ he located 
and brought from some other lihrary. Then there are 
those who want to check a fact, a name, and so on. The 
library has to he all things to all people. And this 
requires complex organization, specialized staff, and 
constantly expanding space: it requires a lot better 
inventory control techniques than we now have. This is 
the challenge to computerniks. If they want to take over 
and operate the information handling husiness, they 

must do so in a real world of program budgets and cost 
benefit analysis. They must also work closely with 
librarians to provide a transition from the present to the 
future. 

It might be well to look at today's information 
retrieval in the library context, see how much of it goes 
on, and calculate the cost. This amount is in the budget 
and presumably available for a computerized service. 
The total is not encouraging. Additional services that 
can he provided hy the computer will have to be costed 
out and budgeted for next year or some future year. 

At present, it is the customer who does most of the 
information retrieval; only he, and frequently not even 
he, knows what he wants. The library staff spends most 
of its time on document handling, acquiring, cataloging, 
and retrieving, not information, but books and book-like 
materials in dozens of forms, fuB size and mini, plus 
maps, music scores, manuscripts, sound and video 
recordings. The library is the memory of the race. It is 
different from the memory of the individual in that the 
individual's memory is associative while the library 
deals with discrete packages. Cataloging is a poor but 
expensive suhstitute for what goes on automatically 
and suhconsciously in our minds as we record our 
experience. 

About 33 percent of the average library personnel 
budget goes into the preparation and filing of informa
tion about the many kinds of items that come into the 
lihrary. This input can as well go into a computerized as 

41 -------------------------------------------



42 Spring Joint Computer Conference, 1969 

into a manual system; but it is hard to see how savings 
can be effectuated by a computer at this point unless we 
can get machine readable input ready-made from a 
source like .:\IARC II tapes. If it is cheaper to process 
these tapes to find the descriptive and subject catalog 
information for individual items as they come to a 
library, rather than get it from printed copy or originate 
it, then we will Use them. Unfortunately, present 
indications are that it may cost more. 

Storage is one of the cheapest things we have today. 
Even amortizing land and building cost, we can keep 
reference books a year on the shelf for 20¢ apiece. 
At;j =\f bits each, this is 4¢ per million bits per year. The 
card catalog is somewhat more expensive at 48¢ per 
year per million bits. Add an annual increment of eight 
percent or so atld costs of conventional storage are still 
bearable. Not so the costs of on-line storage, \vhieh is 
the only conceivable forin of computer storage for this 
ty·pe of material. 

The numbers are not much better for present day 
library reference staff work in information retrieval. 
Reference work and catalog service may account for 
about ten percent of the personnel budget of a large 
library. Half of the time of these professionals may go 
into information retrieval. Assuming that they will have 
to spend a good deal of time training customers in using 
the computer, we may be able to save half the present 
budget to put toward the machine. This will not go far. 
In fact, my conclusion is that computerized information 
retrieval will require practically all new money. ~Iajor 
new financial support will be needed for large scale 
information retrieval, SDI and other individualized 
computer based services which we in the libraries want 
to provide. 

Librarians have always been quick to adopt new 
technology, for instance for catalog card production, 
for micro storage, for quick, expendable copies. Com
puters are no exception. They are urgently needed now 
for inventory control. If we can afford anything that 
computers have to offer, it is this. 

Using computer technology-Frustrations 
abound 

by HENRIETTE D. AVRAM 

Library of Congress 
Wa~hington, D. C. 

The automation of libraries is a fairly recent entry to 

the growing number of areas of applications for com
puters. Is this an indication that librarians have been 
resisting advancing technology or could it be that the 
process of controlling large stores of information is so 
complex and the hardware, software, and brainware 
still too limited to cope with this complexity? lVlight it 
also be that computer specialists, underestimating the 
challenges, have evinced little interest in the library 
problem? 

My experience in the library world suggests that these 
states and conditions have all combined with negative 
effect. The function of a library is to provide reference 
service to users and to make readily available the 
contents of its collections. The efficient performance of 
this function is directly related to the successful and 
timely completion of processing, Le., the selection 
acquisition, cataloging, classification, and shelving of a 
book. The rapidly increasing number of books and 
periodicals places the greatest strain in this area and 
thus pinpoints the prime candidate for mechanization. 

Before discussing one of the major automation 
activities at the Library of Congress and its associated 
problems, some facts about LC are in order to set the 
environmental background. The Library of Congress 
has in its collections about 55.5 million items: books, 
serials, maps, music, prints and photographs, manu
scripts, etc. Approximately 75 million records contain 
the control information and bibliographic description of 
this collection. I ts largest file, the Official Catalog, 
contains some 14.5 million records. An inventory of files 
showed that there are about 1,260 different files which 
are used in the Library's operations. Under Title II-C 
of the Higher Education Act of 1965, the Library has 
been charged with the additional responsibility of 
acquiring and cataloging all works, published anywhere 
in the world, important to scholarship. The materials 
flowing into the Library include items written in 70 
different languages, represented by 20 distinct alphabets. 

One of the basic functions of librarians is the recording 
and organizing of bibliographic data to facilitate access 
to and use of the books and other materials contained in 
the collections of libraries. Although bibliographic data 
may be recorded and stored in a variety of ways, the 
card catalog record has been the preponderant medium 
used by libraries in the United States. The bibliographic 
information on the catalog record is basically of two 
kinds: (1) a description of a book in terms of author, 
title, etc., and (2) some kind of notation to be used in 
locating the book on the shelves. The locating notation 
also usually comprises a means for arranging together 
materials on the same and related subjects. A catalog 
record distinguishes in a unique place one book from all 
the other books represented in the catalog. The catalog 



Computers in Service to Libraries of the Future 43 

card with its basic information, can be used again and , 
again to provide multiple access capability-usually 
Ituthor, title, subject-and forms the basis of what is 
known as the unit card system. Essentially librarians 
Bl"e attempting to organize and make readily available 
the intellectual output (books) of other humans in all 
disciplines. This involves the application of a rather 
complicltted set of rules to the output of very unpre
djctable human ~ings; the result being that it is safe 
to say that a1m~t every rule will find its exception 
manifested. 

Since the Library of COJlgress is the major source of 
bibliographic infon:rmtion for the American library 
community, it was naturQ.l to conduct an experiment at 
LC to test the feasibility a.nd utility of centrally 
producing cataloging data and di$tributing these data 
to users. Project MARC (foJ' MAcbin~-Readable 
Cataloging) was in operation for 19 JIlQntM in. ~st and 
pilot phases involving sixteen coopel'tt-ting libraries. The 
project was successful and a full operational system 
providing selected machine-readable cataloging data for 
all interested libraries will begin early in 1969, During 
the pilot period, recommendations for improvement 
were received from the participants, a cost mod~l was 
maintained, and the procedures for preparing biblio
graphic data for conversion to machine-readQ.ble form 
and the processing of these data were improved. The 
format for the interchange of the record was evaluated 
by staff members of many organizations: the Library 
of Congress, the National Library of :M:edicine, the 
National Agricultural Library, the United States of 
America Standards Institute Z39 Subcommittee 2 on 
Machine Input Records, the Committee on Scientific 
and Technical Information (COSATI), and other 
interested organizations both here and abroad. The 
result was the adoption of a format designed for the 
interchange of data and hospitable to the bibliographic 
description of all forms of material. 

The format for monographs as adopted by the 
Library of Congress has four important characteristics: 

1. It establishes the means by which bibliographic 
information may be transmitted between 
libraries. 

2. It describes the rigorous rules by which biblio
graphic information, available in human-readable 
form, may be converted to machine-readable 
form. 

3. It suggests that if the same format is used for the 
exchange of information by all libraries, pro
grams and procedures may be exchanged and 
automation costs reduced. 

4. It follows the United States of America Stand
ards Institute Code for Information Interchange 

(ASCII), the standard for Recorded Magnetic 
Tape for Information Interchange, and the 
proposed standard for Magnetic Tape Labels and 
File Structure. 

The library community, although operating in a very 
imperfect world in terms of having both second and 
third generation computers, configurations progressing 
from minimal to maximum (when is a 1401 a 1401 ?), 
and I/O devices not capable of handling the necessary 
character sets, has forged ahead to adopt standards. 
This is a significant step forward. 

The introduction of computers to libraries poses 
special problems in file organization and hardware while 
providing new opportunities for multiple access to 
information. We are faced with deciding how informa
tion can best be structured and stored for effective 
retrieval. Imposed on top of all classic functions 
performed by librarians, i.e., acquisitions, cataloging, 
classification, reference, is the function of searching. The 
search argument varies with the inquiry. It ranges from 
data on an order slip to the information on the title page 
of a book, to the Library of Congress catalog card num
ber, to a name in an authority file. The questions of file 
structure-where in the file to search and when to 
stop searching-are related to discovering the criteria 
for the determination of identity. The human mind has 
certain categories of analytic capability which cannot 
yet, if ever, be captured by machine. Therefore, we 
must create ploys which cause the machine to approach, 
in effect, the desired objectives. 

Studies at the Library of Congress show that the 
storage requirements for 1972 is 4 X 1()9 characters. 
Int.eresting developments in hardware technology in the 
next five years should partially resolve the problems 
of large random access stores at acceptable costs. If we 
can approach an efficient solution for organizing 
information and consequently retrieving from the files, 
one nagging question that remains is how best to 
convert the files and in what order of priority. Because 
libraries cannot limit coverage in time and discipline, 
files reflecting the past must in time be converted to 
machine-readable form. Many conversion strategies 
have been proposed and the final decision must be based 
upon reasonable grounds as to use and cost. The 
conversion of bibliographic information requires specifi
cations for the representation of this information in 
machine-readable form, i.e., decisions regarding data 
elements that need explicit identification and the 
definition of a character set for input, storage, and 
display. The character set needed to encode biblio
graphic data is essentially infinite because it is open
ended. Not only are we concerned with many hnguages 
in a multiplicity of alphabets, but in addition, any 



44 Spring Joint Computer Conference, 1969 

ij,l,lthor can use any character at will. The obstacles then 
become challenges seeking creative solutions. 

Librarians and computer scientists have rarely 
communicated well with one another, and this lack of 
communication results from the fact that each group is 
too parochially oriented to its own field. Both groups 
are ~ctually ~triving toward precision but each sees 
pr~cisiQn hi a different way. The librarian is concerned 
with pre.cision in the definition of the record, for he 
must be p~cise in this definition in order to uniquely 
represent ~ book for retrieval. The computer person is 
interested in precision in method,· i.e., an exact descrip
tioll of a process, so that his program will perform 
efficiently and produce the output required. Machine 
people have a tendency to minimize the librarian's 
problems of precision and exhibit a general reluctance 
to become interested in the data except as it affects the 
computer application. Without a complete understand
ing of the co:rnple~ty of the data, the capabilities of the 
computer are. oversold, thus later causing what might 
be. tenned a credibility gap. Librarians, on the other 
hand, must recognize the potential and the limitations 
of the new technology and provide the necessary 
guidance for the efficient use of communication and 
information manipulation devices. 

Success will not come overnight but will depend upon 
the combined efforts of the most talented people that 
can be found in many disciplines. 

Computers in service to libraries of the 
future 

by HOWARD W. DILLON 

Harvard University 
Cambridge, Massachusetts 

Automation activities in libraries have been under
taken with accelerating frequency over the past ten 
years. I t is no longer uncommon to find successful 
projects in almost every type and size of library 
throughout the country. Libraries have demonstrated 
that they can develop and operate ordering and 
processing systems to control financial and bibliographic 
information at the time a new item is added to the 
collection. Book catalogs and other holdings lists are 

produced and distributed in many formats. Automated 
circulation control systems, particularly the data 
collection type, are widely accepted and functioning 
successfully. 

This portion of the panel discussion will describe a few 
projects with which the speaker is familiar. The projects 
selected have been chosen because they represent major 
attacks on problems which must be solved in order for 
all libraries to move forward with automation. 

A recurring problem for systenis of library processing 
developed over the past years has been the reliability of 
the data first entered into the system at the time a 
purchase order is placed. In off -line systems, the need to 
edit or replace the information used at the time of the 
order with better data obtained when the item purchased 
is in hand has been a critical update problem. FeVwr 
systems; therefore; attempted to carry computer pro
cessing from ordering through to the completion of 
cataloging as one integrated system. On-line processing 
capabilities and the development of a nationally 
distributed, timely bibliographic record by the Library 
of Congress in the NIARC II communications format, 
make it more likely that integrated technical processing 
systems for libraries can be made operational. 

Second, given a communications format for the 
sharing of bibliographic data, libraries with common 
processing requirements are undertaking to share in the 
cooperative development and design of processing 
systems. Standardization and compatibility have been 
hallmarks of library systems for many years. While not 
always perfectly achieved, librarians have traditionally 
demonstrated their concern with the sharing of biblio
graphic data and collections. The advent of computer 
processing has not altered that basic philosophy. Rather, 
it provided an opportunity to realize the goal of 
compatibility with greater perfection. 

Systems to be considered in this presentation will 
include: 

SYlVIBIOSIS-SYstem for Medical and BIOlogical 
Sciences Informat.ion Searching 

NELINET -The New England Library Infor
mation Network 

The Integrated, Computer-Based, Bibliographical 
Data System for a Large University Library, 
being developed by the University of Chicago 
Library, including the subsequently coordinated 
activities of Columbia and Stanford university 
libraries in this acquisitions and cataloging 
system. 



Computers in Service to Libraries of the Future 45 

The Washington State University Library Tech
nical Services System, which is a project to 
develop an on-line processing capability for that 
library. 

The presentation will review the objectives of these 
projects, summarize their accomplishments to date, and 
discuss hardware or operating system software problems 
encountered. 





Batch, conversational, and incremental 
compilers 

by HARRY KATZAN, JR. 

Pratt Institute 
Brooklyn, New York 

INTRODUCTION 

Compiler-writing techniques have received a great deal 
of pragmatic and academic attention and are now fair
ly well-defined. * It was and still is generally felt that the 
compiler is independent of the operating system jn 
which it resides, if it resides in one at all. The invention 
of time-sharing systems with conversational capability, 
however, has required that compiler experts re-evaluate 
existing concepts to make better use of external 
facilities. This was done and conversational and in
cremental compilers have evolved. A generalized and 
consolidated discussion of these relatively new concepts 
is the subject of this paper. First, a model of a batch 
compiler is introduced. The concepts are then modified 
and extended for a conversational programming en
vironment. Finally, a recent development termed 
"incremental" compilation, which satisfies the needs of 
both batch and conversational compiling as well as 
interactive computing, is presented. First, some intro
ductory material is required. 

Basic concepts 

In the cla~:::;ical data processing environment, ** t.he 
"compile phase" or "souree language pl'ocet):sing phase" 
is of prime importance as are definitions of source pro
gram and object program. The latter are redefined in 
light of the time-sharing or iuteractive environment. 
Extran~ous items, such as where the object program is 
stored or whether or not the compiler should produce 
assembler language coding, are practically ignored. 

The source program is the program as written by the 

• Two books devoted entirely to the subject are worth men
tioning: Lee, J.A .N., 'Phe Anatomy of a Compiler,l and Randell, B. 
and L. J. Russell, Algol 60 Implernentation.2 

*. See Lee,l p. 9. 

programmer. It is coded in symbolic form and punched 
?n cards or typed in at the terminal. The object program 
IS the program after being transformed by the compiler 
into a machine-oriented form which can be read into 
the computer and executed with very few (if any) 
modifications. Also of interest is the information vector 
which gives initial conditions for compilation and de
notes the types of output desired. A sample of specifica
tions which might be found in an information vector 
follow: (1) location of the source program; (2) name of 
the program; (3) the extent of compiler processing, i.e., 
syntax check only, optimize, etc.; (4) computer system 
parameters; (5) compiler output desired; and (6) dis
position of the object module. The form of the source 
program is sometimes required, although in most cases 
this information is known implicitly. This pertains to 
different BCD codes and file types which may range 
from sequential or indexed files on conventional systems 
to list-structured files in virtual machines. 

Similarly for output, the user can request a specialized 
form of object module or none at all, source or object 
program listing, and cross-reference listings. The object 
module is known as a Program Module which contains 
the machine language text and relocation information. 
Additionally, it may contain an Internal Symbol Dic
tionary for use during execution-time debugging. The 
Internal Symhol Dictionary is especially useful in con
versational time-sharing systems where execution can 
be stopped on a conditional basis and the values of 
internal variables can be displayed or modified. 

Batch compilation 

Batch compilation methods are required, quite natu
rally, in a batch processing environment. The term 
"batch processing" stems from the days when the pro
grammer submitted his job to the computer center 

47 ----------------------------------



48 Spring Joint Computer Conference, 1969 

and subsequently received his results later in time. A 
collection of different jobs was accumulated by opera
tions personnel and the batch was then presented to the 
computer system on an input tape. The important point 
is that the programmer has no contact with his job be
tween the time it is submitted to operations and when he 
receives his output. The concept has been extended to 
caver .:\1ultiprogramming Systems, Remote Job Entry 
(HJE), and the trivial case where no operating system 
exists and the programmer runs the compiler to com
pletion. 

The generalized bat.ch environment 

The most significant aspect of the batch processing 
envirOlllllent is that the entire source program is avail-
able to the compiler initially and that all compiler out
put can be postponed until a later phase. The compiler 
writer, therefore, is provided with a liberal amount of 
flexibility in designing his language processor. For ex
ample, specification (i.e., declarative) statements can 
be recognized and processed in an initial phase and 
storage allocated immediately. In the same pass, state
ment labels are recognized and entabled; then in a 
later phase, validity decisions for statements that use 
statement labels can be made immediately rather than 
making a later analysis on the basis of table entries. 
If desired, source program error diagnostics can be 
postponed. ::.Yforeover, the designer may specify his 
compiler so that the source program is passed by the 
compiler or so that the compiler is passed over the 
source program, which resides semi-permanently in 
memory. 

This inherent flexibility is not exploited in the com
piler model which follows. Instead, an attempt has been 
made to present the material in a conceptually straight
forward manner. 

A generalized batch compiler 

By itself, a model of a generalized batch compiler is 
of limited interest. The concept is useful, hmvever, for 
comparison with those designed to operate in time
shared computer systems. Therefore, the presentation 
is pedagogical in nature as compared to one which might 
present a step by step procedure for building one. 

Processing by the compiler is rather naturally divided 
into several phases which tend to be more logical than 
physical. Each phase has one or more specific tasks to 
perform. In so doing, it operates on tables and lists pos
sibly modifying them and producing nmv ones. One 
phase, of course, works on the source program froin the 
system input device or external storage and another 
produces the required output. The entire compiler is 

described therefore by listing the tasks each phase is to 
perform; ordinarily, the description would also denote 
which tables and lists each phase uses and what tables 
and lists it creates or modifies. The specific tables and 
lists which are required, however, tend to be language 
dependent and are beyond the scope of this treatment. 

The compiler is composed of five phases and an ex
ecutive routine, as follows: 

The Compiler Executive (EXEC). The various 
phases run under the control of a compiler executive 
routine (EXEC) which is the only communication 
with the outside world. It establishe.s initial con
ditions and calls the different phases as required. 
It can be assumed that EXEC performs all system 
input/ output services, upon demand from the phase 
modules. :\Iore specifically, the EXEC has five 
maj or and distinct functions: 

1. to interface "\vith the compiler's environment; 
2. to prepare the source statements for processing 

by phase one; 
3. to control and order the operation of the 

phases; 
4. to prepare edited lines for output; and 
5. to provide compiler diagnostic information. 

Phase 1. Phase 1 performs the source program syntactic 
analysis, error analysis, and translation of the program 
into a tabular representation. Each variable or con
stant is given an entry in the symbol table, with formal 
arguments being flagged as such. Initial values and 
array dimensions are stored in a table of preset data. 

Lastly, information from specification statements is 
stored in the specification table. The most significant 
Pl'ocp.ssing; howfwer, occurs wi.th respect to t.hp. Program 
Reference File and the Expression Reference File. 

Each executable statement and statement label is 
placed in the Program Reference File in skeletal form. 
In addition to standard Program Reference File entries, 
the Program Referellee File contains pointers to the 
Expression Heferenc(' File for statements involving; 
arithmetic or logical expressions. 

The Expression Reference File stores expressions in 
an internal notation using pointers to the symbol table 

. when necessary. As wjth the Expression Heference File, 
the Program Reference File also contains pointers to 
the symbol table. 

Phase 2. In general, phase 2 performs analyses that 
cannot be performed in phase 1. It makes storage as
signments in the Program l\Iodule for all variables that 
are not formal parameters. It detects illegal flow in 
loops and recognizes early exits therefrom. It also 
detel'lnine::; blocks uf a program with IlU path of control 



Batch, Conversational, and Incremental Compilers 49 

to them; and lastly, it detects statement labels which 
are referenced but not defined. 
Phase 3. The object of phase 3 is to perform the global 
optimizations used during object code generation, which 
is accomplished in phase 4. 

The first major function of phase 3 is the recognition 
and processing of common sub-expressions. Phase 3 
determines which arithmetic expressions need be com
puted only once and then saved for later use. In addi
tion, it determines the range of statements over which 
expressions are not redefined by the definition of one or 
more of their constituents. If the occurrence of an ex
pression in that range is contained in one or more DO* 
loops which are also entirely contained in that range, 
Phase 3 determines the outermost such loop outside 
which such an expression may be computed, and 
physically moves the expression to the front of that 
DO loop. Only the evaluation process is removed from 
the loop; any statement label or replacement operation 
is retained in its original position. The moved ex
pression is linked to a place reserved for that purpose 
in t,he program reference file entries corresponding to 
the beginning of the respective DO loops. 

The second major function of phase 3 is the recogni
tion and processing of removable statements. A "remov
able statement" is one whose individual operands do 
not have "definition points" inside the loop; obviously, 
the execution of this statement for each iteration would 
be unnecessary. A definition point is a statement in 
which the variable has, or may have, a new variable 
stored in it (e.g., appears on the left-hand side of an 
equal sign). In removing statements, they are usually 
placed before the DO statement. 

Phase 3 also processes formal parameters and devel
ops the prologue to the program; it optimizes the use of 
registers; and it merges the Program Reference File and 
the Expression Reference File to form a Complete 
Program File in preparation for phase 4. 

Phase 4-. Phase 4 performs the code generation function. 
I ts input consists of the symbol table and the Complete 
Program File and its output is the Code File, which rep
resents completed machine instructions and control 
information. 

Phase 5. Phase 5 is the output phase and generates the 
Program Module, the source and object listings, and the 
cross reference listing. Upon request, an Internal Symbol 
Dictionary is also included in the Program Module. 

* Although the DO keyword is a constituent part of several 
programming languages, it should be interpreted as representing 
the class of statements from different languages which effec
tively enable the programmer to write program loops in a 
straightforward manner. 

Any compiler model of this type is clearly an abstrac
tion; moreover, there is almost as much variation be
tween different compilers for the same programming 
language as there is between compilers for different 
languages. The model does serve a useful purpose which . ' 
IS to present a conceptual foundation from which con-
versational and incremental compilers can be intro
duced. 

Conversational compilation 

Compared with the "batch" environment in which 
user has no contact with his job once it is submitted, the 
conversational environment provides the exact opposite. 
A general-purpose time-sharing system of one kind or 
another is assumed, * with users having access to the 
computer system via terminal devices. 

In the batch environment, the user was required to 
make successive runs on the system to eliminate syntax 
and setup errors with the intervening time ranging from 
minutes to days. Excluding execution-time 'bugs", 
it often took weeks to get a program running. In the 
conversational mode, syntactical and setup errors can 
be eliminated in one terminal session. Similarly, execu
tion-time debugging is also possible in a time-sharing 
system, on a dynamic basis. 

. Conversational programming places a heavy load on 
a compiler and an operating system; the magnitude of 
the load is reflected in the basic additions necessary to 
support the conversational environment. 

The time-sharing environment 

The time-sharing environment is characterized by 
versatility. Tasks can exist in the "batch" or "con
versational" mode. Furthermore, source program in
put can reside on the system input device or be pre
stored. The time-sharing operating system is able to 
distinguish between batch and conversational tasks; 
therefore, batch tasks are recognized as such and pro
cessed as in any operating system. The ensuing dis
cussion will concern conversational tasks. It is assumed, 
also, that the user resides at a terminal and is able to 
respond to requests by the system. 

During the compile phase, the source program may 
be entered on a statement-by-statement basis or be pre
stored. In either case, the compiler responds immedi
ately to the terminal with local syntactic errors. The 
user, therefore, is able to make changes to the source 
program immediately. Changes to the source pro
gram other than in response to immediate diagnos-

* Two typical general-purpm;e time-sharing systemR are 
T&.,/36(}3·4 and MULTICS.o 



50 Spring Joint Computer Conference, 1969 

t.ics cause a restart. of t.he compilation process. Obvious
ly, the system must keep a fresh copy of the source pro
gram for the restart case. To satisfy this need, a copy 
of the current up-to-date source program is maintained 
on external storage; if the source was prestored, the 
original version is updated with change requests; if the 
source program is not prestored, the compiler saves :J.ll 
source (and changes) as they are entered line-by-line. 
With the user at a tenninal, the compiler is also able to 
stop midway during compilation (usually after the glob
al statement analysis and before optimization) to in
quire whether or not the user wants to continue. Under 
error conditions, the user may abort the compilation 
or make changes and restart the compilation process. 
Moreover, the user can utilize this pause to have his 
program syntax checked only. 

During the execution phase, dynamic debugging is 
often desirable. This facility is uSU811y a part of the 
command structure of the operating system. In prepara
tion for execution-time debugging, the user would prob
ably request an Internal Symbol Dictionary during 
compilation so that internal variables can be addressed 
symbolically. Since execution-time debugging IS a 
relatively new concept, it is discussed briefly. 

Debugging commands usually fall into three cate
gories: (1) program control; (2) program modification; 
and (3) debugging output. Debugging commands may 
be imbedded in the program itself or the program can be 
stopped (either asynchronously or with an AT com
mand) and the actions perfonned immediat.ely. Ex
amples of typical program control commands are: 

AT symbolic-location ... STOP 

RUN 

RUN symbolic-location 

Examples of program modification commands are: 

SET A = 1.0 

IF A (0, SET A = 0 

Examples of debugging output commands are: 

DISPLAY MAIN.I ::\IAIN.A 

DUMP ARRAY 

Furthennore, they can be used m combination as 
follows: 

AT PTWO.100 IF A = 0, STOP 

AT T34.360 DUMP T34.A SET CNT = CNT + 1 

As was mentioned. earlier, a considerable amount. of 
the compiler's effort is devoted. to producing an efficient 
object program. As a result, the instructions to perform 
certain computations are sometimes not located where 
one would expect to find them. In fact, this is a direct 
consequence of common sub-expressions and removable 
statements, which were discussed previously. Although 
these processes contribute to efficiency, they have a 
side effect which hinders the debugging effort. There
fore, when expecting to use dynamic debugging, the 
user should request an Internal Symbol Dictionary and 
select the option which does not produce optimized. 
code. 

The conversational compiler and the time-sharing 
operating system must support several aspects of the 
conversational environment. These are sUlnmarized as 
follows: (1) the ability to change or forget the effects 
of the preceding statement; (2) restart logic; (3) main
tenance of the entire source program, in up-to-date 
form, on external storage; (4) the ability to scan state
ments and produce diagnostics on an individual state
ment. basis; and (5) the option to produce optimized or 
unoptimized code. 

The conversational compiler 

Basically, the conversational compiler is a conven
tional batch-processor containing special features mak
ing it suitable for conversational, terminal-oriented. 
operation. 

Structurally, the major addition over a batch com
piler is Compiler Control Program (CCP) , which in 
effect controls compilation. CCP is cognizant of whether 
the mode of operation is batch or conversational and is 
able to fetch source records and dispose of output print 
lines, accordingly. CCP is the facility which maintains 
the source program on external storage and is able to 
tell if a new source record is indeed. new, a change to 
last one entered, or a change to a previous one. When 
processing a request to fetch a source record for the 
compiler, CCP can use this information to simply re
turn the record, return it with the "forget" flag on, or 
call the compiler at its initial entry for the restart case. 
The function to fetch a source record is termed GET
LINE and is summarized in Table 1. Accordingly, an 
overview of the CCP is given in Figure 1. 

The overall logic of the conversational compiler is 
shown in Figure 2. Clearly, it differs very little from the 
batch version. The differences in the compiler itself are 
found in phase one and at the end of phase two. In 
phase one, as shown in Figure 3, the compiler uses CCP 
as its external interface. IVloreover, the compiler always 
compiles a statement conditionally; later it uses the 



Batch, Conversational, and Increnlental Compilers 51 

Figure 1-0vervie\Y of the compiler control program (CCP) 

Table I-GETLINE Function of the Compiler Control 
Program (CCP) 

Conversational Batch 
Presto red Not Prest. Prestored Not Prest. 

GBTLINE A B A C 

A. Fetches the next source record from external storage and 

B. 

returns it to compiler EXEC. 

Fetches another source record from the terminal input 
device and updates the source file on external storage. 
If it is the next source record, the line is returned to 
the compiler with the "forget" flag off. If the give~ 
source record is to replace the previous one, the 
"forget" flag is turned on and the line is again returned. 
Otherwise, a previous line has been modified and the 
compiler is entered at the "initial" entry point for the 
restart case. 

C. Fetches the next source record from the system input 
device and updates the source file on external storage; 
the line is returned to EXEC with the "forget" flag off. 

"forget flag" to freeze or delete the compiled informa
tion. 

After phase two, as shown in Figures 1 and 2, the 
conversational compiler again exits to CCP. In the 
batch mode, of course, CCP simply returns to the com
piler. In the conversational mode, as shown in Figure 1, 
the user is asked for changes and whether he wants to 

Initial Continue 
Ent:rv Ent:rv 

1r 
Phase 3 

Initialize 
'n __ &: __ 

CC.I..l.V.I..lll 

Compiler Global 
Optimiza-

tion 

, , 
Phase 1 Phase 4 

Translate Generate 
Source; Object 
~ind Syntax Code 

Errors. 

, t 

Phase 2 Phase 5 

Assign Build PM 
Storage; and ISD; 

~ind Global Prepare 
Errors Listings. 

, ~, 

Exit to CCP Exit to CCP 

Figure 2-Logic of the conversational compiler 

continue. At the user's request, CCP can change the 
source program, still residing on external storage, and 
restart the compiler at the "initial" entry. If the user 
desires to continue, the compiler is entered at the "con--
tinue" entry. Otherwise, CCP exits to the command 
system and the remainder of the compilation is aborted. 

Conversational compilation offers significant advan
tages over standard batch processing, most of which 
deal with the interactive mode of operation. The major 
disadvantage is that the entire source program must be 
available before execution can be attempted. In other 
words, one would like the versatility and flexibility of a 
language interpreter with the performance of a con
versational or batch processor. ~1oreover, the perfor
mance must be reflected in the execution time as well 
as the compile time. 



52 Spring Joint Computer Conference, 1969 

Initialize 

statement Processors 

r-------
I Last statement 

+ 
( Return) 

y 

Delete 
Previous 
statement 

N 

Figure 3-Compilel' Phase 1 interface with the eompiler 
eont.rol program 

I ncremenlal compilation 

One of the rnost promising ideas in this era of on
line computing is a concept termed Incremental Com
pilation. In an interactive programming environment, 
one would like to achieve both the speed factors in
herent in compiled programs and the flexibility available 
with interpretive systems. Incremental compilers are an 
attempt to achieve these goals. ~1uch of the pioneering 
work in this area is reported in two papers: the first by 

Lock7 entitled "Structuring Programs for Multipro
gram Time-Sharjng On-Line Applicat~ons" and the 
second by RyanS and others entitled" A Conversational 
System for Incremental Compilation and Execution in 
a Time-Sharing Environment." In order that the above 
goals can be realized, t~e following capabilities are re
quired: 

1. The ability to execute a statement immediately; 
2. The ability to modify a prior statement without 

forcing a recompilation; 
:3. The ability to execute a source program as it is 

being input; 
4. The ability to execute selected portions of pro

grams; 
05, A language processor that can also operate in the 

batch mode. 

Clearly, all of the above requirements, except speed, are 
met with an appropriate interpretive program. In a 
large time-sharing environment, however, this resource 
is of prime importance, especially when 50 or more ter
minals are being serviced. 

The environment for incremental compilation 

Basically, the environment for incremental compila
tion is the same as for its conversational counterpart. 
By assuming a sophisticated operating system such as 
TSS/3603.4 or MULTICS,5 many of the problems de
scribed in the cited papers by Lock and by Ryan, such 
as memory protection among users, an effective com
mand system, and memory organization and manage
ment, are obviated. Dynamic loading facilities, for 
utilizing hand coded subroutines, and a memory re
location feature,9 for mapping virtual addresses to real 
addresses, simplify problems involving the execution 
of code compiled incrementally and are also assumed. 
The programming language is naturally of importancp 
and of great interest to most, systems programmers. A 
language more powerful than standard Fortran or 
assembler language is expected, although the techniques 
would work satisfactorily therewith. A rich language 
which would enable a significant amount of computa
tion per interaction is most desirable. Languages such 
as PL/po and Iverson's Languagell are well suited to 
incremental compiling and executing. 

The incremental compiler 

This method of compilation permits two modes of 
operation: batch and incremental. In the batch mode, 
the user may compile prestored source program but 
may not modify or execute the program during com
pilatioIl. In t.he incrernenial mode, normally uRed only 



Batch, Conversational, and Incremental' Compilers 53 

conversational1y, special facilities are available to per
mit the modification, execution; and checkout of the 
program during compilation. These operations are per
formed through a combination of control and source 
language statements. 

Incremental compilation consists of accepting a 
source program on a statement by statement basis. 
Each statement is compiled as it is received and the 
code generated for it is immediately made available for 
executioll. Associative links between the source program 
and object code are maintained, thus permitting the 
user, during compilation, to modify his source program 
and have the modification immediately reflected in the 
object code. The ability to compile, execute, and modify 
a program on a statement by statement basis gives the 
user a degree of flexibility over his program usually 
available only with an interpreter, yet reduces the 
principal objection to interpreters: that of requiring an 
excessive amount of execution time. While, in an inter
preter, each statement must be processed each time it is 
executed, in an incremental compiler it needs to be 
processed only when it is entered initially or when the 
user makes a source program modification. The Incre
mental Compiler has the added advantage of ensuring 
that the object code the user tests incrementally is 
virtually the same as the code produced for an object 
module, since the same code generators are used in 
both modes. 

\\,~hen an Incremental Compiler is used in the batch 
mode, all of the usual facilities are available to the user. 
When used in the incremental mode, all of the batch 
facilities are available in addition to those provided to 
control the execution and debugging of the generated 
code. During both modes of compilation, the following 
options are permitted: 

1. Analyze the program only for syntactic errors; 
do not perform a global analysis or generate code. 

2. Analyze the program for syntactic and global 
errors; do not generate code. 

t • 
;~. Analyze the program for syntactIC and global 

The object program may be executed, in either the 
batch or incremental mode, only if the third option 
is selected. In most compilers of this type, the user may 
select one of several modes of executing the incremental 
code concurrently with compilation; as errors are UIl

covered, he may make modifications to the source lan
guage, without, in most cases, requiring a recompilation 
of the existing code or affecting previous execution. 

In order to provide the user with the degree of control 
desired, two categories of control statements are nec
essary: transient statements and commands. A transient 

statement is a statement in the source language being 
compiled which is executed and discarded immediately. 
I t allows the user to intervene during the execution of 
his program and print results or change values. Com
mands are control statements which allow the user to 
make modifications outside the scope of the source 
language. A good example would be to change the con
trol point of the program. 

Source program compilation and execution in the 
incremental mode is under direct control of a Language 
Controller (LC). Each interaction, by LC, with the 
user is divided into a processing cycle and/or an execu
tion cycle, depending upon the input parameters. The 
compiler is called by LC to process source language and 
transient statements and if exeoution is requested, it is 
initiated and monitored accordingly. After execution, 
transient statements are discarded whereas source 
language statements are retained. The command system 
of the operating system is called by the Language-Con
troller to process commands. Clearly, there is a need to 
tie the various elements of a program together, for 
operational reasons, and this requirement is satisfied 
by the Program Structure Table, described below. 
Since the Language Controller controls a major portion 
of the processing when in the incremental modes, it is 
structured accordingly. As pictured in Figure 4, it con
tains program elements for maintaining the source pro
gram and the Program Structure Table, for controlling 
the compiler, for monitoring the execution of incre
mental code, and for interpreting and then dispatching 
or processing control statements. These functions are 
summarized in the following descriptions of the modules 
which comprise the Language Controller: 

Program Structure Routines. The program structure 
routines maintain the source program on external 

Figure 4-Structure of the language controller for incremental 
compilation and execution 



54 Spring Joint Computer Conference, 1969 

storage and manage the Program Structure Table, 
which contains an entry for each source language 
statement in the program being compiled. The re
lationship of statements is also established for subse
quent use by the Execution Monitor. 

Compiler Controller. The compiler controller pro
vides the interface between the user and the compiler. 
It passes the identity and location of source state
ments to the compiler EXEC and receives the loca
tion of. the compiled code in return. In so doing, it 
handles diagnostics and updates the Program Struc
ture Table. 

Execution Monitor. The Execution Monitor con
trols program execution as determined by the es
tablished mode of operation. It passes control be
tween statements or halts execution after specific 
statements, as required. It utilizes the dynamic 
loader of the operating system and envokes other 
program modules when requested to do so. 

Command Interpreter and Dispatche1'. The Com
mand Interpreter analyzes control statements and 
calls either the Compiler Controller or the conunand 
system of the operating system depending upon 
whether a transient statement or a command is being 
processed. 

The Program Structure Table is obviously of great 
importance since it indicates the relationship of state
ments and the static properties of the program. Ele
ments in the table are generated dynamically as source 
language statements are entered and are composed 
from the following quantities: * 

1. A type indicator specifying the type of statement; 
2. A list of structure pointers linking this statement 

to preceding and succeeding statements and to 
any function module** in which it might be con
tained; 

3. A pointer to the compiled machl:ne code for the 
Rtatement; 

4. A locator, such as data set name or physical 
location, of the source program on external stor
age; and 

5. A statement identification, such as a line number, 
used for referencing the statement and for mak
ing insertions, deletioIl::;, and changes to the pro
gram. 

* The article by Lock contains a comprehensive description of 
internal program structure in a programming environment such 
as this. 

**The term function module i!:l used to represent either a block 
or internai proced1lre as found in Algol or PL/I. 

Due to the nature of the incremental compilation pro
cess and the Program Structure Table, it iR not neces
sary that t.he incremental code for a given program re
side in contiguous memory locations. In fact, only 
rarely will this be the case. Although this is conceptually 
different from the established practice of generating 
object code, it poses no serious problem in the in
cremental mode of operation. 

In general, the incremental compiler is composed of 
the same basic components as the batch and conversa
tional versions. Some differences, which tend to be re
lated to the interrelationshw of statements, do exist 
but are relatively minor. The" global" analysts of state
ments, for example, is severly crippled by the fact that 
all statements in a source module may not be available 
for analysis. The "global" optimization of statements is 
in the same category but must be eliminated entirely. It 
is very feasible, however, to include it as a special phase 
in the batch mode or provide a mechanism to convert 
from incremental to object code, including global 
optimization, in the conversational mode. 

The basic compiler processing cycle begins when it 
is called at its source input entry. (Another entry could 
conceivably exist which might be to convert incremental 
code to object code.) The compHer EXEC obtains the 
source text to be processed from the Language Con
troller and builds a Program Table consisting of t.he 
text to be processed during the cycle; information Oil 

additions, insertions, and delet.ions; location of the ex
isting symbol table; and parameter data relating to 
mode of compilation, listing options, BCD codes, etc. 
The EXEC then invokes Phase 1 of the compiler which 
performs a statement classification and syntax analysis 
and builds the Program Reference File and Expression 
Reference File from all of the statements specified ill 
the Program Table. Pointers to t.he encoded statements 
are then returned to the EXEC, where the encoded 
statements are linked back to the Program Table. Phase 
2 is then invoked to perform a global analysis, when 
possible, and to assign storage for the statements indi
cated in the Program Table. This phase updates the 
symbol table and merges the Program Reference File 
and Expression Reference File to form the Complete 
Program File maintaining the links to the Program 
Table, as required. Phase 4 t is now called to translate 
the encoded statements into object code forming the 
Code File. Phase 5 which must generate either object 
code or incremental code is considered below. 

Operation of the compiler for each of the two basic 
modes, batch and incremental, can now be described. 
In a batch compilation, the source text available at entry 

t Recognizing that no Phase 3 exists. 



Batch, Conversational, and Incremental Compilers 55 

consists of the complete program. The Program Table 
passed to each component points to every statement in 
the source program, so that in a single cycle, the com
plete compilation is produced. Other than the Execu
tive (EXEC), the only phase which must be aware of 
the batch parameter is Phase 5, which must build an 
obj ect module instead of generating incremental code. 
Again, the obj'ect module consists of a program module 
(i.e., text and relocation data) and optionally, an In
ternal Symbol Dictionary. The text portion consists of 
the object code produced and is entirely self-contaihed, 
with the code generated for a statement linking directly 
to the code for the next statement. The source text 
available at entry to an incremental compilation may 
represent anything from a single statement to a com
plete program. Normally, however, the source text 
available represents only a portion of a program. The 
Program Table; therefore, contains a group of state
ments to be added or deleted in the current program. 
The Program Table is in the same form as for a batch 
compilation and does not require different handling by 
Phases 1, 2, and 4. In this mode, Phase 5 generates in
cremental code. Incremental code differs from an object 
module in that the Program Module (i.e., the reloca
tion information) must be dynamically generated 
requiring some special processing by the Language 
Controller and the system's' dynamic loader. The text 
is organized on a statement-by-statement basis with 
inter-statement linkage provided to allow the inter
vention by the Language Controller* at statement 
boundaries: . 

As a result of the incremental process, four modes c~· 
execution are possible: automatic, controlled, block 
step, and step. In the automatic mode, statements are 
executed by the Language Controller immediately after 
they are processed by the compiler. In the coni;rolled 
mode, statements are executed only when explicitly 
requested by a RUN command, which may designate 
a range of statements. In the block step and step modes, 
an entire program (i.e., an external procedure) is avail
able for execution, For the block step case; the Language 
Controller pauses for user intervention after each block 
(or possible subroutine) in the program. When the step 
mode is specified, Language Controller suspends obfect 
program execution after each statement. 

Early efforts and special problem areas 

The two specific references to incremental compila
tion, i.e .. by Lock7 and by Ryan,S are in a sense com
plementary. Lock tends to emphasize the structural 

* That is, the Execution Monitor. 

aspects whereas Ryan emphasizes the systems aspects, 
even though different computers are involved. 

The effort by Lock, and probably others, at the Cali
fornia Institute of Technology is part of an experi
mental time-shating proj ect for the IBM 7040 com
puter. The programmmg languages supported are 
ALGOL, FORTRAN, and LISP with much of the 
paper beIng devoted to the internal organization of 
programs in an on-line programming environment. 
The Conversational ComplIer System, reported by 
Ryan and others, is an outgrowth of Lock's work and 
runs under an SDS 940 time-sharing system.' ALGOL 
and FORTRAN are also supported here with the paper 
emphasizrn.g the command language, memory organiza
tion, and compiling techniques. 

These projects have uncovered some interesting prob
lems of which the most sigriifi cant , perhaps, is con
sidered here. It involves changing a data declaration 
when executable code exists which uses the variables 
declared therein. In fact, the code may have been ex
ecuted previously. Lock solved the problem by design
ing his pseudotmachine code so that all references to 
identifiers are indirectly addressed through non-relocat
able entries in the user's symbol table. This certainly 
solves the problem but it partially nullifies one of the 
basic 'Objectives ot incremental compilation; that is, to 
gain the speed fact(Jr inherent in compiled code. A 
hardware mapping of identifiers to physical locations is 
feasible if relocation hardware and possibly a small 
associative memory are available, although it remains 
tD be seen whether dynamic address translatiDn can be 
used in this particular manner. Finally, one might ask 
the follDwing philDsDphical questiDn: "Is it unreaSDn
able tD require a recDmpilatiDn fDllDWing a change tD a 
data declaratiDn?" Clearly, the answer must be evalu
ated in light 'Of the 'Other benefits tD be gained through 
incremental cDmpilatiDn. 

CONCLeSIONS 

The world of time-sharing and its potential for inter
active computing at a general level has raised SDme 
interesting tDpics. 

First, it shDuld be recognized that althDugh batch 
techniques are currently very efficient and well defined, 
they were developed 'Of necessity. 'Vhen these tech
niques gained their acceptance, the hatch mDde was 
the 'Only 'Operational prDcedure available fDr using the 
cDmputer. The prDgramming cDmmunity shDuld alsD 
recDgnize that prDgram develDpment in a batch en
virDnment may nDt be the most natural or the 'Optimum 
methDd. 

SecDnd, it shDuld be recDgnized further that CDnver-



56 Spring Joint Computer Conference, 1969 

sational techniques do not offer a complete solution in 
that execution of parts of a program is usually not per
mitted. Clearly, language syntax errors can be detected 
as they are being input and this is certainly a step in the 
right direction. But ita programmer has to develop his 
algorithm completely before any of it can be executed, 
he might as well compile in the batch mode and rely on 
execution-time debugging. 

Some form of incremental compiling, therefore, seems 
to be the only answer in sight to questions regarding the 
development of algorithms in an interactive computing 
environment. The ability to execute a program as it is 
being compiled is certainly a natural way and very well 
may be optimum from a development point of view. It 
remains to be seen if the gains can justify the com
plexity of an incremental compiler. 

REFERENCES 

1JANLEE 
The anatomy of a compiler 
Reinhold Book Co New York 1967 

2 B RANDELL L J RUSSEL 
Algol 60 implementation 
Academic Press N ew York 1964 

3 W T COMFORT 

A computing system design for USe?· service 
Proc F J C C 1965 

4 C T GIBSON 
Time-sharing in the IBM /360: Model 67 
Proc S J C C 1966 

5 F J CORBATO V A VYSSOTSKY 
Introduction and overview of the MULTICS system 
Proc F J C C 1965 

6 IBM System/360 Time Sharing System 
FORTR./1N IV Program logic manual 
IBM Corporation Y28-2019 Yorktown Heights N Y 1967 

7 KLOCK 
Structuring programs for multiprogram time-sharing 
on-line applications 
Proc F J C C 1965 

8 J L RYAN R L CRANDALL 
M C MEDWEDEFF 
A conversational system for incremental compilation and 
execution in a time-sharing environmeni 
Proc F J C C 1966 

9 B RANDALL C J KUCHNER 
Dynamic storage allocation systems 
C A C M Vol 11 No 5 May 1968 

10 G RADIN H P ROGOWAY 
Highlights of a new programming language 
C A C M Vol 8 No 1 January 1965 

11 K ElVERSON 
A programming language 
John Wiley and Sons Inc N ew York 1964 



TRANQUIL: A language for an 
array processing computer 

by NORl\1A E. ABEL, PAUL P. BUDNIK, DAVID J. KUCK, 
YOICHI l\iURAOKA, ROBERT S. NORTHCOTE, 
and ROBERT B. WILHELl\,IS0N 

University of Illinois at Urbana-Champaign 
Urbana, Illinois 

INTRODUCTION 

TRANQUIL is the algoritlunic language which will be 
used to write programs for ILLIAC IV, a parallel 
computer which has been described by Barnes et aZ.1 

ILLIAC IV is designed to be an array of 256 coupled 
processing elements (PE's) arranged in four quadrants 
in each of which the 64 PE's are driven by instructions 
emanating from a single control unit (CU). Each of 
the 256 PE's is to have 2048 words of 64 bit semi
conductor memory with a 250 nanosecond cycle time 
and an instruction set which includes floating point 
arithmetic on both 64 bit and 32 bit operands with 
options for rounding and nonnalization, 8 bit byte 
operations, and a wide range of tests due to the use 
of addressable registers and a full set of comparisons. 
The PE's differ from conventional digital computers 
in two main ways. Firstly, each is capable of communi
cating dat.a to its four neighboring PE's in the array 
by means of routing instructions. Secondly, each PE 
is able to set its own mode registers, thus effectively 
enabling 01' disabling itself for the transmission of 
data or the execution of instructions from its CU. 

Figure 1 shows 64 PE's, each having three arithmetic 
registers (A, B, and C) and one protected addressable 
register (S). The registers, words, and paths in Figure 1 
are all 64 bits wide, except the PE index registers (XR), 
mode registers, and as noted. The mode register may 
be regarded as one bit which may be used to block the 
participation of its PE in any action. The routing 
registers are shown connected to neighbors at distances 
± 1 and ±R; similar end around connections are 
provided at 1, 64, etc. Programs and data are stored in 
PE memory. Instructions are fetched by the CU in 
blocks of 8 words as required and are stored in a 64 
word CU instruction buffer. 

57 

Figure 1 also shows the essential registers and paths 
in the CU and their relations to the PE's. Instructions 
are decoded and control signals are sent to the PE 
array from the control unit. Some instructions are 
executed directly in the CU; e.g., the loading of CU 
accumulator registers (CAR's) with program literals. 
Operand addresses may be indexed once in the CU 
and again separately in each PE. It is possible to load 
the local data buffer (64 words of 64 bits each) and 
CAR's from PE memory. Local data buffer registers 
and CAR's may be loaded from each other. A broad
cast instruction allows the contents of a CAR to be 
transmitted simultaneously to all PE's. It is often 
convenient to manipulate all PE mode bits or a number 
from one PE in a CAR. For this purpose, the broadcast 
path is bidirectional. 

The four control units may be operated independent
ly, as pairs, or all together. In the united configuration, 
all 256 PE's are effectively driven by one CU and 
routing proceeds across PE boundal ies. This allows 
some flexibility in fitting problems to the array. 

If ILLIAC IV, or any other parallel array computer, 
is to be used effectively, it iH es.."ential that a.lI possible 
parallelism be detected in those algorithms which are 
to be executed by that computer. This is difficult, if 
not impossible, if the algorithms are specified in 
languages such as FORTRAN and ALGOL which 
es..<:;entially express all computational processes in terms 
of serial logic, as required for conventional computers. 
Since it is also more convenient for the user to express 
array type computation processes in terms of arrays 
and parallel operations, rather than having to reduce the 
the inherent parallelism to serial computational form, 
the specification of a new language for array processor 
computation is clearly necessary. 



58 Spring Joint Computer Conference, 1969 

r------ --- ------ -- ---- --- - - ---- --- --- -----------..., 
I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
1111 :e 
I:' 
I'" 
It:: 
lID 
IN 
I;;; 
I 
I 
I 
I 
I 

: 

I 

I 

INSTRUCTION AND DATA FETCHING I 
I 
I INSTRUCTION 

BUFFER 

INSTR. 
FETCH 

REQUEST ASSOCIATIVE 
MEMORY 

INSTRUCTION 
DECODER 

1 

1 [I OAT< I 64 
WORDS 

10 1 

1 
,CAR 0 

C U IWEXING 

CAR 3 
1_-

CONTROL UNIT ----- -- -- ------ -------t---- ------------ -it ----
, DATA FETCHING 

P E CONTROL SiGNALS 1 

64 --57 

r 
2048 

L 

C 
S 2 i-1 
R --!:...- ~ 

-8 

• ~ 9 

• • 
MIR 

PE 
MEMORY 

I- :is-l 
PE 1 

A 

8 
C 
S 
R 

2!!..J 
MIl 

PE 
MEMORY 

PEi 

i+l 
~ 

i+ 

• 

I I MODE I 
I : I 

MIR 

PE 
MEMORY 

PE64 

Figure l-Il .. LIAC IV quadrant configuration 
into blocks for array storage 

The TRANQUIL language has been designed to 
achieve both simpler specifications of, and explicit 
representation of the parallelism in, many algorithms, 
thus simplifying the programmer's task and maxi
mizing the efficiency of computation on a computer such 
as ILLIAC IV. An overview of the software and 
application programming effort for the ILLIAC IV 
system has been given by Kuck. 2 

The 'J'RANQUIL language 

An important consideration in designing a language 
such as TRANQUIL is that the expression of paral
lelism in the language should be problem oriented 
rather than machine oriented. This does not, and should 
not, preclude programmer specification of data structure 
mapping at run time, but once the storage allocation 
has been made the programmer should have to think 
only in terms of the data structures themselves. 
Secondly, the means of specifying the parallelism 
should be such that all potential parallelism can be 
specified. 

The structure of TRANQUIL is based on that of 
ALGOL; in fact, many ALGOL constructs are used 
with the addition of furt.her data declarations: standard 

array operators, and revised loop specifications, in
cluding the addition of the set concept. Some of the 
ideas embodied in TRANQUIL follow similar con
structs in other languages, e.g., the index sets in ~lAD
CAP3 and the data structures and operators in APL.4 
The syntax of the current version of the TRANQUIL 
language is specified in Appendix B. 

Data structures 

The data structures which are recognized in TRAN
QuIL are simple variables, arrays and sets. All data 
structUres, and quantities such as labels, switches and 
procedures, must be declared in some block head as in 
ALGOL. The data type attributes are INTEGER, 
REAL, COMPLEX and BOOLEAN. Certain precision 
attributes also may be specified. 

A mapping function specification must be associated 
with every declaration of an array. The judicious 
choice of mapping functions is crucial to the efficient 
use of ILLIAC IV. Arrays must be mapped so as to 
optimize I/O transactions, minimize unfilled wasted 
areas of memory, and keep most of the PE's busy 
most of the time. In many array operations it is neces
sary to operate either on a whole row or a whole column 
of an array. All the PE's would be kept busy in the 
former case (one operand in each PE) but in the latter 
case all operands would normally be in only 1 PE. 
However, by specifying the skewed mapping function 
which rotates the i + 1st row across i PE's, columns 
as well as rows of the array can be accessed simul~ane
ously. The more commonly used mapping functions 
such as STRAIOHT, SKEWED, SKEWED PACKED, 
and CHECKER are included in TRANQUIL. Array 
bounds may be specified dynamically, as in ALGOL, 
but all other attributes are nondynamic, for example: 

REAL SKEWED ARRA Y A[I:M, I:N] 

The user who wishes to specify his own mapping 
function may make use of a PE memory assignment 
statement. For example: 

PEME1lfORY PB [1 :10, 1 :64]; 

PEM FOR (I, J) 81M ([1, 2, ... , 10] X [1, 2, 
.. .',64]) DO 

PB [I, J] +- B [I, MOD (64, I + J - 1)]; 

REAL ARRA Y (PB) B[l :10, 1 :64]; 

where 81M is discussed in a later section, establishes 
virtual space of size 10 X 64 in PE memory, and then 



stores a 10 X 64 array B there in skewed form. Thus, 
instead of making up the aforementioned subarrays 
out of an array declaration, space reserved in PE 
memory may be used. In the program, the programmer 
refers to an element of memory space via the assigned 
array name B and its subscripts, as usual. It should 
be noted that storage mapping functions can not be 
specified dynamically. Should remapping of data be 
required, an explicit assignment statement may be 
used; e.g., to change the data in an array B from skewed 
to straight storage an assignment statement 

Af-B 

is used, where A has been declared to be a straight array. 
A set is an ordered collection of elements each of 

which is an ordered n-tuple (l:=:;n:=:;7) and the set is 
said to be n-dimensional. A set declaration must 
specify one of the attributes INCSET, MONOSET, 
GENSET, or PATSET according as the set elements 
are to form an arithmetic progression (increment set), 
a strictly monotonic sequence (monotonic set), an 
arbitrary sequence (general set) or are multidimensional 
(pattern set), respectively, and in the latter case must 
also specify the size of n (n> 1). The declarations also 
may specify bounds for the integer values of the com
ponents of the n-tuple set elements, in ways analagous 
to the specification of array SUbscript bounds in ALGOL 
and FORTRAN, and an upper bound for the number 
of elements in the set. Some examples of set declarations 
are 

INCSET JJ 

ftfONOSET II [27, 6], KK [75, 75] 

GENSET 

PATSET 

A [150,100] 

P(3) [0:20,0:20, -5:15, 10] 

The monotonic set II is to have at most 6 one-di
mensional elements the integer values of which are 
+'" 1~,.. ;'" +1,.", "0"-"""'" r 1 '>"71 '"Ph,.. + 1,. .. ",,,, .rl~ ....... nn"';"'T>n 1 
UV .1..L\.i .L.l..l. UJ..L'l.I ..L U.LL5"'" l..L,~. J. ..L J....1.V U.1..LJ. \..I\..I-\A..1..l..L.l.v.LLQ.l.V.LLUJ,. 

pattern set P is to have at most 10 3-tuple elements 
the first two components of which will lie in the range 
[0,20] and the third components will be in [-5, 15]. 

Expressions 

Expressions which can be formed in ALGOL can 
in general, also be formed in TRAKQUIL. In addition 
arithmetic, logical and relational operators, and 
function designators may be used on arrays. The 
meaning of an operator is determined by its corre
sponding operands, which may be simple variables 

TRANQllL: 59 

or arrays. All meaningful combinations of operands 
and attributes are valid; e.g., if A and B are matrices 
then AlB will mean A X B-1 if B has an inverse and 
the dimensions are correct. The result of a relational 
operator operating on two matrix operands is reduced 
to a single logical value through use of the qualifiers 
ANY and ALL, e.g., 

ANY A < B or ALL A < B 

Examples of set definitional expressions are 

SET1 f- [ 

SET2 f- [1, 2, 3, 4, 5, 6, 7, 8] 

SET3 f- [1, 2, ... , 8] 

SET4 f- [-2, P, Q, 25] 

SET5 f- [[10, 10], [9, 8],[ 8, 6]] 

where SET2 and SET3 are equivalent definitions and 
SET5 is a 2-dimensional pattern set. Replication 
factors may be used in general sets. For example: 

SET6 f- [1(3),4, 5(2)] 

is equivalent to 

SET6 f- [1, 1, 1, 4, .'5, .5] 

A useful device for the generation of a set is the run -time 
comparison of data values in parallel. For example, 
if A and B are vectors stored across PE memory, 

A = {-I, 3, 2, 10} and B = {2, -3, 1, 12} , 

then the operation 

SET7 f- SET [I : A[1] < B[1]] 

where I takes on the values 1, 2, 3, and 4 simultaneously, 
generates the set [1, 4], the order being defined as 
monotonically increasing. These definitions are readily 
extendible to multidimensional pattern sets which 
are generally used for picking scattered values in an 
array for simultaneous operation. 

The set operators INTERSECT, UNION, and 
COMPLEMENT (a binary operation equivalent to 
the relative complement) may be used in TRANQUIL 
and always result in the generation of a monotonic 
set by reordering elements if necessary. The two ad
ditional set operators CONCAT and DELETE do 



60 Spring Joint Computer Conference, 1969 

not result in reordering of the elements. Some examples 
of set operations are: 

if 

R = [1, 2, 3,4, 5] 

S = [2, 4, 6, 8, 10] 

T = [6, 4, 6, 5, 6, 7] 

U = [100,40,0, 13] 

then 

RUNION U is [0, 1,2, 3, 4,5, 13,40, 100] 

R CONCAT Sis [1, 2, 3, 4,5,2,4,6,8, 101 

T COMPLEMENT R is [6, 7] 

T bELETE R is [6, 6, 6, 7] 

.. Fih~uy, it is possible to create sets with multi
dIIDertsional elements out of sets with scalar elements 
through use of the pair (,) and cartesian product (X) 
set operators, e.g., 

[1, 2, 3, 4] , [2, 4, 6, 8] is [[1, 2,] [2, 4], [3, 6], [4, 8]] 

[1, 2] X [3,4] is [[1, 3], [1, 4], [2, 3], [2, 4]] 

[1, 2] X [3,4] , [5, 6] is [[1,3,5], [1,4,6], [2,3,5], 
[2,4, 6]] 

where , has higher precedence t.han X. 

Control statements 

Control statements in TRANQUIL are used to 
designate sequential loops, simultaneous statement 
execution, and the usual conditional and unconditional 
transfers of control. Index sets play an integral part 
in these control statements. They are used as a source 
of values fO! iterative or loop control, and as a means 
of simultaneously specifying a number of array ele
ments. Their association with the enablement and 
disablement of PE" b should be obvious. 

Sequential contr()l: The SEQ statement 

Sequential control refers to the existence of a loop 
through which designated index variables take on the 
values of a set or sets, one element at a time. It is 
written in the following general form : 

FOR (11, ... , 111 ) SEQ (Ill {X I ,} ... {X I ,} lIn) 

{ (empty) I W H I LE (Boolean expression)} DO S 

where {} means one of the alternatives separated by I, 
the scope is the statement S, n is an integer, L(i = 1, 
... , n) are control variables, and IIi (i = 1, ... , n) 
are i-dimensional set identifiers or literal set definitions. 
The use of this statement is illustrated by the following 
examples. 

a. FOR (I, J) SEQ ([1, 2, ... , 10], [5, 10, ... , 50]) 
DO 

A[I] ~ B[I + 1] + C[J] 

is evaluated as 

A[I] ~ B[2] + C[5]; 

A[2] ~ B[3] + C[10]; 

A[10] ~ B[II] + C[50] 

Note that the comma between the two set definitions 
denotes pairwise ordering for the control variables 
values. 

b. FOR (I) SEQ ([2, 4, 6]) WHILE I < A[I] DO 

A[I] ~ B[I] - A[I] 

will continue looping until the Boolean expression is 
FALSE or the index set has been exhausted. As in 
ALGOL, no pass through the loop is made if the value 
of the Boolean expression is FALSE after the index 
variable is assigned the initial value of 2. 

c. FOR (I, J) SEQ ([1, 2, 3,4], [5, 6]) DO 

B[I, J] (- A[I, J] 

In this case the difference in size of the two defined 
sets is resolved by considering only the pairs (1, 5) 
and (2, 6), that is, the exhaustion of the smallest 
index set signals the end of the loop. To indicate 
otherwise an asterisk is placed after the set the ex
haustion of whose elements is to be used as the stoppinh 
condition. This means that any other sets which run 
out of elements before completion will be repeatedly 
used as many times as necessary. If the previous 
statement is rewritten as 

FOR (I, J) SEQ ([1, 2, 3, 4]*, [5,6]) DO 

B[I, J] ~ A[I, J] 

the result is 

B[I, 5] (- A[I, 5]; 



B[2, 6] ~ A[2, 6]; 

B[3, 5] ~ A[3, 5]; 

B[4, 6] ~ A[4, 6]; 

d. FOR (I, J) 8EQ ([1, 2] X [6, 7, 8]) DO 

A[I, J] ~ B[J, I]; 

A[l, 6] ~ B[6, 1]; 

A[l, 7] ~ B[7, 1]; 

A[l, 8] ~ B[8, 1]; 

A[2, 6] ~ B[6, 2]; 

A[2, 7] ~ B[7, 2]; 

A[2, 8] ~ B[8, 2]; 

where the lengths of the two sets do not create the 
problem that occurred with the pairwise operator. 
This example also illustrates that the frequency of 
element change is greatest for the rightmost set used. 

Simultaneous control: The SI M Function and the 

SI M Statement 

The parallel structure of ILLIAC IV is' utilized in 
TRANQUIL by the specification of simultaneous 
control functions and statements. The general form of 
the 81M function is: 

81M BEGIN (assignment statement); ... ; (as
signment statement) END where the enclosed assign
ment statements are executed simultaneously, i.e., 
the data used by anyone of them are the data available 
before the 81.Af function was encountered. 

The general form of the 81jt/ statement for simul
taneous control is: 

FOR (II, ... , La) 81M (Ill f X I ,l ... t X I ,} 
lIn) DO S ., . . 

where m, n are integers, Ii (i = 1, ... , n) are control 
variables, IL (i = 1, ... , m) are k-dimensional sets 
(0 < k :::; 7), n equals the total number of dimensions 
of all IIi, and S is a statement. For this statement each 
sub statement Si of S is executed with the data available 
before it is reached, i.e., just as if a 81M function was 
placed around each S,. In this regard it is important to 
note that simultaneous control is not loop control, but 
designates that each Si is to be executed in parallel and 
thus the order of the associated sets is not important. 

TRANQUiL 61 

Some examples of the use of SLM are: 

a. FOR (I, J) Slllf ([1, 2, 3]*, [4, 5]) DO 

A[I, J] ~ B[J, I] 

is evaluated as 

81M BEGIN A[l, 4] ~ B[4, 1]; 

A[2, 5] ~ B[5, 2]; 

A[3, 4] ~ B[4, 3] 

END 

b. FOR (I, J) 81M (II, X JJ) DO 

BEGIN 

C[I, J] ~ 0; 

FOR (K) 8EQ (KK) DO 

C[I, J] ~. C[I, J] + A[I, K] X B[K, Jl 

END 

is a general routine for the multiplication of two com 
patible matrices A and B if the index sets II and JJ 
specify the rows of A and the columns of B, respectively 

It should be noted that when a set is used in a 
sequential or simultaneous control statement, it 
cannot be altered within the scope of that statement. 

Nested 8EQ and SIM statements 

The 8EQ and 81M control statements described 
above may be nested. The effect of nesting is clear 
except when a 81M statement occurs within the 
scope of another 81ll! statement, in which case state
ments inside the scope of both are executed under the 
control of sets which are related by the cross product 
operator, for example: 

FOR (I, J) 81M (II, JJ) DO 

BEGIN FOR (K) 81M (KK) DO 

END 

BEGIN 

Area A 

END; 



62 Spring Joint Computer Conference, 1969 

where the control statement in effect in area A is, in 
effect, 

FOR (I; J; K) 81M (II; JJ X KK) DO 

If clauses 

General forms: 

a. IFSET (indexed Boolean expression) THEN 
b. IF {FOR (II, ... , In) SIM (III {XL} ... {x I,} 

IIm)\ (empty)} {ANY\ALL\ (empty)} (Boolean 
expression) THEN 

If clauses may be used in arithmetic, Boolean, set 
and designational expressions. The Boolean expression 
in form (a) must involve a control variable under 
SIM control and thus not have a single logical value. 
This is meaningful in arithmetic and Boolean expressions 
of assignment statements having left parts which use 
the same control variable, and also in conditional 
statements where the control variable is used in the 
left part of some associated assignment statement, 
An example of this use is: 

FOR (I) SIM ([1, 2, ... , 100]) DO 

T[I] ~ IFSET A[I] < B[I] THEN A[I] 
ELSE B[I] 

is equivalent to 

FOR (I) SLY ([1, 2, ... , 100]) DO 

IFSET A[I] < B[I] THEN T[I] ~ A[I] 

ELSE T[I] ~ B[I] 

In either form T[I] ~ A[I] for all values of I for which 
the value of the Boolean expression is T RUE and 
T[I] ~ B[I] otherwise. 

The form (b) results in only a single Boolean value 
based on the ANY or ALL modifier, and the scope of 
the SIM control (if explicitly present) extends over the 
Boolean expression only. If the vector A of length 2 has 
elements 5 and 10, the if clause test 

IF FOR (I) SIM ([1, 2]) ANY A[I] < 7 

has the value true since A[l] < 7. The same result is 
achieved by use of the if clause 

IF ANY A < 7 

The TRANQUIL compiler and its implementation 

Introduction 

The syntax of TRANQUIL has been specified in a 
form which is accepted by the syntax preprocessor of 
the Translator Writing System (TWS)5,6,7,8 being 
built at the University of Illinois. The preprocessor 
automatically generates the parsing algorithm for the 
compiler. In pass 1 of the compiler the recognition of 
source code constructs invokes calls, via the action 
numbers embedded in the syntax definition, to semantic 
actions. These actions build descriptor tables con
taining' in part, information about declaration types, 
attributes, and block structure, and transform the 
source code into an intermediate language form which 
is composed of operators and operands, the latter 
being references to the descriptor tables. 

Pass 2 is the main body of the compiler. The inter
mediate language stream is read and operators call 
pass 2 semantic actions (on the basis of their context) 
for generation of assembly language instructions using 
associated operands. A number of other important 
considerations arise, among which are the storage of 
arrays and sets, and the efficient allocation and use of 
CU registers. These problems and some solutions are 
discussed in the following sections. 

Array blocking and storage allocation 

The compiler partitions all arrays into 2-dimensional 
blocks the maximum size of which is 64q X 64q words 
(q = 1, ,2, or 4 according as 1, 2 or 4 quadrants of 64 
PE's are being used) since ILLIAC IV may be re
garded as an array with 2048 rows (number of words 
in a PE) X 64q columns (number of PE's). For the 
purposes of this section it will be assumed that q = 1. 
The sizes of the blocks obtained by the array par
titioning then fall into 4 categories: 

a. 64 X 64 
b. m X 64 
c. 64 X n 
d. mXn m, Il < 64 

which are called SQUARE, HBLOCK, VBLOCK and 
SBLOCK, respectively. Small blocks belonging to the 
same array are packed together to form a larger block, 
details of which are given' by Muraoka.9 Figure 2 
illustrates the partitioning of a 3-dimensional array 
into 12 blocks and Figure 3 illustrates how the smaller 
subblocks are packed together to form larger blocks. 
The partitioning of an array into blocks is independent 
of the mapping function; i.e., for a SKEWED array 
skewing is done after partitioning. 



75 

~~------15------~~ 

64 

64 0 

11 2 

A [1. *. *] 
30 I 

I 
I 
I 
I 

50 I :4 
I 
I _______ ..J 

A[2. 50.30] 
6 

Q 
v 

10 

A [3. *. *] 

11 

1 

3 

5 

7 

9 

11 

Figure 2-The partitioning of array A[l :3, 1 :75, 1 :75] 
into blocks for array storage 

TRAL~QUIL 63 

"~t----48 .... - -~."I 

PACKING VBLOCKs 

T 1-------64 

11 2 

33 

1 
6 

10 

PACKING HBLOCKs 

PACKING SBLOCKs 

Figure 3-Block packing for array A[l :3, 1 :75, 1 :75] 

All array operations and data transfers between 
ILLIAC IV disk and PE memory are done in terms of 
these blocks. A block of size m X n may be placed in 
any m adjacent words (rows) stored in n adjacent PE's 
in PE memory. Blocking facilitates the use of arrays 
which are larger than the PE memory. All data are 
normally stored on the 109 bit ILLIAC IV disk and 
blocks are only brought into PE memory (at a transfer 
rate of .5 X 109 bits/second) as required. The TRAN
QUIL compiler automatically generates block transfer 
I/O requests, which are handled by the operating 
system. Thus, it is possible to write a TRANQUIL 
program which includes no explicit data transfers. 

ThA AffAt>t.l'tra: Q.rlrll"AQQ nf Q.n'tr Q.1"rQ.V A1ATnAnt. let nht.Q.lnM 
.- ....... - _ .... .a. __ u ............. ---~ _ ............ J ~"'-J ........... _ .............. ", ..... "' .. - --~~~ 

by computing the block number, which determines an 
absolute base address (the address of the upper left
most element of the block if the block is in memory) 
and a relative address within that block. The block 
number for an element A[h, i2, ., " in-l, in] of an 
array declared 

(( ... ((it - (l)M2 + (i2 - t,»Ma 

· + . . . (i,,_2 - (,.-2» M,._~ + i,,_~) M: + i~ , 



64 Spring Joint Computer Conference, 1969 

where 

lUi = Ui - fi + 1, 

~J i = (l\L + 63)div 64, i~ = (h - fk)div 64 . 

If the array is SKEVVED the relative PE number and 
relative PE address of the element in the specified block 
are given hy 

and 

respectively. After skewing of the blocks in Figure 2, 
the element A[2, 50,30] is specified by the block number, 
and PE number and PE address relative to the base 
address of the block, which have values 4, 14 and 49, 
respectively. In most cases some or all of the elements 
in a row or colunm are used simwtaneously. In the 
case of column operation, for example, each PE can 
simultaneously compute the relative address (index 
value) which it will require. 

In allocating memory space for a block a linked 
space list, which keeps track only of the nunlber of 
rows of memory which have been used, is utilized. If 
a block of size m X 64 is to be stored, the list is searched 
to locate a space of m adjacent rows and the block is 
stored there. In the case of a block of size m X n 
(m, n < 64) 64 rows of PE memory may be allocated 
and a sublist corresponding to this 64 X 64 block of 
storage is established. The sublist consists of a Boolean 
array in which each bit represents the use or other
wise of each 8 X 8 subblock of the associated 64 X 64 
block of storage, thus allowing several small blocks to 
be stored together in a larger unit. 

The storage and use of sets 

Associated with the introduction of sets in TRAN
QuIL is the task of finding storage schemes which 
can be used efficiently. Sets can be used for loop control, 
for enabling or disabling PE's, or for PE indexing. 
The increment set can be used in all three ways and is 
stored using two words per. set. One word contains the 
a.~t element, the increment, and the lilY'it packed for 
use by CAR instructions. The other word is used as a 
bias value in the case where negative elements are, or 
may be, in the set. 

When an increment set is used for sequential control, 
CU test and increment instructions operate on the 
appropriate CAR register. When an increment set is 
used for simultaneous control, it can be expanded at 

run time into mode words or explicit numbers. Mode 
words are 64-bit words used to store the elements of 
a set by position number, where a 1 in the n-th bit 
indicates tbat n is an element of the set. These words 
are most frequently used in PE mode registers to 
enable and disable PE's. Mode words can be generated 
from an increment set by using a memory row that 
contains the PE numbers in ascending and descending 
order and regular mode patterns similar to the 4 PE 
system shown in Figure 4. In the figure the mode 
pattern was formed by considering the bo bits to be 
all ones, the b1 bits to be alternating zeros and ones, 
the ~ bits to be two zeros alternating with a one, and 
finally the bs bits to be three zeros alternating with a 
one. In the general 64 PE case, the word in the i-th 
PEis 

I :\Iode pattern 63-il 

where the 32-bit mode pattern results by considering 
the bo bits to be all ones: i.e., all PE's on when in use, 
the b1 bits having the pattern 0101. .. , the ~ bits 
001001. .. , and the b i bits O,JO,:1 where 0" stands for 
i zeros. 

N ow consider the example of expanding the incre
ment set JJ of Appendix A into mode words and 
explicit numbers. The set JJ is used simultaneously 
in forming the comparison set KK by a Boolean test 
on the skewed arrays A and B. For a given I every 
other element of A, as signified by JJ, is moved to the 
A register in the PE's, using the base address of A 
that has been brought to the CU data buffer as in
dicated in Figure 5. Every other element corresponds 
to the hI bit mode pattern, this pattern appearing in 
the PE mode positions of Figure 5 which is based on 
Figure 1. The case for I = 2 is shown. Every other 
element of the I -th column of B is moved to the B 
register. In this case every other ascending PE number 
is used in the PE index registers, XR, with appropriate 
routing to account for the skewed storage. For I = 2 

Figure 1-:\'!ode patterns and explicit v3.1ues for increment sets 



R 
E 
G 
I 

LOCAL DATA aUFFER 
II MOOE WORD 

BASE ADDRESS OF A 
BASE ADDRESS OF a 

100000001001010000010011 

A CAR REGISTER 
I 

J J IN MODE FORM 

/ 7 
/ / 1 'x 'x 

I 0 1 1 I 0 I 1 I 0 
5 A 
T 

A[ 2. 63] A[2. 1] A[2. 61] 

a[ 1. 2] a[61. 2] ~ a a [63. 2] 
S 

I 1 1 61 I 631 I XR 

M 
E 
M 
o 
R 
y 

A[ O. 0] 
A[ 1. 63] 

A[ 2.62] 

A[ 0, 1] A[ O. 2] 

A[ I, 0] A[ 1. 1] 

A[2.63] A[2. 0] 

A[O. 3] A [0, 63] 

A[l. 2] A[ 1,62] 

A[2. 1] A[ 2. 61] 

.. . .. . ... .. . ... 
PEO PEz PE3 

Figure 5-PE and CU status for I = 2 in the example problem 

in Figure 5, an end around route of two is necessary. 
Every other element of a column is fetched to the B 
register again by the use of J J in mode form. 

The sets II and KK in Appendix A are examples of 
monotonic sets and are stored in mode form. For 
looping on II the CD does leading ones detection on 
the II mode pattern, illustrated in Figure 5, to de
termine the explicit set elements used in the .CAR as 

CD indexes for array A, and KK is used in mode form 
in the PE mode registers under simultaneous control. 
Monotonic sets can also be stored as explicit numbers 
for index use. The general set is always stored in 
explicit form, for obvious reasons, and pattern sets 
are stored as mode words. 

The actual management of mode and explicit storage 
schemes involves the use of a permanent storage area 
and a stack. All set defInitions are stored in the perrr...a
nent storage area except comparison sets. The stack 
is used for storing current set values that are obtained 
from the permanent area or generated by the user or 
compiler. The stack is also used because program flow 
is not known at compile time, in general, due to data 
based branches, and thus changes in these sets are 
unpredictable. In PE memory the storage of either 
the mode or explicit set representation begins on an 
8 word boundary to make best use of the 8 word CD 
fetch capabilities. Further details of the handling of 
sets are given by Wilhelmson.10 

TRANQUIL 65 

CU storage allocation and use 

The allocation and use of CU registers is a very 
important ILLIAC IV problem since CU instructions 
which caIUlot be overlapped with PE instructions 
leave all PE's idle. The allocation of CU registers for 
needs known at compile time is accomplished by 
calling one of a group of procedures that have an 
underlying allocation priority system and that use 
compile-time pointers to and from important tables 
and storage locations. The local data buffer is divided 
into two parts: the lower part for use as determined at 
compile time and the upper part for dynamic use at 
run time. The lower part is further divided into three 
parts. The first is one word used for bit storage and 
later testing. A list of free bits is kept, bits being 
assigned on a space available basis. The second part 
is 16 words in length, where the use of this space is 
kept to low priority requests unless space is needed 
for high priority requests. Priorities range from 0 to 3 
and are assigned by the compiler writer, these assign
ments being based on intuition and experience. The 
third part has n words (0 ~ n ~ -17), where the optimal 
value of n is yet to be determined. The space is used as 
much as possible for high priority requests. The reason 
for this device is to try and keep low priority requests 
in the lower area, since the lower area will be used to 
store 8-word blocks transmitted to the CU. When the 
local data buffer becomes full a word is freed, with 
appropriate storage and pointer modification if neces
sary. Thus a user can let the procedures free words 
when necessary unless he wishes to do so earlier. 

Three of the CAR registers are allocated using the 
same priorities as in the local data buffer. The fourth 
is a free register which may be used in a variety of 
ways. 

Another CD problem is connected with its par
ticular data composition, and results from transfers. 
For example, at the begininng of a loop data in the CD 
has a certain composition. This composition should 
be reinstated each . time through the loop. This is 
made possible by remembering the composition of 
the CD data at the beginning of the loop. 

For backward transfers code to set up the CU 
properly is placed at the jump point while for forward 
transfer code is placed at the location transferred to. 
The priority scheme may appear to add to the problem 
of moving words in and out of CU memory at trans
fer points. This scheme has been developed since 
8-word block stores to PE memory are not allowed; 
only one word at a time can be stored in PE memory 
by the CU. 



66 Spring Joint Computer Conference, 1969 

Assignment statements 

The use of sets, the notion of S1j}/, the number of 
different types of arithmetic and storage schemes, 
combined with the need to compile efficient code for a 
parallel machine necessitate a substantial analysis of 
each assignment statement. We now consider this 
analysis as it is carried out in pass 2 of the compiler. 

The analysis is effected in several passes over the 
postfix intermediate language. Consider the last 
assignment statement in the example in Appendix A: 

A[I, K] +- A[I + 1, K] + B[I, K + 1] ; 

Before we even begin to generate code a decision must 
he made as to which index is to be proces..'3ed simul
taneously (i.e., across the PE's) and which is to be 
done sequentially. The first pass over the intermediate 
language determines this and also copies the inter
mediate language into a table to be used for future 
passes. When a set linked * identifier is entered in the 
table, additional information provided by the set 
definition or declaration is also entered. In the case of 
I, which is linked via 81M control to II, the set is 
known exactly and precise information from the set 
definition is entered in the table. For K the compiler 
makes an estimate of the size and density of the set 
based on the upper bounds given in the declaration 
ofKK. 

In general, when operations are performed on pairs 
of subscripts or pairs of subscripted arrays, infor-: 
mation about the interaction between these subscripts 
must be generated. For example, in the case of the 
subscript expression I + 1 in the example above, the 
addition of 1 in no way alters the size, density, or 
type of the set. Thus, the information provided for I 
will be recopied with the + operand. 

After the subscript expression has been processed, 
a check is made to see how well the type of set resulting 
from the index expression will work with the particular 
dimension of the array involved. In the example there 
are oniy two-dimensional skewed arrays in which either 
columns or rows can be easily accessed in parallel. 
If one of the arrays were straight, then at. this point. 
it would be discovered that no set will work weI] for 
the column index, because each column is stored in a 
single PE. This information plus information about 
the set density, set size, and the array size are all 
combined to compute a probable efficiency; i.e., the 
number of PE's that will probably be enabled if this 
index were varied simultaneously. Of course, it is 

* We say that I is set linked to II in a stat.ement like FOR (I) 
SIlr! (II) DO. 

easy to think up cases in which the estimate will be 
totally wrong, but in most practical cases encountered, 
the estimate is reasonable. A table of these probable 
efficiencies is generated for each set. If the set appears 
in different subscripts, then on the second occurrence 
the new estimate is set to the minimum of the previous 
and present estimates. 

When the end of the assignment statement is reached, 
the table of probable efficiencies is sorted and the result 
of this determines the order in which the indexes will 
vary. In the example K will be the index chosen to 
vary across the PE's because the set II is known to be 
small (6 elements) and the declaration of KK holds 
the probability of it being fairly large. Now an outer 
loop must be compiled to generate sequentially the 
elements of II. Finally, the remainder of the statement 
is compiled. The effect of the code that is compiled 
for the example assignment statement foHows. 

One local data buffer location is set aside as an index 
to the mode words of KK. Four more locations are 
set aside for the base addresses of the subblocks of 
the arrays A and B. The first mode word for KK iR 
loaded and the leading ones detector is used to set the 
first value of K. This value, plus the base address of A, 
plus 1, plus the index set 0, 1, 2, ... , 63 in the PE 
index registers is used to access the first colwnn of A. 
In a similar manner the address for the first row of B 
is fetched, loaded into RGR and a route left one PE 
is performed The addition is executed and the first 
mode word for KK is used to store the result in A. 
N ow the same process is repeated for the next sub block 
of A, except that the mode pattern for KK must be 
ended with a word having Ill's followed by O's, 
because the second sub block of A is only 11 words wide. 
Additional complications, such as pairwise 81 M 
control specification, small sub arrays , and 81M blocks 
add to the complexity, but not to the substance, of 
the algorIthm outlined above. 

It is clearly impossible to efficiently compile a single 
short assignment statement for ILLIAC IV, but it is 
conceivable that a large number of simple assignment 
statements could be integrated into a fairly efficient 
ILLIAC IV program. Incorporating such a feature 
into a compiler presents two basic problems. The first 
is an algoritlun for efficiently integrating a large number 
of interrelated assignment statements. Ordinarily the 
simple assignment statements will be scattered through
out the program. Also, many of the sequential calcu
lations that are prime targets for an integration scheme 
are likely to be embedded as sUbexpressions in assign
ment statements containing 81M controlled variables. 
Filtering out and gathering together these candidates 



Figure 6-The tree structure for a set of interrelated 
arithmetic statements 

for the integration scheme constitutes the second 
problem. 

Figure 6 is a tree structure for the set of assignment 
statements: 

A+-B+CXD 

E+-L+B-C 

F+-G+HXI 

K+-A+E+F 

No node on this tree can be calculated until all 
nodes on subbranches have been calculated. The 
method of computing such a tree on ILLIAC IV 
involves first mapping assignment statements into 
PE's, in a more or less arbitrary manner. The assign
ment statements are restricted to a small num ber of 
operations like addition, subtraction, multiplication 
and division. ILLIAC IV can only perform one of 
these operations at a time. A count of the number of 
PE's that can take advantage of each of these oper
ations is made and that operation which will be ex
ecuted by the most PE's is the one that code is compiled 
for. Then the PE counts for all operations are revised 
and the process continues until all calculations have 
been perfonned. A similar algorithm is used to do rout
ing to bring the results computed in one PE to the 
PE's where they are needed. This algorithm is invoked 

TRANQUIL 67 

whenever the number of PE's eligible for any operation 
falls below a certain limit. 

The problem of gathering together assignment 
statements for processing by this method is many 
faceted. What is desired is a rearrangement of the 
program where simple assignment statements, simple 
subexpressions, and simple expressions generated by 
the compiler, like address calculation, have been 
brought together at several collection points. To 
rearrange code in this manner requires an extensive 
analysis of the· overall program to determine what 
subexpressions and statements can be moved, and 
how far. 

This analysis is carried out at the intermediate 
language level. The collection points are determined 
to be at the beginning of blocks, subexpressions are 
moved as physically high up in the code as possible, 
except that they are not moved past a block head 
unless they can be moved to the head of an outer 
block. The method produces a number of bonuses. 
Calculations inside loops tend to be moved outside 
when logically permissible. Thus, it is profitable to 
move nonsimple subexpressions also. Further, duplicate 
subexpressions can easily be eliminated because they 
tend to gather at the same point. Finally, for each 
block a record is made of what variables are non
dynamic within that block. Thus, in pass 2, any 
expressions generated using these variables can be 
added to the collection of subexpressions at the be
ginning of the appropriate block. At the head of this 
block, a transfer tQ the end of the block is compiled, 
and when all code in the body of the block has been 
generated, the complete collection of assignment 
statements is compiled followed by a transfer back to 
the beginning of the block. More details of this type 
of analysis are given by Budnik.l1 

SUMMARY 

Designing and implementing a language and its com
piler for ILLIAC IV presents a number of problems 
not encountered with procedure oriented languages 
for sequential machines. In the design of the language 
these problems have been met, primarily through the 
use of sets as indexes and the introduction of language 
elements for explicit denotation of simultaneous oper
ations. Experience has shown that the resulting no
tation is as easy to learn as that of conventional 
languages and in most instances it is more concise. 

The task of efficiently compiling a language such as 
TRANQUIL for the ILLIAC IV is more difficult than 
compiling for conventional machines, simply because 
the standard compiling techniques are inadequate, 
thus requiring new compilation algorithms to be 



68 Spring Joint Computer Conference, 1969 

invented. These techniques will undoubtedly be 
refined as further experience is gained with the use of 
ILLIAC IV and parallel languages. However, the 
completion of the major paris of the TRANQUIL 
compiler has already demonstrated that reasonably 
efficient object code can be generated for a large class 
of array-type problems which have been programmed 
in TRANQUIL. 

Several features of TRANQUIL have been omitted 
from this paper, notably input/output statements and 
procedures. Execution time input/output will be 
from/to the ILLIAC IV disk (secondary storage) 
in blocks of data. Most of these data transfers will be 
implicitly specified in TRANQUIL programs. However, 
some explicit specification of unformatted data trans
fers win be provided. The provision of additional 
software to iacilitate format specified transfer of data 
between external peripherals (tertiary storage) and 
the ILLIAC IV disk is planned. The specification of 
procedure declarations, and their use in a parallel 
environment, is under investig(8.tion. Additional features 
being considered for later incorporation into the TRAN
QUIL compiler include overlayable code segments, 
quadrant configuration independent code, and more 
specialized data structures and mapping functions. 
Although aspects of the language and its compiler 
are still being developed, it has been demon8trated 
that TRANQUIL is a highly satisfactory and useful 
complement to the ILLIAC IV hardware system de
sign. 

ACKNOWLEDGMEKTS 

The research reported in this paper was supported in 
part by th.e Depa...~ment of Computer Science; Uni
versity of Illinois at Urbana-Champaign, and in part by 
the Advanced Research Projects Agency as administered 
by the Rome Air Development Center, under Contract 
No. USAF 30(602)4144. 

APPENDIX A: A SANIPLE TRANQUIL PROGRAM 

BEGIN 
REAL SKEWED ARRAY A, B[I:75, 1:75]; 
INCSET JJ; 
MONOSET lI(l) [27, 6], KK(l) [75, 75]; 
INTEGER 1,.1, K; 
II +- [2, 10, 13, 15, 21, 24]; 
.JJ +- [2, 4, ... , 74]; 
FOR (I) SEQ (II) DO 

BEGIN FOR (.1) SIM (.JJ) DO 
KK +- SET (J: A[I, J] < BfJ, I)); 

REFERENCES 

1 G BARNES R BROWN M KATO D KUCK 
D SLOTNICK R STOKES 
'Phe ILLIAC IV computer 
IEEE Transactions on computers Vol C-17 746-757 August 
1968 

2 D J KUCK 
ILLIAC IV software and applications programming 
IEEE Transactions on computers Vol C-17 August 1968 
758-770 . 

3 M B WELLS 
Aspects of language design for combinatorial computing 
IEEE Transactions on computers Vol EC-13 431-438 
August 1964 

4 K E IVERSON 
A. programming language 
John Wiley New York 1962 

5 R S NORTHCOTE 
The structure and use of a compiler-compiler system 
Proc 3rd Australian computer conference 1966 

6 F L DEREMER 
On the generation of parsers for BNF grarn·mars: 
an algorithm 
Proc S J C C 1969 

7 A J BEALS 
The generation of a deterministic parsing algorithm 
Report No 304 Dept of Computer Science 
University of Illinois at Urbana 1969 

8 H R G TROUT 
.1 BNF like language for the description of 
syntax directed compilers 
Report No 300 Dept of Computer Science 
University of Illinois at. Urbana 1969 

9 Y MURAO}(A 
Storage allocation algorithms in the TRANQUIL compiler 
Report No 297 Dept of Computer Science 
University of Illinois at Urbana 1969 

10 R B WILHELMSON 
Control statement syntax and semantics of a language jor 
parallel processors 
Report No 298 Department of Computer Science 
University of Illinois at Urbana 1969 

11 P P BUDNIK 
TRANQUIL arithmetic 
Report No 296 Dept of Computer Science 
University of Illinois at Urbana 1969 



TRANQUIL 69 

FOR (K) SL7tl (KK) DO 
A[I, K] ~ A[I + 1, K] + B[I, K + 1] 

END; 
FOR (I, K) SIM (II X KK) DO 

A[I, K] ~ A[I + 1, K] + B[I, K + 1] 
ElfD 

APPENDIX B: A SPECIFICATION OF THE SYNTAX OF TRANQUIL 

A brief description of the syntax metalanguage is given in APPENDIX C. 

B.1 Program 
(PROGRA?\I) :: = (BLOCK) 
(BLOCK) :: = BEGIN list [ (DECLARATION) ffo;] 

list (STATE:\lENT) separator ffo ; 
[ffo;) END; 

(STATEl\IENT) :: = (NONE?\IPTY STATElVIENT) ! < ); 
(NONE1UPTY STATEl\IE~T) :: = [( * I) : ]* 

[(CONTROL STATEl\1ENT) I 
GO TO (DESIGNATIONAL EXPRESSION) I 

B.2 Declarations 

BEGIN (NONE:\JPTY STATEl\lENT) [ffo; (STATE~VrENT )]* END I 
(BLOCK) I, 
(IF CLAUSE) (STATEMENT) [ELSE (STATE2'1ENT )]& I 
(ASSIGN1'1ENT STATEl\1ENT )]; 

(DECLARATION) ::= (VARIABLE DECLARATION) I 
(ARRAY DECLARATION) I 

B.2.1 Variable Declarations 

(PEl\I RESERVE DECLARATION) I 
(PE::\I ASSIGN:\fENT DECLARATION) I 
(SET DECLARATION) I 
(SWITCH DECLARATION) I 
(LABEL DECLARATION); 

(VARIABLE DECLARATION) ::= (ATTRIBUTE) 
[COJIPLEX]& list (*1) 
separator, ; 

(ATTRIBUTE) :: = BOOLEAN I REAL I REALS I REALD I INTEGER I 
Il'{TEGERS I IA"'TEGERL I BYTE8 I BYTE16 ; 

B.2.2 Array Declarations 
(ARRAY DECLARATION) :: = [(ATTRIBUTE )]& [(l\lAPPI~G FUNCTION )]& 

ARRAY (ARRAY LIST) I [(ATTRIBUTE )]& ARRAY 
( (PEl\ r AREA) ) (ARRAY LIST); 

(:\fAPPING FUNCTION) :: = STRAIGHT I SKEW/ED I SKElVED PACKED I CHECKEH: 
(ARRAY LIST) :: = list [list (*1) separator, (BOUND LIST)] 

separator, ; 
(BOUND LIST) :: = ffo[[list [[ * I ** I ffo I ffo ffo ]& 

(ARITHl\IETIC EXPRESSION) : (ARITH~VrETIC EXPRERRION)1 
separator, I list [( * I ** I $ I $ $ ]& 
(ARITHl\IETIC EXPRESSION)] separator,] ffo 1; 

(PEl''! AREA) :: = (*1); 



70 Spring Joint Computer Conference, 1969 

B .2.3 P EM Reserve Declarations 
(PEM RESERVE DECLARATION) :: = PEAMEMORY (PElVI AREA NAIVIE) 

~ [(UNSIGNED INTEGER), (UNSIGNED INTEGER) ~ ]; 
(PE~1 AREA NA~,1E) :: = (*1); 
(UNSIGN""ED INTEGER) :: = (* N); 

B.2.4 P BM Assignment Declarations 
(PEM ASSIGNMENT DECLARATION) :: = 

PEJ.l1 [(PEM ASSIGNMENT CONSTRUCT) I 
BEGIlv list (PElVI ASSIGNl\lENT CONSTRUCT) 
separator; END]; 

(PEl\1 ASSIGNl\;IENT CONSTRUCT) :: = 

(PEM ASSIGNlVIENT STATElVIENT) I 
(SET ASSIGNMENT STATEl'lENT) I (PEl\l FOR STATEMENT); 

(PEIVI ASSIGNlVIENT STATEl\tlENT) :: = (* I) 
~ [[ (UNSIGNED INTEGER) I (* I)], 
[(UNSIGNED INTEGER) I (* I)] ~] f- (* I) 
~ [list (ARITH1\lETIC EXPRESSION) separator, ;i)$]; 

(PElV! FOR STATEMENT) :: = 

B.2.5 Set Declarations 

FOR ( (SET VARIABLE LIST» 8I;.1{ 
(SET NAME LIST» DO 
[(PEM ASSIGNlVIENT CONSTRUCT) I 
BEGIN list (PEIVI ASSIGNl\IENT CONSTRUCT) 
separator; END]; 

(SET DECLARATION) :: = [INCSET \ AMONOSET I GENSET \ PATSET1list 
(SET SEG::\IENT) separator,; 

(SET SEGl\tlENT) :: = list (* I) separator, 
[( (* N »]& [~[list [(ARITH~'lETIC EXPRESSION) 
[: (ARITHMETIC EXPRESSION) ]&] 
separator, ~]]&; 

B.2.6 Label and Switch Declarations 
(LABEL DECLARATION) :: = LA.BEL list (*I) separator,; 
(SWITCH DECLARATION) :: = SWITCH (*1) f- list 

(DESIGNATIONAL EXPRESSION> separator,; 

B.3.1 Control Statements 
(CONTROL STATEl\tIENT) :: = FOR (SET VARIABLE LIST» 

[SEQ I SI M] (SET N Ai\IE LIST» DO (STATEMENT) I 
FOR (SET VARIABLE LIST» SEQ (SET NAl\iE LIST» 
WHILE (BOOLEAN EXPRESSION) DO 
(STATEMENT) \ (SIM BLOCK); 

(SET VARIABLE LIST) :: = list (*1) separator,; 
(SET NAlVIE LIST) :: = list [(*1) [~ *]& 

I (SET DEFINITION TAIL)] separator [, I X]; 
(SIM BLOCK) :: = SIM BEGIN list (ASSIGN]\1ENT STATEMENT) 

separator ~; [~ ;]& END; 

B.3.2 Set Definitions 
(SET DEFINITION TAIL) :: = ~ [(LIST SET) ~] I 

(CO~lP ARISON SET); 
(LIST SET) :: = (ELEMENT) [, (ELEl\lENT ), ... , (ELElVIENT) I 

, (ELE:\lENT)]* I (); 
(ELElVIENT> :: = ~ [list (.A.R1TH~fETIC EXPRESSION) separatorj .~] I 



TRANQUIL 71 

(ARITHMETIC EXPRESSION) 
[( (ARITHMETIC EXPRESSION»]&; 

(CO.l\1PARISON SET) :: = SET $ [lisi (*1) separator,: 
(BOOLEAN EXPRESSION) $]; 

BA DesignationaZ Expressions 
(DESIGNATIONAL EXPRESSION) :: = (SII\1PLE DESIGNATIONAL EXPRESSION) I 

(IF CLAUSE) (SIMPLE DESIGNATIONAL EXPRESSION) 
ELSE (DESIGNATIONAL EXPRESSION); 

/QTl\tfPTTi' nTi'QT~l\.TArpTl\l\.T AT lJIXDDlJIQQTr\1\T \ •• _ IITYJ~'OTn1\.T" 'T'ITr\1I.T" T r.1"V"-nTYr.'tSST"""T" \, I 
\ .. _a ........ ~ .L.u.:..o .L.J~u~'-.X ... ,.n..J...J..\J..l'll.n...u.L:.j .J.. .J..".L:.jIJIJ.J..\J.l..'11 /" - ~ \.LI.L:.jO~U.l.."t1""1.~~V.l.."t1""1..l.J ~Ar.n.~ ~v ... " lJ I 

(SWITCH IDENTIFIER) $ [(ARITHMETIC EXPRESSION) $] I 
(LABEL IDENTIFIER); 

(SWITCH IDENTIFIER) :: = (*1); 
(LABEL IDENTIFIER) :: = (*I); 
IF Clauses 
(IF CLAUSE) :: = IF [(CONTROL HEAD )]& [ANY I ALL]& 

(BOOLEAN" EXPRESSION) THEN I 
IFSET (BOOLEAN EXPRESSION) THEN; 

(CONTROL HEAD) :: = FOR (SET VARIABLE LIST» SLl1 (SET NAlVIE LIST»; 

B.6 A ssignment Statements 
(ASSIGNl\1ENT STATEl\1ENT) :: = 

(BOOLEAN ASSIGNl\IENT STATEMENT) I 
(ARITHMETIC ASSIGNMENT STATEMENT) I 
(SET ASSIGN~IENT STATEMENT); 

B.6.1 Boolean Assignment Statements 
(BOOLEAN ASSIGNMENT STATEMENT) :: = list [(*I)~] 

(BOOLEAN EXPRESSION); 
(BOOLEAN EXPRESSION) :: = (SIMPLE BOOLEA.1~) I (IF CLAUSE) 

(SIMPLE BOOLEAN) ELSE (SIl\1PLE BOOLEAN"); 
I SINIPLE BOOLEAN) :: = (BOOLEAN FACTOR) [[OR I I.ltlP I EQV] 

(BOOLEAN FACTOR )]*; 
(BOOLEAN FACTOR) :: = (BOOLEAN SECONDARY) 

[AND (BOOLEAN SECONDARY)]*; 
(BOOLEAN SECONDARY) :: = (BOOLEAN PRIMARY) I NOT (BOOLEAN PRIMARY); 
(BOOLEAN PRIl\fARY) :: = TRUE I FALSE I (*1) I (RELATION) I 

(BOOLEAN EXPRESSION»; 
(RELATION) :: = (ARITHMETIC EXPRESSION) ELT (SET EXPRESSION) I 

(ARITHl\1ETIC EXPRESSION) (RELATIONAL OPERATOR) 
(ARITH.l\fETIC EXPRESSION) I (SET EXPRESSION) 
[= \ EQL \ ~ I NEQ] (SET EXPRESSION); 

(RELATIONAL OPERATOR) :: = L88 I LED I = I GED I nTR I VF]D I ~ ( I 
, r· I - -.r I I -- - -..... I -- - -- I - - - ~ i ,,- , I 

$ ) I _( I ) I ~ I EQL; 

B.6.2 Arithmetic Assignment Statements 
(ARITHMETIC ASSIGN.l\IENT STATEMENT) :: = list [(*1) 

[ $ [(SUBSCRIPT LIST) $]]& ~] 
(ARITHl\1ETIC EXPRESSION); 

(ARITHl\1ETIC EXPRESSION) :: = (GLOBAL PRI:\1ARY) I (IF CLAUSE) 
(ARITH BOOL EXPRESSION) ELSE (ARITH BOOL EXPRESSION) I 
(ARITH BOOL EXPRESSION); 

(GLOBAL PRIMARY) :: = [FOR (SET VARIABLE LIST» SIM 
(SET NAlWE LIST »]& [SUM \ PROD IGOR \ GAND I 
.ilfAX \.ilfIN] (ARITHMETIC EXPRESSION)]; 



72 Spring Joint Computer Conference, 1969 

(ARITH BOOL EXPRESSION) :: = (ARITH BOOL L\1PLICATION) 
[EQU (ARITH BOOL Il\1PLICATION )]*; 

(ARITH BOOL LVIPLICATION) :: = (ARITH BOOL FACTOR) 
[[lVOR I H'EOR I WIAfP I WEQVl (ARITH BOOL FACTOR )}*; 

(ARITH BOOL FACTOR) ::= (ARITH BOOL SECONDARY) 
[WAND (ARITH BOOL SECONDARY)]*; 

(ARITH BOOL SECONDARY) :: = (SIMPLE ARITHMETIC EXPRESSION) 
[WNOT (SIMPLE ARITHMETIC EXPRESSION)]*; 

(SIMPLE ARITHMETIC EXPRESSION) :: = [ + I - ]& (TERM) 
[[ + I - ] (TERM)] *; 

(TERM) :: = (FACTOR) [[ X I / I DIy] (FACTOR )]*j 
(FACTOR) :: = (PRIMARY) [ # * (PRlMARY)]*; 
(PRINIARY) :: = (*I) (1; [(SUBSCRIPT LIST) ~]]& I 

({ARITHMETIC EXPRESSION» I (MODFUN) I 
(FUNCTION DESIGNATOR) «ARITHMETIC EXPRESSION» j 

(SUBSCRIPT LIST) :: = list [(ARITHMETIC EXPRESSION) I 
(SET EXPRESSION) I ()] separatur,; 

(MODFUN) :: = MOD «ARITHMETIC EXPRESSION), 
(ARITHMETIC EXPRESSION»; 

(FUNCTION DESIGNATOR) :: = ABS \ SIGN I SQRT I TRANS I SIN I COS I 
ARCTAN I LN I EXP I ENTlER; 

B.6.3 Set Assignment Statements 
(SET ASSIGNMENT STATEMENT) :: = list [(*1) ~] 

(SET EXPRESSION); 
(SET EXPRESSION) :: = (SIMPLE SET) I (IF CLAUSE) (SIMPLE SET) 

ELSE (SIMPLE SET); 
(SIMPLE SET) :: = (SET PAIR) [(SET PAIR)}* I 

REVERSE (SET PAIR); 
(SET PAIR) :: = (SET UNION) [PAIR (SET UNION)]*; 
(SET UNION) :: = (SET INTERSECTION) [[UNION I DELETE I SMD I 

CONCAT] (SET INTERSECTION )]*; 
(SET INTERSECTION) :: = (SET FACTOR) [INTERSECT (SET FACTOR )]*; 
(SET FACTOR) :: = (SET OFFSET) [COMPLEMENT {SET OFFSET)]*; 
(SET OFFSET) :: = (SET PRIMARY) I ({SET PRIMARY) [+ I -] 

(ARITH1vlETIC EXPRESSION»); 
(SET PRIMARY) :: = (SET IDENTIFIER) I «SET EXPRESSION» I 

CSHIFT ({SET EXPRESSION), (ARITHMETIC EXPRESSION» I 
(SET DEFINITION TAIL); 

(SET IDENTIFillR) :: = (*1); 

APPENDIX C: A METALANGUAGE FOR SPECIFYING SYNTAX 

The TRANQUIL syntax in Appendix B is specified in a form of BNF which is extended as follows:8 

1. Kleene star: 
(A)* = () I (A) I (A)(A) I .. , 
where () represents the empty symbol 

2. Brooker and Morris' question mark (here &): 
(A) & = () I (A) 

3, List Facilities 
list (A) = (A) (A)* 
list (A) separat07' (B) = (A) [ (B) (A)] * 



4. Brackets 
(T) :: = [(A) I (B) I (C)] (D) 
is equivalent to 
(T) :: = (R) (D) 
(R) :: = (A) I (B) I (C) 

5. Metacharacters: 

TRANQUIL 73 

A sharp (#) must precede each of the following characters when they belong to syntactic definitions: 
# , [, ], *, ;, (, ). 

In the syntax (*1) is used to designate an identifier and (*N) is used to designate a number. Further, the special 
words in the language are italicized. 





SN AP - An experiment in natural 
laHt;uage programmi~ 

by MICHAEL P. BARNETT 

H. W. Wilson Company 
New York, New York 

and 

WILLIAM M. RUHSAM 

Radio Corporation of America 
Cherry Hill. New Jersey 

INTRODUCTION 

Computers are being used to a rapidly increasing extent, 
to manipulate and to generate materially, mechanically. 
(1) Many applications simply require items of infor
mation to be selected from a file of fixed format, heavily 
abbreviated records, and expanded into statements 
that are self-explanatory, and used perhaps in individ
ual communications or incorporated in computer 
typeset compendia. At the other end of the spectrum 
are the interrelated challenges of mechanical index
ing. abstracting, and translation. The burgeoning 
applications of computers to publishing, education, 
library work and information services in most major 
branches of science and scholarhsip are leading to a 
host of text processing and generating problems that 
span these limits of complexity. 

Many of the programming problems of mechanical 
text processing also arise in other kinds of symbol 
man 1 pulation, such as the compilation of computer 
programs, and the simplification of mathematical 
expressions. Several programming languages, such as 
COMIT and SNOBOL have b,een developed over the 
years for mechanical symbol manipUlation, and used 
to process text. FORTRAN, supplemented by some 
simple assembly language subroutines, has been applied 
to non-numeric problems quite extensively. ALGOL 
and COBOL also have been used this way. Several 
features of PL/1 will facilitate its use in processing 
text. A number of languages and processors have been 
developed for special kinds of text processing problems, 
such as mechanical editing. 

SNAP is a procedural language for nonscientists to 
use. A SNAP procedure consists of a sequence of state
ments that have the appearance of simple English 
sentences. The primary rationale of SNAP is that 
mechanical text processing requires a language that 
many nonscientists will be willing to learn, and which 
they will find easy to use. Since such people deal primar
ily with English sentences in their daily work, a pro
gramming language that is a stylized subset of English 
should seem to them more "natural" than one that is 
symbolic. This rationale is not negated by the fact 
that nonscientists are using symbolic languages ef
fectively. Many scientists once learned to write in as
sembly language, but the number of people program
ming scientific problems was greatly increased by 
FORTRAN. 

Several SNAP constructions are quite like COBOL. 
SNAP is designed like BASIC, to enable a beginner 
to get useful results after learning very little; and to 
proceed by incremental learning efforts to deal with 
problems of increasing complexity. In its primary 
emphasis on string handling, however, SNAP is dif
ferent; and in the details of the instruction set, and how 
the basic instructions are expressed, and in the proposed 
use of statements that invoke subroutines, to allow 
multitudinous language extensions. SNAP has some 
novel features. 

A prototype processor for the basic SNAP language, 
that is SNAP without the subroutine capability, was 
implemented in a compatible subset of FORTRAN 
IV and now runs on several models of computers. 

75 ---------------------------------



76 Spring Joint Computer Conference, 1969 

The language and the prototype processor are used 
in a graduate course on Computing and Librarianship 
at.Columbia University. An early account of the SNAP 
proj ect presented the language in a tabular form. 
(2) SNAP is used as a vehicle to develop basic program
ming concepts in·a recent college text. (3) The im
plementation of the prototype processor is being re
ported too. (4) A more advanced processor, that will 
allow invoking statements and a range of definitional 
capabilities, is under development. 

Programming in MICROSNAP 

SNAP statements deal primarily with strings and 
quantities. A string can be given a name by a SNAP 
statement such as 

CALL "YOU CANNOT ERR OR l\fAKE A 
BLOOMER \VITH THE \V ARES OF ANCIENT 
SUMER" THE TAG. 

This statement in a SNAP procedure makes THE 
TAG connote YOU CANNOT ERR .. until another 
statement that redefines THE TAG is executed. In 
general, a CALL statement in SNAP (that is used to 
give names, not to invoke subroutines) consists of (1) 
the verb CALL, (2) an expression (for example a quo
tation) that specifies the string which is being given a 
name, (3) the name, and (4) a period. The forms that 
are allowed for the expression (2) are described in a 
later section. 

SNAP places almost no restrictions on the choice of 
words that can be used as names. Extensive restrictions 
on the choice of names would seriously restrict the ease 
with which a "natural" programming language could 
be learned and used) and one objective of the SNAP 
syntax is to permit meta-words within names. How this 
may be done is discussed later. For the moment, we 
just prescribe that a name is a nonblank sequence of 
letters, digits, spaces, hyphens and apostrophes. Lead
ing and trailing spaces are ignored, so are redundant. 
internal spaces (i.e., any space that follows a space). 
An article (A, AN, THE) at the beginning of a name is 
optional (and in fact, ignored, to good advantage-see 
later). 

A string can be printed by a SNAP statement that 
consists of (1) the verb PRINT, (2) a quotation, or a 
name that an earlier CALL statement gave to a string, 
or any of the other forms of string expressions that. are 
to be described in a later section and (3) a period. The 
one word statement EXECUTE is used to end a proce
dure, and to make the processor start executing it, so 
that the SNAP conventions which have been described 
so far can be demonstrated by typing. 

PRINT "TESTING, TESTING". EXECUTE. 

or a little more adventurously, by typing 

CALL "STILL TESTING" THE MESSAGE. 
PRINT THE MESSAGE. EXECUTE. 

The computer can be instructed to print output that 
is longer than the input, ready to be cut into two line 
display labels for the Mesopotamian Merchants Mart 
at the Roman Coliseum, by typing as follows: 

CALL "YOU CANNOT ERR OU 1-1AKE A 
BLOOMEH WITH THE WARES OF ANCIENT 
SUMER" THE TAG. PRINT "CHARIOTS OF 
DISTINCTION". PRINT THE T}:LG. PRINT 
"INLAID GAMING BOARDS FOR PORCH 
AND PATIO." PRINT THE TAG. PRINT 
"DRINKING MUGS FOR THE LONGEST 
THIRST" PRINT THE TAG. EXECUTE. 

The production of display labels that combine a 
common slogan, or class identification with indivlidual 
identifications is a very simple and versatile "plot 
mechanism" for developing examples and exercises that 
relate to the interests of students in different disciplines. 
Others include 

1. The production of sets of letters that consist of 
different selections of form paragraphs. 

2. The production of programs for several per
formances of the same play or opera or other 
artistic work on different occasions, with perhaps 
some variation of case. 

a. The production of a handbill that lists the events 
for an entire season in which a few different 
works are repeated many times. 

4. The production of messages in large letters made 
of X's (GO DOG GO, keeps the burden of font 
design to a minimum), panoramic vistas of 
seagulls and palm trees on desert islands, pro
cessions of stylized animals, etc., printed along 
the length of the output stationery. 

More are given in reference 3. The diversjty of appli
cations that can be handled with a minimal knowledge 
of SNAP has just been stressed because is does seem 
important to enable students of a nontechnical bent to 
overcome their initial apprehension of the computer 
by getting results before being overwhelmed by gram
mati-cal rules. Once this potential barrier is crossed, 
most seem able to assimilate programming grammar 
with ease. The kinds of examples cited here can, of 



course, be handled with very little grammatical knowl
edge in many other languages. 

Some more verbs that deal with strings 

Input statements: The contents of a card, (or its image 
on magnetic tape, for off-line card input) is immitted 
by a SNAP statement such as 

READ A BIOGRAPHICAL RECORD. 

that consists of (i) the verb READ, (ii) the name that 
the user wishes to give to the string that is read, and 
(iii) a period. The corresponding instructions that begin 
with the verbs REQUEST and FETCH immit an 
input record from the console on which the user signed 
on (in jnstailations where SNAP is used on line), and 
from all other input media respectively. In the latter 
case, the device (and the block format for magnetjc 
tape input) is specified by a statement that begins 
with the word SELECT, and which remains in force 
until another SELECT statement that pertains to 
input is executed. The input commands are being 
extended to interface with operating system commands, 
to access files on backing storage conveniently. The 
REQUEST command alerts the console worker to type 
a record that is ended by pressing the line feed key; 
the SNAP processor stores the string under the name 
that is given in the command, and goes on to the next 
statement jn sequence. There are further SNAP state
ments to instruct the processor to give certain charac
ters a typographic control interpretation or to use them 
literally, and to retain trailing spaces in an input record, 
or to discard them. The latter provision is quite helpful 
in processes that embed an input item of variable 
length within a fixed text framework (e.g., a name in 
a form letter). An input record that consists of several 
items is deconcatenated by methods that are described 
later. The name that the input string is given by an 
input statement may have been used before, but does 
not need to have been. 

Output statements: These consist of a verb, slieh as 
PRINT, followed by an expression that specifies the 
string to be recorded. This expression is, most simply, 
a quotation, or a name that was defined by an earlier 
statement in the prdcedure. Other forms are described 
later. The verb is PRINT, PUNCH, PERFORATE, 
TYPE and WRITE for the line printer, card punch, 
paper tape punch, console and all other media respec
tively. Instructions that begin with the word SELECT 
are used to control output on other media in a way that 
parallels their use for ihput. The SNAP conventions 
include provisions for representing case shifts, special 
characters and font changes in a more limited character 

SNAP 77 

set; an appropriate code conversion table can be put 
into the processor to record output on a device that 
has an extended typographic capability. A line printer 
with upper and lower case characters has been driven 
this way; so has a Flexowriter; and output has been 
recorded on a magnetic tape that then served as input 
to the composition programs of the RCA Videocomp 
electronic typesetting machine. 

String synthesis and alteration statements: The CALL 
statement in general has the form 

CALL b a. 

where b denotes a string expression (i.e., an expression 
that displays or represents a string) and a denotes the 
name that this string is given by the statement. CALL 
statements are not recursive, that is the expression b 
must not make direct or indirect use of the name a 
(the APPEND statement mitigates this-see below). 
The definition that a CALL statement provides more
over is dynamic, that is, if the interpretation of the 
expression b changes after the CALL statement is 
executed, then the interpretation of the name a auto
matically changes to correspond. The COpy statement, 
of the form COpy b AND CALL IT a. however con
structs a copy, in core, of the string that b represents, 
and gives the name a to this copy. Subsequent changes 
in the interpretation of b do not affect the interpretation 
of a. 

The APPEND statement has the form 

APPEND b TO a. 

It gives the name a to the result of concatenating the 
string represented by b to the string known previously 
as a. 

The OVERWRITE statement has the forms 

OVERWRITE b ON THE m-th AND (SUBSE
{)TTV1\T'T" p"RV0VnV1\T'T".\ 0ll A "R A 0'T"V"RQ {)H' 
~'-"..,L...I .... ,...a.., .£...&. .............................. ~ ........ _ .. -L, ........................... ...L ....... 4'--'..&. ........ ..&. ............ ......, ..... 

a. 

Here m-th denotes an ordinal adjective of the kinds 
such as 3-RD, and UMPTEEN-TH which are discussed 
later. A single character can be overwritten by a 
shorter form of the statement. 

OVERWRITE b ON THE m-th CHARACTER 
OFa. 

The DELETE statement, which elides characters, 
takes the forms 



78 Spring Joint Computer Conference, 1969 

DELETE THE (m-th, m-th THROUGH n-th, 
m-th AND PRECEDENT, m-th AND 
SUBSEQUENT CHARACTER(S) OF a. 

The string name a in an APPEND, DELETE or 
OVERWRITE statement must have been given to a 
string by a COpy or an input statement previously 
(and more recently than by any CALL instruction). 
Expressions that purport to represent strings but which 
are inconsistent or invalid are considered to represent 
null strings. 

Storage allocation: A SNAP procedure can be written 
without consideration of the lengths of the strings that 
are involved, subject to the total core storage capacity 
of the computer. The prototype processor allows 16K 
bytes in a 128 K byte RCA Spectra or IBM 360 com
puter, for strings and internal representations of pro
eedures that are co-resident. 

Procedures are condensed appreciably in their inter
nal representation (in "SNAPIC" code), so that for 
many problems there is ample room for all the strings 
involved, without recourse to paging tactics; and these 
can be adopted, using backing storage, when need 
occurs. 

Strings that are defined by CALL statements are 
represented internally by codes within the actual rep
resentations of the statements; but strings which are 
immitted by input statements, or constructed by COPY, 
APPEND) DELETE and OVERWRITE statements 
are stored separately in a" string bank." When a COpy 
or an input statement is executed, that assigns a string 
to a particular name for the first time in the current 
operation of a procedure, this string is stored sequen
tially in the unused portion of the string bank. When 
the string that is known by a part.icu lar name is changed., 
the space that it occupies is used for the new string, 
and chained to a disjoint portion of the string bank 
if it is inadequate. Since sequentially stored material 
can be processed more rapidly than disjoint material 
in many circumstances, SNAP includes an instruction 
of the form 

RESERVE SPACE FOR n CHARACTERS IN a. 

where n stands for a positive integer, and a for a string 
name, that may have been used before, but need not 
have been. This reserves a continuous portion of the 
string bank, that is n characters long, for strings called 
a. It does not preclude longer strings receiving this 
name-they are simply chained. The statement may 
be advantageous when the strings that are given the 
name a vary in length during a procedure, and it is 
possible to anticipate a value which this length is. un-

likely to exceed, or to impose a limit on this length. 
Storage allocation thus is permitted to the user, but is 
not imposed on him. 

Instructions that deal with integers 

A statement such as 

SET I TO 7. 

that consists of (1) the verb SET, (2) a mnemonic, 
word or phrase that the user chooses for a particular 
quantity, (3) the preposition TO, (4) an integer, and 
(5) a period, has the dual effect of giving the status of 
a quantity name to the word(s) or mnemonic that 
appears between SET and TO; and assigning the value 
of the integer (item (4)) to this name, until further 
statements change it. More generally, the item (4) 
may be either 

(i) an integer 
(ii) a quantity name that was introduced' by an 

earlier SET statement, 
(iii) a length expression such as THE LENGTH 

OF b, where b stands for an expression that 
represents a string (expressions for lengths of 
lists are discussed later) 

(iv) an arithmetic expression of the form 

THE f OF ~ AND ~ 

where f denotes one of the words SUM, DIF
FER~NCE, PRODUCT, QUOTIENT, RE
MAINDER, CEILING, GREATER, LES
SER; el denotes an integer or a name that was 
introduced by an earlier SET statement, and 
so does ~. A name can be used. more than once 
in a SET statement. An article (A, AN, THE) 
is optional at the beginning of a quantity name 
and it is ignored when it is included. Invalid
ity is infectious, that is a quantity defined in 
terms of an tnvalid quantity is invalid. 

(v) a string expression that represents a string 
which is a decimal integer, with perhaps re-.· 
dundant leading zeroes, a sign, and leading 
and trailing spaces. 

Defining lists of strings and quantities 

A list of strings can be defined by a statement such 
as CALL "SUNDAY, MONDAY, TUESDAY, 
WEDNESDAY, THURSDAY, FRIDAY, SATUR
DAY" THE DAY LIST. This permits subscripted 
names, such as THE 1-ST DAY and THE 5-TH DAY 
to be used for strings, in any of the ways that unsub
scripted string names (e.g., THE TAG used e.arlier) 



can be used. A list element thus can be redefined in
dividually, by CALL, COPY, APPEND, DELETE 
and OVERWRITE statements. It can be recorded 
by an output statement, and used in expressions that 
define further strings. A quantity name that has been 
defined in any of the ways that were described earlier 
can be used as a symbolic ordinal, by adding -TH, 
so that if N and UMPTEEN are quantity names, THE 
N-TH DAY and THE UMPTEEM-TH DAY are 
acceptable as subscripted string names. 

In general, a CALL statement. of t.he form 

CALL "Sl, S2, ... Sk." THE g LIST. 

gives the status of a generic string name to the word 
or phrase that is denoted by g, and permits expressions 
of the form THE j-th g to be used as subscripted string 
names where j-th denotes a numerical ordinal (e.g., 
I-ST, 2-ND, 73-RD) or a symbolic ordihal (e.g., 
N-TH.) A subscripted string name is interpreted as a 
null string if the ordinal is invalid, or if its value is 
inappropriate. A comma is forced in a list element by 
a preceding asterisk, and individual elements are defined 
to be null by adjacent delimit.ers (commas and/or 
quote marks.) 

A generic string name also can be introduced by 
input statements of the form 

(READ, REQUEST, FETCH) (A, AN, THE) 
g LIST. 

This immits a record, and treats commas as separat
ors between list elements (except when forced by a 
preceding asterisk). A generic string name also can be 
introduced by a stat.ement. of the form 

RESERVE SPACE FOR k STRINGS IN THE 
g LIST. 

where k denotes a positive integer. The same name 
can be given to lists of different length, on different 
occasions in the execution of a procedure, and the 
processor accommodates these changes automatically 
by chaining. The RESERVE statement may be used 
to take advantage of knowledge of a limit that is likely, 
or which can be imposed. 

An entire list can be recorded in the output by a 
statement of the form 

(PRINT, PUNCH, WRITE, PERFORATE, 
TYPE) THE g LIST. 

Successive elements are separated by commas, which 

SNAP 79 

are adjacent for elements that are null. Trailing null 
elements and their commas however are suppressed. 
Trailing null elements also are ignored in statements 
of the form 

SET k TO THE LENGTH OF THE g LIST. 

A further statement, however, of the form 

SET k TO THE REGISTERED LENGTH 
OF THE g LIST. 

that includes trailing null elements in the Jist, as it 
was defined most recently, will be provided for pro
grammed storage control. 

A list of numbers nl, n2, ... , nk can be defined by a 
statement of the form 

SET THE h LIST TO.nl, 112, ... , nk. 

This allows expressions of the form THE j-th h 
(where j-th denotes a numerical ordinal, or a symbolic 
ordinal derived from an unsubscripted quantity name) 
to be used as subscripted quantity names, in any of 
the contexts allowed for unsubscripted quantity names, 
except symbolic ordinals. RESERVE statements and 
LENGTH expressions for lists of numbers parallel 
those for list of strings. 

Expressions that represent strings 

A string expression, that is an expression which 
displays or represents a string, may take any of the 
following forms in a SNAP statement. 

1. A quotation, that is bounded by quote marks. 
Within a quotation, /, $, 1, >, and < signify 
forced line break, forced page break, case re
versal, upper case and lower case respectively. 
An asterisk is typed before one of these charac
ters; or a quote mark, to force its literal use 
within a quotation. Two asterisks are typed 
to represent a single literal asterisk. An = 
symbol together with the character that follows 
represents a special character. When a quota
tion continues from one input card (line) to 
the next, one space is included between the last 
non-blank character on the first card, and the 
first character on the next, except when the 
former character is a hyphen, in which case it is 
elided and the space is not included. 

2. An unsubscripted string name, that was intro
duced by a CALL, COPY, input or RESERVE 



80 Spring Joint Computer Conference, 1969 

statement, at an earlier point in the procedure, 
both as written and as executed. 

:t A subscripted string name that contains (i) 
a numerical ordinal, or a symbolic ordinal de
rived from an unsubscripted quantity name 
that was defined previously; and (ii) a generic 
string name that was introduced by a CALL, 
input or RESERVE statement which ends 
with the word LIST, at an earlier point in the 
procedure. 

-t An integer that is positive, or negative, or zero. 
Leading zeroes, a plus sign, and spaces before 
and after the integer in the expression are elided. 
This is because the integer is first stored as a 
quantity, and then converted back to a Rtring 
representation. The statement PRINT 007, 
thus makes the computer print 7 in the first 
t.ype position. The statement PRIXT "007," 
however makes the computer print 007 in type 
positiolls 1 to 3, since 007 is stored as a string 
because of the encompassing quote marks. 

5. An unsubscripted quantity name that was 
introduced by an earlier SET statement. This 
is interpreted, in a context that requires a string 
expression, as the string of characters that repre
sents the value of the quantity, without any 
leading spaces, or redundant zeroes, or a sign 
when it is positive. 

n. A subscripted quantity name that contains a 
generic quantity name which was introduced 
by an earlier SET ... LIST ... or RESERVE 
statement. This is treated in the same way as (5). 

7. An extract expression of the form 

or 

THE k-th CHARACTER OF a. 

THE k-th THROFGH j-th CHARACTERS 
OFa. 

where k-th stands for a numerical ordinal, or 
a symbolic ordinal t hat contains a previously 
defined unsubscripted quantity name; and 
j-th does too, and a denotes a string name. 

R. A concatenated string expression, that consists 
of two or more items of the kinds described above, 
joined by the word THEN, to connote COIl= 

catenation of the strings that they represent, 
within the Nlt-ire string that the expression 
represents. 

(' ontrol and conditional statements 

A SNAP statement may be preceded by a bracketed 

label. This label may be cited m control statements 
of the form 

CREPE.AT, CONTINUE) C\VITH, FROIVl) g. 

where g denotes the label. The verbs REPEAT and 
CONTINUE are used respectively when g is earlier 
and later in the written procedure, for external ap
pearances; but they are synonymous as far as the 
SNAP processor is concerned. The statements 

REPEAT FROM THE (BEGINNING, BE
GI~NIXG OF THE PROCEDURE). 

send control back to the first statement of a procedure, 
'\vhich does not Ileed to be labelled. The one ,"\Tord state-
ment 

TERMINATE. 

returns control to the operating system. 

Two forms of conditional statement are used: 

IF u v, OTHERWISE w. 
IF u v. 

The letters u, v and \" here denote the condition, 
the succet)s action, and the fail action respectively. 
The success action consists of one or more clauses, 
that could stand by themselves as unconditional SNAP 
sentences. The clauses are separated by commas, when 
there are several, and the word AND allowed between 
a comma and the first word of a clause. The success 
clause, when there is only one, and the last success 
clause, when there are several~ may be of the (RE
PEAT, CONTINUE) (FROM, WITH) kind described 
above. Alternatively, it may be 

CONTIXCE WITH THE XEXT SEXTE~CE 

This is implied when the success action does not 
specify a transfer of control. 

The fail action may be constructed in just the same 
ways as the success action, except that 

CONTINUE AS FOLLOWS 

is used as the final (or only) clause to take the next 
sentence in sequence. It is implied when the fail action 
does not specify a transfer of control, and as the entire 
fail action in the short form IF u v. 

SNAP allows the following forms of condition clause 
at present: 



1. THE I~PUT IS EXHAUSTED 
2. £1 IS (GREATER THAN, GREATER THAN 

OR EQUAL TO, EQUAL TO, LESS THAN 
OR EQUAL TO, LESS THAN, UNEQUAL 
TO)~ 

3. S1 (IS, ARE)· {THE SAME AS} S2 

4. S1 IS THE SAME AS THE m-th AND (PRE
CEDENT, SUBSEQUENT) CHARACTERS 
OF S2 

5. THE m-th AND (PRECEDENT, SUBSE
QUENT) CHARACTERS OF S1 ARE THE 
SAME AS S2. 

£1 and ~ denote quantity expressions. S1 and S2 denote 
simple string expressions of the kinds (1) to (7) listed 
previously. m denotes a numerical or a symbolic ordinal 
that contains· a previously defined unsubscripted quan
tity name. 

Some more examples 

The account of S~ AP in the last few sections covers 
almost all the features of the basic language. Several 
of these may be illustrated by the production of a 
simple calendar of the form 

WEDNESDAY 
1 

JANUARY 
1969 

THURSDAY 
2 

JANUARY 
1969 

A SNAP procedure to print this is as follows. 

CALL "JANUARY, FEBRUARY, wiARCH, 
APRIL, MAY, JUNE, JULY, ArGUST, SEP
TEMBER, OCTOBER, NOVEMBER. DE
CEMBER" THE MONTH LIST. 

SET THE LIMIT LIST TO 31, 28, 31, 30, 
30, 31, 31, 30, 31, 30, 31. 

CALL "SUNDAY, MONDAY, TUESDAY, 
WEDNESDAY, THL'"RSDAY, FRIDAY, SAT
GRDAY" THE DAY LIST. 

SET M TO 1. SET N TO 4. SET K TO 1. SET 
J TO 1. 

(PRINT A PAGE ACTION) PRINT THE 
N-TH DAY. PRINT" "THEN J. 

SNAP 81 

PRINT THE M-TH MO~TH. PRINT 
"1969/" . 

IF K IS EQUAL TO 365 TERMINATE, 
OTHERWISE CONTINUE AS FOLLOWS. 

INCREASE K BY 1. IF J IS EQUAL TO 
THE M-TH LIMIT INCREASE M BY 1, 
AND SET J TOl, OTHER WISE INCREASE 
J BY 1. IF N IS EQUAL TO 7 SET N TO 1, 
OTHERWISE INCREASE N BY 1. REPEAT 
FROM THE PRINT A PAGE ACTION. 
EXECUTE. 

This example is quite useful as an illustration of 
the computers ability to print much more than the 
user types, by repeating items in different combination. 
It can be extended and modified in numerous ways, 
with minimal knowledge of SNAP, which is useful 
for teaching pruposes. 

Another useful example, whose logic is a trifle more 
elaborate, reads a classification scheme from a deck 
of cards, such as 

VERTEBRATA, (MAMMALIA, (PRIMATES, 
(ANTHROPOIDEA, (SIMIIDEA, CERCO
PITHECIDAE, CEBIDAE, H APALIDAE), 
LEMUROIDEA, (LEMURIDAE, LORISIDAE, 
TARSIIDAE, CHYROMIDAE», CHIROP
TERA, (MICROCHIROPTERA, (VESPERTI
LIONIDAE, RHINOLOPHIDAE, PHYLLOS
TOMATIDAE), MEGACHIROPTERA, (P 
TEROPODIDAE», INSECTIVORA, ((ERIN
CEIDAE, TALPIDAE, SORICIDAE, MAC-

IIDAE, DIDODONTIDAE, URANOSCOPI
DAE») 

that is strung out to save card space, with brackets 
indicating subordination, and prints it in a hierarchi
cally indented format, that is 

VERTEBRATA 
MAMMALIA 
PRIMATES 
ANTHROPOIDEA 
SIMIIDAE 

CERCOPITHECIDAE 
LEMUROIDEA 

CHIROPTERA 

tor the zoological scheme just cited. The procedure is 



82 Spring Joint Computer Conference, 1969 

as follows 

CALL" " THE BACKGROUND 
SET P TO 1. SET Q TO 1. 
CALL THE NULL STRING THE CARRY-

OVER. 
(INPUT TEST) 
SET J TO O. SET I TO O. SET K TO O. 
IF THE INPUT IS EXHAUSTED CONTINUE 

WITH THE LAST ITEM ACTION, OTHER
WISE CONTINUE AS FOLLOWS. 

READ AN INPUT RECORD, 
(CHARACTER TEST) 
INCREASE J BY 1. CALL THE J-TH CHAR

ACTER OF THE INPUT RECORD THE 
KEY. 

IF THE KEY IS "("CONTINUE WITH THE 
DESCENT, OTHERWISE CONTINUE AS 
FOLLOWS. 

IF THE KEY IS "," CONTINUE WITH THE 
OUTPUT ACTION, OTHERWISE CONTIN
UE AS FOLLOWS. 

IF THE KEY IS 'C)"~ CONTINUE WITH THE 
ASCENT, OTHERWISE CONTINUE AS 
FOLLOWS. 

IF THE KEY IS" " CONTINUE WITH THE 
LAST ITEM: ACTION~ OTHERWISE CON
TINUE AS FOLLOWS. SET K TO J. CON
TINUE WITH THE END CARD TEST. 

(DESCENT) INCREASE P BY 1. INCREASE 
I BY 1. SET Q TO P. 

CONTINUE WITH THE END CARD TEST. 
(OUTPUT ACTION) PRINT THE I-ST 

THROUGH Q-TH CHARACTERS OF THE 
BACKGROUND THEN THE CARRYOVER 
THEN THE I-TH THROUGH K-TH CHAR
ACTERS OF THE INPUT RECORD. 

SET X TO J. INCREASE X BY 1. SET I TO 
X. SET K TO J. SET Q TO P. 

CALL THE NULL STRING THE CARRY
OVER. CONTINUE WITH THE END CARD 
TEST. 

(ASCENT) DECREASE P BY 1. 
(END CARD TEST) 
IF J IS LESS THAN 80 REPEAT FROM THE 

CHARACTER TEST, OTHERWISE CON-
TINUE AS FOLLOvVS. . 

COpy THE I-TH THROUGH K-TH CHAR
ACTER OF THE INPUT RECORD AND 
CALL IT THE CARRYOVER. REPEAT 
FROM THE INPUT TEST. 

(LAST ITEM ACTION) 
PRINT THE I-ST THROUGH Q-TH CHAR-

ACTER OF THE BACKGROUND THEN 
THE CARRYOVER THEN THE I-TH 
THROUGH K-TH CHARACTER OF THE 
INPUT RECORD. 
TERMINATE. EXECUTE. 

The procedure can be shortened slightly by omit
ting OTHERWISE CONTINUE AS FOLLOWS 
from several IF statements. Hundreds of other examples 
of SNAP procedures are given in reference 3. 

The prototype SN AP processor 

The SNAP language was defined almost completely 
in late 1966. The processor was implemented in stages, 
in part because there seemed good :re.asons t.o demon
strate a working subset, and incremental progress, as 
quickly as possible, and in part because of uncertainty 
in the potential of the language, and in some of the 
details that might be needed. A processor that dealt 
with CALL and PRINT statements was developed 
first; input, COPY and unconditional transfer of control 
statements were added next; then arithmetic opera
tions and conditional statements; and then the further 
string instructions, and the statements that deal with 
lists. The prototype processor is written almost entirely 
in FORTRAN IV. Implementation was started using 
a time shared PDP 6 computer. After a few months 
the processor was transferred to an RCA Spectra 
70-45, and to the IBM 7094 at the Columbia University 
Computing Center, where class exercises were run for 
a semester using the interim version, while implemen
tation was extended on the Spectra. Work on the pro
totype was ended recently. It is operating at present 
on several Spectra computers, and on the IBM 360-
75/50 system at Columbia University; and a some
what earlier version compiled and run on a UNIVAC 
1108. 

The prototype processor consists of (1) a small con
trol section, (2) the translator, and (3) the interpr'eter. 
The translator immits a SNAP procedure, and forms 
a numerical repersentation (in "SNAPIC" code) in 
the "procedure table". The interpreter then executes 
the processes that the SNAPIC representation specify. 
The control section simply calls the translator and the 
interpreter, and returns control to the operating system 
when appropriate. 

The SNAPIC representation maps a vebral SNAP 
procedure fairly closely. Integers in different numerical 
ranges are used for command words, delimiters and 
precedence codes tor different kinds of expression, 
and pointers to tables that contain, or point to, objects 
of interest. An unsubscripted string name in the direct. 



object of a SNAP statement in SNAPIC is represented 
by a pointer to the "string directory". The corre
sponding entry in this directory points to a definition 
of the name in the procedure table, or to the origin 
of the string in the string bank, depending on whether 
a CALL or a COpy or input statement that ends 
with the name was executed more recently. A quantity 
name is represented by a pointer to the "quantity 
hank" in which actual numerical values are stored. 
A subscripted string name is represented by the ordinaj 
(subscript), and a pointer to the string list directory 
which points in turn to the entry for the first element 
of the list, in the subscripted string djrectory. This 
contains pointers that identify the actual strings which 
are elements of a list, in the same way that string di
rectory elements identify the strings that are known 
by unsubscripted names. Pointers to successive elements 
of a list are stored consecutively in the subscripted 
string directory whenever possible; chaining is used 
when necessary. A numerical ordinal is represented 
by its numerical part, and a symbolic ordinal is repre
sented by the negative of the appropriate pointer to 
the quantity bank. A subscripted quantity name is 
represented by the ordinal, and a pointer to the quantity 
list directory, which points in turn to the origin of the 
list in the subscripted quantity bank, that contains 
the actual values of the elements. 

The translator was written in an ad hoc fashion. 
The initial, and incremental capabiHties were needed, 
and obtained, in less time than could be spared to 
implement a reasonably powerful syntactic analyzer. 
An analyzer will be used in the translator of the ad
vanced system that is being designed, and additional 
instructions will be provided to permit users to apply 
it to data strings at object time. 

The control section, translator and processor occupy 
56K, 45K and 48K bytes respectively, of which the last 
two can be overlayed, in the link edited version that 
runs on the Spectra 70-45. As an indication of the length 
of SNAPIC representation, the two procedures in the 
preceding section require just under 600 and 700 bytes 
respectively. 

SNAP as a teaching vehicle 

Progranuning in SNAP can be taught to non-scien
tists by introducing the basic constructions, and show
ing some of their uses, in the following sequence. 

(1) MICROSN AP: This subset of SNAP consists 
of (i) PRINT and (ii) CALL statements in which 
strings are displayed as quotations, or referenced by 
unsubscripted names, and (iii) EXECUTE statements, 
to start execution. Some exercises for which MICRO
SNAP suffices were described earlier in this paper. 

SNAP 

(2) MINISNAP: This subset of SNAP consists 
of the elements of MICROSNAP and the word THEN. 
It extends the variety of display labels, form letters, 
programs for the performing arts and for athletic and 
sporting events, catalog and greeting cards, and other 
materials whose mechanized production can be intro
duced by MICROSNAP, to allow different items to 
be joined on a line. This has an obvious benefit, for 
example in the production of form letters. 

The addition of the word THEN, moreover, allows 
the introduction of several relatively general ideas. 
The production of most hierarchically structured ma
terials (such as a set of catalog cards in which a journal 
name is repeated throughout while the details of the 
issue are repeated with infrequent change, and the 
details of the individual papers are repeated for just 
a few cards each; or the verbalizations of a long sequence 
of year numbers) can use hierarchical naring in a va
riety of ways, particularly when full use is made of the 
"implied redefinition" characteristic of the CALL 
statement. Constructing the shortest procedure that 
is possible for an application, to reduce keyboard 
work to a minimum, introduces the idea of optimiza
tion, in a way that the students can readily appreciate, 
and which has practical importance when a large volume 
of material is processed. 

The problem of deciding which pieces of the output 
should be given names during its synthesis, and defining 
these names most concisely, usiRg just CALL, THEN, 
quotations and other names, provides a challenge to 
the ingenuity of ~he student, after negligible grammati
cal instruction, that many non-scientists find novel 
and intriguing. Such examples, moreover, give the 
student an opportunity to develop an intellectual pro
cess, which he can then analyze, and reduce to an al
goritlun with the prospect of mechanizing this after , . . 
learning more progranuning granunar. An Incentlve 
is provided to consider fonnal descriptions of the struc
ture of strings, which are amenable to simple alge
braic manipulations, of, potential relevance to the de
sign of large files of data, and to some topics in sty lis
tics and to learn a little about the elementary uses of , 
graphs. 

Some simple combinatorial examples, such as the 
production of fifteen menus for table d'hote luncheons, 
that combine one of four appetizers, fish, meat and 
dessert dishes in all possible ways, can be handled by 
procedures that are shorter than the output they pro
duce, and which can be generated by procedures that 
are even shorter still. Such examples help make the 
student conscious almost from the outset of the course, 
that procedures can be written to generate procedures, 
to advantage. 



84 Spring Joint Computer Conference, 1969 

Some mechanized aspects of teaching also can be 
broached, using NIINISNAP. Thus, given an output 
device with a reasonable typographic capability, the 
tactics that can be used to print. personalized form let
ters can be applied to the production of a set of texts , 
that present MINISNAP (or anything e]se) to reader 
groups of different professional interests (e.g., middle 
XVth century armorial bearings, later XVth century 
armorial bearings, 4.2 mev nuclear physics, 4.25 mev 
nuclear physics), by substituting examples and exercises 
of specialized interest in a common explanatory frame
work. Another educational topic that may merit ex
ploration is the mechanical production of a large number 
of exercises (from a relatively short prescription) 
that require the use of different combinations of ele
~ent90ry programming constructions, or mathematical 
manipulations, or equivalent operational units in other 
subjects. It is possible that some students might develop 
their "intuitions" for an activity which involves select
ing and manipUlating words or symbols, by working 
large numbers of exercises that could be generated this 
way, with a saving of human effort, and perhaps ana
lyzed and criticized mechanically. The problem of 
generating exercises for SNAP starts to approach an 
interesting level of complexity by the time all the pos
sibilities of ~1INISNAP are considered. It becomes 
interesting when the READ instruction is added, which 
comes next in the progression that is being discussed. 

(3) MID/SNAP: The addition of the READ 
statement and REPEAT FROM THE BEGINNING 
to the elements of MIKISKAP permits the separation 
of procedures and data, and some very elementary data 
driven procedure generating procedures. Adding extract 
expressions permits the deconcatenation of input 
records, and the expansion of fixed field records that 
omit characters (e.g., decimal points, units of measure
ment, century digits) which are implicit in the record 
design, to include these in the output. It is convenient to 
introduce IF statements that compare strings and 
statement labels next, then the COpy statement and 
then arithmetic. By this stage, additiollal con;truc
tions, and applications are accepted as more or less 
expected matters of detail. MIDISNAP, that contains 
the elements which have just been mentioned, is 
adequate for a considerable range of text generating 
problems, that use fixed field files on punched cards 
I ·.j.h h dd" \. or Wil!l t1 e a ItlOn of SELECT and FETCH 
magnetic media); and may well be a convenient subse~ 
of SNAP for an elementary course in mechanized text 
processing and programming concepts, for implementa
tion on relatively small computers. 

(4) Basic 8N AP: The further SNAP constructions 
that deal with strings and lists open the floodgates of 

programming rhetoric and applications. Containing 
these requires a subprocedure capability, such as the 
one considered next. 

Scanning and invocation 

SNAP is not the first programming language to be put 
into use without a subroutine capability, but with the 
hope that one would be added later. Plans for an 
extended SNAP processor are well advanced at the time 
of writing, that will permit subprocedures to be written 
in SNAP, and invoked by statements that increase the 
"naturalnessn of the language considerably. Quite 
extensive experimentation probably is needed with a 
working system, in working environments, to d~termine 
t1- - --e1-.L!v- L _~.c.L ..J L ..J £ L ..J'-Cj.' 
"lie r lC:LlJl t:: ut::l1eUlJS anu uazarus 01 tue uluerent paths 
along which the syntax of invoking statements can be 
developed. The extended processor is being designed to 
facilitate such experiments, by using a syntax driven 
translator to produce a canonical representation in 
extended SNAPIC, for the interpreter to execute. 

One line of exploratiop-, that seems to be particularly 
interesting, would co,ntinue to restrict the contexts in 
whi~h new names for strings, and quantities, and lists, 
are mtroduced in procedures and subprocedures. Basic 
SNAP requires these to be introduced by CALL, COPY, 
input, RESERVE and SET statements at points which 
precede their earliest use, in the order in which the 
procedure is written, to define or alter other strings and 
quantities. It is possible therefore to scan a CALL 
statement from left to right alternately for (i) simple 
string expressions of the forms (1) to (7) given earlier 
and (ii) the word THEN, and to treat the balance of th~ 
sentence that remains when THEN is not found as the 
name that the statement confers on a string (or on 90 list 
of strings). This name is added to the name table if it 
has been used before. The tactic can be elaborated for 
example to allow names that are substrings of o~her 
names. Examples can be constructed to confuse the 
tactic, probably no matter how much it is elaborated 
but the objective of natural language programming is t~ 
deal with statements that look" natural" rather than 
bizarre. The preposition TO can be allowed in the names 
of quantities (and strings) by using similar tactics in a 
right to left scan of SET statements. 

The tactic can be extended fairly simply to procedures 
that contain invoking statements of the following kinds: 

1. The statement begins with a word that is neither 
one of the basic verbs of SNAP nor IF; its only 
a.rguments are previously defined names, quota
tIOns and numbers; the framework in which these 
are embedded identifies the subprocedure; no 



continuous piece of this framework is used as a 
name in the procedure. 

2. The statement begins _ with a basic verb of 
SNAP, and contains one or more function 
expressions, in contexts in which the representa
tion of a string or quantity is appropriate. Each 
function expression consists of an opening word 
or phrase that is characteristic of the function, 
followed by one or more arguments, of the kinds 
mentioned in the preceding paragraph, in alterna
tion with further words, phrases and/or punctua
tion that completes the framework which 
identifies the function. It is convenient \ to allow 
either an argument or part of the framework to 
come last, and to require a comma as the last 
character in the latter instance. No continuous 
part of the framework may be a name that is 
used in the procedure, or a number, and nesting 
is prohibited. 

3. The statement consists of a clause of the form (1) 
above, a comma, and a further clause such as 
FORMI~G X, Y,/AND Z CONCURRENTLY, 
that in general consists of a participle ending in 
IKG, one or more names that need not have been 
used previously, separated by commas and 
possibly AND; and a final word (e.g., THERE
BY, ACCORDINGL Y) to round off the 
sentence. 

Although these conventions are very simple, they 
cover quite a range of" natural" expressions. The form 
(1) goes beyond allowing the user a free choice of one 
word verbs, which often would be insufficient. A verb 
can be qualified immediately, or at the end of a sentence 
adverbially or in other ways. Examples of such invoking 
statements are: 

SE~D A ~IE~IBERSHIP CARD TO "GREN
DEL .JONES" AT "THE BEACH HUT". 

SEN"D AN OVERDCE RE~1INDER TO 
"DR. FArST" AT "SA~S" SO"CCI/BRILLIG 
DRIYE". 

ANXOCXCE "THE CHASED AND 
THE PCHS(,ER" TO "THE TRASH CAX/75 
DREARY LANE" IX S(,GGESTIVE TERMS. 

AKNOCNCE "THE ILLIBERAL LIBERA
TION" TO "THE PAPER BACK EGG
HEAD/93 FARM YARD" IN INTELLECTUAL 
UKDERTONES. 

which would invoke four separate subprocedures, 
characterized by the frameworks left by omittIng the 
quotations. 

SNAP 85 

The proposed conventions also allow free use of 
prepositions (except THEN, which is best left out) in 
the invoking framework which is a great aid to natural
ness. By allowing the generic name of the elements of a 
list as an argument, the definition of superlative 
adjectives (as in THE SHORTEST ITEM) is 
introduced . 

The form (1) invoking statement suggested above 
can be used when a subprocedure does not create any 
entities for which names do not yet exist in the invoking 
procedure. Form (2) is useful when one new name must 
be introduced, and form (3) when several are needed. 

A simple convent jon for heading sub procedures is to 
begin with a statement of the form PROCEDURE TO 
followed by the invoking skeleton in which dummy 
arguments are embedded. These arguments then can be 
listed in a statement that begins THE ARGUMENTS 
ARE .. (or THE ARGUMENT IS .. ). Function sub
procedures can be headed PROCEDURE FOR .. ING .. 
where .. ING denotes an arbitrary participle (e.g., 
FORMING, FI~DING) and the further dots stand 
for the function expression with embedded dummy 
arguments. Some further provisions also will be made 
for input output, and for user defined conditions. 

Introducing the indicative 

SNAP, as it has been described so far, consists almost 
entirely of imperatjve mood statements. The extended 
language that is now planned will also include several 
kinds of indicative mood statements, that will allow 
statements such as: 

(i) THE NAMES OF STRINGS INCLUDE 
THE S"CRNAME, THE PRENAME, AND 
THE ADDRESS. 

(ii) THE PRESIDENTIAL RECORD CON
TAINS THE STJRNA~IE~ THE GIVEN 
NA:NIE, AND THE DATE OF BIRTH; 
I~ CHARACTER POSrrIO~S 3 TO 12, 13 
TO 25, A~D 26 TO 33, RESPECTIVELY 

(iii) THE TOWN DATUM LIST CONSISTS OF 
THE TOWN NAME, THE INCORPORA
TION DATE, THE POPULATION, THE 
ALTITUDE, THE MAYOR, THE MAJOR 
INDUSTRY, THE LARGEST PARK, AND 
THE :YIAIN MUSEUM. 

(iv) THE OB.JECTS INCLUDE THE PRESI
DENT, AND THE VICE-PRESIDENT. 

(v) THE PRESIDENT IS DESCRIBED BY 
THE PRESIDENTIAL RECORD. 

(vi) THE VICE-PRESIDENT IS DESCRIBED 
BY THE VICE-PRESIDENTIAL RECORD. 



86 Spring Joint Computer Conference, 1969 

(vii) THE PRESIDENT IS DESCRIBED BY A 
BIOGRAPHICAL RECORD. 

(viii) THE VICE-PR~SIDENT IS DESCRIBED 
BY A BIOGRAPHICAL RECORD. 

(ix) A BIOGRAPHICAL RECORD CONTAINS 
THE SURNAME, THE GIVEN NAME, 
AND THE DATE OF BIRTH; IN CHAR
ACTER POSITIONS 3 TO 12, 13 TO 25, 
AND 26 TO 33, RESPECTIVELY. 

The sentences (i)-(iii) are, in effect, verbalized fonus of 
type declaration, format statement and equivalence 
statemen.t. Sentence (iv) is a type declaration that 
makes THE PRESIDENT and THE VICE-PRESI
DENT the names of objects, which sentences (v) 
and (vi) relate (by a convention that governs the use 
of IS DESCRIBED BY) to two strings called THE 
PRESIDENTIAL RECORD and THE VICE-PRES
IDENTIAL RECORD. Statements analogous to 
(ii) could then be used to describe the internal structure 
of these strings. Statements (vii) and (viii) take a 
slightly different tack, using a generic string name. By 
convention these statements would permit the ex
pressions 'rHE BIOGRAPHICAL RECORD OF 
THE PRESIDENT and THE BIOGRAPHICAL 
RECORD OF THE VICE-PRESIDENT to be used 
as string names, for example in input statements; and 
in conjunction with sentence (ix) would propagate 
this association, to allow the use of expressions such 
as THE SURNAME OF THE PRESIDENT to be 
interpreted correctly. Further simple sentences, tha~ 
contain the verb HAS, can be used within the frame
work of some more simple conventions to introduce 
the names of obj ects that are attributes of other obj ects, 
and described by strings that thereby become. indirect 
attributes of the latter objects. 

Syntactic definitions are of considerable importance, 
and in this regard the kind of meta-syntactic language, 
and method of representing the result of a syntactic 
analysis that were developed in the author's laboratory 
at M.I.T.Ii.6 some years ago seem a useful basis for fur
ther work. 
M~ny further kinds of definitional device can be 

postulated that seem potent~lly useful. For example, 
class inclusional schemes are given an added dimension 
by the simple tactic which js illustrated by the follow
ing sequence of statements, that relat.e t.o a file con
cerning animals in a zoo. 

IN THIS PROCEDURE: 
THE KINDS OF CATEGORY INCLUDE SUB

KINGDOl\fS, ORDERS, CLASSES (SINGU-

LAR-CLASS), FAMILIES (SINGULAR-FAM
ILY), AND SPECIES (SINGULAR-SPE
CIES). 

THE KINDS OF OBJECT INCLUDE ANI-
MALS. 

THE SUB-KINGDOMS OF ANIMALS ARE 
VERTEBRATES, AND INVERTEBRATES. 

THE ORDERS OF VERTEBRATES ARE 
MAMMALS, BIRDS, REPTILES, AMPHIB
IA (SINGULAR-AMPHIBIAN), AND FISH 

THE SPECIES OF APES ARE GORILLAS, 
CHIl\1PANZEES, AND ORANG-UTANS. 

AN ANIMAL IS DESCRIBED BY A RESI
DENT RECORD. 

A RESIDENT RECORD CONTAINS THE 
SPECIES, THE DATE OF ACQUISITION,. .. 

(LOOP START) READ A RESIDENT REC
ORD. IF THE ANIMAL IS A VERTEBRATE 
PRINT THE ORDER .... 

The example has, amongst other things, an element 
of metonymy. The word SPECIES appears as a kind of 
category, that includes GORILLAS, CHIMPANZEES 
etc., and also as t.he name of a substring of a RESI
DENT RECORD. These two uses will be associated: 
so that when necessary, the contents of the SPECIES 
field of a RESIDENT RECORD may be compared 
with the instances of SPECIES in the class inclusional 
statements. This will make it possible to use the latter 
words in the data, and to interpret st.atements such as 
the IF statement that ends the excerpt. 

ACKNOvVLEDGlViENTS 

The work reported in this paper was done in the 
Graphic Systems Applied Research Lahoratory, RCA 
Laboratories, Princeton, N.J., with which the authors 
were associated. 

REFERENCES 

1 Annual reviews of information science 
John Wiley and Son 1968 

2 M P BARNETT W M RUHSAM 
A natural language programming system for mechanical text 
processing 
IEEE Transactions on Engineering Writing and Speech 
Vol EW8-11 No 2 August 196845 

3 M P BARNETT 
Computer programming in English 
Harcourt Brace and World New York Spring 1969 



4 W M RUHSAM M P BARNETT 
To be published 

5 M P BARNETT R P FUTRELLE 
Syntactic analysis by digital computer 

CAe M Vol 5 1962515 
6 M P BARNETT M J BAILEY 

The 8hadow V 8y8tem 

Unpublished work 

SNAP 87 





The compiled macro assembler 

by WARD DOUGLAS MAURER 

U'YLiversity of California 
Berkeley, California 

INTRODUCTION 

This paper describes an advance in the art of writing 
assemblers. It embodies an idea which has been sug
gested at least twice, but never actually implemented. 
In a compiled macro assembler, ordinary source 
language statements . are processed in the usual way, 
but macros are processed in a novel way. The advan
tage of the compiled macro assembler is the speed 
with which it processes macros. An actual compiled 
macro assembler has been written by the author and 
his students, and the speed with which it processes 
macros, as distinguished from ordinary statements, 
has been rigorously tested. 

The bagic concept of the compiled macro assembler 

We review, first of all, the operation of an ordinary 
assembler, which we will refer to, in what follows, as 
an interpreted macro assembler. (The words "compiled" 
and "interpreted" are presumed to modify the noun 
"macro," not the noun "assembler.") Each pseudo
operation code in the assembly language recognized 
by a given assembler corresponds to a subroutine of 
that assembler. This subroutine is called whenever the 
given pseudo-operation is encountered within the source 
text. The collection of all of these subroutines, for a 
given assembler, is a fixed collection, and on a large 
computer this collection of subroutines is normally 
contained in core at all times. On a small computer, 
the subroutine which corresponds to a given pseudo
operation may have to be brought in from disk when 
the pseudo-operation is encountered; however, the 
total collection of subroutines corresponding to pseudo
operations remains fixed. 

A macro is, in one sense, very much like a pseudo
operation. However, in an interpreted macro assembler, 
the occurrence of a macro does not set aside a special 
subroutine of the assembler for the use of that macro 
alone. Instead, all macro definitions are treated in the 

------------------------------------------------~----------------- 89 

same way. The text of a macro definition is copied into 
memory, after various minor transformations such as 
the removal of blanks. In some assemblers, the infor
mation contained in a macro may be further com
pressed, but in an interpreted macro assembler the 
compression is done in an essentially recoverable way 
if it is done at all. When the macro is used, this text 
is read from memory in what may be called an inter
pretive fashion-although there is no separate inter
preter, the entire assembler itself serving as the macro 
interpreter. 

In a compiled macro assembler, all pseudo-opera
tions-macros as well as others-have their correspond
ing subroutines of the assembler. At the start of each 
assembly there exists a fixed collection of such sub
routines. However, when a macro is defined, a new sub
routine is formed. This subroutine is compiled (hence 
the name, compiled macro assembler) from "source 
text" consisting of the original macro definition. The 
writing of a compiled macro assembler consists in the 
mechanization of the process of deducing, from the 
form of a given macro definition, how a use of this 
macro would be treated within the assembler if it 
were a pseudo-operation rather than a macro. 

As an illustration of the concept of macro compila
tion, an actual co~piled macro assembler was construct
ed by the author and his students. * This assembler 
is written to run on the CDC 6400. The input language 
is a modified form of IBM 360 assembly language; 
the output from the assembler is a listing of the IBM 
360 code generated, and a deck of binary cards which 
will execute on the 360 when appropriate control carda 
are added. 

* The students included Donald Alpert, Steven Anderson, 1 

Robert Ankerlin, Thomas Baumbach, David Brown, Dennis 
Griswold,2 Bing Joe, Richard Kayfes,a David Ladd, Kenneth 
Lew,4 William Nielsen,' Ralph Olstad, Paul Samson, and'Edmond 
Van Doren.' 



90 Spring Joint Computer Conference, 1969 

Feasibility of macro compilation 

The following paragraphs are devoted to certain 
feasibility considerations which the author and his 
students discovered in the course of writing this as
sembler. These points should be thoroughly understood 
by anyone intending to write such an assembler in the 
future. 

Substitution of parameters 

There are two common methods of handling macro 
parameters in an assembler. These are known as 
string stwstitution and value Sltbstitution. Either may 
be used in a compiled macro assembler. In addition, 
if value substitution is used, compilation may be carried 
out completely; whereas if string substitution is used, 
it is necessarv to include both compiled and interpreted 
macro facilities, and it may be necessary for a compiled 
subroutine to call the interpretive facility. 

For the sake of completeness, we now describe these 
two methods in general terms. In value substitution, 
each actual parameter in a macro usage is evaluated. 
This value is substituted within the macro text when
ever the corresponding formal parameter is encoun
tered. In string substitution, the character string which 
comprises a given actual parameter in a macro usage 
is copied into memory when the macro usage is en
countered. If the assembler is an interpreted macro 
assembler, the source of input characters to it is now 
diverted to the location of the macro text in memory. 
When a parameter is encountered, the source of input 
characters is re-diverted to the location of the char
acter string giving the corresponding actual parameter. 

String substitution is more general than value 
substitution because the sequence of input characters 
passes freely between the characters of the macro 
and the characters of actual parameters. Thus syn
tactic units may exist partially within the macro text 
and partially within the parameter. One important 
use of this facility is the appending of prefixes or suf
fixes to an actual parameter to form symbols. If a macro 
is called with actual parameter DM, for example, 
the macro may then create symbols DMA, DMB, 
DMl, TEMPDM, and the like, and use them in an 
arbitrary fashion. Such symbols, of course, become 
global, and may be referenced throughout the text. 
In a value substitution assembler, this facility is not 
possible; but in many value substitution assemblers 
a symbol defined in a macro cannot be used outside 
the macro unless it is specially declared to be global. 
Thus the. same symbol may be used over and over 
again, so long as it is always used inside a macro and 
only once inside each distinct usage of that macro. 

String substitution has been used in most assemblers 
which have appeared in published work, such as Hal
pern's XPOP,7 Strachey's general purpose macro 
gen ~rator,8 and Mooers' TRAC.9,lo Value SUbstitution, 
however, because it is simpler, has been used in many 
actual, working assemblers. Among these are the F AP 
assembler for the IBM 7094, the SLEUTH II assembler 
for the UNIVAC 1107, and an assembler for the 
UNIVAC III, all of which were written by Ferguson, 
who, so far as we know, hlS published only one ac
count of his work.ll 

Let us now consider the substitution of parameters 
in a compiled macro assembler. If value substitution 
is used, there is no problem. Suppose that a parameter 
usage is found within a macro definition. Corresponding 
to this usage in the compiled subroutine, there is a 
call to a subroutine which retrieves the value of the 
corresponding actual parameter. (That is, the com
piled subroutine, which is produced by the macro 
compilation process, calls a fixed, special assembler 
subroutine, whose function it is to retrieve parameter 
values.) 

If string substitution is used, we make a distinction 
between a parameter which occurs in an expression 
in the variable field, and one which occurs by itself 
in the variable field. (Most actual parameters are 
of the latter kind, because most people write relatively 
simple macros.) If a parameter occurs by itself, th~re 
is no difference, for this parameter, between stnng 
and value substitution, and it may be handled as de
scribed above. If a parameter occurs in an expression, 
however, it is generally impossible to han~le it in 
a compiled manner. The text of the expressIOn must 
be included with the compiled subroutine, and, at the 
appropriate point, this subroutine ~alls ~ ~ed, s~ecial 
asgornhlol" I;,mhw\11t.1TlO whose functlon It IS to Inter-
preti;;i;& e;~l~~tev·;~ch strings. As in the case of an 
interpreted macro assembler, this "subroutine" con
sists, from the logical point of view, of the entire assem
bler itself. 

First and second pass compilation 

The compilation process, as applied to a macro, 
must take place twice-once in the first pass and once 
in the second pass. 

There are many reasons for this; the following is 
perhaps the simplest. Suppose that the definition 
of a macro involves a symbol which is not defined 
until after the macro is defined. Then, when the macro 
is first encountered, complete compilation cannot 
take place, since the value of the sym hoI is not kn~wn 
at that time. Therefore the macro must be compIled 
in the second pass. But it must also be compiled in 



the first pass, since the length of the generated code 
is not known, and different uses of the same macro 
may result in different lengths of generated code. * 
The main function of the subroutine which is compiled 
in the first pass, in fact, is to determine this length; 
at the same time, any global symbols defined within 
the macro are placed in the symbol table along with 
their addresses. 

It might appear at first sight that this problem 
could be avoided by defining all sylllbois used in a 
macro before the macro is defined. However, this is 
not feasible in general. A macro may contain a call 
to an error routine which is at the end of the program, 
or, in general, which follows another usage of the macro. 
It is, in 'general, true that all symbols occurring within 
a macro definition which affect the length of the gen
erated code must be defined before the macro is defined. 
By somewhat devious methods this may be improved 
slightly to read "before the macro is first used." 

Saving a compiled subroutine 

One of the theoretical advantages in compiling 
macros is that the resulting compiled code can, in 
theory, be output to cards, in the same way that output 
from a FORTRAN compiler can be output to cards. 
These binary cards may then take the place of the orig
inal macro definition. 

We have found that compiled subroutines can, 
in fact, be saved in most cases. There is one case, how
ever, that creates several difficulties. Suppose that a 
macro definition contains a symbol which is used but 
not defined. Presumably such a symbol would be de
fined in the body of the assembly language text. (In 
our experience, most macros do not have this char
acteristic; but some do, and in any event it would be 
unwise to exclude it.) The definition of the given sym
bol in the program in which it is defined is not, how
ever, necessarily the same as its definition in the pro
gram in which the binary cards are used. It is this 
latter definition, in fact, which should apply. There
fore, a distinction must be made when, compiling 
a macro between symbols defined in the macro 
and symbols defined outside it. There are further 
difficulties concerned with optimization of the compiled 
code. If the value of a symbol is known at compilation 
time, it may be combined with others in an expression, 

* The SLEUTH II assembler embodies an interesting exception 
to this. If a given macro always generates the same amount of 
code, this amount may be specified when the macro is defined. 
Presumably this feature could be implemented in a compiled 
~cro assembler, removing the necessity for compiling such 
macros on the first pass. However, as we shall see later. such a 
macro probably should not be compiled anyway. 

The Compiled Macro Assembler 91 

and the value of the result used within the compiled 
code. If code is being compiled for later use, however, 
such combination cannot be made. This means that 
either the resulting compiled code must calculate 
values of expressions which would not be necessary , 
if the macro were being compiled in that assembly, 
or the process of loading the binary cards must effec
tively incorporate some of the compilation process. 

Only the second pass compilation need be saved 
on cards. '\X/hen this is loaded during the first pass of 
another assembly, it is loaded in a special way which 
causes it to act like a first pass compilation. 

Compiled macros and conditional and iterative 
assembly 

Conditional statements in assembly language may be 
compiled; so may iteration statements. In fact, com
pilation of these statements is the primary justification 
for compiled macro assembly. A conditional statement 
in the definition of a macro may be replaced by a condi
tional transfer in the compiled subroutine; it is no longer 
necessary to read a number of characters without 
processing them if the condition is not fulfilled. An 
iterative (duplication) statement may be replaced by 
a loop in the compiled code; it is no longer necessary to 
interpret the iterated statements repeatedly. 

A macro which is to be used only once, and which 
contains no conditional or iterative statements, should 
not, in fact, be compiled. This is a special case of a 
general statement which may be made about inter
pretation/compilation situations: compilation is faster 
than interpretation only if no recycling takes place. 
If every statement in a program is to be executed at 
most once, it is cheaper to interpret each statement 
once than to compile it (which itself involves inter
preting each statement once) and then to execute it. 
The time saving that results from compiling is due to 
the fact that if a statement is to be execut~d several 
times, it will be interpreted several times if the program 
containing it is interpreted, but only once if that pro
gram is com piled. 

A macro without conditional or iterative statements 
may be speeded up on compilation if it is to be used 
several times, but an intelligent judgment should be 
made in each such case. 

Timing tests of the compiled macro assembler 

In order to verify the premise that compiling macros 
improves the efficiency of macro usage processing, 
a controlled experiment was performed on the compiled 
macro assembler written by the author and his stu
dents, with the standard IBM 360 F level assembler 
serving as the control. 



92 Spring Joint Computer Conference, 1969 

Timing comparisons of systems designed in different 
ways to do the same job has proved to be one of the 
most frustrating tasks in the computing world today. 
For ahnost every comparison which has been performed, 
a perfectly valid argument may be advanced which 
nullifies its conclusion. Usually this argument takes 
the form that the observed differences in timing were 
caused by something other than the differences in the 
initial conditions. The use of a controlled experiment, 
a technique borrowed from classical scientific method, 
is precisely the way in which the effects of such irrele
vant factors may be eliminated. In the present situa
tion, the following were the factors which introduced 
differences in timing comparable to, and sometimes 
exceeding, the claimed improvements in efficiency: 

1. Th.e time taken to process a macro was smaller 
than the time taken to read a carde 

2. The time taken to process a macro was smaller 
than the time taken to print a line. 

3. The total time taken to process a job differed 
depending on when the job was submitted; 
in fact, it sometimes happened that when the 
computer was asked to perform the same job 
twice in a row (by submitting an input deck 
consisting of two identical copies of a job deck) 
the job times differed by a factor exceeding 1.5. 

4. The IBM 360 F level assembler as used at the 
computer center at which the test was made 
is slower than the Compiled Macro Assembler, 
by a factor which may exceed 10. 

5. The IBM 360 F level assembler is not used at 
its own greatest efficiency by the computer 
center at which the test was made. 

The controlled experiment was set up in the following 
way .... A ... macro, RPD3, which generates code to calcu
late the value of a real polynomial of degree less than 
or equal to 3, was written for both the Compiled Macro 
Assembler and the IBM 360 F level assembler. The 
macro was called, in either assembler, by the line 

RPD3 X,A,B,C,D 

where X, A, B, C, and D represent addresses in memory 
and A + BX + CX2 + DX 3 is the polynomial to be 
evaluated. The algorithm always uses the fastest com
putational method; if all of the coefficients are non
zero, then A + X*(B + X*(C + X*D)) is calculated, 
but if any of the coefficients are zero, a smaller amount 
of calculation is performed. If all the coefficients are 
zero, the result register is loaded with zero. Otherwise, 
the total number of instructions generated is equal 
to the total number of non-zero coefficients plus the 
degree of the largest such coefficient. 

A deck was now made up, containing 200 calls to 
this macro with various parameters. This deck was 
assembled to obtain a printout of the code it generated. 
A second deck was now made up which consisted pre
cisely of this generated code. Assembly of these two 
decks, then, should produce identical results· in dif
ferent ways-with and without macro usage processing. 
To counteract the effect of factor (1) above, a second 
macro, called NIL, was written, which does nothing. 
The text of NIL was added to the first deck, and exactly 
enough usages of NIL were added to the first deck to 
equalize the number of cards in the two decks. To be 
absolutely precise, there. were now four decks, because 
all of the above was done twice, once for each assembler. 

To counteract the effect of factor (2) above, all as
semblies, on both assemblers, were run with a "no 
list" option during the timing test, after it had been 
ascertained that they generated correct code. The use 
of this option insures that no printing will occur during 
the second pass of assembly. To counteract the effect 
of factor (3) above, each of these four decks was re
produced several times, and the resulting copies of 
each deck were run as a connected series of jobs. 

The results of the timing test were as follows. For 
the IBM 360 assembler, the runs without macro calling 
took 3 min. 21.94 sec" 3 min. 39.92 sec., 4 min. 25.87 
sec., and 3 min. 29.00 sec. The runs with macro calling 
took 9 min. 33.90 sec., 7 min. 52.06 sec., and 7 min. 56.28 
sec. Even with the large experimental error, it is clear 
that this assembler is taking over twice as long to 
process an assembly with macros as without macros. 
For the Compiled Macro Assembler, the runs without 
macro calling took 16.433 seconds and 16.428 seconds; 
the runs with macro calling took 16.458 seconds, and 
16.538 seconds. Thus there is no appreciable difference, 
in the compiled macro assembler, between assembly 
of macros and assembly of the identical code without 
macros. 

The presentation of the results in this form counter~ 
acts factors (4) and (5) above. In particular, anyavoid
able inefficiencies which affected the timing of one of 
the IBM 360 runs would also have affected the timing 
of the other. We also note that factors (1) and (2) do 
not, as has been claimed, remove entirely the timing 
advantage of compijing macros, since on a time-shared 
computer the time taken to process a macro will usually 
not be smaller than the time taken to read a card image 
from a file. It is also true that time-sharing systems 
increase the viability of assembly language coding as 
opposed to coding in a higher-level language, since de
bugging languages (such as DDT and FAPDBG) are 
much more amenable to machine language than they 
are to higher level language coding. 



ACKNOWLEDGMENTS 

The author is grateful for the progrrunming help of 
the students mentioned in the first footnote to this 
paper. This research was parti311y supported by 
National Science FOlUldatjQn Grant G-J43 and Joint 
Services Electro~cs Program Grant AFOSR-68-1488. 

REFERENCES 

l ~ AND.~J:>"S9N 
Master's report University of Ca1ifornil\ Berkeley J3D.uary 
1968 

2 D GRISWOLD 
Object deck output from a compiled macro assembler 
Master's report Univ of Californ.i8 Berkeley September 1967 

3 R KAYFES 
Decimal arithmetic in a compiled macro assembler 
Master's report Univof California. Berkeley June 1967 

4KMLEW 
N on-decimal arithmetic in a compiled macro assembler 
Master's report University of Califoria Berkeley June 1967 

5 W C NIELSEN 

The Compiled :Macro Assembler 93 

Subsystem implementation of a compiled macro assembler 
Master's report University of California Berkeley June 1967 

6 E D VAN DOREN 
The literal facility and end card implementation of a 
compiled macro assembler 
Master's report Univ of California Berkeley September 1967 

7 M HALPERN 
XPOP: a meta-Janguage without meta-physics 
Proc F J C C 1964 

8 C STRACHEY 
.4 general purpose macro generator 
Computer Journal October 1965 

9 C MOOERS 
TRAC, a procedure-descrWing language for the 
reactive typewriter 
Communications of the Assoc for Computing Machinery 
March 1966 

10 C MOOERS 
T RA C, a text-handling language 
Proc 20th ~ational ACM Conference 1965 

11 D FERGUSO~ 
Evolution of the meta-assembly program 
Communications of the Assoc for Computing Machinery 
March 1966 





Some logical and numerical aspects 
of pattern recognition and 
artificial intelligence 

by W. CLARK NAYLOR 

IBM Corporation 
Rochester, Minnesota 

INTRODUCTION 

Artificial Intelligence has received the attentions and 
contributions of workers in many varied disciplines 

.. and of many varied interests. As a result there has 
arisen a large and diverse body of research literature 
in the field. The task of sorting out and comparing 
some threads of continuity through this rich and varie
gated tapestry presents a. tempting prospect. 

In this article we define and compare two contrasting 
pattern recognition approaches. We trace their diver
gent paths of development from their common origin 
and em.phasize their complementary nature. Finally, 
we propose their eventual reconciliation and suggest 
some potentially fruitful lines of development. 

Threads oj continuity 

In 1961 Hawkinsl examined the state-of-the-art of 
self-organizing machines and traced some historical 
developments from early brain models to later computer 
implementations. This report builds on Hawkins' 
historical review, emphasizing two separate lines of 
development and extending them into more recent 
pattern recognition efforts. 

Figure 1 displays two lines of relevant publications 
by author. At the origin of the lines we indicate the 
neuron. Section A (below) discusses some of what is 
known and postulated about the behavior of natural 
neurons. Section B follows the line of development 
indicated along the horizontal axis of Figure 1, and 
emphasizes the logical aspects of pattern recognition. 
In Section C we follow a line of development displayed 
along the vertical axis and emphasize the numerical 
aspects of pattern recognition. In Section D we discuss 
some of the problems of dealing with both aspects of 
the pattern classification problem at once. 

1 
I 
I 
:I 
I 
;I 

• e 
it z 

LOIiCII Aspects ., 

Figure I-Diverging complementary lines of pattern recognition 
development 

A. Natural neurons 

In nature, an organism interacts with its environment 
to enhance its chances for survival and propagation. 
The more an organism. is capable of rapid, complex, 
adaptive behavior, the more effective its interaction can 
be. In the animal world special sensors, effectors, and 
associated nervous systems have developed to achieve 
this rapid, complex behavior. And although the com
plexity of the nervous systems varies greatly from the 
lowest to the highest animals, the properties and be
havior of the basic nerve cell, the neuron, remain 
amazingly constant. 

-------------------------------------- 95-----------------------------------------



96 Spring Joint Computer Conference, 1969 

The neuron is a cell specialized for conducting elec
trical signals. It is the cell of which ail nervous systems 
are constructed. In vertebrates, bushy dendrites ex
tend from the cell body to receive afferent excitation 
and conduct it to the axon. The axoIi, on receiving 
sufficient excitation) "fire's" and conducts a spike 
pulse along its length to the axonal branches. There 
the excitation is communicated across various synaptic 
junctions to succeeding dendrItes, and so on. After 
firing, the cell enters a refractory state during which 
it rests and recharges its membranes in preparation 
for the next firing. Some neurons can repeat this cycle 
hundreds of times a second, 

Many neuron configurations exist. Neurons may 
have long axons, very short axons, several axons, or 
no apparent 3.Xons at all. They may have many den
drites or no descernible dendrites. Dendrites and axons 
may be virtually indistinguishable. Likewise, many 
varieties of synapses exist. Some transmit electrically, 
some transmit chemically. Some transmit axon-to
axon and Some transmit dendrite-to-dendrite. Probably 
the most interesting are the synapses between axonal 
branches and soma or dendrites, typical in vertebrate 
brain cells. 

B. Logical development 

A network ofaxons, each capable of a binary all-or
none response, is strongly suggestive of switching 
theory and logic, and much of the work in pattern 
recognition and artificial intelligence is based on this 
observation. 

Rashevsky3 in 1938 was perhaps the first to postulate 
that nets of such binary axons could perform certain 
decision and memory functions. lVIcCulloch and Pitts4 

in 1943 formalized these concepts and showed that 
the behavior of such nets could be described in terms 
of Boolean algebra. Later, Lettvin, Maturana, Mc
Culloch, and Pitts5 in 1959, and Verzeano and Negishi6 

in 1960, were able to experimentally substantiate some 
of these ideas. 

In 1959, Unger7 described a pattern recognition pro
gram in which he used the logical structure of a binary 
tree to separate an alphabet of 36 alphanumeric char
acters. In 1961, Kochen8 described a concept formation 
program which could adaptively derive its own Boolean 
sum of products from its experience with the data. 
And, in 1967, l\1insky9 considered general machines 
composed of McCulloch-Pitts neurons. He established 
several universal bases for building finite automata, 
and showed that a very simple "refractory cell" formed 
such a base. 

c. Numerical development 

While the logical development exploits the logical 
ability of the axon behavior, it greatly oversimplifies 
or largely ignores the role of the synapse. 

In 1949, HebblO suggested that perhaps the synapse 
provided the site for permanent memory. He postu
lated that the ability of the axonal branches and the 
dendrites to form graded potentials, and the ability 
of the synapse to differentially attenuate and integrate 
the influence of many impinging signals, might somehow 

-change as a function of learning. In 1958, Rosenblattll 

incorporated these and other ideas into a model he 
called the Perceptron. At about the same time, Widrow12 

began experiments with similar analog models he called 
Adalines. Many workers13- 21 showed the ability of these 
models to implem~nt linear decision surfaces, and the 
ability of certain training procedures to converge to 
feasible surfaces. In 1963, Rosen22 employed quadratic 
programming to obtain optimal decision surfaces for 
both linear and quadratic models. In 1964, Manga
sarian23 obtained optimal decision surfaces using linear 
programming. Based on a Bayesian statistical approach, 
Specht,24 in 1967, derived optimal decision surfaces 
for general nth order polynomials. 

D. Combined logical and numerical aspects 

In his critical review of Artificial Intelligence work, 
Dreyfus29 addressed himself primarily to workers 
specializing in logical methods. In criticizing the as
sumptions of Newell, Shaw, and Simons30 he said "they 
do not even consider the possibility that the brain 
might process information in an entirely different 
way than a computer-that information might, for 
example, be processed globally the way a resistor an
alogue solves the problem of the minimal path through 
a network." In the present context, this and other 
similar comments in his paper seem to be suggestions 
for more careful consideration of numerical, as well 
as logical, methods. 

While it appears that some workers have been ap
plying logical tools to geometrical tasks, it also appears 
that other workers have been applying geometrical 
tools to logical tasks. For example, in the layered ma
chines mentioned in Nilsson,25 it is necessary for the 
first layer of linear decision surfaces to completely 
partition the input space. Succeeding layers of linear 
decision surfaceR then operate on the output of pre
vious layers and so on. However, when the input space 
has been completely partitioned, it has been mapped 
without confliet onto the vertices of a hypercube. 
When this haR been accomplished, only a problem in 
Boolean logic remains, and it seems a little wasteful 



L.ogical and Numerical Aspects of Pattern Recognition and Artificial Intelligence 97 

to use additional layers of linear decision surfaces for 
this task. Moreover, no general training procedures 
for such machines have yet been found. 

While those workers mentioned in Section B have had 
success in dealing with the logical aspects of the pat
tern recognition problem, and- those workers in Section 
C have had success in dealing with the numerical as
pects, few workers have been successful in dealing with 
both aspects at once. However, some recent approaches 
appear very promising in this direction. In 1965, Casey26 

described a program for reducing the dimensionality 
of sets of patterns. This would appear to be a good 
first step toward discovering the structure of a problem. 
Ball and Hall's program27 to automatically cluster 
sets of patterns can be viewed as a process for finding 
logical structures of imbedded numerical decision sur
fa-ces. The most clear-cut example in this direction 
is the 1968 program of Mangasarian.28 This program 
iteratively builds a ternary tree of linear decision sur
faces. Each surface is designed to be the optimum 
for its level on the tree, and the tree is indefinitely 
expandable. 

The complementary nature of logic and 
geometry in pattern recognition 

We would like to argue in the following sections that 
the two divergent lines of development pursued in the 
previous sections are not alternate approaches to the 
same problem but rather complementary approaches 
to that problem. That is, that a general approach 
must involve both aspects and that an approach em
phasizing only one aspect must be somehow incomplete. 
This argument must be based on efficiency rather than 
ultimate effectiveness since either approach may be 
employed to eventually obtain a very good approxi
mation to the desired result. 

A. Set theory and pattern recognition 

If we view pattern recognition in a set theoretic frame
work, the roles played by the two ordering relations, 
set membership, E, and set inclusion, ( , are very 
significant. If we are dealing with sets (or . patterns) 
of real vectors, we see that we have two distinct alge
bras involved. 

Among the sets themselves, we have the algebra of 
set combination or logic. Among the members of the 
sets, we have the algebra of real numbers, arithmetic 
or geometry. * The difference in emphasis evident in 

* In some examples of pattern recognition we may have other 
relations holding among set members (for example, grammatical 
relations in language translation). If the algebra among set 
members happens to be Boolean logic, then this whole distinction 
may disappear.· 

the logical and numerical developments amounts to 
a difference in emphasis on the roles of the two algebras 
involved. Thus, in the logical development, the ulti
mate classes are composed of complex combinations 
of sets with very simple membership criteria. The 
algebra of set combination (viz logic) is strongly em
phasized, while that holding among set members (viz 
geometry or arithmetic) is largely ignored. On the other 
hand, in the numerical development the ultimate 
classes have no apparent constituent sets and the cri
teria of set membership must bear the whole burden 
of the classification task. Thus the algebra holding 
among the set members (viz arithmetic or geometry) 
is strongly emphasized while the algebra among the 
sets is largely ignored. 

B. Example 

The complementary nature of the logical and nu
merical approaches may be likened to the com ple
mentary nature of Fourier and polynomial series. The 
Fourier series may be used to approximate a straight 
line, and the polynomial may be used to approximate a 
sine curve, but it is an unnatural and wasteful way to use 
the series. Similarly, logic may do the job of geometry 
or geometry may do the job of logic, but it is wasteful 
not to put each technique to its natural uSe. A ~imple 
example will illustrate that sets which are sllnpiy, and 
naturally described in terms of logical combiiiliiibhs 
of numerically defined constituent sets ~y 00 very 
difficult to describe by logic or geometry alone. Con':' 
sider the sets of rectangles defined as follows: 

A: Circumference less than 20 units 
B: Area less than 9 units 
C: Area more than 4 units 
D: Vertical side no shorter than 1/2 the horizontal 

side 
E: Horizontal side no shorter than 1/2 the vertical 

side 
F: «B"C)v(IY'E»)vA 

The set F m Erimple enough. Try to describe it by 
geometry or logic alone! Figure 2 is a sketch of set F. 

c. A proposed response surface 

The idea of the complementary nature of logic and 
and geometry is simple enough. Is it possible to quantify 
it and illustrate it graphically? Consider the following 
proposed axes: 

X. Average number of members per component 
set 



98 Spring Joint Computer Conference, 1969 

.. 
10 

Length of horizontal side 

Figure 2-The set F 

Y. Average number of component sets per pat
tern class 

Z. Percentage of correct recognitions achieved 

If we classify various pattern recognition programs 
as (X, Y) points and plot Z(X, Y) for each program, 
what sort of graph would result? Obviously one contour 
must be Z(O, Y) = Z(X, 0) = O. If we further assume 
Z to be continuous and monotonic then contours such 
as those of Figure 3 will result. Figure 4, showing the 
relative paths of logical and numerical developments 
on such a surface; illustrates graphically the relative 
performances of logical and numerical methods. 

Some optimality criteria 

Having divided the pattern recognition methods into 
logical and numerical classes, we will find it useful 
and interesting to fw"iher subdivide the numerical 
class according to the optimality criteria used. 

In numerical analysis, if we are trying to obtain the 
best fit of a line to a set of points, we generate an error 
vector and attempt to minimize some norm of the vec
tor. The P=norm of a vector y = (Yl, Y2 ... ,Yn) given 
by: 

is the norm most commonly used for this purpose. 

t I \ \ 
I 

i .a 
it .. a. 

j 
E 
E 
't; 

.i 
E 
i .. . .. 
.! 

AVll'lge !IIm"r of .. t.ts per class 

Figure 3-8uggestive sketch of proposed response surface 

j 
i 

i 
j 
i 
D 

Av ..... !limber of .. bIets ..... ella • 

Figure 4-8uggestive sketch of various development paths 

z· • 

The values of P commonly used are P = 1, P = 2 
and P = 00. For P = 1, we minimize the average 
error. For P = 2, we minimize the SlIm. of squares 
error. For P = 00- we minimize the maximum error 
(Chebyschev criterion). 

In pattern recognition we have a very similar situa
tion. For any separating surface we generate a vector 
of separation distances and attempt to maximize the 
overall separation. In analogy with the one norm, we 
may attempt to maximize the average separation; in 



Logical and Numerical Aspects of Pattern Recognition and Artificial Intelligence 99 

analogy with the Chebyschev 00 norm, we may attempt 
to maximize the minimum separation; or in analogy 
with intermediate norms we may similarly choose a 
whole spectrum of optimality criteria. 

It is instructive to consider the sensitivity and stabil
ity of methods employing the two criteria on the ex
tremes of this spectrum. On the one hand, a method to 
maximize the minmum separation will seek out the few 
"worst-case" points and work on them first. Such a 
worst-case method will be a local, differentiative meth
od; it will be very sensitive to local details, but very 
prone to over-react to noise. On the other hand, an 
average-case method will be a global, integrative meth
od. It will tend to be relatively insensitive to noise, but 
also insensitive to local detail. 

An example will illustrate this noise and detail sensi
tivity. Consider the sets and separating plane of Figure 

Separating Plane 

Figure 5-Sets and separating plane 

Plane 1 - Worst Case 

~~ 
o 

Figure 6-Multimodal sets and separating planes 

5. The plane satisfies worst-case, average-case and in
tuitive criteria for a good separating plane. 

Consider the sets and planes of Figure 6. Here set A 
has been augmented by A2. As long as the minimum 
difference between points in Band A2 is larger than the 
minimum difference betweenB and AI, A2 will have no 
effect on the placement of plane 1, the worst-case plane. 
The A2 information is essentially redundant. However, 
plane 2, the average-case plane, will move around and 
and react to set A2 as set A2 moves. It may even violate 
one of the sets. Intuitively we would probably choose 
plane 1. 

Consider the sets of planes of Figure 7. Here Sets A 
and B have been augmented by noise patterns. Since 
these noise patterns affect the minimum distance be
tween the sets, the worst-case plane, plane 1, will 
react, while the average-case plane, plane· 2, does 
not. Here we would probably intuitively choose plane 2. 

Again we can tie these items to physiological consid
erations. Several averaging and differentiating neuron
nets have been observed in nature6 •7-particularly in 
optic nerves. Apparently their actions are carefully 
balanced to insure sharp resolution together with noise 

Plane 1 - Worst Case 

Ji'igure 7-8ets and separating planes with noise 



100 Spring Joint Computer Conference, 1969 

Figure 8-Proposed pattern recognition structure 
(shown for binary tree as an example) 

insensitivity. In pattern recognition we will similarly 
be forced to achieve a balance in the use of average and 
worst-case methods. 

Proposed model for future development 

From the considerations of this report, it seems clear 
that a general pattern recognition device will have to 
perform numeric calculations carefully balanced be
tween global integrative techniques and local differ
encing techniques. The results of these calculations will 
then be combined logically to determine the result of the 
entire device. It also seems clear that natural nervous 
systems will provide an existence proof and guide in the 
construction of feasible pattern recognition models. 

Figure 8 represents a possible logical-nu..rnerical net. 
At each node a numeric calculation is performed and an 
exiting branch is chosen. The overall branching network 
of nodes provides the logical structure (although a log
ical tree is shown for simplicity, any complex logical 
structure is intended). 

SUMMARY 

Pascal once said that there are two kinds of mathema
tical minds-logicians and mathematicians. We have 
indicated that there are two kinds of pattern recognition 
programs, logical ones and geometrical ones. In this 
report we have traced the historical development of 
these two distinct approaches. We have related them to 
two functIOns of natural nerve nets and to the two 
algebras of set theory. By these associations we have 
argued for the complementary nature of the roles 
played by these two aspects. In addition we have dis .. 
tinguished and compared the roles of average-case and 

worst-case geometrical methods. Finally, for future de
velopment, we have suggested a pattern recognition 
model encompassing the capabilities of all these meth
ods. 

ACKNOWLEDGMENTS 

Work leading to this report was carried out in the Com
puter Science Department of the University of Wis
consin and the Recognition Systems Development 
Department of IBM Rochester, Minnesota. The author 
is indebted to many people for their help and encourage
ment during this work: Drs. L. Uhr, J. B. Rosen, and 
O. L. Mangasarian at the University of Wisconsin for 
many stimulating and enlightening discussionS; A. 
Hamburgen, D. R. Andrews, P. H. Howard, and M. J. 
Kimmel of the Recognition Systems Development 
Department at IBM for their continued encouragement 
and support; and C. D. Cullum of IBM Yorktown for 
his helpful ideas. 

REFERENCES 

1 J K HAWKINS 
Self-organizing systems-A review and commentary 
Proc of Institute of Radio Engineers January 1961 

2 T H BULLOCK A G HORRIDGE 
Structure and function in the nervous systems of invertebrates 
W H Freeman and Company N ew York N Y 1965 

3 N RASHEVSKY 
M athernatical biophysics 
University of Chicago Press Chicago III 1938 

4 W S McCULLOCH W H PITTS 
A logical calculus of the ideas immanent in nervous activity 
Bulletin of Mathematics Biophysics Vol 115 1953 

5 J Y LETTVIN H R MATURANA 
W S McCULLOCH W H PITI'S 
What the frog's eye tells the frog's brain 
rroc of Institute of Radio Engineers Vol 47 
November 1959 1940-1951 

6 M VERZEANO K NEGISHI 
Neuronal activity in cortical and thalamic networks 
J Gen Physiol Vol 43 supply July 1960 177-195 

7 S HUNGER 
Pattern detection and recogll.ition 
Proc of Instittite of Radio Engineers October 1959 

8 M KOCHEN 
An experimental program for the selection of 
disjunctive hypothesis 
Proc Western J C C Vol 19 571-578 May 1961 

9 M MINSKY 
Computation: Finite and infinite machines 
Prentice Hall Englewood Cliffs New Jersey 1967 

10 D 0 HEBB 
Organization of behavior 
John Wiley and Sons Inc New York N Y 1949 

11 F ROSENBLATT 
The perceptron-A theory of statistical separability in 
cognitive systems 
Cornell Aeronatuical Lab Buffalo New York Report ~o 
VG-1l96-Gl January 1958 



Logical and Numerical Aspects of Pattern Recognition and Artificial Intelligence 101 

I ~ B WIDRO"" M E HOFF 
A.daptive switching circui's 
Stanford Electronics Lab Stanford California Technical 
Report No 1553-1 June 1960 

13 F ROSENBLATT 
On the convergence of reinforcenwnt procedures in 
simple perceptrons 
Cornell Aeronautical Lab Report No VG-1196-G4 
February 1960 

14 R D JOSEPH 
Contributions to perceptrnn theory 
Cornell Aeronautical Lab Report No VG-1l96-G7 Buffalo 
NY June 1960 

15 H D BLOCK 
The perceptron: A model for brain functioning-I 
Reviews of Modern Physics Vol 34 123-135 January 1962 

16 A CHARNES 
On some fundamental theorems of perceptron theory and 
their geometry 
Computer and Information Sciences Spartan Books 
Washington D C 1964 

17 A B J NOVIKOFF 
On convergence proofs for perceptrons 
Stanford Research Institute Report Nom 3438(00) 
January 1963 

18 R C SINGLETON 
A test for linear separability as applied to self-organizing 
systems-1962 
Spartan Books 503-524 Washington D C 1962 

19 W C RIDGEWAY 
A n adaptive logic system with generalizing properties 
Stanford Electronics Lab Technical Report No 1556-1 
Stanford University Stanford California April 1962 

20 T S MOTZKIN I J SCHOENBERG 
The relaxation method for linear inequalities 
Canadian Journal of Mathematics Vol 6 No 3 393-404 1954 

21 S AGMON 
The relaxation. method for linear inequalities 
Canadian Journal of Mathematics Vol 6 No 3 383-3921954 

22 J B ROSEN 
Pattern separation by convex programming 
Journal of Mathematical Analysis and Applications 
Vol 10 No 1 February 1965 

23 0 L MANGASARIAN 
Linear and nonlinear separation of patterns by linear 
programming 
Operations Research Vol 13 Xo 3 May 1965 

24 D F SPECHT 
Generation of polynomial di.'~cri'l1dno.nt fu.'f!~hons for 
pattern recognition 
Stanford Electronics Lab Technical Report No 6764-5 
Stanford University Stanford California May 1966 

25 N NILSSON 
Learning machines 
McGraw-Hill Inc Ne:w York X Y 1965 

26 R G CASEY 
Linear reduction of di1Jwnsionality in pattern recognition 
IBM Research Report R C-1431 Yorktown Heights N Y 
March 19 1965 

27 G H BALL D J HALL 
ISODATA, an iterative method of multivariate analysis and 
pattern classification 
Proc of International Communications Conference 
Philadelphia June 1966 

28 0 L MANGASARIAN 
M uUi-surface method of pattern separation 
(to be published) 

29 H L DREYFUS 
Alchemy and artificial intelligence 
The RAND Corporation Santa Monica California 
December 1965 

30 A NEWELL H H SIMON 
Computer simulation oj human thinking 
Science Vol 134 2011-2017 December 22 1961 

31 I P PAVLOV 
Conditioned reflexes 
Oxford University Press New York N Y 1927 

32 D A SCHOLL A M UTTLEY 
Pattern discrimination and the visual cortex 
Nature 387-388 February 28 1953 

33 W A CLARK B G FARLEY 
Generalizations oj pattern recognition in a 
selJ-organizing system 
Proc W J C C 86-91 1955 

34 S BAKERS 
Techniques of adaptive decision tnaking 
General Electric Company Electronics Laboratory 
Technical Information Series R65ELS-12 Syracuse 
New York October 1965 

35 G L ~AGY 
Prospects in hyperspace: Stale of the art in pattern 
recognition 
IBM Research Paper RC-I869 IBM Watson Research 
Center Yorktown Heights New York June 1967 

36 M D CANON C D CULLUM 
The determination oj optimum separating hyperplanes I. 
A finite step procedure 
IBM Research Report RC-2023 IBM Watson Research 
Center Yorktown Heights New York June 1967 

37 L UHR 
Pattern recognition 
John \Viley 8,ild SoilS IIle ~ew York l~ Y 1966 

38 G S SEBESTYEN 
Decision-making processes in pattern recognition 
Macmillan Company New York N Y 1962 





A model of visual organization 
for the game of GO 

by ALBERT L. ZOBRIST 

University of Wisconsin 
Madison. Wisconsin 

INTRODUCTION" 

No successful GO-playing program has appeared in the 
literature, although Remus! used GO as the subject of 
a machine learning study, and Thorp and Walden2 have 
considered some of its mathematical aspects. Another 
auihor3 considered GO to be. somewhat mysterious, 
making it a challenge to those interested in automating 
it. Apparently the game was described as being myster
ious to indicate that people were able to play it without 
knowing how they were able to play so well. More study 
of this complex game may reward us with new insight 
into human perceptual and problem solving abilities as 
well as foster the development of new techniques for 
artificial intelligence. This report describes a program 
which plays GO. The program uses an information 
processing model to produce perceptual features which 
are seen by human GO players, and is capable of several 
responses to the recognition of significant configurations 
of these perceptual features. 

A brief description of GO 

The rules of GO are deceptively simple. The two 
players alternate in placing black and white stones on 
+.1-.£11 ;n+A...."o ... i-;",n", "'.; n 10 v 10 """~~ Q+"",,,~ ",f +\..." ~,,~~ 
" ..... v .&..L .... uv.LI.;:n .... '-'u.Lv.l.~ V~ U ~1J A ~lJ 6J.~U.. UUV.l.J.CO V.1 \lJ.J'Ci OQ.111t:; 

00101' which are connected by row or column adjacency 
fonn a chain. Diagonal adjacency is llot ~yffici~llt to 
connect a chain. The empty intersections which are 
adjacent to a chain are its breathing spaces. When a 
chain has no breathing spaces, it is captured by the 
opponent, and the captured men are removed from the 
board. A player may place his stones anywhere on the 
board with two exceptions: (1) he may not form a chain 
with no breathing spaces unless he is capturing, and (2) 
he may not capture one stone which has just captured 
one of his stones on the previous turn. A player may 
choose to pass at any turn. The game is over when both 

of the players pass in sequence. A player's score is the 
sum of territories surrounded by his color plus the 
number of opponent's stones captured. 

Some of the basic consequences of these rules are 
illustrated by the right side of Figure 1. White can 
always capture the top black chain, but cannot capture 
the bottom black chain, if black moves Figure 1 properly. 
If black moves at either of T2 or T3 then white cannot 
occupy all of the breathing spaces of the black arIllY 
without committing self-capture. This is because the 
black army would have two separate eyes. The ability to 
form two eyes is what determines whether an army is 
safe or not. White will score 16 points in the upper right, 
and black will score four points in the lower right corner. 
If white moves RIO, then black may not respond Rll, 
but must move elsewhere on the next turn. This pre
vents cyclic capture. 

The rules scarcely describe how GO is actually played. 
Interested readers are advised to seek a demonstration 
from someone who plays GO, or to read one of the 
OOginner's books.4 ,1i The situations in the left hand 
corners of Figure 1 are representative of real play. Al
though the stones are not connected into long chains, 
they threaten to form chains which will surrQund 
+~-!+,,_. ~l,,_~ +\...~ ~,, __ ~~ ~_~ ..... ~ ... "'" ",.fl ~\...'"' h"'n .. ~ 
lJCllIIJVI'y <:IoIVlle lJllC \JVIllCI.:> <:IollU CU5~ V.l UUlV .... ~~ ....... 

Efficient play· requires that as much territory be 
s~~tQhed out with ~ few §to:p.e~ ~ possible. Throu~h." 
out the rest of this p~pef' !ilyen aggregat~ 0,1 stq:qes 
which threaten to inv9.d.e or surround territory will be 
called armie8. 

The problem of complexity 

GO is considered more difficult than chess by many 
people who know both games.1i Numerical measures of 
the complexity of checkers, chess, and GO tend to SUp'" 

port this belief. The number of paths down the move 

103 



104 Spring Joint Computer Conference, 1969 

ABCDEFGHJKLMNOPQRST 
19 19 

18 8 I 
I I ! I I I I I I I 17 7 I 

! ! 
I 

16 
15 
14 
13 
12 
II 
10 
9 
8 
7 
6 
5 
4 

3 
2 

I i I 

16 
15 
14 

13 
12 
II 
10 
9 
a 
7 
~ '--
4 

3 
2 
I I 

ABCDEFGHJKLMNOPQRST 

Figure }-An illustration of GO 

tree has been estimated at 1()40 for checkers6 and 10120 

for chess.7 A rough estimate for the number of paths 
down the move tree for GO is 361! or 10761

• By this 
reasoning, GO played on a 6 X 6 board would be com
parable to checkers in complexity, and GO on a 9 X 9 
board would be comparable to chess. 

A slightly better extimate of the true complexity of 
these games may be obtained. For checkers, suppose 
that a choice of three reasonable moves occurs approx
imately 20 times per game. Then 320 is a crude estimate 
of the number of checker games which might occur 
in ordinary play. Good chess players usually. consider 
less than five move choices, hence 560 estimates the 
number of reasonables chess games. A typical GO game 
lasts about 300 moves and a choice of 10 reasonable 
moves occurs at least 100 times, thus there are at 
least 10100 GO games which could occur in hlL.'lln play. 

Such calculations, however crude they may be, are 
important to anyone interested in the automation of 
these games. The complexity of GO may hinder at
tempts to program it with the methods developed for 
chess and checkers.6 ,7,8,9 The move t.ree for GO is ex':' 
ceedingly deep and bushy, hence any form of heuristic 
search can explore only a relatively small portion of the 
complete tree. An alternative approach might be to 
concentrate upon extremely powerful methods of evalu
ation of the board situation, thus enabling better play 
with a more restricted search. Another possibility might 
be to have the lookahead be directed. by pruning meth-

ods which correspond to the development of strategies. 
Time will tell whether a successful GO playing program 
can be written using such methods. 

The visual natu1'e of GO 

The recognition and discrimination of meaningful 
perceptual stimuli presupposes the active formation 
of stable perceptual elements to be recognized and 
discriminated. A person lacking this process would 
combine all sorts of stimuli into meaningless groupS.10 
The choice of a move in GO usually involves the recog
nition of configurations which are meaningful to the 
player. This raises the question as to whether certain 
basic perceptual processes are necessary for the com
prehension of a GO board. The following examples 
might suggest that the answer is yes. 

First, consider the spontaneous grouping of stones of 
the same color which occurs during visualization of a 
GO board. The stones are organized into distinct 
groups, clusters, or armies even though they may be 
sparsely scattered about or somewhat intermingled. 
Grouping is usually the result of proximity of stones of 
the same color or the predominance of stones of one 
color in an area, but can be affected by other character
istics of the total board situation. For example, stones 
which fall into a line are likely to be grouped. Kohlerll 

and others have found grouping to be a basic perceptuai 
. phenomenon. Yet the recognition and discrimination 
of groups or armies is necessary for competent GO play. 

Closely related in grouping is segmentation, which 
is also discussed in Kohler. The area subtended by the 
board is divided into black and white territories, each 
of which maintains its own integrity in the visual field. 
These segments are a measure of the territory which is 
controlled by either side, hence are an important 
factor in the assessment of a GO board. 

Another example is the formation of "spheres of 
influence" about a stone or group of stones. Influence 
is not an inherent property of stones, but appears to be 
induced in them by our processess of perception. Yet 
they are a crude measure of the potential of a stone or 
army of stones for controlling territory on the board. 

The spontaneous image' formed by the visualization 
of a GO board appears to be a complicated assemblage 
of perceptual units and subunits. For example, the 
st.ones themselves have their own perceptual identity 
while at the same time they are parts of chains or 
groups of stones. The phenomena discussed above 
show that some of these perceptual processes may be 
very important to the ability of GO players to compre
hend this complex game. 

It is not within the scope of this report to discuss 
flLt1:her the psychological nature of these perceptual 



Model of Visual Organization for Game of GO 105 

mechanisms, or to speculate upon the physiological 
basis for them. Let us adopt the term visual organization 
to mean the formation of such stable perceptual ele
ments as have just been discussed, and let the resulting 
"mental picture" be called the internal representation. 

Given that a player "sees" a fairly stable and uni
form internal representation, it follows that familiar 
and meaningful configurations may be recognized in 
terms of it. The result of visual organization is to 
classify a tremendous number of possible board situa
tions into a much smaller number of recognizable or· 
familiar board situations. Thus a player can respond to 
a board position he has never encountered, because it 
has been mapped into a familiar internal representa
tion. 

This report will describe a simulation model for 
visual organization. It will use transformations which 
create information corresponding to the perceptual 
features discussed above, storIng them in a computer 
internal representation. 

A heuristic for visual organization 

We now examine the problem of modeling the basic 
visual organization of the GO board. A reasonable goal 
would be to determine the segmentation of the board, 
the domains of influence of the stones, and the armies 
of stones, storing that information in a computer 
internal representation. Before building the computer 
model, it is of interest to consider physical processes 
which give some measure of the influence of physical 
bodies. 

There are many candidates in the physical sciences 
for the process we desire. For example, white stones 
could be electrons, and black stones could be protons. 
Contiguous areas of positive or negative potential 
could determine the segmentation of the board, and the 
value of the potential would measure the influence of 
the stones. Of course, the solution would be discretized 
to the points of the GO board, and the potential at an 
unoccupied point could determine how well protected 
that point is by black or by white. 

For another candidate, let the GO board be made 
of blotter paper and simultaneously place a drop of 
oil under each black stone and a drop of water under 
each white stone. Contiguous areas of oil or water would 
determine the armies and the segmentation of the 
board. Since the oil and water would spread evenly, 
the concentration would not indicate the influence 
of the stones or even their location. 

Other possibilities might involve electrical networks 
or heat conduction, etc. These physical models are 
considered because they are well defined and easily 
calculated, whereas the visual process we are attempting 

to model is ill defined. Let us consider in more detail 
the first two examples given above. In the center of 
Figure 1, the electric charge analogy woul~ give the 
black stone at J10 some weight to the right of the wall 
of white stones, whereas oil from the black stone ~ould 
never get past the wall of water spreading from the 
\V hite stones. Perceptually speaking, the black stone 
has no influence to the right of the white stones. The 
oil and water analogy could not differentiate between 
the two situations in the right hand corners of Figure 1, 
whereas the electric charge analogy would show four 
strongly surrounded squares in the lower corner. Thus 
the oil and water analogy does not reflect our perception 
of this situation. The finite difference method used by 
the program was chosen with both of these models in 
mind, and has the good features of both. 

It is assumed that a game is in progress and the board 
position is stored. The position is transferred to a 19X 19 
integer matrix by placing 50 for each black stone, 
-50 for each white stone, and 0 elsewhere. Then each 
point which is positive sends out a + 1 to each of its 
four neighors, and each negative point sends out a 
-1 to each of its neighbors. These numbers are accumu
lated as this procedure is repeated four times. Figure 2, 
which is taken from the game listed at the end of this 
report, illustrates the results of the visual organization 
heuristic. The negative integers are indicated by an 
underline. 

Segmentation can be assessed by determining the 
contiguous areas of positive or negative integers. The 
dashed lines in Figure 2 indicate the resulting segments. 
The stones which lie in a segment may be considered 
to be a group or army. The integer values at a point 
give a measure of the degree of influence exerted by 
the stones nearby. The influence of stones of the same 
color may reinforce one another, whereas the fields 
from opposing stones seem to repel and cancel one an
other. Inspection of Figure 2 should convince us that 
at least a crude resemblance to perceptual processes 
has been obtained. The array of Integers from the 
visual organization heuristic contains, at least implic
itly, information corresponding to an internal repre
sentation. This heuristic, together with a routine which 
is capable of creating an explicit computer internal 
representation of the resulting information, will be 
part of a model of visual organization. The specific 
details of the entire GO-playing program will now be 
given. 

The program 

The program is written in ALGOL for the Burroughs 
B5500 computer. Interaction is provided by remote 
teletypes. Each move requires 5 to 8 seconds of central 



106 Spring Joint Computer Conference, 1969 

I 
ABC 0 E F G HIJ K L M N 0 P Q R S T 

9 I I 19 
18 
17 ,f--
16 

('J 
15 

("r.J r ~-14 
! : 13 

(' ',J I 
~ ~. J I 
II i 
10 ; 
9 

i 8 
I 1. ~- -h I 6 I 5 ! 

.. ~ rho' 
4 I ,! 
3 '-= J 
2 

I 

1'-= "\ 

~-
_ J 

~- ~- -- '\ 

1 
! 
! (' -~, ,r: 
\. J "t\ r ~-. J 

'\: ~r 1-- h 
! r. J 

! i 
I ,,~-

I , 
"'~-F--

I 8 
i7 

I 6 
I 
I 
5 
4 
I 3 
2 ~-J;; 
I I 

10 
9 
8 
7 

~-~ 
6 
5 

-.~-

4 
3 
2 
I I ABCOEFGHJKLMNOPQRST 

o ~ ~ ~ £ 2 ~ 1 7 1 6 5 5 5 7 10 59 12 57 
1 ! ~ ~ 12 11 11 ~ 50 12 10 10 9 9 10 62 16 63 61 
l 2.lSl ~ !Q 21 sz. 22 !!:£ 56 13 62 12 11 12 14 63 14 11 

l ~ 1Q 2 0 4,6 57 56 64 12 12 12 62 13 64 64 14 59 
Z ~ ~ 0 ? 56 ? 6 6 5 8 9 9 11 12 63 15 13 10 
~ ki 2 3 6 1 22 ~ 21 1 3 6 8 8 11 14 64 63 11 
Z i 1. 7 54 52 14 U 11. .l 4 10 8 10 12 63 65 16 59 
& 0 ,11 6 ~ U 62!Q ~ 7 58 5 12 63 16 65 56 4 
1 4 10 62 6 ~ 11lQ Z 1 2 0!!:Z 49 66 57 50 .5Q ~ 
2 5 9 12 1 ~ lQ 2 £ 1 ~ Z g 48 42 42 .5Q Q.5. 12 
1 4 8 12 54 22 11. 11 ~ £ ~ lQ g 14 ~ 50 42 51. 60 
2 5 9 11 5 ~ U 62!Q ~ 10 62 12 g .a 51 ~ 1.l 11 
1 3 7 61 4 ~ 12 lQ ~ Z ~ lQ 11 11 52 50 .51UZ .51 
l J tr 8 3 ~ 11. lQ..1. j, §. ~ 1Q 1.1 ~.57 58 57 53 
So 11 II 54 1 ~ g 10 ~ Z Z 2. lQ 62 Z 2 58 1 4 
!l a .§. 4 1 11 1.£ lQ lQ lQ ~ ~ ~ lQ 12 .l §..5.l 1 
~~2~.l62112lQ6210§.§.~106211111 
Z U u. .s& §J 1& ~ §. ~ lQ ~ !t: 1.J± ~ 10 2 Z !t: 

! 2 ~ 2 2 1 !t: 1 !t: .l !t: ~ Q ~ ~ .l .l 1 ~ 

Figure 2-Results of the visual organization heuristic 

prooessor time or about 5 to 20 seconds of real time, 
depending upon the number of users being serviced by 
the system. The machine code occupies 6300 words 
of core memory and 5400 more words are required for 
storage arrays. The program has two distinct parts. 
Part I has a coordinated set of procedures, including 
the visual organization heuristic, which operate on the 
board position to produce a computer internal repre
sentation. Part II has a set of procedures which use 
the internal representation to calculate a move. 

Part I realizes a model of visual organization for 
GO, producing an analogue of a human player's per
ception of the board. Part II is not an attempt at simu
lation, but a coliection of heuristics which mayor may 
not resemble cognitive processes, 

Part I 

This part of the program consists of a set of compu
tations which transform the board position into a 
computer internal representation. The internal repre
sentation contains an analog of important perceptual 
features of the board position. This information is 
stored in seven 19X 19 integer arrays in an explicit 
fashion. That is, the integer values are a direct meas
ure of the features they represent. 

For example, consider the features of perceptual 
grouping and segmentation which have been deter
mined by the visual organization heuristic. It would 
not be easy to reference this information in the array 
shown in Figure 2. Another process must create an 
array which gives a direct measure of the size of the 
segments and the groups of stones. 

Figure 3 illustrates the results of the processes which 

r" --- -- ~-
i 
I 
I 

--_. -- -~ 

-~-- ~: • 
I 

603 603 603 603 603 603 
r-------------

603 603 603 I 704 704 704 I 
i 

603 603 603 I 704 704 704 I ____________ J 

704 704 704 704 704 704 

704 704 704 704 704 704-
---------, 

501 501 I 704 704 704 704 I 
I 

501 501 I 704 704 704 I 704 

Figure a-Internal representation of grouping and segmentation 



Model of Visual Organization for Game of GO 107 

calculate perceptual grouping and segmentation. These 
processes act upon the array of integers produced 
by the visual organization heuristic to produce an array 
of integers which are a part of the internal represen
tation. One of these numbers (e.g., 603) may De inter
preted as follows: the hundreds indicate the size of 
the segment which covers that point (600 is a medium
sized segment) and the ones indicate the number of 
stones which lie in that segment (there are 03 black 
stones hence 600 + 03 = 603). 500 indicates a small 
segment with less than 10 empty intersections, and 
700 indicates a large segment with more than 25 empty 
intersections. If no segment covers an intersection, 
then 0 is stored in the corresponding cell of the array. 
The empty intersections in a segment are counted as 
they are a better measure of the safety of the army 
of stones in a segment. The information is compressed 
by having the size and the number of stones in the 
same array for purposes of efficiency only. 

The array shown in Figure 3 is typical of the seven 
arrays which constitute the computer internal repre
sentation. Numerical values correspond in an explicit 
fashion to feature which we have considered to be 
formed by visual organization. 

The second array gives a numerical measure of the 
influence of the black and white stones. It is an exact 
copy of the array of integers shown in Figure 2. 

The third array measures the number of breathing 
spaces in a chain. This array is illustrated in Figure 4. 

The fourth array measures the number of stones in 
a chain. This array is calculated in the same fashion 
as the third array. 

The other three arrays of the internal representation 
contain integers which indicate the color of stones, 
the color of segments, and the number of stones of 
each color which are adjacent or diagonal to the points 
of the board. 

Part II 

The second part of the program uses the recognition 
of "familiar" configurations in the computer internal 
representation as the basis of its calculations. The 
mechanics of this recognition process will be described 
first. 

Figure 5 illustrates a configuration which the pro
gram is able to recognize. At point A, there is a black 
stone which has only one breathing space left. Point 
B is an empty intersection. Point C has a black stone 
which may be part of a safe army of men. Note that 
the geometric arrangement of this 3-tuple is as im
portant as the three features. The program contains 
a prototype of this configuration which we shall call 
a template. 

o 

o 

o 

o 

o 

o 

'" 

,,, 

" " " 

o o o o 

o o o o 

o 2 5 5 

6 I o o 

6 6 o o 

o o o o 
Figure 4-Intemal r'epre..<;entation of hreathing spaces 



108 Spring Joint Computer Conference, 1969 

I I I 

1'1"\ ... ~ ..oil 

'101' """c 'II 

I"!I. ..... 
"- ""A B 

I f 
I I 

Figure 5-Illustration of a :,;ignificant configuration 

A template consists of an n-tuple of references to the 
internal representation together with a specification 
of the geometric arrangment of the elements of the 
n-tuple. Thus the template for our situation ABC is: 

(0,0) black stone, 1 breathing space 
(1,0) empty intersection 
(1,1) safe black stone. 

The pairs of numbers are the relative coordinates of 
the references. The references themselves must be 
translated into a numerical form which can be used 
to process the internal representation, for example: 

safe black stone = 601 thru 900 in array 1 and 
1 thru 1 in array 7. 

That is, a point satisfies the reference "safe black 
stone" if the value of that point in array 1 of the inter
nal representation lies between 601 and 900 inclusive 
and the value in array seven equals 1. A 1 in array seven 
tells us that we have a black stone on that point, and 
a 601 to 900 tells us that we have at least a medium
sized segment. 

The program has the ability to scan such templates 
to all positions, all rotations, and all reflections of the 
board, thus recognizing the configuration-ABC wherev
er it occurs. If the template is carefully specified, then 
configuration ABC can be quite a general occurrence. 
For example, Point A could be connected to a chain 
of stones with 1 breathing space left. Allowing this 
would give the template more generality. 

The present program has 8;) templates capable of 

recognizing a wide variety of configurations. A template 
that matches implies either a move or a heuristic 
lookahead procedure. In fact, there are two types of 
templates for these two purposes. 

The first type of template specifies a weight of im
plication and a pair of relative coordinates for the 
move which is implied. For example, the template for 
configuration ABC described above would specify 

(1,0) 500 

which means that a weight of 500 is assigned to the 
point B in Figure 5. These weights are stored in a 
special 19 X 19 array reserved for this purpose. Several 
templates may imply the same move in which case 
the weights are summed in this array. The highest 
sum of weights indicated the best move. Bad moves 
and illegal moves usually have a negative weight. 

One more example of this type of template will be 
given: 

(0,0) 
(1,0) 
(0,0) 

white segment 
black segment 
weight 40. 

This template implies a move with weight 40 at the 
interface between opposing segments. A weight of 40 
is relatively small, hence it will merely give a tendency 
towards moving in these areas. This template is very 
general; it can match as many as 100 times in a single 
scan of the board. It gives a slight tendency to move 
between opposing armies which. helps the program's 
play. 

There are 65 templates which imply moves in the 
manner just described, the other 20 templates imply 
a heuristic lookahead. The difference between these 
two types of templates is that instead of a weight 
being placed in the weight array, an x is-placed in a 
19 X 19 array as an indication of the template match. 
The x's are a mark to indicate that a move tree search 
should be performed in the local area about the x. All 
of the templates are applied before the search is begun. 
Figure 6 illustrates a configuration which would be 
matched by some of the 20 templates, and the location 
of the x's placed by those templates. 

The array which contains the x's is used as a mask 
to determine the extent of the search and the depth 
is fixed at two moves for each side. The search is actually 
performed twice, once for ·white moving first, and once 
for black moving first. At the end of these searches, 
it is noted whether either side can force a capture by 
moving first. This information tells the program wheth
er a move is necessary to cause or avoid a capture. 



Model of Visual Organization for Game of GO 109 

,~ ," ,~ 

"I' '" 
~, 

, ,II .... , "'~ " '4 ji' ,~ '1' " 

I't\ ... .. II. '\11 " .... .... ... jl' " 

I't\ 1" I't\ 1" 

" .... .... .... 

Figure 6-Creation of a mask for lookahead 

For example, if black can capture whether he moves 
first or not, then it is unnecessary for him to move. 
The decision to move is recorded by placing a weight 
of 4000 in the array already discussed in connection 
with the first type of template. 

In many cases a depth of two moves is not sufficient 
to determine whether capture takes place or not. The 
most common instance of this is known as the "ladder 
attack" which is illustrated in Figure 7. These situa
tions are characterized by the repeated occurrence 
of moves which force the opponent to reply or to be cap
tured. In such cases, the search procedure continues 
to a depth of up to 100 moves to see whether capture 
finally takes place. No branching takes place during 
this extension of the look ahead. 

When all of the templates have been applied and 
the heuristic search procedure is through, the program 
simply chooses the move which corresponds to the 
highest sum of weights in the array of weights. If the 
maximum weight is below 100 then the program passes. 

This completes the description of the program except 
for a few minor details of operation. Three seconds 
are used for the creation of the internal representation 
and two seconds are used by the template matching 
procedure. The heuristic search takes from .1 to 4 
seconds. A challenger has the option of moving first 
or second, and can also give the program a handicap 
of any number of stones on the board. The program 
is not able to haggle over the final score as GO players 

J"'''' ~ ~ 

" ~., 

J"" J"'''- i'" 

" ,~ " 

Figure 7 -Illustration of the "ladder attack" 

often do, hence a referee may be required to supervise 
the scoring. 

RESULTS 

The program now has a record of two wins and two 
losses against human opponents. The opponents can 
best be described as intelligent adults who know how 
to play GO, have played from two to twenty games 
but have not studied the game. The program appears 
to have reached the bottom rung of the ladder of human 
GO players. Interested readers are urged to get a GO 



110 Spring Joint Computer Conference, 1969 

board and play through the game listed at the end of 
this report. 

The first type of template, those which imply moves, 
are responsible for about 80 percent of the moves made 
by the program. These templates give the program fairly 
good positional play, especially in the first part of the 
game. 

The remaining templates, together with the look
ahead search, are valuable for avoidance of traps which 
cause the loss of a stone or two. The opponent's play 
is also restricted since he must play more carefully. 
The loss of one stone can have a great effect upon the 
outcome of the game. The program is able to play 
without these templates, hence without the search, 
but opponents soon learn to take advantage of this 
weakness. 

The program plays as if it can "see" such things as 
the influence of stones, the segmentation of the board, 
and the armies of black and white' stones. This alone 
makes it a reasonable candidate as a model of visual 
organization for the game of GO. It would be of interest 
to test the model by performing standard psychological 
experiments. For example, a drawing of a GO board 
could be shown to a human subject with the instruc
tions to segment the board with dashed lines. The 
results could be compared with the segmentation given 
by the program. Further work may show how i...llpor
tant perceptual mechanisms are to the ability of humans 
to play GO. 

APPENDIX: A GAME BETWEEN THE 
PROGRAM AND MR G. COWAN 

The following game, played between the program and 
lVIr. George Cowan, demonstrates that the program 
has reached at least the bottom rung of the ladder of 
human GO players. Mr. Cowan is an undergraduate 
at the University of Wisconsin, and had five games 
experience at the time of the contest. The even-num
bered moves are by the program (white). Moves which 
resulted in a capture are indicated by asterisks. The 
comments are by Professor Paul Purdom, a good GO 
player, who has shown patient interest in the various 
GO-playing efforts at Wisconsin. 

1. D 3 Q3 
3. E 9 D17 
5. Q16 H12 

too early for such a move 
7. F15 R15 

too close to opponent 
9. 016 M 8 

11. R14 H 8 
shouldn't give up the corner 

13. 
15. 
17. 

lVI12 
D5 
D 7 

C 5 
F12 
J17 

still important moves rernail1il1g in the corner 
19. M17 R 8 
21. R 5 S 4 
23. Dll K 3 
25. Q11 G 5 
27. Q15 F 6 
29. K16 F17 
31. G16 G17 
33. H16 F 3 
35. E13 E 2 

still ignoring upper left side 
37. Q 7 F 8 

wasted move 
39. J18 S 7 
41. Q 8 o 5 
43. R9 P 6 
45. 8 8 R 7 
47. R6 8 9 
49. T8 T 9 
51. 810 T 7* 
53. T10 RIO 
55. Q9 811 
57. Rll TIl * 
59. 812 08 
61. 8 6 P 7 
63. T6 P 9 
65. Q6 Q10 
67. P10 810 

a free gift from black 
69. 011 Q12 
71. R13 010 
73. PH NH 

N10 a better move 
75. R12 H17 
77. J16 D2 
79. P12 B 3 
81. Q13* B14 

at last! C14 better 
83. K17 817 
85. R16 815 

seems to ignore sacrifices 
87. 814 816 
89. R17 R18 
91. Q18 F 9 
93. 818 819 
95. R19* T17 
97. T19* T14 

both players wasting moves 
99. T13 FI3 

101. T16 T15* 



103. T18 GI4 
105. T16* JI4 
107. JIO JII 
109. J12 K12 
Kl1 better 
111. N10 J13* 
wasted 
113. o 9* P 8 
115. K9 L14 
117. M14 L13 
M13 better 
119. KI5 K9 
121. L15 MIO 
123. Mll Lll 
125. N12* N13 
127. Q 5 MI3 
129. M15 013 
131. N7 N6 
should connect N8 and cut stone 
133. o 7 P 5 
135. P14 Q4 
137. LIO M9 
139. L9 KIO 
141. L 8 L 7 
143. K8 J 8 
145. L12 K 7* 
147. KI4 E 5 
149. K13 H10 
wasted 
151. N14 P13 
153. F16 E16 
155. E15 D15 
157. C16 C15 
159. E18 E 7 
161. E17 D18 
163. D16* C17 
165. B17 CI8 
167. B18 FI8 
169. EI9 H18 
171. K18 GI9 
173. J19 FI9 

Model of Visual Organization for Game of GO 111 

195. C 7* C 6 
197. B 7 E8 
199. D9 C 4 
201. EI0 B 5 
203. Ell E 4 
205. FlO GI0 
207. G15 G9 
209. J15 H14 
211. F14 012 
213. L 4 L 5 
215. L 3 K4 
217. K2 M3 
219. M2 N3 
221. M4 N4 
223. L 2 N2 
225. K5 J 5 
227. M 1 K 6* 
229. J 1 H2 
231. J 2 J 3 

It was agreed to stop the game at this point. The 
resulting score was: Mr. Cowan ... 59, program ... 66, 
a seven point victory for the program. Approximately 
15 minutes of computer time was used, and the entire 
contest took less than two hours of real time. 

) 

ACKNOWLEDGMENTS 

This research was conducted with the support of NIH 
grant MH 12266 and NSF grant GP 7069. 

BIBLIOGRAPHY 

1 H REMUS 
Simulation of a learning machine for playing GO 
Proc IFIP Congress 1962 

2 E THORPE W WALDEN 
A partial analysis of GO 
The Computer Journal Yol 7 No 3 1964 

3 I GOOD 
The mystery of GO 

the program would be much better if it could recognize 

New Scientist January 21 1965427 
4 0 KORSCHELT , 

The t~ry and practice of GO 
Tuttle Rutland Yt 1966 eye possibilities 

175. EI6 
177. B16 
179. E12 
181. EI4 
183. B 8 
185. B 9 
187. C 9 
189. A 7 
191. B 6 
193. D 4 

B19 
H15 
Fll 
B 7 
C 8 
R4 
S 5 
T 5* 
D6 
D8 

5 E LASKER 
GO and GO-MOKO, the oriental board games 
Dover New York 1960 

6 A SAMUEL 
Some studies of machine learning using the game of checkers 
IBM Journal of Research and Development Vol 3 No 3 
1959 

7 A NEWELL 
The chess machine 
Proc Western J C C 1955 

8 C SHANNON 
Programming a digital computer for playing chess 



112 Spring Joint Computer Conference, 1969 

Philosophy Magazine March 1950 
9 R GREENBLATT D EASTLAKE III S CROCKER 

The Greenblatt chess program 
Proc F J C C 1967 

10 P GREENE 
Networks which realize a model for information 

representation 
Transactions of the University of Illinois Symposium on 
Self-Organization 1961 

11 W KOHLER 
Gestalt psychology 
Liveright New York 1947 



Assembly of computers to command 
and control a robot * 

by LOUIS L. SUTRO 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

and 

WILLIAIH L. KIL:JJIER 

Michigan State University 
East Lansing, Michigan 

INTRODUCTION 

There is a growing consensus among predictors of 
science that the world is about to witness the evolution 
of 'what might be called a new species-the robot. 
Whereas, animal evolution was a trial-and-error process, 
robot evolution appears likely to be carefully con
trived. Starting where animal evolution left off, 
that is, with man, robot evolution promises to excel 
man is some respects, and be excelled by him in 
others. 

To the computer profession, one challenge in this 
progression is to develop computers for robots that 
match those that have been found indispensable in 
men. We are aided in this task by the description of 
the human nervous system in computer terms by 
physiologists such as Warren JicCulloch. 

With his description before us, we have devised 
working models of t\VO of the five principal computa
tional domains which he identifies in the nervous 
system of vertebrates, including man. Others are 
devising working models of other domains. Implemented 
in light, portable hardware and connected together, 
these computers promise to provide intelligence for 
a system that will sense its environment, move about 
and perfonn useful tasks. 

* The work reported here was supported in part by NASA 
Office of Space Sciences and Applications, Bioscience Programs, 
under Contract XSR 22-009-138, in part by XASA Electronic 
R~arch Center under Grant NGR 22-009-140, in part by 
AIr Force Office of Scientific Research under Grant AF-AFOSR-
1023-66, and in part by the U. S. Air Force, Wright-Patterson 
B~se, through contract AF 33(615)-3885. 

Who needs a robot? Everyone who would like help 
with tiring chores. However, early models with large 
arms and wide wheelbases cannot move around the 
home or office. One need that has led to the develop
ment about to be described is exploration of the planet 
lVlars. For this task, robot development is being pursued 
not as an end in itself but as a framework within 
which to develop an automatic visual subsystem. 
A second need is for a computer to command a system 
receiving several forms of input, such as sight, sound, 
touch, and reports on its own movements. Here again 
robot development provides the framework for the 
computer development. 

As well as can be detennined, l the surface of ~fars 
is open country where a wide-wheelbase vehicle should 
be at home. ::Hore to the point, the only exploration 
there for a decade or more will have to be either by 
a remote-controlled or an automatic vehicle. The 
distance is such that a single bit of infonnatioll re
quires V5 minutes, on the average, for transmission 
from Jlars to earth. '¥ith such a transmission delay, 
remote control seems hardly practical. An automatic 
vehicle or robot thus seems imperative. 

While the surface of Jlars is colder than the surface 
of the earth, there may be hot spots due to volcanic 
or other sub-surface activity. All the moisture on 
lVIars, according to our instruments, is in the form 
of either gas or ice. The atmospheric pressure is too 
low to hold it as water, but it might pass through the 
water phase in these hot spots, lasting as water long 
enough to make possible life as we know it.2 

To go to these hot spots, if indeed they exist, poke 

113---------------------------------



114 Spring Joint Computer Conference, 1969 

around them, pick up and examine samples seems 
the best way of finding out what is there. Even if 
there is no life on lVI ars , there are cliffs formed at 
the edges of craters, that need to be examined for 
their geology. The craters need to be climbed into 
and out of. To go from one crater to another, crossing 
must be made of the ravines called "canals". 

Research and development 

The robot design described here began as an effort 
to design eyes for the artificial intelligence that Marvin 
l\1insky and John McCarthy called our attention to, in 

the fall of 1958. Persuaded that eyes for artificial in
telligence could be achieved only by employing ideas 
from anin.lal vision, one of us (Sutro) approached Dr. 
lVlcCulloch for advice. The collaboration that ensued 
led first to an analytical model of an animal retina that 
recognizes objects, namely, the retina of a frog. 3•4 It 
led next to a proposal to NASA to develop means of 
reducing, for transmission to earth, pictorial data 
acquired in the search for evidence of both life and 
geological changes on lVIars. Supported then by the 
NASA Bioscience Programs, we undertook this in the 
maIUler Dr. IHcCulloch and we thought best, namely, 
to model animal vision in lightweight, low-power 
hardware. Study of frog vision showed how recognition 
of a simple shape (a bug) can be achieved in two levels 
of computation, but it did not carry far enough the 
data reduction we felt was required. ~ eeded, we felt, 
was reduction of a stereo pair of im~ges on :Vlars 
to a pair of line drawings with shading, as we primates 
do. Geologists and biologists make line drawings with 
shading to represent what they see. The lines portray 
edges, angles and silhouettes. The shading conveys 
the brightness of surfaces. 

IVIan forms in his head a model of what he observes. 
Formation of a line drawing with shadings is a stage 
in the computation of this model. However, as Dr. 
McCulloch points out, the vision of a primate cannot 
be modeled by itself. Data flows not only inward from 
the images, but outward from the brain to adjust 
the filters, focus, convergence and direction of gaze 
that select what will flow inward. For a visual system 
employed in a single position on l\iars, these adjust
ments can be either preset or changed by commands 
from earth, but when the system is required to move 
about, the commands to adjust it can scarcely be 
sent from earth. They have to be generated on site. 

To develop a command computer one of us (Kilmer) 
undertook to model the part of the vertebrate brain 
that decides from information received through all 
the senses what class of thing the animal will do from 
moment to moment. This is the core of the animal's 

reticular formation, extending through its brain stem 
and the length of its spinal cord. Support for its develop
ment came first and continues from the Air Force 
Office of Scientific Research, came then from NASA's 
Electronic Research Center, and comes now from the 
U.S. Air Force bionics programs. 

Cameras and computers under development are 
pictured in Figure 1. At the left is a binocular pair 
of TV cameras of which sufficient study has been made 
to indicate that each camera can be built to view the 
world through both wide-and narrow-angle lenses. 
Receiving the output of the camera is the visual 
first stage computer which enhances contrast in an 
image, as an animal retina does. Next to it are switching 
filtering and comparison structures, we call the visual 
second stage computers. A model of the environment 
consists of relations formed in this second-stage 
visual computer and stored in the visual part of the 
relational computer. A line, which indicates sharp 
change in luminance, is a relation of high spatial 
frequencies. Shading, which indicates the difference in 
luminance of areas, is a relation of low spatial fre
quencies. Each filter passes one band of frequencies 
more than others. Commands to adjp.st filters, focus 
and direction of gaze are shown a.8 arrows rising from 
the command computer in Figure 1. Since these 
commands '\-vill pass through structures not shown, 
the arrows are not drawn directly to the cameras and 
visual computers. 

Note the dashed boxes. The present locator of 
edges and shades, represented by a solid box, forms 
a stereo pair of monocular line drawings. The dashed 
box marked "binocular" represents computation now 
op~rating separately to determine that pairs of points 
in the left and right views are stereoscopic (stereo), 
that is, representative of the same point in three
dimensional space. Binocular, or range-finding, compu
tation will be merged with the locator of edges and 
shades. 

A t first, we called a vehicle designed to carry this 
system "rover". As we came to conceive of it with 
other senses, beside vision, and other effectors, beside 
wheels, we renamed it "robot." 

Biological computers 

From his life-long study of the human nervous 
system,S Dr. Warren McCulloch has concluded that 
the essential features of its computations provide a 
good basis for the design of a robot. Although as a 
neurologist, psychologist and physiologist, he is 
aware of the difficulties involved in embodying mental 
functions in physical devices, he has nevert.heless 
developed a simplified model of a vertebrate braL.'1. 



Assembly of Computers to Command and Control a Robot 115 

N<It\ENCLA TURE 

IN ANiMAlS 

IN HARDWARE 

BINOCllAR 
TV CAMERA 

R 

RETINA 

VISUAL 
FIRST-STAGE 

CCWPUTER 

LATERAL GENICULATE 
BODY IN THAlAMUS (AB<WE) 

SUPERIOR COLLICULUS (BELOW) 

VISUAL 
SECOND-STAGE 
C<lt\PUTERS 

ADDITIONAL 
BINOCUlAR 

PATHS 

LINE DRAWINGS 
WITH SHADING 

----+--- CONTROL 

RANGE 
FINDER 

OF FILTER 

AREA 17 OF CEREBRAL 
CORTEX 

VISUAL THIRD-STAGE 
PART OF 

RELATiONAl C<It\PUTER 

MODELS 

I DETECTOR OF DIRECTION : 
I OF GAZE WITH RESPECT I 
I TO ROBOT I I L __________ ...J.."'/ KEY:---. FEED INWARD 

4- FEED OUTWARD 
OPERATING 
PlANNED ~_~_ -_-_' t=======_Lt=~~~~_-_L_t==~~~ L C<lt\MAND C<It\PUTER l) 

Figure I-Computers being developed. Feed outward for perception is indicated in the control of filters 

His intention is merely to suggest an organizational 
structure necessary for efficient robot performance. 

Figure 2 outlines his model of the vertebrate nervous 
system, identifying what he feels are five principal 
computational domains and their chief functional 
connections. At the left is the retina, consisting of three 
layers of cells, two of which seem to perfonn most of 
the computation. The eye is shown as representative 
of the senses because its computational capacity qual
ifies it as a principal computer; it is the foremost data 
source to the primate brain, providing two million of 
its three million inputs. Other senses shown are acoustic 
(represented by the cochlea), vestibular and somatic. 

At the upper left is the cerebrum, which Dr. IVlcCul
loch calls the "great computer" and in which compu
tation is carried out in many layers. Each of these, if 
unfolded from our brains, would be about the size of 
a large newspaper. 

The computer which controls all others is shown at 
the center right. It is the reticular core of the central 
nervous system which extends from the base of the 
cerebrum through the spinal cord. It directs the main 
focus of attention so as to determine what type of 
~~tivity is to occur from moment to moment. By com-

mitting the animal to one or another mode of behaviour, 
it controls all other computers and, through them, 
the whole organism. 

Clusters of nerve cells at the base of the cerebrunl 
comprise the basal ganglia, a computer shown at the 
lower left of the figure. Here are programmed a11 of 
the innate or learned total action patterns of the body, 
such as feeding, walking or throwing a ball. Additional 
programs are acquired through the growth of connec
tions to the motor-control nerve cells, shown along 
the bottom of the illustration. 

Completing the list of principal computational areas 
is the cerebellum, shown at the top of Figure 2. It com
putes the termination of a movement, such as reaching 
to touch an object, and requires inputs from the vestib
ular system, to detect tilt and acceleration of the head, 
and from skin- and muscle-sense cells to detect posture 
and the nature and position of what is being touched. 

Interconnected with the principal computers are 
switching structures, such as the thalamus, colliculus, 
and cerebellar anteroom. In fish, amphibians, and birds 
the superior colliculus perceives fonn and movement; 
in visual mammals, it determines the direction of 
gaze and reports by thalamic relay the cues of seen 



116 Spring Joint Computer Conference, 1969 

(CEREBRAL CORTEX) 

RETINA 

TRANSDUCERS, EITHER MUSCLES OR GLANDS 

Figure 2-Block diagram of generalized vertebrate nervous system. Feed-outward paths are not, Rhown 

motion to the secondary visual cortex. The inferior 
colliculus is concerned with auditory and vestibular 
inputs as well as with orientation of the body image 
in space. Below the colliculus is the tegmentum, which 
is concerned with the relations between things seen, 
heard, and. felt and the control of progression and 
postural righting actions.6 

Around the reticular core are specialized structures 
that could also be called computers, such as the nucleus 
of nerve cells that control respiration and other routine 
bodily functions, and the dorsal horn of the spinal 
cord, through whi-ch pass inputs from sensory cells. 
Note that the reticular core acts on all other computers 
and that they report to it. It reaches decisions with the 
aid of raw data from the sensory systems but its main 
input comes from the other computers. 

The computers of Figure 2 are shown as they are 
arranged in animals with horizontal spines. Monkeys 
and man have the same computers in approximately 
the same relation, but the arrangement is vertically 
distorted, wit.h the cerebrum: now very much larger, 

at the top. 
All tnese computers have a cOuuuon ancestry. All 

evolved from the central computer, the reticular core, 
and in so doing have established only those intercon
nections necessary for efficient communication with 
it. Out of the reticular core has thus evolved the com
plexity necessary to meet the demands of the entire 
system. 

A n engineering analog 

Figure 3 is a diagram analogous to Figure 2, labelled 
with engineering terms to suggest how the animal sys
tem can be simulated. For example, in place of the 
retinas are the cameras and the visual first-stage com
puter, previously shown in Figure 1. First stage com
puters receive imputs from all of the senses-auditory 
vestibular and somatic sensory. Each is called a com
puter rather than a precomputer or preprocessor to 
indicate that it recieves feed-outward signals from the 
central computers. 



VISUAL 
'FIRST-STAGE 
CClt\PUTER 

KEY: -- OPERATING 
- --- fIlAtND 

RElATI«WAL 
CClt\PUTER 

BINOCULAR 
LOCATOR (f 

EDGE AM) SHAD( 

Assembly of Computers to Command and Control a Robot 117 

TAUmORY 1 
I FIRST-STAGE I 

CClt\PUTER L __ ...J 

RANGE FINDER AND 
DETECTOR (f 
DIRECTION OF GAZE 
WITH RESPECT TO 
ROBOT 

T 
I 

I : 
I I 

rVESTlwR"1 
I FIRST-STAGE I 

CClt\PUTER L __ .J 

r- - ----, 
,TIMING. I COORDINATING I 
AM) 

I AUTOCORRElATING I 
tClt\PU1ER _ J 

I I I r*------~I--------------------------~ ) :--t--=--~1 a.vMNDctwPUD 1 
I L _ -L ____ '----_-_-,=t~r-I .....,:r--"'1r,----------....l 
L - - - ...l... .J;<mRa..<llIWL I .i. I r- - - - -1 ,...l::.i::: 4- ....L.. -- - ----- - ~-~ 

I ) I EXECUTIVE CClt\PU1ER \ 
I ~~(f I ~r,...--------------\ 
I SEQtDCES I .... _L..i. _____________ , 
l _____ J L __ .,... _ --, _ EfFECT~ CONTR~ _ --, __ .- _ ...,~ 

CClt\PUTATION (f DIRECTION 
(f GAZE. COfNERGENCE 
AM) FOCUS 

I I I I I J I 

i i * * i * , I \ / \ / \ / \ I '\ I \ 1'\ 
\ J \ J \ I ~ I\} \ } \~ -' - - "'", .. - ' .. 

EFFECTORS (~RA GIMBAlS. ARMS. WlELS. ETC. 

Figure 3-Engineering analog of generalized vertebrate nervous system 

Other substitutions are as follows: loops are drawn through the environment in the man
ner spoken of in an earlier section, the system is seen 
to be composed entirely of closed loops. 

command computer for 
relational computer for 

timing, coordinating and 
autocorrelating computer for 

computer of effector 
sequences for 

executive computer for 

reticular core 

cerebral cortex 

cerebellum 

basal gangJia 
(nucleii) 

lateral reticular 
nucleii 

The connections to the conunand computer shown 
in Figure 3 are only those referred to in this paper. 
Eventually this computer will connect to every sub
system and every subsystem will connect to it. Ex
amples of sensory subsystems are visual, auditory, 
vestibular, contact and kinesthetic. Examples of ef-

.fector subsystems are vehicle, anus, camera focus and 
camera gimbals. 

When the feed-outward paths are added, and control 

Logic in biological and electronic computers 

On the one hand, we have the nets of the nervous 
system; on the other, the contrived, logic of electronic 
computers. In a living nerve net, branches intercon
nect; information from every source mixes at in any 
places with information from every other source, and 
affects every output. This is called an '''anastomotic 
net". 

The electronic computers we are designing at present 
are not programmable general purpose (GP) machines. 
A GP computer is primarily intended for sequential 
computation on stored data. It is adept at taking 
data from one part of memory, modifying it, then 
putting it back into memory. The need here, however, 
is to compute on a large-volume stream of data entering 
from the outside. Accordingly, special purpose (SP) 



118 Spring Joint Computer Conference, 1969 

computers are being designed in which computation 
is performed on the data soon after it enters the system 
from one or many sources. There is no more than buffer 
storage between the entrance and the computation. 

For each of the "five principal computational do
mains" described in a previous section, we aim to build 
an electronic approximation to an anastomotic net. 
To do this we need to: 

1. Approximate its functions; 
2. simulate these approximate functions in a con

figuration that is realizable in hardware, and 
3. realize these approximate functions in an SP 

computer. 

For exalnple, to design a model of a retina we first 
approxL'lUated its flL.YJ.ction of enhancing contrast by 
the function described in a later section. We call this 
function a "visual first stage computer", are simulating 
it in a GP computer, and have partially constructed 
an SP computer to do it. Other functions of the retina 
will also be simulated such as enhancement of color 
contrast. 

To design a command computer we first approxi
mated the functions of the reticular formation in ani
mals, descrihed jn a later section. We call the successive 
simulations S-RETIC and STC-RETIC. Design of an 
SP computer to perfonn these functions is under way. 

Memory 

What characterizes the evolution of S-RETIC into 
STC-RETIC is the addition of storage or memory. 
The same will happen in the evolution of the visual 
computers. They include no memory now because, 
for early Mars landings, the intent is only to reduce 
pictorial data on ~lars for reconstrlwtioll and viewing 
on earth. The command computer, on the other hand, 
can be conditioned to respond to a pattern of stimuli, 
can drop out this conditioning in the process cal~ed 
habituation, yet can pick it up agian. The input-output 
relations that constitute this memory are stored in 
tables in the simulation of the command computer, 
but will be stored in adaptive elements in the hardware 
design. The relations are between different forms of 
stimulus and response. For example, STC-RETIC, 
when !'einjorced, remembers the mode of behavior it 
selected in response to a pattern of inputs, The rela
tional memory pf Figures 1 and 3 will remember fine 
details of this coarse relation. One reason for thus ex
tending the organization of STC-RETIC is that animals 
have successfully done this. The cerebral cortex evolved 
from the core of the reticular fonnation. 

An object will be stored, not as a picture, but as 
stimuli wpich cause the robot to do something: run 

from the object, pick it up, experiment with it. A model, 
which is a stored response to an object, can either be 
built in or learned. If we construct a robot, it will be 
to perform a USeful task, not to show us what is in its 
head. Ability to draw pictures is a skill for which the 
aptitude can be built in and proficiency learned. How
ever, in a device that is only part of a robot, such as 
the camera-computer chain proposed for an early 
Mars landing, the only useful output is a stereo pair 
of line drawings with shading. In the evolution from 
the present visual system to the visual subsystem of 
a robot, the segments of what is now a line drawing 
are likely to become features of surfaces in three-space 
which can be formed into drawings only by an added 
process. 

'Vo ,\\l"ould call this memory an "assocaitiv"'e" COffi-

put~r were it not that this term has a different meaning 
in engineering than in physiology. In engineering, it 
means "content addressable", which is not an adequate 
memory from out point of view. As Dr. McCulloch 
puts its, "The memory we need should be addressed 
on the basis of relations, appropriate to its mode of 
behavior. We know a priori that spatial relations, 
constituting objects, form categories both to guide 
locomotion, etc., and to form the bases of descriptions. 
Size and precise shape are secondary. Just as a baby 
has a built-in mechanism to find and follow faces, and 
only later to recognize particular ones, so our robot 
should see abstractions first and qualify them later 
in terms of corners, angles, surfaces and edges, as we 
do a face, in terms of eyes, nose, mouth and eventually 
ears. Since a relation can be described in a sentence, 
a computer, designed with relational addressing for 
visual relations, can be extended to verbal ones". 

First stage oj visual computation 

The scene before an animal eye or a television 
camera can be described as a mosaic of luminances. 
If you doubt this, take a luminance meter, such as 
a photographic exposure meter, and aim it in a se
quence of directions from left to right along a honzontal 
line; then in the same sequence of directions along 
a second horizontal line, below the first; then along 
a third and a fourth horizontal line; and so on until 
you have scanned a square pattern or raster. The 
readings of the meter are the mosaic of luminances. 
Inverted and exchanged left for right, this same 
mosaic is the image at the back of your eye or on the 
face of a television camera tube. 

As the luminance changes from point to point 
across the image, there is a luminance gradient which 
can be detected and represented by a dot. Sufficient 
dots form a line and sufficient lines a line dra-;ying. 



Assembly of Computers to ComIT'~nd and Control a Robot 119 

llMlNANC£ OF SCfN£, AS MEASURED BY 
TV CAM£RA IS SAMPlED AND CIWVERTED 
TO ... BIT WORDS. THEN 
OIMAPPED IN FIRST RANK OF SHIFT REGISlOIS 

FIRST STAGE 
SECOND STAGE THIRD STAGE 

I 
141 MAPS CONTRAST - ENiANCED 
lUMlNANC£S IN SECCHI RANK 
OF SHIFT REGISlOIS 

" 
Figure 4-Levels of visual computation performed on a mosaic of luminances. At levels 1 and 4, hot'izontal lines in the 

image represent bands of luminances; thus, the squares drawn on the image are oversize. The 
images are neither inverted nor turned right for left as they should be 

Addition of low resolution (low spatial frequency) 
changes in luminance gives th6 drawing shading. 

Whether we take animal vision as our model, as 
we are doing here, or develop designs independent 
of the animal, as others do, we find that three stages 
of computation are needed to achieve the abstraction 
which we call a "line drawing with shading" and make 
it useful in the command and control of a robot. 
As shown in Figure 4, the first stage enhances contrast. 
The second stage forms line drawings which are 
either mapped in the third stage or, as proposed for 
an early Mars landing, transmitted to earth. A part 
of the second stage not yet tied into the sequence of 
Figure 4, determines the range of dots mapped in 
the third stage. Still another part, to detennine shading 
in the line drawing, has been simulated hy an artist and 
will be automated and tied in later. 

The stages presently operating as a sequence are 
broken down into levels in Figure 4. Continuous 
luminance· measurements made by the TV camera 
are sampled, converted to 6-bit digital words, and, 
in levell, mapped. At level 2, parallel computation 
is performed on a number of luminance measurements 
which, for illustration purposes, is shown as 3 X 3, 
although in present experiments, it is 13 X 13. 

The Jet Propulsion Laboratory (JPL) of the 
California Institute of Technology has improved, 
by computer, the quality of pictures sent back from 
the moon and Mars and x-ray radiographs of medical 
cases. Their objective i~; "to make selected features 
easier to see. This Blight require suppression of useless 

data such as random noise and ba0kground shading 
or perhaps amplification of fine detail."7 

Our first objective on the other hand, is to reduce 
pictorial data for both transmission from l\lars to 
earth and for reconstruction there. Only after it 
has gone through reduction and transmission do we 
want to make it easter to see. Our second objective 
is to reduce pictorial data to enable a robot to see. 
Yet our objectives and JPL's appear achievable ill 
the same way, namely, by operations on t.he spatial 
frequencies in the image. 

The output of a TV camera is a waveform and as 
such is analyzable into frequencies of luminance 
amplitude in the horizontal direction of' sweep of 
the camera beam. Since the TV raster is made of 
many lines, measured vertically, the image on the 
face of the camera tube is also analyzable in the vertical 
direction. The frequencies of luminance amplitude in 
all possible directions within the plane of the image (tl'P 

called "spatial frequencies." 
Our equipment. operates on these frequencies and 

amplitudes by employing digital filters, although 
the filters can be "analog" in the sense that computer 
designers use this term. A digital filter is a matrix 
of weights which eau be made to operate on a matrix 
oj' luminances* by either of two methods. One is 
convolution of the filter with a sub-matrix of lu
minances, as in equations 1 and 2 below. The other 

* "Luminance" from now on is used t.o represent luminance 
measure men t. 



120 Spring Joint Computer Conference, 1969 

is convolution of the filter with the entire matrix of 
luminances that is the image. 

To amplify fine detail, a filter should pass high 
spatial frequencies, reject 10"'.'1 and do this in an possible 
direetions in the plane of the image. Equation 1 
shows a simple filter designed for this purpose, con
volved with a sub-matrix of uniform luminances. 

[~ ~ ~J * [=~ 
1 1 1 -1 

-~ -~J = 0 
-1 -1 

(1) 

Luminances Filter Gl 

Since the convolution sum is zero, adding it to the 
central luminance in the sub-matrix produces no 
effect. That is, there is no fine detail in the image to be 
amplified. Given a sub-matrix of different luminances 
and the same filter, the convolution produces: 

[~ ~ ~J * [=~ 
1 2 2 -1 

-1 
8 

-1 

Luminances Filter Gl 

-lJ -1 = 3 
-1 

(2) 

Added to the central luminance, it enhances contrast 
between this central luminanee and the 1 at its left. 

If the band of l's in the above matrix of luminance, 
extends indefinitely up and down and to the left, 
the band of 2's extends indefinitely up and down and 
to the right, the filter may be corivolved with all 
possible 3 X 3 matrices to form the new matrix: 

r· 0 -3 3 0 0 ·l 1\ -3 'J 1\ 1\ 

t-
v v v v 

:J 0 -3 3 0 0 

Adding this to the original matrix produces: 

[: 1 1 -2 5 2 2 

:] 1 1 -2 5 2 2 
1 1 -2 5 2 2 

Thus where contrast exists, the high luminance has 
been made higher, the low lmver. Both of the above 
methods of amplification or enhancement are called 
"lateral inhibition" because, while the center of the 
matrix is excitatory, the periphery is inhibitory.8 
The bands of enhanced light and dark that result 
from [J,pplieH,tion of the filter 9xe c9Jled ~laeh bands 

after Ernst ~1aeh who first described them.9 Our 
retjnas perform this operation so that we see Mach 
bands wherever there is a ,vide step in luminance. 

The multiplications in the above operations are 
pictured in Figure 4 as taking place in level 2, the 
summation in level 3. 

To avoid adding the convolution sum to the central 
of the original hnninances we can double the central 
weight in the filter. Furthermore, to keep most con
volution sums in scale we can multiply the filter by 
1/8. To satisfy these conditions, we select weights 
such that the central one equals twice the absolute 
value of the surround and the sum is one, e.g., 

r -1 -1 -11 
16 _1 v l/Q 

G2 = L-1 
-L I ~ -L/ U 

-1 -1 -1 
-...J 

[ -1/8 -1/8 -1/8J = -1/8 2 -1/8 = 1 (3) 
-1/8 -1/8 -1/8 

A way of keeping this on scale when applied to spots 
and edges of maximum contrast is given in Appendix A. 

Second stage of visual computation 

The second stage is being designed not only to 
reduce the contrast-enhanced inlage of a scene to a 
line drawing with shading, but to permit perception 
and recognition. Here the filter can be adjusted, as 
the image moves past it, to seek a match with features 
in a stored model. However, in each ~xperiment so 
far perfonned, the filter has been held constant. 

Figures .5 and 6** illustrate the formation of a line 
drawing of the scene in the background of Figure 7. 
The scene is lighted from high on the left, casting a 
short shadow at the right of the rock. Note that the 
contrast of the rock against its background is weak 
in the digitized raw data of level 1 (Figure 5, left), 
but strong in the contrast-enhanced data of level 4 
(FigUl0 5, right). If there if:> contrast between adjoining 
luminances, the filter will make the dark side of an 
edge darker and the light side lighter, thus forming 
Mach bands along the edges of the stone, the stick, 
the hills and the crater. 

The vertical lines in the displays of FigUle .5 are 
due to the method by which the computer of Figure 7 
acquired pictorial data. As the electron beam of the 
camera scans each horizontal line of the raster, the 
computer commands the reading of one luminance 

** A stereoscope for viewing this illustration may be obtained 
from Air Photo Supply, Yonkers, X.Y. 



Assembly of Computers to Command and Control a Robot 121 

Figure 5--Left-eye-view scope displays at level 1 (left) and level 4 (right) in the computation of the line drawings of 
Figure 6 

Figure 6-Line drawings formed at leveI7:Fine-lineleft-eye-view (left), coarse-line stereo pair (right). To see in stereo, look 
through a stereoscope at the crater, glancing nearer occasionally at the edges of the rocks and hills 

measurement.10 Since the computer employs the same 
conunand as long as it can, successive measurements 
are on vertical lines. The unevermess in the spacing 
of the lines is due .~ 0 nonlinearity in decoders of the 
display. 

Figure 6 (left) is the result of applying, at levels 
5 and 6, an edge-detecting filter and· threshold, that 
represent Hteep changes (gradient) in luminance by a 
fine line. Figure 6 (right) is the result of applying a filter 
and threshold that represent such changes by a wider 
and, in this case, more continuous, line. 1t it; thus 
possible to pick different features from a scene by 
employing at level 5, different edge-detecting filters 
and, at level 6, different thresholds. The filters employed 
at level 5, in producing these illustrations, detected 
the horizontality and verticality of edges separately, 

but this information 'was not kept separate in making 
the line drawings. For details see Appendix A. 

When contrast is high in the scene, as in Figure 
8 (left), first stage visual computation can be skipped. 
Figure 8 (left) is a photograph of the TV monitor 
(not the oscilloscope display as in Figure 5,· left) 
when the scene was lighted from the back left, creating 
higher contrast than was the case for Figure 5 (left). 
Levels of computation 2 and 3 were omitted and a. 
narrow-edge detecting filter was employed at level 5. 
Thus, both contrast enhancement and. feature detee
tiOIl can be va.ried, not only for the entire image, but 
for each matrix within the image, under control of 
either a remote human operator or a local conunand 
computer. This position-by-positioll control of the 
processing of the image, represented by the leftward 



122 Spring Joint Computer Conference, 1969 

LONG-PERS ISTENCE"-' 
DISPLAY 

: t;~~ 
GRAY-SCALE i'e 

')! 

Figure 7-Equipment for simulating light-weight, low-power hardware; (above) Camera-computer chain for simulating 
visual computers, (below) binocular, or stereo, TV camera 

arrows in Figure 1, separates our work from that at 
JPL. It makes perception possible. 

Line drawings, such as those in Figures 5, 6 and 8, 
do not convey enough information for a scientist on 
earth to judge what is being pictured. However, by 

the addition of low-resolution luminance data to left 
and right views, and presentation of the two views 
stereoscopically, there may be enough information. 
Figure 10 is an example of levels 5 and 6 COhlputation 
alone on data received from the scene pictured in 



Assembly of Computers to Command and Control a Robot 123 

Figure 8-Formation of line drawing by levels 6 and 7 
computation alone. Left-eye views of (left) image on TV 

monitor before being digitized, and (right) negative of 
scope display at level 8 

Figure 9-Photograph of scene to be formed into line drawing 
with shading 

• 

Figure 1(1--Computer-generated line representation of scene 

Figure 9. Figure 11 shows coarse-resolution measure
ments of luminance on a scale from 0 to 7, which an 
artist employed to paint in the swatches of gray in 
Figure 12. When this reconstruction is perfonned by 
computer, it will illustrate how the appearance of 

I 
- ---f----~--~--~--~r-~--~ 

I 
~----~---+--~~--~-

Figure ll-Grid of scene luminance values superimposed on 
Figure 10 

Figure 12-Painting "rith shades of gray prescribed by lines and 
values of Figure 11 

a Martian scene can be reduced for transmission from 
Mars to earth and then reconstructed on earth for 
viewing there. The data reduction here is by a factor 
of 30. 

The stereo pair of views, shown being reduced in 
Figures 5 and 6, was not taken with the mirrors illus
trated in Figure 7 but by taking one at a time, moving 
the camera between takes. This is simpler for a report. 

Hardware version of t'isual first-stage computer 

We designed the computation first so that it could 
be implemented in light portable hardware; then we 



124 Spring Joint Computer Conference, 1969 

simulated this hardware in the computer of Figure 7 
and achieved the results described above. The hardware 
design, diagrammed in Figure 13, is inspired by the 
layered structure of the animal retina and laterial 
geniculate body of the thalamus. Since it is not practical 
to represent in hardware the large number of cells of 
these animal structures, only a cluster of cells of each 
layer is represented and data are moved past the cluster 
by shift registers. 

A camera containing a single vidicon, that receives 
left and right views from mirrors, is shown in preference 
to two cameras because the fonner arrangement 
ieads to much less uncertainty between the two optical 
paths. 10 

Ia Figure 13, left and right images of an object 
such as a rock are projected by the optics onto the 
face of the vidicon. Converted to digital fonn, the 
signals enter shift registers (1) which move the images 
past computing elements (2) and (3), which represent 
clusters of living cells. The filter planned for level 
2 is shown schematically at the upper left of Figure 
13 and is given in detail in Appendix A. It consists 
of a central weight strongly positive, immediately 
peripheral negative weights and more peripheral 
weakly positive weights. 

The images are advanced from left to right in the 
shift registers at the same rate that the tip of the 
electron beam in the vidicon advances. As data reach 
the right end of the top row, they are transferred to 
the left end of the next lower row. In this illustration, 

Figure 13-Diagram of hardware to perform contrast 
enhancement 

when the electron beam of the camera tube has swept 
13 lines of the raster, the shift registers in the bank 
are full. From then on, for each new position of the 
electron beam, computations take pl91ce in the box 
behind the shift registers, and one digital word is 
discarded from the right end of the 13th row of shift 
registers. 

Figure 14 shows test hardware under construction 
to perform levels 1, 2 and 3 computation, on five lines 
of the raster. Each of the lower five panels contains 
a shift register 6-bits deep. The registers shift the 
data past the computing element in the top panel. 
The medium-scale integrated circuits to be employed 
here, together with their wiring, can be packed into 
about 50 cu. in. With large-scale integrated circuits 
the volulne could be lOcu. in. lO 

Computation of range 

To perform second-stage computation, either a 
man or a robot needs a view from a second position. 
We refer to the two views as "left" and "right" since 
they are usually taken from the same horizontal 
baseline. If the levels of robot computation pictured in 
Figure 4 are for the left view, then either a second 
series of levels is needed for the right view or the 
levels need to be widened to accommodate both views. 
We have taken the latter approach in the design of the 
hardware. 

Animals compute range from comparisons of left 
and right images, at several levels of computation, 
and from the angle between the axes of the two eyes, 

Figure 14-Visual first-stage computer under construction. The 
top panel is the computing element. The other five are 

shift registers. Integrated circuits piug into the far side 



Assembly of Computers to Command and Control a Robot 125 

MEASUREMENTS OF 
LUMINANCES IN A 
SCENE. 

SUMS OF DIFFERENCES ARE STOIED 
FOR WIDTH OF LIKfLY AREA; 

SUM OF THE DIFFERENCES 
BETWEEN CORRESPONDING 
RESOLUTION ELEMENTS. 

MTH EACH SUM OF DIFFERENCES ARE 
STORED THE ADDRESSES ~ WINDOWS, 
WttCH ARE EMPlOYED N cnwUTlNG RANGE. 

Figure I5-Comparison of left and right views to determine range 

called the "convergence angle.' '11 The equipment 
shown in Figure 7 has been programmed to automat
ically compute range by comparing areas, in the left 
and right level 2 images, called "windows" (see Figure 
15), To find a pair of windows that are vi~\ving the 
same object, a window is first fixed on say, the left 
view, according to some criterion such as the presence 
of an edge; then a likely area is located in the other 
view. Since this area contains as many potential 
windows as resolution elements along the horizontal 
axis, the problem is to determine which of these 
windows corresponds to the one fixed in the left view. 
The simplest way is to compare luminances in the 
fixed window with corresponding luminances in the 
likely area, determine the difference and use this as a 
criterion to decide when a best match is obtained. 
From the data of the best match, range is computed 
by triangulation. 

Employing this method, equipment shown in 
Figure 7 automatically explores a likely area to deter
mine the range of an object at 20 feet with an uncertainty 
of 1.5 percent. To perform the comparison over 
the entire likely area requires 16 seconds. The compari
son will be performed over less area if the robot visually 
follows around the edge of an object or visually explores 
increasingly deep into the scene. In these latter 
cases, the visual subsystem of the robot starts with 
a known range and reaches out from it. 

Perception 

In the robot we plan, the command computer, 

assisted by t~e relational computer, will determine 
what is seen ,by setting filters and thresholds in all 
stages of visual computation so as to match an iternally
generated image with an incoming one. This "Keeping 
up to date the internal organizing system, that rep
resents the external world, by an internal matching 
response to the current impact of the world upon the 
receptive system" is. called "perception.m2 "In a sense, 
the internal organizing system is continually making 
fast-time predictions on what is going on out there and 
what is likely to happen out there, and it takes antici
patory action to counter the small errors that might 
threaten its overall stability." 

A line drawing with shading, transmitted to earth 
for a scientist to view, aids his perceptual process, 
giving him clues about the presence of objects about 
which he can then demand more information. Within 
a robot, however, a line drawing with shading will 
be the result of interaction between the relational 
computer, setting filters and thresholds, and the 
second stage visual computer where these filters and 
thresholds are tried on incoming data. When equpiped 
to perceive, a robot will make fast-time predictions, 
possibly as detailed as the computer-generated image 
of Figure 16. Our general purpose computer formed 
Figure 16 from the equation of a cylinder, its diameter, 
height and illumination. It appears that perception of 
the cylinder could take place in the first and second 
stages of visual computation if the filters there are 
continually changed, as data are shifted past them, 
to search for predicted luminances in each part of 
an internally-generated image.13 



126 Spring Joint Computer Conference, 1969 

Figure 16--Picture generated by computer preparatory to 
experiments in perception 

The concept of a command computer 

The purpose of a command computer, in an animal 
or robot, is to commit the entire system to one of 
a dozen or so mutally exclusive modes of behavior. 
An anim3J requires such a computer because it cannot 
" fight," go to sleep, run a way, and make love all 
at once. "14 

Our study of a possible Mars robot indicates that it, 
too, can only enjoy one mode of behavior at a time. 
Possible modes of such a robot are: 

1. Look and feel 
2. Advance 
3. Retr-eat 
4. Right itself if overturned 
5. Maintain itself 
6. Chart its environment 
7. Rest 

Perform incompatible experiments as follows: 

8 Experiment A 
9. Experiment B 

10. Experiment C 

"Look and feel" is a separate mode from "advance" 
because the robot must be stationary while either its 
camera or its arm is employed. 

By "chart its environment" we mean that the 
robot, after advancing (or retreating) an appropriate 
distance, will establish what a surveyor calls a "sta
tion," and mark it with a transponder. Having deter
mined the distance from the previous station and 
measured the angle between this and the second 

previous station, the robot can form a triangle in its 
memory to add to other triangles previously formed. 
By building triangle upon triangle, the robot establishes 
a grid with which it can determip.e how far it has 
gone and in what direction. Through this grid it 
can later pass, to return to points it has already visited. 

Within each mode are the detaHed sequences we 
call acts. Advance, for example, can be either slow, 
fast, or by turning. These details can be developed 
after the command computer has been designed to 
choose among the above modes. 

The command computer should be capable not only 
of selecting the mode of behavior, in response to 
inputs from the environment, and the other computers, 
but of changing the way it responds to those inputs. 
Ability to change the record of conditions under which 
it selects a mode is called "plasticity" and is exemplified 
by conditioning and habituation. 

The first simulation of a command computer rep
resented only its mode-selecting ability. It was called 
S-RETIC where S stood for its ability to respond to 
both its present internal state and its spatially struc
tured input. IS The second simulation is called STC
RETIC where T stands for its ability to be influenced 
by temporal aspects of the environment and C for 
conditioning and habituation. The properties of STC
RETIC together ,vith several new features are now 
being designed into special hardware to be called 
H-RETIC. 

The inputs to each of these RETICs represent 
connections from such subsystems as the visual, 
described in part above, and the contact, described 
in part in a later section. The number of input channels 
to the present RETICs is very much smaller than 
win be required eventually from, say, the visual 
subsystem of the robot. In fact, the number of input 
channels, (1'1 to 1'42 in Figure 17) is only as many as 
needed to demonstrate the principles of operation. 

How an animal is commanded 

In the core of the reticular formation of animals 
(retic), the selection of a mode of behavior is made 
by a matrix of fan-shaped cells embedded in regions 
that are stacked like poker chips. The input processes 
of each cell, its dendrites, give it both its fan-shaped and 
its poker-chip-like thickness .. Its output is an axon 
which traverses the long axis of the chip-like stack. 
Each cell in general receives signals from several 
parts of the brain, from many other reticular cells, 
especially those in its own neighborhood, and from 
several interoceptive and exteroceptive sensory -path
ways. Collectively, these cells decide which mode of 
behavior the animal will enter. In its sharpest form, 



Assembly of Computers to Command and Control a Robot 127 

SIMULATED INPUT 

Figure 17-Simulation model of the command eomputer, S-RETIC, and threshold units (Ti) that determine convergence. 
The Mi are logic modules; the Si are sensory systems; all Pi (only P7 shown) are modular mode-indicating output lines: 

~ simulates a RETIC environment that engenders input signals (sight, sounds, etc.); T and Bare t.he 
top and bottom boundaries of S-RETIC; asc and dsc are the ascending and descending 

"nerve" bundles. For clarity, the connections that recur on all M modules are 
shown only on :vI7 

this assertion is only a hypothesis; but broadly speak
ing it is an evident biological fact. 

The informational organization of retic is analogous 
to a board of medical doctors who must decide upon 
the treatment each of a series of patients must receive. 
Suppose there are twelve doctors on the board each a 
generalist, as well as a specialist in a different field of 
medicine, and that they must select one of four possible 
treatments. Their deliberations resemble the process 
by which S-RETIC selects a mode of behavior. 

Like the board of medical doctors, the command 
computer (retic) must cOlnlnit its charge to a mode of 
behavior which in most cases is a function of the 
information that has played upon it only over the last 
second or so (signals indicating mission are part of 
this). It receives information that is vast in amount, 
but highly correlated between input channels and ar
rives at one of a small number of mutually exclusive 
modes of behavior in a dozen or so tinle steps, with 
minimal equipment and maximal reliability. After 



128 Spring Joint Computer Conference, 1969 

a mode is decided upon, it must send oat control 
directives to the other agencies in its charge to tum 
them to their respective tasks. Finally, that part of 
the command computer which at any given time has 
the most crucial information has authority over the 
mode of operation. 

First simulation of a command computer, S-RETIC 

Like retic, S-RETIC resembles a stack of poker 
chips, but each chip is now a computer module, M i , 

and represents many retic cells (see Figure 17). To
gether the modules of S-RETIC decide on a mode of 
behavior in response to data from an overall environ
ment that is static while each decision is beLl1g made. 
Note the word "overall". A major part of the environ
ment of retic is the cerebral cortex where are stored 
the plans and goals of the animal. Although S-RETIC 
has only 42 binary input lines and chooses among 
only four modes of behavior, it demonstrates principles 
that can be applied on a much larger scale for a robot. 

The 42 input lines, Ai, are connected from sensory 
subsystems, Si, to modules, M i , in several-to-several, 
but not all-to-all fashion. The outer box in Figure 17 
represents a generator to simulate an environment 
formed in response to the input, 1;. At tpjs stage of 
design, all (j i and 'Y i lines carry binary signals. All of 
the other lines into and out of modules carry numerical 
estimates of probabilities. 

Each of the 12 logic modules computes from its 
input information the probability that each mode of 
behavior is best for the robot. After this initial guess, 
the modules communicate their decisions to each other 
over the low capacity ascending and descending lines, 
Then each module combines this information in a 
nonlinear fashion with new information coming into 
it to arrive at adjusted probabilities that each of the 
four modes is best for the robot. The module, in tum, 
conununicates this adjusted guess to the modules to 
which it is connected above and below. The process 
repeats until six or more modules find one mode of 
behavior best for the robot with a probability greater 
than 0.5. This threshold is sensed by threshold units 
T in remote motor controls. 

Each try at consensus, or convergence, is called a 
cycle of operation. Fot" details see Appendix B. 

S-RETIC is a computer program operated now as 
part of the larger program described below. It always 
converges to the desired mode of behavior in less 
then 25 cycles, but 30 are allowed for it in a larger 
time period called an "epoch" with the new model 
described below. 

Second simulation of a command computer, STC-RETIC 

In the second simulation of' a command computer, 
the already-operating S-RETIC was exp~:mded to pro
vide interconnections between the a-parts of the 
modules (w lines), short- and long-term memories 
(STM and L TM) in each a-part and channels through 
which the experimenter can reinforce each module. 
In addition, the number of 'Y lines to each module was 
increased to seven; the (j lines were increased to 13, 
and the lnode of behavior of the robot (RM) was fed 
back to each a-part. 

The new model is called STC=RETIC 'where S 
and T stand for a spatially and temporally changing 
environment, C for conditioning and habituation. 
"Vhere each module of S-RET! C has a transformation 
network to form its initial guess, each module of 
STC-RETIC draws its initial guess from its LTM. 
During this and the ensuing epoch, it computes the 
effects of reinforcements, given it by the operator, 
and then adj usts its L TM accordingly. The result 
is conditioning, habituation and other fon1lS of "plastic 
behavior". For details see Appendix C. Given there 
are examples of the Pavlovian conditioning of a 
robot in a remote environment and the dropping 
out of this conditioning, called habituation. Develop
ment is also presented there as a form of plastic behavior. 

The next step is to design a computer to be both a 
refinement of STC-RETIC and a more faithful reflec
tion of the neurology of the core of the reticular 
formation. H-RETIC as it will be called, where H 
stands for hardware, will be organized much like the 
STC;'RETIC with physically separate modules contain
ing adaptive elements for memory. 

Contact subsystem 

Design of a sense of touch has progressed to the 
point of planning a hand and arm to reach out and 
press lightly against surf aces to the front and side 
of the robot. Figure 18 shows the tactile hand with a 
single finger. A grasping hand is also being designed 
to be carried by a second arm. 

As shown by Figure 18, the shoulder provides three 
degrees of freedom: linear extension and rotations in 
elevation and azimuth. All motions are polar-centric, 
that is, centered on a common point, so that trl:msfor
mation of coordinates can be as simple as possible. 

It is planned to map the probings of the fingee 
in a somatic first-stage computer, similar to the visual 
first-stage computer described previously. The z
axis of that mapping will be depth rather than lumi
nance. Sudden changes in depth will be detected 
by lateral inhibition, as they are in animals.8 



Assembly of Computers to Command and Control a Robot 129 

WRI-ST AnnUDE 

Figure IS-Degrees of freedom of the arm and hand 

Command of the commander? 

Since both visual and tactile computation can be 
commanded to respond to some sizes and shapes 
more strongly than others, we are led to ask: What 
commands the command computer of an animal? 
Dr. McCulloch's answer is revealing: "Nothing. 
You can persuade or cajole the command computer, 
but you cannot command it." His statement is sup
ported by his diagram in Figure 2 where the influences 
upon retic are represented by the many connections to 
it. "There need to be connections from more than one 
sense, preferably at least three," he continues. Other 
influences upon retic are internal, such as the cerebral 
cortex, where are stored models of the environment, 
past and present, and future models in the form of 
goals. These influences may be stronger than external 
ones. Influences to a model of retic are represented by 
theSiofFigure 17. 

Modes, which the retic of a vertebrate animal 
chooses among, are as follows.16 

1. sleep 
2. eat 
3. drink 
4. fight 
5. flee 

6. hunt for prey or fodder 
7. explore" (or search) 
8. urinate 
9. defecate 

10. groom 
11. mate (or sex) 
12. give birth or lay egg 
13. mother the young (e.g., suckle, hatch, retrieve) 
14. build or locate nest 
15. innate forms of behavior unique to the species, 

such as 
migrate 
hibernate 
gnaw 
hoard 

A comparable list for a Mars robot is given in a 
previous section. 

We can imagine how a man'.:) retic selects among 
his possible modes of behavior. Vision consists of 
both the feed-inward of raw sensory data and the 
feed-outward of signals to adjust filters to match 
internally-generated images. Touch, hearing and 
kinesthesia appear to operate in similar fashion. 
Sensory inputs, therefore, of the kind represented 
by the Si of Figure 13, represent information from 
external and internal sensors and internal computers. 
Consider the actions of a soldier on sentry duty 
at an advanced post in enemy country .He is expected 
to hold his filters to match the stimuli he has been 
taught to expect from the enemy: the shape of his 
face the color of his unifOlm, his manner of fighting, , . 
etc,17 If the soldier hears the snap of a breakmg 
twig, turns toward the sound, and receives from i~s 

direction images that match the projections of hIS 
stored models, he may classify the sound and the 
sight as "enemy." What the soldier does next depends 
upon other models stored in his relational compute}·. 
If circumstances appear to favor combat, the sentry 
may fight (mode 4). If pircumstances appear over
whelmingly adverse, the'sentry may turn and run 
(mode 5). Circumstances that cause his command 
computer to select a mode are the number of the 
enemy, its armament, etc., as these are recognized 
by the process of generating projections and comparing 
these at the filters with incoming images. Thus the 
enemy can persuade or cajole the soldier's command 
conputer. 

Similarly, the Martian environment should be 
able to persuade or cajole the command computer 
of a Mars robot, in cooperation with very many 
fewer relations than are required for a human being, 
such as a sentry. As far as we know the Mars robot 
will not have to contend with enemies and, therefore, 



130 Spring Joint Computer Conference, 1969 

./J"'';;';:':;':' 

, .. ~ .. , 

-_.c~_~ __ ··:-,--------",,;.c~· 

Figure 19-Proposed mobile data-acquiring element for a Mars landing 

willllot have to fight 01' flee. Nor will it have to enter 
any of the other modes which an animal has .to enter 
in order to eat and reproduce. 

The ten modes suggested in a previous dection are 
very much reduced versions of the requirements 
of an animal. Instead of the elaborate mode of behavior 
to hunt, are the much simpler ones to advance, retreat, 
and look-and-f'eel. 

Stages in the development of a robot 

The system we have just described can be achieved, 
we believe, by such a process of designing, simUlating, 
and testing as we have described for the development 
of the separate computers. 

A camera-computer chain of the kind described 
previously can be packaged so as to be mobile. A 
possible mobile camera-computer chain is shown in 
Figure 19. To eliminate the need for its own power 
supply and transmitter to earth, it is connected to 
a Mars lander by a cable which it pays out from a 
spool at its center. To permit it to look from side 
to side without moving, its camera employs a rotating 
prismatic mirror which reflects the light of the scene 
through both left and right optical paths, to photo
cells which transduce luminances to voltages. The 
voltage amplitudes, when converted to digital words, 
then enter shift registers, to move past computing 
elements in the manner described earlier. Vertical 

scan is attained by turning the drum that holds the 
camera. 

In initial experiments, the visual first-stage computer 
can be at the far end of the cable in the lander. When 
a light-weight visual first-stage computer has been 
completed, it can be placed within the mobile data
gathering element. 

The command computer will not be tied in initially, 
the command being exercised by the earth operator. 
W hen the command computer has reached the stage 
of development where it can be tied in, it can be 
built into a robot that is physically separate from 
the lander, in a configuration such as that shown in 
Figure 20. This design shows, for test purposes, a 
stereo television camera mounted in gimbals on a 
commercially-available tractor. The gimbal mounting 
of the camera permits it to look forward, sideward, 
up, down and backward. Besides the camera is the 
arm described in an earlier section. The rubber tires 
would be replaced for lVlars travel by wire-mesh tires. 

Comparison tt'ith other robot projects 

Perhaps because it is directed toward development of 
the properties of the computers described in an earlier 
section, ours is the o~ly robot proj ect with a binocular 
TV camera as input, a visual second-stage computer 
to employ thi'1:l binocular input for precision computa
tion of range) and a command computer to receive 



Assembly of Computers to Command and Control a Robot 131 

Figure 20--Proposed experimental robot 

simultaneous inputs from several senses and decide 
what class of thing the robot should do. 

However, the visual computers and the command 
computer are still operating separately While in other 
robot projects assemblies of computers and external 
equipment are already operating together. Eye
computer-arm-hand systems are in operation at 
Project MAC," M.LT.ls and the Department of Com
puter Science at Stanford University.I9 A computer
arm-hand system is in operation at the Department of 
Mechanical Engineering, M.I.T.20 An eye-computer
vehicle system is in operation at Stanford Research 
Institute (SRI).21 Out of the efforts of the projects have 
come list processing langugaes22 23 which we may use 
in simulating a relational computer. Other contri
butions are speech recognition,19 the kinematics of 
manipulators under computer control,24 the mapping of 
the space in which a manipulator operates25 and 
recognition of visual contiguity.26 

Since we are all engaged in processing increasingly 
large volumes of data, reward goes to the one who 
discovers a method of extracting useful data. At Pro
ject MAC and Stanford the reward can take the form 
of a doctor's degree; at SRI and our project, which are 
more eq'.lipment oriented, the reward is to have either 
the equipment or a simulation of it work. This reward is 
also present at the two universities; and SRI and we 
also d<;> theoretical work. 

Aside from the amount of equipment in operation, 
the greatest difference between our project and the 
other three is in the way we use the life sciences. All of 
us use this information since we are all trying to make 
computers and other hardware do what until now, 
only animals have done. However, we give primary 
attentidn to anatomy and physiology, secondary 

attention to psychology, while other projects assign 
reverse priority. We make an exhaustive search of the 
literature on each animal "computer" we investigate 
and attempt to create, within the constraints of 
technology, a working model of the "computer". 
Examples of such literature searches are given in 
References 28, 4 and 16. 

Once we have achieved a working model we proceed 
to improve it and in doing so may excel nature. 'll e 
are now reducing the appearance of a scene to stereo
grams that are much better than Figure 6, which had 
resulted from out attempt to model animal vision. 

CONCLUSION 

To some, the work reported here will appear to be 
slavish imitation of the vertebrate" nervous system. 
It appears to us, on the other hand, to be good engi
neering practice. When something does what you 
want it to do and is already miniaturized; why not 
copy it? 

The copy is made only in principle. Visual computers 
are time-shared elements, past which data is moved 
by shift registers. The modules form larger portions 
of the command computer than do cells in retic. 
In fact, the modules and the cells are similar only in 
their mathematics. 

To quote Dr. McCulloch, "We use the word 
'robot' in two ways. The first, and less important, 
is as a machine that performs isolated functions of 
a human being. The second, and more' important, 
is as a description of life applicable to either living 
things or machines. Such a description is indifferent 
to whether the system is man-made or grown, whether 
it is built of hardware or living cells. This is a central 
theme of cybernetics: to use the same logic and math
ematics to describe men and machines. Norbert 
Wiener looked at control this way. We are looking 
at both command and control. Thus, in the more 
important sense, a robot is a prescription for a system 
that until recently could be achieved only by the 
growth of living cells but is becoming something we 
can manufacture." 

ACKNOWLEDGMENT 

Because the physiological concepts presented here 
came from Warren McCulloch it would have been 
correct to list him as an author, but in doing so we 
could not have identified his contributions. One who 
helped us describe these contributions was Dr. 
Jerome Y. Lettvin. The simulation of the visual 
fum-stage computer is the work of James Bever who 
began it, John Hatfield who devised the fonn of 



132 Spring Joint Computer Conference, 1969 

filter employed in level 5, and Jerome Lerman who 
devised all of the filters presently employed. The two 
aimulations of retic were carried out by Jay Blum. 

REFERENCES 

C M MICHAUX 
Handbook of the physical properties of the planet Mat's 
NASA 1967 for sale by the Superintendent of Documents 
U S Government Printing Office Washington D C 20402 

2 SPACE SCIENCE BOARD OF THE ;\IATIONAL 
ACADEMY OF SCIENCES 
Planetary exploration 1968-1975 
2101 Constitution Avenue X \V Washington D C 20418 

:~ L L SUTRO 
Information proces.~ing and data compression for exohiology 
missions 
R-545 Instnlmentation Laboratory MIT 
Cambridge Massachusett~ ] 966 

4 R MORENO-DIAZ 
A.n analytical model of the group 2 ganglioi/, cell ill 
the frog'.,: retina 
Report. E-I858 Instnlmentation Lahorat.()r~· MIT 
Cambridge MasRacuhsett~ 196fl 

5 W S Mc CULLOCH 
Embodiments of mind 
MIT Press Cambridge Massachusetts 1965 

t) D DENNY -BROWN 
The cerebral control of movement 
Chapter VI Charlel'l Thoma..;; Pllhlisher~ 1965 

7 R H SELZER 
The u~e of computers to improve biomedical image quality 
Proc F J C C 1968 

8 G VON BEKESY 
Sensory inhibition 
Princeton University Press Princeton )Iew Jerl'ey 1967 

9 F RATLIFF 
Mach bands: quantitative .<;tudie8 of neural 'netwurks 1:1/ the 
retina 
Holden-l)a~r Inc S3n }"f:!TIcisco ! 965 

10 L L SUTRO C D SIGWART J D LEAVITT 
D G TWEED 
Instrumentation of camera-cornputer chains 
Report. R-636 Inst.rumentation Laborat.ory MIT 
Cambridge Massachusetts 1969 

II R GREGORY 
Eye and hrain 
World University Lihrary MeGraw-Hill New York 1966 
50-60 

12 W M BRODI~Y N LINDGREN 
Human enhancement be yond the machine age 
IEEE Spectrum Describing the work of Donald Me Kay 
February 196889 

13 L L SUTRO 
Computer synthesis of images with shades and shadows 
Report E-2250 Instrumentation Lahorat.ory M J T 
Cambridge Massachusetts 1969 

14 W L KILMER W S Me CULLOCH 
The reticular formation command and contro,' system 
Proc Symposium on Information Processing in the 
Nervous System, State University of New York at 
Ruffalo OC't.oher Hl68 (in pubieat,ion) 

15 W L KILMER W S Mc CULLOCH J BLUM 
L SUTRO 
A model of life to select a mode of behavior 
Report R--635 Instrumentation Laboratory MIT 
Ca~bridge Massachusetts 1969 (in preparation) 

16 W L KILMER W S Mc CULLOCH 
The biology of the reticu.lar formation 
Michigan State University Division of Engineering 
Research Report. East Lansing Michigan (in preparation) 

17 J D FRANK 
The face of the enemy 
Psychology Today November 1968 25 

18 M L MINSKY S A PAPERT 
Research on intelligent aut01nata status report I I 
Project MAC MIT Cambridge IV!assachusetts 1967 

19 .J Mc CARTHY L D EARNEST 
D R REDDY P J VICENS 
.1 computer with hands eyes and ears 
Proc F J C C 196R 

20 W R FERRELJj T B SHERIDAN 
Snpervi.<;ory control of remote manipulation 
IEEE Speet.rum Vol 4 No 10 October 1967 ~1-88 

21 N J )IILSSON C A ROSEJN R RAPHAEL 
G FORSEX L CHAITIN S WAHLSTROM 
.4.pplication of intelligent automata to reconnai.'lsance 
Stanford Research Inst.itute Menlo Park California 196R 

22 E C BERKELEY D G BOBROW editor,;; 
The programming language LISP 
Information International 200 Sixt,h St,reet Cambridge 
Massachusettts 1967 

23 L G ROBERTS 
}If achine perception of th1'ee-dirnen~i()nal solids 
Optical and electro-optical information processing 
MIT Press 1965 

24 D L PIEPER 
The kin,emalics of manipulators u.nder computer control 
Computer Science Department Stanford University 
Palo Alto California 1968 

25 D E WHITNEY 
State space models of remote manipulation tasks 
Engineering Projects Laboratory Department of 
l\IechanicaI Engineering ~! I T Cambridge !\1ass~chusett~ 
1968 

26 A GUZMAN 
So'me Mpects of pattern recognition by computer 
MAC-TR.-37 Project MAC MIT Cambridge 
MassachuseUs 1967 

27 ILLUMINATING E~GINEERING SOCIETY 
lE8 lighting ha,ndbook fourth edition 
345 E 47th Street New York 1966 2--6 

28 L SUTRO editor 
Advanced Sensor and Control System Studies 
1964 to September 1,96.5 
Report R-519 Instrumentation Laborat.ory MIT 
Cambridge Massachusetts 1966 

APPE~DIX A 

Scaling 

As indiC'R.ted earlier; 9.pplication of a filter such aH 



Assembly of Computers to Command and Control a Robot 133 

G2 ,vill produce matrices of luminances that are 
"on scale", except when applied to spots and edges 
of maximum contrast. By "on scale" we mean on 
the scale of 0 to 63 that our digital-to-analog converter 
can convert and our scope can display. 

vVhen filter G1 X 1/8 is convolved with all of 
the submatrices of luminance -in a typical scene and 
a histogram plotted of the convolution sums, the 
result is Figure 21. The extremes are formed when 
the center of the submatrix of luminances is 63 and 
the surround is zero, or vice versa. By lopping off 
extremely high and low values of the convolution 
sum, as shown by cross hatching, the scale is contracted. 
Added to the central luminance of the submatrix 
in question, the convolution sum enhances contrast. 
In the rare case where this addition forms a negative 
sum, this sum is repJaced by zero. Filter G1 X 1/8 
is used in this example, rather than filter G2, to demon
strate a symmetrical histogram. The 2 in the center 
of filter G2 leads to the unsymmetry. 

Filters to enhance contrast 

Luminance contrast is defined27 as 

(AI) 

Where Ll and L2 are the luminances of the background 
and object, respectively. Such contrast is detennined 
in animals and machines, not by a simple subtraction 
and division as here, but by the convolution of a filter 
with the luminances in the image. 

In previous sections we considered the application 
of a minimum-area filter to an image. Here we consider 
filters of any size that may be useful. If each filter, 
in a matrix of filters, has a sensitive central excitatory 
re~ioll surrounded by a less sensitive inhibitory 
region, possibly surrounded in turn by a still less-

-63 -31 o 31 63 

Figure 21-Histogram of convolution sums formed by filter G1 

,,-ith all of the sub-matrices of luminance in a typi('al seene 

Inputs (stimulus) 

Outputs (impulses), 

Layer of interacting 
model cell units 

Figure 22-Schema of the receptive layer and interacting layer, 
with arrowheads indicating the direction of conduction of 

impulses in an animal, amplitude of signals in a robot 

sensitive excitatory region, the matrix may be repre
sented by the schema of Figure 22.9 The pattern of 
response is here detennined by the net effects produced 
by overlapping, and possibly opposed, excitatory 
and inhibitory influences. This interaction of influ
ences may be expressed by a set of simultaneom; 
equations, one for each filter. 

Implied in the diagram of Figure 22 is 'n-iutual 
inhibition which can be represented by Figure 23 
if the recurrent lines are headed by circles, instead 
of arrows, to represent inhibition. The effect of recur
rent inhibition can be achieved either by such con
nections, by the non-recurrent filter shown in section 
in Figure 24, or by two applications of the 7 X 7 
filter shown in Figure 24. Jerome Lerman devised 
this 7 X 7 filter which, when convolved with itself, 

AJ NON-RECURRENT 8) RECURRENT 

Figure 2;~-Interaction of cells A and 11 



b 

a 

134 Spring Joint Computer Conference, 1969 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

I 
I 

I 

n 
Trf~DESIRED 

I 
I 
I 

. \ 

\ 
\ 
\ 

ACTUAL 

.~ 13 RESOLUTION ELEMENTS -I 

-1 -I -1 -1 -1 -1' 
-2 -2 -2 -2 -2 -1 

-2 , , , -2 -1 

-2 , .. , -z -1 * -z , , , -z -1 

-2 -2 -2 -z -2 -1 

-1 -1 -1 -1 -1 -1 

fZ

l Z 3 • 5 6 7 6 5 • 3 Z z11 
'IIW1I22M22JaW1O 6 

; 10 2 .. -W -6 -, -6 -W -6 , 10 3 

• W .. -151 -1M -M -lt2 -M -194 -151 -6 ]A • 

5 11 -W -1M -310 -212 -l5C -212 -310 -194 -W Ja 5 

6 22 .. -M -212 116 ... 116 -212 -198 -6 22 6 

7 M -2 -lt2 -l5C ... C472 ... -154 -w.! -Z M 7 

, 22 -6 -191 -212 116... 116 -212 -191 -6 22 6 

5 11 -W -1M -310 -212 -154 -212 -310 -194 -U 11 5 

• U .. -151 -1M -M -w.! -191 -194 -151 -6 U • 

l: 10 2 -6 -W .. -2 .. -iA ~ W 

iJ 
, 10 U ]I 22 M 22 11 U 10 , 
2 3 • 5 , 7 , 5 • 3 Z 

, 

Figure 24-(a) Dashed line, graph of cross-section of desired 
filt.er; solid line, graph of cross-section of approximation shown 

in (b) _ (b) Weights of the filter employed in enhancing the 
contrast of Figure 5 

produces the 13 X 13 filter below it. If each 7 X 7 
filter sununed to zero, the center would be 8. By 
summ.ing to 56 the filter enhances existing contrast. 
The 13 X 13 filter also sums to 56. The computer 
of Figure 7 applies the smaller filter twice since its 
core memory will hold only seven lines at a time of 
a digitized image, 2.56 positions wide with 6 bits per 
position. 

The purpose of the diminishing waves of alternately 

excitatory and inhibitory effects in Figure 24 is to 
continue the spatial filtering outward from the center 
of influence. While this filter passes higher spatial 
frequencies and rejects low, the frequencies to wr.ich 
the vidicon responds are not very high, so it might 
be called a "middle-pass filter." 

Filters to form a line drawing 

To select points of high contrast that outline 
objects and details, the second-stage visual computer 
needs to take differences~ not only to detemline 
contrast as in formula AI, but to determine if this 
contrast exceeds a threshold. 

Consider how these differences can be taken in 
scanning across the five bands of luminance, in Figure 
25. The contrast across the area is represented by 

IA - DI where Av is the average of t.he five lumi-
Av 

nances. The threshold, for reasons explained below, 
is best expressed as the reciprocal of the inner difference 
B-C multiplied by a constant. Employing these 
differences, Jerome Lerman devised the following 
criterion which the computer applies first in the 
horizontal direction, then in the vertical. 

T-I! 
.I. ... 

!A-D! K 
Av -IB -ci > 0, 

a dot is placed in the line drawing. 

If 

IA-Dj K 
Av -IB -cl ~O, 

no dot. 

(A2) 

(A3) 

Figure 26 develops the reason for using the reciprocal 
of the inner difference, times a constant, as thp 
threshold. Curve a is a ramp of luminance. Curve 
b is its derivative when Llx is the narrow span repre
sented by the distance between 1 and -1 at the upper 
right of curve b. Curve e is the derivat.ive of eurve 
b when .6.x is larger. To reduce curve a to a dot, it 
is evident that the threshold needs to be lowest 
when the derivative is both as great as possible and 
as peaked as possible. By plotting the reciprocal 
as in curve d, the peak does not go to infinity, as it 
could, and remains manageable. The threshold is a 
fixed fraction k of this reciprocal. 



Assembly of Computers to Command and Control a Robot 135 

A B c D 

Figure 25-Four bands, each of approximately uniform 
luminance, about a band of luminance not lettered 

(a) 

(b) 

(C) 

(d) 

L 

6L 
7lX 

FOR SMALL 6x 

6L 
6x 

FOR LARGE 6x 

6x 
6L 

FOR SMALL 6x 

~~~----+---------------------. x 

10-1

x

1000-1

x

L....-___ J..-____ ---4~ X

Figure 26-Explanation of use of reciprocal of inner difference,
times a constant, as the threshold in determining whether

a dot shall be placed in line drawing. See text.
fo r description of steps

APPENDIXB

Operation of S-RET Ie
Each set of lines Pi in Figure 17 (only P7 is marked)

indicates the ith module's degree of preference for
each of the four possible modes. Thus Pi is a proba
bility vector. The ascending and descending lines
out of M i are branches of Pi which connect to other
modules.

As shown in Figure 27, each module has two parts.
Each a-part computes from the module's input
information the initial guess as to what mode of
behavior is best for the robot. The b-part computes
an adjusted guess from information received from
above, below and from the a-part. The a-part which
has five binary input variables and four probabilistic
variables, is a nonlinear transfomlation network.

The b-part receives 4-component probability vectors
po from above, pa from below and p' from the a-part.
The components of each vector are the relative
probabilities of each of the four possible modes of
behavior. The jth component of each pa, po or p
probability vector is the probability, computed by
the module of origin, that the command computer's
present 'Y input signal configuration calls for mode j.
The b-part abo receives a measure of the cycle-to
cycle difference between 'Y inputs, called "'Y difference"
in Figure 27, and a measure, Q, of the strength of
convergence on the last mode commanded (shown
being formed in the lower right corner of Figure 17).

Consensus among the modules is achieved, aR
illustrated in Figure 17, by first detemlining in the
step function (s), if the jth component of the proba
bi1ity vector P from each module exceeds 0.5. If it
does, a 1 is passed on to the threshold element T j.
There, if 50 percent or more of the jth component
input connections are 1 '8, mode j is commanded.

r it ---f---+H+I
INPUTS ';2 --+---'+++1-
FROII 'il~_~+1-

If_r" ~ __ ,,",-
r,. ___ ,<--_~

~

~.I
co.tfCTf0N5 TO lOWf. *llU.ES

Figure 27-Input and output connections to parts a and b of a
module in S-RETIC

136 Spring Joint Computer Conference, 1969

Note that each element T j in Figure 17 receives
10 inputs, a1though for -1larity in the drawing, con
nections are shown only to T 3. The threshold elements
T are part of the executive computer pictured in
Figure 2. Each T receives many inputs, decodes
them and executes a mode of behavior.

S-RETIC is described in more detail in Reference 15.

APPENDIXC

Operation of STC-RETIC

General

Figure 28 diag~ams the a-part of a module in
STC-RETIC. Signals from the senses (w's); from
modules above and below ('Y's), from the threshold
units that determine the mode (R~I) and from the
experimenter (RPC and RAC's) enter the short term
memory where they are held for two input epochs.
STC-RETIC converges on a mode in the same se
quence described above for S-RETIC, except that
each initial guess is read from a long tenn memory
instead of being generated by a transformation net
work. Each initial gtiess is read out as a probability

Figure 28-The a-part of a .module in STC-RETIC

pi
i

vector to be used in the same way as p'i in S-RETIC
(Figure 27).

In the conditioning .process, the information as
to module inpuLs, module p', the converged-upon
mode and whether it was good or bad, is used to
modify the probabilities stored in long term memory.

In either conditioning STC-RETIC, allowing it
to habituate or in other ways encouraging it to acquire
temporally influenced patterns of behavior, the
operator of STC-RETIC not only provides the
external conditions (~, Fig. 17) to which it will
respond, but he takes the place of the parts of a
robot that would indicate that the input and response
conditions are punishing, neutral, or rewarding. He
introduces a negative reinforcement prior to con
vergence (RPC) to indicate that the external conditions
are themselves punishing, and a zero HPC to indicate
that they are neutral. Finally he introduces four other
numbers (HAC's) to indicate the reinforcement
effect on STC-RETIC of its selection of each of its
modes of behavior. An RA(\ is a "reinforcement to'
be applied after convergence if STC-RETIC converges
to mode i." It is used in conjunction with short
term-memory informatjon in the module to specify
the corresponding modification to the module's
long term mem~ry. A negative value of RA(\:, called
"punishing," IS interpreted by STC-RETIC as
evidence for not converging on mode i the next time
the same 'Y's and w's are received. A positive value.
called" rewarding," is interpreted oppositely.

Examples of Pavlovian conditioning and
habituation in the robot

Pavlo\~ian COIlditioning is made possible both bjr

responses "wired into" the long-term memory of
each module of STe-H.ETle, and by 'Y's and w's
acquired during two epochs by the module's short
term memory. For example, let us suppose that a
"wired-in" (unconditioned) response is (1) to command
l·etre.at. when t.he robot feels a horizontal edge with
nothing beyond it (a precipice ?), then (2) to be
rewarded (positive RAC) for saving the robot.
Let us suppose further that each time the robot
feels an edge, beyond which it feels nothing, it also
sees an edge, beyond which it sees nothing. The more
often the robot both feels and sees an edge, beyond
which it feels nothing, and then is rewarded for
retreating, the more firmly it becomes' conditioned
to back up at the sight, instead of just the feel, of
such an edge.

In STC-RETIC such conditioning is stored in
t.he long-term memory of each module, which contains

Assembly of Computers to Command and Control a Robot 137

a reduced record of the conditions under which it
has made decisions.

An example of habituation in a robot is the following.
Suppose a robot travels over the surface of iViars
and comes upon territory that is sharply striped in
light and dark. vVhen it ceases to behave as though
each stripe were a precipice, it will have become
habituated to the striped terrain. After a time, the
duration of which was pre-specified, it. will sponta
neously recover the original response so that, if it
then moves into territory where such stripes are
shadows marking true hazards, it will not be harmed.
What have changed in both of these examples are
the long-term memories of modules.

Forms of robot behavior due to development

As explained above, the initial guess of the a-part

of each module is made by consulting its long term
memory. If there is no entry for the given values of
'Y and w, then a flat probability vector (all four com
ponents equal) is read out.

Changes in a long term memory, which starts from
flat probability vectors, are what we mean by develop
ment. STC-HETIC has room in the long term memory
of each module for 100 vectors, some of which are
fiat, others are preprogrammed to non-fiat values.
Some of the kind of development that is complete
in the retic of a mammal at birth may be best achieved
by STC-RETIC through experience in its environment.

Other forms of plastic behavior modeled by STC
RETIC are: generalizatjon of and discrimination
among the conditions under which a mode response is
given, avoidance conditioning and extinction of
Pavlovian conditioning.

nl-=::no~i~ _!lnrl t;l;~g .. .;n~ n.r .ron l T -:,-- --- -- "' LJ~"' .. '-'.I..I. u «U.l.L]

universal tree circuits

by GIACOMO CIOFFI

Fondazione U. Bordoni
Rome, Italy

and

EUGENIO FIORILLO

I.B.M. Itaiia
Milano, Italy

INTRODUCTION

In the last few years the progress of integration tech
niques of more and more (;omplex digital circuits has led
to the development of a new branch of the switching
theory known as cellular logic. 1 Nevertheless the
integration of cellular circuits of a certain degree of
complexity is hampered at present by poor yield, that is
by the likelihood that one or more cells of the circuit
may turn out to be faulty. It is useful, therefore, to try
to use these circuits even when there are some faulty
cells. Generally speaking there are two possibilities:

(a) to provide a certain degree of redundancy in the
circuit, so as to be able to replace the faulty cells with
spare cells;2

(b) to use, if possible, only the part of the circuit
functioning correctly.

The second way seems easier to carry out, since it
does not require interventions on the circuit already
realized.

Apart from the choice of either way, it is necessary
above all to carry out the diagnosis of the circuit in
order to determine what failures have taken place.

In the present paper these problems are studied in the
case of universal cellular tree circuits. 3 ,4 In the first part

. a minimal set of diagnostic tests is derived; in the
second part a criterion is set forth which, on the basis
of the results of the tests carried out, makes it possible
to find some functions that can be realized by the faulty
circuit.

Cellular tree circuits

A cellular tree circuit with n levels, An, is a circuit
having the structure shown in Figure 1, and can
implement any function of the n variables Xl, ... , xn •

The circuit is made up of 2n -1 cells, all equal (Figure
2), which implement the function

i i-I - + i-I Cj = C2j Xi C2j+l Xi •

The 211 inputs (Xl, ... , Xn) * will be indicated briefly

n

with X = L xi2 i - 1• The binary inputs co, ... , C2"-1
i=l

are for the specialization of the circuit; to be exact each
of the 2(2n) vectors C == (co, ... , C2"-1) corresponds to
one and only one function F(X1, ... , Xn). It is easy to
show3 that, if vector X is applied to An, the output c~
coincides with the specialization bit Cx; therefore there
exists a one-to-one correspondence between the minterm
mj and the bit Cj (0 ~ j ~ 2n-1). A function
F(xt, ... , xn) is implemented on An giving the specializa
tion bits corresponding to the minterms implicating the
function values equal to 1 and leaving the rest at O.

Tests to detect fauUs in an An

In view of the regularity and the simplicity of the

(*) Xi = 0 or 1

139

140 Spring Joint Computer Conference, 1969

~----~-;--------~--T--

,c •

• -------------------

Zn-~I _L---.--q-t-----t-., ~----t-.
z,, ___ --t-~---+-+t •

.e; F(z, •..• z,,)

Figure l-..'3tructure of the universai ceBulaI' circuit (t.e.)

Figure 2-j-th cell on level i of the t.e.

interconnections, only faults within the cells are con
sidered possible; this implies that, even when there are
faults, the output of each cell always remains a function
(possibly degenerate) of its three inputs exclusively. To
remain on a more general plane, it will be supposed that
a faulty cell can implement any of the remaining 255
functions of three variables.

This section describes a complete and minimal method
of detecting faults in a tree circuit; that is, it detects all
faults satisfying the above mentioned hypotheses and
consists in the minimal number of tests.

Description of the tests

The test in which all terminals Co, •.• , C2n-l are
fixed at 0 and the inputs take on all possible values
Xo, ••• , X271 - 1 is called here "fixed 0 test" (0 /), If the
tree circuit (t.c.) functions correctly, during the fixed
o test there is a sequence of 2n zeroes in the output.

The test described in Table 1 is called here "travelling
o test" (Ot). If the t.c. functions correctly, during this
test there is a sequence of 2n zeroes in the output.

The tests here called "fixed 1" and "travelling I"
(1 I and 1 t) are obtained from the OJ and 0 t tests by

Table 1

x Co C
1

C
2

C3 c c
"n ") 2n_1
... -"

0 0 1 1 1 1 1
1 1 0 1 1 1 1
2 1 1 0 1 1

.,
I

") 1 1 1 0 1 1 .)

..................................)n_2 1 1 1 1 0 1
12n -1 1 1 1 .. - 1 0

complementing all the specialization bits. They give
two sequences each of 2n ones at the output of a
correct t.c.

Let us consider the set of tests 0 j, 1 j, 0 t, 1 t applied to
a correctly functioning t.c. The signals at every point
of the circuit are shown in Table 2.

I t can be seen- that the four tests for the whole tree
correspond to the same tests carried out on the subtrees
and on the individual cells according to Table 3.

Let us take as an example a tree made up of only two
levels (Figure 3).

The tests are those shown in Table 4, in which it is
supposed that the circuit functions correctly.

I t is then possible to constru.ct Karnaugh's map of
the function implemented by each cell (Figure 4); for
the sake of clarity the maps have been arranged in the
same way as the respective cells.

This result can be easily extended to the case of an
n-level tree. On each level the squares of the maps are

Table 2

1 1 1 2 2 2 D-' D-' ~.
X cOc,c2c)""c2D_2C2D_, coc""c2D-'_1 COC''',C2D-2_

1
... Co c, Co p

o 0 0 0 0 ... 0 0 0 0 ... 0 0 0 ... 0 ... 0 0 0
1 0000 ... 0 0 00 ... 0 0" ... 0 ... 0 0 0

~:'i 0·0·0·0·:::·0 .. ·0 0·0·:::·0 .. · .. ·0·0·:::·0 ::: 0'"0''' '0"
o II 1 , 1 ... 1 1 l"'" 1 1 1 ... 1 '" 1 1 I 1 I .; .. ~. ~. ~. ~.:::. ~ ... ~ ~. ~.:::. ~ ~. ~.:::. ~ ::: ~ ... ~ ... ~. ~ ..

2 -'j 1 1 , 1 ... 1 1 I' 1 ... , 1 1 ••• 1 ... 1 1 ,1

'I ! I'! ~ 1 ~ ::: ~ ~ I' ~ L:: ~ I' g ~ ::: ~ \' ::: Ig ~ II ~ I'
3,1110 ... 1 1 10 ... 1 01 ... 1 ... 01 0

·d··j · oo ... ~ i······ " .. 'j" "1'"'''' + ;
2D-~i 1 1 1 1 ... 0 1 i 1 1 ... 0 ill ... 0 ... j' 0 1 0 I'
2 -"l 1 1 1 1 ••• 1 0 1 1 ••• 0 1 1 '" 0 • •• 1 0 I)

o 11 0 0 0 ... 0 0 ! 1 0 ... 0 ! 1 0 ... 0 ... 1' 0 ! 1 !
1 '0 1 00 ... 0 0 I' 1 0 ... 0 '1

1
0 ... 0 "'1" 0 '1 I' 20010 ... 00 01 ... 0 10 ... 0 ... 1 0 1

~ ... ~.~.~.~.:::.~ ... ~ ~.~.:::.~ ~.~.:::.~ ::: ~ ... ~ ~ .. I
2 -2 0 0 0 ., : •• 1 0 i 0 0 ••• 1 I· 0 0 '" 1 .. '10 1 1 I
2D_1 0 0 0 0 ... 0 1 I () 0 ... 1 0 \I ... 1 ... \I 1 1

Diagrams and UtiHzation of Faulty Universal Tree Circuits 141

Table 3

x
, 1 , 1 2 2 n-1 n-'

COC1"'C2n-1_2C2n-1 Co···C2n- 2_, ... Co C, -,
°

iri ':1 Of Of" •• Of Of Of"'Or ... Or Or

i:':, I 'r 'r" "r 1r I 'r" "r ... 'r 'r

° °t'r"'r 'r ,
°t""r °t 'r 2

1r Ot ••• 'r 'r 3
~ri" 2 -4

'r'r···Ot 'r 2n_3
'r' .Ot 'r °t ~n_2

1r 1f" •• 1r °t 2n_1

° 'tOr" 'Or Of ,
\"'Or 't Or 2

°r\"'Or Or 3

~ri':4
.......................

~-3 0r0f""'t Or
°f""t Of \ ~n_2

°r°f"' 'Of \ 2n_1

Xf----~----~----~----~~

g, f ,
£ (II) f4)

-,;1
0 0 , f

(IJ ~) (I) OJ)

.Figure 3-A two level t .. c.

c' o

0
tI)
0

(8J

,
tuJ
0

(ilJ

I 0
r_J (lIN , I
hJ (f$)

n
Co

Or

'r

°t

't

~' I

Figure 4-Correspondence between the tests and the entries
of the cell maps

controlled in the following order (the columns are
numbered from left to right):

(1) the squares of the first columns, first for Xi = 0,

Table 4

X X2X' cOc 1c2c
3

1 1 2-F COC
1 CO=

0 o 0 000 0 o 0 0
1 0 1 o 0 0 0 0 0 n

v

2 1 0 o 0 0 0 o 0 0
3 1 1 o 0 0 0 o 0 0

0 o 0 1 1 1 1 1 1 1
1 o 1 1 1 1 1 1 1 1
2 1 0 1 1 1 1 1 1 1
3 1 1 1 , , 1 1 1 1

0 o 0 0 1 1 1 0 1 0 , o 1 101 1 o 1 0
2 1 0 1 1 0 1 1 0 0
3 1 1 1 1 1 0 1 0 0

0 o 0 1 000 1 0 1
1 0 1 o 1 0 0 1 0 1
2 1 0 001 0 o 1 1
3 1 1 000 1 o 1 1

then for Xl = 1, starting from the map of c~ as far as the
map of ~"-i-l (0, test);

(2) the squares of the third columns, as at point (1)
(I, test);

(3) the upper squares of the fourth columns and then
the lower squares of the second columns, as at point (1)
(0, test);

(4) the upper squares of the second columns and then
the lower squares of the fourth columns, as at point (1)
(It test).

Every cell on level i is tested 2 i-I times. It is useful for
what follows to note the law for the construction of the
map of a cell of level i from the maps of the two cells
above of level i-I (Figure 5).

Properties of the tests

A tree An can be decomposed into two subtrees having
n - 1 levels, A1I- I and ~-h and in its output cell. For
the sake of simplicity the outputs C~l and C't"l of the
two subtrees An-I and ~-l will be indicated in this
section with a and fJ.

Lemma: If the 0" 1" 0 t, 1 t testf:, carried out on an
A., give correct outputs, outputs a and fJ of subtrees

142 Spring Joint Computer Conference, 1969

i-I -e2j

A:'~
..I

ot andlt

Figure 5-Construction of the c~ map from the maps of
"i-l ",,,tI ,.i-l
~2i - -2;+1

A7I- 1 and A~-l are constant during each half of the four
tests.

Proof: Let us suppose that in the 0, test outputs a

and (3 are not constant, and that the pair of values a0/3o
occurs 2k times (2k < 2n), that is k times for Xn = 0
and k times for x" = 1 (a and (3 are independent of x,.).
The output of An is a function of the specialization bits;
in fact, if vector C is changed from (0, ... , 0) to
(1, ... , 1), the output changes independently of vector
X. The same can De said both for a and for (3. Therefore
in the I, test, for the same 2k values of X, a and (3 must
take on values al and (31. Furthermore a0/3o and aIf31 give
the values 0 and 1 to the circuit output independently
of x" and therefore cannot occur in the I, and 0 I tests
respectively for any of the remaining 2" - 2k values of X.
Let aJ30 be another pair of values taken on by a and (3
during the 0, test. For the reasons explained previously
aol31 will appear in the I, test and cannot appear in the
o I test; similarly aJ30 cannot appear in the I, test. The
following table can therefore be constructed (Table 5).

It can be seen that for x" = 0, during the 0 t test, (3 is
bound to take on value (31, but it is not possible to
assign a in such a way as to get 0 in the output: in fact,
both a0/31 and aJ31 give 1 in the output independently
of xn • It can be deduced that in the 0, test, and therefore
in the I, one, a and (3 must be constant.

Let aol3o and aJ31 be the pairs of values taken on by a
and (3 during the 0, and I, tests; Table 6 can be
constructed.

Let us consider the 0 t test for Xn = 0: (3 is bound to
take on value (31, consequently a = ao considering that
for aJ31 the output of An is 1. In the same way the
remaining rows can be constructed, and it can therefore
be affirmed that during each half of the four tests a and
(3 remain constant.

Theorem 1: An n-level tree circuit, An, functions
correctly if and only if tests 0" 1" 0 t, 1 t give the
correct outputs, that is four sequences of zeroes, ones,
zeroes, ones respectiveiy, each of 21> bits.

Table .j

I
. ,

X A n-1
At A

n n-1 n

0, 1 Of:
<Xo

Of:
~O

Of: 0
(X, 1 ~O

0, 1 1f :
ct.1

1 f:
r:S1

1f : 1 cx.o (31

° at: ? 1
f

: (31 at: 0

Table 6

x A
n-1

AI A
n n-1 n

0, 1 Of: (Xo Of: Po
I
I Of: 0

0, 1 1
f

: cx, 1f : (3, 1 f: 1

0 at: <:to '£: (31
f- - - - - -- f- - - - - at:

°1 1 1f : cx
1 °t: Po

0 1t : a.
1 Of: ~O

f-o-- - - - - ~ -- - - 't: 1
1 Of: ~O 1t : ~,

Proof Necessity: it is obvious. Sufficiency:. according
to the Lemma, if the outputs are correct a and (3 axe

. constant in each of the eight half-tests. A Karnaugh map
can therefore be constructed for the function of the
output cell, as shown in Figure 6. The function imple
mented by this cell is therefore of the following type:

F = a * xn + f3* Xn • (1)

Since the outputs are correct, two possibilities may
occur:

Diagrams and Utilization of Faulty Universal Tree Circuits 143

a'o a,

0 0 I I

I 0 0 I

4
Figure (j-The final cell map

(1) a* = a and!3* = !3: An-I, ~-I and the output cell
are functioning correctly;

(2) a* = a a/o !3* = P: An- I a/o A~_1 give the

complemented output, but the output cell makes up for
this defect.

In both cases for Xn = 0 {XII = I} the output of An
reproduces that of An- 1 {A~_I}' apart from complemen
tations. Therefore the maps of C~-l and of C~-l can be
constructed for Xn = 0 and for Xn = 1 respectively. It is
seen at once that also the functions implemented by
these two cells are of type (1), and therefore the
considerations made for c~ are still valid. Proceeding in
the same way, we can construct the maps for all the
cells of the circuit, which always implement functions
of type (1). It can be concluded that circuit An functions
correctly, since it has been proved that all the cells
function correctly, apart from pairs of faults that cancel
each oth~r out and therefore cannot influence the overall
behaviour of the circuit.

Theorem 2: The set of tests 0" 1" Oe, 1 t contains the
minimal number of tests necessary to control the
functioning of a circuit An under the conditions envisaged
for the faults.

Proof: In view of the structure of All and the type
of faults considered, the cells on the first level are all
independent of one another; it is evident, therefore, that
the number of tests necessary to control them is
8.211- 1 = 21142. This is obviously a lower limit for the
number of tests referring to the whole circuit. Then, too,
considering the independence of the cells of each level,
the attempt can be made to organize the 2n+2 tests
necessary to control the cells of the first level so as to
carry out at the same time the tests on all the cells of the
following levels. Theorem 1 shows that this is actually
possible. This is what we set out to prove.

The utilization of fauUy cellular tree circuits

Fault localization

The method set forth in the preceding section also
makes it possible to localize the faulty cells in a way that

will be described. As has been seen, tests 0" 1" 0 t, 1 t
make it possible to construct the Karnaugh map for the
ceH at level n, and every square of the map is explored
by 211- 1 tests. At level i a cell c1 is tested 2 i-I times. If
this cell is faulty, exhibiting a mistake in a square
corresponding to Xi = 0 {x i = I}, 2 i-I consecutive
wrong outputs occur starting from element 2k· 2 i-I
{(2k + 1) ·2 i-I} of one of the four sequences.

The same output sequence is obtained if the two cells
c~ and c~tl ar~ faulty in the same way as ct Similarly
it can be seen that 2h cells at level i - h with faults in
the same squares of the maps (and all the combinations
of these faults) lead to the same output sequence.

It can be concluded, therefore, that, if in one or more
tests there exist as many output sequences composed of
2 i-I wrong terms starting from element 2k· 2 i-I or
(2k + 1)·2 i-I, the subtree having ci as its output cell
contains one or more faulty cells. If there exist several
wrong sequences not correlated in the preceding way,
there exist as many faulty subtrees in the circuit.

The data supplied by the four tests do not permit a
more exact localization of the faults. Then, too, it is
easily seen that the number of additional tests necessary
for this purpose can become prohibitive in proportion as
the dimensions of the faulty subtree Ai grow. Further
more, a minimal set of these tests cannot generally be
fixed in advance independently of the results of the
preceding tests.

A method will be described which makes it possible,
on the contrary, to use a faulty An to implement a subset
of functions of n variables without further diagnostic
tests.

Finding a set of functions that can be
implemented by a faulty t.c.

Let us suppose that the tests 0" 1" Ot, 1 t have
detected a subtree Ai. containing one or more faulty
cells. Cases i = 1 and i > 1 are considered separately.

1 st case (i = 1): Tree Ai is reduced to only one cell
of the first level. Since the inputs of this cell are all
accessible from the outside and therefore known, it is
easy to obtain the function implemented by the faulty
cell. Let this function be c} = g(Xl' C2;, C2i+l)' If it is
expanded according to Shannon with respect to Xl, we
get

Terms go and gl can be considered as equivalent
specialization bits and they depend generally on both
the signals applied to the two control terminals of the
cell.

If and only if the correspondence between pairs gog)

144 Spring Joint Computer Conference, 1969

and C2j~j+1 is a permutation, cell c} is still able to
implement all the functions of Xl, and therefore An is
able to implement all the functions of n variables. In all
other cases the functions of Xl that can be implemented
by c} and tberefore the functions of n variables that can
be implemented by An can be found immediately.

Example 1: Let us consider an A3 (Figure 7). The
result of the diagnostic tests is supposed to be the one
shown in Table 7.

In each test one wrong isolated term is noted;
therefore the faults of the circuit are limited to the first
level. Since the wrong terms correspond to X = 2 and
X = 3, it can be deduced (k = 1) thattheyaiicorrespond
to cell c~; the map of the function implemented by this
cell is therefore that shown in Figure 8. The function
impiemented by ci in iorm (2) is therefore

The equivalent specialization bits are:

C!eq = C~a c3eq = ~C3.

If------~---+--~--~~~~--+---~--~_+

Z2----------~---+----------~~--~+

F

Figure 7-The t.e, considered in example 1

Table 7

x Of 1f °t 't
0 0 1 0 1
1 0 , 0 ,
2 1 0 1 1

3 0 1 0 0
4 0 1 0 1

5 0 1 0 1
6 0 1 0 1

7 0 1 0 1

f 1 o I 1
i

.xyl 0 0 I I 0

Figure 8-The map of the faulty cell of example 1

Owing to the correspondence between the specializa
tion bits and the minterms of the functions implemented
by A 3, it can be deduced that all the functions having
one and only one of minterms nl2 and ms can be imple
mented. To Lrnplement a function with m~ alone the
terminals can be specialized in the usual way; to
implement a function with m3 alone it is necessary, on
the contrary, to fix C2 and C3 both at 1.

2nd case (i > 1): Two types of faults can be dis
tinguished as can be seen from the map of cell c;
which has

(a) one correct row.
(b) errors in both rows.

(a) If cell c~ has the map with the row Xi = 0 {Xi = 1}
correct1 it can be said that subtree Ai functions cor
rectly when Xi = 0 {Xi = I} according to the considera
tions set forth in Theorem 1. The faulty tree can
therefore be decomposed as in Figure 9.

When Xi = 0 {Xi = I} the output c; coincides with
the output of A i - l {~-l}' Then, too, when Xi = 1
{Xi = 0 1 the output of c~ can be known independently
of Xl, ••. , Xi-l if all the specialization bits of ~-l {Ai-I}
are fixed at 0 or at 1. This output coincides with the
value of the lower {upper} square corresponding to test
0, or I, on c).

An An with such faults can implement functions of
the following type

(3)

where: X; = Xi {Xi} if the upper {lower} half-map is
'\

correct;
~-i is the vector (X'+l' .," xn) direct or

complemented so that c~ = cj for X!-i = 1.
-yisdefinedinFigure.l0forxi = X;,; for xi = Xi,

'Y is defined in a similar way, taking into
account the lower half-map; 0';'-1 is the
value common to the 2 i-I specialization
bits of ~-l f Ai-I} ;

Diagrams and Utilization of Faulty Universal Tree Circuits 145

X, --------~----_+--------~~~_+----~

x. -(--------~~------------~~----_+ L-

x·----------------~~--_+------------~ t,

Figure 9-Deeomposition of a fault.y tree Ai

f and g are any functions of their arguments.
They are therefore programmed on their
subtrees specializing the bits in the usual
way.

If there are r subtrees ~1' ••• , ~r which show faults
of this type, the proceeding is similar. The circuit can
implement functions of the type:

r

F(X) = L ~q-iq [x;q fq(x!, ... , Xjq-l) + x~ 'rq] +
q-l (4)

r

+ II L X!~ ghq(Xl, ... , Xiq) .
q=l hq~iq

In fact, owing to the structure of the tree, the first
terms of Equation 3 written for' the individual faults
can be implemented independently. The second terms
of Equation 3 must be intersected with one another so
as to obtain the residual part of An which does not
belong to any of the faulty subtrees.

Example 2: Given an At, it is supposed that the result
of the tests is as shown in Table 8.

There is a sequence 0000 in column 1 t for X = 0,
1, 2, 3; this implies the presence of a fault in a subtree
As (2 i

- 1 = 22), which has cg as its output cell (k = 0).
Similarly, the two sequences 00 in tests 1 f and 1 t
corresponding to X = 10, 11 imply the presence of a

~ ITIIJ y=O

[Q[]TI]
ITIIJ Y = "i-I

r1INIJ ITIIJ)' = "i-I

[I[JZ[J ITIIJ y= f

Figure 10-Definition of the function 'Y

Table 8

x Of 1f °t 1t

0 0 1 0 0
1 0 1 0 0
2 0 1 0 0
3 0 1 0 0
4 0 1 0 1
5 0 1 0 1
6 0 1 0 1
7 0 1 0 1
8 0 1 0 1
9 0 1 0 1

10 0 0 0 0
1 1 0 0 0 0
12 0 1 0 1
13 0 1 0 1
14 0 1 0 1
15 0 1 0 1

fault in an A2 with c~ as its output cell. The maps
corresponding to cg and c~ are shown in FigUre 11. Both
have one correct row. Applying Equation 4 we obtain:

F(X) = ~ xSf1(Xl, X2) + xSO"s + J4Xs x2f2(xl) + X2'0 +
+ J4gl (Xl, X2, Xs) XS~~,1 (Xl, X2) +
+ XaX~'2(Xl, X2) + XsJ4g2.S(XI, X2) =

= X~fl(XI' X2) + XaX40"S + X2XsJ4f2(xl) +
+ XsJ4f(XI, Xli) .

In the last term f(Xl, X2) has been used instead of
gl(XI, X2, 1) g2,S(XI, X2) since this product is any function
of Xl and X2 .

.cR
()

.c'
4

~ .l31 0 0 I I ~ -sf 0 0 0 0
--;2 ,

I .cs

,c3 2

0 .c
2

Figure II-The maps of the faulty cells of example 2
... \,

146 Spring Joint Computer Conference, 1969

(b) If the map of c) does not have a correct row,
let us consider the functioning of Ai in tests 0 f and 1 f·
Since every square of the map of c; is explored 2 i-I
times co~esp~nding to all the values assumed by
Xl, ... , Xi-I, the output of Ai in these tests is a function
of Xi alone or is constant, according as to whether the
columns of the map of c; corresponding to tests 0 f and
If are 01, 10 or 00, 11. Therefore A1'I can implement
functions of the type:

F(X) = ~-i [CTiC;(Xi)1 + UiC;(Xi)O] +

+ L X!-i gh(XI, ... , Xi)
h,ci

(5)

where: CT i is the value common to the specialization
bits of Ai;

C)(Xi)1 and C;(Xi)O are the functions implemented
by cell c; during the tests I, and 0 f
respectively;

the gh are any fun~tions of Xl, ... , Xi and are
programmed on their subtrees by specializ
ing the bits in the usual way.

In the case of r subtrees Ail' ... , Ai,. with faults of
this type, we obtain:

r

F(X) = L' xt:-'iq [CTiq C;:(Xiq)1 + uiq c;:(Xiq)o] +
q=l

(6)
r

+ II L X!~iq ghq(Xl, .. " Xiq) •
q=l hq ,c3q

Example 3: Let the results of the tests carried out
on an A4 be those shown in Table 9. The presence of two
faulty subtrees with output cells c~ and c; can be noted.
Their respective maps are shown in Figure 12.

If we apply Equation 6, we get:

F(X) = ~(CTsXa + usXa) + XsX4(U2X2 + CT2'0) +
+ [~gl(XI, X:;, xs)]· [XsX4g2,I(XI, X2) +
+ XaX~,2(XI' X2) + X~g2,3(Xl, X2)]

= xsX4 + CT2X2X~ + x~f(xI' X2) .

The number of the functions that can be imple
mented by a faulty circuit according to Equations 4
and 6 can be considerably increased if we admit the
possibility of permutating the variables XI, ... , X1'I on
the n inputs. To be exact, the number of functions
that can be implemented should be multiplied by n!.
In the case of Example 2, for instance, the fUIlctions

Table 9

I x u
f If o t It

0 0 0 0 1
1 0 0 0 1
2 0 0 0 1

3 0 0 0 1
4 1 1 1 0
5 1 1 1 0
6 1 1 1 0

I 7 1 1 1 0
8 0 1 1 1 !

9 0 1 , 1 I

10 0 0 0 1

11 0 0 0 1
12 0 1 0 1

13 0 1 0 1
14 0 1 0 1

15 0 1 0 1

,cZ

"
.c' 4

m .%"61 I I ,. 0 ~ I21 ·0 0 0 I

.c 2 .c' f S

.c 3 ,£'2
0 2

Figure 12-The maps of the faulty cells of example :~

implemented are 211 = 2048; by permutating the
variables in any way, they become 211 ·4! = 49152.

CONCLUSIONS

A diagnostic method for t.c. has been described which
makes it possible to utilize faulty circuits in a simple
way. The diagnostic tests for the circuit are in minimal
number and can easily be carried out automatically, in
view of their independence of the faults and their
uniformity. In the use of faulty t.c. one or more subtrees
containing the faulty cells are isolated and their
specialization bits are all fixed at 0 or at 1. In this way
it is not possible to TInd all the functions that the faulty

Diagrams and Utilization of Faulty Universal Tree Circuits 147

t.c. is still able to implement. However a large number
of additional tests, which furthermore cannot be
established in advance, would be necessary to determine
the complete set of functions that can be implemented
on a faulty An. Then, too, the law for giving the
specialization terminals their proper values would be
generally somewhat complicated.

REFERENCES
1 R C MINNICK

A. survey of microcellular research
Journal of the A C M vol 14 no 2 April 1967 pp 203-241

2 R C MINXICK
Cutpoint cellular logic
IEEE Trans vol EC-13 no 6 Dec 1964 pp 685-698

3 G CIOFFI V F ALZO~E
Ci7'cuiti cellulari con struttura ad albero
Automazione e Strumentazione vol 16 no 8 Aug 1968
pp 338-350

4 S S YAU C K TANG
Universal loy'ic circuiis and iheir modular reaiizatiorl
Proc S J C C 1968

Solid state keyboard

by EVERETT A. VORTHlVIANN

Honeywell, Inc.
Freeport, Illinois

and

JOSEPH T. MAUPIN

Honeywell, Inc.
Plymouth, Minnesota

INTRODUCTION

The computer industry is no doubt one of the most rap
idly growing industries today. With the increase in
computer usage, there is an increased demand to im
prove man's ability to communicate with the computer.
The prime instrument of input communication today
is a keyboard, and it appears that this will be true for
some time in the future.

The requirements of today's keyboards are becoming
more complex. Increased reliability and more flexibility
to meet specialized demands are essential. Remote
terminals are quite often operated by relatively un
trained personnel and the keyboard must be capable
of error-free operation for these people. At the same
time it should be capable of high thru-put for the trained
operator as will be used on a key tape machine.

Some of the limitations of existing keyboards are:

.l\1echanical interlocks which reduce operator speed.
• Excessive service (increasingly linportant for re

mote terminals).
• Contact bounce and wear of mechanical switches.
• Non-flexible format.

Our general objective in developing the solid state
keyboard was to overcome these limitations and still
have a competitively priced design.

Keyboard organization

Before setting forth specific design objectives, some
general comments may be helpful, depending on the
reader's familiarity with this type of equipment. The
purpose of a keyboard is to feed information into a
digital computer by means of a binary code. An eight

bit parallel code is usually used. Two codes currently
used are ASCII and EBCDIC and the keyboard de
sign and construction must be such that any code can
conveniently and economically be supplied. The output
signal must be compatible with the solid state integrated
circuits used in today's computers.

Specific design objectives

At this point, each key may be thought of as a simple
switch, actuated by the position of a key plunger.

Human factors studiesl -4 helped establish the fol
lowing for mechanical and tactile features of key opera
tion.

Operate force: 2 to 5 ounces

Pretravel (before operate): .075 inches min. from
free position

Release point: .040 inches min. from free position

Release point (R.P.) ~ Operate point (O.P.) - a
where a = differential

Switching transitions should be "snap acting" or re
generative so that it will not be possible to hold a key
in a position that will cause ambiguity at the output.
Rise and fall times must be in the low microsecond
range without any ringing or oscillation. The encoding
electronics must be capable of blocking error codes when
two or more keys are depressed.

Keyboard formats are quite varied, depending on the
user's needs and preferences. This indicated that each
key should be a separate module. Finally, the service
life should be in excess of 10 million operations per key,

149

150 Spring Joint Computer Conference, 1969

and low cost was given a priority second only to re
liability.

The approach

From the outset, our thinking was slanted toward the
development of an integrated circuit chip transducer
for the key module. The powerful and still growing
economic advantages of batch processing used in inte
grated circuit manufacture were considered essential to
our stringent cost objectives. To fully exploit these
advantages, it was desirable that the chip be complete
in itseif i.e., that ii require no external components to
accomplish its function. The latter cannot be added in
batch fashion.

Several approaches to mechanical position detection
without contacts were studied, based mostly on unique
sensor effects available in a semiconductor such as sili
con. Position control of an electric, magnetic, acoustic,
or electromagnetic (including optical) field pattern is
fundamentally involved. Hall effect sensing in a silicon
device, inCluding appropriate integrated electronics,
and coupled with permanent magnet actuation, was
singled out for detailed analysis, design and develop
ment.

This approach was eventually adopted for the solid
state keyboard. The competing approaches mentioned
above, though quite feasible, seemed to require more
expensive packaging, or more expensive and less re
liable field sources, or were known to require external
components in the electronics. :Vlagnetic actuation
looked particularly attractive because it appeared that
the sensor device could be integrated on the silicon chip
along with associated electronics as well as allowing
more freedom in package selection. Among the several
galvanomagnetic effects present in semiconductors, we
found that only the Hall effect in silicon is large enough
to be useful in the low field « 1000 Gauss) region of
interest.

The' silicon chip that has been developed is described
by the functional breakdown in Figure 1.

A circuit schematic is given in Figure 2, and a picture
of the chip comprises Figure 3.

Some of the analytical and experimental investiga
tions associated with this development are presented
in what follows.

HALL TRIGGER
~ AMPLIFIER

GENERATOR CIRC.UIl

Figure I--Functional description of silicon chip transducer

TRIGGER CIRCUIT OUTPUT AMP +

I I

o

Figure 2-Circuit schematic of chip transducer

Figure 3-Photograph of chip

H all effect characterization

As many readers will already know, the Hall effect
is old in scientific terms, having been discovered by
Edward W. Hall in 1878. It is currently enjoying a.
renaissance of practical applications interest due mainly
to advances in semiconductor technology. Two publica
tions6 •6 by A. C. Beer provide excellent general refer
ences. The Hall effect results directly from the Lorentz
force on moving charge carriers; where the average
motion is constrained in direction, as in a solid. This is
illustrated in Figure 4. The Lorentz force creates a
charge unbalance in the y-direction. The resulting

VH= EyV
:RHIB

108 t
Where RH=HIII
Coefficient ::

~-IB
I Vx _ .

T Fy = -1. (v +B)
1

Ey ~ I - --
JJ(Bz nqc zJ--x' · · · ~ · · · +

F = q (E+(t)vxB)
THE HALL EFFECT IN A SOLID IS A DIRECT MANIFESTATION OF THE
LORENTZ FORCE ON MOVING CHARGE CARRIERS:

Figure 4-Hall effect illustration

electric field, called the Hall field, provides a force that
cancels the Lorentz force. Integration of the Hall field
between a pair of probe contacts on the sides of the
conductor produces the Hall voltage.

Equation 1 shows an approximate Hall voltage ex
pression for a homogeneous layer with predominately
one type of carrier concentration.

v _ RH IB
H - 108 t

RH = Hall* coefficient ~_ J:..
nq

n = concentration (cm-3)

I, B, V H = mutually perpendicular

t = Thickness (cm)

B = Gauss

VH volts

I amperes

q = charge on an electron

(1)

Since most electronic circuits operate from a constant
voltage supply, equation 2 below is more appropriate,
It is straight-forward derivation * from equation 1 for a
rectangular geometry.

* \Ve assume "Hall mobility" and "conductivity mobility" to be
substantially equal for the conditions of interest. The validity of
this assumption, has been confirmed through private communi
cation with Dr. G. D. Long. Honeywell Corporate Research
Center.

Solid State Keyboard 151

V 8 = supply voltage

Ud = mobility (cm2jv-sec)

W = width

L = length

(2)

A factor less than unity has to be applied to equation
2 if the aspect ratio W /L is not smaller than unity.
This is due to the shorting effects of the end contacts on
the Han field. One cannot increase the Hall voltage
indefinitely by increasing W /L.

Equation 2 illustrates the important role of carrier
mobility. In this respect, silicon is not a good material5

compared to, say, IuSb or GaAs. However, one must
go beyond equations 1 and 2 to include practical con
straints of power dissipation, electrical resistance,
range of impurity concentrations, and temperature
variation of Hall coefficient. When this is done, silicon
looks much better. Relating constant current and con
stant voltage modes of operation to semiconductor
processing, observe that thickness and concentration
(equation 1) are also the major processing variables that
control resistor values in integrated circuits, and the
expected tolerance is quite large. On the other hand,with
constant voltage, only the mobility is process depend
ent, and it tends to be a weak function7 of concentration
in the region of interest. Thus we expect and obtain
much better reproducibility of Hall voltage with con
stant voltage excitation. This is gained at the expense
of a higher temperature coefficient, however, due to the
variation of mobility with temperature.

Assuming a field of 1000 Gauss t~ be available,
straight-forward calculations using typical mobility
and reasonable geometries showed that we could obtain
a signal of about 30 millivolts with a five volt supply,
and without exceeding typical power dissipation capa
bilities in IC chips.

Figure 5 shows an expression for total d.c. output
voltage of a Hall element, including the effects of small
loading at the Hall terminals. The characterization is
entirely in terms of parameters measurable at the
terminals. The offset voltage term, V q, which is the open
circuit output voltage with zero magnetization, is a very
important parameter in this device. Economic restric
tions ruled out the use of external resistors for adjust
ment of Vq. Its nominal value using IC technology de
pends mostly on contact geometry and sheet resistance
uniformity in the conducting layer comprising the Hall
element. Fortunately, very accurate geometries are
possible using photolithographic techniques developed

152 Spring Joint Computer Conference, 1969

If (13 + 14)« IH ;

V34 = Vq + VH - I3R3 ~ I4R4

Vq = Offset Voltage; VH = Hall Voltage

Figure 5-Hall element output voltage characterization

for IC fabrication. Variations in Vq can be caused by
several factors, such as internal stress (through the
piezoresistance effect) and temperature gradients. Re
gardless of the nature of the electronic circuitry that
follows the Hall element, the variations in V q must be
much lower than the Hall voltage for adequate "signal
to-noise" ratio.

Design-Process interrelation8hips

As with any integrated circuit development, the
circuitry, device physics, and process techniques are
interdependent, and must be so treated. At the time the
development was initiated it was considered essential
for low cost objectives to use the epitaxial-diffusion,9
bipolar, NPN based, type of processing which was
rapidly becoming an industry standard. MOS type
processing was not sufficiently controllable to be
seriously considered.

In an NPN type of bipolar structure, the collector
layer has the lowest carrier concentration and highest
mobility; it is the best choice for a Hall element. Hence
the design approach was pursued on the basis of forming
the Hall element simultaneously with collector regions
for NPN transistors. The same isolation diffusion is used
for defining the Hall element geometry. (The Hall ele
ment outline is faintly visible in Figure 3). Since this is
a novel type of Hall element structure, some preliminary

experimentation was conducted, confirming its feasi
bility and the accuracy of the preceding characteriza
tions.

As to process considerations for the associated cir
cuitry, the objective was to take advantage of conven
tional IC processing strengths, which lead to high yield
results on the following:

1. High gain, accurately matched NPN transistors.
2. Low gain PNP transistors.
3. Accurate control of resistance ratios, but not

absolute values.

Throughout the design-development cycle, extensive
effort was devoted to achieving a simple design that is
amenable to high yield processing, yet adequate for the
intended function without external components.

The trigger cirmtit

The function of the trigger circuit is to accept the
linear output (with or without linear amplification) of
the Hall element and convert it to a binary or ON -OFF
mode, with regenerative switching transitions and con
trollable hysteresis (or differential between the "turn
on" and "turn off" operate points).

The trigger circuit we devised is shown in Figure 6.
It is a variation on the Schmitt type of circuit. It may
be implemented with just two resistors and two bi
polar transistors. An approximate analysis aimed at
providing insight into its general characteristics will
be given here.

Assumptions used in approximate analysis:

a. The transistor model shown in Figure 6 applies.
The most important feature of this model is that
Shockley'S law applies to the I'E - V BE char
acteristic. This is well established for silicon
planar bipolar transistors. Extrinsic resistances,
collector conductance and all time dependent
effects are omitted. The model requires active
region operation, which is easily met.

b, 111 + I B ' = I, a constant
c. IB« I c (high gain)

The static voltage control characteristics at the input
base is of primary interest.

(3)

U sing the above assumptions this becomes,

VB = - KT (1 ~ + 1 1 - IE/I)
q n I's nIBil

(aIR4) IE!I (4)

V
8

LOAD SUCH THAT T' DOES
NOT SATURATE

I
I

80-----4

T
E

Trigger Circuit Schematic Transistor Model Used

Figure 6-Trigger circuit. schematic

The first term of equation 4 represents the control
characteristic10 of a conventional difference amplifier
stage using the same assumptions noted above. The
second term is the result of linear regenerative feedback.
If this term has the appropriate magnitude, the transfer
characteristic will have a negative resistance region that
covers a few millivolts. The transfer characteristic may
be easily observed on a curve tracer using a discrete
component version of the circuit. One such observation
is reproduced in Figure 7. The constant total emitter
current condition is approximated in this version of the
circuit by using an emitter resistor with voltage drop
that is several times larger than the V BB voltage.

The nature of regenerative switching transitions may
be reviewed in a number. of references, particularly
those dealing with turmel diode circuits. Chapter 15
in Linvill and Gibbons' bookS is especially good. We
will only note here that the trigger points depend ex
clusively on static parameters, and are given by the
transition points from positive to negative resistance
around any closed mesh of the circuit. Reactive effects,
active device response time, etc., affect the speed of the

lOpA/div.

., ..

:···~·r~

Figure 7--Experimentallook at trigger circuit contl'Ol
characteristic

Solid State Keyboard 1 ~'l
.LVV

switching transition, but not the fact of its occurrence.
The trigger points are thus found by taking the deriva
tive of equation 4, shown below as equation 5, equating
it to 0, and simultaneously solving equations 4 and 5.

dV B KT 1
d (I) = - I - aIR4 = 0

III q (1 - Ill/I) f
(5)

A result from thls approximate analysls is given
below for one condition of regenerative feedback. The
"ON" condition is defined as T' conducting and T off.

Turn ON point Turn OFF point

.130 volts - .069 volts 0.723 - .061 volts 0.276

KT = .026 volts, and I, = I',
q

Our investigations showed that this circuit configura
tion could provide regenerative switching transitions
with rather precisely defined trigger points and voltage
transitions between trigger points of a few millivolts.

The component requirements are well suited for inte
gration, with critical performance depending on transis
tor matching and resistance ratios. Note that the tran
sistor matching requirements are the same as for a good
difference amplifier stage, with V BB matching to about
±2 millivolts. This is routinely done in Ie's, due to
close physical proximity, extremely accurate matching
of geometries, and simultaneous processing.

Output amplifier

The output amplifier, consisting of a PNP stage
driving an NP~ Darlington, operates in standard satu
rated switching logic fashion. Its characteristics are
relatively non-critical. The PNP is fabricated with a
"lateral" geometry and its current gain is low. Static
conditions for the OFF and ON states are as follows:

INPUT

OFF State T' Off

ON State

zero drive to
PNP base

T'On
PNP saturated

OUTPUT

Output voltage = 0
(with reference to
supply)

Output voltage =
supply voltage minus
(VeIl SAT a + V BR4 +
V BBi)

154 Spring Joint Computer Conference, 1969

As previously noted, a functional requirement is that
there be no linear region in the output of the device,
i.e., output voltages between the OFF and ON levels can
only exist on a transient basis, This requires t.h9"t the
thresholds associated with the output amplifier opera
tion be well within the negative resistance region of the
trigger circuit Dontrol characteristic. The resistor R2 is
designed such that the value of I'C at the trigger cir
cuit turn on point will not develop enough voltage
across R2 to forward bias the PNP bas&-emitter junc
tion. The combined PNP-NPN gain requirement is
such that the PNP stage saturates at a value of Fe
that is below the trigger circuit turn off point. Resistor
Ra provides adequate margin against self turn-on in the
Darlington stage under worst case temperature and
gain conditions.

The output transistor has dual emitters and provides
two isolated outputs. This aids in the encoding logic;
in effect, part of that logic is included in the chip. This
is an example of the economics possible when using IC
technology, for the additional output adds virtually no
cost to the chip.

An additional benefit of the solid state keyboard is
that the output sjgnal from the key does not require
additional buffering to eliminate the effects of contact
bounce. Switching times are in the low microsecond
range and are free from ringing or oscillation.

Integration of sensor and electronics

Aside from the usual considerations of parasitic
interactions within an integrated circuit, the special
effects resulting from including the sensor in
the Ie chip constituted an interesting and novel
aspect of this development. In general, we find
more advantages than disadvantages in this approach
and predict a growing trend toward "integrated trans
ducer" semi-conductor devices. Inductance parasitics
are virtually eliminated due to the extremely small
dimensions. A potential source of ringing or oscillation
in regenerative switching circuitry is thus avoided. For
the same reason, noise pickup in the leads from sensor
to electronics is minimized. High impedance leads to the
outside world are avoided.

In the functional operation of this device, magnetiza
tion is applied over the entire chip. This has no effect on
the electronics, as expected, for the resistors and tran
sistors do not have any magnetic sensitivity in the
magrietic field range of int~rest. The Hall element out
put, like a balanced bridge with matched temperature
sensitive resistors, is sensitive to temperature gradients.
This has to be taken into account in the output stage
design and operation, and the thermal design of the
package. The most troublesome parasitic encountered

has been the stress sensitivity of the Hall element
through the piezoresistance effect, previously men
tioned, and this has been overcome by some special
mechanical features in the chip-package design.

Chip specification

The specification is given in Table I. It is written as
broad as possible to maximize the overall process yield.

Computer aided analysis

In the design of a product intended for the computer
field, the utilization of computer-aided analysis seems
especially fitting. When we avoid some of the simplify
ing assumptions used in the preceding approximate
analysis; equations analogous to (4) and (5) become
extremely cumbersome. Their simultaneous solution to
obtain operate and release points becomes humanly
intractable; a computer program was written to obtain
such solutions.

Performance of the device was studied as a function
of several independent parameters.

l. Supply voltage
2. Transistor gain, matched and prescribed mIS

match
3. Emitter junction saturation current, matched

and prescribed mismatch
4. Resistor and resistor ratios R 1 , R4/R 1 .

5. Offset voltage, V q

Space does not allow presentation of this analysis
and results. The reader may contact the authors If
interested. The computer-obtained results have been
of great value in guiding the design and the design-pro
cess relationship. Figure 8 shows the effect of gain and

~=1.05
5
I \= 1.0

INDUCTION Y. S. a ~5= 0.9

9001 1 I I 1 I I I I I I I I I I I
800

G 700
A
U
S
S 600

500

,
j,.-
~

iL
f(i

~
1

~ ~

V """ I

I
I I I

I I
t1.P. L

I-- I I
I
I

I I "!I, I I I I I

I
i I i i I i

,
i

I
I R.P. !

400
10 20 30 40 50 60 70 80 90

Figure S-J£ffect of gain and gain mismatch

tB~

t----
I

tB' "s
100

gain mismatch. We note that performance becomes
essentially independent of transistor beta in the range
above 50. With these results, a realistic process gain
specification minimum of 30 was established.

Temperature characteristics

The dependence of operate and release points on
temperature for a typical device is shown in Figure 9,
based on experimental data. The slope of the cunTes is
roughly accounted for by the expected temperature
dependence of mobility. However, second order effects
in the circuitry have a certain influence, not completely
analyzed at this time. First order temperature effects
in the circuitry are eliminated by use of matching and
ratioing techniques.

Packaging the chip

Upon examining the economics of integrated circuits,
it becomes apparent that much of the cost of commer
cial integrated circuits is in chip packaging rather than
the chip itself. It was necessary, therefore, to develop a
low cost, reliable packaging technique suitable for
magnetic operation.

In developing such a package there are many param
eter trade-offs that must be made in order to arrive at
an optimum configuration. In most standard chip pack
aging approaches the chip is eutecticly bonded to a
metalleadframe or header. The metal is normally kovar
which closely approximates the thermal expansion of
the silicon chip. Since this device was to be magnetically
operated, kovar is not desirable because it is ferromag
netic. On examining the non-magnetic metals and al-

800

Gauss

600
OP

400
RP

200

Tempera ture in degrees Cen tigrade

30 60

Solid State Keyboard 155

loys, it was evident that there were none with the proper
thermal coefficient of expansion. Therefore, it was neces
sary to find another method of holding the chip. The
approach selected was to allow the ohip, in essence,to
float in a non-rigid. potting material. This is accom
plished in the following manner: A leadframe is stamped
from phosphor bronze, inserted into a mold, and trans
fer molded with a rigid plastic leaving a cavity for the
chip and access to the ends of the lead frame as is shown
in Figure 10. It should be noted that the cavity for the
chip is entirely plastic.

The chip is inserted into the cavity and the four
wires are ultrasonically bonded between the pads on the
chip and the leadframe. At this point, the chip is held
in place by the four wires. The final packaging operation
is to fill the cavity with a silicone potting material,
which has a very low viscosity in the uncured condition,
and it completely encapsulates the chip including the
reverse side. Figure 11 shows the chip in its cavity prior
to being potted.

In order to minimize the cost of this packaging ap
proach, it was necessary to design so that wire bonding
could be automated. This was accomplished in the
following manner. The wafer is sawed into chips with an
abrasive slurry, rather than use the normal scribe and
break process. The sawing produces chips with square
edges and with dimensions controlled to within ± .001
inches. The chip cavity is made only slightly larger
than the maximum chip size; hence the location of the
pads on the chip relative to the leadframe is rather
precisely controlled. This allows the wire bonding ma
chine to be mechanically aligned, rather than require
the operator to make a visual alignment for each bond.
It should also be noted from Figure 3 that the pads on
the chip are large-(by integrated circuit standards)
approximately .010" square.

Figure 9-Effect of temperature on magnetic operation Figure l{}---Lead frame showing chip cavity

156 Spring Joint Computer Conference, 1969

Figure II-Chip bonded in place

Package thermal considerations

Without a eutectic bond to provide heat transfer
between chip and package, it is necessary for heat
transfer to occur through the aluminum wires and the
silicone potting material. By using .002" diameter wire
the thermal resistance is 355 degrees Centigrade per
watt, unpotted. The potting material further reduces
this to 266 degrees Centigrade per watt, which is quite
comparable to the standard plastic dual in-line package.

Magnet actuation

If a bar magnet is moved along its axis perpendicular
to the plane of the Hall element, the normal component
of flux will vary with the magnet movement according
to the curve shown in Figure 12. Since the curve runs

MAGNETIC t \
1000

1
FLUX

(GAUSS)

50]

b
HAll GENERATOR

iBAR MAGKEll

N S

~ d '-'-

iii ..
.050 .100 .150

DISTANCE = (d)

Figure 12-Flux vs position. single pole har magnet

asymptotic to the zero flux axis, a slight change in the
release point of the chip would require a large change in
the movement of the magnet to reach the release point.
This is not desirable. If two magnets a.re used and are
magnetized as shown in Figure 13, the flux versus gap
position curve will tend to be sinusoidal. This is desir
able if the total travel of the magnet assembly can be
limited to the nearly linear portion of the curve. Since
the flux required for both operate and release points is
positive, the negative portion of the curve would not be
used. By inserting the two magnets in a "U" shaped
shunt and magnetizing them in place with a specially
shaped magetizing fixture, it is possible to produce the
curve shown in Figure 14. The result of this is to move
the majority of the sinusoid above the zero flux axis.
Figure 14 also shows the ma~l.Let assembly and the shape
of the poles on each of the magnets.

sl
IC~IP I

I

Is : NI
~d~

(

DISTANCE = (d)

Figure 1:3--Flux VH position, double pole magnet

t
100 ®

MAGNETIC j
FLUX 100

(GAUSS)

50

.100 .150

DISTANCE = (d)

Figw'e 14---Fiux V~ position, douhle pole, modified

The magnets are made of polyvinyl chloride filled
with barium ferrite. This combination produces an ex
tremely stable, yet low cost, permanent magnet mate
rial. The shunt is soft iron which increases the magnet
efficiency and helps to reduce the effect of stray· mag
netic fields. The chip package is made as thin as pos
sible to reduce the air gap. The magnet assembly with
the chip package is shown in Figure 15. Referring to
the specification on the chip, and relating these to the
flux versus position curve, it is possible to establish the
operate and release points of the key, as shown in
Figure 16.

Figure 15-Chip package and magnet assembly

1000 -

500 -

o

Key Travel in Inches

Figure 16-Operate and release ranges of key

Solid State Keyboard 157

Table I -Chip specifications

Parameter Minimum Maximum Units

Operate Point (OP) 300 750 Gauss
Release Point (RP) 100 Gauss
Differen tial

(OP - RP) 150 Gauss
Supply Voltage 4.75 ;).25 Volts
Supply Current 15 rnA

(OFF Condition)
Output Voltage 3.4 3.6 Volts

(ON) @ 5V supply
Output Voltage 0.25 Volts

(OFF) 5000 ohm
load

Output Current 10 rnA
(ON) (each
terminal)

Reliahility test results

A variety of enviromnental tests have been made on
the key chip integrated circuit, packaged as noted here
in. In addition to tests on functional performance on
conventional chips, chips with special metallization
patterns were prepared and packaged, such that junc
tion characteristics and Hall element output could be
measured directly. This allows a more sensitive indica
tion of incipient de~adation than does functi '"lnal
performance. Table II describes tests on four lots of
devices. The results are in keeping with the reliability

Figure 17-Plunger magnet assembly

158 Spring Joint Computer Conference, 1969

Table II - Reliahility test results

No. of Dem:ces Type of Test Environment Time Results

30 Functional, Normal Office 15 months Xo failures
magnetic actuation

15 Functional, 75 to 100 deg. F. 4~30 hrs. No failures
magnetic actuation

30 Hall element (V q) 70 deg. C. 1000 hrs. Maximum variation
90% R.H. of 2%

6 Collector junction 70 deg. C. 1000 hrs.' No change
V CBO @ 10 jJA 90% R.H.

expected of semiconductor devices, when designed,
processed and packaged properly. These tests are con
tinuing and others are being initiated.

Mechanical assembly

The magnet assembly is inserted into the key plunger
which is shown in Figure 17 .:rrhe plunger magnet as
sembly is guided in the key housing by large area. guides.
We have shaped the top of. the plunger and the inside of
the two-shot molded button so that the button is press
fitted directly into the plunger, avoiding the conven
tional adaptor pin. In addition to lower cost this pro
vides the advantage of a low keyboard profile.

The chip package is inserted into slots in the housing
which hold it in the gap of the magnet assembly. Two
small tangs on the bottom of one side of the magnet
shunt hold the return spring in place. This spring is
designed to provide the two to five ounces of operating

Figure IS-Key assembly

Figure t9--Mounting rail-PC board assembly

force under minimum stress conditions, assuring long
life without getting weak.

The key module, shown in Figure 18, is inserted into
a mounting rail. The module snaps into the rail, which
has clearance holes for the leads of the chip package to
extend through it and be soldered into a printed circuit
board. The mounting rails are welded to the end mount
ing bracket and the entire assembly is riveted to a PC
board as shown in Figure 19. The printed circuit board
provides the electrical connection between the key
modules and a second PC board. The latter contains
the electronics for encoding, t4e strebe signal, and the
electrical interlock which prohibits an error code gener
ation when more than one key is depressed.

CONCLUSION

The solid state keyboard uses a new switching concept
which capitalizes on the inherent reliability and low

cost of integrated circuits. The output of this device is
compatible with the integrated circuits used in com
puters.

The keyboard is deliberately made modular so that it
can be adapted to special key formats and codes. It
provides an electronic interlock instead of the usual
mechanical one, and as a result allows higher speed
operation.

¥l}>ile the keyboard is different in TIli:my :respects, it
has maintained those industry standards which have
been substantiated by human factor studies such as key
stroke and force, key loea tion, and the key layout in the
touch typing area.

ACKNOWLEDG MENTS

The development of the solid state keyboard has been
possible through the enthusiastic support and dedicated
efforts of many people in our respective organizations.
We could not hope to fairly cite individual contributions
within acceptable space limits here. We also appreciate
the consultation provided by other research and engi
neering groups in our Company.

REFERENCES

R L DEININGER
Human factors engineering studies of the design and use

Solid State Keyboard 159

of pushbutton telephone sets
BSTJ Vol XXXIX No 4 995-1012 July 1968

2 R L DEININGER
Desirable push-button characteristics
IRE Transactions on Human Factors in Blectronics
March 1960

:3 H M BOWEN
Rational design jor control: Man communicating to machine,
Industrial design Vol XI No 5 51-59 May 1964

4 R D KI~CAID
Human factors design recommendations for
touch operated keyboards
Report 12091-FR Honeywell Systems and Research Center
January 1969

5 A C BEER
The Hall effect and related phenomena
Solid State Electronics Pergamon Press Vol 9 339-351

6 A C BEER
The Hall effect
International Science and Technology December 1966

7 0 N TUFTE E L STELZER
Magnetoresistance in heavily doped N-Type silicon
Phys Rev Vol 139 No 1A A-265-A-271 July 5 1965

8 J G LINVILL J. F GIBBONS
Transistors and active circuits
McGraw-Hill Book Co New York 1961

9 R M WARNER JR J N FORDEMWALT (Editors)
Integrated circuits
McGraw-Hill Book Co New York 132-149 1965

10 J T MAUPIN
The control characteristic oj current switching logic stages
Honeywell Corporate Research Center Memorandum
HR 63-37 July 1963

Computer generated graphic segments
in a raster display

by RICHARD A. METZGER

Rome A ir Development Center
Rome, New York

INTRODUCTION

The increased use of computer graphics to enhance the
man-machine interface has resulted in many and
varied systems and devices to meet a multitude of
needs. One type of eli,splay that is receiving new em
phasis as a computer output device is the "raster
for!p.at" display (of which standard television is a par
ticular type). Among the reasons for using this type of
display are: (1) the relative simplicity of the display
dev~ce, (2) the ease of remote operation for multiple
statIOn users, (3) the low cost per station, (4) capa
bility for mixing output with standard television
sources, and (5) good position repeatability for com
puter generated data.

However, to utilize a raster display (either standard
525 line TV or other line standard) as a computer out
put device, a conversion from digital to video data
must be performed. The device utilized to perform this
function Is commonly referred to as a Digital-to-Video
(D/V) Converter. It accepts digital data from the data
processing system and converts it to a video signal
compatible with the raster scan display. The converter
being a digital device, often becomes complicated sinc~
it is forced to operate within the timing constraints of
the Raster Scan Display System (RSDS). A problem
a!so arises in the subjective appearance of the display,
smce all data must be generated within the line-by-line
structure of the raster. In the case of alphanumerics a
fixed-size matrix of dots can be used to generate v:ry
acceptable symbology. However, the generation of
graphic segments is not as easily accomplished.

Graphic segments and figures vary greatly in terms
of size, shape, orientation, and complexity. If the scan
lines forming the raster together with the discrete
points on each scan line are considered as a Cartesian
grid, it can be seen that in general, graphic segments
will not fit exactly within the constraints of this grid.

161

In addition, graphic figures require a set of defining
equations, each valid for a given domain. Thus one of
the simplest means of generating complex figures is by
combination of graphic segments (lines, circles, arcs,
etc.), into the higher order figures.

The particular problem to be addressed here is the
generation of graphic segments (straight and curved
lines) within the constraints of a raster format display.
Algorithms are developed to allow computer generation
of selected graphip segments of arbitrary length (con
strained by screen si,ze) at any desired screen location.
The raster will be considered as an N x M Cartesian
grid, where N is the number of scan lines and M is the
number of addressable points on a line. All operations
will be performed within the constraints of this address
grid. By treating the grid dimensions as variable, the
algorithms are immediately usable for any line stan
dard raster. The software approach to development of
the algorithms was adopted since this allows usage with
any of the standard D-V converters, whereas a hard
ware implementation is particular as to type. However,
there is nothing within the adopted approach which
prohibits hardware implementation.

Prior to considering the algorithms for generation of
graphic segment, a bri~f discussion of Digital-to-Video
conversion as a display technique will be presented.

Digital-to-video conversion

The generation of data within a raster formatted
display is governed by the timing of the raster sweeps.
To generate a "dot" at a given point it is necessary to
unblank the beam at the instant it traverses the speci
fied address. As stated previously~ the Raster Format of
the display can be considered as an address coordinate
grid where the individual scan lines represent the ordi
nate values (Y -Address) and the points along the line
represent the abscissa values (X ·Address).

162 Spring Joint Computer Conference, 1969

By considering the relation between the scan rate of
the electron beam and the Cartesian address grid, it
can be seen that associated with any given picture ele
ment there is a corresponding X:-Y coordinate address
and vice versa. Thus by taking into account the num
ber of lines preceding the addressed line and the num
ber of elements on this line preceding the addressed
element, a given tiple interval after the beginning of
each frame can be associated with each picture element.
In this way D-V conversion can be considered as a
position to time conversion.

Bit per elemept techniques of D-V conversion

One means of implementing a digital-to-video con
verter to provide the above type of position to time
conversion is the "Bit Per Element" converter. The
general functions of such a converter are outlined in
Figure 1. Input data is accepted from the data source
by the interface control in a word serial, bit parallel
form. This data consists of an X and Y address (es),
character code and control bits. Data format and parity
are checked and if proper, the data is transferred to the
buffer memory and process control. The buffer memory
is a small high speed digjtal memory (usually core)
which temporarily stores the character, vector, and
control data ill the same form as received by the inter
face unit. By means of the process control, the address
bits are separa ted and transferred to the sync and com
parator section while the character/vector dat~ is held
in the buffer memor~-. If the data supplied from the
data source is not sorted (in X-Y address), then the
process control has the additional function of sorting
the address data in ascending orders of Y and X within
,....,,..1-,. v
\JQI\..J.1.L .L.

Since the raster timing must provide overall control
of the conversion as well as display process, all digital
and display functions must be timed to the raster
synchroniza tion pulses or harmonics thereof. The sync
and comparator section provides this control interface
as well as provide the neceRRary timing signals inter
nal to the converter. There are two primary ways of
providing the control interface. In the first, the raster
synchronization pulses are fed from the display device
to the sync and comparator section and the internal
timing for the converter derived from it. In the second
mode, the sync and comparator section of the converter
contains a crystal controlled clock \vhich operates at a
harmonic of raster timing, with the latter being de
rived from the crystal.

Under control of the sync and comparator section,
the data is transferred from the buffer memory to the
character generator where a dot pattern of the alpha-

DiQitol Data

I
~

Interface
Contro I

y
Vector

Genera to r

I

Buffer Memory
and

I nterf ace
Control

Ho ri z and Vert
Synch ron izatlon

J l
Sy nc and x- y
Comparator

Character
Gene rotor

Input Memory Control

J

DiQital Video Memory

l
Output Memory Co ntro I ,

Outp u t Video

Figure I-Bit per element digital-to-video converter

numeric symbol, etc to be displayed is formed.
This dot pattern is then transferred to a section of the
video memory determined by the display coordinate
address. In the case of a graphic segment, a single dot
is generated at each of a series of coordinate addresses
with the group or sequence of dots forming the graphic
figure.

The video memory contains one bit of digital storage
(1 = unblanked electron beam, 0 = blanked electron
beam) for each picture element on the display surface.
Thus by loading the dot pattern of the character at a

memory address corresponding to the display address,
the contents of the video memory bear a one-to-one
correspondence to the generated display. To maintain
display continuity and eliminate presentation of partial
characters caused by loading sections of characters dur
ing free memory cycles, loading of the video memory is
performed during retrace of the electron beam when it
is blanked from the display surface. The memOIY is
read out in synchronization with the beam, i.e., ever.f
bit is read out as the electron bea.m traverses the corre
sponding point on the display surface. To attain the
output speed required, it is necessary to perform multi
ple word read out, multiplex several tracks or lines, or
use very long word lengths. In each case the data is
read into a register for parallel to serial shifts. When
the serial bit stream is inserted into the synchroniza
tion and blanking interval, the video signal results.

Real time techniques of D/V conversion

An alternative method for implementation of D /V
converters are the "Real-Time" type represented by
Figure 2. The primary difference is the absence of the
large (digital) video memory to recirculate the "bit per
element" display at the 30 frame/sec refresh rate.

The data is transferred from the data source through
the interface unit to the buffer memory in a manner
analogous to the previous example. In this case, how
ever, the buffer memory is of sufficient capacity to
store a complete frame in computer word form, e.g., to
present 1000 characters, each defined by three com
puterwords requires a 3000 word memory. The ad
dressed portion of the stored words are continuously
compared to the position of the scanning beam. This is
accomplished by use of two counters controlled by the
raster synchronization pulses. One counter is advanced
by the horizontal synchronization pulse and indicates
which scan line (Y-Address) is being written. A second,
higher speed, counter advances by M for each hori
zontal sync pulse, until a number corresponding to the
number of picture elements per line is attained. In this
way the second counter indicates the picture element
(X-Address) being scanned. By continuously sampling
both counters, the screen address for any specified X-Y
Address can be obtained.

A given interval prior to coincidence (sufficient to
account for propagation delay) the synchronization and
comparator circuits transfer the character data from
the buffer memory to the character/vector generator.
A dot pattern of the character/vector is generated at a
bit rate sufficient for insertion directly into the raster.
Thus the data is transferred directly from the char
acter/vector generator to the display device by means
of high speed register without the requirement for a

Computer Generated Graphic Segments 163

Dioital Data

Interfoc e
Control

Buffer Memory

Process Contro I

Vecto r
Generator

Output Contro I

J
Output vi d eo

Horz ond Vert
Synchroni zotion

Sync and X-V

Comparator

C harocter
Generator

L
I

Figure 2--Real time digital-to-video eonverter

digital video memory. This sequence is performed at a
30 frame per second rate since no digital video memory
is available for display refresh. Erasure of the data is
accomplished by inhibiting the data output from the
character/vector generator and entering new data into
the digital memory. In the use of the bit per element
converters, a specific erase function (which amounts to
entering the complemented character dot pattern) must
be provided to remove the displayed dot pattern from
the digital video memory.

Straight line generation

The complexity involved in generation of graphic
segments in a raster format can be seen by considering
the straight line vector as shmvn in Figure 3. It is de
sired to generate a line connecting points (Xl, YI) and
(X2, Y2) where the Y values represent raster lines and

164 Spring Joint Computer Conference, 1969

X,V,

T ~---- ----_
• --___ Rounded To Neorest InteQ,r

.illY' Vz
Y, -- --____ /" Troce Usi",;! Increment = :~

. :::;:.::;".' :: - -- -

Error

I·

Xz Yz

IError I

·1

Figure 3-8traight line segment in a raster grid

the X values represent picture elements within a raster
line. If the lines were horizontal, vertical, or 45 degrees,
the generation would be trivial. Without loss of gener
ality, the analysis which follows is for a line directed
down to the right at an angle, a < 45° as shown in
Figure 3. (A similar type of analysis could be performed
for any other octant.)

To form a trace at an angle a < 45°, the address of the
generated dot must be increased by a given number
of units (called the DELTA value), in the X direction,
prior to a one-unit increase in the Y address. For a line
at an angle a > 45°, the address is incremented DELTA
units in the Y direction prior to a one-unit increase in
the X address. The key to generation of the proper line
thus lies in the choice of the "DELTA" value. If
DELTA is set equal to the slope,

then the error is equal to the remainder (R) of the
integer division. If the DELTA is set equal to Q
rounded to the nearest integer, then the error equals R
if R < aY/2 and equals (aY - R) if R ~ aY/2. In
general, if the slope Q is used to determine the DELTA
value, then to obtain a zero end point error requires R
increments of DELTA equal to (Q + 1) and (aY - R)
increments DELTA equals to Q.
This yields

LlX= (Q+l)R+(aY-R)Q=QaY+R (2)

which is the condition for zero error. However, it is a
formidable task to obtain a line with acceptable line
arity and no end point error when computations are
based only end point data, since the technique for
intermixing the two different length DELTA segments
resulting in a zero error is dependent on the particular
end points in question. Thus the approach adopted is

based upon a "best fit" technique minimizing the error
with respect to the desired line, introduced with an
incrementation in either the X or Y direction or both.

The main functions to be performed by any straight
line algorithms are:

1. determination of direction, right or left, which
controls whether incrementation or decremen
tation, respectively of the X address coordinate
is required.

2. determination of whether the angle of inclination
is greater than, less than, or equal to 45°.

3. determination of the DELTA segment length.
4. generation of a "dot" at the sequence of points

between (Xl, Y 1) and (X2, Y 2) within the con
st.raints previously listed and in accordance with
the above data.

The DELTA value is based upon a determination of
whether incrementing the current address (X" VB)' in
the X direction, Y direction or both will result in the
smallest deviation from the desired line. By summing
the number of unit incrementations in a given direc
tion, X or Y (which corresponds to the number of
iterations prior to sign change), the DELTA length can
be determined.

Let the coordinate grid of Figure 4a represent the
raster coordinate grid in the vicinity of the start point
X. Y B. The actual trace represents the sequence of
points which most closely approximates the desired
line connecting Xs Y B and XI Y I (not shown). The in
clination with respect to the 45° line (determined from
ax and a Y) imposes a limitation upon the degrees of
freedom of movement. Referring to the case depicted
in Figure 4b, it can be seen that the possible new
addresses are point.] (Xl! + 1; Y.) or point 2

xv.
S s/" ,
~

~ 341 , y

'" """-

y 341

y
343

y 344
I

y
345

~.
'"",,,

~, ~

I
\1' ~

V I
~h
'~

~

~

Desire d
e ~ .. yac

'",",

Figure 4A-Coordinate grid as utilized in delta suhroutine

flY
AX

Figure 4B-First move determination in grid structure

(X, + 1, Y 8 + 1). If the error associated with each
move is represented by A or B respectively, the geo
metric relationships allow the ratio of the error values
to be determined as

B
X= (3)

If the condition of equal error is chosen as the dis
criminant point, a value Rl can be defined such that

Rl = 2LiY - LiX (4)

where the sign of Rl indicates the minimum error move
to point 1 or point 2. (In Figure 4b the minimum error
is to point 2.)

Referring to Figure 4c to consider the second move
determination involving error distances C and D, the
same analysis yields an Rl discriminant value

RI = Rl + 2LiY - 2LlX (5)

If the initial address modification from X8 Y II had
been to point 1 rather than point 2, the RI for the
subsequent move, Figure 4d discriminant, would assume
the form

RI = Rl + 2LiY (6)

In both cases the sign of RI would determine the
minimum error move.

If this analysis is pursued to the general case includ
ing inclinations both greater and less than 45°, the
following results are obtained:

a. After the first move from point X 8 , Y B, all sub
sequent moves reduce to one of the two above
cases.

b. The form of the error equation is dependent upon

Computer Generated Graphic Segments 165

2AY

AX

2 AY-AX
~i---~-dx-

2 AX- lAY

/
Desired
Trace

AX

Figure 4C--8econd move determination in grid structure

YS+2

x s+ I XS+2

,

I-lll.
4)(

24Y
4)(

24)(-24Y

4)(

Figure 4D---Alternate second move determination

the previous point with the value dependent on
both the previous point and the slope.

c. All moves to new addresses can be made, based
upon the sign of the error term.

The form 9f the general equations is based upon
inclination:

a. If the angle of inclination is < 45°, then

Rl = 2LiY - LiX (7)

and

{

RI t 2LiY - 2LlX if RI 2: 0
RI+1 =

RI + 2LiY if RI < 0 (9)

(8)

b. If the angle of inclination is >45° the roles of X
and Yare interposed and we obtain

Rl = 2LlX - LiY

and

{

RI + 2LlX - 2LiY if RI 2: 0
RI+1 =

R I + 2LiX if R I < 0

(10)

(11)

(12)

166 Spring Joint Computer Conference, 1969

The resultihg equations (Equations 7, 8, 9, 10, 11,
and 12) can be employed to determine the length of the
DELTA segments by noting the number of iterations
performed on RI + 1 between sign changes. Proper
initialization based upon inclination with respect to the
450 line allow use of the following equations which are
independent of line inclination:

(13) Rl = 2T [2] - T [1]

fRI + 2T [2] - 2T [1]

RJ+l = i
if RI ~ 0 (14)

lRI + 2T [2] if RI < 0 (15)

Each iteration of RI ~ 0 increases the current address
by one in both the X and Y directions. Each iteration
of RJ < 0 increases the X Address by one, while holding
the Y Address constant. Summation of the iterations
RI < 0 prior to each RI 2:: 0 yield the DELTA value.

This algorithm was verified by means of a computer
program to generate straight lines connecting any two
points within a 525-line raster grid.

The constraints placed on the straight line generator
routine were the following:

1. All vectors will be generated in the direction of
increasing Y address with the origin of the
coordinate system at the upper left-hand corner
of the display. (Addresses need not be sorted for
input.)

2. All vectors will be processed (although not
specified) as one of the following:

a. Down to the left at an angle <450

b. Down to the left at an angle >450

c. Down to the right at an angle <450

d. Down to the right at an angle >450

e. Horizontal line
f. Vertical line
g. Down to the right/left at an angle = 450

Typical results are depicted in Figure 5. The rou
tine required approximately 370 instructions in a
machine with a 64 instruction repertoire. The maxi
mum error from any computed point to the desired
line is less than 0.5 units.

Circular line generation

In a manner similar to generation of a straight line,
the generation of a circular trace consists of deter
mining the X-Y Address points which minimize the
error distance from the desired trace to the selected
point. By examining a circular trace overlaid on a
Cartesian grid, many of the properties of the circular

Figure 5- -Line segments generated hy eomput.er program

symmetry are observable. A circle of radius 7 is de
picted- in Figure 6, together with the appropriate x-Y
Address sequence to generate the trace within the
constraints of the grid structure, where the Y -Address
corresponds to scan lines and X-Address to picture
elements along that line. The display trace ,vould bE'
generated by a" dot" (the area of which is equal to a
unit square) at each arrowhead.

It can be seen from Figure 7a (and is equally true
for any radius) that the address sequence from 1 to A
is exactly equivalent to those from 1 to D, 2 to A,
2 to B, 3 to B, 3 to C, 4 to C, and 4 to D. Thus by
determining the proper address sequence for the first
octant, the address sequence for all other octants (refer
enced to the center of the circle) have been obtained.
It should also be noted that no point is more than one
unit removed in each direction from the previous or
subsequent point. Two possible address modifications
can be determined for each octant, the first of which
modifies only one address (X or Y) by one, while the
second modifies both X and Y addresses by one. The
octant in question determines whether the address
modification is an incrementation or a decrementation.
The possible address sequence for each octant are de-

picted in Figure 7b. Using these address sequences, it is
apparent that each move encompasses a point exterior
to the circle and a point interior to the circle. Table I

\

OCTAN,. 4 OCTANT I

OC TAN T 5 OCTANT 8

OCTA NT 6 OCTANT 7

Figure 6---X-Y addreHs sequence for generation of a eircular traee

f r OCTANT 4 OCTANT I I t

, L OCTANT 5 OCTANT 8 ..J I

Figure 7A-- -X- Y addl'eH;; sequenee for eac-h oetant

Computer Generated Graphic Segments 167

FigUJ'e 7B-Computational model for first octant

represents the various possible moves for each octant,
where (XlI , Y n) represents the point from which the
move is being made and the columns are the resultant
addresses after the move is made.

Table X-Y -Address modification pattern

I . Exterior Interior
Octant# X-Address V-Address X-Address V-Address

1 X 1I Y" - 1 X" - 1 Y" - 1
2 X" + 1 Y1I X" + 1 Y1l + 1
3 X,,- 1 Y1I X lI - 1 Y" + 1
4 X 1I Y1I - 1 X 1I + 1 Y" - 1
5 X 1I Y" + 1 X" + 1 Y1I + 1
6 X 1I - 1 Y1I X" - 1 Y" - 1

7 X" + 1 Y" X 1I + 1 Y1I - 1

8 X" Y 1I + 1 X 1I - 1 Y" + 1

The problem then is to determine in each case,
whether a move to an exterior or an interior point
represents the minimum error. This can be accom
plished by comparing the differences bet\veen the ac
tual radius (Ro) and the external and internal radii
(Re and R i) respectively, as shown in Figure 7b. If it
is determined that

(16)

then the minimum error move is to the next exterior
point. Likewise if

(17)

168 Spring Joint Computer Jonference, 1969

then the interior point represents the minimum error.
From Figure 7b it can be seen that

~

Rn = v' An2 + Bn2 (18)

R. = V' An2 + (Bn + 1)2 (19)

RI = V' (An - 1)2 + (Bn + 1)2 (20)

Substituting Equations (19) and (20) into Equation
(16) yields

2Ro> V' An2 + (Bn + 1)2 + V (An - 1)2 + (Bn + 1)2
(21)

By means of the Triangular Inequality this yields

In a similar manner, Equations (17), (19), and (20)
yield

4Ro2< (2An - 1)2 + (2Bn + 2)2 (23)

Thus if we define a quantity Q such that

Q = (2A" - 1)2 + (2Bn + 2)2 - 4Ro2 (24)

then the sign of Q determines whether the minimum
error move is exterior or interior, with Q < 0 denoting
an exterior point and Q ~ 0 denoting an interior point.
Due to the symmetry of the trace, it is only necessary
to determine the move pattern for the first octant and
use this result to perform the address modification for
all octants.

This algorithm was implemented and found to yield
circular traces (Figure 8) in which no computed ele
ment is in error by a distance of more than 0.5 address
units in either direction, i.e., interior or exterior. The
generation of circular arcs is accomplished by the same
algorithm by merely specifying data to define the end
points.

It should be noted that for circles with sufficiently
small radii « 4 units) the appearance of uniform cur
vature diminishes. This is due not to a failure of the
routine but to the fact that for those radii, insufficient
points within the grid structure exist to properly de
fine the curvature. It can be shown that the algorithm
itself is valid for all radii greater than 1.25, with this
lower limit being dictated by the lowest value of R for
which the use of the triangular with Equation 21 re
main vHlid,

Figure S-Circular t.races generated by computer program

Parabolic line generation

The generation of parabolic trace within a raster
format under computer control is accomplished in
much the same way as one would generate the trace on
linear graph paper. A set of X-Y axes are assumed and
for selected values along the Y axis, corresponding
values of X are computed according to the defining
Equation.

X 2 = 4PY (25)

Similariy for selected values of X, one can compute
values of Y according to the Equation

y2 = 4PX (26)

The difference in method of generation arises in that
the trace on the graph paper is obtained by connecting

the points defined by the computation, whereas within
the raster the increments for the independent variable
are chosen to be one line width apart and thus by
merely generating a "dot" at the computed X-address
points, a continuous curve results.

A typical X-Y address sequence for generation of a
parabola is depicted in Figure 9. The actual trace would
be created by generating a "dot" at each arrowhead.
A. It.nrll1O'n t.np }l.c1c1rp.~~ ~p.Ollp.ncp. will varv denendin!!.' "" --0 _.-.... - ---- --- -- -~------ - .,." - -,L- . ~

upon the focii value (P) several important factors can
be deduced from the figure. The move pattern is up with
increments to the right and left. The number of incre
ments in a given direction is dependent upon the square
root for a value of independent variable in relation to
the square root for the previous value of the same
variable. For each increment in the Y direction if

1. 0 < [y4PY1I - y4PY1I- 1] :::; 72
then Xn = Xn- 1

2. 1/2 < (y4PYn - y4PY1I-l] :::; 1
then· Xn = Xn- 1 + 1

3. 1 < [v!4PYn - y4PYn- 1] < 1'1
then Xn = Xn- 1 + lVI

The third case depicted will occur near the base of the

\ / .,,'0';.";0'

\

y- A .. i,

x y
c c x - AlIi,

'Figure 9-X-Y address sequence for generation of a parabola

Computer Generated Graphic Segments 169

parabola with case (1) prevailing as the parabola ap
proaches its asymptote. Since the parabola approaches
an asymptote which tends toward infinity, the trace is
continued until a screen address is exceeded in one
direction at which point the computation stops. The
proper incrementation address sequence is dependent
upon the form of the equation, the sign of P, and the
relative values of the square root for succeeding values
of independent variable. The incrementation conditions
for all cases are depicted in Table II where (Xn, Y TI) is the
point being computed, while the value along axis of
symmetry is incremented by one unit.

The implementation of an algorithm for performing
the above arithmetic and manipulative function is not
complex. However, the computation time becomes very
large for all cases except where the length of the axis of
symmetry is kept small. This is necessitated by the
iterative methods required for computation of the
square root. When implemented on a computer with a
six (6) microsecond cycle time, running times in excess
of 30 seconds were not uncommon. However, the ac
curacy obtained placed each computed point within one
half display element, since the X (Y) address points are
computed for each Y (X) address. The question im
mediately arises that if the accuracy specification is
relaxed and an approximation to the parabola (as it
approaches the asymptote) is acceptable, can an appre
ciable decrease in running time be obtained?

If, for example it is assumed that beyond a given
point(Xp, Yp) (Figure 10) the parabola can be approx
imated by the straight line (Xp, Y p), (X2, Y 2) a maxi
mum error E would result at the point the trace
reaches the maximum address or edge of the screen. In
addition, to maintain the trace uniformity, the slope of
the approximating line is chosen to be the same as
the slope of the parabola at the point (Xp, Y p). The
slope of the parabola at X p , Y p is

dy\ Xp
dx yp = 2P (27)

Since this also represents the slope of the approximating
line,

then

X Ay
2= -
2P ~X

(28)

which yields

(29)

170 Spring Joint Computer Conference, 1969

Top Of Display Grid

~ x:. v:. I

flY

Where)(p and Yp are def~ned as

Xp = fx, + EI=JIXZ+ El' - 4Pv,l

Yp: tv
,+ EI±JIY, + El'- 4PXZJ

With the Sion ,±) dependent upon the focii value

Figure l(}-Parabolic approximation model

but

and

Combining the above yields

The above equation (30) relates the acceptable error E
to the X address of each computed point (Xp, Y p) and the
coordinate of the point at which the parabola reaches
the edge of the screen (X2, Y 2)' By allowing the error to
be specified by the operator, it allows the choice of the
error specification in terms of percent of axis length,
percent of opening, absolute units, etc ... If we use the
defining equation for the parabola (X2 = 4PY) to
gether with Equation (30), the value for Xp can be
determined as

(31)

The value for Y 2 is the STOP address of the axis variable
from which X 2 can ~e computed The approximation
can be completed by drawing straight lines between the
points (Xp, Y p) and (X2 ,Y2) where X2 = X2 + E.

A similar analysis can be carried out for a parabola
satisfying the Equation

y2 = 4PX

yielding a defining Equation for Y p,

The inclusion of the approximation as a subroutine,
to be entered if the allowable error is E > 0, results in
greatly reduced running times proportional to the error
allowed. In addition, the subjective appearance is
maintained (Figure 11) by retaining the desired curva-

Figure 11- -Parabolie tl'a('eH generated by eomplltel' program

Computer Generated Graphic Segments 171

Table II -Address modification pattern for parabolic trace

Defining Axis of P X2 = 4PY y2 = 4PX
Equation Symmetry

X2 = 4PY POSe Y >0 > 0, ~ 1/2
Axis

" " " > 1/2, ~ 1
" 1/ " > 1, ~ M

X2 = 4PY Neg. Y >0 > 0, ~ 1/2
Axis

1/ 1/ " > 1/2, ~ 1
1/ " " > 1, ~ M

y2 = 4PX POSe X >0 > 0, ~ 1/2
Axis

" " " > 1/2, ~ 1
" 1/ II > 1, ~ M

y2 = 4PX Neg. X
Axis <0 > 0, ::; 1/2

" " 1/ > 1/2, ::; 1
" " " > 1, ::; M

ture at the vertex and use of the straight line approxi
mation as the parabola approaches the asymptotic
value.

Many other graphic figures could be generated by
using the "error minimization" technique above; how
ever, their utility would depend upon the system in
question. The figures developed thus far (straight line,
circle, circular arc, parabola, and parabolic arc) form
the basis for a rudimentary system. The more important
aspect from a user point of view would be the combina
tion of the various segment generators for complex
figures.

Raster graphic system considerations

To effectively utilize the algorithms thus far defined,
they must be incorporated as part of an overall graphic
system or subsystem which includes the Graphic Seg
ment Generators as well as a Graphic Operating System.

In configuring the combined Segment Generator, it is
assumed that the Operating System would provioo the
following data in addition to the segment type designa
tor:

a. Straight Line-Start Point (Xl, Y 1), Stop Point
(X2, Y2)

b. Circle -Center Point (Xc, Y c), Radius
(R)

Left Side Right Side Top Bottom

X,,~X"_l XlI~X_l

X,,~X_l+l X,,~X_I+1

X ii+-X,,_l+M y ~y .+M
--.,.~ """-.3Irrr..1j-l

Xn~X_l Xn~X_I

Xn~X_I+l Xn~X_I+l

X,.~Xn_I+M n~X_I+M

Yn~YlI-l Y"~Y"-l

Yn~Yn_l+l Y"~Yn_l+1
Yn~Yn-I+M Yn~Y"_l+M

Yn~Yn-1 Y"~Yn-l
Yn~Y_I+l YII~Y_I+I

Y,.~Yn_I+M Yn~Y"_I+M

c. Circular Arc -Center Point (Xc, Yc), Radius,
Start Point (Octant, Y Add)
Stop Point (Octant, Y Add)

d. Parabola -Vertex (X"' Y v), Focus (P),
Orientation (H or V), Axis Stop
Point

e. Parabolic Arc-Vertex (Xv, Y v), Focus, Orienta
tion, Side, Axis Start, Axis Stop

The Generator would be entered from a Graphic
Operating System and upon completion of its processing
function would return control to the operating system.
I~ addition, all data points would be entered through
the Graphic Operating System which would control
storage and output of the calculated points as well.

The routine is entered at the same point for any of the
segments and branches to the desired section (Straight
line, Circle, etc ...), based upon the mode bits of the
data words.

The" move discriminant" functions are the same as
previously derived and must remain separate entities in
the combined program. Fn each case, a determination is
made to increment or decrement the variables X and Y.
In general, N incrementation or decrementation will be
performed upon one variable for each increment or de
crement of the other variable, where N is calculated by
the respective discriminant function.

Typical program length on a six-microsecond, 64-
Instruction Set computer, by function:

172 Spring Joint Computer Conference, 1969

Functional Sections Locations

Discriminant-Straight Line 60
-Circle 50
- Parabola 70

Incrementation/Decrementation 250
Iteration Control 75
Overhead 350

The size of the output block set aside for storage of
the calculated points depends upon the system in ques
tion. For example, if the converter being driven requires
three computer output words to describe a symbol, then
1200 storage locations would describe 400 symbols to
the converter. The size of this storage block is one reason
for considering hardware methods of graphics genera
tion as an alternative to software.

The running time for generation of any given seg
ment is directly proportional to the dimensions of that
segment since the relative size determines the number
of iterations required and all computer instructions
execute in equal time.

In the construction of complex figures from simple
graphic segments many geometric constructions (Tan
gents, Normals, etc) appear often enough to war
rant inclusion in the Operating system. In general, this
amounts to calculating a new set of defining parameters
based upon the segment (or segments) already gener
ated and new segment to be generated.

The following have been investigated and found to
produce desired results with minimum software (Figure
12).

1. Head-to-Tail straight lines.
2. Parallel lines.
3. Perpendicular line from a Point Xp Y p on a line

(L).
4. Perpendicular line from a Point Xp Y p to a line.
5. Tangent and Normal to a circle.
6. Tangent and Normal to a parabola.

It has been found that if the desired segments are
defined in terms of critical parameters much of the
manipUlative software developed for direct writing
systems is applicable, with the segments defined by the
manipUlated points being generated by the special
algorithms.

The entire question of number of segments, hardware
vs software generation, amount of manipulative capa-

Figure 12-Cam lever generated by graphic segment generator

bility, etc ... , in the final analysis must be determined
by the system in question.

REFERENCES

1 F G STOCKTON
x-v move plotting
C A C M Vol 6 No 4 April 196:3

2 BECKENBACK & BELLMA~
An introd'uction to inequalities
Random House ~ew York 1961

3 J H WILKE~SON
Rounding errors in algebraic processes
Prentice Hall Series in Automatic Computation
Englewood New Jersey 1963

4 K E IVERSON
A. programming language
K Wiley and Co New York 1962

5 F GRUEN BERGER
Computer graphics
Thompson Book Co Washington D C 1967

6 L L BRINER
A graphic information processing system
IBM TR-21197 March 1966

7 I E SUTHERLAND
Sketchpad: A ';nan rnachi'ne graphical communication system
Technical Report fJ 296 Lincoln Labs MIT Jan 1963

8 A D FALKOFF & IVERSON
The APL/360 terminal system
IBM Research Report RC-1922 Oct 16 1967

9 A D FALKOFF & IVERSON
The ~1P L terminal system: instructi01".8 for operation
IBM Research Yorktown Heights New York 1966

Errors in frequencv-domain processine:
.&., .& '-'

of images *

by GRANT B. ANDERSON and THOMAS S. HUANG

Mas8achusett8 Institute of Technology
Cambridge, Massachusetts

INTRODUCTION

Practical techniques for the determination of image
spectra have been developed and become popular in the
past few years. Both optical processing systems and
digital computers can be used to perform linear filtering
via the frequency domain. Optical processing systems
use Fourier-transforming lenses and coherent light.
Digital computer software uses the Cooley-Tukey
algorithm to advantage, while computer hardware must
be augmented by optical scanning devices that interface
with images. Processing errors arise in both types of
systems, but for different reasons. In this paper we
present some results concerning errors in the spatial
frequency domain.

Two-dimensional F ourie:r analysis

To facilitate later discussions, we shall review briefly
the key relations in two-dimensional Fourier analysis.
The Fourier transfonn of f(x, y) is defined as

F(u, v) = J~ L: f(x, y) e- i2r(ux+1IJ1) dxdy . (1)

The inversion relation is then given by

f(x, y) = L: f~ F(u, v) ei2r(w:+111/) dudv . (2)

If f(x, y) is nonzero only inside a finite rectangular
area 0 ::; x ::; T:.:, 0 ::; y ::; T J" then a two-dimensional

* This work was supported principally by the National Institutes
of Health (Grants 5 POI GM-14940-02 and 5 POI GM-I5006-
02), and in part by the Joint Services Electronics Program
(Contract DA28-{)43-AM~2536(E».

Fourier series may be used to represent f(x, y) in that
area. In particular,

f(x, y) = i:: i: am,1I ei2r(m:.:!Trt:+1IJ1!T,,) . (3)
m=-QO n=r-CO

1 fTrt: 1'1'11
am,n = -- f(x, y) e-i2r(mx!Trt:+1IJ1!TlI) dxdy.

T:.:TlI 0 0 (4)

When f(x, y) is impulsive and of the form

M-l N-l

f(x, y) = L: L: (jm,lI a(x - mT:!:, y - nTlI) , (5)
m-o n-o

where a is the Dirac delta function and T:!: = MT:.: and
Ty = NTy, then a discrete Fourier transform is appro- .
priate. The discrete Fourier transfonn of the discrete
function (jm,1I is given as

where k = 0, 1, ... , M - 1, and i = 0, 1, ... , N - 1.
The inversion relation is

(7)

F ourie:r trans! cmnation

Optical processing systemsl

When a film transparency of complex amplitude
f(x, y) is illuminated with collimated monochromatic
light at the front focal plane of a double-convex lens,
the light amplitude at the back focal plane will be

17'<

174 Spring Joint Computer Conference, 1969

F(x/Ad, y/Ad) = F(u, v), the Fourier transform of
f(x, y). In this relation, x and yare spatial coordinates,
A is the wavelength of light, d is the focal length of the
lens, and u and v are spatial frequencies.

Digital processing systems

The Cooley-Tukey algorithm reduces the number of
basic operations in the calculation of discrete Fourier
transfonus from N2 to 2N 10~N, where N is the number
of sample points involved, and a basic operation is
defined to be a complex multiplication followed by a
complex addition.2 This time-saving reduction has made
the calculation of image spectra practical for digital
machines.

A device, which can act as an interface between
images on film and the digital computer, is needed as
auxiliary equipment. Precision flying-spot scanners,
such as the one built by Professor W. F. Schreiber at
M.LT., are ideal for this purpose. 3

Linear fiUering

Optical processing systems

The simplest optical processing system capable of
doing linear filtering uses two double-convex lenses and
two film transparencies aligned along a path of colli
mated coherent light. An input film is placed at the
front focal plane of the first lens, while the filter-function
transparency is placed at the back focal plane of the
first lens. The front focal plane of the second lens is
coincident with the back focal plane of the first lens.
When no errors are present, the light amplitude at the
back focal plane of the second lens, except for a possible
change of scale, is

g(x, y) = 100 100

F(u, v) H(u, v) ei2r(ux+ell) dudv ,
-00 -00 (8)

where H(u, v) is the filter function, and F(u, v) is the
Fourier transform of the input image.

Complex frequency -domain filters for optical filtering
may be made by varying the density of film according
to a desired magnitude function and varying the film
thickness to regulate phase. Practical difficUlties in
varying film thickness in this direct method have led to
the development of the methods of Vander LUgt,4

Llhmann,6 and Lee.s These methods penuit complex
filtering using positive real filters. In the Lohmann and
direct methods, noise in the filter transparency can be
modeled approxinlately as independent white noise that
is being added to the magnitude and phase of the filter
function. For the methods of Vander Lugt. and Lee,
noise in the filter transparency can be modeled approx-

imately as independent noise that is being added to the
real and imaginary parts of the filter function.

Vander Lugt used a reference beam of coherent light
hi recording his complex filter on filnl. The function
recorded on film, which is non-negative, is

S(u, v) = IA ei2rau + H(u, v)12

= A2 + IH(u, v) 12 + AH*(u, v) ei2rGu

+ AH(u, v) e-i21/"Gu, (9)

where the asterisk denotes complex conjugation. The
impulse response of S(u, v) is

s(x, y) = A2o(x, y) + Rh(X, y) + Ah(-x -a, -y)

+ Ah(x - a, y), (10)

where hex, y) is the impulse response of H(u, v), and
Rh(x, y) is the autocorrelation function of hex, y).
lVlultiplication of F(u, v) by S(u, v) corresponds to the
convolution of f(x, y) with sex, y). If f(x, y) and hex, y)
are of finite spread, then the constant a can be chosen to
produce the desired output g(x, y) without interference,
but displaced along the x-axis in the output plane.

The filter of Lohmann has only binary transmittance
values. Clear slits for light transmission are placed on
film to synthesize complex transmission functions. The
slit area determines the magnitude of light transmission.
Varying the slit position changes the phase of the light
transmitted through the slit.

Lee's method for producing complex filters on film is
similar to Lohmann's method, except that it provides
for a continuous variation in transmittance. Lee's filter
uses four non-negative sample points placed along a line
to construct a complex sample point. The positions of
the four sample points result in transmission phases
of 0, 7r/2, 7r, and 37r/2, respectively. By adjusting the
transmission amplitudes for the four points, any desired
complex transmittance can be obtained.

Digital processing systems

Linear filtering is accomplished on the digital com
puter by Fourier transformation, followed by multipli
cation, followed by Fourier inversion. Round-off error
occurs in this process. A crude model for the error is
independent white noise added during the computation.

Quantitative effects of frequency-domain errors

Additive noise

If independent noise is added to the real and imaginary
parts of F(u, v) [Equation (2)], then independent noise

Errors in Frequency-Domain Processing of Images 175

of the same power will be present in the reconstructed
image f(x, y) upon Fourier inversion. This is true
because of Parseval's theorem. In particular, inde
pendent white noise transforms to independent white
noise of the same power. Independent white noise added
to the magnitude of F(u, v) also results in contamina
tion of f(x, y) by independent white noise. The model
of independent white noise can be used as a first
approximation for grain noise in film, and for round-off
error in digital computations.

Multiplicative noise

When Vander Lugt or Lee filters are used for linear
filtering, g(x, y) [Equation (8)] is contaminated by a
noise equal to

n(x, y) = Loooo 1
00

F(u, v) N(u, v) e i2r (ux+1I11) dudv ,
-00 (11)

where N(u, v) is the film grain noise added to H(u, v),
and is assumed to be independent. Under the condition

N(u, v) N*(a, (3) = a-2o(u - a, v - (3), (12)
;

where (}"2 is a positive constant, and the bar denotes
ensemble average, it may be shown that

n(x, y) n * (r, s) = (}"2R,(x - r, y - s), (13)

where R, is the autocorrelation function of the input
image f(x, y). Film grain noise causes errors in \H(u, v)\,
the magnitude of H(u, v), for the direct method filter,
while inaccuracy in the slit area has the same effect with
the Lohmann filter. In these cases the filter becomes

H(u, v) = {iH(u, v)1 + X(u, v)} ei<P(u,1J) , (14)

where f/>(u, v) is the phase of H(u, v). If N(u, v) is
independent and obeys Equation (12), then the noise in
the filtered image g(x, y) = g(x, y) + n(x, y) is given by

n(x, y) = L: L: F(u, v) X(u, v) e i <P(u.lI)

f/>(u, v) for filters made by the direct method. Inaccuracy
in the slit positions has the same effect in the Lohmann
method.

When phase noise occurs, the filter function will be
given by

H(u, v) = \H(u, v)1 e i [<P(U,lI)+N(U,lI)] • (17)

The output of the filtering system then is

g(x, y) = L: L: F(u, v) H(u, v) eiN(u.lI)

e i21r (ux+1JY) dudv. (18)

The noise output of the system is

n(x, y) = L: f~ F(u, v) H(u, v)

[e iN(u,lI) -1] e i2r(ux+lIY) dud v . (19)

If the noise is small (N « 1), independent, and
satisfies Equation (12), then it foHows that

n(x, y) n *(r, s) I""0o.I (}"2Rg(x - r, y - s) , (20)

where Rg is the autocorrelation function of g(x, y), the
ideal output image.

Under the condition that N(u, v) IS Gaussian,
Anderson7 has shown that

where (}"2 is the phase noise power measured in (rad/
sec)2. Under the assumption that f/>(u, v) is unifonnly

4

3

e i2r(UX+1I1I) dudv (15) Q 2

and we again have

n (x, y) n*(r,s) (}"2R,(x - r, Y - s) . (16)
-20db -IOdb

Phase noise
PHASE SIGNAL TO NOISE RATIO

Spurious film thickness variations cause errors in Figure l-Q as a funetion of phaRe signal-to-noise ratio

176 Spring Joint Computer Conference, 1969

distributed from -7r to 7r, the phase function ¢(u, v)
<p(u, v) + N(u, v) has a signal-to-noise ratio

It follows from Equations (21) and (22) that the ratio
of phase signal-to-noise ratio to image signal-to-noise
ratio is

(23)

This. ratio is plotted III Figure 1 against phase
signal-to-noise ratio.

Quaniizaiion noise

Images on film have limited brightness ranges,
because of film characteristics. Fourier-transforming
functions that represent film brightness variation
normally lead to functions with much wider dynamic
range. Typically, television quality images have a
30--50 dB disparity between the energy in the lowermost

Figure 2-Test image

Errors in Frequency-Domain Processing of Images 177

spatial frequencies and the energy in the highest spatial
frequencies of the spectrum. IVlost of the energy tends
to reside in a small area of the total spectrum and is
low-frequency. Linear quantization in the frequency
domain without a fine quantization grain therefore
causes not only a large mean-squared image error, but
also results in high percentage errors in the middle and
hlgh frequencies. Since it is known that the response
of the human visual system is poorest at low and high
spatial frequencies and peaks at middle-range fre
quencies,s we can assume that linear quantization in the

frequency domain will yield images of poor quality.
Improvement in mean-squared error and picture quality
can be obtained by using nonlinear quantization with
smaller quantization intervals at low amplitude levels
and larger intervals at high amplitude levels.

Subjective effects oj Jrequerwy-domain errors

Experimental system

The human visual system is highly nonlinear.

Figure 3-Additive noise

178 Spring Joint Computer Conference, 1969

Although, for some purposes, quantities such as mean
squared error and resolution are useful in describing
images, it is recognized that good parameters have yet
to be discovered to describe image quality. With this ill
mind, the simulation of frequency -domain error situa
tions was undertaken.

We recorded the test image (Figure 2) on magnetic
tape, using the flying spot scanner built by Professor
William F. Schreiber of the Research Laboratory of

Electronics, M.LT. Brightness was quantized to 8 bits
in the process, and a sample array size of 128 X 128
samples was used. The noise environments were
simulated on the IB11 360-65 general-plL'"PQse digital
computer, and the data recorded on magnetic tape
provided an input. Before display the processed outputs
were extended to 256 X 256 arrays by using two
dimensional linear interpolation.

Figure 4-Multiplicative noise

Errors in Frequency-Domain Processing of Images 179

Results

The image in Figure 3 results when independent
white noise with a Gaussian probability density is added
in the frequency domain. This noise addition, as can
easily be shown, is statistically equivalent to adding the
same noise directly to the image brightness function.
Figure 4 is an image corrupted by multiplicative
frequency-domain noise, which is white, independent,
and Gaussian. Phase noise has aitered the input image

to produce the image of Figure 5. The phase noise is also
white, independent, and Gaussian. What is interesting
about the images of Figures 3-5 is that the signal-to
noise ratio is the same for all noise" additions, 15 dB.

The image in Figure 6 is a 5-bit, linearly quantized
version of the input image. To compare this image with
linear quantization in the frequency domain, Figure 7 is
given. The spectrum magnitude and phase of the image
of Figure 7 were both linearly quantized to 5" bits.

Figure 5-Phase noise

180 Spring Joint Computer Conference, 1969

A nonlinear quantization of the spectrum magnitude can
be performed to improve the quality of this image.
Choosing quantization intervals on a logarithmic scale
for magnitude quantization and retaining linear quanti
zation for phase yield the image of Figure 8, which is
also a 5-bit image. The signal-to-quantization-noise
ratios in Figures 7 and 8 were measured and found to be
9.78 and 13.90 dB, respectively. The images in Figures
9 and 10 are presented to illustrate the effects of

magnitude and phase quantization separately. The
image in Figure 9 has a spectrum magnitude that is .
quantized to 3 bits on a logarithmic scale, while phase
has been undisturbed. In the case of the image in
Figure 10, the phase has been uniformly quantized to
3 bits, while the magnitude has not been changed.

The dynamic range of an image spectrum can be
partially characterized by the one-dimensional func
tions \F(u, 0)\ and \F(o, v)\. These functions are plotted

Figure 6-Linear brightness quantization (5-bits)

Errors in Frequency-Domain Processing of Images 181

Figure 7-Linear spectrum quantization (5-bits)

182 Spring Joint Computer Conference, 1969

Figure 8-Nonlinear spectrum quantization (5-bits)

Errors in Frequency-Domain 'Processing of Images 183

Figure 9-Nonlinear magnitude quantization (3-bits)

184 Spring Joint Computer Conference, 1969

Figure lo-Uniform phase quantization (3-bits)

Errors in F-requency-Dom.ain Processing of Inlages 10~
.lOu

10

~
1\

" , :
.' 1/

I' I,
~
f

----F(O, v)

-F(u~o)

/I

(\ , ,

I • • , I
I I t

I ' I I, I
1'\1
1/1 ,

" A
,/ \ 1\ " I \ I '-,_.... "-

I \ I \ I v \j ,../
\ I \1 v
\ I V
\I
Y

32 64

(CYCLES/PICTURE WI DTHJ

Figure 11-/ F(u, 0) I and / F(o, v) / for the test image

for the test image in Figure 11. Linear interpolation has
been performed between data points to make the
functions shown continuous.

Remarks

The theoretical predictions concerning additive,
multiplicative, and phase noise are confirmed by the
appearances of the images in Figures 3, 4, and 5. The
image noise for the additive case (Figure 3) clearly has
a white noise appearance. The appearances of multipli-

cative and phase noise were predicted by Equations
(16) and (20). These equations stipulate that the power
density spectra of image noise for the multiplicative and
phase cases are identical, except for a constant, to the
power density spectrum of F (u, v) . The energy of
F(u, v) (Figure 11) is primarily at low spatial fre
quencies. Therefore, the noise in the images of Figures 4
and 5 is primarily low -frequency noise.

Linear quantization of IF(u, v)1 severely limits image
resolution when an extremely small quantization
interval is not used. Only low-frequency components
are nonzero after linear frequency-domain quantization
of the test image to 5-bits (Figure 7). Had Figure 11
been available before quantization, the resolution
reduction could have been predicted. Figure 11 could
also have been used to predict the improvement in
mean -square error and image quality when logarithmic
instead of linear quantization is used for IF(u, v)\.

REFERENCES

1 L J CUTRONA et al
Optical data processing and filtering systems
IRE Trans on Information Theory Vol IT-6 ~o 2
June 1960 386-400

2 J W COOLEY J W TUKEY
An algorithm for the machine calculation of complex
Fourier series
Math Computation April 1965 297-301

3 W F SCHREIBER
The new scanner
Internal Memorandum Research Laboratory of Electronics
MIT Cambridge Mass April 1968 (unpublished)

4 A VANDER LUGT
Signal detection for complex spatial filtering
IEEE Trans on Information Theory Vol IT-lO ~o 2
April 1964 139-145

5 R B BROWN A W LOHMANN
Complex spatial filtering with binary masks
Appl Opt Vol 5 No 6 June 1966 967-970

6 W H LEE
Sampled Fraunhofer holograms generated by computer
Quarterly Progress Report No 88 Research Laboratory
of Electronics MIT Cambridge Massachusetts
January 15 1968 310-315

7 G B A.J.~DERSON
Images and the jourier transform
S.M. Thesis Department of Electrical Engineering
Massachusetts Institute of Technology May 1967

8 W F SCHREIBER
Pict'lre coding
Proc IEEE Vol 5f, ~ 0 3 March 1967 320-330

Parametric description of a scan-display
system *

by LAWRENCE A. DUNN, LAKSH1\II N. GOYAL,
BRUCE H. l\fcCOR::.\fICK and VAL G. TARESKI

U niverBity oj Illinois
Urbana, Illinois

INTRODUCTION

Automatic pattern recognition and graphical data pro
cessing have recently received considerable attention.
In addition to analysis and processing of pictorial in
formation, there is a need for interactive display systems
to present both intermediate and final processed data.
The subject of graphic display terminals has been
extensively discussed in the literature. Scan-display
systems oriented towards image processing, however,
with particular attention to bypassing the central
processing unit for as many tasks as possible have not
had comparable development. This paper is focused on
this latter area.

A computer system for image analysis and display has
three principal constituents: image acquisition and
display, image encoding for digital transmission, and
finally procedures for classification of the encoded
image. A new direction in image acquisition and' display
is to append a Video C ommunicaiions Net to the central
computer so as to provide the remote users "With video
transmission to centralized image processing facilities.

Requirements on image encoding for transmission
of information are dependent upon application.2 For
example the bubble chamber data processing of high
energy physics requires a very high positional resolu
tion, although little demand is made on the gray-scale
content of the picture. In the environmental sciences,
however, gray-scale resolution is critical. Biomedical
applications normally place stringent requirements on
gray-scale resolution, but high positional resolution of

* Supported by Contract AT(1l-1)-1018 with the U.S. Atomic
Energy Commission and by the Advanced Research Projects
Agency.

Based on an internal document published in the Department of
Computer Science.l

the image is not required. Several systems are operative
in high energy physics, such as PEPR3 at M.LT.,
CHLOE4 and POLLY at Argonne National Labora
tory, HPD5 at Brookhaven National Laboratory, and
HUMMINGBIRD6 at Stanford Linear Accelerator
Center. Other systems are FIDAC7 in biomedicine and
KARLSRUHE8 in automatic photointerpretation.
However, we feel that these systems are unnecessarily
specialized, and there is need for a more versatile and
general system applicable to diverse disciplines on an
integrated basis arid amenable to modification as the
need arises. In this paper we define an integrated sys
te;m for the image acquisition and display.

187

Figure 1 shows the proposed system. Video switching
matrix provides the facilities for remote users. High
resolution CCTV cameras are provided for image en
coding and acquisition. Remote video consoles, con
sisting of two high resolution monitors and a teletype
set, provide information display at the remote user's
end. Videograph printer outputs a facsimile copy at
video rates, where the copy can have any admixture of
text, graph or half-tone pictures. Microimage store
provides the system with an extensive store of images--- -
as direct images and not as digital data-and finds
application in information retrieval areas such as
library automation and biomedicine, where there is
need for a permanent huge mass storage. High resolu
tion scanners allow the scanning of the film for accurate
measurement purposes and also allow the construction
of images on film. High resolution monitors are slaved
to the scanner system in a manner which allows the
monitors to borrow inexpensively the scanner control.
If video scan converters are part of the video switching
matrix, video images can be treated as if they were on
film and thus the same encoding techniques and the
same programs could be exploited for both without

188 Spring Joint Computer Conference, 1969

DIGITAL DATA
INPUT

525 TV CAMERAS

DIGITAL OATA
INPUT/OUTPUT

t
I

.--- ---,
I VIDEO SCAN I

: CONVERTER i
L __ -f- __ .J

Figure I-Block diagram of the scan/display system. Note that
t he video scan converter can be bypassed under program

control

program change. However, the video scan converter is
not essential, since the controller can handle constraints
of the video system with some sacrifice in resolution.
Character generator provides facilities for message
handling and display in general, particularly for CAl,
which along with the scanner provides the flexibility
of displaying line drawings and half tone pictures inter
mixed with the text. More details about the devices
shown in Figure 1 are given in Appendix A.

Emphasis in the paper is given to inter-media trans
formation options-translation, magnification and ro
tation-that can be effected by control of position
counters; to constraints necessary for maintaining
media compatibility, and to alternate digital repre
sentations of an image. The major goal of the paper
is to abstract the system parameters and to develop
the relations among them. These system parameters
are listed with their definitions in Appendix B.

Design values of these parameters for the Illiac III
Scan-Display Syst.em are t.abulat.ed in Appendix C.

For this system the format of the scan/display param
eters is shown in Figures 18 and 19.,

WaY8 of digitally representing an image

By selecting a grid and associated coordinate system
an image can be represented as a digital string of en
coded local samples. The coordinate system allows
specification of a· sampling position, or by implication
a sampling sequence; and the grid· mesh allows speci
fication of a sampling resolution, or by implication a
sampling frequency. One conventional image digiti
zation procedure specifies sequential sampling along
successive lines parallel to a specified coordinate axis.
To describe these linear sweeps we will use the terms
'scan line' and 'scan a.'Xis.' Although several string
definitions are possible each will always contain, either
explicitly or implicitly, two correlated types of infor
mation:

the coordinates of a point, and

the image density level in some localized
area about the point.

If the localized sampling area is not circular in shape
then a third type of information can be included:

local orientation of the sampJ.ing area.

The encoding/decoding format for these three items
(position, density and orientation) is invariant in any
given string definition. Any further interpretation of
the string requires knowledge of the sampling technique
employed.

Speciiying a sampling sequence, a digital string
representation can be formed in two different ways:

(r) encoding the image density level for each
coordinate in the sequence, or

(c) forming an ordered substring of coordinates
by selecting only those from the given se
quence for which the image density level
satisfies some prescribed criteria.

For a particular image each of the two stlingS is unique
within the reproducibility limits of density detection
and encoding.

String (r) is usuallj more representative and econom
ical (in terms of string length) for images with a fre
quently varying density, i.e., with large amounts of
detailed information-as a page of text with illustra
tions or a stained tissue section.

Parametic Description or Scan-Display System 189

String (c) is more economical and representative for
sparse images such as an engineering drawing or bubble
chamber negative. For these images high resolution is
needed along the scan axis but the scan lines can be
relatively far apart without 10dS of information. A
rectangular or slit-like sampling area is effectively
employed if it; orientation is within approximately
45° of being perpendicular to the· scan line. However,
to sample all possible orientations it is necessary to:

(cl) sample each scan line several times-once
for each of a sequence Of orientations,

(c2) sample a second sequence in which scan lines
are perpendicular to those of the first.

String (c) can be a function of the sampling tech
nique, i.e., one can sample for and recognize anly a
preselected class of features. Two possible classes are:

(c3) silhouettes, or images containing large areas
of uniform density-adjacent areas are
distinguished by a sharp discontinuity in
image density. Chromosome karyotyping
falls in this class.

(c4) outlines, or sparse line drawings-:-these are
a special case of silhouettes. The engineer
ing drawings and bubble chamber negatives
are in this class.

Sampling criteria corresponding to each of these
classes can be stated as:

(c3a) select the point if the change in image density
between it and the previous point(s) ex
ceeds some threshold.

(c4a) select the point if the image density increases
above and then decreases below some thresh
old between it and the previous point(s).

The image density level in each case can be recorded
in the string representation along with the coordinates.

If it is known that the image contains line (or boun
dary) information-perhaps from having processed a
string obtained in one of the aforementioned ways
then it may be useful to track the constituent lines by
sampling a sequence of localized areas with restricted
sets of orientations. This tracking procedure then
generates a sequence of head-to-tail vectors or, in the
limiting case, a string of incremental displacements.
This concept is also useful in creating an image by first
constructing the incremental string. A natural inter
pretation of the string is:

(i) an ordered set of commands defining starting
point, line width, line intensity and the
(incremental) seglnent vectors.

Curved lines obviously can be represented as a sequence
of sufficiently short segmental displacements.

These three ways of forming strings-(r), (c) and
(i) are correspondingly defined as the Raster, Coordinate,
and Incremental data formats.

Raster format

Stated in PL/I the sampling algorithm for an X-axis
scan including the optional orientation sampling is:

IF -, SLIT then 8B = 8E;
SY: DO Y = YBBYAYTOYE;
S8: DO 8 = 8BBY A8TO 8E;
SX: DO X=XBBYAXTOXE;

'encode/decode G(Y, 8, X)';
END SX;
END S8;
END SY;

where (XB, YB) and (XE, YE) define a rectangular
area to be sampled at increments of (AX, A Y). Each
scan line is sampled once for each orientation from
8B to 8E at increments of A8.

The total number of samples is:

N B = Number of lines X number of orientations
per line X number of samples per orienta
tion

and the number of bits required for storage is:

N b = Number of bits per sample X number of
samples.

Coordinate format

Stated in PL/l the sampling algorithm for an X-axis
scan is:

ENCODING (READ)

IF -, SLIT THEN 8B = 8E;
SY: DO Y = YB BY AY TO YE;
S8: DO 8 = 8B BY A8 TO 8E;
SX: DO X = XB BY AX TOXE;

IF 'Criteria satisfied' THEN
CYES: DO;

IF 'First time for this Y and 8' THEN"
FYES: DO; 'output Y';

190 Spring Joint Computer Conference, 1969

IF SLIT THEN 'output e';
END FYES;

FNO: DO; 'output X';
IF NGL >2 THEN 'output G';
END FNO;

END CYES;
CNO: END SX;

END se;
END SY;

DECODING (WRITE)

INIT: 'input YIN';
IF SLIT THEN 'input eIN';
'input XIN';
IF NGL > 2 THEN 'input G';

SY: DO Y = YB BY LlY TO YE;
SETe:e = eIN;

IF Y = YIN THEN
SX: DO X = XB BY LlX TO XE;

IF X = XIN THEN
MOD: DO; 'modulate beam';

'input next coordinate';
IF 'coordinate is a new Y' THEN

NEWY:DO; IF SLIT THEN 'input eIN';
'input XIN';
IF NGL >2 THEN 'input G';
GO TO SETe;
END NEWY;

NOTNEWY:IFNGL >2 THEN 'inputG';
END MOD;
END SX;
END SY;

where (XB, YB) and (XE, YE) define a rectangular
area to be scanned at increments of (LlX, Ll Y). In
encoding each scan line is swept once for each of the
orientations between eB and eE, where Ae is the
orientation increment. Actual encoding takes place
only when the criteria is satisfied. In decoding, only
those scan lines which are specifically read in are swept
at the input orientation, and writing takes place (or
more generally, is initiated) only at those positions
which match the input coordinates.

NGL is the number of gray levels. If this number is
greater than two, additional encoding/ decoding is
necessary to obtain the gray levels. For NGL = 2,
the fact that the criteria is satisfied implies the gray
scale infonnation.

The most general coordinate string of an X-axis
scan has the form:

Y coordinate, 8, X coordinate; gray scale;

X coordinate, gray scale, X coordinate, gray
scale ...

Y coordinate, e, X coordinate, gray scale, ...

Increlnent forlnat

The incremental string is composed of a sequence of
elements that can be interpreted either as a segment
vector or as an incremental command. The segment
vector is composed of two incremental displacements,
DX and DY, the corresponding signs for each displace
ment, SX and SY, and the 'beam condition.' DX speci
fies the number of unit cells the beam is to be displaced
in the X direction and DY specifies the number of unit
cells the beam is to be displaced in the Y direction.
The beam condition is given as being either on or off
during the move.

If (DX, DY) = (0, 0), the two signs, (SX, SY),
and the 'beam condition' are interpreted as an incre
mental command, where incremental commands have
the following semantics:

H
IT

MB

NOP
RGR
RSO
RSS
RVB

Halt, close out the operation.
ITerate (magnify) the next segment vector.

The next two elements in the string should
be a count followed by a segment vector.

Modulate the Beam intensity (at a fixed
position).

No OPeration
Reset Grid Resolution
Reset Stencil Orientation
Reset Stencil Size and/or shape
Reset Vector Begin point

The IT command with its count is equivalent to having
the same segment vector appear sequentially in the
string by the number of times given in the count byte.
If the displacement is (0, 0) the IT command is ignored.

The four commands that reset parameter values are
followed by string elements containing the new param
eter values. The element format is the same as that
defined for the initializing parameter string.

For the incremental format (XD, YD) and (XE,
YE) are interpreted as defining a file area, outside of
which no recording (film) or displaying will be allowed
to take place. (XB, YB) becomes the initial point from
which the beam will start the first segment vector.

Figure 2 shows the use of incr~mental vectors with
the command RSS inserted at point P (between vectors
(2,2) and (3,1» and with command RGR inserted at
point Q,

Parametic Description of Scan-Display System 191

(XB)"B)

(6,1)

R

---IDEALIZED SEGMENT

-----. INCREMENT PATH
(IF DIFFERENT THAN IDEAL)

Figure 2-Segment vector plotting. Note change in stencil size
at P and change in resolution (unit cell) at Q

Resolution, sampling and scanning parameters

. Resolution

In order to encode a digital representation of an image
it is necessary to impose a grid and coordinate system
upon it. It is convenient to conceive the total image or
raster area as a unit square and to interpret the address
able positions of the image as fractional coordinates
ranging between 0 and 1. The mesh of the grid
superimposed on this range is then 2bfl where bg is the
number of bits used to specify coordinate position.
The smallest resolvable square has sides of frbfl units
and is termed a gross basic cell.

The aspect ratio of the raster area need not be 1 :
1. The physical interpretation of the basic cell will
more generally be a rectangle, hence the effective reso
lution along one axis may differ from that along the
other.

The adopted coordinate system-left-handed rec
tangular-is a natural one for most textual material
and also corresponds to standard video practice of
left-to-right top-to-bottom scanning.

In concept one achieves the physical limit of resolu
tion by choosing bg sufficiently large. In practice this
is difficult to implement and one distinguishes between
a gross position counter specified by bg, and a vernier
position COlllter specified by b v • The vernier counter
has a sign bit, Stl, and is interpreted as a signed position
relative to the gross position. This is equivalent to
overlaying a vernier grid in the immediate vicinity of a

gross coordinate position (which can be interpreted
as a local 'benchmark'). One then has a localized grid
of mesh 2bl1+br where br is the number of bits in the
vernier counter used to extend the gross resolution.
The smallest resolvable square has sides of 2-Cbfl+b r)

units and is termed a vernier basic cell. The remaining
bo bits in the vernier counter define the gross-vernier
overlap, or the maximum vernier window as having sides
of 2bo gross basic cells (see Figure 3) or 2Cbo-bg) upjts.

The above discussion defines the design parameters
that determine maximum position resolution. Not all
applications warrant this maximum resolution. More
importantly one cannot contrive efficient scanning
recognition algorithms without a range of resolution
options. One clearly wants. independent choices of
resolution for the two axes, either because the applica
tion warrants it, or becuase the format warrants it, as in
the case when scanning in the coordinate format using
a slit-like sampling area.

The parameters p and q specify the sampling resolu
tion as every 2p basic cells in the X -direction and
every 211 basic cells in the Y -direction:

o

y

+

L/

ax = 2p basic cells = 2pCb l1+k) units

x

B

H±t- + Ey

X8: .101 •.. 1011101
; I
I I
I I
I I
I I
I I

1+111111111
-"'-"--y-J

bo br

,

1
V

I

I

-J

GROSS COUNTER
bg >bo

VERNIER COUNTER

bo=2

b,=2

(1)

(2)

Figure 3-Maximum vernier 'window area with respect to B
coordinate. Shown is an overlap of two bits (bo) and maximum

local resolution for a resolution extension of two bits (b,.)

192 Spring Joint Computer Conference, 1969

The gross/vernier selection determines k as O/br • The
smallest resolvable rectangle is flX by flY units and is
termed the unit cell.

rr'l,.", ~",,,~.j.~,,,~ n""''''-/-e''' ;'" ;nn ... a'YYlentarl Ilt thp nth {'IT'
.L .l.lCi pV~~lJ~V.l~ \JVUJ..L\J .J. .1.01 .J..1..LV.l.V.l...L.I. .L UV'-A. ","",v vt'&.

qth significant position of the gross/vernier counter,
hence the number of significant position bits is:

x y

raster gross: bg - p
raster vernier: bg + b r - p

For the coordinate representation it is desirable to
increase gross sampling resolution along the scan axis
while incrementing the position counter at the pth sig
nificant position as described above. This can be done
by interpolating between counter increments and
concatenating the be interpolation bits to the b g - P
significant counter bits. One then has for the coordinate
resolution:

coordinate gross: bg + be - p significant bits.

A natural choice is to make be = b r since b r reflects the
physical limit of resolution.

Sample encoding

The maximum number of image density states for a
read command or recording beam intensity states for a
write command are indicated by the gray scale param
eter, n. The number of encoded bits is interpreted
as 2", hence the number of possible states as 22 .. , The
maximum value of n is specified as nmax .

Triggering or filtering of output information may
be done by either a standa.rd level diRcriminator or by
a specially designed plug-in unit. The value "assigned
to the parameter T chooses between these two.

The parameter B8 will distinguish between the choice
of a standard size spot (~q gross basic cell in diameter),
and a slit or non-standard spot size. If the non-standard
option is taken, then the parameters u and v define
the sample width and length as 41.£ and 2t1 gross basic
cells respectively. The range of circular spot sizes can
be specified by u with v = O.

If the sample area is slit-like then the orientation
becomes significant. The unit of angle is the circle,
or radians/21r. The angular resolution is 2-ba units
where ba is the number of bits used to specify an angle.
The angular sweep Begin-End coordinates, (8B, 8E),
specify the range over which incrementing is to be
accomplished. The increment is defined by the param
eter z as 8 = 2z-ba units. The slit is swept the length
of a scan line for each value of 8 in the specified range.

r-----,-,---------~----------4~~ X '- ~e -

,
y

SLIT:

e RELEVANT

SPOT:

Ls= MINIMUM

Ws = DIAMETER

e IRRELEVANT

Figure 4-81itjSpot. geomet.ry

Figure 4 illustrates the /l:eometrical definition and angu
lar reference.

Scanning rate

Sweep velocity will in general be limited by the
following:

1. positional digital-to-analog response time
2. maximum channel data transfer rate
3. number or bits of gray scale eucoding/ decodin~

Sweep velocity can generally be expressed as a func
tion of the following parameters (see Appendix B),
where a constant clock rate for incrementing the posi
tional counter is assumed:

v s = C1 . f(p,q,A) , g(DF, K, n, nmax).

Here f is determined by the scan axis and unit cell
selection:

f(p,q,A) = (I-A) . 2P . ox + A . 2q • oy.

The maximum continuous data rate is required for
the Raster format with n = nmax , where g can be nor
malized as

g = Z-"max'

Parametic Description of Scan-Display System 193

The data per sample are higher for the coordinate
format, but the average data rate is normally less than
for Raster. (Otherwise the nnage would be more opti
mally encoded in a raster format.) Buffering is needed
to handle local bursts of perhaps three or four consecu
tive samples. The amount of data for coordinate rep
resentation are essentially (though not absolutely)
independent of the number of bits of gray scale encod
ing/ decoding.

For an X-axis scau at constant sample rate one then
has

Vs = C1 • Z-nmax · 2P . 5x.

C1 can then be determined from the clock frequency.
This equation yields a constant sample rate with the
Raster format for any value of n.

Since the data per sample is 2n bits, one obtains a
constant data rate by introducing the quantity nmax - n
in the exponent yielding:

Here instead of incrementing the position counter
at the pth significant position, the burden on the posi
tional D / A conversion is appreciably lessened if one
increments only at the [p + (nmax - n)]th significant
position and interpolates to obtanl samples at the
(2nmax-n -1) positions between counter increments.

The constant data/sample rate option for a given
resolution is then determined by the parameter K.

\Vindowarea

The term window was introduced above in defining
the maximum area that can be covered in a single oper
ation with vernier resolution. Two pairs of coordinates
serve to specify the portion of an image to be scanned,
encoded and displayed. They are termed the Begin
coordinates (XB, YB), and End coordinates (XE,
YE), and are interpreted as defining diagonally opposed
corners of a rectangle. Since the position counters may
be decremented as well as incremented anyone of four
B-E combinations may be chosen to specify the same
window area. This feature and the coupled-uncoupled
option of the monitor position counters allow the Ro
tation Group transformations described below. The
coordinates must be multiples of (~X, ~ Y).

Scan format (lattice and sequence)

The scan fonnat, determined by the parameters L,
S and A, imposes a Lattice upon the grid in terms of
the un'tt cell and specifies the scan line sampling se-

quence. The scan axis is specified by A as X or Y, and
S selects the scan line sequence as interlaced or sequen
tial. These two parameters a10ng with the B-E com
bination completely determine the sampling sequence.
One obviously starts with the Begin coordinate and
terminates with the End coordinate, determining the
direction of sampling along a scan line. The hexagonal!
rectangular lattice option is defined by L as described
below.

The matrices in Figures 5 and 6 illustrate the sam
pling sequences for a scan direction parallel to the X
axis on a Rectangular Lattice. The position of point
No.1 in the lattices is specified by the Begin Coordinates.
The End Coordinates specify point No. 42 in the Se
quential case (Fi~e 5) and point No. 15 in the Inter
laced (Figure 6) case. Since the Begin and End coor
dinates are constrained to be multiples of AX and
A Y they will always be member points of the Lattice.

Figure 7 illustrates the relative positioning of points
and their sampling sequence for the two scan directions
on Hexagonal Lattices when line sampling is sequential.
The Hexagonal Lattice is obtained by shifting the
lattice points of odd numbered scan lines in the corre
sponding Rectangular Format by an amount AX/2
(or A Y /2) along the positive scan axis. Otherwise hexa
gonal formats are analogous to their rectangular coun
terparts.

The Interlace option and the adopted coordinate
system are particularly suited for communication with
a standard video network through an analog-to-digital
interface. Figure 6 shows the relation between the

2 3 4 5 6 7 . . . • . • 0

8 14 · ·
Y! 15 j 6X1 21 · O'E] · 2

22 L CELL 28
3

29 35 · . 4

36 42 • • 5

SCAN LINE NUMBER 1
SEQUENTIAL: LINE SEQUENCE IS 0,1,2,3,4,5

Figure 5-Sequential scan along X-axis using a rectangular lattir·e.
(t1 Y = t1X)

194 Spring Joint Computer Conference, 1969

o

2

4

FIELD 2

•

17
o

•

18 o
19 o

2S ·)V 10 •

,
x 30

o

3

~SCAN LINE NUMBER_x'_" _____ _

INTERLACED: LINE SEQUENCE IS 0.2,4.1.3.5

Figure 6---Interlaced scan along X-axis using a rectangular lattice.
(~y = ~X)

fields and the sample points for the interlace option.
Lines have been drawn between points surrounding

point No. 11 in Figures 7(a) and 8 and point No. 17
in Figure 7 (b) to illustrate the concept of neighbor
points. An interior point of the Hexagonal Lattice has
6 neighbor points whereas that of the Rectangular has
8. Since the Hexagonal Lattice is not regular (it is
rhombic), although it is nearly so for dX = d Y (see
Figure 7), neighbor points are not all equidistant from
their interior point; but they always partition by
distance into two sets of 4 and 2 points each. Those
for the Rectangular Lattice partition generally into
three sets of 4, 2 and 2 points each, and for dX = d Y
the two sets of 2 and 2 become a single set of 4. Compare
Figure 8 with Figure 7.

V ideo compatibility

When interfaced by a video scan converter the video
n~-twork can be handled as a scanner. However, the
scan converter is not essential since the S-J\I-V Con
troller can be designed to satisfy the constraints of the
video systems. The following discussion uses the param
eter i to identify the v-ideo system within the network;

I 2 3 4 5 6 . .
r---1:~ ·
I I

8
I I

~ Q9.11 o?

'U 15
I I

• L ___ ·
.22

. 42Xj

.29

vr (a) PARALLEL TO X-AXIS

7 .

21 .

.35

2

3

4

i
SCAN
LINE

NUMBER

r-_________ 2~---3--__ 4-----5-----6~.4--~1
,u--~---r21

0

.1 31.

G)
: 16!
I I

~
.17

--~--

·6

.2

.3

.1-

.25

.4

.5 35.

10 • 30

(b) PARALLEL TO V- AXIS

Figure 7-Sequential scan along (a) X-axis, and (b) Y-axis using
a hexagonal lattice. The hexagons around point 11 in (a) and

point 17 in (b) illustrate neighbor points. The dotted
rectangle.."l Rhow neighbor points in the eorresponding

rectangular lattice. (~y = ~X)

2
o .

e

15
2 .

I

3 4
't----
1
I
I
I
1
1
I

.~
i
I
I
I
I
I
I
I .. ---

3 I 2.2 • •

LSCAN LINE NUMBER

5 6 7 . .

14

21 .

Figure 8--8ame as Figure 7 (a) with ~ Y = 2~X

Parametic Description of Scan-Display System 195

it assumes the controlJer-video link to be direct and
develops the corresponding constraints.

Since the viedo 1ine sweep timf, Llt(i), is a fixed
parameter the number of data bits that can be trans
ferred to or from core per full scan line is coilstrained
by the I/O channel capacity, where the maximum bit
transfer rate is f b• A buffer will allow a 'burst-mode'
sampling for some fractional part of the scan line
hence higher resolution in sampling a vertical band can
be achieved.

The Incremental string cannot be passed directly to
video; it must first be passed to a scan converter.

The Coordinate otring with video has a resolution
along the scan line equivalent to Raster resolution
with n = nmax, hence the scan axis counter increment,
LlC, is given by:

Raster with constant data rate option:

Raster with constant sample rate and Coordinate:

LlC = 2P.

One would nonnally choose the constant data rate
option. The Coordinate string resolution can only be
locally maintained because the buffer storage limits
the number of succe.3sive saIPples in contiguou~ unit
cells. This is not a severe restriction since the coordinate
representation is not very meaningful unless the image
is rather sparse. Note that orientation sampling is
meaningless with video.

The entire video discussion is from the point of view
of the Rastel' string representation. The stling win have
existence only when core memory participates; other
wise there is only the analog signal transfer between
the other three media. The resolution results are valid
independently of the point of view.

Horizontal (X-axis) resolution

To achieve a maximal uniform resolution across a
full scan line it is necessary to maintain a constant
data rate. We choose the largest j such that

(3)

and hence maximize and fix the number of bits in a
full line of sampling. Position resolution and gray scale
resolution are not independent: the number of bits per
sample is 271

, hence equation (1) constrains the number
of samples in a full line to be

S(j,n) = 2i- n • (4)

Maximizing position resolution minimizes gray scale
resolution and vice versa. S(j,n) achieves its maximum
value for n = 0:

Smax (j) = S(j,O) = 2' (5)

Table I shows values of Smax(j) for three different
video systems. Parameter values used in the calculation
are given in Appendix C. If a window contains only a
fractional part of a scan line, then only a corresponding
fractional part of S(j,n) samples can he obtained along
each scan line.

Sampling at the position counter stepping frequency,
fe, maintains the aforementioned data rate for an
2nmax bit gray scale datum. An interpolation counter
is used to achieve the rate for other choices of image
density resolution with the constant data rate option:

A 1-1 correspondence between a full scan line at
video and the S-~f-V control grid requires:

S(j ,n) . LlX = 2b
g basic cells.

Substituting for S(j,n) from equation (4) yields:

(6)

This defines the achievable video resolution along

Table I-Inherent characteristics of three video systems and
maximum sampling resolution, Smax(j) , as constrained by

other media

i

1

2

3

N(~) t1tCL) Smox(i)
}L-sec

525 ~ 56 512

1536S ~520 4096

1536F ~ 43 256

F= FAST SCAN

S= SLOW SCAN

1

9

12

8

196 Spring Joint Computer Conference, 1969

Table II-Maximum sampling resolution and interdependence of
position and gray scale resolutions as constrained by media

characteristics. The main entry is the maximum number
of samples per video scan line, S(j, n),and the value

in parentheses is the corresponding maximum
value of aX, (ax)mlU:(j,n)

j n g(j)

0 I 2 3

512 256 128 64
0 9 (8) (!6) (32) (64)

12 4096 2048. 1024 512 -I
(1) (2) (4) (8)

8 256 128 I 64 I 32 3
(16) (32) (64) (128)

-
1 2 4 8

2n, bits of gray scale

scan lines as well as the largest useable sampling incre
ment that may be associated with the 8-~1-V control
grid scan axis, Table II illustrates the interdependence
of position and gray scale resolution for the three video
systems of Table L It contains the values of 8(j,n) as
constrained by equation (4), and in parentheses the
corresponding maximum values of SX as given by
equation (6). All parameter values used are listed in
Appendix C. The function g(j) is explained in the
following section.

Vertical (Y-axis) resolution

Having determined the video resolution along a scan
line we now determine the vertical sampling so as to
achieve a unit cell match to the 8-::.YI-V control grid.
Assuming an X-axis scan at the controller, this con
straint requires the video line sampling frequency to be

r" N(i) LlY
(LlY)t, = - . -8(')' AV' rs J,n LlA.

(7)

where r8 and rv are the aspect ratios at the control
grid ltnd video, respectively. N(i) is the number of
lines per video frame. The unit cell resolution ratio at
the 8-NI-V control grid is LlX/LlY, and the correspond
ing video resolution ratio is 1/8(j,n) N(i)/(.1Y)v. Using
equations (1), (2) and (4) equation (7) can be written as

which may be restated as:

CLl Y) 17 = f(j) . 2Il+n-p,

where

f(j) = r,,/rB • N(i) . 2-i.

As in the discussion of horizontal resolution we wish
to approximate by powers of 2, and determine a g(j)
such that

The video line sampling freqw:mcy is then determined
at the 8-l\1-V controller from

(Ll Y)" = 2Il+n+oW-p

since the four terms in the exponent are defined by the
parameter assignments.

Media selection

::.vIedia selection is determined by the parameters
F, V and C. The choice of a Read or Write command
is then determined from the source-destination matrix
shown in Figure 9. Of the sixteen possible states for
F V C and ReadjW rite ten are allowed as meaningful , ,
or useful, and this may be succinctly stated as:

States Source Destination Command Figure

4 (FEBV) (CEBC) READ 15
F V.C READ 16
V F.C WRITE 16

4 C (FEBF) . (VEBV) . WRITE 17

whereEBmeans exclusive OR. As indicated these states
are illustrated in Figures 15-17. A destination medium
always exists since the monitor participates in all

DESTINATION

SCANNER VIDEO MONITOR MEMORY

r-N~R~ R

~ SOURCE R l~:RY' :« W~ W

R-READ W-WRITE

Figure 9-Command matrix. Read/Write selection as a function
of Relected media and desired transfer direction

Parametic Description of Scan-Display System 197

operations. Whenever core memory (C) is not the
image source, display at the monitor or video can be
indefinitely repeated by setting the Regeneration param
eter, J.

When transferring an image between two media, it
is necessary to consider:

a. the XjY aspect ratios, and
b. the XjY resolution ratios.

If either of these ratios differ, then a contraction quite
independent of any magnification can take place along
one of the axes. Both sources of image distortion may
be averted by matching aspect ratios of the unit cell at
source and destination media.. Since several media may
be involved it is useful to adopt the concept of an S-1\1-
V control grid and coordinate system through which
any inter-media transfer must pass, as illustrated in
Figures 14 through 17. One then forces a match between
each medium and the S-l\I-V control grid. All position
and resolution specifications in the parameters can be
interpreted as referring to the S-M-V control grid and
coordinate system. They must be specified with a
particular medium (or media) in mind, however, and
must be compatible with its associated characteristics.
Scanner and monitor are completely dominated by
the S-l\I-V Controller, hence the unit cell match is
easily accomplished. The same is true of core memory
as a destination mediwn. As a source medium the core
memory unit cell match is under program control, and
it is therefore necessary to associate inviolate unit cell
as well as other parameter information with any string
representation. Except for initiating a video scan, the
link between S-~l-V Control and video is basically an
information transfer link. The video match is effectively
accomplished by selectively transferring information
from video (say every other scan line) and by holding
back information to video (say blanking every other
scan line) by employing (.1 Y)v as discussed in the
section on Vertical Resolution. .

Extending this "match-to-control" concept allows
all the transformations (rotation, magnification and
translation) discussed in the following sections as well
as the dual interpretations of video as a source medium.

The entire transformation discussion is from the
point of view of gross resolution. Vernier resolution
differs basically in having an inherent magnification
of 211,. to both xfonitor and Video, and in having a
limited window area.

Monitor transformations

Information is communicated to the monitor during
each of the S-l\I-V operations. The area of interest
in an image is specified by a 'window' at the S-~l-V

control grid delineated by the Begin and End Coordi
nates. Three types of transformations may be applied
to the window as viewed at the monitor: rotation,
magnification and translation.

Rotation

The Rotation parameter, G, allows the option of:

(Rl) slaving the monitor to the S-1\1:-V Controller
grid in scan axis and direction or,

(R2) choosing the scan axis and direction at the
Monitor to be parallel to the X-axis and
incrementing irrespective of the Controller
choices.

When option (R2) is taken then scanning the X-axis
at the Controller grid obtains the transformations
shown in Figure 10, whereas scanning the Y-axis
yields the transformations shown in Figure 11. The
choice of a B-E orientation fixes the scan direction and
the initial scan line, hence selects one of the four
transformations. The four transformations in Figure
10 are called the "four group" of rotational synunetries
on the rectangle. The eight transformations in Figures
10 and 11 define the "Klein Rotation Group" of
symmetries on the square.

Magnification

The window displayed at the monitor can be magni
fied by factors of 2 with the parameter h subject to
the combined restrictions:

The underlying assumption is that the range of resolu
tion options on p and q is identical at monitor and
scanner, and that the unit cell at monitor is magnified
by m = 2h.

One naturally constrains the choice of h to keep
the magnified window from exceeding the raster area:

{IXB-XEI}
m' YB-YE ~ 1.

This restriction is refined in the discussion below on
translation.

Translation

Translation of the window at the monitor may be
achieved with the M on~tor Displacement Coordinates.

198 Spring Joint Computer Conference, 1969

SCAN TRANSFORMATION DISPLAY

8

It p' I IDENTITY

E
E

180-

I .~ II ROTATION 8'

11 I 8 . [-
, .

8

I 11 II REFLECTION f4 E'
ABOUT

VERTICAL
E

E

II ~. I
REFlECTICW J
HOiI~

8

DARK LINE AND ARROW SHOW SCAN
AXIS AND DIRECTION

Figure l(}-Group transfonnations effected by the four different
Begin-End coordinate orientations with X-axis scan. (G = 1)

TRANSFORMATION DISPLAY

8 ,K

1 I REFLECTION
ABOUT

K-K
8'

II .~.

E

If
I I
B

E

II
B
B

II • ...
E

]
I

REFLECTION
ABOUT
L~L

·r p
90- CCW

ROTATION

9O-CW
ROTATION

IY4RK LINE AND ARROW SHOW SCAN
AXIS AND DIRECTION

vf4
E'

Figure II-Same as Figure 10 with Y-axis scan. (G = 1)

As shown in Figure 12, D transforms into (0, 0) at the
monitor, hence B is repositioned accordingly.

If a magnification m is superimposed on the transla
tion it affects the area delineated by the D-E coordi
nates, hence the combined transformation is completely
defined as operating on the two vectors u and v:

1. translate the tail of u to (0,0) and
2. magnify the length of u and of v by m.

The four allowed orientations of D, Band E are
shown in Figure 13. The implied const.raint is that in
case (a) D ::; B ::;E with a corresponding interpretation
for the other three cases. D always transforms into the

5-M-V
CONTROL

~
y

~

o X--+ I
r-I O-r-----__ --_:.!.--,-=------,

I '
I ,,'" I i I
I I
I I

I
I
L--"""'~~E

I~I ------------------~

MONITOR

D -
B -
E -

DISPLACEMENT}
BEGIN COORDINATES
END

m - MONITOR MAGNIFICATION

Figure 12-Image translation and magnification at the monitor

corresponding corner position at the monitor with
Rotation option (R1). For Rotation option (R2), D goes
to (0, 0) at the monitor in all cases.

For proper centering, one must choose (XD, YD)
such that

m (IXB -xEI +21xD -xBI) = 1

and

m (IYB - YEI +21YD - YBI) = 1.

Complete positioning freedom is not always possible
when combined with one of the· rotation transforma
tions, e.g., when the window is very close to the edge
of the grid and the chosen tran.8formation requires D
to be on the edge side of the window.

Parametic Description of Scan-Display System 199

~
CONTROL

GRID

S-M-V

CONTROL

GRID

MONITOR

0

y

x

0t"-----,
I B :

U~E

(0)

EWgj~~
I
I
I
I 0'

(e)

0
r-----~
I I

~B!
_oJ

E

(b)

(d)

Figure 13-Four allowed orientations of D, Band E coordinates
with the corresponding monitor interpretation. (G = 0)

Totally slaved to scanner

When tracking a line or a boundary, by scanning a
sequence of windows, a 1-1 correspondence between
Monitor and source is desirable; otherwise the relative
positioning of windows at the source is not reflected
at the Monitor, and the tracking procedure cannot be
viewed. This can of course be achieved with the proper
parameter assignments as a standard transfonnation
but one would like to avoid the time involved in doing
so. Since the wi~dow will be small the scanning time
can be significantly reduced by recognizing a special
case. The following natural setting for the parameters
listed can be interpreted as defining the special case:

1. (XD, YD) = (0, 0), no translation
2. gross resolution
3. no rotation, option (Rl)
4. no magnification

~
CORE MEMORY

S-M-V CONTROL

SCANNER

Figure 14-Monitor totally slaved to the source media

As shown in Figure 14, the Controller can then avoid
the time-consuming redundancy of the transformation
steps inherent in a sequence of small windows.

Totally slaved to video

As indicated in, Figure 14, video is inc1uded in the
total slaving concept. For video this is accomp1ished
by replacing constraint (4) in the previous section with
the following:

(4') h· ax = axmax (j,n).

At most one window can be scanned per video frame,
thereby limiting the repetition rate.

V ideo transformations

The video network, unlike the monitors, can act
both as a source and as a destination. A window,
specified by the Begin and End coordinates at the
S-M-V control grid, determines the area of interest.
Transfonnations similar to those at the monitor can
be effected within the limits of the video constraints.

Source medium options

It is useful to distinguish two interpretations of
video as a source medium:

200 Spring Joint Computer Conference., 1969

(81) l-lcorrespondence between video and the 8-M
V control grid (excluding rotation), thereby
allowing translation and magnification of a
window to the monitor;

(82) 1-1 correspondence between video and some
portion of the 8-M-V control grid, effectively
allowing translation and demagnification of a
window to film.

Options (81) and (82) are illustratfd in Figures 15
and 16 respectively.

Rotation

When video acts as a destination medium, the
transformations are effected in the same manner as
they are to the monitor under option (R2). Because
the video scan axis and direction are fixed, option (Rl)
never applies.

When video participates as a source medium the role
is reversed and one always gets the inverse transfor
mation to the 8-M-V control grid. If option (R2) is
chosen for the monitor the two transformations cancel
(into and then out from the control grid)-effectively
yielding the identity transformation to the monitor.

Magnification and demagnification

Equation (6) defines (aJe)max (j,n), the largest useable
ax. Choosing ax < (ax)max (j,n) allows So video

o
~-- ...

l~ 8~

SCANNER

~
D" :

8 I

---~,
~

Figure la-Magnifying a winduw at the munitor and/or
transmitting to core memory

r----------,
I I
I I
, I
I , , ' I I
I I
, I
, I

L ~~_E_ ~~~~~: J

S-M-V CONTROL
X2

hy
..

0' .. 8'
D

...

~
8 ~-:e-'" xihy

~E
..

l~E

SCANNER
IX2h

VIDEO

0'

e' I
f7777:l I

Figure 16-Transmitting between scanner and video. Display
at the monitor 'with h = h"

0' I
I

D

~E ---~~,

Figure 17-Transmitting from core memory to one or more
media. If to video, h = 11.

magnification of

mv(j,n) = (ax)~ (j,n) = 2hv(j,n) J

80

hv(j,n) = bg - j + n - p = Pmax (j,n) - p .

Paranletic Description of Scan-Display System 201

When video is a source medium mp is a demagnifi
cation, and when video is a destination medium mv is
a magnification.

In the (SI) interpretation of video as a source medium
..:lX = (..:lX)max is assumed, and the monitor magnifi
cation is achieved in the same manner as when the
source is core memory or film scanner.

Translation

When video is a destination medium translation is
effected in the same way as it is at the monitor with
the rotation option (R2); (XD, YD) at the S-.:.\f-V
control grid transforms into (0,. 0) at the video. For
proper centering (XD, YD) is chosen so that:

mi>(IXB-XEI + 2IXD-XBI) = S(j,n) . ..:lX ~ 1,

mv(IYB-YEI + 2IYD-YBj) = ll~~y~u(i) ~ 1,

where Nu(i) is the number of useable lines per video
frame (or maximum (ll Y)l1 steps).

With video as a source medium translation to the
monitor is accomplished by associating (0, 0) at the
video with (0, 0) at the S-M-V control grid. Trans
lation to the monitor then takes place in the usual way.
This is option (SI) and is illUstrated in Figure 15.
Option (S2) is accomplished by associating (0, 0) at the
video with (XD, YD) at the S-M-V control grid and is
illustrated in Figure 16. Translation to film then takes
place as the inverse of the translation effected when
the transfer is from film to video. Note that translation
to monitor and film cannot be effected simultaneously;
the options (SI) and (S2). are mutually exclusive as far
as translation is concerned-hence the distinction.

Totally slaved as a destination

Video is not likely to be useful for display under the
totally slaved concept, since this would constrain the
sampling increment to be

ilX = AXmax(j,n).

SUMMARY

This paper has developed the parametric description
of a general purpose Scan/Display System for image
digitization and display. Central to the system is the
S-~1-V Controller which can service either simul
taneously or individually three distinct media: film,
closed-drcuit television and incrementally-driven CRT
displays. An adjunct of the system is a Video Com-

munications Net to provide both high and commercial
resolution service to remote users.

Media compatibility

The S-M-V Controller acts as a media-media inter
face that identifies the necessary information transfer
constraints or rejects the operat~on request as one
demanding inconsistent parameter assignments. Trans
fer constraints considered include XjY resolution
ratios, aspect ratios and line sweep times of the media,
and D-A/ A-D conversion times. A constant data rate
option allows operation at I/O channel capacity for
all choices of gray scale resolution.

The digital encoding of an image generated in a
scanning operation can be retransmitted to the S-M-V
Controller for output (display)-and on any of the
three available media.

Rasters

By associating (X,Y) positions with binary counter
value pairs the controller can generate a family of the
two-dimensional regular lattices-rectangular and hexa
gonal. X and Y resolutions are independen,tly variable,
the allowed resolution values are in geometric pro
gression and correspond to changes in counter incre
menting position. A selected "window" of the full
image can be specified.

Sampling/display strategies

Three sampling formats (Raster, Coordinate and
Incremental) allow a variety of sampling/ display
strategies. Raster format provides uniform sampling
of alllat~ice positions. For coordinate format however,
sampling takes place only at those lattice positions
where the image satisfies some criteria prescribed by
selection of a triggering/filtering circuit.

Incremental format is provided for segment vector
plotting. Conunands are provided for setting the
starting point, line width and plotting resolution.
Segment iteration can be specified.

The sampling beam stencil is variable in size, shape
and orientation. The shape options are spot/slit. The
slit option includes orientation resolution and range.

Metrological facilities

An optional local extension of position resolution
can be specified through a gross/vernier counter selec
tion. With the vernier option selected, the gross count
ers define a benclunark while the vernier counters
represent a local displacement. Using this technique,

202 Spring Joint Computer Conference, 1969

positional resolution of 1: 30,000 is currently attainable
in flying spot scanning.

Implementation

The 11liac III computet' .10 employs a scan/display
system with parameters as specified in Appendix C
of this paper.

Except for the video scan converter, the microimage
storage and the video storage, the scan/display system
is anticipated to be operationa1 by Sununer 1969.

ACKNOWLEDGMENT

Many'stimulating discussions with members of the
Illiac III staff aided in the formulation of concepts
developed in this paper. :NIr. Robert C ... <\....~endola has
contributed significantly to the Video Network speci
fications and to scanner optical design. Dr. Kenneth
J. Breeding participated in the first design of a scanner
controller which was subsequently expanded into the
S-M-V controller described in this paper.

A description of the analog and digital logic design
of the scan/display system is now being prepared for
publication by Dr. James L. Divilbiss and Mr. Ronald
G. lVlartin, respectively.

The authors wish to thank ~1r. John H. Otten for
preparing the illustrations and :\1rs. Donna J. Stutz
for typing the paper.

REFERENCES

L A DUNN L N GOYAL B H McCORMICK
V G TARESKI
S-M-V programming manual
Department of Computer Science University of Illinois
Urbana Illinois March 1968

:l D M COSTIGA:.l
Resolution co;~siderations affecting the electrical transrnission
of technical documents by scanning process
National Microfilm Association Jour Vol 1 No 3 Spring 1968

3 B F \YADSWORTH
PEPR--a hardware description
Emerging Concepts in Computer Graphics Don Secrest and
Jurg Nievergelt (Eds) W A BenjamL.TJ. Inc New York 1968

4 R CLARK W F MILLER
Computer-based data analysis systems
Methods in Computational Physics Vol 5 Berni Adler
Sidney Fernbach Manuel Rotenberg (Eds)
Academic Press N ew York 1966

f) R B M ARR G RABINOWITZ
A software approach to the automatic scanning of digitized
bubble chamber photographs
Methods in Computational Physics Vol 5 Berni Adler
Sidney Fernbach Manuel Rotenberg (Eds)
Academic Press N ew York 1966

6 J VANDER LANS .J L PELLEGRIX
H J SLETTENHAAR
The hummingbird film digitizer system

SLAC Report No 82 Stanford Linear Accelerator Center
Stanford University Stanford California March 1968

7 R S LEDLEY L S ROTOLO T J GOLAB
J D JACOBSEN M D GINSBERG J B WILSON
FIDAC: Film input to digital automatic compuier and
associated syntax-directed pattern recognition programming
system
Optical and Electro-optical Information Processing Teppep
J Berkowitz D Clapp L Koester C and Vanderburgh Jr
(Eds) 1\1 I T Press Cambridge Massachusetts 1965 Chap 33

8 H KAZMIERCZACK F HOLDERMANN
The karlsruhe system for automatic photointerpretation
Pictorial Pattern Recognition G C Cheng R S Ledley
Donald K Pollock and A Rosenfeld (Eds)
Thompson Book Co Washington DC 1968

9 B H McCORMICK
Advances in the development of image processing hardware
Image Processing in Biological Science Ramsey D M
(Ed) University of California Press 1968 in press

10 B H McCORMICK
The illinois pattern recognition computer--illiac J I I
IEEE Transactions on Electronic Computers Vol EC-12
No 5 December 1963

APPENDIX A-DEVICE SPECIFICATIONS

Scanners

The scanners are flying spot scanning systems with
an added diquadrupole coil for astigmatic defocusing
of the spot into a line element to achieve a slit mode.
All scanners are capable of either scanning from devel
oped film or photographing onto unexposed film. The
optical path of the beam is split, with one path trans
versing the film and the other path through a reference
grid to establish stability against engraved fiducial
marks.

Several types of media transports are provided to
handle the projected range of problems. A 70 mm.
scanner is provided primarily for 70 mm. negative
bubble chamber fihn. Here the format of the raster is
2.362 inches X 3.522 inches, and the minimum spot
size is approximately 0.001 inch at the film. Due to
the 1ength of the frame to be scanned, scanning is done
in two steps. The two horizontal halves of the frame
are scanned successively with a 4 mm. overlap to
establish half-frame continuity. Large motors are used
for slew and gross positioning of the film and a small
digital stepper motor is used for fine positioning of the
frame. Frame position sensing is accomplished by using
the digital stepper motor as a tachometer and by
counting sprocket holes. Total film capacity is 1000
feet.

A scanner for handling 47 mm. film is similar to the
70 nun. transport design except for the following:

The fi1m format is different. A friction drive is used
on the digital stepper motor, since the film is un-

Parametic Description of Scan-Display System 203

sprocketed. The frame position is determined by sensing
small index blocks at the lower edge of the fihn using a
fibre-optics light guide and a photodiode.

The microform scanner contains three units. The
first is a 35 mm. full frame digitally controlled camera
which can read light through the fihn both negative
and positive. The second unit contains a 16 mm.
Bolex camera for making computer-generated black
and white movies and a modified 16 rom. film editor
for scanning 16 rom. film of all types. The third unit
is a microfiche transport mechanism for scanning and
producing a single microfic.he in the 72 image COSATI
format. For the three different units the C.R.T. raster
is adjusted optically to fit the particular frame size.

A fourth type of scanner is built around a microscope
with a digitally controlled automatic stage. Positional
accuracies are on the order of ± 2 microns, and the
maximum slide area coverage is 1.2 inches X 1.2 inches.
Variable reduction is available from a four objective
rotating turret. Full visual observation is available to
an operator.

Monitors

The monitors consist of 21-inch cathode ray tubes
controlled in a manner similar to the scanner C.R.T.'s;
viz., digital position counters control the spot location
through accurate, high-speed digital-to-analog con
verters. The monitor counters are digitally controlled
directly from the S-M-V Controller via an incremental
communications scheme; essential1y the only commands
issued by the S-M-V Controller for the monitors are
increment the counters, decrement the counters, reset
the counters, and reset the parameters. Therefore,
any spot movement possible on a scanner C.R.T. can
be accomp1ished on the monitor C.R.T. The video
input for the C.R.T. grid is also synchronized by the
S-]~/I-V controller.

Included with the monitors for communications to
a central processing system are a selectric typewriter,
microtape input/output tape drives, and a light pen
for cursor control.

V ideo scan converter

The video scan converter consists of a high resolu
tion storage tube capable of storing a useable picture
for at least 30 seconds. Multiple readouts can be made
from a stored image before degradation is significant.

The storage tube can be written into and read from
at any of the video rates in the system (525, 1536F,
1536S) on the video switching matrix side. On the
SMV control side the scan converter looks like a film

as seen by a scanner; therefore, reading and writing is
handled in exactly the same manner as it is in a scanner.

V ideo switching matrix

The video switching matrix is a mechanical cross
bar matrix. Therefore, the switching speed will be in
the order of 100 milliseconds or less. In this routing
switch any source can be switched to from one to tliree
different destinations simultaneously. In addition,
switching provisions are also included to mix any two
video sources to provide a composite signal to the
selected destinations.

Character generator

The Character Generator is designed to accept up to
512 ASCII characters i~to its 4096 bit memory. A 99
dot matrix, 9 dots wide by 11 dots high, is used to
develop each character into the appropriate video
levels. The maximum TV screen display is 16 horizon tal
rows of 32 characters or spaces each. Alternatively
132 characters/line print-out can be generated on the
Videograph printer. A special cursor is also available
along with eight commands for controlling it.

The output composite video signal can be either
525 or 1536 lines per frame, depending upon the
externally supp1ied sync signal.

V ideograph printer

The Videograph Printer can print on demand at a
rate of 0.8 seconds per 8~ X 11 inch sheet. Hori
zontal resolution is 128 lines per inch and vertical
resolution matches the high resolution of the 1536
line slow CCTV cameras. Gray scale resolution is
limited to four shades. The paper used is inexpensive
zinc-oxide coated stock.

525 line T. V. cameras and monitors

The 525 T.V. Cameras and 11onitors are conventional
television units; namely, 525 lines per frame, 30
frames per second interlaced (60 fields per second).
These units provide for relatively low cost reduced
resolution, which is sufficient for many message routing
and simple acquisition and display purposes.

1536 F / S cameras

The 1536 F /S cameras are vidicon camera units which
can be remotely selected to operate either in fast scan
mode (15 frames per second) or slow scan mode (1.25
frames per second). The format of either mode is 1536
lines per frame done in a sequential (non-interlace)

~4 Spring Joint Computer Conference, 1969

s~. The aspect ratio is variable, but it is set for a
nominal 8Y2 X 11 aspect ratio. The camera band
width is limited to 9.5 Mhz for fast scan and 1.4 l\1hz
for slow scan.

Remote video consoles

Each remote console is a self-contained unit with
two video monitors and the necessary equipment for
conununicating with a digital computer. The video
monitors consist of a 17 inch 1536 lines per frame slow
(1.25 frames per second) monitor with a P-26 phosphor
and a 17 inch 1536 lines per frame fast (15 fra..rnes per
second) monitor with a VC-4 phosphor. Each monitor
matches characteristics of the associated camera.

Included with the console for direct digital com
munications to the central iomputer are a teletype
ASR-33 unit and a small special keyboard to be used
for frequently used machine orders. Other items to be
included with the consoles are a microfiche reader, a
digital patch panel for digital control signals, and an
analog patch panel for analog control signals.

Special plug-in options for a universal cursor control
could provide for such devices as a light pen, joy stick,
matrix pad, bug, etc. Other options could include pro
visions for direct handwriting of orders at the console
by T.V. camera pick-up and/or Rand tablet type device
and a monitor microfiche camera for filming images
from the C.R.T. screen.

Microimage storage

The Microimage storage consists of a microfiche
reader/access mechanism that is able to store, retrieve,
and display COSATI standard microfiche on demand.
Storage of the IPicroflche is by a rotary drum that is
a changeable unit. Images can be digitally selected,
and the display of any requested image requires less
than five seconds. Access time to an adjacent image
(Le., one within the same fiche) is less than two seconds.
The output is displayed in an 8Y2 X 11 inch format
if desired, and it is projected upon the two-inch vidicon
of a 1536 F /S line television camera for distribution
into the video network.

The drum holds 750 modified microfiche cards of
60 frames each. Each frame again contains an array of
7~ microimages or basically a standard microfiche.
Therefore, a single drum will provide storage for
3,240,000 page images. Readout from the selected
microfiche frame is accomplished with a fly's eye
readout mechanism.

V ideo storage

The video storage consists of an interchangeable 72

track video disk, where a single track can contain a
complete image. Input and output can be at either the
1.25 or the 15 frames per second rate with resolution
matched to the corresponding v-ideo devices.

APPENXIX B-SYMBOL AND PARA~1ETER
LIST

$

*
Parameter values assigned at design time
Parameter values explicitly assigned at

execution time

Upper case Latin

*A
ACW
B

* Bs

BCW
* C

D
DCW

* DF
DPB
DX

DY

E
Ell
ECW

* F
FPB

*G
* J
*K

* L
Ls
LPB

$ N(i)
Nu(i)

NGL
PW

*R
* S

Scan Axis selection
Angle Coordinate Word
Equivalent to (XB, YB)
Standard spot/nonstandard spot, or slit

selection
Begin Coordinate Word
}Iedia selection, Core memory
Equivalent to (XD, YD)
Display Coordinate Word
Data Format selection
Display Parameters Byte
X-component of the incremental format

Displacement vector
Y -component of the incremental format

Displacement vector
Equivalent to (XE, YE)
Same as E, to distinguish Vernier
End Coordinate Word
Media selection, Film (scanner)
Format Parameters Byte
Group rotation selection for the monitor
Display regeneration request
Constant data/sample rate option (for

a given p) with the raster format
Lattice selection
Length of Slit = 2" gross basic cells
Lattic'e Parameters Byte
Number of lines per video frame
N umber of useable lines per video frame

(or maximum (.6 Y) v steps).
Number of Bits in a raster string repre

sentation
Number of Samples in a raster string

representation
Number of Gray Scale Levels = 22ft
Parameter Word
Gross/vernier Resolution selection
Sequence selection, sequential/inter-

laced

Parametic Description of Scan-Display System 205

S(j,n)

Smax(j)

SPB
SX
SY

* T

* XB
* XD
* XE

XEv
* YB
* YD
* YE

YEv

::\1aximum achievable number of Samples
per full video scan line

Maximum value of S(j,n) (achieved for
n = 0)

Slit/spot Parameters Byte
Sign of DX
Sign of DY
Trigger (filter) selection for encoding in

the coordinate string representation
11edia selection, Video
Sweep Velocity
Width of Slit or spot diameter = 4u

gross basic cells
X-coordinate, Begin cell
X-coordinate, Displacement
X-coordinate, End cell
Same as XE, to distinguish Vernier
Y -coordinate, Begin cell
Y -coordinate, Displacement
Y -coordinate, End cell
Same as YE, to distinguish Vernier

Lower case Latin

$ be

g(j)

k

m

N umber of bits in the angle orientation
counter

Number of interpolation bits concaten
ated with the bg-p gross resolution bits

Number of bits in the gross position
counter

Number of gross-verrrier overlap bits
Number of vernier bits that extend gross

resolution
Number of bits in the vernier position

counter
Rweep velocity constant (with Cl = fe,

V s is given in basic cells per micro
second)

Maximum data bit transfer rate
Position counter incrementing frequency
Video unit cell match function = rv/rs

. XCi) . 2-i

Video line selection modifier. Closest
interger such that f(j) ~ 2g (1)

Monitor magnification = 2h

Maximum value of h
Video magnification/ demagrrification ex

ponent (see mv(j,n))
Video system identification
Video system resolution parameter,

Smax<i) = 21
k(R): k = 0 for gross

br for vernier
Monitor magnification = 2h

* n
$nmax
* p

Video magnification/demagnification =
2hv(i ,n)

2n is the number of bits of gray scale
Maximum value of n
AX = 2P (see ~)

Pmax(j,n) Maximum value of p for Video Network

* q
$ r!.'
$ rv
* Sv

* U

$umax
* V

$vmax
* Z

$ Zmax

Greek

~t(i)

AX

ax
ay

* eB
* eE

= bl1 -j + n
AY = 2q (see AY)
Aspect ratio] control grid (Standard)
Aspect ratio, video
Sign bit of vernier counter
Slit width is 4u gross basic cells
Maximum value of u
Slit length is 2" gross basic cells
Maximum value of v
e = 2z-ba (see Ae)
Maximum value of z

Counter increment along the scan axis
in basic cells

Time to sweep one video scan line
Sampling increment along the X-axis

at the S-M-V control grid (~= 21')
l\1aximum value of AX corresponding

to S(j,n)
Sampling increment along the Y-axis

at the S-l\1-V control grid (AY = 2')
Sampling increment along the Y-axis at

video (every (AY)tI lines)
Orientation sampling (Ae = ~-ba units I

of angle)
X-axis unit vector
Y -axis unit vector
Orientation Begin value
Orientation End value

APPENDIX C-DESIGN VALUES FOR TItE
ILLIAC III SCAN -DISPLAY SYSTEl\1

ba angle orientation counter 8 bits
be interpolation bits concatenated

to gross 3 bits
bg gross position counter 12 bits
bo gross-vernier overlap 4 bits
br vernier resolution extension to gross 3 bits
bv vernier position counter 7 bit8
fb maximum data transfer rate 10 Mhl:
fc counter incrementing frequency 1.25 Mhz
hmax 2h is image magnification at moni-

tor 7

206 Spring Joint Computer Conference, 1969

DISPLAY
(DCW)

BEGIN
(BCW)

END
(ECW)

PARAMETER WORD {PW}
DISPLAY LATTICE FORMAT SLIT/SPOT

I I
, i I

OPB LPB I FPB I SPB I
0 8 18 24 31

COORDINATE WORDS

XD :0001 0 ; YO ;0001
o 13 16 29 31

XB
o 13 18 29 !I

I Svi XE :~ I Sv! YE i I
0 13 18 29 31

GROSS: XE bits 1-12, YE bits 17-28, sv= 0

VERNIER: XE bits 0-15, YE bits 16-31

ANGLE
(ACW)

I 68 §OOOOCt eE
o 6 16

§OOroJ1
24 3!

ALL VALUES IN TWO'S COMPLEMENT REPRESENTATION

FOR THE COORDINATE WORDS

Figure 18-Parameter and coordinate words formats as defined
for Illiac III

nmax 2nmax is maximum bits of gray
scale 3

!>max X-axis sample increment is 2P
basic cells 7

qmax Y-axis sample increment is 2q

basic cells 7
r8 Aspect ratio, control grid 1:1 (but

variable)
r l1 Aspect ratio, Video 3:4

Umax
Vmax
Zma.x

DISPLAY PARAMETERS BYTE (DPB)
o I 2 3 4 5 6 7

ME~:A .!;;~L~;~: I F I v I C H G I h

~'I:~L: t J r r i r
CORE MEMORY -----' I I I

DISPLAY I I I
REGENERATION ___ -----l.

0: NO
I: YES

ROTATION GROUP -----'
0: NO (SLAVED TO s· .. ·y CONTROL)
I: YES (SLAVED TO X-AXIS,INCREMENTtNG)

MONITOR MAGNIFICATION ------'

m=2"; h=O,I,2, ... ,7

m x (~~). 126x2-12

(al

LATTICE PARAMETERS BYTE (LPB)

M':;~;~ li'{ ~ 'i' j ,
SCAN AXIS

~LELTOX-AXIS
I; PARALLEL TO Y-AXIS

SAMPLING INCREMENTS

~~~~:}X2-:i2+kl -------' 

p.:I,2.···.7 

q=I,Z, ,7 

k = (0 !F GHO$S RESOLUTION 

3 IF VERNIEA RESOLUTION 

(b) 

FORMAT PARAMETERS BYTE (FPB) 

~ ~~I:I~I;I;I~I~16in71 
I: VERNER 

SCAN SEQUENCE 
0: SEQUENTIAL , 
I, INTERLACED I 

TRIGGER/FILTER SELECTION I' 
0: STANOARD UNIT I 
I' PLUG-IN UNI~NSTANT RATE i 

0: CONSTANT DATA RATE I 
\, COtfSTANT SAMPLE RATE 

DATA FORMAT ~-, 
00-0,-
01 - , : COORDINATE 
10- 2 : RASTER 
II - 3: INCREMENTAL 

GRAY SCALE LEVELS 

NGL = 2"; n =0,1,2,3 

(c) 

SLIT/SPOT PARAMETERS BYTE (SPB) 

SLIT WIDTH/SPOT DIAMETER I u I v z I 
W.=4".2- 12 t 
SLIT LENGTH-------' 

Ls= 2"x.2- 12 

y=Cl.I, """,7 

ANGULAR INCREMENT ------' 

t:.I'J =2'.2-8 

z:o:o,l, """ ,7 

(d l 

Figure 19-Display (a), Lattice (b), Format (c), and 
Slit/Spot (d) Parameter Bytes as defined for Illiac III 

slit width is 4u basic cells 
slit length is 211 basic cells 
angle increment is 2z-l'a units 

3 
7 
7 



Interactive tolerance analysis with 
graphic display 
__ _ ... If 

by LAWRENCE A. O'NEILL 

Bell Telephone Laboratories, Incorporated 
Holmdel, X ew Jersey 

INTRODUCTION 

One of the principal advantages of a dedicated com
puter with on-line graphic display is that the user is 
able to quickly and easily interact with the program. 
The value of this interaction has been clearly demon
strated in the optimization of circuit and system de
signs.1.2 A related task on which interaction can have a 
significant impact is the investigation of the influence of 
parameter tolerances on the performance of an op
timized design. 

There are three basic approaches to computer-aided 
tolerance analysis currently in use-moment method, 
monte carlo approach, and worst case analysis. 3•4 The 
experimental approach presented here is a version of the 
monte carlo approach in which performance distribu
tions are acquired by randomly perturbing the param
eters. It is economically feasible to accumulate dis
tributions rather than just compute a few statistics 
because of interaction and graphic display. The experi
mental approach is not subject to the linear assumptions 
of the moment method and the performance estimates 
are more realistic than those obtained by worst case. 
The advantages of the experimental approach, in com
putational simplicity and in the nature of the design 
information provided, are discussed and illustrated III 

this paper. 

Tolerance analysis 

Tolerance analysis3 of systems and circuits is re
quired because the optimized parameter values cannot 
be exactly realized in manufacture, and the range of 
conditions under which the system must operate is 
usually much broader than the limited number of cases 
that can be considered during optimization. The param
eter values are not exact because components are usu
ally available only in discrete ranges with a statistical 

207 

spread in each range that is dependent upon the man
ufacturing process and the component's age. Operat~g 
conditions are usually introduced during optimization 
as either typical or worst case discrete values, but more 
realistic estimates of anticipated performance can be 
obtained if the actual statistical distributions are taken 
into account, 

Tolerance analysis provides two primary sources of 
inforI.l.latidn to the designer: 

1. Tolerance Specifications-The designer can spec
cify maximum tolerance limits guided by a pre
diction of the expected yield. 

2. Design Information-The designer can select 
among alternative realizations based either on 
which is less sensitive to expected parameter 
variations, or which will be less expensive to 
manufacture. 

Experimental approach 

The experimental approach to tolerance analysis 
consists of simulating the system under investigation, 
randomly perturbing the parameter values and dis
playing the distribution of performance criterion. The 
two basic advantages of this approach are: 

1. Nonlinear systems can be investigated as easily 
as linear ones, without making assumptions and 
approximations. 

2. The distribution of the performance criterion 
that is necessary for further statistical investi
gations can be measured. 

This nonlinear capability is important not only because 
many systems contain nonlinear elements but also 
because nonlinear performance criterion are normally 
applied even to linear problems-for example, a mean 
Rquared error criterion. A nonlinear criterion compli-



208 Spring Joint Computer Conference, 1969 

cates a statistical investigation because the relative 
influence of parameter tolerances cannot readily be 
predicted, but the influence can be measured by the 
experimental approach. A measured frequency distribu
tion, when properly normalized, provides the probability 
used in statistical estimates of yield and cost. 

vVithout interaction, the computer run times re
quired using this approach become prohibitive because 
a large number of trials is needed to acquire confidence 
that an histogram· is representative of the population. 
In addition, the time required to evaluate the perform
ance is frequently long. With interaction and graphic 
display, the number of trials can be significantly reduced 
by quickly terminating unsatisfactory distributions 
and also recognizing when sufficient samples have been 
accumulated by the insensitivity of the display to new 
data. ~\1oreover, if the dedicated computer can be 
operated in a hybrid mode, the solution time for prob
lems requiring time domain analysis can be drastically 
reduced by employing analog simulations. The ability 
to use whichever mode of simulation (digital or hybrid) 
best satisfies the requirements. greatly broadens the 
range of problems to which the experimental technique 
can be economically applied. 

Tolerance analysis program 

The experimental approach has been implemented 
with a digital program. The basic features of this pro
gram are shown in Figure 1. * 

The parameters of the given system are randomly 
perturbed according to known statistical distributions 
and the performance is measured. The perturbation 
subroutine provides for the shaping of the distribution 
obtained from the random number source and for the 
correlation of the independent nllillbers to satisfy spo 
cific problem requirements. The distribution of the 
performance criterion is obtained from these m~asure
ments by dividing the criterion range into class inter
vals and accumulating the number of occurrences in 
each interval. The accumulated data may be displayed 
either as a frequency distribution histogram or a cumu
lative distribution histogram. The real-time display on 
a digital scope enhances the evaluation of the histogram 
and facilitates interaction with the program. Docu
mentation is provided on the printer-both parameter 
specifications and the diRtributions are printed when 
required. The real-time interaction allows the user to 
modify the histogram scaling, parameter nominal values 

* A detailed description of this program has been submitted, 
elsewhere, for publication by D. M. Bohling and the author. 
In that paper, the procedures for random number generation, 
histogram accumulation, and interaction with the computer 
are discussed. 

TOLERANCES 

PARAMETERS 

I NTERACT I ON 

Figure I-Tolerance analysis program 

and tolerances whenever required so that computer time 
is not wasted in accumulating useless data. It is the 
simplicity with which this technique can be applied to 
any problem, linear or nonlinear, without extensive, 
preliminary investigations that led to the design and 
wide utilization of this tolerance analysis program. 

Application 

The discussion of the experimental approach to 
tolerance analysis can be clarified by considering appli
cations that illustrate its features. The two examples 
were selected to demonstrate the value of being able to 
use both digital and hybrid simulations, and the value of 
the ability to measure performance in nonlinear prob
lems and then accumulate statistical distributions. 

Digital simulation of an inductor 

The first example illustrates the application of the 
tolerance analysis program to an all-digital simulation of 
a gyrator circuit. The obj ective of this experiment was to 
detennine what component tolerances would oe neces
sary in the gyrator circuit of Figure 2 to allow it to be 
used as a replacement for an inductor. The reason for 
using this circuit is to save on the cost, weight, and 
size of the inductors that are used in this frequency 
range. Such a replacement is feasible because the price of' 
the integrated circuit components and amplifier to be 
used are expected to become quite inexpensive in the 
future. 

The gyrator circuit must exhibit the same character
istics as an inductor and be stable, throughout the fre
quency range from .5 to 10 KHZ. The perfornumee 
criterion selected was the Q of the cirCUIt-the ratio of 
standard measure of inductor quality. The Q was 
evaluated by calculating the input impedance of the 
gyrator and taking the ratio df imaginary to real part of 
this impedance. The circuit will become unstable if the 
real part of the impedance become~ negative. At the in
stability threshold, the Q becomes quite large and thus 



l/Q was used as the criterion to simplify scaling. Since 
the evaluation of this impedance at a particular frequen
cy is an algebraic problem, one can take advantage of 
the high speed of digital simulation. A subroutine was 
written that calculated this performance criterion 
directly from the perturbed component values. 

The display of the frequency and cumulative dis
tributions of l/Q used in evaluating the performance is 
shown in Figure 2. Gaussian variations were applied to 
all parameters on the circuit-passive components and 
amplifier characteristics. Several sets of component tol
erances were evaluated before the acceptable perform
ance illustrated in Figure 2 was obtained. The frequency 
distribution was used to determine the stability of the 
realization (no designs should exist with negative values 

CO.PONENT 
TOLERANCE 

AT 4", 

PASSIVE 0.11 

UPLIFtER 

Ao 50s 

T 101 

R'I" &71 

RD 1001 

FREQUENCY 
DISTRIBUTION 

CUIULA Tl YE 
DISTRIIUTION 

1.0 

O~-L ____ ~~~ __ ~ 
o 

1.0 

0.02 
1/0 

0.04 

O~---",-_......L. ____ ..L-

o 0.02 0.04 
1/0 

Figure 2-Performance of a gyrator simulation of an inductor 
may be evaluated from histograms obtained by applying 

Gaussian distribut.ions to components 

Interactive Tolerance Analysis 209 

of l/Q) and to acquire confidence in the sample size. The 
cumulative distribution reveals what percentage of the 
designs can be expected to have a Q less than any 
selected value. The tolerances used for this design were: 
0.1 percent on the passive components, and for the 
amplifier characteristics, 50 percent on the gain, 10 
percent on the cutoff frequency, 67 percent on the input 
resistance and 100 percent on the output resistance. The 
design was then statistically evaluated. at several 
frequencies within the intended operating range. 

The accumulation of data with this digital simula
tion was extremely fast; 200 designs could be tested 
and the histogram updated every second. The total 
amount of computer time required for this investiga
tion was quite short not only because of this fast opera
tion, but also because the interactive capability allowed 
the user to terminate unsatisfactory designs before 
many samples were accumulated. 

Hybrid simulation of a pulse equalizer 

The influence of parameter tolerance on the error 
rate to be expected from a pulse equalizer was investi
gated to establish manufacturing specifications. The 
equalizer was one of a set to be used in a digital trans
mission system operating at 6.3 megabits per second 
over standard telephone lines. The nominal equalizer 
designs were optimized by Fleischer2 on the same inter
active, hybrid facility that was used for tolerance 
analysis; therefore, the basic analog simulation and 
digital error rate calculations were available. 

The calculation of error rate includes terms reflecting 
intersymbol interference, thermal noise, crosstalk and 
sampling jitter. The transient response of each equalizer 
design had to be evaluated to determine interference 
and noise. The intersymbol interference, which indicates 
the effect of adjacent pulses on the one being equalized, 
was calculated from the analog measurements of the 
signal at sample points preceding and following the 
pulse peak. The thermal noise power to be expected 
from each desjgn was estimated from the impulse 
response of the system. The determination of the 
transient response by digital computer simulation took 
far too long for either optimization or tolerance analysis 
and thus an analog computer simulation was used. 

The block diagram of the hybrid simulation of the 
equalizer that was used in the tolerance analysis is 
shown in Figure 3. The computer program repeats the 
following sequence of operations and accumulates the 
distributions under the user's control. A set of com
ponent values for each design is chosen randomly and 
inserted into the simulation. A subroutine is provided 
to convert the component nominal values and tolerances 
specified by the user into simulation parameters. Both 



210 Spring Joint Computer Conference, 1969 

Figure 3-Hybrid equalizer simulation 

an input corresponding to the pulse to be equalized and 
an impulse are sequentially applied to the perturbed 
design to evaluate intersymbol interference and noise 
power respectively. The analog outputs of the equalizer 
are sampled and processed on the digital computer to 
determine error rate. Even for this complex application, 
it is possible to evaluate the error rate for one design 
every five seconds. 

In the subsequent discussion, only component toler
ances in the three bridged -T sections are considered; it 
is assumed that these sections are buffered and all other 
parameters are set to their nominal values. All the com
ponents in the basic bridged-T equalizer shown in 
Figure 4 may have tolerances applied to them except 
the characteristic impedance labeled R. Care must be 
exercised in a tolerance analysis simulation to avoid 
programming simplifications that may not be valid 
when components are perturbed. For example, the 
bridged -T section can be analyzed as a second order 
system if it is assumed that the series and shunt arms 
are properly matched; but since this match would be 
destroyed by perturbations, a fourth order simulation 
is required. 

Before the analytical difficulties introduced by a non
linear criterion (error rate) are discussed, a linear 
criterion directly related to the equalizer response is 
discussed so that the differences can be illustrated. 

HZ 

c 

R R 

cl 

Figure 4-Bridged-T realization of fixed equalizer section 

First, the standard deviation (0') of the peak amplitude 
of the equalizer output pulse is estimated by the 
moment method for various sets of tolerances applied to 
the components in one bridged-T section. The same 
data are obtained by measurement with the tolerance 
analysis program and the results are compared. Then 
the error rate is measured under the same conditions 
and the influence of parameter tolerances are qualita
tively compared. 

The variance of the pulse peak can be estimated 
from the distributions applied to the component values 
by the moment method.4 The performance criterion is 
expanded in a Taylor series and only the lowest order 
terms are used. Then the variance of the response 
(O'~) is found for normally distributed, uncorrelated 
component perturbations with the formuia. 

(1) 

where the a" are the component values. The partial 
derivatives of the response with respect to the param
eters can be obtained by a fiuite difference approxi
mation or by measurement using the parameter iu
fluence method.1i The second method, which requires that 
an auxiliary circuit be programmed to measure the 
partials without an approximation, was used to obtain 
the data for the equalizer. The auxiliary circuit was 
realized by analog simulation and the measurements 
were sampled and nonnalized with a hybrid program to 
provide the sensitivity coefficients, Si. 

oln P ai Po 
S·= -- =-.-

, alnai P oat 
(2) 

where P is the pulse peak with no components perturba
tions. Let us express the standard deviation of the 
component distributions about the nominal values in 
terms of tolerance specifications. We define the tolerance 
percentage (X) to correspond to the Ka point of the 
normal distribution. 
Thus 

(3) 

Equation (1) can be rewritten as: 

(O'P)2 N 2 (X )2 
P = i~ Si lOOK 

(4) 

This< same additive procedure can be applied if per-



turbations are introduced in the component values of 
all three sections. 

Equation (4) was used with measured sensitivity 
coefficients, Si, to calculate the data given in Table I 
for various sets of component tolerances applied to one 
equalizer section. A comparison of the Si revealed 
that peak amplitude is most sensitive to variations in C 
and L'. These two components have equal influence and 
no other component is even 1/20 as effective. 

Table I -Standard deviation of pulse peak 

Tolerance at 2(J (Jp/P 

(percent) (1Q-2) 

Calculated with lVleasured with 
H C L Equation (4) Tolerance Program 

0 0 0 0 0.03 
1 1 1 0.56 0.50 
1 1 3 1.23 1.20 
3 3 3 1.68 1.80 
5 5 5 2.80 2.71 

To determine the (J of the pulse peak with the toler
ance analysis program, the error rate calculation was 
replaced with a measurement of peak amplitude. The 
program was used to accumulate histograms, with at 
least 150 designs measured for each case, for the toler
ance sets listed in Table I. The (J estimated from these 
histograms is also listed in Table I; the similarity of the 
reRults is obvious. The finite (J with no perturbations is 
due to small errors in the analog simulation; the pro
gram thus provides a check on analog reproducibility. 
The relative sensitivity of the components is determined 
with this program by experimentally varying tolerances 
and observing the histogram changes. 

Let us now consider the influence of the parameters 
on the error rate under the same conditions listed in 
Table I. The histograms were clearly not normally dis
tributed. These cumulative distributions were replotted 
on probability paper as shown in Figure fl. On this 
paper, a normal distribution appears as a straight line 
with (J inversely proportional to the slope. Since the 
distributions are not normal, the tolerance sets cannot 
be compared on the basis of their (J as in the moment 
method. The relative influence of the tolerance sets can 
be compared on the basis of yield at a selected rate as 
determined from the curves. The threshold of accept
ability for this equalizer was an error rate less than 
10-1°; therefore, using 1 percent tolerances with K = 2 
for all components, approximately 98 percent of the 
designs are acceptable. With the low number of samples 
used to obtain this data, the absolute yields may not be 

L'"lteractive Tolerance Analysis 211 

.9999 

-15 

CoIPoN ENT 
Tol ERANCE 

IS = 100 C:~i) 
CURVE 

x 
NO. R C 

I 0 0 

2 I I 

3 I I 

4 3 3 

5 5 5 

-I 2 -II -10 - 9 
LOG OF ERROR RATE 

.999 

.99 

.98 
/ 

.95 

. !I!! 

.80 

.70 

.60 

.50 

. 40 

.30 

.20 

.10 

l .05 

0 .02 
I .01 
3 .005 
3 

.002 
5 . DOl 

.0005 

.0001 
-8 -7 

Figure 5-Influence of component tolerance on equalizer 
performance as determined by scaling the Gaussian 

distributions applied to the components in a single 
fixed section with various tolerance sets 

:z 
co 

0-
:::> 
ID 

<II: 
0-... 
C> 

~ 
0-
c ..... 
:::> 

~ 

extremely accurate but a comparison of relative values 
is valid. A comparison of curves two, three, and four in 
Figure 5 reveals that selectively tightening the toler
ances on the R's and C's does reduce the variance, but 
that the yields are not appreciably improved until the 
L's are also tightened. With the linear criterion, it was 
observed that C and L' were equally effective; but when 
comparing the yields for a given error rate, this is clearly 
not the case. 

The difficulty of combining error rates is also evident 
from the curves of Figures 6 and 7 in which are com
pared the error rates of each of the three bridged-T 
sections perturbed separately and all three simultane
ously perturbed. The simultaneous perturbation of all 
three did not produce performance appreciably different 
from the worst of the individual sections (each section 
had different nominal component values). If one 
attempts to combine the individual section data to 
obtain a worst case estimate of the overall three section 
performance, a much more pessimistic estimate would 
result than the performance actually measured.. 



212 Spring Joint Computer Conference., 1969 

1.0------------------~~~------~ 
SECTION 2 

0.8 

z: 
CI 

~ COMPONENT 
:::I TOLERANCE CD 

0.6 AT 2(7' a::: 
~ 

~ 

CI R 1S 
W C 1S 
> 

0.4 t L 3S ~ 
C 
...I 
:::I 

-= :::I 
(.) 

0.2 

o ~~ ____ ~~ ____ ~ __________ ~~ 
-16 -14 -12 -10 -8 

LOG OF ERROR RATE 

Figure 6-Relative influence of each of t.he t.hree fixed sections 
In the equalizer as determined by applying Gaussian 

distribution to all components in the section 

Pessimistic estimates of performance may also occur 
if fixed values on system parameters, other than com
ponents, are used in the calculation of error rate. For 
example, in obtaining the component tolerance data, 
a fixed value of crosstalk was used that was indicative 
of the worst cables measured. A statistical distribution 
that reflected the measured crosstalk in many cables 
was introduced into the error rate calculation by the 
program. Figure 8 shows a comparison of error rates for 
component variations in one section with fixed and with 
normally distributed crosstalk. It can be seen that the 
fixed value yielded an extremely pessimistic estimate 
since most designs will produce significantly better 
performance. If acceptable yields can be obtained with 
worst case estimates, there is no need for measuring the 
distributions. But typically with 'state of the art" 
designs this is not the case and the distributions may 
allow the designer to relax some specifications and still 
obtain adequate perfonnance. 

Realistic estimates of yield are invaluable in a cost 
comparison of different realizations. Rather than tighten 
all tolerance to provide a 100 percent yield and then 
compare relative costs, an alternative probabilist.ic ap
proach can be taken. Since yields can be determined from 

1.0r-------------------~ __ ._----~ 

0.8 FIRST SECTION 

z: 
CI 

~ 
:::I 
CD 

a:: 0.6 
~ 
~ 

CI 

lAo! 
> 

0.4 r COMPONENT ~ 
c 
...I TOLERANCE 
:::I 

-= AT 2(1" 
:::I 
~ 

0.2 R 1% 

C 1% 

L 3% 

o 
-16 -14 -12 -10 -8 

LOG OF ERROR RATE 

Figure 7-The dominant influence of the first of the three fixed 
sections of the equalizer is illustrated by applying Gaussian 

distribution to the components in only the first section 
and then to all three sections simultaneously 

the cumulative distributions, the cost can be compared 
on the basis of testing and rejecting a few of the unitH 
that are constructed with wider tolerance components. 
This cost calculation includes the yield to be expected, the 
cost (C i ) of the individual components with a specified 
tolerance (T i) and the cost (C T ) of testing to determine 
defective units. Therefore, the cost of an acceptable 
unit, that is one with an error rate less than the thresh
old (k) is: 

C = C T + M(T 1 rp \ f C i (T i ) (5) 
.J.. 1, ... .L N) i =1 

N = number of components in a unit 

~I(T 1 , ••• TN) is the yield at threshold k, for the spec
ified set of component tolerances, as obtained from the 
cumulative distribution. This cost calculation is in
dicative of the many statistical applications in which 
the probability density or the cumulative distribution is 
needed to determine system performance. 



_-....,....-------------"'T'"r----,.nll 

CO.PONENT 
TOLERANCE 

AT 2, 

-45 -40 -35 -30 -25 -20 -15 -10 
LOG OF ERROR RATE 

-5 

.999 

.95 

.90 

.ID 

.70 

. 60 

. 50 

.40 

.30 

.20 

.10 

. 05 

.02 

.01 

.005 

.002 

.001 

.0005 

.0001 
0 

z: 
0 ... 
= ... 
IE ... ... 
0 ... ,.. 
... 
c ..... 
= 
!if , 

Figure 8-Comparison of equalizer performance as measured 
with the same Gaussian distributions applied to the 
components in the first fixed section using both fixed 

and Gaussianly distributed values for external 
crosstalk power 

CONCLUSIONS 

The values of the interactive computer with graphical 
display for tolerance analysis has been demonstrated 
in a variety of applications. The experimental approach 

Interactive Tolerance Analysis 213 

provides the designer with realistic estimates of antici
pated performance on which to base his decisions. The 
performance distributions are acquired economically 
because the user can quickly evaluate and terminate the 
computer runs. 

This technique is to be made more readily available to 
designers by modifying a standard digital analysis pro
gram such as ECAp6 to fit into the structure. Then a 
large class of circuit problems can be handled without 
special purpose programs and simulations being pro
vided. Therefore, only the more difficult problems will 
require additional programming to perform the toler
ance analysis. 

ACKNOWLEDGMENT 

The discussions of this material with J. Chernak, P. 
Fleischer, R. Snicer, and J. Davis are gratefully ac
knowledged. The author is particularly indebted to D . 
Bohling who organized and wrote the tolerance analysis 
program used in this work. 

REFERENCES 

1 Special issue on computer-aided desig'n 
Proc IEEE Vol 55 November 1967 

2 P E FLEISCHER 
Hybrid optimization for electrical circuit dei:>ign 
Eastern Simulation Council Princeton X J June 1968 

3 D A CALAHAN 
Computer-aided network design 
McGraw-Hill ~ew York 1968 

4 D G MARKS L H STEMBER JR. 
Variability analysis 
Electro-Technology Vol 76 No 1 July 196537-48 

5 H F MEISSINGER 
The use of parameter influence coefficients in computer 
analysis of dynamic systerns 
Proc Western J C C 1960 
San Francisco May 1960 

6 1620 electronic circuit analysis program (ECAP) 
User's manual H20-0170 IBM Report 1620-EE 02X 





A method of automatic fault-detection 
+..00+ ~.o""'Q"''''+':I''II.''''' .fl"ll. ... .f1"ll. ....... _...,.]" ... O'O 
"~o,, 6.::1.L1.~ ... «" ... V.LI. .LV... .LVU.L -1'.LI.«0"::; 

MOS LSI circuits 

byY. T. YEN 

National Cash Register Company 
Dayton, Ohio 

INTRODUCTION 

ro determine whether an integrated digital circuit is 
working properly, one may apply to the circuit a set of· 
well-devised test sequences and compare the resultant 
outputs with the corresponding correct outputs. Any 
discrepancies indicate the presence of a fault. The main 
task here is to find a set of test sequences which can 
detect the presence of any prescribed fault in the circuit. 
This test generation problem will become formidable for 
large scale integrated arrays, since large number of logic 
circuits may be contained in an array with a limited 
number of exterior terminals. 

Presently, the approach most commonly used in test 
generation is computer fault simulation. In other words, 
data are repetitively processed through a cycle of two 
steps, i.e., test generation followed by test verification. 
In each cycle, the generation of primary output test 
sequences can be accomplished by a computer logic 
simulation technique. The primary-input test sequences 
are manually generated by engineers because much 
creative work is involved. 

In this paper, a method will be proposed to generate 
primary-input test sequences for 4-phase MOS sequen
tial switching circuits. This method can find the 
shortest primary-input test sequences to detect a given 
fault on an array. 

An MOS transistor stuck at either short or open 
permanently is the failure mode to be considered. 
A single fault assumption4 will be made in this paper. 

Peculiar circuit jeaJ,ures 

Four-phase MOS circuits exhibit many peculiar 
features not observed in other families of logic circuits.2,3 

It is found that the test sequence generation problem 

21.5 

can be greatly simplified by exploiting the peculiar 
features of these circuits. . 

There are four clock signals and four types of logic 
gates in a four-phase MOS circuit.2 

The time interval of one clock-phase is defined as one 
unit of time t, as shown in Figure 1. For example, t = 7 
is the time at the end of phase 3 of the second bit. 

Let S t denote the set of logic levels of all internal logic 
gates of a 4-phase circuit at time t: 

Where Sit is the logic level of the i-th logic gate at 
time t, and m is the total number of internal logic gates. 

It should be noted that the output signal of a 4-phase 
gate cannot be sampled during the certain clock-phase 
times, because of the precharging behavior of the gates. 
The clock-phase time during which the output signal of 
a gate can be sampled is shown in Table 1. 

Table I-Bampling time of gates 

Type of gates 

type-1 
-2 
-3 
-4 

Clock-phase time during which the 
output signal of a logic gate can be 
sampled. 

Phases 3 and 4 
Phase 4 
Phases 1 and 2 
Phase 2 

Now the peculiar circuit features useful for test 
sequence generation can be summarized as follows: 



216 Spring Joint Computer Conference, 1969 

lNITIAL I J ST 8IT I 2ND BJT I 3RD BIT 
CfIX.K PIIASE - I 3 I 4 I I 2 I 3 I 4 I I 2 I 3 I 4 I I 2 I OJ I - - -

TI ME t - 0 I 2 .3 4 S , 7 8 'I 10 1/ - - -

Figure I-Definition of time t 

(1) Each four-phase logic gate provides a storage of 
~ormation at its output for one or two clock-phase 
tunes, (2) feedback and feed-forward in a flipflop 
circuit do not occur simultaneously, and (3) the logic 
levels of· all logic gates in a circuit, including flipflops 
can be initialized to predictable logic levels by inhibit~ 
the occurrence of one 4>2 or cf>4 clock pulse. 

Tracing technique Jor Jour-phase .il.1 OS circuits 

In order to force the logic gates of a 4-phase circuit to 
desirable logic levels, we will trace a signal backward to 
find the necessary primary-input sequences and circuit 
initialization. The peculiar features ·of 4-phase circuits 
enable us to trace a 4-phase signal backward by 
considering each unit of time t as follows. 

Let F 11 be the 4-phase signal at a logic gate output at 
time t = t1• ViF 11 will denote the function obtained from 
tracing F tl backward by j units of time· t where j is a 
positive integer. To trace V'F tl backward by one unit 
of time, we will substitute every internal gate variable 
s. of V'F tl with the combinatorial Boolean function 
implemented by the logic gate SA:. Let us demonstrate 
this technique by tracing backward the 4-phase signal 
s, in Figure 2. 

In Figure 2, iI, i" and ia are primary inputs. Sa and B4 
are type-1 logic gates. BJ, SI, and Bi are type-2 3 and 
4 ' . ' , ,OglC gates, respectively. 

Since SI gate is a type-3 gate, the logic signal SI can be 
sampled only during phases 1 and 2. Let tl be the time 
at the end of phase 4 of bit N. Then (tl - 1), (tl - 2), 
(~1 - 3) and (tl - 4) are the times at the end of phases 
3, 2, 1 of bit N and phase 4 of bit N - 1, respectively. 

Let SUm and iUm denote the logic level of SI and it at 
time t = tm, respectively. In tracing SI backward, the 
following relations are derived for each unit of time t: 

SIll = St(Il-1) 'S&(tl-l) = ~(tl-l) + ~(tl-l) (1) 
(2) 

= S,(I1-I) + ~(tl-I) (3) 

= 4(tl-a) + i2(tl-a) + S1(tl-B) . Bi(tl-8) (4) 

= 4(11-8) + i2 (tl-8) 

+ (8101-4) • St(fl-4» ·i;(lI-4) (5) 

J 

Figure 2-A four-phase MOS Circuit 

= 4(tl-8) + i2(tl-8) 

+ (S8(11-1) + ~(I1-1» ·1;(11-4) (6) 

Where (2) is derived by substituting SI of (1) with the 
combinatorial Boolean function B!B4, which is imple
mented by the logic gate SI. Note that the time at which 
signal SI can ~ sampled is one unit later than that at 
which signals BJ and B4 can be sampled. 

The relation (1) = (2) indicates that: (a) SI will be 1 
at time t = tl if and only if either or both St = 0 and 
B4 = 0 hold at time t = tl -1; and (b) SI will be 0 at 
time t = tl if and only if St = B4 = 1 holds at time 
t=tt-l. 

Let us denote SIU as F u. Then VIF 11 will be 
BJ(Il-l)"B4(U-lh as shown in (2). 

Equation (3) is derived from (2) by tracing backward 
another unit of time t. There is a type-2 gate B2 between 
gates S3 and SI. However, there is no type-2 gate between 
gates B4 and SI. Therefore, we will substitute 8J of (2) 
with the combinatorial Boolean function S; implemented 
by the logic gate 82. And, we will not substitute B4 of (2) 
at this time. S8(1l-2) + ~(tl-!) of (3) will be denoted 
as V2FIl• 

Equation (4) is derived from (3) by tracing backward 
additional unit of ti'lle t. We substitute S3 and s. of (3) 
with the combinatorial functions h and it + SII%, 
respectively. We will denote h(Il-B) + i2(u-3) + 
Sl{U-8) !36{U-I) of (4) &.9 VIF u. 



Method of Auto:matic Fault-Detection Test Generation 

Equations (5) and (6) are similarly derived from (4) 
and (5), respectively. 

It should be noted that gates S1 and S4 of Figure 2 
form a RS flipflop. Recall that a 4-phase MOS circuit 
possesses a peculiar feature that the feedback and 
feedforward in a 4 phase flipflop cannot occur simul
taneously. This feature enables us to trace backward a 
signal in a 4-phase sequential circuit for each unit of 
time, as shown above. No additional specification, such 
as a truth table, is needed to specify a flipflop. 

Conditions of fault signal propagation 

Let £(X1, X 2, -, Xn) be the combinatorial Boolean 
function implemented by a 4-phase logic gate. A fault 
of an input, say Xi, will be defined as the 1\10S 
transistor fed by Xi is permanently stuck at short or 
open. 

In this section, an algebraic method will be discussed 
to derive the input conditions of a legic gate under which 
the output of the logic gate will respond to the presence 
of a fault at an input Xi. 

Boolean difference 

See Figure 3. £(XI, X 2, -, Xn) is a combinatorial 
Boolean function. Assume input Xm has a fault. Sellers 
et aU show that the fault of Xm can be propagated to the 
output if and only if the input variables of £, except 
X m, satisfy the following condition: 

£(Xm ~ 1) EB £(Xm ~ 0) = 1 

Where EB is exclusive OR, and m is one of the integers 
1, 2, 3, -, n. Xm ~ 1 (or 0) means that variable Xm 
ot £ is substituted by the constant 1 (or 0). 

A Boolean difference of a function £i(X1, X 2, -, X,,) 
with respect to input Xm will be denoted as Di,m, 
which is 

Examining the features of a 4-phase logic gate, we see 
that the fault of input Xm can be propagated to the 

X, 
COM/JINATORIAL 

• CIRCUIT 
X .. 

Figure ~~-Signal notations of eomhinato,"ial eircuit 

output of the logic gate if and only if the inputs of the 
logic gate, except X m, satisfy the following condition: 

Where £ i is the combinatorial Boolean function 
implemented by the logic gate. 

Let us consider the 4-phase gate shown in Figure 4. 
Assume that Xs has a fault. 
Then, 

£(Xs ~ 1) = XIX2 + ~ 
£(Xs ~ 0) = X 1X 2 

Boolean difference 

D l •S = £l(XS ~ 1) EB £l(XS ~ 0) 

= XlX2 + ~ EB XlX2 

=Xl~+X2~ 

Thus, Dl,8 = 1 if and only if either Xl = 0 and X 4 = 1 
hold or X2 = 0 and ~ = 1 hold. Under either of these 
two input conditions this logic gate behaves as a logic 
inverter, i.e., £1 = Xa. Consequently, the gate output 
efl will then respond to any fault of Xt. It should be 

X.-t 

Figure 4-A four-phase MOS logic gate 



218 Spring Joint Computer Conference, 1969 

noted that each term of Dj,i represents such an input 
condition. 

Assume the l\fOS transistor Ts associated with input 
Xs is permanently stuck at short. Then we must. apply 
the signal Xs = 0 to T 3, so that the fault of "short" can 
be detected at the output J\. Therefore, the input 
conditions to detect T s permanently stuck at short are 
the input conditions satisfying Xa.D1,s = 1. 
Where 

Xs.D1,s = Xs (Xl~ + X2~) 
= XIX~+MX~. 

In other words, either 

Xl = 0, Xs = 0 and ~ = 1 

or 

X 2 = 0, Xs = 0 and ~ = 1 

will detect the fault of "short" of l\'{OS transistor T 3. 

If Ts is permanently stuck a~ open, then XS.Dl,S = 1 
are the input conditions to detect such a fault. 

The shortest fault detection test procedures 

See the block diagram of a 4-phase circuit in Figure .5. 
Each block represents a 4-phase logic gate. Consider 
logic gate £ k. Assume the transistor associated with its 
input £ k+l has a fault. We will find the shortest tests to 
detect this fault. The propagation path of the fault is 
£k, £k-l, -, £s, £<;., and £1. Starting from £1, we will 
find the Boolean difference and trace backward for each 
stage of logic gates until we reach £ k+l as follows. 

OUTPUT 

- - - fiATE 

I II I ---IT 

Figure 5-Block diagram of a four-phase circuit 
(Sequential or combinatorial) 

We will denote functions gi,i+1, for 1 :::; 
as follows: 

:::; k, 

gl,2 = D1,2 

g2,3 = (Vb gl.2) . D2,s 

gS,4 = (Vb g2,S) . Ds,4 

~,5 = (Vb gs,4) . D4,5 

Where D i ,i+l is the Boolean difference of £i with 
respect to £ i+l. Vb is to trace gJ,i+1 backward b units 
of time t. b = 1 if one of £ j and £ i+1 gates is either 
type-2 or type-4 logic gate. b = 2 if both £ i and £ i+l 

gates are neither type-2 nor type-4 logic gates. 
Let us consider the gate J'k. If the transistor associ

ated with input £ HI is permanently stuck at short, 
1 HI' gk ,k+l = 1 will be the input conditions to detect 
the prescribed fault. If the transistor associated with 
input J' HI is permanently stuck at open, £ k+1 • gk,k+l = 1 
will be the input conditions to detect the prescribed 
fault. We will denote 

G = £HI gk,Hl if the transistor associated with 
£ HI is stuck at short, 

= £Hl gk,k+1 if the transistor associated with 
£ k+1 is stuck at open. 

Every term of G is an input condition to detect the 
prescribed fault. Each term of G may consist of primary 
inputs and internal logic gate signals. We will check 
each term of G to find whether it satisfies the following 
condition: 

Condition A : 

either 

or 

1. All variables of a term of G are primary 
inputs 

2. All internal-gate variables of a term of G 
will become logic-l by inhibiting a proper 
clock signal. 

We will follow the following steps to fin~ the shortest 
fault detection tests. 

Step 1. Check every term of G to determine if it 
satisfies condition A. 

Step 2. If no term of G satisfies condition A, 
trace G backward by one unit of time t 
and then repeat step 1. If there is a term 



Method of Automatic Fault-Detection Test Generation 219 

of G which satisfies condition A, this term 
is the shortest test to detect the prescribed 
fault. Furthermore, if there exists a test at 
time t = tr which can detect the pre
scribed fault, then at least one term of G 
at time t = tr satisfies condition A .. 

If the function G becomes 0 at some step of tracing 
backward, then there exists no test which can detect 
the prescribed fault. 

Let us derive the shortest tests to detect some fault 
in the .circuit shown in Figure 2. Assume T1 is stuck at 
open permanently. Then £1 and £2 are the gates Sl 
and S4, respectively. Since the faulty transistor T 1 
belongs to gate B4, £k and £k·H are B4 and Sl, respectively 

Let t1 denote the reference time at Sl. 
Since 

£1 = Sl(t1) = B2(tl-1) S4(tJ-l) 

= B2(tl-l) 

thus 

Since 

£2 = S4(tl-2) = il1 (tl-s) + Sl(tl-S) S5(tl-S) 

= S5 (tl-S) . i2 (t1-S) 

thus, 

~ ,3 = S5 (t1-S) . h (tl-S) . i~ (tl-S) 

Since T1 is stuck at open, 

= Sl(t1-S) S5(tl-S) h(tl-s) i~Ht1-S) 

We will check G to determine if it satisfies Condition 
A. Since internal-gate variables Sl and 85 cannot 
become logic-l simultaneously at time (t1 - 3) by 
inhibiting either cf>2 or cl>4 clock signal, we will trace G 
backward one unit of time t. Here, it should be noted 
that gate S5 is a type-4 gate and gate Sl is a type-3 gate. 

Let us check VIG to determine if it satisfies Condi
tion A. If we initialize the circuit by inhibiting cl>4 at 

time t] - 5, then all type-3 gates such as the gate S1, 
will become logic-l at time (t1 - 4) and (t1 - 3); 
therefore, V1G satisfies condition A. In other words, 
if we set up the following condition, the fault of T 1 
being stuck at open can be detected at the primary 
output Sl at time t = t1: 

Inhibiting cl>4 at time (t1 - 5) 

is = 0 at time (t1 - 4) 

h = 1 at time (t1 - 3) 

i2 = 0 at time (t1 - 3) 

Since V1G has only one term, this condition is the 
only test to detect the fault of TI being stuck at open. 

Compute?' programming 

1Ianual implementation of this method was not 
attempted for the complexity of logic in an LSI array 
because of the complex detail involved. Using this 
method, a computer program written in FORTRAN IV 
was developed and has been used to generate test 
procedures for each prescribed fault in a 4-phase MOS 
LSI array. 

This computer program consists of 15 subroutines to 
perform the following manipulation: 

Simplify a function 
OR functions 
AND functions 
Complement a function 
Find Boolean difference 
Trace a function backward 
Check a function to determine if it satisfies 

Condition A 
Simulate faulty signals 
Keep tracking timing. 

Every signal name is denoted by a number. A Boolean 
function F x is specified by an integer number 
NXTER~1, and two integer arrays NXNOVAR(I) and 
NXV AR(I). For example, F x = SlSsB4 + ~4 and 
Fy = ~S5 + Ss will be specified as follows in the com
puter program: 

Fx: l\""XTERM = 2 
NXNOVAR(l) = 3, NXNOVAR(2) = 2 
NXVAR(I) = 1, NXVAR(2) = 3, 

NXVAR(3) = 4 
NXVAR(4) = 2, NXVAR(5) = -4. 

FlI : NYTERM = 2 
NYNOVAR(I) = 2, NYNOVAR(2) = 1 
NYVAR(I) = -2, NYVAR(2) = 5 
NYVAR(3) = 6 



220 Spring Joint Computer Conference, 1969 

Where NXTERJ\lI specifies the number of terms in 
function F:t. NXNOV AR(l) and NXNOVAR(2) show 
the number of variables in the first and second terms. 
NXV ARCi) shows the variable at the ith order counting 
from the left of the function F:t, i.e., NXVAR(l) = 1 
denotes SI, and NXV AR(5) = -4 denotes 84' 

F y is similarly specified in the program. 
Now, let us OR the functions F z and Fy • The resultant 

function F z = F:t + F ycan be easily performed by the 
computer program as follows. 

Fz: NZTERM = NXTERM + NYTER]\rl = 4 
NZNOV ARCl) = 3, NZNOVAR(2) 2 
NZNOVAR(3) = 2, NZNOVAR(4) = 1 
NZVAR(l) = 1, NZVAR(2) = 3, 

NZVA.R(3) = 4 
NZV AR(4) = 2, NZVAR(5) = -4, 

NZVAR(6) = -2 
NZV AR(7) = 5, NZV AR(8) = 6. 

Input data 

The input data to this computer program only 
consist of: 

a. Logic implemented at every individual logic gate. 
This logic is a combinatorial Boolean function. 
For example, the program needs the com
binatorial Boolean function B2 + ~ to specify the 
logic implemented by SI gate in Figure 2. 

b. Type of each logic gate. SI gate in Figure 2, for 
example, is a type-3 gate. 

c. Designation of faulty lHOS transistors. 
d. Designat.ion of one fault-signal propagation path 

for each faulty gate. An internal signal of an LSI 
circuit may be propagated to several primary 
outputs. To simplify the computer program, 
a desirable propagation path for an internal fault 
signal need be given. The propagation path of a 
fault signal S4 in Figure 2, for example, will be 
specified as S4 ~ SI in the input data, for the 
faults associated with S4 gate. 

This computer program is written in FORTRAN IV 
for a NCR 315 RMC computer. Through the use of 
40K-word core memory, 12 bits per word, it can 
generate the primary input sequences of the shortest 
fault detection tests for each prescribed fault in a 
4-phase }\10S array of 70 four-phase logic gates. The 
program needs 8 minutes of FORTRAN IV NCR 315 
RlVIC computer time for the prescribed faults of one 
3-input Jour-phase gate on a typical 70-gate array. The 
computer time for this test generation can be greatly 
reduced if this FORTRAN program is converted into a 
NEAT (machine) language version for the NCR 315 
Rl\1C computer. 

REFERENCES 

1 F F SELLERS JR M Y HSIAO L W BEARNSON 
Analyzing errors wiJ,h the Boolean difference 
Digest of the First Annual IEEE Computer Conference 
September 1967 6-9 

2 Y T YEN 
A. mathematical model characterizing four-phase MOS 
circuits for logic simulation 
IEEE Transactions on Computers Vol C-17 September 
1968 822-826 

3 Y T YEN 
Intermitient failure problems of four-phase MOS circuits 
To be published on IEEE Journal of Solid-State Circuits 

4 E R JONES C H MAYS 
A. utomatic lest ge·ne·ration I1wtlwds for large scale integrated 
logic 
IEEE Journal of Solid-State Circuits Vol SC-2 No 4 
December 1967 

5 J P ROTH 
Diagnosis of automata failures: A. calculus and a method 
IBM Journal July 1966278-291 

6 E G MANNING H Y CHANG 
A comparison oj fault simulation methods for 
digital systems 
Digest oi the First Annual IEEE Computer Conference 
September 6-8 1967 10-13 

7 F P PREPARATA G METZE R T CHIEN 
On the connection assignment problem of diagnosable system 
IEEE Trans on Electronic Computers Vol EC-16 
December 1967 848-854 

8 S SESHU D N FREEMAN 
The diagnosis of asynchronous sequential switching systems 
IRE Trans Electronic Computers Vol EC-ll August 1962 
459-465 



A method of diagnostic test generation 

by A. B. CARROLL, lVI. KATO, * Y. KOGA, and 
K. NAEMURA 

University of Illinois 
Urbana, Illinois 

INTRODUCTION 

A variety of diagnostic techniques1- S have been pro
posed and applied to error detection and location in 
computers. The efficiency of the tests generated by them 
varies from machine to machine depending on the scale 
of the system, its logic organization, and the employed 
hardware technology. The impact of highly integrated 
circuitry is changing the trend in logical design of 
computers. 

The significant reduction of propagation delay per 
individual switching gate and of the physical size of the 
circuits has made it possible and frequently even 
desirable to use a less sophisticated technique in the 
logic design. The use of adder packages with' standard 
carry lookahead and semiconductor scratch pad mem
ories often results in a better cost/performance ratio 
than development of the fastest carry propagation 
technique and the most advanced instruction lookahead 
control. 

The design of the ILLIAC IV computer9 is one of the 
recent examples in which modularity is preferred to an 
excessive sophistication of logic. 

On the other hand, the introduction of higher 
integration technique has posed a problem to diagnostic 
engineers. The failure modes of the circuits have become 
more complicated and less obvious. Seventy to eighty 
percent of catastrophic errors may still be caused by 
mechanical failures at bonding and connections but the 
other errors include such subtle faults as marginal 
errors rising from relatively low noise margins of current 
mode gates and unexpected shorts (low resistance) 
between logically distant connections on a semiconduc
tor chip. 

This paper describes a new approach to the method 

• Currently with Nippon Telegraph and Telephone Public 
Corporation, Tokyo, Japan. 

of diagnostic test generation for a computer built with 
highly integrated circuitry. 

The first half of the next section describes the 
generation of test paths used to test registers and 
transfer paths between them. The second half is 
concerned with generation of input patterns for testing 
combinational logic networks. 

Techniques employed in logic simulation and location 
of errors are briefly discussed in the following sections. 

GeneraJ,ion of test cases 

Path tests 

A graph representation of a system is useful to 
visualize the operation and data flows in it. Several 
papers have been published on the use of graphs in 
diagnosis of logical machines.6 In this section, we discuss 
the generation of efficient tests for detection and 
location of errors using a graph of the machine. 

Let us assume that the system has been represented 
as a directed graph, in, which nodes and arcs correspond 
to some circuit blocks and signal lines. In addition, let 
us assume the arcs in the graph can be enabled or 
disabled independently. A graph is equivalently repre
sented as a square matrix called "adjacency matrix." 

Figure 1 shows an example of a graph and its 
adjacency matrix is as follows: 

No Nl Nt N3 N4 No 

No 0 1 1 1 0 0 
Nl 0 0 0 1 0 1 
Nt 0 0 0 1 0 0 
N3 0 0 0 0 1 1 
N4 0 0 1 0 0 1 
N6 0 0 0 0 0 0 

221 



222 Spring Joint Computer Conference, 1969 

There exist thirteen possible paths from the input 
node No to the output node N I) as shown in Figure 2. 

Let us define a row vector of Boolean elements for 
each path, where each column denotes a node or an arc; 

No 

IJ! 
P4 I 1 

~: I ! .. P7 
Ps 1 
PII 1 
PIO 1 
Pn 1 
Pu 1 

1 
1 
1 
o 
'" v 

o 
o 
1 
1 
o 
o 
o 
o 

o 
o 
o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
1 

INPUT 

OUTPUT 

o 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

o 
o 
1 
o 
1 
.1 

o 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
.1 

1 
1 
1 
1 
1 
1 
1 
1 

Figure I-Example of a directed graph 

Al 

1 
1 
1 
0 
i\ v 

0 
0 
1 
1 
0 
0 
0 
0 

To diagnose a machine for disconnection errors, we 
should test paths to see if they successfully connect the 
input and output. In the above example, if arc Ag fails, 
Po, PI, Pa, P6, P7, Pg, and Pu still connect successfully, 
but P2, P4, Pe, Ps, PIO, and PI2 contain an error. Thus, 
by comparing columns of the path matrix with the test 
result, we can determine which node(s) and/or arc(s) 
have errors. 

If an error location can be determined by testing all 

o indicates the absence of the corresponding node or arc 
in this path. Now we have the following matrix with 
respect to the graph in Figure 1. We call it path matrix 
of the graph. 

At Aa ~ As As A7 As Aa AlO 

0 0 0 0 1 0 0 0 

!1 
0 0 1 0 0 1 0 0 
0 0 1 0 0 0 1 1 
1 0 0 0 0 1 0 0 
1 0 0 0 0 0 1 1 .L 

0 1 0 1 0 1 0 0 0 
0 1 0 1 0 0 1 1 0 
0 0 1 1 0 1 1 0 1 
0 0 1 1 0 0 1 1 

jJ 
1 0 0 1 0 1 1 0 
1 0 0 1 0 0 1 1 
0 1 0 1 0 1 1 0 
0 1 0 1 0 0 1 1 

,~". "'~: ~:~: ~ .•. ~~ \~~: ,~k: 
\t~\~ 't'" \f 'r ,~ 

P1 ;. p. P10 P ll ~ut 

Figure 2-Possible paths 

possible paths, it is said to be distinguishable. All 
possible path tests may not be required to determine 
where a single fault has occurred; i.e., we may be able to 
reduce the number of paths from the complete set of all 
possible paths in the original graph. 

The following method may be used to reduce the 
number of path tests; the resulting set of paths still 
retain the ability to detect single failures. 

Let us consider a graph with a single input and a 
single output; if there are multiple inputs or outputs, 
we can add a dummy input or output node and connect 
it to the actual inputs or outputs so that the graph may 
have only one input and one output. Now we produce a 
tree from the original graph; starting at the input node, 
we put down an the nodes which are directly fed by the 



input node and draw lines corresponding to the arcs 
between them. Level zero is assigned to the input node 
and level one to the nodes adjacent to the input node. 
The level one nodes of the example in Figure 1 are 
Nt, N2, and N 3• 

This step is repeated until all nodes are covered. If a 
node has already occurred on a higher level or previously 
on this level, we define it as a pseudo-terminal node and 
cease to trace arcs down from it. 

Three pseudo-terminal nodes on level two are shown 
in Figure 3. Whenever a path from the input has met a 
pseudo-terminal node, we choose one of the routes which 
go down to the output to complete the path. We obtain 
six paths from the graph in Figure 1, as shown in 
Figure 4. In the example the shortest path was selected 
after the pseudo-terminal nodes. 

Errors in node No and N s are indistinguishable. So 
are the errors in N 2 and arc As, and those in X I and AI, 
those in N4 and As, respectively. This was true also in 
the original graph. 

We call this method as the path generating method 
hereafter in this paper, and we show that a set of paths 
generated by the PG:\1 is a minimal and sufficient set 

-LEVEL 0 

Nz -LEVEL 1 

Ns N' 
3 -LEVEL 2 

-LEVEL 3 

CO DENOTES A PSEUDO- NODE 

Figure 3-Generation of a tree from the graph (1) 

No Nl N2 N3 N4 N6 Al 

1 1 0 0 0 1 1 
1 1 0 1 0 1 1 
1 0 0 1 0 1 0 
1 0 1 1 1 1 0 
1 0 0 1 1 1 0 
1 0 1 1 0 1 0 

A2 

0 
0 
1 
1 
1 
0 

A Method of Diagnostic Test Generation 223 

of paths to detect and locate a failure in a network 
without feedback. 

Theorem 1. The set of paths generated by the PGM is 
a minimal set that is sufficient for detecting and 
locating any distinguishable single failure within the 
graph without feedback. 

Proof. If we insert a dummy node on each arc of the 
original graph, we can discuss only the distinguish
ability of node failures. The indistinguishable nodes are 
defined as follows: if there exist two nodes ni and nj such 
that no path in the graph passes through exactly one 
of the two nodes n i and n j, then these two nodes are 
said to be indistinguishable. It is noted that all nodes 
of the original graph are exhaustively included in the 
paths generated by the PGM. 

OUTPUT 

1 INPUT 

No 

Figure 4-Generation of a tree from the graph (2) 

A~ ~ A6 A6 A7 A8 A9 

0 0 0 1 0 0 0 
0 1 0 0 1 0 0 
0 0 0 0 1 0 0 
0 0 1 0 1 1 0 
0 0 0 0 0 1 1 
1 0 1 0 1 0 0 

Alo 

0 
0 
0 
1 
0 
0 

Figure 4.2-Path :Matrix 



224 Spring Joint Computer Conference, 1969 

If anyone of the paths generated by the PG1VI were 
deleted, then there would exist at least one node 
(corresponding to an arc in the original graph) which 
was not included in the set of paths. This is obvious 
because no arcs are repeated in a tree generated by the 
method except in the route below the pseudo-terminal 
nodes. 

The indistinguishable nodes resulting from the testing 
of all paths in the original graph do not become dis
tinguishable nodes by testing the paths generated by 
PG1'I. 

Next, let us assume that the nodes ni and nj are 
distinguishable by testing all paths with the original 
graph. There should be at least one path which passes 
through either one of the two nodes ni and nj. Let us 
define a set {Pii} of all possible paths that pass through 
both nodes ni and nl, and define a set {nii} of all nodes 
on these paths lying between ni and nj, where the set 
fnii} includes nodes ni and nj. Because ni is distinguish
able from nj, there is at least one branch connected 
between node nk &Jnij} and a node nt e{nii}' The path 
through the node nt exists in a set of paths generated by 
the PG~1 and this path does not pass through both 
nodes ni and nj. Thus the nodes ni and llj are still 
distinguishable by testing the paths generated by the 
PGM. 

The time-consuming procedure of reducing the set 
of tests using a minimal cover technique can be avoided 
by the simple algorithm and the theorem stated above. 
The theorem is valid for a general class of networks 
with feedback. 

Combinational tests 

Suppose each solid box in the network of Figure 5 is a 
full adder and every pair of circuits is put on. a chip as 
indicated by the dashed line. Let us consider how we 
can test the logic function of a chip. 

The following equations are relevant to the chip 
inputs and outputs: 

1. Equations for chip input signals 

Xl = W3W4 + W4W6 + W3W 6 I 
X2 = W7 

X3 = Ws EB Wg EB WIO 

X4 = WSWg + W9WIO + WSWIO 

X6 = W12 J 
X6 = W13 EB W14 EB WlO 

2. Equations for chip function 

YI = Xl EB X2 EB Xa 

y, = XIX, + X2Xa + XIXa 

ya = X4 EB Xfi EB Xs 

Y4 = X4X6 + X5X6 + X4X6 

(1) 

(2) 

Wo 

WI 

W2 

W3 

W4 

W~ 

Ws 

W7 

We-!l s 

Wg 

W,o 

W" 

W'2 

WI3 

W'4 

WI~ 

WI6 

WI7 

W1e 

W" 

W20 

S 

C 

I 
I 
I 
I 

c 

l s 
S I Y3 

: c I Y4 C 

I I 
I I L _____ .J 

s 

c 

Z~ 

~------------ ZIO 

Figure 5-Example of a combinational network 

3. Equations for external outputs 

Za = (WOW2 + (WO + W2)(W3 EB W4 

EB W6» EB W6 EB Yl 

Z4 = (WOw! + (Wo + W2)(Wa EB W4 

EB W6»(W6 + YI) + YIW6 

Z6 = Wll EB Y2 EB Y3 (3) 
Zs = WUy! + Y2Ya + WllYa 

Z7 = (WlaW14 + W14WlO '+ WlaWlO) 

EB W17 EB WIS EB W19 EB W!O 

EB W l6 EB Y4 

In general, an output of a chip may feed an input to 
another chip whose output feeds an input (possibly 
through a few other chips) to the first chip. The 
equations for chip inputs in such a case will contain a 
term including the chip output variable. 

Thus we define a "combinational logic network with 
pseudo-feedback loops" as follows: 

1. It has a (multi-output) combinaiionallogic func-



tion which describes the relation between the 
external inputs (WI, W2, ... , WN) and outputs 
(Zl, Z2, ..• , ZM)' 

2. It is composed of a finite number of unit circuits 
each of which has a (multi-output) combina
tional logic function to describe the relation 
between its inputs (Xl, X2, ... , xn) and outputs 
(Yl, Y2, ... , Ym)· 

3. It may contain pseudo-feedback loops; i.e., its 
connection graph may contain any number ot 
loops provided that none of these constitute 
storage of internal states. Thus, the output values 
of any unit circuit are uniquely determined by 
the external input values of the network despite 
the existence of loop8. 

The unit circuits in the network may be of any size 
and any structure, provided they satisfy premise (2) 
above. Specifically, however, we are concerned with unit 
circuits as a model of integrated circuit chips or portions 
of chips, the total number of input and output Hnes 
being limited within the order of 101• The structure 
of the circuit may be a net of at most 101"'2 of elementary 
logic gates. 

Various types of failures may exist within the logic 
network. Some of them are of electrical nature, others 
of mechanical. A considerable fraction of them are only 
intermittent and cannot be detected except by chance, 
while the rest persist long enough to be detected as 
permanent failures. 

It has been a convention in previous studies to 
classify those failures by logical modes: stuck-at-O mode, 
stuck-at-1 mode, other degenerate modes, and non
degenerate modes. Very few papers have treated all of 
these modes. Techniques for detection and location of 
more than one failure in a chip have not been exten
sively developed. 

So that we may not confine possible failures to any 
particular mode, we set the foIlmving assumptions, 
which have been adopted (if not explicitly) by all 
previous studies: 

1. The failure is non-sequential; i.e., it may be any 
transformation of the combinational logic func
tion of a unit circuit but it doesn't change the 
unit to a sequential circuit. 

2. Only critical failures are of concern; namely, only 
if they change the external logical function of the 
network. 

3. We will treat failures in any single chip; i.e., we 
assume that failures don't exist simultaneously 
in more than one chip, although the existence of 
more than one failure in a chip is not excluded. 

The assumption (1) above requires that every possible 

A :rvfethod of Diagnostic Test Generation 225 

combination of input values be applied to a unit circuit. 
(In case a subset of all possible combinations is obtained 
V\rith a narrower assumption on failure modes, the 
following discussion can be applied to the subset.) 

Then, the problem is how to determine external input 
values so that a unit circuit can be given an arbitrary 
input combination and that any change in its output 
value can be detected at an external output. This is 
formulated as follows. 

First, obtain the equation f i for a chip input Xi 

( cf. Figure 6), as follows: 

1. Break up all the chip output lines, v!, ... , vm • 

2. Insert dummy inputs Yl, Y2, ... , Ym to the 
network to replace signals v!, ... , vm • 

3. Write an equation f; for Xi in terms of external 
inputs WI, ... , WN and dummy signals Yl, ... , Ym. 

Now the requirement is stated in the following, where 
the Boolean difference7 dJL/dti of a function JL = 
JL (h, ... , t n ) with respect to ti is defined by JL (tl, ... , t n ) 

EB JL (tl, ... , ti-l, ti, ti+l, ... , t n). 

1. Any combination aI, a2, ... , an of values may be 
assigned to chip inputs Xl, X2, ... , Xm; i.e., for 
i = 1, ... , n'. 

where Vj is an output from an error-free copy of the 
chip under test and is a function of WI, ... , WN as 
obtained from the: original network (Figure 6 (a». 

2. Some of the external output values should be 
changed by a deviation in signals Yl, ... , Ym. 
Thus, for j = 1, 2, ... , m: 

(5) 

:3. Any pseudo-feedback loops should be logically 
broken up to fix the chip input values in the 
existence of an error. 

For: i = 1, 2, ... , nand j = 1, 2, ... , m 

(6) 

Thus, solving equations (4)-(6) in terms of WI, 
W2, ... , W N we obtain a set of input values for error 
detection. 

A solution for the example in Figure .5 and equations 
(1)-(3) is shown in Figure 7. Sixty-four input patterns 
are required to test for all possible combinations of 
inputs to the chip. 



226 Spring Joint Computer Conference, 1969 

w1-----f 
Wz I t-:l 
• 
• 
• 
• 
• 
WN 

W1 

Wz 
• 
• 
WN 

Yl 

Yz 
• 
• Y,. 

Xl VI 

X2 • • • X. 

Xi = f I (WI » VIZ. • .•• WN ) 

vJ=a (Xl. XZ ••• -IX.) 
;y (Wi. WI •••• ,WII) 

Zit :: glt (WI. WI. • .WN) 

(0) ORIG I NAL NETWORK 

Xl Yl 

~z 

ff~: • X. 

I 

L2 
• 
• 
• 
• 
• z. 

• 
• 

* XI = f, (Wi. WZ ••• •• WN.Yl. Yz , •••• Y.) 
Zit = g: (Wi. WZ , • • • ,W ... Yl I Y. , ... ,Y.) 

(b) NETWORK WITH DUMMY SIGNALS 

Figure 6-Generalrepresentation of a combinational network 

Location of errcYT'S 

The determination of nodes and arcs relevant to each 
path test is straightforward from the path matrix. 
Translation from nodes and arcs to packages and wiring 
then enables us to determine which physical components 
of the machine affect a test result. 

Location of single errors detected in path tests is 
possible by comparing the columns of the path matrix 

0 

0 

0 1 

0 1 

0 

O2 

04 

all 

06 
s 

0 
I 

C 0 I 
I 
I L _____ 

0 

0 

0 
S 

0 
C 

0 

Figure 7-801ution to Figure 5 

with each test result expressed in a vector form in which 
a 1 indicates failure and a 0 success of the test. In effect, 
simultaneous comparison of many columns with a test 
result can be done by taking a logical product of the 
matrix rows complemented if the result of the test 
corresponding to the row is a success. 

Multiple errors can be located, though in a less 
straightforward way and with a lower resolution, by 
selecting a maximal set of columns each of which implies 
the test result vector. 

Another method for locating errors consists of 
organizing a branching tree of tests so that each 
terminal of the tree corresponds to a distinguishable 
error or a set of indistinguishable errors. The execution 
of tests follows a chain of tests in the tree selecting 
either a "success" branch or a "failure" branch after 
each test case until the termination.8 

The following theorem is evident from Theorem 1 on 
the minimality of path set generated by the PGl\1. 

Y1 

Y2 

Y3 

Y4 



Theorem 2: When a set of test paths generated by the 
PGl\I is developed into a branching tree, the number 
of tests in the tree (which is the number of tree nodes 
excluding terminals) is the same regardless of which 
paths are assigned to the tests, provided that there are 
no redundant tests. 

By a redundant test is meant a test of a path which 
passes through all nodes and arcs remaining to be 
distinguished at the test point or 'which passes through 
none of them. 

Therefore, location of single errors by a branching 
tree of path tests is an even more straightforward 
procedure than the comparison of matrix columns. Also, 
multiple errors (although perhaps not all of them) can 
be located by an organization of test tree based on the 
evaluation of a proper weight for each test. 

Errors detected in the combinational tests may not be 
located in an equally straightforward manner; however, 
their locations are identified at least up to a logic block 
and a further isolation can be done by manipulation 
of a matrix similar to the path matrix. 

While the equation (5) guarantees that any error can 
be observed at some of the external outputs, a Boolean 
difference dzk / dy j specifies the condition on the external 
inputs under which any error at signal y j is detected at 
the specified external output Zk. Therefore the matrix 
can be obtained by evaluating the difference for each 
pair of y j and Zk. 

When a matrix manipulation is not possible or 
realistic enough in practice, a test dictionary is produced 
using the methods above and the maintenance engineers 
can look up the most suspicious error positions listed in 
it during the actual testing. 

Logic simulation of the machine 

It is a common practice to use a logic simulation 
program to determine the correct respom;e of the 
machine to each test input. 

A logic simulator may also be used extensively in 
debugging the logic design. Because diagnostic genera
tion may proceed in parallel with logic debugging 
(without waiting for its completion), the construction 
of the simulator should he as exact as possihle to the 
mechanic&.l organization of the logic. For discrete 
circuitry computer systems, the fastest simulators used 
to be compiled from a gate-level description of the 
design, a gate in the machine corresponding to a few 
machine instructions (Boolean or where not available, 
arithmetic operations) in the simulation program. The 
ordering of the instructions was a well-defined ordering 
among the gates. The introduction of integrated 
circuitry and higher integration into the computer, 

A Method of Diagnostic Test Generation 227 

however, brought in some new features in logic design 
and simulation. 

Logic design cannot always precede the package 
design. Physical and mechanical limitations on semi
conductor and packaging technology place significant 
restrictions on logic design and it is not possible for a 
machine to be designed completely in detail and then 
partitioned. The logic of the machine must be described 
in at least two levels-~the logic of evers package type 
and the interpackage connections. Thus it is less 
straightforward than it used to be to compile a gate-level 
simulator. 

For the same' reason any change in design may be 
reflected in different ways in the simulator. Either a 
logic package is modified, or a connection is replaced by 
another, or both. A simulator can be much more easily 
updated if the logic packages and connections can be 
distinguished one from the other. 

On the other hand, the turn-around time in designing 
and manufacturing high density packages cannot be 
neglected. The logic internal to a package may not be 
changed as easily as the connections among packages. 
The construction of the logic simulator may have the 
same nature. 

Because of these factors subroutines can be utilized 
to describe the logic package. When a simulator is 
created using a general-purpose programming language 
(ALGOL, FORTRAN, or PL/I), a procedure can define 
the relations between the inputs and outputs of a 
package. Then the body of the simulator becomes a 
sequence of procedure call statements, the actual 
parameters associated with each call corresponding to 
the signals incident to the package. 

The procedure calls must be ordered properly so that 
the propagation of control and data signals can be 
followed. There are two problems arising in the ordering 
of packages. They are: 

1. To which level to assign packages containing 
storage elements. 

2. How to order the packages involved in loops. 

The first problem can be solved by duplicating a 
register package into two nodes-corresponding to the 
loading and output selection functions of the pack age
in the graph representation. Thus, the receiver and 
register-output nodes are assigned the first levels, while 
the drivers and register-input nodes are assigned the 
last. 

The packages involved in a loop (or a maximal 
"circuit," or a "maximal connected subgraph") are 
assigned the same level. The associated procedure calls 
are put in a program loop and executed until the values 
of inter-package signals in the loop are all stabilized. 



228 Spring Joint Computer Conference, 1969 

Such an assignment can be efficiently programmed in 
the following steps: 

1. Assign levels from the first level in an ascending 
order and then from the last in a descending order 
until the remaining nodes cannot be assigned any 
unique level. 

2. Using matrix operations on the adjacency 
matrix, find all the maximal loops and reduce 
each of them to a dummy node. 

:3. Assign the remaining levels using the newly 
developed dummy nodes in place of loops. 

CONCLUSIONS 

A method of generating test cases for diagnosing a 
machine using high density circuitry has been described. 
This method is motivated by the assumption that 
computer organizations are becoming more modular and 
the failure modes of high density integrated circuits are 
becoming more complicated and less obvious. 

A minimal and sufficient set of path tests can be 
generated by a simple algorithm working on a graph 
representation of the machine. 

Combinational logic networks can be diagnosed by a 
set of test input patterns generated by a procedure 
described. There are three sets of equations which must 
be simultaneously solved to obtait""1 input patterns; one 
of them is a new requirement caused by the high density 
of circuits in a semiconductor chip. 

A logic simulator may also reflect the progress of 
hardware technology. A Imv-cost simulator generator 
has been developed which uses a general purpose 
programming language as the simulator media, in which 
the package logic is described as functional procedures. 

Several methods of fault location have also been 
described for path tests and combinational tests. 

The Path Generating l\Iethod has been programmed 
in Extended ALGOL on Burroughs B5500. Generation 
of combinational tests were perfonned semiautomati
cally. A logic simulator generator has also been pro
grammed on Bi).~OO. A logic simulator of the Processing 
Element (PE) of the ILLIAC IV Computer was 
generated by the program and has been used successfully 
in logic debugging and diagnostic generation. 

Path and combinational tests generated by the 
described methods have been employed in off-line 

testing of the PE. On-line testing will use another set 
of tests produced by the same methods. 

AClu~OWLEDG=VIENT 

The authors wish to express their gratitude to Professor 
D. L. Slotnick and certain members of the staff in the 
ILLIAC IV project for their advice and discussions. 

The algorithm of the Path Generating :\Iethod was 
developed through discussions with ~\1essrs. W. L. 
Heimerdinger and Y. l\latsushita of the University of 
Illinois; programming efforts were done by Ylessrs. C. 
Chen, J. E. ::.vEller, W. Sterling, ,and C. Tanaka. 

This work was supported in part by the Department 
of Computer Science, University of Illinois, Urbana, 
Illinois: and in part by the Advanced Research Projects 
Agency as administered by the Rome Air Development 
Center, under Contract No. USAF 30(602)4144. 

REFERENCES 

1 J SESHU D N" FREEMAN 
The diagnosis of asynchronous sequential switching systen/'s 
IRE Trans on Electronic Computers August 1962 

2 S HASHIMOTO T KASAMI H OZAKI 
Fault diagnosis of comhinationallogical networks 
Journal of Inst of Electrical Communication Engineers 
Japan April 1964 ' 

3 D B AR:YlSTRO::--rG 
On finding a nearly minimal set of fault detection tests fot' 
combinational logic nets 
IEEE Trans on Electronic Computers February 1966 

4 W H KAUTZ 
Fault testing and diagnosis in combinational digital cirCltitl:: 
IEEE Trans on Computers April 1968 

.~ J P ROTH W G BOURICIUS P R ~CH~EIDER 
Programmed algorithms to compute tests to detect alld 
distinguish between failures in logic circuits 
IEEt~ Trans on J..:lectronlc COn1pl.lters (}rtober 1967 

6 C V ItAMAMOORTHY 
~l structural theory of machine diagnosis 
Proc S J C C 1967 

7 F F SELLERS JR M Y HSIAO L W BEARSO~ 
A. nalyzing errors with the Boolean difference 
IEEE Trans on Computers July 1968 

X H Y CHA~G 
A.n algorithm for selecting an optimum set of diagnostic tests 
IEEE Trans on Electronic Computers October 1965 

9 G H BAR~ES R M BROWN M KATO 
J D KUCK D L SLOT~ICK It A STOKES 
The ILLIAC IV computer _ 
IEEE Trans on Computers August 1968 



Programmed test patterns for 
muititerminai devices 

by FRANCIS J.l\lcIXTOSH and W. W. HAPP 

National Aeronautics and Space Ad,m:nistrati01I 
Cambridge, Massachusetts 

INTRODUCTION 

The rapid development of micro-electronics towards 
multi terminal structures demands corresponding 
growth in understanding the potential and limitations 
of multiterminal devices and networks. The increasing 
sophistication of integrated circuits will impose a new 
set of criteria upon network synthesis. 

In particular, through the suitable arrangements of 
terminals or accessible test points of a multiterminal 
device, many distinct configurations may be realized. A 

. multitenninal network like the transistor contains 
several realizable configurations, typically a voltage 
amplifier, a current amplifier, an attenuator, or a filter. 
Hand enumeration will suffice in attaining all of the 
configurations derivable from such a small network. 
However, several thousand distinct functions can be 
realized from a six-terminal network, and the scope of 
network synthesis could well be directed to selecting 
one of several million functions available from a multi
terminal network. A computer program has boon de
veloped to enumerate all of the allowable configurations 
so that each may be identified uniquely and non-redun
dantly. 

Scope of investigation 

Review of related work 

Previous investigations of multitenninal devices 
utilized combinatorial techniques to obtain algoritluns 
for generation of network functions and failure diagnos
tics: 

a. the number N(z, x, y) of x-terminal y-port sub
networks derivable from a z-terminal parent net
work was tabulated. l 

b. the separation of variables as a product of func-

tions is possible so that 

N(z, x, y) = H(z, x) .'1'(y, x - y), 

where H(z, x) is related to the partitioning of z, 
and T(y, x - y) is related to the number of trees 
of a structure with x components.2 

c. a computer program implements the algorithms 
contained in the previous papers to calculate 
the nu..rnbers H, T, and N, but does not list these 
functions.3 

An extensive bibliography is provided in the refer
ences cited. 

Objectives 

The objective of this investigation is the generation 
and listing of the H(z, x) subnetwork configurations, 
which result when a z-tenninal parent network is con
strained to fonn x-terminal subnetworks. The com
puter program developed will generate and list ex
plicitly all unique and non-redundant x-terminal sub
network configurations of a z-tenninal parent network. 
The assumptions under which the program is formulated 
a:r:e: 

229 

a. the z-tenninal network or device asymmetrical; 
b. the z parent terminals may be utilized to fonu 

tenninals of the subnetwork, or may be left free 
or uninvolved in the subnetwork configurations; 

c. subnetwork configurations are arrived at through 
the systematic shorting and opening of accessible 
terminals. 

Based on this work future investigations are planned: 

a. to develop teclmiques for dealing with the 
symmetry of multitenninal devices and obtain a 



230 Spring Joint Computer Conference, 1969 

non-redundant listing of the H(z, x) configura
tions with specified symmetry constraints; 

b. to provide a computer program for listing the 
T(y, x=y) configurations, and subsequently ob
tain an explicit list of the N(z, x, y) configura
tions with and without symmetry constraints; 

c. to· apply these listings to failure diagnostics of 
multiterminal structures; 

d. to select network performance characteristics on 
the basis of subnetwork listings. 

Illustrative example 

To illustrate the concepts to be used and the terminol
ogy to be defined subsequently more rigorously, the con
figuration H(4, 2) is examined in Figure 1. Six subnet
work configurations, illustrated on the left, are realiz-

1"'12AA 
2"'12AC 
3"'1A2A 
4*1A23 
S*1AA2 
6*1AS2 
7"'A12A 
o"'A123 
9"'A1A2 

lO"'A132 
11"'AA12 
12"'A612 

13"'112A 
14"'121A 
1S"'211A 
16"'11A2 
17"'12A1 
1d"'21A1 
19"'1A12 
2U"'1A21 
21"'2A11 
22$Al12 
23"'A121 
24"'A211 

25"'1112 
26"'1121 
27*1211 
20"'2111 

29*2211 
3u*2121 
31"'2112 

-----1'--__ A..L..-....L-
B
_---J

L - 2 

- 1 I. I 

1....-_---1 
ll~-_~ 

:1;...----1 

l.__----l 
1L..1----I 

~ __ 2 

~ __ 2 

~----,b 

Figure I-Print-oui of H(4,2) configurations 

DEVICE 

2 3 

3 
I 

2 
I 

2 
I 

3 

2 3 

I I 

2 3 
,...------.1 

2 3 

I 

CODE 

i23 

12A 

IA2 

AI2 

112 

121 

211 

Figure 2-Code for H(3,2) configurations 

NETWORK 

--r--lj A -L 8 

1l~ 
IJc 
I} 
IJc 

able from a device with z = 3 and x = 2 by utilizing 

either: 

tl.. two of the three terminals of the parent network 
and leaving the third terminal disconnected, or 

b. all three externally conne<;ting t\VO together t() 

form one terminal. 

Larger networks form thousands of subnetwork con
figurations and hence require a systematic coding pro
cedure. One method iR illustrated in Figure 2 and 
Figure 3. 

a. the z parent terminals are arbitrarily numbered; 
b. each line (or word) represents a subnetwork in 

code; 
c. numerals refer to external terminals of the sub-

net.work; 



Programmed Test Patterns for l\fultiterminal Devices 231 

11fJi2 
4~3 

SYMMETRY 

(2143 ) 

o EXTERNAL 
TERMINAL 

• INTERNAL 
TERMINAL 

I 

,~, 
SYMMETRY 

( 1432) 

o f~~::C 
• INTERNAL 

TERMINAL 

UNIQUE ONE- PORT CONFIGURATIONS 
WITH COOE 

Figure 3-Unique one-port configurations ~ith code 

d. letters refer to the internal terminals, which are 
not part of the subnetwork; 

e. position of number or letter in a word indicates 
the tenninal of the parent network represented 
by the number or letter. 

The coded computer print-out may then be applied to 
a particular network device. The HC3, 2) configurations 
are illustrated on the right in Figure 1. Given the COhl
puter output for HC3, 2) and the parent network struc
ture, each of the six subnetwork circuit configurations 
is readily identifiable. 

Algorithms for generating subnetworks 

Terminology 

• A terminal is an accessible test point in the parent 
network, each terminal will become either an ex
ternal or internal terminal in the subnetwork. 

• A multiterminal structure is a network or deyice of 
more than two terminals. The computer program 

is developed for structures of up to eight tel'mlnals. 
• An external terminal of the subnetwork is an acces
sible testpoint consisting of either a single terminal 
of the parent network or a group of terminals from 
the parent network constrained to form the single 
external terminal. 

• An internal terminal in the subnetwork configura
tion is a parent terminalCs) which is (are) left free 
or uninvolved in the subnetwork and thereby COll
stitute unaccessible testpoints in the subnetwork 
configurations. 

• An external configuration is a unique and nOIl
redundant arrangement of one or more terminals 
of the parent network at each terminal of the sub
network. 

• An internal configuration is unique and non-re
dundant arrangements of terminals not forming 
part of the subnetwork in groups of one or more. 
In diagrams the internal configurations are drawn 
inside the system to differentiate them from ex
ternal configurations. 



232 Spring Joint Computer Conference, 1969 

Separation into external and internal 
configurations 

The program is based on the following procedure: 

a. the external configurations are defined by the 
restriction of I terminals, x ::s; I ::s; z, to form x 
external terminals; 

b. the z-I terminals remaining are constrained into 
groups of 1, 2, ... , z-I to form the internal con
figurations, each group representing a unique 
and non-redundant configuration; 

c. varying I in unit steps from x to z, enumerate and 
store the external and internal terminal configura
tions for each I and z-I respectively; 

d. integrate by appropriate combinatorial tech
niques the stored external and internal COll-

figurations at each step 10 yield the desired 
H(z, x) configurations. 

To accomplish this, eight subprogram subroutines 
are utilized in the program, three of which-EXTERN, 
INTERN, INTEG-are called in succession by a small 
master program, and which in turn utilize the other 
five in appropriate sequences according to the flow
chart.3 Two techniques are of fundamental importance 
to these subroutines: 

a. Enumeration of Combinations in Binary Cod€ 
b. Disj'oint Loop Enumeration and Storage 

These techniques will he discussed now. 

Enumeration of combinations in binary code 

The enumeration technique is based upon the sub
routines BIN and lVIAIN which generate combinations 
of P things taken Q at a time. Each combination is 
generated as a series of ones and zeros, yielding C~" ones" 
and P-Q "zeros". The terminal numbers under which 
the ones fall defined terminals included in each partic
ular combination with P digit-positions in all. By sys
tematically moving the Q ones into all com hi nations of 
the P positions, the resultant (P, Q) combinations are 
explicitly listed and yield the number which is the 
binomial coefficient of P and Q. 

Each combination is then Htored in a so called" com
pendiom; form", a technique previously used in pro
cessing of combinatorial information.4.5 Treating each 
combination of ones and zeros as a number of base 2, 
the word is changed to decimal notation as, for example, 
for P = 4 and Q = 2 in Figure 4. This is accomplished 
by treating each combination as a Heries Xi i = 1, ... ,P, 

p 

and performing the operation F(x) = LXi. 2 i - 1• 

i=1 

1100 - 1+2 - 3 
1010 - 1+4 - 5 -
1001 - 1+8 9 
0110 2+4 - 6 
0101 - 2+8 - 10 
0011 - 4+8 12 
li'igure 4-Transformation of P = 4, Q = 2 int.o 

decimal notation 

Each decimal number thus created is saved as a single 
subscripted integer variable in BIN and as a double 
subscripted integer variable in MAIN. 

This method of storage is advantageous for two rea
sons. The computer memory utilizes binary coding in 
its storage of a decimal number : each combination thus 
coded may be recalled from its decimal number. 
Efficiency and economy also results by utilizing only Olle 
storage position in memory per combination. 

Disjoint loop enumeration and storage 

The routine which enumerates and stores disjoint 
loops exploits an isomorphism between the allocation of 
external and internal terminals for a subnetwork and the 
identification of disjoint loops in a flowgraph. If eaeh 
loop of a flowgraph is coded in binary form in terms of 
the nodes it contains, then disjoint loops can be ifienti
fied by binary addjtion. 6.7.8 The resultant subroutines 
calculate and store those combinations of loops which 
have no nodes in common. 

The logical operation .AND. compares two binary
coded decimal numbers. If two loops are disjoint the 
resultant combination is defined as a second-ordf>r loop. 
The number of disjoint combinations involved in the 
union is defined as the loop order. Thus,a loop of order 
m consists of m first order loops which have no nodes ill 
common. 

The loops are stored as a subscripted integer variable 
which is made up ,A the subscripts of the integer vari
ables under which the disjoint binary-coded numbers 
are stored. Combinations of terminals correspond to 
loops or combinations of nodes, each node correspond
ing to a terminal of the parent network. In the previoli~ 
example of (4, 2) the loops 12 and 3 are disjoint. Label
ing first order loops sequentially, consider row six and 
row one, a second order loop results which are stored 



Programmed Test Patterns for Multiterminal Devices 233 

as 601. Similarly, 11 and 5, 6 and 9 are disjoint binary
coded numbers, and are stored under their subscripts as 
502 and 403 respectively. In this way the binary-coded 
numbers and the combinations which they represent 
are stored in a compendious manner and may be 
efficiently recalled. 

Sequence of subroutines 

The generation H(z, X) tor a particular I external 
terminals and z-I internal terminals is described by 
comment cards defining the function performed by 
each subroutine and is given in a listing or the program. 3 

A few additional comments appear in order. 

Internal configurations 

After the problem statement provides the program 
with z and x, IXTERX is called for IQ = z - I ter
minals. This subroutine in turn calls BIN" to enumerate 
and save the combinations of IQ terminals taken 
2, 3, ... , IQ at a time in the stored binary code. The 
combinations of IQ items taken one at a time are taken 
into effect and enumerated later in INTERX. The 
disjoint loops of the above are next calcualted by 
INTEHX and stored. SPRINT is utilized to break 
do:w-n the stored disjoint loops into their unique con
figurations and enumerate in numeric code the proper 
internal configurations implicitly represented by each 
stored loop. These configurations form the matrix 
IITER (I, J). 

External configurations 

The suroutine EXTERN is next referenced for I and 
x terminals. The partition numbers subroutine PART 
is then called by EXTERN to return how I terminals 
are restrained to yield x tenllinals. 
For example: 

P (4, 2) = [!: iJ 
For each number in a row of partition numbers, the 
combinations of I tenninals taken that number at a 
time are enumerated and stored. 

Once the combinatorial enumeration of a particular 
row is accomplished, subroutine LPORD is utilized to 
calculate the disjoint loops for those combinations of the 
row. 

Since redundant loops may be generated for a partic
ular row if t\""O or more numbers in that row are equal, 
this case is accounted for and only non-redundant loops 
are enumerated. As each loop is calculated the proper 
numeric code is generated for the external configuration 

of which it is representative. By repeating the process 
for each row of partition numbers, the matrix of external 
configurations IETER (I, J) is formed. 

Integration of internal and external 
configura tions 

The final subprogram subroutine INTEG is called 
as soon as the matrices IITER (I, J) and IETER (I, J) 
are complete for a particular IQ and 1. These matrices 
are then integrated systematically as determined by the 
ways of combining z terminals I at a time, and as 
enumerated by BE\" in ones and zeros. The number of 
ones equals I and the number of zeros equals IQ. For 
a particular I external terminals and z - I = I Q in
ternal terminals, the H(z, x) .configurations are listed 
through the substitution. of entries of the IETER. 
(I, J) matrix and IITER (I, J) matrix for the ones and 
zeros, respectively, of each combination enumerated by 
BIN. 

Output format for configurations 

The configurations thus generated must be represent
ed in a unique and convenient code. Previous workl,2 
utilized upper case letters for external terminals and 
lower case letters for internal terminals, identical letters 
and type indicating those terminals of the parent net
work that are joined to form the subnetwork c<;mfigura-

. tion. Since a computer will only print upper case letters, 
the lower case letters were replaced by numeric char
acter. A variation of this alphanumeric code is used up 
to a point just prior to print-out. 

The pre-print-out fomlat for each configuration is a 
series of positive and negative numeric characters. 
Positive integers correspond to external subnetwork 
terminals; negative integers correspond to internal sub
network terminals. Identical integers and signs indicate 
terminals of the parent network which are joined to 
form the subnetwork configuration. This coding scheme 
is perhaps the most applicable to a computer setup for 
testing multitemlinal devices and for network analysis. 
An adaptation of this fomlat is the substitution of 
upper case alphabetic characters for the negative 
integers, since this scheme provides for greater visual 
clarity in identifying the unique configurations. A listing 
of a number of subnetwork configurations is found in 
Figures 5 and 6. 

Applications 

Identification of unique network functions 

The computer print-out for H (4, 2) is given in Figure 
1. These eoded subnet,vorks are relevant to testing and 



234 ·Spring Joint Computer Conference, 1969 

!::>b*dlAi:l 114*2111A 
HI 3 2) h( 5 2) !::>7.11A2A 11tl*Z211A 

!::>e*12AlA llo • .::1~1A 
1*12A 1.12AAd !::>9.dAIA 11 hdlZA 
,.1AC: ~*~~~ciJ.t uU.llA2u llb*-111A2 tl6*d3A14 114*223114 
3*~1~ j.12tiAA bl*12AlrJ 119*112A1 ~7*d113 115.223141 

o2*"lAIlJ 120*1<:1A1 H( 5 3) ~8*Z1l31 H( t> 4) ~7*Z13A41 
.. *11Z 4*liAAt. !::>tl*,,31A11+ 116*d3411 
~*1d tl*i2A6C 'o3*liAA2 121*dlAI 1*123AA !::>9*21311 

!::>9*Z31A41 117*212134 
6*lAZAL; 64*12AA1 122.221A1 2*123AB 00*23111 1*123,+AA 

0*<.11 
3*1ZA3A 01.22113 2*1234AB oO*<:34A11 118*Z12314 

7*lA2t.lA 0;'*.:1 AA 1 123*212A1 119.212341 
4.12A38 02*22131 3.123A'+A 61.11A23'+ 

8. 1 LI2 .. ..1 Ot>.11 ALl2 12'+.211A2 02*12A134 120*232114 
!::>*12AA3 03*22311 4*123A4b 

9*lAZAA 67.12AiH 1Z!::>*llAl': 
04*d213 5*123AA4 03*12A31'+ 12h2321'+1 

10*lA2oC ob*dAtH 12t>*llA21 6*12Ab3 
65*21231 6*l23AEi4 0,+*12A341 122*,3Z'+11 

1h1;\A20 o9*lA12A j.27*12All 7*IA23A 123*;::11234 06*23,11 7*12A34A 05*21AI3'+ 
1.2*lf,02A 70*1AZIA 128*dA11 8*1A23Eo 

06*,1A31'+ 12'+*d3214 67*.:1123 8*12A34b 13*10A2A 71*2AllA 129*22A11 9*IA2A3 125*.::13241 b8*21321 9*12A3A4 07*21A341 
1'+*1AA2A 72*IA12b 13U*21A,,1 10*1A263 

10*12A3E,I+ 08*23A114 126*231214 
1~*1Hb2C 73*i .. 2111 131*21A12 11*lAA23 09*23121 

11*12AA34 09*23A141 127*231241 
10*1AAt.i2 74*ir,llu 132*IAllZ 12*1Ab23 70*21132 

128*,,34211 71*21312 12*12Ab3,+ 70*23A411 
1H1AbA2 7~*IA1"2 133*lA121 1:3*A123A 129*211324 
Ib*lUAA2 7o-1A2Al 134*lAZ11 1,+*AI236 72*23112 13*IA234A 71*IA1234 

73*32211 l'U1A234li 72·1A2134 130~21312'+ 
H( * 2) 19"'111AA2 77*, .. 1111 135*",,111 15*A12A3 131*213 .. 21 

2U*1A6C2 7<:i*iA102 !jb*2A211 16*A1263 74*32121 15*1A2.3A* 73*lA2314 
16*11123b4 71+*1112.341 132*231124 

h1211A 21*>ll,Ao 79*IAc.tH 137"Z,,1d 17*A1A23 75*32112 
l7.1AZA34 75*2A1134 133*231421 

2*12Ad <!2*A12dA oU*ZAlbl 138*2A112 18*A1823 
li"IA~B34 76*2A1314 134*234121 

3*1,:.2A 23*"12,,A BHIAAIZ 1.39*A1112 19 .. AA123 
19"'IAA234 77*2A1341 135.211342 

4*1~2;j 2L...,.i.12AA 8,*'lAA~1 140~All~1 20*Ai:H23 
20.1Ab234 78*2A3ii'+ 136*213142 

5*1AA2 2!::>*;l.12dC d3*211All 141*A1211 21*1123A 
79*2A3141 137*213412 

bHAb2 20*A1A,0 0'''1 .. 612 142*A2111 22*1213A <:1*A1234A 
138*2311:'2 22*A1234B &O*2A3411 

7* .. 12A 27*AllJ2A 8~*1AB21 lI+3..,A22lJ. 23*1231A 139*<:31~12 
/)*,,120 2d*01A2A Bb*<::AI:il1 144*A2121 24*;::113A 23*A123A4 b1*A11234 

24*1.1236'+ d2*A1a34 140*234112 
9*1111..2 29*,,1A.lA d7*A1l2A 14~*A2112 25*2131A 

':~*A12A34 /)3*A1231'+ 141*322114 
10*11182 3u*"lb2C 8d*A121A 1 .. 6*11112 26*23111>. 

20*A1263'+ &,+*A1Z341 1'+2*322141 
11*AAI2 31*A1Ao2 89*,,211A 147*11121 27*1l2A3 

27*AIA234 jj~*"21134 143*322411 
1Z,. .. 1l12 .32*A1E'A2 90*A1120 148*11211 28*121A3 144*321214 2tl.Alb234 b6*A21314 
13*1l2A .33*61AA2 91*A121d 149*12111 29*123A1 

29.AA1234 b7*A213'+1 145*:;21241 
14*121" 34*A1,,~2 92*A21l1j 1~0*2111l 30*211A3 H( ~ 4) 

146*324211 
1~*211A .3~*A1bC2 93*A11A2 151*22211 31*213A1 30*IIB123'+ 68*A2311'+ 

h 1234A j1*1l234A 1:19*A23141 147*321124 
10*11112 .30*AA12i.3 94*AI2,,1 152*22121 32*231A1 148*321421 

33*11A23 2*123A4 32*12134A '.I0*A23411 
17*12A1 37*i.i312A 95*1I21A1 153*22112 149*324121 
18*<::1A1 3tl*oA12A 9b*Alld2 154*21221 34*12A13 .3*12A34 33*12314A 91*111234 

34*12341A 92*112134 150*321142 
19*1A12 39*AA12A 97*A121H 15~*21212 35*12A31 "*1A234 

9:3*112314 151*321412 
156*21122 36*21A13 5*Al,34 35*21134A 

20*1A21 40*ALl12C 9b*A<:lBI 9'+*11<:341 152*324112 
21*2;..11 '+1*AAlti2 99*A1A12 157*12221 37*21A31 6*11<:34 30*2131 4 A 

153*342211 
38*23A11 7.12134 37*21341A 95*12113'+ 

22*A112 42*Au1A~ 100*A1A21 ~5e*12212 1~4*~44::1a 
23*A121 43*tlA1A2 101*A2A11 1~9*12122 39*1A123 B*1231~ 38*23114A 96*121314 

97.1213'+1 155*;j4,112 
24* .. 211 4,+*AA1A2 102*A1B12 100*11222 40*1A213 9*123 ... 1 39*231,+IA 

25*1112 45*Ao1~2 103*A11321 41*1A231 10*2113'+ 40*.::31111A 98*123114 

26*1121 46*AA812 10**A2811 42*2A113 11*21314 41*1123A4 99*1231~1 

27*1211 47*A5A12 105*AA112 43*2A131 12*213~1 42*1213A4 100*123411 

26*,111 48*t:lAA1i 106*AA121 44*2A311 13*23114 43*1231A4 1u1*Z11134 

29*i211 49*AAA12 107*AA211 45*A1123 14*231 .. 1 4'+*1234A1 1LJ2*211::i14 

30*2121 50*AI;,C12 10&*Ao112 H( 4 3) 46*A1213 15*23'+11 45*.::113A4 103*211341 
46*;:131A4 l(j4*213114 

31*2112 51*112AA .L09*Abld 1*123A 47*A1231 
47*2134A1 105*<:13141 

52*121AA 1l0.Ato211 2*12A3 48.A2113 
48*Z311A4 106.213411 

~3*,11AA 111*1112A 3*1A23 49*A2131 
49*Z314A1 107*231114 

~4*1l2Ad 112*1121" 4*A123 50*A2311 
~0*2341A1 1U8*<:31141 

55*ldAti 113*1211A 5*1123 51*11123 
!::>1*112A34 109*231411 

6*1213 52*11213 
!::>2*121A~4 110*234111 

1*1231 ~3*1l231 
!::>3.123A14 111*221134 

8*2113 54*12113 
!::>4*123A'+1 112*221314 

9*2131 55*12131 
~5*~11A~~ 113*2213'+ 1 

10*2311 56*12.311 

Figure 5-Short reference table for test patterns 

network analysis since, as two-tenninal configurations, 
they identify unique driving-point functions. The tech
nique of generating the nunlber of external tenninals is il
lustrated in Figure 3. Configurations can be identified 
which have' the same external configurations, but 
differ in that their internal tenninals are joined or 
left disconnected. 

From H(4, 2) in Figure 1 it is feasible to generate 
network functions from four-ports of known symmetry. 
Two examples, Figure 7, define the problem to be 
solved next; namely, to eliminate redundance due to 
symmetry of the network. 

Thin-film Re networks 

Thirteen unique network functions are attained from 

both device A and B in Figure 7. Each circuit configura
tion is represented by one of the thirty-one H(4, 2) 
configurations, and may be identified by the letter A or 
B next to the appropriate coded H(4, 2) word and under 
the circuit it identifies. The eighteen coded words not 
representative of unique network functions, do identify 
redundant configuration::; due to rotation of the device 
about its axis of symmetry. Redundant configurations 
are designated by A and B under the appropriate cir
cuit configurations. 

Reference tables for test patterns 

To test devices and systems with a small number 
of terminals, say z < 10, reference tables to identify 
unique test patterns are desirable. From the test pat-



Programmed Test Patterns for MultiterrrJnal Devices 235 

U=--123011 •• 
n •• IAlUA 2» .... 2311. ,...ZlIIIA 

lIIh,zUa.zl 

~~llim 
u"auaSi ""'21:H21 

~'!Ioo.ul.:ul U"·dSl.U 
'.,..,aAUlA 

2'U.ZUIU """te.iJIUJ 

)0012-" "1.,t.l2~ 
11"23.&,. IoN_un ... ~.ul~ 

... .,.auul< :'.d~l. U •• .,;I:lU_ U"UU<311 In. .... ,U 
2' .... 2".' .56'.213_1.2 J"'" 1.2 ... ,21 •• 

17 ..... 2» ~.uu ... 
~.2)IA12 

..... ,1:31221 
... na 

u .. ",z3.u ".'2"""" 
I.U·12.)1;' • 

oIle*A231.U 
J!o)oo)2ZAU IU_2n.,. .-.S21A21 .. ., .. 211.232 

.a.,,)oo"u '-lolA'" 12)oo;U.lA&e lillr..lA2.U~ ;z~.u~ 

""",n.l.lU 
E6IO.J2.aa.z .71.d.J212 • I.",2U' 

11"01:12".., UMotl ..... IN-zaU3 ~U.U'" 
.1'3e.2U122 IO_U")lK 

14!1oooUlAAl 
.z.,a.aal'~ 

lMoo,UI21A 
~1l1.l11 

.hl" .... ".12""3 .. _",un ...... 1..,,. Ia.J.21AoI,l 
US-•• UAS 

lOOe.zUlOIa .~Ul22 ,,·U.u.38 121'.,Z3A&1 z-".aal», »9ooU&U) .. ~.uW _lolIo"'. IZ.U ... " ?O."I~X .2aoo.zllaaJ ~'A2'~ ~A2)U11 ~2lUa. 3100-12&.:" ,,""uuu 
U"·dlll" 

l.)oolaa,. 
1a.AUta" 

'''''''oZllA_1 •• .,.."U&. ~.U&Z, "''''lo2'2UA '-•• 126,,11 ."-lU.2)' ,-."..,,. 1.:.e.,U'''. ........ OU 
lOo"'."':A)1 

~1"1I' 
"""122123 

1'2·IUlIo ,0.1.2." 
1~ •• 2"3C 1')oo1o>1.&21.l USd12.,,' ."'2A.lA. :s.:s-..:lI.lll ".~"2l. 1l·1~' ... 12...,' 

U)oo12,.., 
lMool&!I'" 

~Al'I." 
~ll.lll ..... 122321 'Z.l.....a' ''''12''''' '''.-Ilouas ~""'"1 "1·»ZU:l U· ... I.ill& 7Ck;':~U .... "..., 

"-"IIJ&l' la-,ll""" 
IV-loU.e: 

)6o'-.lZ.UI 
~'UI31 

'9.~U.~ 
.... Uoiltl 

TieloU.,,", 1l0.cl'12" '''12.''.' ''''0/31 ... 
19)elAl3l. 

, ... ,lIY, ,...Z2A3., 
.a3eIUlil 

U'·ll~'" '",-l.,'" '".,l"'" "'12122' Ul.lll,:. 2.2e .... JIGI '''''l.':s.I "o-ll .... :u n.".I.UllI 
,,,.o/,,,",l. 2,.' .... ".. "·.Ill" '''',2:.,11. l»oeAl"" "1~3oiIo.i!1I "".31lUl 

2_·I~liIo. "l.ll.,ll '''111>2. "O.olblcl 1l~.211"'" 2s.-1112l8( l::'1 ... Ula,s ,sls.-.. lU •• ..... 23212 .!.~,I"/.I 2h1Mol;" "'.2UU" _""12» l<tl'el.J.IIIA ''''_2310121 ....... ,),l121l 
~.~ ... .t 

U1'e2U"ll oi1'el~ .s.-... 2X 201-.2UA.,. 'lh.:2U., 37~l.".» "'·.:""'U 
l .. '."" 

lcoze.r.a.)AU 2fo4_""'''Uli .5' •• 21 .. ,s12 ...... "oi,.. .,,').,2"lIa 2U ..... IIt.i1,s .5.9000oil2'.,s "'.ll&Ul ".Je31.1ll 01""l'" .,. •• UlE!. a.z .... , .. ,)10 ....... 2)<o1l2 

',,' ... 'I.3Ie 
.s""3211211 ..vo..Ulll1 

" ...... 11oo: 27.j,.I2.' ~ •• l'<"" 1~»ll"l ...... .., .. ue ),...~ .. Ul 
, .. )em-II 

91 ••• 'o.i1 ""'.IUl32 1_.l.IU,. 
.sa...,.U2., laI.l"'211 ~ .. , ... o! ... .,..""14'>- 1",,"J.ZI~' i40haa.", ~)eI.U" 

~1l2.sn 
J~ .... ,.,c.i! .)1·.:1).11 

IJ9ooI12H"t ,,,"J.1!1I:r .. 
~'Poo~\!!.t...? 

""'III2IU 
.$,s.ou~3 oi.12'" 

''-'231 .... 91"'UZ)oo 
..... J.ZI-.J!l ,...tt.a.l:M .... ...,.2l 

2.,. ..... 131 »'feJ.U2al )81'.4'.1113 SO.)eU3lU 
"...,2a" ..... ",...,121 

"".~'Z.l 
~loiUI 92.11.<1.)10 

"'dUI2' 
21::,.0.1 .. 12) 

~ISU22 ........ Ull la.dA13 

oi 1 .... aA,/lU 
~11lU2 IIogel.l.U 

~.2U.)Io 
21'.'&&0:31 ':~"II.i!' W'· ... 611U ~'.3lZl2:1 

1U~.aI&oil 
"'1&lc~ 10.0 .... )&'1., )9l· ... I12U. ~3.J2'll .. o-.It,iU .. $oOOI-X' 21,. .. ,231 39".i!62311 ~~»Il 10"""1.1:1 

".,... ... &'2.3 .. 2<0.1:",,3 •• "..,l"&!11 22'."11"4'3. )9!)el.lll • SU.,s,z!lllZ .i!hldl 100).'Z,,"" 
~ .. &3Zn !!.12·.J,ll,sU .... ·oi.'11 '''4'51, .. l~I ... IU'" 

'.~":l""" l ... ,.",dl& 397 ... &l1l) ~''''J.1!UZI· 
,il.·lt2l1l" 

" 10"'.oU"'" 
1 ... ·'2I0I013 

U~ ... HJI" ~o<""l1l Sts.-l22.U. :.'.Ill .... 110 ...... .,11 .. ll_.ZJU· 
11I~ .... IlI.1 IU ... ,. .... S,:r..3.Zli!ll ,000.~U .. 1l ,.... .... 12 .. 13 ooo.z. ... .sUl 1I~.Ull. 

1,* .. '11'" 112.,i)aa1l 
,M.1 .... 1U'. ,.~oi'.i! .. '1 "1I"Jl.C211 sa".)2llU 

~.;:J.i!"'1 ~31U2' 
~.I.2'i"~ 

UI·4'2U,", ".:IU 
112.d13 •• 

• O"oi'" 

!o'.it".SU& 
"l".1llo~U .. , ." II .. • .. I ... ~· 

l,pZJ,I.'!ol 
"-'-2.51l1"!!. "".Z)<O.~' 

~U2""S 17··.a"U"IS .tlC"U"!IoUI 
I '~."".I""'oi .uh .. l."1 .... ,.1tlLC1J :..,.,. .. '1..: ll:r.""" .. !oU 17~ •• Ull":O' c'''lU''''5ol ..... Joo~7& 

"14'~ 
l ..... I.'4')It!o ""'oi"'.U:; ")u.iU'''~ i"ll""=--. "I""'~' 11 ...... 1" ...... ... "" ... I' ..... ~ U900U.oZI)o1.S 1':r. .. "'.I~. .:.1I!oe..:l.)loI~ S·U300~7 

!ooo11l2.h:O 
..... 'c3/lov" 1""lolll ... S 17 •• oiJ1 .. ~11 .:-,"lU"Sll "'ll)e.l.:", 

~'·lI;;I.' 121·11.2:",",:. .:.)1'.l31I"s.z :o.,.u."'~ !\o6.1clA"5407 .... ,.i!"..:O 
·!'eloisa .. SoI 

-"I) ..... ~ U"·II.2:"'"SI lao...i!.)oiIlS, ls..i"I"l!o.l 

I 
.. 1.5.u I2A •• ........ "" ... e., .. ,..~ 

~213/101.$ ll"oi.n~!o 
''''.23/10:011. 

"""U,..,..,, 7e'61!loo!l401 1 ...... 1.&(2 _21"'~1 '2"."ll, .. :. ..... ,,-..:.s.U!o.l 
".Il"'~' :."I·oil .. I· • ... Il,.....~ .'.oi.5l1W'!o Ic!ooo...:"I""~ laloo""U"..50 4"o1e.it""Uo12 9000112"':..' ' .... 1 ....... " ~ .. 4'·' .... I ... 

.. ".ol.tl .... ' 
,.w •• 11 ..... 10.,4''''''''') 1 .... 4'll.5 ... $ .t02.l""~U.i! 10·1.4'1)e:", 
~~IIUAt 1""oiU""':; 

..... "I .. ~1 127 • .i!.SU"~ l~oioll"'IS oi""'loUlI"~ 'hl4')'.:"7 11·loi'·"· 
1_"' • .:1 .. ' ..... !'c>\t • ..:I.tS(,1 10 • .:""U"~ 12 ...... " .. 1' 1 ... ·"oi'"..~' IZ·'2)<oI!ilao' 

• '.loIoI·I· .. t 1&,.. ..... ", • ~ .. ~·Il'l .... • 
,,. .. ,, .. S 7h2""'1!>61 Il"k.o")I"~' •• T&.i!llU.' l"!Ioe.lo/.u .. ~, 1SeIl)<o').,., 

l:O.oiU"!>l 
'.i!·."'!ol"', 1"" ••• ""'). 

'lrh2131"$, 
.: ... ·.s..:200US '''.I4')to~11 

".U,,",.(( .... ~.i.h· ..... ~"' .. ""',II "4'10"1"12' ,,"' .. .wUI( ~.I" .. llJ"'" '.)eUi:)l.il~ 1.51-..:"""'1:01 l'I'''U","I:O, I::'·U""'I 1J.i!.:.' ... ·2 ...o.M;l,iIlC 1_ ... .lIl .. :. 1»*l."',U 19O-4'oi.5ill1$ J ... .l.I2'I:Ou ."11 • .s.:"7 If'.'l.;.!o( 
,.. ... IM ..... ' .. oi).~.'I .. :'':''i'·oiU .. 1.ti 1·7.1 .... .sa..~ ,~.Il' .... '!o l'l"ll ... "..~ l'ith2l..500Ul 2 .... .l.Ild .. ,. .'·.!I.u.~7 17~1~I.C 

1".. ... 1'"""'" ~ ... 'oi!t. 1geoi,so,U'). 1ge1l .... .)Io:, 
,..' ... ,....I'!o '".. .. 12I.Jot$ .'he.l2)to~U .. ~.3.itU"I:O 1 .... )<01:..1 

U,,"'1I,(1:2 ... ,.aA,;.I&1 1):O •• 12.l1"S 
19<Mo2:U""S 

oi!oI·.52I.t<o~1 l".!I)<O'). •• ' IJo> ..... I~~ 
.. "'."1 ....... .... ,..d .... '. 

.i! ... ~,so,I~1 2<>.14' ... .lIt::o .l,...,.2lel!o 
2~)·32<o.I1!o1 

lOe2131t'!leo" 
IJ1 ....... ' ... ' "1.U.2.h!J4 Uh&Il""!o1 1<r.:o·.o.I • .s<tU, 21 • .11""".'. 1.)o)",,'4'C" J7oellol. .. , .. 

.... ,. ... 11 .... 
U.U.2.h!>6 

.1.4'I.)Io"~I UgeI..i!U,.:, 
.:~·J.i.to.t::'11 12·.,sU.~' 1.we ... :.I.::6<. JPl"I"~. 

.~ ... I.l ... 
l').,&2)e.1.!O 

"~~.\lUl'l:' 2~1"'~' 
Jol,5eII.t>C.U ~I". ~7.UI.a. ~1""'loIo .. ~ ' .. 1 ...... "..::.1 1~..>olI .. ,.1 

':::".J.llotll) llHo2,s.":'I.r 1 ... 1-1.· •• ... ~hlZ ... U· .:S'.),II*.I')1 n.l,sI"""17 

l .. ,.""lJ"l~ d,l .. 2J.i!"1S1 
c~J,t<o'l'" z..I»..s.Tl , .. )e.l..I4'lI 

ll .... II ... AI, 
"""IlI.U, oi,9000,u"ll:'l lh2""1IS.~ 
~:.o.oiU"llo l",..a."..S 

.hoi",":"'U 
1 ... 00.\2" .... , .U-l· • .u"::'U 

.... 1.".Ul .. oIS 
".·""'1:01.7 1 .. 'ootI·I ...... 31".l"I&to .. .I .. ·.r.b>lIC 

........ oltIIZCI !O~2.l1.i:Utl 
l"!o"i..2J<oII:O oiO.s..1U.)Io!o 

.:"".Jotl~" J<'.I.~' rl ....... "12 .. 
"',cl."'::' '.h ..... ' .. !oll 

oiW • .kI"lol!o le-2""'~" l .. h~"'..:!'f .. .l~ ... I~1 !o~"' .. U..:1' 
.. O ... ll'-:":Ol 

oi.".".:1 .. ~21 Joh2.)1i1~U.' 

!o~~lI .. ~ .. 1 
"·12", .. :0 

'·"'1121"":. 
.: ..... "" .. ,US .u • .!""!o, .. " 

~.'c:s.a."SI 
.uT.2.)l4',.'). ... :...u.ISooiJ »e.i~1'1 

_' • .w-..I"I »' • .:11"'1 
l'!oU.UZSl":' cO&.2.51.t<oI'!o 

4' .. 1 • .).:1100::.2 
''''.l''''560117 

1~1"_',"C cu .. ·.:.".I ... A,h.I" .. l" .50'."1 ... ' ..... 'it,s·lU".1Ioo!o 
l~"U.i!.)oo~1 

.:1».,.· ... !IIo/ .. :.l .5~""~.,1 
I~· .... I~:( 

J""I .... ,..::. ~.JotS.1U 

I_ .... I~C ~ ....... 
"" • .:JI.I"~ 

':"·4''''~ll .'\O.J2 .. Uu 
J"'ll.' ..... lt 1·,~""1 .. 2" 

I 
~'.II'''''' l!I' ... l .... "..~1 

.7'.U·!)12 
1:.>t>.I,.~I""~ 

':oolel,U_1 
.7.i:"!4',,:Olloi 

l!o"'J.5I1"~ 
.:1".4'I)eoi!o1 

.1J·!Ito24'II::' 
I-"' .... '~ ..... 

l!o9.1lS1":'1 "' •• ,..2011:01 
1"''' ... ··la~. ...... , .... "..:..\ 

.17· ... .)11 ... ~ "'!o."'U~1I 
1 .. " ... ~I .. ".i 

"J-4'JI_l~l 
.. h:o."'ll.i!1) 

1" •• ""I.l.." 
),IO.JoOl2C.lI ">C>IleU"la' 1""·loi"'').1I .oilo· .. l<ol"l) "7 ... J"4'~11 

":".).a..i!oIoI<J1 ~U"'I" I .. J·~UI"':o c~~"l!> 

h.:O.~.II,..i!l !", ... U.:.2. ~1'.""b.c1. 
'!o11a*12"U. 

~I"'''lall;> ~12""'4'''11. 
,,6"':"'.i!I:'lc .uhl.ll'''C~ l,,""UAto(2 :'1~·""'121 ~r, ..... It2I. 

loll ..... h"2 
..:u~.oil ... CI ·,'1·" .... lll ::>7:0.ll"lzr 111."I""'!o1 ... oi'·':JI' .. oi~ lu~.u.I"C~ 

.i!dO.l"I~'" ~ld·"""'I4'1 !o7 •• UIolI1' 4'100·""::"'IJI 
:I:I.I'lI."2A ", .. ,,,,,,,, "1~UC1"'" ~'U.1l"'1l1:S 111.';::1.)001)1 ... 2"''''1''~1 4'.7.~!w".l 

1' .... .i!1 .. ..500:..1 ... .l<t.'loil't'!o01 ,....· .. 'II .. ol~ .. £IIt.·' ... ~ol~lbl 
""'·2".1 

5rf>el~O. 
•• s..l.AItlloolC 

112.1&8C:,z.u. 
.:8'iteUll":Ieo1 _~·"'l:.o.lll ~7"ll.1111 ........ U ... l S'·laa.ucg 17)eldMiAC ~7.1I ... "..'.rI4oI. 17)el.),lII .. S. ~" .. JI .. ,4':" 

)79.oil .. ,.- olh.i!.U .. l "::'-"UA21 se.1II2.Kq I"'.~ ';od·1~1"')w' 11 ..... ""'').1. .. 1 l,..·.i!""I .. l~ 
2l"'l~lJ.,!Io 

.. 'foQ.~oi""!1o 
".~ ... "1"32b1 "07 • .521""150 _~)e.2'!o'.z. ~".i!U4'1I1 ."'·1.11.,-, 1>9b ... U.lI .17·,iIINIIJCO I~w.w: ... '·12,..'),. .... l"'l·l""',)10 

.. "...I .... ll o"I'·.uUIl 11 .. 1ttC.i!OId ''''''ldC&au. ",".I~.J.oo'~ 
119 ... 3/10:...&.11 17·,. .. .),l .. 11~ 

.."".,cIJ .. ~h' 
..... J .. .:.;:,..').I' .. _7·J...z~112 .. _li.1A2.U ..,.. .. "":iI.11 "'l.i!&llCoWl 

W·.II2CDU 
U9e11082A(..l. '77.'~ oil4>.I.iSl1"::"" "10.J.i!.12I!oo .,.1&2 ...... ""l.t.HCO" ,2<I_lltII2C.M 1''''I&M2eto 11tJ •• "... .. 1~1 .. ...... oi""..~lol 

IoJelA2.....c 1""'1~ """'Il""=*" 14'''1.i'.5M~ ".l1.,dh,:.. .9' .... .:.i"..-.., ~::.J.e"l<o~Ulu "'I.J2"U~' .. 
lO'."U810/ U2.LtJUAC. lllCl.1A&62M ., .. • .. IJ1 .. :>4oA "'''.Ulh~h ~9b·~121l"~ 

,').!ooo~"":.o.I1l 
"la·U",lOj4,1 

70Z."11112, •••• 1~ hloi"".:.o.t. "~,,,'''''I- 12'J.lc,so,,II:'" Uh .. sa"!>I"l ,,"'''I~'h:.flo' ~"7e"'12'h:;' "U·.l2"~.uI· 
laiel...,..,. G·loi.)oo,,~ _·,1.5 .. " .. IZ".U""ol!olo Ul.l:· ... " .. ~ll oilOO.,oi'''II:;' ....... lI<i: .. 'll.1 

9oo,.<tiCaa. 12)oJ.u.l.Uo8 .... ........, .. h~I''''),.1II lZ')..ll".. .. "" ,"lelll14'.5-::;o .... I·I",..I~I. ~'Ige.i!1'<'''''':!>1 • .I:O"J./."~.11 
.. 7"·,5<ro.2~Ie.loi .,..7.1 ..... 11 'O~A..tl2ttlU t2toe1 ..... 2A8A ' ....... 0URC8 _~Jl"'~ 1 .... IA2'J<o~ oi"i·,,,JooI~' J,oG • .i!,2.)eoo:., "1e.·~1'''l!* 

.... e2 .. UlII 1~11oK_ Il .. , ... ,..U.!ou lli!oelA2"":" oi_"'''''''':'I1", JO'.",,,",I''':;' ... 1e.lll"IZ!oo 
"""JoO~ .. iUIl" ....... 24.20111 707.UIIIll U.14'.wc..o 1~11IIol""" ._-l&oeU."".IooI'.rlo oi .... ·loi,..~lol lOl.l.l21"1;" It>0 .... 1,..:...21 "le.31."!0.2,_ 

=>"2.21"'81 .. ::.t..2"',8ZI l"la.....co ............ '.'.tlt6A2llC 11 .... ,100,.1. loi"· .. I"...::'I .. UI7.Ia.:""~I .. • ":"'t.:l<o:.ol' 38"'.2lil"~I .. .lotol·JJII":>Zct. .. ' .. J21 .. ~1 .. n·""!>ofd.1 
::09le2l.18' ..)I·,u.'III.i! '1I .. ·.I.Ul 1,... .... 2 ....... --<e2<I.~'U!Io 1J8·dl<o"::"1 .-, ... "..:.... .. _.,,,,,,,s. JOIo"ol.1l2'''S.l 

.>o..s· .. JI"~Ib> .. Zh»"'!oll .. ~.1""112 
l .... AoUI .. 

IlIl.1AI.iIIdC: l .... l.cA211a 1')..l~,"!>lIo IJI·.ill' ... ,.. U.9·".11,J<o!ooo ..... 1.211JI .. ')o .5O~.212"lI!oo 
.. lI&e,J<o!o.;!12to1 ::>9Soe2l.1~ ll6.)<OlAAll1 112 •• .r.A28Cb ._-1( •• loi,...."., I,.,· ... JI .... I!>. ,'itOe.i!.UI .. :!>co .: ... ·~Il""l:.. .)Oboool.s.a"l;l .. ~·,w.I~1 

os..·I&a..!1I U1.U'd.tte l'h • .-..u.c: .,., ... "......,., IJJ· .. Jl .... ::.b. 191 .... ljot.l,., " ..... 211"":.10 .IO~.2l'>1J':020 •• ) • .5C"~Ul .. .... ·"..~"' .. 211 
::>97.11""1 O!o:!>e.2"'UI "~"""12' 1 .. 1a..uc:. IJIto.l~ ,9l.IMC:Me Idel.iJoOoou'" 1_,:l'I',lot.oi. ',.. ... Jl ... !>.! lw· ..... I,..~'. .:.o .... U"":.e.1 ".i!<I • .5.il.'!o,do' 

,..,s·"'''''1'-21 'l5oe'fIIUAdC 19)elAC1t.1:. '''·I ... ''''''''!>O .. ~1 • .21111"'!oo »'· ... ,..I!ooll 002S_3.it"!ool11 
to:!>1oo':AA121 ~0.14IC""''' Ue..I&ll2ACB '900.1"". llt>4oijliU!oI .. 1'itoo ... Alll"':.o ",!W • .:ll'''ISo "...~,..,.u.z. e.i!c>.""ll.~ 

13' ... &(oi .... '9:!>.I~ '''''I"I''''=-e "l1eJoil"I~l1> .. e::'·"":'2UW .~·4'''''lc 
22"'~ 

131 .... ,..' .. :.401 ''1!0· ... ~I .. l'';ot;l ... :0').2131":01. 
J" .. 2"':"I21 ..... .sd .. ~.". o::o<it.,_ll" ,"QIu.2U 0».loi2l.21 .,..- 1-. ......... BO*loiU,,!IoIo. l ......... U .. ~ ... 

... ~!Io.~I)ooll!oe ""',J,i'.--.al ... 7· .... S.U2 ..... 1 .. 121 I'''.'''~ 2~·1"_J·"''''' 1t,I' ..... 31 .. !>bl 
l"u.,A64'CI.6 l .... .IIlINIaol Z".U""":Ida 1'Ie ...... .)IIII!>u ... ~ • .il)1t1'!o1. 

~.,..l~ 
.. .so.J./:"U$lo 

~'~l ... - .--~·I4' .. "" .. :'O • .11001 ... .11>0:..1111 1 ..... '2"JOo')e l'r'l>.l.""'U. "':''''oil''''~1 ."..",..~ ... 
.:00.11tAo\l8I •• ·loi.""':- .... ~IIJooo~ ... 1 .. ~·I~lil' .. ~ ~lH)·l.,..I,.,1 .. ~ • .i:I"'~" .. 

J7S00l1.)1o'!oo12 
_12·s.:"1:..21 
.''',),l4o!t.,I2a .').."", .. '). ... .. !ri· ... ,.s-... u., .-- .... -' ..... '01.,51.0<.1.:... J.,.... .. "l .. !i6o! ""'''~!IoIMI .II ............ :.. _d"'l~ ....... 21..5<0:"11 -_ . -d1 .... ,..~I ... ~I,)).l."..,..'l .2.'1 .... Jlll~ .... ~n 

'~·1.i""c161:1 3ij·12.U"'!oo ..a.oi I "':"'1 1~.·U.1l. .. !obl "O".illl2J<o!oo 
.. ..,.ill' .. !>I. ),....iIJI .. :.. • .I: 

.lco.J..I.I ... !oto.: 
'01 ... ~211 "".I':'I..i!AI:* .i:1I"'~ .... 2JU .. !:>Ao 1""'cU"Jto.!Io "O::O"'121"'~ 

.. .)b • .$.i!"'!oltol .. u·."uu l .... ll»&.t~ .:_·1 ....... 9\>· .. JI"l~ .. w-Itl"J •• S. " .... ~.51h~ .s.o·4'.)IoU'!ooi 
74'S ........ "l ..... " ..... ",.,.....,.. 1"""1"...1:.., "O'''.UlOol1. .. toh.U"'IS. .M'e.ZlIItUtJAt,l ""' • .l2:I~U .. 0 •• ,*2Dl .)oo·II112:Joo~ I~O •• I.!..t.":'I .. .:o.-.. , .. ,so,!>I" ....... JI .. l!:ol .. Je2 • .i:"l~U 

....... U .. !>ltol dgeIMIIC" .l~llol"""'~ 1~1"'1"""~1 oi,)',lOlt'''.)IoSlj,I "b.". ... ll .. l~l ~le2~I1W 
Isa.UItto2lI8t\ .:Io •• .tIIaiiIItaD So·lAl~:.o 9<o.~)"I~I&O dO.It.2II""'!oo ...... 4')1 .. )11. ".....lJlt'.rlI.U .... .2·.l ... ',...I.I: 

"'""l"~ l:;),&ltI6.;t ... 1.8 dl.'1.8CIoiO Sha.u:JAot.s.. l!0.)e.2,u ..... l!J. .:UaA.!I'»oo!to ~ ... ". .. ) .. , ~,so.5f:>'U .... .,.3,2 .. :.11W 
•• '''U,U.z. 7)le.lltotZ'2U )ee,..!..,. ..... - J.l ... ·'MICOafI _ ... )<o!loll .. 

1:!oil • .I:~III't!oI. oil""&iI""S. ;.7Ckl"I"!oIoU .... Rall .. :.. ....... ~ll 
1)!>-IIII8.iIIItA. <I.1)e1~ 

""lAl~ ., .. 3aZl.1~ ."!>e.)lOl!otolU 
lJ~·A02Ui 

'9.1"2~)ro'.rlo ~tl""4'I""~I" ... '1 .... ,..'11:.-
"o.SI.lo"'~ ,. •• "'')01_' 1_.1 """ll')e cl"'I..i!I.JIt,., "n.l""II:'le .)Me.t.aa'.Sh ... _~'I!oe 

.hS4'AC.1IUIl I~'.'''a../Ul .. 1.1 •• ~J"~ "".lU,,""!>o ,:o,.~.)10"'!oI .. .. 7) • .2"'11:)601 ,,"",'''''a,.$601 
't2e11lllool""s.. '1Ml.12.1~ 1~"""~1 ... 1...a.tU"I:!oa .:7_ ... l<ol~t .. MGe).Ull11S. 

.... 9000~n ••• 1!>ge,IiI8C.!/JI(J .:I:r.ld't~ ""'.U.Jot:...r. lUl.1.i,. .... !)co 1::o9ot"""':!>II. lI7·".UI~!oI .. .:7!o.2"1~161 )91·.i2200IS1e 
u.o.ueclI,M .:I .... ldCo.a.u. .... • .. U.5lt!o6G 10".123/101.::'" ll>O ... ".. .. '!o16' .. 1 •• 1..1:,. .. :..1 ... 7b ... .)Io1~11 ,w,i.J.22"ISOI 

"I"~ .:"ltl2.)1o!oAo IO"Il"'~."" ",1·oi~11 <O:1ge.r..i.)ltll!Mo d7 • .I:.1It').llIo JI't,5oe~l'o 
"u.Joo2lZ.'!Ie. Itol.lbKZ-.o ... 2o.Utl1CDlO IU"·l.""":o.Io01 11>2"lIU]Io')o .. cO •• "S"l!o16 ... 7/t.l"..~11.1 ,J94o.3l'2OI!o1.1 

' ..... oiCI21" .. T."I2""'» 1O~.2U.)ttol.S. ",U"A2:]oolSOI .:7ged"~l"l1 ~l42'o::"ll ":O.)e)ro2.12Sole. 
al'.lI.1U, ... .22eI"'O&28 ...,.. .. 12J<oe50 ilMl·"I3I ... :.. .:..a.A2.31t)11. .: ...... .!""'!.ltolU " .. ·Jo.l:UI"'!oo 

... ~~.".2:..z1' .. ,a'-11.8&C2 • lU1·d,so.~ l~l.2I.""'!>oe "",le",""!ol.l ".,.UII.)Io$o MT·.s.alifll$a 
7.:' • .:1lIl. :.0. .. 12"":" ag,a..I.JIt!ooAl. h •• l.ilAJol~I. ,u...0\2]oo:!>all ....... .i!.o1.11 .. » ~.szlifl~l .. "'.Jb., .. n.u.1 

I • .".l .... "~ ~1 •• ll.jIi,!OO .O'hoil.)t1~l 1 .. 7.1.i!."'561 d~·llloi""!oo ~.'.2 ... 1""'.rIo 19'h.52loi"~1 ")'."'~.II 
~.AIZ.~:.o 11o..i!JlIOlA!ao> ....... <o: •• IJIto!ooo .uc.eU .. ,,,..s. " .... 2"'"..~ ... ..ooe.l.lIl.lI.S6 .~ .. )oo2Ul:!>a 

"""'''ll21" • ))e .. 'Itl"..~ 111·2""1.:'" U7e112,s,_'!oo ~..se211.h!otol "~.""21!0.2' .. 
.Slool..W .... I 1'0e14'W2A8 1'rIte.iIU"lM ...0.34-21:0.,1 :O-I.11Jl.lOl'S.o I1l.~""""'l" a.ool,2.11oo1!oto .: .... c2~UI..,. 

• O)eJ.lfo.il~lh, _1 • .)tIZ:0121 • 11J.l~ • ~!o·""12"'~ IU·~.$I"~I Irl· .... .s.M. ",.i'i'·II"""::ot. ... h24'JI.IS. 

Figure 6-8ample of reference table for test patterns 

terns given in Figure 6, optimum test sequences can be 
constructed for use in testing LSI packages and other 
microelectronic structures. A further use of these 
tables occurs in failure identification techniques based 
on a systematic scan of all configurations. It is antici
pated that these tables will fulfill a similar purpose as 

the table of partition number; namely, usefulness for 
paper and pencil calculations which do not justify 
utilization of computer programs. For applications 
involving a greater number of test prints, computer 
programs are essential. The total number of test pat
terns shown in Figure 8 listing H(z, x) for z::; 12, ex-



236 Spring Joint Computer Conference, 1969 

A -SL c_ 

1I£....Cl 
B ~~ 

12P.P., 

l~AB 

\ 1 A?A A 

11.\2B 

lAA2 

lAB2 

Jl12A 
/\12B 

A1P..? 
.A.1 B? 

ftA1? 
P.~1? 

112A 

121.!i 

211ft 
11M) 

12A1 
21ft1 

1ft1? 
1 ft.? 1 

2All 

Al12 
A121 

.A 211 

1112 

1121 
1211 

2111 

2211 

?l~l 

2112 

~ GJ 
~ 

-c 
~ 

NC-r::-'l. ~ 
~ R ' 

ct:..J 

B 

R 

j\, 

A 

~ c-
~ 

R 

NC-Do 
~ 

A 

B 

A + ONE-PORT 
CONfiGURATION 

B * 

NR NR 

c:=-L =:c 
--;;"" --;r--

~c£"L 
~NC -it" -n" 

B 

B 

A 

A 

1. 
2 

~" JaNR NR 9'1 Nit El" ~ c- c_ c~ c_ k-l _ C_I_ 
~ "- '""t!J ~ C --r-

A 

B 

B 

A 

B 

A 

A 

B 

B 

A 

B 

AB 

A 
Figure 7-Unique Rubnet.works for device with specified symmetry 



Programmed Test Patterns for Multiterminal Devices 237 

Z/X 9 10 11 12 

10 

4 37 31 10 

5 151 160 75 15 

674 856 520 155 21 

3263 4802 3556 1400 287 28 

17007 28337 24626 11991 3290 490 36 

94828 175896 174805 101031 34671 6972 786 45 

10 562595 1146931 1279240 853315 350R89 88977 13620 1200 55 

11 3535027 7841108 9677151 7300260 3492511 1069068 207537 24915 1760 66 1 

12 23430840 56089804 75750752 63641006 34669734 12428746 29286fl4 447612 43175 2497 7R 1 

Figure 8-Listing of H (z,x) unique subnetworks 

tends previously published results. l 

Future investigatioos 

Problems to be solved 

The computer program presented here represents a 
step in the explicit formulation of the N(z, x, y) subnet
work configurations. For optimum exploitations of the 
advantages of this program two additions must be 
made: 

a. A routine must be written to take into effect the 
symmetry of devices and networks. 

b. A separate computer program must be added to 
generate and list the T(y, x-y) configurations, 
and thus obtmn a complete enumeration of 
N(z, x-y) as defined in an earlier section. 

Methods under investigation 

The symmetry problem may be approached through 
the use of a tagging procedure which will identify the 
axes of symmetry of the device, as well as any peculiar
ity of the device which must be considered. 9 

Figure 9 is a print-out for the H(6, 2) configuration, 
asterisks denote successive elimination; 

(*) by symmetry (543216) 
(**) by symmetry (216543) and 

(***) by combination of both symmetries (426123). 

Proposed strategy 

Upon solution of the two problems discussed above, 
the computer program will be developed. The proposed 
strategies are: 

a. Enlarge the program to accept devices and net
works of more than eight terminals. This can be 
readily accomplished since much of the program 
is written in modular form. 

b. Test the adequacy of the program in a laboratory 
situation by applying subnetwork listings to 

failure diagnostics of multiterminal structures 
and to selecting network performance character
istics on the basis of subnetwork listings. Pin-to
pin testing has already been effectively used for 
screening of multiterminal integrated circuits.lo.n 

c. Compare combinatorial techniques with alter
native computer-oriented approaches for fault 
isolation, such as performance variation analysis 
and worse case design.12.Ia A detailed. critical 
assessment of computer-aided fault identification 
techniques is given in the current issues of the 
Reliability Abstracts.14 

Figure 10 defines unique two-ports for two sym
metrical devices, as yet algorithms to define correspond
ing test patterns are not available. 

CONCLUSION 

A computer program, primarily relevant to microelec
tronics, has been developed to generate and list the 
many distinct configurations of a multi-terminal net
work or device, realizable through the suitable arrange
ment of the terminals or accessible test points. The pro
gram is unique in that it utilizes combinatorial tech
niques to generate all of the non-redundant subnetwork 
configurations derivable from an asymmetrical network 
or device. This is accomplished by a systematic shorting 
and opening of accessible terminals to obtain the desired 
allowable configurations. 

The prime advantage of the program lies in the fact 
that for': large networks of seven or eight terminals, 
thousands of unique configurations can be realized. 
Hand enumeration will not suffice in attaining all of 
these configurations. 

The program is applicable to testing and network 
analysis. In particular, the computer print-out provides 
test programs for devices and networks with a small 
number of terminals. Failure identification procedures 
based on a systematic scan of all configurations can 
utiliz! such test 'Programs. 

REFERENCES 

1 W W HAPP 
Combinatorial a'nalysis of multi-terminal device 
IEEE tr.msactions on systems science and cyberneticR 
Vol. SSC-3 Xo. 1 June 1967 21-27 

2 A S WEITZENFELD W W HAPP 
Combinatorial algorithms for computer-oriented fault 
identification in multiterminal devices 
Proceedings IEEE-ESD Symposium on :\;Iaintainability 
Concord Mass April 1967 Also published in revised form as 
Combinatorial techniques for fault identification in 
multiterrninal networks 
IEEE Transactions on Reliability Vol R-16 ~o. 3 



238 Spring Joint Computer Conference, 1969 

5h1ll8'2' • 109*A1BU2C • 167 .. UIAC2 22~*A6C012 "8~*UA8C2 .. ~'+hlI1A2111 · ~99*Ala82B . 
52*lAAA2., 1l0*A18C2B • 168*AtHCA2 22b&1l2AA8 2811*12A8Cl .. ,),,2*lAA22A · "00*AllA2A 
5~*lAAIl2A 111*A16C2C • 169*AIlIUC2 ;.!27*121AAIl c85*12ASC2 311~*lAIl12C · II0hA12A1II 
511*lAbA2A 112*A1AA28 • HO-AtHCli2 · 228-122AA6 28b*1II12AB 3"II_lAB21C · "02*A12A2A . 
55-1ASIl213 • 113*111AiJ2A • 17hAtUCC2 · 229* 112I1BA 287*lA21AB ",,5*1IIB22C · II03*Allb2C 
5b*lAAA2A 11"-Al8AlA • 172*UI1182 ~30*121IlBA ~88*lA22AS 3"6*lA11IB2 II01l*A12BIC 
57_1AAlH!d U~"'laB2b • 173 .. AIUA2 23h122ABA 289*lAlluA 311 7*1 AA2!l 1 II0~*A12b2C 
~8.1A8A21;1 1lb-AIAA2A • 17 .. UIlIAA2 · 232*11.2AU8 290*lA218A 3"8.IAA2.!2 "Ob*A11Ab2 

1*12AAI;IC ~9.lAI;B2A. 117.A1Atl2S • 175_AS16U2 · ,,3').121ASU 291*lA22BA 3"9*1ABIA2 .. 07"12AS1 
2*l2AbAC bO-lAO'20 US-Ai-bA2b ;, 176*AAIAA2 23,,* 122AUIl 292-lA121lB 3~IJ*1AB2AI II08.A12A82 
3. 12AIlCA 61*lAAUC2 119_AI61l2A • 177*AAIBB2 23!)Hl,AAA 293*1A211>S 3!>hlAB2A2 .. g9*AllBA2 
II. 12AIlllC 62-1A8AC2 120-AlbC2U • 178-AIHA62 236*121AAA 29".1A22dS 352.1ABIB2 "10-A12SA1 
5·12AI;ICd" 63.lABCA2 l<:1-AIASC2 •• 179*11ulBA2 .. )7-12cAAA 295HA12AA J53*IA8261 U1*AI2SAl 
6*12A8CC •• 6"-lABUC2 122.AIBAC2 •• 180_AtnC02 .. 3S*1l'AIlC 296-1A21AA 3511*111821;12 "12*A11BB2 
7.12AAAd 65.1ABC1)2 123.AIBCA2 •• 18hAAiH2C · 0l39.121AI>C 297*IA22AA 355-1AAIA2 1113 .. 12BBI 
8*12AA8A 66*lASCC2 1211*A18dC2 •• 182-ABA12C · 2110-122ABC 298_1A12UC 35b*lAA2Al II111*,,12BB2 
9*12AUAA •• 67.1AAAu2 12:hAIUCU.1 •• 183u8C12A · 2'11*11A2A8 299*lA2111C 357.1AA2A2 1I15 .. 1lAA2 

10_12A8t>d •• 68-1AAuA2 l;.!b-AlhCC" •• 1811*AUB12C 2112*12AlAd 300*1A220C 358.1AIlIC2 1016*A12AAI 
U*lOlAAAA 09*lA8AA2 127.AIAA02 •• 18~.AuCl"tJ o: .. 3*12A2Ab 301&1AIA28 3~9*lA82Cl il17*A12AA2 
12*12AAllB 7o.lABBtJ2 128-AlASA2 •• 18b.AUC12C · 2'1"*11A2sA 302-1A2A18 360*lAB2C2 1118&,\118C2 
13*12A8"B 71*1AAAA2 129-"18AA2 •• 187*AAA1,u · .1"5.12AIllA 303*lA2A2U 361&IAABI2 U9*A12SCI 
11o*12A80A 72-lAA882 130-AlbuS.1 •• 188-AA812A · "II6H2A2uA 30"-lA182A 362.1AA821 "20*A12BC2 
U,-12AUCO 73* 1 AbAI12 1 31-A lAAA2 •• 189_AbAl;.!A · 2'17*11A268 ~O:':l*IA261A 3&3*1"A822 112hAIA128 
16·1A2AilC 7"*lABbA2 132_AIA8U2 •• 190UBB12U · 2118*12AIBd 30b*lA2u2A 30"*lA8A12 1122-AIA218 ' 
17.1A2IlAC 7:':1*lABCD2 133-A1BAb2 •• 19hAAA12A · 2 .. 9*12A288 30 7& 1III02B 36::'*1A8A~1 -,,23aA1A228 
111-1"2I;1CA 70*A12AbC •• 13"-AIB8A2 •• 192-AA812U 250-11A2AA 308-U281B 366*lA8A22 · 112II*AIBI2A 
19*IA2dBC 77*AI2BAC •• 135-A16C02 •• 193.AtiA1<ld 25h12AIAA 309*IA2U28 · 367*IABd12 · .. 25*MB2lA 
20-lAlBCB 78-A128CA •• 130-AA1<lbC • 19"-Ad612A · ~52·12A2AA 310*lAIA2A 36a*I"8U21 · "26*1. 1822A 
2hU2BCC 79_A12bliC •• 137-AU12AC • !9!!",AtlC12D 25;3"'llAZbC Jl1=lA2A1A 369"'lABBU ~ 1027""'18126 
22*lA2AAt> 80-A12UC8·· 138*"1)12CA • 19b-AA81C2 · 25"·12AI8C 312*IA2A211 · 370*lAAA12 112&*AIB218 
23-1A2A"A 8hA12s'C •• 1.59-AU12,,' • 197*~AIC2 · 255*12A28C 313_1A1tl2' ~7hlUA21 il29""18228 
211-1A2I:1AII 82-AI2AAU ... 1110-AtJI2C8 19a*ABClA2 · 2Sb-UAA2U ~1i1-1A2UIC 372_1AAA22 · 1130*"IA12A 
2!)*lA2dlld 83-A12AbA •• l"hAtJl2CC 199_ABBIC2 · ,,57-12AA1B 315HA282C · .)73*IABCI2 /i31*AlA2lA 
20*U2AAA b/i-A12tlAA •• l/i2*"A12A8 • 200UdC182 · 25h12AA2" .)16-lAU82 37"_lA8C21 "32-AIA22A 
27·1A2AbU 85-A12UBu •• 1"3.AAI2uA • 20hAtlCIC2 · 0:59-UA02A 317_1A2AOl ')75HAbC22 · /i33eA1B12C 
28-1A21M8 8o_Al2AAA •• 1""*AIl12AA • lO~~!:A.lle2 · .2f>Oeli!A!HA .3H!elAZA8Z 316,*A112AB "3"*AIB21C 
29*IA2uUA 87*,,12"1;>11 •• 1"!)-AuI2bB • ,,03_AA61A2 · "blH2"82A 319HA16A2 .J77-A121AB !i35*A1822C 
30_1A2BCO 88-A12UA6 •• I11b*AA12AA • ~0"_A8A1A2 · 262-11A828 320*lA20Al .)7hA122AS · 1136-AIAI82 
31-111A2uC 8<J.A12bI:lA •• 1 .. 7-AAI2"ti .. 0:05-Aoolu, · 263-12AIHb 32hlA28A2 379*AI12811 ,,37*A1A21:11 
32_U82AC 90*"12dCO •• l/i/l_Ad12A8 • 206-AO\AlA2 · 26'+_12A828 322*lAIBB2 .)80*A1216A 'I38*AIA282 
33-1A82C" 9hAIA21;1C •• 1119-AtU2UA • 207*"AtJ182 · 265H1AAZA 323_1A2u81 381·A122BA 1139*AIBIA2 
3'+_11182UC ••• 'l2*A1tl2AC •• 150.Au12CU • 208.ABAIU2 · 26b*12AAIA 32"-1A2tl82 382_AU2US · ""0_AIB2Al 
3~-lAB2Ctl 93-AIB2'A •• 15hAAI02C • 209eAOBlA2 · 207H2AA2A 325_lAIAA2 383·"12180 ""hAIB2A2 
36_lA&2CC ••• 9/i_AIB2uC • 152*AulA2C • 210.AuCIU2 .. 2bll-llAU2C 326.tA2AAl 38".,.1226u · ""2 ... 18162 
37.UA2AB 95-Alb2C8 .. 153-AdlC2A • 21UAAbC12 · ,,09-12AbIC ~27_1A2AA2 .)1I5*A112AA "/i3*,,IB281 
3i1_1AA2UA 9b-AIB2C' • 15 .. *AdI112C • 212_AUAC12 · 270_12A62C 328.1AII1C2 38b-A121AA """*,\182B2 
.)9*IA02AA ••• 97.AIA2Atl •• 155-AiJl'2U • 213_AUCA12 · 271-11AAU2 329*1A211'1 387*A122AA · " .. 5eAIA1A2 
110. 1 AB'?iJd ••• 98-AlA213A •• lSb.ASIClC 21""'88C12 · 272_12AAdl .530-1A28C2 3811*All2.!C ""6-AIA2Al .. 
'thlAAZAA 99*A162AA •• 1~7-AAIA21j • 21!>UBCd12 · 273*1"'1.82 ~1&1AA128 · J89eA121BC lL,,7_A1A2A2 
"2-1AA2&6 100-A1821:1tl • 158*AAlu2A • 216-AUCC12 · 27"_llAUA2 332*IAA21S · 390_A122dC · ",,8-AIBIC2 
"3-UB2Ad 101_AIA2AA .. 159-A81A2A • 217_AAAti12 · d5*12AdAl 333*IAA226 · ~9hAllA2tJ · ""9 ... 182Cl 
.. "-lA82UA 102&AIA,bll ••• 160*A81U211 • 218 ... ABA12 · 276-12AUA2 33"-lA812A · 392_A12A1U · ..50*AI62C2 
/i::>-IA82CO 103-A162AO •• 161-/O/01A2A • 219_AUAA12 · 277-11AlJu2 335*1AB2lA · .)93_A12A2S · "51"'141112 
.. b.1AAUlC 10"-A1626A. 16;'!"'AI82d • 220*"tJb812 · 278.12AS61 336*IA822A · 39".A11U2A · 1152*"lAU21 
'I7-1AElA2C 105-A162CO •• Ib3_AIUA2d • 22h/OAAA12 · 279. 12A6U2 337*1Atll2a · 395*A12E11A · "!0.3_.U~22 
"8-lA8C2A 10(,*AIAtl2C • Ib"·ABI02A • 222*"A8612 · ~80.11AAA2 338_lA1l211l · 3%*10 1202A · "5"*AI8A12 
,,9-1AbIl2C • 107*,,16A2C • Ib5-AtJIC20 • 223_AtiAtl12 · 211lal;'!AAAl 339-1A622d .. 397*11111326 .. "55*Al6A21 
!>O.lABClII 1 U8_A 18C2A • 16b_AA1UC2 22""'BbA12 · 282-12AAA2 3"0*lAA12" · J98*A12BIU · "56 ... 1BI.22 

't:i7*A1tld12 · :.l!l*AHA121 573H2A12A b31*lAlltl2 o89*A121bl .. 1'11*12221A ilO~HA2121 
1158*AIB821 :'H,-A!:!H22 ~7"-12A.?1A bl2~lA12bl b90_A122u2 " 7"6"12212A 800*IA2211 
.. 59-Albtl22 · 517-ABtH12 57~*llA12t> b33-1A211H b9hA112b2 7119_12122A 807*lA2221 
.. bO*A1AAI2 518_/otlB121 !)7b_UA2lll .. b311*lA2lb2 b9c-A121b2 750-1122210 1I08_1A2212 
"bl*AlA"21 · ~19-AtlB122 577*12A118 · b3!>-IAI2B2 b93-A122bl 751$1111102 609-1A2122 
.. b2*AlAA22 · ~20*AAA112 578. 12A228 b3b·1A2lu2 0911*" 11 A 12 7!>2U112Al 810*IA1222 
/ib3aAl1:!C12 · :':I21_AAA121 !>79H1A22S b37*lA22iH b95-AllA21 7~3*U21Al 811&Al1112 
'Ib""'16C21 .. !)22-AAA122 580*12A128 b38_UIA12 b9b.A12Al1 75"_1211Al &12*,,11121 
/ib!)_AIBC22 · 523*"8C112 !>8h1.!A'10 639_UIA21 b97-AI2A22 75!>.1222A2 813*"11211 
.. 66*AA1128 · 5211_AOC121 !>82-UAIA2 6,,0*lA2A11 1.>98-A11A22 756.1112A2 11111-1012111 
"b7"'AA1218 · :>2!>*AuC122 !)il3*11A'?Al 0"1_11121022 099*A12A12 157U121A2 1I1!)*Al2222 
"68*AA12211 · !)2b_lU2AA ::'8'1-1~AlAl 6"2.lAIA.1.1 700-A12A21 758-11UAl 1116*"11122 
'I69-AiU12A .. !)27_1121,u . 58~*12A2A2 b .. 3*U2AI2 701·AUd12 7!)9H211A2 il17*A11212 
1170.AI3121A · ~211-1211AA 586_UA.1A2 b""*IA2A21 702-All,,21 7bO-1212Al b18-A1l221 
.. 71 *AIl 1 0!2A · !)29U222AA ::'87*12AIA2 b"~.lAlIH2 703*AI2d11 7bh1221Al 1!19-A12U2 
,,72-AbI128 · !)30-U22AA ::'88-12A.1A1 b"o-lA1i.l21 70 ..... 12822 7b'-1.!22Al 820_A12121 
1t7,)-AI>I0!1U · !>31*1212AA ~89011Alti2 b"7*lA2u11 705-AI11322 763-1~21A2 1!21*A12211 
.. 7/i"'iH22d · ~32_122UA !)90* 11 A2dl b,,8_lA2822 7Ub_A12u12 7611_1212A2 822 ... 12221 
't7!)*U112A · !l33*1112Aa ::>91&12AIBI 6119*IAl~22 707*AIO!U21 765*U21A2 1!2"eA12212 
.. 7b*AA1,IA · 53"-U2lAli 592_12A2U2 b50*IA2Ull 708*AIA112 7bb.111A12 8211-A12122 
'I77*AA122A · 5~!>*1211AU ~93-11A2U2 b51-lA2821 709_AIA121 7b7*UIA21 825_A11222 
.. 78_A8112C · 536_122lAu 5910* 1210 Itl2 052-1AA112 710-AIA211 768*112A11 112b-111112 
1179*A0121\,; · :>37*1120:1.11 ~9~*12A201 :>53*lAA121 71hAIA222 769-121A11 <127-111121 
.. 80utH22C · !>38_1212A8 59b-11AA12 b5"_IA4211 712_AIA122 170.1221022 826-111211 
1181&,\AU1l2 · ~39*1221Ad 597*11AA21 .. 5!>&1AA222 71,)_AIA212 77hl11A22 f:l29d12111 
oI82*AA121H · ~"O.111A.:A !)98*12AAll b50.1AA122 71".,.lA221 772-112A12 830-121111 
IIIt3*AA12~2 · 51+1a112AlA 599* 12AA22 657*IAA212 71!)-AIU112 773_112A21 831·12U22 
,,8/i*AUll/oO! !>II2*"lAIA bOO*11AA22 058.1AA221 71b-A13121 77"-121AI2 a32-111122 
,,85*A012"1 5113-122A2A bOh12AA12 b59*lA1l112 717aAlbll1 775&121A21 833*111212 
'I8b-1otI12A2 · !)II"*112A2A 002&12AA21 bbO-1Ab121 718*"18222 770.122A11 8311_111221 
II~H*AOlla2 · 5115*121A2A 603.1~AiU2 001_1A8211 719*AlBI0l2 777_122A21 1135-112112 
/iItS*AtU2tl1 · 5"0"122AIA 00"011AB21 00.1-1A822, 720.AI8212 778-122A12 836_112121 .. 
1t89*AIU2U2 · ~"7&111A28 b05_10!Abll .. b63*lA1>122 721*AIB221 779*12lA22 11.)7*112211 
'I90.AAl1,.2 .. :>IIb"1l2Altl bObo12AtJ22 .. bbl+.1A1:>212 722-AA!!!2 780*112A22 638*121112 
1191"AA12Al · !)119*121Altl o07-11AIl22 ob5*1A8221 723uA1121 78hllA112 1139.121121 
.. 92_AA12A2 · :>50*1221.26 bOb_12A812 b60*Al112A 72/i-AA1211 782*UA121 b"00121211 
.. 93*AIHIC2 · 55hU2A28 bD9*12A821 u67aAU21A 725&AA1222 703*l1A211 6"I*1l2111 
.. 9/i*Ad12Cl · :;52*121A28 bl0-1A112A bu8*A1211A 72b-AA1122 78"-1210111 a"2*122221 
.. 95_AB12'2 · 55:5*I22AI8 6U-IA121A b&9_A1222A 127*AA1212 78~*12A.122 tI,,3*122<!12 .. 
,,96-AAlIU2 · ::'5"·111AA2 bI2*lA2UA b70_AU22A 728-AA1221 78b-llA122 bllll*122122 . 
.. 97*"AI621 · 55:>*112101.1 b13.1A222A · b71*A1212A 729*AtH112 787H1A212 8"5-121222 
/i91t*AA1822 · !)!)&*12lAAl 6111_1AI22A · b72_A1221A 730*"tJ1121 788*11A221 a .. 6_112222 
"99-A8141.2 · 557-1.2.;1""2 b15HA212A · b7.3 .. A~1.l.2!l 73hAdl,u1 789-121\112 0,,7-1112.12 
!)00aA81A;.!1 · !)~S*112AA2 blb_U22lA b711*A11210 732-A.,1222 790_12A121 8 .. 8.112122 
~OhAalA22 · 559.121AA2 617*1A112d b75aA12118 733*"U1122 791*12A211 8 .. 1_112212 
~02*AB1612 · ~60-112AAl 018.1A1210 676_A1222B 73"aA81212 792-1210221 1150*112'21 
503."u1821 · 5bhl11~2 bI9&1A211U · b77aA1122t1 735_A81221 793*12A212 051.'12.1122 
!>0"-Alltu22 · !>b2*112AIl1 b20*lA2Utl · b78*A121213 736-11112A 79"_12Al" 1152_121212 
505.,.A1II12 · ~63*121Abl 02h1A12,8 b79.A1UI8 737.11121A 795*UA2U 853*1212.21 
50b*"A 1 A21 · ~&"_122Atl2 b22_lA212U b80*"111A2 738-11211A 796HA1112 11511_122112 
507.4AIA22 · 565_U2Aa2 &23-lA221s b8hA112Al 739*12111A 797_1A1121 855*122121 
!)08*A81C12 · 5b6*121A82 b2"-lAllA2 b82_A121Al 7"0*12222A 798-1AI211 856_122211 
509*AulC21 · ~67*122A81 b2~.1A12Al 1>83*,,122A2 7,,1-11122A 799&1102111 
5H'-AiHC22 · 568*11A12A b26HA21A! u. 08"_AI12A2 "'2.11212A bOO_1A2l22 
511·AA8112 · :>6<J*UA21A b27HA22A2 ••• b85_A121Al 7'1~*11221A "OU1II1122 
512_AA1l121 · 57U_l00!A11A blhlA12A2 b86.A122Al 7""*1211lA bD2_lA1212 
513*AAB122 · 571*12A22A b29.1A2lA2 b87*,,111112 ",5.1.112lA b03HAl221 
:':11"-10610112 · ~72_llA22A b3U.1A22Al b88-AU281 7116_122114 6011*1102112 

Figure 9-EJiminatioll of redundant test patterns due to device symmetry 



Programmed Test Patterns for Multiterminal Devices 239 

1 ~ j ~ ~ ~ TWO-PORT ~ ~ CONFIGURATIO N 

R R R R 

1K 
~ 

£ 
0 ..v- 0 

-C -C 

NR o~ NR fll..o 0 

"\ / ... 

}ilf 
R 

~ 
" BlE 0 v.- 0 ~ 
-C -C 

EJ an o 0 0.1 0 

Jf 3lE N JiE 
lit C ..l.- ~C 

~ ~ 
:lic 

~ 
:Ec 

o 0 o 0 

~ ~ :1:: ~ 2Yl 
~ 1U;: 0 oL:§.) i 

Rlli I 
310 INC R o NC I R 0 I 

o 0 

~ I :1Ri~ : ~ NC I 
Figure 1o--Unique test patterns of symmetrical device 

December 1967 93-99 Also published in tutorial form, 
E. Sarkisian and "V. W. Happ 
Combinatorial techniques for fault identification in 
multiterminal devices 
Proceedings Annual SympoRium on Reliability January 
1968 477-485 

:~ W W HAPP F J :\lcI~TOSH 
Program SEAL-Subnetwork Enumeration and Listing 
Available from Project COSMIC Gniversity of Georgia 
Computer Center, Athens Georgia 8,S summarized in 
~ASA Tech Brief $68-10227. Also F. J. McIntosh, Jr. 
A computer program for subnetwork enumeration and 
listing 
Proceedings Third NASA Microelectronics Conference 
Feb 1968 649-670 

4 Proceedings IBM Scientific Computing Symposium on 
Combinatorial Problems Library of Congress Card 
Number 66-19006 March 1964 

5 E F BECKEXBACH (editor) D H LEHMER 
The machine tools of combinatorics 
Applied Combinatorial Mathematics John Wiley and Sons 
New York 1966 

6WWHAPP 
Flowgraph techniques for closed systems 
IEEE Transactions AES 2 No 3 May 1966 252-264 

7 W W HAPP 
Flowgraphs as a teaching aid 
IEEE Trans on Education Vol E-9 No 2 June 1966 99-79 

8WWHAPP 
N ASAP: Present capabilities of a maintained program 
IEEE International Convention Record Part 5 Circuit 
Theory March 196764-88 

9WWHAPP 
I dentificatwn of test points in devices with specified symmetry 
Proceedings International Symposium on Computer-Aided 
Design Southampton England April 1969 . 

10 E F THOMAS 
Effective screening of integrated circuits 
Proceedings Third NASA Microelectronics Conference 
February 1968327-334 

11 E F THOMAS 
DC pin-ta-pin testing of integrated circuits 
NASA/GSFC Paper 515-001 May 1967 

12 L MAH L BUCHSBAUM T J B HANNON 



240 Spring Joint Computer Conference, 1969 

Investigation of fault diagnosis by computation methods for 
microcircuits 
Final Report Contract AF 33(615)-2094 November 1965 

13 E RIVERA E R GARCIA R RANALLI 
Cornputer generated fault isolation procedures 
Proceedings 1967 Symposium on Reliability January 1967 

14 Reliability Abstracts: Reviews pertaining to the 
following abstract,s: 

R66-12514 
R66-12856 
R67-13263 
R68-13902 



OS·3: The Oregon State open shop 
operating system 

by JAMES W. MEEKER, N. RONALD CRANDALL, 
FRED A. DAYTON, and G. ROSE 

Oregon Slate University Computer Center 
Corvallis, Oregon 

INTRODUCTION 

This paper is a discussion of the 08-3 operating system 
developed at Oregon State University. Before proceed
ing to a discussion of that system, it is appropriate to 
say a few words in order to view this work within a 
more global context. 

It is little more than a truism to say that computers 
are difficult and expensive to use. That is to say, com
puters are difficult and expensive with respect to the 
problems men wish to solve. One primary reason for 
this state of affairs is embedded in many years of cultural 
history. In the absence of computing machinery we 
have developed methodologies that ingeniously avoid 
the necessity for computational solutions. 

For example, if it is necessary to perform several 
million multiplications in order to test a hypothesis, 
then until recently it was quite likely that such a hy
pothesis would remain unexplored. Now, of course, 
this situation is radically changed. Nevertheless, the 
thinking that will take proper advantage of current 
computer power is still in its infancy. Thus, computers 
are difficult and expensive to use because we haven't 
yet learned how to use them. 

If we could see clearly enough into the future to de
termine those approaches to problem solving that will 
be most successful during the coming decades, then we 
would not hesitate to develop software tailored to best 
underwrite these approaches. To the degree that we 
lack the foresight to proceed in this fashion, there re
mains an acceptable alternative: the general purpose 
computer utility. If we can provide a utility that is in
expensive, reliable, and convenient to use, then we can 
deliver a powerful tool directly into the hands of the 
problem solver. 

One overall requirement implicit in this idea is that 
such a utility must be comprehensive enough to free the 

problem solver from the burden of becoming a system's 
programmer. This burden has been responsible for the 
migration of many scientists from other disciplines in
to systems software development after which they pro
ceed to neglect half a lifetime of training in their own 
field: an expensive proposition. 

In addition, our objectives in developing a computer 
utility include the following: the utility should be 

1. inexpensive-that is, system overhead should be 
small. 

2. convenient-programming conventions should be 
easy to learn and use as well as generally acces
sible. 

3. transparent-the user should have ready access 
to infonnation about the state of the system, his 
account with the system, the status of a running 
program, and the contents of his saved storage. 

4. information oriented-facilities must be avail
able for creating, manipulating, and maintain
ing files of arbitrary structural complexity. 

5. self extending-facilities should be available 
for building upon past ~xperience in a facile way. 

This paper is specifically a discussion of a time-shar
ing operating system that is intended to satisfy the 
first three of these objectives. The remaining two 
are also under development at O.S.U., but do not 
exist at the level of. the resident operating system. 

The following sections include a description of the 
system as seen by a user, a brief discussion of salient 
software characteristics, and a summary of system 
performance. 

U seT features 

08-3 is a time-sharing operating system for the Con
trol Data 3300 computer. It was developed at O.S.U. 

241 



242 Spring Joint Computer Conference, 1969 

and is presently our principal operating system. Cur
rently the system can service up to 32 on-line users 
together with a batch user, and during early 1969, it is 
anticipated that this n1h'1lber v/ill exceed fifty. 

The system is used by various departments on cam
pus, local industry, and other colleges throughout the 
State of Oregon. At the present moment the system 
logs approximately 4,000 console hours per month. 

The operating system multiplexes available hardware 
resources among concurrent users (CRT, Teletype, 
and batch) in a time-slicing fashion. Processor time and 
core memory are allocated to running programs based 
upon considerations of program demand and page 
traffic flow. 

Hardware environment 

In order to orient those not immediately familiar with 
the 3300, it should be sufficient to say that the machine 
includes the following features: 

• 24-bit word 
• Paged memory and page file 
• Executive mode operation 
• Usual interrupt system 
• Usual register configuration 
• Real time clock 
• 64-word fast core 

Memory is expandable in units of 214 words; we possess 
four such units. The 3300 addressing scheme will per
mit a user's program to address at most 216 words. Our 
hardware configuration is depicted in Figure 1. 

System library 

The system library is composed of an absolute library 
and a user generated library. Most of the programs in 
the absolute library are written in reentrant code and 
treated as such by the operating system. The library 
includes: 

1. Fortran compiler-a modified CDC Fortran 
with several input/output options including 
short form diagnostics suitable for listing at a 
console. 

2. Algol compiler-modified CDC Algol. 
3. OSCAR-an O.S.U.-developed conversational 

arithmetic interpreter with stored program 
capabilities. l OSCAR recognizes scalars, vectors, 
matrices; it is fully recursive and allows defini
tion of functions and abbreviations. Formatting 
is allowed but due to the use of default format 
options it is not required. OSCAR can commu
nicate with other available languages. 

405 Card 

Figure I-Hard ware configuration 

4. Compass-an extended version of the 3300 as

sembly language. 
5. RADAR2-an on-line debugging language. RA

DAR includes an asse{ubler/disassembler and 
permits single stepping through a program. 
(A CRT oriented version of the language is also 
available. ) 

6. EditS-an on-line editing language with con
text searching capabilities. 

7. Sort/Merge 
8. Utilities-including Autoloading and file manip

ulation. 

The user-generated library contains programs local to . 
each lL..~r, If a user declares a program to be publiCi 



then anyone can access it in a fashion analogous to that 
used for the absolute library. Of course, only the creator 
can modify the program, and that only when it is not 
currently in use. 

Input/output 

At the level of the operating system, files have little 
structure. Two types of files exist: linear and random 
access. A linear file is physically a series of fixed length 
blocks. These are dynamically allocated up to some 
storage limit that is preset for each user. A user reads 
and writes a linear file in variable length records; 
writing a record in the middle of a linear file causes the 
remainder of that file to be released (see Figure 2). 

File Control Block 

status 

File Control Block 

Load Point 

Core Pointer 

Block number of current block 

Current position Pointer 

Status Il'H.LlIUJt::L OF 
current block 

"'Cl'V"'" 

~~~~wareIEnd position Pointer 

Total Length

Accounting Word

File Block

Forward Pointer

Backward Pointer

Wordcount

Record

Wordcount

Record

· · ·
Figure 2-Linear file

08-3 243

Random access files can be viewed as terminally open
files together with a file pointer. This type of file is
essentially a large block of apparently contiguous
storage (maximum size = (29 - 2)218 words). Physical
ly the random access file is a series of fixed length
blocks with a two level directory. The topmost directory
holds pointers to a set of directory blocks, each of which
contains pointers to a set of linked storage blocks. A
serial pass through the file c~m use the links for trs,vers
ing blocks, while a random search utilizes the directories
(Figure 3). A user reads or writes a random access file n
words at a time- beginning at the current pointer loca
tion. At the end of the operation, the pointer is ad
vanced by n words.

Files may be named and saved in semi-permanent
storage. It is also possible to create temporary files that
can be assigned to a logical unit number (in the range
0-99). Any saved file can be equated to a logical unit
and conversely, a logical unit may be subsequently
saved under a file name. While running programs ma
nipulate logical units, not named files, the major pro
grams in the library allow the user to supply only a
file name that is then assigned to a logical unit by the
program. Any file may be file protected. Any file may
be placed in the public domain by preceding its name
by an asterisk (*).

In addition to being equated to files, logical units
may assume the following hardware types:

• line printer
• card reader
• card punch
• console input
• console output
• plotter
• magnetic tape
• null

Request processor

A console user is placed in control mode at the time
he logs in, and he can revert to this mode at any time.
Communication with the system while in control mode
takes place via the request processor. In this language
the user can call for any of the supported systems,
execute jobs, manipulate files, examine the state of the
system, the status of his running program, inspect in
formation about his account, etc.

Of special note is that a user with a program in exe
cution can cause that program to be suspended for an
indefinite time by reverting to control mode. From
control mode it is then possible to execute a sequence
of commands and subsequently resume running by
typing the command 'GO'. This capability may be used

244 Spring Joint Computer Conference, 1969

Level I Directory

Level II Directory

Figure :3-Random access file

to allow the user to solicit information about the run
ning program or accomplish on-line error recovery.
In a similar way, the command 'MI' simulates a man
ual interrupt that may be used for communication
between the request processor and other supported
systems.

Accounting

Associated with every user is a unique job/user
number pair. The first number is used for billing pur
poses; the second is a code used for identification.
Associated with each job/user number are three limits:

1. Maximum time-a time limit equal to the total
processor time that may be used. This number
is appropriately decremented at the conclusion
of a session at the console.

2. Saved file space-a maximum storage limit for
saved files.

3. Scratch file space-a maximum storage limit for
temporary files.

When a user logs into the system, his time is auto
matically set to one minute and his scratch file limit to
100 storage blocks. He may change these limits up to
the maximum limits associated with his job/user num
ber.

When a console user logs off or when a batch job is
completed, the charges for that job are converted to a
CPU time equivalent and deducted from the user's
remaining total time.

Charges are made for CPU time, some I/O, elapsed

time at the console, and saved storage space. Since sys
tem overhead increases with increasing demand on the
system, the apparent CPU time required for a job will
be higher during peak hours. A user can get an indica
tion of the current system loading by typing the com
mand 'TRAFFIC'. If he decides against running and
logs off at this point, no charge is incurred.

System characteristics

Several guidelines were adopted in writing the sys
tem. Development has been modular with all modules
written strictly in tightly coded assembly language.
Since core is at a premium in our configuration, it was
imperative to keep the size of the resident monitor at
a minimum. To this end, even the request processor is
subject to memory swapping. In addition, the system
is hardware sensitive, i.e., particular I/O instructions
in the order code have been avoided because their
failure rate, over the years, has been disproportionately
high. Further, the system is highly parameterized.
For example, if a memory module fails, a parameter
can be changed and the system run in reduced memory.

With these guidelines in mind, the system can be
described roughly as follows. Associated with every
active user is a fixed length program status area (PSA)
together with a set of attached lists. PSA's are linked
together into a user queue (Figure 4). In general, 08-3
runs under the influence of this user queue, with re
source allocation and I/O dependent upon the list
structures connected to a particular PSA. At any given

Idle
PSA

Batch
PSA

PSA

PSA

Figure 4-User queue

moment, the system is running a single user whose
PSA is indicated by a pointer. Alteration of the con
tents of this pointer occurs at the end of discrete time
intervals called quanta (see Figure 5). This general
picture is qualified by other considerations as will be
seen.

Physical memory is partitioned into four distinct
areas:

2. Free storage
3. File core blocks
4. Available memory

The resident monitor occupies approximately 10K
words of core. PSA's with associated lists and console
I/O occupy space in free storage that can be dynami
cally expanded. Two pages (211 words per page) of file
core blocks are reserved for disk transfers. The re
maining core is assigned to running users and swapped.
Any user can work in an address space of up to 216

words of virtual memory.
The system includes the following major modules:

• Scheduler

• User I/O

.Intsort

-allocates processor time and
memory

-interprets and handles user
generated requests for I/O

-a recursive interrupt pro
cessor

• I/O Drivers -a set of integrated device
drivers

• Request Processor -the command language in
terpreter

• Accounting -user accounting routines

This paper will consider only the scheduler and User
I/O in greater detail.

UserUO

User I/O is a collection of routines that supervise the
peripheral device drivers and user requests for input
or output operations. This module is divided into two
principal sections: the mass storage device scheduler
and the executive request interpreter.

The mass storage (M.S.) device scheduler governs a
multi-priority transfer queue containing mass storage
I/O requests. This queue is created by the M.S. device
scheduler in response to requests received from periph
eral devices in operation as well as user programs. For
example, when the line printer driver exhausts its cur
rent block of output, and the next block is requested,
the M.S. device scheduler interprets this request, as-

08-3 245

Program Status Area (PSA)

~
Registers to next

Virtual Memory Map

Register File

Logical Unit List "" r

Name List
... ..

IOdOUND status wora

Teletype Buffer

~
Accounting and to

charact
Limiting Information strin

Figure 5--Program status area

PSA

er
g

signs it apriority, and extends the transfer queue
accordingly.

The executive request processor interprets all execu
tive requests (trapped instructions) generated by a user.
After decoding a request, the processor delivers control
to the appropriate routine. All I/O called for by a user
is included in the category of executive requests.

Time and memory allocation

Allocation of the time and physical memory occurs
primarily within the Scheduler and is controlled by the
tables PAGETABLE and PAGETIME. Memory is
divided into pages by the hardware. Each page has a
page number associated with it which is used for re
location and reference to the software tables. Each
page of physical memory has one word in P AG ET ABLE
and a corresponding word in PAGETIME. Part of
each PAGETABLE word serves as an indicator of the
status of the associated page; the remainder is an ad
dress of a page access word which is used to map one
page of virtual memory into the associated physical
memory page. PAGETIME has one word per page
that indicates the time at which a user last referenced
the page in question. (See Figure 6.)

246 Spring Joint Computer Conference, 1969

PAGETABLE PAGETIME - TIME
Value

.",""

"
• •
• •
• •

~,

To Page Access Word

Figure 6-PAGETABLE and PAGETIME

When a page of memory is needed for swapping pur
poses, a search is performed on PAGETABLE to find
the page with the smallest value. Value is infinite if the
system bit is set or zero if the occupied bit is not set.
In all other cases, a function is evaluated which is the
sum of

PAGETIl\1E - clock + Value (I) (1)

where

and

I is a set of status bits from P AGETABLE
clock is the current reading of the real time

clock

Value is given by a function that maps bit con
figurations into time values.

PAGETIME is set to clock + 1 hour whenever a page
is referenced and is shifted right one position every
hour to prevent overflow. The values in PAGETIME
do not age linearly because of this shift; however, the
function is continuous and is not inaccurate in the
region where the clock is set back one hour and PAGE
TIME entries shifted.

A user's reference to his virtual memory occurs upon
detection of an illegal write interrupt, and the system is
then table driven based upon the above tables and the
virtual memory map (Vl\1M) in the user's PSA. Each
word in the VMM is either a page access word or a

pointer to a page access word, depending upon whether
the page in question is written in reentrant code (Figure
7).

Processor time is also allocated to each user by the
Scheduler. A running program pointer (RPSAPTR)
advances in a circle around the user queue. If a user's
program is to be activated when RPSAPTR advances
to his PSA, then the following condition must be sat
isfied:

TIl\1ELEFT> 0 & "-J IOBOUND (2)

where

and

TIMELEFT -is the time left in the current quan
tum

IOBOUND -is a status word in the PSA that
indicates whether the user is
awaiting the completion of an I/O
operation.

If no PSA satisfies condition 2, the RPSAPTR ad
vances until a PSA that is not IOBOUND is found and
sets that program to run another quantum.

It is clear that a user who requires extensive swapping
will contribute significantly to the flow of page traffic

Virtual Memory Map
page access non-reentrant

o

1 page

reentrant

page access word I
page

B'iu:ure 7-Page access word

to and from the disk. IVloreover, such a user will re
ceive poor service if the page traffic flow is heavy .

In order to cope with this situation, a more sophisti
cated scheduling arrangement is required. This kind of
extension to the scheduling algorithm should be adap
tive in nature, that is the system should recognize the
existence of a problem situation and proceed to 'tune
itself up.' Further, detection of the problem condition
as well as modification of the scheduling tactics must be
easily computable if an undesirable increase in system
overhead is to be avoided.

At present, 08-3 includes an initial version of a de
mand scheduling strategy called the debogging algo
rithm. This algorithm governs the allocation of pro
cessor memory so as to minimize page traffic flow in the
presence of varying user requests.

Conceptually, the algorithm can be viewed as a high
priority pointer that is cycled around the user queue
independent of the RPSAPTR. If a user is designated
the high priority user, then his in-core pages increase in
value, and he is automatically placed second in line in
the swapping queue for requested pages.

In effect, the debogging strategy tends to delay users
whose page requests are heavy with respect to current
page traffic flow, and then run such users with greater
priority for a period of time during which they can
occupy a substantial amount of core.

In particular, the algorithm governs the behavior of
the following independent categories of events:

1. Advancing the high priority pointer
2. Delaying troublemakers, and
3. Rehabilitating former troublemakers.

These categories are now described in greater detail.
The high priority pointer, HPP, is advanced to the

next user whenever one of the following conditions is
satisfled:

The user logs off (3)

The user becomes I/O bound (4)

(5)

where

a.nd

WCT -is the amount of wall clock time that has
elapsed since the HPP was advanced

PRj -is the page request word in the ith user's
PSA. PRj is incremented by one each
time the ith user requests a page

K1, K2-are constants.

08-3 247

K 1 influences the rate at which the HPP will shift to
the next user if the current user is busy swapping. K2
is simply a constant that governs the cycle rate of the
HPP.

If any of the conditions 3, 4, or 5 is satisfied, then

WCT: = SQ: = QCT: = 0 (6)

PRj: = 0 (i = 1, ... ,n) (7)

wher~

and

SQ -is the avera,ge length of the swapping
queue

QCT -is the number of useful quantums of com
puting (i.e., time not spent in the idle
loop).

The second category concerns the troublemaker. A
user is a troublemaker if only the mass storage wait bit
of'his IOBOUND word is set, and if

.. (8)

where

K3 -is a constant that determines the nunl-
ber of swap requests a user must generate
in order to qualify as a troublemaker.

The last troublemaker is defined as the troublemaker
that is located the greatest distance from the HPP in
the direction of pointer rotation. A troublemaker is
delayed by setting the delay bit in the IOBOUND
word of his PSA. The last troublemaker will, in fact,
be delayed if:

where

and

SQ

SQ

K4

K5

(SQ ~ K4) & (SQ ~ K5) (9)

-is a counter that contains the current
length of the swapping queue

-the average length of the swapping queue

-is a stabilizing factor

-determines heavy page traffic flow.

If condition (9) is satisfied then

SQ: = SQ: = QCT: = 0 (10)

248 Spring Joint Computer Conference, 1969

The final category _provides' for the rehabilitation of
former troublemakers. A former troublemaker is a user
whose delay bit is set. The closest former troublemaker
is defined to be the former troublemaker locat~d the
least distance from the HPP in the direction of pointer
rotation. The closest former troublemaker may be reha
bilitated by clearing his delay bit. This will occur when

(QCT ~ K6) & (SQ < K7) (11)

where

K6 -is a stabilizing factor

and

-determines relatively light page traffic
flow.

The effect of the preceding debogging strategy is to
match available processor memory· to user demands.
If this cannot be done, then an obvious troublemaker
is delayed, and, after a period of stabilization, the situ
ation is sampled again to determine whether an accept
able match has occurred. If not, then another trouble
maker is delayed, and so forth, until a match is
achieved. Conversely, jf user demands are not over
loading the swapping queue, then former trouble
makers are rehabilitated, one at a time. Of course, if
several users require large quantities of physical mem
ory, the recidivism rate will be high.

System performance

System performance measured in terms of system

overhead tends to be quite good. If the total number of
user hours for a month is compared to the total amount
of billable CPU time for that period, it turns out that
the system spends slightly more than 65 percent ti..me in
an idle loop. Of course, this might indicate that the sys
tem is heavily I/O bound; however, test measurements
indicate that this is not the case.

In another test, switching time was measured by
loading the system with a sample job mix. Jobs were
chosen from three categories:

1. Compute bound
2. 65K swap bound
3. I/Obound

The 100 millisecond quantum was then reduced until no
useful computing took phwe. This break-even point
occurred at four milliseconds.

ACKNOWLEDGMENTS

The authors are indebted to Steven K. Sullivan for his
incisive comments, useful criticisms, and system pro
gramming support.

REFERENCES

1 J DAVIS
A brief description of OSCAR (Second Revision)
asu Computer Center cc-68-45

2 J MEEKER
RADAR
OSU Computer Center cc~8-30

3 F DAYTON W MASSIE
OS-3 teletypewriter editor manual (Revised)
OSU Computer Center cc~8-17

Virtual memory management in a
pagil1.-g environment

by NORMAN WEIZER and G. OPPENHEIMER

Radio Corporation of America
Camden, ~ew Jersey

INTRODUCTION

The Spectra 70/46 Time Sharing Operating System
(TSOS) is designed to be a combined time-sharing
and multiprogramming system that will support up
to 48 conversational users or a combined total of 64
batch and interactive tasks processing simultaneously.
. The memory management subsystems of TSOS

maintain complete control of main core memory, the
drum backing store and the virtual memory facilities
of the entire system. The virtual memory management
subsystem controls the allocation and release of the
backing store space, the organization of the 2 million
byte virtual memory and the characteristics (the con
trol-bit settings) of the allocated virtual memory space.

Hardware description

A short description of the relevant spectra 70/46
Processor! features is presented here to provide a back
ground for the discussion of the virtual memory man
agement subsystem. The 70/46 is basically identical
to the spectra 70/ 45 ~1od II Processor2 with the addi
tion of a flip-flop implemented hardware translation
memory. The dynamic translation facilities of the
70/46 are provided by this translation memory and
the special functions implemented in the read only
memory.

The translation memory (TM) contains 512 half
word elements each of which represents a single virtual
page. The page size used within TSOS is 4096 bytes,
and thus the virtual memory is a linear space3 of two
million bytes.

Each half word element in the translation memory
is composed of a set of control bits and a physical
page number, shown in detail in the Appendix. The
control bits indicate whether the page has been modi
fied, whether it has been accessed, whether it may

249

be modified, whether access is restricted to privileged
users and whether the page is in memory. If a refer
enced page is in memory the physical page number
is used in conjunction with the 12-bit displacement
field of the virtual address to determine the physical
address. If the page is not in memory the hardware
generates a paging queue interrupt, and the software,
utilizing a hardware special analysis function, deter
mines the page (s) required and causes the page (s)
to be brought into main memory.

The 24 bit virtual address format is shown in Fig
ure 1. It represents the address formulated after all
address arithmetic has been performed.

The Page and Displacement portions of the virtual
address constitute the 18-bit address field and are
generated by the 18-bit address arithmetic. If the sum
of the least significant 18 bits of the base register,
an index register, and a displacement field of an in
struction would normally cause a carry into the 19th
bit of the address field, this carry is lost and an address
wrap around to the lower boundary of a segment takes
place, thus providing a modified form of segmentation.

The segment, unused, and D bit fields of an address
can be changed in the base registers by using the normal
binary addition capabilities of the processor. The
D bit is used to obtain direct (untranslated) addressing
capability while in the 70/46 or translation addressing
mode. * Only privileged Control system functions
can use this facility. .

The nine bit field formed by the segment and page
bits of the virtual address forms the index which is
used to determine which of the 512 translation memory
elements corresponds to the addressed virtual page.

* The Spectra 70/46 is also capable of being run in a 70/45 mode.
In the 70/45 mode no address translation takes place and the
address space is limited to 262K bytes.

250 Spring Joint Computer Conference, 1969

1 bit 2 bits 3 bits 6 bits 12 bits

D I Unused I Segment I PAGE Displacement

Figure I-Virtual address format

The six page bits contained within the indexed Tl\1
entry (see Appendix) are concatenated with the 12
low order bits of the virtual address to form the 18
bit physical address actually used by the processor
to address memory.

Two memory protection capabilities are provided
in the 70/46. The first capability is provided by a set
of protection key locations associated with main core
memory. These keys are only used in the 70/45 mode
of processing, although they are also operational in
the 70/46 mode. The second capability is provided
by the translation memory implementation and is
only available when in the 70/46 mode. A nonprivileged
routine in the 70/46 addressing mode, or a privileged
function not using the direct (untranslated) addressing
capability, cannot address information unless a transla
tion memory element for that task allows translation
to that memory location. In this way, unless the entries
for two users are simultaneously loaded into translation
memory, no user can access the private information
of another user. Also, the control bits of the translation
memory entries prevent nonprivileged access to un
authorized information and also prevent modification
of code which is executable only.

The backing store for the 70/46 is a fixed head drum
of either 800 or 1600 tracks. The track capacity of
the drum is approximately 5000 bytes. By assigning
a single 4096 byte page per track, the 3600 RPM drum
can accommodate 60 page transfers per second. The
time to transfer a page between core and drum is ap
proximately 13.65 msecs, thus leaving about 3 msecs
free time between the end of one page transfer and
the beginning of the next. This free time (gap time)
is an upper bound on the amount of processing that
may be performed between page transfers if the full
drum transfer rate capability is to be realized.

All of the I/O operations, including the paging trans
fers, use untranslated or direct addresses. This requires
that the virtual to physical address conversioilmust
be made before an I/O is initiated. Also, any pages
involved in an I/O operation, including those which
contain the I/O control information, must remain in
core during the duration of the I/O operation.

Paging algorithm

.. A... demand type paging algorith..1U3 is implemented

in TSOS.4 This algorithm limits the number of tasks
simultaneously competing for the processor and main
memory by using a "working set"5 like concept in
the scheduling of tasks.

When a task in made "active" (i.e., is allowed to
compete for processor time and main memory) the
counter of available main memory pages is decremented
to set aside the number of pages it is anticipated the
task will require. This number is equal to the number
of pages used by the task during its previous activation
period.

Rather than fully swapping a program's working
set into memory or allocating specific memory pages
for the task at activation time, however, only those
pages required by the task's first instruction are ac
tually pre-paged into core. During a task's active
period, its pages in core are normally considered non
pageable. * When a task is deactivated, the counter
of available main memory pages is incremented, and all
of the task's pages in core are placed on the page-out
queues.

When a task is blocked by a paging queue interrupt,
pages are chosen from the page-out queues and the
appropriate drum transfers are initiated. During the
period in which the required pages are being brought
into core, other active tasks are placed in control of
the processor.

Memory management design considerations

In general a memory management subsystem for
a multi-access system should have the following char
.acteristics :

1. Protection-no user should be able to destroy
the data beionging to another user or to the
system as a whole;

2. Privacy-without authorization, no user should
be able to access the data belonging to another
user or the private system data;

3. Shared Code Use-several users should be
able to simultaneously use the same physical
copy of commonly used routines or programs;

4. Flexibility-the full memory management cap
abilities provided by the hardware, consistent
with the protection and privacy considerations,
should be made available to the user programs;

5. Ease of Usage-the memory management fa
cilities should be provided to the user in a man
ner which allows them to be easily used;

6. Low Overhead-the use of the memory man-

* An exception to this rule occurs if a single task requires more
pageable main memory space than is available in the system.

Virtual Memory Management in Paging Environment 251

agement facilities should add as little overhead
to the system as possible, consistent with the
other characteristics;

7. Integrity of Design-the memory management
subsystem should not be designed as a unit
separated from the remainder of the operating
system. It must be designed as an integral
part of the overall system but with clearly
defined boundaries and interfaces. The clearly
defined boundaries and interfaces prevent a
great many problems in the implementation
and debugging phases of operating system
development. (The method used to develop
the scheduling and paging algorithms for TSOS
is described in Reference 4.)

8. Modularity-the memory management· sub
system should be designed as a set of modular
routines. There should be simple and sharply
defined interfaces between the various routines
to simplify implementations and debugging
problems.

In the following sections a description of the TSOS
Virtual Memory Management Subsystem is provided
and an attempt is made to show how all of the above
criteria were met within the hardware environment
described above.

Virtual memory organizatian

The two million bytes of virtual memory are divided
into two equal units. Each user of the system is per
mitted to use the first one million bytes for code and
data areas related strictly to his own task. The second
one million bytes are reserved for Control System
functions and shared code.

In terms of the use of the translation memory this
means that the first 2.56 entries are used for private
user task information. Each time a nmv task gains
control of the processor the previous task's translation
memory entries are stored in main memory, and the
new task's entries are loaded into the translation mem
ory. During this entire process the upper 256 entries
in the translation memory are unchanged.

This organization of the virtual memory, aside
from reducing the overhead entailed by the loading
and unloading of the translation memory, permits
the Control System to be written using virtual ad
dressing and at the same time to have full access to
all user areas. Since the task in control of the processor
has its entries loaded into the translation memory
while it is running, the task's memory is directly
available to the Control System through the translation
mechanism. (The converse is not true, in that the

Control Program pages are privileged and the pages
containing shared code are executable only, preventing
user code from accessing Control Program information
and from modifying shared code.)

If the virtual memory were not divided as it has
been, and the full two million bytes had been made
available to each user, the Control System would have
had to use direct addressing to a much greater degree
and would ht:we required much more code to be resident,
or the loading and unloading of the translation memory
would have been appreciably greater.

Backing store allocatian

Although each user task has a private one million
byte virtual memory, the memory is not actually
usable until it is dynamically allocated by means
of the memory management macros; that is, until
a realtionship is set up between a page of virtual mem
ory and a page of backing store. In a conventional
processor this is analogous to saying that the address
space (which is normally equal to the physical memory
size), is not usable until the program is loaded into
memory. And then only the assigned portion of the
total address space (memory) may be referenced.

Within TSOS user pages are allocated when a pro
gram is loaded and when additional space is dynamical
ly requested. When a page is allocated, a translation
memory entry is initialized for it and a drum track
is assigned. This track is associated with the page
on a permanent basis, i.e., until the page is released
and the translation memory entry is no longer valid.

The relationship between the backing store track
and the page of virtual memory is maintained even
while the page is in main memory for the following
reasons. The number of pages of main memory is small
compared to the number of pages on the backing store.
Therefore, the marginal gain in drum tracks available
to the system through the use of a dynamic assignment
system would be small. General utilization of the drum
tracks in this manner would also increase the proba
bility of binding the system intolerably should the
drum become saturated.

From another viewpoint, the fact that there is only
a single page per track means that schemes which
reassign drum tracks to core pages that must be writ
ten out, so as to optimize drum utilization in a multiple
page per track environment, are not applicable in
the environment of TSOS.

In summary, until a virtual page is requested and
backing store assigned to it, the virtual memory space
it represents is not usable. Any attempt to access an
unallocated page is detected by a combination of hard-

252 Spring Joint Computer Conference, 1969

ware and software and is treated as a program address
ing error.

Virtual memory classification

To regulate the use of virtual memory, and to simpli
fy its request, particularly within the Control System,
virtual memory is divided into six somewhat arbi
trary classes. The address assignments for the six
classes are shown in Figure 2. The characteristics
of each class are described below.

Class 1 Virtual M emory is occupied by the resi
dent portion (kernel) of the Control System.
All Class 1 pages are privileged and nonpageable.
There are no drum images of these pages. At
present there are 10 Class 1 pages in TSOS.

Class 2 Virtual Memory is occupied by the non
resident portion of the Control System. All Class
2 pages are privileged and pageable and may
be marked as executable only, depending upon
the nature of the routines occupying them. There
is a drum image for each of these pages.

Classes 1 and 2 virtual memory are preallocated
at system generation. The boundary between these
two classes (CILIM) may be varied from system to
system. dependent upon installation requirements.

Class 3 Virtual M emory is occupied by the dynam
ically acquired resident portion of the Control
System. All Class 3 pages are privileged and non
pageable. There are no drum images of these
pages. This memory class is used for task control
blocks, terminal I/O buffers and certain system
work space. It is also dynamically released when
the requirement for resident space iessens.

Page
Number 0

C6 LiM

256

C1 LIM

C2 LIM

511

Class 6 Virtual Memory

~

Class 5 Virtual Memory

Class 1 Virtual Memory

Class 2 Virtual Memory
~

Class 3 & 4 Virtual Memory

Figure 2-Virtual address space assignments of
virtual memory classes

Each
User's
Virtual
Memory

System
Virtual
Memory

Class 4- Virtual Memory is occupied by the non
resident work space dynamically acquired by the
Control Program and by the shared code called
by the users of the system. All Class 4 pages are
pageable and have drum images. The Class 4
pages used by the Control System are marked
privileged, but those used for shared oode are
marked nonprivileged.

Virtual memory Classes 1 through 4 constitute the
system virtual memory. As a group these four classes
must be contained within the one-million bytes of
address space available to the system. They reside
in the upper one-half of the translation memory and
are not changed (swapped) in the translation memory
as control is passed from user to Uh'er.

Virtual memory Classes 5 and 6 constitute the user's
virtual memory. Together these two classes are limited
to the one million bytes available to the user. They
occupy the lower one-half or the translation memory
and as control is passed from user to user the Class
5 and Class 6 translation memory entries for each
user are swapped out of and into the translation mem
ory. This means that any data stored in a user's Classes
5 and 6 Virtual Memory cannot be accessed using
virtual addresses when that user's entries are not
loaded into TlVI. (This, in turn, means that the system
must use direct, non-translated, addressing to access
user memory for a user that is not in control of the
processor.)

Cla"ss 5 Virtual Memory is occupied by dynam
ically allocated pageable areas acquired for the
specific user by the Control System. These pages
may he marked privileged or nonprivileged. They
are used for task dependent information such as
task dependent virtual memory tables, protected
file control blocks, program loader data, data
maintained by the interactive debugging language
and I/O buffers acquired for the task by the sys
tem.

Class 6 Virtual Memory is occupied by dynam
ically allocated pages acquired by the user for
his code and work areas. The pages of Class 6
memory are under control of the user task.

The boundary between Class 5 and 6 memory
(C6LINI) is completely variable and depends upon
the requirements of each individual task. Normally
Class 5 memory occupies the 16 pages fronl page 240
through 255, and Class 6 memory occupies the 240
pages from page 0 through 239. Each memory clas~
is allocated contiguously such that a page of Class 5

Virtual Memory Management in Paging Environment 253

memory is never bounded on both sides by pages of
Class 6 memory or vice-versa.

Shared code

N onprivileged 'shared code offers the potential ad
vantages of savings of main memory and backing
store space plus a reduction in the paging rate. How
ever, additional memory management control logic
is required to realize these advantages. In systems
with true segmentation, the segment is nomlally the
unit which is shared and shared code may be used by
attaching the called segment to the virtual memory
of the calling task. This degree of generality in a sys
tem with a linear address space requires more control
logic than the potential advantages warrant.

With a linear address space it seems preferable
to allocate some of the address space for shared code
and to take this space out of the system's area of virtual
memory. This procedure eliminates the need for any
overhead producing special actions when a task using
shared code gains or loses control of the processor.
I t also permits the same algorithm to be used for pag
ing the Control System and the shared code, simpli
fying the design and implementation of the paging
subsystem and thus reducing system overhead.

The major disadvantage of this approach is that
the (virtual memory) space for the shared code must
be allocated for every user, whether or not he uses the
shared code. However, it is felt that the low overhead,
ease and flexibility of use, and ease of implementation
more than make up for the loss of some address space.

In TSOS the system administrator determines for
his specific installation what major routines will be
considered eligible for sharing and makes this determi
nation known to the system by means of a special com
mand. He may choose only RCA supplied software
such as the File Editor, and the Interactive Fortran
compiler; or some user designed programs; or any
combination of the two. Upon the first call for one of
these shared routines the loader allocates the amount
of memory needed to load this routine. This memory
is allocated as nonprivileged, execute only, Class 4
virtual memory. Upon succeeding calls for the same
routine, the loader establishes links between the shared
routine and the calling task without the need for re
loading the shared program in any form.

During execution each user of the shared routine
uses the same physical (and virtual) copy of the routine
as all other users.

Macro caUs

The acquisition and release of virtual memory and

the control of the characteristics of allocated virtual
memory are the major services perfomled for users and
other Control System functions by the virtual memory
management subsystem. These services are requested
by means of macros which generate standardized
linkages and parameter lists. These linkages may be
either Supervisor Call instructions (SVCs) or standard
ized branching conventions, both of which provide
clean interfaces, an invaluable aid in the debugging
phases of complex system development.

The macros are named REQM (request memory),
RELM (release memory), and CSTAT (change mem
ory status). There are two forms of each macro, one
which may be used by nonprivileged and privileged
(Control System) routines, and the second which is
restricted to privileged routines only.

The nonprivileged forms of the REQM and RELM
macros permit the user to request and release Class
6 memory in multiples of one page, with a maximum
of 64 pages per call. If the address spaces and backing
store space is available, the requested memory will
be allocated in the first unallocated area (lowest
available area in the address space) large enough to sat
isfy the request; or if the user so ~pecifies, the memory
will be allocated starting at a specific address.

The nonprivileged form of the CSTAT macro allows
the user to change the status of any page in Class 6
memory to read-only or read-write. The CST AT macro
also provides the mechanism for users to request that
specific Class 6 pages be made pageable or nonpage
able. *

The privileged fonus of the virtual memory macros
allow Control System routines to operate on any page
in Classes 2, 3, 4, 5 and 6 virtual memory. The option
of the CSTAT macro which changes a page's status
to read-only or read-write is available for all memory
classes. The option to make pages pageable or non
pageable is available only for memory Classes 2, 4, 5
and 6. This option of the CST AT macro is the most
heavily used as it permits the Control System to lock
into (unlock from) main memory pages which are
(were) required to be resident for I/O operations. **

The privileged forms of the REQ:NI and RELM
macros permit Control System functions to request
and release Classes 3, 4 and 5 virtual memory. Classes

* Provision exists within the system, in certain well defined
situations to permit users to use this option of the CST A T
macro. The limit of the number of pages that a user may make
nonpageable is established based upon system-wide parameters
and conditions set at task initiation.

** All I/O is done with nontranslated addressing and thus com
mands must contain physical addresses and buffers must not be
moved until the I/O operations complete.

254 Spring Joint Computer Conference, 1969

1 and :2 virtual memory are structured at system gen
eration. In addition to the full page allocation capability
of the nonprivileged version of the macros, partial
page allocation is provided in the privileged versions.

Partial page allocation

Many Control System functions require different
sized areas of memory during their execution. This
memory may be required specifically for a single task
or it may contain system wide information. Memory
space which need not always be resident and which
is required for a single task is acquired as Class 5 mem
ory; system wide information which is pageable is
stored in Class 4 memory and user dependent or
system dependent infonnation which is nonpageable
is stored in Class 3 memory.

To conserve address space, better utilize main mem
ory and reduce the paging rate for Control System
pages, Classes 3, 4 and 5 memory are allocatable in
partial page units. The units of allocation are 8n bytes
where 2 ::; n ::; 509.

Any request for larger size areas are al10cated in
full page increments. Any size area may be requested,
but during the allocation process the size allocated is
rounded up to the next larger standard size. This stan
dardization, making all allocations multiples of a single
quantum size, eases both the allocation and garbage
collection processes employed.

Each page allocated is treated as a separate unit
so that no partial page allocation crosses a page bound
ary. This serves two purposes. First it eases the rec
ord keeping involved by limiting the number of areas
considered in a single operation. Second it prevents
dynamically acquired I/O buffers from being allocated
across page boundaries.

The latter is significant in that otherwise it would
be necessary to page contiguous virtual pages into
contiguous main memory pages, and this wou1d vastly
complicate the paging and physical memory manage
ment subsystems.

To manage the partial page allocation two linked
lists are maintained in each subdivided page. One list,
termed the main list, links all of the areas on the page
in address order. The second list, termed the free list,
links all of the unallocated areas in area size order,
with the smallest area at the head of the Jist. The links
of both lists are eight bytes long. The entries in the
links include a free bit, which is used to indicate unal
located areas, a size field, forward and backward link
fields and a two byte integrity field used by software
to, check that the link was not destroyed by some other
software routine.

In addition to the faemory links, partial page tables

are also maintained by the system to manage partial
page allocation. Two of the tables are maintained in
Class 3 memory to control the Class 3 and Class 4
faemory partial page allocations. There is also a cor
responding partial page table in each user's Class 5
memory which is used to control the Class 5 partial
page allocations for that user. The entries in each table
are identical. They consist of the virtual page number
of the page to which they correspond and the size
of the largest free area on the page. There is one entry
for each page which is subdivided for partial page allo
cation.

The placement of the memory links on the same
page as the partial page areas presents the possibility
of malfunctioning system components destroying
the links. However, rather than proving to be a. hin
drance, this link placement proved to be a great aid
in system debugging. This is due to the fact that the
memory management routines will often be the first
system function to find the destroyed link. This, in
turn, helps to avoid the problem that some other sys
tem function will malfunction, because it uses an ad
jacent area which was also destroyed, allowing many
bugs of the type which would only occur at widely
scattered intervals to be more easily tracked down.

.l'J err.my management tables

A relatively complex table structure is required to
support the memory management functions of T30S.
These tables support the physical memory management
and paging subsystems along with the virtual memory
management subsystem. They are used primarily to
maintain allocation status infonnation for the major
memory resources-the core pages, the drum pages,
the system virtual address space and user virtual ad
dress space.

The allocation status information for drum pages
and for system virtual memory pages is maintained
in bit-per-page maps cal1ed the Paging Drum Memory
Map and the System Virtual Memory Map. These
tables are used when the request memory (REQM)
macro code must find an unallocated drwn page during
the allocation of a page of pageable virtual memory
and when it is necessary to detennine the address- of
free pages during the allocation of system virtual mem
ory. These tables are also used during the corresponding
RELM (release memory) processing.

The core status data are maintained in two tables
cal1ed the Physical Memory Map and the Physical
Page Allocation Table. Each entry of the Physical
Memory Map indicates whether the page is free or
aJIocated, the memory class data for nonpageable
pages and certain reservation inforrnation. The Ph)~-

Virtual Memory Management in Paging Environment 255

ical Page Allocation Table contains the drum address
(for pageable pages), the I/O count (the number of
I/O operations in process or scheduled into this virtual
page), link space for the page out queues, and the
address of the Virtual Page Toole entry for pageable
pages.

The System Virtual Page Table is a two part table.
The main portion contains the core image of the entries
loaded into the translation memory for the system
virtual m~mory. However, when the pages represented
by these entries are not in core, the cylinder portion
of the backing store address is maintained in these
entries. The secondary part of the table is used to store
the drum track portion of the backing store address.

The above described tables are maintained in Class
1 virtual memory. They are system wide tables. In
addition, there are four private tables maintained for
each user. They are the Block Address Table and the
associated User Virtual Page Table which are main
tained in Class 3 Virtual Memory, and the User Vir
tual Memory Map and the Class 5 Partial Page Table.

The Block Address Table entries for each user are
maintained within the Task Control Block (TCB).
The TCB contains the master infonnation about each
task in the system. The Block Address Table entries
of a task are used within a special function to cause
the User Virtual P .1ge Table entries to be loaded into
the translation mealory when the task is to be given
control of the processor, and conversely when these
entires are to ce stored in core when control of the
processor is removed from the task. The space used to
store these entries is maintained in System Virtual
Memory to guarantee their accessibility by the Control
System at any time. Otherwise, they would be acces
sible only when the user was in control of the processor.

The User Virtual }Iemory J\lap parallels the System
Virtual Memory Map and is allocated in the user's
Class;) memory. The Class 5 partial page table is also
allocated in the user's Class 5 memory. It is used to
('ontrol the partial page allocation of the user's Class 5
memory.

SU1IMARY

The salient h'l.rdware features of the system described
are: a linear a::ldress space of 512 pages of 4096 bytes
each; a main memory of 64 pages; a single level page
per track backing store of 800 or 1600 pages; and the
use of a 512 entry translation memory to effect the
virtual memory of the system.

The facilities controlled by the virtual memory
management subsystem described include the organ
ization of the virtual memory, the subdivision of the
virtual memory into classes, the management of the

shared code within the system, and the allocation of
backing store and of partial pages.

Within the context of the hardware structure, the
major aspects and advantages of the described software
system are summarized below.

The partitioning of the virtual memory to concur
rently accommodate the system and a single user reduces
translation memory swapping overhead and provides
the system code with full accessibility to all user code,
while still pennitting the system code to be written
using virtual addresses.

The division of the virtual memory into classes
structures the use of the virtual memory, regulates
its use and simplifies the request and release procedures,
especially within the Control System.

The incorporation of sharable code wit~ in-,he system
virtual memory affords its direct accesblbllity to all
users, pennits a single page table to be maintained
for the code, and allows the same paging algorithm to
be applied to shared code as is used for system code;
but it requires all users to give up the same amount
of virtual memory for the shared code, whether or not
they use the shared code.

The allocation of backing store only when a page
of pageable virtual memory is allocated enables more
users to be run concurrently with a given level of back
ing store than if the backing store was allocated for
the entire user virtual memory, regardless of the user's
ntent to utilize his entire virtual memory.

The maintenance of a relationship between a virtual
memory page and a track on the backing store, even
when the page is in memory, is justified based upon
the real probability that the page may not be modified
and therefore will not have to be written out-if the
backing store association is maintained while it is in
memory; and the added consideration that the ratio
of drum tracks to memory tracks is such that the mar
ginal gain in drum tracks available to the system from
reassigning pages in memory is extremely small. The
drum characteristic of a single page per track is also
a factor in this regard.

The provision for partial page allocation for other
Control System functions, while it increases the calls
on the virtual memory subsystem, provides for better
utilization of memory and easier development of re
entrant code.

REFERENCES

RCA Spectra 70/46 Processor Reference Manual
2---

RCA Spectra 70/35 45 55 Processor Reference Manual
3 B RANDELL C J KUEHNER

Dynamic storage allocation systems

256 Spring Joint Computer Conference, 1969

CAe M Vol 11 No 5 May 1968297-306
4 G OPPENHEIMER N WEIZER

Resource management for a medium scale time sharing
operating system
CAe M Vol 11 No 5 May 1968313-322

5 P J DENNING
The working set model for program behavior
CAe M Vol 11 No 5 May 1968323-333

APPENDIX

The translation memory

The Translation ~1emory is 512 half-words in size.
Each entry in Translation Memory has the format

shown in Figure 3.
The meaning of each of the control bits and the

physical page number in the translation memory entry
is given below:

P = Parity bit (invisible to the software).
vV = vVritten Into Bit: indicates when set, that the

page addressed in memory by this translation
halfword has been written into. This bit is
automatically set by hardware and reset by
software.

G = Accessed Bit: indicates, when set, that the
page addressed in memory by this translation
halfword has been accessed (read, or written
into). This bit is automatically set and reset
by hardware. Attempted but unsuccessful
access to a page does not set this bit.

1 bit 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit 3 bits 6 bits 1 bit

~I WiG I u I s I ElM I ::.1~~I~bsERI H I
Figure 3-Format of a translation memory entry

U = Utilization Bit: indicates, when set, that the
addressed translation word can be utilized.
This bit indicates, when reset, that the ad
dressed translation word cannot be utilized
(i.e., this virtual page is not in core) and a
Paging Queue Program Interrupt occurs. This
bit is set and reset by sottware.

S = State Bit: Indicates when set, that the ad
dressed translation word is nonprivileged.
When this bit is reset, it indicates that the ad
dress page is privileged and can only be ac
cessed by a program operating in the pri'vileged
mode (i.e., a portion of the system software).
When this bit is reset and a nonprivileged
program attempts to access this page, a
Paging Elror Program Interrupt occurs. This
bit is set and reset by software.

E = Executable Bit: indicates when set, that the
page addrest3ed in memory by this translation
word can be read as an operand or instruction
but cannot be written into. When this bit is
reset, all forms of access are allowed for this
page. If a program attempts to write into a
page with this bit set in the translation word,
a Paging Error Interrupt occurs. This bit is
set and reset by software.

M and H bits are used when the 2048 byte virtual
page mode is used. Under TSOS only the 4096 byte
virtual page mode is used.

Physical Page Number: when the U bit is set, these
six bits contain the six most significant bits of the actual
physical address of the page represented by this T.M.
entry. The full physical address is obtained by con
catenating these six bits with the low order 12 bits of the
virtual address. \Vhen the U bit is reset no meaningful
information is contained in this field.

An operational analysis of a
remote console system

by HERBERT D. SCHWETMAN
and JAMES R. DELINE

The University of Texas
Austin, Texas

INTRODUCTION

The Computation Center of The University of Texas
at Austin provides remote console access to a CDC
6600 computer through a system called RESPOND.!
RESPOND was written by Control Data Corporation
and has been in operation at The University for more
than two years.

The paper gives a brief description of RESPOND and
the capabilities provided the user. This is followed by
a critical evaluation of the performance and reliability
of the RESPOND system based upon experience
gained in its use. A survey of user reactions is presented
next. Finally, the cost of providing this remote batch
entry service is estimated in terms of percent of system
resources used and system maintenance required.

A description oj RESPOND

The RESPOND system was installed on the CDC
6600 at the Computation Center on ~larch 10 1967 , ,
by the Special Systems Division, Control Data Corpo
ration. This was the second implementation of RE
SPOND on a 6000 series computer, * and the first under
the SCOPE 2.0 operating system. This version later
became the framework for Control Data's standard
6000 series system-TTY RESPOND.2

A RESPOND terminal is typically a Model 33 or
35 Teletype, with or without punched paper tape
capability. From this terminal a user may log into the
system by providing his password and the account
number to which his computing activities will be
charged. He may then enter data into the system via
the keyboard or paper tape and may create a file by

• The first implementation was at Rechenzentrum der Tech
~chen Hochschule Aachen, Aachen, Germany, on a CDC 6400
m January 1967.

giving this text a name. Such files then become a
member of the user's private file catalog. Files may
also be introduced into RESPOND from other sources.
Card decks and magnetic tape records can be copied
into files in the user's file catalog.

RESPOND appends a sequence number to each
incoming line of text and, by referring to these numbers,
the user is provided with a limited text-editing capa
bility. A line or group of contiguous lines of text may be
displayed at the terminal by referring to the name of
the file and specifying the desired lines. New lines may
be-inserted in~o the body of the file at any point, and
undesired lines may be deleted by reference to their
sequence number. Two or more files may be merged,
with the new file given a name different from the others.

At the user's option, these files may be copied to
punched cards or printed output at the 6600 site, may
be submitted as programs and data to be run by the
6600, or may be saved by the RESPOND system for
use at a later time. Files which are no longer wanted
may be deleted by the user from his file catalog; those
files which remain are periodically dumped to rmgnetic
tape. In addition to holding all user files, this tape
holds public files, which are accessible as read -only
files by all users, and a list of passwords for all author
ized users. This tape is copied to disk storage each
morning when RESPOND is placed "on the air" and
is used to restore the system when RESPOND experi
ences an unrecoverable failure.

RESPOND files of program source text may be
submitted for compilation and execution. In this
environment, a RESPOND job consists of one or more
RESPOND files, the first of which is a SCOPE control
card file. The contents of this file are identical to the
control card record which would be used if the program
were to be run in the normal (over-the-counter) batch

257--------------------------------------

258 Spring Joint Computer Conference, 1969

environment of the 6600. Thus, the same compilers,
assemblers, utility and object-time subroutines, deck
structures, and error messages provided in the normal
batch mode are available to the RESPOND user. As
will be pointed out in a later section, there are some
advantages and disadvantages to this feature.

Once a set of files have been sub;mitted for execution,
they are locked from further user access until the job
has been run. The user is not able to interact with his
program once it is placed into execution, but he is
permitted to create, peruse, and submit for execution
other files in his file catalog.

After the program has been run, RESPOND wiii
collect those files specified by the user which were
created as a result of a program execution. Typical of
these files is the standard output file which or'dinarily
will contain listable output from a compiler and, in the
case of a subsequent load-and-go, the results produced
by the compiled program. These files are converted into
RESPOND format and are placed in the user's file
catalog. Other special-purpose files may be left with the
operating system for on-site disposal, such as plot and
microfilm files, or magnetic tapes created during
program execution. A user/computer-operator message
facility is available to permit close cooperation on
magnetic tape requirements, log-out times, etc.

The commands of RESPOXD can be divided into
five groups. The frequency distribution of the usage of
these commands is given in Table I. It is interesting to
note that use of commands in the EDIT group far
outweighs command usage in the other groups.

Table I-Command frequency distribution

EDIT group _______ 61%
Clear _________ 10%
Delete ________ 10
Load _ _ _ _ _ _ _ _ 9
File _ _ _ _ _ _ _ _ _ 9
Show _ _ _ _ _ _ _ _ _ 9
Enter _ _ _ _ _ _ _ _ 8
Display _ _ _ _ _ _ 6
Format ______ 0

UTILITY Group 12%
Login ________ 6%
Logout _______ 3
Save _________ 2
Message ____ _

STATUS group 9 %
FIst (Fast List) 5 %
Status _ _ _ _ _ _ _ _ 3
List _ _ _ _ _ _ _ _ _ _ _ 1

BATCH Group ________ 9%
Submit ________ 6%
Copy _ _ _ _ _ _ _ _ _ 2
Compile ______ _
Assemble _ _ _ _ _ _ 0

MISCELLANEOUS _ _ _ _ 9%
Break _________ 7%
Errors _ _ _ _ _ _ _ _ _ 2
Set ___________ 0

3,775 Commands in Sample

The RESPOND system environment

The CDC 6600 computer at The University of Texas
at Austin consists of a high-speed central processor
with 131,072 60-bit words of central memory and 10
peripheral processors, each with 4,096 12-bit words.

All memories have a 1.0 ~sec cycle time; the central
memory has 32 independent banks permitting an upper
limit of 10 memory accesses per micro-second. The
peripheral processors can read and write the central
memory as well as their own private memories and may
address anyone of the twelve high-speed input-output
channels. The central processor has no input-output
instructions.

Jobs can be entered into the 6600 from card readers
within the Computation Center, from any of five
remote computers which communicate via broad-band
telephone lines, and from RESPOND. On a typical
weekday, about 2,500 jobs are processed by the central
computer, of which some 300 originate at RESPOND
consoles.

The SCOPE operating system at The University of
Texas at Austin requires a resident of 13,000 words of
central memory and occupies two of the ten peripheral
processors. In addition, SCOPE will call upon
the remaining eight peripheral processors from time to
time to service users' I/O buffers in central memory,
load jobs or library routines from the disk, service the
card readers by placing incoming jobs into the input
queue, schedule jobs for loading into central memory,
and attempt to keep the print, punch, plot, and micro
film queues empty.

Central memory is dynamically broken into seven
logical areas called control points. User programs are
assigned to these control points for processing, with the
central processor servicing the program in central
memory of the highest priority which does not have any
incomplete I/O buffers. In practice, one of these seven
control points is required to service all of the unit
record equipment; a second control point is occupied by
the central processor portion of the RESPOND systAm.
The central memory requirement for the former control
point varies between 512 and 8,192 words, while the
latter requires 14,600 words as a minimum and in':'
creases as a function of the activity at the remote
terminals. The maximum available central memory for
user programs is approximately 103:000 words.

Programs read from the card readers are placed in
the input queue on the disk and are assigned a central
memory access priority of two octal digits. The first
digit varies inversely as the time limit requested and
the second varies inversely a,~ the central memory
space requested. Both requests are" extracted from the
job card which is the first card of the control card
record for the program. Jobs submitted from RE
SPOND terminals are constrained by policy to a time
limit of 127 seconds and central memory limit of
32,768 words. Since 97 percent of all jobs run at the
Computation Center run in less than 127 seconds; the

Operational Analysis of Remote Console System 259

RESPOXD time limit is not unduly restrictive. While
these job card parameters could result in a modest input
queue priority had the job been entered through a card
reader, RESPOND assigns to all of its jobs a very high
priority.

The central memory scheduling algorithm is based
upon the following criterion: if a control point is
available, the highest priority job in the input queue
whose central memory request is less than or equal to
the current unused central memory is brought to a
control point. Once there, the job runs to completion,
and its disposable files are collected and routed to the
proper output devices. Since RESPOND jobs are given
a very high input queue priority, they are normally
assured of rapid assignment to a control point.

One peripheral processor is dedicated to servicing
the RESPOND communication line multiplexer, which
can accommodate up to 64 data sets. This peripheral
processor polls all active lines eleven times per second,
packing input characters into the appropriate central
memory buffer and placing output characters on the
line for transmission to the remote terminal. At the
present time 15 AT&T 103A2 data sets are available
through a rotary switching scheme. This dial-up
feature permits optimum usage of the available modems
and also permits a recorded audio message to be re
turned to the user if he should happen to dial up when
RESPOND is inoperative.

In addition to the peripheral processor required to
service the multiplexer, RESPOND occasionally re
quests other peripheral processors to assist in file
merging, job submission, etc. Also, small percentages
of certain transient system peripheral processors are
required for job scheduling, job processing, and a
dozen or so other system functions.

Evaluation of performance

The performance discussed in this section refers to
physical characteristics of RESPOND/user interaction.
The measurements made of this aspect of performance
are of (1) system response, (2) user "think time,"
(3) delay in processing of jobs in the SCOPE input
queue, and (4) a history of RESPOND reliability.
The architecture of the 6600 makes possible easy access
to these measurements, since the peripheral processors
are independent of the central processor and may be
called upon to monitor RESPOND's progress from
time to time.3

The response time statistics were gathered by a
subroutine in the multiplexer servicing program, which
is resident in a peripheral processor. The processing
delay statistics were gathered by post-processing of
the SCOPE chronological log (called the DAYFILE).

Every time a RESPOND job is submitted to the input
queue, a DA YFILE message is generated. At some
later time, the job is assigned to a control point and
another DAYFILE message is issued. Since the time of
issue is entered along with the message into the DAY
FILE, elapsed time between these two events can
easily be measured. The selection of the statistics was
greatly influenced by similar studies of other remote
console systems.4 ,5,6

The central processor portion of RESPOND is
activated by SCOPE once every 500 milliseconds.
During the few milliseconds it is active, RESPOND
services all terminals which have completed an input
message in the past one-half second. Generally, this
servicing can be completed and a response placed in
the terminal's output buffer in one "duty cycle";
however, several cycles may be required for the more
complex commands.

Figure 1 is a graph displaying the probability density
curve of the "system response time." This response time
is defined to be the elapsed time between a user supplied
carriage return (end of message) and the beginning of
the first output character from RESPOND.

Figure 2 shows the probability density curve of
"user response time" or "think time." Think time is
defined to be the time between the system response or
"go ahead indication" and the next user input character.
Think time is not really a measure of system perfor
mance but is provided in order to allow system de
signers to see an example of user performance. The

~
.15

~ -00
Z .12
~
0

~
~ .09 -~ -c:Q

< .06
c:Q
0
~
i:l.! .03

°0~----.~2-----.·4----~.6----~.8----~1.O~--~12

SYSTEM RESPONSE TIME (SECONDS)

Figure 1--8ystem response time

260 Spri~g Joint Computer Conference, 1969

.18 r
I

.15

.12

.06

.03

o ~----~----~----~----~----~--~ o 2 4 6 8 10

THINK TIME (SECONDS)

Figure 2-Think time

"typical" RESPOND user IS further characterized
in Table II.

Table II-The typical RESPOND Userl

Time at Console __________________________ _
Number of jobs submittted _________________ _
Computer time ___________________________ _
Number of commands input ________________ _
Number of lines of data input ______________ _
Number of lines of data output _____________ _
Number of disk accesses ___________________ _
Average think time ________________________ _

15.25 minutes
1.12 jobs
8.1 seconds

19
29
71
43
5.5 seconds

12

Figure 3 indicates the input queue delays for sub
mitted jobs. The small core curve represents the delay
for jobs requiring between 0 and 8,192 words of central
memory, the medium core curve for jobs between
8,193 and 24,576 words, and the large core curve for
jobs between 24,577 and 32,768 words. These curves
were derived from more than 28,000 RESPOND jobs
observed over a 9-month period of time. Although these
curves represent delays primarily due to a temporary
unavailability of sufficient central memory in which to
run the job, it can be seen that the operating system
is rather insensitive to varying central memory re
quirements.

As was demonstrated in a survey of user reactions,
the most important single attribute of a remote console

>-t
E-4 -r.n.
Z
ril
o
>-t

1.0 ~

.1

~ ~ co .01

o
~
~

~ .r LARGE CORE

~1"~ MEDIUM CORE

- ':,..... ~ --------- ----------
SMALL CORE

.001 ~--__ ~ ____ ~ ____ ~ ____ ~ ____ ~ __ ___

o 10 20 30 40 50 60

INPUT QUEUE DELAY (SECONDS)

Figure 3-Input. queue delay

system is system reliability. One of the most exasper
ating events in man-machine interaction is for the man
to spend time keying in a text and then for the machine
~o "lose" it. Thus, in spite of almost instantaneous
response time and a multitude of user-oriented con
veniences, an unreliable system is of little value.
RESPOND reliability has been uneven at best.

The types of system failures include RESPOND
bugs, SCOPE failures which cause RESPOND to
malfunction, and hardware failures. Currently, there
is a restart capability which permits recovery from
many of these failures. This restart permits a user's
files created prior to his most recent SAVE command
to be recovered. Thus all failures result in some loss of
files, but in most cases, the losses are minimized.
Other failures cause the loss of all files created since
the time of the last dump of RESPOND files to mag
netic tape which, in the worst case, is four hours.

Figure 4 is a history of all RESPOND failures from
September 1967 to January 1969. The ordinate of the
graph is the ratio of the number of failures per thousand
RESPOND jobs submitted. It should be noted that
this ordinate is a logarithmic scale. Currently, the
ratio of unrecoverable failures (dump tape reload) to
recoverable failures (restart) is about 1 :10.

Operational Analysis of Remote Console System 261

100

1~~~~~~~~~~--~~~~~~~

SON D J F M A M J J ·A SON D J
67 68 69

DATES

Figure 4-History of RESPOND failure rat.e

Certain sYstem failures include those which involve a
failure in the communication equipment. As initially
installed, RESPOND made no check of the modem
status. In some cases, a telephone line was inad
vertently disconnected, but the user's password
remained logically "in use." With the installation of
the dial-up network, this created a serious problem,
since a user could no longer select his point of con
nection to the multiplexer. A local modification added
a test for "modem connected" status to the multiplexer
servicing routine and automatically initiated a LOG
OUT if a disconnected modem was found. This modi
fication has virtually eliminated all RESPOND
failures due to communication equipment malfunctions.

User reactions

Initially, RESPOND passwords were issued only to
faculty and staff personnel and selected graduate
students. This was due in part to the novelty of the
system and a feeling of a lack of need on the part of
many potential users. More recently, the user popu
lation has grown to indude graduate students in many
disciplines and certain undergraduate classes as well.
Presently, there are 142 active passwords outstanding
with 1,194 files in their file catalogs.

A questionnaire was recently distributed to .all
RESPOND users. They were asked to comment on
their usage of RESPOND, to give their opinions of
the reliability of the system and to suggest improve
ments which they felt could be made to the system.

Complaints from the user population can be easily
broken down into two groups: failures of RESPOND

to do the things it should do, and improvements that
could be made to the system. In the first category,
the single biggest complaint was the unreliable nature
of the system in saving user files from one session to
the next. A new user quickly learns (usually the hard
way) that newly created files should be copied to punch
cards, magnetic tape, paper tape, or the printer as a
precautionary measure. These files can then be re
introduced as RESPOND files with minor incon
venience to the user. Table III presents a tabulation
of users' ratings of RESPOND's reliability.

Table III-Users' ratings of RESPOND's reliability

Rating Percent of Responses

Excellent _ __ _ _ _ _ _ __ _____ _ _ __ _ _ ____ ____ __ __ __ _ 2.3%
Good__ 18.2%
Fau___ 41.0
Poor __ 29.4
Unusable ____________________________________ 9.1

Two highly desirable features of RESPOND are the
control card compatibility with the batch system and
the availability of the entire system library to the
RESPOND user. These features eliminate duplication
of programming and system maintenance in the appli
cations software area and permit a user to easily
switch between normal batch processing and RE
SPOND without fear of system incompatibility. A
summary of programming languages utilized by users
who answered the questionnaire is given in Table IV.

Table IV-Programming languages utilized by RESPOND users

Programming Language Percent of
Users Responding

FORTRAN _ 98%
ALGOL ___________________________________ - _ 22
LISP__ 22
COMPASS _ _______ _____ ______ ______ ____ _ _ _ _ _ 20
Other ___ 5
L6 ___________________________ :_____________ 2
SNOBOL ___________________________________ 2

The improvements which were suggested included
the implementation of a context-oriented text editor,
provision for a conversational or interactive capability,
and modification of some of the system-wide services
to limit the amount of printed output for RESPOND
users. The first and third suggestions are particularlr

262 Spring Joint Computer Conference, 1969

important when the remote console in use has a slow
speed printer. The most consistently suggested im
provement was that reliability and dependability be
improved. The group making this suggestion stressed
the idea that RESPOND is a useful tool in their work
but that this usefulness would increase as system
integrity and dependability improved.

Those who had the most praise for the system were
those who otherwise would have had limited access to
the 6600. They tended to have longer sessions at their
terminals and were quite creative in their handling of
multiple files. One graduate student claimed he com
pleted his research for his doctoral dissertation a year
early due to his access to a RESPOND tenninal.

Gosi

The cost of providing a remote console capability
within a multiprogramming system is difficult to
detennine due to the following considerations:

• Often, the remote console system is just taking up
"slack" in the system resources.

• The remote console system can ease the load on the
nonnal batch processing portion of the compu
tation center.

It cannot be denied that system interference, the
occupation of valuable memory space and a control
point, and the use of one dedicated peripheral processor
by the remote console system represent tangible costs.
Table V shows the utilization of various system re
sources over a period of one month.

Table V-RESPOND utilization of system resources

Maximum Average Minimum

Characters of disk storage
required for RESPOND files __

Central memory words required
by RESPOND ______________ 29,800

Percent of available central
processor time used by
RESPOND* ________________ 6.9

Percent of available peripheral
processor time used by
RESPOND* ________________ 18.1

14.5xlQ&

22,100 14,600

4.7 0.39

14.1 12.5

The next two figures illustrate the demand made of
certain system resources as a function of the number of

* These figures do not include time required to run the programs
submitted from RESPOND terminals. The peripheral processor
percentages include the dedicated peripheral processor which
services the multiplexer.

~ r c,:,
<
en wL ::;J

I:t:
I

0
en
en
~
0 1.5
0
~
Il.t

...:I
<
~ 1.0
E-t

~
Z
~
0

E-t
z .5t-
~

J 0

~
~
Il.t

0 2 4 6 8 10 12

NUMBER OF ACTIVE USERS

Figure 5-Central processor usage

active users. Figure 5 indicates central processor time
used by RESPOND. This measurement does not
include the periods of dump tape loading and unloading,
which averaged 0.62 seconds per file. With no users
logged in, the central processor portion of RESPOXD
requi,res 1.94 milliseconds to complete a duty cycle.
Since duty cycles are initiated once every ,100 milli
seconds, an overhead of 0.39 percent of available central
processor t.Lrne is obt.ained. Figure 6 reflects RE
SPOND's requirements for additional central memory
workspace as the number of active users increases.
Since the amount of workspace required by a user
depends upon the nature of his activity, no simple
fonnula can be given which will anticipate central
memory reqJ.lirements.

The file structure for RESPOND files stored on the
system disk is designed to permit rapid access to
individual lines of text. The SCOPE file system has
as the basic allocatable item a half -track, which is
48 64-word sectors. ** RESPOND breaks down each
half-track assigned to it into 6 disk blocks of 8 sectors
each and keeps a record of both the half -track number
and block starting sector.

Each disk block, then, is 5,120 characters in length,

** Originally 50 sectors, the SCOPE half-track was reduced to
48 sectors in order to achieve a multiple of 8 sectors per half
track as required by RESPOND.

Operational Analysis of Remote Console System 263

48

en
E-4

~ 40
::s
~ -::> 32 0
~ ~ ~ III
........ 0

----------~ ~
24 0 .

~
...
0

::s >C

~ 16

~
E-4 z
t3 8

~
<
~ 0

0 4 6 8 10 12

NUMBER OF ACTIVE USERS

Figure 6-Petl.k central memory usage

and the file structure is such that any coded file re
quires a minimum of three disk blocks while binary
files require a minimum of two disk blocks. Coded
files are made up of one file header block and an arbi
trary number of sequence number and text blocks.
Since binary files have no sequence numbers associated
with them, they do not require sequence number
blocks. It has been observed that many RESPOND
failures occur in the mapping operation between the
SCOPE and RESPOND file structures described
above.

Figures 7 and 8 show how user files are allocated
on the disk by RESPOND. The portion of the file
which contains useful data is plotted against the number
of blocks required to contain that file. As the size of
the file increases, the allocation efficiency of this file
structure appears to stabilize near 85 percent. As Figure
8 indicates, however, the number of files which enjoy
this allocation is a negligible percentage of the total
number of user files. Since two-block files can only be
binary files, the distributions shown in Figures 7 and 8
are slightly distorted. The data used in these figures
represent 1,194 files distributed over 142 users. Ninety
one percent of the files were coded and nine percent
were binary.

Aside from costs in terms of system resources, a
remote console system can add other costs to the oper
ation of a computation center. When such a system is

. first installed, it is very likely that several local modi
fications will be needed in order to tailor the operation

<
E-4
<
0

~
=::>
~
~
U1
=::>

~
0

E-4
Z
r£l
0

~

ff

100

80

60

40

20

o
o 4 8 12 16

DISK BLOCKS PER FILE

Fi~ure 7-Disk file storage efficiency

100

80

,
60 , , , ,
40

, , , ,
20

, , , ,
a

a 4 8 12

DISK BLOCKS PER FILE

Figure 8-File size distribution

. 20

16

264 Spring Joint Computer Conference, 1969

of the system to the particular user's environment.
As usage of the system increases, demands for ad
ditional features, extended capability, and higher
reliability will be voiced by users. Finally, like any
other large, complex system, it is certain to have at
least one remaining "bug" in it at all times.7 For these
reasons, the talent of a systenI programmer thoroughly
familiar with the operation of the system will be
required throughout the life of the installation.

A remote console system also demands the attention
of the computer operators, a fact that is often over
looked in cost forecasts. It is estimated that at The
University of Texas Computation Center, the computer
operators spend about 1/10th of their time on tasks
directly related to RESPOND. These tasks include
replying to user messages on the master console,
handiing magnetic tape for some RESPOND jobs,
loading and dumping RESPO~D files, and intervening
in the event of system failures. Since the remote
console users are on-line, the computer operators must
be prepared to service these demands in a punctual
manner. They sometimes view this responsibility as
a hindrance to thejr normal batch processing duties.

se:\I~IARY

A remote console system whieh has been in operation
for more than 20 months has been analyzed. rrhis
analysis covered system performance, system reliability,
user reaction, and cost. The study pointed out the
following:

• System reliability is of paramount importance.
• A remote batch entry system such as RESPO:XD
is very useful for many types of applications.
Expanding its capabilities to include interactive

processing and context-oriented text editing would
make the system appeal to a larger class of users.,

• It is extremely important that the remote cons~ole
system and the operating system be compatible
in as many areas (e.g., file structure) as possible.
RESPO~D's utilization of standard system soft
ware is considered a strong point in its favor.

• The cost of providing such a service is more than
the expenditure of system resources such as
processors, core memory, and mass storage. It
also includes the talents of system programmers,
computer operators, and a person to provide
iiaison between the remote users and the compu
tation center.

REFERENCES

E A PEARSO~
RESPOND, a user's manual
Computation Center The University of Texas Austin 1967

2 TTY RESPOND reference manual
Control Data Corporation Publication nr 60189300 1967

3 D F STEVEXS
System evaluation on the Control Data 6600
Proc International Federation of Information Processing
Societies CO~GRESS 68 C34

4 A L SCHERR
Time-sharing measurement
Datamation Vol 12 No 4 22-26 April H)66

5 G E BRYA~
JOSS: 20,000 hours at the console-a statistical summary
Proc F J C C 1967

6 R V BUTLER
The Langley Research Center remote computing terminal
system: implementation and first year's operation
Proc 21st ~ational ACM Conference 1966

7 E \V PULLE~ D F SHUTTEE
.lfUSE: A tool jor testing and debugging a multi-terminal
programming system
Proc S J C C 1968

A model for core space allocation in a
time-sharing system

by MAURICE V. WILKES

The University Mathematical Lahoratory
Cambridge, England

INTRODUCTION

In a time-sharing system that is intended to serve a
number of console users simultaneously, there are two
related, but distinct, functions to be performed. One
is time slicing, which is the allocation of bursts of pro
cessor time to the various active programs according
to a suitable algorithm. The other is core space alloca
tion which arises because, in a modem multi-pro
grammed system, there will be space in core for more
than one active program at the same time. If, as will
normally be the case, there are more active programs
than can be accommodated in core, some of them must
be held on a drum and brought into core periodically;
this is swapping. Confusion has sometimes arisen be
tween time slicing and swapping, since, in the early
time-sharing systems, there was only one active object
program resident in core at any time, all the others being
on the drum. In these circumstances, swapping and time
slicing go together; when a program is in core, it is re
ceiving processor time, and as soon as it ceases to receive
processor time it is removed from core. In a multi-pro
grammed system, however, space allocation and time
slicing can proceed independently. It is the responsi
bility of the space allocation algorithm to ensure that,
as far as possible, there is always at least one program
in core that is ready to run. The time-slicing algorithm
is responsible for dividing up the available processor
time between the various programs that are in core.

Models can play a similar part in the discussion of
computer systems as they can play in scientific theory.
Practical situations tend to be highly complex, and a
model serves the purpose of isolating and focusing
attention on those features that are relevant to the pur
pose in hand. Since a model is simple, it can be defined
precisely, and hence made to serve as a suitable basis
for analysis, mathematical or otherwise. A model has

essential features and non-essential features, and one
object of analysis is to determine which are which. A
model of a software system is not a blueprint for an
implementation; a given model may, possibly, be im
plemented in a number of quite different ways. The
implementer may depart from the model, for example,
by adding features which spoil its simplicity but increase
the running efficiency. In such cases, the analysed per
formance of the model gives a lower limit to the per
formance of the system. On the other hand, the imple
menter may be faced with practical limitations that the
model maker could ignore, and these may lead him to a
variety of compromises and sacrifices to expediency.

The model

This paper is concerned with core-space allocation
for object programs only, and it is assumed that the
supervisor is provided with a separate allocation system
of its own. Practical reasons why this is desirable derive
from the fact that a good deal of information is avail
able about the likely behavior of supervisor processes.
Some routines in the supervisor are needed so frequently
that they must be kept permanently resident in core; in
the case of others; it may be known that, when they
have finished running, they will not be needed again for
an appreciable time, and these processes, therefore, are
best called down on each occasion when they are re
quired. A system of requesting and keeping priorities
specially adapted to the administration of the core
space available for supervisor processes has been de
scribed by Hartley, Landy, and Needham;l this system
lends itself to use in the case where, as in the model to be
described, the amount of core space actually available
to the supervisor varies dynamically from minute to
minute. One of the responsibilities of the supervisor is
handling input and output, and provision of the neces
sary space for buffers is dealt with by the space alloca-

265

266 Spring Joint Computer Conference, 1969

tion procedure associated with the supervisor. There
will be several further references to supervisor space
scheduling, but the subject will not be discussed in
detail.

In describing the model, it will be assumed that there
is only one processor in the system. There is, however,
no reason why there should not be more than one. The
issue hardly affects the problem of space allocation,
although it does, of course, affect the design of the time
slicing algorithm.

There is some difficulty in arriving at a nomenclature
that is not ambiguous or misleading to describe the flow
of work through a time-sharing system that is handling
both a foreground and a background load. In the case
of a batch-processing system, one can think of the work
being presented a.s consist.ing of a series of self-cont.ained
jobs, each of which may pass through a number of stages
variously known as job steps, phases, or tasks. If the
same point of view is adopted in relation to a time
sharing system, then an on-line session at a console con
sists of a single job; a user, however, is more likely to
think of himself as creating a number of separate jobs,
some of which may run independently, and some run
interactjvely. A distinction must also be made between
programs that are run on behalf of a user, and programs
that are run on behalf of the supervisor; the former are
sometimes called object programs. This paper is con
cerned with the work in the system at a given time and
not with the life history of individual jobs according to
any particular definition of that term. The termsjob and
object program will, therefore,' be used more or less inter
changeably to refer to tasks or sub-tasks requiring to be
done on behalf of a user and existing in the system at a
given moment.

Swapping and resident regimes

Object programs that live on the drum and come in
and out of core for periods of activation may be said to
operate in the swapping regime; as pointed out above,
such programs do not necessarily have the use of the
processor for the whole time that they are in core.
Programs that remain in core, and receive bursts of
processor time at intervals, may be said to operate in
the resident regime. In the present model, all programs,
when first loaded, are operated in the resident regime,
and those that survive for more than a short length of
time pass into the swapping regime.

The explanation can be followed by reference to Fig
ure 1. The lowest area of core is known as the swapping
area, and is the area into which programs currently
operating in the swapping regime are transferred in
order to be eligible to receive processor time. In the
simplest mode of operation, there is only one program

RESIDENT
SUPERVISOR

NON-RESIDENT
SUPERVISOR.
BUFFERS.
SUBSYSTEMS

PIPE LINE

SWAPPING AREA

CORE MEMORY

n
VARIABLE BOUNDARY

-------- }-----{ ~ DISC

'\
OBJECT PROGRAMS LOADED
ACCORDING TO PRIORITY
RULES AS SPACE BECOMES
AVAILABLE

L.o.----.I}----l_ DRUM

Figure 1

at any time actually loaded into the swapping area, but
more elaborate modes are possible. Above the swapping
area comes the pipeline. This is large enough to contain
several of the maximum-sized programs that are ac
ceptable to the system. Programs enter the pipeline at
the top and work their way down in the manner that
will be described. * If they survive long enough, they
eventually enter the swapping area. The top boundary
of the pipeline is dynamically variable, and is indicated
by a dotted line. Above this comes an area for holding
sections of the supervisor that are kept on a drum or
disc and brought into core only when they are needed.
The same area is used to provide buffer space for the
supervisor, space for lists maintained by the supervisor,
and space for sub-systems that are subjected to super
visor-type scheduling, rather than to object-program
type scheduling. Finally, at the top of the core, there is
a region reserved for sections of the supervisor that are
permanently held in core.

An object program starts its life by being queued on
the disc, along with other object programs that have

* References to programs being moved down the pipeline do not
necessarily imply that in an implementation programs should be
physically moved in core. A system in which a similar effect
were obt2.ined by software devices or by paging hardware would
be a valid implementation of the model.

been created either by a user or by the system. When
space becomes available at the top of the pipeline, one
of the waiting object programs is selected for loading by
the pipeline loading routine in the supervisor. The pipe
line loading routine is designed to favour short programs
while ensuring that long ones are not indefinitely de
layed, and, at the same time, to give effect to the dif
fering priorities that may be attached to object pro
grams, either as a result of administrative decision or
by system requirements. When an object program
enters the pipeline, it is given an upper limit for space
(including space for data) that it may occupy, but no
actual allocation of space is made at this moment
beyond that immediately needed. Thus, a program of
length 4K words that it is known will ultimately require
another 8K for data is given an upper limit of 12K, but
receives no more than 4K of physical space when first
loaded into the pipeline.

When in the pipeline, object programs receive slices
of processor time as determined by the time-slicing
algorithm. Object programs that do not survive long
enough to enter the swapping regime can leave the
pipeline in various ways. They can become dead or
dormant, the difference between these two states being
that a dead program is needed no more and can be
abandoned, whereas a dormant program must be trans
ferred to the disc for possible reactivation, or post
mortem examination, if required. An object program
can also leave the pipeline as a result of going into a
console wait; a discussion of what should happen in
these circumstances will be reserved until later.

When space in the pipeline becomes free as a result of
an object program leaving it, programs higher up in the
pipeline are shifted down to fill the vacant space. This
can result in space appearing at the top of the pipeline,
in which case the pipeline loading routine can either
load a new object program at once, or wait until addi
tional space has become available. On the other hand,
one of the other object programs in the pipeline, above
the one that has disappeared, may be waiting for addi
tional space, in which case the space now available (or
as much as is needed) is given to this object program,
any surplus being passed upwards for allocation to
another waiting object program or to be made available
to the pipeline-loading routine. One may think of a
bubble of space passing upwards and either being ab
sorbed or partly absorbed on the way, or reaching the
top. If an object program survives long enough to reach
the bottom of the pipeline, it is eligible to pass into the
swapping area. The rate at which object programs are
withdrawn from the pipeline controls ultimately how
much space becomes available to the pipeline-loading
routine and hence the rate at which new object pro
grams are loaded.

A :Model for Core Space Allocation 267

The efficient operation of the system requires that
the pipeline shall contain a sufficient number of object
programs, or jobs as they will now usually be called;
there is no point, however, in increasing the number of
jobs beyond the point at which there is a high probabil
ity that, at any instant, there will be at least one job in
core that is ready to run. The criterion here is the num
ber of jobs in the pipeline, not the total core space that
they occupy. The amount of space needed in the pipe
line will, therefore, vary from second to second, ac
cording to the average size of the jobs. When there is
space to spare, it is better to give it (temporarily) to
the supervisor rather than to load redundant jobs. The
supervisor will be able to make good use of the space
for purposes already mentioned, such as holding non
resident routines. and temporary buffers. In the model,
therefore, we assume that the pipeline loading algorithm
is designed to keep the number of jobs in the pipeline
constant.

The pipeline has the effect-and this indeed is its
purpose-of filtering out jobs that run for short periods
only, since these will leave the pipeline before they
reach the bottom. Since they never reach the swapping
area, the overheads of swapping are avoided altogether
in the case of such jobs.

Jobs that are interacting closely with a console will
typically run for short periods, and go into frequent
console waits. Such jobs are, therefore, most suitably
dealt with by the pipeline technique, rather than by the
swapping technique, and, of the various strategies
available, the following would appear to be the best
calculated to give a high standard service to such jobs
without interfering with the smooth running of the
system as a whole.

A highly interactive job enters the pipeline in the
manner that has been described with no special privi
leges; it will not, in fact, be known to the system at this
time that the job is highly interactive. The job may be
expected to reach a console wait while it is still in the
pipeline, although there is no reason why it should not
run long enough to enter the swapping area. The
essence of the strategy proposed is that, when reacti
vated by a response from the console, the job should
re-enter the pipeline at the top. A job reaching a console
wait is, therefore, immediately removed from the
pipeline and, on reactivation, is returned to the queue
of jobs waiting to enter. In order, however, that it
should not be subject to the delays that normally occur
at this point, it is handled according to special rules;
what these are depend on the importance attached to
giving the best possible response to jobs while they are
interacting with a console. An advantage of the model
is that it enables one to see what is the cost of the
various steps that can be taken to this end, both in

268 Spring Joint Computer Conference, 1969

terms of the employment of system resources and the
effect on the throughput of other types of job. One step
that will naturally be taken is to provide that a console
wait job shall be placed on a separate queue and given
priority over jobs waiting on the regular queue to enter
the pipeline. Further improvement can be obtained by
implementing this special queue on a drum instead of
on the disc; in the model, the drum used for this purpose
would be shown as separate from the drum used for
swapping, although, of course, in an implementation,
the same physical drum might be used for the two
purposes. A further step that could be taken to improve
the response after a console wait would be to design the
pipeline loading algorithm so as to keep in hand a cer
tain amount of space at the top of the pipeline for the
accommodation of console-wait jobs when they are re
activated. The more space kept in hand, the better will
be the service given to highly interactive jobs, but the
greater wHl be the cost to the system. The balance to be
struck is a matter for management decision in any par
ticular case.

Since an interactive job returns to the queue of jobs
waiting to enter the pipeline when it comes to a console
wait, it is treated by the system as though it were a new
job, although one having special priority. In what
follows, therefore, the term 'job' will for brevity be used
to denote either an entirely new job or an interactive
job that has been resuscitated after a console wait.

Jobs may be held up waiting for other forms of periph
eral action, such as disc or magnetic-tape transfers. The
former are of brief duration, and the jobs concerned
continue their progress through the system . .:\Iagnetic
tape waits, however, are of relatively long and un
certain duration; they have a good deal in common with
console waits, and it can be argued that they should be
dealt with in a similar way.

Time-slicing algorithm

The core space allocation system ensures that, at any
given time, there are sufficient object programs in core
to make effective multiprogramming possible, and that
any programs resident on the drum come into core often
enough to be able to receive processor time at appropri
ate intervals. The time-slicing algorithm determines
how the processor time is allocated to the various
programs that happen to be in core and are free to run,
whether they are in the pipeline or in the swapping area.
I t may be assumed, although this is not strictly neces
sary, that time is shared between the pipeline and the
swapping area in a fixed proportion. Time is given to
programs in the pipeline in small slices; the smaller the
slice the better, provided that program changing over-

heads do not account for a significant fraction of the
total time. X ote that a program temporarily resident in
the swapping area will not be active during the whole
time that it is in core. Like programs in the pipeline, it
will receive time in small slices; it will be returned to the
drum when the total amount of time that it has received
since being loaded reaches a certain figure, chosen to be
high enough to make the overheads of swapping worth
while. This figure would be greater for long programs
than for short ones since the swapping time depends on
a program's length.

Swapping re1Jime

If the allocation of processor time to jobs in the
swapping regime is a fixed proportion of the total time
available, then the rate at which jobs terminate depends
only on their average expectation of life at the moment
they enter the swapping region; in fact, the rate at
which jobs terminate is I/il, where il is their expecta
tion of life, calculated on the assumption that there
would only be one job in the swapping regime. The
rate of termination of jobs is, in particular, independent
of the number of jobs in the swapping regime. Thus,
the swapping regime may be likened to a hopper from
which objects are extracted at a given mean rate.
Since the rate of entry and the rate of abstraction are
subject to stochastic variations, the number of jobs in
the swapping regime will fluctuate about a mean, even
if the mean rate of abstraction is equal to the mean
rate of ent~y. The problem of investigating these varia
tions may be tackled by the methods of queuing theory.

The simplest method of core space allocation for the
swapping regime is to bring one program into core at a
time; the time-slicing algorithm has then only one pro
gram in the swapping area to be concerned with.
Almost as simple, if the hardware permits, is the wrap
around method in which the section of core constituting
the swapping area is addressed modulo n, where n
(in practice a power of) is the number of words
it contains. Each new program brought down starts
where the previous one left off and if the programs are
short several can be in core at once. A maximum-sized
program will, of course, occupy the whole swapping
area. The time-slicing algorithm can be designed to
take- advantage of the fact that there may be more than
one program in the swapping area at a given time. The
result is an improvement in the average efficiency of the
multiprogramming.

Once a program has entered the swapping regime, its
troubles as regards acquiring core space are over, and
it can occupy as much core (up to the maximum per
mitted to any program) as it requires.

The pipeline

If the number of jobs in the pipeline is held constant,
then the methods of standard queuing theory are not
applicable. An approximate treatment is, however,
offered in the Appendix. For a given rate of abstraction
of jobs from the pipeline this enables the distribution of
age of those jobs to be computed, and also the rate at
which jobs must be loaded to keep the pipeline full.

In order to carry through the calculations, it is neces
sary to assume a form for the statistical distribution of
job life. In one particular case (the Poisson case) the
treatment becomes exact. This is the case in which the
(lxpectation of life of a job is independe.nt of its age.

The practical effect of the pipeline is to filter out short
jobs before they can enter the swapping regime. It is of
interest to know the expectation of life of jobs emerging
from the 'pipeline since this determines their behavior
in the swapping regime, namely, how long they are
likely to remain in it, and how many times they are
likely to be swapped. In the Poisson case, the probabil
ity of a job reaching the end of its life in an interval
5t is independent of its age, and its expectation of fur
ther life is also independent of its age. In this case, the
expectation of life of jobs entering the swapping area
will be equal to their expectation of life when they enter
the pipeline. If, however, the probability of a job
rea.ching the end of its life in 5t increases with a.ge, so
that a job that has survived an initial period is unlikely
to continue for a long time, then the expectation of life of
jobs entering the swapping area will be less than
their initial expectation of life. If this is ~o to any
marked degree, the effectiveness of swapping is open to
question, since very few jobs will survive more than onf'
swap, and an increase in the length of the pipeline
sufficient to allow all johs to finish while stil1 within it
would he' more' suitable'.

I mpleJlu>,ntatioli

It has alrE'ady been mentiollcd tha,t systrm~ in which
programs are not physieally shifted in tore, but in whi('h
similar effects are achieved by other means, are to be
regarded as valid implementa.tions of the model herp
described; the model is, ill fact, much more general than
the description given above may at first sight suggest.
Essential features, however, art' (1) tha,t WhPll a job is
first loaded it is givpn a period of continuom; residpncp
in (~ore before a regime in whieh regular s,vapping to and
from a drum is initiated, and (2) that spa.ce is given to fl,
program piecemeal as it needs it and not all at oncE'.
These objectives can be achieved by a dircet imple'men
tation of the shifting described in thp model or by
making nsf' of a hard·warp paging sy-stpm. In relation to

A Model for Core Space Allocation 269

the latter case, the discussion given here is really a
discussion of the way in which the paging algorithm
should be designed. The objectives can also be achieved
approximately if programs on first loading are so located
in core that enough contiguous space to meet their ulti
mate needs can be earmarked for their use. Until such
time as they need the space, it can be made available to
the supervisor for accommodating non-resident rou-
.j.;...,.,..", nn;J f",~ h".1!{',..~;...,.~ 1
tJU.Lvo a.uu lV.L UU1!\:;.L.L.L.L~.

Overall control of the system

One of the objects of establishing a model for core
space allocation is to enable the control problem for the
system as a whole to be formulated. The problem of con
trolling a time-sharing system has much in common
with control problems met in the process industries, and
this fact will be brought out by describing a closely
analogous problem connected with the control of an ore
grading plant.

In an industrial plant, there are commonly a number
of purely local control loops presided over by controllers
that operate independently of the main control system.
One sueh control loop-eonnected with the balance
between foreground and background jobs-can be
identified in the time-sharing system under discussion.
.Tobs that are ready to enter the pipeline wait on one of
a number of queues on the disc. In the simplest case
there will be separate queues for foreground jobs and for
background jobs, the latter including background jobs
initiated from consoles. There is, in addition, a queue
for jobs waiting to be reloaded after a console wait.
.J obs are loaded into the pipeline according to rules
designed to give priority to jobs waiting to be re
loaded, and otherwise to favor the foreground to the
extent determined by operational requirements. These
rules can be designed in such a way that minor short
t.erm variations in the foreground load can be accom
modated by varying the ra.te at which background jobs
are fed, thus avoiding the need for significant variation
in the rate of flow of jobs into the pipeline. This is a
piece of local control of a straightforward kind. Longer
term changes-up or down-in the foreground load re-

INCOMING ORE

• ••••• • .
SCREENING PlANT

• · •

Figure 2

270 Spring Joint Computer Conference, 1969

main to be dealt with by the overall control mechanism,
which will forcibly log out a proportion of the users
(after giving them a warning) when the load is heavy
and allow extra users to log in when the load is light.

The closely analogous problem that will be considered
is that of controlling the ore-grading plant illustrated in
Figure 2. Lumps of ore of varying sizes enter a screening
plant and the smaller ones fall out. The larger lumps
continue and pass into a hopper from which they are
extracted at a constant rate by a conveyor. The screen
ing plant corresponds to the pipeline and the hopper to
t.he swa.pping area. Ore is fed to the plant from an ex
ternal source, and the rate of flow can be controlled,
although response to control signals is not rapid. This
corresponds to adjusting the number of console users of
a time-sharing system in the manner just described.

The input parameter:;; on which control of the ore
grading plant must be based are ,(1) a measurement of
the amount of the material in the hopper, and (2) a
measurement of the amount of material that has piled
up at the entry to the screening plant. There must be
two output signals from the control system; of these,
one is used to control the rate of flow from the screening
plants to the hopper, and the other is sent to the ex
t.ernal source of supply and used to control the rate of
feed of ore into the plant. The design objectives of the
control system are, in the short-term, to make use of the
storage capacity available in the hopper to prevent any
appreciable piling up of material at the entry to the
screening plant and, in the long-term, to adjust the rate
of arrival of material so that the system operates
smoothly and efficiently with as little material as
possible in the hopper.

Time delays are a common cause of instability in the
operation of a plant if the control system is not care
fully designed. In the time-sharing system, instability
could occur on account of the fact that changes in load
that is, ehanges in the number of userR logged in-can
not he made instantaneously. If, for example, the con
trol mechanism, faced with an increaRe of activity on
the part of the users currently logged in, were to over
estimate the number that must be warned off, the
sYRtem would, at some later time, be found to be under
loaded. Over-correction of this situation would, in turn,
give rise to eventual overloading, and the system would
proceed to oscillate between one extreme and the other.
On the other hand, the use of a eontrol mechanism that
aehieved stability, and avoided overloading, by being
unduly cautious in allowing the number of on-line
users to grow when the system was underloaded would
obviously result in the system running below capacity
most of the time as far as service to on-line users was

concerned. These are typical problems encountered in
control engineering, and it is suggested that the design
ers of time-sharing systems could learn something from
their colleagues working in that discipline.

REFERE~CE

D F HARTLEY B LANDY R M)l"EEDHAM
The structure of a multiprogramming supervisor
The Computer Journal 11 No 3 p 247)l"ovember H)68

APPENDIX

A nalysis of pipeline

The following approximate analysis applies to the
case in which the number of jobs emerging from the
pipeline is small compared "'.vith the number of jobs
entering.

Let P(f) be the probability that a job entering the
pipeline has a life* greater than or equal to f and let

p(f) = - ap(f)/af p(f) of IS

the probability that the job finishes in the interval Of, i.e.,
between f and f + Of. The expectation of life of a job
entering the pipeline is then

1 = lr¥J t p(t) dt
o

By integrating by parts it may be shown that t is also
given by

t = lr¥J P(t) dt
o

(1)

Consider a pipeline containing n jobs from which no
withdrawals are made, but in which each job is replaced
by a new one as soon as it finishes. The probability of a
job selected at random at a randomly chosen instant
having an age greater than or equal to f is then

A(f) = (Ill) f~ 'P(t) dt
t

The probability that the oldest of the n jobs existing in

* For this purpose, a job reaches the end of its life ",-hen it be
comes dead or dormant, or reaches a console wait. In this Appen
dix, time is true elapsed time and the distributions take account
of the fa('t t.hat p]'()('essor time is heing shared among a number
of jobs.

the pipeline at a randomly chosen instant has an age in
0(is Qn(C) 0(where

Q,,(C) = (lIt) ~ [1 - A (C)]r' ac

In practice, a job selected as being the oldest of the n
jobs in the pipeline at a random instant is withdrawn
and replaced by a new one. If the rate of withdrawal is
small compared with the natural death rate of jobs in
the pipeline, it may be assumed as an approximation
that Qn(C) still gives the age distribution.

Let the extra life that a job withdrawn at age f. would
have had if it had remained in the pipeline be J.I.. Then
the expectation of total life C + J.I. is given by

E(C + J.I.) = foo t [pet) IP(C)] dt
(

= - [l/P(C)] foo t [ap(t) / at] dt
t

= f + f A(t) /P(C)

on integrating by part and using (l)' Thus E(J.I.) =
! A(t)/P(t)

If this value for E(JL) is averaged over the distribution
Qn(t) , we have the expectation, L, of the amount by
which the life of a job in the pipeline is shortened by
being withdrawn:

L = f 100

[Qn(t) A(C)/P(t)] dC
o

It is now possible to arrive at the following relation
ship between the number, N, of jobs entering the

A Model for Core Space Allocation 271

pipeline during a period To and the number, W, with
drawn during the same period:

)[t - WL = nTo

or

1\ = (nTo + WL)/t

If pet) = exp(-at) (the Poisson case) then it is well
known that the expectation of life is independent of age.
In the above notation, as may easily be verified,

The theory then becomes exact, and we have

N = nTol! + W

The number of jobs that finish in the pipeline is
independent of the withdrawal rate, and if more jobs
are taken out then a similar number of extra jobs must
be prtt in. The expected life of a job on emergence is the
same as its expected life on entry.

I t may be observed that no job can remain in the
pipeline for more than n sampling intervals. The
approximation given by Qn(t) to the age distribution of
jobs in the pipeline, subject to withdrawal, may be
improved by redefining A(t) as follows:

A(t) = (lit) fnT

pet) dt
t

where T is the average interval between withdrawals.
The results of a series of simulations suggest that, with
this refinement, the theory is sufficiently precise for
most practical purposes.

Picture-driven animation *

by RONALD M. BAECKER**

National Institutes of Health * * *
Bethesda, Maryland

INTRODUCTION

"Animation is the graphic art which occurs in time. Whereas a static image (such
as a Picasso or a complex graph) may convey complex information through a single
picture, animation conveys equivalently complex information through a sequence of
images seen in time. It is characteristic of this medium, as opposed to static imagery,
that the actual graphical information at any given instant is relatively slight. The
source of information for the viewer of animation is implicit in picture change: change in
relative position, shape, and dynamics. Therefore, a computer is ideally suited to
making animation' 'possible" through the fluid refinement of these changes.' ''l1

The animation industry is ripe for a revolution.
Historical accidents of available technology and knowl
edge of visual physiology have led to the evolution of
the animated fihn as "one that is created frame-by
frame.' '1 The prodigious quantities of labor required
for the construction of twenty-four individual frames
per second of fihn have led to a concentration of anima
tion activity in the assembly-line environments of a
few large companies, an artificial yet rarely sunuount
able separation of the artist from the medium, and
extravagant costs.2 In conjunction ·with other tr~nds
in American society, the result is usually what the
English critic Stephenson describes as "the respectable
sadism and stereotype of commerce."l Yet he offers
this hopeful prediction in concluding his 1967 study,
A nimation in the Cinema: There seems every reason
to look forward to changes which would make it possible

* Work reported herein was supported in part by Project MAC,
an M.LT. research project sponsored by the Advanced Research
Projects Agency, Department of Defense, under Office of Xaval
Research Contract N"ONR-4102(Ol), and by M.LT. Lincoln
Laboratory with support from the u.S. Advanced Research
Projects Agency.

** This paper is based on a thesis submitted in partial fulfillment
for the degree of Doctor of Philosophy at the Massachusetts
Institute of Technology, Department. of Electrical EJ:lgineering.

*** Division of Computer Research and Technology.

for the creative artist to put on the screen a stream of
images with the same facility as he can now produce
a single. still picture."l This paper explains how a
creative, artist, aided by a computer, can define a
stream 6f images with the same facility as he can now
produce a very few still pictures.

Although the computer's entrance into animation
has been a recent one (1964),3-4 the growth of interest
and activity has been phenomenal.6-8 Experience to date
strongly suggests that the following Rtatements are true:

27:3

1. The animated display is a natural medium for
the recording and analysis of computer output
from sirhul~tions and data reduction, and for
the modeling, presentation, and elucidation of
phenomena of physics,· biology, and engineer
ing.9- 15 Depiction through animation is par
ticularly appropriate where simultaneous actions
in some system must be represented. If the
animation is the pictorial simulation of a com ..
plex, mathematically-expressed physical theory,
then the film can only be made with the aid of a
computer.

2. The computer is an artistic and animation me
d'ium, a powerful aid in the creation of beautiful
visual phe~o'mena, and not merely a tool for the
drafting of regular or repetitive pictures. 16-19

3. The formal modeling of pictures by complexes

274 Spring Joint Computer Conference, 1969

of algorithms and data facilitates the continued
modification of a singlearumation sequence and
the production of a series of related sequences.

This paper discusses ways in which man, aided by a
computer in an interactive graphical environment, can
synthesize animated visual displays. It is widely rec
ognized that such an environment facilitates man
machine communication about still pictures.2o- 22 The
paper seeks to:

1. describe the role of direct graphical interaction
and sketching in computer animation, resulting
in the process we sh8JI call interactive computer
mediated an?,mation; and,

2. develop a new approach to the specification of
picture dynamics,. one which exploits the capac
ity for direct graphical interaction. The result
we shall call picture-driven animation.

A nimation in an interactive comp1..l.·ter graphics
environment

The role of direct graphi'cal interaction in the
synthesis of animated visual displays

Three aspects of the role of direct graphical inter
action in computer graphics are particularly relevant
to computer anilllation:

1. The availability of immediate visual feedback
of results, final or intermediate;

2. The ability to factor picture construction into
stages, and to view the results after each stage;
and,

3. The ability to sketch pictures directly into the
computer.

The power of immediate visual feedback in animation
is striking. The computer calculates, from its repre
sentation of a dynamic sequence, the individual frames
of the corresponding "movie." Like a video tape record
er, it plays it back for direct evaluation. A small
change may be made,. the sequence recalculated, and
the result viewed again. The cycle of designation of
conunands and sketching by the animator, followed by
calculation and playback by the computer, is repeated
until a suitable result is achieved. The time to go once
around the feedback loop is reduced to a few seconds
or minutes. In most traditional and computer anima
tion environments, the time is a few hours or days.
The difference is significant, for now the animator can
see and not merely imagine the res'ult of varying the move
ment and the rhythm of a dynamic display. Thus he will
be led to perfect that aspect of animation that is its

core: control of the changing spatial and temporal
relationships of graphic information.

Factoring the construction of an animation sequence
facilitates the effective use of feedback from early
stages to guide work in later stages. Working on indi
vidual small subsequences helps overcome the serious
practical problems of computer time and space that
could disallow rapid enough calculation and playback.

We know from the computer graphics of still pictures
that the computer sjmulates not only a passive record
ing agent in its ability to retain images, but an active
medium which transfOl~ms the very nature of the sketch
ing process. This remark applies trivially to computer
animation; one may construct a sequence of drawings
to comprise the individual frames of the film, the static
images existing at single instants of time. Picture
change that extends over entire intervals of time is then
synthesized as a succession of individual (temporally)
local changes that alter one frame into another.

This paper goes further, for it explains how the
computer can be a medium which transforms the very
nature of the process of defining picture change, of
defining movement and rhytlun. Dynamic behavior
is abstracted by descriptions of extended picture change.
These descriptions may themselves be represented,
synthesized, and marupulated through pictures, both
static and dynamic. Thus dynamic control can be ex
ercised globally over the entire sequence. What results
is one new conception of what it means to draw an
animated film.

The components required to realize an inter
active computer-mediated animation system

Interactive computer-mediated animation is the process
of constructing animated visual displays using a sys
tem containing, in one form or another, at least the
following eight components:

Hardware:

1. A general-purpose digital computer.
2. A hierarchy of auxiliary storage. This is listed

separately to emphasize the magnitude of storage
required for the data structures from which an
animation sequence is derived and for the visual
images of which it is composed.

:). An input device such as a light pen, tablet plus
stylus,23-24 or wand,25 which allows direct draw
ing to the computer in at least two spatial
dimensions. The operating environment must,
upon user demand, provide at least brief inter
vals during which the sketch may be made in
real time. The animator must then be able to

draw a picture without any interruption.
Furthermore, the computer must record the
"essential temporal information" from the act of
sketching. Sampling the state of the stylus 24
times per second often suffices for our purposes.

4. An output device, such as a standard computer
display scope or a suitably modified TV monitor,
which allows the direct viewing of animated
displays at a rate such as 24 fra...tnes per second.
This is essential to enable the interactive editing
of animation subsequences. The final transmis
sion of a "movie" to the medium of photographic
film or video tape can but need not use the same
mechanisms.

Software:

5. A "language" for the construction and manipu
lation of static pictures.

6. A "language" for the representation and speci
fication of picture change and the dynamics of
picture change. We shall introduce in this paper
methods of specifying: dynamics not possible
with traditional animation media and not yet
attempted in the brief history of computer
animation.

7. A set of programs that transforms the specifica;
tions of picture structure and picture dynamiCs
into a sequence of visual images.

8. A set of programs that stores into and retrieves
from auxiliary memory this sequence of visual
images, and facilitates both its real time play
back for immediate viewing and its transmission
to and from permanent recording media.

Figure 1 portrays a suitable environment for inter
active computer-mediated animation. Figure 2 is a
block diagram of such a system.

A scenario illustrating the use of an interactive
computer-mediated animation system

To illustrate the process of animation in an inter
active computer graphics environment, we present a
scenario. The example, chosen for its simplicity, is an
extended version of one actually executed with the
GENEralized-cel animation SYStem. GENESYS is a
picture-driven animation system implemented on the
M.I.T. Lincoln Laboratory TX-2 computer. All capa
bilities purported to it are operational or could be made
so by minor additions. The written form of the inter
active dialogue has been adjusted to increase its clarity.

We want to see a dynamic sequence of a dog dashing to
his dinner and then dining: The dog runs towards a

Picture-Driven Animation 275

Figure I-An interactive computer-mediated animation console.
The author is sketching with the stylus on the tablet. There

is a CRT for viewing dynamic displays, a storage scope
above it, a typewriter, knobs, toggle switches, and
a telephone so that an animator may summon help

Figure 2-Block diagram of a minimal system for interactive
computer-mediated animation. The parenthesized numbers

refer to the system components defined in the paper.

bowl. Wagging his tail, he lowers his head and laps up
the milk. Several slurps of the milk are to be shown
before we cut to the next scene.

How we do it:

ANIlVIATOR(A): CALL GENESYS;
GENESYS(G): HELLO. GENESYS A WAITS YOUR
CREATION;

GENESYS either types or displays this response.

276 Spring Joint Computer Conference, 1969

A: FORMMOVIE DINNERTIME;
The animator either types the command name
'FORMMOVIE', hits a corresponding light-button
with the stylus, or writes an abbreviation of the
conunand name to a character-recognizer.26 He
then types a movie name, 'DINNERTIME'.

G:FRESH;
No such movie exists in the animator's directory.
Hence, work begins on a totally new one.

A: FORMBACKGROUND;
A. wants to define a subpicture that will be visible
in all frames of the sequence.

G: SKETCH IT, MAN;

A:
A. sketches the bowl, drawing with the stylus on
the tablet. What he draws appears inunediately on
the display scope.

G:OK;

A: FORMCEL #1 in CLASS BODY;
An initial version of the dog's body·is to be made a
unique subpicture, or eel.

He sketches it, and soon adds one version of the
legs, tail, and head, each as a unique eel in a unique
eel class. Now, a coherent dog, unmoving, appears
on the scope.

A: BIND BODY, LEGS, TAIL, HEAD, TONGUE;
This guarantees that any translational motion
applied to the dog will drive the body, legs, tail,
head, and tongue together. Thus the dog won't
disintegrate while moving.

G:OK;

A: SKETCHPCURVE BODY;

A. now sketches the path of the desired motion,
mimicking the movement with the action of his
stylUS. Hop . . . hop . . . hophophop . . . goes his
hand. The act of mimicking a continuous move
ment is called a p-curve.

A: PLAYBACK;
Playback the current version of the movie. Hop . . .
hop . . . hophophop . . . glides the rigid dog across
the scope towards the bowl. Four frames from such
a motion are shown superimposed in Figure 3.

Figure 3-A static dog glides towards a bowl. The sketches are by
Mrs. Nancy Johnson of \Valtham, Massachusetts

A: FORMCEL #2 in CLASS LEGS:

A. sketches the legs in another position, that is, he
defines the second cel in the class 'LEGS.' This
may be followed by several more positions. The
images are ones that are useful in synthesizing
running and hopping movements.

A: TYPESELECTIONS from LEGS;

He types in a sequence of choices of one of the
positions of the legs. Each succeeding choice selects
which cel is to be displayed as the dog's legs in the
next frame. Of course only one set of legs is visible
in a frame.

A: PLAYBACK;
Now, as is portrayed in Figure 4, the legs move

Figure 4-Now the dog hops to the bowl

while the dog hops to the bowl.

Further refinements to the leg motion are made.
This includes the resketching of one eel. The tail
and head movements are similarly introduced. The
sequence then appears as is shown in Figure 5.

Three tongue cels are sketched.

A: TYPESELECTIONS from TONGUE;

For most of the sequence, the zeroth tongue is
selected, that is, no tongue is visible. A single lap,
or slurp of the tongue is synthesized from the three
tongue positions, and is introduced at the appro
priate time in the movie. The leftmost image of
Figure 6 shows the extended tongue.

A: TAPRHYTHM SLURPINTERVALS;

A. can feel or intuit the rhythm of the desired slurps

Figure 5-Eager for dinner, he wags his tail

Figure 6--S1ul'p goes his tongue. lapping up the milk

Picture=Driven Animation

better than he can rationalize it. Henee he goes
tap ... tap ... taptap ... on a push-button.

A: REPEATPATTERN FROM frame 59 THROUGH
frame 64 of SELECTIONS from TONGUE atIN
TERV ALS of SLURPINTERVALS;
Assume that the visual slurp occurs in frames 59
through 64. The pattern of tongue selections which
yields the slurp is repeated at intervaLg deterrojned
by the tapped rhythm.

A: PLAYBACK;
Now the dog goes hop ... hop ... hophophop ...
slurp . . . slurp slurp slurp.

The movie is essentially complete; minor refine
ments may now be made.

A: EDIT X WAVEFORM of BODY;

M~~ . acceleration in the hopping movement would
better portray the dog's eagerness for his dinner.
Henee, A. call~ forth a display of the dog's X co
ordinate versus time, and resketches part of the
waveform so that there is more horizontal accelera
tion.

A: EDIT FRAME 44;

Assume that the dog reaches the bowl in frame 44.
Viewing the sequence in slow motion, A. notices
that the dog's position at the bowl could be im
proved. He alters its location in frame 44 using the
knobs under the scope.

A: FIX X and Y of BODY AFTER/rame 44;
The path descriptions are further modified so that
the dog again holds a fixed position, once it has
reached the bowl.

A: PLAYBACK;

A: SA VE DINNERTIME;
The movie is saved, available for further refinements
at any time.

G: DINNERTIl\'IE IS SA VED. GOOD BYE.

Implications of the scenario

1. Approximately 100 frames have been generated

278 Spring Joint Computer Conference, 1969

from fewer than 20 eels. Only very limited
tools have been used in eel construction, specifi
cally, programs that accept direct sketches and
that enable selective erasure of picture parts.
Nonetheless, great power results from the ani
mator's ability to control and evaluate dynamic
combinations of a few static images.

2. Immediate playback enables interactive experi
mentation to achieve desired visual effects. The
actions described above, including considerable
trial-and-error, may be completed in well under
one hour, even if all cels must be constructed
anew.

3. A variety of static images, analytical graphs of
picture action, depict the time dependence of
dynamic picture parameters. An example is the
waveform representing the dog's -changing
horizontal position. Viewing such static repre
sentations aids the understanding of existing
animation sequences; resketching or editing
them changes the actual dynamic behavior
accordingly.

4. The animator may in real time mimic aspects of
dynamic behavior. His movement and rhythm
are recorded by the system for application in
the movie. This occurs when the hopping of his
stylus motion is used to drive the dog, and when
the tapping of a push-button is used to detennine
the rhythm of the slurps of the tongue.

5. Three aspects of dynamic behavior appear in
the example: path descriptions, or conceptually
continuous coordinate changes; selection de
scriptions, or recurring choices of cels from a cel
class; and rhythm. descriptions, or temporal
patterns marking events. The pictures (3) and
actions (4), through which direct control over
dynamics is exercised, are representations of
thE'Re thl'E'P kiud~ of gloha.l de.'{cript1·ons of dy
nam.ic.c.;.

6. Global operations (3)-(4), which alter dynamic
behavior over entire intervals of time, may be
supplemented where necessary by local opera
tions, which adjust individual frames. An ex
ample is the positioning of the dog near the bowl.

The specification of picture dynamics

Three old approaches to the definition of picture
dynamics

We may distinguish three old approaches to the
synthesis of a sequence of frames:

1. The individual construction of each frame in
the sequence;

2. The interpolation of sequences of frames inter
mediate to pairs of critical frames' and

..... ' ,

.). The generation of frames from an algorithmic
description of the sequence.

A~imation sequences have traditionally been syn
theSIzed through the individual construction of frames.
Th~ i1lusion of a continuum of time is attained through
rapId p~ayback of discrete instants of time. This ap
proach IS the only one applicable to the construction
of pictures that defy regular or formal description, and
that require unique operations on each frame. Yet
the cost is excessive and continues to rise dramatically,
f~ster th~n the GNP.27 Salaries in large studio 'opera
tIOns typIcally consume half of the cost, for commercial
~~~tion ,is .a complex interaction among producers, 
rureC'{;ors, aeslgners, layout artists, background artists, 
key animators, assistant animators, inkers and colour
ists, checkers, cameramen, editors, and studio manag
ers.2 It is this division of labor, this dispersal of the 
creative process, which separates the artist from the 
medium.27 Another major weakness of conventional 
frame-by-frame animation is that -there are no efficient 
methods of making changes to a movie stored on photo
graphic film or video tape. We discuss elsewhere what 
role the computer might assume in frame-by-frame 
animation. 28 

The technique of interpolation has long been used 
to cut costs and reduce the burden of picture construc
tion which is placed on the key animator. Interpolation 
occurs when the key animator asks his assistants to 
fill in the pictures intermediate to a pair of critical 
frames. It has been suggested that part of this process 
could be mechanized.29 We do not consider further that 
problem in this paper. 

The generat.ion of a sequenl'.e of frames from a formal 
algorithmic description is a process characterized by: 

1. the need to use a computer, for it is the only 
animation medimn which can follow and execute 
with ease a complex algorithm; 

2. generality, that is, applicability to a large class 
of regularly-structured pictures; 

3. representational power, or the compactness 
with which interesting animated displays may 
be formulated; and, 

4. flexibility and adaptabiJity, or the ease with 
which a variety of alterations may be made to 
a movie expressed as an algorithm. 

The fonn of the expression has to this date been a 
written program in a picture-processing language such 
as .BEFLIX,3-4 or a sequence of directives in a type
wrIter-controlled command language such as CAFE.30 
Herein lies another strength of the approach and also 



a fundamental weakness. On the one hand, many 
programmers, scientists, and ~ngineers, previously not 
animators but fluent in this new "language," can now 
produce dynamic displays.31 On the other hand, an 
animator trained in traditional madia and techniques 
is forced to learn a completely new "language," a 
completely new way of thinking. 

One new approach to the definition of dynamics 
-picture-driven anmlation 

Picture-driven animation is a new process that aug
ments harmoniously the animator's traditional tech
niques, that reflects and extends the ways of thinking 
to which he is accustomed. Within his intuitive "lan
guage" of pictures and sketching and mimicking, he may 
synthesize both components of frames, called eels, and 
generative descriptions of extended picture change, 
called global descriptions of dynamics. 

Global dynamic descriptions are data sequences, 
whose successive elements determine critical param
eters in successive frames of the movie. Algorithms 
embedded in a picture-driven animation system com
bine cels and dynamic descriptions to produce visible 
picture change. The animator defines and refines pic
torial representations of dynamic descriptions. These 
data sequences then "drive" the algorithms to generate 
an animated display. Hence the process is called pic
ture-driven animation. 

The process is powerful because it is easy to achieve 
rich variations in dynamic behavior by altering the data 
sequences while holding constant a few simple controlling 
algorithms. The data sequences precisely determine 
the evolution of recurring picture change, within the 
constraints set by a choice of controlling algorithms. 

We next introduce the three kinds of global dynamic 
descriptions, some useful algorithms for whi~h they 
may be driving functions, and some useful methods for 
their static and dynamic pictorial representation and 
construction. The following classification will be helpful: 

A global dynamic description is either 
a movement description, which is either 

a continuous movement description = a path 
description, or 

a discrete movement description = a selection 
description; or, 

a rhythm description. 

Path descriptions 

Consider those alterations of static pictures that 
consist of modificatjons of continuously variable param
eters, such as location, size, and intensity. Their 

Picture-Driven Animation 279 

instantaneous values determine the picture's appear
ance at a given moment. Thus the static picture may be 
animated by specifying the temporal behavior of such 
parameters. A representation of the temporal behavior 
of a continuously variable parameter is called a path 
description. 

The movement of a fixed-geometry picture (eel) in 
GENESYS is described as the change of two coordi
nates with time, and is represented by a pair of path 
descriptions. Their specification may be used to syn
thesize the drifting of a cloud, the zooming of a flying 
saucer, the bouncing of a ball, or the positioning of a 
pointer. 

Since the behavioral descriptions of the parameters 
apply to entire intervals of time, the animation is 
liberated from a strictly frame-by-frame synthesis. 
The computer is a medium through which one can bypass 
the static or temporally local and work directly on the 
dynamic or temporally global. Movement is represented 
as it is perceived, as (potentially) continuous flow, 
rather than as a series of intermediate states. 

Path descriptions, in fact, all dynamic descriptions, 
may be defined by one of six general approaches: 

1. The sketching of a new pictorial representation 
of the description; 

2. The editing or rdfinement of an existing pictorial 
representation of the description; 

3. The direct algorithmic specification of the data 
sequence; 

4. The indirect algorithmic specification in terms 
of existing data sequences; 

5. An indirect algorithmic specification as a 
property of a constituent picture in an existing 

. . d ... ammatlOn sequence; an , 
6. A coupling to a real physical process in the 

external world, such that it transmits a data 
sequence as (analog) input to the computer. 
Interesting couplings may be to particle colli
sions, the atmospheric pressure, or, in the case 
of (1) and (2), a real live animator. 

We shall in this paper be concerned with techniques 
implementing the first two approaches only. Sketching 
is useful when one knows the general shape and quality 
of a motion rather than an analytical expression for a 
function that determines it. ::\iodifications of the HketcheH 
are frequently invoked after one views the eurrent 
animation sequence and determines how it is inade
quate. 

There are two related kinds of pictorial representa
tions of all movement descriptions, static and dynamic. 
Both kinds may be introduced with a single example. 

Consider the motion of a figure that goes from one 



280 Spring Joint Computer Conference, 1969 

corner of a square room to the diagonally opposite 
corner by walking along two adjacent walls. We shall 
ignore the vertical movement and consider only motion 
of the center of the body in the two dimensions of the 
plane of the ground. He first walks in the direction of 
increasing X coordinate, then in the direction of in
creasing Y coordinate. We further assume that he begins 
from a standstill, accelerates and then decelerates to 
the first corner, pauses there for a brief interval while 
he turns in place, and finalIy accelerates and decelerates 
to his destination. 

One complete description of this planar movament 
consists of the functions of the X and y. coordinates 
versus time. These are depicted in Figures 7 and 8. 
Such representations of changing picture parameters 
are called waveforms. Time is depicted, in the wave
ionn, along one spati.al dimension. The wavefonn's 
construction requires movement of the stylus along that 
dimension; the display records and makes tangible 
this movement. 

Alternatively, both spatial coordinates could denote 
the two spatial coordinates of the movement. A natural 
correspondence is established between the X(Y) co
ordinate of the floor and X(Y) coordinate of the me-

Figure 7-The X coordinate waveform of a movement 

Figure 8--The Y coordinate waveform of a movement 

dium of the representation (paper, scope face, etc.). 
Figure 9 depicts such a parametric curve representation 
of the movement. It illustrates with clarity the figure's 
path on the floor. 

Yet the dynamics of the motion are hidden because 
the temporal dimension is only an implicit coordinate. 
This rectified in Figure 10. A stream of symbols is used 
instead of a continuous trail to depict the path. Char
acters are spaced along the path at short, uniform 
intervals of time, such as every 24th of a second. Dy
namics are apparent in the local density of symbols. 
Observe in particular how they cluster where the figure 
pauses. 

The dynamic construction of a path description is a 
user-driven animated displayz:n which the timing of the 
stylus's movement is preserved by recording its position 
in every frame. A tangible representation of the stylus 
path is the display of a sequence of characters spaced 
equally in time. We shall call a parametric curve dy
namically sketched in real time a p-curve. The p-curve 
corresponding to Figures 7-10 is depicted in Figure 11. 
We have attempted to convey in a single static image 
that the p-curve is a dynamic display. Each 2-dimen
sional p-curve determines two path descriptions. Thus 
the hopping of the dog in 'DINNERTIME' may be 
synthesized by "hopping" with the stylus along some 
path on the tablet surface, that is by mimicking the 
desired dynamic. 

Figure 9-A parametric curve representation of the same 
movement. The rhythm of the movement is not visible 



Figure IQ-A better display of the parametric curve. Symbols are 
deposited at short, uniform intervals of tiIl,ltl 

Figure ll-The p.,curve corresponding to Figuresi-IO. The 
dynamic display is compressed into a single static picture 

containing nine selected frames 

Picture-Driven Animation 281 

In some cases one may need only one of the path 
descriptions. To depict the fluttering of a. heart, we 
may assign the X coordinate of the p-curveto a param
eter determlnihg the siize of the heart, and then flutter 
the pen back and forth horizontally. Any vertical 
motion that results is uninterclsting and can be ignored. 

A path description, in sununary, defines dynamic 
activity that consists of potentially continuous and 
arbitrarily fine alterations of value. The reader should 
not be misled by the choice of the word "path". What 
is meant is a path, or sequenee of values, through an 
arbitrary "continuous space", through a mathematical 
continuum. One application or interpretation of this 
path is the representation of a movement through the 
location-spaee of an object, such as a figure's path 
through a room. This interpretation, however, is not 
the only possible one. Depending upon the picture 
description capability of the system in which it is used, 
and the algorithm which it drives, a path description 
may determine changing locations, intensities, thicknesses, 
densities, or texture gradients. For example, a pulsating 
heart could be animated by varying either the size or 
the intensity of a single heart shape. 

Reference 28 presents a detailed discussion of the 
relative strengths and weaknesses of wavefonns, p
curves, and other static and dynamic representations 
of continuous movement. The discussion focuses on 
their uses as inputs of dynamics and as visual feedback 
to . the animator, their dimensionality, their role in 
guiding temporal and spatial adjustments to existing 
motions, their capacity for conceptual extensions, and 
some practical problems (and solutions) that arise in 
the sketching process. Furthermore, we describe four 
kinds of editing and refining capabilities, operations 
for: 

1. scaling curves; 
2. shaping and reshaping them; 
3. algebraically and logically combining them; and, 
4. performing pattern scanning, matching, and 

transforming functions upon them. 

Selection descriptions 

Consider the algorithm that selects an element of the 
current frame from among members of a cel class. A 
good example arises in the synthesis of different facial 
expressions through the abstraction of discrete shapes 
and positions of mouth, nose, eyeballs, and eyebrows. 
One eel class could consist of the two members "eye
brows raised" and "eyebrows lowered." An animation 
sequence may be achieved by a temporal concatenation 
of selections from a cel class. A changing facial expres
sion may be achieved by the parallel application of 



282 Spring Joint Computer Conference, 1969 

several such sequences of selections, one corresponding 
to each facial component. In 'DINNERTEVIE,' this 
technique was used to synthesize the movement of the 
dog's legs, tail; head; and tongue. 

A representation of the dynamic selection fronl a 
finite set of alternative pictures is an example of the 
second type of global dynamic description and is called 
a selection description. The synthesis of selection de
scriptions is also aided by the use of pictorial repre
sentations, such as one consisting of a sequence of steps, 
where the length of each step is an integer multiple of 
frames, and the height is limited to transitions to and 
from posit.ions on a discrete scale. Such pictures 
appear at the top of Figures 15 and 20. Superposition 
on a common time axis of pictures of several descrip
tions facilitates coordinating the counterpoint of the 
parallel selection strands. 

The use of the term "selection" implies that a mech
anism chooses from among a designated set of alter
natives. In the previous examples the alternatives are 
eels, images to be introduced as components of frames 
in a dynamic sequence. A more general view of a selec
tion description regards it as a sequence of selectors, 
functions which choose from a designated and finite 
yet potentially denumerable set of alternatives. De
pending upon the picture description capability of the 
system in which it is used, and the algorithm which it 
drives, a selection description may choose among alterna
tives that are subpictures, data, picture-generating algo
rithms, other global dynamic descriptions, pictorial events 
or activities, or strands of dynamic activity. For example, 
the dynamic selection from among alternative picture
generating algorithms would be useful in a system 
with discrete texture choices, where there is one algo
rithm capable of filling an arbitrary region with that 
texture. 

Further details may be found in reference 28, which 
also discusses techniques for the definition and editing 
of selection descriptions. These are conceptually simi
lar to those used in the synthesis of path descriptions. 

Rhythm descriptions 

Rhythm descriptions consist of sequences of instants 
of display time (frames), or intervals between frames. 
They define patterns of triggering or pacing recurring 
events or extended picture change. In this context it 
is suggestive to think of a rhythm description as a 
pulse train. Each pu]se may trigger the same action, Of, 

as is discussed in reference 28, it may trigger one of 
several act.ivities under the control of a selection de
scription. 

Rhythm descriptions fac~litate the achievement of co
ordination and synchrony among parallel strands of 

dynamic activity. In this context it is suggestive to 
think of a rhythm description as a sequence of event 
:markers. The marking sequence may be defined with 
respect to one pictorial subsequence, and then used to 
guide the construction of another subsequence. 

A rhythm description cannot by itself define picture 
change; it can define a beat, a sequence of cues with 
respect to which picture change is temporally orga
nized and reorganized. Animators have sometimes used 
metronomes as generators of rhythm descriptions.2 

Proper synchronization of a sound track to the visua1 
part of a fihn is most critical to its success.2 

Hence, rhythm descriptions marking critical instants 
of time play a key role in the synthesis and editing of 
movement descriptions. For these operations a rhythm 
description requires pictorial representation. In Figure 
20 it is depicted both as a static pulse train and as a 
sequence of event markers along the axis of movie 
time. A direct and simple dynamic input, as we have 
seen in 'DINNERTI:;\;IE', consists of tapping out the 
rhythm on a push-button. 

Dynamic hierarchies 

It is easy to conceive of more complex and useful 
couplings of global dynamic descriptions. Suppose, for 
example, that a hop, a skip, and a jump have each been 
synthesized with the aid of several path and selection 
descriptions. If the animator wishes to experiment with 
varying dynamic patterns of hop, skip, and jump, he 
should be able to define a selection description which 
chooses among these three alternatives. This is equiva
lent to defining selections among sets of path and se-
1ection descriptions. Reference 28 discusses the use of 
select·ion descriptions to establish arbitrary hierarchies 
of structured dynamic behavior, and illustrates the 
significance of this capability to the animator. 

Exploratory studies in interactive computer
mediated animation 

Three special-purpose picture-driven animation sys
tems have been implemented on the ~J.I.T. Lincoln 
Laboratory TX-2 computer. A conunon feature is that 
each has a construction or editing mode, a playback or 
viewing mode, and a fihning mode. In the first mode 
the animator may begin work on new pictures and glo
bal dynamic descriptions, or may recall and continue 
the construction of pictures and descriptions saved from 
other sessions. Algorithms embedded in the systelnS 
then compute TX-2 display files, in which sequences 
of frames composed of points, lines, and conic sections 
are encoded for use by the scopes. 

These imag~ files are passed to the playback program, 



which simulates a variable-speed, bi-directional, video 
tape recorder. The program nonnally sequences through 
the display file representation of successive frames, 
making each in turn visible for 1/24th of a second. One 
useful option is that of automatic cycling or the sim
ulation of a tape loop. 

When the animator has prepared a satisfactory 
sequence, he need no longer view it directly on the 
scope; but may instead want to record it on fi1orn. A 
pin-registered movie camera can be mounted in a light
tight box to a TX-2 scope. Its shutter is always open. 
The filming program (a variant of the playback pro
gram) "paints" an image on the scope. After a sufficient 
time interval to allow the decay of the phosphor, 
approximately 1/5 of a second, a signal from the com
puter advances the camera. A return signal upon the 
completion of the advance triggers the display of the 
next frame. The camera can be operated on one scope 
while we work at a tablet with another scope. Excellent 
film quaJity, with high contrast and low jitter, can be 
produced with the system. 

The first two systems are very special-purpose. 
ADAM allows one to animate a crude line-drawing 
repre~mtation of a single human figurcl. EVE is an 

Figure 12-This picture, "drawn" by the author, illustrates the 
varietv of line and texture that may be included in a GE~ESYS 
eel as·of December, 1968 Free-hand sketches are portrayed by 

points spaced at an arbitrary, user-controlled density. 
Straight lines can be solid or can be dotted, over the 

same range of densities. Sections of circles, ellipses, 
parabolas, and regular polygons may be 

included. Arbitrary sub-pictures may be 
copied, translated, rotated, and scaled 

along two independent dimensions 

Picture-Driven Animation 283 

exercise in abstract dynamic art, in which one can ani
mate a set of points linked by "rubber-band" straight 
lines. The animation technique in both cases is the 
specific9.tion, via wavefonns and p-curves, of the seven
teen path descriptions that define the temporal behavior 
of the picture's seventeenc ontrolling continuous param
eters. A lengthy discussion may be found in reference 
28; we shall here content ourselves with three observa-
.j.:--~. 
lJIUllt:5. 

1. Clocked hand-drawn dynamics, or the dynamic 
mimicking of animated behavior, produces life
like, energetic movements, even if used in ADAM 
to yield stick figure motions that are obviously 
not physically realizable, and even if used in 
EVE to yield abstract motions. 

2. Slight modifications to a waveform result in 
significant alterations to the character of an ex
tended interval of a movement. For example, 
ADAM's normal walk can be made into a jaunty 
saunter by the addition of more bounce to the 
vertical coordinate path description, or can be 
made effeminate by increasing the scale of the 
oscillations of the hip's rotational coordinate 
path description. 

Figure 13-A parametric curve, the final frame of a p-curve, 
defining a movement that is life-like and energetic, smooth 

and graceful. Observe how points cluster at pauses in 
the motion 



284 Spring Joint Computer Conference, 1969 

3. Even in a system whose only intended applica
tion is cartooning, a dynamic mimick~ng capa
bility must be augmented by an edit~ng capability, 
for many motions cannot be mimicked or only so 
with dijficulty, being purposeful exaggerations of 
real movements. 

Although GENESYS is also a special-purpose ani
mation system, it is versatile enough to be used in the 
generation of a broad class of dynamic images. The 
term "generalized-cel," defined in reference 28, is a 
generalization of the concept of cel class illustrated in 
that its appearance in a given frame of the final dynamic 
display is determined by the values of a set of associated 
movement descriptions, both continuous and discrete. 

The GENESYS animator may sketch, erase, copy, 
transiate, rotate, and scale individual cels consisting 
of points, straight lines, and conic sections. He may 
sketch p-curves and dynamically tap rhythm descrip
tions. There are numerous tools for the manipulation 

Figure 14--The crocodiless cavorts across the screen, delighted 
at her recent creation on the TX-2 console. The artist, 

Miss Barbara Koppel of Chicago, had little animation 
experience, no computer experience, a brief 

introduction to GENESYS, and assistance in 
using it from the author 

Figure 15--The four selection descriptiom; generate the 
movements of the jaws, tail, legs, and body of the 

crocodiless. Her translational motion is defined by the 
two path descriptions below. The oscillator~T 

waveform is the vertical coordinate; the 
waveform sloping downward, 

the horizontal coordinate 

of static representations of dynamic descriptions. 
Several individuals with varying degrees of artistic 
skill and training in animation have constructed short 
cartoon sequences with the aid of G ENESYS. Figures 
12-20 illustrate some of these experiences. 

Conclusion-the representation of dynamic information
The concept of a picture 

Thus the essence of picture-driven animation is: 

1. that there exists a set of abstractions of dynamic 
information, data sequences which drive algo
rithms to produce animated displays; and, 

2. that these abstractions may in turn be modeled, 
generated, and modified by static as well as 
animated pictures, modeled in the sense that 
the picture structure represents the data s~ 
quence, generated and modified in the sense 



Figure 16-The 1st, 7th, 13th, and 19th frames of the 'take-off' 
of a bird are shown. The figure is superimposed on the parametric 

curve which defines its path through space. Mrs. Johnson 
has mimicked the motion by sketching the p-curve; the 

bird then reproduces this movement. Observe the 
switching among discrete shapes and positions 

of its eye, wing. and feet. 

Figure 17-All eels used by Mrs. Johnson in the animation of 
Oopy-he tiaps his ear, winks, and Rticks out his tongue-are 
shown superimposed on t.he left. To the right GENESYS is in 

frame mode, in which the current state of a particular 
frame is displayed. Also visible are "light-buttons" 

representing eel classes (mouth, tongue, eye, ear, 
brow). The animator may alter the current 

frame, s"itehing the select.ion of a eel 
from a class by pointing at it, or changing 

it.s position by turning knobs located 
under the scope. The underlying 

movement descriptions are 
automat.icaUy updated 

by GENESYS 

that the picture represents the process of syn
thesis as well. 

The three kinds of descriptions constitute a rich, 
expressive, intuitively meaningful vocabulary for dynamics. 
Each type abstracts an important category of dynamic 
behavior-flow and continuous change (path descrip-

Picture-Driven Animation 285 

Figure 18-A short cartoon-what the viewer sees: A man, 
t.ripping blithely along, kicks a dog lying in his path. The dog 

rises and trots off to the right (shown above). It then 
returns, teeth bared (shown in Figure 19), and bites 

the man. The man jumps and runs away. The dog 
first follows, then returns once again to rest. 

The duration of the sequence is 
approximately 20 seconds 

tions), switching and repetitive choice (selection de
scriptions), and rhythm and synchrony (rhythm 
descriptions). The vocabulary is economical, flexible, 
and general in the sense that it can characterize the 
dynamic similarities that exist in seemingly diverse 
animation sequences. 

The use of dynamic descriptions couples picture 
definition by sketching and by algorithm; it furthermore 
allows both local (of the individual frame) and global 
(for an interval_ of time) control over dynamics. We 
have chosen to stress the latter and adopted the term 
"global dynamic description", for it is the capacity 
for global control that results uniquely from the use 
of the computer as an animat.ion medIum. Yet a dy
namic description is not only a representation over an 
interval, but a sequence of single elements whose modi
fication also provides local control over individual 
frames. Both local and global control are vital to the 
successful synthesis of movement. He who accidentally 
crashes into a wall while running from the police is 
going from the continuous to the discrete, from a global 
motion to a local event. He who aims to scale the wall is 
interpolating the continuous between the discrete, 
adjusting the global to fit the constraints of the local. 

The naturalness and power of the vocabulary is 
increased by the ability to manipulate it in an inter
active graphics environment. There exist, for each 
kind of data sequence, static pictorial representations 



286 Spring Joint Computer Conference, 1969 

Figure 19-A short cartoon-how it was made: Mr Ephraim 
Cohen of Orange, New Jersey, a mathematician and programmer 
who is also a skilled caricaturist, completed the eels for his 
cartoon one week-end afternoon at the TX-2. The system then 

crashed, and he was forced to ret-qrn home. He sent through 
t.hemail four selection descriptions, to choose eels from 

the classeR "man's head", "man's legs", "dog's 
head", and "dog's body", and two path 
descriptions, to drive horizontally the 

man and the dog. The author input the 
dynamic descriptions, viewed the result, 

and then refined the movie by 
several iterations of editing 
the descriptions and viewing 

the sequence 

such as the waveform which provide a global view of 
and facilitate precision control of the temporal behavior 
implied by the sequences. There exist, for each kind of 
data sequence, methods of dynamic specification such 
as the clocked sketching of parametric curves which 
allow the animator's sense of time t.o be transmitted 
directly through the medium of the computer into the 
animated display. 

We use the term "global dynamic description" and 
the names of the three types somewhat loosely in 
referring both to the underlying dynamic data sequences 
and to their corresponding pictorial representations. 
The imprecision is purposefli:l, for it is v~ry significant 
that, in an interactive graphics envirdrJIDent, one can 
easily traverse in either direction any leg of the triangle 
{Dynamic Data Sequence, Static Pictorial Hepresenta
tion, Dynamic Pictorial Representation}. What results 
is an important plasticity in the representation of 
dynamics. Characterizations of change can be manipu
lated (shifted, stretched, superimposed, ... ) within and 
between the domains of the· static ana the dynamic. 

Figure 20-A short cartoon-why it works: The dynamic 
descriptions defining Mr. Cohen's cartoon as of January, 1969, 

are shown above. The selection descriptions, from top to 
bottom, belong to the man's head, the man's legs, the 

dog's head, and the dog's body. There are 4, 8, 
8, and 4 eels in each class, respectively. 

The t.wo waveforms represent the 
changes with time of the horizontal 

coordinates of the man 
and the dog 

Several animation sequences can readily be related, 
coordinated, or unified, regardless of whether or not 
they ever occur concurrently. Dynamic behavior (data) 
can readily be tran~ferred from one animation subse
quenc'e (including the animator) to another, from one 
mode of representation or embodiment in a picture to 
another. 

Our concept of a picture is a broad one, and purposely 
so. For as we stress in reference 28, a computer-mediated 
picture is not only what is visible but what is con
tained in its model in the computer system, And the 
system, i.e., an interactive animation system, includes 
not only disks and core but an animator and perhaps 
an ongoing physics experiment as well as a tape-record
ed speech. This system evolves continually through 
real time. Occasioro..ally there occurs a particular reor-



ganization of the system which results in the transfer 
of information from the animator to the pictorial data 
base, or in a computation on the data base which results 
in a sequence of visual images (i.e., data directly con
vertihle by hardware into visual images). Thus, as we 
have stressed before, the act of mimicking dynamics 
is a (user-driven) dynamic picture. This unification of 
the concepts of picture 'and action is important. 

The greater is the number and generality of avail
able models of pictures and of processes of picture 
constructipn, the more flexible and powerful is the 
animation system in its abHity to deal with dynamic 
information. The design of a multi-purpose, open-ended 
animation language that allows the aniinator hi:mself 
to synthesize new models is outlined in reference 28. 
Wi~h such a language one can describe arbitrary 
action-picture interpreters that extract movement 
descriptions from the animator's use of system devices 
and transform them and existing static and dynamic 
displays into new static and dynamic displays. 

Finally, the use of dynamic descriptions helps estab
lish a conceptual framework which facilitates efficient 
use of the resources of the animation system: animator, 
software, and hardware. For details, we again refer the 
reader to reference 28. 

Extensions, applications, implications 

This paper is a pointer to a ::.vIarch, 1969, Ph.D. 
dissertation,28 which includes the ma'terial contained 
herein considerably expanded, some suggestions for 
future research, and .... 

1. There is a discussion of major difficulties in 
implementing systems embodying these ideas, 
with thoughts on the criteria supporting sub
systems (both hardware and software) should 
satisfy to facilitate interactive computer-medi
ated animation. The environment in which 
current implementations exist is described in 
another paper being delivered at this conference.32 

2. There is a lengthy outline of a proposed design 
of an Animation and Picture Processing Lan
guage. APPL is a multi-purpose, open-ended 
interactive animation programming language, 
through which the animator may also exercise 
algoritlunic control over a dynamic display. 
The language will contain quasi-parallel flow 
of program control, a data structure that is a 
generalization of all hierarchic ordered data 
representations, an extensible class of picture 
descriptors, and a formalism which models the 
aniniator's dynamics as it models the dynamics 
of any picture, that is, as an integral component 

Picture-Driven Animation 287 

of animated system behavior. A major design 
goal is plasticity in the representation <?f dy
namic information and flexibility in the techniques 
and conventions with which the animator inter
acts with the system. It has been verified on 
paper that a language containing these features 
can gracefully be used to construct dynamic 
displays, to build system tools that aid the 
construction process, and to implement special
purpose interactive computer-mediated anima
tion systems. 

3. Finally, there is a description of potential appli
cations of this work in education, psychology, 
psychiatry, and the arts. In another paper 
being delivered at this conference, Huggins and 
Entwisle eloquently describe the role of com
puter animation in fulfilling the great untapped 
potential of "iconic modes of conununication 
and instruction", in producing "visual images 
that in their ability to conununicate ideas are 
superior to traditional graphical images on 
paper or blackboard."33 "Instead of static im
ages, words, and mathematical symbols", they 
suggest, "we may create dynamic signs that 
move about and develop in self-explanatory 
ways to express abstract relations and concepts." 
" .... A dynamic dimension is now available 
that requires the invention and development of 
new conventions and a visual syntax appropriate 
to this new medium if it is to be fully used for 
conununication and education." lViay the ideas 
in our paper contribute towards this goal. 

With respect to the arts, we conclude by repeating 
McLaren's description of animation: 

"***Animation is not the art of DRA WINGS
that-move but the art of 1v.IOVEMENTS-that
are-dra11Jn. 

***What happens between each frame is more 
important than what exists on each frame. 

* ** Animation 'is therefore the art of manipulating 
the invisible interstices that lie between frames. 
The interstices are the bones, flesh and blood 
of the movie, what is on each frame, merely 
the clothing."34 

This paper may be regarded as a report on a use of 
the computer jn "the art of MOVEMENTS.:.that-are
drawn," in the manipulation of "the invisible inter
stices that lie between frames." 

ACKNOWLEDGMENTS 

The encouragement, counsel, and insight of the dis-



288 Spring Joint Computer Conference, 1969 

sertation's mentor, Professor Edward L. Glaser of 
Case Western Reserve University, and of Dr. William 
R. Sutherland of :NI.I.T. Lincoln Laboratory, Professor 
?v!urray Eden of M.LT., and :WIr. Eric Martin of Har
vard University and Cambridge Design Group, Inc. 
are gratefully acknowledged. We appreciate the support 
of numerous individuals, here nameless but not for
gotten, many in the Digital Computers Group of M.LT. 
Lincoln Laboratory, who have contributed to the 
progress of this research. 

REFERENCES 

R STEPHENSON 
Animation in the cinema 
A Zwemmer Limited London A S Barnes and Co 
~ew York 1967 

2 J HALAS It MANVELL 
The technique of film animation 
Hastings House New York 1959 

3 K C KNOWLTON 
A computer technique for producing animated movies 
Proc S J C C 1964 

4 K C KNOWLTON 
A. computer technique for the production of animated movies 
Bell Telephone Laboratories Film 

5 The human use of computing machines 
Bell Telephone Laboratories Symposium June 20-21 1966 

() Conference on Computer Animation 
Education Development Center Newton Mass .July 17-1H 
1967 

7 Proceedings of the 1967 UAIDE Annual Meeting 
8 Proceedings of the Fall Joint Computer Conference 1968 
9 F W SINDEN 

Force, mass, and motion 
Bell Telephone Laboratories Film 

10 J L SCH\VAHTZ E F TAYLOR 
Computer displays in the teachi11g of physics 
Proc F J C C 1968 

11 MIT SCIENCE TEACHI~G CE~TER 
Scattering in one dimension 
Film available on loan from the Atomic Ener~y 
Commission 

12 C LEVINTHAL 
Jf olecular model-building by computer 
Scientific Amel'iean Vol 214 No 6.June 1966 

V~ C LEVINTHAL 
Computer construci'io'tt and d'isplay of 'iiwlecular models 
Film 

14 E E ZAJAC 
Computer-made perspective movies a.~ a scientific and 
communication tool 
Comm A C M Vol 7 No a March H}64 

15 E E ZAJAC 
Two-gyro, gravity gradient attitude control system 
Bell Telephone Lahorat.ories Film 

16 S VANDERBEECK J H WHITNEY 
Several animated films made with the aid of a eomputer 

17 Design and the computer 

Design Quarterly 66/67 Walker Art. Center Minneapolis 
Minn 

18 A M NOLL 
The digital computer as a creative 'medium 
IEEE Spectrum ()etober 1967 

19 J REICHARDT 
Cybernetic serendipity, the computer and the arts 
Studio International London and New York 1968 

20 J C R LICKLIDER 
M an-computer symbiosis 
Trans IRE PGH.FE HFE-1 4 1960 

21 I E SUTHEHLAN D 
Sketchpad: a man-machine graphical communication system 
MIT Lincoln Laboratory Technical Report No 296 Jan 196;~ 
Proc S J C C 196a 

22 J C R LICKLID.l£R 
AI an-computer partnership 
International Science and Technology May 1965 

23 M A DAVIS T 0 ELLIS 
The rand tablet: a man-machine communication device 
Proc F J C C 1964 

24 J F TEIX.l£RA R P SALLE:t\ 
The sylvania data tablet 
Proc S J C C 1968 

25 L G ROBERTS 
The lincoln wand 
Proc F J C C 1966 

26 J E CURRY 
:-1 tablet input facility for an interactive graphics system 
Proc of the International Joint Conference on Artificial 
Intelligence 1969 

27 E MARTIN 
Private Communication 

28 R M BAECKER 
Interactive comp'l,ter-mediated animation 
Ph D Dissertation Department of Electrical Engineering 
MIT March 1969 

29 T MIURA J IWATA J TSUDA 
An application of hybrid curve generation-cartoon animati01I 
by electronic co'm-puters 
Proc S J C C 1967 

30 J NOLAN L YARBROUGH 
An on-line computer drawing andanimat'ion system 
Proc of the Conference of the International Federation 
for Information Processing (IFIPS) 1968 

:31 W H HUGGINS D R ENTWISLI~ 
Exploratory studies of .films for engineering education 
Department of Electrieal Engineering The Johns Hopkins 
University Heport to US Office of Education September 
1968 

32 W R SUTHERLAND J W FORGIE 
M V MORELLO 
Graphics in time-sharing: a summary of the T X -2 experience 
Proc S J C C 1969 

:{il W H HUGGINS D R ENTWISLE 
Computer anima.t.ion for the rwa.demic community 
Proc S J C C 1969 

34 N MCLAR}<~N 
Quotation in animation exhibit in the Canadian 
Cinematique Pavilion at EXPO '68 in Montreal Canada 
National .Film Board Canada 



Computer graphics displays of 
simulated automobile dynamics 

by CALVIN M. THEISS 

Cornell Aeronautical Laboratory, Inc. 
Buffalo, ~ ew York 

INTRODUCTION 

Simulation of physical systems using digital computers 
has been accomplished by many people over the past 
few years. One such simulation program at Cornell 
Aeronautical Laboratory, Inc. constitutes an analytical 
representation of an automobile as it departs from 
the highway under various environmental conditions 
especially 'Qnder adverse ones where there is danger of 
collision with obstacles. l As with most complex simula
tion programs where there are interactions among 
many components, the equations of motion, including 
the required restraints, become long and numerous. 
But foremost, the output data set in printed form is 
quite extensive and very difficult for the investigating 
engineer to completely comprehend. About thirty 
crowded pages of output are printed for a five second 
automobile test run. 

The objective of the task described here was to con
vert some of these output data into a pictorial form' 
that is, pictures were desired for a simulated automo~ 
bile undergoing various violent maneuvers. In this 
manner, the actions in any part of the vehicle can be 
easily and quickly determined. Since this objective 
could be applied to most simulation problems to ad
vantage, a set of generalized computer subroutines 
were designed to be called in a manner similar to most 
plotting utility packages. 

The pictures are then drawn by state-of-the-art 
peripheral plotting hardware. Several output methods 
are available to CAL users-

a. on-line 8-1/2 X 11 inch pictures by Xerox 
equipment, 

b. off-line CALCOMP plots on 30" drawing paper, 
c. off- or on-line film exposure through the use of 

a flying spot scanner built in-house, using a 
high precision cathode ray tube and a 16 mm 

movie camera. Commercial flying spot scanners 
are now available for this purpose. 

A utomobile simulation 

The CAL Single Vehicle Accident Program! simu
lates a moving automobile, its interaction with the 
terrain over which it travels and collisions with a va
riet! of. obstacles in its path. The program is very 
fleXIble In that approximately 100 input parameters 
desc?be the a~tomobile, such as wheel base, weight, 
braking coeffiCIents, nonlinear characteristics of shock 
absorbers, engine torque on driver wheels, etc. Like· 
~ise, various terrain profiles and obstacles can be spec
lfi~ fOJ: different simulation runs. For example, the 
radIal tIre force generated at each wheel is simulated 
by means of simple springs on smooth terrain; how
ever, on rough terrain or when obstacles such as curbs , , 
are encountered, the tires are simulated by a set of 
compound springs radiating from the hub of the wheel. 
Originally, the output consisted of about sixty items 
of response printed in tabular fonn. 
. For a first effort. at pictorial output, the automobile 
IS considered as four different objects, namely, the 
two front wheels, the rear axle and the sprung mass 
( the body). The Single Vehicle Accident Program was 
m?dified to record dynamically on magnetic tape 
thirteen parameters which describe the actions of these 
four objects. They are-

289 

1-3 
4-6 
7-8 
9-10 
11 
12 
13 

position of the sprung mass, 
attitude of the sprung mass, 
deflection of each of the front wheels 
camber of each of the front wheels 
deflection of the rear axle, 
roll of the rear axle, 

, 
, 

steer angle applied to the front wheels. 



290 Spring Joint Computer Conference, 1969 

This magnetic tape is the-dynamic input to the pic
ture generation program. Other obj ects, such as road 
markings, roadside barriers, ramps, etc., are static 
initial inputs to the program. 

Perspectwe picture generation 

A quick but incomplete review of the available 
literature revealed that a number of different ap
proaches to producing three-dimensional computer 
graphics displays have been developed.2 ,3,4,5 However, 
none met our particular requirements to permit quick 
economical generation of both still and motion pic
tures with the existing in-house equipment available. 

The pictures are drawn as line drawings using straight 
lines only. The periphery of a wheel, for example; is 
drawn as a 50-sided regular polygon. No attempt was 
initially made for" hidden line removal". 

Description of objects 

Each object is stored as one or more three-dimen
sional arrays; each entry defines a point of the object 
with respect to three-dimensional rectangular coor
dinates fixed in the object. Thus, after the appropriate 
coordinate transformations discussed below, a per
spective picture can be drawn in two-dimensional 
space by starting at the first point of the first array, 
drawing a straight line to the second point and pro
ceeding onto each point of the array in turn. This is 
done for each array of the object. 

Camera simulation 

The usual description of a simple pinhole camera 
as illustrated in Figure 1 is used. The position of the 
image, Q, on the picture plane of an object at point 
P in front of the camera with a focal length of F is: 

Xo = 0 

Yo = -F yp/(xp - F) 

Zo = -F zp/(xp - F) 

(1) 

(2) 

(3) 

Thus, the three-dimensional space in front of the camera 
is mapped onto the two-dimensional space of the pic
ture plane (film) of the camera. The simulation of this 
simple camera is the crux of our picture generating 
program. 

In addition, care must be taken to assure that attempts 
are not made to draw portions of the object image which 
are outside the picture boundary. At first thought one 
might expect this to occur only when 

j yol ~ Y max (4) 

p 

picture plane 

x 

Q 

Figure I-Diagram of a pinhole camera 

or 

(5) 

Actually this occurs also as 

xp-F---+O (6) 

For drawing a single straight line, only the central 
portion, an end, or the whole line may be in view. Thus, 
intersections of lines and picture edges must be con
tinually tested. For example, see Figure 2. 

Line AB is defined in the object array by points 
A and B, the transformations of both lie outside the 
picture. However, the central portion of the line lies 
inside the boundary and must be drawn. Thus, for lines 
where at least one of the end points lies outside the 
boundary, algorithms were developed to determine which 
portion, if any, of the line is to be drawn. 

Definitions of coordinates and parameters 

As noted above, coordinate transformation of the 
arrays of points of an object in three-dimensional space 

B 

A 

Figure 2-lmage line intersecting with picture boundary 



Computer Graphics Displays of Simulated Automobile D-ynamics 291 

to points of the picture in two-dimensional space is 
necessary. This is done with the help of the following 
coordinate systems and relating parameters. 

a. Inertial coordinate system: a rectangular coor
dinate system fixed in free space. This is the 
fundamental reference base for spatial relation
ships among the various components. 

b. Object coordinate system: a rectangular coordinate 
system fixed to the object. One exists for each 
object. 

c. Camera coordinate system: a rectangular co
ordinate system fixed to the camera, with the 
origin in the center of the picture plane and 
the positive X axis extending toward and 
through the focal point. 

d. Picture coordinate system: a two-dimensional 
rectangular coordinate system fixed to the 
picture frame. 

e. Object position: the position of the origin of 
object coordinates, with respect to the inertial 
coordinate system (the row vector, B ). 

f. Object attitude: the angular relationship of the 
object coordinates with respect to the inertial 

Y about axis Zf 

P about axis Y 1 

R about axis Xb 

(An Intermediate Axis) 

Figure 3-Euler angles relating body axes (Xb, Yb, Zb) w th 
respect. t.o fixed axes (X" Y" Z,) 

coordinates in terms of Euler angles, yaw, Y; 
pitch, P; and roll, R (see Figure 3). 

g. Camera position: the position of the origin of 
the camera coordinates with respect to the in
ertial coordinate system (the row vector, C). 

h. Camera attitude: three angles, the azimuth, 
A, and elevation, E, of the camera line of sight 
(camera X axis) and the orientation of the pic
ture (tilt), T, with respect to the inertial coor
dinates. 

i. Camera focal length: (defined in Figure 1). 

Spatial relationships 

Motion and dynamic activity in the simulated scene 
to be "photographed" is reflected in changes over time 
of the position and attitude parameters (a total of 
six) for each object. Furthermore, change in the camera 
parameters are also possible. The camera could be 
mounted on a vehicle. Panning (attitude changing) 
and/ or zooming (changes in focal length) are included. 

Consider a point of an object, any point in the object 
description arrays, as a row vector, Po, described in 
object space. The position vector with respect to in
ertial space, is obtainable by the transformation. 

PI = Po x [01] + B 

where the transformation matrix is 

[ 

cosPcosY, sinPcosYsinR - cosRsinY, 
[01] = cosPsinY, sinPsinYsinR + cosRcosY, 

- sinP, cosPsinR , 

(7) 

sinPcosYcosR + SinRSinYJ 
sinPsinYcosR - sinRcosY (8) 
cosPcosR 

Similarly, in camera space, the relationship is 

Pc = (PI - C) x [IC] (9) 

where the transformation matrix is 

[ 

cosAcosE, sinAcosE, sinE ] 
[IC] = -sinA, cosA , 0 

- cosAsinE, - sinAsinE, cosE 
(10) 

At this point the value of the x component of Pc, 
X PCI, is checked. If XpG ~ F (see Figure 1), the point is (1) 
behind the camera, or (2) at the camera focal point, or (3) 
its corresponding picture image point will be a very 
large distance from the center of the picture, i.e., XQ, 



292 Spring Joint Computer Conference, 1969 

Y Q ~ 00. Thus, complete lines connecting to the point 
cannot be drawn. 

The final transfonnation to the two-dimensional point 
in the picture plane is 

(11) 

where K is an enlargement factor and the transfonna
tion matrix is 

[ 

0 , 0 1 
[CP] = -cosT~ sinT 

sinT, cosT J 
(12) 

Now the point must be checked to detennine 
whether it is within the picture frame by the following 
criteria-

I XQ I ~ W/2 

I YQI ~ H/2 

(13) 

(14) 

where W and H are the prescribed width and height 
of the picture, respectively. 

The picture generation program 

The program was written using the FORTRAN 
IV source language and documented for general usage6 

in the analysis of automobile dynamics. 

Picture subroutine set 

The subroutines were designed to supply the rudi
mentary requirements for drawing perspective line 
drawings. A brief description of each subroutine call 
follows. 

a. CALL FRAME 
1. Wh~n output is to the flying spot scanner, 

the film is advanced one frame. 
2. When output is on the CALCOMP plot

ter, a new area of the paper is selected. 
b. CALL FRAMSZ (W, H) 

The size of the picture is established. 
c. CALL CAMSET (POS, ITYPE, INVT) 

The camera parameters are established. 

POSen) n= 1,2,3 specifies the camera po
sition, C. 
POSen) n= 4, 5, 6, specifies the position 
of the camera focal point with respect to 
the inertia] coordinates if ITYPE = 1. 
POSen) n=4, 5, 6 specifies the azimuth 
and elevation of the camera line of sight 

and the camera focal length if ITYPE = 2. 
POS(7) specifies the rotation of the pic
ture about the line· of sight, i.e., its tilt 
angle. 
INVT specifies if either the vertical or 
horizontal axes (or both or neither) is to 
be reversed. 

d. CALL0BAXIS(X, Y,Z,ROLL,PITCH, YAW) 
The position and attitude of the object axis 
are established. All further calls to 0 BLINE 
refers to this object coordinate system until 
another call to OBAXIS occurs. 

e. CALL 0BLINE (X, Y, Z, N) 
X, Y, Z are arrays containing the respective 
components of N points with respect to the 
object coordinate system established by the 
last call to OBAXIS. All pertinent coordinate 
transformations are computed and a perspec
tive line drawing is made connecting the N 
points in the order of the array. The drawing 
is "clipped" wherever it crosses the picture 
boundary as established by the previous call 
toFRAMSZ. 

f. CALL CIRCLE (X, Y, Z, R, AZ, EL, TI, P, N) 
The data for the arrays required by a call to 
OBLINE are prepared for drawing a circle 
centered at point X, Y, Z with radius R.. The 
circle axis points in the direction with an azi
muth AZ and elevation EL. Actually, the circle 
is approximated by an N -sided regular poly
gon. P is the returned data arrays. TI specifies 
the rotation or starting point of the polygon; 
for a true circle it has no significance. 

g. CALL 0BJECT (TITLE, X, Y, Z, ROLL, 
PITCH, YAW) 
This call and the next two calls are included 
only to reduce the bookkeeping details for the 
user. TITLE is the name of an object to be 
drawn, whose object axis is defined by the last 
six arguments. The descriptive arrays for this 
objeot are stored with the object name in a. 
common store. When the 0BJECT is called, 
the store is searched for the object named, the 
coordinate transformations calculated and the 
object is drawn. Subroutines 0BAXIS and 
0BLINE are caned by this subroutine. 

1\ 

h. CALL 0BJINP 
This call reads data from ca.rds giving the name 
and descriptive arrays of objects and stores 
them in the common store. 

i. CALL DLT0BJ (TITLE) 
The object TITLE is deleted from the common 
store, thus freeing storage space for new objects. 



Computer Graphics Displays of Simulated Automobile Dynamics . 293 

The executive routine 

The executive routine reads the magnetic tape de
scribing the thirteen parameters of the automobile 
dynamics. These in turn are used for determining the 
spatial relationships of the object coordinates for each 
of the four objects (the two front wheels, rear axle 
and sprung mass) of the automobile for each increment 
in time. Calls to the picture subroutines are then made 
to draw the pictures. Background objects such as road 
markings, barriers, ramps, etc., ::\ore read in from cards. 
Other features of the program include: 

a. The frame rate (or time increment between 
pictures) is specified for each usage of the pro-

-h----------~I "" ... -'.IIO~-------

gram. In fact, it may be changed at any -.point 
in the run. In this manner several "still pic
tures" may be chosen at arbitrary times through
out the simulated event. 

h. Background objects may be added or deleted 
at any point in time. 

c. Camera motion, if desired, may be specified 
or changed at any point in time. Further, pan
ning and/or zooming, if desired, may be speci
fied with given rates or automated to keep the 
automobile in the center of the picture. 

d. The program can also write titles and subtItles 
in the film where desired. 

Figure 4-Photographic and computer graphic display of GM parapet impact 



294 Spring Joint Computer Conference, 1969 

Sample applications 

Sample still pictures from several different simulated 
vehicle maneuvers are shown in Figures 4, 5 and 6, 
together with pictures of similar "real life" tests. Auto
matic panning is used in all cases. 

CONCLUSIONS 

The pictures illustrate the ease of assessing the capa
bility of the simulation program. Through comparisons 
with similar "real life" test pictures, especially motion 
pictures, one may quickly verify the validity of a simu-

-------------- --- .. -

-----~~{,il~-=---
----_. - ---------

------

lation program and establish a high degree of confidence 
in its usage. 

These results encourage one to look ahead to future 
activity. The various other applications of this output 
technique to simulation is limited only by the user's 
imagination and needs. Improvements, of course, are 
desirable. First of all, the removal of hidden lines would 
improve the esthetic value. The literature contains 
several methods of varying levels of satisfy~g and 
financially feasible results.7 ,8,9 The economical in
clusion of color and shading is challenging. Illustration 
of the deformation of objects, such as the crushing of 
an automobile fender, would be highly desirable. 

Figure 5-Phof,ographic a.nd computer graphic display of skidding vehicie 



Computer Graphics Displays of Simulated Automobile Dynamics 295 

EXPERIMENT COMPUTER PREDICTION 

SEC. 0.320 

SEC. 0.6'10 

--~-~---
---- ---

1--------_ .. ---.. ---.-- .... --------
5ELL200~~ 

~-===rl.--,---,---__ _ 
SEC. 1.600 

Figure 6-Ramp jump at 44 mph 



296 Spring Joint Computer Conference, 1969 

ACKNOWLEDGMENTS 

I wish to express my gratitude to Raymond R. Mc
Henry and Claron W. Swonger for their help and guid
ance in the development work leading to this paper. 

The reported research was performed under Con
tract No. CPR-11-3988 with the Traffic Systems Di
vision, Office of Research and Development, Bureau 
of Public Roads, U. S. Department of Transportation. 
The opinions, findings and conclusions expressed in 
this paper are those of the author and not necessarily 
those of the Bureau of Public Roads. 

REFERENCES 

R H McHER~Y :\' J DELEYS 
Vehicle dynamics in sing:e vehicle accidents--vaiidaiiol/ and 
extensions of a computer sirnulatiou 
Cornell Aeronautical Technica! Report YJ-2251--Y- 3 
December 1967 

2 K G KNOWLTOI\ 
A computer technique for pruducing llltimated muv'ies 
Proc AFIPS Conference 1 H64 

3 A M NOLL 
Cumpu~r-generaled three-d'imewriunul IIW/J'WS 

Computer::; and Automation November 1\)65 
4 W A FETTER 

Compu er graphics 
Annual Meeting of the American Society for Engineering 
Educators 1966 

5 R L MITCHELL 
.4 computerized 3-D plotting program 
Computerized Imaging Techniques, Proc of the Society 
of Photo-Optical Instrumentation Engineers June 1967 

6 C M THEISS 
Perspective picture output for au!orrwbile dynamics 
simulations 
Cornell Aeronautical Laboratory Technical Report 
VJ-2251-V-2R January 1969 

7 L G ROBERTS 
M achi'lle perception of three-dimensional solids 
Lincoln Laboratory Technical Report :315 May 1963 

8 R A WEISS 
BE VISION, a package uf IBM 7090 FORTUAN p'i'ogmrns 

to draw orthugraphic views of combinations of plane and quadric 
surfaces 
JACM April 1966 

9 P LOUTREL 
A solution to the hidden-litle prob:em fo'l' computer-drawn 
polyhedra 
New York University School of Engineering Teehnical 
Report Heptember IH67 400-167 



Fast drawing of curves for computer display * 

by DAN COHEN** and THEODORE ~1. P. LEE** 

Harvard University 
Cambridge, Massachusetts 

INTRODUCTION 

Now that computer displays with vector and character 
drawing capabilities are becoming a common form of 
on-line graphic output device, interest has turned 
toward providing a curvilinear display capability. 
Naturally, curves can be drawn as a series of short 
vectors stored in display memory, but the goal of current 
research is to provide hardware which draws a curve by 
generating such vectors, or perhaps, continuous beam 
motion, from a concise specification of a curve segment. 

In this paper we consider the properties of a particular 
class of curves suitable for such a hardware curve 
generator. (See Figures 1 and 2 for examples.) As it 
happens, the algorithms for generating successive points 
on the curve can be implemented efficiently in software. 
This work is derivative in part from suggestions by 
S. A. Coons and in part from ideas developed during the 
design of the Harvard Three-Dimensional display.l.2 In 
both cases a direct debt to L. G. Roberts, then of 
Lincoln Laboratories, must also be acknowledged. 

l\1athematically we present this material in as general 
a form as seems appropriate for the particular topic 
under discussion. Practically we think primarily of two 
dimensional curves or three dimensional curves projected 
into two dimensions. In this and related work on the 
display of three-dimensional surfaces it has proven 
convenient to formulate the concepts in a homogeneous 

* The research reported here was performed at Harvard Uni
versity and supported in part by the Advanced Research Projects 
Agency (ARPA) of the Department of Defense under contract 
SD-265 with Harvard University, under contract AF 30(602)-
4277 with the University of Utah, by the Office of ~aval Research 
under contract ONR 1866(16) with Harvard University, and by 
a long standing agreement between Bel] Telephone Labora
tori~ and the Harvard Computation Laboratory. Mr. Lee is a 
National Science Foundation graduate fellow. 

** At the Aiken Computation Laboratory, of the Division of 
Engineering and Applied Physics. 

297 

coordinate geometry.3 This formulation is especially 
relevant when talking about perspective images, for it 
was in the discussion of projective geometry in the late 
19th century4·5 that such a representation for projective 
spaces was introduced. As is to be expected, most of the 
geometrical results derived at that time do not seem 
relevant to computer applications, for they normally 
involve deductive rather than constru.ctive proofs. 

x 

-'--'--'-- -_._ .. _-_._)( 

Figure I-Example of a curve 



298 Spring Joint Computer Conference, 1969 

.' .... 
. ' 

Figure 2-.'\ closed curve 

,\Ve consider the family of curve segments 

cI> = {V = Vet), 0 ~ t ~ I} 

where each component of V is a polynomial in t. We 
restrict the discussion to polynomials only because of 
the simplicIty of polynomial evaluation. We consider 
these curves in Rn; however our interest lies in pn, the 
perspective space of dimension n - 1, generated from 
Rn by dividing each component of V by the last 
component. 

Let cI>m be the family of curve segments defined by 
polynomials of degree not exceeding m. The higher mis, 
the more general is the family cI>m, but generating each 
point on any curve is more complex. The greater 
generality of cI>m for larger m enables the curve to satisfy 
more conditions, but correspondingly requires more 
conditions to wliquely define the curve. cI>2 includes 
straight lines and conic sections only, Therefore if 

V E ~, V cannot cut itself and cannot have inft.ection 
points. cI>a (which includes cI>2 as a proper subset) 
contains curve segments which may have inft.ection 
points and which may cut themselves, as shown in 
Figures 3 and 4 . 

For display purposes, on a two-dimensional scope 
face, it is enough always to work in P3, although for 
many practical uses one wants to impose conditions on 
the curve to be satisfied in Rn. In particular, one often 
wishes to characterize a curve to be displayed in 
two-dimensional projection by conditions expressed in 
the projective space P", that is, in three-dimensional 
homogeneous coordinates. 

Iterative generation of curve 

There are several methods for generating a curve, 
depending upon its parametric representation. The 
simplest is to generate a sequence of short line segments 
between points on the curve corresponding to successive 
values {to, t l , ~, ••• , t N } of the parameter t, with a fixed 
difference 5 = l/N between tm and tm+l' Let x(t) = 
X(t)/W(t) and yet) = Y(t)/W(t). Let pet) represent 
any of the polynomials X(t), yet), or Wet) and let 
Pn = P(tn ) = P(n5) forn = 0,1,2, ... ,~. In the usual 
fashion we define two difference operators with respect 
to the difference 5 as follows: 

the forward difference: af(x) = f(x + 5) - f(x) 

the backward difference: \7f(x) = f(x) - f(x - 5) 

am and \7n are defined recursively and aOf = \7°f = f. 

Note that P n+l - Pn = ap" = \7Pn+l and that if 

m 

pet) = L aktk then amp = \7mp = m!am for any 
k=O 

value of t. For the convenience of the presentation 
we will let m = 3 in the following. 

It is easy to see that 

[ P~l] [1 1 0 

n [ p. ] aPn+1 = 0 1 1 aPn 

a 2P n+1 0 0 1 a 2p,., 
a3Pn+1 ,0 0 0 ,a3p" ' 

or, in short, F n+l = S F 11 

and 

I P~l 1 [1 1 1 n r v~: 1 \7Pn+1 = 0 1 1 
\72Pl.+1 0 0 1 V2Pn 

... \73Pn+1 ... ,0 0 0 1 J _ \73P .. _ 



Fast Drawing of Curves for Computer Display 299 

x 

x 
Figure 3-Curve with inflection point 

or, in short, Bn+1 = T Bn. 
We have in mind placing the current values {Pn , 

aPn , ••• , amp,,} (or the {VkP,,}) in a set of fast registers 

x X· 
Figure 4-Curve which crosses itself 

or memory cells. The successive values {Pn } computed 
by either method will be used in some fashion to display 
the curve. 

Let us factorize the matrices S and T to indicate the 
two computational schemes: 

S=['~ ~ ~ ~] .. [(~ ~ ~ ~]I.:: 
0011. 0010, 
,0001, .0001) 

[
1 1 0 0] 

I. 0 1 0 0 I.' = At Al Ao 
; 0 0 1 0: 
~O 0 0 1j 

[

1 1 0 0]1. 
T =~ ~ ! r [~ 1 0 0 0 ]":" : 0 1 1 0 I 

1 : 

. 0 0 1 0 
:.0 0 0 1) 

[

1 0 0 0]' 
: 0 1 0 0 t. = Ao Al At 
1 0 0 1 1: 
I . 
,,0 0 0 1" 

where Ai is the operation of adding L\ i+lp to L\ ip 
(or VHlp to Vip). 



300 Spring Joint Computer Conference, 1969 

We periorm these operations in the order Ao, AJ, A2 
for forward differences as indicated by the composition 
of operators F n+l = A2AIAoF n and in the opposite order 
for backward differences. 

There are only three additions involved in eitl}er of 
these methods. However, there is a basic difference 
between them. In the forward difference scheme, each 
"new" value ~ ip n+l depends only on "old" values 
~iP n, but in the backward difference scheme each "new" 
value depends on the current value of the registers. It is 
therefore possible to execute all the additions for the 
forward difference scheme in parallel, taking only one 
addition time for evaluating successive values of the 
polynomials. This however requires much hard~are 
(adders). The backward difference scheme is more 
economical for sequential computation in software, or 
in hardware with only one adder. By using extra logic 
one can however overlap the three additions in the same 
adder and execute them in not much more than one 
addition time. 

Basic curve form 

For our purposes a curve in RN is a vector-valued 
function from the real line R to the real vector space RN 
of dimension N.* That is, a curve is an ordered N-tuple 
of real functions (fl, f2' ... , fN)' Furthermore, let us 
restrict the functions f i to be linear combinations of 
some linearly independent set of functions, q, = [q,o, q,l, 
, •• , CPM] and let the functions be defined over the 
domain [0, 1]. 

M 

Let fj(u) . = L AijCPi(U) where the {Aij} are con
i-O 

stants. Then a curve segment can be represented by a 
unique (M + 1) X N real matrix A. A point V(n) on 
the curve associated with a parameter u is given by 

V(u) [CPo(u), CPl(U), ... , CPM(U)] A = ep(u) A = 

In this context we will say either that the matrix A 
represents the curve, or, more pointedly, that the matrix 
A is the curve. 

If we have some mapping H:RN ~ RL from N 
dimensional in to L dimensional space then the image 
v(u) = H(V(u» of the curve V lUlder the mapping will 
be a curve v(u) in RL. The matrix A does not uniquely 
represent the curve v(u), We can define the equiva1ence 
class H[A] of a matrix A under the mapping as the set 

* In other words, we only consider curves in &. paramet.ri~ 

(explicit), rather than implicit, form, 

of all matrices AH such that H(cp(u)AH) = H(cp(u)A); 
it is clear that all the curves in RN specified by the 
AHE H[A] will be mapped into the same-curve in RL and 
there will thus be many representations of that curve, 
Notice that although the original function space
[f1, f2, . , " fN]-is a vector space of rank not exceeding 
(NI + 1) its image under the mapping H is not neces
sarily of finite rank and we cannot in general represent 
the resulting curve in RL by an expression of the form 
W(u) = w(u) B where W(u) € RL, w(u) € RP and set 
B a constant matrix of dimension P X L, w(u) a fixed 
of basis functions, dependent only on Hand cP, The 
mapping H will of course map the curve [fl, f2, ' , " Lv] 
into a curve [gI, g2, ' , ., gL] where gi = Hi[fl, ' , ., fN], 
where the {Hd are the components of the vector 
function H. 

We will usually choose the set of basis functions 
[CPo, • , " q,M] to be the polynomials [uM, uM-I, , , " u2, 

U, 1] or some other set of linearly independent poly
nomials of degree ::.\1. The functions fi will thus be the 
real polynomials of degree :M or less. We will also 
choose N to be dimension 3 or 4 and L to be dimension 
2 or 3 depending on whether we are talking about two 
or three dimensional curves, The mapping H will be 
that used in making the transformation from homo
geneous coordinates to ordinary coordinates, namely, 
the projection obtained by dividing the first L com
ponents of the vector V (of dimension L + 1 = N) 
by the L + 1st component to arrive at the L components 
of the vector H(V), We thus identify the curve specified 
by the form cpA and the resulting vector V(u) as 
homogeneous coordinates of a curve v(u) in dimension one 
less. The ma,ny-to-one property of the mapping H is 
illustrated by the fact that two points in homogeneous 
coordinates, P and Q, are equivalent if and only if 
P = aQ for some non-zero a, 

Thus we talk about curves of the form 

bMuM + bM~lUM-l + ' , , + blu + bo 
y= 

dMuM + dM_IuM- 1 + . , , + dIU + do 
and optionally, 

CMUM + CM_IUM- 1 + . , , + CIU + Co 
z = ----------------------------

dMuM + dM_IUM- I + . , , + dIU + do 

The value for each component of a point on the curve 
is the ratio of two polynomials in the parameter u, In 
theory and in practice we will first do some operations 
on the curve in RN (or upon its representation as a 
matrix) and only at the last moment before display 



Fast Drawing of Curves for Computer Display 301 

perform the mapping H : R,N ~ RL by doing the 
division to remove the homogeneous coordinate. In 
most cases the many-to-one property of H will not come 
into play explicitly but only when we remember that 
the points V(u) are expressed in homogeneous 
coordinates. 

If we have two sets of basis functions for the original 
function space [f1, ... , Lv], say [<Po, 4>1, ... <PM] and 
[Wo, WI, ... WM] we can always write the curve in 
two forms. 

V(u) = [<Po, <PI, ... , <PM] A [Wo, WI, ... , WM] B, 
B = T A where T is the change of basis transformation, 
[Wo, WI, ... , WM] T = [<Po, <PI, ... , <PM]. This relation will 
prove extremely useful in the practical matter of 
determining the matrix A to represent a curve under the 
basis <P = [<Po, <PI, ... , <PM] where <P will be chosen so as 
to make the display easy where a different basis 
[wo, ... , 'liM] might be more cohvenient for specifying 
the curve or performing computations upon it. 

Reparameterizaiion and shape invariance 

Supposing we have a curve represented by the 
matrix A, it is natural to ask what matrices B represent 
the same curve. The major reason for investigating this 
shape invariance is to enable us to draw a particular 
curve in as smooth a manner as possible, while using 
equally spaced {t i }. The initial choice of a matrix to 
represent a curve may be poorly made, as when 

h 1 · dv . h . h t e ve oClty vector du IS great at t e same tIme t e 

curvature of the curve is great. * We prefer to have the 
velocity slow at such points in order that successive 
points in time along the curve well represent its shape. 
(See Figure 5). 

We define two curves in R L to be the same if and only 
if there exists a one-to-one correspondence between the 
points on the curves such that for each point pes) on 
curve A there exists a point q(u) on curve B such that 
pes) = q(u). This correspondence between the points on 
the curves induces a correspondence between the 
parameters on the curves, which we will denote by a 
function s such that s = s(u), or pes) = p(s(u)) = q(u). 
In this context we may have to extend the domain of 
one or the other of the curves to cover the entire real 
line, - 00 < u < + 00, - 00 < s < + 00, although we 
will still only display a finite portion, V(u) = <p(u) B, 
and 0 ~ u ~ 1. (See Figure 6). 

Ir~ the notation of the previous section, we have 

H{[SM SM-1 ... s 1] A} = H{[uM U M - 1 ••• u 1] B} 

* We normally think of the parameter u as being time, and 
derivatives with respect to it as velocities, for reasons to become 
obvious later. 

5 = t=f 

Figure 5-Good and bad parameterization~ 

where H is the operation of performing the homogeneous 
division. This equality between the coordinates on the 
curves will hold at the point p(s(u)) = q(u) if and only 
if there exists a non-zero scalar factor a associated with 
the point p(s(u)) = q(u) and hence a function a(u) 
of the parameter u such that 

a(u) [SM SM-1 ... s 1] A = ruM UM - 1 ••• u 1] B . 

Write the above equation for 1\1 + 1 different values 
of u, and get: 

[ 

S(UO)M 

S(UI)M 

S(UM)M 

S(UO)M-1 .,. s(uo) 
S(UI)M-1 S(UI) 

[ 

u~ U~-1 

= ~~ UY-I 

. , 

u~ U~-l 

The matrix which precedes the B matrix is a Vander
monde matrix,6 which is non-singular since the {ud are 
all different. Note that the matrix preceding the A is 
also a non-singular Vandermonde matrix, as different 
Iud imply different {Si}. 

Solve for B: 

[ 

~ ... ,I J-1 
B=: : 

u~ 1 a(uJI) J 
[ a(uo) 



:302 Spring Joint Computer Conference, 1969 

which we write as B = S A for some as yet undetennined 
square (~I + 1) X (l\I + 1) matrix S. Since S is the 
product. of three non-singular matrices, it is non
singular. 

The original equation becomes 

a(u) [SM SM-l ••. 1] A = [UM U M- 1 ••• 1] S A 

which holds if: 

a(u) [SM SM-l ••• 1] = [UM u M- 1 ••• 1] S . 

If the rank of the null space of A is zero then it will be 
a necessary condition as well. We will not at this time 
pursue a further characterization of curves in tenus of 
the null space of their associated matrix. 

Under these conditions equating appropriate com
ponents of the vectors in the above equation gives: 

1. for the last (1\'1 + 1 Bt) component, 

,,(u) 1 = ruM ... 1J S [;] = P(u) 

P is a polynomial of degree not greater than :M. If 
P = a(u) is a constant then s = u and S = kI for some 
constant k, a trivial and uninteresting equality of 
curves. Hence we assume P is not a constant. 

2. for the ~Ith component: 

f_\ _ L_u 11srn AU 

a\uI • = lU- ... 'J l ~ J = ~\UI 

Q is a polynomial of degree not exceeding ~1 and 
s = Q/a(u) = Q(u)/P(u) 

3. for the first component: 

",(u) 8M = ruM ... 1] S r ~ 1 = R(u) 

LoJ 
It is a polynomial of degree not exceeding :~\,I and 

8
M 

= a~) = ; = [~]" 
The expression R/P = [Q/P]M has at most :vr poles 

.. .. 
P( s) = 4>( s} x A 

s=O 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

~ -!'- ~ 

Q(u)= cp(u) x B = cp(u) x 5 x A 

Figure 6~hape invariant transformation 

and at most NI zeros (including multiplicities) since the 
polynomials Rand P are of degree not greater than ~1. 
Thus Q/P has at most one zero and one pole and we 
have 

Q au + b 
s=P=cu+d· 

Substituting in the original equation gives: 

a(u) [(:~! ~)" (:~! nw-1 

••• 1 ] 

= rUM ... 1] S = 

1_- \ 

(cu a~u)d)M [[(au + b)M], [(au + b)M-l(CU + d)], 

... , [(cu + d)M]] 

Each component of ruM ... 1] S is a polynomial of 
degree not exceeding M in u. The components on the 
right hand side above must thus be the same poly
nomials. Hence a(u) = e(cu + d)M, where e is a 
constant, and by inspection the component Sij of the 
matrix S is the coefficient of U M- i in the expansion of 
e(au + b)M-i(cu + d)i. 

Bypassing the algebra, 

Sij = e t aM- i- i+k b i - k c i- k d k ( ~-~ ) (j) 
k=O _V"-t-1+k 11: 

where we use the convention that a) 
k are outside of the range 0 ~ k :;; j. 

o when j, 



Fast Drawing of Curves for Computer Display 303 

The matrix S for:U = 2 is 

and the matrix for M = 3 is 

a2c ac2 
2abc + a2d bc2 + 2acd 
b2c + 2abd 2bcd + ad2 

b2d bd2 

Typically we will want to use the reparameterization 
matrix S to change the amount (extent) of a given 
curve that is drawn and to alter the rate at which the 
moving vector [uM ••• 1] S A traverses the curve. These 
variables can be specified by setting 

1. s(O) = a 

2. s(l) = /3 

3. s'(O) = r2 
s'(1) 

a is the value of the parameter s on the original 
curve A at which the new curve B begins. /3 is the value 
of the parameter s on A at which the curve Bends. r2 is 
a ratio of derivatives; the significance of r will be shown 
shortly. It is easily .verified that the ratio 

s' (Ul) = ( CU2 + d )~ ~ 0 
S'(112) CUI + d -

Substituting the above conditions into s = (au + b) / 
(cu + d) we solve for a, b, c, d: 

a=/3-ar 

b = ar 

c = 1 - r 

d = r 

(f3 - ar)u + ar ors = ....:...,...-----,,;---
(1 - r)u + r 

using the arbitrary condition c + d = 1 to remove the 
extra degree of freedom introduced by the homogeneous 
form of the function s. The parameter e will allow an 
absolute adjustment of the homogeneous coordinate 
system, if that is desired. 

The velocity vector dv/ds at the beginning (u = 0, 
s = a) will be multiplied by the factor (/3 - a)/r and at 
the end (u = 1, s = /3) by (f3 - a)r. 

In fact, in general we have 

dp ds dp 
du = du ds 

(f3 -a )r dp 
[(1 - r)u + r]2 ds 

The product of the magnitudes of the velocity vectors 
at the ends of the new curve B is thus (f3 - a)2 times the 
product of the magnitudes of the velocity vectors at the 
corresponding points s = a, S = {3 of the origi..'rJ.al 
curve A. This product thus remains constant for all 
similar curves covering the same interval (a, f3) of A. 
It is in any case independent of the rate parameter r. 
Notice that if r < 0 the new curve will not completely 
overlap the old curve in the range 0 ~ u ~ 1, 0 ~ s ~ 1 
although over the full line - 00 < u < + 00, - 00 < 

. s < + 00 the two curves will be identical. In particular, 
at the value u = r/(r - 1), s(u) = ± 00, definitely 
outside the domain of the original curve v(s). Thus, for 
example, if the matrix A draws half a circle, the matrix 
S A will draw the other half in the same direction 
if a = 1, /3 = 0, r = -1. (See Figure 7 for an example 
of the use of a continuation matrix.) 

For M d 2 this matrix s(l, 0, -1) is 

[ -~ 2 
-3 

1 
-;] 

the curve A ~ 

the curve S x A 

Figure 7-Continuation of a curve 



304 Spring Joint Computer Conference, 1969 

and for 1'1 = 3 it is 

r 1 2 4 _~ 1 [-3 -3 -8 -l~ J ' 3 4 5 
~ -1 -1 -1 -1 

If we have a curve v(u) = H[iF AT] represented by a 
matrix AT for some other basis function iF = rUM U M-l 
... 1] T then the reparameterization matrix ST for this 
basis will be given by the similarity transformation 
ST = T-l STand the curve matrix after reparameteri
zation will be T-l STAT' 

Endpoint-Derivative form 

In the previous sections we have been talking about 
curves of arbitrary degree; in this section we will be 
concerned only with curves of degree m = 3. Let hv = V 
denote the homogeneous coordinates of a point in RN, 
that is, let h = VN, V = V/VN = V/h where v is a 
vector of the form [VI V2 ... VN-l 1]. Then the equation 
of a curve is given parametrically by 

V(u) = h(u) v(u) = cp(u)A 
where cp(u) are appropriate 1\1 

dimensional basis functions. The curve in RN-l = RL is 
obtained by taking the first L components of the vector 
v(u); that is, by dividing out the homogeneous coordi
nate h(u) from the vector h(u)v(u) and dropping the 
last component. 

Let 

then we have 

V (0) = Vo 
V(l) = VI 

V'(O) = dV(u) I = V~ 
du u-o 

V'(l) = VI 

r 
Vol [CP(O) 1 v~ = cp(l) A 
Vo cp'(O) 
v, A..'/l \ 

L I.J 'Y \-'-) .J 

One can show that the square matrix 

[ 

cp(O) ] .... cp(l) ; 
cp' (0) , 

.. ¢'(l) 

is non-singular since the basis functions cI>(u) are by 
definition four linearly independent polynomials of 
degree 3. Define 

[

:,' cp(O) ]i 
M = i cp(l) \ 

cp'(O) , 
, cp'(1) , 

[ Vol 
A=M ~ 

L v~J 
We now write 

Vo = ho Vo 

I d(hv) I I I 

Vo = -d- = ho Vo + ho Vo 
u v_o 

where v~, v~ are the derivatives with respect to the 
parameter u and where ho, hI, ~, h~ are meaningful only 
in homogeneous coordinates. Notice that the last 
component of v~ and v~ is O. 

Thus 

[" 0 0 OJ [vo] ...... u 

A=l\1:~ hI 0 o VI : 
0 ho o V~ i 

,0 h~ 0 hI' , V~ 

The curve is given by 

[ 

ho ]. 

I/>(u) A = I/>(u) M : ~ h: ho , 

, hI hI [~] 
We can perform the multiplication cI>(u) lVf separately 
to define a new set of basis polynomials [F 0 F I Go Gl] = cp 
~1 with transformation of basis matrix :\,1 itself. * We 
observe that 

* This notation is borrowed freely from S. A. Coons.7.8 



Fast Drawing of Curves for Conlputer Display 305 

[

1 0 0 0] 
= l\tT-Il\/f = 0 1 0 0 

~~ ~~ 0 0 1 0 

000 1 

With these basis functions, a curve can always be 
represented by a matrix AM of the form 

since it is given by the equation 

We will sometimes write this endpoint-derivative form 
as 

It will also prove useful to rewrite it in the form 

V(u) 

or in standard form as 

where now the matrix 

is especially simple, although for a very special basis 
function constructed specifically for the particular set 
of homogeneous coordinates ho, hI, ~,. h~. This form 
shows that a point on the curve V(u) is always a linear 
combination of the vectors Yo, VI, V~, v~. 

Curve specification 

In the previous section we have characterized a 
rational parametric cubic polynomial curve in terms of 
endpoints-v~, v~-and tangent vectors at the end
points-yo, vI-with four remaining degrees of freedom, 
ho, hI, h~, h~. In this section we investigate several ways 
of computing the numbers ho, hI, ~, h~ in order to 
completely specify the curve from geometric considera
tion. (See Figure 8). Although some or all of these 
results may be inappropriate for a particular application 
the techniques used indicate the generality of the curve 
formulation and what we believe to be the proper way 
to attack the problem. 

Let us require the curve to pass through the point v c 

at the value U c of the parameter. We have 

Vc = 

We can solve Vc = hg: v for hg: (and hence for h, 
since cf is non -singular for any 0 < lie < 1) if and only 
if Vc belongs to the range of v. In R3 the geometrical 
meaning of this condition is that if the curve is planar, 
Ve must be in the same plane, or, if the curve is linear, 
Ve must be on the same line. If the curve is' really 
three-dimensional then v will have full rank and we 
can solve directly for 

In R2 the equation Ve = hg: v is indeterminate since 
we have three equations and four unknowns. If Ve is in 
the range of v we can impose an additional condition. * 
One convenient such condition is to specify that the 
slope at Ve be given by the ratio x' elY' c = dx/dy. 

* Vc will not be in the range of 11 if and only it V~, v~ and Vo - Vl 

are collinear and Vc - Vl is not on the same line. This means 
that the tangents at each endpoint point to the other end and 
Vc is not on the line between the two endpoints. 



306 Spring Joint Computer Conference, 1969 

Figure R-8pecifying the curve 

Taking derivatives with respect to u we have 

u = U e 

because we have let he = 1. (ve = [Xc Yc 1]). Since the 
third component of v~, v~, v~ is 0 we can solve for 

and thus 

or, rearranging, 

[

vo-ve] 
VI-Ve , = 

Vo , 
VI 

Denote the left side of the above by Q. Since we are 
only concerned with the slope at Ve, we can extract the 
first and second components by a post-multiplication 
and obtain the ratio 

whence 

If we adjoin this single equation to the original equation 
for the curve passing t.hrough the point Vc we have 

If the matrix is invertible, we can solve for ho, hI, h~, 
h~ and determine a curve passing through a specified 
point V c with a given slope x~/y~ with given endpoints 
vo, VI and tangent vectors V~, V~ at those endpoints. As 
with the three dimensional case above we could 
characterize this problem in somewhat more generality 
in terms of the range of the appropriate matrices, but we 
will not do so since the conditions are not simple 
enough to be interesting. 

We could in the previous examples have just as easily 
required the curve to pass through four non-planar 
points Va, V(3, VI" Va at different values a, {3, 'Y, 0 of the 
parameter. 



Fast Drawing of Curves for Computer Display 307 

\tVe would have 

or 

f,.' ¢(a) Tl 
A = Ii ¢~(j~ 

L 
C/>Vy) J 

'" ¢(8) 

Then let' us ask that the curve pass through v c at 
u = Ut:: 

where now we have let 

[ 

¢(a)] 
1\1 = ¢({j) ' , 

¢('Y) 
, ¢(lJ) _ 

If we define ¢(uc) 1\1 = [Fo Fl F2 F 3] we have after 
rearranging 

which 'Can be solved directly for [ha h,3 hI' hal if the 
matrix is non-singular, that is, if the four points are 
non -planar. In this way we have asked the three
dimensional curve to pass through five specific points at 

. five specific values of the parameter. Similar results 
could be derived in two dimensions. 

REFERENCES 

1 R F SPROULL I E SUTHERLAND 
A clipping divider 
Proc F J C C 1968 

2 I E SUTHERLAND 
A head-mounted three dimensional display 
Proc F J C C 1968 

::3 L G ROBERTS 
Homogeneous matrix representation and manipulation of 
n-dimensional constructs 
The Computer Display Review Adams Associates May 1965 

4 H F BAKER 
Principles of ge01netry . 
6 Vol., Cambridge University Press Cambridge 1922 + 

5 R M WINGER 
An introduction to projective gemnetry 
D C Heath and Co Boston 1923 

6 G BIRKHOFF S MACLANE 
A survey of modern algebra 
Macmillan New York 1965 

7 S A COONS B HERZOG 
Surfaces for computer-aided aircrajt design 
Presented at AIAA 4th Annual Meeting and Technica 
Display Anaheim California October 1967 American Inst 
Aeronautics and Astronautics, New York 

8 S A COONS 
Surfaces for computer-aided design of space forrns 
Project MAC Report MAC-TR-41 MIT June 1967 





A class of surfaces for computer display* 

by THEODORE lVL P. LEE** 

Harvard University 
Cambridge, Massachusetts 

INTRODUCTION 

This paper describes the mathematical formulation of a 
class of three-dimensional surfaces parametrically 
represented for efficient computer display. The degrees 
of freedom in the representation are such as to provide a 
rich variety of surfaces with convenient parameters for 
manipulation and constraint satisfaction. Historically 
this work began as an investigation of the properties of 
rational parametric cubics, a class of curves well-suited 
to the Harvard three-dimensional display.l.2 The desire 
to represent curvilinear surfaces in terms of these curves 
and an introduction to the Coons' surface formulation3 

were sufficient to suggest the approach discussed here. 
The particular advantages of this approach with 

respect to projective transformations and rapid iterative 
display did not become apparent until later, although 
they may be its most attractive features. The ability to 
truly and simply represent such classic surfaces as the 
sphere and torus, although a desired goal, was not 
demonstrated until even later. 

The paper begins with an introduction to homo
geneous coordinate geometry, a topic now out of favor 
in the general college curriculum. I apologize to those 
who may have seen this material before, but it is 
necessary for a proper understanding of the results 
presented, especially those dealing with continuity 

* The research reported here was performed at Harvard Uni
versity and supported in part by the Advanced Research.Projects 
Agency (ARPA) of the Department of Defense under contract 
SD-265 with Harvard University, under contract AF 30(602)-
4277 with the University of Utah, by the Office of Naval Research 
under contract ONR 1866(16) with Harvard University, and 
by a long standing agreement between Bell Telephone Labora
tories and the Harvard Computation Laboratory. The author is 
a. National Science Foundation graduate fellow. 

** At the Aiken Computation Laboratory, of the Division of 
Engineering and Applied Physics. 

309 

conditions. The rest of the paper contains primarily 
mathematical techniques for manipulating the surfaces. 

Notation 

We will be talking about surfaces, represented as 
tensors, curves, represented as matrices, or points, 
represented as either three dimensional (ordinary co
ordinates) or four dimensional (homogeneous coordi
nates) vectors. A vector, usually a point in homogeneous 
coordinates, will always be denoted by boldface type, 
for example, V. Where relevant, a four dimensional 
vector will be represented by an upper-case letter and a 
three dimensional vector by a lower-case letter. Points 
or curves may be obtained as part of a higher order 
entity or as separate entities. 

Subscripts will be used to denote either components 
of the array (tensor, matrix, or vector) or to indicate 
partial derivatives with respect to the parameters. 
Components of vectors will not be in boldface 
although vector components of a matrix will, for 
example, the vector Ai of the matrix Aij. Integer 
subscripts-i, }, k-will be used for components in some 
cases while the symbols hz, 1a1/' laz, Ia will be used when it 
is ~esirable to emphasize the spatial coordinates. The 
SUbscripts u, " will naturally refer to the partial deriva-
. a a 

tlVes au' av' The components of a point in three 

dimensions are indicated by subscripts z~ 1/, z-for 
example, pz. This implies either true three dimensional 
data or a division to remove the homogeneous scale 
factor. 

When a tensor describing a surface is used without' 
any subscripts for components it is to be treated not as 
an array of scalars but rather as a matrix whose ele
ments are vectors. Multiplication of such a matrix of 
vectors by a matrix of scalars is to be interpreted in the 
standard way, with the summation being a vector swn 



310 Spring Joint Computer Conference, 1969 

and the individual multiplications being the product of 
a scalar and a vector. 

When convenient, the standard convention of sum
ming over repeated indices will be used, with the 
proviso that indices appearing on both sides of an 
equation will not be summed but indicate a running 
index. Such summation and running indices will take on 
the values 0, 1, 2, 3 for virtually all of the paper. 

A curve, S(u, v), u = a, a = constant, 0 ::; v ::; 1, 
ona surface S(u, v) ·will be denoted by Su=a or by Sail 

for brevity. A point, S(u, v), u = a, v = b, on the 
surface will be denoted by Su=a, lI=b or by Sab. In most 
cases it does not matter whether such notation is taken 
to represent the object (surface, curve, or point) itself 
or the array describing the object; context should make 
the situation clear. The geometric and mathematical 
bases in which such an array represents an object will 
either be irrelevant or clearly specified. 

H omogtmeOU8 coordinates 

Taking the lead from the 19th century projective 
geometrists,4 computer display programmers have re
cently adopted the use of a homogtmeOU8 co01"dinate 
representation of geometrical data.1) This section sum
marizes a few of the definitions, conventions and 
formulae in homogeneous analy-tic projective geometry 
needed for an understanding of the surface formulation. 
Most of this material has been printed elsewhere, but is 
not readily available.6.7 

Point: A point (in three dimensions) is represented 
by a non-zero vector of four components. Two points P, 
Q are to be regarded as the same point if and only if 
they are linearly dependent; that is, if and only if there 
exists a non-zero constant a such that P = aQ. The 
ordinary three dimensional point [x, y, z] can and will 
be represented in the homogeneous form as [x, y, z, 1]; 
hence any point [a, b, c, d], d ¢ 0, is equivalent to the 
three dimensional point [aid, bid, c/d]. This representa
tion will be indicated by the notation [hx, hy, hz, h] = 
hv = h[x y z 1], v = [x y z 1] for the homogeneous 
coordinates of a point V, where by implication we take 
the quotients hx/h, hy Ih, hz/h to find the three 
dimensional coordinates. The assumption is that once a 
point-[hx, hy, hz, h]-has been obtained, something
hardware or software--will perform the necessary 
division by the homogeneous coordinate. In particular, 
whenever we talk about a point to be displayed, this 
division must be performed. 

Line: Three points P, Q, R are collinear if and only 
if they are linearly dependent. The set of points P on 
the line through two points Q, R can thus be generated 
parametrically by P = aQ + (1 - a)R, or, in full 
generality, by P = aQ + tJR, a, tJ not both zero. Two 

points on this line, PI = alQ + tJIR and P 2 = a2Q + 
tJ2R are equivalent if and only if the vectors [aI, tJI], 
[a2, tJ2] are linearly dependent, that is, in this case, 
proportional. 

Plane: Four points P, Q, R, S are coplanar if and 
only if they are linearly dependent. Hence the plane 
through three points P, Q, R is spanned by aP + tJQ + 
'Y R, a, tJ, 'Y not all zero. Furthermore, for the dependence 
aP + tJQ + 'YR + as = 0 to hold, we must have 
[P Q R S] = 0, or, expanding by minors on the fourth 
column, S·T = 0 (vector dot product) where 

The relation S· T = 0 is thus the equation of a plane 
and the vector T represents the plane. Among many 
results it can be shown that two planes, T, U are 
equivalent if and only if the vectors T, U are propor
tional. 

Transformations 

In ordinary three space, a non-singular matrix 
transformation of the form Q; = PiT., (T a 3 X 3 
matrix) is an affine transformation, producing only 
rotation and scaling. In the special three dimensional 
space of homogeneous coordinates, such a transforma
tion (where T is now 4 X 4) is called a projective 
transformation which in addition to rotation and scaling 
performs translation and a perspective transformation, 
hence its applicability to computer graphics. This 
transformation is derived as follows: (see Figure 1). 

Let an observer be at the origin 0 of a coordinate 
system and let a display screen S of size 2 scope units by 
2 scope units be at position z = cota, where a is half the 
angle subtended by the screen. ~he x coordinate x, of 
the intersection with the screen of a ray from a point P 
to the observer-perspective projection from 0 of P 
onto S-is 

Similarly, 

hy 
y, = - cota 

hz 



and let us define 

h 
Z. - hz 

Then the point represented by 

p. = [hx/hz cota, hy 1hz cota, h/hz, 1] 

gives as its x and y coordinates the location on the 
screen at which to draw the perspective projection of the 
point P and as its z coordinate a value monotonically 
related to distance, suitable for intensity modulation. 

P 8 is equivalent to (hz) P 8 = [hx cota, hy cota, h, hz] 

= [hx, hy, hz, h] [cot co~ ~ o~ ]: 
'" 0 0 1 

and we have a matrix which performs a perspective 
projection on a point represented in homogeneous 
coordinates. 

Translation is achieved by a matrix of the form 

[

, 1 
:0 

!~, 

o 
1 
o 
Yt 

o 
o 
1 
Zt 

and rotation by a matrix of the form 

[-0 ~ O· !J 
where R is an ordinary three-dimensional rotation 
matrix. 

Typically, several such matrices-rotation, translation, 
and projection-will be applied in sequence to arrive at 
a single compound transformation expressed as the 
matrix product of the separate matrices. 

Observe that given any matrix, M, which performs 
some transformation, a matrix aM, a '¢ 0, performs the 
same transformation, since a(P X M) = P X alVI 
implies P X M and P X alVI are proportional, for any 
point P. In particular, the identity transformation 
becomes aI, a ~ o. 

Class of Surfaces for Computer Display 311 

y 

o 

Figure I-Perspective projection 

Surface equation 

Let Bijk be a 4 X 4 X 4 array, then the components 
of a point on a surface are given by a vector function, 
P(u, v), of two parameters, the two degrees of freedom 
on the surface, as 

This expression may be written in matrix notation as 

P'u = [etcetera] 

Ph ..;, [etcetera] 

These expressions may also be written without sub
scripts in the following fashion to indicate all four 
equations, the implication being that B is a m~trix 
whose components are vectors: 

P(u, v) = [u8 u2 
U 1] B [ •. ~]. 

. 1 , 



312 Spring Joint Computer Conference, 1969 

Endpoint-derivative formulation 

Following Coons closely, let Fo, FI, Go, G1 be functions 
of one variable such that 

F ,(j) = 5} ; G ,(j) = 0 } 

F~(j) = 0 ; G~(j) = 5} 

Then we can define a surface as 

i, j = 0, 1 

If we insist on F i, G i bejng cubic polynomials, the 
above conditions define them completely as 

[Fo(u) F1(u) Go(u) G1(u)] = 

[ 

2 
-3 

[Ul u2 u 1] 0 

, 1 

-2 1 
3 -2 
o 1 
o 0 

The 4 X 4 matrix above occurs often and has become 
identified with the symbol ~1, for "magic" matrix. The 
tensor A in the above equation is thus the representa
tion of a surface using the basis functions F 0, fi\, Go, 
and GI. 

We can convert between the two forms of representa
tion thus far introduced by means of the identities 

A = :\1-1 B }1-1T 

since [Fo F I Go GIl = [u 3 u2 U 1] 1\1. In these cases the 
matrix multiplication implied is that obtained by taking 
each slice of the tensors separately, as B,,;o; = lVl Ah;o; ~IT 
and so forth. 
(Or, we could write it as 

Because of the definition of the F i, G i functions, the 
components of A relate directly to various partial 
derivatives of the surface function P(u, v) as indicated 
below: 

[

00 

A = 10 
oou 

, lOu 

01 
11 
01,.. 
11u 

w here the notation, from Coons, is exemplified by 

111111 = ap(u, v) 
au av 

u_l 

=~ 

ap(u, v)1 _ A':,' 
au I -u-o 

,,-1 

Note well that these derivatives refer to each component 
of the homogeneous coordinate four-vector; for example, 

P
u 

= a(h(u, v)p(u, v» = ah p + h ap 
au au au 

and we must solve for 

ap _ P u ~ phu , p = [x y z 1], aa
u
p = [x' y' z' 0] au -

to obtain the partial derivatives of the three dimen
sional components, x(u, v), y(u, v) and z(u, v). 

Curves associated with the surface 

By fixing one parameter a curve in the surface is 
traced by letting the other parameter range over the 
interval (0, 1). 

For example, let v = b, then 

P(u, b) = [u3 u2 u 1] B [ F 1 = [u' u' u 1] Au. 

1 J 

where 

The matrix Aub represents the rational parametric cubic 
given by the above expression. The properties of these 
curves are discu~sed in a companion paper.s 



The curves P(O, v), P(l, v), P(u, 0), P(u, 1) are the 
boundary curves of the surface; in the shorthand 
notation they are denoted by Ov, lv, uO, ul. We will 
denote the matrix describing a curve for u = constant 
by 

A01l = ([a3 a2 a 1] B)T 

so that the curve is given by an expression of the 
standard form, 

pea, v) = [v3 v2 V 1] Aov . 

For computer display of the surface we generate the 
family of curves 

P b i . 0 
ub , = -, 1 = ,1, ... , m 

m 

or the family 

P j. 0 
av , a = - ,J = ,1, ... , n 

n 

or both. The continuous curve Pub will be approximated 
by a series of chords 

and P av by the chords 

Pavj Pavi+l , Vj = ~ ,j = 0, 1, ... , t - 1 . 

Iterative display of surface 

The successive chords of a curve and the successive 
curves of a family on the surface are computed using 
Cohen's finite difference scheme.8 Without going into 
details, we compute 

for an appropriate tensor C dependent on the surface 
and the particular family of curves to be generated. The 
multiplication by (r) Oi is equivalent to multiplication 
by the matrix 

o 
1 
o 
o 

o 
o 
1 
o 

Ciass of Surfaces for Computer Display 313 

which is achieved by simple shifts and additions, and 
similarly for "(i (i). The summations over i and j are 
commutative. If we are drawing the curves P(u, n,,() 
we first compute a 4 X 4 matrix Cik = Cijk "(1 (j) for 
each curve and then iterate upon it to compute the 
successive points Pk(mo, n,,() = (r) Oi Cik on the curve. 

Transformations of the surface 

In the previous sections the coordinates of a point 
P(u, v) on the surface have been defined by expressions 
of the form Pk(u, v) = Ui(u) Sijk Vj(v) where U and V 
are vector-valued functions of the parameters. Let T 
be a projective transformation to be applied to the 
surface at each point P and let pi be the transformed 
point. Then we have 

where the surface tensor Sijk is replaced by a trans
formed tensor S~it = Sijk Tkl. This derived tensor, S~il 
will generate the transformed surface, without the need 
to transform each point to be displayed. In other words, 
the sixteen vectors 81j = [SijO Sijl Sij2 Sij3] transform in 
the same fashion as points on the surface and can be 
regarded as a set of sixteen points which define the 
surface. Notice, of course, that any transformation
including the identity transformation aI-of the surface 
must be applied identically to all sixteen 8 ij • These 
properties are obviously what allow us the right to call 
the S ijk array a tensor. 

Reparameterization 

As with a curve matrix, the tensor describing a surface 
can be reparameterized to 

1. change the rate at which the surface is traversed 
by the parameters and to 

2. display other (smaller or larger) portions of the 
surface with the same parameter range, 0 ~ u 
~ 1, 0 ~ v ~ 1. 

In the case of surfaces, 1 is particularly important 
for such a reparameterization changes the appearance 
of the curvilinear net used to display the surface, by 
changing the density of contour lines non-uniformly, 
whereas with curves it affects only the accuracy with 
which the chords approximate the curve. 

For each of the basis functions used so far, [u8 u2 u 1], 
[F. F 1 Go GI] or [(~) (~)o (;)02 (~)o31, there exists a 



314 Spring Joint Computer Conference, 1969 

reparameterization matrix S(a, (3, r), a function of 
three parameters a, {3, and r which will 

1. map u = 0 to u = a 

2. map u = 1 to u = {3 

3. change the parameter rate by a factor r. 

Two of these reparameterization matrices, Sea, (3, r) 
and S( 'j', 0, s) can be applied to a surface tensor T to 
compute a new surface tensor T' as 

in which" the parameterization in both u and v has 
been altered. 

A shape-invariant transformation of the form S(O, 1, r) 
combined with the identity aI has the property 
of allowing us to adjust the fourth homogeneous 
coordinate h at three of the corner points at will; in 
particular, we could arbitrarily assign hOO = hOl = 
hlo = 1 without any loss of generality in the class of 
surfaces represented. Correspondingly, if we are given a 
surface constrained in this fashion we can reparameterize 
it so as to arrive at a more satisfactory rate of display. 

Constructing the surface 

The sections above describe some of the properties 
of a given surface and are thus analytical; the usual 
question, however, is the constructive problem of 
generating a surface from external conditions. This and 
the following two sections sketch some partial solutions 
that are being investigated. 

Suppose we are given the four bowldary curves of a 
surface, specified by matrices AO",' Ah, A uO, A ul in 
endpoint-derivative form. By the geometrical closure 
of the curve segments bounding the surface these 
matrices are guaranteed to represent the same corner 
points P(O, 0), P(O, 1), P(l, 0) and P(l, 1) at the 
intersections of the generated boundary ClR'ves. This 
representation is, however, in homogeneous coordinates 
and we have no guarantee that the four-dimensional 
vectors given by the matrices are the same. (In other 
words, A°.,(v = 0) is proportional to but not necessarily 
equal to AuO(u = 0),) Usin.g the reparameterization 
mentioned in the previous section we can however 
arbitrarily assign absolute values to the fourth homo
geneous coordinate h at all four corners, adjusting the 
curve matrices A°." Ah, A uo, A 1£1 so that the endpoints 
will now be represented by identical vectors. 

In assigning the four values of h only one degree of 
freedom will affect the shape of the surface. The other 

three will be used in specifying the parameterizations in 
u and v and in assigning an absolute homogeneous scale 
to the surface. 

At this point we have filled in the tensor as sho"..-n in 
Figure 2. (for example, 8000 = p,: = A~ ; 8302 = 
(P~l)hll = A~) The remaining sixteen components can 
be determined from any sixteen independent conditions; 
an easy set would be to specify put> at each of the four 
corners and to specify a point ps through which the 
surface must pass at some specified value of the 
parameters, say u = 1/2, v = 1/2. With these conditions 
we can solve for (Ph)U., at the four corners with one 
degree of freedom left, say to speciiy the h value 
reached at the center point Ps or some other appropriate 
geometrical constraint. 

Instead of specifyhlg put> directly, one could specify 

op 
au 

ap 
av 

U_C 

(see Figure 3) 

u_d 

as desired outward tangents from the boundary curves, 
solving for the mixed partial derivatives. In all the 
above we are talking about conditions expressed in 

.. 
pOo 

.. plO 

.. 
p'O 

U 

.. 
pOI 

.. pll 

.. 
pOI 

U 

.. 
pll 

U 

.. 
pOo 

v 

.. 
pOI 

V 

.. 
pll 

V 

Figure 2-Coni;t.ruct.ing the surface from boundary curves 



terms of three-dimensional points or vectors; the 
determination of the homogeneous coordinate repre
sentation for each such vector is done by specifying 
other conditions, namely, the point ps. 

Product surfaces and surfaces of revolution 

A convenient way to specify certain surfaces is as the 
"product" of two curves; if the curves are chosen 
appropriateiy, a surface of revoiution resuits. Let P(u) 
and Q(u) be two curves; then the i'th component of a 
surface S can be defined as 

If we let 

Pi = </>j(u) Aii , 

where A, B are the appropriate matrices for the basis 
functions </>, then Si = </>;(U)Aii Bik </>k(V) and we can 
identify 

as the tensor representing the surface. 

If one of the curves P(u) or Q(v) is planar, say P(u), 
we prove that all curves of the corresponding family, 
S(u, a), are planar: 

Let A be the vector representing the plane of P(u); 
define a vector B, component by component, as 

Then 

where now the summation convention holds, and the 
curve S(u, a) lies in the plane B(a). Hence, if both 
curves P(u) , Q(v) are planar, then all the constant 
parameter contours are plane sections of the surface. 

In particular, let P(u) be a curve in the x = y plane 
and let Q(v) be a portion of a circle with center [0, 0, 1] 
in the z = 1 plane. Then we have, in homogeneous 
coordinates, 

Ph P:e = Ph P" 

Olass of Surfaces for Computer Display 315 

aP 

u=o 
v=1 

av u= a 
v = 1 

IV 

Figure 3-Derivative vectors as conditions on the surface 

as conditions on the curves. The surface, in homogeneous 
coordinates, is 

h = Ph Qn 

hx = Ph P:e Qh Q:e 

hy = Ph P tI Qh Q" = Ph P:e Qh QJI 

hz = Ph P z Qn Qz = Ph P z Qh 

or, in regular coordinates, 

z = p. 



316 Spring Joint Computer Conference, 1969 

and we have 

or 

and also, z = P z, giving a family of circles about the z 
axis. 

All plane sections perpendicular to the z axis will be 
circles and all plane sections passing through the z axis 
will have the same shape as the original curve P(u). 
Hence, S is part of a surface of revolution constructed 
by rotatiL'1g the curve P(u) about the z axis. 

Continuity conditions 

In constructing an object from an assemblage of 
elementary surface patches it is often necessary to 
enforce certain degrees of continuity at the jmlCtion 
between two patches. In particular, suppose Sand T 
are two surfaces meeting in the common boundary 
curve B, with the other boundaries as indicated in 
Figure 4. Suppose we wish the following constraints to 
be satisfied: 

1. The Ov, Iv boundaries have a continuous tangent 
direction at P and Q. That is, the Ov, 1 v boundary 
curves are continuous and have a continuous 
tangent line. 

Figure 4-Adjacent smface continuity conditions 

2. Everywhere along B the two surfaces have a 
common tangent plane. That is, the surfaces are 
continuous and have a continuous unit normal 
vector. 

The first requirements are met by forcing 

S~l to be proportional to T~ 

and 

S!l to be proportional to T!O , 

conditions obtained from the work on rational cubics. 

The second constraint is more involved, since it talks 
about tangent plfu"1es. 'Vithout deriving it, I state the 
result that a point P is on the tangent plane of a 
surface F at the point F(u, v) if and only if the 
determinant 

I P F(u, v) F u(u, v) FlI (u, v) I = 0 

From this, the relation that tangent planes to surfaces S 
and T coincide can be expressed as 

where the vectors are evaluated at the appropriate 
values of the parameters. Since the boundary curve 
(a rational cubic) is shared we can adjust the para
meterization in u such that 

SuI = TuO and hence that S:l = T:O 

The first two determinants will then vanish, so we only 
consider the third. 

In general we cannot expect SlI to bear any relation to 
T or T u so the vanishing of the third determinant 
requires Sv to be proportional to TlI . But this relation is 
precisely the same as asking that the function SlI(u) , 
which represents a curve, be the same as the curve 
TlI(u) , regarding the derivatives as homogeneous co
ordinates of points in three dimensions. Since we have 
already adjusted the parameterizations in u of the two 
surfaces to be equal along the common boundary, the 
third determinant will vanish if and only if 

S,,(u) = kTlI (u) 

for an arbitrary proportionality constant k, and thus 
the conditions on the tensors are 



S: = kT:' 

St!! = kT~ 

Please notice that, as usual, in all the above we are 
talking about homogeneous coordinate vectors and that 
an equation of the form S~l = kT~ does not constrain 
the tangent vectors in ordinary three dimensions to be 
equal. In fact, we have 

(Sh s)v = (Sh)v s + Sh Sv = k(Th t)v = 

k(Th)v t + kTh tv 

where s = [x y z 1] and similarly for t. Now s = t but 
in general Sh ¢ T h, so we have 

or 

The fourth coordinate of this vector equation gives 

and thus 

or 

Although there is tangent vector direction continuity 
across the boundary, there is an arbitrary magnitude 
discontinuity, controlled by the constant k. 

Problems for further research 

The following paragraphs outline a few of the 
important questions open for future research. I cover 
here only the more mathematical questions; clearly the 
problems associated with organizing these results into 
an effective, human-engineered system for computer 
aided design must be answered at some time. 

Since a boundary curve can be degenerate, patches 
with only two or three sides are possible. Such patches 
by virtue of the degenerate boundary curve must be 
treated differently as far as tangent plane continuity is 
concerned. Exactly what constraints can be imposed and 

Class of Surfaces for Computer Display 317 

what types of surfaces with degenerate curves exist are 
open questions. 

Another question of continuity constraint is the 
general problem of two overlapping surfaces, say an 
airplane wing and fuselage. Here we are attempting to 
ask for surface continuity in the middle of a patch, not 
on the boundary. Of course, we could use contours in the 
interior of a patch to define a new subpatch at the 
boundaries of which continuity is to be imposed. But 
this may not always be possible, nor may it be the most 
general solution. 

Further results are needed in specifying surfaces from 
external data. Personally, I prefer the surface-molding 
approach in which on-line feedback is continuously 
present as contrasted to the point surface-fitting 
approach currently used by most surface design systems. 
However, there are many occasions in which it would be 
expedien t to use such easily displayed surfaces as these 
to approximate a surface described in some other form, 
perhaps from measured coordinates. 

Even using these bi-cubic rational surfaces as molded 
surfaces there are not at present sufficient techniques 
for manipulating the display. For instance, efficient 
methods of performing small variations in the surface 
are obviously needed. 

I will do no more than mention the question of 
discovering hidden lines in a figure composed of these 
surfaces. The problem for this geometry is obviously 
very difficult and defies a simple analytical solution. 
Even the application of Warnock's algorithm, effective 
as it is,9 may not be the answer, since his techniques have 
been found very susceptible to Mach band distortion on 
curved surfaces approximated by planar sections. Such 
distortion gives the surface a "fluted" appearance at 
the joints of the planes caused by a psychological 
enhancement of the intensity discontinuity. 

Example8 

Figures .1 through 9 have been included to illustrate 
the appearance of the surfaces. The figures are all true 
perspective projections of the surfaces froni varying 
vantage points. They should be viewed from such a 
distance as to give a 450 field of view.' They were 
computed upon a DEC PDP-1 with DEC 340 scopes 
used for display. The PDP-l is a rather ancient machine 
by modern standards, having an 18 bit word length, 
5 p'sec cycle time, 25 p.sec multiply, 40 p.sec divide and 
no floating point. 

The time to compute a new view of a surface is from 
1 to 2 seconds for these figures, depending on the 
number of curves used. This is about 1-2 ms. per chord. 
Each curve is approximated by 32 chords. 



318 Spring Joint Computer Conference, 1969 

Figure 5-Cylinder 

Figure 6-Modified cylinder 

The tensors for the cylinder, sphere and t.oroid were 
manually computed as surfaces of revolution. The 
hyperbolic paraboloid or saddle surface is simply the 
equation z = X2 - y2 expres.ro;ed parametrically in the 

Figure 7 -Sphere 

Figure 8-Torus 



Figure 9-Hyperbolic paraboloid 

tensor. The surface shown in Figure 6 was obtained by 
making a 20 percent random variation in each of the 
components of the tensor for the cylinder of Figure 5. 

Class of Surfaces for Computer Display 319 

REFERENCES 
1 R F SPROULL I E SUTHERLAND 

A clipping divider 
Proc F J C C 1968 

2 I E SUTHERLAND 
A head-mounted three diriwnsional display 
Proc F J C C 1968 

3 S A COONS 
Surfaces for computer-aided design of 8pace forms 
Project MAC Report MAC-TR-41 MIT June 1967 

4 H F BAKER 
Principle8 of geometry 
6 V.oI Cambridge University Press Cambridge 1922 + 

5 L G ROBERTS 
Homogeneous matrix repre8entation and manipulation of 
n-dimensional constructs 
The Computer Display Review Adams Associates May 1965 

6 E A MAXWELL 
General homogeneous coordinates in space of three dimension8 
Cambridge University Press Cambridge 1961 

7 R M WINGER 
An introduction to projective geometry 
DC Heath and Co Boston 1923 

8 D COHEN T M P LEE 
Fast drawing of CUrve8 for computer display 
Proc S J C C 1969 

9 J E WARNOCK 
A. hidden line algorithm for halftone picture repre8entation 
University of Utah Technical Report May 1968 4-5 





POGO: Programmer-Oriented 
Graphics Operation * ... ... 

by B. W. BOElThl, V. R. LAMB, R. L. MOBLEY, 
and J. E. RIEBER 

The RAND Corporation 
Santa Monica, California 

INTRODUCTION 

Wide-scale application of interactive computer graphics 
(ICG) is currently inhibited by two major difficulties: 

1. Terminal time costs too much. 
2. It takes too much effort and expertise to develop 

and modify ICG programs. 

Several approaches, including RAND's Video Graph
ics System and other television-based or storage-tube 
based console designs, are currently being tried to over
come the first difficulty. 

The POGO system described here represents an attempt 
to overcome the second difficulty, at least for a certain 
fairly general class of problems, which includes the 
interplay of computational programs with alphanumeric 
and curve input and display, but excludes highly 
dynamic interplay of computational programs with 
geometric manipulations. 

POGO is fully operational; it allows a user to specify 
the nature of his ICG interfaces in a natural way at the 
graphics console itself, simplifying the programming 
process in two ways: 

a. Unburdening the programmer of the tedious 
and artificial process of specifying ICG control 
"pages" (CRT displays) by transcribing co
ordinates from layout paper and stringing 
together calls to graphic support subroutines. 

b. Permitting programmers to create ICG pro-

* This research is supported by the United States Air Force 
under Project RAND~Contract No. F4462<H>7-C--()()45-moni
tored by the Directorate of Operational Requirements and 
Development Plans, Deputy Chief of Staff, Research and 
Development, Hq USAF. Views or conclusions contained in 
this Memorandum should not be interpreted as representing the 
official opinion or policy of the United States Air Force. 

321 

grams without spending a great deal of time 
learning the intricacies of the graphic sub
routine package. 

To an extent, these difficulties are removed in more 
specialized ICG packages-for such applications as 
simulations, circuit design and layout, trajectory 
analysis, curve fitting, and chemical analysis-which . 
we would call user-oriented rather than programmer
oriented graphics operations. However, the second 
difficulty reappears as soon as the user wants some 
capability not expressible within the standard package 
(a fairly common occurrence), which can be achieved 
only by rewriting a piece of' the package in a lower
level language. 

This paper continues with some background informa
tion on the development and usage of POGO, followed 
by a description of POGO's general capabilities, 
illustrated by an example of its use. 

Background and applications 

Background 

POGO is implemented on ,a 256 Kbyte IBM 360/40, 
furnished with an IBM 2250 graphic display console 
with light pen, keyboard and function keys, a RAND 
Tablet! for freehand inputs, an SC-4060 hardcopy 
device, and some IBM 2311 disk drives. It is written 
in IGS (Integrated ,Graphics System),2 a set of FOR
TRAN-callable ro,utines for elementary graphics ma
nipulations similar to the IBl\1 packages GP AK and 
GSP. 

The "mother" of POGO (in the sense that necessity 
is the mother of invention) is a user-oriented leG 
system for aerospace vehicle traj ectory analysis called 
Graphic ROCKET. a This system consists of a network 



322 Spring Joint Computer Conference, 1969 

rr===;1,r 
It 
I 

Figure 1-Graphic ROCKET control page 

I"ITIAI. C:O"OITIO" O'TIO,,: 

o OIOOIT. I.AT. " IAITII VIII.. 

o 01001T. I.AT. " IIiUTIAI. VII.. 

(;] oloc:n. IoAT. " &AITI! VII.. 

(;] OIOC:TI. I.AT. " lIIalTIAI. 'II" 

(;] I"'TIAI. II. T. I. " i. y. i 
(;] IIIITIAI. OUIT"1. C:OIIOITIO'" 

T 1111 calC:) 1 __________ _ 
"loT I TIIOI ,'T I 1 __________ _ 

I.AT I TIIOI '010 I 1 __________ _ 

1.00"0 I TIIOI 1010 I 1 __________ _ 
VII.oOClTY IFTIJIc:l 1 __________ _ 

'1.o101lT ,ATII "1001.1 10101 ! __________ _ 
'I.IOIIT AIIIIIITIl '0101 1 __________ _ 

wll OIiT '1..' 1 __________ _ 

AIIOIoI 0' ATTACK '010 I 1 __________ _ 

1111. .. 

r PAOI .Aell 'AOI 1'0 •• " •• 

I !lAITIl 11001101 IT.AeKIJlOI 

Figure 2-Graphic ROCKET initial conditions page 

of interconnected control "pages" (see Figures 1,2) by 
which a user specifies the design and Bight plan of a 
rocket vehicle: then specifies and views desired graphi
cal displays of the resulting vehicle performance (Fig
ure 3). 

To create control pages tor Graphic ROCKET, we 
had to visualize, usually with the help of a layout sheet, 
the positions and extent of lines and characters, and to 
determine their coordinates and character counts to 
enter as arguments for the appropriate IGS routines. 
Finally, we had to check the display on the 2250 to see 

I " ... 
u ••• LT . ... 
, .... .... 

2 ... 

..... • 
'2 ... 

... ... 

, .... 1
' .. 00 

-~: ... 
~~.~A~6~1~\~J--~I~'2~i--1i--~2ir--+~]dt-.--+ 

• .... TI~' ~iC 24 l2 •• • 

Figure :~-Graphic ROCKET output 

if it came out the w~y we wanted. If not, we had to go 
through all the steps again. ~Iodifying a control page to 
incorporate an extra user-desired option also required 
going through all the steps again. 

Finding that other leG application designers at 
RAND had similar problems (and having had them 
previously ourselves), 4 we made a control page design 
program that was as general as possible without seri
ously compromising its simplicity. To complete the 
package, we modified a curve input program that had 
been developed for a graphic re-entry simulation,5 and 
the curve display program and filing routines from 
Graphic ROCKET, to make them available to the 
general I CG program developer in forms easy to use, 
and compatible with the design pages and with FOR
TRAN computational programs. 

Application's 

Since then, POGO has been used to create control 
pages and explanation pages for Graphic ROCKET 
and other models including on-line simulations and 
chemical models; it has further been useful for such 
processes as curve-fitting and digitizing map data. It 
has also been used to entirely specify the ICG interface 
for a model of Buid balance in the human body. Using 
the SC-4060 hardcopy option, which produces a paper 
copy and a 35 mm film copy of the 2250 scope contents 
whenever a function key is pushed, POGO has been a 
handy tool for composing slides for briefings and talks 
(e.g., Figure 4). In this vein, POGO has an attractive 



ff 
l

~·......J 

IBM 

JlO'''' 

Figure 4-Layout of graphics terminal 

potential for film animation, which we have not yet 
been able to pursue. 

U sing POGO: an example 

This example involves a model of fluid balance in 
the human body. The rate of the body's water excre
tion depends on the level of a hormone called AD H 
in the blood plasma, while the rate of ADH production 
depends on the amount of water in the plasma. The 
functional forms of these relationships are imprecisely 
known from physiological measurement. One would 
like to try a set of test functions (curves), specify 
some external inputs in curve form (e.g., "a drink of 
water"), and a set of initial conditions, integrate the 
set of coupled differential equations and compare the 
results with observed data. 

This had been done by means of a batch-type FOR
TRAN program (Figure 5a) that accepted keypunch 
input curves and parameters and printed the numerical 
values of the resulting integration outputs, which were 
then manually plotted. As this is a tedious and time
consuming process, one would like to give the researcher 
the capability of tracing his curves directly into the 
machine and directly viewing the output curves. And, 
if the fit is not satisfactory, one would like to interrupt 
the integration, modify the numerical or curve inputs, 
and try again. This capability is what POGO allows a 
programmer to create in a simple, natural manner. The 
accompanying film will show the interactive aspects; 
this paper will just show some examples of the various 
pages. 

Constructing graphical interfaces 

Given any batch program, such as the fluid balance 

POC-o 323 

ORIGINAL BATCH PROGRAM 

MODIFICATIONS FOR POGO 

Figure 5a-The POGO process: Batch program modifications 

model, producing output functions from input func
tions and parameters, the following capabilities are 
needed to construct an interactive-graphics interface: 

1. A means of interactively tracing, editing, label
ing, and storing input curves. 

2. A means of interactively recalling stored input 
curves and specifying which to use. 

3. A means of identifying the types of input curves 
that may be traced and stored, and of relating 
them to the appropriate storage arrays in the 
batch program. 

4. A means of interactively selecting, scaling, and 
displaying output curves. 

5. A means of identifying the types of output curves 
that may be displayed, and of relating them to 
the appropriate storage arrays in the batch 
program. 

6. A means of entering values of numerical param
eters through the graphics console, and of 
relating them to the appropriate storage loca
tions in the batch program. 

7. A means of specifying decision options at the 
graphics console, including the flow of control 
between the various input and output pages. 

POGO provides these capabilities in two phases of 
operation at the graphics console, the design phase and 
the execution phase, separated by a generaHy short pro
gramming phase. The nature of these phases and their 
interrelations are shown for the fluid balance model 
example, a fairly typical case, in Figure 5b. 

Curve input 

Capabilities 1 and 2 for creating, storing, and re
calling input curves are provided during the execution 



:324 Spring Joint Computer Conference, 1969 

DESIGH PHASE - AT C{I!ISOLE 

I Enter names of I I Enter names of I 
tnput arrays. r-----1 output arr.ya. I 

(Fig. 8) ) (Fig. 10) 

PROGRA}MI~ PHASE 

• Modify batch progr ... (Fig. 5a) 

I c.u::~~ .... 1 
I (Figs. 11,13) I 

• Write, or use standard POGO, control page progr.... (Fig. 12) 

• Write, or use standard POGO, main control program. 

• Compile, link edit, file on disk with control page data, 

using standard POGO job control sequence. 

EXECUrIOR PHASE - AT CORSOLE 

Read in 

frOll! disk 

Trace curves 

(Fig. 6) 
curve types 

(Fig. 7) 

output graphs 

(Fig. 9) 

Figure 5h-The POGO pme'eR:;: Fluid halance model example 

phase by a pair of standard POGO control pages. 
Figure 6 shows the curve-tracing page. Pushing the 
"SETUP GRAPH" box allows one to move the axes 
and adjust the scale numbers to match the curve to be 
traced in. As the stylus is capacitively coupled to the 
Tablet, one can place his graph paper on the Tablet 
and trace the curve by following it on the paper. This 
capability is provided by the "TRACE CURVE" 
option. Pushing the "EDIT POINTS" box allows one 
to specify a fraction of the points to be retained, or to 
add and delete specified points with the stylus. "ERASE 
POINTS" removes the curve. "STORE CURVE" 
writes the curve data on the disk in the location indi
cated by the legend; this number can be modified, so 
one may recall a curve, modify it, and keep both copies. 

"RETURN TO LIST" transfers control to the 
other standard POGO input page shown in Figure 7. 
This page indicates the different types of input curve 

+ 

.. 
o 
I. 

• I 
II 
I 

II .... 

IMlER 'OINT 
.Due ay II 

A •• II .... 

.A'n 0. AN •• ODUC:TIDII " •• AT •• 1101.1 •• AC:TION 

•.• n. . ...... 
i_ IIOI.IE F. 

Figure 6-POGO curve-traeing page 

available, and the current list of curves of each type 
appears when the appropriate "LIST" box is hit. One 
can then specify which of these curves to use in the 
calculation, to delete, or to display; the latter option 
transfers control to the cu...-rve-tracing page with the 
specified curve displayed. Up to ten curve types and 
ten curves of each type can be stored; the "SCROLL" 
options allow the user to reach the ones not currently 
displayed. 

Capability 3, for identifying types of input curves, 
is provided during the design phase by the POGO page 
shown in Figure 8. The user specifies, at the graphics 
console; 3011 the information POGO needs to label his 

i 
u;rm TYPE OF CURVE 

J 8 I .ATI •• ATI V, ADII 
C 

• 0 8 Z 'OLUTI I.C.ITIDIII .ATI ". ADM MOLl •• ACTIOIII I. 
I. 

I ~ (XJ I ."TI 0. ADM .IODUCTIOII V' .AT •• 1101.1 '.ACTIO" 

1 
151dLAY/51n l LIST OF CURVES OF TYPE I £illffiJ [ill] 

8 I , .. " •.••• cua"l I·.· •• 8 8 

• 8 I: a ... ".1 •• cua"'l III. TAIL 1-11 8 8 

I t I 
~ J ... API •• C:U.". IIOD 1-1. 8 c:J 

8 8 8 

II 
8 8 8 

I '''01 '''CII I 
Figure 7-Input {"urve li>-:t, page 

I .AG. AMIEAD I 



1\ ."To;1t 1O~<;It"TIO~ It"To; 'li AD" "U."OOoI\ "0 .. ,, ~lttTIU~ 
r a.". 

~ 
AD" 

U~: .. : 4 ~OD""l.TI\ .. ~<;It"TIO~ H4T" .li "I)" ,,0 .. " ~.A\;TIO" 
... • .. MU .... ~ ... " \IS :sOL..,l"" liT '" .. 0\.t:, .. 11III 

).4' ,"S ... ~ -OI ... ".SIOIII 100 

, ~ J ::~:HO~ "0" ::O~~:~O:H'\:A:: :~~: .·HlI~~'O:OI."'''I'' 

""'III.':'" 0'" PO' lilT» __ _ 

I "O~"""'Dt:ftIr,T"" Alt 11\1IL.K ..... M"- _________ _ 
LU T~ _______ _ 

AMK" "AMt: _____ _ 

""ITS _______ _ 

4HHA\ .. " .. " _____ _ 

o".<;H IPT 10" _______________________________________________ _ 

Figure 8-Input array specification page 

input curves and relate them to the appropriate 
arrays in his batch FORTRAN program, via the 
questionnaire form on the lower part of the page. 
When he pushes the "ENTER NEW DATA" box, 
the resulting "information is summarized on the upper 
part of the page, and entered into the appropriate 
master tables on the POGO disk. "PUNCH DI1VIEN
SION STATEMENTS" produces a set of punched 
cards with the resulting FORTRAN array dimensions, 
if needed, for the user's erstwhile batch program. 

For example, suppose a user has entered the informa
tion shown in Figure 8 during the design phase. Then, if, 
in the execution phase, he hits the "USE" box on line 1 
of the "LIST OF CURVES OF TYPE 2" area of the 
control page of Figure 7, POGO will go to region 2 of 
its curve input storage space on the disk, read off the 
values of the independent and dependent variables 
stored in item 1 of region 2, and store them in the arrays 
XA2 and F2 (from Figure 8), respectively. 

Curve output 

Capability 4, for selecting and displaying output 
curves, is provided during the execution phase by a stan
dard POGO display page shown as Figure 9. This page 
allows one to graph values of two dependent variables 
(Y and Z), as functions of one independent variable 
(X). The windows along each axis show which of the 
output quantities is being used. Pushing the arrow next 
to a window brings in the next quantity on the list. 
Its name and unit appear in the window; its nominal 

POGO 325 

DISPLAY: 1!1!_III!!_=_J.UJ_APII _____________________ _ 
CON'''I.: I.F.I.NC. IUti 

C!!!!::!!Jr... 
1110.'0 0.10000 

u.O.O' .... 00. y z . u ..... o. '.00. 
: Hi AM 

TO 

1.:1 • I. 
lUO.OO 0 .••••• I. AI • D 

II ...... •. s •••• ... I 

U I •••••• • ..••.. U 
+-

1 .... 0. • .1 •••• 

1'.0.00 '.10'" 
IIZO.OO ....... 
~~~==+-~~~~-+--~~~--~~~ c:::!:!!!!l u . .... .. . .... .. . 0000 eo .0000 C!!!:!!!!l 

....... 11 .•• 0. 11.0'" '0.0000 .0

xl TIIII IIIN It
NUMEIICAL V" .. U.Illlo 1 •• "ll'o 1.1 •. I.' Ja o •. Itl

~

I HOLD 001
JUM' IACIC I '''01 ."CIC I ITOII lI. I I~:"::~·.L .. J GIlD .TO 'CII lUll 110. __ ali

Figure 9-0utput graph page

upper and lower limits appear on the axis, and, on
pushing the appropriate letter (X, Y, or Z), the corre
sponding output curve appears.

One may change scale by writing in new values with
the stylUS, find the numerical values associated with any
point in the output region by pushing "NUMERICAL
VALUES" and indicating the point with the stylus, or
superimpose a grid on the output region. Generally,
output points appear as they are being calculated; one
may push boxes to "HOLD" the calculation and to
"GO" again. And, one can store current curves on the
disk and recall them for comparison with future runs
by using the "STORE" and "COMPARE" options.

Capability 5, for relating the quantities produced by
the erstwhile batch computation program to the rou
tines controlling the Output Graph Page of Figure 9,
is handled during the design phase in much the same
manner as the corresponding input specification Fig
ure 10. With this page, the user sits at the graphics
console and enters, for each variable he wishes to dis
play (up to twenty), its FORTRAN array name and
dimension in his computational program, some descrip
tion for the labels along the axes on the display page,
and some nominal lower and upper limits. As with the
corresponding input specification page, "ENTER NEW
DATA" updates the appropriate master tables on the
POGO disk, and "PUNCH DI}IENSION STATE
MENTS" produces FORTRAN array dimensions on
cards, if desired.

326 Spring Joint Computer Conference, 1969

DIII;I:KI'TIUI'o I.I'oITI; "IU'" , DI I'oI;IU'" "U"I"'41. LI"I(~
I.U 1l 1."t;1l

i I ""1°t.1l MULt-1i ailli 100 U 0 000 O.tUOt;.04

Ii
~ "0" MULt-1i "Rli I: 100 00000 1000ut:-U.

R
U
L. J 1i0L~TK MUL.t:1i lillli 100 00000 Uo~OOt;·UI
I.

! 4 TIIU; MIN Tli 100 00000 OoIOOt:.o.

~ RII:1. a4TII:R 1'00"", "1lt:L. IUO 00 UOO OoIUUt:.UI

I I P~Ii" ""Ilt: I to \,;"~"lit.~ I
M"Dt: TU npt: I.I:oT

IiP!!I:II" 4 .. ". T\''':

O":;I:IlII'T I'll: TII:RM _________ _

tUKloK4" 4KK4\

1)1 .. ",,:; IU"

"0'11""1. ~'P"R L.I'IIT

11'41it; 11,,1:,,1
+

Figure lQ--Output array specification page

Control page design and interfacing

Capabilities 6 and 7, for entering parameter values
and specifying decision options at the graphics console,
are provided by control pages, which the user designs
himself. He can do this at the graphics console by means
of a set of POGO routines that allow him to create
strings of text, fields for numerical values, option boxes,
and geometric figures. He may then use the Tablet
stylus to move these around the CRT screen until he
is satisfied with the layout. He may enter codes that
will be used to relate the numerical fields and option
boxes to his FORTRAN program, and then press a
button, which has POGO punch out a set of cards that
will recreatOe the display at any later time.

Figure 11 shows one of the control pages that was
created with the DESIGN program for the fluid bal
ance model. The number associated with an input field
indicates the location in the input storage array into
which POGO will store values entered in that field;
when one of the boxes is hit, the number accompanying
that box will be returned to the user's control program
for him to analyze what to do next.

To manage the control pages at execution time,
POGO has a standard set of routines that can be incor
porated in the programmer's FORTRAN control pro
gram in any way he desires. These routines include:

+

FLUID BALANCE MODEL

WI'fil 'filii NODII., YOIi CiAjIi

III TR"CI IN CURYII DESCRnJIIO THI INTIR"CT ION 0'

."TI8, .OL.UTI, "NO HORIIOIII I.IVII.. III T"I: HUN"N BODY

III TY'I OR .RITI IN V41.UEI 0' INITIAl. LIVILS 0' THill

OU""TI1'III,410 T8"CI III CU8VI. 0' IXTI8NAL IIII'UT.

(II VII. CU8VIES SHO.IIIG THI 81.UI.TIIIG IIIIUL.ATIO

IVOLUTION 0' THI 'LUIO BAL""CI 0' THI 100Y

INITIAL CONDITIONS

INITIAL TIIiI T. (1i1N1 !----!------

INITIAL ."TIB LIVEL .0 (IIOLKSI

i iii iii oii. .01.;';\"'. Ii. .0 ,;;;c:..:~: = ____ ! _____ _

JIIITIAL HOBNOIII 140"1 LIVIL "0 (1101.1$1 ! ____ ! _____ _

IIUIIIIII 0' SIG""IC,,"T DIOITS

TO TO TO

B III'UT CUBVII COIITBOL '''B''"ITI:8I COII.UTI "liD

-!!!!
'''01 'AGI OIS'LAY

-!!!! -!!!! -!!!!

Figure II-Initial eonditions page for POGO example

RECALL

given a page number, creates the corresponding
page on the screen.

ACTION

wa.its until the user interrupts via keyboard,
function key, light pen, or Tablet, then returns
to the control program with numerical codes
identifying the type of interrupt and its location.

SA VAL

tests values of variables on the screen to see if
they have been changed since the last such test.
If so, they are converted to floating point and
stored in the location corresponding to their ID
number.

By stringing together CALL's to those routines in his
FORTRAN control program, the programo .. rner can allow
the user to switch from one display page to another,
enter new values, select multiple-choice options, or
transfer to the curve input and display pages. He gen
erally writes these programs after having composed
the displays (see Figure 5), but can work the other way
around also.

Figure 12 is an annotated listing of the subroutine

0001 SUBROUTINE CTRLPG(IPG)

0002 COMMON/PARAM/D(100)
--storage array for input parameters

0003 COMMON/JPAGES/JCURVP .JGRAFP .JGRI DP .JUSERP (10)

0004 COMMON/FLAGS/IPGNXT .NPOINT(20) .INPNTS(10) .IRUN
--two standard POGO cards

0005 COMMON/MODES/Z{200)
--a co_un1catfon area for all graphics routines

0006 DIMENSION BCOVAL(3.15) .KVAL(15)
--for s tori ng BCD images and poi nters

0007 CALL GETIDG(Z.ID)
--provides local ID number for display

0008 CALL RECALL (Z .JUSERP (IPG) .0 .BCOVAL .KYAL ."VAL, OMY .OMY j
--places display of Fig. 11 on screen

0009 CALL ACTION(Z.ICH,IVAL.ID)
--waits for user action

0010 IF(ICH.EQ.2 .OR. IVAL.EQ.500) GO TO 2
--check inputs on box strike or end key

0011 IF(IVAL.GE.l00l .AND. IVAL.LE.10l0) GO TO 3
--box strike to change page

0012 GO TO 1
--other acti ons ignored

0013 CALL SAVAL(Z.D.BCDVAL.ID.KVAL.NVAL)
--convert new numer1 ca 1 entri es

0014 GO TO 1
--other acti ons ignored

0015 IPGNXT -IVAL-1000
--index of next page routine to be called

0016 CALL DISPLG(Z.O.O.O)
--clears display screen

0017 RETURN
--return to control program

0018 END

Figure 12-POGO control page subroutine

CTRLPG, which uses these POGO routines to manage
the initial conditions page of Figure 11 at execution
time. First, the page is put onto the screen with RE
CALL, then ACTION waits for a user action. Suppose
he enters the number "43.6" in the field next to "INI
TIAL WATER LEVEL", and the number "3" in the
field next to "NUMBER OF SIGNIFICANT DIG
ITS" (either via the keyboard or the Tablet stylus),
and then pushes the "CHECK INPUTS" box (with
the light pen or Tablet stylus). Control will pass from
the subroutine ACTION with IVAL = 500; the next
statement results in a "GO TO 2" that passes control
to SA VAL , which will return with the value 43.6 placed
in FORTRAN location D(2) and the value 3.0 placed
in location D(14).

The subsequent "GO TO 1" returns control to AC
TION, which waits for further action; suppose the user
pushes the "TO INPUT CURVES PAGE" box. Con
trol now passes from ACTION with IV AL = 1002;
the subsequent tests produce a "GO TO 3," which
computes the number of the page to be placed on the
screen next (IVAL - 1000 = 2), clears the display
screen, and returns control to the main program. Of
course, during the programming phase of Figure 5, one
must also write a main program that calls the appro
priate subroutine when its number is returned.

POGO 327

General comments on control routines

1. If the user's control pages follow the standard
format of Figure 12 (number fields referenced to
an input array D(100), a "CHECK INPUTS"
box with a code of 500, and boxes for going to
other control pages, for which page N is given
the code 1000+N), then the user need not even
concern himself with CALL's to ACTION,
SA V AL, etc. In this case he need oniy insert a·

CALL CTRLPG(IPGNXT)

in his main routine and include CTRLPG in his
load module.

2. Even if the user wants extra features, such as
special option or decision boxes, on his control
pages, the control routine he writes will be gener
ally simple and straightforward. Furthermore,
it will be transparent to such control page modi
fications as adding or changing commentary,
adding new "values" fields, and moving entities
around the page.

3. The output display control page of Figure 9 and
the input and output array specification pages
of Figures 8 and 10 were laid out with the POGO
DESIGN program. The corresponding control
programs involved CALL's to ACTION, SAVAL,
etc., but also required some IGS-Ievel program
ming for scrolling, curve display management,
and numerical values. These figures give some
idea of the range of POGO capabilities for com
posing and managing control pages. This "boot
strapping" capability also allowed us to shorten
the development times of the total POGO pack
age, probably by a couple of months; it also
makes these pages very easy to modify.

Control page design

All of the figures in this paper, except Figures 3, .5,
6, 12, and 13, were created with the POGO DESIGN
program; this gives some idea of the range of its capa
bilities.

The facilities available to compose and interface
displays are indicated in Figure 13, which show the
POGO function keyboard layout. To use any POGO
facility, the user simply presses the corresponding
function key. Short descriptions of some of these facili
ties follow:

Small Characters

The user indicates with the Tablet stylus where

328 Spring Joint Computer Conference, 1969

n
SY.ALL J:.A.~E '-.../ T~UCR

CRARACTERS C:iARACTZRS t.'!'

0000
?:.AI!': HeR!Z VERT VALUES FA.'iCY IXSERT

666'006
!)E~""'!E GE0X. SYST:<;-t J~!.'iED ERASE RECALL

DISPUYS Fi:GUiUS GR0~1C tINES SCiU:EN FUES

'°0 '0 "0 "0 ~o '0
6U":?"",,"! INVISIBLE CIRCLES KILL
DISPLAY b0XES

'0'0 ~o '0'0 '0 ,
i

I
I
j' '0'0"0"0"0'0
I

Figure l:~-Fun('tion key overlay foJ' "DESIGN" program

on the "page" he would like his character string
to begin, then enterR a string of characters from
the keyboard.

Touch-Up

Places the console in the character recognition
mode.6 The user may modify any of the charac
ters on the screen by writing over them freehand
with the Tablet stylus.

i

Jlove

The user points to the character string or geo
metric entity he wants to move with the Tablet
stylus, and drags it around the screen with the
stylus until it is where he wants it. Lifting the
stylus completes the action.

Plain Boxes

The user points with the Tablet stylus to define
the lower left corner of the box. Pointing again
defines the upper right corner; the user may drag
the position of this corner around until he indi-

cates (by lifting the stylus) that he is satisfied
with the box.

Values

The user points with the stylus to define a place
to store the value of a variable; the position is
denoted by underscores.

F anf:Jj Boxes

These are similar to plain boxes, except they
have a dot at the center to serve as a target for
the light pen.

Insert Codes

By each box and each "values" position in the
current display, the user is presented with a line
of underscores to furnish a numerical code which
will identify this box or value this FORTRAN
control program.

Joined Lines

The user can draw arbitrary geometric figures
consisting of joined line segments with the
stylus.

Recall Files

They allow the user to recall a previously created
display for review or modification.

Output Display

POGO asks the user to provide a name for the
current display. When this is done, POGO
punches out a set of cards with the information
necessary to recreate the display and identify
its components to the FORTRAN control rou
tines.

An example using the DESIGN program:
Furniture arrangement

Figure 14 shows the layout of an apartment suite and
the outlines of various pieces of furniture. Pushing the
MOVE key in the DESIGN program allows one to drag
the images of the items of furniture about the screen
until he has a satisfactory layout. Or, by using the
other DESIGN options, he may create more furniture
or modify the outline of the suite. This application
makes a nice demonstration of the potential use of
interactive graphics in problems of spatial distribution.

The entire application was composed in s. twenty
minute console session with the DESIGN program.

10,.AI
TAa

CHAI.'

0 m DO 0 0 0 OOG
0 0
0 r I 0 8

0 0
8

0 0 ~ ~ I
0 I

L",
FURNITURE ARRANGEMENT

PO I NT TO TN. ,.UaN I TU.. .1 TH TH. ITY .. US

AND NOV. I T AROUND TH. "OUI. A. YOU 1.1 II.

oa ... au I 1.0 YOU. ol1'II ,.UaN J TU ••

\
I

Figure 14-A POGO j)ESIG~ applic'ation:
Furniture arrangement

PIA,"O

~

CO:\L\,IENTS AND CONCLUSIONS

V €!,satility

The POGO pages are modular and need not all be
used for an application. Thus, a POGO program may
consist completely of control pages, as in decision tree
applications, or perhaps just curve input and output, as
in computing convolution integrals. Further, the mod
ules have clean, well-defined interfaces and can be
(and have been) used to design and update the control
page parts of a special-purpose ICG applications sys
tem, or input and file traced curves for interactive or
non-interactive programs.

Although the DESIGK program and the curve-trac
ing program require the RAND Tablet, the rest of the
POGO pages (including pages composed with the
DESIGX program)will run on a configuration having
only light pen and keyboard input.

Areas for improvement

Some POGO improvements can be accomplished
fairly straightforwardly, and these we plan to incor
porate, including:

1. Wider range of output pages: charts, histograms,
more numerical information.

2. Simple operations on output curves, particularly
integrals and derivatives.

3. Reformatting displays at execution time (e.g.,
for summarizing a sequence of decisions).

Por~ 329

4. Scaling and overlay of displays at design or
execution time (e.g., for map and network stud
ies).

Others are more difficult, such as incorporating a
hierarchical structure in DESIGN program constructs,
due to the nature of IGS, our source language. On others,
such as a more advanced file and retrieval system, we
are waiting for more information on usage patterns.

Finally, one would like to combine the design and
execution phases, indicate the flow of control and pro
cessing activities at the console along with the page
design, and then directly execute the resulting program.
RAND is doing some research toward building such a
capability, but it is more difficult than POGO by at
least an order of magnitude.

Development and usage experience

Total development time for POGO to date has been
about one man-year. Machine usage on the 360/40
was about 100 hours for development. As mentioned
above, our ability to bootstrap some of the curve input
and output pages with the DESIGN program reduced
our development time by a couple of months, and makes
these pages far easier to modify.

We are just beginning to instrument POGO to meas
ure user interaction and response times. One interesting
usage observation is that people tend to get tired of the
continual, precise interaction involved in control page
design and sign off after one to two hours.

On responsiveness in interactive graphics systems

On our Graphic ROCKET application, we estimate
that the POGO DESIGN page has cut our control
page development times by factors of four to ten below
those required for the manual layout-paper approach.
Further, the work is far more palatable, and our error
rate is cut to virtually nil.

The most important consequence of the above factors
is that they have lowered considerably our responsive
ness threshold on providing users with additional
capabilities not in the basic Graphic ROCKET package.
On most interactive graphics systems we have seen,
this extension-threshold is quite high and constitutes
a major usage bottleneck.

If there is any general reason for this, we feel it is
due to a tendency to design complete ICG systems by
deductive inference from an abstract model of typical
user performance at a console, producing "closed"
systems, which are quite responsive in the small but
quite unresponsive in the large. Our experience with
Graphic ROCKET and POGO users indicates that

330 Spring Joint Computer Conference, 1969

general characterizations of user activity are still quite
risky, and that more overall responsiveness is gained
by the prototype approach: deliberately designing an
austere but extendable prototype, then refining it by
inductive inference from observed usage patterns.

REFERENCES

1 M R DAVIST 0 ELLIS
The RAND tablet: A man-machine graphical
communication device
The RAND Corporation RM-4122-ARPA August 1964

2 G D BROWN C H BUSH
Trte integrated graphics system for the IBM 2250
The-RA~D Corporation RM-5531-ARPA October 1968

3 B W BOEHM J E RIEBER
Graphical aids to aerospace vehicle mission analysis
The RAND Corporation P-:3660 October 1967

~ A S PRIVER B W BOEHM
Curve fitting and editing via interactive graphics
The RAN D Corporation P-3742 December 1967
(Also in Interactive systems for experimental applied
mathematics
M. Kierer and J. Reinfeids Academic Press 1968 343-45)

5 R TURN R L MOBLEY J P HAVERTY
M WARSHAW
A:rt application of interactive computer graphics to
on-line ballistic missile defense simulation
The RAXD Corporation RM-5590-ARPA August 196H

6 G F GRONER
Real-t-i-;ne reco-ngU-ion of r/,Q,-ndpri-nted text
The RAND Corporation RM-5016-ARPA October 1966

Computer-aided processing of the news

by J. F. REINTJES and R. S. MARCUS

M a8sachusetts Institute of Technology
Cambridge. Massachusetts

The process of publishing the news may be divided
into three parts: the news gathering stage, the proc
essing of the raw information into pub1ishable form,
and the actual printing and distribution of the material.
IVlany technologies, including wire and wireless com
munication, computers, automatic-typesetting equip
ments and photographics are being employed by news
publishers in order to achieve their goal of getting a
hard copy of the news to their readership as quickly as
possible at the lowest cost consistent with profitability.
Our study of the application of multiaccess computers
operated in an online mode to news processing indi
cates that these machines offer interesting opportunities
for departure from the traditional processes employed
in the business of news publishing.

In terms of information transfer, newspaper publi
cation embraces four areas: information gathering;
information processing; hard-copy reproduction and
distribution; and auxiliary business operations. In the
news-gathering phase, news and other information
are derived from many sources, including staff cor
respondents and writers, the wire services, advertise
ment customers, and syndicated columnists. In the
news processing phase, information arriving at the
newspaper office or generated internally is edited and
formatted to reflect the character of each publication
and to conform to the depth and breadth of coverage
which management desires. In the third, or hard-copy
reproduction phase, formatted information is set in
type and printed in accordance with the style of the
newspaper. In this presentation we are principally
concerned "\\-i.th the second area, that is, news processing.

As in most manufacturing operations, news process
ing may be looked upon as a multiple-input, multiple
output operation with a variety of internal feedback
loops. Figure 1 illustrates the manner in which news
flows from the time of occurrence of a newsworthy
event until a permanent record of the event appears
as hard copy in the hands of the readership. The process

begins with the occurrence of an event or with a de
cision of a customer to advertise. Advertising itself
may be considered as a component of the news in the
sense that it is a public pronouncement that someone
has an item to exchange in the market place. As indi
cated in Figure 1, an event may be transformed into
a news item by representatives of the wire services,
syndicated columnists or by in-house staff correspon
dents working on a full or part-time basis.

The next phases of the news processing procedure
embrace management decisions and production-staff
operation which culminate in manuscript and display
advertising copy for a specific edition of the newspaper.
In many newspapers these materials are now set in type
either under computer control or through use of digital
techniques. Following- type setting, plates are made
and hard copy is printed.

Our work to date has pertained to the development
of techniques for storing digitally encoded news in a
multiaccess computer and for retrieving the stored
information through dynamic interaction between
the machine and its user. The problem divides i~lf
naturally into four areas. One must first identify the

INTEltNAl INPUTS

STNF<OUEs.oNOENT IMNAGEMENT

WIRE-SERVICE
NEWS "NO
TAllJl.AI DATA

EXTERNAL SYNDICATED
INP\JTS ... TEIt lS

MATERIA.l DECISIONS
TO

TAPf.-CONTROlLED
TYPE-SETTING

MACHINES

Figure I-Block diagram representation of news-processing
procedureR

;{:32 Spring Joint Computer Conference, 1969

parts of a news story which may be helpful to a person
who is seeking stored information on a specific topic.
Then there is the iS8Ue of what procedures to use in
order to extract these identifiers from the story, Manual
indexing, automatic indexing or a combination of these
can be employed. I t is also necessary to develop a
computer-software system which formats the catalog
of information which characterizes the news stories
and enables a user to interact with the catalog. Finally,
a critical examination must be made of the problems
associated with the storing of the full text of news items
in the machine.

We have identified 14 iterr..s, or fields, pertaining
to a news story which should be helpful to a person
who is seeking to retrieve computer-stored news on
a specific topic. These fields are listed in Figure 2 and
are divided into two principal categories: Article
description fields and subject-content fields. A third
category, designated Control Data, refers to items
which an indexer may employ to identify the' record

ARTICLE-DESCRIPTION FIELDS

1. Personal News Source (Byl ine)

2. Personal News Source Title, Affiliation

3. Corporate News Source

4. Headline

5. Edition Statement

6. Newspaper Name

7. Format

8. Length

9. III ustrations

10. Dateline

11. Newspaper Article Location

SUBJECT-CONTENT FIELDS

12. News Category

13. Synopsis

14. Subject Terms

CONTROL-DATA FIELDS

15. Record Number or Identification

16. Input Control

17. Cross Reference

Figure 2-List of data fields for cataloging news articles

pertaining to the news item and any information which
may be relevant to the indexing procedure. The third
category has principal value in an experimental, rather
than in an operational environment.

The Article-Description fields embrace information
about the newspaper issue from which the article was
selected, and the location, source, headline, length,
and other features of the article. The Subject-Content
fields include in-depth subject terms, a synopsis of
the article and an analysis of the approach or purpose
of the article. The Control-Data fields contain an
identification number for the news story, inputting
data such as method. of indexing (autolnatic or manual)
name of indexer, date of indexing and, for analysis
purposes, the time consumed in indexing.

Cataloging procedures

Computer-oriented cataloging requires establishment
of a flexible structure which can be expanded or other
wise altered as experience is gained with the news
retrieval system. Various items within each field should
be coded where appropriate so as to conserve computer
storage . space, and standard nomenclature, abbre
viations and delimiters must be assigned to ensure
full recovery of cataloged information. Consider, for
example, Field 3, CORPORATE NEWS SOURCE.
News sources such as wire services, city bureaus, and
other agencies which are responsible for the content
of an article are included in this field, and the sources
may be identified by one-letter codes. Possible sources
and a corresponding code set are:

Source Names N arne Codes

Associated Press a
United Press International b
N e\V York Times News Service c
Reuters News Service d
Washington Post News Service e
Los Angeles Times News Service f
Chicago Daily News Service g
Washington Post-Lost Angeles Times

News Service h
Remote City Bureau (of newspaper

being indexed) r

Thus, in the news catalog code names only are stored
within this field; in the retrieval of the cataloged infor
mation, the program would decode the symbols into
their corresponding source names.

A format must, of course, be designed for each field
that contains a multiplicity of information items.
Thus, in Field 5, EDITION STATEl\tIENT, two

classifications of newspaper editions are identifiable.
One is based on time and the other on geographical
location. Furthermore, a particular issue must be
further delineated through use of information. such
as volume and issue numbers. Possible edition state
ments may be derived and given unique codes as fol
lows:

Tirrt-e Ed-it·io-f1, S-ubfteld n']-.- /"I 'J .l!iauwn liDae

morning final M
evening final or evening closing stocks final E
Sunday final S
weekly W
one-star
two-star
three-star
four-star
five-star
special

Geographical Edition SUbfield

city final
suburban final
state final
New England final
N ew York final
East Coast final
Midwest final
West Coast Final
Foreign edition

T
U
V
X
Y
Z

A
B
C
G
H
I
J
K
F

As an example of cataloging Field 5, consider an item
which appears in volume 35, i8sue 35, of the morning
statewide edition of the newspaper. In fonnatted form
this information is entered as follows:

//5/v.78,no.35:~1/C

A complete set of subfields for each. of the fields listed
in Figure 2 is given in Reference 1.

Subject-Content Fields. These fields have been de
signed to give further insights into' the subject content
of a news article and to provide computer-stored "han
dies "which a user may grasp in order to retrieve desired
information.

The NEWS-CATEGORY field (Field 12), indicates
the writer's general purpose and may identify such
factors as journalistic approach, objectiveness and
relevant geographic coverage. Each category with a
subfield is designated by a code and might be indexed
thus:

Computer-Aided ,Processing of News 333

Journali8tic Approach Subfield: Code Category

Reportorial
1 News
2 Speech
3 Text (speech,

etc.)
Creative or
Interpretative

4 Editorial
5 Analysis
6 Review
7 Interview
8 Feature story
9 Poll

Geographical Coverage Subfield: a Local
b State
c Section of

nation
d National
e International

In accordance with the above classification scheme,
an editorial on the V ietnam War is indexed in formatted
form as

//12/4/e

By far the most important component of news in
dexing is the set of subject terms which is assigned to
an article in order to describe its content. We are at
tempting to make a side-by-side comparison of the rela
tive effectiveness of human indexing and machine
indexing. The value of the latter approach obviously
depends upon the detail of the algorithms used to
extract subject terms. The automatic-indexing pro
gram we are using now takes advantage of the nature
and style of newspaper writing and anticipates a broad
class of words or terms which a user might employ in
search of material.

In particular, because the first paragraph of a good
newspaper story should contain a summary of the
contents of that story, we use as subject terms all the
words in the first paragraph except some 13 of the most
common function words (the, a, and, oj, and so forth).
Also, much of what a news article is about, and to what
a user would presumably wish to refer, is designated
by words in the class of proper nouns-names of people,
organizations, and places. These nouns are simply
captured by extracting all capitalized words. One
further class of indexing information is derived from
the punctuation and format of a typed news article.
Using these clues we can obtain the dateline and byline,

:~34 Spring Joint Computer Conference, 1969

where these are present, as well as a substantial set
of subject-index terms. In addition, we extract wire
service name and writer's affiliation. Also, we estimate
story length on the basis of the number of COlnputer
words in text.

This kind of indexing-by _ extraction of first para
graph, capitalized words, dateline and byline-is evi
dently quite deep. The ratio of the number of words
extracted to the total number of words in the article
appears to average about 0.2. Figure 3 illustrates a
typical news article and the resulting index terms
extracted in accordance with the above rules.

In addition to our using nearly all words of the first
paragraph as subject terms, we store the first para
graph, intact, as a separate field, designated Field 13-
SYXOPSIS. vVe suggest that ability to see the first
paragraph of a nmvs story will provide a user ,vith a
valuable insight to the substance of the story and
help him to decide whether or not he wishes to read
the entire article.

Human indexing

In order that a direct comparison of the relative
effectiveness of machine and manual indexing can be
made, we are indexing the same news stories both ways.
Th.e procedures for manual indexing are those which
have been established for a companion lIbrary-cata
log project in our Laboratory, Project Intrex. The
basic manual-cataloging procedures are:

• The cataloger is allowed free use of vocabulary
and construction in making up subject terms.
Generally, subject terms are combinations of
noun phrases containing sufficient context to be
understood alone.

• Each subject-index phrase is assigned a range
number 1, 2 or 3 which designates the extent of
the article to which the term applies; range number
1 indicates that the subject term characterizes
the entire· article, 3 signifies that the subject term
applies to a minor part of the article.

· Four additional numbers 4, 5, 6 and 0 may be
assigned to special subject terms which may be
useful for lookup purposes. K umber 4 is assigned
to an organization or agency mentioned in the
article, but not included in a regular subject term;
No. 3 is given to the name of a person directly
quoted in the article; Xo. 5 is the name of a person
mentioned in the article; and X o. 0 is a generic
subject, broader than specific subject of the article,
under which the entire article could be posted.
For example, a news story on high-speed trains
might be assigned the subject term TRANS
PORTATION with a range number (0).

[Joseph ~ ~,] president ~ [~-Gordon ~.,] ~ been named

I ~ 2,f the [Industry] and [~ Committee] ~ [Project Concern,]

I ~ ~ ~ ~ funds ~ ~ hospital ~ [~Vietnam.]
The project hos raised $11,000 of its $50,000 goal so far for the hospital,

which will be built as a memorial to [Worcester County] men killed in the

[Vietnam] war.

Carter will be host at a meeting of industrialists at 5 p.m. tomorrow in

the [Worcester Club. The] meeting is designed as a first step in securing

financial support from county industry for the project.

A committee named to assist [Carter] includes [Douglas L. Liston,]

president of [Thompson-Liston Associates Inc.;] [Warren C. Lane Jr.,] a

partner in the low firm of [Bowditch,] [Gowetz] and [Lone,] and [Albert D.

Farnum,] public relations manager for [Wymon-Gordon.]

I
The piOject we: bagur. by [F~!$ Carrol!,J eomma!'!der of [Bemon Hill

. Post,] [AmericCl'l Legion.]

Figure 3-Sample news article showing terms extracted through
automatic indexing. Phrases in brackets l j are selected by

the capitalization algorithm. Underlined ,vords are
Rele~ted from the first paragraph. Note that all

first-paragraph words are selected

Machine vs. manual indexing

Our experience with 400 news stories indexed manu
ally and 140 articles indexed automatically in accord
ance with the above guidelines is that machine indexing
produces more subject terms per article than does man
ual indexing; manual indexing yields terms which are
longer and which appear to be more interpretive of
the article; in manual indexing the range number of
a subject-index term is explicit and is one of seven
numbers assigned as outlined above; the automatic
indexing procedure assigns either range number 2
for first-paragraph tenus or range number 3 for capi
talized terms (range number 1 is reserved for headlines,
which are not included on our TTS tapes).

The true test of the merit of each indexing method
is, of course, its usefulness as a tool for retrieving infor
mation from the viewpoints of relevance and complete
ness. Measurements of this kind are being planned
for our data base and retrieval system.

Software

The software system for storing and retrieving the
news data base has been designed to achieve certain·
requirements which are dictated by user and machine
characteristics. From the user's viewpoint the system
should be simple to operate and require essentially
no time invest.ment in order to make simple queries.
Only a small time investment should be required to
master its more sophisticated' features. The system
should also engender user satisfaction, which means
that. it. should be capable of retrieving relevant and
complete information expeditiously. Since these re-

quirements are similar to requirements established
by Project Intrex for retrieval of library-catalog infor
mation, we have adapted the Project Intrex software
system2 to news retrieval. The salient features of our
news software system are these:

• Searches are made on single words or word com
binations formed by the user in making his request.
Users can formulate their requests in their own
UTA ... r! Qt'trlo "''I"''''&'''''''' tJuJ v.

• A user needs no prior knowledge of search pro
cedures in order to engage the system. An instruc
tion guide is available online which provides step
by-step information on operating procedures.
Th~ guide can, of course, be bypassed by experi
enced users and instructions for bypassing are
available on-line.

• Before information is output the user is informed
of the total number of stories found which are
relevant to his request and given the option of
obtaining the standard output (news-article num
ber, date line ani synopsis) or of altering his re
quest. The latter feature is particularly attractive
if the amount of relevant material is great and
a more specific request is in order, or if an output
other than the standard output is desired. In
the latter case one or more of the fields listed
in Figure 2 may be output.

• As our system is now organized, complete news
stories are stored in the machine, minus pictorial
and graphical information, and these can be out
put in full, upon request.

• When a word .combination is employed as a request,
pertinent news stories are output in order of their
relevance to the user's request, that is, if a match
is obtained for a document on an words in the
user's request, that document is output first.
Documents for which matches have been achieved
on only some of the words in a request are' assigned
a lower order in printout.

Formatting and retrieval operations

In order to generate a data base of news articles
for our retrieval experiments, we have made arrange
ments for obtaining TTS paper tapes from personnel
at the Worcester Telegram and Gazette, "\Vorcester,
l\lassachusetts. The Worcester Telegram has a Digital
Equipment Corporation PDP-8 computer which is
used to justify and hyphenate automatically articles
prepared on ITS paper tapes. Some of these tapes, and
some tapes directly from the wire services which are
already justified and which have been selected for
incorporation into the newspaper, are sent to us by the

Computer-Aided Processing or News 335

Telegram for use in our experiments. Tapes are selected
for articles which fall into one or more of the following
news categories: The 1968 Presidential Election; The
Vietnamese Conflict; The Racial Crisis; and Worcester
Urban Renewal. These topics have been chosen because
of their interest value during the present time period.
Not all articles that go into the paper are being selected
because their number would overtax the computer
facilities available to the experiments. The category
"Worcester Urban Renewal" was chosen as a topic
having both local interest and rather general impli
cations. Articles falling within these four categories
in the Worcester Sunday Telegram and (evening)
Gazette number about 30 to 50 a week. We expect
to develop a data base of approximately 1,000 articles
over a five or six-month period.

Paper-tape input and code conversion

The paper tapes received from the Worcester Tele
gram are read into the computer by the Digitronics
reader modified to accept teletypesetter (TTS) tapes,
which are standard in the newspaper business. (For mod
ification procedure see Reference 2.) The TTS codes
are converted to ASCII codes and the full text of the
articles is stored on magnetic tape in files of 20 articles

/

each, where this information is maintained for further
processing. The articles are then printed out by means
of a line printer for inspection and for general hard
copy reference purposes.

In inputting the tapes, the operator also enters the
date that the article appeared in the paper. This infor
mation is written on the tape at the Worcester Tele
gram (as is the fact that several tapes make up one
article). The operator need enter a given date only
once, since the computer program keeps the last date
until changed by the operator, and the tapes are batched
by date. The computer program automatically assigns
each article the next available number as an identifier
and stores this information along with the article ap
pearance date, the online inputting date, and the size
of the article in computer words as part of a "header
block" for each article.

Inverted-file generation

The automatic-indexing programs prepare index
terms in a form in which they can be manipUlated by
standard Project Intrex programs. The first of these
operations performs phrase decomposition. The subject
terms are created originally in multi-word phrases.
The first paragraph of a news story is considered
an extended phrase. Each string of capitalized words

336 Spring Joint Computer Conference, 1969

is also considered a phrase. The phrase-decompostiton
operation separates these phrases into their individual
words and tags these words according to their position
v,Tithin a gi,ren phrase, so that the subsequent retrie~lal
operations can suitably account for nearness of pairs
of words, if that be desired.

The next operation, stemming, deletes endings of
words so that in later retrieval operations a user term
will still match an index term even though there are
minor morphological differences in these terms. For
example, a user requesting information about either
"bank" or "banking" will be assured of a match if
"bank" is in the data base.

A third operation sorts these stemmed words alpha
betically so that, later, the retrieval operations can
take advantage of fast "directed" or "dictionary"
searching.

In a fourth operation, the actual inverted or index files
themselves are generated, together with appropriate
directory files for rapid access. In these inverted files are
lists of references for given stemmed words. Thus,
under the "bank" list are all references to newspaper
articles from which the subject words "bank," "banks,"
"banking," and other forms have been extracted in the
indexing process.

A final operation is the printing of the inverted files for
review and analysis purposes.

Retrieval operations

The retrieval of news articles, or references to them,
is accomplished online simultaneously from multiple
remote (to the center computer) consoles through use
of Project Intrex programs modified for news retrieval.
The basic idea is that a user at anyone of these consoles
types in a subject phrase of one or more words. These
words are stemmed and the references to articles from
which these stems were derived as index terms are
taken from the inverted files.

The computer then reports to the user how many
articles matched his subject phrase to a given degree of
relevancy. Relevance is estimated by the number of
matching words. The user may then request to see the
identification numbers of the matching' articles or
additional information on these articles (for example,
d;ateline, byline, synopsis) or finally, the full text of
these articles, which may be stored on magnetic disc
or magnetic tape. On the other hand, if the number of
matching articles is too large, the user may wish to set
additional restrictions; for example, he may specify that
his request match only a given byline or only on first
paragraph index terms. This dialog can continue until
the user obtains the de ... "ired information,

Example of a dialog

A detailed example of an online dialog between user
and the computer-stored news system is illustrated
Figure 4. The dialog in Figure 4 has been retyped
directly from the printout of an IRM 2741 console
connected to the IVLI.T.-modified 7094 time-sharing
computer.3 For reader convenience the letter U has
been placed before user statements and the letter S
before system responses.

Several features of the dialog are worthy of comment.
It begins by asking the user to sign in and illustrates
the sign-in procedure (IS).After the user has signed in
(IU), the system gives the user three options-he can
proceed to operate the system, or, if he is unfamiliar
with its operation, he can seek aid from a user's guide
stored online. We believe a step-by-step assistance plan
to help new users is essential during their learning
phase. In Figure 4 the user requests information on
how to make simple queries (2U). After receiving this
information (3S) he proceeds to make a simple request
(3U). The system then responds with information that
29 articles have been found relating to his subject (4S).
It also indicates to the user what his options are at this
point: he may obtain the standard output of ARTICLE
NUMBER, DATELINE, and SYNOPSIS for the 29
articles, or change his request completely, or restrict
the amount of outputting either by limiting the number
of articles outputted or restricting the fields outputted,
or finally he may ask for a different type of output
information from the standard.

The user decides to obtain the standard output for
all articles (4U), and the system responds accordingly
(5S). In the illustrated example, outputting was inter
rupted before the synopsis of the second article was
started, and the user requested that information con
tained in SUBJECT-TERM field for Article No. 295
be outputted (5U). However, after asking for this
information and receiving a procedural instruction
(6S), the user decided to change his command and to
have the information in all fields outputted for Article
295 (6U). The information beginning on line 7S is thus
obtained. Finally the user asks for the full text of the
article (7U) and the system responds accordingly (8S).

A pplications to the newspaper business

The concepts of news storage and retrieval presented
here carry deep implications for future operations in
the newspaper business. That the concepts are directly
applicable to newspaper libraries, arch'l:ves or morgues,
is obvious. A properly organized computer-stored cata
log of previously published news, coupled with micro
film storage, or m~1gnetic-disk or tape storage of the

I S Good day! This is News la. Please sign in by typing your name and
address as in the following example:

Smith, R. J., M. I. T Room 13-5251

Note that your sign-in statement should end with a carriage return.

READY
I U marcus r s/mit 35 406

2S If you already know ·how to use News, IOU may go ahead and type
in commands. (Remember, each comman ends in a carriage return.)
Otherwise, for information on how to make simple queries of the
catalog, type

info 2

or, to see the Table of Contents (Part 1) of News-l Guide which will
direct you to other parfs of the Guide explaining how to make more detailed
'lueri"", type

info 1

READY
2U info 2

3S Part 2 of News 1 Guide: Simple Queries

To find articles in the system specify yqur query by subject
terms as shown in the 3 examples below:
subject Robert Kennedy
subject Robert Kennedy, Martin Luther King
subject Vietcong, Cambodia

In order to specify additional restrictions (e.g., where author comes from
or wire service), see Part 9 of the Guide (or type info 9).
For other than standard output (article numbers, date, and synopsis) or
for general News command format and abbreviations see Parts
6.1 and 6.2.

To see Table of Contents for News la Guide and how to use
the Guide on line, type

info 1

Otherwise, you may now make simple queries or use any other command.

READY
3U subject nixon

4S A search on your query SUBJECT nixon found 29 articles. To output the
catalog fields ARTICLE NUMBER, DATELINE, SYNOPSIS on those articles type

go

This output will take about 15 seconds per article. You may terminate this
output at any time by hitting the ATTN key ONCE. Otherwise, you may change
your output request. For information see Part 8 of Guid,:, or type

info 8

or change your field restriction (see Part 9.5) or make another request of
News (see Part 1)

READY
4U go

5S 3. ARTICLE NUMBER 295

(29) DATE

080868

(46) DATEliNE

MIAMI BEACH

(70) SYNOPSIS

Richard Milhous Nixon has made his way back to the top of his party. It is
the greatest comeback since lazarus, and even in this mean and vicious
business there is scarcely a Nixon doubter who does not recognize it as a
remarkable personal achievement. $h

4. ARTICLE NUMBER 294

(29) DATE

080868

(46) DATELINE
INT. 0

READY
5U in number 295/output sub'lects
6S To output the catalog fie ds SUBJECTS on those articles which also match

your field restrictions INFIELD NUMBER 295 type

go

This output will take about 15 seconds per article.
READY

6U 0 all/go

Computer-Aided Processing of News 337

?S 1. ARTICLE NUMBER 295

(3) CATALOGUER

(4) ONliNE

9/11/68

(21) WRITER

By JAMES RESTON

(27) NEWSPAPER

(29) DATE

080868

(34) LENGTH

06"

(46) DATELINE

MIAMI BEACH

(70) SYNOPSIS

Richard Milhous Nixon has made his way back to the top of his party. It is
the greatest comeback since Lazarus, and even in this mean and vicious
business there is scarcely a Nixon doubter who does not recognize it as a
remarkable personal achievement. $h

(73) SUBJECTS

Adlai Stevenson (3/01) ;
Kennedys (3/01) ;
Nixon (3/01) ;
PU NEWS ANALYSIS (3/01) ;
Barry Goldwater (3/01) ;
Lazarus (3/01) ;
Many Rejections (3/01) ;
Harry Truman (3/01) ;
Dwight Eisenhower (3/01) ;
American (3/01) ;
White House (3/01) ;
Rejected (3/01) ;
Richard Nixon (3/01) ;
Richard Milhous Nixon (3/01) ;
New York (3/01) ;
America (3/01) ;
Lyndon Johnson (3/01) ;
Republican Party (3/01) ;
California (3/01) ;
Nelson Rockefeller (3/01) ;

oddition~u~~:p~~:I~~:~ ~~~~I: ~ a,:!k:: f~u~~ :~~tpr~'? r::e:~e(for
information on how to do this, see ~art 8 of the guide or type info 8). You
may also select a portion of these articles by making a new 'infield'
request ... {see Part 9.5). Otherwise, you may make a new search (see Part
2) or make other requests (see Port 1).

READY
?U 0 text/go

8S 1. ARTICLE NUMBER 295

(90) TEXT

000295 080868 091168 000015 000015 000321

3 $h PAGE ONE~ERRY K442 FEW CAN MATCH

< By JAMES RESTON New York Times News Service

* MIAMI BEACH _ Richard Milhous Nixon has made his way back to the
top of his party. It is the greatest comeback since Lazarus, and even in
this mean and vici6us business there is scarcely 0 Nixon doubter who does
not recognize it as a remarkable personal achievement. $h

The politics of America have a way of spinning personal stories no
rational novelist would dare offer to a skeptical generation. The careers
of lyndon Johnson, the Kennedys, Dwight Eisenhower, and Harry Truman, who
made it to the White House, and of Barry Goldwater, Adlai Stevenson, and
Nelson Rockefeller and the other also-rans are scarcely conceivable in
American modern fiction and Richard Nixon now joins this unbelievable
company. -

<Many Rejections

Rejected by the voters of his native state of California, retired by
personal cho:ce in an angry farewell from politics in 1962, rejected again
by the leaders of the Republican Party in his adopted slate of New York, he
has nevertheless won onother chance for the presidency, which he lost by
only 113,000 votes in 1960. PU NEWS ANALYSIS

Figure 4-Example of a news-retrieval dialog

338 Spring Joint Computer Conference, 1969

full text of the cataloged items should substantially
improve the value and usefulness of the newspaper
library through qpick reaction time and ability to
achieve completeness and relevancy of responses to
requests. Furthermore, with nH\VS libraries available
in electrically encoded form, it becomes an easy matter
for news libraries to exchange information via wire or
wireless transmissions. News banks can be created on
a national, regional, state or local level to serve sub
scriber newspapers. Duplication of archives can be
minimized. At the individual newspaper, storage space
for clippings can be greatly reduced or eliminated, and
the size of the library staff engaged in clipping, index
ing, and filing can be correspondingly reduced, particu
larly if automated-indexing techniques prove successful.
Finally 1 on the basis of continuing reduction in comput
er system costs, all these advantages will eventually
be achieved at a reduction in the overall library budget.

Of importance also is the impact which the concept
can make on the operations of the wire services. The
present practice of the wire services of supplying to its
subscribers an almost continuous stream of news on a
"take-it-or-Ieave-it" basis, can now be re-examined for
possible alternate approaches. For example, wire ser
vices may choose to transmit to its subscribers only
indices of news stories it has generated within the pre
ceding hour (or whatever time block is deemed appro
priate) plus a synopsis of the stories that have been
prepared either partly or totally automatically. Wire
service subscribers would then access the stories which
are computer stored at the nearest wire-service location
and request transmission of them in whatever degree
of detail they choose to publish. Opportunities for the
wire services to perform quick updating and editing of
their stored news should be evident. In contrast to the
archival application, in which the data bank is contin
ually growing and therefore demanding increasing
computer-storage space and processing time, the
wire-services application appearH to impose less demand
for storage, since files can be purged daily.

Ahility to computer index, store and retrieve the news
prompts one to re-examine the whole process of writing,
editing and fonnatting the news at the level of the local
newspaper office. Here the tenn "news" is used in a broad
sense and includes display and c1assified-advert.isement
news. Procedural reorganizations should be aimed
toward achievement of higher efficiencies gained
through maintenance of the news in digitally encoded

form during the writing, editing and formatting stages.
Since the trend is toward digitally controlled typeset
ting equipment, it becomes appropriate to conduct as
much a.s possibJe of the entire process of news ga.thering;
news processing and nmvs printing in the digital do
mam.

Storing the nmn:l, including advertising information,
in digitally encoded fonn offers interesting new possi
bilities to newspaper publishers to repackage and resell
the news they own. The ease of updating and editing
afforded by online interaction with a computer through
a graphical console, now makes it attractive to create
topical nev.spapers. The dedicated newspaper, devoted
entirely to an indepth historical treatment of a single
subject of civic, financial, sports or political interest is
within easy grasp of each puhlisher through computer
assisted reorganization of information previously pub
lished in his past editions. Once organized on a topical
basis, contents of the dedicated newspaper are easily
updated by computer means.

ACKXOWLEDG:\IENT

The research reported here was made possible through
a grant to the Electronic Systems Laboratory, :\Iassa
chusetts Institute of Technology, from the American
X ewspaper Publishers Association. .

REFEREXCES

S B LAGE R S MARCUS
A cataloging manual fo~· a news-retrieval system
MIT ESL-TM-349 May IH68

:2 .1 F REI~TJES R S MARCUS
Computer-aided p1'Vcessing of the news
M T T gSI rSR.-H4~ M'l,y 1 ~6~

3 MIT COMPUTATIOX CE~TEH.
The compatible lime-sharing syslem
The MIT Press Cambridge Massachuset.t.s 1965

4 G SALTO~
Automatic information organization and retrieval
McGraw-Hill New York 1968

5 M RUBe~·OFF S BERGMA:\ W FHA~KS
E R RUBe·~·OFF
Experimental evaluation of information retr1:eval through
a typewriter
C A C M Vol 11 Xo H September 1968

6 L HAIBT et al
Retrieving 4,000 references without indexing
Fourth Annual National Colioquim on Informat,ion
Retrieval May 1 n6i

An on-line information system for

by G. F. DUFFY and F. P. GARTNER

I nlernalional Business Machines Corporation
Poughkeepsie, New Yark

INTRODUCTION

Information for management and specifically :J1anage
ment Information Systems C\1IS) have been discussed
with increasing frequency over the past few years
either by those who have theorized about what an in
formation system for management should consist of or
by those who are convinced that :J,IIS from a practical
or realistic viewpoint is a myth.

It is the intent of this paper to show that information
systems for management are a reality. The devices and
software required are now available. It is important
that these tools initially be applied on a practical enough
level so that extensions and sophistications of :JUS are
built on a solid foundation. A basic :JUS tool consisting
of real-time, on-line, remote terminals and a general
purpose data manipulation and retrieval software pack
age has been successfully implemented and installed
at the Poughkeepsie Laboratory of the IB:JI Systems
Development Division. It is tangible evidence that a
viable :JUS can be achieved depending on how the tools
available are utilized.

This report describes the efforts and problems that
preceded :JUS installation; the organization and analv
sis needed for implementing such a system; the ba,;ic
capabilities of the system; the actual means of making
inquiries, updating files, and retrieving necessary data:
and a description of system applications. '

Prior to time-sharing terminal systems, the phrase
"management information" was overused and exag~er
ated. 'Vhile several batch-processing-oriented manage
ment information systems were of some value, they did
not fulfill management's basic information need-to
satisfy the changing and unique needs of management at
that moment in time when the information is required.

The design for a batch processing system must be
limited to some realistic level since any sizable data

base can be manipulated in thousands of different ways.
The systems designer, in the case of batch processing,
evaluates the needs of the user. He provides output
and a means of input that can be satisfied through nor
mal data processing and, more importantly, can be
readily assimilated by the user once he receives the
output. Since the output satisfies only a fraction of the
manager's changing needs, he exercises one of three
options: 1. He provides clerical people to massage nor
mal output into the desirable form. 2. He uses more
intuition and "guesstimating" than he would like. 3.
He requests program changes that will satisfy his need
but may take weeks to implement. The third option is
often not followed because the manager realizes that by
the time the system is modified, he has an entirely new
set of needs which were not and probably could not be
anticipated.

The significant point is that batch-oriented data
processing is not dynamic enough to provide true
management information. Systems analysts erred in
assuming that information for management was simply
the next logical extension of batch-type data process
ing, and efforts to take this approach resulted in frus
tration and the notion that management information
systems are a myth. The primary goal, therefore, was.
not to reshape batch processing but to develop and
apply ne,,, tools. These tools are now available in the
form of remote-terminal systems which utilize general
ized sets of data manipulation and retrieval programs.
These systems give us the capability to effectively re
spond to thf' f'verchanging information needs of man
agement.

Another important point with respect to the design
of a management information system was the assump
tion that such systems should be oriented to top man
agement, with some fallout to lower management levels.

:3:39-----------------

:340 Spring Joint Computer Conference, 1969

Contrary to this position was the belief that satisfying
the first and second levels of management is most
important, initially, with an extension to top man
agement at a later date. In most application areas,
satisfying the requirements of operating management
indirectly affects the type, content, and timing of in
formation received by top management.

The MIS/360 System installed in the Poughkeepsie
Laboratory handles various applications, including
engineering, programming, and administration. The
computer is time-shared, having both typewriter and
display terminals on-line. Seventeen application areas
utilizing 38 terminals can interrogate their respective
files during prime shift. Inquiry can be made against
any record and any field in each file even though that
type of inquiry may never have been made before.
Certain inquiry format rules must be followed, but the
inquiry language is defined by the user and stored in the
system. Full English-language terms or abbreviations
can be used according to the desire of the MIS user. No
knowledge of programming is required.

Efforts by the Systems and Procedures department
(S and P) to implement a management information
system in the Poughkeepsie Laboratory began in early
1966. Various terminal systems were evaluated and the
potential for -:MIS at this facility was assessed. The
system decided upon was under development by a
systems programming group at IB:~1's Corporate Head
quarters and intended for use with IB:11 System/360.
The total effort combined the efforts of Corporate Head
quarters and several other IB:\1 facilities (including S
and P programmerS from the Poughkeepsie Laboratory).
During 1966, this laboratory started preliminaryappli
cation analyses for purposes of system justification and
obtaining approvals for the ordering 'of necessary ~\lIS/
360 equipment. In 1967, the effort concentrated on
preparing for installation in early 1968. At the same
time presentations, demonstrations, and in-depth sys
tems analysis were conducted in those application areas
that could most effectively use the ~lIS capability. The
MIS system became operational in April of 1968.

One important aspect of ::.'vns implementation was
that in the Laboratory a base for planning and justi
fication had been provided through the operation of the
Administrative Terminal System CATS). Basica.lly,
this is a text-processing system that allows a terminal
operator to enter, retrieve, correct, and store text or
data, and also permits automatic formatting with
output from a remote terminal or from a high-speed
printer. l\Iany of the problems faced in the installa.tion
of MIS were similar to those encountered during the
ATS installation period.

Basic approach and ground rules for MIS implementation

The successful implementation of ~1IS can be attrib
uted to the basic approach that was taken. To ensure
a solid base emphasis was placed on developing the
most productive applications first. Only those appli
cations that provided some analysis support of their
own were incorporated, and the initial utilization of
~1IS capabilities by each area was to be both simple and
practical. Each application analysis had to fit within
the manpower available and within a time frame that
would allow full relief of :MIS expenditures at year-end.
Certain key factors were involved:

• Organization that provided a focal point for MIS
system analysis, programming support, and overall
control.

• Personnel, with the knowledge, experience, and
motivation oriented toward 1\1IS terminal system
concepts.

• Working relationships between :MIS systems
people and those involved in related batch process
ing efforts that converged to a single point of
responsibility and authority.

• Close agreement on objectives existed between the
}HS systems group and the Computer Center
management. This permitted both rational ~1IS
cost allocation and proper utilization of the :VIIS
computer.

• Provisions were made for resolving communica
tions problems among :MIS users, the Computation
Center, customer engineering, the local telephone
company, batch processing programming groups,
the Accounting department, and the MIS terminal
systems group.

• A set of ground rules defining a basic MIS position
were established prior to MIS implementation.
Potential users clearly understood the :\1IS capa
bilities available and were able to make a decision
relative to commitment.

MIS ground rules for MIS implementa,tion

The following 1\1IS position was established at the
start of the in-depth systems analysis of potential MIS
applications:

1. 2.\1IS was to be used primarily as an inquiry and
retrieval tool with on-line updating as restricted
as possible.

2. Only basic ~ns generalized programs were to be
used, with no user-exit routines or unique-to
Poughkeepsie routines allowed.

3. Total system operation was to be optimized in
terms of performance and in the criteria used to
develop each ~lIS application.

a. lVIinimized response time through the most
efficient file organization and core allocation.

b. Reduction of total 1\11S costs to provide the
lowest possible cost to the user. This was
partially accomplished by using the same
computer for background processing.

c. Concentration on applications having the
greatest potential return for the lowest in
vestment, paying close attention to possible
MIS networks.

d. Selection of application areas most respons~ve
to MIS and capable of providing some of their
own systems support during the analysis and
installation period.

Within a system such as MIS, employing generalized
programs, there is considerable pressure to provide
additional features that satisfy unique user needs.
Because of the various interrelationships that exist in
MIS-type systems and the many questions about
performance of a new system, taking a position other
than that described under "Ground Rules" could be
disastrous. The resulting confusion could cause a loss of
confidence in MIS that would jeopardize the entire
systems effort.

Basic MIS relationships

Response time vs number of active terminals vs

transaction load on the system vs systems cost are the
basic relationships that must be considered in an MIS
system. These relationships are affected by several
factors.

• The amount of background processing that can be
allowed without degrading ::.v11S performance.

• The size of files in the system and the overall
storage requirements.

• The number of lVIlS routines that should be
resident in core.

• The complexity and volume of inquiries expected
from users.

• The files that are interrogated the most and the
least.

• The distribution of activity during on-line time.
• The equipment changes that will decrease access
time or increase processing overlap, thereby re
sulting in faster response.

• The question of whether fields within a file should
be indexed or not indexed.

• The extent to which records in a file should be
blocked.

• The most efficient file organization.

On-line Inforrnation Systenl for :Managenlent 341

Network concept

The plan was to concentrate on applications that
would develop into a network of terminals. I t was
believed that these applications had the greatest
potential and would make the most impact on the
laboratory from a cost, manpower, and communications
point of view. Intangible be~efits would result from
"a better way of doing business" for this laboratory, as
,veIl as other IBl\1 facilities closely related to a cen=
tralized responsibility at Poughkeepsie.

Integration of MIS functions with bateh
processing

The approach taken considered such objectives as
using ~IlS to either replace existing batch jobs, or, in
the case of new systems design, first utilizing the
capabilities of :vns as much as possible and then
satisfying the remaining application needs by program
ming for batch processing. Most of the applications in
MIS satisfy these objectives in varying degrees. As
~ns capabilities grow, the batch processing required
should steadily decrease.

Equipment and configuration

:\11S/360 is a real-time, time-sharing system that
services both typewriter and display terminals at
remote locations. The system configuration (see
Figure 1) includes a multiplexor channel with the
Transmission Control Unit (TCU) as the prime
terminal interface, plus a 512K Central Processing Unit
(CPU), 466 million bytes of direct access storage, and
the normal Input/Output (I/O) devices.

MIS systems programs

Generalized software for MIS consists of control
programs, application programs, and support programs,
which are basically tabling and load programs. The ~on
trol and application programs are fundamental to the
system and are described in the following paragraphs.
To show how the control and application programs and
their associated control areas reside in core, a core map
is shown in Figure 2. This map assumes that all routines
are resident.

Control programs

Operating system

The system control programs are the latest release
of the IBM System/360 Operating System using the
MVT option (Multiprogramming with Variable Tasks).

:342 Spring Joint Computer Conference, 1969

2402-TAPE DRIVES

2314 DISK DRIVES - 233 MILLION BYTES

~G.''''''.''''''' TERMINALS

226012265 DISPUl't
TENIINALS

Figure 1-8ystem configuration

The use of MVT maximizes MIS performance and also
allows background processing when necessary.

Message processor

The I/O control is handled by the lVlelSlSage Processor
module (MP). This module contains all device-depen
dent routines which support the typewriter terminals
for the IBM 2741 Communication Terminal and the
IBM 1050 Data Communication System, and the
display terminals for the IBM 2260 Display Station.
These routines receive each inquiry and, through a
data-queuing technique, pass each inquiry to other
routines in the MP which, in turn, acts as a buffer
between the. terminals and the application programs.

Application programs

While the term "application" refers to these programs,
actually they represent a set of generalized programs
that service all MIS user areas on the system in the
same manner. Each user's file or data set consists of a
different number of records. There are unique record
formats for each file, but the inquiries from each user
into his unique file are all handled by the same general-

I
05/360 iMessage Processor-MP . I Background ~ (I/O Control) MIS Modules Processing

,"Il(!Ie 'l'" IMP P.outines
i~~~f~"~alYZer. I pe~~p~:~~

Link-Pack Area I Device-Dependent
Routines (1050 • Define I Master 2740/41, 2260)

Scheduler I Security Analyzer
raging Buffers

Queued Buffer
Index Search I Area Terminal Control

Blocks File Search and .
Report Generator

Access Methods Co,""ute

Update

File Control
Blocks

150K 70-90K 1l0-240K

See Note I See Note 2

Note I - Amount of core required for either MP or MIS routines
varies according to the number of files and terminal
lines on the system, and whether certain programs
operate in the overlay mode.

Note 2 - Only MIS routines with an asterisk must be resident
in core.

Figure 2-Core storage allocation

ized programs. :Most of the MIS routines can operate
in the overlay mode when necessary to conserve core
space. (See Note 1 under Figure 2.) A brief. description
of each of these application programs follows.

MIS supervisor-MIS/OlO

Controls processing of all inquiries, provides time
outs and alternating processing of inquiries, and con
tains communications areas for system parameters.
Each of the other application routines communicates
with t4is module for I/O operations.

Inquiryanalyzer-MIS/04O

Checks the terms in each inquiry statement against
the file description tables, stores the system parameters
generated, makes a preliminary security check, and
decides when the supervisor should call other required
routines such as index search.

Securityanalyzer-IVIIS/050

Checks the security code of the user when special
access to certain fields within a record is indicated. A
violation produces an error message from the error
analyzer, creates a history record, and terminates the
inquiry,

Index search-MIS/Ooo

Called by the inquiry analyzer if the inquiry includes
an indexed field. The index search routine searches the
MIS indices and outputs a string of addresses for all
records that meet the selection criteria.

I

On-line Information System for Management :343

File search/report generator-:dIS/070

Provides either. a full file search of all records in a
file, or it searches only those records having addresses
passed to it as a result of the index search. Each record
is processed against the inquiry selection criteria. If
there is an equal compare, the output data are passed to
the l\1IS supervisor program.

Compute/logic and compute/arithmetic routines are
also included in this module to handle all CALCULATE
requests included in an inquiry statement. These rou
tines are used to develop and store answers in the ~IIS
internal control blocks.

I>efine--~IS/030

Adds, deletes, or prints user definitions generated at
a terminal whenever the inquiry statement includes
the I>EFINE, CANCEL, or PRT /I>EFINITIONS
key commands.

Error, inquiry history, and mail processor

Generates either error messages or appropriate end
of-job messages and, at the same time, writes out the
inquiry history record. This module also searches the
history file for user mail requests when the computer
operator is ready to satisfy these particular requests

Update

Changes the contents of fields in a record when acti
vated by terminal inquiries. Editing of data being
changed includes alphanumeric and range checking, and
an audit trail of all transactions is also supplied.

lVIIS control tables

Each inquiry statement IS compared against the
following tables:

Report description
User description
Field description
Access description

These tables describe all pertinent characteristics of
each standard :\IIS report, each field in a record, each
user who will access particular files, and the description
of all users who have special access to files.

System operation

Each user's file is located on an IB:\'C 2314 Direct
Access Storage Facility as are all description tables and
the indices for all files. All data sets, including :\US

programs not in core, and files, file tables, and indices
can be loeated on assorted storage devices depending
on contention problems and channel utilization. The
system configuration of the :\1IS/360, :\1odeI50, used in
the IB:\f Poughkeepsie Laboratory is shown in Figure 1.

Getting on-line

Each user with a dial-up data phone dials the number
assigned to him and establishes a link with the computer
via the 2703 TCU. If the line is dedicated, rather than
dial-up, the user merely puts power-up on his terminal,
and he is ready to transmit. In the first case, there is
no contention possible on a user's line until he dis
connects, and with a dedicated line no contention is
possible.

Basic inquiry procedure

The basic elements of any inquiry, shown in Figure 3,
are:

Security code
File name
Inquiry parameters

Format terms
Selection criteria
Control terms

If, for example, there are 250 fields in each file record,
any of the field terms can be included in the inquiry in
any order, as can any selection criteria and control
terms desired. The format of the output is dependent
on the order of terms within the inquiry.

Definition of inquiry elements

Security

The first entry for any inquiry statement must be
the security code assigned to each :MIS user. Periodi
cally, the security codes are automatically changed
using a random means of selection.

~
ecuritY Code

r-FUeR
-I Inquiry far- teu

xn.. MIND:::, .. ~ C1AOOnl'O] REL/DATB ./C GT I'm '.0/1 ./C

Selection Criteria

Control '1'el'lll

Figure 3-Basic inquiry elements

~44 Spring Joint Computer Conference, 1969

Special access within a security code

Each security code can be given "special access
coding." In the file table, cards containing security
codes that indicate special access to certain files or data
fields can be specified. For example, many users can
interrogate the personnel file, but only cleared users
such as salary administration are able to retrieve salary
field data from this file.

Format terms

Each data field~in the file has a specific name assigned
by the user. Only fields (such as CIRCUIT NU2\1BER,
RELEASE DATE and E/C NO., as shown in Figure 3)
included in the inquiry are displayed in the output for
those records meeting the selection criteria.

File name

Each l\tIlS user assigns a name to his file and, if
desired, the names of any standard reports he wants.
These reports must be defined within the MIS ta.bles
and, at the time of inquiry, may be retrieved byenter
ing the file or report name. If inquiry parameters are
added for fields not in the first standard report, the
output will not be a standard report but will include
only those terms indicated in the inquiry.

There are three names assigned to each field in the
file: normal field name, the term used when making an
inquiry, and the column heading for each field when
displayed. Each output report includes a heading for
each field.

Selection operators

Select terms are:

EQ - Equal To

NE - Not Equal To

GT - Greater Than

NG - Not Greater Than

LT - Less Than

NL - Not Less Than

WL - Within Limits

OL - Outside Limits

Multiple selection criteria are allowed on various
fields. For each criterion, except WL and OL, the select
term must be preceded by a format term and followed
by a literal (see Figure 3). Two literals must follow
WL and OL.

Control terms

Mter the desired terms and selection criteria are
determined, the form of the output may be further
qualified by the use of the following control terms.

TOP

LOW

- Top number of records that meet
criteria.

- Lowest number of records that meet
criteria.

SEQ/H - Sequence, high-to-Iow, of all records
meeting criteria; field to be sequenced
must be indicated

SEQ/L - Sequence, low-to-high.

TOTAL - Provide field totals only, without
printing details.

COUNT - Provide only a count of the number of
records that meet criteria.

LIl\1IT - Control the number of output lines,
i.e., print only a specified number of
lines regardless of the number of
total records that meet the criteria.

~1AIL - If this term appears in the inquiry,
it cancels output from the terminal,
and a mail request is store~ on the
history tape. After :\tIlS is off-line, the
operator searches the history file for
all mail requests, prints them out on
the IBM 1403 Printer, and then
mails the output to the user. This is
used primarily for an excessively
large output and frees the terminal
for further on-line user inquiries.

CALC - MIS terminal users can also perform
calculations on data fields and print
and total the calculated data that are
requested in the selection criteria.
Calculate operations include:

+ (addition)
- (subtraction)
* (multiplication)
/ (division)
V (square root)
** (exponentiation)

DEFINE -- This is one of the most powerful con
trol terms. It enables the user to
equate a report name with a group
of terms or with a total inquiry
statement. For example, a complex

inquiry statement of the maximum
length of 132 characters could be
equated to a report name such as
REPORT/10l. The DEFINE capa
bility is used most effectively when a
report is frequently required, and
the user does not wish to enter the
lengthy statement each time. This
also eliminates possible operator
errors when entering a long inquiry.

Figure 4 shows a typical inquiry into a personnel
file, inc.1uding the report heading· and the detailed out
put. The actual Poughkeepsie Laboratory pelsonnel
file contains approximately 4000 records with 248 fields
per record. All of the fields can be selectively manipu
lated with the resulting data output appearing in any
desired order or quantity. Also shown in Figure 4 is the
use of the DEFINE term.

MIS implementation and installation

The concepts, philosophies, and benefits of manage
ment information systems are now accepted by most
areas of management. The greatest difficulty was
gaining management's acceptance of the time and
expenditure required for successful implementation
and installation of an MIS system.

Early in 1966, efforts to establish a terminal-oriented

Securi ty Code

1 F11e Name

XYZ .~ NAME SER MGR HlREJDATE DEPT WI. D12,D19 JCODE E9 8412 LIMIT 90.

Basic FOJ..t Tems • I --r-
Selectica Criteria _ I _

Control
Term

Rnultinq Output.

EMPLOYEE SERIAL HIRE JOB

-1!!!!L ...!!!!!:... ~ ~ ~ ~

JlDgers, E 14368 J. Jones 01/64 D12 8412
Evanson, J 23145 I. Brun 08/61 D18 8412
Walters, R 41398 J. Jones 10/66 D12 8412

I!'irker, I 98314 R. Martin 11/S8 D12 8412

Record count 73.
End of Inqui%y.

'!'he DEFINE functica allOlls the above inquiry to be reduced to a concise
inquiry state_nt when there is a periodic need for the data.

To!!! !£ thia report the inquiry would be.

I XYZ63 DEFINE REPORT/lOS PERS NAME SER MGR HIRE/DATE DEPT WI. D12,--- 90.1

After MIS accepts the above definition, the buic inquiry is satisfied
with a si~le request.

I XYZ63 CALL REPORT/lOS. I
The s .. output as shown above will result fr_ this inquiry without
entering all tems and criteria involved.

Figure 4-MIS inquiry example

On-line Information System for Management :345

management information system in the Poughkeepsie
LaboY'~tory were begun. Considerable systems analysis
and cogramming experience of on-line terminal systems
had been obtained with ATS. This helped to make
management aware of the value of such systems,
more knowledgeable about their functions, and more
appreciative of the efforts to make them operational.

At that time a system called MICS (Management
Information and Control System) was operational in
the IBIVI DP lVIidwestern Region, and a follow-on
System/360 effort was starting to convert it to System/
360. The capabilities of this system were valuable to
the Poughkeepsie Laboratory and made an appropriate
starting point for moving into the on-line management
information systems' world. The effort began by can
vassing the "bread and butter" application areas of
the laboratory such as purchasing, personnel,and
finance. These areas had data processing as an integral
part of their operating life, and they were constantly
subjected to new reporting requirements and frequent
statistical gyrations. Because of these two points, it
was believed that MIS/360 could easily be applied to
their problems and easily understood and appreciated
by management.

Some people felt that top laboratory management
should be addressed first, and that their support and
active involvement in MIS/360 should be enlisted
before applying it to operating levels of management.
This approach was strenuously opposed for the follow
ing reasons:

1. Problems in the early stages of implementation
and installation were anticipated, and it was
felt that top management should not be bur
dened with them.

2. Initial problems may have caused opposition to
MIS, making it difficult to revive interest at a
later date.

3. Operating areas would provide the best exposures
for MIS. It would be better utilized and more
easily justified at this level.

4. The current state-of-the-art was more in line
with operating level management, and further
sophistication of MIS was needed before it
could truly satisfy top management needs,
directly.

Once the approach was decided upon, management
became enthusiastic about MIS. "We like it, when can
we get it?" In many instances, this enthusiasm cooled
slightly when costs and installation time were given.
Management enthusiasm waned even more with the
realization that their assistance was vital to a successful
MIS effort. The laboratory's ATS helped to overcome

346 Spring Joint Computer Conference, 1969

this resistance. It enables potential users to better
evaluate the benefits and capabilities of MIS and to
relate them to the solution of their specific information
gathering problems.

After this initial canvass, it was obvious that a sys
tem such as MIS/360 was needed in the laboratory and
could be justified. An initial proposal was made to
laboratory management showing areas of potential use,
hardware requirements, and cost. It was tentatively
accepted with the requirement that hardware needs
be incorporated into the overall Computing Center
equipment plan to ensure maximum equipment utili
zation at the lowest cost. Many passes were required
before a meaningful equipment plan was developed and
the required equipment ordered.

In parallel with equipment planning, appli
cations analysts were assigned to areas where ~\1l~

had the greatest potential. They began detailed systems
analysis to precisely define how ~IIS was to be used
and what procedures and programs would be required
to support it. This took more manpower than was
originally anticipated. Each application area took
approximately one man, full time for two to three
months, to accomplish all tasks necessary to effectively
implement }lIS. These tasks included learning the
area's mission; understanding its problems and needs;
relating }HS capabilities to these needs; defining re
ports; making programming modifications to existing
batch systems where required; preparing .\US table
cards; ordering and installing terminals, data sets, and
telephone lines; and educJ.ting the personnel in each
area.

As more analysts and application areas became in
volved, the original organization plan became unwork
able. A terminal systems group was established to
coordinate all ~vns efforts in conjunction with the other
systems programming groups in the department. The
group's responsibilities included:

1. Coordination of all ~ns application areas.
2. :\1IS programming and support.
3. Control of MIS equipment ordering and instal

lation.
4. Pre-analysis and feasibility studies of new

applications.
5. Control of l\US control tables. editing. and

storage allocation.
6 .. MIS user education.
7. ~"ns cost center control.

This relieved the applications analysts in the other
systems groups from many time-consuming tasks not
directly related to the customer's problem. This group
was also responsible for an in-depth analysis and im-

plementation of ~IIS applications not related to an
existing batch processing system.

By February of 1968, there was a solid :\IIS installa
tion plan with definite customer commitments. This
plan called for a year-end target of 20 lines and 35
terminals. The IB~l System/360, :\lodel 50, was in
stalled in :\Iarch. By April 1968, the initial files were
loaded and :\IIS became operational. (See Figure 5 for
1IIS Planning and Installation Phases.) In :.vIay, the
first serious system problems arose. These were a com
bination of hardware and software difficulties and took
almost three weeks to resolve. These problems were not
unexpected; with a real-time terminal system start-up
problems were anticipated. Since then only minor
problems, which were quickly resolved, have marred
system performance. Statistics show a steady growth
in transaction load, increasing from 600 inquiries per
week in early June to 2700 inquiries per week in October.

A vast amount of preliminary work allowed the orig
inal ~IIS installation timetable to be followed almost
to the letter. Figure 6 shows actual installation dates
for the various application areas; as shown, the year
end plan to install 20 lines with 35 terminals was sub
stantially exceeded.

During the first six months of operation, installation
target dates were slightly behind schedule. vVithin a one
month period, the demand and commitments were
such that not only were end-of-year objectives exceeded,
but there was a queue of areas demanding :.vns service.
The implementation effort reversed. Instead of a
struggle to develop the required }IIS base, it was now
an effort to install new applications within a reasonable
time without exceeding system capacity. This was not
unexpected. After :\IIS had started to prove itself and
its capabilities were better understood, the demand
went up accordingly. As a re~mlt, the effort::; of the :\IIS
system group were redirected. :x ew plans were devel
oped for increasing 31IS capacity to satisfy the expand
ing needs of the laboratory.

User education was a crucial effort throughout the
}IIS implementation period. The objective was to
formalize the education process so that all users received
the same instruction and to accomplish this with
minimum expenditure of Systems and Procedures
manpower. The classes were conducted in three half-day
sessions. Work periods and terminal operation time
were integr9J parts of the sessions, Two people con
ducted each class, and the major portion of each session
was followed by problem-solving work sessions. These
sessions were the key to understanding ::VIIS.

AIlS applications

:\USj360 has been applied in various areas, including

On-line Information System for Management 347

1966 1967 1968
J F M A M J1J A SON 0 J P M A M J,J A SON D JFMAMJJASOND

I I
~erall Study of MIS Needs in Laboratory 4 • I I

Preliminary Presentations to
I I

4 I • I Key Laboratory Groups

!Laboratory Management ~proval Systems Justification and Approval

Equipment Approvals , Equipment Ordering 'III
., .,
~ rder SublDl.tte~

Equipment Deli ry Period
-+ +-------------

System Design and Programming ~ --..1 --.,
for Pilot Applications

I
Testing of Pilot Applications r on CHQ-MIS System

I I • MIS Feasibility Studies and In-Depth r I
,

Systems Analysis throughout Laboratory
I

Equipment Installation, System Test, and , I
MIS Installation and Test at Poughkeepsie

I !'ll/6t -IUS <>p.rotional ~IS Operational at Poughkeepsie I
MIS User Education Classes and I 4 I $

Systems Analyst Classes I I
~S Documentation Developed for Poughkeepsie

, ,
- User Manual

}
I I ,

I - Systems Analysis Manual I 'III .,
- Internal Procedures (Pile I I Load, Tables, Operation) I I

Figure 5-MIS planning, analysis, and in~tallation schedule

'68 No.of Lines
APPLICATION Apr. M J J A S 0 N D 12/31/68

Personnel 5 Recruiting 2 2 2

Purchasing 1 1 1

Coq>uter Services 1 1 1

Facilities Services 1 1 1

S5P Reports Management 1 1 1

Financial Disbursement 1 1 1

5 8 110 110
I

CustOI1lll Syatel1lll 3 12 14 14 4 ..
Engineering I I I

Enqineering Education 1 2 I 2 1 ..

Electronic COIIIpOIlent 1~2 4 f--~ 5 3 ..
Information Syate.

PIS APAR Control 1 1 1

OOC ... nt COntrol 2 2 2

Budgets/Ana1yds 1 1 1

Memory Products 1 1 1

CoqIOnents Division 1 2 3 3 2 ..

EIS Project Control 1~ 1 1

PIS System Test 1 f----- 1 1

TERMINALS 7 13 17 21 25 28 33 37 38

LIliES 7 13 15 16 19 21 24 24 24 24

• of Areas Using MIS 7 11 12 13 14 15 16 17 17

HOTEl The asteriaked applicatione invol_ MIS Network •• The.e MIS
users have IIOre than one terllinal per line into the COIIIputer
and as a reau1t they share and contend for the line. a .. iqned
to the ••

Figure 6-MIS application installation

April 1968 to January 1969
(MIS tenninals operational)

programming, administrative, and engineering activi
ties. This section discusses, in depth, the MIS applica
tion in the Custom Systems area and gives a brief
description of other significant areas.

Custom systems

Custom Systems is responsible for evaluating, pricing,
and engineering all special features to released IBM
equipment within the Systems Development Division.
These requests for products outside of the IBlVI product
line are generated by a customer through a salesman.
They result in a Request for Price Quotation (RPQ) ,
which is directed to Custom Systems.

When RPQ's are submitted to Custom Systems,
records are created for each RPQ. Activity against an
RPQ causes an updating of the record. Data that are
recorded include RPQ number; description; estimated
and actual costs to develop, manufacture, and install
orders placed against any RPQ; customer's name and
the IBM machine-type. A system of batch-processing
programs enables updating and control of the data base
that contains pertinent data associated with all RPQ's.
The master files that comprise the data base are periodi
cally loaded on the MIS System. These files are:

The RPQ statistical file contains a record for each
RPQ that is received in the Custom Systems Record
Department for each Laboratory location. The file is in

;~48 Spring Joint Computer Conference, 1969

RPQ number sequence. It is used to provide both
statistical data and the status of a particular RPQ.

The Laboratory order file contains a record for each
order and for the work in process at a Laboratory. It
is in order-number sequence within RPQ number. The
file contains such detailed order data as machine and
model on order, scheduled shipment date, customer's
name, and quantity ordered. The data in this file are
used to analyze the order phase of RPQ processing as
it pertains to each Laboratory.

The SD D order file contains a record of each open
order for every RPQ, whether initiated by a laboratory
or a regional office. The information is submitted to the
Custom Systems Department in Harrison from the
plant order departments. The data are on a year-to-date
basis for the current year only. This file is used to ana=

-lyze order information on an SDD basis.
The RPQ price file is a detailed file of priced RPQ's

that are currently active. It is in machine type-model
sequence within RPQ number. The data are customer,
laboratory, and machine indicative. Information is
available by RPQ number, customer number, branch
office number, region or laboratory, and machine type.

The RPQ cost file contains a record for each RPQ
that has a completed cost associated with it. Detailed
cost estimates and actual cost data exist for those
RPQ's that are priced and eventually ordered. The file
is in machine type-model sequence within each RPQ
number. This file is widely used by management for
budgetary and other financial analyses.

The RPQ reference file contains a description of each
priced RPQ that is active in the RPQ price file. It is
maintained in RPQ number sequence. The data in this
file describe the purpose and capabilities of the special
features for IBM equipment.

The RPQ error file is a control file. Errors detected in
entering and updating data are maintained for exam
ination and correction by the appropriate Custom Sys
tems Department. The corrections should be reflected
in subsequent input transactions. The data in the file
are current as of the most recent batch update.

The Custom Systems network of MIS terminals
consists of four lines with 14 terminals contending for
these lines. These terminals are located in the eight
SDD Laboratories, and four Data Processing Division
Regions,. and at Division Headquarters in Harrison.
This network allows sales personnel, Custom Systems
engineering groups, and management to interrogate
the system for RPQ descriptions, to analyze orders,
to determine which System/360 systems are getting
the most RPQ's, to see which customers are making the
requests, and a host of additional information. The
immediate availability of such information reduces
distribution and mailing costs of reports and reference

lists, enables sales personnel to be more responsive to
customers, and reduces redundant engineering efforts
at IBM Laboratories.

As an example of the use of MIS j as...~ume that a
Data Processing Division (DP) industry representative
is selling a System/360, Model 65 to an airline. He
wishes to know what RPQ's have been requested for
that system by airline customers. He would interrogate
the RPQ statistical file with the following inquiry to
get his report.

Inquiry

XXXX RPQSTAT INDUSTRY CLASS
EQ Tl SYSTE~V1 EQ 2065

RPQ/NU~IBER CUST/NAME B/O DEVICE.
(NOTE: XXXX = Security Code,

B/O = Branch Office)

Report

RPQ CUST B/O DEVICE
NU:\fBER N A1VIE

A72097
E62077

G18999

ABC Airways 123
Bird Airlines 456

Transport Co. 789

NAME

Cable Extension
~lodify 7094

Emulator
Console Change

This answer might lead him to an inquiry of the RPQ
reference file to obtain a detailed description of the
RPQ, and to the RPQ price file to determine its price.
(Future plans for MIS will address a multifile in
terrogation capability with a single inquiry.)

To cite another example, suppose that Custom Sys
tems management wishes to know the total rental for
all RPQ's that are ordered, with a subtotal for each
region. This inquiry would interrogate the SDD order
file.

Inquiry

XXXX SDDORD CHARGE EQ R SUBTL/LH
REGION

CALC TOTAL/RENTAL 8.0 = QTY *
UNIT/CHARGE NO/DTL.

In this inquiry, CHARGE is a field name and identi
fies which RPQ's are purchased or rented. SUBTL/LH
indicates that subtotals are wanted for each regional
office from low to high. CALC tells the system that the
next field is not in the record and must be calculated.
The 8.0 defines the TOTAL/RENTAL field size, with
no decimals wanted. The TOTAL/RENTAL field is
calculated by multiplying two defined fields, QTY and

UNIT/CHARGE. NO/DTL tells the system not to
print detail lines.

Report

REGION
ERO
GEl\1
~IWR

WRO
(TOTAL)

TOTAL/RENTAL
100,000 {fictitious numbers)
98,732

111,234
~A. Q7'>
VV,UI.,

346,838

Summary description of MIS applications 'tn process

Personnelreoords/recruit~

The Personnel Data System (PDS) has been used to
create a 2000-character record containing significant
information about each employee. Data fields such as
promotion dates, salary information, year of degree,
etc., can be addressed for an individual, or a group of
individuals. ~1ore than 240 fields of information can be
interrogated.

The Recruiting file contains all processing informa
tion about applicants, regardless of status, for the
current recruiting year. When an individual applies for
a .professional position at IB':\1 Poughkeepsie, a record
is created. This record remains in the system until
appropriate action has been taken and until recruiting
year-end. Forty fields of data can be interrogated,
including method and date of contact, test scores,
departments visited, areas offered and accepted, accep
tance date, etc. The Recruiting department uses this
file in day-to-day operations, in the generation of weekly
and monthly reports, and in year-end analysis work.

Financial disbursements

The initial files loaded are the Travel Accounting
file and the Accounts Payable department's Request
for Purchase Rejection file (RPR).

The Travel Accounting file enables management to
analyze such travel information as who went where and
how much did it cost. This file contains all closed rec
ords pertaining to employee travel advances and ex
penses, along with statistical and personnel information.
Forty-four fields of data can be interrogated from the
terminal.

The Accounts Payable file contains information about
RPR's. RPR's can be analyzed, and recommendations
about vendors can be given to management. Ten fields
of data can be interrogated, such as purchase order
number, ship date, vendor name and number, and
disposition.

On-line Information System for Management 349

Facilities services

Initially, two files are utilized: (1) Plant Engineering
Detail Project file, arranged by purchase order number
within project number, and (2) Laboratory Facilities
Services Summary Project file, arranged by project
number. These files contain such information as
estimated, committed, and actual costs for each facilities
improvement or rearrangement project. The informa
tion is used for statistical analysis on projects, types of
projects, vendors, etc. Seventy-two fields of data are
available for interrogation.

Systems and procedures reports management

The Reports ':\lanagement file includes key data about
all reports prepared by SDD Poughkeepsie, such as
report title, preparer, requestor, frequency, cost, num
ber of readers, subject, and report number. Thirty-five
fields are available for interrogation. A divisional and
corporate system, utilizing the MIS system as a basic
information retrieval tool, is planned for the future.

Electronic component information system

This JUS application provides a monitoring and
reporting system used to track engineering change data,
to determine whether objectives are being met, and to
provide input to other systems, such as the logistics
simulator. Events are recorded for each part number
tied to a Request for Engineering Action (REA) or
E/C. Typical data fields include origin and response
dates, REA type, ship dates, machine group or part
type impacted, recycle codes, E/C break-in dates, etc.
Between 40 and 50 fields are available for interrogation.

This is a network-type application involving SDD
Laboratories, Components Division, Systems lVlanu
facturing Division, and Field Engineering, with three
~UIS lines allocated at this time.

Purchasing

The automated purchasing system includes }IIS
as an integral part of its overall design. Currently,
the .:\HS file is a product of a series of System/300'
batch-run programs. Future JUS capability will, for
the most part, eliminate periodic creation of reports
via the batch-run mode. Reports are created through
JIIS inquiries on a need-to-know and exception basis.

Two files are accessible through 1\11S/360: the Pur
chasing .:\Iaster file that contains information about
open purchase part orders and open interplant part
orders; and a daily receiving file that contains records
of a day's receiving activity.

350 Spring Joint Computer Conference, 1969

Engineering education

A combined personnel-education data file for SDD
Poughkeepsie employees serves as input to the data
preparation program that creates the -:.vns education
load tape. The data preparation program is run on a
quarterly basis. It extracts as output all management
education courses, graduate work study courses, Syra
cuse University program courses, and all Engineering
Education and V oluntary Education courses taken
during the most recent four-year period. There are 62
fields available for interrogation. Some of the more
perti..'1ent ones are date of hire, educational level, edu
cational objective, school codes, course number, course
level, and course completion codes.

Document distribution and control

This area coordinates and controls the distribution
of documents in SDD Poughkeepsie. 'Vhenever a docu
ment is to be circulated, such pertinent information
as those who should receive it and their respective ad
dresses are obtained from the distribution master file.
:\1]S loads the distribution master file and makes it
available for terminal interrogation. Two terminals are
installed in the area. One is used for information
retrieval and . limited updating; the other is equipped
with a special pin-feed platen that allows ~n8 to print
address labels for numerous distributions having a
relatively small volume of labels.

Budgets/ Analysis

This financial area handles budgetary control and
analysis for the SDD Poughkeepsie Laboratory. Two files
are loaded in MIS. One consists of the entire 12 month
Budget master; the other is the Variance report master.
The Budget master file makes the details of eaGh area's
budget available for terminal interrogation. The Vari
ance report allows the financial area to analyze all areas
for any variances (planned budget vs. actual expendi
tures) either on a current-month basis or on a year-to
date basis.

Applied programming analysis report (AP AR)
control

The file consists of the AP AR master, with 33 fields
available for interrogation. It includes AP AR check
point dates, associated AP AR codes, areas, etc., so that
every phase of APAR activity is available for analysis
and manipulation by 1\118. An :\1IS network~ for AP AR
control is a future possibility.

~emory products

This area uses an .:vIIS file to monitor and control the
memory engineering projects. The file contains a profile
record for each unique stage or phase of the memory
engineering project as it goes through development.
Fifty-two data fields are available for interrogation.
Some of the more pertinent fields are engineering proj
ect number, project phase code, estimated start and
completion dates, revisions to start dates and comple
tion dates, status codes, cycle time, and problem status
pointers.

CONCLUSION

The :\USj360 System described in this paper is an in
tegral part of the operating and management activities
of the Poughkeepsie Systems Development Laboratory.
Users of the system have found that it aids them in
"doing business a better way." They can evaluate more
things in more ways and in less time, allowing a better
base for the decision-making process.

The system continues to grow-in numbers of lines,
in numbers of terminals, and in numbers of inquiries,
which is most indicative of how much a part of everyday
operations :\lIS has become. It is intended that the
system will grow as its use grows. Future plans call for
a larger CPU and improved :\1IS software with addi
tional capabilities. These activities must be continuous.
As user demands upon the system increase, it must be
made more responsive. It must exhibit higher degrees
of sophistication in its capabilities. These requirements
~ust be met if :\IIS is to continue to be a dynamic and
valuable management tool.

ACKNOWLEDG:\iENTS

MIS program development was the responsibility of
Mr. George Dath of Corporate Headquarters, with
portions of the effort accomplished at SDD Kingston.
SDD Poughkeepsie and FSD Huntsville.

During the installation of l\!IIS at Poughkeepsie, the
systems analysis and programming efforts were accom
plished through the cooperative efforts of S&P per
sonnel, computer operators and management, and the
operating people involved within each application area.

At the inception of the project in 1966, the contri
butions of :\lr. W. D. Timberlake and Mr. B. H. l\1atte
son, Jr. (former managers of S&P and Computation
Services) during the planning and justification cycle
were particularly significant.

Computers and Congress

by EDMOND S. MESKO

Technical Information Services Company
College Park, Maryland

INTRODUCTION

The Instititute of Management Sciences (TIMS) and
the Washington Operations Research Council (WORC)
co-sponsored two meetings in the early months of 1968
in the Rayburn Building on Capitol Hill. In these
meetings, these professional associations held what was
probably the first dialogue between the ::\1anagement
Science community and Representatives of the U. S.
Congress. The Representatives were Congressman
Robert ::\1cClory of Illinois and Congressman F. Brad.;.
ford Morse of ::\1assachusetts.

The purpose of these meetings was to search for areas
where .:.YIanagement Science techniques could come to
the aid of the Legislative Branch of the Federal Govern
ment. N either th~ members of the House of Rep~'esenta
tives, who were the guest speakers at the meetings, nor
discussants, nor the members of the audience had any
recourse but to say, "YES! l\1anagement Science
Techniques can help Congress!" But as suggested by
Congressman J\Iorse, the 1Ianagement Science com
munity must make the management science terminol
ogy more "fashionable" so the members of Congress
will add it to their vocabularies, and must also "sell"
Congress on the great potentials of :\Ianagement Sci
ence technology.

Background

Congressional record

There have been several articles in the Congressional
Record regarding ADP assistance to Congress. One
article appeared on October 19, 1966.1 This was the
introduction of a bill by Congressman ::\1cClory of
Illinois. The bill authorizes the Legislative Reference
Service of the Library of Congress to make use of auto
matic data processing techniques and equipment in the
performance of its function in support of the Congress.
Congressman lUcClory noted the growing dilemma of

Congressmen and their staff's to screen, sift and extract
significant information from the ever increasing volume
of data they receive.

Some of the very basic information that the Congress
men must know includes: status of current bills, legis
lative history of bills, schedule of committee hearings,
budgetary data and facts and figures regarding every
thing from informat.ion about his constituents to infor
mation about unidentified flying objects.

Another article appeared in the January 30, 1967
Congressional Record.2 In this article Congressman
McClory introduced an abridged version of a study
prepared by the Legislative Reference Service of the
Library of Congress. The study was a review of various
ways in which computers might be used to aid the
Congress, Congress as a unit, each chamber of Con
gress, the committees of Congress, and the individual
Congressman.

The third article in the Congressional Record was
introduced by Congressman Tom Railsback on J an
uary 29, 1968. 3 The article is Congressman ::\1cClory's
speech to the joint TIl\1SjORSA meeting on January
17, 1968. In his speech Congressman ::\1cClory reviewed
the need for AD P equipment to aid Congress. He also
described a recently installed on~line terminal system
which was installed in the American Law Division
of the Legislative Reference Service of the Library of
Congress. These terminals enable the Legislative Ref
erence Service to store on magnetic tape descriptions
of all bills and resolutions' introduced in the 90th Con
gress. This data will be used to compile and list the
"Digest of Public Bills". Eventually the system will
enable a Congressman to retrieve any bill by number,
title or word descriptors. When we realize that 26,000
bills and resolutions were introduced in the 89th Con
gress, we can begin to see one small area where Congress
can be aided by ADP.

In his speech Congressman McClory reviewed his
statement which he inserted in the October 19, 1966

351

352 Spring Joint Computer Conference, 1969

Congressional Record. He also mentioned that the bill
which he introduced in that Congressional Record still
is pending.

Congressman McClory mentioned in his speech a
fact that was surprising to me. He noted that Congress
in 1967 appropriated over $1.2 billion for the 3,000
computers in use by the departments of the executive
branch of the federal government. However, the Con
gress has refused to appropriate one-thousandth of
that figure to equip itself with an ADP capability.

Studies of Congress

There have been several studies and books regarding
Congress and Congressional reforms. I will discuss only
those areas regarding ADP. The studies are: the Arthur
D. Little Study that was sponsored by the National
Broadcasting Company, the results of which were made
into a television Special;4 the Twelve Studies of. the
Organization of Congress conducted under the auspices
of the American Enterprise Institute for Public Policy
Research;5 the Dartmouth College study, which was
directed only to the House of Representatives;6 We
Propose: A Modern Congress, which is a series of arti
cles by members of Congress;7 and the Report of the
1965 Joint Committee on the Organization of the Con
gress, which is now represented in bills before the Sen
ateS and the House.9

The common thread running through all the studies is
the problem of obtaining timely, accurate, complete
and relevant information for decision making. During
the Dartmouth study,6 four out of five Congressmen
said that the lack of information and complexity of
decision making were the major problems preventing
Congress from perfOlTIling more effectively. This is
true for the individual Congressman as well as for the
Committees of Congress. The Dartmouth study was
in the form of 32 reform proposals drawn up by the
study team. The proposals were developed after a search
of the extensive literature written about the Congress.
The team members then asked a total of 116 members
of Congress what their thoughts were regarding the 32
proposals.

The need for better information was also mentioned
in the Report of the 1965 Joint Committee on the
Organization of the Congress.s The report urged the
use of automatic data processing to provide expanded
budget information to members of Congress to aid in
Congressional fiscal control and budget evaluation. The
result of this report has been formed into bills now
pending in Congress.8,9 I will discuss this pending legis
lation in a later section. This report was an internal
study of Congress. The study was co-chaired by

Senator :\1ike :\Iollroney and Representative Ray
2\1adden.

The need for a computer to better analyze the budget,
as well as the hundreds of other subjects, is also men
tioned by David Brinkley, the KBC correspondent,
in the introduction of the book, "Congress Needs
Help.'" One of the findings by the Arthur D. Little
study team was that Congress does not take advantage
of automatic data processing equipment to facilitate
its work. Because of the massive volume of data input
to Congressmen and Committees, it is only natural to
turn to high speed, large capacity computers. The
conclusions and recommendations of the study call for
the use of the computer to manipulate the data into
usable information.

The American Enterprise Institute for Public Policy
Research is a nonpartisan research and educational
organization. The purpose of AEI is to assist legislators
and educators with studies of current issues of national
significance. AEI compiled twelve studies of the Organ
ization of Congress into the book, "Congress: The
First Branch of Government."5

In the study, Availability of Information for Con
gressional Operations,5 it was found that the complexity
of decision making and the lack of information are the
difficulties that were most frequently cited by the
l\1embers of Congress. In the study, the Committees in
a Revitalized Congress,5 it was noted that the informa
tion problem is not one of scarcity of information, but
an abundance of information, most of which remains
unassimilated and undigested. The study, Information
Systems for Congress,5 advocates the development of
automated information processing systems to provide
the information for legislative decision making.

ADP applications to Congress

Before we discuss how ADP can be applied to Con
gress, let us first categorize the working parts of Con
gress.10 The functional areas of Congress can be divided
into five parts:

1. Congress as a Unit
2. Each Chamber of Congress
3. Committees of Congress
4. Individual Congressmen
5. Political Parties

\Vithin some of the functional areas there are two
kinds of information that is required: legislative infor
mation and administrative information.ll

The legislative information can be divided into infor
ma.tion for current problems and information that
could be relevant to future areas of concern,

The legislative information applicable to current
problems and the legislative information being compiled
for future matters can be divided and ordered by sub
ject.

Let us now look more closely at the functional areas
of Congress and begin to determine their information
needs.6

Congress as a, unit

This includes both Houses of Congress. Certain kinds
of information is relevant to both the House of Rep
resentatives and the Senate. A centralized data bank
should provide:

a. Legislative Information
1. Status of Pending Legislation. Considering

that there are about 26,000 bills and resolu
tions submitted for action in each Congress,
we can see that there is a need for a central
file of this legislation. At this time there is
no one place where a Congressman can easily
find information regarding pending legis
lation.
A Congressman should be able to have access
to a centralized file of all legislation intro
duced into either House of Congre:;:s. He
should be able to search for this information
by the number assigned to the bill or resolu
tion, or by subject. To go one step further,
each Congressman could have his "interest
profile" stored in the computer system and
have this "interest profile" automatically
search each piece of proposed legislation
that enters the data bank. The "interest
profile" would represent the personal interest
of each Congressman. When the key words
of the "interest profile" would match with
the key words of the bill or reeolution, an
abstract of the bill or resolution would auto
matically be sent to the Congressman as a
printout or output on his own terminal in
his office. Included with each bill or re80lu
tion should be pertinent information such as
the name and number of the bill, the 8ponsor,
the content of the bill, related bills in the
House or Senate, past legislation regarding
both bills and laws germane to the current
bill, and status of action on the bill.

2. Lobbyist Activity Information. Lobbyists are
one of the prime sources of information for
Congressmen. All lobbyists are required to
register either with the Clerk of the House or
the Secretary of the Senate. These liRtR are

Computers and Congress 353

then published each quarter in the Con
gressional Record. However, they do not
provide much information to the members of
Congress.

To assist the members of Congress it would
be beneficial to record all lobbyists and
related information in a central data bank.
A Congressman should be able to search a
data base through a remote temlinal to
determine if an individual is a registered
lobbyist, his employer, the legislation he is
concerned with, total sum of contributions
he receives and the source, his past history
and technical background, including his
speeches and publications or editorials.

a. Access to the Legislative Reference Service. The
ability of being able to access the Library
of Congress' imaginary computerized data
banks through the Legislative Reference
Service (LSR) is potentially a very powerful
tool. The Library of Congress is a vast store
house of information. While the potential is
great, the implementing of the system will
not be easy.
However, to review a point raised in the
TE\1SjWORC meeting, the American Law
Division of the Legislative Reference Service
of the Library of Congress has installed on
line terminals which enable LRS to enter and
store on magnetic tape descriptions of all
bills and resolutions introduced into Con
gress. Eventually a Congressman wi1l be able
to recall a bill by number, title or word
description.

4. Legal Information. The University of Pitts
burgh Health Law Center has recorded on
magnetic tape the entire U.S. Code of Laws.
I t is possible to search the tape and select all
the laws within a given subject and also it
is possible to find laws pertaining to a partic
ular subject but entered under different
headings. Included in this system are the
complete codes of several states, the U.S.
Supreme Court Decisions since 1950, the
Internal Revenue Code and Regulations, as
well as other legislative and. court informa
tion.
Other legal information now in ADP form
includes the Department of Defense spon
sored Project LITE (Legal Information
Through Electronics), legal information in
several other Executive Branch agencies,
and other legal information held by states,

:354 Spring Joint Computer Conference, 1969

private organizations and several U.S. uni
versities.

b. Administrative Information
1. 1 ndex-C aialog of C ongressi()nal Doc'wnents.

This could include - all the Congressional
documents published in either House of
Congress. An example could be a listing by
subject or related category of all the published
committee hearings.

2. Congressional Employee Payroll.
3. Legislative Telephone Directory.

Each chamber of Congress

The information required here would be relevant
eit.her to the members of the House or Senate, but not
to both.

a. Legislative Information
1. Location of Bills. A Congressman in the

House or Senate should be able to locate a
bill that was introduced in his Chamber and
also the status of the bill. He should be able
to find out the history of action taken on the
bill, whether it is in Committee or not,
amendments to the bill, Committee votes,
floor votes, scheduling ·for future action, and
sponsors of the bill.
The bill should be able to be retrieved by bill
number, sponsor or subject.

2. Vote Information. When the voting bell sounds
in a Congressman's office, he must go immedi
ately to his chamber to vote on a subject
about which he may know very little. Cur
rently the chamber based information re
garding 9, vot,p usually comes from a colleague
on the floor who knows something about the
subject or else even by the doorkeeper.
With a terminal in his office, the Congress
man could be able to get an abstract of the
bill on which he is being mustered to vote.
This could give the bill number, sponsor and
legislative history, and pro and con argu
ments.

3. Automated Voting. Automated voting is now
done in several foreign countries and in some
of our states. However, automated voting is
more a political problem than a technical
problem. I will not summarize the pro's and
con's, but merely say that it is technically
very feasible.

Committees of Congress

The Committees of the House and Senate conduct

the bulk of the legislative work in Congress.

a. Legislative Information

1. History of Committee Action. Each Committee
should have a history of all the bills th9"t fall
within its jurisdiction. The bills should be
sorted by subject and should include related
information such as the sponsor, the Congress
in which they Were introduced, the bill's
provisions, whether or not any hearings were
held, record of information supporting or
opposing the bill, action by the other cham
ber on similar bill or bills and whether the
bill becomes law.

2. Appropriation Information. This is the area
in v~lhich there is the greatest need for an
information system. There is no lacking of
appropriation data for both current and past
expenditures. However, correlating this data
into usable information is still a problem.
This is not only true for the budget review
within a single committee, but there is also
a great need to have a cross-committee
review of the budget. What is ~signed to one
committee can be directly related to a matter
in another committee. The introduction of
the Planning-Programming-Budgeting Sys
tem (PPBS) may provide the government
with an added impetus to convince the
Congress that a computer could be used as
a tool to aid in the review of the budget.
The appropriation information should include
statistics on past and projected budgetary
expenditures for each agency of government.
The information should include all appro
priation pending for an entire program and
not just the funding for the individual seg
ments.

Unfortunately, getting an across-the-board
review of the budget is another area where
the political problems of developing such a
system are equal in scope to the technical
problems.

3. Congressional Overview. One of the prime
functions of Congress is to overview executive
agencies. For example, Congressional over
view of the Space program is a function of
the Senate Committee on Aeronautical a.nd
Space Sciences and the House Committee
on Science and Aeronautics. These com
mittees should have the information to
examine appropriations for the Space pro
gram and to correl[l,te phwned events and

proposed expenses with historically related
data.

4. Subjects Under Committee Jurisdiciion. Each
committee is charged with maintaining an
expertise in specific areas. These particular
areas are defined in the "Rules of the House
of Representatives" and the "Senate Man
ual." The committee members should have
access to significant and pertinent informa
tion relating to each of the subject areas and
should have the ability to browse through
this information such as we do when we look
"in a library's catalogs.

b. Administrative Information
A schedule of all committee meetings should be
maintained to enable committee members to
better plan their time. ~Vlembers of the House
and Senate may belong to more than one com
mittee.

Individual Congressmen

Congressman ':\iorse, in his discussion before the
joint TLVIS/WORC meeting in the Rayburn Building,
said that his workload is about 75 to 80 hours per week.
I t would be crystal ball gazing to prophesy that com
puters will reduce his workload to 60 to 65 hours per
week. However, there is no doubt that ADP could
help Congressman ::\lorse make more efficient use of
his 75 to 80-hour work week.

a. Legislative Information
1. Personal Information. Each Congressman's

office should be equipped with an on-line
system to handle his own personal informa
tion file. The system should fit the individual
Congressman's needs. Each Congressman's
interest as well as style of operations vary.
The file could be divided bet\veen the Con
gressman's special long-term interests and
current legislative obligations.
The long-term interests could be public works
projects within his district or possibly a
strong interest in a national matter such as
water or air or noise pollution.
The file of current legislative matters could
include his voting record on a particular
subject, a summary of pending legislation,
a summary of his constituents' attitudes,
and a recall of his public philosophy that he
expressed in speeches, statements to the
press and in various publications. .

2. Reference File. Each Congressman must wade
through a mountain of data everyday. He

Computers and Congress 355

can scan some of the reading material, but
he must read other material sentence by
sentence. A Congressman should have a
system that could retrieve information based
on his own key words. This system could
either present a listing of the relevant docu
ments or else it could project the written
page on a screen.

b. Administrative Information
1. Re-election Information. The Congressman's

prime issue is to get re-elected. A Congress
man must know the total amount of cam
paign contributions, a list of the donors and
the amounts they donated, the donors'
interests, the amount spent in a re-election
campaign, and the manner in which it was
~ent. He must also know the voting blocks
within his district. These include the unions,
business leaders, civic leaders and the in
terest groups, such as a farmer's association.
The system should also be able to analyze
polling data and election returns.

2. Constitutent Data. Each Congressman should
also have access to the names and addresses
and other relevant information to each of
his constituents.
As you can see, this administrative informa
tion deals with a very sensitive subject.
::\,iany people feel that this would lead to the
"Big Brother" state described in George
Orwell's 1984. Too much information in the
hands of the wrong people is bad. Too little
information in the hands of the right people
is bad. It would be a difficult task to justify
every bit of information that went into such
a data bank. However, in the near future this
is precisely what must be done. Technical
potential must be tempered and guided by
social conscience.

Political parties

Each of the political parties has National and Con
gressional Committees. The Political (Party) Com
mittees of Congress include both the House and Senate.
Each of these Committees has a specific purpose and
are, therefore, interested in specific information. Some
of the committees for both Republicans and Democrats
are the Policy Committee, Steering Committee, Per
sonnel Committee and Campaign Committee. Infor
mation required, therefore varies from campaign infor
mation to the planning of political strategy in the
House or Senate.

356 Spring Joint Computer Conference, 1969

The National Committees could include policy infor
mation relating to party objectives and policies; infor
mation by states or areas of the country; or information
by categories such as the Space program, or air or
water pollution, or information on the overall policy
toward cities. Other information could include the
opposition party's policies and objectives and the
arguments against those policies and objectives.

Other information could include administrative
matters. This would include voting information such
as campaign planning and funding, the names and
addresses of state and local leaders, the opposition
party's strong and weak areas, and the policies and
political backgrounds of voting blocks possibly divided
by economic strata, ethnic groups, and/or geographic
areas.

Congressional committees

Any of the above-mentioned candidates for ADP
applications could be discussed more deeply. However,
we will discuss only the problems relating to the stand
ing committees of the House and the Senate. There are
20 standing committees of the House of Representatives12

and 16 standing committees of the Senate. I 3 The
Senate Manual and the Rules of the House of Repre
sentatives list the standing committees and the power
and duties of each of the standing committees. The
committees were last restructured in 1946 to better
delineate the jurisdictional areas of each of the com
mittees and to better parallel the executive agencies.

Whether or not this precise delineation of responsi
bility and attempt to parallel the executive branch is
satisfactory will not be discussed in this paper. How
ever, this situation is mentioned because it indirectly
leads to an example of the problem caused by the cur
rent committee structure and how this problem could
be somewhat alleviated through the use of ADP's
ability to provide horizontal integration of a similar
subject.

Horizontal integration with ADP

The House of Representatives has a Committee on
Education and Labor. The Rules of the House of Rep
resentatives lists and defines one of the jurisdictional
areas of t.his committee to include "Measures relating
to education or labor generally." The Senate has a
Committee on Labor and Public Welfare. The Senate
Manual defines one of the jurisdictionals areas of this
committee to include "Measures relating to education,
labor, or public welfare generally." Because these
powers and duties are specifically listed in the rules
books of both the Senate and the House, we would

assume that all education matters are handled by
these two committees. However, this is not the case.
It is revealed in the book, "Congress Needs Help'"
that about thirteen different Senate Commit.t.ees;
fifteen House Committees, and one Joint Committee
considered education bills in the 89th Congress. Con
gressmen would have to go to 29 different committees
to get information regarding education bills in the 89th
Congress. This is an excellent case for justifying a
retrieval system using key words.

Currently, each of the committees has a committee
calendar. The Committee on Education and Labor
publishes their calendar monthly on a cumulative basis
for each Congress. The calendar is organized three
ways: sequentially by bill number, by author, and by
subject. The committee staff updates a ,vorking copy
daily with the same information they provide to the
Legislative Reference Service for the Daily Digest.
The Daily Digest is not cumulative.

A staff member of the Committee on Education and
Labor explained that it was no trouble in his office to
find information in the updated office copy of the Edu
cation and Labor Calendar regarding any education
bill in that committee. However, the only way for him
to get information regarding other education bills in
other committees would be to look at the working copy
of each committee's calendar. This would be a very
time-consuming project. He said that there is a need
for a Daily cumulative House Calendar that would
include the status of all bills whether they are in com
mittees or not. This House Calendar could be organized
in the same manner as is the Education and Labor
Calendars. He said that this House Calendar would be
valuable in three ways: time saving for staff members,
more rapid response of Congressmen to constituents,
and more adequate voting information for Congressmen.

This would not be a complex problem to solve. The
data are already there. It would be a matter of compiling
the data in one location and organizing the data in an
integrated data base. This situation would fit in very
well with an on-line information retrieval system using
key words.

History of committee action

One of the prime sources of information for commit
tees is the committee hearing. The word for word tran
scriptions of hearings are published in a book form.
Most of these transcriptions get to be about the size
of a book. And there is more than one hearing in a
committee. In the House Committee on Armed Ser
vices in the 89th Congress there were 102 printed
hearings and special reports, containing 11,848 pages.14

There were also 396 meetings by the full committee
and its subcommittees.

It would be beneficial to have an on-line system
through which summaries of these hearings could be
reviewed using key words. In this manner, the members
of the committee who were at the hearing could refresh
their memories and new committee members or other
Congressmen who were not at the hearings could get a
concise, accurate review of the hearings without having
to work their way through a great deal of extraneous
words.

A spokesman for the Committee on Education and
Labor said that the current information retrieval sys
tem is to remember what was said at the committee
hearing or else to read the 300 or 500 page transcript.

Subject under committee jurisdiction

While there are many areas where ADP can assist
the committees of Congress, we must not assume that
all the information for anyone subject will always be
found in the subject file. Staff members of the Senate
Aeronautical and Space Committee get bits and pieces
of infonnation from the Bureau of Census NASA , ,
HEW, Department of Transportation, the National
Academy of Sciences, the State Department and the
airplane manufacturers.

One of the staff members believes that there is no
place for a computer in a committee. The reason given
is that the sources of infonnation are too scattered and
varied and too unstructured to be satisfactorily assim
ilated and compiled into a unified fonnat. i-'1:uch of the
infonnation is needed on an immediate basis. For
example, a member of the committee requests in the
morning material for a speech to be given in the after
noon. The staff members do not have the information ,
but they do know who to call and the right question to
ask.

It is my feeling that the members of the committee
staff are not afraid that the computer will replace them,
but rather are wary that a computer system is not
flexible or dynamic enough to receive, process and out
put information within the constraints imposed by the
function and purpose of the committee. To an extent
this is true. However, any large organization has routine
input and historical data that can be structured and
processed and presented in a logical and varied fonnat.
When looked at in this manner, the Senate Committee"
seems very similar to any organization.

ADP as a tool for committees

The staff directors and the chief clerks must be made
to believe that a computer is only a tool. It does not

Computers and Congress 357

dilute the powers of the committee members or staff
directors or chief clerks. It should be made to enhance
their power. It should enable them to better organize
and structure the information they already have and
to p~esent the infonnation in a timely and orderly and
conCIse manner.

A bill to improve the operation of the legislative branch of
the Federal Government

A bill to improve the Operation of the Legislative
Branch of the Federal Government was introduced in
the House9 and SenateS of the 90th Congress. The bill
is the resulting product of ~he Special Committee on
the Organization of the Congress. There are numerous
mentions of areas where ADP can be applied to aid
the Congress.

One area specifies a data processing system for budg
etary and fiscal information and data. The bill states
that "The Comptroller General of the United States
the Secretary of the Treasury, and the Director of th~
Bureau of the Budget shall develop, establish, and
maintain, for use by all Federal Agencies, a standard
ized information and data processing system for budg
etary and fiscal data." The Comptroller General is
also required to specify the location and nature of data
relating to various Federal agencies' programs, activi
ties, receipts and expenditures. It is also specified that
the Comptroller General establish within the General
Accounting Office the data processing systems. The
Comptroller General is also authorized the funds to
obtain the services of individual experts and consult
ants for assistance.

In another part of the bill, each standing committee
of the Senate or House is authorized to contract the
services of consultants or organizations to make studies
or advise the committee with respect to any matter
within the committee's jurisdiction.

The Director of the Legislative Research Service,
i.e., the bill proposes changing the name of the Legis
lative Reference Service to Legislative Research Ser
vice, is also authorized to procure the services of indi
vidual experts or consultants learned in particular
fields of knowledge. Also in order to facilitate its per
fonnance, the Legislative Research Service may (1)
prepare infonnation for machine processing, (2) process
information by machine, and (3) prepare information
for presentation by machine. The Service has also author
ized the funds to acquire automatic data processing
equipment to implement the specified work.

The bill also would establish for the Congress an
Office of Placement and Office ~Ianagement which
would be supervised by the House Committee on House
Administration and the Senate Committee on Rules

358 Spring Joint Computer Conference, 1969

and Administration. The Office of Placement and
Office l\ianagement would maintain for the entire
Congress, a list of private l\1:anagement concerns ca
pable of rendering studies regarding h'1lproving the
efficiency of Congressional operations.

The Senate version of the bill also proposes the
establishment of a Joint Committee on Congressional
Operations. One of the functions of this Joint Com
mittee is to make a continuing study of automatic data
processing and information retrieval systems for use
in the House and Senate and to recommend the imple
mentation of these systems. To assist in this matter
the Joint Committee is authorized to procure the
services of consultants or organizations knowledgeable
in the particular areas.

'Vhile these bills were not passed, there is general
approval and intent among Congressmen to submit
other bills to pursue the goal of adding automated data
processing support to meet congressional needs.

CONCLUSION

I have presented to you the current thought on how
ADP can aid the Congress. The needs and solutions
have been mentioned by members of Congress in
books and official publications of the Congress; they
have been specified in a joint committee study of the
Congress, and they are now documented in a bill
introduced in the 9Ist Congress.

This bill is a door. Beyond this door is a room of
boundless dimensions limited only by our imagination,
technical knowhow and salesmanship. I hope I have
done my part in presenting this door and a picture of
what is behind the door.

ACKNOWLEDGMENTS

I wish to thank Robert Chartrand, the Information
Science Specialist of the Legislative Reference Service
of the Library of Congress, for his encouragement and
for suggesting various references that have substantially
added to my paper.

REFERENCES

1 R McCLORY
An autornatic data processing facility to support tlw Congress
Congressional Record, "Tashington October 19 1066

2 R McCLORY
Congressman McClory recommends automatic data
processing study
Congressional Record Washington January 30 1967

3 T RAILSBACK
Congressman McClory suggests computer uses for Congress
Congressional Record Washington January 29 1968

4 P DONHAM R J FAHEY
Congress needs Iwlp
Random House Inc New York 1966 Chapter 6 7

5 Congress: TIw first branch of government, twelve studies of
IIw organization of Congress
American Enterprise Institute for Public Policy Research
Washington D C 1966

6 R H DAVIDSON D M KOVENOCK
M K O'LEARY
Congress in crises: Politics and congressional reform
Wadsworth Publishing Co Inc Belmont California
Hawthorn Books Inc New York 1966 Chapter 1 4

7 We propose: A modern Congress, selected proposals by tlw
House Republican Task Force on Congressional reform and
minority staffing
McGraw-Hill Book Co New York 1966 Chapter 20 21

8 Senator Monroney, from the Special Committee on the
Organization of the Congress
A Bill 90th Congress 1st Session S. 355

9 Congressman Bolling, "Legislative Reorganization Act
of 1967."
A Bill 90th Congress 1st Session H R 10748

10 R L CHARTRA~D
Computer-oriented inforrnation for tlw U. S. Congress
Law and Computer Technology Vol 1 No 2 February 1968

11 R L CHARTRAND
Congress seeks a systems approach
Datamation May 1968

12 L DESCHLER
Rules of tlw House of Representatives, Ninetieth Congress

13 G F HARRISON J P CODER
Senate manual, Ninetieth Congress

14 Organization Meeting of House Committee on A.rmed
Services, Ninetieth Congress
Washington D C February 11976

15 R L CHARTRAND K JANDA M HUGO ED
Information support, program budgeting, and tlw Congress
~ ew York Spartan Books 1968

Automatic checkout of small computers

by MARVIN S. HOROVITZ

Digital Equipment Corporation
Maynard, Massachusetts

INTRODUCTION

The testing of a computer may take on many forms, one
form is as follows. The computer may be tested in a
segmented manner.

IC
:vrODULE
POWER SUPPLY
:vrEMORY
WIRING
CP TEST (PHASE 1) ,
ENVIRONMENTAL (PHASE 2)
ACCEPTANCE (PHASE 2)

Each of the above segments makes use of either a
dedicated logic exerciser or a dedicated computer or a
time allocated computer system. The IC, MODULE,
POWER SUPPLY, ME~VIORY and WIRING are
assembled and tested prior to the entrance of Phase 1
and Phase 2 testing. This paper deals only with Phase 1
and 2 testing.

Phase 1 testifI.{J

The objective of Phase 1 is to exercise a computer
under test and check the resulting status of that
machine. In designing a test system of this nature a
prime concern is finding any malfunction that may exist
within the computer under test. Each mode of every
instruction, ::\!(emory System, I/O Interface and ::\!(anual
Control must be completely validated. To accomplish
this, initial conditions must be established. The
computer under test (PDP-8/I) must then be stimulated
and the results of the operation monitored for com
parison with anticipated data. If an error is detected,
the test system must have the capability of reporting
the error and repeating the test the computer failed to
perform. The system is designed so that the computer
under test can never impede the repeated cycling of
any test.

System hardware

To maintain continuous testing of the PDP-8/1 at
its normal clock speed would require a test system with
enormous capabilities. A more practical approach is
to design a system that will test the computer at its
normal clock speed, but only for short increments of
time. The test system hardware can be designed so that
when properly preconditioned by the Test System
Software, it will cause the PDP-8/l to function at normal
speed for the specified interval with no further stimulus.
Time between tests is used for checking the results of
the previous test and to set up for the next. T~is time
is large compared to the actual time spent testing.
This enabled us to use the PDP-8 as the test systems
computer. Design is simplified when the test systems
computer and the computer under test are the same
type machine. Data manipulation by both hardware
and software is facilitated when both machines use the
same word size. Also, a computer of the same type is
usually available in the production area and need not
be a permanent part of the test system.

The test system must have an input peripheral device
for program loading and an output device for reporting
errors. This test system uses a disk for input and a
printer for output.

There is a spEcial interface which acts as a control
and sensing device to the computer under test and is .
completely program controlled by the test system.
'Vith the appropriate commands, the tester will per
form the following test functions in the PDP-8/1 under
test through the speci~l interface.

:i59

1. Manipulate any key or switch logic.
2. Simulate memory read operations by trans

ferring data into the memory buffer at the
proper tjme.

3. Sense memory read and write drive pulses pro
duced in the memory address decoding circuits.

360 Spring Joint Computer Conference, 1969

4. Sense memory jnhibit drive pulses produced
during the memory write cycle.

5. Sense the O:N or OFF state of all jndicator light
source iunctipns.

6. Sense the one or zero state of all timing clocks
such that any timing state or pulse can be acti
vated at will.

7. Control the PDP-8/1 clock speed.

Figure 1 shows entjre Phase 1 Test System Flow
Chart and Figure liP shows the actual test station.

The PDP-SI! computer under test

Most central processors are equipped with an opera
tor's console which uses switches, keys, and indicator
lights. Generally, connection of this console is made to
the central processor logic panel with plug-in type
cables. While the PDP-8/1 is being tested by the system,
the operator's console is not used and these cable con
nections are made to the test system. All manual switch
controls are operated remotely by the test system. The
Test System program can simulate any of the actions
of a console operator from starting and stopping the
processor to observing the indicator lights.

For control of timing, appropriate modules are re
moved and timing control lines are cabled in from the
test system. Control is such that the PDP-8/1 may be
run at any of several speeds from faster than normal
to pulse by pulse.

The input-output peripheral buss cables of the PDP-
8/1 are connected to the test system. This affords an
extensive test for the I/O interface in that the injtiated
peripheral commands can be monitored, and the re
sponse to peripheral initiated actions can be sensed by
the test system.

During the initial stages of testing, the computer is
exercised without a memory stack. Cables from the
vacant memory area in the computer logic panel to the
test system enable the system to monitor memory read,
write, and inhibit pulses and simulate memory core
changes on the sense amplifier input lines.

When some confidence has been established in the
basic processor control logic and the memory control
circuitry, the pre-tested memory stack and memory
sense amplifiers may be inserted and more advanced
tests carried on. Various combinations of machine
instructions can be loaded into the PDP-8/1 memory
to form test loops that can be initiated and stepped
through much as an operator would do at the operator's
console. These program loops can be started and run
at normal machine speed. Any program can be loaded
and run in this manner which duplicates the condition
of the program running in a free standing machine.

However, in the event of a program wipe-out, due to a
machine malfunction, a programmed high-speed reload
and restart enables the system operator to observe
repeated failures on an oscilloscope. This contjnuous
cycling feature is not possible on a free standing machine
when a wipe-out failure occurs.

System software

The system hardware provides many avenues through
which the programmer may channel his efforts in
attempting to find all existing problems in the computer
under test. Two general approaches will be considered
here, one being diagnostic in nature, the other being a
specification check.

The specification check consists of outlining in detail
every particular operation that the PDP-8/l is designed
to perform. A series of tests is then written using var
ious initial conditions and operands for each operation.
Each test is provided with several check points at which
the test system monitors the state of every available
status function. Every status at each check point has
been predicted by the programmer and is stored in
internal tables of the test system program. If the mon
itored status is wrong, the comparison of the anticipated
status with the monitored status results in an error
report at the test systems printer.

The approach discussed above does not anticipate
a failure in any particular hardware area at any time,
nor does it attempt to exercise one area of the hardware

I. = ---=~ Test I

I' System Software I

II' - -T- -1

I
I Output Peripheral I

Device (Printe~

I
I
I
I

TEST ~~~~~I· I SYSTEM I ~~~
L _ _ _ _ _ I~

Comp.1i&r Under
Test

PDP-8/1

I j
I I
I I

Memory Control I I
and Sensing I Ii

'----~ ---Switc-h Contra---'I and
indicator Sensing

Figure I-Flow chart of Phase 1 test system

Automatic Checkout of Small Computers 361

Figure l/P-Actual Phase 1 test system

more than another, during a selected group of tests.
It does, however, cause the PDP-S/I to peIform its
specified operations under various conditions and checks
for any sign of a malfunction anywhere in the computer
during all the tests. In contrast to this specification
check, the second software approach is aimed at vali
dating isolated pieces of hardware. The building block
method is employed where previously checked logic is
used to test other areas.

As individual pieces of hardware are tested in small
increments, the table of kno"\\'n functioning logic grows.
Validated logic is considered sound when a new test is
performed. By analyzing the results of many tests,
a failure can be isolated to within a few logic modules.
Using the proposed system allows the programmer to
expand the set of tests whose results may be used to

predict failing modules. This expansion results from the
fact that the system can cause the computer to per
form all of its specified functions plus many more, such
as executing time pulses out of sequence, causing pro
gram interrupts at any specific time; stopping the
processor clock at any points, etc. In actuality the
building block tests are first used and then followed by
the specification tests. The Memory System is then
integrated with the computers logic. Memory integra
tion tests include exercising memory with simple test
patterns through complex test patterns. This is accom
plished by using the PDP-8/1 data break facility.
(Direct memory access.) We now have, for all practical
purposes, integrated the memory into the computer
under test. The final test is to load small test routines
directly into memory and run them at machine speed.

362 Spring Joint Computer Conference, 1969

The results of these tests are constantly monitored
by the test system. Error control is still handled by the
test system. Ultimately through this method, the
entire PDP=8/1 logic and its memory system are com
pletely tested and a complete computer is born.

Documentation

The more the test technician knows about the tests
being made and the expected responses, the easier it
will be for him to use the test system effectively in
problem solving. For this reason, an extensive set of
documents is recommended. This includes a separate
timing and print out chart for each test programmed.
These charts will list each test system action and the
anticipated computer function monitored.

The system error reports will inform the operator
of the failing test number, a failing subdivision ",ithin
that test, the status that is wrong, and what that status
should be. With this information the operator can turn
to the print out chart for the failing test to get a com
posite picture of how the test is carried out. Listed, he
Will see the predicted status of every computer function

monitored for evey subdivision of the test. With the
entire test outlined before him and the problem area
pin-pointed, he can formulate his plan of attack, which

TELETYPE PRINTOUT',

Printovt example: ~1 S GB G~1 OO~1

Printout meaning:
COIToct

No. of Stole of 8/1 Group Group
~ ~ Indical"" Indicators

0001 GB Goool

Number of tests == test which fault occurs in
State of 81 timing = time or cycle of 81 which test fails in
Group Indicators :. registers, states, or significant pulses where test problem occurs
Correct group indication = correct contents of group indicator
Defective group indication = the actual group indication (wrong indication)

Defective
Group

~

BO~1

MA - memory addres,

PC - p~!"oC!'!! CO'_'!"!~!"

M B - memory buffer

AC - accumulator

GA - Group A

GB - Group B

M S - maior sta~s

GROUP INDICATORS

FR - fetch reg ister

ER - execute regi,ter

TR - lransfer regi,ter

SI - buffered MB bits

SC - step counter

BC - buffered AC

Figure 2-'-Error message explanation group indicators

GROUP INDICATORS

i I ! i I I
MA PC MB AC GA GB MS FR DR ER TR I BI SC BC BIT

I
EXT. FR DR E R lOP BMB~ BUFF. BAC~

MA Sf PC ~ MB· ~ AC ~ lINC MA~ AND BIT. ~ BIT Sf BIT ~ 1 (1) BRK. (1) 0
PARITY EXT. lOP BUFF.
F M R MA'l TAD 2 RUN 1

PARITY EXT. lOP

DMR MA2 ISZ 4 2
PARITY ADDR. ---
EM R BMB 3 DCA ACC 3

BMBT
'p'!j~RC'

W. C. JMS FLOW 4

C. A. BMB 5 JMP BT 2A 5

I ---o F ~ BMB 6 lOT BTl 6

POWER

DFl BMB 7 OPR I CLEAR SCl 7

--- I o F 2 BMB 6 FETCH I SC2 6

I 1
I I

I I I IF ~ I PAUSE I EXEC. I SC3 9

I I
:

I
,

i
: I ! I

I
!

IF 1 ION DEFER I I I SC4 10 j, PONER
,,.

~

MAll PC 11 MB 11 AC 11 IF 2 RU N BRK. BIT 11 1 BIT 11 BIT 11 OK BMB 11 SC5 BAC 11 11

Figure 3-Group indjp,st.or table

/APCS--6L - TAPE 1
/TESTS 1-17 ARE 1 CYCLE INST.

/
/CLEAR 8/1 (SP-ST,SS)
/INITlALIZE TESTER
/lOAD FETCH REGISTER (SEE FR FOR NUMBER)
/lOAD MARGIN REGISTER (OPEN ENDED TIMING)
/lOAD ADDRESS, EXAMINE
/START S#
/
/lOAD MARGIN REG
/PULSE BY PULSE MODE
/
0001 l NO MEM DONE /FROM EXAMINE S#. MEMORY CYCLE
0001 LE MA G2576
0001 lE PC G2577
0001 lE MB GOOOO
000 1 lE AC GOOOO
0001 lE GA G1400
0001 lE GB GOOOO
0001 lE MS G4000
0001 lE FR G5325
000 1 lE DR GOOOO
0001 lE ER GOOOO
0001 lE TR G0141
000 1 lE BI GOOOO
000 1 lE SC GOOOO
000 1 lE BC GOOOO

0001 F NO MEM DONE
0001 F4 MA G2525
0001 F4 PC G2526
0001 F4 MB G5325
0001 F4 AC GOOOO
0001 F4 GA G 1400
0001 F4 G8 G0321
0001 F4 MS GOll0
0001 F4 FR G5325
0001 F4 DR GOOOO
0001 F4 ER GOOOO
0001 F4 TR G0161
~001 F4 BI G5325

Figure 4-Error message examples

is the most important phase of any attempt at solving
a problem.

Error format

• Column 1 designates the Test Number within the
program.

• Column 2 is the check point number within a test.
It may be a number (1 to 7) or a letter-number
combination (i.e., F3, D3, E1, etc.). If a letter and
number, the letter is the cycle name (Le., F =

fetch, D = Defer, etc.) and the number is the
time state in which the test is performed. If a single
number, the cycle and time should be given under
the particular tests format.

• No Mem Done-This indicates the memory was
cycled by either a switch function or by program
ming command and did not complete its cycle.

• Column 3 gives the abbreviation of the register in
which an error occurred. (See master chart.) Num
bers loaded into the 8/1 will appear in some of these

Automatic Checkout of Small COluputers 363

registers in the printout marked "G" (Good) after
the register. Individual test formats \vill designate
when this is true.

• Column 4 is the "G" or Good number. That is the
number or instruction loaded into or predicted
from the 8/1 under test. They are printed in octal.

• Column 5 is the "B" or Bad number. These are not
included in these listings. The "B" column gives
the incorrect number from the 8/1. They are printed
in octal.

Phase 2

The System Controller is composed of a PDP-8, I/O
peripheral equipment, an Inter-Processor Buffer and a
residing software package.

The obj ective of Phase 2 is to provide the technician
with a quick means of reloading a Maintenance Pro
gram to worst case Margin Test a PDP-8/l. It is also
used to automatically accept unattended computers.

The System Controller can be used as a high-speed
program loader, or to automatically run a computer
under test with diagnostic programs in a predetermined
sequence. The programs are stored on a disk at the
System Controller. Many stations can be tied to the
controller's bus for access to the diagnostic programs.
The number of stations fs limited only by the dwell
t;me for servicing a station.

Drawn in Figure 5 is a block diagram of the system.
Each station has a console which has switches that

the operator uses to select a diagnostic program. He
then presses a switch to indicate to the System Con
troller that he wants a program. Indicators are used

SYSTEM CONTROLLER

i-------x-- - - -+

Figure 5--Flow chart of Phase 2 test system

364 Spring Joint Computer Conference, 1969

to inform the operator of a successful load or an error
condition.

The System Controller connects one station at a time
. to the bus by enabling that station's gates. The station

is then interrogated for program selection. If a program
is requested, the desired program is brought from the
source disk to the extended memory field of the con
troller and checksummed. From the extended memory,
the program is then loaded into the computer under
test with the aid of an Inter-Processor Buffer (computer
to computer transfer). After the program has been
loaded, the extended memory of the controller is cleared
and the program is then sent back to it from the com
puter under test. The controller then makes a checksum
test to determine if the program was successfully loaded
If a bit were picked up or lost during the transfer, an

~11
-!T!'v. - =- ----

error condition would exist. The operator is notified.
via the station indicators whether there was an error
or successful load (Program loading with overhead 2
seconds) .

When being used as a high-speed loader (Figure
5 IP), the operator manually calls for the individual
Processor Tests from the System Controller. These
tests are designed to catch worst case failures caused
by temperature, vibration and voltage margins. These
are our standard field-oriented maintenance programs.

When being used in the auto accept mode (Figure
5/P A) following a successful load, the computer under
test will be told to jump to the beginning of the program
and run it for some specified length of time. While the
computer under test is running, the controller monitors
each on-line station for errors. If an error exists the Sys-

Figure 5/P-Actual Phase 2 environmental test syst~m

A ____ L.!_ ,..-,, ___ , __ J 1""'" , ..
.l"1.UI"ulUGtl"lC \.JIlOC.K.OUl:; or ~mall Computers 365

Figure 5/PA-Actual Phase 2 auto-acceptance test system

tern Controller will output the error information on a
printer as well as the operators console. The controller
has the ability to re-try running that program to gather
further information as to whether is is a transient or a
repetitive failure. If the error is catastrophic, the
station will be disconnected from further service. If no
errors have developed after a specified length of time,
the next diagnostic program is loaded and run. After
all diagnostic programs have been run successfully, the
controller will type an accept message for that station
and start the routine over again. After a specified num
ber of hours of error free operation, the computer under
test is ready to be shipped. The auto accept mode of
operation does not require any operator intervention.

CONCLUSIONS

The proposed system provides a very effective tool

for use in debugging new computer central processors
at a production facility. Any malfunction that may
exist within most computer control processors can be
detected and found by using this system. In general
these problems will be found easier when using the test
system than when running a diagnostic program in a
free standing machine.

While many of the details of this system are oriented
towards computers produced by Digital Equipment
Corporation, I believe that the basic idea can be
adapted to a wide variety of computers, produced by
many manufacturers.

The advantages of using a computer test system for
checkout on a computer production line are fast turn
on time, less experienced test technicians, resulting in
greater product reliability at lower cost.

Cryptographic techniques for computers

by DENNIE VAN TASSEL

San Jose Stale College
San Jose, California

INTRODUCTION

The use of systems of secret communications as an
economical method to increase the security of confi
dential computerized files has stimulated much interest.
Just recently during Congressman Gallagher'S Con
gressional hearings on privacy, it was repeatedly sug
gested that cryptographic-type protection should be
used for data communication lines and storage of
confidential information in order to make eavesdropping
an extremely difficult task.1 Today, one finds the yery
nature of computerized information systems actually
facilitates its unlawful reproduction and transmission
to anyone with the tools and know-how. Unlike infor
mation which is stored with scrambling techniques,
information stored in clear form requires no sophisti
cated technology, nor complex deciphering systems for
either decoding or dissemination. 2 More importantly,
there is good reason to assume that organized crime
and industrial spies have, or will have, the knowledge
and the financial resources necessary to acquire and
misuse the information in most systems now being
considered, including the tapping of communication
lines. Finally, once a piece of information is lost, its
original confidentiality can never be regained. Since in
formation which has preyjously been scattered among
several rather protected and widespread sources is being
collected into one place, wholesale theft of information
is very likely to become a continuing fact of-life for the
American public.

This new pattern of computer misuse must be dis
couraged by the imposition of severe sanctions as well
as clearly defined safeguards. One dangerous factor of
keeping information confidential is that our society
does not believe its own pronouncements about the
right of secrecy or privacy. In general, the majority of
people will support its own claim on the right of keep
ing some information confidential but at the same time
will not demand prohibitive action against both govern-

mental and private snooping. While it is obvious that
this reaction says little for society's capacity to be
honest and rational, equally important, this trend
strengthens the possibility that individual privacy may
vanish like the American buffalo.

The main focus of this article is on cryptographic
techniques. This leads to something of a distortion.
While cryptographic techniques are an essential means
of keeping information confidential they are a symp ...
tom rather than a cure of the larger problem of privacy.
While this is not the appropriate place to expound the
question of the right of privacy and the relationship of
privacy and the computer, it has been necessary to
give the problem minimal consideration here.

A high degree of secrecy at minimum cost can be
achieved through the use of cryptographic techniques
for the protection of confidential information. The
general principle behind the use of cryptographic
techniques to protect confidentjal information is that if
unauthorized use is inexpedient and costly the price of
such use is raised to such an extent that it is generally
uneconomical to attempt it. The same principle is used
in building bank vaults.

In order to explain the use of cryptographic tech
niques for computers it will be necessary to preface the
discussion with a brief definition of terms. A PLAIN
TEXT message is the input message. A CIPHER or
CRYPTOGRAM is the output message; that is, the
message after it has been changed to hide its meaning.
CRYPTANALYSIS is the act of resolyjng crypto
grams into their intelligible texts without having pos
session of the system or key employed. Throughout
this paper the word ENEMY will be used to designate
any persons not authorized access to the messages.

There are two principal classes of cryptography,
transposition and substitution. A TRANSPOSITION
cipher is one in which the letters of the plaintext are
unchanged, but its order is rearranged so that the

368 Spring Joint Computer Conference, 1969

cipher message apparently conceals the clear message.
A ::\IOXOLITERAL transposition is one in which the
transposed elements are the single letters of the plain
text. If the transposition operates on groups of letters
or words, the transposition is called POLYLITERAL.
The agreed upon manner of writing the clear message
into the agreed upon pattern is called the INSCRIP
TION of the message. The method of taking off the
letters from the cipher sequence is called the
TRANSCRIPTION.

In a SUBSTITUTION cipher the elements of the
plaintext keep their relative position, but they are re
placed in the cipher text by other letters or symbols.
Substitution symbols are ::.\10NOALPHABETIC if a
single cipher alphabet is used and POLYALPHA
BETIC if two or more cipher alphabets are used.
'Vhen the substitution involves one letter at a time
the cipher is ::\10NOGRAPHIC. In a POLYGRAPHIC
system the substitution is by pairs of letters or larger
groups. ::\Iost cipher systems consist of two parts; a
general method which is fixed, and a key-variable
which changes at the will of the correspondents and
which controls the operation of the basic method.
Key~ are either literal, consisting of words, phrases or
sentences; or numerical composed of figures. 3 Ex
a.mples of keys will be provided "vith each method.

Transposition methods

Transposition techniques consist of changing the
natural order of a record so that the original meaning
is hidden. A common game with children is to write a
message backwards. The record VAX TASSEL would
be enciphered LESSAT :\"AV. Another simple example
is '.yhen adjoining characters are switched; using thf:
same record, VAX TASSEL becomes AV ~ATSSLE.
Another method of transposing is to take all the even
numbered characters within a record and move them
to t.he first half of the record, and move the odd num
bel'ecl characters to the laRt. half of the record, as follows:
VAX TASSEL becomes A ASLV~TSE. These are
simple examples of transposition methods.

During the civil war a simple transposition called the
RAIL FEXCE transposition was commonly used. In
this system a record containing a Social Security
Xumber .503-40-1687 and an hourly rate of $3.12,
(5034016870312), is inscribed along a rail fence as
follows:

5 :3 067 a 2
o 4 8 0

Then the transcription is taken off row by row in groups

of five as shown below:

53067 :32041 801

The rail fence method can be modified to a 3-row,
4-row, or n-row; however the security obtained is
minimal. The key in this method is the number of rows
used.

There are other ways in which records can be scram
bled. One of the most common makes use of rectangles
to scramble the message. We can inscribe the alphabet
into a rectangle by using a vertical path as follows:

A E I ~\1 Q U y

B F J X ,,-' R V Z.
C G K 0 S W
D H L P T X

This transcription consists of taking the elements off
horizontally, as follows:

AEIl\1Q UYBFJ XRVZC GKOSW DHLPT X.

There are many variations of the possible inscription
routes and as many for the transcription. In fact, if the
record is n-elements long there are n! (n factorial)
possible orderings of the elements. Using conventional
geometric inscriptions we may obtain the fo~lowiHg
routes:

1 Horizontal
2. Vertical
3. Spiral
4. Diagonal

A horizontal route can have all the rows inscribed in the
8a.mp. rlirp.ct.ion or in alternating directions. The same is
true for the vertical route. A spiral route may be clock
wise or counter-clockwise. And a diagonal route may be
diagonal upwards throughout or diagonal downwardR
throughout, or it may begin either upward or down
ward and alternate its direction while maintaining a

diagonal path. Thus, there are ten routes in inscriptioll
beginning with each corner of the rectangle, i.e., :.>

horizontal, 2 vertical, 2 spiral, and 4 diagonal
routes. Therefore, there are 40 different possible paths
using conventional routes. This method is particularly
fitted to computer usage because of the ease of setting
up matrixes and modifying the path of transcription.

The· size of the rectangle has much to do with the
amount of security obtained. If a rectangle of 64 ele
ments is used there are five possible rectangles, i.e.,
2 X 32,4 X 16, 8 X 8, 16 X 4, 32 X 2. On the other
hand when using a rectangle of size 72 elements there
are 10 possi'ble rectangles, i.e., 2 X 36, 3 X 24, 4 X 18.

6 X 12,8 X 9,9 X 8, 12 X ~ 18 X4, 24 X 3,36 X 2.
The greater the number of possible rectangles the
greater the security.

It is not necessary to use a rectangle that fits the
record length exactly. That is, a record of length 26
can be inscribed into a rectangle of 28 elements. The
unused cubes are simply ignored while the record is
transcribed as it was in the first rectanglar example.
Once the size of the rectangule is known, it is much
easier for an enemy to decipher the cryptogram;
therefore, it is undesirable to use a rectangle the same
size as the record. If partially filled rectangles are used,
much less information is given on the encipherment
method.

Alphabetic keys are often used to encipher a record.
Using the key-word LENGTH, the key-word is placed
over the columns as follows:

L E N G T H
A B C D E F
G H I J K L
M N 0 P Q R
S T U VW X

N ext, the letters in the key-word are put in alphabetic
order and the respective columns are shifted along with
the letters of the key -word as follows:

E G H L N T
B D F A C E
H J L G I K
N P R lV1 0 Q
T V X S U W

Quite often a key-word is also used on the rows in the
same manner. This method of transposition is called
XIHILIST, named after the Russian anti-Tsarists who
used this method.

Substitution methods

In a substitution cipher the elements of the plaintext
keep their relative positions, but they are replaced in the
cipher text by other letters or symbols. One of the most
simple substitution systems is called a CAESAR sys
tem, supposedly used by Julius Caesar. Caesar replaced
each plaintext letter by the third letter after the re
placed letter in the alphabet. The correspondence of
each plaintext letter with its cipher letter is represented
in the following table:

plain ABC D E F G H I J K L IV1 N 0 P

cipher D E F G H I J K L ~l N 0 P Q R S
TUVWXYZABCQRSTUVWXYZ

Cryptographic Techniques for Computers 369

The record FORTRAN is enciphered as IRUWUDQ.
The process here is similar to module arithmetic with
base 26. Sometimes a reversed cipher alphabet is used,
but predictably neither method offers a high degree of
security.

A key-word method offers a much higher degree of
security. The key-word is written first and followed by
other letters of the alphabet not in the key-word. Any
letter in the key-word which is repeated in the key-word
is dropped the second time. If the key-word is COK
FIDENTIAL the key-word alphabet would be as follow~:

plain ABC D E F G H I J K L ~1 N 0 P

cipher CON F IDE TAL B G H J K .:.vI
PQRSUVWXYZQRSTUVWXYZ

It should be noted that both the letters K and I were
repeated in the word CONFIDE:XTIAL so that when
this word was used to set up the key-word alphabet the
second X and I were dropped and CO XFID ET AL was
used. The record FORTRAN l~ enciphered a~
DKQSQC.J.

Instead of using a key-word cipher alphabet it i~
possible to set up a strictly random ~equence of the
alphabet~ But the additional security obtained is not
much greater t han with the key-word alphabet, and the
key-word system lends itself to use by subroutines and
simple change of the cipher by merely ehanging tlw
key-word.

One disadvantage of all the above ~ubstitution meth
ods is that once it is set up the cipher never change~.
This lesse~ls the security because there are certain sta
tistical and structural characteristics of English word~
that help break a substitution system of this type. For
instance, one is that the most common letter in th('
alphabet is the letter E, so a cryptanalyst ha~ to mere
ly lo?k for the most common letter and chance:,.; are
that it iR really the letter E. Here in their order of im
portance is a list of the rno~t common letters of the
alphabet E T 0 A X IRS H. There are also certaill
structural characteristicH in English such as the letter l"
always follow the letter Q. Another common character
istic in English iR that eertain digraphs sueh as I'll
appear quite often. AddresseH, dates, (~()BOL and
FORTRAN programs are especially vulnerable to
analysis. By now readers will have observed that the
above systems are not invulnerable by any means, and
that the art of cryptography must require a more COlll
plex system than offered so far.

Important systems to consider are those of poly
alphabets, that is,' those with more than Olle alphabet.
Clearly, polyalphabets are used to make the enemy'H
work a little more diffieult. A GROXSFELD encipher-

370 Spring Joint Computer Conference, 1969

ment uses a numerical key and modifies the traditional
Caesar system. Using a key 31206 and the plaintext
record PROGRAM~1ING the following encipherment
is obtained;

the substitute is S. To encipher R with key one, begin
at R and count forward one in the normal alphabet;
the substitute is S. For decipherment, count backward
in the alphabet. rrvv~o factors are evicieIlt: there are 10

key
plain
cipher

31206
PROGR
SSQGX

312063
AlVEUIN G
DNOIT J

possible substitutions here (for the digits 0-9) and we
lose some of the weah..~ess of the previous systems.

To encipher P using the key digit three, simply begin
at P and count forward three in the normal alphabet;

Giovanni Battista della Porta designed a system in
the 16th century that was actually considered complete
ly safe from enemy decipherment for 200 years. Re
markably, the system is probably still safe from anyonp
but a trained cryptanalyst. Here is the Porta table:

PORTA TABLE

I I ·
.I. 1

I CD ABC D E F G H I J K L M
o P Q R STU V W X Y Z N

EF ABC D E F G H I J K L M
P Q R S 'T' UVWXYZNO 1

GH I ABC D E F G H I J K L M
I Q R STU V W X Y Z N 0 P
i

IJ \ABCDEFGHIJKLM
IRS T U V W X Y Z N 0 P Q
I

KL ! ABC D E F G H I J K L M I
i STU V W X Y Z N 0 P Q R

MN ABC D E F G H I J KL M
T U V W X Y Z N 0 P Q R S

OP ABC D E F G H I J K L M
U V W X Y Z N 0 P Q R S T

QR ABC D E F G H I J K L M
V W X Y Z N 0 P Q R STU

ST ABC D E F G H I J K L M
I
~XYZNOPQRSTUV

ABC D E F G H I J K L M !w
I

1

m

YZ

1

XYZNOPQRSTUVWI

Ii A BC D E F G HI J K LMI'
I Y Z N 0 P Q R STU V W X

IABCDEFGHIJKLMi
IZNOPQRSTUVWXYI
j 1

This system uses a key-word and 13 cipher
alphabets. If the key-word is HELP and the record to
be enciphered is PROGRA:rvrMING the following
encipherment is obtained :

key
plain
cipher

HELP
PROG
YICJN·

HELP
RAlVIlVl
BPRT

HEL
ING
YLY

By referring back to the Porta chart we can see 13
alphabets. In all 13 of these cipher alphabets, the
encipherment is reciprocal. In the first alphabet on
the chart, for instance, the substitutet for A is N, and
the substitute for N is A. This system applies a key
word to determip.e which alphabet 1S to be used. If the
key-letter is either A or B, the first alphabet is the one to
be used.

In the example above the firsi key-letter is H. There
fore, we go down to the GH alphabet in the Porta table,
whibh is the fourth alphabet from the top . .Next we
take the plaintext letter under the H in the example,
which is P, and find the letter M above the P in G H
Porta alphabet. M is the cipher letter corresponding to
P. This system is an improvement on the Gronsfeld
f;ystem because of the greater number of alphabets.

We now come to a system developed by Sir Francis
Beaufort which has of course the name' the Beaufort
method.' Not unlike the Porta system the Beaufort
:-:ystem also makes use of a key-word and uses a Beau ..
fort Table (shown below).

BEAUFORT TABLE

ABC D E F G H I J K L M N 0 P Q R S T UV W X Y Z A
BCD E F G H I J K L M N 0 P Q R STU V W X Y Z A B
C D E F G H I J K L M N 0 P Q R STU V W X Y Z ABC
D E F G H I J K L M N 0 P Q R STU V W X Y Z ABC D
E F G H I J K L M N 0 P Q R STU V W X Y Z ABC D E
F G H I J K L M N 0 P Q R STU V W X Y Z ABC D E F
G H I J K L M N 0 P Q R STU V W X Y Z ABC D E F G
H I J K L M N 0 P Q R STU V W X Y Z ABC D E F G H
I J K L M N 0 P Q R STU V W X Y Z ABC D E F G H I
J K L M N 0 P Q R STU V W X Y Z ABC D E F G H I J
K L M N 0 P Q R STU V W X Y Z ABC D E F G H I J K
L M N 0 P Q R STU V W X Y Z ABC D E F G H I J K L
M N 0 P Q R STU V W X Y Z ABC D E F G H I J K L M
N 0 P Q R STU V W X Y Z ABC D E F G H I J K L M N
o P Q R STU V W X Y Z ABC D E F G H I J K L M N 0
P Q R STU V W X Y Z ABC D E F G H I J K L M N 0 P
Q R STU V W X Y Z ABC D E F G H I J K L M N 0 P Q
R STU V W X Y Z ABC D E F G H I J K L M N 0 P Q R
STU V W X Y Z ABC D E F G H I J K L M N 0 P Q R S
T U V W X Y Z ABC D E F G H I J K L M N 0 P Q R S T
U V W X Y Z ABC D E F G H I J K L M N 0 P Q R STU
V W X Y Z ABC D E F G H I J K L M N 0 P Q R STU V
W X Y Z ABC D E F G H I J K L M N 0 P Q R STU V W
X Y Z ABC D E F G H I J K L M N 0 P Q R STU V W X
Y Z ABC D E F G H I J K L M N 0 P Q R STU V W X Y
Z ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z
ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z A

Cryptographic Techniques for Computers 3·71

I n this table we have 27 alphabets in which all four of
the outside alphabets are exactly alike. L sing the same
key-word HELP and the plaintext record PROGRAJVI
}UNG we will get the following encipherment :

key
plain
cipher

HELP
PROG
I.NDR

HELP
RA1fl\1
KWBX

HEL
ING
BJV

To encipher by this method we start with the key-letter
H (at any border) and trace inward to the plaintext
letter P, turn sideways and emerge at the border letter
I which is the encipherment ofP using the key-letter H.

While these substitution systems have been set up
for a 26-element character set, they can all be expanded
to any desirable character set such as a 36-element char
acter set which would include the 26 elements of the
alphabet and the numbers 0-9 or perhaps even one of
the 48- or 60-element character sets commonly used in
computers.

Advanced crypto(lraphic techniques

The main focus of this paper-has been an introductory
look at many general methods of cryptography. In
deed, while each slight variation can add or lessen the
security acquired from the individual system the many
possible modifications of each system have not been
included because of the limited scope of this paper.

Yet it is necessary at this point to raise some of the
more advanced cryptographic techniques. Quite often
substitution and transposition methods are combined.
First, a record is put through a transposition and next
a substitution is app1ied. This win surely increase the
security even if both the transposition and substitution
are quite simple.

A double transposition or double substitution can be
used and although it doesn't lower the security neither
does it always significantly raise the security. An ex
ample of a double substitution that would actuany
reduce the security is to use two Caesar substitutions
that were actually inverses of each other. While this
may seem ridiculous it is possible to use two substitu
tions or transpositions without noticing that they are
actually partial inverses.

Valuable infonnation to possess when tapping a
conununication line is to know exactly when informa
tion is being transmitted. To avoid releasing even this
small amount of information, strings of random digits
are often transmitted when the system is not being
used.4 This necessarily puts the intercepter in the
position of first having to determine which string of
digits is useful information and which is garbage in-

372 Spring Joint Computer Conference, 1969

formation; otherwise he will spend days trying to de
cipher something that doesn't mean anything in the
first place. The same principle can be used with stored
memor"'J files. Unused memol1T space is inserted "\xlith
strings of random digits.

Messages are also split up into segments so that part
of the message is sent at one time and the rest is sent at
another time, possibly even by a different system of
communications. The same principle can be used on
stored memory files so that records are divided up into
segments and spread through two or more storage
devices so decipherment could only begin after the
different sources were properly brought together.

Another technique is to add a generated random
binary sequence to records as they are being stored in
memory. It is possible to add a different random number
sequence to each record so that decipherment of one
record by an enemy will give no information on how to
decipher the next record. This can be a rather discourag
ing prospect for even the most persistent cryptanalyst
with a computer.

Indeed, the list of cyptographic techniques is as end-

less as the inventive genius of man. All one has to do is
transmit the cryptographic key in some non-intercept
abl~ way and to have all operations reversible (non
singular). As to what constitutes the perfect cipher j
Francis Bacon says: "that they be not laborious to
write and read; that they be impossible to decipher;
and in some cases, that they be without suspicion."

REFEREN"CES

'j'M computer and invasion of privacy
Hearings Before a Subcommittee on Government Operations
House of Representatives July 26-28 1966
U.S. Government. Printing Office Washingt.on D.C. 1966

2 H E PETERSO~ R TURN
System implication of information privacy
Proc S J C C Hl67

:3 D D MIl..LIKI~
Elementary crytography and crytanalysis
~ew York University ~ew York 1943

4 P BARA~
On distributed communications: IX. security, secrecy and
tamper-free considerations
RM-3765-PR The RA~D Corporation Sant.a Monica
California August 1964

Montessori techniques applied
to vro!!rammer trainiW! in

.L LJ LJ

a workshop environment

by ELIZABETH R. ALEXANDER

California Division of Highways
Sacramento, California

INTRODUCTION

This paper describes a unique workshop structure
based on the Montessori Nlethod and utilizing both
vertical and horizontal interaction in the training of
systems programmers.

The scope of this paper covers the definition of the
training need, the objectives of the workshop, . the
training curriculum, the selection process, the appli
cation of certain ::\1ontessori techniques in the training
of programmers, the measurements for evaluating
success, the results of the workshop to date, and the
planned, continued upward development of program
mers.

Training need

The California State Division of Highways' un
satisfactory experience with on-the-job and vendor
training resulted in our decision to develop and im
plement our own in-house programmer training work
shop. Prior to August, 1966, we depended upon on-the
job training supplemented by vendor courses.

On-the-job training was constantly interrupted by
production schedules; production supervisors did not
allow adequate time for training, and they were not
necessarily qualified or motivated to train.

Vendor training objectives tended toward course
completion and coverage of material. The courses were
generalized, scheduled at inconvenient times and did
not cover the total subject matter necessary to the
training of a thoroughly productive trainee systems
programmer.

Individual self-discipline, motivation and ambi
tion for increased levels of responsibility did not result
from these approaches toward training.

373

In July, 1966, we developed a curriculum for an
in-house systems programmer training workshop, and
applied certain training methods formulated by Maria
::\1ontessori.1 These methods are the right of the student
to be active, to explore his environment and to develop
inner resources through investigation and creative
effort. The environment should be such as to give
scope to the individual's inner resources, to direct
these resources and most of all to call them forth. The
instructor's task is one of assisting, watching, encour
aging and inducing rather than interfering, prescribing
or restricting.

To date, seventy-two systems programmer trainees
have graduated from eight classes where these tech
niques have been applied.

A systems programmer trainee within our installa
tion is one whose basic training includes concepts
considerably beyond the fundamentals of applications
programming. A graduate from our systems program,
mer trainee workshop must also have a broad, basic
understanding of the logic of the operating system
data management, system library functions, catalogue
procedures, the sophistications and efficiencies of Job
Control Language, the purpose of system control
blocks, the various access methods, available utilities,
and core dump analysis.

Graduates from our workshop are eligible for con
sideration for rotation into systems software program
ming after a minimum of six month's experience in
applications programming. Upon rotation into the
systems software programming unit, they receive
additional training in operating system coding, tele
processing access methods, system generation and
details concerning the logic of the operating system
under a multiple variable task environment.

374 Spring Joint Computer Conference, 1969

The objectives of the workshop

The objectives of our programmer training work
shop are:

1. The development of com.petent trainee systems
programmers who can take immediate respon
sibility for· complex assignments.

2. The development of individual self-discipline,
professional motivation and endeavor towards
reaching levels of increased responsibility such
that it will continue after graduation from the
workshop.

3. The assurance of a steady flow of capable per
sonnel, qualified and trained, to fill program
ming positions which occur through promotions
and attrition. We cannot afford to be dependent
upon the indispensable programmer.

4. The programmer training workshop is only a
first step in the system programmer's develop
ment; it serves to reduce attrition in the long
run by providing opportunities limited only by
the individual's interest and ability.

The training curriculum

The training curriculum is dynamic in nature. It
is subject to revision based on our current hardware/
software environment and advancements in the state
of-the-arts which have practical application within
our installation.

At the present time our environment consists of a
System/360 Model 65 with one mi~lion bytes of core
storage, twelve tape drives, two 2314 disk storage de
vices, one data cell with another to be delivered in
August, two high-speed printers, a drum, a Cal-Comp
plotter, remote job entry with 2780's in eleven dis
tricts, six 2260 display units in the software and pro
gramming units, with additional 2260's on order for
users.

We are under a full operating system with the Faster
generalized file processor and are in a multiple variable
task environment.

The curriculum developed for the workshop is di
vided into two parts. The first section covers program
ming concepts and the hardware and software of the
system and comprises eight weeks. The remaining four
weeks are devoted to a real, live production environ
ment within the workshop in which each trainee is
given a fairly complex production program to chart,
code, compile and test, and which will actually be used
by the installation. Each trainee is given a completely
different program.

Implementation of the training workshop

Selection process

Candidates for our training work-Qhop must pass a
State version of the IBN1 Programmer Aptitude Test.
The cut-off point is 70 percent. This test eliminates 50
percent of the candidate group. Successful candidates
are further evaluated through in-depth interviews.

Questions are asked during the interview which
will expose the candidate's self-image and professional
goals. The candidate is asked to relate experiences
which will substantiate the salient points of the self
image. The self-image and goals are then evaluated
against the following behavioral criteria:

1. A strongly developed sense of personal moti
vation toward a long-term career in data pro
cessing.

2. A basic character that is conducive to devel
oping a high degree of self-discipline.

3. An enthusiastic interest in working at a detailed
level for long periods without frustration.

4. The ability to work under pressure to meet
critical deadlines.

5. The ability to communicate.

Enrollment in our training workshop is limited
to twelve trainees. This is the maximum number of
students which we feel will allow us to maintain the
desired flexibility of working conditions.

Unique Montessori environment

Our training environment is unique because it applies
Montessori IVlethods to the training of systems pro
grammers. These methods are the development of
seli-discipline through freedom,. all environment which
challenges and motivates on an individual basis and
encourages individual growth toward full potential.

The workshop is structured to appear to be a free
form in-group atmosphere. It is, in fact, a carefully
controlled and disciplined environment where the
ground rules for expected performance within the work
shop emphasize the professional attitude expected
in the production environment of the installation.
The workshop stresses group interaction and individual
self -discipline. It utilizes the unusual horizontal inter
action of students training each other as well as the
traditional vertical interaction of the instructor train
ing the students.

Ground rules for expected perfornulnce

Ground rules for expected performance are outlined
for the trainees.

Montessori Techniques in ,xlorkshop Environment 375

It is emphasized that each trainee has been care
fully selected for this workshop.

The workshop has been implemented to produce
qualified, first level systems programmer trainees. It
was not implemented to produce coders of higher level
languages. It is expected that the trainees will keep this
objective before them as they proceed through a diffi
cult curriculum.

The curriculum requires an average of three hours
of voluntary homework assignment each day. These
homework assignments make it possible to cover an
extensive amount of academic material within an eight
week period, evaluate the professional motivation of
the trainee, and apply pressures of motivation and
self-discipline.

This workshop does not graduate a trainee who
demonstrates a lack of ability or who fails to meet
the expected high level of performance. The trainees
are told that the expected attrition rate within the
workshop is 10 to 20 percent and that there will be no
exceptions to the standards of expected performance.

The graduates from this workshop are expected to
be able to immediately assume responsibility for com
plex programming assignments with minimal super
vision.

Application of the Montessori method

The application of the Montessori Method to our
training workshop has been achieved in the following
areas:

1. Intense self-discipline through freedom
The trainee has been encouraged to discipline

his own study habits and not be concerned with
the pace at which other trainees may learn.
Observation has shown that when a trainee
attempts to emulate the study habits of a peer,
he frustrates his natural mode of self-discipline.
This results in reduced performance. When the
trainee returns to his own specific form of self
discipline, his level of performance rises again.

The trainee is required to demonstrate re
sponsible initiative in coming to the training
instructor for individual guidance and instruc
tion. Every opportunity is given for special
tutoring at a time acceptable to his schedule.
Hemust, however, demonstrate a desire for help
in achieving his goal. If the instructor wishes
to remind a particular student that special
tutoring is available, the reminder is directed
toward the entire group; not toward the individ
ual. This approach forces the student to re
consider the advantages of accepting help and

the alternative of possible failure to pass success
fully through the curriculum. It emphasizes to
him the need for self-discipline through freedom
of action on his part in taking the proper initia
tive. It is made clear to the trainee that he is
responsible for properly interpreting and under
standing the subject matter. Quizzes and exam
inations are open book to discourage memoriza
tion.

The trainee is allowed considerable freedom
ill his individual ability to demonstrate self
discipline. A prime example of this freedom
occurs during the study periods. The trainee
is not actively monitored during these periods.
He has the responsibility to be prepared to par
ticipate in. the next scheduled group discussion.
He cannot be a disruptive force to others who are
studying. He is given the freedom to study by
himself, study in a small group cluster where
there is a horizontal exchange of ideas and a
process of teaching each other, or he cannot study
at all.

During the study periods, the instructor will
sometimes leave the environment for a half-hour
or so. This is done to encourage a totally free
environment for individual self-discipline on an
active basis.

The training instructor keeps a detailed,
daily diary on each trainee. Particular atten
tion is given to recording individual critical
incidents. This diary serves as a reminder to
the instructor during the weekly evaluation and
counseling session with the student. It also is
used to substantiate an outstanding performance
report or as detailed documentation required
for recommending rejection from the workshop.

2. Challenging and motivating the individual
The trainee is given increasingly difficult

assignments. He is told that the curriculum
covers in-depth systems programming concepts.
On the first day of the workshop he is given some
thirty-five technical manuals ranging from basic
programming through details concerning the
internal logic of the operating system. He is
told that he will be expected to understand and
apply the technical subject matter covered with
in these manuals and that he has eight weeks to
reach these expectations. The intense impact
of receiving all thirty-five manuals2 at one time
has the effect of challenging and motivating the
trainee toward full achievement of these goals.

The trainee is told that upon leaving the
workshop environment he will be expected to be

376 Spring Joint Computer Conference, 1969

immediately productive and contribute to the
upgrading of the installation. His training
has prepared him to move in several directions
of individual development. Within a relatively
short period of six to nine months he will be
expected to become a responsible programmer of
large Management Information Systems appli
cations, a fully qualified software programmer
responsible for the operating system or a techni
cal specialist in teleprocessing, generalized file
processors such as Gentry or 1Vlark IV, Graphics
or any other advancements in the state-of-the
arts that the installation implements.

The trainee is encouraged to challenge his
environment at any point. He is asked to become
an experimentalist-to not be afraid to try a
technical innovation which has not yet been
implemented within the installation but which
seems to be a practical approach and is proven
to be theoretically possible. He is encouraged
to be an innovationalist-to not be inhibited
in making suggestions for improvement. The
philosophy of the workshop is that the newest
employee can possibly make a major contribu
tion to progress within the installation.

3. Special emphasis on individuality
The workshop encourages the trainee to have

a deep curiosity for exploring beyond the subject
matter covered within the curriculum. The
trainee is encouraged by his own motivation to
do individual assignments beyond those required
by the curriculum and to report back to the
group. Examples of such individual assignments
have been the internal logic manuals on the
Compiler, Linkage Editor and Input/Output
Control System. The IB1vl Systems Journal,
Volume Three, Numbers Two and Three, 1964,
with A Formal Description of the System/
360 by Dr. Kenneth Iverson, 3 has been given
as a special reading assignment to several train
ees who demonstrated interest and the ability
to absorb the material. One trainee, especially
qualified by his background, was encouraged to
give a session to the group on vector analysis.

This initial interest on the part of the trainee
has usually resulted in identifying a direction
for continued self-development which has been
beneficial to himself and to the installation.

Horizontal and vertical interactions

The physical environment of the workshop is made
conducive to horizontal interaction in the exchange of
ideas among the trainees. The desks are placed i;o. a

conference arrangement so that the students face each
other. One desk in the group is reserved for the in
structor, who, while sitting at this desk, enters the
group involvement on an active basis· and in fact be
comes a member of the group,

The discussion periods are a complex environment
utilizi,ng the lVIontessori Methods of individual self
discipline, motivation and endeavor. Superimposed
is a group dynamic structure which is best emphasized
by the fact that a cooperative rather than competitive
attitude is developed among the group. Group motiva
tion is stressed.

At times the group actively takes over and runs
its own training. It is they who select a peer to go up
to the blackboard and summarize the key points of
their discussion; and it is they who monitor their own
horizontal interaction. At such times the instructor
remains outside the group and does not become actively
involved unless the group loses control over the dis
cussion.

At other times the vertical interaction is evident
between the instructor and individual students or
between the instructor and the group as a whole. The
instructor may have an open discussion with one mem
ber of the group. He may by his singular attitude
indicate to the rest of the class that he does not want
any group interference in this vertical interaction with
a selected member from the group.

The group may" go critical" with respect to vertical
interaction with the instructor. There has been in
every workshop so far a crisis point about half way
through the curriculum where the group attempts to
resist learning any more, applying any further self
discipline and individual motivation. This critical
period is usually of short duration, about a day, and
marks the point at whlch the group learning can go in
two directions. The whole situation can fall on its
own weight and from then on only desultory learning
and results can be expected. Or, the environment
cum-people combination can go" critical" and a kind of
self-sustaining group reaction is initiated which releases
enough motivational and learning energy to carry
the group~hrough the increasing but controlled pres
sures of the workshop. This occurs primarily because
of the uni/£ying foirce of the instructor's dwn intense
enthusiasm and motivation. In all eight workshops so
far the students have reacted with greater self-discipljne
to the challenge of cO!llpleting the course and becoming
productive systems programmer trainees.

,,\1 easurements for evaluating StWCBSS

The following measurements have been applied in
evaluating the 1:luccess of our workshop:

Montessori Techniaues in Wnl"ln:'hnn R".\dl"nnn-u:mt ... _ a.t.J _ ~ y _ _, 'Y7'7
VI'

Measurements within the workshop
environment

1. Observation of individual motivation and se1£
discipline in the mastery of the subject matter.
These observations are recorded in the daily
diary of critical incidents and are periodically
evaluated by the training instructor.

2. Successful development to the level of systems
programmer trainee.

3. Performance in written quizzes, examinations
and case studies.

4. Evaluation of the trainee's ability to relate
academic subject matter to the first production
assignment.

Long term measurements

The long term measurements of the individual are:

1. A continued cooperative attitude among the
peers working in a production unit.

2. Continued motivatjon toward self-development.
Each employee has an individual Employee
Development Plan which is kept current by
his production supervisor.

3. The ability to handle complex systems assign
ments in a timely and efficient manner and to
meet critical deadlines under pressure with
few compilations and tests.

4. Self-discipline which results in minimal super
vision and is demonstrated by adherence to
standards and guidelines of the installation.
This measurement can best be taken in terms
of adherence to the requirement of complete
documentation of a given system.

5. The continued advancement to ever increasing
areas of responsibility within t he installation
and success in passing examinations -for higher
work classifications.

(t The periodic, written evaluation of the individ
ual's performance by the production supervisor.

Results of our training workshop

The results of our training workshop for systems
programmers has been twofold. There has been an
immediate upgrading of programming performance
and we have identified a strong need for individual
development and continued training for all 209 persons
employed within our installation.

The upgrading of programming performanee by
graduated trainees has been demonstrated in an out
standing manner.

The trainees have continued to demonstrate a high

motivation toward long term professional careers. This
motivation is partly due to basic personality character
istics which were carefully selected during the in-depth
interview and to the fact that the training workshop
strengthened this natural motivation.

The supervisors have observed that the expected
level of accuracy and self-discipline is being main
tained. These programmers require minimal super
vision.

Sophisticated production assignments normally given
to experienced programmers have been given to the
system programmer trainees soon after graduation
from the workshop. These are often large scale, com
plex programs involving 50 to lOOK core storage,
intricate relational editing techniques, table searches,
complex mathematical calculations and dense reporting
formats. Our applications involve the construction
of large information systems within the areas of traf
fic control, urban planning, fiscal management, ad
ministrative support and engineering project control
as well as complex programming in the areas of bridge,
vertical alignment, traverse and earthwork. Graduates
from our trainee workshop are expected to become
immediately productive in these areas. Those who
rotate into software progr~mming have responsibility
for the operating system, the writing of all in-house
utilities and subroutines as well as being responsible
for maintaining an in-depth understanding of remote
job entry and teleprocessing capabilities and the soft
ware capabilities of any large generalized file processors
currently in use.

The programs written by these former trainees
have been logically planned using truth tables and
modular design and are fully documented. The number
of compilations and tests has been greatly reduced.

These graduates from the training workshop have
consistently demonstrated competence and understand
ing of the complex capabilities of the system. They have
been articulate in expressing knowledge of the system
and they have demonstrated ability to explore and
implement those areas of software which result in the
saving of machine time.

A typical example of such a contribution can be
illustrated in the fact that a graduate with less than
six months of production programming experience
researched the feasibility, recommended and then imple
researched the feasibility, recommend and then imple
mented the conversion of a large sequential data base
to indexed sequential access at a time when I SAM
was a relatively new and untried quantity.

These systems programmers have demonstrated
ability to maintain and modify extremely large and

:)78 Spring Joint Computer Conference, 1969

complex systems and the ability to consistently pro
duce under critical deadlines.

Their continued interest in the field of data pro
cessing has been evidenced by their active partici
pation in professional associations and their enthusi
astic attendance at seminars -and symposiums which
have covered advancements in the state-of-the-arts.
They have continued to demonstrate highly developed
study habits which have resulted in their being thor
oughly familiar with the subject matter presented
in new manuals and publications. All of the former
trainees have clearly defined goals for their own long
term professional development. Of the seventy-two
systems programmers who have graduated from the
training workshop, approximately two thirds have
returned· to take evening courses at college toward a
higher degree.

Four new programming units have been created
entirely from graduates of the training workshop.
These production units have maintained highly satis
factory levels of programming performance.

Ten pro grarruners , who received their training in
the workshop, have become part-time instructors
in advanced techniques sessions and workshops for
programmers.

Ten of the graduates from the training workshop
are now highly qualified software specialists respon
sible for all aspects of maintaining our operating system
and implementing teleprocessing, partitioning under
multiprogramming, Faster and the system utilities.

The lead systems prograrruners in every production
unit have graduated from our training workshop within
the last year and a half. Two graduates have under
filled temporarily as supervisors of programming units.

Attrition has been noticeably reduced since the
nnplementation of the training workshop from 27 to
14 percent in the first year after implementation of the
first workshop. At the present time our attrition is so re
duced that we do not anticipate the need for an entry
level systems programmer trainee workshop before
July, 1969.

The areas of continued training and self-development
have been identified in the following ways:

1. The supervisors and experienced prograrruners
have requested continued training for them
selves and these training programs are currently
being developed for them.

2. We also have an individualized employee devel
opment plan4 which includes every member of
our staff and involves 209 employees in 41
computer systems classifications. The basis
of this plan is: (a) A determination of skills and

knowledges required and desired for each and
every position and (b) each employee's back
ground of education and experience. The differ
ences between these two elements becomes a
-base for our individualized development plan.

This is not a "one-shot" or lightly consid
ered plan. The dynamic nature of both com
puter technology and information usage ne
cessitates continuing review, updating, and plan
ning. In effect this plan constitutes a contract
with each employee outlining management
responsibility and the employee's responsibility
for his own self-development. The plan may
include anything from college courses to man
agement development, depending upon a mutual
agreement as to need.

3. An up-to-date library of current periodicals,
journals, and books is being instituted by our
management.

4. The need for a full-time training program for
Computer Systems has been identified. We
have developed and implemented a training
workshop for systems analysts utilizing the
same involutional group dynamic structure
training techniques. To date, four such systems
analyst training workshops have been imple
mented since September, 1968. We are currently
developing several workshops for programmers
with 12-18 months and 18-24 months experience
as well as a series of workshops for computer
operators.

COKCLUSIO~

Our efforts in systems programmer training have had
immediate and long-range results. We have achieved
the level and quality of programming skills necessary
for successful operation in our third generation en
vironment. We have recognized the need for both ini
tial and continued training.

We have recognized immediate results from the
application of the :\lontessori Methods emphasizing
individual self-discipline through freedom, individual
motivation and endeavor towards reaching levels of
increased responsibility. Our present and future work
shops will continue to utilize these training techniques
which are emphasized by the ~vIontessori :\1ethod of
teaching.

A formal individual development for each of our
209 employees has been implemented. :\10st important,
management has recognized that the development of
personnel on a planned, continuous basis is the key

Montessori Techniques in Workshop Environ....-rnent 3i9

to successful achievement of our long-range operating
goals.

RE.FERENCES

M MONTBSSORI
• TheM ontessori rnethod

Second Edition Frederick A Stokes Co New York 1912
2 E R ALEXANDER

Third generation programrner trainin(j-the workshop

approach
Proc Fifth Annual Computer Personnel Research
Conference 1967

:3 A D FALKOFF K B IVBRS01\
E H SUSSENGUTH
A. formal description of systems/360
IBM Systems Journal Vo13 No 2 and:3 1964

4 E R ALEXA~DER
A working measured development plan for computer personnel
Proc of the Sixth Annual Computer Personnel Research
Conference 1968

Variahle topology random access
memory organizations

by MARTIN A. FISCHLER and ALLEN REITER

Lockh;ed Palo Alto Research Laboratory
Palo Alto,. California

INTRODUCTION: THE BASIC CONCEPT

One of the most basic of all computer operations is
the actual or virtual construction of a data sequence
to be used either as the operand for a simple data
transfer, or as the argument of a functional transfor
mation. In a significant number of practical situations,
the data from which the string is to be constructed
are physically scattered prior to the proposed operation
or must be scattered after the operation due to physi
cal space limitations or for reasons dictated by the
logical structuring requirements of the application.

Powerful software schemes (e.g., the list processing
languages) have been developed to deal with the prob
lem of treating scattered data as a contiguous string,
but they pay a very heavy price in memory overhead
(in some schemes over three-fourths of the available
memory is required to handle the addressing mechan
isms) and in the processing time required to perform
the address arithmetic.

An alternative solution is proposed here which in
volves the addition of a small Associative Memory (AlVI)
to the addressing machinery of the computer (or
peripheral direct access storage device) . As will be
shown, this hardware modification will permit scattered
data to appear contiguous, with only a token overhead
cost in memory and processing time.

We note that the data which are to be treated as
a contiguous string can frequently be stored as a reason
ably small number of physically contiguous strings.
Further, the computer operation for moving through a
physically contiguous string is the "indexing" 'opera
tion. That is, a special register adds a fixed constant
to the address of the current data element to obtain
the address of the succeeding data element. Let us
now assume that we wish to treat (individually) physi
cally contiguous strings AI, A2 , .. , AN as a single
string. We can do this by loading a map of the type

shown in Figure 1 into an AM which monitors the
contents of the effective address register of the com
puter's addressing mechanism. When an indexing
operation results in a match with the search field of
the AM, a microprogram interrupt occurs during
which the tag field of the corresponding entry in the
AM replaces the contents of the effective address
register. * The A::\1 is searched in parallel, and essentially
no time delay occurs in processing when there is no
match.

Since the strings in this example were not specified,
they can represent free storage as well as data. Thus,
by simply changing the contents of the map loaded
into the AM, the topology of the direct access storage
device (be it CPU core memory or peripheral storage)
can be altered to simplify and speed up the accessing,
storage, and processing of virtu~ or actual data strings.

The VTRAM (Variable Topology Random Access
Memory) concept presented in this paper will be most
effective in those applications in which the nmnber
of physical and/or logical** breaks in the contiguity
of a data string is small compared. to the numbe:r of
elements in the string, and also does not often exceed
the capacity of the supporting Al\1 (Associate Mem
ory). Data structures of this type, where breaks are
the exception, occur very commonly.

Logical breaks can be handled by the VTRAM
in the same way as physical breaks. However, for some
situations we might desire that a logical break be condi
tional. This can be accomplished by appending an
extra control bit to the break addresses stored in the
VTRAM that permits address exchange for these

* See Appendix I for further exposition of this concept.

** A logical break in a string is defined here as either an interior
entry point in the string, or a "jump" from one interior point in
the string to another point in the string.

381

382 Spring Joint Computer Conference, 1969

(ADDRESS OF LAST ADDRESS OF FIRST
ELEMENT OF A1)+1 ELEMENT OF AZ

(ADDRESS OF LAST I ADDRESS OF FIRST
ELEMENT OF A2)+1 I ELEMENT OF A3

• •
• •
• •
• •

(ADDRESS OF LAST ADDRESS OF FIRST
ELEMENT OF AN-1) + 1 ELEMENT OF AN

SEARCH FIELD OF AM TAG FIELD OF AM

Figure I-A storage map, Showll without control flags. The
order of the entries may be shuffled at will

entries only when the machine condition code IS ap
propriately set.

Implications of a VTRAM for data manipulation

A generalized move operation (CPU to CPU
core)

It is frequently necessary or desirable to move a
logical data string, unaltered, from one physical loca
tion in CPU core to another. Data may be moved from
one specific area of core into another prior to bringing
in an overlay, or in order to convert a logical data string
to a physical string prior to a channel operation. (A
single transfer of data from CPU core to a secondary
storage medium or output device frequently requires
that the data be physically contiguous.) Data may
also be moved to reduce the size of the map or the
complexity of the address arithmetic necessary to
visit the elements of a data string, or simply to reset
to zero (or some other fill character) some portion
of a data string. While the existence of a VTRAM
can eliminate the need for many of these data moves,
a significant residue will still be left.

A generalized move can be executed in a VTRAM
by simultaneously loading the maps describing both
the input and output strings into the Al\1. The number
of bytes to be moved can be spec ified in t~...e move
instruction, or it can be determined by having the
AlVI create an operation interrupt (rather than an
address modification) when a match is detected between
a specially flagged entry and the current core address.
A more detailed treatment of this topic is given in
a later section,

Insertions and concatenations from free storage

When storage requirements for a data string are
determined dynamically, the area allocated to hold
a given string can be exceeded, leading to the neces
sity of either moving the string to a new (larger) area,
or setting up the machinery to handle data chaining.
As noted in the introduction, software procedures
for data chaining are expensive in storage and process
ing time overhead. In a VTRAM, free storage is made
available to a data string by simply deleting a section
of the map of free storage and concatenating it onto
the map for the data string after making the initial
and final address linkages. It is important to note here
that the map representing a data string (in a VTRAlVI)
does not have to be ordered. That is, the ordering of
the entries in the map descdbing the string need have
no correspondence with the logical sequencing of char
acters within the string.

The lnanagement of free storage is a recurring prob
lem common to a wide variety of data processing sys
tems. vVhile the VTRAM concept does not significantly
alter the nature of this problem, it does permit some
simplifications in its resolution. Appendix II discusses
this matter in greater detail.

Generalized data paths

It is not unusual to find problems in which the logi
cal connectivity among a set of data elements is more
complex than in the simple linear strings discussed
previously. Consider the problem of processing a data
ring whose elements are physically contiguous. A ring
is a st~ing whose last physical element is logically
assumed to precede the first; further, the first and last
physical data positions have no special logical signifi
cance.

In moving through such a structure in a conventional
memory, a check must be made after each (address)
index operation to see if a jump to the first physical
element of the data set is required. Ih a VTRAlVI,
a single entry in the AM will cause this jump to occur
automatically when required.

Perhaps a more important consideration is the case
where data stored physically in one configuration
must be visited logically along a number of different
paths in the course of processing. Without a VTRAM,
a rather complex (and time consuming) series of instruc
tions would be required to pick out, in turn, each of
the desired paths. With a VTRAM, any given path
can be specjfied by simply loading the map for that
path into the AM. Some examples illustrating this
discussion are given in the next section.

Variable Topology Random Access :Memory Organizations 383

Channel operations and peripheral storage

The potential application of the VTRAM to the
simplification of channel operations is especially signifi
cant. The necessity to physically group data (or use
some form of channel data chaining, difficult to pre
dict in a dynamic situation) is no longer necessary.
The scatter storing of data can sjmilarly be handled
in a single operation by the hardware interpretation
of the storage map.

To illustrate some of these concepts, let us consider
a simplified example.

Assume we have a time-sharing system backed up
by a bulk Cl)re memory logically partitioned into blocks,
each of which is 0.2 the size of CPU core. Thus any
load module (represented by a single map) can contain
a maximum of five physical substrings. During a swap
operation with CPU core, a scatter read (or write)
from (or into) the peripheral store can be accomplished
by a single channel operation using a five-word A:\'I
A later section is concerned with VTRAlVr applications
to peripheral storage.

Patching of "Slow-Write" peripheral storage

One of the potentially useful applications of the
VTRAM concept is as an adjunct to optical peripheral
mass storage devices. The relatively slow writing
times make changing data undesirable, especially for
making small corrections or insertions. The logical
restructuring of data strings via the VTRAM would
permit temporary "fixes." For example, the fix could
be stored in a small, fast auxiliary memory until enough
alterations have been collected to warrant the gener
ation of a revised" memory plate."

VTRA~1 data processing

The following terminology will be adopted for the
rest of this paper:

.A string is a lineal' sequence of elements, where
linearity is a logical coneept independent of the
physical arrangement of the elements.

• A block is a string or substring which is physically
contiguous, i.e., the logical ordering of the elements
corresponds to their physical placement.

• A map is a string of break-transfer addresses
which describes the organization of another string;
one or more maps ean be coneurrently loaded in
the AM to drive the address-exchanging mechan
ism of the VTRAM.

.A file is a string of maps, and is a ullit for loading
or storing the contents of the A.l\f.

To present a concrete discussion, let us assume in
this section that we are dealing with an IB~1 Systemj
360 computer equipped with a VTRAM. The VTRAlVi
has a small number of associative memory words (on
the order of 10 to 50), each of which has enough bits
to represent any valid core address. Corresponding
to each word of associative memory, there is a tag
memory word which can also hold an address (the
"transfer" address) plus several bits of control infor
mation. One such bit is the "end of string" bit which
signals to the VTRAM that this break address consti
tutes the end of a data string. A second is the "end of
file" bit which denotes the end of a string of maps.
(The VTRAl\1 may contain several such files at one
time, each file typically containing one or more maps)
each map describing a string of data.) Finally, two
or three bits can be used as a map key.

The VTRAM, of course, has the property that it
is searched for a match in parallel, and essentially no
overhead is incurred when no match is found. The
overhead in replacing the content of the register being
monitored (the "effective address register") by the
content of the tag field of the VTRAM is also negligible.
The associative memory will only have to respond to
an "equal" condition, thus reducing the cost of the unit.
In addition, the associative memory will have the
property that on being loaded it will use the first avail
able nonzero registers; a property usually obtainable
at no extra cost and which is very useful, as we shall
observe.

Some additional IBM 360 instructions

The following commands have to be added to the
CPU repertoire to manipUlate the VTRAM:

1. ON jOFF Associative 111emory
2. Clear Associative Memory (C A ill). This will

replace the content of the associative memory
registers by zeros. A selective clear based on
the map key can also be requested.

3. Load Associative Memory (LAM), from core
location T. T is the starting location of a map.
Note that this map automatically orders the
stroage and does not itself have to be ordered;
the order of occurrence of the break-transfer
addresses in the map is of no consequence. This
is a very important property of the VTRAM,
as it greatly facilitates additions and deletions
to the map.

The loading of the associative memory con
tinues until an end-of-file bit is encountered
in one of the entries. If the available associa
tive memory is exhausted before the end-of-file

384 Spring Joint Computer Conference, 1969

indication is reached, an interrupt occurs (or
a condition code set) and the address of the
last entry loaded is posted. The possible remedies
t.o t.his overflow condit.ion will be discussed. K ote
that the VTRAl\f can be loaded with several
maps corresponding to several logical data strings,
at" the same time. This facilitates storage-to-stor
age operations.

A highly useful variant on the LAM instruc
tion is a BLAM (Backward Load Associative
Memory), in which the break-transfer address
pairs, as they appear in the table, are inter
changed when loaded into the associative mem
ory. This facilitates the backward scanning
of a logically contuigous block or string of data.

4. Store Associative 1vlemory (SAM), used by the
supervisor during interrupts.

The augmented MVC command

To make use of all of this machinery, the storage
to-storage instructions (SS) of the 360 will be assumed
to operate using the VTRAl\1. This means that the
length specification will become unnecessary, since
a string-end condition is now explicitly represented
by break address entry with a flag.

A typical sequence of commands for, say, moving
data from string A to string B (the strings possibly
co~sisting of several blocks each) would be

CAM Clear the associative memory
(optional)

LAM TA Load the map which describes
string A

LA::.Yl TB Load the map of string B (note that
this is in addition to TA)

MVC B, A Start move operation, with the initial
addresses being A and B. (Note that
the VTRAM contains only the
break addresses, and not the initial
addresses of the strings.)

The l\1VC instruction will terminate as soon as
an end-of-string indicator is reached for either string
A or string B, returning a condition code corresponding
to each applicable case. An alternate possibility, in
case the end-of-string for A is encountered first. is to
fill the rest of B with, say, zeros.

Matrix multiplication

As an example of generalized data paths, we will
look at a procedure for forming a product of two mat
rices, C = A *B. The three matrices are not assumed
to be located in contiguous storage, but may rather
be scattered all over core. We will however, assume
that each row of the A and B matrices is in one block.
(The matrices are n by Il, with each element being a
half-word integer, so that each row is 2n-bytes long.)

CAM
LA~f

LAl\I
LAl\1
LA

TA
First clear the associative memory
Load. the maps for the matrices A, B, C

LH
LOOPI LH

SR
LOOPJ SR

LA
LR
LH

LOOPK LA
LH
MH
AR

ENDLOOPK * LA

LA
BeT

TB
TC
RA,A
RC,e
Rl,Il
R2, n
R6, R6
R4,R4
RB,B
R7,RA
R3, n
R5, O(RB, R6)
R8,O(R7)
R8,O(R5)
R4; R,8

RB,2n(RB)

R7,2(R7)
R3, LOOPK

Register RA points to A(l, 1)
Register RC points to C(l, 1)
R1 is the counter for the I loop
R2 is the counter for the J loop
R6 ·has displacement from start of row for B(K, J) for J =
R4 has the partial sum for C(I, J) = ~ A(I, K) *B(K, J)
Register RB points to B(1, 1)
R7 is the pointer to A(I, K) for K = 1
R3 is the counter for the K loop
Pointer to B(K, J)
A(l, K)
13(K, J)
Partial sum
Step row address. Note that if a break address is reached, the new
transfer address gets inserted into RB from the effective address
register. Thus, the next time through the loop, when the LA R5,
O(RB, R6) instruction is executed, the correct address will appear
in R5
~Iove pointer to A(I, K) to next element in row
Go through the k-loop n times

Variable Topology Randol11 Access 1vienlory Organizations 385

ENDLOOPJ STH R4,OCRC) Store C(I, J)
* LA RC,2(RC) Step pointer to C(I, J). Again note that if a break address is en

countered, the transfer address replaces RC. (This works even if
breaks occur within a row in the C matrix)

LA
BCT

R6,2(R6)
R2, LOOPJ

Step element displacement from start of row for B(K, J)
Go through the J -loop n times

ENDLOOPI * LA RA,2n(RA) Step row address for A. Again note the automatic substitntion of the
transfer address

BCT Rl, LOOPI Go through the I-loop n times

Because of the VTRAM device, this program did
not differ substantially from any matrix multiplication
program for contiguously stored matrices. Of course,
similar procedures are used on computers not equipped
with a VTRAM. These, however, require that the
starting· row address for each row of A, B, and C be
stored in a table; with the VTRAM, only the actual
break addresses need to be stored. An additional ad
vantage obtained by the VTRAM is that the C matrix
can be scatter-loaded randomly, without the restriction
thsJt no row can be broken.

Note that in the example it was necessary to return
the break address modifications to one of the index
registers used to control the addressing sequence be
cause the data path was traversed in a sequence of
instructions under program control, rather than as
a single instruction triggering a micro instruction se
quence. This was accomplished by means of the LOAD

. ADDRESS instruction which sums a fixed displacement
and up to two index register values in the effective
address register and then returns this sum (in our
case, to one of the participating registers). When the
effective address computed in this process matches
a VTRAM break address, the effective address is
replaced with the corresponding tag address, and this
address, in turn, is transmitted back to the index regis
ter specified as the receiver for the LA instructions.

Another example with logical data, path.

As a second example involving generalized data paths,
consider the problem of analyzing the contour of a two
dimensional graphical object, which is represented
in storage by a series of fixed-length records, each
giving the (x, y) coordinates of a point on the contour
together with some additional information such as
the identity of the line segment to which the point
belongs. (The contour is partitioned into a series of
line segments which are physically contiguous sub
strings.) The order in which the records are stored
corresponds to the sequence in which the points occur
on the contour of the object, with some arbitrary
break point to permit storing this file structure, which

is logically a ring, as a (physical) linear string. We
assume here that there are no physical breaks other
than the one which closes the ring.

In one operation we might prefer to start with the
point having the greatest coordinate value, and count
the number of points for which the coordinate mono
tonically decreases. Without a VTRAM, after each
point is examined, we must check for the ring-closing
physical break address in the table before indexing
to the next point. With a VTRAlVI, storage of the break
address would cause an automatic return from the
end of the string back to the beginning if an attempt was
made to index past this last entry in the file.

In a second operation, we might prefer to find the
center of gravity of some selected subset of line seg
ments. Without the VTRAM, we would be required
to check the segment ID of each point against the list
of desired segment numbers before including the point
in the computation; or, after each index operation,
a check would have to be made against a list giving
the starting and terminating address for each of the
desired line segments; or some special coding would
have to be written to selectively find the desired points
(based on address) without search. Regardless of which
of these methods was chosen, a certain amount of data
dependent code must be written and stored, and the
execution of this code must pay a time penalty to
continually search for the logical break addresses.
With a VTRAl\1, once the logical break addresses
for the selceted line segments has been loaded in the
AM, the operation can proceed as though only the
selected line segments were present. No data-depen
dent code is required and no time penalty is accessed
for searching for the required points.

The overload problem

When a map for a given string gets larger than the
available number of associative memory registers,
it has to be partitioned so that the consecutive parti
tions of the map (submaps) now correspond to the
logical ordering within the string. Given such an organ
ization of the map, only a part of it need be loaded

386 Spring Joint Computer Conference, 1969

into the VTRAM at one time; if a given operation
is not completed before the last break address cor
responding to the end of a submap is reached, the next
submap replaces the old one; and the operation is
repeated. This process continues until the end-of-map
indicator is encountered.

When a large map is thus partitioned into submaps,
each of which is small enough to fit into the VTRAM,
it should be noted that there is no need for the submaps
to be ordered internally. This fact facilitates the sorting
process, and also allows subsequent insertions of new
break-transfer entries at any available position within
the appropriate submap.

Note, however, that even the partial ordering of
a map entails what is usually a very large overhead,
and the VTRAM should contain enough registers to
obviate the necessity for this ordering in the great
majority of cases. If it were not for this fact, we could
always assume that the maps are ordered, and would
be able to operate using an associative memory with
only one register; i.e., any ordinary register which
can monitor the effective address register would suit
our purpose. *

The reordering operation may itself make use of
the available associative memory. The use of associa
tive memories to facilitate sort operations has been
studied in the literature. I

Some limitations

While the VTRAM mechanisms presented here
are well suited to the separate handling of logical or
physical breaks, the combination of such breaks in
the same string will cause special problems. To specify
a direct jump from the ith element of a string to the
jth element across a physi~al break, some address arith
metic using the string storage map must be performed.
The arithmetic is simple and needs to be performed
only once. Nevertheless, the computation is time
consuming and sometimes cannot be done at the time
the string is stored, but must be made when the jump
is required. For these reasons, an executable instruction
string which contains many dynamically determined
branches is not a desirable candidate for VTRAM
controlled scatter loading.

Using a VTRA~~1 for peripheral storage management

A key problem which arises in many different con-

* It might be interesting to use this approach as a first apprOXI
mation toa VTRAM. Note that this monitoring function of the
effective address register (by switches which are manually set) is
already present in the IBM 360. The hardware modification
required to make this register addressahle from within a program
or a microprogram would seem to be fairly minor.

texts in dealing with random access storage devices
is the fact that there is really no such thing as a truly
random access device; all existing devices are actually
org~mized into groups of records; each one of which
is bounded on either side by other records. This causes
problems when the information contained in a record
changes dynamically in size; for example, it may no
longer fit into its former place. One is now typically
faced with a decision of whether to invest the time in
trying to make it fit into one place (either by pushing
aside its neighbors or by finding a different place for
it which is large enough), or to string it out in several
records by chaining the various pieces, thereby sacri
ficing time during retrieval. A VTRAM can be used
here to great advantage to create logical linkages
between physical records which are not physically
contiguous, thus allowing them to be written or read
using but one CPU channel command; i.e., to make
them look like a single physical record to the computer.

We will discuss two classes of random-access storage
devices; a bulk core memory, and a fixed-head rotating
memory. In both cases we shall assume that the CPU
communicates with a controller unit for the memory
in question, and that this controller is in reality itself
a small stored-program computer; it is this small com
puter that we wish to equip with a VTRAl\1 in order
to facilitate the restructuring of records 'without actu
ally moving data around. It should be pointed out
that the controller will be able to perform a certain
amount of housekeeping operations "for free" if it
can do them subsequent to the completion of a given
I/O operation, since there will be periods when the
CPU is not using this class of devices. If the controller
can schedule housekeeping operations, for example
by waiting a certain time interval to give the CPU
a chance to start a second operation which might have
been present in a queue, more efficiency can be achieved.
Thus, we can in general tolerate more overhead for
housekeeping in the controller than in the CPU. On
the other hand, for a rotating device, the mechanical
aspects of the memory sometimes present critical
timing problems for the controller.

Drum memory

To lend concreteness to our, discussion, we shall
describe a specific rotating memory. This is a drum,
with 800 tracks, each of which is somewhat over 4096
byt€s long (the exact length will depend on the par
ticular memory organization that we choose). The
drum is rotating along the tracks, so that a given track
can be read during a single revolution. Only one head
can be reading or writing at any given time, but heads
can be switched at any time at electronic speeds; hence;

Variable Topology Random Access l\tfemory Organizations 387

during a single rotation data can be picked up from
several tracks, but necessarily from different positions
along the tracks.

We shall assume that the drum is equipped with a
timing track, whose current content together with
the current track indicator are being read into a regis
ter which can be monitored by a VTRAM. (This register
will serve the same function as the "effective address
register" already discussed.)

Along each track, memory will be divided into sectors.
A sector is a quantum of storage, say 64 bytes long;
thus our drum has 64 sectors per track. Since, by defini
tion, a sector is the smallest addressable unit of storage
the timing track need only carry information as to
the current (or next) sector.

Becuase of the possible time lost in head switching,
there may actually have to be a physical separation
(amounting perhaps to several byte posit~ons) between
the end of a sector and the start of the next one.

The first part of each record consists of its storage
map. (See Figure 2.) The record is addressed (by the
computer) by giving the address of the sector which
contains the map. The map is read into the VTRA1VI
in the controller; it then controls the mechanics for
reading the rest of the record by causing head switching
to take place. If the map terminates in the middle of
a sector, the data portion of the record starts inune
diately. If only retrieval is desired, the data transmis
sion to the computer need not conunence until after
the "end-of-map" indicator has been read into the
controller. For a write operation, the computer will
have to supply not only the address of the start of
the record, but the map as well. The onus of storage
management on the drum, and the decisions as to
where to put the various pieces of a record, must be
left up to the central processor. The controller is capable
of performing this function equally well, but the effi-

Figure 2-The physical organization of a record in ~torage.
The address of the record shown, from the point of view of

the central processor, is Track 1 Sector 2, which
is actually the address of the map

ciency of use of a rotating memory depends critically
upon the scheduling of accesses to the memory.2 To
do intelligent scheduling, the controller would have
to have access to a much larger body of dynamically
changing information than is normally feasible (except
on computers like the CDC 6600, where the controller
is itself a full-fledged CPU with full access to all of
core).

Let us look at the case of a record which is being
rewritten, but which requires more space than it for
merly occupied. Instead of releasing the record's cur
rent storage to the free storage pool and then allocating
a contiguous block of storage for the entire record,
as might be done on devices without a VTRAM, the
drum storage allocator of the CPU would be asked
to allocate additional storage from a longitudinal posi
tion which begins immediately following the termina
tion of the last sector in the current record. (Various
alternate strategies are possible if such storage is not
currently available.) That is, a piece is simply added
on at the end of the existing record, thus making a
longer record. Note that this piece can, in our case,
come from a selection of anyone of 800 different sectors.

The allocation procedure has the very important
property that the new storage block is always added
on at the logical end of the current storage. What
this means is that our maps are always ordered
successive entries in the map represent successive
blocks of the record. Thus, there is no need to use
the entire break-address portion of the map to monitor
the timing track. Instead, the controller can have a
pushdown stack, in which only the top element of the
stack is used to monitor the effective address register.
When a break address is encountered, the next element
(break-transfer address pair) is popped up and becomes
the new top of stack.

A basic underlying assumption in this discussion
is that the entire record is rewritten during an output
operation. This distinguishes the use of the VTRAM
device in the present case from its use for core-to
core operations as discussed in a previous section,
where a logical· unit of data could be restructured
dynamically in many ways other than addending at
the end.

To recapitualte our proposed method for handling
drum storage: each record carries along (at its begin
ning) a map of where the record is located; this map
is loaded into the VTRAM device and is used for auto
matic head switching as required. There is essentially
no overhead lost in retrieval time in this scatter storage
of a record compared to having the entire record stored
on a single track. There is, however, some overhead
paid in storage. For our drum, each map entry would

388 Spring Joint Computer Conference, 1969

consist of three 8-bit bytes: one to monitor the timing
track (for 64 possible different sectors) and two required
for the proper head selection plus some miscellaneous
bits. In the worst possible case; where a head change
is required for each sector, the storage overhead is
somewhat under five percent.

Bulk core memory as peripheral storage

This type of storage device is characterized by the
fact that there is no latency time due to rotational
delay to worry about, as was the case for the drum.
Thus, as far as the computer is concerned, all storage
locations are equally accessible, and it does not matter
where various pieces of data are stored. As in the case
of the drum, however, we will assume that the computer
deals with storage in records, and that a single record
is to be fetched or written with a single channel com
mand. It is, of course, possible to assign much more
complex structure to the data, and have this structure
reflected in the nature of the computer-controller
communications. As this would unnecessarily compli
cate the ensuing discussion without contributing any
thing, we will assume the simplest possible structure
in the bulk core.

U sing a VTRAl\l enables us to have a record consist
of many noncontiguous blocks. For bulk core, all free
storage management can be left up to the controller.
We propose a similar record fonnat as for the drum,
where the computer addresses a "header" which con
tains a map of the record; the computer, however, need
never see the map. The free storage handling strategies
discussed in Appendix II for CPU core are equally
valid for the bulk core as well. The significant differ
ences for bulk core are (1) more time can be invested
in periodic recondense operations since they can be
scheduled "off-line" by the controller, and (2) the
VTRAl\l implementation need not actually involve
any associative memory, but only a pushdown stack.

When the CPU initiates a bulk core write operation,
the free-storage-map (held permanently in a push
down stack) is used by the VTRAM to direct the
store operation. The top of the free-storage-map,
which corresponds to the storage blocks needed to con
'tain the transmitted record, now becomes the map
for thi8 record.

In the case of the bulk core, the most convenient
location for the map describing a record is immediately
following the record. However, since the map itself
is a record which may have to be scatter loaded, the
initial segment of any such map must contain the
break addresses needed to retrieve the map. (This
initial segment terminates with a special flag bit.)
Thus, after a write operation has been completed,

the controller adds to the top of the map for the stored
record a prefix (possibly null) of additional break
addresses, and this augmented map is stored (under
control of the VTRA:M and the map prefix) immediately
following the record it describes. Finally, the address
of the first entry of the prefix is returned to the CPU
as the address to be used in reading the record. This
address is available for returning to the CPU immedi
ately at the conclusion of the write operation, even
though the contents of this location will not be deter
mined until after the map itself has been written.

For a read operation, the CPU-supplied address
is used to obtain the map prefix which then directs
the loading of the map itself into a VTRAM push
down stack. Now the map directs the requested read
operation.

Comparison with other address-mapping schemes

Associative registers and other special-purpose mem
ory addressing hardware are currently employed in
a number of computing systems (e.g., IBM 360/67,
GE 645, B 8500)3,4,5 to implement address mapping
for paging and segmentation schemes. These concepts
and their associated hardware organizations are sig
nificantly different from the VTRAl\l concept presented
here. Paging is a scheme for making the fast core ap
pear larger than it actually is (virtual memory), and
is accomplished by defining a mapping function from
a large virtual space into the small physical space.
The paging hardware is employed at every memory
reference and at least one conversion per reference
is required to translate the symbolic address contained
in the instruction into a physical address. Pages of
core are usually of a fixed size, although they may come
in several sizes, This organiz9Jt.ion allows jumps jnt.o
the middle of a page to be handled easily. Maps (seg
ment and page tables) pose a special handling problem
and entail storage overheads.

The VTRA11 concept is concerned with dynamically
restructuring the logical contiguity relations between
data within the same real space without having to move
the data. A second application of the VTRAM concept
is to reduce the programming and timing requirements
for moving physically scattered data between a periph
eral device and core, or from one set of core locations
to another. The VTRAM hardware is used to exchange
one physical address for another only at the break
points specified by the active storage maps; otherwise
it does not intervene in the addressing process. The
length of eaeh block of stroage is of no consequence.
The VTRAM is intended to support operations which
index through the data, and unexpected logical breaks
can be handled only with difficulty. The storage maps

Variable Topology Randon1 Access :rvlen10ry Organizations 389

used by the VTRA:\I can themselves be scatter loaded
just like any other data string; this permits a saving
in space, for even though the maps may dynamically
change in size, no contiguous blocks of storage need
be reserved for them.

COl\CLUSIOKS

The VTRA:\:'I concept, as developed in this paper,
is a hardware organization for achieving, on almost
any digital data processor, a string processing capa
bility, extending to channel and peripheral operations,
at very low cost. The central idea is that of "address
exchange" when a critical boundary is crossed during
an indexing operation. Implementation is achieved
by storing these boundaries in a small associative
memory 80 that many of these boundaries can be
searched for in parallel, thus avoiding any significant
processing time overhead. Given the presence of the
AlVI, it is also available for use in a more conventional
manner.

The major advantage gained via the VTRA::\1 is
the ability to do "string processing by exception"
for strings which contain relatively few breaks.

Such strings (the authors feel) are very common,
and come about as a result of insertion, deletion, or
rearrangement operations on formerly contiguous
data. They also arise when contiguous data, stored
physically in one configuration, must be visited logically
along one or more different paths in the course of pro
cessing. There are types of strings, however, such
as those consisting of executable code, for which the
VTRAlU mechanization as described here is not very
useful.

One area where the authors feel the VTRA::\1 con
cept has much potential value is in augmenting data
transfer machinery.

It is impossible to give a simple answer to the question
of how much core is required to adequately support
a given CPU, and similarly the question of how much
A::\I is required to optimally implement the VTRA::'U
concept with a given amount of core cannot be ans,vered
except in very specific situations. The authors feel that
there are many significnat applications where a small
fixed A::\I, say 10 to 50 words, would be very valuable
regardless of the amount of core.

For the VTRA::\I Joncept to be useful, the A::\1
size must be large enough to contain the maps generated
by the various applications. This will be ensured for
most cases by free storage management procedures
and by programming limitations dictated by the actual
size of the A::\I. In the unusual case of severe frag
mentation of a given storage area, causing the A::\I

size to be exceeded, several procedures utilizing the
VTRA~\1 are suggested.

An especially important advantage of the VTRAM:
concept is its applicability to almost any reasonably
sized computing system with very little hardware
modification.

ACKNOWLEDG~1ENTS

The authors wish to express their gratitude to Profes
sor Harold Stone of Stanford University, and to others
who read the preliminary draft, for some very cogent
conunents and ideas which contributed to this final
paper. Thanks are also due to ::\largarett X. Collins
for her able editing of the manuscript.

REFERENCES

R R SEEBER A B LI~ DQUIST
A.ssociative memory with ordered retrieval
IBM J Res Dev Vol 6 January 1962 126-1:~2

2 P DEXXIXG
The effect::; of scheduling on file memory operations
Proc S J C C 1967

:~ E L GLAZER J F COULEUR G A OLIVER
System design of a computer for lime-sharing applications
Pro(' F J C C Part I Vol 30 1965 197-202

4 J D MCCt'"LLO"CGH H K SPEIERMAX
F \Y ZURCHER
A. design for a multiple user multiprocessing system
Proc F J C C Part I Vol 30 1965 611-617

5 W T COMFORT
11 computing system design for nser service
Proe F J C C Part- I Vol 30 1965 619-626

6 D E K~UTH
The art of computer programming, vol I:
Fundamental Algorithms
Addison-Wesley 1968

APPENDIX I: VTRA::\1 I~\IPLE2"IENTATION

Figure 3 shows a typical computer data flow organi
zation augmented by an A~f. The main point to note
here is that implementation of the VTRA:VI concept
can be accomplished with minimal disturbance to the
conventional data flow paths. The essential require-·
ments are a connection to the main memory output
bus to permit the loading of the AM, and a connection
to the Address Adder (or "effective address register")
so that monitoring and address modification can be
accomplished.

To more fully utilize the capabilities of the AM,
it may be desirable to introduce additional direct
paths to one or more of the index registers. However,
all of the operations discussed in this paper can be
carried out without these additional connections.

a90 Spring Joint Computer Conference, 1969

RN

ARITHMETIC LOGIC
UN iTIACCUMULATORI

Figure 3-Typical computer data How organization augmented
by an associative memory to realize a VTRAM capability

APPENDIX II: STORAGE MA~AGE:\1ENT
STRATEGIES USING A VTRA~VI

A major function of the VTRAl\1 device is to facilitate
the dynamic restructuring of data, without actually
having to move the data about from place to place.
A very important application of this concept is in
storgge management for complex dynamic systems,
such as a time-shared executive system. A rough de
scription of the environment might be a~ follows.
(This is a cross section at time to.)

• There is a collection of storage called "free storage"
which is noncontiguous.

• There are n jobs, each of which occupies some
noncontinguous region of storage. These regions
are mutually disjoint, and do not intersect free
storage.

• Each job may request additional storage from free
storage. The request will be for a certain amount
of storage, and may be allocated (by the executive)
at its discretion from anywhere in free storage.
When such an allocation is made, the storage area
is deleted from free storage and becomes part of
the job's storage region.

· Each job may release any or all of its storage to
free storage.

I t should be pointed ouf again that a VTRA:WI is
not particularly useful tor executing scatter-loaded
code, as program strings tend to have too many logical
breaks (interior entry points). The reader should as
sume for this discussion that the jobs are requesting

core for data manipulation. For example, a job may
wish to read in a record from a peripheral storage
device, insert a new field, and write the record back
into the storage device. Note that this operation is
precisely of the form discussed above: only one or two
breaks are introduced into a (formerly) contiguous
data string.

Let us discuss the free storage management function.
This management must perform two distinct functions:
that of allocation and that of releasing storage back
to free storage.

The management of free storage is concerned with
creating a balance between the tendency for blocks
of storage to become progressively smaller (through
the randomizing action of the allocation-release process)
and the overhe9Jd involved in rebuilding 19>rger blocks
from the available fragments.

The overhead for cond.ensing free storage can be
paid in a number of different ways, involving such
considerations as the time required to allocate or re
lease storage, the frequency with which the condensa
tion must be repeated to keep the average block size
above some minimal value, and the complexity of the
hardware and algorithmic procedures needed to perform
the condensing operation.

Assuming, as we are doing, that each job will manip
ulate its own data structures using the VTRA~i,
which has a limited storage capacity, it is incumbent
upon the executive to minimize the storage fragmenta
tion during the allocation function; otherwise, each
job will have its storage broken into so many non
contiguous pieces that the storage capacity of the
VTRAl\1 will be exceeded very often, with a resulting
high overhead, thus negating the benefits from having
this device available. On the other hand, both the allo
cation and the releasing function are performed so
frequently that if the system is to function efficiently,
these functions must not take too much time.

The strategy discussed below is derived by adding
a VTRAl\1 to the commonly used "first fit" strategy:
e.g., see KXUTH, Section 2.5.6

Free storage is represented as one string (noncontig
uous), with a map of break-transfer addresses. When
a request for n storage units comes in, storage is "peeled
off" from the top by assigning an many blocks as are
required to satisfy the request. Since the end of the
request will typically fall in the middle of a biock,
a new break-address will terminate the block given to
the job, and a new start address will be assigned for
free storage. This allocation operation is extremely fast.

The storage release operation itself is equally simple.
The job denotes the area it wished released by supplying
a map; this map is addended to the free storage map

Variable Topology Handom Access l\1emory Organizations 391

and the operation is finished. (The reader may note
that this is conceptually identical to a "threaded list"
organization of free storage.) Since the area required
for the free storage map itself necessarily has to be
finite, the VTRAM can be used to handle this area
in a cyclical fashion (with a fixed maximum size for
the number of entries). Thus, as entries are taken off
the top and added at the bottom, the two operations
are eventually performed at the same rate, and a steady
state cyclical storage area suffices:

The disadvantage of this strategy is that storage
will become increasingly more fragmented, since no
attempt is made to find the best blocks for this par
ticular request. If this approach is to be made workable,
a "garbage collection" operation must be performed
periodically after storage is released.

To facilitate the garbage collection, it is useful to
represent a storage map as an (unordered) collection
of ordered triplets (Bi,T i,AL.), where Bi and T i are
the break-transfer addresses as before, and ALi is
the address of the last element of the block started
by T i. That is, every ALi is equal to some Bj in a one
to-one fashion. In addition, the start of a block is repre
sented by a triplet (O,To,ALo), where the break ad
dress is empty. The reason for this redundancy is that
the break-transfer addresses do not lend themselves
to a convenient identification between a T i which
starts a given piece and a B j which terminates it.
Of course, during the use of the VTRAM, only the
Bis are loaded into the associative memory, and only
the T /s need appear in the tag part.

To return to the garbage collection algorithm: The
operation of combining contiguous blocks consists
simply of looking for matches between the AL/s and
the T/s. Anyt'me that a match T j = ALi occurs, we
simply replace ALi by AL j and delete the triplet (Bj,
Tj,AL j) from the map. 1\10st of the overhead in this
operation is in the search operation; a function greatly
facilitated by the presence of the associative memory.

After the garbage collection, free stora;ge has been
completely condensed and consists of a number Of
noncontiguous areas, each of which is represented by
an entry in the map. Note, however, that the ordering
of the blocks is totally random, since there is no ad
vantage to be gained in sorting these blocks on their
respective core addresses; nor is there anything to be
gained in sorting them by size, since the allocation
strategy calls for assigning storage from the top of the
free storage li~t.

If the associative memory is large enough to ac
commodate the entire T i vector, the loading operation
during the search for matches.needs to done only once,
thus speeding up the condensing process considerably.
I t might therefore pay to do the condensing quite
frequently, in order to keep down the size of the T i
vector (as well as to cut down on the fragmentation
of the allocated storage). The exact tradeoffs involved
(i.e., what is a reasonable size for the associative mem
ory, and how frequently should one recondense, given
certain assumptions about the fob mix and probability
distributions for storage request-release operations)
will be t.he subject of a simulation study conducted
by the authors, with the results described in a forth
comihg paper.

In summary: this strategy for storage allocation
and the corresponding representation of storage blocks
is characterized by extremely rapid handling of requests
and releases. The storage representation is in a form
directly utilizable by the jobs because of the presence
of the VTRAM device. Some overhead is incurred for
the periodic recondense operation associated with
storage release, but this overhead is considerably
reduced by the presence of the associative memory.
The overall efficiency of this method will depend upon
the size of the associative memory; the exact relation
ship is unknown pending the outcome of a simulation
study.

Fault location in memory systelDs
by program*

by C. V. RAVI

U nivel'sity of California.
Berkeley, California

INTRODUCTIOK

The subject of automatic fault location in rnemory
systems by program so far has been neglected in com
puter literature. A program (A~INESA) has been
written at Honeywell that not onJy detects failures
in memory, but also diagnoses the cause of the failure.
This paper describes the approach used in the writing
of AMKESA. It is also shown that this approach can
be used for different memory organizations.

In the past, memory diagnosis has depended con
siderably on the intuition and experience of the Field
Engineer. Standard test routines consist in moving
information into and out of memory, comparing and
printing out the location of the error and the faulty
information. After this the Field Engineer was left
with the problem of finding the cause of the errors.
Thus, emphasis has been on the detection of errors.
.A~I~ESA goes further to isolate the cause of the errors.

Objectives

The diagnostic program was written with the follow
ing objectives in mind.

1. Special hardware which may be necessary In

order to run a diagnostic should be kept to
a minimum.

2. The diagnostic should isolate the cause of
failure to one or two circuit packages.

3. Multiple failures should not confuse the diag
nostic.

4. Very little should be left to the Field Engineer -
to minimize downtime.

* The work described in this article was done while the author
was with Honeywell EoD.P., Waltham, Massachusetts. Present
address: Institute of Library Research, Univerisity of California,
Berkelery, California 94720.

5. Failures in the parity plane circuits should be
diagnosed.

6. Failures in the Memory Address Register should
be diagnosed.

By and large, AMNESA has achieved all these
objectives.

Necessary hardware features

Something can now be said about hardware, in
general, necessary for the running of a memory diag
nostic on a: computer with a malfunctioning memory.

1. The diagnostic program has to be loaded into an
area of memory which is working correctly in order to
diagnose a malfunctioning area.

One can sub-divide the memory in most machineH
into modules between which there is very little or no
common circuitry. Assuming that all modules do not
fail simultaneously, and that the module is large
enough to contain the diagnostic, a diagnostic can be
loaded and run. ~eedless to say, the program should
be relocatable from module to module. On many of
the older machines, index registers were contained ill
main memory. In such cases, the index registers them
selves must be relocatable 01' the program should be
written without using index registers. In the H-1200
and H -2200 computers, the module size is 32K charae
tel'S and AMNESA is considerably smaller.

In computers that have interleaved memories, the
interleaving is usually between modules. The simplest
way to guarantee enough room for the diagnostic is
to have a hardware feature that allows the addressing
to be sequential from module to module. Such a fe2.ture
is, of course, very easy to implement.

If it is desired, however, that as little of memory as
possible should be destroyed by the running of the

393

394 Spring Joint Computer Conference, 1969

diagnostic, other techniques can be employed. First
consider fixed word-size computers with n-wayed
interleaving between (word-oriented) modules. In
order to run the di3,gnm::tic in any module there are
t\VO requirements.

a. Force the assembler assembling the diagnostic
to assemble instructions and data at word
addresses that are multiples of n. This is quite
easy as it just entails stepping the location
counter in the assembler by n rather than by
1 as usually done.

h. One also requires a feature by which the
program instruction counter (in the hardware)
is stepped by n rathel' than by 1.

In the case of varlable lIlstruction size and variable
data size machines, one would have to restrict the
program to be written in instructions that are smaller
than or equal to the word size, of each module. In
exceptional cases, this may not be possible. l\lemory
restructuring would then be necessary. Similar re
strictions would apply to the kinds of data such a
program ('ould handle. During execution, however,
there is an advantage in such machines. The Program
St.atus Word (or equivalent) in such machines has
an Instruction Length Code field (ILC) which is
added to the program counter to reference the next
sequential instruction. This ILC field could then be
forced to n and the execution of the program could
be effected.

The above is to show that the problem of inter
leaving is not immrmountable and in any speeifi(~

case probably quite easy to solve-bot,h teehnieally
as well as economically.

If a very short memory diagnostic program can be
written, it may be worthwhile to have a Read-only
memory (that can be used in a special mode of oper
ation) that contains the diagnostic. This may turn out
to be quite reasonable in a microprogrammed machine.

2. A parity error in the area of memory being tested
by the diagnostic should be signalled to the program,
while a parity error in the area into \vhich the diagnostie
is loaded should cause the computer to halt.

The signalling can be done by an internal interrupt
or fault which indicates a parity errol' has occurred.
Since initially it is not known where the fault is, the
diagnostic has to be loaded into different modules
until a particular module that is functioning normally
is found. In the H-1200 and H-2200 eomputers, if a
parity error oecurs in a proteeted area of memory,
an internal interrupt is generated and the program
does not halt. If the error occurs in an unprotected
area, the program halts and the parity error indicator

lights up on the console. AMKESA itself takes care
of protecting the module it is testing. Of course, the
!llodule into which Al\,I~ESA is loaded is unprotected.

The superfici3,l solut.ion of disabling t.he parit.y
geneiation and check ciicuitry neither allows the
operator to determine if the program is running normal
ly nor does it allow the diagnosis of the parity plane.

3. Although not absolutely necessary, it may be
advisable to have a diagnost.ic mode-in additiOll
t.o the RuperviRor and m~el' modes-so that special
conditions can be treated.

Fortunately no hardware changes were required
on the H-1200 or H-2200.

Description of the memory structure in the H-1200, H-2200

The basic unit of information is a character. The
H-1200 and H-2200 are variable word-length computers,
Each character in memory consists of 8 bits plus a
parity bit. Both machines have similarly organized
memories.

The memory is a fairly typical coincident current
memory. Each plane consists of 16K (lK= 1024)
bits. There are 9 planes in a stack. Two stacks consti
tute a drawer of 32K 9 bit characters. The memory
is modular with respect to drawers of 32K, i.e., there
is very little conunon circuitry between drawers. Even
within a drawer, some circuits are conunon to two
stacks while others are not. A block diagram of the
memory is shown in Figure 1.

Circuitry associated with the memory can be classi-
fied into three types;

a. l\1emory Address Register (MAR) Circuitry
b. Character Circuitry
c. Bit Circuitry

The memory address register contains the address
of the location to be accessed. The register is 18 bits
long allowing a maximum memory capacity of 262K
characters.

Circuits that are concerned with the selection of
a certain location (character) are classified as character
circuitry. Failure of these circuits will result in errors
in more than one bit of a character (theoretically
all bits of a character).

By bit circuitry is meant circuits that are pre
dominantly concerned with the bits within a character.
The failure of any of these oircuits will affect a particu
lar bit within a character.

In addition to the circuitry associated with the
memory, there are windings in the stack that could
open up. Examples of these are X-lines, Y-lines,
inhibit lines, and sense lines. There are 8 inhibit lines
and 4 sense Jines per plane.

Fault Location in :Memory Systems 395

EACH R/W LINE DRIVES 16
TRANSFORMERS FOR A TOTAL EACH SS LINE SELECTS
OF 128 8 TRANSFORMERS - ONE

,.--:-Y--:-WR;;:::;;:IT;:;;E;----~;::...-:==------------. PER R/W DRIVE LINE
DRIVERS

0-7
Y-WRITE
DRIVERS

0-7

Y-READ
DRIVERS

0-7
Y-READ
DRIVERS
0-7

X-WRITE
DRIVERS

0-7
X-WRITE
DRIVERS

0-7

X-READ
DRIVERS

0-7

==={ TO STACK 2

Y
SELECTION

SWITCHES
o - 16

X
SELECTION

SWITCHES
o - 16

INHIBIT
DRIVERS

0-3

INHIBIT
GATES

0.1

INHIBIT

DECODE

INHIBIT GATE
ENABLES A PART

C . G. = CURRENT GENERATOR
OF SECTION SELECTED

'---__ ~ BY INHIBIT DRIVER

Figure I-Block diagram of H-1200, H-2200 memory

Types of failures

The types of failures that are diagnosed by AMNESA
are the following:

1. Circuit Failures

a. Output always high
b. Output always low
c. Output inconsistent (e.g., faulty sense ampli

fiers)
d. Input gating diode or diodes open

Shorted diodes are not considered when the
resulting errors are unpredictable. Fortunately,
diodes usually open and cases of shorted diodes
are extremely infrequent.

2. Open (cut) windings
3. Core Failures
4. Memory address register failures consisting of

bits stuck to "0" or "1."

Testing procedures

Before one can diagnose failures, one has to be
able to detect them. In other words, information
has to be read into memory and then read out. Much

work has been done into the nature of the words
that should be utilized. There exist patterns for gener
ating worst-case disturb voltages on sense windings,
patterns to heat up the cores and so on. In our case
it is usually enough to write and read three different
words. The first is a word consisting of all binary
I's and the second its complement (all O's). Unfortu
nately, on any memory using odd parity on an even
number of bits (as is normally done), the parity bit
is the same; i.e., 1 for the first two words. Therefore,
for the diagnosis of the parity plane another word
which forces the parity bit to 0 should also be used.
A:\INESA tests the locations using three different
words as described above.

Diagnosis

Temporarily removing the restriction to memories,
it is obvious that, for the testing and diagnosis of a
system, certain test points have to be made available
to the program. The tenn test point is used in a very
general sense; i.e., any internal part of the system
that can be monitored. These test points generally
consist of operands, indicators, and status information.
For memories, the only test points required are those

396 Spring Joint Computer Conference, 1969

which are anyway available-the bits in the memory.
Define any location in the memory as bad if the

information read from that location does not match
the data written in . .LA:i.n:;t fault in the memolj1 S)Tst-em
(with one exception) can be visualiz.ed as partitioning
the memory into two classes consisting of the addresses
of the locations that are bad, and the other correspond
ing to the good locations. Let us call such a partitioning
a pattern. Naturally, the pattern can be identified
uniquely by considering either class. Since every
fault creates a pattern, our problem of diagnosis
reduces to observing the pattern and identifying the
fault. If all faults created w-llque pat~rns, the diag~
nostic wpuld achieve Objective 2 perfectly.

If several faults cause identical patterns, the reso
lution of the diagnostic (the number of p.c. cards
that have to be tested by other means in order to
find the faulty card) suffers.

The exception referred to above occurs when a
fault occurs in the memory address register (MAR).
Normally there is a one-to-one correspondence be
tween the n-tuples (addresses) in the MAR and the
2n locations in memory. When a bit in the MAR
fails, this correspondence does not hold any longer
and the true correspondence holds only for 2n-

1

addresses. . Addresses loaded into the MAR are in
. some cases translated into other addresses. No parity
errors will occur and a special algorithm is required.

1. MAR diagnosis. When a system has several
modules, there is usually a local MAR for each one.
If any local MAR fails, the diagnostic can be loaded
into another module. If the main MAR fails, this
part of the diagnostic should be in a separate memory
(such as a read-only memory) or should be executed
manually. One method of MAR diagnosis is to write
the address of each location into the location and then
read sequentially from the bottom of memory. This
algorithm only indirectly aims at diagnoSis. The
following algorithm is considerably better.

Let the MAR consist of n bits numbered 0,1 ...
n-l from the least significant side.

(i) Write into locations (2n-l)-2i] where i= 0,1,
... n-l, some word.

(ii) Write into location (2n-l) some word X.
(iii) Read from the locations in step (i) using the

algorithm that if location [(2n-l)-2i] contains
X, bit i is bad where i = 0,1 ... n-1.

The operation of this algorithm is not as straight
forward as it looks. An example will clarify the algo
rithm (see Figure 2).

Let the MAR consist of 4 bits. Assume there are
two errors-bit 0 is stuck to "0" and bit 3 is stuck
to a "1."

BIT NO. 4 3 2 1

1 x x o

Figure 2-4-bit memory address register \vith two bit failures

(i) Clear memory.
(ii) Write into location (15) some pattern X.

The pattern we have written will not be
written into (15), but into (14).

(iii) Read (see Table I),

Table I-Memory address register diagnosis

1
Location

Actual I
(Location) Location I

Accessed = X?

1110 1110 Yes

1101 1100 No

1011 1010 No

f
0111 1110 Yes

If (14) contains X, bit 0 is bad
(13) contains X, bit 1 is bad
(11) contains X, bit 2is bad
(7) contains X, bit 3 is bad

Diagnosis

Bit 0 is bad

Bit 1 is okay

Bit 2 is okay

Bit 3 is bad

Thus the diagnostic is able to detect and isolate multiple
errors in the MAR. Any number of MAR bits that
are stuck to "I" or "0" will be diagnosed.

2. Circuit and Stack Diagnosis. For diagnosis it
is necessary to know which locations were found
bad, on which (ones or zeros) test they failed, and
how many bits and which bits within a character
were bad. If one has to store exactly which locations
were bad, prohibitively large buffers would be necessary.
Thus a better system to store error locations has to
be found.

The selection of a particular X-line and Y -line
results in a particular location being accessed. For
the selection of an X·-line, an X-selection switch,
an X-current generator, an X-driver output have
to be selected (see Figure 6). In Figure 1 it is seen
that a current generator drives 8 drivers--4 drivers
in each stack.

Let us see what happens if X-driver No. 3 in stack

I
I

I
I

i

No. 1 is always high. X drivers are decoded from
bits R15, ROO, and R05. The above X-driver has
at its input RI5.Roo.R05. In addition, the X-current
generator with R07 at its input has to be selected.
Thus, all locations in the area RI5.Roo.R05.R07
will appear bad on a ones test. These locations are
the blocks 30 - 37 (see Figure 4.) In this case errors
would have been found because no current would
have been supplied to the X-line.

Now consider a case where the output of the same
driver is always low. In this case, all locations corre
sponding to R07.R15.R06.R05, R07.R15.R06.R05.
R07.R15.R06.R05. R07.RI5.R06.R05. R07.R15.R06.
R05, R07.RI5.R06.R05, R07.RI5.Roo.R05 will appear
bad. This is because when these locations are accessed,
a current split takes place, i.e., the current from the
selection switch splits between two drivers-the one
selected and X driver No.3 in the first stack.

Thus, in this case blocks 00-07,10-17,20-27 in
the first stack and 00-07,10-17,20-27,30-37 in the
second stack will appear bad.

The next case to be considered is when an input
diode opens up. Assume that the diode input for R05
is open at the input to X-driver No.3. This X-driver
will come up in the following cases:

When locations with: R07.RI5.R06.R05

R07.RI5.R06.R05 in their addresses are accessed.

Every memory is driven by circuits that essentially
form a decoding matrix where the decoding is done
from the bits in the MAR. (See Table II).

Table II-Memory address register decoding
Bits numbered from least significant end ROI-RI8

Circuit MAR Bits No. 's

X - Selection Switches ROI, R02, R03, Ro4

X - Read/Write Drivers R05, Ro6, R15

X - Current Generators R07

Y - Selection Switches Ro8, R09, RIO, RII

Y - Read/Write Drivers R12, R13, Rl5

Y - Current Generators Rl4

Stack Select Rl5

Drawer Select R16, R17, Rl8

Inhibit Driver- R14, R07, R05

Inhibi t Gates R15, Ro6

F'ault Location in I\1emory Systems 397

BLK. NO.- 0 1 2

L) 0
0
\0
(Y)

J J J
0 Sl L1 DO s4 L1 DO S3 L5 D2

g~6
1 Sl L5 D2 s4 L5 D2 S3 L1 DO

037
040

2 82 L2 DO Sl L2 DO 84 L6 D2
057
060

3 82 L6 D2 /"
84 12 DO CU_ .l.JO lJc

On
100

83 L3 D1 82 L3 D1 Sl L7 D3
117
120

83 L 7 D3 82 L7 D3 Sl L3 D1
1~7
1 0

6 84 L4 D1 83 L4 D1 82 L8 D3
157
160

84 L8 D3 83 L8 D3 82 L4 D1
177 L I

ADDRESSES l ~
t- t
t- t
t-rl
t-rl
Orl

t- t- t- t
t- t- t- t
t- rl t- rl
(Y)"';- t- 0
rlrl rlC\J o

8 = 8EN8E LINE NO.

L = INHIBIT LINE NO.

D = INHIBIT DR. NO.

7
0
0
~
C;;
I

S2 L5 D2

82 L1 DO

83 L6 D2

83 L2 DO

84 L7 D3

84 L3 Dl

Sl L8 D3

81 L4 D1

t- t
t- t
t- rl
t-o
C\J(Y)

J

0
0
\0
t-
(Y)

37600

37620

Figure 3-Functional map showing relationship between
addresses and sense, inhibit lines

In addition there is the property of uniqueness, i.e.,
for every combination of bits in the MAR only one
location is accessed. Thus the memory can be repre
sented by a functional map in which the variables
are the bits in the MAR.

Such a map has been drawn for the H-I200, H-2200
memory plane (see in Figures 3, 4). For purposes
of convenience, the plane has been sectioned into
64 blocks (numbered from 00 to 77) of 16 X 16locations
each. Now the problem of determining error patterns
becomes straightforward. Except. in a few cases, all
error patterns can be classified as distinct sets of
blocks (see Figure 5). A few examples will clarify
this. Of these two cases, the second is legitimate.
Therefore, blocks 10-17 in the first stack win appear
bad.

This leads us to the problem of resolution. If it
is found that blocks 30-37 in the first stack are bad
and all other locations are okay, we can conclude
that the failure is due to one of the following possi
bilities:

a. X driver No. 3 in stack No. 1 may have failed.
b. The trouble may be due to an input diode

(see Table III) ..

398 Spring Joint Computer Conference, 1969

CIRCUIT

X Dr. #3
Stack 2

X Dr. #1
Stack 1

X Dr. #2
Stack 1

Table III-Resolution problem
Blocks 30-37 in Stack 1 Bad

INPUT

RI5.R07.R06.R05

RI5.R07.Rob.R05

RI5.R07.R06.R05

BAD DIODE
ON CIRCUIT

R15

ROb

R05

AMNES ... A ... can guess whether the errors are due
to CaEe (a) or case (b). It is found that in case (b)
all the locations in blocks 30-37 are bad. Even though
there is a current split, some locations seem to work.
In case (a) all locations in blocks 30-37 look bad. .

Even though AMNESA does indicate the probable
cause of failure in this case, it also indicates all other
possibilities.

Failures of other types of circuits are diagnosed
in a similar way. From Figures 3, 4 and Table II
it can be seen that knowing the bits of the MAR
which f jed the input gating to the circuit, one can
pI e lict the error pattern that will be found when a
circuit failure occurs.

It can be seen that some patterns will be subsets
of larger error patterns. For example, when a current
generator fails, the error pattern is a superimposition of
the error patterns for 8 drivers-4 in each stack (see
Figure 5). Al\INESA does not print anything con
clusive until all possible patterns are examined. It
can also be seen that multiple failures will not confuse
the diagnostic because multiple failures will only
result in superimposed error patterns. As soon as
AMNESA finds the largest error pattern, it diagnoses
the failure, prints it out and halts. Other failures
can be diagnosed by fixing the problems one at a
time and rerunning AJVINESA.

Failures in windings result in unique error patterns
which are easy to recognize. The locations associated
with each sense line and inhibit line are indicated
in Figure 3.

Failures in bit circuitry are also diagnosed by A~INE
SA. Inhibit driver and sense amplifier failures lead
to error patterns that are superimposed patterns for
inhibit or sense lines in both stacks. The decoding
for inhibit drivers is done on three decode packages.
Failures in the decode packages will result in error
patterns corresponding to failures in inhibit drivers.
However, the outputs from the inhibit decodes feed

R05 1 R07 __

R05 2
Ro6 _

R05 3
R15---

R12

R05 5
R07 __

R05 6
Ro6 _

R05 7

R15 I m I Rl~

m I R13 I' ~ I R;3 I
,~I,~,ml~lm!~lm!~1

0 1 2 3 4 5 6 7

see
4 b.

I I I I I I I I I
I I I I I I I I I IL.l I : I I

BLOCK 07

MAGNIFIED

16 X 16 LINES

Figure 4-(a) Functional map showing how decoding
structure relates to addresses (b) Block 07 in (a) enlarged

inhibit drivers in all nine planes of each stack. Thus,
it is easy to distinguish between inhibit decode failures
and inhibit failures even though the error patterns
are the same. In the former case all bits of a character
are affected while in the latter case only one bit iH
affected.

Parity plane testing is outlined in Figure 7. When
errors are found by AMNESA and no error pattern
is apparent, i.e., the errors look random, the diag
nostic assumes that these are due to bad cores. A

o
1
f

3
4

5
6

7

o
1
2

3

It
5

CASE 1 - STACK 1

6~23Jt..s~r --

l\\'\ l\\\ \\\' \\\'

CASE 2 - STACK 1

0:1.234567

~~~~~+-4H~~ 

o 
1. 
2. 
3 
4-

CASE 1- STACK 2 

012 3~567 

I I I I I I I 
(b) 

CASE 2 - STACK 2 

I 

o 
~~~+-+-+-~~~ 

l.
~~~~~+-4W~~ 

2 
~~+--+-+-+-~~~ 

31~~~~~~~~ 
~ 1--I--f.~~-+--4--+--4 

& t--+--~~lfri-i+rr...t---t--I 
6 
7~~~+-~~~4-~ 

7 
~~L-L-~UU~~~ 

(c) 

~ = Y C.G. NEVER COMES ON 

~ = X R/W DR. NEVER SELECTED 

(- ;.;.:: ... , = GROUNDED SENSE LINE #2 

1lIIIllII.::. Y R/W DR. NEVER SELECTED 

FigUl'e 5-Examples of error patterns. In both cases multiple 
error:;; are present 

Figure 6-Diagram showing drive line selection scheme 

printout of bad error locations is provided. Examples 
of error patterns are given in Figure 5. 

The approach taken has been to represent the 

Fault Location in Memory Systems 399 

WRITE 
PATTERN 
INTO 
L.QCATION 

READ FROM 
SAME 

LOCATION 

DATA AND 
PARITY 

OKAY 

YES DATA BAD 
~---------,~ PARITY MAY 

BE BAD 

YES 
PARITY 

BIT 
BAD 

STORE 
ADDRESS 

AND PROCEED 

Figure }-Parity plane testing 

memory functionally and to choose a convenient 
block size so that most error patterns can be expressed 
in tenus of blocks. In most cases it is enough to know 
which block a particular faculty location belongs to 
and the exact address does not have to be stored. 
AMNESA initially just counts the number of errors 
per block and then proceeds to correlate this infor
mation with expected error patterns. Memories can 
generally be subdivided into blocks so that such an 
approach is always possible. In addition to simplifying 
programming, such a functional map helps to visualize 
error patterns (see Figure 5). 

AMNESA 

1. General. The program itself is composed of two 
segments. The first segment tests the memory drawer 
with different tests and detenmnes and stores error 
patterns found. This is followed by preliminary diag
nostic routines that search for patterns that would 



400 Spring Joint Computer Conference, 1969 

be caused by failures of circuits in the "0" level (see 
Table IV). 

The second segment is composed of diagnostic 
routines that try to correlate the failures detected 
by the first segment. This part_ of AMNESA searches 
for failures in circuits in higher levels. 

2. Printouts. The first segment of each program has 
four posffible printouts for each circuit tested. They 
are: 

a. PACKAGEFAULTY***** 
b. NO ERROR FOUND 
c. PROBLE::.vl SEE:\IS TO BE ELSEWHERE 
d. TEST INCON"CLUSIVE* 

The second segment can output: 

e. READ WHAT THE DIAGNOSTIC HAS 
PRINTED OUT PREVIOUSLY, or 

f. DISREGARD PREVIOUS PRINTOUTS 

XXXXXXXXXXXX 

The X's above indicate an error message. An ex
ample of a printout with actual errors is shown in 
FigureS. 

In the case of intermittent failures in any circuit, 
the second segment will print: 

READ WHAT THE DIAGXOSTIC 
HAS PRIKTED PREVIOUSLY 

The operator then scans the first segment print
outs for "TEST IXCOKCLUSIVE." If a test for 
any circuit has resulted in an inconclusive test and 
no other failures exist, that circuit has a malfunction. 

3. Resolution. Given that an error has occurred, 

DISREGARD PREVIOloS PRINTOuTS 

ERROR I N PARI n PLANE 

INHIBIT URIVER NO. 0 SEEfo!S tlAC - SEE CuMMENT 7 

COl"MEI'H 7 ••••••••••••••••••••••••• 
CNE Of SEVERAL Tl-INGS flAY BE WRONG. 

A. GC BACK ANC LOOK AT TME RESULTS FuR THl. O'S TEST FOR 
THE I"HIBIT tRIVERS. 

IF YOU HAVE A tilT EflPOP AND IF UNto UR MORE OF THE INHIBIT 
DRIVERS HAVE BEEN ''''CICATED FAuLTY CK iNCONCLUSIIIE. CHECK 
THE PACKAGE CONTAI"'I"'G THE INHltllT DRI vERS FOR THAT BIT. 

IF ERROR PERSISTS. CHECK HE THE TIOLI SEI\iS~ PACKAGES FOR THAT BIT. 

IN THE CASE OF A ilO~O EI<POP -

tI. CHECK TI1E INI-lBlT CEcetE PACKAGES. 

Figure 8-Printout with inhibit drivel' faulty 

the fault causing the error is usually indistinguishable 
between X packages. This X is referred to as the 
resolution of the diagnostic. 

,Vhat one would ideally like is to have diagnostic 
with a resolution of 1 package for all possible errors. 
Unfortunately, this is not always possible. 

For all transistor failures the resolution of A..vINESA 
is 1. For diode failures the resolution varies from 
1 to S in the worst case. 

The above is not as bad as it looks because the 
ratio of transistor failures to diode failures is about 
5 to 1. The chances of cases occurring in which the 
resolution of AIVINESA is 8, are relatively very low. 

The pity is, AMNESA isolates the fault down to 
4 to S particular diodes in the worst case. Unfortunately, 
these diodes can be on different packages-resulting 
in a low resolution. 

4. Limitations. 

a. In many cases, shorted diodes will most probably 
not be found by AYlNESA. Fortunately, 
the probability of such failures is relatively 
very low. 

b. Open sense lines will lead to noise on the sense 
lines. The results are also unpredictable. 

SUMMARY 

The approach that has been used in the writing of 
the diagnostic is applicable to any memory system 
as it does not concern itself with the type of device 
used as much as with the memory organization. In 
general, the selection of a location in memory is done 
by a decoding matrix and the failures of circuits in 
the matrix should result in unique patterns in most 
cases. Representing the memory functionally allows 
us a convenient way of classifying patterns. 

The failure of a circuit in a higher level will produce 
an error pattern that is a superposition of error patterns 
due to failures in lower levels. Failures in addressing 
circuitry will result in errors in all bits of a word, 
while failures in bit circuitry will result in errors in 
one bit (or a few bits in the case of multiple failures 
in bit circuitry) of a word. 

If the memory devices themselves are not function
ing correctly, the errors produced will be random in 
all probability. Thus, if the diagnostic determines 
that circuits associated with the memory have not 
failed, chances are that the errors are due to the 
memory devices themselves, or due to lines associated 
with only those devices. This in itself is a successful 
diagnosis. 



Multiple failures are really no problem because 
the diagnostic does not attempt to correlate the total 
error pattern it discovers. The diagnostic rather 
decomposes the total pattern into its elements. 

If all memory appears bad, then the diagnostic 
cannot even hope to be successful because this would 
appear to the diagnostic as though every circuit 
associated with memory has failed. However, there 
are not too many -conditions that can cause all of 
memory to appear bad. These conditions can be 
given to the operator. Once he gets a part of the 
module working, the diagnostic can take over. The 
algorithm for the MAR can also be used in any memory 

Fault Location in Memory Systems 401 

system as the algorithm only capitalizes on the unique
ness of memory addressing. 

The problem of improving resolution has some 
ramifications that apply to packaging during the 
design of a memory system. 

AMNESA has been tested out by introducing 
actual faults into the memory system and has proved 
to be quite effective. The program has now been 
released to the field and preliminary reports indicate 
it is quite successful. The same approach is being 
used to write memory diagnostics for the H-200 
(coincident current memory) and the H-4200 and 
the H-8200, which have 2 ~ D memories. 

Table IV-Classification of circuits _ 

(i) X-current generators 

(ii) Y -current generators 

(iii) X R/W Drivers 

(iv) Y R/W ::lrivers 

(v) X-selection switches 

(vi) Y -selection switches 

(vii) Sense amps, sense flops, 

(viii) Inhibit drivers 

(ix) Inhibit gates 

(x) Inhibit decode packages 

(xi) ~lemory Address Register 

(xi i) X-diodes 

(xiii) Y-diodes 

(xiv) X-transformers 

(xv) Y-transformers 

I 

The circuits are classified according to levels for 
purposes of explanation. For example, X-current 
generators drive X-drivers. X-current generators are, 
therefore, in a level higher than X-drivers, i.e., if an 
X-current generator never comes on, it looks as though 
4X-drivers in each stack have failed. 

The column under "Number" indicates how many 
circuits there are per plane stack or drawer. 

etc. 

LEVEL NUMBER COMMON 

2 4/D Yes 

2 4/D Yes 

1 8/s No 

1 8/s No 

1 l6/D Yes 

I 
1 l6/D 

I 

Yes 

0 -- Yes 

0 4/p Yes 

1 2/S No 

2 3/D 
I 

Yes 

3 -- I Yes 

f 

0 -- No 

0 -- No 

0 -- No 

0 -- ! rio 

I 
I I 

D = Drawer 

S = Stack 

P = Plane 

The column under "Common" indicates whether the 
circuits are common to two stacks. 





Characteristics of faults in MOS arrays 

by H. R. LA]MBERT 

North A.merican Rockwell Corporation 
Anaheim, California 

INTRODUCTION 

Before discussing characteristics of faults in .:\10S 
arrays, it appears desirable to review briefly ::.vIOS 
technology, and to present some discussion on the use 
of l\IOS devices in arrays. Not only will this benefit 
those not too familiar with NIOS devices, but it will also 
serve as a basis for the subsequent discussion on failure 
lllodes and mechanisms. 

l\:Ietal-Oxide-Semiconductor (1\10S) device fabrica
tion employs the same basic technologies used in the 
fabrication of bipolar devices. However, ~\:ros devices 
are quite different from bipolar devices in operation. To 
understand some of the problems that may be en
countered in 110S devices, it is thus necessary to know 
something of their construction and operation. 

Figure 1 shows a schematic cross-section of the type 
of .:\10S field effect transistor (FET) that is the basic 
element for most 110S arrays. This figure also shows 
the symbolic representation for a .:\!IOSFET. This type 
of ~\,IOSFET, called a P Channel Enhancement 
l\IOSFET, is made by diffusing two P regions into an N 
type silicon substrate. A metal film control element, 
called a gate, is evaporated onto an insulating film over 
the region separating the two P regions. It is from this 
feature that the term -:\Ietal-Oxide-Semiconductor is 
derived. This can he somewhat of a misnomer, however, 
a.~ the insulating layer between the gate and the sub
strate need not be silicon oxide. It may be silicon nitride, 
or a silicon oxide/nitride combination. This latter type 
of device may be called an .:\,1XOS device, for -:\Ietal
Xitride-Oxide-Semiconductor. 

If the Source P region of a P Channel device is 
grounded with the substrate, as shown in Figure 2, and 
negative voltage is applied to the Drain P region, there 
will be no appreciable drain to source conduction as 
long as the gate is unbiased. This off state has the 
megohm impedance of a reverse biased P-N junction. 
When negative voltage is applied to the gate, minority 

403 

(positive) carriers are attracted to the surface of the 
substrate that is covered by the gate. At the same time 
majority (negative) carriers are repelled from the sur~ 
face. When sufficient negative gate voltage has been 
applied, the N type material under the gate will 
"invert" and a P type path or channel is formed between 
the drain and source. The gate voltage at which this 
occurs is called the threshold voltage and is generally 
de~led as the gate voltage required to allow a specified 
dram to source current at a specified drain to source 
voltage. As the gate voltage is made still more negative, 

GATE 

GATE 

DRAIN 

~ 
SO~CE 

SUBSTRATE 

SYMBOLIC DIAGRAM 

SUBSTRATE 

Figure I-Cross section of P channel enhancement 
mode MOSFET 

GATE II~ 

~------__ .....J SUBSTRATE 

Figure 2-Biasing and operation of MOSFET 



404 Spring Joint Computer Conference, 1969 

the induced channel is deepened and the drain to source 
conductivity is increased. This increase of conductivity 
by increase of gate voltage is referred to as enhance
ment mode operation. When the gate voltage level is 
subsequently reduced below the threshold voltage, the 
channel reverts to its initial N type and the device no 
longer conducts. The control of conductivity by an 
electric field gives rise to the descriptive name of field 
effect transistor. Because gate is separated from all 
other portions of the device by an insulating layer, there 
is essentially no gate current required for operation. 

It is also possible to fabricate N channel devices by 
diffusing N regions into P type substrates and to make 
devices with a thin diffused channel between the drain 
and source. This latter type results in a normally on 
device in which the drain to source conduction can be 
either increased (enhanced) or decreased (depleted). 
Such a device is usually called a depletion type device to 
distinguish it from the above described enchancement 
mode devices. Junction type FETs are also fabricated, 
but will not be discussed because of their current 
unimportance in integrated circuitry. 

Figure 3 shows what are commonly called drain 
characteristics, in order to present some idea of the 
electrical characteristics of :\10S devices. This figure 
plots the variation of drain-to-source current with gate 
and drain voltages for a typical P channel enhancement 
device. Other typical electrical characteristics are 
threshold voltages of 3-5 volts and on resistances of on 
the order of 100 ohms. 

l\1ore should be said about on resistances at this 
point, as this is one of the characteristics of l\.fOSFETs 
which makes them particularly applicable to integration 
into arrays. The drain to source on resistance is deter-

IDRAIN 

o 5 

VDRA1N 

-9V 

-8V VGATE 

-7V 

-6V 

-5V 

10 

Figure 3-Drain characteristics of M OSFETS 

mined by the common resistance formula: 

L 
R=p

\Vxt 
(1) 

Land Ware the channel length and width; t is the 
thickness and p is the resistivity of the induced channel. 
A l\IOSFET fabricated with a long narrow channel has 
the characteristics of a load resistor when turned on. 
This technique is utilized in the fabrication of ::VIOS 
integrated circuits to eliminate the area consuming 
diffused resistors required on bipolar integrated circuits. 

The switch like characteristics of ~10SFETs makes 
them ideally suited for digital applications. Because of 
low gate current requirements, ::V10SFETs can be made 
,,"ery small. Good isolation bet,'1leen elements allo,\xls 
dense packing of ::.YrOSFETs in integrated circuits. 
These features result in the ability to fabricate very 
complex lV10S digital arrays on very small dice. As an 
example of the degree of complexity possible, Autonetics 
has fabricated 1024 bit shift registers containing over 
6000 IVIOSFETs on 160 by 135 mil dice. Table I lists 
some of the type of ::.\10S arrays currently available 
from semiconductor manufacturers so that the impact 
of :vros on the computer industry can better be 
appreciated. 

Although generalizations are difficult to make because 
of the many and varied types of ::\10S arrays available, 
for the purposes of this discussion an attempt will be 
made to categorize at least the logic arrays into static 
and dynamic types. The former use flip-flop type 
elements to store information as long as desired and are 
capable of &-c operation. Dynamic arrays, on the other 
hand, utilize the high input impedance characteristics 
of gates (1014 to 1016 ohms) to store information for brief 
periods of time. As an example, consider what happens 
when the voltage is removed from the gate of a turned 
on device. If the voltage is removed by grounding, the 
gate which acts like a capacitor is discharged and the 
device will be turned off. If, however, the voltage is 
removed by opening the gate line (as by turning off a 
series lV10SFET) the gate will stay charged until the 
charge leaks off. As long as the gate stays charged, the 
device will remain turned on. In this manner it is 
possible to store information for brief periods while 
other operations are being pertormed. 

This technique is iliustrated in Figure 4 which shows 
one bit of a dynamic, multibit shift register. When an 
input zero is applied to Q1 coincident with clock pulse 1 
(CP1), the gate of Q5 will be charged to -18V from V DD 

(through Q2 and Q3). Qf) will stay turned on after Q2 
and Qa are turned off by CPl returning to ground. When 
CP2 turns on Q4 and Qe any charge on Q7 will discharge 



o 

Characteristics of Faults in MOS Arrays 

Table I -Typical types of MOS circuit currently available 

I-Shift Registers 
Static and dynamic registers ranging up to Quad 256 bit registers. 

2-l\lemories 
Read only memories, nondestructive, to 1024 bits. 
Random access memories to 32 bits. 

3-Converters 
D to A converters. 
A to D COIlverters. 

4-Counters 
Binary up-down counters. 
Variable modulus counters. 
Binary, ripple carry type counters. 

5-Flip-Flops 
Dual J-K flip-flops. 
RST flip-flops. 

6-Gates 
Various types of Dual and Quad multi input NAND/NOR; AND, and OR/NOT gate~. 

7 -l\liscellaneous 
Parallel accumulator. 
Full adder. 
Parity detector. 
Level shifter. 
Counter timer. 
Clock generator. 
Address decoder. 
Serial/parallel-parallel/serial converter. 
Other -specialized types of arrays. 

to ground through Qs, and a zero will have been 
propagated from the input of Ql to the input of Q7 by 
the subsequent application of CP1 and CP2 pulses. 

Although input gates of ::VIOS arrays are generally 

SCBSTHATE 
(TYI') 

VIb 
-ISV 

CpI 
-24V 

Numeric character generator. 
Arithmetic comparator. 
Servo Adder. 
Frequency divider. 
Decimal point display. 
Digital differential amplifier. 
Core memory interface. 

protected from static electric discharges by low voltage 
diodes, the high input impedance of internal devices if 
not affected. The lower frequency limit of operation of 
dynamic arrays depends on the RC time constant of the 
internal gates and is on the order of 1 kHz. 

Discussion of fault characteristics 

"'lpu~ 
-24V (I) 

It was previously noted that the same basic methods 
are used for fabricating both :\10S and bipolar devices. 
These include crystals growing, wafer preparation, 
oxide formation, masking and etching, diffusion, die and 
wire bonding, and packaging. The materials used for the 
substrates and doping are also similar. It would be 
correctly expected that processing and material related 
failure mechanism on both types of devices would be 
similar. The justification for discussion of 1\10S fault 
characteristics, when so much has been written on those 
of bipolar devices, is based on degree and manner that 
IVrOS devices are affected. These different degrees and 
manners are a result of the field method of operation of 
1\10S devices and the necessary dimensional differences Figure 4-0ne bit of typical shift register 



406 Spring Joint Computer Conference, 1969 

required by 1\10S devices for this type of operation. 
Discussion will be confined to fault characteristics 
related to these differences although tabular listings of 
all normally encountered failure mechanisms will be 
presented. A..11 attempt will later be made to relate these 
discussed mechanisms to various types of ~10S array 

grouped into the following three categories. 

1. Catastrophic faults that result in permanent 
complete device malfunction. Examples are opens 
for shorts caused by one or more of the conditions 
shown in Table II. 

2. Intermittent faults that cause temporary device 
malfunction or that cause loss of any stored 
information. Examples are mtermittent opens or 
shorts caused by one or more of the conditions 
shown in Table III. 

malfunctions. -
The discussion will confine itself to the types of faults 

that cause failure in services; that is, mechanism that 
cause apparently good arrays to malfunction at some 
subsequent time after they have been put into operation. 
These malfunctions, neglecting misapplication and over
stresses, relate back to fabrication anomalies or design 
deficiencies, as such, they also relate to mechanisms 
responsible for yield loss during fabrication. 

3. Degradation faults that gradually cause complete 
device malfunction or malfunction under some 
conditions of operation. An example is leakage 
current degradation which could be caused by 
one or more of the conditions shown in Table IV. For the purpose of organization, the faults will be 

Failure Indicator 

Open~ 

Shorts 

I 

Table II -Catastrophic failure mechanisms 

I-Bonding 

2-);letallizat:on 

:3-:?\Iechanical Damage 
4-8horting 

Related Failure ::Ylechanism 

a. Poor wire bonding (weak, off pads, etc.). 
b. Intermetallics at pads. 
c. Damaged wires. 
d. ~Vrechanical overstress (shock, etc.). 
a. Unopened contact windows. 
b. Breaks in the metallization 
c~ Handling damage to metallization. 
d. ~letal migration. 
a. Cracked or broken die. 
a. Excessive current drain at short and elements subsequently 

burned open. 

I-Oxide defects a. ~letalliz~tion penetrates oxide. 
2-':\fetallization a. ::.vletallization lines touching as a result of mask defects. 
3-Bonding a. Bonding wires touching. 
4-~\lechanical Damage a. Cracked die. 
5-Electrical Over Stress a. Oxide rupture. 

b. Excessive power drawn Ctausing melting of elements. 
6-Foreign ~laterial a. Bridging between elements. 

Table III-Intermittent catastrophic failure mechanisms 

Failure l\lechanism Failure Indicator I 
,--------------------------------------------------------------------------

Opens II-Bonding 
2-~lechanical Damage 

a. Loose bond, die 
a. Cracked die. 

Shorts I-Bonding a. Wires touching each other or die. 
2-1\1echanical Damage a. Cracked die. 
3-Foreign Material a. Loose foreign material shorting between elements. 



Characteristics of Faults in MOS Arrays 4:07 

Table IV-Degrading failure mechanisms 

Failure Indicator Failure Mechanism 
--------1--------------------------------------_·· 
High Leakage 
Currents 

Contamination a. In the oxide. 
b. On the oxide. 
c. On the package. 

---------1-----------------------

Contamination a. In the oxide. Shifted 
Threshold 
Voltage 

b. At the oxide-silicon interface. 

The failure mechanisms listed in Tables II, III and 
IV are common, except to degree and effect, to both 
.:vros and bipolar devices. Some mechanisms are de
pendent upon die and/or diffused region areas, others 
are dependent on the number of internal wire bonds 
used, still others are dependent on packing densities of 
elements and spacing of metamzation lines. Some 
mechanisms are also related to the particular structure 
and operation of ::\10S devices. Table V illustrates these 
various dependencies. 

As an example of what is meant by mechanisms being 
dependent on various geometric factors, consider the 
effect of die area and diffused (active) area on devices 
with oxide defects. The die area obviously does not 
cause oxide defects; however, if there exists a certain 
density of oxide defects per square cm, then statistically 
a large die is more likely to have defects on it than a 
small die. Similarly, a die with closely packed elements 
or large diffusion areas is more apt to have oxide defects 

in critical locations than the same size die with a lower 
packing density and smaller diffused areas. These 
geometrical considerations indicate that it is reasonable 
to expect a large, complex array to have a higher failure 
rate than a small, simple array. This would normally be 
offset by system requirements for fewer of the more 
complex arrays, with the resultant fewer interconnect 
and mounting problems. At any rate, geometrical effect:-; 
are not peculiar to ::\10S devices and will not be discussed 
further. 

Table V indicates that oxide defects, surface con
tamination, and metal migration are all influenced by 
the :\10S structure and method of operation. Experience 
has also indicated that these three mechanisms are the 
largest causes of ::\10S failures under stress. These 
mechanisms and their relation to }fOS devices ,vill he 
discussed below. 

Oxide defects can be holes, cracks, or weak spots ill 
the oxide insulating layer. If these defects occur under 

Table V-Failure mechanisms and dependency factors 

Dependent Factors 
----_._---_._----- -~ ... 

Failure :\lechanism C}eoTIlPtry ~IOS 

---- --- ---.-- ----.--- . .. _------ - ------

Die Area Diffusion Packing No. of ::\[OS ~\fOS 

Areas Density Bonds Structure Operation 
------------------ --------------

Bond discrepancies X 
l\J etallization defects X 
l\ f etallization migration X X 
Cracked or broken dice X 
Oxide defects X X X X 
Foreign material X 
Surface contamination X X 



408 Spring Joint Computer Conference, 1969 

interconnect lines whose metallization subsequently 
penetrates the defect, the interconnect line becomes 
shorted to the underlying element or substrate. :\,fost 
oxide defects appear to be caused by surface irregularities 
present on the silicon prior to oxidation.! Assuming a 
uniform distribution of silicon surface irregularities, 
more oxide defects will occur in regions of thin oxide and 
at abrupt oxide steps than in uniform regions of thick 
oxide. The threshold voltage of 1\lOS devices is governed 
by the following relationships:2 

(2) 

where too; is the oxide thickness, eox is the dielectric 
constant of the oxide; and Qss and Q.n 9xe t.he charge 
densit.ies at the silicon-silicon oxide interface and in the 
substrate respectively. In order to obtain thresholds in 
the usable range of 3 to 6 volts, it is necessary to have a 
gate oxide thickness on the order of 1500A 0. In com
parison, the thinnest oxide normally found on bipolar 
devices is in the i)OOOA ° to 10,OOOA ° range. There is also 
an oxide step around the periphery of the gate oxide 
where the oxide thickens to several thousand Angstroms 
over the P regions. Inasmuch as the gate oxide and 
surrounding step are covered by metallization any oxide 
defects in these regions are potential shorts between the 
gate metallization and underlying substrate and P 
regions. The effect of such shorts will be discussed later 
in the paper. 

Contamination in and on the insulating layer or at 
the silicon-silicon oxide interface can result from im
purities in the various cleaning and etching solutions or 
volatile impurities in the oxidation and diffusion 
furnaces. The various exposures to high temperatures 
during fabrication tend to uniformly distribute the con
tamination ions and the effect of their presence is usually 
not detectable by just electrically testing the completed 
device. Small amounts of contamination can, however, 
l'esult in considerable device performance degradation 
in subsequent use. 

The operation of :\IOSFETs by application of an 
electric field at the gate was discussed in the introduc
tion. The formation of a conducting drain to source 
channel by inversion of the substrate surface under the 
gate was described. This inversion was seen to be caused 
by attraction of minority carriers and repulsion of 
majority carriers by applied gate voltage. The gate 
voltage required to initiate drain to source conduction 
across the inverted region was defined as the threshold 
voltage. 

Any spurious charge concentrations under the gate 
affect QS8 (reference equation 2), thereby, inhibiting or 

enhancing the charmel formation process and shifting 
the threshold voltage. If gate bias is applied at ambient 
temperatures above 100°C mobile contamination ions 
become concentrated at the substrate surface as shown 
in Figure 5. This figure shows t.he t.endency of positive 
contaminant ions to increase threshold voltages in P 
channel :;\10S devices by inhibiting the inversion pro
cess. It appears that the spurious positive ions result 
from contamination by sodium present in the various 
fabrication materials and equipment. Considerable 
effort is normally expended to reduce the level of 
sodium contamination to an acceptable level. 

In addition to inhibiting channel formation, positive 
ions can cause surface inversion of P regions by attract
ing negative minority carriers and repelling positive 
majority carriers. In most types of :\10SFET's there is 
some gate metallization overlap of the drain P region. 
If at high temperatures the drain is biased negatively in 
respect to the gate, positive charges will accumulate in 
the gate overlap region as shown in Figure 6. This will 
cause a distortion of the drain to substrate junction in 
this region giving rise to an increase drain leakage 
current when the device is in the off state. 

The effects of increased threshold voltages and leak
age currents will be discussed later. 

~1etal migration occurs when metal ions are knocked 

SOURCE-----_ 

-v 
GATE 

.....---- DRAIN 

SUBSTRATE 

Figure ,i)-Accumulation of channel surface 

GATE 

OXIDE 

Figure 6-P region inversion 



out of their crystal lattice by high velocity conduction 
electrons. The migration rate is accelerated by high 
temperatures and high current densities and is in
fluenced by the crystal structure of the metal. Con
siderable investigation has been done on the migration 
of aluminum films such as are used for interconnects in 
integrated circuits.3 ,4,5 The small cross sectional area 
of these intercomlects can result in current densities of 
1Q5 to 106 amps/sq cm for only a few milliamps of 
current. By way of comparison, this current density is 
about two orders of magnitude higher than that which 
occurs in high power transformers. As elements 
become more densely packed in complex arrays, the 
interconnect lines must be made narrower. Care must 
be taken to limit current densities within safe limits by 
application of appropriate design rules. 

The foregoing applies to any arrays employing 
aluminum interconnects, but a special problem exists on 
MOS arrays in lines used to charge large numbers of 
gates. Normally gate lines are considered to draw very 
little current. However, gate capacitance charging by 
fast rise time clocks gives rise to large instantaneous 
currents with resulting instantaneous current densities 
of 107 to 108 amps/sq cm. Although no significant 
relations have been obtained between these high 
instantaneous current densities and migration rates, 
conservative design rules must be employed to anticipate 
the potential problem. 

Previously it was noted that the three failure 
mechanisms most influenced by 1\10S structure and 
operation are the same ones that are responsible for 
most 1\I10S array malfunctions under stress or use. 
These mechanisms result in gate shorts, threshold and 
leakage increases and open interconnections. The 
question to be examined is how such discrepancies can 
be expected to affect operation of typical digital circuits. 

The function of all types of digital arrays is to store, 
read out or perform some operation on digital informa
tion at the command of some input. The resultant digital 
outputs are in the form of "ones" and "zeros." When an 
array malfunctions it can be expected that the outputs 
will be in error in one of the following ways: 

1. Outputs are all "ones," all "zeros" or some 
intermediate level for any input or operation. 

2. Outputs that should be "ones" are "zeros" and 
vice versa, either permanently or intermittently. 

3. Outputs are correct but are degraded to the 
extent that other arrays will not correctly 
recognize them. 

In some cases these malfunctions may be temperature, 
voltage or frequency dependent. 

It can be expected that gate shorts and interconnect 

Characteristics of Faults in MOS Arrays 409 

opens will cause permanent (as opposed to intermittent) 
arrays malfunctions such as 1 . or 2 above. These 
malfunctions will in addition be quite insensitive to 
temperature, voltage or frequency variations about 
their nominal values. The location at which the 
discrepancy occurs will govern the type of malfunction. 
A short in one place may cause an all "zero" output 
while a short at another place may cause an all "one" 
output. In addition a short at one location may produce 
the same effect as an open interconnect at a dit1ferent 
location. Certain types of circuits may have weak areas 
in fixed locations so that devices tend to fail in the same 
manner, causing repetitions of the same circuit mal
function. 

If shorts are responsible for the array malfunction, 
loading down of clocks, inputs or suppliers may occur. 
This loading may be to the extent that other good 
arrays fed from these sources may not function properly. 
Open interconnects will generally not cause such loading 
down, and in fact may reduce the normal load. 

Arrays with degraded threshold voltages or leakage 
currents may exhibit any of the three above listed 
malfunctions at nominal temperature, voltages and 
frequency. However, these malfunctions will generally 
be sensitive to variations of temperature, voltages and 
frequency about the nominal values, as will later be 
discussed. 

It was shown in Figure 3 that for a .given drain-to
source voltage, increasing the gate voltage above its 
threshold results in an increase of drain to source 
current. That is, the channel resistance is reduced. For a 
constant gate voltage, as the threshold voltage increases, 
the gate is turned on less hard and the channel resistance 
increases. Thus, any gate charging and discharging 
through another device whose on resistance has in
creased as a result of threshold degradation will charge 
and discharge at a slower rate. The device will therefore 
turn on and off more slowly. If a number of threshold 
degraded devices are employed in series, as for example 
in a multibit register, the cumulative effect may impair 
high frequency operation of the array. Low frequency 
operation in which the devices are allowed enough time 
for this slower turn on and off will not be affected. At 
intermediate frequencies intermittent operation and 
incomplete transitions between the "one" and "zero" 
levels may occur. Devices affected by degraded 
thresholds will not be greatly sensitive to temperature 
or voltage variations. 

As shown in Figure 4 devices such as Q3 and Q6 are 
used to control the gate charging of other MOSFETs. 
When the controlling devices are turned off, any charge 
present on the gates of ~10SFETs they control will be 
stored until it leaks off. This means that the controlled 



410 Spring Joint Computer Conference, 1969 

device will stay turned on as long as its gate stays 
charged. Information may be stored in this manner. The 
length of time a gate will maintain its stored charge 
under such type of operation determines the lower 
cutoff frequency of operation, If there is an enhanced 
charge leakage path through the control device as a 
result of P region inversion, the gate being controlled 
will loose charge faster than intended and low frequency 
operation of the device and array will be impaired. At 
higher frequencies charges are required to be stored for 
shorter durations and array operation may be normal. 
Low frequency operation may be improved by increasing 
the voltages to the array as the gates are then charged 
to higher levels and a longer time is required for them to 
discharge. Operation at high frequency may be impaired 
by elevated ambient temperature which increase leakage 
currents. At frequencies, voltages and temperatures 
intermediate between those causing nonnal operation 
and inoperation, outputs may become degraded so that 
"ones" appear only as sharp spikes. Such degraded 
"ones" may not be recognized by other arrays into 
which they feed. 

The leakage currents on an array may degrade to the 
extent that considerable loading down of signals occur. 
In addition enough power may be consumed by the 
array to significantly increase its temperature. As leak
age current increases with temperature a thermal 
run-away condition may occur with the resultant 
destruction of the device. Even if thermal runaway is 
not encountered, the array temperature may increase 
enough to further impair low frequency operation. 

It is characteristic of contamination associated 
failure mechanisms that the degradation introduced 
over a period of time in use can be baked out at 200°C 
in only a few hours time. 

I t should be remarked that some oxide defects may 
cause high resistance leakage paths which will have the 
same affect on device performance as high leakage 
currents resulting from contamination. It is expected 
that such type failures would be less temperature 

sensitive, and could not be returned to normal operation 
by baking. 

SUJ\I1HARY 

The fabrication techniques and mode of operation cause 
oxide defects, contamination, and metal migration to be 
the dominant failure mechanisms of MOS devices. 

Shorts caused by oxide defects and opens caused by 
metal migration give rise to permanent voltage, fre
quency and temperature insensitive array malfunctions. 
Array outputs may be all "ones," all "zeros," or outputs 
that should be "ones" may be "zeros" and vice versa. 

Contamination, notably positive sodium ions, cause 
thresholds and/or leakage currents to increase. High 
frequency operation is affected by the former and low 
frequency operation by the latter. The latter is also 
sensitive to high temperatures and low voltages. Outputs 
on contaminated devices may be similar to those for 
opens or shorts or may be degraded correct outputs. 

REFERENCES 

1 J E MEINHARD 
Process techniques study of integrated circuits interim 
scientific 
Report ~o C5-147/ 12/501 
Prepared under ~ASA contract NAS 12-4 May 1968 

2 P J BESSER J E MEINHARD P H EISE)I BERO 
Factors influencing dielectric defects in silicon oxide layers 
Presented at Electro Chemical Society Philadelphia Pa 
October 1966 Autonetics Report # X6-3072/501 

3 J R BLACK 
Mass transport of aluminum by nwrnentum exchange with 
conducting electrons 
IEEE Sixth Annual Reliability Physics Symposium 
Proceedings 1967 Vol. 6 

4 I B BLECH H SELLO 
Trw failure of thin alulninum CUiient c~riiJing stiips ,an 

oxidized silicon 
Physics of Failure in Electronics Vol 5 1966 

5 R V PENNY 
Current induced mass transport in aluminum 
Journal Physics of Chemical Solids Vol 25 1964 



A systematic approach to the 
development of system programs 

by F. M. TRAPNELL 

Qandac Associates Limited 
Zug, Switzerland 

INTRODUCTION 

The brief history of the development of large program
ming systems shows a persistent inability to predict 
cost and time associated with it. For this reason I 
want to discuss some of the principles and practice 
which experience (either good or bad) has shown can 
yield a higher level of predictability. I do not pretend 
that these principles are always easy. to apply or that 
they do not have to be interpreted to particular situa
tions. However, I do believe that the principles are 
fundamental in that predictability can be guaranteed 
to increase if they are followed. 

Rapidly changing system technology is causing 
rapid increases in the scale of functional complexity and 
sheer size of these systems which in turn has caused 
rapid increases in the cost· of and in the time required 
to develop them. Thus, in any given undertaking there 
will continue to be very little precedent for the leaders 
in the technology to follow in developing successive 
systems. Given that there is little precedent to follow, 
it should come as no surprise that the main theme of 
this paper is to call for carefully detailed and explicit 
planning of all phases of the development project. 

Specijicat'ion 

Of all the problems facing the developer the lack of 
an adequate systems specification is both the hardest 
to overcome and at the same time the one which, if not 
overcome, will cause the most grief. This specification 
is a statement of what the system will do under all 
conditions, how it will do it, how fast it will operate, 
and how large it will be. The choice of language in which 
the specification is written is important in that it must 
be understandable to a wide range of people: the pro
grammers, the system engineers, the managers, the 
users, and so forth. This, combined with the need to be 

both explicit and detailed regarding all situations in 
which the program might find itself, makes it an ex
tremely difficult document to produce. From a practical 
point of view, however, one can regard it as axiomatic 
that what is not contained· in the specification will not 
be in the system when it is finally built. 

Structure 

An important factor in achieving an adequa'te speci
fication is deciding on the structure of the specification, 
itself. Only a few people can have a thorough knowledge 
of a large system; yet it may be necessary to have a 
large number of people working on programming and 
testing various parts of the system in order to complete 
it on schedule. To accomplish this, the structure of an 
overall specification must be such that it can easily be 
broken into as many sub-specifications as are required. 
The process is similar to constructing a bill of materials 
explosion in planning a manufacturing process. The 
cleavage into sub-programs will depend upon consider
ations of modularity, how maintenance of the system 
is to be carried out, how important is it to have the 
ability to substitute alternate program modules, and the 
fact that there may be natural boundaries between 
functions of the system which make natural interfaces. 
In any event, and however this is done, the size of 
each specified module should be no bigger than that 
which one man can program and test during the allot
ted development cycle. Thus a module becomes the 
property of one individual, who must be held responsible 
for achieving its specification, including proper inter
faces, proper use of system facilities, function, speed 
and size. 

Cross system communications 

With such a breakdown of specification, it becomes 

411 



412 Spring Joint Computer Conference, 1969 

a major task to control the communication between 
these modules. Ideally i1 developer would like to ensure 
that these communications operate through system 
defined mechanisms. That is to say, every commupi
cation between modules would take place through 
macro instructions with symbolic parameters which are 
expanded into machine code and data either at assembly 
time or execute time or some of both. These expansions, 
and system tables, lists, rolls, or control blocks which 
they use, should be specified and controlled by the 
central specification control agency discussed earlier. 
Thus, they are part of the systems specification itself 
and they must not be changed by individual program
mers. 

One of the problems in achieving this ideal is that 
many of these [ugh level communications facilities are, 
or seem to be, cumbersome and slow. Thus a strong case 
may be made for private communications between 
modules of the system where the two programmers in 
question understand in detail how their code works and 
therefore can use this internal knowledge to locally 
speed things up. I, myself, have succumbed to this 
kind of rationale when in the heat of development there 
did not seem to be any satisfactory alternatives. (This, 
incidentally, I attribute to not having done the kind of 
specification job that I described earlier.) On the other 
hand, I am satisfied that this internal communications 
approach is unsound in large systems and can in fact be 
disastrous if it is arrived at by private agreement with
out the overall knowledge of the specification control 
authority. The right way to deal with this performance 
problem is to define the communications problem 
accurately as part of the specification and then design 
the cross-system communication mechanisms so that 
they meet the performance required. If necessary the 
system developer should obtain additions or modifica
tions to the hardware which help to solve these 
problems. 

(Incidentally, one of the worst character defects of 
system programmers is that they will go beyond the 
point of reason to avoid demanding changes to hard
ware. Frequently this is due to their inability to discuss 
these problems intelligently with cost conscious en
gineers; but some part of it is due to the fact that they 
often regard it as their job to program around all hard
ware problems.) 

One reason to control communications at the system 
level is to maintain knowledge of how communications 
ought to take place so that when system bugs occur they 
can be analysed more easily and systematically. A 
second reason is to provide the flexibility to change the 
communications paths, the communication media (e.g., 
Vector tables); as well as the location and identity of the 

source and destination modules without having to re
design and recode the system. This can pay dividends, 
not only as the system is changed and expanded but 
RlRO onrlnQ' the testina Dhase when one can more easily 
~~t i~--~~~~olding' p;o~rams to simulate the action of 
routines that have not yet been written. 

Development of the specification 

The development of an adequate specification is, 
of course, a continuing process. Noone is smart enough 
to sit down cold to produce a completely adequate 
specification for a large, complex system any more 
than one could sit down cold to produce a completely 
adequate constitution to govern a state or nation. 
As the program develops, new knowledge and insight 
will be gained which will lead to the need to change the 
specification. On the other hand, the nearer in detail 
the initial specification is to the final one, the quicker 
the development and specification changing processes 
will converge to an adequate design. 

I have rarely seen enough time and effort spent in 
achieving an adequate initial specification for a large 
system to optimise either the overall development time 
or the overall cost. Time can be wasted in over-designing 
certain phases of the system, and there is a strong 
temptation to feel that unresolved specification prob
biems will somehow disappear in the course of imple
mentation. Thus, an aggressive development manager 
may prematurely decide to stop designing and start 
programming. As the experienced high altitude aviator 
disciplines himself to recognize the insidious symptoms 
of the lack of sufficient oxygen, so the experienced de
vel~per should discipline himself to recognize the in
sidious symptoms of not having sufficient specification. 
In practice I would suggeRt. t.he following: 

The main inadequacy of specifications is that they 
are usually too narrow in scope. Typically, they cover 
in depth those parts of the system which the designers 
feel are elegant, sophisticated and new; often they either 
skim or avoid problems which the designers feel are not 
technicallv interesting. Hartman and Owens in their 
paperl in ~ the proceedings of the 1967 FJCC indicate 
the sort of breadth required in a compiler specification. 
As they say, a special and frequently troublesome 
class of problems arises from a lack of consideration for 
user problems. 

It is essential that the developer avoids becoming so 
engrossed in the detail of given aspects of the system 
that he does not achieve completeness in the breadth 
of conditions and situations for which the system is 
designed to operate. One way to achieve this is to arrive 
at a formal specification through an iterative process of 
successive specifications. At each stage: 



Systematic .LA .... pproach to Development of System Programs 

a. some problems are solved and some design 
choices made; these in turn raise new problems 

b. the designers attempt to be exhaustive in identi
fying and describing these outstanding problems 
to be solved in order to achieve an adequate 
design 

c. they limit the extent to which they try to solve 
each problem. 

T\,. ... """ .... \,."",,+ +\";" ........ ""Ilon.nn +\,.", ;:J"'T?",ln. ..... "'_~ ~"n.j. ~~~ 
..L~U.VU.5~~Vu.u u~o p~V\Jvoo U~~V U.vvv~vpv~o U~UOli \)VU-

centrate on the question "Have we thought of all the 
situations and conditions which must be taken care of?" 
Until that quest is ended they must not be distracted by 
the fact that they may not have solutions in hand for all 
the problems encountered. 

Figure 1 illustrates this process, using some suggested 
stages. The first stage is called External Requirements, 
which tells how the system appears to the outside world: 
what the users, operators, manager, etc., see. The second 
is a functional cleavage of the system: what functional 
block there will be, what each will do. The third is inter
function communication; this describes the linkages to 
programs, system control blocks, system tables, etc., in 
terms ot their symbolic names, linkage parameters re
quired, data formats of parameter lists, etc.; at this 
point internal conventions and standards will be estab
lished and a control function tor these will be appointed. 
In the fourth stage, called program module specification, 
the system is carved into modules to be programmed: 
input/output/function specifications are written for 
each module. These I/O IF specifications list every 
input (entry point), every output with its destina
tion (exit point, interrupt, external reference, etc.), 
the linkage parameters and formats associated with 
each, the function which the module performs and its 
normal place of residence (in core, or disc, etc.). The 
fifth and final stage will provide detailed finw charts and 
final estimates of size and performance for each module. 

To get the system design right these stages will have 
to be gone through more than once! For this reason the 
path on the left of Figure 1 shows a return to stage one 
at the completion of each stage. This is meant to imply 
that before proceeding to the next stage in sequence, 
the designers should go back through all previous stages 
to formally make the corrections found necessary as a 
result of the last stage completed. 

These changes should be restricted to what is neces
sary to proceed; but on the other hand they give the 
designers the opportunity to correct mistakes made 
early in design. The programming manager who tries 
to short circuit the process will either end up with a 
poor system or will come face to face with the old system 
design adage which says: "There never seems to be 

1 
EXTERNAL REQUIREMENTS 

.; 

" 
" 

FUNCTIONAL BLOCK DESCRIPTION" 

- choice of blocks 
- assignment of roles 

-..... 
\1 

INTER FUNCTION COMMUNICATION 

- linkages 
- system tables, blocks, etc. 

,.,. 
...... 

'V 
PROGRAM MODULE SPECIFICATIONS 

- final partitioning 
- I/O/function specs per module 

.; 

...... 
\~ 

PROGRAM MODULE LOGIC 

- flow charts 
- final size, performance, etc. 

..-
" 

Figure I-Specification sequence 

time to do it right the first time, but there always turns 
out to be time to do it over again." 

The overall objective is to achieve a specification on 
which to base confident extimates of feasibility and 
development cost and time. The minimum require
ments for such a specification are: 

For the overall system: 

1. A summary description of .system facilities, how 
the system works, and the intent behind system 
standards as well as linkage and access require
ments for system owned facilities. 

2. A specification of all system owned facilities in
cluding services, tables, lists, etc., and the linkage 
or access requiremen:ts for each. 

3. A specification of the logical flow between system 
modules. 

. 4. System standards to be followed. 



414 Spring Joint Computer Conference, 1969 

5. The file and directory structure for externally 
stored system information. 

6. Overall SIze estimates for total system and core 
resident portion. 

7. Execution time estimates for important paths, 
including I/O time. 

For each module: 

1. A brief summary functional description, size 
target, execution time estimate for principal 
paths. 

2. Detailed specification of entry point linkage 
requirements, including all parameters required 
and the general format of these. 

3. Detailed specification of exit linkages including 
destination, the parameters provided, and 
their general format. (Note: the latter can 
simply cross-reference a specified entry point in 
the destination). 

4. Detailed specification of all system owned facil
ities used, including services, tables, list, etc., and 
the linkage thereto (as above the latter can 
simply cross-reference linkage requirements of 
these). 

Machine processable specifications 

A most useful tool in planning and controlling the 
changes to a large and complex system is a compre
hensive where-used file for every module and communi
cation facility in a system: that is to say, a file 
which for every such facility tells where to find 
every possible reference· to it. Thus, when the 
designer plans a change to the system, he can tell 
immediately where the impact of the change will be 
felt. It is virtually impossible, however, to produce 
such a document unless plans are laid early in the 
design stage to generate the information required 
to make up this file. 

This information should be contained in the specifi
cation for every module that is written. It should in
clude every entry and exit point, as· well as all the 
parameters that go to make up those linkages. It 
includes any references made to system facilities, 
blocks, tables, rolls, lists, etc. 

These should be written on a formatted specification 
sheet which can then be put into machine processable 
form, and if desired, stored on disc or tape. A program 
can be written to scan this information to generate all 
cross-references and to test that these are consistent 
between the calling or referencing program and the 
facility which is called or referenced. Thus the system 
designers can have an early opportunity to spot cross
system communication faults in the specification. 

This process can be carried a step further when ac
tually coding such references if the programmer is re
quired to use system controlled macros which, them
selves, can be cross-referenced to the specificati6;ns. 
When the programs are coded and before they have 
actually been tested in the system, they can be 
scanned to compare macro cross-references with the 
specifications for the module to ensure that they are 
consistent. It is worth noting that these inter-module 
and cross-system errors are particularly difficult to 
debug; hence, the value of doing this sort of checking 
ahead of time should not be underestimated. 

Implementation 

Starting from a suitable specification, one should 
try to implement it by '""laY of a systematic build 
and test process. This begins with programmers coding 
and testing modules with tests they write to satisfy 
themselves that the programs are working properly. 
These may be combined with other modules to form 
sub-functions which are in turn tested by tests written 
by the group responsible for the sub-function. How
ever, because of the complexity of debugging a large 
system, it is essential at the early stages in system 
assembly to hand over these sub-functions to a central 
group, called integration; more about them later. 

At this time these sub-functions will be tested by 
tests written, not by the programmers, but by a test 
production group. They are intended to verify that the 
sub-functions work at the level which is expected for 
incorporation into a system or sub-system which in turn 
is to be tested. by system or sub-system tests written by 
this group. Once these sub-functions have been accepted 
they are combined with other functions and scaffolding, 
where appropriate, so that overall tests can be run. 

Detected bugs are reported to the programmers who 
are given a copy of the system along with the test case 
or cases that failed, so that they can reproduce the 
problem. 

The system against which overall tests are run also 
may be used as a master system by programmers work
ing on functions that are not included (but perhaps 
scaffolded) in the master. When fixes have been found 
for the bugs in the master system at the current level 
(unfixed bugs may be converted to restrictions) and 
when the new function to be applied to the master sys
tem is available, then a new master system will be 
built using the old master, plus the fixes for its problems, 
plus the new function, see Figure 2. When this system 
has been built, it will be tested using a pre-specified 
newer and higher level of tests. The bugs thus found 
will be fixed or restricted, and it will become the new 
master system, available to programmers for the de-



Systematic Approach to Development of System Programs 415 

new MASTER 
function 

SYSTEM L 
BUILD 

successful 

NEW MASTER 

Figure 2-Build proeess 

bugging of new functions. This process is repeated until 
all specified functions are incorporated and working in 
the system. Thus the systematic built process starts 
with a system at a given level, develops new function 
and fixes for the system at that level, applies these in 
order to create a new level of system which after test 
becomes the new master system. 

Build plan 

Given such an incremental build process one must be 
able to plan the points in time when given functions 
will be incorporated into the master system. For in 
most cases every new function has functional pre-re
quisites which must work properly. Thus, the build 
process requires a build plan which serves to synchro
nise all of the effort in the build process. This plan will 
specify the functional capability of the various system 
prototypes at every stage so that the programming 
groups will know what will be available and can thereby 
make their plans. Further, it will give the schedule on 
which these prototypes are to be achieved; it will spec
ify when sets of test cases must be available to facilitate 
further debugging; and it will show a schedule of re
quired hardware configurations to support the various 
levels of testing. Thus, the build plan describes the 
overall logistics and schedule of the build process. It 
is the central control document against which system 
build progress will be measured and in accordance with 
which all other system plans must be derived. As with 
drawing up the system specifications it will pay divi-

dends for the system developer to take the care and time 
to layout the build plan and then to make sure that 
everyone who is concerned with the build process 
understands it thoroughly. 

Following the D-day landing at Normandy, General 
Eisenhower was asked whether all the planning that 
went into the invasion preparation was worth it, in view 
of the fact that practically nothing went according to 
the plans laid. His response is reported to have been that 
the plans themselves really did not prove very worth
while, but that the planning process had been of infinite 
value. The same is true of building a large system. It is 
almost a certainty that there will be some unplanned 
chaos during the implementation period, but proper 
planning will prove invaluable in recovering from that 
chaos. It achieves the following: 

1. Everybody associated with the process knows 
what are the critical factors and understands the 
sequence in which steps must take place. Thus, 
everyone is more able to assess immediately the 
effect of a change in plan on them and to re-align 
his plans quickly. 

2. A widespread general understanding of the plan 
requires that all adopt common terminology 
and that mearungs and implications of words 
will be thrashed out so as to facilitate much 
better communciations between everyone. Thus 
when changes in plan are discussed one can be 
more certain that everyone is talking about the 
same thing. 

3. It permits those concerned to more readily 
identify the sensitive steps in a sequence so that 
contingency plans can be laid to back up the 
main thrust of planned operations. 

Integration 

Integration is the central organisation which carries 
out the build function in accordance with the build 
plans. They maintain programs in controlled libraries; 
from these they build systems in accord~nce with the 
build plan and cause these to be tested. They apply 
approved changes to the programs contained in the 
controlled libraries, and they provide systems at certi
fied change levels to programming groups which re
quire them in order to test new functions. 

The integration libraries are the central store for the 
system; they service different groups of programmers 
who are testing and debugging various parts of the sys
tem in parallel. Throughout this period the attempt is 
made to maintain the rate of fixing bugs at the highest 
possible level, hence the change activities to these li
braries is very high. Yet the changes applied to them 



416 Spring Joint Computer Conference, 1969 

must be stringently controlled to avoid regression, as 
discussed later. 

Structure of libraries 

One convenient way to structure integration libraries 
is to divide them into three sub-libraries, with different 
controls on each; one of them is the master library for 
the system at its current level; changes to it must be 
stringently controlled to avoid the application of 
changes which would either put the master copy at an 
unknown change level or would cause regression. The 
second library will contain a system or systems taken 
from a master library against which programmers may 
apply changes freely in order to determine proper fixes 
for bugs. The third, called the build library, is where 
integration is building the system at the next planned 
change level. That is to say, a copy of the current 
master library is being updated by carefully vetted and 
certified changes; when complete and tested it will 
become the new master system, and will be moved to 
the master library. 

Regression 

The scourge of this process is called regression, where
in: a fix is applied to a program, which· mayor may not 
fix the intended problem, but which produces problems 
or bugs elsewhere that did not exist before. Unless 
very careful control is kept over the changes applied 
and over the change level contained in a given library, 
regression is a virtual certainty. In a large system where 
change control procedures are not adequate it can hang 
like a malaise over the whole project. I have seen situa
tions where on average for every bug fixed another one 
was created, so that over a period of time the net bug 
fixing progress was zero. The cure for regression is like 
the cure for rabies: it is painful, but it is guaranteed 
successful. Application of the following principles is 
required: 

1. A single individual (in integration) must be 
designated as responsible for control of the li
braries. He is responsible for setting up and 
operating all procedures for updating libraries 
and for authorising all changes to them. He 
should be made directly accountable for any 
regressions that occur. Practical problems such 
as working multiple shifts may require that he 
delegate responsibility for authorising changes 
to the library, but this should only be given to a 
few carefully chosen managers reporting directly 
to him. 

2. Each bug to be fixed is described on a master 
list along with the manager responsible for pro-

viding the associated fix. The only fixes accepted 
as library updates are those which are on this 
list, when authorised by the appointed manager. 

3. Any changes made to the build library should be 
the smallest modification which solves the prob
lem which the change is intended to fL~. Under 
no circumstances, short of absolute necessity, 
should changes be made to the library by re
placement of whole modules or programs. 
Changes should instead be made on an add/ 
delete basis; the libraries themselves, the pro
grams contained in them and the programs 
which perform the updating must be designed 
so as to facilitate this. The integration manager 
authorising a change should have certification 
from the programming manager submitting it 
that it fixes a given identified problem and that 
it does nothing else. 

4. Where possible, the integration manager author
ising the change should review the code him
self and be personally satisfied as to the extent 
of the modification. If he is in any doubt he must 
ask that the programming manager SUbmitting 
the change review it with him before he agrees 
to accept it. 

5. No other avenues for changes to the build li
brary may be permitted. 

The control procedures I have outlined are an at
tempt to prevent the application to the master libraries 
of unknown and often unwanted changes. These can 
arise through failure to keep an accurate accounting of 
the nature and scope of each applied change; through 
misunderstanding between the programmers and the 
integration people as to the functional level of the sys
t.em in thp, lihrary (and hence what changes are appro
priate); and last, but not least, from purely altruistic 
motives of programmers who want to make improve
ments to the system that are not required to meet 
specification. Throughout the build process one must 
constantly strive to identify those problems which must 
be fixed, to fix them, and to a void making other unneces
sary changes. 

The problem of controlling information in a system 
library is an order of magnitude worse than the problem 
of controlling accounts in a large bank. In the bank one 
has to keep track of how much money there is in each 
of a relatively few numbers of accounts and cash 
drawers. In controll~ng a system library one has to keep 
track of the value in a very large number of bit positions. 
This is rather like asking the U.S. Treasury to keep 
track of where every dollar bill is by serial number. 

While the banks long ago adopted a very rigid ac
counting system to solve their relatively minor problem, 



Systematic Approach to Development or System Programs A .. ,... 

'tIl 

I have seen installations where the whole control process 
was carried out on the back of an envelope. It is not 
normally essential for large system programmers to 
adopt the rigidity of banking procedures because the 
cost of error is not so high; I am suggesting, however, 
that the prudent application of a few strict controls can 
save time, toil, tears and money in the development 
of systems programs. 

Testing 

It is axiomatic that the quality of a program is no 
better than the quality of the tests that have been suc
cessfully run against it. Experience shows that those 
functions which have been tested and are known to 
work, will work; and those which have not been tested 
most frequently do not. It will be illustrative for the 
reader to recall how seldom he has taken what he 
thought to be a well established and fully exercised 
program and was successful the first time in running it 
in a new environment. The design of the tests and the 
laying out of the sequence in which they are to be ap
plied to the various functional levels of the system is a 
most important part of the build process. 

In designing a test procedure it is important to set 
aside the notion that the objective of testing is to 
achieve success. The real problem for the systems tester 
is to identify and isolate as many as possible of the most 
important bugs in the shortest time. It is most useful to 
regard debugging as a process in which one is trying by 
experiment to identify the bugs in a system. Just as in 
scientific experiments, the aim must be to derive the 
maximum amount of information for the least cost and 
time. 

Design of tests 

In testing a newly coded program, one would like to 
have tests that are function-specific; that is to say, they 
exercise only one funtion at a time in a way that does 
not call on other facilities and programs. On the other 
hand, the successful running of such a set of cases is not 
indicative of the true state of the program in its 
operating environment; since in normal operation of a 
program one function calls another. The most difficult 
bugs to find are usually those which result from 
interactions between modules or segments of programs 
when the individual functions seem to work but the 
combination of them does not perfonn as specified. 

Therefore, the set of function-specific cases is not 
enough. Tests must be written which exercise cross
system capability as well. Ideally, one would like to 
have such a set of tests for every level of interaction 
in the system, but the economics of this are normally 

overwhelming. Thus a compromise is required to limit 
the size of the tests. Test planning and design is a most 
complex subject and one worthy of discussion sep
arately. In this paper I only want to mention some 
straightforward but nevertheless important principles 
in systematic testing. 

The test designer will work out the design of .tests and 
the sequence in which they are to be applied with two 
criteria in mind: 

1. In the event of failure of one or more tests then 
he wants to gain the maximum information 
from the test failure pattern 

2. In the final stages of testing, it is necessary to 
apply tests which exercise the system in a com
prehensive way. Prior to that, however, the 
test designer will want tests which are as inde
pendent of common functions as possible con
sistent with the need to test increasing func
tional interaction as testing progresses. 

Thus, the first tests applied to a system each will 
separately exercise perhaps only one critical func
tional element of the system. These tests are used to 
check that these functions are actually in the system 
and working properly in a limited environment. When 
these are successful, then multi-function tests can be 
applied which aim to test both functional elements 
and their interaction in a restricted environment. 
Finally, full functional testing can be undertaken. 
When planning and designing these tests and their 
application sequence, however, the test designer should 
proceed in reverse order: 

1. He should begin by deciding what will constitute 
the ultimate system test. 

2. He will then work backwards to establish the 
multi-function tests required. 

3. Finally, he can plan the functional ~-Lement 
tests required to begin with. 

Just as reproduceability is an essential characteristic 
of a valid scientific experiment, so an essential charac
teristic of a success ful testing and debugging is the 
ability to reproduce reliably the occurrence of bugs in 
the programs under test. This can pose problems in 
interactive systems where the sequence of events de
pends upon the unpredictable sequence or occurrence of 
events in the outside world; thus careful thought is 
required to achieve reproduceability in these test situa
tions. 

Regarding the amount of effort one should put into 
test design and development, I would suggest that the 
proper level of effort in independent test development 
should be something between 15 percent and 20 per-



418 Spring Joint Computer Conference, 1969 

cent of the system development effort, not counting 
early test writing by programmers to get their programs 
off the ground. Even in a system developed with a rela
tively small effort by a few people, it is important to 
have independently developed tests in order to ensure 
that the written specifications for the operation of the 
program .can be properly understood by someone be
sides the people directly involved in writing it. 

System tests must be considered an integral part of 
the system; the experienced system developer in laying 
out plans for getting the system into operation will not 
distinguish between the need to get the system programs 
working and the need to get the tests workillg properly. 
The system will be no better than the tests applied to 
it; hence functional failure of the test should be treated 
in the same way as functional failure Lll the system. 

The test cases must be held in libraries under the 
same controls as the system itself, so that once tests 
are running properly, their integrity can be guaranteed. 

CONCLUSION 

In the foregoing I have outlined some of the basic 

principles that I feel are important in the designing 
amd implementing of large systems. The principles I 
have discussed are only the beginning; I believe there 
is broad scope for inno'\ration in management and con= 
trol techniques which aid large system development. 
But I believe that use of these techniques can free 
designers and programmers from the severe strain of 
control by pure discipline. This will not only make the 
development process more predictable, but will make it 
faster, cheaper and more rewarding for those involved. 

REFERENCE 

1 P H HARTMAN D H OWENS 
How to write software specifications 
Proc F J C C 1967 
Hartman and Owens in this paper discuss many facets of 
compiler specifications: 

* User orientation 
* Performance, size 
* Optimization 
* Debugging 
* Statement of intent 
* Acceptance tests 
* Specification maintenance 



Management of computer programmers 

by lVLALCOLM H. GOTTERER * 
The Pennsylvania State University 
University Park, Pennsylvania 

INTRODUCTION 

The problems of managing programmers have been 
growing rapidly in recent years. The specific issues 
referred to are the incraasing costs of programming 
and the failure to complete projects when scheduled 
or needed. This paper proposes more effective super
vision of programmers together with improved manage
ment policies and procedures as steps to reduce the 
effects of these growing trends in programming projects. 
These problems have resulted, in part, from the short
age of qualified personnel, the rapidly changing tech
nology, and the management personnel in the computer 
center. This paper does not deaJ. with the problem of 
project management, that has been dealt with else
where,I·2 but rather the supervisory processes involved 
in the management of computer programmers. 

The shortage of qualified personnel 

One of the fundamental problems facing the manager 
of a programming group is the. shortage of qualified 
personnel. The number of installed computers is 
rising rapidly with a variety of estimates being made 
for significant future growth. Regardless of whose 
estimate is accepted the fact remains that an increasing 
number of computers will be installed and operating 
in the near future. We cannot expect, in the short 
run, to find a decreasing demand for programmers. 
It has been estimated that at the present time there 
is a shortage of over 50,000 programmers in the United 
States.3 A recent major study of the problems of the 
computer industry estimated that by 1980 there will 
be a need for 200,000 programmers.4 These figures 
have led Brandon5 to estimate that by 1980 there will 
be a net shortage of about 90,000 programmers. Part 
of the staff shortage problem would be relieved if the 

* Currently on leave of absence at The Johns Hopkins university, 
Baltimore, Maryland. 

educational institutions were to provide the proper 
education to a large number of students. In a study 
of computers in higher education Hamblen6 found 
that in 1964-65 nearly 120,000 undergraduates and 
29,000 graduate students received some computer 
training. In that same time period it was estimated 
that approximately 4,000 undergraduates and 1,300 
graduate students were majoring in computer science. 
By 1968-69 it was estimated that 81,000 graduate 
students and 350,000 undergraduates will have training 
in at least one programming language. At that same 
time the number of students whose major area of 
study is computer science will increase to 19000 , 
undergraduates and over 5,000 graduates, see Table 1. 

Table I-Estimate of the number of students being trained 
.to use computers 

MAJOR 

Computer Science 
majors 

Other majors (with 
at least some skill 
in using one pro
gramming 
language) 

Source: Reference 6 

COLLEGE LEVEL 

Graduate 

1964-5 

1,314 
28,800 

1968-9 

5,318 
80,793 

U ndergradua te 

1964-5 

4,338 
119,092 

1968-9 

18,807 
350,178 

The response of the educational institutions to a 
national problem, as reflected in these figures, is 
impressive. But before concluding that in a few years 
the problems of shortages will be resolved by adequate 
supply it must be realized that there will be intensive 

419 ----------------------------------



420 Spring Joint Computer Conference, 1969 

competition, as there now is, for those students who 
have majored in computer science. In addition it will 
require substantial incentives to motivate the over 
400,000 students who have had training in at least 
one programming language to leave their own field of 
major interest and become programmers. Even for 
those who are lured into computing further intensive 
training will be needed to bring them up to an accepta
ble level of competence. Therefore it may be found 
that in the next five years a labor pool exists of college 
graduates with some training in programming. The 
shortage of qualified and experienced programmers will 
still exist and perhaps be even more severe due to the 
need for training and supervising these new entries 
into progranuning. There also has been a rapid ex
pansion of non-degree granting programming schools 
both private and public. It is too early to appraise the 
effect this source of supply will have on the labor 
market. 

It should be noted however that even though we can 
expect staff shortages to exist in one form or another 
for some time to come there is something that can be 
done to relieve the problem. That is to increase the 
productivity of programmers. If programmer produc
tivity were increased by a modest amount, say 10 
percent, it would, based on estimates of 200,000 pro
grammers, be the equivalent of 20,000 additional 
programmers being made available. This would be 
40 percent of the estimated current shortage of 50,000 
programmers. The techniques suggested in this paper 
have been used to increase progranuner productivity 
and it is toward that end that they are presented. 

Rapidly changing technology 

The past changes in computer technology are well 
known and need not be repeated here. Of importance, 
however, are the changes that may take place which 
effect the technology of programming. Such tech
nological developments include languages, compilers, 
operating systems, documentation aids, etc. In the 
past a change in hardware technology has generally 
brought with it changes in the programming teclmology. 
The result is that additional time and money must be 
invested for training so that the staff can stay abreast 
of the latest developments. These types of changes 
are mandatory because the new hardware technology 
has forced them on the user of the particular computer. 
A second category of optional, or non-hardware related, 
changes exists. These are those technological develop
ments which resu1t from attempts to achieve maximum 
exploitation of the computer. The training of pro
grammers in these techniques is not mandatory but 
frequently is highly desirable. The net result of these 

two types of changes in teclmology is that continuous 
training for programmers is a way of life for effective 
program production. 

Even now there is some indication that the next 
generation of computers may not be program compati
ble with those currently available and in use. An 
executive of a major computer manufacturer has been 
quoted in an article as saying that his company would 
not hesitate to ask the data processing community to 
"reset-to-zero" and accept program incompatibility 
"if something comes along we think is a substantially 
better way to get price/performance into the market."7 
It therefore appears that still another cycle of pro
grammer retraining and program con version may be 
forthcoming. 

The computer center manager 

Fundamental to the solution of the problem of 
better management of programming efforts is the 
manager of the computer activity. By computer 
manager we mean the highest level person in the 
organization who devotes all of his time and energy to 
the problems of computation. This definition avoids 
having to enumerate the myriad titles associated 
with the position. In a study of the managers8 of large 
computer centers it was found that these managers 
were relatively young (41 years old), well paid (average 
salary of over $20,000 per year) and well educated 
(typically a second degree). Of significance is the fact 
that only 12 percent of those sampled preferred only 
technical problems, 40 percent preferred a combination 
of technical and human problems, and 48 percent 
indicated that the principal problem they preferred 
was human. Educational background had a slight 
effect on these average results, Tahle II. When a,.'lked 
which problem they face gave them the greatest 
difficulty 42 percent indicated personnel, Table III. 

One of the reasons that can be attributed to the 
manager's personnel problems is the rapid growth of 
the industry. As a result of this growth many persons 
have been forced into managerial positions without 
adequate preparation. This lack of prior managerial 
experience is most noticed when it is observed in a 
number of computer centers that there are inadequate 
control systems for reporting on the operations of the 
department or organization. The quintessence of 
management control is the planning of activities, 
delegation of authority, staffing the organization 
and control of plans over a period of time. This 
has not been generally done in computer organiza
tions. 

It is therefore proposed that the problem of managing 
computer programmers starts with the senior manage-



Table II-Education vs. problem preference 

TYPE OF PROBLE:vI PREFERRED 

Percent 
in 

Education Technical Human Both Group 

Technical degree 
or degrees 14% 50% 36% 56% 

Technical degree 
plus M.B.A. 0% 100% 0% 4% 

Business and 
Liberal Arts ~ 

Degrees 20% 40% 40% 40% 

Percent 12% 48% 40% 100% 

Source: Reference 8 

Table III-Problems facing the computer manager 

PERCENT 

2.6% 
42.2 
18.4 
1"8.4 
15.8 

2.6 

100.0% 

PROBLEM 

Lack of Funds 
Personnel 
Education of Top Management 
Keeping up with Lser Xeeds 
Long Range Forecasting of Computational 

Requirements 
Cost Control 

Source: Reference 8 

ment of the computer center. These managers are faced 
with the usual dual technical and human problems. 
But the technology is changing so rapidly that it is 
difficult to fault them for indicating an interest and 
concenl about personnel and then actually ohserving 
them more concerned with the effective operations 
of systems and machines where semi-technical con
siderations (such as operating systems) occupy an 
inordinately large amount of their time. Further we 
find in many organizations that the manager has not 
had the time, resources or hoth to develop effective 
secondary levels of management beneath him. In 
this case no matter how effective he might be the 
number of activities he must control, because of a 
lack of subordinate managers, or inadequate sub
ordinate managers, is so high that he cannot devote 
the time necessary to the tasks of planning, controlling, 
and counselling. One of the first steps in improving 
the management of programmers is therefore to 
improve thE' calihrE' of programming managers. 

Management of Computer Programmers 421 

The programming manager 

Unfortunately little is known about programming 
managers. A great deal can be conjectured based upon 
an examination of the individuals performing this 
job. First, and perhaps most important, is the process 
by which a person may be appointed to this position. 
The logical, but unproven, con"cept that the best 
manager is the one who has done the job for a reasona
bly long period of time leads many to look to their 
most experienced programmers to find a new manager, 
or supervisor, of programmers. Little or no attention 
is paid to the individual's suitability for a position of 
leadership. The individual, on the other hand, is faced 
with the dilemma of leaving technical work for the 
higher pay and status of a management position. 
Few firms offer the much talked about dual career 
paths for professionals and managers. Even among 
those who do there are frequently differences in salary 
ceilings for the person who chooses technical rather 
than managerial work. The result is that the first 
rate programmers are frequently motivated by fi
nancial factors into becoming second rate managers. 

Steps toward change 

vVhile it is possible to identify a number of causes 
of present, and probably future, problems there is no 
magic formula for an effective solution. It is proposed 
that through the intelligent and orderly application 
of management techniques steps can be taken to reduce 
the impact of these problems and provide a basis 
for further improvements. The point of view taken 
is that the manager of a group of programmers is 
responsible for the quantity and quality of work pro
duced. He is also responsible for meeting schedules. 
The techniques available for him to use in achieving 
these goals center about the management process in 
general and include such topics as supervisory tech
niques, \york assignments, evaluation of out-put, 
documentation, work habits, leadership, and evaluation 
and review in particular. 

The management process 

Reynolds9 has pointed out that while the manage
ment of programming is similar to the management 
of other technical activities it differs in that there 
are few numerical indices that can be used to judge 
progress in a programming proj eeL There are the 
follo\Ying steps in the management process: 

1. Establish a plan of action to achieve a goal 
within a certain time period. and investment. 



422 Spring Joint Computer Conference, 1969 

2. Measuring, durjng the course of the project, 
the performance against that goal. 

3. Making evaluation and decisions each time the 
plan and the actual performance mismatch. 

4. Taking correctjve action iteratively until the 
job is done. 

The establishment of a plan requires that there be 
sufficient understanding of the task so that it can be 
broken down into sub-tasks and using a procedure 
such as PERT an overall strategy developed. If this 
level of knowledge about the project is not known 
it must then be considered to be a research and develop-
ment effort and so treated. -

The second step, that of measuring during the course 
of the project actual performance and comparing it 
with the planned achievement, depends on an effective 
reporting procedure. The system of reports can be 
related to, or even a part of, the system documentation 
as is frequently recommended.1 ,2 Reports are meaning
ful only if they are related to the benchmarks or steps 
used in the planning process. For evaluating the 
effectiveness of the ongoing programming effort the 
use of PERT leOST has proved of value. 

The last two steps of the planning process follow 
logically after the data is available. What steps are 
taken should perfonnance not equal that anticipated 
by the plan is dependent on many factors. There are, 
of course, good reasons for deviation such as changes 
in specifications but there are also reasons such as 
failure to produce at the expected level which represent 
problems in personnel management or estimating. The 
corrective steps taken are a function of the problem and 
its likely cause. In these last two areas the manager's 
knowledge and ability come to the foreground. Since 
the first two steps are somewhat mechanical aud have 
been dealt with elsewhere attention can best he focused 
on the problems of. the manager in his supervision of 
programmers. 

Supervision 

The point has been made that the management of 
programming is another example of the more general 
problem of the management of technical personnel. 
But when this general statement is made it is often 
forgotten that the management of a technical function 
usually requires two skills. The first is an intimate 
knowledge of the specialized skills involved and the 
second is a knowledge of more general managerial 
skills. In such an environment as that under discussion 
it is questionable whether an effective job can be done 
with only the second. Too many have tried to be 
effective y,rith orJy the first, technical skills, ody to 

find themselves faced with many difficulties. The 
programming manager, like any other manager, 
requires the combination of these two types of skills 
to perform his job. 

Programming is still largely an art rather than a 
science. The programmer therefore learns his trade 
from experience either on the job or in a classroom. 
In either case there is only a small, but hopefully 
growing, body of theoretical knowledge that is availa
ble. The programming manager must therefore have 
served an apprenticeship to have learned his trade. 
These specialized technical skillSr, it will be seen later, 
are essential for the manager of programming. The 
general management skills required can be learned in 
the traditional fashion by attending courses, on the job 
training, tutorial sessions vlith experienced managers, 
and others. While it must be acknowledged that few 
men become managers as a result of courses and 
training alone it is also true that there is a bodY of 
knowledge about managemBnt that can efficiently" and 
effectively be taught. A well instructed individual can 
then apply this knowledge and start on a management 
career. 

It has been emphasized in this paper that the pro
gramming supervisor is responsible for programmer 
management and productivity. 'Ve therefore now 
examine some of the steps he can t.ake t.o insure that 
these goals be achieved. 

Work Assignments. The programming manager should 
define the job to be done by each person under his 
control. Ideally this work assigmnent will be a well 
defined program stell which is to be written tested , , 
and docunlented. A good work assignment will require 
minjmum interaction between programmers implying 
that interfaces 7 fields, data name~. and other such 
matters have been defined prior to' any work assign
ment having been made. Fwther, the programmer 
~ hould be expected to confer with his supervisor on 
:my question of technical details that arises. 

It is not always easy to divide a large and complex 
! )fogram into modules that can then be assigned to a 
programmer. AltlO contends that it is the inadequacy 
of natural language that creates problems for the 
programmer because it is not a good language for 
communicating and speeifying all possible combi
nations of circumstances that relate to the problem. 
The formalisms for problem definition and description 
which are required are not now available. As a result 
we must be aware of the problem and continue to use 
the module as the work assignment. 

Evaluation of Omput. The manager has the responsi
bility to evaluate both the quantity and qua1ity of 
work produced by his subordinates. To do this the 



supervisor should review the programs that are written. 
In this way he can be aware of the amount of code 
written and he can evaluate the quality of the work. 
In these evaluation sessions the manager can tutor the 
progranuner, as required, in more advanced techniques 
or alternative approaches. The implication of this is 
that each programming supervisor have relatively few 
subordinates whom he can closely supervise. 

It has been proposed that productivity standards 
be used for purposes of evaluation.l1 From a practical 
point of view this is difficult because all the variables 
that affect productivity are not known. Martin12 has 
pointed out that while there has been found an average 
figure of 12-15 instructions per man per day the range 
is from 2 to 50. Even if standards were available 
Canning13 questions their use from an emotional 
point of view. He points out that they would place the 
programmer in the same category with factory and 
clerical workers. Undoubtedly this is true but the 
needs to increase productivity and reduce costs are 
as great in programming as in the office or factory. 
When such standards are developed they will be one 
of the important tools of the progranuning supervisor. 
At this time it is difficult to envision how a meaningful 
and accurate set of such data could be collected. 

Documentation. Good documentation of a computer 
program is not an activity to be tagged on to the end 
of a project. Rather it is an ongoing activity with 
documents being developed at each stage of the pro
gramming process. The manager, therefore, is responsi
ble for establishing documentation procedures and 
then perhaps more importantly enforcing them. It is 
interesting that Hill14 reports. that resistance to docu
mentation is encountered by all but the most experi
enced programmers. Those with one to four years 
experience being the most resistant. If the programming 
department has standardized its documentation pro
cedures then the supervisor's principal function in 
this area is to make certain that it is being properly 
carried out. 

lJl ork Habits. Amongst some programmers it is 
considered good practice to flaunt any or all work 
rules. The argument is advanced that programming 
is a unique creative activity that should not destroy 
personal values. The actual amount of creativity 
involved in progranuning is questionable. Further 
there is no reason why work rules should destroy initia
tive and creative urges in programming any more than 
in other comparable fields of activity. In many archi
tectural and engineering offices reasonable work rules 
have been established and enforced and some of these 
people tum out very worthwhile work. The program
ming manager can be expected to establish work rules 
which are then enforced. 

lVlanagement of Computer Programmers 423 

Leadership. Perhaps the most difficult job of the 
supervisor is to lead his subordinates. Leadership 
processes can be discussed in classes and written about 
in books but it is difficult to define. Each supervisor 
must develop a leadership style that fits his personality 
and life style. He can be made aware of the need for 
leadership and be told about how others have done it, 
but in the final analysis this is one of those intangible 
factors that each person must develop on his own. 
Failure to do so should result in a serious question 
as to whether or not the person is qualified for a higher 
position or even to continue in his present job. 

Employee Evaluation and Review. I t is conunon 
practice in many organizations for supervisors to meet 
with each subordinate and review the persons perfor
mance for a period of time. The review may take place 
annually or semi-annually but it is required and is 
then reviewed by managers higher in the organization. 
Formal employee evaluation is relatively rare in 
programming departments and should be encouraged. 
To aid the evaluator a fonn is used which can serve as 
a checklist to guide the discussion and provide a 
permanent record of the interview. One such form has 
been developed and published. IS 

Employee reaction 

It has been said that employees welcome controls 
such as those advocated in this paper. With program
mers this is not true, resistance, perhaps even massive 
resistance, can be expected. Part of this resistance is 
based on the folklore that has grown up about the 
field of progranuning and the behavior patterns that 
are legitimate for progranuners. At one time in the 
history of computation it might have been true that 
such employee controls were unreasonable. But today 
such supervisory techniques when used with intelligence 
and understanding are not only desirable but essential 
for controlling activities_ 

CONCLUSIONS 

The program of management controls reconunended 
in this paper have as an objective to increase pro
grammer productivity. Collectively they imply firmer 
controls over the actions and behavior of progranuners. 
Undoubtedly some progranuners wilJ be unwilling to 
accept this condition and win leave. Their effectiveness 
will be largely a function of the intelligence with which 
they are used. In all cases it is recorrunended that all 
processes discussed be applied. But the emphasis may 
well change with the experience of the people involved 
and the type of programmers being supervised. Finally 



424 Spring Joint Computer Conference, 1969 

these reconunended procedures are complementary to, 
and not substitutes for, good project control procedures. 

REFERENCES 

C P LECHT 
The management of programming projects 
American Management Association Inc New York 1967 

2 P B HILL 
The control of large-scale software projects 
Paper presented at IFIP WG3.2 Workshop on Curriculum 
For Systems Design Fribourg Switzerland ~anuary 28-31 
1969 

3 G BYLINSKY 
Help wanted: 50,000 programmers 
Fortune Magazine March 1967 

4 The state of the information industry 
AFIPS Report 1966 

5 D H BRANDON 
Managing the economics of computer programming, the 
problem in perspective 
Proc A C M Conference 1968 

6 J W HAMBLEN 
Computers in higher education 
Southern Regional Education Board Atlanta 1967 

74th generation may be incompatible 
Computerworld February 12 1969 

8 M H GOTTERER 

.A profile of the computer manager 
Proc Fifth Annual Computer Personnel Researh Conference 
1967 

9 C H REYNOLDS 
1"'1 an,ag'ing the econom;ics of computer progrum,nifig, the 
problem in perspective 
Proc A C M National Conference 1968 

10 F L ALT 
Computers-Past and future: The costs of computing; and 
failure in computer programs 
Computers and Automation January 1969 

11 D H BRANDON 
ilfanaging the economics of computer programming, the 
problem in perspective 
Proc A C M National Conference .l968 

12 J MARTIN 
Programming real-tinl£ computer systems 
Prentice-Hall Inc 1965 

13 Managing the programming effort 
EDP Analyzer Canning Publications June 1968 

14 P B HILL 
The control of large-scale software projects 
Paper presented at IFIP WG3.2 Workshop on Curriculum 
For Systems Design Fribourg Switzerland January 28-31 
1969 

15 R A DICKMANN 
A. programmer appraisal 'instrurrl£nt 
Proc 2nd Annual Conference Computer Personnel 
Research Group 1964 



The management and organization of 
large scale software development 
projects * 

by RONALD H. KAY 

IBM Research Laboratory 
San Jose, California 

INTRODUCTION 

Two consecutive papers on the subject, "Managing the 
Economics of Computer Programming" presented at 
the 1968 National Conference of the Association of 
Computing Machinery conclude respectively: 

• "First, one must understand computer program
ming well enough to know what is possible, what 
is probable, and what is impossible or unlikely. 

• Second, one must make commitments based on 
the technology used, not on the needs of the 
world-and not on the unreasonable hopes of 
the starry-eyed experts. 

• Third, one must insist upon schedules based on 
physical events, and on numerical descriptions 
of the products that are being produced, to the 
greatest extent that ingenuity will permit. 

• Fourth, one must objectively assess the status 
of the project against a well-developed plan. 

• Finally, of course, one must do something about 
the trouble one finds. 

Thus, given these prerequisites, I conclude that 
computer programming can in many respects be 
managed just like any other process. "1 

"We do not really know how to select program
mers, and we tend to select those with some unde
sirable characteristics .... Typically, they work for 
a manager who is ineffective because he has been 
given neither proper management training nor basic 
tools and disciplines with which to work; whose 
functions have not been defined, and whose process 

* Based on a seminar series attended by the author while a 
Fellow at the MIT Center for Advanced Engineering Studies, 
Fall, 1968. 

of communication with the system analyst or user 
--is generally confused. Finally, all this takes place 
within a technology which changes so rapidly that 
it is almost impossible to get a fix on the functions 
and the method by which the work is supposed to 
take place, before it changes."2 

An equally wide range of views emerged from a 
series of seminars organized by Professor Maison Hare 
of the Sloan School of Management and Professor 
Malcom Jones, Assistant Director of Project MAC 
during the fall of 1968 at MIT. 

Insofar as the seminar speakers represent indepen
dent organizations with widely varying objectives, 
divergent views on many issues are hardly surprising. 
Management objectives will be viewed differently by 
a software firm working on a contract, a computer 
manufacturer developing an operating system for his 
hardware, or a university attempting to develop new 
concepts in time sharing systems . 

Thus, the basic contention that the management of 
large programming efforts does or does not present a 
unique problem, suggested in the above quotations, 
may reflect the relevant management experience which 
an organization has been able to bring to bear upon a 
problem, rather than conflicting conclusions drawn 
from a given set of premises. Each of the invited speak
ers* had extensive experience in the management of 
large programming efforts and is, or had been, asso
ciated with an organization presently involved in such 
efforts. Most of the organizations represented have 
won recognition both, for leadership in technical in
novation as well as success in the large scale applica-

* The nameR and affiliations of the participating speakers are 
appended. 

--------------------------------------- 425 ---------------------------------------



426 Spring Joint Computer Conference, 1969 

tion of new technology. Unfortunately, some of the 
organizations active in the advancement of this field 
of management and whose work was referred to by 
several speakers, were not represented. 3 

It must also be pointed out that most of the speakers 
were executives with direct responsibility for large 
programming efforts or for all programming activity 
in their organization rather than specialists in manage
ment science concerned with the advancement of 
this field. 

It would be presumptuous to attempt a condensa
tion of these seminars representing the experience and 
wisdom of the 21 speakers and the reactions of the 
other participants. Rather, this paper endeavors to 
find common threads and possibly resolve conflicting 
views on specific issues. It is based entirely upon the 
content of the seminars, and represents the author's 
interpretation for which he assum~s full responsibility. 

This interpretation reflects the relative weight given 
by the speakers to various aspects of the subject, with 
some additional emphasis where there was significant 
disagreement among the contributors. 

Since the more visible sources of management diffi
culties are often the derivatives of unclear or changing 
objectives, this issue is identified at the outset. Next, 
the need for accurate assessment of the state of the 
art, the difficulties of making such an assessment and 
its relevance to the project organization are considered. 
Arguments are advanced for two kinds of organiza
tions based upon the objectives and the required de
gree of innovation. 

The scope of this paper permits only the most gen
eral observations regarding techniques for project plan
ning. The significance of the project plan as the principal 
means for rendering a programming effort visible is 
pointed out. The discussion of specifying and eval
uating a (;omplex programming system and measuring 
the performance of the people responsible for its devel
opment serves to illustrate the magnitude of the prob
lem faced by management at this point in time. The 
lack of a common set of tools and standards are pointed 
out as some of the specific causes of difficulty. 

The issue of higher level languages is still an attrac
tive topic for debate; those in favor appear to be pulling 
ahead. This analysis of presently held views concludes 
with the observation that recent advances in the shared 
use of computers through interactive terminals prom
ises to provide programming development management 
with more effective means for the control of the im
plementation phase by putting documentation on
line. 

The basic assumption underlying the seminar series, 
i.e., the existence of significant unresolved problems 

was confirmed. There is little contention that frequent 
underestimation of the risk, possibly more than in other 
areas of innovative development, is due to the dispro
portionate responsibilities placed upon programming 
management relative to their experience and the ma
turity of the" field. 

The term "programming" is here used in its broadest 
meaning to include all phases of software development. 
In emphasizing "Large Scale Software Development 
Projects" the seminars focussed principally on complex 
operating systems, command and control systems and 
large simulation efforts, in each case involving groups 
large enough to require several levels of management. 
The systems referred to typically involved 100,000 
to several million instructions. 

Objectives 

The statement of definitive and time-invariant func
tional objectives at the outset of a large programming 
effort has proven to be one of the requirements most 
difficult to satisfy. For example, the compatibility of 
an operating system relative to a family of hardware 
or the extend ability of a storage/management approach 
to a multi-processor system are objectives difficult to 
formulate at the outset of an effort intended to break 
new ground in these areas. In spite of this, management 
has frequently accepted vague or unrealistic objectives 
in the expectation that the project itself will produce 
the required clarification or advances. 

Inadequate objectives at the outset, more than any 
other single factor, are held responsible for subsequent 
modification and consequent overrun of initial schedules 
and budgets. It is felt that this situation will continue 
as long as management or the sponsoring agency feel 
the risk to be commensurate with the potential benefit. 

Why are objectives held to be more vague and sub
ject to change in the case of large programming efforts 
than in the case of hardware development? Certainly, 
the relative experience accumulated in the two areas 
favors definition of hardware. Even when objectives 
are dictated by non-technical considerations, those" 
charged with the responsibility for setting these objec
tives are more familiar with hardware development. 
They may avail themselves of advice from programming 
experts but their judgment of possible alternatives is 
still influenced by their experience. 

From the views expressed by several of the seminar 
speakers, one is led to conclude that as long as the 
economic motivation associated with hardware is 
greater or thought to be greater than that associated 
with software, the latter will be adapted and modi
fied. 



lv1anag~ment and Organization of Large Scale Software Development Projects 427 

Although only a few of the speakers explicitly re
ferred to the influence of the organization's long term 
objectives such as profitability, personnel policy and 
the organization's image, it is evident that they can 
have a significant bearing upon the management ap
proach. The shortage of experienced programming 
development managers who can effectively implement 
such objectives and in some cases, the apparent re
luctance to face or discuss the issue of objectives tends 
to intensify potential difficulties. 

The matter of objectives has been emphasized since 
the more visible sources of management difficulties 
are often the derivatives of unclear or changing ob
jectives. 

Assessment of the possible 

While objectives are elusive, the outcome is pre
determined by the state of the art. A particularly 
useful definition of the state of the art differentiates 
between three levels: (1) what :is possible for the ex
perts; (2) what is generally known; and, (3) what has 
been done by a development organization. This defi
nition implies that expert knowledge must be relied 
upon to assess the degree to which the objectives de
pend upon contributions by expert personnel. 

The first thing insisted upon by the experts is that 
there is no substitute for a basic conceptual frame
work which stands the test of time. That is to say, 
if the basic concepts and philosophy of implementation 
do not stand up, no amount of administrative tech
nique can be successfully brought to the rescue. The 
lack of scientific discipline in the field, i.e., the absence 
of first principles upon which to base first principle 
calculation, so successfully applied in the physical 
sciences and engineering, produces the dilemma of 
conflicting expert opinions. The field has as yet not 
produced an adequate number of people who can match 
their managerial skills with this sort· of expertise (or 
vice versa) to be able to resolve such conflicts with 
confidence. 

Experts can be relied upon more readily for an as
sessment of what is generally known, or more precisely, 
of the advances required in what is generally known 
in order to meet the objectives. Frequently, the need 
for this implied precision is inadequately appreciated 
in the assessment by expert and manager alike. 

It is only natural that the current literature on the 
management of programming efforts is more fruitful 
in the realm of what has been done by a development 
organization. There is persuasive evidence that many 
organizations have the competence to manage even 
complex tasks which require only minor advances in 
the state of the art. 

Organization 

The assessment of the possible in terms of three 
levels of the state of the art suggests that the organi
zation of the project should reflect the objectives as 
well as the required degree of innovation. Management 
problems and compromised objectives have been traced 
repeatedly to situations where the resulting program
ming system reflects the a priori organization chosen 
for its development.4 

Accepting the need for tailoring the organization 
to the objectives, the case has been made for two very 
different approaches. 

1. A relatively small group of experts and selected 
support personnel charged with carrying the 
project from inception to completion. 

2. A small group of experts in an advisory and 
monitoring function to the management of a 
large development organization where distinct 
groups of people are responsible for various 
phases of the effort such as analysis, design, 
implementation, integration, testing and main
tenance. 

Although these two approaches are frequently argued 
on their absolute merits, more often than not they are 
born of necessity. 

A one-time commitment on the part of a university 
to a large programming system effort is often justified 
on the basis of an available small group of experts and 
their ability to muster a temporary support group with 
better than average qualifications. 

An industrial organization committed to continuing 
development activities requiring varying numbers of 
people for a variety of tasks on a continuing basis, 
finds it necessary and effective to develop specialized 
centers of competence so that a number of projects 
can draw upon this resource. 

It appears that the larger the relative need for inno
vation at the expert level, the stronger the preference 
for the small group. Given these two types of organi
zation, the management techniques which find favor 
differ greatly. The large contract software organiza
tion may respond to the first sign of a problem by 
getting machinery in motion to hire or transfer an 
additional 100 programmers to the project. The ra
tionale for this approach is that it may take six months 
to really understand the nature of the problem. At 
that time you probably have between 10 and 100 peo
ple with up to six months hands-on experience from 
whom you can select a few who can now be identified 
as being able to correct t.he problem. 

The small group of experts, developing a complex 
system would react differently. Having less of a com-



428 Spring Joint Computer Conference, 1969 

munication problem, they would identify the cause 
and come up with a potential solution in a shorter pe
riod of time. But by definition they would expect to 
make use of the same small number of people to cor
rect the situation accepting the unavoidable post
ponement of other planned activity. Depending on 
the magnitude of the fix required, this could be an 
appreciable fraction of the original estimate. It can also 
be concluded that the small group is less able to absorb 
some of the influences beyond its control, such as, 
turnover of personnel, limited machine access, etc. 

Although some of the speakers attempted to address 
the organizational issues in reference to the classical 
distinction between proj ect and functional organiza
tion, it became evident that the definition of the vari
ous functions of software development in the repre
sented organizations are not sufficiently precise or 
uniform to allow for meaningful generalization. 

Depending upon the priorities of management ob
jectives, such as minimum cost, fixed deadline or op
timum performance, there is some basis for choosing 
an appropriate organization: ability to muster resources, 
degree of innovation required and long term objectives 
such as developing skills vs. hiring experienced people. 

The wide divergence of views on this subject re
flected the difference in management objectives and 
philosophy of the organizations represented. 

The project plan 

A significant amount of attention was given by a 
number of seminar speakers to the subject of a project 
plan. Such a plan identifies various phases of the proj
ect such as Analysis, Specification, Design, Imple
mentation, Integration, Testing, Publication and 
Maintenance. 

We shall here confine ourselves to some general 
observations regarding such a plan. 

• The plan is not an end in itself, but a management 
tool which helps define responsibilities and check
points. It is the principal means for achieving 
visibility of the project. 

• There is considerable overlapping of the various 
phases of the plan in the case of programming 
development; e.g., testing is initiated with the 
specification phase, where component-, integra
tion-a..Tld acceptance-tests must be defined. 

• Such plans point up a basic difference between 
hardware and software development. Hardware 
development, culminating in a tested prototype, 
leads to the subsequent manufacturing phase 
which generally requires much greater resources 

and thus becomes a major factor in the ultimate 
success of the project. 

• Programming development culminates in the end
product and in this sense resellibles the develop
ment of one-of-a-kind hardware. 

• The use of PERT charts is generally held to be 
ineffective as a means of planning and control of 
large programming development tasks. 

• Project control against a plan is not unique to 
programming projects. 

Problems frequently are not due to a poor plan but 
to the fact that the plan is not being caJ.J.~ed out for a 
variety of reasons, some of which are being considered 
in this paper. Above all, a good plan is no substitute 
for poorly defined objectives. 

Specifications 

One of the most difficult aspects of programming 
development is the process by which the results of 
analysis are translated into a set of specifications. What 
is wanted is a set of blueprints which uniquely specify 
what is to be implemented. The first problem arises 
with the decision as to what should go onto which blue
print. The need to break the job down into separate 
modules forces early decisions regarding the interaction 
between the modules. An attempt to expalin the concept 
of "Functional Modularity" may help to clarify this 
issue. In the case of hardware, modularity is derived 
from considerations such as physical dimension (what 
one can get through a door, tolerable delay, etc.) com
ponents which can be shared (e.g., power supplies) 
ease of access and replacement, standardization of 
modules, etc. Once a hardware module is defined, its 
relation to other modules is fixed by v,irtue of a finite 
number of interconnections. Every physically accessible 
connection is a potential test point permitting isola
tion of modules. In a complex programming system 
modularity is sought in terms of frequently used sec
tions of the program and elements which are common 
to several functions. There is a desire to minimize 
interaction between modules and to achieve clean 
separation of function to facilitate division of the de
velopment effort and module testing. This concept of 
modularity as yet does not take account of the fact that 
not all parts of a complex program can be equally ac
cessible at all times, i.e:, sections of the program must 
be moved to provide the desired access. It is fairly 
obvious that the larger the "module" which is moved 
the fewer the required moves. Yet, a large module 
occupies more prime space and takes longer to move. 

This suggests that the various considerations which 
influence modularity in a large progra!ILtning system 



M~n..agement and Organization of Large Scale Software Development Projects 429 

are functionally interrelated in a much more complex 
way than the parameters which influence hardware 
modularity. Thus, to achieve "Functional Modularity" 
at the specification stage, implies the need for past 
experience which proves relevant to the problem at 
hand or a methodical approach to reduce the inherent 
complexity. Neither appears to exist in the case of large 
programming development tasks, particularly where 
new ground is to be broken. This most abstract aspect 
of progranllning development remains the inteliectualiy 
most challenging. 

Another problem relating to programming speci
fications involves the degree of detail necessary. It is 
argued that to assure equivalent results from two pro
grammers given the same specification, a level of detail 
(and effort) nearly equal to the program itself is re
quired. 

Reliance upon experience which mayor may not 
prove relevant and the lack of a methodical approach 
hardly ease the problem of evaluating the end-product 
against a set of specifications. 

Evaluation of the end-product 

The end product of the development is a program
ming system, i.e., a collection of programs designed to 
perform a specified function in conjunction with speci
fied hardware. 

For example, a large systems program must, among 
other things, provide the scheduling and allocation 
of system resources as called for by a particular set 
of instructions, i.e., by the application program. What 
constitutes a "typical" application program or set of 
programs which would provide a realistic measure of 
performance? 

Another aspect of evaluation is the data dependence 
of the program. To illustrate this point, consider the 
logical combination of two data elements whose com
bined value exceeds the capacity of some hardware 
facility. The programming system must be designed to 
cope with this problem in terms of all possible logical 
combinations of all possible data elements with regard 
to all possible combinations of affected hardware com
ponents. How can this be done? Only the most careful 
design of test programs and the most extensive test 
cases can hope to provide a satisfactory approximation 
to "all possible combinations." 

Given this level of evaluation, what can we say about 
the quality of the programming system in its ability to 
cope with a given job stream which has a unique se
quence of programs? How representative is this given 
job stream of the types of applications a variety of users 
are likely to encounter? How do the answers to these 

questions relate to a multi-processing or multi-user 
environment? What is more, how can we evaluate such 
objectives as compatibility and useful generality which 
are related to past and future hardware and applica
tions? 

To date, there simply are no generally satisfactory 
answers to these questions. Even when satisfactory 
answers are obtainable for a specific subset of the 
desired range of parameters, the evaluations UPOJ? 
which these answers are based can only be attempted 
after successful integration, i.e., when the job is presum
ably done. 

While techniques have been developed which pro
vide a basis for predicting the mean time between fail
ures of hardware components, the asymptotic nature 
of program debugging and the effect of transient causes 
of error upon program behavior introduce elements 
of uncertainty which are difficult to quantify. 

Evaluation of a programming system, probably 
better than any other aspect of the development cycle, 
illustrates the level of complexity and the relative lack 
of proven techniques in this field. 

Evaluation of the programmer 

The difference in approach to organization and the 
difficulty of evaluating the end-product highlights one 
of the unique problems of programming management: 
The measurement or evaluation of a programmer's 
effort. * There is conclusive evidence that there are 
order of magnitude differences in individual perfor
mance by almost every criteria, such as time required 
to complete an assignment, tightness of code, quality 
of documentation, running time, storage requirements, 
and computer time required for debugging. These 
criteria serve as indicators, but realistic measures of 
performance based upon these indicators are qualita
tive, not quantitative. These indicators would not 
necessarily point up interfacing problems before inte
gration, or provide a measure of ultimate performance 
but would serve only as a warning in the case of extreme 
departure from the norm. 

Two principal reasons for the large variation in 
performance among programmers and the difficulties 
of measuring this performance are considered in some 
detail: 

• The craft-like nature of programming. 
• The personality traits of programmers. 

* "Programmer" is here defined to include all personnel engaged 
in the analysis, design, implementation and testing of computer 
programs. 



430 Spring Joint Computer Conference, 1969 

Programming-Its craft-like nature 

Non-programmers find it difficult to understand how 
a task, at once requiring the utmost in logical consisten
cy, at the same time can provide so much choice in the 
approach to a given problem. 

Hardware engineering experienced the same problems 
in its evolution from the skills of the craftsman to the 
mature technologies based on various branches of 
science. Today, two hardware engineers given a task 
to perform generally can agree on what constitutes a 
precise definition of the problem and what constitutes 
an adequately tested and documented solution. Even 
though their end products may look different, there 
will be considerable resemblance in their approach. 
They will go through clearly-identifiable prodecures 
such as analysis based on a set of equations, circuit 
diagrams, breadboard models, tested models, proto
types, etc. 

In programming, on the other hand, the situation is 
different. There is generally no way to relate the work 
of two programmers or even the same programmer's 
work on two different jobs. Unlike engineering, the 
road from gross program design to a detailed design 
is a function of a set of highly unpredictable human 
events. As the job progresses, its nature tends to be 
redefined as the programmer becomes more familiar 
with the problem. The way he reacts to this increasing 
awareness and translates his reaction to the program 
is highly idiosyncratic to the individual and to the 
individual project. 

Programmers are different 

In listing the personality traits of programmers as 
a source of difficulty in the measurement of their per
formance, it must be understood that the difficulties 
referred to are those perceived by management. Many 
programmers probably accept the fact that they are 
not easi1y measured. 

What is the basis for the assertion that programmers 
are different? 

First of all, most managers who are led to this con
clusion compare programmers to engineers. 

Second, many programmers are recruited from the 
ranks of liberal arts graduates, while the managers 
were trained in engineering or business administration. 

Third, in many organizations the programmers are 
the most homogeneous age group. They are thought 
to represent a readily-identifiable group of young 
people, bringing the new look from high school or college 
into certain segments of industry and government. 
This new kDk is sometimes equated with appearance 
and attitrides designed to set themselves apart from 
the existing majority. 

Finally, many aspects of programming require a 
high degree of concentration over an extended period 
'of time which tends to make programming a solitary 
occupation; those drawn and devoted to it may be or 
become more introverted than the majority of their 
nonprogramming colleagues. 

Although management training in the liberal arts 
has long been advocated, few present day managers 
are prepared to cope with the generation gap or the 
culture gap. Until enough managers can be drawn 
from the ranks of programmers, the problem is likely 
to persist. 

The tools of the trade 

Most craft-like processes which have been carried 
on for some time evolve a set of tools which are a vail
able to the community of craftsmen. Their skill level 
may vary, but their tool kit is generally the same. In 
the case of large programming systems, and particu
larly when major advances in the state of the art are 
to be incorporated into the system, adequate tools 
may not exist. In fact, the evaluation of the adequacy 
of available tools or the creation of such tools can 
constitute a significant aspect of the project. The 
adequacy of the computer and the operating system 
available to the development effort is a case in point. 
Higher level languages and the adequacy of the avail
able implementation (compilers, etc.) fall into this 
category also. 

Another unique problem of programmin.g develop
ment is pointed up by the lack of a programmer's 
equivalent to an oscilloscope, this most useful of electri
cal engineering tools. The core dump which reflects 
the contents of storage locations at a given program 
step is the nearest equivalent. It roughly corresponds 
to a simultaneous presentation of the wave form of 
every possible test point in a circuit ordered according 
to the geometric location of solder joints rather than 
points on a diagram. 

It takes a great deal of experience for a programmer 
to make effective use of more sophisticated techniques 
such as the "snapshot" or its equivalent. He must 
learn to structure his program to permit meaningful 
tests to be performed without affecting the desired 
operation of the program. 

Higher level languages 

An issue certain to provoke heated discussion among 
the experts seems to be resolving itself in favor of the 
use of higher level languages for system programming. 

The arguments for higher level languages include: 



1vfanagement and Organization of Large Scale Software Development lTojects 431 

• Better communication where interaction of pro
grammers is essential. 

• More compact documentation-a significant factor 
in systems of several hUndred thousand instruc
tions. 

• Facilitation of debugging. 
• Closer relation to the conception of the algorithm. 
• The ease of transferring the resulting programs, 
i.e., less machine dependence. 

• The potential savings in programming cost re
sulting from the above. 

Meaningful arguments against higher level languages 
can be made in some special cases 

• Real time systems where running time efficiency 
is paramount. 

• Inner loops in large scale computation where com· 
puter capability is taxed .. 

.An adequate compiler for the proposed higher 
level language is not available. 

• Retraining time of experienced assembly language 
programmers is not commensurate with the sched
ule. 

Only the most sophisticated specialists will claim 
an advantage for a special system programming lan
guage. In time, they may be proven right. (They usually 
are.) 

It should be mentioned that there is considerable 
exploration of special higher level languages aimed at 
providing better production tools: specification lan
guages, simulation and modelling languages as well as 
systems languages. 

Never trust the computer manufacturer 

This cry is heard with sufficient frequency that it 
cannot be ignored. At its most vehement, it comes 
from inexperienced academi~ians, semi-annually re. 
assured of their omniscience by a sea of bewildered 
undergraduate faces. Trained in an atmosphere of 
distrust of their own institutions' administration, 
they assume contractual responsibility for computer 
related projects and point with pride to the efficacy of 
informal arrangements, "cutting through the red 
tape." 

The manufacturer of hardware does not help this 
situation by responding with a salesman admonished 
to preserve good relations, but with little or no per
tinent technical experience. Properly impressed by the 
technical knowledge of the young professor who has 
assured him that only a minor modification is needed, 
he will make commitments based on his conviction 
that if it can be done, his company surely will do it. 

These commitments all too frequently lack the degree 
of precision required to assess the magnitude of the 
requested modification and are often made with little 
or no knowledge of the available resources which would 
permit a timely response. 

N Uinerous businesses, educational and govern
ment organizations succeed in consummating con
tractual arrangements involving computer software. 
They do so by availing themselves of the services of 
personnel experienced in the negotiation of contracts 
who will ascertain the required detail and level of 
authorization needed to make a commitment. This 
suggests that recognition of this problem on the part 
of responsible members on bOth sides should be suffi
cient to remedy this situation. 

Documentation-Asset or liability 

The importance of documentation in the manage. 
ment of large programming developments is generally 
accepted. A number of groups have found a formal 
system of documentation the most effective manage
ment tool at their disposal. In its most advanced imple. 
mentation, such a system of documentation is on-line 
to a time sharing system available to all participating 
members of the system programming project. 

Difficulties orten are related to the programmer's 
"resistance to documentation which may be due to 
several reasons: 

• Lack of tangible evidence of benefit to his own 
activity. 

• The inaccessibility of his colleagues' documenta
tion because of sheer quantity, lack of organi
zation and common format and out of date status. 

• Rejection of standards, iLlposed for reasons he 
does not appreciate. 

• Belief (often confirmed) that he can get along 
without, and in fact feel at his creative "best" 
when free to improvise. 

Putting a documentation system on-line appears 
to have overcome this resistance in a manner acceptable 
to the programmer. 

• The system itself can help him by rejecting certain 
types of inconsistencies . 

• He has instant access to the latest version of his 
colleagues' work. 

• Standards have been translated into formatting 
conventions with which he is familiar. 

• He understands that the system must safeguard 
itself and his programs from unauthorized change. 
Thus, he more readily accepts the need for authori
zation to change and implement. 



432 Spring Joint Computer Conference, 1969 

Given such a documentation system, management 
can institute necessary controls such as a senior pro
grammer's or analyst's approval of a proposed ap
proach prior to iInplementation. Conu!lnnicatioll; 
which is universally identified as a major problem in 
the development of large programming systems, is 
facilitated and documentation becomes incidental and 
concurrent to the development effort. It is conceivable 
that the management of large programming efforts 
in the future will be structured in keeping with a well 
proven system of documentation. 

SUMMARY 

An attempt has been made to define some of the prob
lems of large scale software developments as seen by 
managers experienced in this field. This definition has 
taken the form of identifying generally agreed upon 
solutions, where they exist, providing the rationale 
for opposing points of view, and by exploring issues 
which are largely unresolved. 

Among the unresolved issues one finds: 

• There is a relative lack of experience at the level 
of management responsible for setting objectives. 

• This i3 aggravated by the shortage of experts 
capable of assessing the relevant state of the art . 

• In more mature fields of endeavor, managers have 
been drawn largely from the ranks. Today's pro
gramming managers often have a different educa
tional background from the programmers, and are 
not trained to overcome this difference. 

• Complexity, rather than the size of large program
ming systems has introduced a level of uncertainty 
by forcing the evaluation of success potential well 
beyond the design or h"1lplcmentation phase. 

• The craft-like nature of programming, i.e., the 
lack of scientific discipline has proven a real source 
of problems, such as the difficulty of evolving 
standards which in turn has made it difficult to 
specify the task to be performed or to evaluate 
the end-product. 

Issues which have been resolved satisfactorily by 
at least some organization include: 

• Where the advice of experts is available at the 
outset, it is possible to identify the objectives 
which should dictate the project organization. 

• A project plan can be structured to provide the 
management tools which allow the measurement 
of progress against a plan, i.e., means of rendering 
the development of programming systems visible 
can be provided. 

• Methods of documentation can be developed as 
an integral part of the effort which aid management 
in both evaluation and control of the project. 

CONCLUSIONS 

By committing the time of key executives to this sem
inar series, organizations large and small have shown 
their interest in, and support of cooperative efforts to 
better our understanding of the issues and to share 
experience. 

Some of the organizations represented which have 
developed effective management techniques in areas 
other than programming and' whose activities span 
the range from research to production have been able 
to apply much of their management know-how to 
programming efforts. The success based upon these 
techniques has not been unqualified. One reason is the 
difficulty of relating the visibility of "progress" during 
a programming effort to ultimate performance. The 
fact that schedules are being met does not insure success 
during integration or anticipated performance. 

Where management techniques have not evolved and 
their lack is first felt in the pursuit of a large program
ming effort, the problems tend to be thought of as 
unique to programming. Extrapolation and scaling up 
from past programming experience has proven hazard-
0us. Complexity turns out to be a non-linear attribute. 

The management of large programming systems 
presents some uillque challenges. Those most intimately 
involved recognize the problems. To date, they have had 
limited success in conveying the full significance of the 
problem to policy-making management. 

To the extent that unresolved problems in the man
agement of large scale software development have 
been recognized, one can now tum t.o examining the 
appropriateness of efforts proposed or under way, as 
to their potential of providing desired solutions. 

REFERENCES 

1 C H REY~OLDS 
Proc ACM National Conf 1968334-337 

2 D H BRANDON 
ibid 332-334 

3 E A NELSON 
ibid 346-349 

4 M E CONWAY 
Datam.a.tion Vol 14 No 4 April 196828-32 

APPENDIX I 

Participating Seminar Speakers 

Mr. Joel Aron 
Manager, Boston Programming 



M.anagement and Organization of Large Scale Software Development Projects 433 

IBM 
Cambridge, Mass. 

Mr. Thomas E. Cheatham 
Computer Associates, Inc. 
Wakefield, Mass. 

Mr. Ted Climis 
Director of Programming 
IBM 
Annonk, New York 

Mr. Larry Constantine 
Information and Systems Institute, Inc. 
Cambridge, Mass. 

Professor Fernando J. Corhato 
Project MAC 
MIT 

Mr. Ted Crowley 
Bell Telephone Laboratories 
Whippany, New Jersey 

Dr. Ruth Davis 
National Library of Medicine 
Bethesda, Mary~d 

Mr. A. Dean 
Manager, Information Laboratory 
General Electric 
Cambridge, Mass. 

Dr. Donald L. Durkey, Vice President 
Computing and Software, Inc. 
Panorama City, California 

Mr. Robert Everett 
The MITRE Corporation 
Bedford, Mass. and 
Baileys Crossroads, Virginia 

Professor Jay W. Forrester 
Sloan School of Management 
MIT 

Professor Edward L. Glaser 
Director of the Computing Center 
Case WestemReserve University 
Cleveland, Ohio 

Mr. Neil Gorchow 
Vice President, Systems Programming 
UNIVAC 
Philadelphia, Pennsylvania 

Mr. William O. Harden 
Manager, Data Processing 
Union Carbide Corporation 
New York, New York 

Mr. Alexander S. Lett 
Time Sharing Systems Development 
IBM 
Yorktown Heights, New York 

Professor Donald Marquis 
Sloan School of Management 
MIT 

Mr. George A. Mealy 
Computer Consultant 
Boston, Mass. 

Mr. Donald Ream 
U.S. Naval Ship Engineering Center 
Washington, D.C. 

Mr. Carl H. Reynolds, President 
Computer Usage Development Corporation 
Mount Kisco, New York 

Professor Daniel Roos 
Director, Systems Lab 
Department of Civil Engineering 
MIT 

Mr. Charles Zraket 
The MITRE Corporation 
Bedford, Mass. and 
Baileys Crossroads, Virginia 





Interactive search and retrieval methods 
using automatic information displays * 

byM.E.LESK 

Harvard University 
Cambridge, Massachusetts 

and 

G.SALTON 

Cornell University 
Ithaca, N ew York 

INTRODUCTION 

Throughout the world, the design and operation of 
large-scale information systems has become of concern 
to an ever-increasing segment of the scientific and pro
fessional population. Furthermore, as the amount and 
complexity of the available information has continued 
to grow, the use of mechanized or partly mechanized 
procedures for various information storage and retrieval 
tasks has also become more widespread. While a number 
of retrieval systems are already in operation in which 
the search operations needed to compare the incoming 
information requests with the stored items are per
formed automatically,no systematic study has ever 
been made of the use of man-machine interaction as a 
part of a mechanized text analysis and information pro
cessing system. Specifically, the recent development of 
high capacity random-access storage mechanisms and 
conversational input-output consoles should permit a 
rapid interchange of information between users and 
system. Such an interchange can then be used to pro
duce improved search formulations, resulting in a more 
effective retrieval service. 

The present report describes and evaluates the per
formance of a variety of such interactive search and 
retrieval procedures in which < information supplied by 
the user population is taken into account in an attempt 
to achieve improved system responses. Several basic 
approaches to user-system interaction are possible. On 
the one hand, an attempt can be made to construct 

• This study was supported in part by the National Science 
Foundation under grants GN-495 and GN-750. 

435 

refined query formulations, using dictionary displays 
and similar methods, before any file search is actually 
attempted. On the other hand, an original query can be 
processed when it is first received, and a query reformu
lation attempted after the results of an initial search are 
actually available. These two procedures, termed pre
search and post-search, respectively, can in tum be exe
cuted in several different ways: Either the system as
sumes most of the burden of the query reformulation 
through an automatic query alteration process, or the 
users themselves can rephrase their queries using the 
available automatic displays. In the latter case, the 
skill of the user population becomes a more important 
factor. The stored data most important in the pre
search methods might include synonym dictionaries 
and thesauruses, work frequency statistics, and lists of 
significant words; the post-search infonnation on the 

, ' 
other hand, consists of the titles, abstracts, or texts of 
documents retrieved by a previous search process. 

The investigation of the various interactive search 
and retrieval methods is carried out with the help of the 
automatic SMART document retrieval system.l,1 
The SMART system is a large computer-based retrieval 
system capable of performing a variety of different text 
analysis, search, and retrieval operations. Completely 
automatic text analysis and information searches are 
made using several different analysis methods and 
search strategies. Among the main text analysis pro
cedures are synonym recognition, work disambiguation, 
phrase recognition, statistical term association, and 
hierarchical text expansion methods. 

The effectiveness of the various analysis and search 



436 Spring Joint Computer Conference, 1969 

methods may be evaluated by using for this purpose the 
familiar 'recall and precision measures, representing 
respectively the proportion of relevant material actu
ally retrieved, and the proportion of retrieved IP.aterial 
actually relevant. Ideally, all relevant items should be 
retrieved for the user, while at the same time, all non
relevant items should be rejected, thus leading to a 
system where both recall and precision are equal to 1. 
The performance effectiveness of an operating system 
can then be estimated by averaging recall and precision 
figures over many searches and comparing the results 
with the ideal situation where recall and precision are 
equal to 1. The SM ... ffi T systerrl automatically generates 
for each search a set of recall-precision graphs first in
troduced by Cleverdon, 3 and also includes procedures 
for performing computations of the statistical signifi
cance of the results. Evaluation data for a wide variety 
of automatic text processing, search and retrieval 
methods have previously been published.4 

In addition to the recall-precision data which reflect 
the capability of the system to deliver to the user the 
information he requests, it is also important in an 
interactive computing environment to take into account 
the amount of effort required from the user to obtain 
satisfactory results. Thus, the standard performance of 
fully-automatic search and retrieval operations must 
be compared against the improvements obtainable 
through interactive procedures at additional cost in user 
effort and computer time. 

In the remainder of this study, the effectiveness of 
various types of interactive search methods is examined, 
including both pre-search and post-search methods, and 
semi- or fully-automatic query reformulation pro
cedures. The results are compared using, in each case, 
the evaluation methods incorporated into the SMART 
system. Construction principles are then derived for 
future information services designed to use man
machine interaction during the search process. 

Fully-automatic retrieval 

In the SMART system, various fully-automatic 
language analysis procedures are used to normalize the 
text of incoming search requests and of stored docu
ments. The normalized, reduced forms of the informa
tion items, consisting generally of weighted "concept" 
numbers, are then compared, and the document rep
resentations which are most similar to the request rep
resentations are extracted from the file as answers to 
the queries. The language normalization procedures 
incorporated into the Sl\iAR T system range from 
simple word stem matching methods to more sophis
ticated processes using stored synonym dictionaries 

and hierarchies, as well as statistical and syntactic 
anl1lysis methods. I ,2 

Three of the simplest language analysis methods, 
known, respectively, as word form, word stem, and 
thesaurus processes may be described as follows: 

a. in the word form, or suffix's', process, no 
word normalization in the proper sense is 
used at all, and original words with only 
the final's' removed (to confound, for ex
ample, "book" and "books") are compared 
directly; 

b. in the wotd stem method, the original text 
words are reduced to word stems by a 
suffix cut-off process to confound words 
like "analyzer", "analysis", "analyzed", 
and so on, before the comparison between 
queries and documents; 

c. in the thesaurus process, each word stem 
is looked up in a synonym dictionary, or 
thesaurus, where it is replaced by one or 
more so-called concept numbers, repre
senting synonym classes; the concepts ex
tracted from the thesaurus are then 
matched instead of the original word forms 
or word stems. 

In all analysis methods, the terms are normally 
weighted, using word frequency and other criteria, be
fore a comparison is made between stored documents 
and search requests. 

An excerpt from a typical, manually constructed 
thesaurus is shown in Table 1. Three of the synonym 
classes defined by the, thesaurus mapping are shown in 
the right-hand side of Table 1. Concept class 346, for 
example, contains words specifying objects which fiy; 
category 345 lists words associated with weather. If a 
request were made, asking 

"do planes fly when the weather is bad " 

the system would retrieve a document stating 

"proper meteorological conditions are necessary 
for the successful piloting of aircraft", 

Bince both document and query would be assigned the 
concepts 345 and 346. 

The handling of ambiguous words in the thesaurus 
is exemplified by the entry for "wind", which could be 
either the noun, referring to weather, or the verb, in
dicating a method of constructing loops or coils. The 
table shows that "wind" is in two categories, 345 and 
233. 345, containing also "weather" and "atmosphere", 



Interactive Search and Retrieval Methods 437 

Table I-Thesaurus excerpt 

Alphabetic Order 

Word Concept 
Code 

Wide 438 
Will 32032 
Wind 345 233 

Winding 233 
Wipe 403 
Wire 232 105 

Wire-wound 233 

rep~esents the noun, and 233, which contains such words 
as "winding", "wire-wound", and "solenoid", repre
sents the verbal meaning. Whenever· "wind" appears, 
both 345 and 233 will be entered into the concept vector. 
Because the word is considered ambiguous, the weight 
will be divided between these two categories; each will 
receive half of the weight assigned to "wind". 

It should be noted that the thesaurus entries may 
consist of word stems, so that "meteorolog" suffices to 
look up "meteorology" and "meteorological". If desired, 
however, suffixed forms of a word may be entered in the 
thesaurus; this has been done with "winding", since if 
only "wind" were in the dictionary, "winding" would 
also be treated as ambiguous, but the presence of 
"winding" in the thesaurus makes it possible to identify 
"winding" in the text with category 233 only. 

The high concept nunlber identifies "will" as a so
called common word, not to be used for content identi
fication. The syntax codes shown with the thesaurus 
entries in Table 1 are not used in the simple automatic 
thesaurus process. 

Since the fully-automatic thesaurus process based 
on concept number matching is often an effective 
analysis tool, more sophisticated language normaliza
tion methods may not normally be reQuired in an 
operational retrieval system. 

U SeT interaction through pre-search methods 

One of the main hopes in obtaining a retrieval per
formance which goes beyond that presently reached 

Syntax 
Code 

001 043 040 
009 070 043 044 049 
070 043 

070 136 137 
043 070 
070 043 

001 

Numeric Order 

Concept 
Code 

344 

Word 

obstacle 
target 

345 atmosphere 
meteorolog 
weather 
wind 

346 aircraft 
airplane 
bomber 
craft 
helicopter 
missile 
plane 

under normal operating conditions is to include the 
customer in the search process. In particular, fewer 
errors are likely to be made if the information obtained 
from the users is not restricted to the search "request 
proper, but is supplemented by a variety of special 
user indications, or by evaluation data about the ac
ceptability of items previously retrieved by the system 
in answer to the search requests. U ser-system interac
tion is now current for many computer application, 
often implemented by special input-output console 
devices, with the help of operating systems which enable 
the system to render more or less simultaneous service 
to a large class of users. 

In an information retrieval environment, user inter
action may take the form of simple dictionary display 
routines which can be used to present to the user se
lected dictionary excerpts as an aid in formulating the 
original search requests, or in reformulating queries 
which were originall)' inadequate.6 •6 Alternatively, 
more sophisticated methods may be used in which the 
reformulation of the search requests is automatically 
performed based on feedback information obtained 
from the user population.7 .8 

The conceptually simpler methods are the pre-search 
procedures which are based on term and dictionary dis
plays of previously stored information. In each case, a 
user would look at the displayed information and, based 
on the available data, would decide before any file 
search is actually attempted how his query could best 
be reformulated in order properly to reflect his informa-



438 Spring Joint Computer Conference, 1969 

tion needs. The following types of pre-search informa
tion could be displayed for this purpose: 

a. lists of terms included in the user's original 
search formulation together with word 
frequency information giving the fre
quency of use of each word in one or more 
of the stored document collections; 

b. thesaurus excerpts corresponding to the 
terms included in the user's search formu
lation, and consisting, for each of the 
originally available terms, of a complete 
thesaurus class, including synonyms and 
other terms related to the original; 

c. titles and abstracts of source documents, 
that is, of documents originally known to 
the user as relevant to his search query 
(the intent of the user is then to retrieve 
new documents similar to the source 
items). 

The principal differences between fully-automatic re
trieval and retrieval using pre-search interaction are 
summarized in the flowcharts of Figures lea) and l(b). 
The pre-search requires the generation of a computer 
display followed by a manual choice of terms on the 
part of the user during the query formulation process. 

The display of word frequency information is de
signed to inform the user of the characteristics of the 
vocabulary which may be used to express his informa
tion needs. Thus, if a user notices that many of the 
terms included in his search request are general terms 
with a very high frequency of occurrence in the stored 
document collection (for example, terms such as "com
puter" and "automatic" in a collection on computer 
science), he may decide that it is wise to delet~ these 
terms from his query so as to prevent the generation of 
high query-document correlations for many nonrele-

0ritiMI--§-t ElOIIIinolion or h ':,:t 
Query "-H Oulput (opt_II 

at No Query ~It_tion 

II) ,""-$_11 MocIiflcot .... 

ci .... t-SMn:II Modlflcotlon 

d) Pre- ... 11 .... t-Seo,GI! ModlflcofiOll 

Figure l-Iterative search procedures 

vant documents. On the other hand, the user may 
decide to emphasize many highly specific, low-fre
quency terms by repeating them in the query formula-

A thesaurus display can be used for manual query 
updating by requesting a printout of the complete 
thesaurus classes corresponding to each term included 
in the original query. Consider, as an example, a query 
dealing with the "contraction of satellite orbits", and 
assume that the user signifies that he is interested in the 
"satellite" class. The computer might then type out 
terms such as 

Discoverer, Sputnik, Vanguard, Cosmos, Moon, 
rocket, trajectory, countdown, drag, telemetry, 
etc. 

After studying the display, the user might decide that 
his original query formulation had been insufficiently 
specific, and the query might then be altered by addi
tion of the terms "Discoverer, Sputnik, Vanguard, 
Cosmos, drag, and telemetry". The other displayed 
terms would, however, be rejected as not being germane 
to the search topic. A second expansion might begin by 
typing in the term "drag", and then considering the new 
display of terms related to "drag". 

Thesaurus displays are also occasionally useful for 
the removal from the query formulation of incorrectly 
used and ambiguous terms. For example, a user inter
ested in information retrieval who identifies his search 
topic as "IR" might discover that the thesaurus dis
play produces a list of synonyms in the area of "infra
red spectroscopy". As a result, the term "IR" would, 
of course, be removed from the search formulation. 

The use of thesslli"'us displays for manual query up= 
dating provides an opportunity for a selective choice of 
synonym and related terms. That is, the user can choose 
some terms to be added to the original query, and others 
to replace already existing ones in an attempt to im
prove search precision. On the other hand, the auto
matic thesaurus process operates less selectively and 
provides synonym recognition by the standard process 
of automatically replacing the word stems originally 
included in the search requests and documents by the 
corresponding concept class numbers extracted from 
the thesaurus. The automatic thesaurus process is thus 
designed to normalize query and document statements 
by generalizing the respective formulations rather than. 
by making them more specific. Such a process may be 
expected to improve recall, since more relevant docu
ments could now match the query statements and could 
thus be retrieved in answer to the respective search re
quests. 



Obviously, the manual query updating method using 
thesaurus displays places a considerable burden on the 
user, since he is forced to consider a large number of 
alternative possibilities before eventually maki ng a 
move. Moreover, the choice must be made before a 
search has actually been performed, at a time when he 
cannot know as yet how well the machine will perform 
with any potential query formulation. 

A comparison of the effectiveness of manual and auto
matic thesaurus procedures is contained in a later section 
together with the other evaluation output. 

User interaction through post-search methods 

The post-search methods are those applicable after 
an initial search has first been performed. In such a 
case, one or more documents will already be available, 
including in particular those items which were initially 
judged to be most similar to the search requests. These 
items can now be used in a manner analogous to that 
previously utilized for the thesaurus displays. Specifi
cally, the titles, or abstracts, of the first few retrieved 
documents can be examined, and document terms which 
appear to reflect the wanted subject area can be added 
to the query statement, while ambiguous and unwanted 
terms can be removed. 

Consider, for example, the previously cited query 
dealing with the "contraction of satellite orbits", and 
assume that the first two retrieved items are entitled 
"Discoverer satellite and South Pacific splash down", 
and "The moon and the tides". A user could now pro
ceed to add "Discoverer satellite" to the original query, 
but could avoid the addition of "South Pacific". 

The document feedback expansion may be even more 
difficult to carry out than the dictionary display pro
cedure, since the user is forced to make sophisticated 
decisions using relatively large text excerpts. Thus, 
whereas the dictionary display procedure can often be 
performed in less than a minute per query, approximate
ly four minutes are required on the average for the use 
of five typical document abstracts. Furthermore, the 
document expansion process also entails a higher cost 
in machine time and storage space than the dictionary 
display, since document abstracts in natural language 
form constitute a much greater bulk than dictionary 
excerpts. In addition, an initial retrieval run must first 
be made before document feedback can be used. On the 
other hand, a stored dictionary need, of course, not be 
available for the document feedback method. 

Another post-search method is designed particularly 
for those users who do not wish to assume the burden of 
query reformulation themselves. For such users, an 
automatic relevance feedback method is available which 
repuires only a minimum of interaction with the user, 

Interactive Search and Retrieval Methods 439 

since most of the burden is placed on internally stored 
routines.7 ,8,9,10 Specifically, an initial search is first per
formed for each request received, and a small amount of 
output consisting of some of the highest scoring docu
ments, is presented to the user. Some of the retrieved 
output is then examined by the user who identifies each 
document as being either relevant (R) or not relevant 
(N) to his purpose. These relevance judgments are 
later returned to the system, and used automatically to 
adjust the initial search request in such a way that 
query terms, or concepts, present in the relevant docu
ments are promoted (by increasing their weight), where
as terms occurring in the documents designated as non
relevant are similarly demoted. 

If the terms from the relevant items are added to the 
search requests, while terms from nonrelevant items are 
subtracted, the first query updating operation can be 
represented by the equation: 

ql = qo + L: r, - L s, , 
i i 

where qo is the original query formulation: ql is the up
dated query, ri is the set of terms identifying the ith 
document specified as relevant by the user, and s. is the 
set of terms identifying the ith nonrelevant document. 
This process produces an altered search request which 
may be expected to exhibit greater similarity with the 
relevant document subset, and greater dissimilarity 
with the nonrelevant set. 

The altered request can next be submitted to the 
system, and a second search can be performed using the 
new request formulation. If the system performs as 
expected, additional relevant material may then be 
retrieved, or, in any case, the relevant items may pro
duce a greater similarity with the altered request than 
with the original. The newly retrieved items can again 
be examined by the user, and new relevance assessments 
can be used to obtain a second reformulation of the 
request. This process can be continued over several iter
ations, until such time as the us~r is satisfied with the 
results obtained. Since the method makes very few de
mands on the user, the automatic relevance feedback 
process may be expected to be preferred by users un
familiar with the system operations. On the other hand, 
the process is not likely to be effective if the user is un
able to identify for the system at least one document 
which is clearly relevant to his needs. 

The post-search methods as well as the combined 
methods making use of pre- as well as post-search in
formation are illustrated in the bottom half of Figure 1. 
A summarization of all the query updating methods is 
given in Table 2. 



440 Spring Joint Computer Conference, 1969 

Table 2-Typical query updating methods 

Query Alteration Process 

Pre-Search 
1. Repeated Concepts 
2. Thesaurus Display 

3. VVord Frequency 

4. Source Document 

Post-Search 
5. Title Display 

6. Abstract Display 
7. Relevance Feedback 

Combined Methods 
8. Abstract plus Thesaurus 

Evaluation resuUs and discussion 

The experimental results included in this section 
are based on the manipUlation of a collection of 200 
abstracts of documents in aerodynamics, together with 
42 search requests proposed by scientists active in aero
dynamics. Complete relevance judgments, prepared by 
these same scientists, were available which identify for 
each query the set of relevant documents. The aero
dynamics collection has previously been used for test 
purposes by the Aslib-Cranfield project3 and by the 
SMART system. 4 

The thesaurus used for both the manual and auto
matic query expansion operations contains 3230 word 
stems and 736 thesaurus classes. This thesaurus was 
constructed by SMART staff members using text con
cordances, word frequency lists, standard dictionaries 
and reference works, and word lists obtained earlier 
from the Cranfield project. An attempt was made to 
time the query expansion operations by restricting the 
use of the thesaurus display to either one minute, two 
minutes, or more than two minutes. While the output 
of Table 3 shows that increasingly more terms can be 
added to the queries as more time becomes available 
for the updating operations, the differences in retrieval 
effectiveness are small, and the evaluation output shown 
represents the output obtained for a display time of 
two minutes. 

The main results are presented first in terms of recall
precision graphs, and then in terms of cost and user 
effort. 

Explanation 

User chooses query terms to be repeated for emphasis 
User chooses terms obtained from thesaurus display to 

update query (with or without time restrictions) 
User looks at display of word frequency information 

before updating query 
User looks at display of source document before updating 

User looks at titles of first five retrieved documents 
before updating 

I User looks at abstracts of first five retrieved documents 
. Query is updated automatically using relevance judg

ments supplied by user following an initial search 

User looks at pre- and post-search information 

Table 3-Variation in query length 

Query Type 

Original Query 
Terms added in 1 minute 

in 2 minutes 
later 

A. Recall-Precision Results 

Average Number of 
Significant Terms 

per Query 

8.3 
3.6 
2.0 
1.0 

The evaluation output is presented in Figures 2 to 7 
using the standard recall-precision graphs, averaged in 
each case over the 42 queries used with the collection 
of 200 documents. The curves are, as usual, monotoni
cally decreasing, reflecting the fact that as more relevant 
items are retrieved (as the recall goes up), more irrele
vant items are also retrieved (causing the precision to 
go down). Increasingly more effective retrieval per
formance is reflected by recall-precision curves close to 
the upper right-hand corner of the graph where both 
recall and precision take on ideal values of 1. Next to 
the graphs, some of the numeric values are presented 
in terms of recall-precision tables, giving the average 
precision values at certain selected recall values. 

Significance values, computed by a standard 
t-test, are also included in the output figures, repre-



senting in each case the probability that the per
formance values for two specified processing methods 
are in fact derived from the same distribution. Thus 
if the computed probability value is high, the two 
methods are assumed to be statistically indistin
guishable; on the other hand, if the probability 
value is low-say 0.05 or less-the likelihood that the 
evaluation results could have been derived from the 
same data set is very small, and the differences in per
formanoe OlU~ then be assumed to be statistioally sig
nificant. 

The following principal conclusions can be drawn 
from the output of Figures 2-7 : 

...... 1 .. 

1.0 

.. 

a. automatic thesaurus vs. pre-search using 
thesaurus display (Figure 2) : 

the automatic thesaurus expansion and the 
manual expansion using pre-search thesau
rus display both produce an improve
ment in performance over the word 
stem matching process. Overall, the auto
matic thesaurus (which requires no user 
intervention) is superior. At high pre
cision, however, the greater selectivity 
of the words chosen by the manual pro
cess produces better results. The su
periority of the automatic thesaurus at 
medium and high recall is attributed 
to the previously mentioned difficulty of 
selecting appropriate terms from the 
thesaurus display. 

b. automatic thesaurus vs. pre-search using 
source document display (Figure 3) : 

the source document display produces a 
precision improvement of up to ten per-

o wI .... 1 .... '1 •• (_. mllli 

• ~tI-. oII.plo, 'word .t.",1 
D ....... 1 ... '1 •• '",,-_I 

0.1 
0.1 
0.1 
0.7 
0.. 

".elli.n 

o • D 

.114 .11" .MI 

.114 .114 .105 

.4tIZ .510 .541 

.141 .I~ .411 

.111 .212 .114 

T-tllt SI,nlfleonce 
• a 
o 0 

.1110 .718 

.205 .3!lI 

.1- .1" 

.llI .111 

.011 .252 

., RIOIII-Proel.l.n T_I .. AM 
" .... tlc.1 ..... Ifl •• ee. Output 

~-!.I~~.4-.. ~....I"--'-LO-""'" 

., "'cell-Pre.I.I •• 

Figure 2-Effect.iveness of dictionary display compared with 
stored theRauru~ 

Interactive Search and Retrieval Methods 441 

o orivlnal queries (wnI ltom) 

• oriGinal q_i.. ("'"-vII 

D __ ~ disploJ ( .......... 1 

Pnc:iliGn 

1.0 

.. .6' .4 

0-0 

AIc:oIl Pnc:iaion 
o • a 

0.1 .634.669 .748 
0.3 -"4.605.603 

g:~ := .:~: :~ 
0.' .a2 .1'" .362 

T-~ Sitnifig-
o • 

.791 .327 .3M ._ 

.168 .523 

.181 .TeT 

.252 .T?'O 

.2 

.2 .4 .6 .8 1.0' RICCI' 

.1 AIcaII-Precilion Tobia oncI 
~ __ ~. s!O!'!if!t~ ~.,~., 

a! R4IcoII-Pnc:ision Graph 

Figure 3-Effectiveness of source document display 

cent over and above the automatic thesau
rus process; however, the table appearing 
with Figure 3 shows that the improvement 
is not statistically significant. The rela
tively modest increase in . performance 
may be due to the fact that the source 
documents and queries used in the experi
ment originated with the same authors, 
so that the source documents contain many 
of the terms already included in the query 
statements; also, some of the source docu
ments appear only marginally relevant to 
the actual queries; both of the interactive 
pre-search methods turn out therefore to 
be not substantially superior to the fully
automatic thesaurus method (except at 
high precision) ; 

c. post-search procedures using displays of 
titles or abstracts of previously retrieved 
items (Figures 4 and 5) : 

title and abstract post-search displays are 
superior to both of the pre-search displays, 
as shown in Figures 4 and 5. Improvement 

........... rt •• ( .... 1fIIII1 

• title ..... , ( .... '_1 
D oMt..., ..... , ( •• ,. m",1 

".. .... 
1.0 

.. ~ 
:~ 
.1 

R ..... 

0.1 
0. • 
0.1 
0.7 
0.' 

.t .4 .1 .• 1.0 R ..... 

• J R ... II -" .. ,.1 ..... ,,, 

1'rICII.1on T-to., ...... fle_ 
0 • D • 

0 

.eM :r17 .711 .002 

. 11 • . lt7 .714 .002 

.• 11 .514 .127 .007 

.141 .177 .413 014 

.111 .1711 .111 .011 

., .... II-P, .. '.i.n Table. And 
...... tIc.1 lI"';fle_. Output 

a 
0 

.001 

.001 

.001 

.001 

.001 

Figure 4--Comparison of title and abstract display 



442 Spring Joint Computer Conference, 1969 

o .. IIIDaI .... ie. (wor' ate.) 

6 oIlctl_., .leplo, (word ate.) Z .Inllt •• 

D .. _ dlopl., (wo.' ., •• ) 

Praeioi ... 
It ... " 0 A D 

0.1 .134 .1" .1'1111 
0.3 .534 .5M .1'14 
0.11 .4IZ .510 .121' 
0.1' .343 .31'1 .4Z3 
0.11 .zn .zn .3za 

T-iaet~. 
A D· 
0 0 

.110 .003 

.Zo! .001 

.11111 .001 

.13a .001 

.011 .001 

L--~.I~-I;.4-.7-1 ~.a:---:':I.o:-+ It.call . 

"1tMe1l-P •• cl.ien·T ..... Md 
"o'latlc.1 Sltnlflc_ 0.' .... ' 

allt.call -Precl.lon 8 ...... 

Figure 5-Comparison of dictionary and text display 

with title display is limited to the high 
precision regions, since the titles are so 
short that words not in the query are 
rarely included. The query alterations due 
to title display are therefore limited to 
deletion of unnecessary concepts, im
proving mostly the precision. Abstract 
displays produce both precision and re
call improvements, at the cost of greatly 
increased work on the user's part. The 
amount of text examined during an ab
stract display process is about 1000 words, 
from which five to ten may be selected for 
query expansion. 

d. automatic thesaurus vs. post-search up
dating using abstract display and relevant 
feedback (Figure 6) : 

both the manual post-search .method with 
abstract display and the automatic rele
vance feedback process are superior to the 
standard automatic thesaurus expansion; 
the abstract display is best in the very high 
recall and high precision ranges. The per-

o orI9nol queries (-.:I stom) 
A ..--. -'"dbod! (..on! ~~) 

_ ilW1ltion- increlftlllt only 

D Clllltracf dilPkly (-.:I ...... ) 

T~ AIcoII 
"'-doion T-, .. , $itlHficonce 

0 & a & D 
D 0 

0.1 .4134 .809 .1~ .526 .003 
0.3 .!l34 .784 .714 .021 .001 
0.5 .462 .704 .627 .on .001 
0.7 .343 :510.423 .042 .001 
0.9 .253 .388 .328 .031 .001 .. L::::_, 

o .2 .4 .6 .8 1.0 

It) Rlcall- Precioion Tobies and 
StofIIticoi Significance Output 

0) RocoII- Precision Gtopll 

Figure 6-Comparison of abstract display with 
relevance feedback 

formance differences between the two post
search methods are not significant, al
though the improvements obtained with 
both methods over the standard thesaurus 
process are significan,t, The relevance 
feedback output included in Figure 6 is 
obtained by retrieving, in each case, five 
documents at a time, asking the user 
to identify any relevant items, and add
ing the corresponding terms to the search 
request. 

e. combined pre-search dictionary and post
search abstract display (Figure i): 

Figure i shows that a combination of ab
stracts and thesaurus displays offers an 
overall improvement of about twenty per
cent over the standard word stem process, 
and of ten to fifteen percent over the 
thesaurus process; in both cases, the im
provement is statistically significant. When 
word frequency information is added to 
the display, a further improvement results 
for the word stem procedure, since the 
user can now ensure that all parts of the 
query are properly weighted. The output of 
Figure i is approximately equivalent to the 
automatic reievance feedback process (Fig
ure 6); however, the combined pre- and 
post-search process requires much more 
user effort and experience than the rele
vance feedback method before it can oper
ate successfully. 

B. Overall Evaluation 

The periormance oi the various interactive proce
dures is summarized in Table 4. The first column reflects 

........ 1-

~!, 

o ..... "1 .... I •• 1_ .te.) 

A -....-, - __ , tll.pI., (word atoI8) 
D atl .... ,..,. _ ,,_, 

Iafer--.o (_ .toI8) 

0.1 
0.3 
0.11 
0.7 
0.11 

& a 

.134 .'I'M .m 

.534 .... _ 

.4tI .5111 .UI 

.343 .4«1 ._ 

.~ .3411 .38' 

T-_ Sltnlfl_ 
a D 
o 0 

.00II .00II 
.001' .002 
.014.00e I 
.001 .001 
.002 .002 .It , , , I ' 

.1 .4 .1 •• !.O. Recall 
.1 lIocall- Pre.l.lon T'*.. Alld 

IlOIltllU! 51 ... 111 ..... Output 

0' 1I •• ell-Prlcloi .. Grap~ 

Figure 7-Comparison of combined methods (word stem process) 



Interactive Search and Retrieval Ivlethods 443 

Table 4-Performance summary 

Demands 
Processing ~,fethod on 

Computer 
.-

A. Fully Automatic 
word stem match normal 
automatic thesaurus normal 

B. Pre-Search Interaction 
thesaurus display normal + 
source document display normal + 

C. Post-Search Interaction 
title display high 
abstract display high 
relevance feedback high 

computer demands; the second, user effort; and the 
last two reflect search effectiveness in terms of recall 
and precision improvements over and above the normal 
word stem matching method. 

Since the post-search methods require two separate 
file searching operations-one prior to the interactive 
process an.d one following it-the computer demands 
are comparatively higher for post-search than for the 
other methods. Thus, when search time may be expected 
to be considerable-for example, for very large collec
tion sizes-the pre-search procedures may become man
datory. 

From the user's viewpoint, the less information is 
displayed, the easier will normally be the interactive 
process. Thus, the relevance feedback procedure is 
simplest, since the user must merely identify one or 
another document as either relevant or nonrelevant; the 
pre-search thesaurus displays, and the post-search ab
stract displays are hardest, since complicated decisions 
are required to update the search requests. 

Turning now to the performance parameters, it is 
seen in Table 4 that, everything else being equal, the 
post-search methods are more powerful than the pre
search procedures. (Unfortunately, those are also the 
methods which put the highest demands on the com
puter.) One obvious reason why the post-search meth
ods operate more reliably is that a computer search has 
already been performed before the user is asked to up
date the query. Thus, the query alteration process is 
undertaken with prior knowledge of how well the origi
nal query has performed. The post-search alteration 
can then be used to initiate small changes for queries 
requiring only little improvement, and more massive 

Demands Precision Improvement 
on Over Word Stem ~,fatch 

User Low Recall High Recall 

none - -

none +4% +6% 

medium-high +6% +4% 
medium +8% +5% 

medium +13% +2% 
very high +17% +7% 
low +10% +7% 

changes for the others. For the pre-search methods, no 
such prior information is available. 

Of the post-search methods, the best performance is 
obtained with abstract display; however, this method 
also makes the greatest demands on the user. The rele
vance feedback method is not much inferior and more 
preferable from the user's viewpoint. 

To summarize the performance and cost indications, 
the following search strategy would appear to be useful . 
under most circumstances: 

a. normally, use standard automatic thesau
rus method without user interaction; 

b. if improvement is needed and search time 
is not excessive, use relevance feedback; 

c. if search time is at a premium, use pre
search source document or thesaurus dis
play; 

d. on the other hand, if high retrieval per
formance is mandatory, try post-~earch 

abstract display. 

The difficulties of the manual query updating meth
ods may be illustrated by the example of query 317, 
reproduced in Table 5. The original word stem retrieval 
run produces the two relevant documents in rank posi
tions 4 and 10. From the thesaUI'llS display, the follow
ing words were selected: "elastic", "resilient", "un
stiffened", "modulus", "aeroelastic", "laminar-bound
ary-Iayer". This promotes the two relevant doc.uments 
to rank positions 2 and 5; however, the automatic 
thesaurus run yields rank positions 2 and 4, without 
any user interaction. When the post-search displays are 
used, the results are similar. Title display is not very 



444 Spring Joint Computer Conference, 1969 

Table 5-Typical manual query updating 

Query 317: Has anyone investigated theoretically whether surface flexibility can stabilize a laminar 
boundary layer? 

(Two Relevant Documents) 

Processing lVlethod Terms "Added" or Deleted Ranks of Relevant Documents 

A. FuUy Automatic 
word stem match 
automatic thesaurus 

4,10 
2,4 

B. Improved Searches 
word stem plus 

thesaurus display 
(pre-search) 

"unstiffened", "modulus", 
"elastic", "resilient", 

2,5 

word stem plus title display 
(post-search) 

" aeroelastic" 
"theoretical" 4,9 

word stem plus abstract display 
(post-search) 

"elastic", "resilient", "theoretical" 1 ,6 

c. Perfect Searches 
automatic thesaurus plus 

relevance feedback 
1,2 

word stem plus abstract 
display plus automatic 
thesaurus 

"elastic," "resilient" 1 ,2 

thesaurus display plus 
abstract display plus 
word frequency display 

anyone, investigate, "theoretical", 
"flexibility", "analytic", 
"resilient", "calculate", 
"unstiffened", "aeroelastic", 
"laminar-boundary", "flexure", 
"elastic" . 

1,2 

effective for this particular query, yielding only an 
indication that "theoretical" should be increased in 
weight, which raises the rank positions of the relevant 
from 4 and 10 (in the original word stem run) to 4 and 
9. Abstract display is more fruitful, adding "elastic" and 
"resilient" as well. This increases the ranks of the rele
vant documents to 1 and 6. However, the same query, 
now processed through the automatic thesaurus (ab
stract display and automatic thesaurus run) yields per
fect performance, as does the automatic thesaurus run 
with relevance feedback. 

To achieve perfect performance using only manual 
updating methods and word stein matches, it is neces
sary to utilize a combined thesaurus display, abstract 
display, and word-frequency information, which yields 
the following rather complex set of changes: delete 

"anyone" and "investigate"; increase the weight on 
"theoretical" and "flexibility" by a factor of two; add 
with weight of one the word "analytic", "resilient", 
"calculate", "unstiffened", "aer~elastic", and "laminar
boundary"; add with weight of two "flexure"; and add 
with weight of three "elastic". These changes produce a 
word stem run with perfect performance, but at far 
greater time and trouble than the automatic thesaurus 
with abstract display run. The exact adjustment of the 
term weights is normally performed more accurately 
and more easily by the automatic thesaurus. The 
manual methods are thus best reserved for users with 
the skill and interest to consult lengthy displays and to 
make complex decisions. 

A meaningful ('ost analysis is difficult to make with
out the use of an operational time sharing system to 



Interactive Search and Retrieval Methods 445 

Table 6-Estimated cost figures 

Estimated Cost per Query 
Processing Method 50,000 documents 100,000 documents 

A. FuUy Automatic 
word stem match 
automatic thesaurus 

$ 5.00 $10.00 
$ 5.00 $10.00 

B. Interactive Pre-Search 
thesaurus display $ 6.00 $11.00 
source document display $ 5.50 $10.50 

C. Interactive Post-Search 
title display $10.50 $20.50 
abstract display· 
relevance feedback 

$13.00 $23.00 
$10.50 $20.50 

D. Partial Search 
cluster searches (one-tenth 

of collection) $ 0.50 $1.00 
cluster search plus 

relevance feedback 
cluster search plus 

abstract display 

$ 6.00 $11.50 

$ 8.50 $14.00 

Assumptions: machine cost $75.00/hour 
document scan 5msec/ doc 
central processing cost 0 
human time $10.00/hour 

perform the experiments. Table 6 contains au estimated 
cost summary based on running times for the IBM 
7094. Machine and user costs are assumed to be $75.00 
and $10.00 per hour, respectively. Scanning time is five 
milliseconds per document, and additional central pro
cessor time is ignored. Table 6 shows that the post
search methods are clearly the most expensive (they 
also are the most effective), with relevance feedback 
relatively cheaper than abstract displays. In general, 
the automatic procedures appear economically and 
operationally better suited to the retrieval operations 
than the manual methods. Since the cost of human time 
may be expected to continue to increase relative to the 
cost of machine time, the automatic procedures may 
grow even more attractive in the future. 

The bottom part of Table 6 shows that proces8ing 
cost goes down drastically if partial searches of the col
lection are performed, rather than full searches. Such 
partial "cluster" searches are implemented with the 
SMART system; however, the cluster searches cannot 
be used if a recall performance higher than about 50 
percent is required.ll 

CONCLUSION 

The best overall process for precision purposes is the 
abstract display used in conjunction with a word stem 
matching procedure. For recall purposes, a combina
tion of abstract display with thesaurus word normali
zation appears best. The automatic relevance feedback 
approximates the abstract display method while re
quiring much less user effort. Considering the cOIn
plexity of the abstract display system, a sensible set of 
recommendations for high performance real-time re
trieval would be the following: 

a. for highest precision, use title display and 
word stem matching; 

b. for highest recall with normal users, use 
the automatic thesaurus followed by auto
matic relevance feedback; with experi
enced and patient users, use abstract dis
play and dictionary display plus frequency 
information; 

c. for maximum cost reduction at lower per-



446 Spring Joint Computer Conference, 1969 

formance, use partial searches of the docu
ment collection. 

These rules provide a graded set of feedback methods, 
ranging from automatic procedures which make only 
minimal demands on the user and are suitable for 
novices (automatic thesaurus expansion, relevance 
feedback), to methods permitting sophisticated user
system interaction which combine the best features of 
manual and automatic query adjustment (thesaurus 
and abstract display). One may expect that a suitable 
mix of user feedback procedures can be found to pro
duce optimal retrieval under many different conditions 
over many types of user classes. 

G SALTON M E LESK 
The SMART automatic document retrieval system
an illustration 
CACM Vol 8 No 6 June 1965 

2 G SALTON ET AL 
Scientific reports on the SMART system to the National 
Science Foundation Nos ISR-ll ISR-12 ISR-13 
Department of Computer Science Cornell University 
Ithaca Xew York June 1966 June 1967 and January 1968 

:3 C W CLEVERDON J MILLS E M KEEN 
Factors determining the performance of indexing systems 
Vol 1 Design Aslib-Cranfield Research Project Cranfield 
College of Aeronautics 1966 

4 G SALTO~ M E LESK 

Computer evaluation of indexing and text processing 
JACM Vol 15 No 1 January 1968 

5 R M CURTICE V ROSENBERG 
Optimizing retrieval results with man-machine interaction 
Center for the Information Sciences Report Lehigh 
University Bethlehem Pa 1965 

6 H BORKO 
Utilization of on-line interactive displays 
In Information Systems Science and Technology, D Walker 
editor Thompson Book Co Washington D C 1967 

7 J J ROCCHIO JR 
Document retrieval systems-optimization and evaluation 
Harvard University Doctoral Thesis Scientific Report 
No ISR-I0 to the National Science Foundation Harvard 
Computation Laboratory March 1966 

8 J J ROCCHIO G SALTON 
Information search optimization and iterative retrieval 
techniques 
Proe F J C C Vol 27 Spartan BOOKS November 1965 

9 G SALTO::-'; 
Search and retrieval experiments in real-time information 
retrieval 
Proc IFIP Congress-68 Edinburgh August 1968 

10 E IDE 
User interaction with an automated information retrieval 
system 
Scientific Report No ISR-12 to the National Science 
Foundation Sec VIn Department of Computer Science 
Cornell University June 1967 

11 R T GRAUER M MESSIER 
An evaluation of Rocchio's clustering algorithm 
Scientific Report No ISR-12 to the National Science 
Foundation Sec VI Cornell University Department of 
Computer Science June 1967 



The LEADER retrieval system 

by DOXALD J. HILL~IAX and ANDREW J. KASARDA 

Lehigh University 
Bethlehem, Pennsylvania 

INTRODUCTION 

The LEADER system is a new service-oriented proto
type designed to meet the retrieval needs of research 
scientists· working within or in conjunction with the 
Center for the Information Sciences at Lehigh U ni
versity. In the first part of this paper, we describe the 
major conceptual apparatus and principal design 
features· of LEADER, while the second part contains 
a brief discussion of system implementation and user 
interaction. 

The name "LEADER" is an acronym for "LEhigh 
Automatic Device for Efficient Retrieval," and is thus 
similar to other acronyms in possessing both an intended 
meaning as well as an actual referent. Imaginative 
readers can undoubtedly supply alternative and pre
sumably more ribald interpretations of the same six 
characters, but this is rather incidental to the main 
goal of the LEADER system, which is to provide a 
very highly user-oriented .facility for .the negotiation of 
open-ended inquiries and interactive browsing. To 
help meet this objective, the system includes on-line 
processing of requests, using a novel and relatively 
inexpensive hardware configuration, and serially or
ganizes its output in the form of document references, 
dtations to documents, and complete textual passages 
selected from one or several documents, in any way that 
the user specifies. This ability of the user to control out
put is but one feature of an overall interactive procedure 
which begins when an initial request is entered into the 
LEADER system in the form of a set of sentences 
describing the user's problem. Each input sentence 
must, of course, be grammatically well-formed, but 
there is no restriction on vocabulary. A typical inquiry 
might read: 

"I would like to know whether modular bounded 
functionals have ever been used in theoretical 
studies of retrievable sets, and if so by whom and 
with what results. If there has been no application 

of this type, I would be interested to learn of any 
work in retrieval theory that makes use of Borel 
functions. If there is no such work, please direct 
me to retrieval studies involving topological mea
sures or metric spaces in generaL" 

Inquiries such as these are presented directly to the 
system and displayed on a C~ T scope. As each inquiry 
is displayed, it is also automatically analyzed by the 
same procedures used to process the full text of input 
documents. That is to say, LEADER treats both docu
ments and queries as entities of the same logical type to 
begin with, so that the logical and referential struc
ture of an inquiry is accorded just as much importance 
as the structure of a document. The goal of text pro
cessing is therefore the same throughout, viz., to deter
mine what each group of input sentences is about, 
whether they constitute a document or an inquiry, and 
to establish major patterns of conceptual relatedness 
between documents and terms used either in document 
or query characterization. The text-processing .features 
of LEADER thus include elements of syntax, semantics, 
and logic. 

After the sentences of an initial inquiry have been 
analyzed into concept-denoting expressions and their 
logical interrelationships, LEADER is able to fashion 
an appropriate response to the user's retrieval needs by 
comparing the conceptual structure of the inquiry with 
the general structure of the data base. This comparison 
is conducted via a man/machine dialogue in which 
LEADER instructs and interrogates the user, attempt
ing to acquaint him with the nature of its stored in
formation so that each inquiry can be negotiated 
through successive modifications of the user's stated 
interests. The dialogue itself is carried out on a CRT 
scope. 

The user may call for document references, citations, 
or passages of relevant text at any time during the 
negotiation, so that by a process of selective browsing 

447 



448 Spring Joint Computer Conference, 1969 

he may assist LEADER to arrive at the most appropri
ate solution to his retrieval problem. What the user 
wants in the way of final output is a matter for him to 
decide. In most cases, uSers prefer to read portions of 
the text of seiected documents on the CRT scope, and 
to ask for hard copy of what they state to be the most 
interesting or pertinent of the documents that have 
been displayed for them on the CRT. Such hard copy 
is provided by either a line printer or a low-speed ter
minal. 

Work on the theoretical basis of LEADER was be
gun in '1962, and preliminary implementation of the 
theory took place in 1965-1966, when programs for full
text analysis were written and tested. In 1966-67, sys
tem components for connectivity and decision were 
developed, and a small scale prototype went into oper
ation in the SlLTfiffier of 1967. A full scale version of 
LEADER is now virtually complete, employing a 
data base of technical articles and reports in informa
tion science, the full text of which is in machine-readable 
form. 

The design features of the system call for a sub
stantially different approach to evaluation, largely 
because such widely-used and familiar notions as "pre
cision" and "recall" have no operational meaning for 
LEADER. For this reason, we have proposed new 
methods for evaluating system performa:p.ce, working 
directly with a real user population composed of Le
high faculty and staff. These methods are now under 
development. 

A full discussion of the text-processing procedures 
now being used in LEADER is contained in earlier 
publications.1 For ease of reference, however, we shall 
begin our detailed description of system design and 
operation with a brief synopsis of theory and software 
development up to the present time. 

Retrieval theory 

The theoretical basis of LEADER may be described 
as a deductive framework for the operationsgoveming 
the retrieval of those messages whose content is such as 
to make them measurably relevant to negotiable in
quiries. By "message" we mean a well-formed as....c;:em
blage of lexical items constituting a sentence, a docu
ment, a portion of a document, a set of sentences culled 
from several different documents, a document descrip
tion, a bibliographic reference, a citation, and so On. 
This liberal interpretation of "message" is intended to 
reflect the wide variety of useful retrieval responses to 
(a) different types of inquiry, and (b) different stages 
within the negotiation of a given inquiry. It is thus 
apparent that the LEADER system is designed to in
corporate within a single framework the hitherto 

separate functions of document retrieval, data retrieval, 
reference retrieval, etc. There are numerous reasons for 
combining these different functions into one integrated 
mechanism, some of which relate to improved hardware 
and software, while others arise from changes in design 
philosophy. By far the most important reason, however, 
is that inquiries put to a retrieval system are not all of 
the same kind, so that it is imperative to build into the 
system as many different types of response as there are 
different kinds of inquiry. Many requests, for example, 
require a substantial degree of retrieval completeness, 
while others may be met by rather simple lists of docu
ment references. A flexible response capability has there
fore been programmed for LEADER, permitting the 
system to vary its several outputs as the user specifies, 
whether during the COlL~e of negotiating a single in-
quiry, or responding to different types of request. 

The theoretical framework of LEADER is described 
in a series of pUblications2 dating from 1962. At its most 
recent stage of evolution, the theory defines three major 
groups of operations leading to a corresponding identi
fication of three main system components, each with its 
own sub-theory. We distinguish a text-processing, a 
connectivity, and a decision component, and describe 
below how their theoretical foundations were estab
lished. 

Text-processing subtheory 

This subtheory formalizes a set of procedures for 
assigning content-indicating symbols to documents. 
In the LEADER system such symbols are termed 
"characteristics", while the activity of assigning char
acteristics to documents is called "characterization". 

Since we characterize a document in order to mention 
the topics it deals with, it is clear that the objective of 
text-processing is to enumerate a set of topic-denoting 
expressions for every document in the collection. By 
limiting our scrutiny to noun-phrases, it is possible to 
identify topic-denoting expressions as those substanti
val expressions occumng as arguments of logical rela
tions. For example, the sentence "The four-group con
stitutes a subgroup of the tetrahedral group" expresses 
a binary relation whose arguments are "the four
group" and "the tetrahedral group". We say that these 
two noun-phrases are topic-denoting expressions, or 
that the sentence deals with the topics of the four
group and the tetrahedral group. 

In the complete text-processing theory of LEADER, 
each document is regarded as a complex of ordered 
sentences, every one of which must be reduced to its 
underlying logical relations. We say that any sentence 
expressing a relation has canonical form, or is a canoni
cal component, and call the process of reducing an 



English sentence to ~ts canonical components canoni
cal decomposition. An algorithm has been written to 
identify the canonical components of every input 
sentence of a document, and to isolate all noun-phrases 
occurring as arguments of such components. These 
noun-phrases are potential document characteristics 
whose actual selection is subject to rules described in 
another section. 

Connectivity subtheory 

The second subtheory is concerned with (1) a class 
of operations defined on characteristics to establish 
their interconnections, and (2) a class of operations 
defined on documents and their characteristics. The 
former class of operations serves to formalize the con
cept of association, here interpreted as the calculable 
relatedness of topic-denoting characteristics. The latter 
class of operations formalizes the notion of affiliation 
between characteristics and documents. This concept is 
used to measure the strength of the connection between 
a given characteristic and any document to which it has 
been assigned. 

Because the output of text-processing functions as 
the input data for connectivity, it is necessary to pro
vide a link between the respective subtheories. This can 
be accomplished by stipulating that terms are connected 
at the first level if they occur as the arguments of a 
relation. 

A criterion was established for measuring the degree 
of connection between each term used to characterize 
a document and the document itself. All characteristics 
are assigned w~htB relative to their documents, rep
resented by the entries of a chalacteristic by docu
ment matrix. Multiplication of this matrix by its trans
poSe yields a characteristic by characteristic matrix 
defining connections between characteristics via one 
document. 

This matrix is partitioned into submatrices defining 
ge'nera. A genus is defined as a connected component 
of a graph of characteristics, and is therefore made up 
of characteristics every pair of which is connected by 
a sequence of edges in the graph. 

Each genus submatrix is converted to a transition 
matrix, and it is shown that properties of connectivity 
within general have an appropriate model in the theory 
of ergodic M,arkov chains. 

A description of the procedures used to establish con
nections is provided in a later section. 

Decision subtheory 

The goal here is to construct a theory of the opera-

The LEADER Retrieval System 449 

tions governing the deductive and associative liaisons 
between document representations and inquiries. This 
particular theory has gone through many stages, and is 
still in fact being rather vigorously studied. A major 
reason for continued investigation is that our concep
tion of the decision component had been revised several 
times in response to the increasing possibilities of ever 
more sophisticated retrieval. Thus, starting with the 
relatively straightforward problem of constructing a 
model for subject document retrieval, we have gone 
on to examine associative models, and have finally 
arrived at the stage whereby the retrieval process is 
defined as an interactive procedure between the user 
and the system in which there are many different 
levels and types of response, ranging from a simple 
enumeration of bibliograppjc information, at the lowest 
level, to a full negotiation of a complex query involving 
browsing, text-display, and question-answering, at the 
highest level. As the decision component has become 
more complex and sophisticated, so its corresponding 
subtheory has passed through many stages of mathe
matical development, the most significant of which 
have been described in earlier publications. 3 

System implementation 

Hardware configuration 

The LEADER system has been implemented on an 
IBM 1800 Process Control computer. The process con
troller (cpu) has a 16K, 4#L second main core memory 
and a 2310 disk controller with two 2315 disk car
tridges that provide over a million words of on
line peripheral storage. An IBM 1442 card reader/ 
punch, an 1816 typewriter console and a 2260 cathode 
ray tube terminal are used for basic system I/O oper
ations. 

The IBM 1800 Process Control system operates 
under TSX, an IBM-written time-sharing executive 
with real time capability. I t is through TSX that 
LEADER functions. 

Users can communicate with the LEADER System 
in either of two ways. The first method is via an 1816 
typewriter-like terminal that transmits data at about 
15 characters per second over the 1800's standard 
data channel. It is an on-site (local) device. The second 
method is via a 2260/2848 Video Display-Controller 
which transmits data at 240 characters per second over 
a selector channel. The 2260 CRT is a video display 
terminal with a 960 character display buffer (screen) 
and a typewriter-like console for data entry . Up to 
eight 2260 CRTs can be attached to the 2848 display 
controller at various remote locations. 



450 Spring Joint Computer Conference, 1969 

Software 

The LEADER System software can be divided into 
three main categories based on producer and function. 
These are: 

IBNI supplied system software 
LEADER System interface software 
LEADER System operational software 

The IBIVI supplied software consists of the standard 
software packages available with the 1800 Process 
Control system. 

The LEADER System interface software performs 
two basic functions. The first is a system interface rou
tine that links TSK and the 2260/2848 display con
troller. I t services hardware interrupts generated in 
the LEADER System's operational environment. 
The second is a program interrupt-servicing routine 
that supervises all LEADER operations requested ,by 
the user. 

The LEADER System operational software consists 
of three classes of routines designed to perform the 
functions required by each of its three components. 
They are: 

Text Processing Component Program Package 
Text Entry Compiler (LETEXT) 
String :\1anipulation Compiler (LECOM-II) 
Syntactic Analyzer (LEG RA]\'[) 

Connectivity Component Program Package 
Connectivity Operations Supervisor 
Connectivity Matrix Routines 
Retrieval File Generation Routines 

Decision Component Program Package 
Request Analyzer 
Request Negotiator 
Display Generator 

Data base 

The Lehigh University Center for the Information 
Sciences maintains a literature collection in information 
science and engineering as both an experimental data 
base and an active reference source for faculty and 
students. At present there are approximately 3000 
documents in the collection, and our intent is to limit 
the size to 10,000 items. However, we wish to make the 
collection highly dynamic so that is will continue to be 
substantively useful and meaningful to researchers and 
students. This will be accomplished by input filtering 
and item deletion. At the input stage, only high
quality documents dealing with topics of substantial 
interest will be accepted for processing and inclusion. 
The criteria for selection are as follows. 

1. General papers on information retrieval, docu
mentation, and computer appreciation are ex
cluded, unless there is a specific reason for ac
ceptance, such as basic policy statement (e.g., 
Weinberg Report) or a particularly cogent 
description of the field, or a general paper in 
which specific important data are included. 

2. The following areas are included in the collec
tion, with particular emphasis on research, 
experimentation and systems analysis. 

(i) Automatic indexing and abstracting; 
(ii) Syntactic analysis (but not when the 

orientation is exclusively mechanical 
translation) ; 

(iii) Logical and mathematical studies of 
retrievai, reievance, indexing, etc. ; 

(iv) Basic systems studies, including costs, 
major system studies, parallel system 
problems, compatibility, library auto
mation; 

(v) Behavioral studies of users, questions, 
effect of information on management 
decision, the research program, and on 
engineering processes. 

(vi) Programming languages, particularly 
symbol manipulation languages; 

(vii) Pertinent reviews and bibliographies; 
(viii) Peripheral material considered pertinent; 

automata studies, mechanical trapsla
tion, self-organizing systems, cognitive 
processes, neurophysiology, linguistics; 

(ix) Education of personnel in information 
- handling and the information sciences.' 

With respect to item deletion, user reaction is the 
basis for upgrading the quality of the collection. Since 
it is hardly meaningful to experiment with documents 
that real users find of little interest, we shall delete items 
found to be of minimal value, and replace them by docu
ments suggested by users. 

These filtering, deJetion and replacement operations 
are not only necessary for quality control, but ensure 
that the experimental collection is non-static. Collec
tions that are sealed off against new entries misrepresent 
real-world conditions, and our approach to system de
sign is to deal exclusively with dynamic collections, 
whose membership is subject to continuous modifica
tion. 

Since the literature collection is, to the best of our 
knowledge, the only formal and accessible set of high
quality documents devoted exclusively to information 
science and engineering, it has certain unique features. 
Not only are faculty, research personnel and students 



using the collection for experimentation, but the litera
ture itself is of substantial interest to them. In order to 
make the literature available for reference purposes, it 
is controlled by conventional library methods. All 
incoming documents are classified and shelved, and 
author and subject indexes are maintained. 

Text entry and processing 

Each dOCllillent selected for inclusion in LEADER is 
entered in its full-text version. The instrument for such 
text-entry operations is a data-editing, non-numeric, 
and non-interpretive compiler known as LETEXT (see 
section on Software). 

Text is entered by direct keying from an 1816 ter
minal or a 2260 OR T and stored on disk files. Input 
creates both visual and computer records, and extensive 
editing and error correction features are available. 

Text entry and editing in LETEXT are background 
jobs on the IBM 1800 time-shared computer, so that 
the machine-readable data base of LEADER may be 
continuously augmented while retrieval operations are 
in progress. 

The procedure for analyzing the sentential structure 
of documents entered into LEADER involves three 
distinct steps. The first is a dictionary look-up program 
for identifying the key functor words and phrases of any 
sentence. The dictionary currently contains approxi
mately 2,000 entries, including such items as suffixes, 
prepositions, prepositional phrases, conjunctions, con
junctive phrases, auxiliary verbs, and so. When found, 
each functor word is replaced by a specially coded 
syntactic category symbol. 

The second program assigns syntactic category 
symbols to the remaining words of the sentence on the 
basis of a context-sensitive analytic grammar. 

The third program reduces the strings of categories 
produced by the first two programs to their canonical 
components. These, as previously explained, are strings 
of categories having the form of a sentence expressing a 
logical relation. 

To illustrate the procedure down to the decomposi
tion stage, consider the following example of ~ input 
sentence: 

Brown's algorithm is a generalization of Euclid's 
algorithm capable of treating three or more equa
tions in one process, but nevertheless introduces 
many extraneous factors. (1) 

The output of the dictionary look-up procedure for 
this sentence is: 

Brown's A algorithm U is V a ART generalization 

The LEADER Retrieval System 451 

N I A of P Euclid's A algorithm U capable A of P 
treating V L three A or P more A equations N I A 
in P one A process N IV, CC but C nevertheless C 
introduces VX many A extraneous A factors NIA 

(2) 

where the category symbols stand for the following: 

A adjective 
U unknown 
V verb 
ART article 
N I A noun or adjective 
P preposition 
V L present participle or gerund of unknown 

verb 
N IV noun or verb 
CC comma 
C conjunction 
VX present or past tense of transitive or in

transitive verb. 

The second program replaces the unknowns of (2) 
with calculated category symbols and resolves multiple 
category assignments such as N I A. We have: 

Brown's A algorithm N is V a ART 
generalization N of P Euclid's A algorithm N 
capable A of P treating V L three A or P more A 
equations N in P one A process N, CC but C 
nevertheless C introduces YX many A extraneous 
A factors N (3) 

The third program decomposes (3) into the following 
canonical components: 

(i) Brown's A algorithm N is V a ART generaliza
tion N of P Euclid's A algorithm N 

(ii) Brown's A algorithm N is V capable A of P 
treating V L three A or P more A equations W 
in P one A process N 

(iii) Brown's A algorithm N introduces VX many A 
extraneous A factors N (4) 

This example shows clearly how the phrase "Brown's 
algorithm" has three logical occurrences, although it 
appears just once in the original sentence. 

When every sentence of an input document has been 
reduced to its canonical components, another program 
selects document characteristics from such components 
and assigns numerical weights to selected character
istics. Since all potential document characteristics are 
noun-phrases occurring as arguments of the relations 



452 Spring Joint Computer Conference, 1969 

expressed by canonical components, they are extremely 
easy to identify. 

Each selected characteristic occurring as an argument 
of an n-termed relation R is said to h.a ve n lines of con~ 
nection to R. A characteristic-t is said to have m lines 
to connection to a document D if m is the sum.of all 
lines of connection between t and the relations of D in 
which t appears as an argument. 

The weight of a characteristic relative to a document 
is the sum of its lines of connection to the document. 
Thus, if a characteristic t occurs once as the argument 
of a two-termed relation in a given document D, and 
at another time as the argument of a three-termed 
relation of D, th~ weight of t relative to D will be five. 

In support of this measure, it is essential to realize 
that any document is a coherent complex of assertiO!ls. 
Its function is not to enumerate haphazard and discon
nected pieces of information, but to give an organized 
account of its subject matter. That is, a document fits 
together concepts embodying knowledge of a field of 
inquiry. The connectivity of terms via predicates con
tributes greatly to a document's coherence. Such con
nectivity is, in fact, basic to all other types of connec
tivity. 

In summary, the procedure operates on the full 
text of documents written in technical English, reduces 
each text sentence to a string of syntactic categories, 
resolves each category-string into the set of its canonical 
substrings, identifies potential document characteristics 
within the canonical substrings, and finally assigns a 
weight to each characteristic relative to its parent doc
ument. 

Once a document has been processed by LEADER, 
it is analyzed on a sentence-by-sentence basis for char
acterization and connectivity decisions. That is, the 
structure of each sentence is explored to determine 
which of its noun phrases qualify as potential docu
ment characteristics. The output of this analysis is a 
set of weighted source-derived noun phrases that oc
curred in referential positions within their respective 
sentences. The phrases are sorted, merged and then 
entered into a term-document affiliation matrix. By 
performing appropriate matrix operations on the affili
ation matrix these noun phrases may be grouped into 
distinct sets of mutually related terms known as 
"genera." Further processing of these genera can b3 
done to remove low-entropy terms, hence further rz
fining the quality of the document characteristics. 

Files 

The corpus actually used in the LEADER System 
consists of approximately 1000 documents, each of 
which is analyzed by the fully automatic text processing 

and connectivity procedures described above. The 
text of every document is reduced to its major asser
tions, i.e., sentences making assertions about the topics 
denoted by the document's characteristics. Such sen
tences may be grouped by function, if desired. For ex
ample, descriptions of results form one group, while 
descriptions of experimental procedures form another. 
It can easily be shown that the procedures of canonical 
decomposition assist in defining such groups. The 
ability to identify and retrieve such sentences is, there
fore, an important feature that has been incorporated 
in the LEADER System. 

The analyzed and reduced text of each document is 
placed on the IB11 1800's disk storage cartridges along 
with the files required for ret:rieval operations on the 
domain of documents, their respective analyzed texts, 
their characteristics, and the connections between 
characteristics. These files contain bibliographic data 
on documents, including the storage locations of the 
individual sentences of their text, and describe the 
nature and strength of the connections among char
acteristics, components of characteristics, genera of 
characteristics, and documents. 

To generate the retrieval files, we make use of the 
matrices produced by the connectivity procedures de
scribed above. Output from the text processing opera
tions is in the form of an alphabetically sorted set of 
source derived noun phrases with a record fannat as 
shown in Figure 1. 

Document 
Number 

Source 
Derived 
Phrase 

Weight of 
Phrase 
Relative to 
Document 

Sentence 
Numbers 
in which 
Phrase occurs 

Figure 1-Text processing output record fonnat 

These phrases are used to generate the term-document 
matrix on the one hand, and to build the Source De
rived Phrase Dictionary. Its record format is similar 
to that given in Figure 1, except that identical phrases 
are merged relative to a given document. See Figure 2. 

Weight Sentence 
of Phrase Numbers 

Source Relative in which 
Phrase Derived Document to Docu- Phrase Doc. Sent. 
Number Phrase Number ment Occur No. Wt. Nos. 

Figure 2-8ource derived phrase dictionary record format 

From this file and information contained in the parti
tioned term-term matrix, we obtain the Noun Phrase
Word Profile Dictionary. Each phrase is reduced to its 
non-trivial word components. Along with each such 



word, the phrase number of the phrase from which the 
word was obtained and the genus number of that 
phrase are combined to for a Temporary Word File 
with records as shown below. 

Word Genus Number Phrase Number 

Figure 3-Temporary word file 

These records are then sorted first alphabetically by 
word, next by genus number, and finally by phrase 
number. Then this sorted list is merged into the Noun 
Phrase-:-Word Profile Dictionary whose record format 
is shown in Figure 4. 

Genus Phrase Genus Phrase 
Word Number Numbers Number Numbers 

Figure 4-Noun phrase-word profile dictionary 

The Temporary File can then be discarded. Finally, 
we generate the Phrase Affiliation File which is derived 
directly from the partitioned term-term matrix. It 
contains the genus number, phrase number and affilia
tion value. 

The genus number is assigned to each of the sub
matrices in the partitioned submatrix. Within each 
genus (submatrix), the column and row entry of the 
submatrix is a source-derived phrase, while the com
ponent entry within the submatrix is the term-term 
affiliation value derived for each pair of terms within 
the given genus. The result of merging this informa
tion is the Phrase Affiliation File. See Figure 5. 

Affiliated Affiliated 
Genus Phrase String Affiliation String Affiliation 
Number Number Number Value Number Value 

Figure 5-Phrase affiliation file 

The end product of the sorting and merging of the in
formation contained in the matrices are the three main 
retrieval files described above. They are: 

Source Derived Phrase Dictionary 
Noun Phrase-Word Profile Dictionary 
Phrase Affiliation File 

There are four other data files used by LEADER. 
These are: 

Special Topics File 
Author/Title Information File 

The LE ... A~ERRetrieval System 453 

Citation File 
Document File 

The Special Topics File is a topic-oriented file made 
up of individual sentences from various associated 
documents. The remaining files are generated directly 
at input of the document via LETEXT. 

Interactive retrieval 

LEAD ER is designed to encourage user interaction 
with the structured material of a corpus of scientific 
or managerial data so as to maximize the influence of 
information flow on decision making. The data entry 
procedures are sufficiently general to accommodate 
several different types of data base, provided only that 
each consist of well-formed English sentences. In 00-
dltion, the response capability is flexible enough to 
p 3rmit retrieval ranging from the enumeration of simple 
bibliographic data, on the one hand, to full-text display, 
on the other. 

The extent to which information flow contributes to 
decision-making is certainly affected by the ability of an 
information system to adapt itself to a user's needs. 
I t is for this reason that retrospective literature searches 
are no longer sufficient in information retrieval. It is 
now necessary to develop the framework and experi
mental procedures requisite for a true interaction be
tween user and store. Most experimental work to date 
looks upon both the inquiry and the relevance of answers 
a 3 single events. We think this is a mistake and that an 
inquiry is merely a micro-event in a shifting, adaptive 
process. It is not a command, as in conventional search 
strategy, but rather a description of an area of doubt 
in which the question is open-ended, negotiable and 
dynamic. The immediate goal of the LEADER system 
is thus to provide a facility that will, within feasible 
and practical limits, offer the user a range of experi
mental configurations which he can amend or add to 
as necessary. Its long range function is to design and 
test techniques that will allow inquirers to be instructed 
in the system, to browse, to query, to be interrogated 
by the system, and to be shown various strategies for 
search. 

To begin a retrieval dialogue, a user enters a prelimi
nary search description (via the 2260 CRT console) in 
the form of a set of declarative English sentences. 
LEADER's syntactic analyzer then reduces these 
sentences to a set of noun phrases which were found 
to be in referential positions within the sentences. 
N ext, the noun phrases are reduced to non-trivial 
component words. This is done because it is rather un
likely that a noun phrase presented by a user will pre
cisely match any of the noun-phI"ase8 in LEADER's 



454 Spring Joint Computer Conference, 1969 

source derived Noun Phrase Dictionary. Thus, each 
component word of each noun phrase derived from the 
request is looked up in the Noun Phrase-Word Profile 
Dictionary to determine its respective genus associa
tion and phrase affiliation, if any exists. The results 
are then merged by genus into maximal sets of ranked 
noun phrases, if any exist, affiliated with the request 
component words. LEADER's response will be a set of 
noun phrases within a single genus that contains the 
maximum nunlber of request component words. 

Consider the following simple example. Suppose 
that a user's request was reduced to the noun phrase 

finite Markov chain 

by LEADER. This phrase would then be further re
duced to the three word components 

finite 
Markov 
chain 

Next, LEADER would look up each of these word 
components in the Noun Phrase-Word Profile Diction
ary and the Noun Phrase Dictionary. Suppose the result 
was as follows: 

Word 
Component Genus Phrase 

Markov--3 

chain / ~ll 

{

finite chain 
finite Boolean lattice 
finite l\1arkov chain 

J?o~nded finite space 
lhrnte set 

{

finite ~larkov chain 
ergodic :;Vlarkov chain 
Markov Processes 

{

finite chain 
finite :?vlarkov chain 
ergodic :Markov chain 

{

chemical chain 
chain reaction 
finite molecular chain 

Phrase 
No. 

1 
2 
3 

3 
4 
5 

1 
3 
4 

8 
9 

10 

Merging the phrases by genus and ranking them by 
the number of word components each phrase affiliated 
phrase contained, and then by frequency of occurrence 
of the affiliated phrases, the result would be as follows: 

Phrase No. of Fre-
Genus Phrase No. words quency 

finite Nlarkov chains 3 3 3 
finite chains 1 2 2 

3 ergodic ~vIarkov chaL.!S 4 2 2 
finite Boolean lattice 2 1 1 
~'Iarkov Processes 5 1 1 

Phrase No. of Fre-
Genus Phrase No. words quency 

6 bounded finite space 6 1 1 
finite set 7 1 1 

Phrase No. of Fre-
Genus Phrase No. words qrency 

finite molecular chain 10 2 1 
11 chemical chain 8 1 1 

chain reaction 9 1 1 

In this case, the phrases in genus 3 would be presented 
to the user as a response. It would then be up to the 
user to select or reject this output based on what it is 
that he is looking for. (If it were the case that the user 
rejected all of these phrases, LEADER would present 
him with the phrases from the next highest ranked 
genus, 11.) Let us assume that the user is satisfied with 
the phrases in genus 3. He may at this point choose to 
see any docll.."1lents associated with these phrases 
(or any combination of them), or he may continue his 
negotiation to further clarify his request. Suppose he 
selects the phrases 

finite Markov chain 3 
ergodic Markov processes 4 

to continue with. LEADER will now proceed to obtain 
all phrases in genus 3 that are affiliated with the two 
selected phrases. This information is obtained from the 
Phrase Affiliation File and the Noun Phrase Dictionary. 
The two sets of affiliated phrases are then merged and 
ranked by affiliation value. The results may be as 
follows: 

Phrase Phrase 
No. 

3 finite lVlarkov chain 

Affiliated 
Phrases 

finite l\'Iarkov chain 
unique probability 

vector 
finite state automata 
vector algebra 

Value 

10 

5 
4 
3 

4 ergodic :Markov chain ergodic Markov chain 9 
unique probability 

vector 7 
finite state automata 4 
context-free grammars 4 



The merged and ranked response would be 

Affiliated Phrase 

unique probability vector 
finite Markov chain 
ergodic Markov chain 
finite state automata 
context free grammars 
vector algebra 

A.ffiliation Value Sum 

12 
10 
9 
8 
4 
'1 
u 

Again, the user may decide to look at various document 
sets associated with any combinations of these phrases 
he may choose. Or he may again continue with these 
phrases to further define his request. The user also has 
the option of returning to any preceding step in his 
request negotiation at any time, or he may choose an 
entirely new search direction. The important point is 
that there is a continuous dialogue between the user 
and the LEADER system allowing the user to become 
familiar with LEADER'S file organization, and manip
Ulating it as he wishes. 

When the user decides he has reached a point at 
which he would like to see some documents, LEAD
ER provides him with a very flexible documental unit 
display feature. He may choose to see: author/title 
information 

citations 
full text 

In the case of full text display, the user may view the 
complete document, if he desires, in a continuous 
display, or he may choose to see all those sentences in 
a given document which contain one or more of the 
phrases he has selected earlier. Finally, he may choose 
to see sentences from each document presented to him 
containing associated phrases. Thus the user has com
plete browsability free of language and hardware use 
restrictions. 

ACKNOWLEDGMENT 

Grateful acknowledgment IS made to the National 

The LEADER Retrieval Systenl 455 

Science Foundation for support under Grant No. 
Gl\-668 of the work on which this paper is based. 

REFERENCES 

(i) D J HILLMAN 
Characterization and connectivity 
Document Retrieval Relevance and the Methodology 
of Evaluation National Science Foundation 
Grant ~o GN-451 Report ~o 1 May 24 1966 

(ii) W R HILTON D J HILLMAN 
The structure of LECOM 
Ibid June 29 1966 

(iii) D M REED D J HILLMA~ 
M icrocategorization for text-processing 
Ibid July 7 1966 

(iv) D M REED D J HILLMAN 
Canonical decomposition 
Ibid August 12 1966 

2 (i) Problems, systems and methods 
Study of Theories and Models of Information Storage 
and Retrieval Grant G24070 
The National Science Foundation August 3 1962 

(ii) The Boolean algebra model 
Ibid 

(iii) A positive model for systems of special classification 
Ibid August 29 1962 

(iv ) New foundations for retrieval theories 
Ibid August 12 1963 

(v) Positive models of retrieval systems as species of 
logical algebras 
Ibid August 23 1963 

(vi) Retrieval systems for non-static document collections 
Ibid September 26 1963 

(vii) Graphs and algorithms for term-relations 
Study of Theories and Models of Information Storage 
and Retrieval 
The National Science Foundation Grant ~o GN-283 
July 30 1964 

(viii) The structure of document relations 
Ibid August 25 1964 

(ix) Topology and document retrieval operations 
Ibid July 1 1965 

(x) The formal basis of relevance judgments 
Mathematical Theories of Relevance with Respect 
to the Problems of Index:ng National Science 
Foundation Grant No GN-177 July 9 1964 

(xi) An algorithm for document characterization 
Ibid March 12 1965 

;~ Cf. Referen~e 2. 





System characteristics of Intrex 

by J. F. REINTJES 

Ma880chusetts Institute of Technology 
Cambridge, Massachusetts 

The salient features of Intrex have been reported 
in prior literature.1 They are updated here and are 
included as a preamble to the three companion papers 
being presented at thi$ conference on several technical 
features of Intrex. 

Intrex is an experimental, pilot-model, machine
oriented library system. As illustrated in Figure 1, 
the system includes a computer-stored catalog of 
ten-thousand journal articles in selected fields of 
materials science and engineering, and the full text 
of the ten-thousand articles stored on microfiche. The 
catalog is contained in a general-purpose time-shared 
computer and is accessed through specially designed 
alphanumeric consoles, one of which has been imple
mented to date. The consoles are connected to the 
central computer through a buffer/controller. The 
full-text microfiche collection is accessed through the 
alphanumeric console and the access facility is designed 
to provrde guaranteed, rapid access to any documen 
in the collection at locations which are remote to th 

___ J~_IN_TR_EX_~ L PROGRAMS 

'----r----' 

VOICE-GRADE 
TELEPHONE LINES 

BUFFER I 
CONTROLLER 

AUTOMATIC RETRIEVER, 

ELECTRONIC SCANNER, 

and TRANSMITTER 

Figure 1-8ystem diagram of Intrex 

store. Full text may be viewed, page-by-page, at the 
user's station by means of a separate storage-tube 
display, or a permanent copy may be obtaihed either 
on 35-mm film or as an 872 X 11 inch print. The 
elapsed time from the ordering of a 35-mm film copy 
to the availability of it at the film station is approxi
mately 90 seconds. The first page of an article appears 
on the storage-tube display within 7 seconds after an 
order is placed and each succeeding page can be ob
tained within 3 seconds. 

Our objective in Intrex is to use this experimental 
library as a means for gaining insights into the design 
characteristics of large-scale, operational systems of 
a similar kind. Weare in the process of evaluating the 
merits of the system by making it available to a se
lected community of users who have a bona fide need 
for the informatiqn contaihed in the system and to 
librarians who may wish to use it for reference purpo'Ses. 
It is our intention to alter the characteristics of the 
system as we learn about its strengths and weaknesses 
from our user community. 

It should be noted that the system illustrated in 
Figure 1 brings the library to the user; it circumvents 
his need to go to the library for the information he 
is seeking. To be acceptable as a working system, 
however, it must engender satisfactibn from the view
points of completeness and relevance of the information 
retrieved; it must be easy to engage; and it must 
provide quick, relia.ble service at costs that are realisti~. 

Intrex i~ examining several issues with respect to 
in-depth cataloging and the extent to which in-depth 
cataloging is needed when guaranteed, rapid access 
to full text is, and ~ not, readily available at the user's 
station. As many as 52 different items of informati<)n 
are being entered for each journal amcle cataloged. 
These i'tems are described together wi'th access pro
cedures, in a companion paper by R. S. Marcus et al. 2 

Through monitoring of the frequency of requests for 

457 



458 Spring Joint Computer Conference, 1969 

each item we shall be able to draw conclusions on 
the relative value of each item. 

The possibility exists that easy access to full text 
may alter the behavio.r patterns of those using the 
catalog. Since some of our catolog information is 
frequently contained on the first page of the document 
itself (author, author's affiliation, journal name, volume 
number, page, abstract, and so forth), users have the 
option of obtaining this information either by retrieving 
it from the catalog or from the document itself. Our 
purpose is to investigate the factors which govern 
user behavior when seeking information of this kind. 

For storage of full text we have chosen image storage 
on microfiche. Computer storage of full text was 
discarded because of the huge amount of storage 
required, particularly when gray-level information 
must be preserved. The use of film ensures preservation 
of pictorial information, and microfiche is well-suited 
for journal-article-type literature. We are using 
COSATI standard microfiche with a reduction ratio 
of approximately 18 to 1 and sixty frames per micro
fiche. Since our documents are derjved from the 
published literature, we store text in image form rather 
than digitally because of the ease with which page 
text can be converted to a microfilm image. 

The full-text storage and scanning unit, called the 
central station, is time-shared by several receiving 
stations. In order to minimize the time each micro
fiche is out-of-storage, each frame on a microfiche is 
scanned only once by means of a flying-spot scanner. 
Video signals are transmltted as analog information 
and to each frame of transmission is added a receiving
station address in digitally encoded form. Single
frame transmission requires storage at the receiving 
stations; this sitorage is photographic in the case of 
the film station and electronic in the case of the storage
tube receiving station. 

Our investigations show that at least 2,000 scan 
lines are required to reproduce the stored images with 
acceptable legibility. 3 Variations in type sizes and 
quality of printing among documents dictate this 
scan-line requirement; in fact, as many as 3,000 lines 
may be needed where the quality of print is marginal 
and small type size is present, as in the superscripts 
and subscripts of mathematical equations. This 
high-resolution requirement would requite an extraordi
narily wide-band transmi'ssion system if a television 
type repetitibn scan were employed. With one-shot 
scan, as used here, a t.rade-off can be made between 
bandwidth and scan time per frame. Approximately 
a I-MHz channel with a scan time of 2 seconds has 
been found compatible with other elements of the 
text-access system. Details of the text-access and 

transmission system are contained in the paper being 
presented at this conference by D. Knudson and 
S. Teicher.4 

The alphanu...-rueric=console S'Jsrem through wpich 
the catalog is acces~d has bee1.l developed as an 
experimental vehicle to determine special attributes 
which should be included for user convenience in 
library applications and to investigate techniques which 
might be employed to minimize cost of such consoles. 
The salient features of the catalog console system are 
these: typewriter keyboard input; refreshed CRT
display output; and a buffer/controller, consisting of 
a 128-track drum storage device and a Varian Data 
1\1:achines 6201 computer, interposed between the 
central computer and the display consoles. The buffer/ 
controller is capable of serving a. ma.ximum of ten 
display terminals. In addition to the keyboard, a set 
of programmed and programmable buttons is being 
provided in an effort to determine the usefulness of 
this approach as a user aid.5 

In the original system design, catalog information 
and full text are displayed on separate CRT's. This 
configuration is obviously inconvenient and costly; 
a single display is a goal of our project. Such a display 
is described in the paper being presented at this con
ference byJ. K. RobergeandD. R. Haring.s 

System utilization 

A critical item with respect to utilization of a 
machine-stored library is the amount of preparation 

. needed to engage the system and to make full use of 
its power. The bona fide user is interested only in 
satisfying his need for information as completely and 
quickly as possible, and with a minimum amount of 
preliminary eff ort. Nevertheless certain procedural 
matters must be mastered even before intelligible 
responses can be derived from the machine. These 
include an understanding of the options the user has 
for making searches and typing procedures for exe
cuting these searches, as well as an ability to type and 
to invoke proper procedures for correcting typing 
errors. Since many library users are occasional or 
intermittent users, they may always be in the category 
of "new" users in the sense that their retentivity of 
basic operational rules from system engagement to 
system engagement may be minimal. User aids thus 
become a crucial item. 

Thus far, Intrex has experimented with several 
types of user aids. A User Guide which describes in 
detail the various features of the system and how to 
use them is available both off-line in hard-copy form, 
and on-line as a computer printout. In addition,· the 



Guide is available in summ.ary fonu in a separa~ 
booklet entitled How to Get Started. Wall charts de
scribing system operation are also posted directly 
before the user above his console. Still to be prepared 
and tested are simple instructions on cards. 

The results of our experiments to date indicate that 
the off -line Guide is the version referred to most 
frequently; apparently, the time required to print out 
the various sections of the on-line version is considered 
to be wasteful. Nevertheless dissatisfaction with the 
off-line Guide has been expressed. Dissatisfaction seems 
to result" from the large quantity of material it contains, 
the time required to assimilate the material, and the 
fact that the phraseology includes a certain amount of 
technical jargon which is not understood. A further 
observation is that a SUlllID.3.ry version of the Guide 
is helpful, but it must be supplemented by the full
scale version. Finally, response to wall charts as user 
aids has been disappointing thus far. Further experi
mentation with their content is needed in order to 
determine their value as a user aid, if indeed they 
have value. 

To date experiments have been conducted only with 
a typewriter console as an input-output device. A 
new dimension to user-aids is added when a graphical 
terminal becomes available. Since its writing rate is 
an order of magnitude faster than that of the type
writer, current disinterest in the on-line version of the 
instructional guide may disappear. Furthenuore, since 
the Intrex graphical console is being designed with a 
set of progranunable switches, these may offer a wholly 
new approach to on-line instruction when these switches 

Sys~~ Characteristics of Intrex 459 

are programmed as user aids. 

ACKL~OWLEDGlVfENT 

The research reported in this paper was supported 
through grants from the Council on Library Resources, 
Inc., the National Science Foundation, and the Carne
gie Corporation. 

REFERENCES 

1 C F J OVERHAGE J F REINTJES 
Information transfer experiments at MIT 
Proc IFIP Congress 1968 Applications 2 Booklet G 18-22 

2 R S MARCUS P KUGEL R L KUSIK 
An experimental computer-stored augmented catalog of 
professional literature 
Proc S J C C 1969 

3 D R KNUDSON S N TEICHER J F REINTJES 
U F GRONEMANN 
Experimental evaluation of the resolution capabilities of 
image transmission systems 
Information Display September/October 196831-43 

4 D R KNUDSON S N TEICHER 
Remote test access in a computerized library information 
retrieval system 
Proc S J C C 1969 

5 DR HARING 
A display console for an experimental computer-based 
augmented library catalog 
1968 A C M National Conference and Exposition 
Las Vegas Nevada August 27-29 1968 (To appear in 
Conference Proceedings) 

6 J K ROBERGE D R HARING 
A combined display for computer-generated data and scanned 
photographic images 
Proc S J C C 1969 





An experimental computer-stored, 
aue:mented cataloe: of Drofessional - ~ ~ 

literature 

by RICHARD s. MARCUS, PETER KUGEL 
and ROBERT L. KUSIK 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

This paper reports on progress in the development 
and application of computer programs for storage 
and retrieval operations associated with the Project 
Intrex augmented catalog experiments. A general re
view of Project Intrex and details of other Intrex de
velopments are given in companion papers.1- 3 

The environment for which these programs are cur-
rently being developed includes the following features: 

computer system: time-sharing computer utility 
with satellite computer links emphasizing man
machine" interaction via typewriter and display 
consoles. 

data base: an in-depth catalog to a moderate-sized 
(10,000 documents), but growing, data base fea
turing free-vocabulary indexing and a variety of 
document types. 

experiments: experiments with researchers using the 
system to satisfy real infonnation needs to de
termine the relative values of system features 

While this mix of features is, perhaps, unique, there 
have been, of course, many other efforts having sev
eral of these features as components. Our own work is, 
in many ways, a blend of various techniques found in 
one or more of these efforts. Among those systems hav
ing the greatest influence on the design of our system 
are systems implemented at SDC,4 NASA (Bunker
RamO),6 University of Pennsylvania,6 Harvard-Cor
nell,7 MIT Project TIP,S Staniord,9 and Bolt, Beranek 
and N ewman.lO 

Because of the complicated nature of our catalog 
and an emphasis on untutored users, some techniques 

like instructional aids and a stenuning algorithm, have 
been developed to a greater degree than" they have in 
the cited efforts. On the other hand, because of a de
sire to get experiments under way as soon as possible 
some techniques, like an automated thesaurus and 
sophisticated matching criteria, have been deferred un
til experience has been gained with initial experiments. 

Creation of catalog data 

Data base and literature selection 

The literature base for the augmented catalog eX .. 

periments is drawn from the broad subject area of 
materials science and engineering, thus providing an 
interdisciplinary subject area within the scope of t~ 
M.LT. Engineering Library which is to serve as the 
experimental laboratory for Intrex. Because the cur-
rent literature for this entire field greatly exceeds the 
10,000 document initial size C?f the first experimental 
catalog, only literature in selected areas of materials 
science and engineering is cataloged. These selected 
areas reflect the research interests of particular grou:ps 
at M.I.T., thus assuring Intrex of a specific popuJation 
of experimental users." Five research groups have been 
selected, two in physics and three in metallurgy. 

The documents for this data base have been selected 
primarily (so far) from the journal and conference pro
ceedings literature after January 1, 1967. (Eventually, 
we intend to include significant numbers of other 
literature forms; e.g., books, reports, theses, memo
randa, etc.) Each research group chooses the journals 
of interest to it. Then members of each group select 
articles relevant to their group from journal-iasUe 
tables of contents. 

461 



462 Spring Joint Computer Conference, 1969 

The catalog and its fields 

The augmented nature of the catalog is indicated by 
the range of the 50 fields shown in Table I. (See Benen
feldlI for a more complete description of the nature 
and preparation of the catalog.) Of course, only a frac
tion of the fields are applicable for the catalog record 
of a particular document. A typical catalog record, as 
typed for input to the computer, is shown in Figure 1. 
It may be noted that some fields contain encoded in
formation; e.g., in field 36 "e" stands for "English." 

The most important field in terms of retrieval is, 
perhaps, the subject index terms field. Our current 
procedures call for generating index terms based upon 
the text of a document. In general, terms are combina
tions of phrases. Each term is structured to provide 
sufficient context so that the term may be understood 
in its own right. Further, each term is given a "range" 
number to reflect that proportion of a document de
voted to discussing the represented concept (see 
Field 73 of Figure 1). 

Several features of this indexing may be noted. In 
the first place, "free vocabulary" is used; that is, the 
indexer may choose any words to make up the subject 
terms and is not restricted to an "authority" list of 
terms. In practioo, the indexer primarily chooses terms 
in the author's own words. Secondly, the meanings of, 
and relationships among, the terms, which in some 
other retrieval systems are given explicitly by a formal 
system of "roles" and "links," are implicitly expressed 
in the Intrex terms through the context given by these 
relatively long terms. 

The rationale behind using free vocabulary and 
long "stand-alone" terms is one of ease of indexing 
and flexibility. It is evidently easier to use the author's 
own words to indicate the subject content than to have 
to re-analyze the content in terms of a fixed authority 
list and previously established set of roles and links. 
Presumably automatic indexing could be more readily 
developed on this basis. Similarly, there seems to be a 
greater flexibility in using natural language,. which 
adapts naturally to changing conditions and conven
tions of meaning, rather than using authority lists, 
whose organization is always tending to lag behind 
current usage. Another feature of "stand-alone" terms 
is that they can be displayed to a user and, hopefully, 
give a more comprehensive understanding, of the sub
ject content than a list of keywords. Some experiments 
indicating the value of free-vocabulary indexing have 
re~ntly been done by Shaw and Rotlunan.12 

One disadvantage of the natural language approach 
is the possible reduction in retrieval effectiveness due 
to the diversity in ways of expressing the "same" sub
ject. ~v1eans to circlh"llVent this problem are discussed 

/ / 1 / 4299 

/ /2/ A24 

/ / 5/ 7-Cl(}cD3 

1/20/ 

/ /30/ 

/ /69/ 

/ /33/ 

/ /36/ 

/ /37 / 

/ /65/ 

/ /66/ 

/ /31/ 

/ /47/ 

/ /24/ 

/ /21/ 

/ /22/ 

/ /40/ 

/ /68/ 

/ /70/ 

/ /73/ 

//3/ 

1e(4) 

ill us. 

e 

b 

3 

dd 

pp. 1453-1458. IN S+4180S 

An internally reflecting optical resonator with confocai 
properties 

Holshouser, D.F. 

Unversity of 'Illinois', 'Urbana' • Electrical Engineering 
Dept. 

'U. S.' Air Force Office of Scientific Research 
*AF-49-(638)-556 .... AfOSR-62-250 . 

Contains diagram of geometry for confoc:al internal reflection 

Optical resonators using spherical mirrors, e.g. confoc:al 
systems, have been shown to have significant advantages 
over configurations U5ing planar mirrors. In particular, 
diffraction losses can be mu<:h lower and alignment is I. 
critical. However, planar systems have had an advantage 
heretofore iii that coated mirrors could be replaced by 
internally reflectin9 prisms, thereby eliminating the 
I'roblems associated with lossy or fragile coatings. 
Also, undesired modes are reduced since rays not parallel 
to the axis are not co~letely reflected. this paper 
describes the configuration for an internally reflecting 
surface which exhibits properties of a spherical mirror, 
and presents experimental results obtained with a 
serni-c6nfoc:al maser using this configuration. 
~ext, p. 14~ 

internally reflecting OP.tical resonator with confocal 
properties (1); 

configuration • ~L~"" an inter.,nally reflecti'!9 s~ce which 
axhi ... i ... prcpe.-t:es of a sphenc(!1 m,rror 
confoc:al system (1); 

basic properties of a confoc:al resonator (2); 
analytic expression for the internally reflecting surface 

which satisfies confocal requirements (3)i 
Schott barium crown. glass d~ed with n~mium (4); 
fabric:afion of semi-c:onfocal optical maser (3); 

~7/2, 
./1, 
1/7 
1"1;4 

032968, 
040168, 
040268, 
040468, 

11 :15 -11 :25; 
9:26 - 9~29; 
11 :06 - 11 :08; 
11 : 35 - 11 : 50; 

Figure 1-8ample catalog record 

in the section on retrieval below. Another disadvantage 
of the long, stand -alone teITnS is their redundancy, 
which requires additional storage in the computer. On a 
purely keyword basis the redundancy is about 66 
percent; that is, for each document each unique word 
(stem) type is used about three times in the subject 
terms, Determining the usefulness of this redundancy 



Experimental Conlputer-Stored, Augmented Catalog of Professional Literature 463 

in aiding retrieval effectiveness is one object of our 
experimental investigations. 

A third feature of the indexing philosophy is the 
extended depth of indexing. Not only are the major' 
subjects of the document indexed but so also are sub
jects covered to a lesser degree or mentioned only 
briefly in the document. Of course, these minor sub
jects are given a lesser range number reflecting the 
smaller portion of document devoted to them. A typical 
journal article of five pages may be indexed by about 
20 terms, each term averaging about five words. As
suming about 400 words per page, this represented an 
index word to text word ratio of about 0.05. 

The index terms (Field 73) make up about 30 per
cent of the bulk of the catalog records. The abstract 
(Field 71) or the excerpts (Field 70)-usually only one 
or the other is present-make up about 40 percent of 
the catalog record for a given document. The other 
fields comprise the remaining 30 percent. 

Computer system q,nd library facilities 

The Intrex Storage and Retrieval programs are pres
ently operat~ng in the environment of the M.LT.
modified IBJ\f 7094 Compatible Time-Sharing System 
(CTSS).13 CTSS includes: 

1. 32K (36 bit) word core for the system super
visor; 

2. Another 32K core for the user working pro
grams; 

3. A high-speed drum for core images of user pro
grams that have been "swapped out" awaiting 
I/O or additional service from the CPU as 
allocated through the service queue; 

4. A low-speed drum for storage of directories to 
user's files; 

5. Two IBJ\f 2301 disc files (40,000,000 words 
each) serving as the primary storage medium 
for program and data files; 

6. An IBJI 7750 communications interface for 
servicing I/O needs to user consoles; and 

7. lVIagnetic tape drives for auxiliary readmg and 
writing of large files. 

Approximately 200 typewriter consoles (including 
IBIVr Models 2741 and 1050, and Teletypewriter 
::Model 37) and several Computer Display ARDS dis
play consoles14 are located on or near the campus. (Of 
course, consoles can be located wherever telephone 
lines exist.) Approximately 30 consoles can be con
nected to CTSS at anyone time, although heavy de
mand by several consoles can reduce the number that 
can be handled practically at anyone time to about 20. 

Under moderate loading conditions-15 to 20 consoles 
with moderate demand-typical response time (from 
the end of a user statement to the beginning of the 
typed response) is about five seconds. User programs 
typically run in time slices of up to 2, 4, or 8 seconds. 

Over the time period of the work reported in this 
paper neither the text-access equipment3 nor the Intrex 
display console2 was available. Therefore, the bulk of 
the work reported concerns use of the IBM 2741 type
writer console with some use of the Computer Display 
ARDS display console. Of course, planning has taken 
this equipment into account in the retrieval programs 
(see below). 

The M.I. T. Engineering Library is being physically 
reconstructed and expanded to provide an operational 
environment in which regular library users can experi
ment with the facilities of Project Intrex. Of course, it 
is also planned to use consoles in or near the laboratory 
facilities of our user groups. 

Inputting and editing of catalog data 

Friden 2303 Flexowriters are used to produce 
machine-readable punched paper tapes of the catalog 
records simultaneously with typed copies. A paper 
tape file of 10 catalog records is read into the CTSS 
IBlVI 7094 computer through a satellite PDP-7 com
puter in which Flexowriter codes are converted into 
ASCII codes. (One of the reasons for choosing ASCII 
for internal representation was to allow for upper and 
lower case alphabetic characters.) The file is stored on 
disc and also output on magnetic tape for printing on 
an IBIVI 1403 line printer, equipped with an extended 
character-set print chain. The printout is returned to 
the catalogers who proofread and mark errors. Cor
rection of errors in the computer-stored working file is 
done by a typist at an IBM: 2741 console using an 
online context editing program. It takes about three 
seconds of computer time per catalog record to perform 
the editing process. On the basis of our present error 
rate of 1.05 errors per catalog record, our error-correc
tion cost is approximately twenty-five cents per entry. 
This amount represents computer . time only; the 
typist's time (about 2.3 minutes) and the proofreader's 
time must also be added to determine total error
correction cost. 

An analysis of the economics of replacing paper 
tape input with the use of online inputting showed 
that in the present CTSS environment online inputting 
would be much more expensive. Present inputting 
costs-both for man and machine-run about $2.50 
per catalog record whereas the estimated costs for 
online inputting would be over $4.00 per record. The 
cost differential is largely due to increased computer 



464 Spring Joint Computer Conference, 1969 

processing time in the online mode. It is planned to 
redo the analysis when the lntrex Console2 with its 
buffer/contr?ller satellite computer becomes avaliable. 

Computer files for retrieval 

File organization (See Figure 2) 

The files are organized on two levels and permit 
searching on three levels. The first level of file structure 
consists of the iIlVerted files. An entry in the inverted 
files is a list of references to catalog records (docu
ments) associated with a si~gle primary key (title or 
subject word stem, or author's last name). The refer
ences contain not only document numbers but also 
word specifiers and reference attributes. The word 
specifiers· establish the word position within the sub
ject phrase, the position number of the subject phrase 
in the subj ect field and the ending that has been taken 
off the word to form the stem. The attributes pres
ently include parameters such as: subj ect-term range 
number; the initials of authors' given names (note that 
only his last name is a primary key); and document 
information including whether it is a whole work or 
part of a larger work, whether it is a textbook or 
review articles, whether it has been refeered before 
publication and whether it is of professional level 
(rather than for lay consumption) .. A small inverted 
file directory in core memory serves to localize the posi
tion of any list in the disc-stored inverted file. 

The second level of file consists of the full catalog 
records. These records are stored on the disc file in the 
order created and are located by means of a catalog 
directory, also located on the disc. 

Thus, a first-level search may be made on author, 
title, or subject terms used as the primary key. A 
second-level search is then possible on the word speci-

~ 
1M 

D.ECTQ!Y 

Figure 2-File organization 

fiers or document attributes used as secondary keys. 
The third search level is a search through the catalog 
records themselves. Thus, the speed with which a given 
kind of information can be found is clearly dependent 
upon the distribution of the information among the 
various levels. The determination of the optimum dis
tribution is therefore one of the main objectives of our 
experimentation. 

Further details of the file organization and genera
tio.;n are given below including observed time values 
for some of the critical operations. It should be pointed 
out that these values are a consequence of the particu
lar software-hardware combinations we are presently 
using in the CTSS system (often as somewhat ineffi
cient expedients to getting a working system going) 
and do not represent optimum ·values that are possible 
for magnetic-disc hardware. 

Formatting and extracting 

The formatting and extracting program operates 
on new catalog records to the system to produce three 
major types of output: (1) an updated main catalog
record file is produced by adding the new catalog 
records to the existing file; (2) index-term files are 
produced which contain the subj ect, title, and author 
terms and the document attributes used for updating 
the inverted files; and (3) a catalog-directory file is 
generated through which the retrieval system ac
cesses the catalog records. 

The catalog-record file is structured so that the 
formatting information (which indicates where records, 
and fields within records, begin and end) is separated 
from content information. The formatting information 
is contained in the header (Figure 3) which indicates 
where a given record or field begins and ends. The rest 
of the information is stored in the upper and lower 
bodies. The upper body contains the information that 
does not require a free format. Such information can be 
both compressed to save space and preformatted to 
simplify retrieval. 

The bulk of the information in a catalog record is 
stored as straight text in the lower body. Characters 
that serve to delimit fields and record entries are re
moved, as are formatting characters (carriage returns 
and tabs). These format characters are reinserted later 
by the output program to fit into the various line 
widths of the output devices (2741 typewriter: 120 
characters; ARDS display: 78 characters; lntrex con
sole: 56 characters). The average formatted catalog 
record requires approximately 600 computer words for 
storage whereas the average preformatted record as 



Experimental Computer=Stored, Augmented Catalog of Professional Literature 465 

RN OD 

UPPER ! DClsclLEILA ME I FO I PU 

BODY 
(empty) MN 

CP 

HEADER 

1 
L 

FENCE SH 

FN(l) IN! BP(l) 

FN(n) IN! BP(n) 

LOWER { BODY 

DATA 

: 

~ 
~ 

RN: Record Number (Bits 0-20) FO: Format (Bits 25-30) 

OD: Online Date (Bits 21-35) PU: Purpose (Bits 31-35) 

DC: Descriptive Cataloger (Bits 0-5) MN: Method Number (Bits 21-35) 

SC: Subject Cataloger (Bits 6-11) CP: Continuation Pointer 

LE: Level of approach (Bits 12-14) FN(i): Field number of i-th field 

LA: Language (Bits 15-19) 

ME: Medium (Bits 20-24) 

SH: Size of Header (in computer 
words) 

(address portion) 

NI: Note Indicator (tag portion) 

BP(i): Byte pointer to bottom of 
field i (decrement portion) 

Figure 3-The catalog record format 

input by the catalogers takes up about 700 computer 
words (4 characters stored per 36-bit word). 

Table I-Infonnation fields in catalog 

I. CATALOG CONTROL FIELDS 
1. Document Number 
2. Document Selection 
3. Input Control 
4. On-Line Date 
5. Microfiche Location 

II. PHYSICAL DOCUMENT CONTROL FIELDS 
10. L. C. Card Number 
11. Library Location 
12. Serial Holdings 

III. DESCRIPTIVE CATALOGING FIELDS 
20. Main Entry Pointer 
21. Personal Names 
22. Personal Affiliations 
23. Corporate Names 
24. Title 
25. Coden Title 
26. Edition Statement 

Table I (Contd) 

Zl. Publisher 
28. Place of Publication 
29. Dates of Publication 
30. Medium 
31. Format 
32. Pagination 
33. Illustrations 
34. Dimemtiont=! 
35. Serial Frequency 
36. Language of Document 
37. Language of Abstract 
38. Series Statement 
39. Report/Patent Numbers 
40. Contract Statement 
41. Supplement Referral 
42. Errata 
43. Thesis 
44. Variants 
45. Titles of Variants 
46. Article Receipt Date 
47. Analytical Citation 
48. Abstract Services 
49. Cost-Text Access 
50. Commercial Cost 

IVo SUBJECT CONTENT FIELDS 
65. Author's Purpose 
66. Level of Approach 
67. Table of Contents 
68. Special Features 
69. Bibliography 
70. Excerpts 
71. Abstracts 
72. Reviews 
73. Subject Indexing 

V. ARTICLE CITATION FIELD 
80. References/Citations 

VI. USER FEEDBACK FIELD 
85. User Conunents 

The formatting and extracting program requires ap
proxiInately two to three seconds to process a single 
catalog record. 

Phrase decomposition and stemming 

The subj ect and title terms are broken down into 
individual words and these words are stemmed by 
dropping off endings. 

A two-phase stemming algorithm has been de-



466 Spring Joint Computer Conference, 1969 

veloped. I5 In the first phase, the longest possible ending 
from a list of about 280 endings is dropped from the 
word. Before an ending is dropped it must satisfy a 
context rule. (For example, do not drop s after s.) The 
second phase of the algorithm includes transformational 
rules to account for certain spelling anomalies in 
English (for example, absorb/absorp-tion; split/ 
split-t-ing) . 

Because the transformational rules of the second 
phase involve various complexities in actually per
forming the stemming and keeping account of it in the 
inverted files, and because the. number of additional 
cases it handled. seemed relatively small, it was de
cided to tryout only the first phas:e procedures in 
initial Intrex systems. A list of endings and context 
rules for applying them are contained in the reference 
document. 15 

About 100,000 subject-term words from about 1000 
catalog records have been stemmed according to this 
algorithm. So far the results seem promising. Table II 
gives a statistical compilation of the number of end
ings found for each ending type in one run of 2,382 
words stemmed. 

The output from the phras'e decomposition and 
stemming program, which takes about seven seconds 
per document, is a set of" shreds" : one for each subj ect 
or title word and one for each full phrase not longer 
than a certain number o{words. The maximum number 
of words for full phrases retained for the inverted files 
is currently four. This covers only about 20 percent of 
the terms in the catalog. 

Sorting, common word culling, and merging 

Sorting and merging are accomplished using a gen
eralized ~ort-merge package developed by the staff of 
the M.l. T. Technical Information Program.8 This 
package features manipUlation of variable length 
records with a variable number of variable length keys. 

The first operation involves an alphabetic sort of the 
shreds with the word stem or author last name as pri
mary key and the word ending code or author's initials 
string as a secondary key. The secondary key is used to 
facilitate structuring th~ inverted files (see beloW). The 
distinction between upper and lower case alphabetic 
characters is suppressed during sorting. This operation 
takes about six seconds per document or about 80 
msec. pe~' index-word shred (which averages about ten 
computer words in length at this stage of processing). 

The second operation culls out the 13 most common 
function words. These are listed in Table III in order of 
frequency. The culling operation, which takes about 

Table II-Endings found in sterruning 2,382 words 

Ending 

arization 
entations 
ableness 
entation 
ability 
ationa! 
ibility 
ization 
ations 
encies 
ential 
istics 
acity 
aries 
arity 
ately 
ating 
ation 
ative 
ators 
atory 
ement 
ening 
ental 
ially 
icity 
iona! 
istic 
ities 
ivity 
able 
ally 
ance 
ants 
ated 
atic 
ator 
ence 
eney 
ents 
eous 
ible 
ical 
ions 
ious 
ized 
less 

Occurrences 

9 
2 
1 
3 
2 
5 
16 
23 
20 
3 
3 
2 
10 
1 
4 
1 
25 
105 
3 
2 
1 
11 
3 
2 
1 
6 
10 
1 
4 
8 
9 
1 
24 
16 
12 
2 
7 
31 
15 
30 
2 
4 
62 
40 
1 
11 
3 

Ending 

ness 
ogen 
wise 
ying 
age 
als 
ant 
ary 
ate 
ely 
ene 
ent 
ial 
ian 
ics 
ied 
ier 
ies 
ine 
ing 
ion 
ism 
ity 
ive 
one 
ons 
ora 
ous 
's 
al 
9..1' 

ed 
en 
es 
ia 
ic 
is 
ly 
on 
or 
urn 
a 
e 

o 
s 
y 

Occurrences 

9 
20 
3 
1 
4 
9 
7 
5 
15 
1 
1 
30 
8 
8 
10 
4 
3 
16 
14 
83 
215 
4 
30 
5 
1 
3 
7 
3 
24 
57 
27 
106 
34 
148 
1 
127 
12 
2 
11 
11 
30 
25 
449 
23 
16 
118 
85 



Experimental Computer-Stored, Augmented Catalog of Professional Literature 467 

Table III -Common words excluded from index lists 

1. of 
2. in 
3. the 
4. for 
.5. a 
6. on 
7. to 
8. at 
9. with 

10. and 
11. as 
12. by 
13. from 

one second per document, reduces the size of the files 
by about 20 percent. 

The third operation merges the batch of sorted 
shreds from the latest operation with the cumulative 
batch of sorted shreds from previous runs. Merging 
takes about 0.6 seconds per document in the total data 
base. 

Inverted file generation and listing 

The merged shreds are processed into the inverted 
file structure shown in Figure 4. This operation takes 
about 1.5 seconds per document for the combined 
subj'ect/title inverted file (title words and terms are 
distinguished from subject words and terms by a unique 

HEADER { BWl I CWl 

Del I RFl 

CAP I EDS I EWN I BYN 

TERM { STEM 
M A G N 

E T -
HEADER { FOR lst 
ENDING 

END CODE l (e.g.,";c") 

DeEl REFI 

END CODE 2 (e.g.,";cs") 

HEADER 1 END CODE N (e.g., "s") 

~~I~T DeEN REFN 

REFERENCES ::: II.~ ~I 
FOR TERMS' 1 
f~1':~~T j-: _-_0 ___ ---;: 

I REF I.REFI I, 

. REF 2.1 • , , 
I I , , , , 

REFERENCES {I REF N.I I 
~crrH~~~ : 0- : 
:~:~~:O {uEF 

N.REFN T 
AllOW FOR BWl 
EXPANSION -*. 

BWl: Number of blanks at end of I;st (f", _><pOns;on) 

CWl: Total numbeo- of c""""',, wood> on I;" 

RFl: Nu~ of refer.,ces 

OCl: Nu~r of distinct documents among references 

BYN: Nu""" of bytes ;n tenn stem (h ... 6) 

EWN: ~ of &191;'" wood> ;n term (hero I) 

EDS: Nu""" of d;ffe,ent end;ngs (hero N) 

CAJ': lit to indicate variable capitalization 

REfl: NurrOer of referiMe. for the work -magnetic· 

DeEl: Number of distinct documents referring to "magneticN 

REFERENCE-WORD FORMAT 

I W/p I WN I TN I EN I WT I W : J i 0 : p I ON I 

L ' JI PROPERTY CODE 

A TTRIIUTES • 

ON: DDc_"""""" 
W/p: Is t .. m a ,WIgle wO<d (W) 0< full phruoe (P)? 

WN: WO<d """"- w;th;n phruoe (fo< W/p = VI) 

TN: The term nurrCer fA fttis term f~ given document. 

EN, WO<d ond;ng nuri>e< fo< tIN, ".Feronc. (f_ I to N) 

WT: Tho subject/mi. w';ght (Ievol). 

W: h document whol. work? 

J: Is docu"..,t iournol article? 

0: 0.- doc_ ,.floct o<;ginal work? 

P: is document wril't8'l for profesional? 

Figure 4-Format for subject-term list 

range number). Generation of the author inverted files, 
which contain about two author names per document, 
takes about 50 msec. per document. 

Listings can be made, for analysis purposes, of all 
(or sections of) these inverted files and they may con
tain the full references or just counts of the number of 
references and documents. See Figure 5 for an excerpt 
from a full listing. A full listing requires about three 
seconds of 7094 cpr; time per document plus some 
offline 1401 time. 

Retrieval procedures 

An initial version of the system (see Figure 6 for a 

cor
core 
cores 
1099 21 I I (3) JOP 
512 6 7 I (I) OP 
516 10 I I (3) OP 
512 9 3 I (2) OP 
516 7 I I (3) OP 
516 8 I I (3) OP 
516 7 10 2 (3) OP 
516 4 2 2 (4) OP 

cor- e steel 
F512 3 2 I (0) OP 

correct -
correction 
corrections 
3553 2 3 I (I) JOP 
3634 34 5 2 (3) J P 

correl
correlateEJ 
correlation 
correlations 
1030 0 3 I (5) JOP 

NO. REFS. NO. roeS. ~ 

22 4 2 
16 4 
6 1 

512 4 I (2) OP 512 5 7 I (I) OP 
516 6 9 (3) OP 512 II 7 I (I) OP 
512 3 I I (0) OP 541 II 2 I (3) OP 
512 141 (I) OP 512106 1(3) OP 
512 0 5 I (5) OP 512 2 4 I (4) OP 
516 3 9 2 (I) OP 516 10 I I 2 (3) OP 
516 9 II 2 (3) OP 516 8 10 2 (3) OP 

2 I 
F512 4 2 I f~} OP 

5 4 2 
2 2 
3 2 

3437 8 3 I (3) OP 3124 6 I 2 (3) OP 
3634 33 5 2 (3) J P 

21 
I 
17 
3 

7 
I 
4 
3 

3 

Figure 5-Inverted file listing (excerpt) 

----- GENERATION -------'-_ 

I 
I 
I 
I 
I 
r ----RETR'EVAl 

Figure 6-Intrex storage and retrieval system 



468 Spring Joint Computer Conference, 1969 

diagram of the storage and retrieval programs) for the 
interactive interrogation of the catalog from remote 
consoles has been implemented. The system, termed the 
Prototype System, has been used, in conjunction with 
a data base including about 1000 documents, to begin 
experiments with users as described in a later section. 

15 

IU 
25 

2U 
35 

TST7X5: USERS = 16, MAX = 47. 
READY. 

login mS806 marcus 
W 1315.7 
P_ord 

STANDBY LINE HAS BEEN ASSIGNED 
MS806 160 LOGGED IN 08/19/68 1315.9 FROM 8O(fl77 
LAST LOGOUT WAS 08/15/68 944.4 FROM BOO277 
HOME FILE DIRECTORY IS MS806 CMFL01 

DUE TO HARDWARE DifFICULTIES, CTSS OPERATION MAY BE 
IRREGUlAR. 

CTSS BEING l.I-sec IS TST7XS 
R 6.166+1.016 

3U resume intrex 
45 W 1316.8 

Greetings This is Intrex la. Please sign in by typing yaur name and 
address as in the foll_ing exa""le: 

smith, r i/mit 13-5251 

Note that your sign-in statement should end with a carriage return. 
READY 

4U marcus, r s/mit 35-.406 
55 If you already knt:Nf h_ to use Intrex, you may go ahead and type 

in commands. (Remember, each command ends in a carriage retum.) 
Otherwise, for information on how ta make si""le queries of the 
catalog, type 

info 2 

or, to see the Tobie of Contents (Part 1) of Intrex-l Guide which will 
direct you to other parts of the Guide explaining how to make more detailed 
queries, type 

info 1 
READY 

5U info 2 
65 Port 2 of Intrex lA Guide: Si""le Queries 

6U 
75 

Ta find documents in the system specify your query by subject, author, 
and/or title tenna, as shown in the 3 exa""les below: 

subject ferroelectric transitions 

author Hess, G. B./subject helium 

title sulfurization/author Swisher 

In order to specify additional restrictions (e.g., where author comes 
from, journal, word variations not to use, etc.), see Part 9 of the Guide 
(or type info 9). For other than standard output (document nurreers, mies, 
and authors) see Part 8. For general lotrex cOmmand format and abbreviations 
see Parts 6.1 and 6.2. 
To lee Table of Contents for Intrex la Guide and how to use 
the Guide on line, typ 

info 1 

Otherwise, you may make si""le queries or use any ott- c")IIIIIIQI'Id. 
READY 

subi ect solid phase transitions 
A search on your query SUBJECT solid phas-e transit-ions found 7 documents. 
ia output the catalog fields DOCUMENT NUMBER, TITlE, AUTHOR an those 
documents type 

go 

This output will take about 15 seconds per document. You may terminate 
this output at any time by hitting the ATTN key ONCE. Otherwise, you may 
change your output request. For information see Part 8 of Guide or type 

infa 8 

or change your field restriction (see Part 9.5) or make another request of 
Intrex (see Part 1) 
READY 

~~ r. DOCUMENT NUMBER 2851 

(21) AUTHOR 
Hoshino, Sadooj 
Shimaoka, Kahji (JA); 
Ni imura , Nobuo (JA) 

Description of prototype system 

The Prototype System permits the user to search the 
data base for documents by specifying subj ects, au
thors and/or titles. The user may then make a selection 
among the documents retrieved by requesting that 

eu 
95 

(24) TITLE 
Ferroelectricity in solid hydrogen halides 

2. DOCUMENT NUMBER 3430 

(2t) AUTHOR 
Sihvonen, Y. T. 

(204~ TITlE 
Photoluminescence, photoc:urrent, and phase-transition correiations 

3. DOCuMENT NUMBER 3174 

7. DOCUMENT NUMBER 1690 

(21) AUTHOR 
WiII_, R. H.; 
Buehler, E. (JA) 
Matthias, B. T. (JA) 

(24) TITLE 
Superconduc:tivity of the transition-metal carbides 

Output completed. Total of 7 documents found. You may nt:Nf see 
additional output on these documents by making a n_ 'output' request (for 
information on how to do this, see Part 8 of the guide or type info 8). 
You may also select a portion of these documents by making a ~ 'infield' 
request (see Part 9.5). Otherwise, you may make a n_ search (see Part 
2) or make ott- requests (see Part 1). 

READY 
output affiliation matchsub relevance/go 
1. DOCUMENT NUMBER 2851; RELEVANCE 3/3 

(22) AFFILIATION 
University of > Tokyo <. Institute for Solid State Physics; 
University of > Tokyo < • Institute for Solid SIote Physics; 
University of > Tokyo<. Institute for Solid State Physics 

(74) MATCHSUB 

phase transition at 1_ tetll>erature in solid h~ halides (0). 
i. DOCUMENT NUMBER 3430; RELEVANCE 2/3 

(22) AFFILIATION 
>Texas< Instruments, >Oollas< 

(74) MATCHSUB 

(TITLE) 
3, DOCUMENT NUMBER 3174; RELEVANCE 213 

6. DOCUMENT NUMBER 1715; RELEVANCE 2/3, 2/3 

(22) AFFILIATION 
Sandia Laboratory, > Albuquerque < , >N. M.< 

(74) MA TCHSUB 

second-order phase trarwition in peravskites (3); 
first-order phase trarwltion (0); 
7. DOCUMENT NUMBER 1690j RELEVANCE 2/3, 2/3 

READY 
9U infield affiliation harvard/o 71/110 
105 .1. DOCUMENT NUMBER 3174 

fOU 
115 

( 71) ABSTRACT 
The hiih.;.t~erafure series expansion of the zera-field magnetic susceptibility 
"chi*f"chi**sub Curie* = 1 + *SIGMA*-sub 1 = l*sup *infinity**a*lubl 
is related to the diagrammatic representation of the corresponding 
expansion of the zero-field static spin correlation function INT. 1 
Ooes the criREADY 
quit 
Thank you for using Intrex. 
R 109.583+20.800 

Figure 7-Sample demonstration system dialog 



Experimental Computer-Stored, AUg!llented Catalog of Professional Literature 469 

their catalog records contain specified information in 
certain fields. Finally, he may. request that the infor
mation contained in any or all of the catalog fields be 
printed out. 

In order to illustrate the nature of the Prototype 
System more concretely, a sample user-system dialog 
is given in Figure 7. The dialog has been retyped in 
~hortened line-width form from the typewritten copy 
prepared on an IBM 2741 teletypewriter console at
tached to the time-sharing system (CTSS). For illus
trative purposes each user statement is flagged by a 
number and the letter U in the left margin. Similarly, 
system Illessages are flagged by numbers and the 
letter S. 

In his first two statements the user has logged-in 
to the time-sharing system (CTSS) which hosts the 
Prototype System as well as many other computer 
programs. Note that the user's second statement, his 
password to CTSS, is not printed because the 2741 is 
set to the nonprinting mode by CTSS to protect the 
security of the password. This log-in procedure will be 
unnecessary for individual users situated at consoles 
dedicated to Intrex use. 

The third user statement "resumes" the "Intrex" 
system (at this point the user could have called for any 
other program currently resident in CTSS) and in the 
fourth statement the user "signs in" to Intrex by 
typing his name and address. The" sign-in" statement, 
in conjunction with the monitoring procedures (see 
below), provides us; as system analysts, with a means 
for keeping track of system use. It also serves to intro
duce the user to certain system procedures. For ex
ample, the user is apprised of the fact that his state
ment must be terminated with a carriage return. (Note 
that a more natural statement-terminator button or 
switch will be possible with the Intrex display console.) 
'Vhile, at present, the sign-in statement merely serves 
to aid in monitoring system use, we anticipate future 
system developments whereby some history of past 
users is kept so that, when someone signs in, the syst~m 
can take account of his previoub experience to help 
direct him. 

Intrex response to the user's sign-in statement, 
message 5S, is illustrative of several features of the 
prompting and instructional techniques employed by 
the system. In the first place, the user is told of the 
various alternative actions that he may take at any 
given time. Secondly, the specific form of the state
ment he should type to invoke one of these actions is 
e~plicitly stated, where possible. Thirdly where it is 
not possible to explain the alternatives completely, the 
user is referred to a Guide for further details. 

The Guide is available both in hard-copy form and 

Part 1 of Intrex lA Guide: Table of Contents 

To have a part of the Guide printed out on line use the 
"Info" command. For exa",ple, for Information on makinr; 
simple Queries (I.e., to print out part 2), type 

Info 2 

PART CONTENTS 
1 Table of Contents 
2 Simple Queries 
3 General Remarks - How to Get Guide (printed copy) 
~ Log-In to CTSS and Call Intr~x 
5 Typing Errors - How to Correct 
6.1 Commands, Modes (LONG, SHORT), Time Checks 
6.2 Command Names and Abbreviations 
7 Preliminary Output 
8 Final Output 
9 Generalized Queries 
10 Scanning Index Terms 
11 Interrupting System Messages 
12.1 Text ~ccess . 
12.2 Library Services 
13 User ComI'Ients and Questions 
14 Documents In the Collection 
15 The Catalog and Its Fields 
16 Sample Catalog Record 
17 Exit from the Syste'" 

This online guide w~s last revised on 7/2~/68. 

INTREX lA as of 2~ JUL 68 

Part 2 of Intrex 1A Guld~: Simple Queries 

To find docu"'ents In the system specify your Qu~ry by 
subject, author, and/or tltl~ terl'ls, as shown In the 3 
examples below: 

subject ferroelectric transitions 

author Hess, G.B./subject helium 

title sulfurlzatlon/author Swisher 

In order to specify additional restrictions (e.g., 
where author cOl'les frol'l, journal, word variations not to 
use, etc.), see Part 9 of the Guide (or type Info 9). For 
other than standard output (document numbers, titles, and 
authors) see Part 8. For general Intrex command for"'at and 
abbreviations see Parts 6.1 and 6.2. 

Figure R--8ections from Intrex guide 

online. Selected pages of the Guide are shown in 
Figure 8. The user may request that a section of the 
Guide be printed online by using the INFO command 
(see user statement 5U and system response 6S). The 
Guide also attempts to use the techniques of presen
tation of alternatives, example, and reference to more 
detailed information. The sections of the Guide are 
sized for convenient printing and viewing online. 

The user's sixth statement initiates a search in the 
inverted files for documents on a given subject. Search
ing may also be done on title or author terms or com
binations of subject. title and/or author terms. It may 
be noted that the form of the user's statements is a 
compromise between the precise, but esoteric and 
complicated, form of many programming languages and 
the familiar, but ambiguous (and, therefore, difficult to 
interpret automatically), form of natural English. Com
mand and argument names are simple and mnemonic. 



470 Spring Joint Computer Conference, 1969 

Format is kept simple with only three basic delimiters 
required: spaces to separate arguments from each other 
and from command names, slashes to separate com
mands, and a carriage return to terminate the 
statement. 

In response to the user's search request, Intrex re
plies with a message (7S) illustrative of several other 
features of system dialog. In the first place, the system 
plays back its understanding of the user's statement. 
Also the system indicates, by hyphenating word end
ings, how it has stemmed the words in the user's search 
specification. This is important because Intrex matches 
these word stems to word stems in the inverted file. As 
a further indication of the progress of the retrieval 
process, the number of matching documents found in 
the inverted files is printed. Since the user made no 
special output request in statement 6U, Intrex reports 
the estimated time to output the standard catalog 
fields. This system message, then, gives feedback which 
may interact with the user's original intentions and 
expectations and allow him to redirect his search. 

The points at which the system reports to the user 
have been chosen in light 'of the operating characteristics 
of the host CT8S time-sharing system. The intention is 
to report back soon enough so that the user experi
ences quick response but not to report so often that 
the user is forced into unnecessary additional responses 
of his own. The incorporation of the buffer-controller 
computer for the Intrex display consoles will improve 
the operating characteristics of the time-sharing en
vironment and may allow more frequent feedback with 
less cost at the central-computer level. 

In our sample dialog the user takes the first alter
native (statement 7U) and the system responds with 
the standard output (message 8S) for the matching 
documents. The ellipses ( ... ) in the figure indicate 
where portions of the system response have been 
deleted to reduce figure length. 

At this point in the dialog, let us assume that the 
user already knows how to make an output request or 
that he refers to his hard-copy version of the Guide. 
In any case, the user's eighth statement requests ad
ditional output information. Note that by appending 
the GO command to the OUTPUT command, the user 
signifies he is sufficiently sure of his statement not to 
want Intrex to respond with its interpretation and 
timing estimate but rather to print the requested 
output immediately. 

The system then responds (message 9S) as directed. 
Note the special output information giving those sub
ject terms that matched (lVIATCHSUB) and the esti
mated relevance of these terms. The relevance of a 
subject term to a user query is currently estimated 

simply by the ratio of the number of words in the 
query which match words in the term to the total 
number of words in the query. 

In statement 9U the user is selecting~ by means of 
an INFIELD command, a subset of the seven docu
ments which his original search found. This command 
enables the user to request only those documents in 
which a specific character string (here, "harvard") 
appears in a particular catalog field (here, "affiliation"). 
Note that, at the same time, the user is changing his 
output request and using abbreviation "0" for the 
command name "output" and "71" for the field name 
"abstract' , . 

In the system's response (message lOS) to the above 
request, the user has availed himself of the interrupt 
capability and halted the output at the point indicated 
by the letters "INT 1." The system then responds 
with the READY message indicating the user may go 
ahead with other requests. The interrupt capability is 
a general facility allowing the user to cut short system 
messages. After the user has become familiar with the 
system he can reduce the' verbosity of system messages 
by entering the SHORT mode. He may do this at any 
time during the dialog or even upon resuming the 
system as shown in Figure 9. 

resume intrex short 
W 1355.1 
Please sign in. 
R 
marcus r s/mit 35-406 
R 
s solid phase transitions/in affiliation harvard/o 22 abstract/go 
1. 0 3174 

(22) Lyman Laboratory of Physics Harvard University, > Cambridge < , 
>Mass.<; / lincoln Laboratory M. I. T., > Lexington < , >Mass.< 

(71) The high-temperature series expansion of the zero-field magnetic 
susceptibility, *chi*/"chi**sl)b Cl)rie* = 1 + *SIGMA**sub 1 = 1*svp 
*infinity**a*sub 1 *( J/k T)*sup 1 *, is related to the diagrammatic 
representation of the corresponding hh-tiNT. 1 
are then 
R 
s transint*'" tions/a hoshin% 21 74 75 
S: transit-ions / A: hoshino found: 1 doc 0: 21, rei, msub 15 
sees/doc. 
R 
ogo 
Sorry, I can't understand you. 
R 
go 
1. 0 2851 

(21) Hoshino, Sadao; 
Shimaoka, Kohji (JA); 
Niimura, Nobuo (J A) 

(24) Ferroelectricity in solid hydrogen halides 

1 docs found 

quit 
Thank you for using Intrex. 
R 36.050+ 10.433 

Figure 9-Sample dialog in SHORT mode 



Ex-periTIlental COTIlputer-Stored, Augnlented Catalog of Professional Literature 471: 

Monitoring system use 

Embedded in the retrieval system is a monitoring 
system which records, on a disc file for later analysis, 
all user commands and system responses as well as 
certain timing information. In addition, a shared con
sole remote from the user console may be employed to 
monitor experiments in real time. 

With the COMMENT command a user may input a 
comment about the system, the catalogi ... "tJ.g, or the docu= 
ments in the collection. These comments are recorded 
by the monitoring system. Comments about the catalog 
may result in modificatibns to the catalog at some 
subsequent update whereas comments about the docu
ments may get entered into Field 85 (see Table I) of 
the pertinent catalog records. 

User experiments 

The users 

When the size of the data base reached about 1000 
documents, experiments utilizing the Prototype Re
trieval System were begun with users having a real need 
for information. The first user was a second-year gradu
ate student in physics (from the first of the research 
groups mentioned in an earlier section) who was starting 
a project to measure the magnetic susceptibility of 
europium sulfide near the critical point. He had already 
compiled a bibliography on this subj ect through con
ventional library techniques but was still seeking in
formation on the light absorption properties of EuS to 
properly set up his experimental equipment. Six addi
tional users were taken from the ranks of the Intrex 
catalogers by giving them a description of the student's 
problem and asking them to serve as reference librarians 
using the Intrex system. 

Experimental environment 

Users were seated at a 2741 console with no personal 
instruction. They had previously been given a hard
copy version of the Guide (at least a day in advance) to 
which they could refer during the retrieval session. 
Other user aids (besides the system dialog as exem
plified in Section 6), included messages pasted on the 
console (e.g., "Don't forget the carriage return"); wall 
charts (to remind the user how to perform common 
functions); the NASA Thesaurus16 (to suggest seman
tically related words for user search requests); and the 
Inverted File listings (to suggest additional search 
words as well as show document counts for index 
terms). "Gsers were given extensive debriefings (up to 
an hour and a half) by systems analysts after their 

console sessions (which lasted between about one-half 
and one hour). 

Results 

Results of these first experiments are still under 
analysis and, in any case, the small size of the sample 
user population and still modest size of the data base 
make it clear that these "results" can only suggest 
future lines of investigation and cannot provide de:firti~ 
tive conclusions. With these caveats in mind we make 
the following tentative observations: 

1. Users learned to operate the basic features of 
the system fairly easily and found all or most of 
the relevant documents rather quickly. 

2. The users, in the hour or so of their acquaint
ance with the system, mastered few of the 
sophisticated features of the system nor did 
they really understand the nature of the match
ing algorithm. 

3. Users without previous computer experience 
tended to be awed by the computer which in
hibited their trying, and learning, system 
features. 

4. The difficulties listed under (2) and (3), while 
not hindering user retrieval seriously for the 
sample problem, could adversely affect results on 
other problems and could degrade our efforts to 
determine the relative merits of various aug
mented-catalog features. 

5. One possible solution to some of these problems 
is to advance the user's understanding in stages 
by starting with simplified guides or with per
sonalized instruction. 

6. Users dislike and are confused by command 
mnemonics that are not single English words 
(e.g., ~1ATCHSLB, I~FIELD). 

Futw·e plans 

Enlarging the data base, improving system effi
ciency, improving user aids (see previous section), and 

. expanding user experiments are high on the list of 
planned proj ects. Incorporation of the Intrex console 
and text access systems into the retrieval system is "also 
an immediate prosp~ct. The first full version incor
porating all Intrex subsystems will find the Intrex 
console operating in a "transparent" mode so that this 
console will look like a standard CTSS console and 
present retrieval programs can be used essentially un
changed. As experience is gained with this siinple 
configuration an attempt will be made to shift some 
CTSS operations to the satellite computer associated 
with the Intrex consoles. 



• 
472 Spring Joint Computer Conference, 1969 

If I 

As mentioned in the Introduction, a number of 
~'ystem features have been deferred in order to get the 
Prototype System into operation as soon as possible. 
Spme of these features are listed below. The schedule of 
their incorporation will undoubtedly be determined to 
some extent by our experimental findings. 

One major area under study is the question of 
matching algorithms and relevance. As indicated above, 
matching is done on a modified "anding" of all query 
terms. One would like the user to have the ability to 
specify any combination of " ands", "ors", and" nots" 
among query terms, to control the relative emphasis 
on words witpin the search specifications, to make 
online modifications to the relevance and matching 
criteria (by term ranges, for example), and to selec
lively override the stemming and phrase decomposition 
algorithm. 

Other improvements being planned include: search
ing restrictions on document properties or subject 
term ranges; decoding of catalog fields (for example, 
"English" for "e") on output; more general INFIELD 
specifications (for example, ranges on dates); online 
display of inverted file terms and frequency counts; 
naming lists of documents or commands for later 
reference; and an overlay procedure for reading in 
sections of the retrieval program from disc storage as 
the overall size of the retrieval system expands beyond 
core memory size. 

Related work 

Two further capabilities that we hope to incor
porate into future augmented-catalog experiments have 
been studied by two students working toward :\1.S. 
d~s. l\1r. Richard Domercq17 has studied the auto
matic derivation of synonomy and hierarchical rela
ti~ps among the subject terms on the basis of 
oo-oecurrence. l\1r. William Kampe18 has investigated 
automatic methods for deriving subject terms from the 
title and abstract of a document. 

Throughout the work on storage and retrieval of 
oo.talQg data we have been conscious of the problems 
that will be encountered in scaling up a computer
~red augmented catalog by two orders of magnitude. 
Fo~ a collection of one million documents, we estimate 
that the total information stored in the catalog will be 
of the order of 2 X 1010 bits. About 15 percent of this 
iQf~ation will reside in the inverted files. A· pre
liminary study of file organization, cost, and speed of 
response of such a catalog has been conducted by 
Professor A. K. Susskind.19 He has arrived at a con
ceptual design that will perform inverted-file searches 
at an average rate of 40 per second with a storage 
lktvice that costs about $250,000. On-line storage of the , 

complete catalog entries appears prohibitively expen
sive with today's technology, and new mass-storage 
concepts must be examined. lVlultiple reading-head, 
high density, continuous motion magnetic tape devices 
appear promising and are being studied. 

ACKNOWLEDGlVIENT 

The research reported in this paper was supported 
through grants from the Council on Library Resources, 
Inc., the National Science Foundation and the Car
negie Corporation. 

REFERENCES 

1 J F REINTJES 
System characteristics of I ntrex 
Proc S J C C 1969 ~ 

2 D R HARING J K ROBERGE 
A combined display for compuwr-generated data and 
scanned photographic Images 
Proc S J C C 1969 

3 D R KNUDSON S N TEICHER 
Remote wxt-access in a computerized library information
retrieval system . 
Proc S J C C 1969 

4 H P BURNAUGH 
The BOLD (bibliographic on-line display) syst.em 
In: Schecter George ed. Information retrieval-a critical 
review Thompson Washington DC 19675:3-66 

5 D J SULLIVAN D M MJ:l~ISTER 
Evaluation of 'USer reactions to a prototype on-li'tlR information 
retrieval system [REGON] 
In: Proc of the 30th Annual Meeting of the American 
Documentation Institute New York October 1967 

6 M RUBINOFF - S BERGMA~ W FRANKS 
E R RUBINOFF 
Experimental ellaluation of information retrieval through 
a teletypewriter 
C A C M Vol 2 No 9 September 1968 

7 G SALTON 
A uiomatic information organization and retrieval 
McGraw Hill New York 1968 

8 MM KESSLER 
The "on-line" technical information system at 1lf I T 
Project TIP 
In: 1967 IEEE International Convention Record 
Institute of Electrical and Electronics Engineers 
New York 1967 part 1040-43 

9 E B PARKER 
Stanford physics information retrieval sysi.em (SPIRES) 
Annual Report 
Stanford Institute for Communicat.ions Re..<learch 
Stanford California December 1967 

10 S I ALLEN G 0 BARNETT 
P A CASTLEMAN 
Use of a time-shared general-purpose file-handling system 
in hospital research 
Proc IEEE Vol 54 No 12 December 1966 

11 A R BENENFELD 
GeneraUon and encoding of the Project Intrex angmented 



I 

l4'..,.."""'''';'I'V\o ..... 4-n 1 ("I1'\'I'V\...,.,,4-o'WO~<::!4-I'\'WOo,l A " .... Tno ..... 4-o,l ('1<:\+0 In .... n~ P'rn~oc:!cdnno 1 T .1+0'r0+11'r0 ..t.,'.1 
~A}1C.L~.L.1.1.-';;;;.I."'~.1 VV~J...l.J:.'U"-'-";;;"'-U"V.l."'U, • ............ cl. ...... \",,1.&..&u"""'u. ,-,QrUilN.l.V6 V.L .... .LV .... "'UU4-V ... .&4.4I.&. ........ .,"' ... «.41"' ...... "" -:.;.u 

catalog data base 
Proc of the 6th Annual Clinic on Library Applications of 
Data Processing University of Illinois Urbana Illinois 
May 71968 

12 T N SHAW H ROTHMAN 
A n experiment in indexing by word-choobing 
Journal of Documentation Vol 24 No 3 September 1968 

13 R M FANO 
The MAC system: the computer-utility approach 
IEEE Spectrum January 1965 

14 R H STOTZ 
A new display terminal 
Computer Design April 1968 

15 J B LOVINS 
Development of a stemming alogrithm 
MIT Electronic Systems Laboratory Technical 
Memorandum ESL-TM-353 June 1968 (To appear in 

MT Vol 11 No 1 March 1969) 
16 NASA thesaurus 

NASA report SP-7030 Scientific and Technical Information 
Division National Aeronautics and Space Administration 
December 1967 

17 R J DOMERCQ 
A machine-aided thesaurus generation system 
M S Thesis Electrical Engineering Department 
MIT September 1967 

18 W R KAMPE 
Pre-indexing by machine 
M S Thesis Electrical Engineering Department 
MIT June 1968 also Electronic System Laboratory 
Report ESL-R-355 July 1968 

1 ~ INTREX Staff 
Project Intrex Semi-annual Activity Report PR-4 
MIT September 15 1967 





Remote text access in a computerized 
library information retrieval system 

by D. R. KNUDSON and S. N. TEICHER 

}[ a8sachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

As part of the Intrex experiments with a computerized 
model library, l we are developing an experimental 
system for accessing the full text of the 10,000 journal 
articles in the Intrex data base. The essential result 
of the user dialog with the augmented catalog is the 
identification of those articles selected as relevant 
to the user's inquiries.2 ,3,4 The next step in the library
usage process is to retrieve the text of these articles 
for reading. The convenience, response time, and 
quality of the text-access system is likely to affect 
the extent to which the user negotiates with the 
catalog before requesting full text. The Intrex system 
will permit experimentation with the complete machine
aided library operation. The purpose of this paper 
is to outline the text access problems and our approach 
to them. 

The goals of the text-access system are to provide 
guaranteed, rapid access to full text at remote locations. 
Guaranteed accessibility implies a controlled, central 
store where the text always remains in the system 
and is available to users at all times. Rapid accessibility 
at remote locations implies transmission of text in 
electrical-signal fornl. Remote accessibility of text 
and catalog information from locations near the user's 
working area provides more convenient library use, 
and in addition is a preliminary step toward realization 
of a network of computer-based libraries coupled 
t.ogether by data communication links.4 ,5 

Textual images differ from the displays commonly 
encountered in computer-oriented systems. A page 
from a typical technical journal contains from 5,000 
to 10,000 character spaces and is composed from an 
unrestricted character set including foreign alphabets, 
mathematical symbols, and sub- and super-scripts, etc. 
Text frequently contains graphics and pictorial infor
mation with several gray levels, and in some instances, 

475 

with color. Even the text layout and type font may 
influence the effectiveness of its information transfer. 

These special characteristics of textual images 
restrict the types of displays that are appropriate in 
a text-access system. The graphics, photographs, and 
unrestricted character sets in text lead to raster
scanned displays rather than character- and vector
generated displays. The gray levels in photographs 
require a display with multi-level intensity. The large 
number of characters and symbols requires a high
resolution display, and much of our early efforts were 
aimed at establishing quantitative resolution require
ments for textual images. 6 A high-resolution color 
display presents a real challenge to the display designer. 

A wide variety of systems have been developed for 
storing, transmitting, and displaying textual images.7 ,8 

Slow-scan facsimile techniques, where the image is 
scanned and transmitted over common-carrier lines, 
is frequently used for document transmission. The 
Alden/Miracode system is an example which uses 
microfilm storage and slow-scan facsimile transmission. 
The disadvantage of these systems or our appli
cation is that several minutes are required to transmit 
each page and there is no capability for rapid scanning 
of documents before requesting hard-copy. Closed
circuit TV has been used in some systems for remote 
viewing of text. These systems generally operate at 
bandwidths of 20 ~fHz or less which Emits the reso
lution of the displayed image. The Remington-Rand 
Remstar system is an example of the use of closed
circuit TV for transmitting images from microfilm 
to remote terminals. This system provides a zoom 
capability for viewing an enlarged section of the image 
in order to compensate for the resolution limitations. 
The Ampex Video File is an example of a system which 
u 3es magnetic tape for storage with the capability of 
providing a soft- or hard-copy output. 



476 Spring Joint Computer Conference, 1969 

The storage and transmission methods adopted for 
the text-access system are pivotal parts of the system 
design and the considerations leading to microfilm 
storage and single-frame transmission are discussed 
below. 

Single-frame transmission 

A facsimile-like system, where each page is scanned 
and transmitted only once per request, has two distinct 
advantages over a system which continually transmits 
the image, as is done in closed-circuit TV. With the 
resolution required to display a full pa.,ge of t,ext; a 
TV -type refreshed image requires a video-signal 
bandwidth of approximately 60 MHz for a flicker-free 
disnlav. Also. a senarate scanner and transmission line 
is ;eq~ired f~r ea~h simultaneous user. By providing 
image storage at the receiving terminals, single-frame 
transmission can be used which permits a trade-off 
between video-signal bandwidth and the transmission 
time per page. If the retrieval and transmission times 
are short compared to the average reading time, the 
scanner and transmission network can be time-shared 
among several on-line users. With a transmission time 
of two seconds, a 2,000 scan-line image requires a 
bandwidth of approximately 1 MHz. If the average 
reading time per page is one minute or greater and the 
total retrieving and scanning time is 2-3 seconds, 
reasonable service for a number of users could be 
provided from a single scanner and transmission net
work. The lower bandwidth and time-multiplexing 
capability are the key arguments favoring a single
frame transmission system. 

Digital versus facsimile storage 

Facsimile storage of text implies that the data base 
is stored as duplicates such as photographS of the 
original documents. Digital storage implies that the 
data base is stored in arrays of binary numbers that 
can be decoded by a suitable algorithm to reconstruct 
the original document. An advantage of the digital 
form is that if the text is properly encoded it may be 
computer processed for such purposes as automatic 
extraction of bibliographic information and automatic 
fact retrieval. For materials containing a limited 
character set, such as typewritten text, digital encoding 
can be more efficient in the use of storage space than 
facsimile storage because much of the page image 
contains little information. Efficient encoding can also 
reduce the bits per page that must be transmitted, 
thus saving on communication cost. 

At present, textual material is not readily available 
in digitally-encoded form and the conversion costs 

are a significant obstacle to digitally-stored text. 
Further development of optical character readers or 
the availability of text in digital form directly from 
publishers could reduce the cost of preparing the digital 
store. However, the diflculties in the digital encoding 
of pictorial information, unrestricted character sets, 
and various layouts is likely to preclude digital storage 
for full text in the near future, particularly if no machine 
processing of the information is required. 

The Intrex system utilizes digital storage for the 
augmented catalog (which requires computer pro
cessing) and facsimile image storage on microfilm for 
full text. 

The COSATI microfiche format was chosen as 
the storage form for textual images because suitable 
retrieval equipment was available for this form and 
the reduction ratio required to store an entire page of 
typical journal article text within one frame of the 
COSATI grid is compatible with the resolution re
quirements of the text-access system. Each 4 X 6-inch 
microfiche contains a maximum of sixty frames and 
each frame contains an image of one page. The frames 
are located in five rows, and each row contains twelve 
frames. To facilitate automatic retrieval and scanning, 
extra care was taken during the microfilming process 
to achieve minimum tolerances in the location of the 
individual page images with reference to the COSATI 
grid. 

Resolution 

In the initial phase of the Intrex program, it became 
apparent that some experimental work was necessary 
to establish the resolution and the number of scan 
lines required in the text-access system; therefore an 
experimental image-transmission system was assembled. 
It utilized a flying-spot scanner to convert a microfilm 
image into a video signal which was transmitted over 
a coaxial cable. At the receiver, the image was recon
structed on a CRT and filmed with a 35-mm camera. 
This system is illustrated in Figure 1. 

,------ - - - - - - T - - - -- - --------, 
I I 

Condensing I I 
~ I 

I Camero I 
I 
I 
! 

I I 
I SCANNER I RECEIVER L _____________ ~ __________ .-J 

Figure 1-Experimen tal image-transmission system 



The ~1odulation-Transfer Function (::\1TF) concept 
was used for quantitative resolution measures of the 
individual components and for relating these to the 
over-all system resolution. Experiments were conducted 
in which selected text was scanned and transmitted 
through the system under various ::VITF conditions 
and with different numbers of scan lines.6 Evaluations 
of the transmitted images demonstrated that a mini
mum limiting resolution of 1000 cycles/page and at 
least 2000 scan lines/page are required for reproducing 
text from typical technical journals with acceptable 
image .quality. Resolutions or raster scans below these 
limits produced discernible degradation in the images. 

The experimental text-access system 

Figure 2 contains a diagram of the text-access 
system and its connection with the complete INTREX 
system.I ,9,IO The primary retrieval programs and data 
storage for the augmented catalog are filed within 
MIT's general-purpose compatible time-shared comput
ter utility (CTSS). The buffer/controller (B/C) in
cludes processing capability for controlling the oper
ating modes of the catalog consoles, and directing the 
data flow among consoles, and the text-access system.3 

The processor in the B/C, a Varian Data iVlachines 
6201 computer, serves as a systems monitor among 
the elements of the INTREX system as discussed in 
References 2 and 3. 

The B/C is connected to the text-access-system 
central station via a 300-bit-per-second half-duplex 
serial data channel. The terminal equipment is de
signed to interface with a standard dataphone to 
permit the use of a common carrier. Because of the 
rather specialized and limited data requirements of 
the text-access system, computer words, not characters, 
are transmitted to the text-access centra.l station. 

r----------, 
I CENTlAl su., nON I 

,---_-,1 

DOCUMENT 
REQUESTS 

(VIDEO, SYNC., 4DDRESS 
a COMMANDS) 

I 
I 

I : 
L _____________ ...J 

Figure 2-Text-access system 

Renl0te Tex"i Access 

Software 

.. ~,., 
':til 

A flexible software package has been developed 
for the 6201 to control data flow efficiently and to 
provide linkage to subprograms that provide special 
services for the user consoles. As the 6201 dedicated 
to INTREX has only 4K of core memory, the monitor 
system will have the capability of storing subprograms 
on a portion of the 128 track magnetic drum which is 
used to refresh the console displays. 

It is anticipated that requests for text access will 
be a result of a catalog search. After retrieving a 
document title the user may wish to check on its 
relevancy by seeing the first page or to read the entire 
article. This desire will be indicated by activating 
a button on the augmented-catalog console which will 
cause the 6201 to fetch the text-access subprogram 
into core. 

This subprogram will permit the 6201 to carry on a 
dialog with the user during which he will identify the 
document he wishes displayed. Initially the user will 
have to type the access number which he retrieved on 
a previous catalog search, when the 6201 asks for it. 
This access number identifies the microfiche and 
frame numbers that locate the document in the text
access files. This rather laborious procedure will be 
changed as the software interface between the buffer/ 
controller and CTSS is more fully developed. In the 
future, CTSS will tag the document access number for 
the 6201 so that the user need only identify this docu
ment either by typing its title or pointing at its title 
as displayed on the augmented-catalog output with a 
light pen or cursor. The 6201 would then associate the 
document with the correct access number. 

After identifying the document, the user will be 
asked whether he desired to see the first page of the 
article displayed on the direct-view storage-tube 
display terminal or whether he would prefer a film 
copy of the entire document. This choice will be 
indicated by typing C for copy, D for display, or 
pushing a programmable button. 3 

If the display option is taken, the action will shift to 
the text-access terminal where the first page of the 
document will appear in a few' seconds. The 6201 will 
remember the access number and page number of the 
text displayed on the text-access screen. To view 
succeeding pages or a magnified image of a sector 
of the current page the user need only push illumi
nated buttons located· adj acent to the text display 
unit. These buttons, labeled PAGE-FORWARD, 
PAGE-BACKWARD, REDISPLAY -SAME-PAGE, 
MAGNIFY, DISPLAY-CHOSEN-SECTOR, and 
SECTOR-POSITION (a matrix of 9 buttons), are 
illuminated in a programmed sequence to guide the 



478 Spring Joint Computer Conference, 1969 

infrequent user. They are connected through the 
augmented-catalog console to the buffer/controller. 

Currently the 6201 maintains a queuing routine 
for the time-shared central station of the text-access 
system. Even with only one text-display console a 
queue is likely to form as the user requests film copies 
of several documents, while continuing to inspect 
pages of others on the storage-tube display. With 
several user terminals operating, a copy queue and a 
display queue will be formed. At first, priority is 
allotted to the display queue as it is thought that 
changing pages on the storage display should be a 
very rapid operation to facilitate browsing. 

As the queues are formed, the 6201 checks to see 
that the access number, whether typed by the user or 
retrieved from CTSS is valid. This procedure avoids 
sending erroneous data to the text-access system which 
could result in delay in the operation of the text 
displays. 

Text-access central station 

The central station contains the document store, 
an automatic retrieval device, a flying-spot scanner, 
and control logic . 

Much attention has been given to the problem of 
communication between the 6201 computer and t.he 
Text Access-System Control logic (TASC logic). Flex
ible operation is desirable with a minimum of infor
mation transmission between the devices. The text
access central station is treated as an output device 
and the TASC logic is a special purpose processor 
that actually operates the unit. An output request 
from the 6201 consists of one, two, or three 16-bit 
computer words that contain the fiche number, a 
frame nUa."11ber and certain procedural data.2 The 
format of these computer words was chosen to minimize 
the number of words required per request and yet 
not overly complicate the TASC logic. The TASC 
logic also sends 16-bit status messages back to the 
6201 after the completion of every text-access request 
or in the case of a minor malfunction. A more detailed 
description of the design and construction of the 
TASC logic is found in Reference 2. 

The microfiche-storage-and-retrieval device 

The microfiche-storage-and-retrieval device is a 
Houston/Fearless Compact Automatic Retrieval De
vice (CARD) modified to be coupled to a flying-spot 
scanner and to enable it to be controlled by electrical 
inputs. The basic CARD unit stores up to 750 micro
fiche with access times of less than five seconds to any 
microfiche and one second to any frame on the retrieved 

fiche. Using the COSATI formatted microfiche, 
approximately 45,000 pages may be stored on the 750 
fiche. 

Although systems are available that will rfmdomly 
access anyone of 105 fiche, no automatic storage and 
retrieval device is commercially available that will 
adequately store and access the contents of a complete 
university library containing more than 106 volumes. 
The Houston/Fearless machine was chosen for the 
initial INTREX experiments because it economically 
met the requirements necessary for accessing the 
documents in the INTREX collection and its response 
time for a limited n1L.'>Ilber of user terminals is quick 
enough to test the principle of on-line browsing. It 
is anticipated that the partial specifications for a 
device capable of storing a much larger collection 
will be among the results of the INTREX experiments. 

The transmission subsystem 

The transmission subsystem links the user terminals 
to the central station via a unidirectional coaxial 
line. The coaxial line is time shared among the user 
terminals; therefore provision is made for uniquely 
addressing each terminal. Synchronizing pulses for 
the entire system are generated by an oscillator con
tained in the transmitter section of the TASC logic. 

The output of the oscillator is divided to produce a 
basic clock frequency of 280 kHz which is further 
divided by programmable counters to produce the 
horizontal-synchronizing pulses. The number of scan 
lines is d~termined by a programmable line counter 
that counts these pulses. The programmable counters 
provide the flexibility for switching automatically 
between user terminals having differing scanning 
parameters. 

The horizontal-synchronizing pulses are transmitted 
continuously to the user terminal. The time between 
pulses may be occupied by no signal, or an analog 
video signal corresponding to one line of an image, or 
a sequence of pulses representing a digital word. 
Each frame of video is preceded by two 16-bit digital 
words and followed by one or two digital words. The 
digital messages are used to control the user terminals. 
A 6-bit address code is assigned to each user terminal; 
thus, commands may be sent to anyone of 64 possible 
terminals while others remain idle. The standard 
ASCII seven-bit code has been chosen for the commands 
so that a full character set is available. Commands 
that operate the receiver terminals such as ERASE, 
ADVANCE-FIL1VI, and BEGIN -VERTICAL-SWEEP 
were chosen from the ASCII control characters. 

The synchronizing signals, digital address and digital 
command signals, and the analog video signals are 



combined in a line driver for transmission to the 
user tenninals over coaxial cable. Presently base 
band transmission is used but the signal format need 
not be changed if it is decided to utilize a modulated
carrier type of transmission. 

A matched filter and threshold comparator in the 
receiver of ef',uh user terminal separates the digital 
codes from the analog video sigr,q 1. The decoder 
functions as an address detector and interpreter of 
the digital commands. A feature of the video circuitry 
is the automatic gain control which compensates for 
slow variations in the system gain which might result 
from temperature variatio:r:.s and/or changes in the 
separation distances between transmitter and re~eiver. 

Textual-image displays 

Library users are accustomed to the traditional 
fonns of textual images, such as books and journals, 
which provide high-quality images and many other 
features including portability, browsing capability, 
gray scale, color, etc. Many of these features are diffi
cult to achieve in a remote display and a completely 
satisfactory device for displaying textual images is 
not yet available. Although the text-access display 
may suffer from comparison with the traditional 
textual fonns, this is offset by providing guaranteed, 
rapid access to full text at a console conveniently 
located near the researcher's working area. 

The detailed requirements for the Intrex displays 
have been reported previously and are reviewed in a 
companion paper at this conference. The single
frame-transmission feature of the text-access system, 
requiring image storage at the user tenninals, has a 
significant effect on the types of displays that are 
suitable for this system. The video signal could be 
stored and used to generate a refreshed CRT display. 
However, the bandwidth in excess of 60 ::\11Hz required 
for a flicker-free display with adequate resolution is 
a serious obstacle to this approach. High-order inter
laced scanning reduces the bandwidth requirements 
somewhat, but some brief experiments performed by 
our group with pseudo-random scanning indicate 
that sufficient bandwidth reduction cannot be achieved 
to make the refreshed textual display practical. 

Two types of display terminals are included in the 
initial system. One uses an electronic-storage tube 
and the other uses 35-mm film for image storage. 
The cathode-ray storage tube is an erasable, soft-copy 
display and the film tenninal provides a fonn of hard 
copy. The soft-copy display pennits rapid access to 
text because the image requires no processing. A 
browsing capability requires a response time of at 
most a few seconds between pages. An erasable storage 

Remote Text Access 479 

medium is potentially more economical in cost per 
page because there is no material expenditure for each 
qisplay request. If the text is always available within 
seconds from a central store, it is expected that much 
of the need for hard copy will be eliminated. Un
fortunately, there is no existing transient-display 
device with the resolution and writing speed required 
for the text access system, but the direct-view electronic
storage tube comes closest among the current.ly 
available devices. 

Adequate resolution is achieved with the microfilm
facsimile tenninal. The output of this tenninal is a 
35-mm film strip which is automatically processed in 
approximately one minute and read with the aid of 
microfilm viewers. 

Storage-tube display 

A block diagram of the storage-tube display tenninal 
is presented as Figure 3. The terminal consists of two 
main components, the Tektronix type-611 Storage
Display Unit and the electronics for controlling the 
display and user inputs. It is designed to be self
sufficient in that it requires no external power supplies. 

The storage tube terminal is located adj acent to 
the augmented-catalog console and is intended to 
provide a quick-look at full text as a supplement to 
the catalog searching operations. The limiting resolution 
of the Tektronix eleven-inch storage-display unit is 
approximately 400-line pairs in its long dimension 
which is considerably less than the 1000-cycles/page 
that the image-transmission experiments showed to be 
a minimum for high-quality textual images. The lack 
of resolution and gray-scale capability results in an 
information loss particularly for small symbols for 
characters, and in pictorial material. In addition the 
brightness of the Tektronix 611 is marginal for viewing 
in a well-lighted room. However, the display is not 
intended for prolonged reading or for detailed text, 
but it is appropriate for evaluating the usefulness of a 

Video 

ErCl5e Signal 

Tektronix 
Type 611 
II-Inch 
Storage 

Display Utit 

Figure 3-Storage tube display terminal 

Viewing 
Screen 



480 Spring Joint Computer Conference, 1969 

soft-copy, stored display as part Of the text-access 
experiments. 

In addition to the input devices at the catalog 
console, a nwuber of illUt"ninated switches are located 
at the storage-tube display and are connected to the 
console. Two of these, PAGE-FORWARD and PAGE
BACKWARD, enable the user to request the following 
or preceding page in a document by pushing a single 
button. 

A third function switch is used to initiate the magnify 
mode which is designed to compensate, in part, for 
the limited resolution of this display. In this mode, 
an illuminated rectangle with dimensions approxi
mately one-half the full page size appears as an over
view on the display. The rectangle outlines' the page 
sector to be m3.0O'nified and can be moved t(. anyone 
of nine positions by means of a pushbutton matrix 
at the display. When the re-(Iisplay button is pushed, 
the quarter-page sector outlined by the rectangle is 
scanned and transmitte:. This gives a factor-of-two 
magnification of that page .:;~ctor and improves the 
legibility of small characters which might not be 
recognizable on the full-page display. 

Several indicator lights are included at the storap-'+
tube terminal to inform the user ()f the status of his 
request such as FICHE-NOT-FOUND, LAST-PAGE
OF-DOCUMENT, and REQUEST-IN PROCESS. The 
pushbuttons and indicators are ligtiied in a programmed 
sequence to assist the infrequent user in operating 
the terminal. 

M icrofilm-Jacsimile terminal 

The microfilm-facsimile terminal, diagrammed in 
Figure 4, consists of a high-resolution cathode-ray 
tube with its associated SWeep and focus circuitry, 
an automatic camera-processor, and control logic 
required to operate the terminal. On command from 
the central station, the microfilm-facsimile tenninal 
will reconstitute a page of text on the face of a high-

C it. 

5;_1 

Figure 4-The microfilm~facsimile terminal 

resolution cathode-ray tube from the video signal. 
The automatic-camera and film-processor unit will 
record on 35-mm film the image of the displayed text 
and deliver to the user a fully processed strip of film 
in a convenient form for viewing in a microfilm reader. 

A camera-processor unit that satisfactorily met 
the INTREX requirements was not found to be 
commercially av~ilable. The camera-processor pictured 
in Figure 5 was manufactured by attaching a modified 
Kodak film unit to a GAF automatic film processor.2 

This 1- :-oces.:;or utilizes a horizontal straight-line film 
transport that is self-threading and accepts short 
strips of 35-mm film. It should be noted that the film 
processor was designed for films of 12-inches maximum 
width, and for a much heavier volume of processing 
than ¥t6 anticipate. It appeared after a SUiV"ey of 
available film processors that the GAF machine comes 
closest to meeting our needs, at least on a temporary 
basis. 

Initially the request for a film copy, made by the 
user at the catalog console will result in a film strip 
containing the entire text of a journal article if the 
documunt contains eight or fewer pages. Longer docu
ments will be filmed in 8- page increments. Provision 
has been made to allow the user to combine short 
documents on a single film strip. 

Approximately 20 seconds is required to complete 
the filming of an eight-page document after the receipt 
of a request by the text-access central station. Mter 
the filming of the last page in a sequence, a digital 
conunand transmitted from the central station initiates 

Figure 5-The camera processor 



the processing of the film strip which requires approxi
mately 70 seconds. 

User acceptance of the micJ.:ofilm output is largely 
dependent upon the convenience of handling and 
viewing the 35-mm film strips. After emerging from 
the processor, the film strip is inserted into a trans
parent jacket which facilitates handling and protects 
the film. A strip along the jacket edge can be written 
on with pen or pencil for identification purposes. 
The film in the jacket is inserted into a microfilm 
viewer for reading. 

An Addressograph Multigraph Model 3000 electro
static copier is being modified such that 8 1/2-by-11-
inch paper copies can be made from the 35-mm film 
images. There is some degradation in the copying 
process and these copies lose some resolution compared 
to the 35-mm film image. However, the modified 
machine will supply, at locations remote from the 
central store, a traditional form of hard copy that can 
be read without the need for a viewer. 

SUMMARY 

A system for providing guaranteed, rapid, and remote 
access to the full text of the 10,000 documents in the 
INTREX collection has been described. Consideration 
of the more general problem of storing and displ~ying 
the textual image has indicated the practicality of 
facsimile image storage on microfilm and of single
frame transmission from a time-shared central station 
to the user terminals. In the initial INTREX text
access system, photographic images of text are stored 
on microfiche which are accessed by a computer
controlled storage and retrieval device. Retrieved 
fiche are automatically positioned in order that the 
proper frame may be scanned and transmitted as a 
single frame of video to either of two user terminals. 
A direct-view storage-tube display unit, placed ad
jacent to the catalog console, provides rapid access 
to text although with marginal resolution and bright
ness. A microfilm-facsimile terminal provides adequate 
resolution, but the film-processing time and mechanical 
complexity of the terminal are significant disad
vantages. Document requests are entered through the 
augmented-catalog console. The processor associated 
with the catalog buffer/controller maintains the 
queuing and message-formatting algorithms for the 
text-access system. 

The text-access system is currently operating in 
the laboratory and is part of the INTREX facilities 
intended for user experiments. Evaluations of these 
experiments should provide new insights into the 

Remote Text Access 481 

library user's requirements for text-access which will 
lead into the incorporation of new techniques and 
equipment. 

ACKXOWLEDGMENT 

The research reported in this paper was conducted at 
the Electronic Systems Laboratory, Massachusetts 
Institute of Technology, as part of Project Intrex 
and was supported through grants to Project Intrex 
from the Council on Library Resources, Inc., and the 
Carnegie Corporation. 

REFERENCES 

1 J F REINTJES 
System characteristics of intrex 
Proc S J C C 1969 

2 Project Intrex Staff 
Project intrex semiannual activity report 
September 15 1968 

3 D R HARING 
Computer-driven display facilities for an experimental 
computer-based library 
Proc F J C C 1968 

4 C F J OVERHAGE R J HARMAN (editors) 
I ntrex report of a planning conference on information 
transfer experiments 
MIT Press Cambridge Massachusetts 1965 

5 U F GRONEMANN D R KNUDSON 
S ~ TEICHER 
Remote text access for project intrex 
ESL TM-312 July 1967 
This report based on a Conference paper presented at the 
~ational Microfilm Association Convention Miami Beach 
Florida April 26-28 1967 

6 D R KNUDSON S N TEICHER J F REINTJES 
U F GRONE MANN 
Experimental evaluation of the resolution capabilities of 
image-transmission systems 
Information Display September/October 1968 

7 A VAN DAM J C MICHENER 
Hardware developments and product announcements 
Annual Review of Information Science and Technology 
Vol21967 

8 P BROWN S JONES 
Document retrieval and dissemination in libraries and 
information centers 
Annual Review of Information Science and Technology 
Vol 3 1968 

9 D R HARING J K ROBERGE 
A combined display for computer-generated data and 
scanned photographic images 
Proc S J C C 1969 

10 R S MARCUS P KUGEL R L KUSIK 
An experimental computer-stored augmented catalog of 
professional literature 

11 P A CRISMA (editor) 
The compatible time-sharing system 
MIT Press 1968 





A combined display for computer
generated d~t~ anll scannell 
p'hotographic images * 

by DONALD R. HARING and JAMES K. ROBERGE 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

BACKGROUND 

Project Intrex (INformation TRansfer EXperiments) 
is a program of research and experiments intended to 
provide a foundation for the design of future infor
mation-transfer systems. The library of the future is 
conceived as a computer-based communications net
work, but at this time we do not know enough details 
about such a network to design it. Lacking are the 
necessary experimental facts, especially in the area of 
user's interaction with such a system. To discover these 
facts, we want to conduct experiments not only in the 
laboratory, but above all, in the real-life environment 
of a usefu1 operating library.1.2 

The initial efforts of Project Intrex have been con
cerned with the problems of access-bibli~graphic 
aooess through an augmented library catalog, and 
access to full text. This paper describes the design of 
the initial computer-driven display facilities being 
developed for the Project Intrex experimental com
puter-based library. To provide further background 
information, we will first give some details of the 
augmented library catalog and the text-access system 
that are being developed. 

For a number of reasons, computer-based libraries 
that service a wide spectrum of users, such as are found 
in a university, will be faced with operating on two 
basically different types of data-that which is digitally 
stored and that which is photographically stored in 

• The research reported here was made possible through the 
sup~rt extended the Massachusetts Institute of Technology, 
ProJect Intrex, the Electronic Systems Laboratory, under 
Contract NSF-C472 from the National Science Foundation and 
the Advanced Research Projects Agency of the Department of 

Defense, and under Grant CLR-373 from the Council on Library 
Resources, Inc. 

some microfilm form. The latter wi11 be images of the 
original full text of the documents contained in the 
library, whereas the digital data will constitute the 
augmented catalog of the library from which the library 
user gleans information about th'~ library data and docu
ments by conducting interactive computer searches. 

One of the concerns of Project Intrex is to conduct 
a series of experiments to determine how the traditional 
library catalog can be effectively augmented and 
combined with on-line computer operation to provide 
users with a more powerful, comprehensive, and useful 
guide to library resources. Present plans ca1l for aug
menting the traditional library catalog in scope, 
depth, and search means. For example, the augmented 
catalog will contain entries for reports and individual 
journal articles as well as the traditional entries for 
books. Furthermore, in addition to the title and author 
of each item, such things as the bibliography, an ab
stract, key words, and key phrases of each item will 
be included as part of its catalog entry.2.3 A user will 
be able to conduct searches on nearly any combination 
of the data contained in a catalog entry. Present plans 
also call for providing alphanumeric communications 
between user and computer by means of a high-speed, 
flexible display console.2.4 ,5 

Another concern of Project Intrex is to conduct a 
series of experiments in an effort to devise a workable 
system that will ultimately provide guaranteed, rapid 
access to the full text of journal articles, books, reports, 
theses, and other library materials at stations that 
are remote from the central store. This goal has several 
implications. Guaranteed accessibility implies that 
text never leaves its store and is therefore available 
to users at all times. Availability with minimum de]ay 
at remote locations implies transmission of text in 

--------------------------------483--------------------------------



484 Spring Joint Computer Conference, 1969 

electrical signal fonn, except in special, limited situ
ations where physical transmission (perhaps by pneu
matic tubes) might be appropriate. Remote accessibility 
implies more convenient library use, and in addition 
is a preliminary step toward realization of a network 
of computer-based libraries coupled together by means 
of data communication links.2 ,6 

In order to conduct meaningful experiments, a 
small-scale experimental total computer-based library 
system containing some 10,000 systematically-chosen 
documents in materials science and engineering is 
being designed and constructed by Project Intrex.2 

The computer-driven display console discussed here 
is a part of this system. 

Figure 1 illustrates the general organization of the 
exnerimental library. The library operates roughly as 
foilows: The digitai data and th~ photographic images 
are created from the original documents. The fonner 
are placed into the storage of the time-shared computer 
(an 1 Blll 7094 system) and the latter are placed into 
a microfiche storage and retrieval unit (a modified 
Houston Fearless CARD machine). In the original 
system the stored data are then accessed through 
augmented-catalog user consoles and text-access user 
terminals, respectively. This paper is concerned with 
the description of an experimental display that can 
accommodate both the augmented-catalog digitally
coded data and the video infonnation generated by 
scanning (in facsimile fashion) the full-text photo
graphic-image data. 

The plan of this paper is to first briefly discuss the 
display requirements of the Intrex experimental 
library and then to describe the display techniques 
that are being developed. Because of the differences 
between the storage fonn and content of the catalog 
(digital, alphanumeric) and the full text (photographic 
images, graphic), and because of the differences be
tween user interaction with the catalog and full text, 
we find it convenient first to describe the two displays 
separately, and then to describe the combined display. 

Previous papers and reports have described the 
Intrex experimental computer-based Hbrary, the display 
requirements, and the separate displays for the aug
mented-catalog and full-text data.2- 7 These papers 
should be consulted for further details of these subjects. 
This paper will concentrate on the features unique to 
the present display and the details of certain system 
parameters not discussed previously. 

Augmented-catalog display requirements 

Detailed examination of system requirements, 
coupled with the general intent of Proj ect Intrex to 

BUFFER I 
CONTROLLER 

AUTOMATiC RETRIEVER, 

ELECTRONIC SCANNER, 
and TRANSMITTER 

Figure I-Project Intrex experimental library 

provide sufficient flexibility for meaningful experi
mentation with information transfer techniques led 
to the requirements outlined in this section. A more 
complete explanation of underlying system require
ments is presented in References 2 and 5. 

A refreshed display seems preferable to a stored 
display which can be changed only with a complete 
new transmission from a remote computer. The use 
of a refreshed display complicates local memory 
requirements, but facilitates local editing and permits 
the use of a light pen for message identification. 

A large capacity display which can present all the 
available data about any given entry is more pleasing 
than a smaller display which may require viewing 
several different messages concerning a single docu
ment. Similarly, comparison of key words or bibliogra
phies of several documents is simplified by a large 
capacity display. These considerations, coupled with 
the resolution capabilities of inexpensive cathode-ray 
tubes (CRTs) led to the choice of an 19OO-character 
display. 

I t seems desirable to expand the character set 
beyond the 96 visible characters of the USASCII set. 
In particular, the scientific data base anticipated for 
Intrex experiments makes the addition of Greek letters 
and more mathematical symbols a necessity. Further
more, it should be possible to reproduce SUbscripts 
and superscripts in a natural and pleasirig manner. It 
also seems advantageous to have an easily alterable 
character set so that foreign documents can be cata
loged fn their own alphabet if desired. 

There is also the underlyihg objective of developing 
a display which is economical to reproduce, since 



Combined Display for Computer-Generated Data 485 

economy is one important factor in the large-scale 
acceptance of the Intrex concept. 

The display tube and deflection technique 

Much of the expense of large capacity refreshed 
alphanumeric displays reflects the cost of the CRT 
and its deflection electronics, and any meaningful 
attempt at cost reduction must consider this equip
ment. 

The resolution necessary to display 1800 characters 
is not demanding. The 500 X 700 line resolution of 
monitor quality entertainment CRT's allows upwards 
of 12 resolvable elements in both dimensions of a 
character and this resolution is sufficient for high
quality characters. A more fundamental difficulty is 
encountered when the deflection bandwidth normally 
required for rapid character generation is considered. 
In order to refresh an 1800 character display at a 
nominal 60 Hz rate (sufficient to prevent flicker) it is 
necessary to generate characters in approximately 
8.5fJ.s. Two popular generation methods are the se
lective intensification of a dot matrix or a pattern 
from a stroke generator. The mechanization of either 
a 5 X 7 dot matri~ generator (which does not produce 
partibularly attractive characters) or· a 20-segment 
stroke generator requires deflection-system settling 
time on the order of O.lfJ.sec. The cost of this type of 
deflection system for a large screen CRT is high at 
the present time. 

An alternative is the use of a TV type scan which 
is relatively narrow band. However, a conflicting con
straint is introduced by the memory. Economics 
dictate the use of a serial memory such as a magnetic 
drum or a delay line for display maintenance, and the 
cost of scan conversion equipment for such a memory 
appears to outweigh the advantages of the TV scan. 

The scan selected for the alphanumeric display 
consists of two parts. The basic raster illustrated in 
Figure 2 is generated and applied to deflection ampli
fiers which drive a conventional deflection yolk. The 
raster pattern provides for 31 lines of 56 characters 
each, refreshed at a 57.5 Hz rate. (Actual timing 
allows for 32 lines of 64 characters each, but one line 
per raster and 8 character spaces per line are reserved 
for retrace.) It ils important to note that the deflection 
bandwidth requirements for this pattern are signifi
cantly less demanding than those of a conventional 
TV raster. 

A 600-kHz sinusoidal signal which provides a peak
to-peak deflection amplitude slightly in excess of the 
maximum anticipated character height is added to 
the vertical deflection signal. This sinusoidal signal 

31 
LINES 

, 
56 CHARACTER SPACES/LINE 

\ 

• 
• 

• 

• 

TIME FOR 1 LINE SCAN :I 460p.1. 
RETRA~E IN 70p.1. 
REFRESHED AT 57.5 Hz RATE 
Figure 2-Basic raster pattern 

forms the scan pattern on which characters are gener
ated by appropriate intensity modulation. (The method 
used to generate video information is described in the 
following section.) The advantage of the sinusoidal 
scan is the limited bandwidth necessary to reproduee 
a single-frequency sinusoid. In practice, the 600 kHz 
signal is amplified by a tuned narrow-band amplifier 
with a transformer-coupled output. The secondary of 
this transformer i~ placed in series with the vertical 
deflection coil and the output of its deflection amplifipr 
to provide the scan si~nal. 

The linear segments of the 600-kHz signal provide 
10 scan lines per character space. In order to further 
improve the quality of the characters, the phase of 
the scanning sinusoid rs changed by 1800 on alternate 
frames. This process is analogous to the interlacing 
used in TV transmission and results in improved 
resolution wilthdut i.;ncreaslng required video band
width. 

The greatest demand on deflectipn bandwidth arises 
when superscripts or subscripts are generated. In order 
to display such a character, a code indicating the 
desired operation is placed into the memory which 



486 Spring Joint Computer Conference, 1969 

contains the display data. The code adds a signal 
corresponding to ± .%: or ± 72 of the nominal vertical 
spacing to the vertical deflection signal. Simultaneously, 
a signal corresponding to the spacing between charac
ters is subtracted from the horizontal sweep. This 
backspace technique allows inclusion of the control 
code without creating blanks in the display. However 
the settling time of both deflection amplifiers must 
be less than the time normally used for a single charac
ter (8.5~s) for the method to be effective. Following a 
time delay corresponding to one character, the elevated 
or depressed character is generated normally and dis
played in its correct location. 

The first augmented catalog display system used a 
$15 CRT from a TV set as the display element. The 
deflection yolk was the one designed for use with the 
tube, . modified by reducing the number of windings 
on the vertical axis to approximately 20 percent of 

Figure 3-A display of the output of the character generator 

its initial value. Figure 3 illus~rates the quality of 
the characters produced by this inexpensive display 
system. A moderate improvement in character fidelity, 
particularly aJ, the edges of the displa'Yi ha.s been ob
tait"led using a monitor quality tube and an improved 
deflection yolk. These improved components add 
approximately $75 to the cost of the equipment. 

The character generator 

The choice of scan described in the preceding section 
imposes constraints on the type of character generator 
used in conjunction with the display tube. While use 
of a digital read -only memory for character generation 
is possible, this type of memory does not readily produce 
video information for a sinusoidal scan pattern. An 
extremely straightforward system is obtained if a 
flying-spot scanner is used for character generation. 
Figure 4 illustrates the major components of a character 
generator using this principle. 

The character set is stored ona photographic nega
tive. (A picture of the character mask currently used 
is shown in Figure 5.) This mask is located in front of 
a small electrostatically -deflected CRT and can be 
replaced easily to alter the character set. In order to 
generate a character, the beam of the scanner CRT is 
positioned to the left of the desired character. Beam 
positioning is controlled by digital-to-analog con
verters in response to the code for the selected charac
ter. The character is then scanned by applying a ramp 
as the horizontal deflection signal and a sinusoid derived 
from the display-tube scan as the vertical deflection 
signal. Light which shines through the character mask 
is detected by a photomultiplier tube to produce the 
video signal. 

In order to achie,re resolution in the ~lertical direction 

R""" Wavefono 

Digital Inputs 

Figure 4-Flying-spot-scanner charact.er generator 



Combined Display for Computer-Generated Data 487 

®ABCDEFGHIJKLMNO 
RABrLlEZH9IKAMN::O 

II =11= $% a I ( ) * + I • / 

f· ··'V-'~=~~cx)X· : ++ 
\ abcde fgh i j k Imno 
"CX{30bE~TJ8('KA.}J-V~O 

PQRSTUVWXYZ[,,]"'-
ITPLLTT<p<t>X'l'n/Le 0 ° 
0123456789· ; <=>? 
3 'J 3 E C :::>C:::> < > !:::! = ~ ex: :. # 
pqrstuvwxyZ{ I}--' 
7rp eT<; T tJ f cf:>x O/W £, ~ 1.. II 

Figure 5-Character mask 

compa~able to that produced horizontally, it is neces
sary to generate blanking pulses which are on the order 
of 30 nanoseconds (ns) wide. The rise time of the 
photomultiplier tube is less than 5 ns and a blanking 
amplifier which switches the grid of the display CRT 
40 volts in approximately 5 ns was designed for this 
application. The limiting factor is the dec,ay time of 
the P 16 phosphor used in the scanner CRT, and this 
limitation dictated the use of a 600-kHz scan rather 
than a higher value. 

The monos~ope tubeS offers an alternative to the 
flying-spot scanner character generator described in 
thiH section. lVlonoscopes are available with 96 charac
ter targets, and two such units can share common 
electronics to provide the desired 192 character set. 
A disadvantage is the need to change monos copes to 
alter the character set. 

A more detailed description of the Intrex character 
generator is presented in Reference 9. 

The text-access display requirements 

The differences between the augmented-catalog 
display requirements discussed in the previous section 
and the text-access display requirements are due to 
the differences of the storage medium and types of 
user interaction with the stored data. The catalog 
data are digitally stored in a file that is attached to 
the time-shared computer and is accessed through and 
processed by that computer. The library user can 

conduct computer searches on this data and modify 
his copy of the data. Thus, if he wants hard-copy of 
this data he can have the data organized in any desired 
form. On the other hand, the full-text data are photo
graphic images that are accessed through a mechanical 
storage and retrieval unit that is attached to the 
display facility. This data does not pass through a 
computer. Its form cannot be modified (except for 
magnification) and the user cannot conduct computer 
searches on the data. The only access to full-text data 
is by call number. Once the data is obtained, the 
user can read it, can ask for other pages of the same 
document or ask for a magnification of portions of 
the page of the document. In short, the dynamics 
and the dialog between man and computer are con
siderably different between the two display facilities. 

With the original text stored in image form, the 
problem of remote access to text becomes that of 
reproducing a high-quality image at a remote point. 
This usually implies scanning the stored images. Our 
experiments have shown that at least 2000 scan lines, 
with a total system on -axis limiting resolution of 
1000 cycles per frame height from scanner to viewer, 
appear to be needed for high-quality remote repro
duction of microfilmed technical documents (18-to-l 
reduction ratio) having average quality and containing 
the SUbscripts, superscripts, and mathematical symbols 
that frequently appear in these texts.2 A two-column 
page with approximate_ly 7p lines per column and an 
average of eight to ten words per line is considered 
to be a "typical" page. 

Closed-circuit TV requires high bandwidth (80 MHz) 
to achieve the desired resolution of 2000 lines per page. 
Also, because the image is continually refreshed, a 
separate scanner and transmission line would be 
required for each simultaneous user. Hence, a facsimile
like system is used in which each text page is scanned 
and transmitted only once, and the information is 
captured and stored at the receiver for transient 
viewing (soft copy) or printing (hard copy). This 
organization permits a tradeoff between signal band
width and transmission time, and also permits time 
multiplexing of the microfiche on which the image is 
stored, the microfiche storage and retrieval device, 
the scanner and the transmission line to serve a number 
of users. For example, with a transmission time of 
% a second per page, signal bandwidth for a 2000-line 
scan is reduced to about 4.5 MHz (standard TV 
channel bandwidth) and a single text-access system 
can perhaps service 20 to 30 receivers, assuming that 
users would request new pages at 10 to 15 second 
intervals. 

The soft-copy diBplay appears to be the more at-



488 Spring Joint Computer Conference, 1969 

tractive because it more closely approaches the capa
bility of providing immediate remote text access 
and is potentially the least expensive to operate. 
Assu...'T.ing a facsi..lTIile-type scan; tb-e following list. 
summarizes the specifications of an ideal soft-copy 
medium for single-page, full-text display.2.1o.11 

1. Size: Display area should be approximately 
872 by 11 inches. 

2. Resolution: Minimum limiting resolution for 
any portion of the display area should be 
equivalent to more than 1000 cycles per frame 
height. 

3. Brightness and Contrast Ratio: The viewable 
image should be sufficiently bright to be comfort
ably seen in a room lighted for reading (60 to 
160 foot-lamberts). The image should have a 
contrast ratio of at least 15 to 1, a sharpness 
(or acceptance) comparable to that of a printed 
page. 

4. Storage Time: At least five minutes 
5. Viewing Position: Freedom from constraints 

o-p. the user viewing position and freedom to 
position an9. orient the display itself. 

6. Gray Scale: Sufficient to faithfully reproduce 
high-quality black-and-white photographs. 
(eight gray levels) 

7. Speed: Sufficient speed so that a complete 
medium erase (or replace) plus write requires 
approximately one second, with the time nearly 
equally divided between the two operations. 

8. Color: Sufficient color range to faithfully re
produce color photographs. 

9. Cost: Cost of ownership (including cost of 
storage medium) such that the display of a 
page of text be significantly less than a hj:lro 

copy of that page. (In the order of 0.01 cent 
per page.) 

Unfortunately, no presently available medium fully 
satisfies these requirements. However, the Tektronix 
Type 611 eleven-inch storage-tube display unit does 
afford limited capabilities. 

The storage-tube display 

An evaluation of the Tektronix display unit indicates 
that it can serve as a satisfactory experimental soft
copy display. As regards our list of specifications for 
a soft-copy medium, we make the following list of 
observations. 

1. Size: The display area is 6% inches by 834' 
inches. This is adequate but preferably should 
be somewhat larger. 

Figure 6-Photograph of transmitted image as displayed on 
a Tektronix storage tube 

2. Resolution: Specified to be 800 cycles in the 
large dimension. This is marginal, especially 
for perception of poor-quality print or small 
symbols and characters. Figure 6 shows typical 
results obtained. (Note: There is some degra
dation due to the photographic processes.) It 
is estimated that an improvement of approxi
mately 25 percent in resolution is required. 

3. Brightness and Contrast Ratio: The stored 
luminescence of the storage tube is 3-foot 
lamberts and operating contrast ratio of 2:1. 
Hence, the general room lighting must be at 
a lower level than normally used for reading. 

4. Storage Time: Once an image is stored on the 
tube, it remains until erased. 

5. Viewing Position: The user must be relatively 
c]Q.~ to the unit. He has a viewing angle typical 



Combined Display for Computer-Generated Data 489 

of most CRT's. Placed in the proper mounting, 
the position of the unit can be adjusted to a 
limited extent. The unit is not readily portable. 

6. Gray Scale: The Tektronix storage tube has 
only two light levels. Thus, the usual tele
vision reproduction of black-and-white. photo
graphs is not possible. 

7. Speed: Erase time is less than 0.5 seconds and 
full-screen write time is approximately 2.5 
seconds. These tinles ar-e acceptable in the 
experimental system. 

8. Color: The Tektronix storage tube is mono
chromatic. 

9. Cost: Because of the high cost of the storage 
tube and its relatively short life (approximately 
1000 hours) in the storage mode, the cost per 
displayed page is in the order of pennies per 
page. Although too costly in an operating 
system, this is acceptable in the experimental 
system. 

Operation of the Type 611 as a facsimile display 
tenninal is straightforward. The self-contained ampli
fiers for the three axes have sufficient bandwidth for 
the vertical and horizontal scanning signals and the 
video signal. To match the erase. and writing speed 
of the storage tube, the microfiche scanner completes 
a 2000-line scan in 4 seconds. These signals are· trans
mitted to the Type 611 unit from the microfiche 
scanner via a coaxial cable. The signal format on the 
coaxial cable resembles a standard television signal 
with vertical and horizontal synchronizing pulses 
added to the video signals. Since a bus system is used 
on the coaxial cable such that many display terminals 
can be serviced by the same cable, digital control 
signals are added to the combined video and synchro
nizing signal in the time slot immediately following 
the horizontal synchronizing pulse (during storage 
tube retrace time) to individually conunand the 
various terminals. The digital control signal is in 
the form of a 16-bit binary number, with the first 
seven bits being the address of the terminal and the 
last nine bits being the command. By this mechanism, 
only the display terminal that is addressed responds 
to the video signals and other control signals. 

To accommodate the control functions sent on the 
coaxial cable, each Type 611 display unit has a black 
box added to complete a text-access soft-copy display 
terminal. Specific details of the transmitted signals 
and the black box design can be found in Project 
Intrex Semiannual Activity Report dated 15 ::Vlarch 
1968.2 

To overcome the resolution limitation pointed to 
above, an enlarged version of anyone of nine over-

lapping portions of a page of text can be requested. 
The portion of the page to be enlarged is identified 
by a rectangle that is displayed on the storage-tube 
scre~m in the non-store mode and whose position is 
under control of the user. 

A combined display unit 

Previous sections of this paper have indicated how 
a CRT with limited deflection bandwidth is used 
for a large-capacity display of digitally coded alpha
numer-ic characters and how a Tektronix Type 611 
Storage Display Unit is used for soft-copy display of 
phot?graphically-stored material. The soft-copy display 
unit is intended for operation in conjunction with the 
augmented-catalog console, since it provides rapid 
and guaranteed access to items which have been 
discovered by means of a catalog search. Obvious 
economics result if the two functions can share a 
common display element. 

The Type 611 can serve as the soft-copy text
access display without modification. It would also be 
possible to use thi;s unit for the display of digitally 
coded datJa by combining stored-mode operation 
with an appropriate character generator. There are 
at least two disadvantages to this approach. First, 
certain functions such as selective erasure andOlight-pen 
identification which are important to the operation 
of the augmented-catalog console, are not possible 
with a stored display. Second, the storage tube is 
expensive, and its life when operated in the storage 
mode is limited to approximately 1000 hours. However, 
the tube can provide a normal (non-stored) display, 
and its lifetime is comparable to that of conventional 
tubes when used in this mode. 

The Type 611 can provide horizontal full-screen 
deflection in less than 60¢" and a small-signal settling 
time under 5p.s. Furthermore, the resolution of the 
tube exceeds that required to display 2000 high
quality characters. Note that the bandwidth and reso
lution capability of the Storage Display U nit ar~ 

comparable to those required for the refreshed alpha
numeric display described in an earlier section. This 
consideration led to the decision to use the Type 611 
in a storage mode for soft-copy text display and, by 
slightly modifying the unit, to operate it as a refreshed 
display system for catalog information. The only 
modifications which must be made to accommodate 
the refreshed display are to include provision for the 
sinusoidal scan signal and to improve the response 
time of the blanking amplifier. 

A transformer was added in series with the vertical 
deflection amplifier output to provide the required 



490 Spring Joint cOmputer Conf~rence, 1969 

scan signal. Since the self-inductance of the secondary 
of this transformer is small compared to the inductance 
of the vertical deflection coil (1 mH), this additional 
element does not alter the performance of the vertical 
deflection system. A new blanking amplifier was also 
designed for the Type 611. This amplifier switches 
between ground and a level determjned by the setting 
of intensity controls in approximately 5 ns. 

SUMMARY 

Two -basically different display functjons required by 
a computer-based library have been discussed and a 
single combined CRT display that provides these 
functions has been described. The display is based 
on a Tektronix Type 611 Storage Display Unit. The 
first function it must accommodate is the output of 
a character generator driven by the digitally-coded 
library catalog data. By employing a character gener
ator that requires a relatively narrow deflection band
width, only minor modification to the Type 611 is 
required. When operating with the catalog data the 
storage tube is used in non-store, refresh mode to 
provide quick-response man-machine interaction and 
to increase the lifetime of the tube. 

The second function the display must accommodate 
is the video information generated by scanning the 
full-text photographic-image data. When operating 
with the full-text data no modification to the Type 
611 is required, and the storage tube is used in store 
mode to provide a large amount of visual information 
without external storage. 

In addition to the display, a neW character generator 
was described. It is basically a flying spot scanner 
without lenses. A set of nearly 200 characters is defined 
by a changeable photographic mask. High quality 
characters are produced with relatively narrow de
flection bandwidths. 

REFERENCES 

1 C F J OVERHAGE R J HARMAN (editors) 

Intrex report of a planning conference on information 
transfer experiments 
The MIT Press Cambridge Massachusetts 1965 

2 Project intrex semiannual activity reports 
M ! T Project !ntrex Ca..'1lbridge Massachusetts 
March 15 1967 September 15 1967 March 15 1968 and 
September 15 1968 

3 A R BENENFELD 
Generation and encoding oj the project intrex augrnented
catalog data base 
Proc 6th Annual Clinic on Library Applications of 
Data Processing University of Illinois Urbana Illinois 
May 71968 

4 D R HARING J K ROBERGE 
The augmented-catalog console for project intrex part I 
MIT Electronic Systems Laboratory Report 
ESL-TM -323 October 1967 
Presented at the IEEE 1967 Lake Arrowhead Workshop 
on Advanced Computer Peripherals at Lake Arrowhead 
California August 25-27 1967 

5 D R HARING 
A display console for an experimental computer-based 
augmented library catalog 
Proc A C M National Conference and Exposition 
Las Vegas Nevada August 27-29 196835--43 

6 U GRONEMANN S TEICHER D KNUDSON 
Remote text access for project intrex 
MIT Electronic Systems Laboratory Report ESL
TM-312 July 1967 
Presented at the National Microfilm Association Conference 
at Miami Beach Florida April 26-28 1967 

7 D R HARING 
Computer-driven display facilities for an experirn.ental 
computer-based library 
Proc F J C C 1968 December 9-11 1968255-265 

8 Technical information bulletin 
Type CK1414 SYMBOLRAY Character Generating 
Cathode Ray Tube by Raytheon Components Division 
Industrial Components Operation 465 Centre Street 
Quincy Massachusetts April 15 1966 

9 P F Me KENZIE 
A flying spot scanner character generator 
8M Thesis MIT February 1969 

10 C T MORGAN J S COOK III A CHAPANIS 
M W LUND 
Human engineering guide to equipment design 
McGraw-Hill New York 1963 

11 H H POOLE 
Fundamentals of display systems 
Spartan Books Washington D C 1966 



A study of multiaccess computer 
communications 

by P. E. JACKSON" and CHARLES D. STUBBS 

Bell Telephone Laboratories, Incorporated 
Holmdel, New Jersey 

INTRODUCTION 

The communications characteristics of multiaccess* 
computing are generating new needs for communica
tions. The results of a study of multiaccess computer 
communications are the topic of this paper. The analy
ses made are based on a model of the user-computer 
interactive process that is described and on data that 
were collected from operating computer systems. In
sight into the performance of multiaccess computer 
systems can be gleaned from these analyses. In this 
paper emphasis is placed on cmnmunications considera
tions. For this reason, the conclusions presented deal 
with the characteristics of communications systems and 
services appropriate for multiaccess computer systems. 

The problem 

Digital computers reqmrmg communications with 
remote terminals exhibit a set of communications needs 
which, in some respects, are different from those of both 
voice traffic and other record communications. It is 
important for the providers of data communications to 
have an understanding of the broad characteristics of 
this communication process so that new, more appro
priate offerings can be designed to satisfy these needs. 

Previous studies ** by the manufacturers and providers 
of multiaccess computer systems have begun to char
acterize both the computer systems and their users. The 
principal interest of these studies, however, has been 
computer and/or user performance rather than data 
communciations. 

There are several reasons why the quantitative char
acterization of the communications process is timely 

* The word "multiaccess" is chosen to avoid confusion over the 
use of the word "time-shared" which is often used synonymously 
but which has a specialized meaning in some contexts. 

** For example, see References 1, 2, 3 and 4. 

491 

but intricate. First, multiaccess computing is still in its 
infancy. Therefore, computer system design is going 
through a trial and error process ",ith a high rate of 
change of system characteristics. Lacking a unified, 
well-tested body of technical knowledge applicable to 
the problems of multiaccess· computing, systems de
signers have been led to heuristic solutions to system 
organization. Certain specific problems such as sched
uling algorithms for single and multiple central pro
cessors have been studied in detail. No intensive, over
all, general system studies, however, have been reported 
with the C'onstraints of total cost minimization in
cluding the effects of system characteristics on com
munications costs and human factors such as reduction 
in efficiency due to long turn-around times. 

Second, the rate of change of the size of the user 
community, the number of systems in operation, and 
the introduction of new equipment and operating 
systems is high. In fact, most systems are changing so 
rapidly that a detailed characterization of anyone 
will probably be outdated before it is completed. The 
insight to be gained from such studies, however, far 
outweighs the drawback of obsolescence. Indeed, this 
situation calls for continued study and review. 

Third, the applications of time-sharing are diverse. 
Where one of the parties in the transaction is a person, 
uses range from inquiry-response systems with short 
call durations of a minute or less, to scientific problem
solving and certain types of business infomlation sys
tems with call durations of 10 to 30 minutes, to com
puter aided learning with long call durations of one to 
two hours or more. Where the transaction involves an 
automatic terminal such as a telemetry device, call 
durations may be measured in milliseconds. Also, the 
volume of information exchanged in a computer-to
computer or computer-to-data-logger interaction varies 
widely from a small number of bits in polling, meter 



492 Spring Joint Computer Conference, 1969 

reading and some banking and credit services, to a large 
number of bits in CRT displays, information retrieval 
and file manipulation. The speed of transmission is 
wide-ranging from the low bit rates of supervisory and 
control terminals to megabits per second for CRT dis
plays. 

Fourth, the data required for such studies are micro
scopic in nature. Unlike voice traffic, which can be char
acterized by measures of holding times, arrival rates and 
other parameters independent of a call's content, the 
characterization of calls to a computer requires some 
information about a call's content, e.g., timing informa-· 
tion interrelating the transmission times of data 
characters is essential for the design of an efficient 
time division data multiplexer. An additional factor is 
that some of the desired statistics on these data have 
very skewed distributions. Thus, large data samples are 
required. The implications of these considerations up
on our study are that: 

a. neW data gathering procedures and equipment 
are needed, 

b. data analysis procedures must be capable of 
handling very large quantities of data,6 

c. legal, ethical, and business requirements related 
to communications and computing privacy must 
be satisfied. 

The problem, then, is to provide communications 
services to a rapidly growing market of multiaccess 
computer systems and their terminals. These exhibit 
diverse and changing communications requirements. 
The study described below is directed at this problem. 

The modus operandi for this study is an in-depth 
analysis of selected multiaccess computer communi
cations systems. The subset of system types chosen for 
detailed -study is composed of computer service pro
viders whose systems are representative of multiaccess 
computer installations. Besides representativeness, 
additional prerequisites for the choice of a system to 
study were that the use of multiaccess computing be 
advanced, and that the provider of the particular sys
tem be knowledgeable in the communications area. 
By "advanced in multiaccess usage," we mean that the 
system be fully operational on a daily basis with the 
initial break-in period accomplished. A final prerequisite 
for inclusion in the study is the willingness of the com
puter service provider to participate in the study. * 

* Part of the study reported herein involved the collection of 
data from three operating multiaccess computer systems. In 
every case these data were obtained on the premises of the 
computer service provider and with this full permission and 
cooperation. To ensure the privacy of the three systems under 
discussion, however, they are not identified by name. 

To ensure that a cross section of on-line systems was 
included in the study, the characteristics of such sys
tems were classified as shown in Table 1. 

Table I -Classification characteristics for multiaccess 
computer systemsjor communications study 

1. ComputerType 
2. I/O Device Type 
3. Loading (Number of Simultaneous Users) 
4. User's Applications 
5. User Community (In-House or Utility) 
6. Error Control (e.g., Eohoplex) 
7. Holding Time 

In the table, by "computer type" we mean the manu
facturer and model number of the central processor and 
the system configuration, i.e., whether or not a separate 
communications computer is used. Not all models of all 
manufacturers can be covered, but at least two large 
manufacturers were included for each application. I/O 
device types include teletypewriter-like terminals and 
TOUCH-TONE® telephones. Loading is the average 
percentage of ports that are active. User's applications 
include scientific and business programming, inquiry
response systems, extended file retrieval and main
tenance, message switching and mixtures of these. 
Both in-house and utility systems were included. 
Error control includes systems which retransmit each 
character back to the terminal (Echoplex) and those 
which do not';- The systems selected for examination 
include short holding time systems with average call 
durations on the order of one or two minutes or less 
and long holding time systems with average holding 
times of 20 to 30 minutes. 

From the systems selected for detailed analyses, 
measurements of three different categories were ob
tained. The first category included telephone facilities 
measurements such as occupancies and overflow counts 
on computer access lihes (port hunting groups) and pen 
recordings of call durations from several terminal lines. 
The second category of measurements was made by the 
computer service providers withi~ their computer sys
tems by identifying the arrival and departure times of 
calls, the amount of central processor time used, the 
serving port and an identifier of call type. Distributions 
of call holding time, call interarrival time, CPU usage, 
and port loading can be obtained from these data. The 
third category of measurement was the collection of 
data at computer ports describing the characteristics 
of such microscopic statistics as intercharacter time. 
The first two categories of data are being used to formu-



Study of Multiaccess Computer Communications 493 

late traffic and engineering practices. These will be used 
by telephone company personnel to provide appropriate 
computer communications by properly configuring 
existing telephone company equipments. 

The third category of data is being employed in the 
analyses reported here. These dat~ are required to in
vestigate new systems and service characteristics such 
as the desirability of various transmission speeds or 
multiplexing methods, as they include detailed infor
formation on the timing relationships within a call. 

An analytic model of the communications process 
between a multiaccess computer and a user at a remote 
console is the vehicle being used to conduct these 
analyses. The model describes the communications 
process in terms of random parameters which give the 
times between characters transmitted through the 
communications network. All of the parameters are 
measurable at the communications interface to the 
computer, i.e., none requires the gathering of data on 
internal computer processes such as the length of 
various queues. 

The model is used to focus on the user-computer 
communications process and to exhibit how the charac
teristics of the computer and of the user affect commun
ications requirements. It is also used to study the con
verse, i.e., how the constraints of the communications 
medium affect the user and the computer. The model 
does not directly represent the detailed characteristics 
of the computer system or its organization or the in
ternal operation of the user's console. Rather, it reflects 
the effect of these on the characteristics of the com
munications signals entering and leaving the computer. 
From the characteristics of the communications pro
cess, however, it is possible to employ the model to pre
dict the effects of changing system characteristics such 
as improving computer scheduling algorithms or in
creasing the computer's transmission rate. The follow
ing two sections further discuss this model. 

The data stream model 

The next two sections develop the data stream model, 
the analytical model used to describe the stochastic 
interactive communications process between user and 
computer. In this section, the basic parameters of the 
model are defined. In the next section, the relation
ships among the parameters are described and an ex
pression for the holding time of the process is developed 
where holding time is the duration of a user-computer 
seSSIon. 

Figure 1 illustrates the data stream model. A "call" 
(or a connect-disconnect time period) is represented 
as the summation of a sequence of time periods during 
which the user sends ch,aracters without receiving, inter-

CONNECT DISCONNECT 
COMPUTER USER USER COMPUTER I 

WRIT .. IT 
SE • .,ENT SE • .,ENT 

INTER- INTER- I 

~:: ~: 
c c -;lr~~ I 

---L-U.J~.L.I......J..LJ...LL-......I...L.J...L..l.J...L.L..W frmnn m D mm an * • 
IDLE 

TIME 

USER 
IITER

CHARACTER 
TIME 

t-----f -t I-- TIME 

CO=~~ER 'UUS::T 1L ~:"~~R 
COMPUTER 

INT£R
CHARACTER 

TIME 

Figure 1-The data stream model 

leaved with time periods during which he receives char
acters without sending. (This implies half-duplex oper
ation. Simple modifications to the model would allow 
the accommodation of full-duplex operation.) The 
periods during which the user is sending characters to 
the computer are defined as user burst segments. The 
periods during which he is receiving characters sent 
from the computer are computer burst segments. A 
user burst segment, by definition, begins at the end of 
the last character of the previous computer burst seg
ment. Similarly, a computer burst segment begins at 
the end of the last character sent by the user. The first 
burst segment of a call begins when the call is estab
lished and the last burst segment ends when the call is 
terminated as measured at the computer interface. 

Within a given burst segment, there are periods of 
line activity and of line inactivity. The first inactive 
period of a user burst segment is defined as think time. 
That is, think time is the time that elapses from the 
end of the previous computer character until the be
ginning of the first user character in that burst segment. 
In most cases, think time is employed by the user to 
finish reading the previous computer output and to 
"think" about what to do next. The corresponding 
inactive period in a computer burst segment is called 
idle time. In some systems idle time represents time 
during which the user waits for the return of "line 
feed" after sending "carriage return"; in other systems, 
idle time represents time during which the user's pro
gram is being processed or is in queue.· The remaining 
inactive periods within a burst segment are called inter
character times and interburst times. A prerequisite for 
their definition is the definition of a "burst." 

Two consecutive characters are defined as belonging 
to the same burst if the period of inactivity between the 
characters is less than one-half character width. Thus, 
each "burst" is the longest string of consecutive char
acters where the period of inactivity between any two 
consecutive characters is less than one-half character 
width. All of the characters in a burst must, of course, 
be transmitted from the same party (user or computer). 



494 Spring Joint Computer Conference, 1969 

For example, every character of an unbroken string of 
characters sent at line speed is in the same burst. 

For characters within the same user burst, an inac
tive time between two consecutive characters is called 
a user intercharacter time. The corresponding param
eter for computer bursts is computer intercharacter 
time. For bursts within the same user (computer) 
burst segment, the inactive time between two consecu
tive bursts is called a user (computer)interburst time. 
Five final parameters of the data stream model are 
number of user bursts per burst segment, number of 
'computer bursts per burst segment, number of char
acters per user burst, number of characters per com
puter burst, and temporal character width (time from 
start to end of one character). 

For a gi,\rcn llser=computer enviroIln1ent, a knowledge 
of the distributions of the parameters defined above 
allows the calculation of some interesting measures. 
Examples are distributions for (a) holding time, (b) 
percent of holding time during which the communica
tion channel carries data, and (c) amount of delay 
introduced by the computer. The next section shows 
how some of these distributions can be calculated from 
the parameters. 

Relationships among data stream model parameters 

Let the following notation be introduced: 

T = holding time of call (seconds) 
S = number of burst segments in call 
T = think time (seconds) 
I = idle time (seconds) 
B = interburst time (seconds) 
N = number of bursts per burst segment 
11 = number of characters per burst 
W = character width (seconds) 
C = intercharacter time (seconds) 

The lower case letters "C'" and "u" will be used as 
superscripts to B, N, M, W, and C to represent "com
puter" and "user" respectively. For example, ~c will 
represent the number of computer bursts per computer 
burst segment. The three indices of summation to be 
used are: 

and 

i -to designate the ith burst segment, 

j -to designate the jth burst of it given burst seg
ment, 

k-to designate the kth character of a given burst. 

In summing expressions over these indices, the primary 
index will be shown as a subscript and the secondary 
index (or indices), if any, will be enclosed in parentheses. 

U sing this notation, it is possible to construct an 
equation relating the holding time of a call to its com
ponent parts in the following manner: 

a. In burst segment 2i, in the jth burst, the amount 
of time required by the kth user character is 
Wk(2i, j). Summing over all k such characters in 
the burst, the time required is 

::vlj(2i) 
L Wk(2i,·j). 
k=1 

Summing over all bursts in the burst ::Segment 
gives 

~~ i :\1j(2i) 
L L W;:(2i, j) . 
i=1 k=l 

If one defines all burst segments \~here i is even 
as user burst segments and assumes that the 
number of burst segments per call (S) is always 
even, the total contribution of user character 
times to total holding time is 

8/2 N; i ~1~(2i) 
L L L Wk(2i, j) . 
i=1 i=1 k=1 

Since S is usually large the error introduced by 
assuming S even, even when it is not, is small. 
Assuming the odd numbered burst segments are 
computer burst RP.gments7 the corresponding 
contribution of computer character times is 

S/2 N~i-l ~li(2i - 1) 
L L L Wk(2i - 1, j) . 
i=l i=1 k=l 

b. A corresponding argument shows the total COll

tributions of user intercharacter times are 

8/2 N;i [IVlj(2i) - 1] 
L L L Ck(2i, j) 
i=l i=l k=1 

and of computer intercharacter times are 

8/2 N~i-1 [:\I~(2i - 1) 

L L L 
1] 

Ck(2i - 1, j) 
i=l i=l k=l 



Study of Multiaccess Computer Communications 495 

c. The total amount of user interburst time is 

8/2 [N~i - J] 
L L Bj(2i) , 
i-I i_I 

and the total computer interburst time is 

8/2 rN~i-1 - 1] 
:t - -L Bj(2i - 1) . 
i=1 i=1 

d. Total think time is 

8/2 
LT2i , 

i=1 

and total idle time is 

8/2 
L I 2i- 1 . 

i=1 

The sum of these components is the holding time for 
a call. That is, the time of each burst segment summed 
over all burst segments is the holding time. The time 
of a burst segment equals the sum of the durations 
of all bursts, interburst times, and the think (or idle) 
time in that burst segment. The duration of a burst is 
equal to the sum of the character times and the inter
character times contained therein. That is, the holding 
time of call f, T.c, is 

8/2 [ [N~i - 1] 
Tl = E IT,; + E BY(2i) 

N; i IHj(2i) 
+ L L Wk(2i, j) 

i=1 k=1 

N~ dlVIj(2i) - 1] J 
+ L L Ci:(2i, j) 

i=1 k=1 

[ 

[N~i-I - 1] 
+ I2i- 1 + E Bj(2i - 1) 

N~i-l ~.vli(2i - 1) 
+ L L WkC2i - 1, j) 

i=1 k=l 

N~i-l [l\lj(2i - 1) 

+ L L 
;=1 k=l 

1] 
Cj,(2i - 1, j) Jl. (1) 

Knowing the distributions for the 12 parameters in 
Equation (1), it is theoretically possible to solve direct
ly for the distribution of holding time. The mechanics 
of finding the solution are prohibitive, however, ex
cept for very restricted cases. One method of solving 
(1) is to find the moments of holding time rather than 
the complete distribution. This approach will be used 
here and, in fact, it will be sufficient for our purposes to 
. solve merely for the mean value of holding time. In 
order to arrive at the solution, we assun1e that the ran-
dom variables are stationary and mutually indepen
dent. * 

Taking the expected value of both sides of (1), we 
obtain 

T = (8j2)[T + Bu(Nu - 1) + Nu:\fuWu 

+ NuCu(Mu - 1) + I + Be(Ne - 1) 

+ NeMeWe + NeCe(~Ie - 1)] (2) 

where the symbol for each variable without a subscript 
implies its mean value. For further analysis, Equation 
(2) may be separated into four parts each having its 
own functional significance: 

a. user send time (the total amount of time during 
which user characters are being transmitted) 

b. computer send time (the total amount of time 
during which computer characters are being 
transmitted) 

c. user delay (the swn of all inactive periods during 
user burst segments) 

d. computer delay (the swn of all inactive periods 
during computer burst segments) 

The sensitivity analysis performed in the next sec
tion is an investigation of the properties of these four 
parts and includes a discussion of how their interrela
tion affects holding time. If any of these parts can be 

* Analyses of these assumptions have exposed their limitations. 
However, these assumptions have been shown to be reasonable 
for the analyses and conclusions of this paper. 



496 Spring Joint Computer Conference, 1969 

reduced without increasing others, holding time can be 
reduced leading to possible cost savings. 

Before discussing such analyses, it may be well to 
indicate what values have been observed for each of the 
12 parameters. This will allow us to concentrate our 
attention on those parameters and those measures of 
parameters that promise to be the areas of greatest 
possible holding time reduction. 

Collected data and sensitivity analyses 

During the current study, data have been gathered 
on a large number of calls to each of several multiaccess 
computer systems. For each system, the data have been 
partitioned into sets representing each of the 11 ran
dom parameters (the twelfth parameter, character 
width, is a constant). Probability density functions 
have been fitted to the data collected on each param
eter from each system.6 

Data from three of the systems are discussed in this 
paper. These systems are labeled A, B, and C. Systems 
A and B have the same computer equipment and ba
sically the same mix of user applications (programming
scientific). System C has computer equipment different 
from that of the other two systems and its mix of user 
applications is primarily business oriented. All three 
systems serve low-speed teletypewriter-like terminals. 
System B is rather heavily "loaded" compared to Sys
tems A and C. Table II summarizes these character
istics for Systems A, B, and C. 

Table II-Characteristics of systems studied 

System A System B System C 

Computer Type Brand X Brand X Brand Y 
Transmission Speed 

(Characters/ sec) 10 10 15 
Primary 

Application Scientific Scientific Business 
Load lVloderate Heavy Moderate 

Table III . summarizes the measured values of the 
model parameters. To ensure the privacy of the three 
systems under discussion, these values are not shown 
on a per system basis. Rather, for each parameter, * 
an average value p. is given· where p. is the average of 

• As the character widths W,. and we are treated in the model 
as random variables, they are included in Table III for com
pleteness. In the three systems discussed, however, they were 
constant as can be delived from Table II. 

the three system averages for the given parameter. 
The numbers in the column headed up. are the standard 
deviations of the three numbers averaged in p. for each 
paraIlleter. The analyses subsequently reported, how= 
ever, are based on the actual per system average values 
of these parameters. 

Table III-Average parameter values 

A u A 
P. P. 

S -No. of Burst 
Segments 82. 37. 

T -Think Time (sec.) 4.3 3.4 
I -Idle Time (sec.) .65 .48 
Bu -User Interburst 

Time (sec.) 1.6 .90 
Be -Computer Inter-

burst Time (sec.) 16. 25. 
Nu -No. of Bursts/User 

Burst Seg. 11. 3.1 
Ne -No. of Bursts/ 

Computer 
Burst Seg. 3.3 2.8 

Mu -No. of Characters/ 
User Burst 1.1 .12 

Me -No. of Characters/ 
Computer Burst 47. 27. 

Wu( = W C)-Character Width 
(sec.) .089 

Cu -User Inter-
character Time 
(sec.) .00021 .00023 

Ce -Computer Inter-
character Time 
(sec.) .00030 .000090 

One characteristic of the data summarized in Table 
III deserves further comment. It is that measures 
which should be most sensitive to computer char
acteristics seem to just that. For example, the users 
of both Systems A and B have predominantly pro-. 
gramming-scientific applications and the average num
bers of characters per user burst segment (NuMu) are 
9.2 and 10.7 for Systems A and B, respectively, versus 
13.8 for the primarily business oriented users of System 
C. Such relationships prevail in spite of widely different 
average computer delays. The average amount of time 
spent per computer burst segment in interburst delay, 
(Ne-1)Be, is 1.4 seconds in System A and 35.8 seconds 
in System B, 



Study of :rvrultiaccess Computer Communications 497 

Table IV -iVIean values of holding time components 

System A System B System C 

Average Holding Time, T 
:Minutes l7. :34. 21. 

Average User Send Time, (S/2)(NulVluWu) 
l\1inutes 0.50 0.45 0.96 
% ofT '~01_ 10f ~01 

'<J IV .L 10 v 10 

Average Computer Send Time, (S/2)(NelVIeWe) 
lVIinutes 5.7 4.5 7.5 
% of~ 33% 13% :3.5% 

Average User Delay, (S/2)(T + Bu[Nu - 1] + NuCu[Mu - 1]) 
}\;1inutes 10. 12. 11. 
% ofT 58% 35% 53% 

Average Computer Delay, (S/2)(I + Be[Ne - 1] + NeCe[l\fe - 1]) 
Minutes 
% ofT 

Table IV summarizes the macroscopic characteristics 
of these data as they contribute to holding time. An 
inspection of the table leads to the following observa
tions: 

Observation 1: The average holding time for the 
heavily loaded system (System B) is considerably 
larger than for the lightly loaded Systems A and C 
(94 percent and 60 percent larger). 

Observation .8: For the lightly loaded systems, A 
and C, Computer Delay is less than 10 percent of 
the total holding time but for System B Computer 
Delay accounts for over half of the total holding 
time. 

Observation 3 : User Delay is a significant com
ponent of holding time in all three systems, and 
in each case, is between 10 and 12 minutes. 

Observation 4: User Send Time is less than 5 per
cent of total holding time in each system and is 
not a significant contributor to holding time. 

Observation 5: Computer Send Time is smallest in 
both absolute value and in percent holding time 
for the heavily loaded System B. 

These five observations lead to three broad areas of 
interest that are discussed in the next three sections. 
The first area is the relationships between holding time 
and computer delay (Observations 1 and 2). The second 
is the relationships between holding time and user char
acteristics (Observations 3 and 4). The third is the re
lationship between holding time and computer send 
time (Observation 5). 

0.95 17. 1.5 
6% 51% 7% 

Relationships between holding time and computer delays 

The Computer Delay times shown in Table IV in
dicate a large variability among computer systems. 
This section investigates this variability. 

There are a number of convenient measures that can 
be used to describe "computer load" and "computer 
delays." The "load" on a computer is a function of the 
number of simultaneous users who are "active" (in 
queue waiting for the computer to run their program or 
output to them), and the characteristics of user pro
grams. For the purposes of the present discussion, 
data availability requires the use of "simultaneous 
users" as our measure of computer load. The manner 
in which a computer system reacts to a fluctuating 
load is a function of many additional variables, in
cluding characteristics of the scheduler. 

Average computer delay may be calculated as the 
average total amount of computer delay per call, i.e., 
the sum of all the idle times, computer interburst times, 
and computer intercharacter times in a call. * This 
method was used in Table IV to demonstrate the 
effects of total computer delay on the average holding 
times of the three computer systems. It is also bene
ficial to examine the individual components of total 
computer delay. For example, it appears reasonable 
to divorce our measure of computer delay from the 
number of burst segments in a call by considering 
computer delay per burst segment. This new measure 
is reasonable because the number of burst segments 

* Symbolically, average total computer delay per call is 
(S/2) (I + BC[NC 

- 1] + ~cC:[MC - 1]). 



498 Spring Joint Computer Conference, 1969 

Table V-Components of average computer delay per computer burst segment 
(all times in seconds) 

Average Computer Delay per 
Computer Burst Segment (d) 

Average Idle Time per 
Computer Burst Segment 

% of A. 
Average Interburst 

Time per Computer Burst Segment 
% of A 

Average Intercharacter 
Time per Computer Burst Segment 

%of d 

per call appears to be highly sensitive to user applica
tion type. Thus, calculating computer delay pe~ burst 
segment reduces the dependence of our results on user 
application. We now consider contributions from aver
age idle time (I), from average intercharacter times 
(NcCc[Mc-l]), and from average interburst times 
(BclNc-lJ). These three components of average com
puter delay per computer burst segment are shown in 
Table V. 

As can be observed, the delays introduced by inter
burst times are the majority of all computer delay 
components in each system. The explanation for the 
relative sizes of these three components is as follows: 

a. The characteristics of user programs are such 
that two or more quanta of execution time are 
required for a run to completion but output is 
generated by each quantum; and 

b. The combination of system load, output buffer 
size, and characteristics of the scheduler preclude 
the immediate availability of additional output 
when the transmission of a computer burst is 
completed. 

Because average InterBurst Time is the largest single 
contributor to average computer delay, it will be de
noted by a special symbol, I-B-T. Figure 2 shows the 
relationships between holding time and I-B-T for each 
of the three computer systems. The three points in 
Figure 2 associated ·with computer systems are the 
observed values of holding time and I-B-T for those 
systems. The three lines are generated by changing 
I-B-T for each of the systems while holding all other 
parameters fixed. The slope of each line is equal to 
one-half the nu...Tfiber of burst segments per call; i.e., 

• III ... 
i 40 

! 
III 
:II 
i= 
0 30 
z 
S 
S 
:I: 

11.1 
020 c 
a: 
11.1 
> 

.Q",,,lo'YYl A 
I-.JI:J0llV"1I """.&. 

1.7 

.33 
19% 

1.4 
79% 

.03 
r,(}1 
~/o 

System B System. C 

37. 1.4 

1.2 .41 
3% 28% 

36. .99 
97% 69% 

.02 .04 
Q.01_ 
OJ If) 

SYSTEM C 

SYSTEM A 

~IY"'''' 
X ___ SYSTEM • 

c 

':~t ~ 
10 20 30 40 

AVERAGE COMPUTER INTER - BURST T I M'E DELAY PER 
COMPUTER BURST SEGMENT (SECONDS) 

50 

Figure 2-Average holding time versus average computer 
interburst time delay per computer burst segment 

8/2, because when every other factor in Equation (2) 
is held constant, it becomes 

Holding Time = Constant + (8/2) (I-B-T). (3) 

Note that the lines for Systems A and B are close 
together. As these two systems have similar configura
tions of hardware and software, support is given to the 



Study of Multiaccess Computer Communications 499 

conjecture that increasing the load on System A would 
lead to values of I-B-T and holding time comparable 
to those of System B. Conversely, deloading System B 
should result in these parameters having values com
parable to those of System A. 

N ext, as it appears that holding time is a function of 
I -B-T and I -B-T is in turn a function of the loading on 
the computer and hence on the number of simultaneous 
users, an expression relating I-B-T and number of ac
tive users can be established. 

To establish the relationship between I-B-T and 
number of simultaneous users, both quantities were 
measured on the systems as a function of time of day. 
The solid curve in Figure 3 indicates the average number 
of simultaneous users of System A for 15-minute periods 
of the day. The average I-B-T's were calculated for 
hourly periods on data from System A and a least 
squares fit of a variety of curve types was investigated. 
For these data the best fit is 

I-B-T = (0.18) exp (0.13 u) (4) 

where 

u = number of simultaneous users, 

or 

u = (7.7) (1.7 + In I-B-T). (5) 

The dashed curve in Figure 3 is a plot of u versus 
time of day by using Equation (4) and the actual mea
surements of I-B-T versus time of day. This fit seems to 
reflect the major characteristics of the data as shown by 

the solid line in the sense that at least the morning and 
afternoon busy periods are reflected along with the 
intervening noontime lull. 

Using (4), a plot can also be made relating I-B-T and 
the number of simultaneous users. Figure 4 sho"\,,"s this 
relationship as well as three curves showing the effects of 
I-B-T on holding times in Systems A, B, and C. These 
latter curves are plotted from Equation (3) after sub
stitution of (4). Figure 4 indicates that above some 
threshold (represented by the knees of the curves) the 
computer's grade of service deteriorates rapidly as 
additional users are accepted. * 

Relationships between holding time and user characteristics 

Tables VI and VII, below, are used to illustrate 
several relationships between holding time and user 
characteristics in this section and between holding time 
and computer send times in the next section. 

* Here an analogy can be drawn between the manner in which a 
multiaccess computer reacts to increasing loads and the fashion 
in which a telephone R\vitching system reacts to overloads. As 
the link occupancy increaRes in a telephone office, the probahility 
that a path through the switching networks cannot be found for 
an incoming call increases in a manner similar to the computer 
delay curve in Figure 4 (Reference 6). Such failures to complete 
connections can cause the common control equipment to generate 
additional attempts ~hat consume additional real time. In ('omput
er systems, the analogous work is the "swapping" of URer pro
grams into and out of central processor core. For a further 
discusRion of this computer prohlem see Scherr.l Raynaud,2 
Greenberger,7 and Coffman.8 

Table VI -Send time information 
(all times in minutes) 

System A System B System C 

Average Holding Time (r) 17. 34. 21. 
Average Total Send Time (R) = (S/2)C~"u~Vlu,Vu + NcMcWc) 

% of r 
6.2 

;36% 
,5.0 8.4 

15% 40£Jo 
Average User Send Time (S!2)(Nu~VruWu) 

% ofr 
% ofR 

Average Computer Send Time (S/2)(Ncl\1cWc) 
% of T 

%ofR 

Table VI shows, for each system, the average holding 
time (r), the average total send time** (R), and the 

* * Average total send time is the sum of avera/l:e user Rend time 
and average computer send time. 

.50 .4;) .96 
3% 1% ;')% 

8% 9% 11% 
,':).7 4.5 7.;j 

33% 13% 35% 
92% 91% 89% 

average user and computer send times. These quantities 
are measured both in minutres and, for the latter three 
categories, as a percentage of holding time. 

Table VII is constructed identically for delay quan
tities rather than for send time quantities. 



500 Spring Joint Computer Conference, 1969 

Table VII -Delay infonnation 
(all times in minutes) 

Average Holding Time (T) 
Average Total Delay (D) 

% ofT 
Average Total User Delay 

%ofT 
%ofD 

Average Total Computer Delay 
% ofT 
%ofD 

25 

NUMBER 

NUMBER OF USERS 
PREDICTED FROM , 
COMPUTER DELAY ANALYSIS----, 

8AM NOON 
TIME' OF DAY 

4PM 

, , 
\ 

7PM 

Figure 3-Number of simultaneous users in system A versus 
time of day 

Table VI indicates that (a) in all three systenlS 
average user send time accounts for less than five per
cent of average holding time and less than 12 percent 
of average total send time, and (b) the users of System 
C inputted about three timest as many characters as 
the users of the other two systems. A conclusion that 
can be drawn from (a) is that user send time is an in
significant contributor to holding time. Even if average 
user send time increased by a factor of three, the in
crease in holding time would be only one to two min-

t Recall that terminals in System C operated at 15 characters 
per second versus 10 characters per second in the other two 
systems. 

Ui o z 

150 

a: 0 
W U 

~S120 
ILl-
2z 
OW 
u2 
oC) 
Zw 
<tin 

en In 90 
wa: 
I-~ 
~111 

~a: 
2 w 
_IL 

~ ~ 60 
-.J 
I-w 
C)O 

~I-
01 
.Jill 
0, 
:r- 30 

o 10 

Systern A SysteTrb B System C 

17. 34. 21. 
II. 29. 13. 
64% 85% 60% 
10. 12. 11. 
58% 35% 53% 
92% 40% 88% 

.95 17. 1.5 
6% 51% 7% 
8% 60% 12% 

20 30 so 
NUMBER OF SIMULTANEOUS USERS 

Figure 4-Average holding times and computer interburst 
time (I-B-T) delay per burst segment versus number of 

simultaneous users 

utes, assuming that total user delay remains fixed. The 
reasons for (b) are probably a combination of, first, 
the business oriented applications of many of the sys
tem's users and, second, the rather low computer de
lays experienced in System C. It is possible that this 
increase in user input volume in System C is encouraged 
by the small computer delays experienced in that sys
tem. The same factor could also be partially responsible 
for the greater degree of on-line interaction in System 
C which when compared to Systems A and B had about 
double the average number of burst segments per call. 

Table VII indicates that average total delay D (the 
sum of average user and computer delays) accounts for 
more than half of average holding time. The lowest 
percentage is for System C where average total delay is 



Study of Multiac.c.ess Computer Communications 501 

60 percent of average holding time; the highest is Sys
tem B with 85 percent. Of these delays, users con
tributed from 40 percent (System B) to 92 percent 
System A). Another observation is that the absolute 
value of average user delay is between 10 and 12 min
utes in all three systems. This consistency is rather
remarkable when one considers the diversity of other 
parameters that affect user delay. 

One might conjecture further about how user send 
time and delay characteristics would be affected by 
different transmission speeds, different program appli
cations, different levels of user sophistication, and 
many other variables: For example, the user who in
puts his prepared program from punched ta.pe elim
inates the user delay introduced by the user who per
forms this function by the hunt and peck method. An 
analogous "user" characteristic is computer send time 
which is determined ahnost entirely by the amount of 
computer output requested by the user. The next sec
tion discusses how this measure affects holding time. 

Relationships between holding time and compu.ter send time 

Table VI shows that the system with the highest 
load, i.e., System B, has the smallest user send times 
and computer send times in both absolute value and in 
percent of holding time. This fact may be partially 
caused by the user's tendency to limit the amount of 
on-line I/O when he experiences long computer delays. 
The second, and more useful, observation that can be 
made from Table VI is that in systems which are not 
heavily loaded, average total send time may be on the 
order of 35 percent to 40 percent of average total 
holding time. Of this time, approximately 90 percent is 
computer send time. 

We may infer from these data that, barring changes 
in user patterns and other influencing factors, holding 
time may be materially reduced by providing a high
speed channel from the computer to the user and a high
speed printer, or other display device at the user's 
location. This system redesign would enable a decrease 
in We, computer character width, with a corresponding 
decrease in 

Holding Time = Constant + (S/2) (Ncl\1cWc). (6) 

Figure 5 is a plot of average holding times versus 
computer-to-user channel speed assuming all other 
factors remain constant. Of the three systems, two of 
them, viz., Systems A and B, have computer channel 
speeds of 10 characters per second. System C transmits 
at 15 characters per second. Note that if System C 
transmitted at 10 characters per second, its average 
holding time would be expected to increase to about 25 
minutes from 21 minutes. 

40 

;; 
I&J 

~30 
z 
i 
I&J 
2 

j: 20 
C!) 
z 
25 
E 
:z: 
I&J 

~ 10 
iii:: 
I&J 

~ 

o 

~ 
----~-~-~-=-=-~-~-~-~-~ 

SYSTEM B 

~~~MC 
~ ----~~~~~-==-

SYSTEM A

ASSUMPTIONS:

- USER EMPLOYS NO COMPUTER SEND TIME FOR THINKING
- - - - USER EMPLOYS 10% OF COMPUT~R SEND TIME FOR THINKING

10 400 1000
COMPUTER CHANNEL SPEED IN CHARACTERS PER SECOND

(NOTE: LOGARITHMIC SCALE)

Figura 5-Average holding time versus computer transmission
rate for three long holding time system.,

If computer channel speed were infinite, the average
holding times for Systems A, B, and C would be 11.7,
29.3, and 13.7 minutes, respectively. To approach these
minima within ten percent would require computer
channel speeds of about 60 chi sec for System A, 20
ch/sec for System Band 100 ch/sec for System C.
If a channel speed of 360 char/sec were available, the
computer send times would be less than one half min
ute and less than 2.5 percent of average holding time in
each system.

At this point one' might conjecture that there are at
least two components of holding time that are likely to
increase if computer transmission rates are increased.
The first is think time because, in at least some in
stances, the user utilizes computer send time to read the
output he receives. Hence, if the computer outputs the
same number of characters in a much shorter time in
terval, the user may increase his think time in order to
do the same amount of reading and thinking. This
interplay of responses and transmission rates has effects
on holding time in that it suggests the existence of some
upper bound on computer transmission rate beyond
which decreases in computer send time are matched by
equal increases in user think time. The result is that av
erage holding time cannot be further reduced by in
creasing computer transmission rates. In order to attach
quantitative significance to this conjecture let us assume
that the average user employs currently 10 percent of
computer send time for reading and thinking. * This

* Ten percent is certainly a high figure for the user who is listing
his program to provide a paper copy for filing purposes but j:,;

low for the user who is checking every comma and parenthesis
in order to find a program bug.

502 Spring Joint Computer Conference, 1969

assumption implies that a tenfold increase in computer
transmission rate will result in minimum average
holding time. For Systems A and B this rate is 100
characters per second (1000 words per minute) and
yields holding time of about 12.5 minut.es and 29.5 min
utes, respectively. These average holding times are 28
percent and 13 percent less than the current holding
times and seven percent and one percent greater than
the theoretical minima shown in Figure 5 for Systems A
and B. For System C, the corresponding transmission
rate is 150 characters per second. This would reduce the
average holding time in System C by 31 percent to
about 14,15 minutes which is six percent greater than the
theoretical minimum of 13.7 minutes. The minimum
holding times implied by this assumption are shown as
dashed lines in Figure 5.

The second variable that may naturally increase if
computer transmission rates increase is the quantity of
output requested by the user. For example, if the com
puter transmitted at 360 characters per second, com
puter send time would be less than 2.5 percent of av
erage holding time in all three systems, and users may
find it quite convenient to request two or three times as
much output as they do presently. This increase in out
put will not severely affect average holding times,
however, as even a tripling of computer send time would
increase average holding time by less than a minute
assuming a 360 character per second computer rate.

It should be noted that these figures are heavily de
pendent on such factors as user application. For exam
ple, if the application is not scientific programming but
rather inquiry-response one might anticipate dras
tically shorter holding times. Consider the telephone
directory assistance operator who makes a five second
query of a computer that responds in one second with
the beginning of a 1000 character transmission to be
displayed with a video terminal. Assume that "holding
time" is defined to be

T = operator keying time

+ computer response time

+ computer transmission time

or

7 = K + I + 1000 We.

For the numbers we have assumed,

T = 6 seconds + 1000 We ,

his program to provide a paper copy for filing purposes but is
low for the user who is checking every comma and parenthesis
in order to find a program bug.

Ci)
o
z
o
U
IIJ
en

80

;60
2
~
c:> z
(5
oJ

~ 40
IIJ

~ 20~
I

O~I ~I~ ________ ~I ______ ~I __________ ~I ____ --JI

10 40 100 400 1000
COMPUTER CHANNEL SPEED IN CHARACTERS PER SECOND

(NOTE; LOGARITHMIC SCALE)

Figure 6-Average holding time versus computer transmission
rate for hypothetical short holding time system

and at 10 characters per second, this results in a 106
second holding time of which 94 percent is computer
send time. At 360 characters/second, T = 8.8 seconds
but computer send time is still 32 percent of T. At 4000
characters/second, T = 6.25 seconds of which four per
cent is computer send time. Figure 6 shows a graph of
holding time versus computer channel speed for the
short holding time example we have assumed.

SUl\1MARY AND CONCLUSIONS

The results of a study of the communications con
siderations of serving multiaccess computer systems
have been presented. A modEl of user-computer inter
action, as observed at the communications interface,
has been developed. Summary data from three "long
holding time" computer systems have been given for
the parameters of this model.

Examination of these data has revealed that

a. Computer introduced delays can be a large com
ponent of holding time and, above some thresh
old, are acutely sensitive to the number of
simultaneous users. The largest component of
computer delay occurs during those periods when
the computer is outputting to remote users. The
conclusions to be drawn from these findings stem
from the consideration of holding time as being
composed of periods of computer outputting
activity, and periods of no computer outputting.

Study of Multiaccess Comnuter r,nv't"V'l't"V'll1 ;nn ... ;"' n f;O~ ... ~ ~ .U.L.u u .. \..oQ " .. v~~i:I - --

Of the inactive periods, some time is due to user
dependent delays and some to computer-de
pendent delays, some, such as execution time,
may not be reducible and others, such as de
lays due to overhead, can be reduced. It should
be noted that changes in the computer system
such as changes to the scheduling algorithm,7.8.9
or changes to the communications control unitlO

can strongly influence computer delays. Thus,
it is within the compu('ing system that some re
ductions in holding time may be made resulting
in communications economies. As not all com
puter delays can be eliminated in a heavily
loaded system, the technical and economic
feasibility of employing data multiplexers at the
computer to decrease the number of access lines
should be explored.

b. The average number of characters sent by the
computer to the user is an order of magnitude
greater than the number of characters sen,t by
the user to the computer. If other parameters
did not change drastically, the availability of
higher transmission rates for computer output
ting would effect significant reductions in av
erage holding time. A computer transmission
rate of 360 characters per second would reduce
total computer send time below one half minute
per call. To achieve this rate requires either
high speed or asymmetric data sets and corre
spondingly higher speed output terminals.

c. Delays introduced by the user are a significant
contributor to average holding time. The average
user delays in the three systems reported are re
markably close in absolute values. As user de
lays are appreciable, the multiplexing of inputs
from user terminals which are geographically
clustered appears attractive and is being studied.

The data analyzed in this report are from systems
having primarily scientific and business problem
solving applications. The users of such systems demon
strate a wide range of sophistication in their use of these
systems. As users educate themselves in the efficient
use of multiaccess computers and their terminals, the
data traffic characteristics of these systems will change.

Studies of multiaccess computer communications
systems are continuing. Data are being collected from
systems with markedly different terminal types, average
holding times, and user applications. Analyses of these
data will allow the characterization of such systems in
a manner analogous to that reported above for "long
holding time" systems.

Implications of results

. The implications of the results of this study extend
mto several aspects of computer communications. The
study has produced quantitative indications of the
degree to which computer operations can influence such
communications parameters as holding time. The de
velopers of computer systems, in turn, have noted that
the provision of computer hardware and software to
accommodate data communications i.';;; a rna ior nrohlAm

area.1l,12 In order to jointly optimize the cd~p~t~t~~=
communication solution to the problem, it is apparent
that closer coordination between the computer and
communications systems designers would be extremely
fruitful in terms of economic and technological improve
ments to overall systems design.

One of the impediments to finding rapid and robust
solutions to the problems of multiaccess computer
communications has been the unavailability of data
descriptive of the user-computer interaction process.
The acquistion of the data reported here is a contribu
tion toward the removal of that obstacle.

These data are currently being used in systems en
gineering studies at Bell Telephone Laboratories to
further define the systems requirements for new sys
tems and services to satisfy the needs of the multiaccess
computer community.

The analyses made of these data support for the
first time in more than qualitative terms some proposals
proffered in the past as solutions to the data communi
cations problems associated with multiaccess computer
systems. The delays which are introduced by both user
and computer suggest the possibilities for effective
employment: of multiplexing techniques. For example,
it has been shown for the systems studied that the av
erage total send time (the sum of user send time and
computer send time) is as little as five to nine minutes.
This corresponds to 15 to 40 percent of average holding
time. For the other 60 to 85 percent of average holding
time the communications channel is idle. One method of
obtaining higher utilization of these facilities is by time
division multiplexing. * The following assumes a multi
plexing technique ih which the user channel is inde
pendent of the computer channel. Only one to five
percent of average holding time (or three to eight per
cent of the average user burst segment) is user send
time. Thus, for 95 to 99 percent of an average call, the
user-to-computer channel is idle and could be made

* Multiplex:ng ;s not always economical, of course, despite the
large idle times. Other important considerationss involve the
geographical placement of terminals and computers and several
statistical traffic characteristics other than average occupancy.

504 Spring Joint Computer Conference, 1969

available to additional users. Average computer send
times for the three systems were from 13 to 35 percent
of average holding time (21 to 86 percent of the average
computer burst segment) indicating that higher usage
of the computer-to-user channel may be realized by the
use of appropriate mUltiplexing techniques.

The asymmetric nature of the data flow in multi
access computer systems suggests that different trans
mission treatments may be appropirate for computer
to-user versus user-to-computer transmissions. The
large volumes of _ computer-to-user data are an order of
magnitude greater than volumes in the opposite direc
tion. The provision of computer transmission rates of
100 to 200 characters per second could reduce average
holding times up to 30 percent. As the user is capable
of generating characters for transmission at a much
slower rate, the application of asymmetric channels or
data sets receives quantitative support and is now being
studied. Provision for higher computer transmission
rates would require, of course, user terminals with ac
cordingly higher input rates.

The final conjecture receiving quantitative support
from the above analyses is that users themselves con
tribute substantially to the communications costs of
their real-time computer access calls by introducing
delays. Some of these delays are likely to decrease as
users gain proficiency. Others are due to the inveterate
characteristics of human users. As they pertain to the
use of communications and to the use of computers1•3

these characteristics are being intensively studied to
enable the design of versatile and responsive computer/
communications systems.

ACKNOWLEDGMENTS

Many people have contributed their efforts to various
parts of this study. Data acquisition was accomplished
with the considerable help of the .American Telephone
and Telegraph Company and the Bell System Operating
Companies. Contributions to the model and the analyses
and many helpful criticisms were made by ::.'viessrs.
E. Fuchs, R. J. Price and R. J. Roddy, all of Bell
Telephone Laboratories.

Our special thanks are extended to the companies

whose computer systems are being studied. Without
their full permission and very helpful cooperation these
analyses would not be feasible.

REFERENCES

1 A L SCHERR
A.n analysis of fin/'e-shared computer systems
Massachusetts Institute of Technology Projed MAC
Thesis MAC-TR-18 June 1965

2 T G RAY~AUD
Operational analysis oj a computation center
Operation" Researeh Center MIT July 1967

;~ H SACKMAN
Experinwnfal investigation of user performance in lime
shared computer sysff3ms retrospect. prospect, a.nd the
public interest
System Development Corporat:on May 1967

4 G E BRYA~
JOSS: 20,000 hours at the console, a sta'istical sllllunary
Rand COl'pol'at;on August 196i

5 P E JACKSO~
A. fourier series tes' of goodness of fi.t
To be published

6 A~OX.
Switchiug systeuts
AT & TCo 1961

7 M GREE~BERG.ER
The priurity problem
MIT ~ovember 1965

X E G COFFMAX JR
A.nalysis of two time shariil.g a1(/o;'i:thlils de.'lig/i.ed fur
limiting ~wapping
J A C M July 1968

$1 E G COFFMAX JR L KLEIXROCK
Computer scheduling methods and their countermeasures
Proc S J C C 1968

10 L J COHE~
Theory of the operating system
The Institute for Automation Research Inc 1968

11 W F BAUER R H HILL
Ecunurn'ics oj time shared compui'ing sysiems-Pari I I
Datamation Vol 13 ~o 1241-49 Derember 196i

12 W E SIMO~SO~
Data communications: The boiling pot
Datamation Vol 13 ~o 4 22-25 April 1967

13 W W CHU
A. study oj the technique oj asynchronous finze division
multiplexing jor time-sharing computer communications
Proc of the 2nd Hawaii International Conference on
Systems Sciences January 1969

A communications environment emulator

by JACK M. PEARLl\1AN and RICHARD SNYDER

Honeywell, Inc.
Waltham, Massachusetts

and

RICHARD CAPLAN

Consultant
New York, New York

The problem

Communications based systems and software, espe
cially complex systems and software, present an excep
tionally difficult checkout and debug problem to the
implementor. Conventional techniques require him to
check his often times labyrinthine maze of response
paths in a plodding, single step by single step, long
drawn out and expensive manner. He checks the non
communications or non-real time portions of his pro
gram easily enough. The methods of testing standard
peripheral functions are well enough known and ade
quate tools exist for the job. The techniques for check
ing basic data processing logic are available with every
batch oriented system. Communication based system
checkout is complicated by the real time nature of the
systems. The give and take of on-line terminals, the
multiplicity of choice, the need to process data in
various stages of disarray, the necessity of leaving
some partially complete processing sequence and re
turning to it at a later time, these are the problem fac
tors. These are the things which make conventional
checkout procedures a millstone around the neck of a
system builder.

He is required to generate huge quantities of test
data, each item of which is keyed to a specific path,
expecting a specific response. He simulates as well as he
can the action of his operational system with a console
or perhaps with a card reader or maybe a single actual
terminal. The usual scenario then calls for him to use
several actual terminals and operators, with the attend
ant confusion, logistic difficulties and expense. The
final step is a full blown system test sequence using all

the equipment and all the operators and he hopes that
all the parts are exercised and that all the problems are
solved.

This technique works, to a point. It does produce a
workable system. It does, eventually, succeed in resolv
ing a large percentage of possible problems. The cost
of doing so, however, is extremely high. Devising a
specific datum for a specific path test is time consuming,
especially since the number of paths may be counted in
the hundreds or thousands. Using live terminals and .
live operators presents a major organizational problem
and requires large cash outlays. Such a system too,

. violates a prime rule of scientific investigation-re
producibility of an experiment. The programmer is
rarely positive that a fix works since he can never ex
actly recreate the conditions causing failure.

The solution

Taking these objections, and others, together, we
decided to find a better way to check and debug com
munications based systems and system software. The
result of our efforts, is "The Honeywell Communica
tions Environment Emulator" (HCEE).

HCEE is a multi-purpose communications network
simulator whose prime purpose is to aid in the checkout
and debugging of communication software, real time or
otherwise. A secondary purpose is to permit experi
mentation with software and remote terminal con
figurations where the terminal itself is non-existent. A
tertiary reason for being is to evaluate communica
tions software by determining its operational limits and
its response to unusual stress.

------------------------------------- 505------------------------------------

506 Spring Joint Computer Conference, 1969

The system may be quantitatively defined in terms
of its design goals. It will simulate up to 6::3 lines, with
several distinctly different classes of terminal repre
sented, up to eight terminals per line and generate at
least 70,000 lOO-character messages per hour on an H-
1200 computer. It will require a minimum 65K C.P.
with about 30K taken up by instructions. It will handle
as many message types as a user cares to define and
check for as many response types as he wishes. The sys
tem will generate as many message variations as a user
provides defining entries for, in some cases using a ran
dom selection process, in others using a round-robin
technique. HCEE will eventually be able to introduce
perturbations into a data stream to simulate line con
trol errors and other line associated faults.

The Emulator will reside in its own processor, with
the system under test (target) in second C. P. The two
computers communicate via standard communications
hardware. The target system thinks that it sees a real
communication network, with real terminals and oper
ators, in the outside world. Actually HCEE generates
all queries and responds to all answers by simulating or
emulating the characteristics of the actual terminals
and their operators. This approach to checkout is itself
complex and by no means inexpensive. But it is far less
complex and far less expensive than conventional check
out means and carries with it many distinct advantages.
Use of a computer permits reproducibility and creation
of exhaustive system evaluation reports. By recording
every message transmitted (control and data) and every
message received, along with the system time, it be
comes possible to "play back" an entire sequence as a
way of validating changes to the target system. These
same records become the basis for a complete series of
reports describing the operation of the system in detail
and the success with which various classes of messages
were handled, including deliberately created error mes
sages. The computer, too, permits automatic message
generation and response analysis based on skeletons
defined by the user.

The product

The form which the HCEE design took was partially
determined by a number of criteria for use, not the
quantitative ones described earlier, but qualitative ones.
One major criterion was that the system be modular.
By modularity we imply that the component elements
be so loosely related to one another (or decoupled) that
any element could be readily replaced by a similar
component of greater or less complexity. That is, ex
cept for some minimum capability, new routines could
be added and/or existing ones deleted from the system.
This criterion is essential to a system such as HCEE

since its utility will be partially dependent upon our
ability to adapt it to handle changed operating con
ditions, and provide capabilities not originally consid
ered. Modularity is achieved by use of elaborate table
structures and list processing techniques "'(.vhich insulate
processing routines from one another. All contact be
tween routines is through tables, lists or well defined
interfaces to small central control programs.

A second important criterion was that the system be
able to generate large message volumes within user
defined response constraints. This implies that the time
limitations associated with program or data storage on
external media probably would become intolerable,
Consequently it was decided that the entire program
and its data base be core resident.

A further goal was to make the program usable in
ternally by Honeywell as a systems checkout tool and
eventually externally by our customers, with a third
potential user being independent service bureaus. These
were some of the factors which led us toward residence
in a separate C.P., with independent communications
capability. We could now use this tool to debug a target
system hundreds of miles away and work with target
systems residing in non-Honeywell computers.

The last major criterion considered required that the
generated system be independent of any existing oper
ating system. This decision 'Yas made to insure usability
in a smaller computer than would otherwise be neces
sary and to insure better control over HCEE operation
by not being tied to operating system conventions. We
will use operating system MOD 2 to generate the system
however, in order to take advantage of the macro assem
bly and linkage editing and loading facilities of MOD 2.

Phase structure

Functionally, HCEE may be considered as having
four discrete phases; Test Generation, Test Initializa
tion, Test Execution and Test Result Analysis.

During Test Generation, the data and environment
Specifications which define the test case are integrated
into the HCEE execution phase structure. This opera
tion is accomplished through application of the Macro
Assembly facility. Macros were selected as the prime
configuration medium for several reasons: the facility
exists; it is fairly powerful, it is well understood; macros
are relatively easy to use; they require minimal man
power to implement; they are, of all alternatives, the
cheapest to use. Macros were an expedient choice but
more importantly, they do not impose any major limita
tion upon either the design or the final use of the system.
One further consideration is the relative ease of change
which macros provide. Certainly as our experience with
the Emulator grows, we will find areas for improvement.

The macro approach simplifies at least one such area.
The chief alternative to the macro approaeh, one which
is attractive for future use, is an English like language.
Unfortunately however, this choice possesses as dis
advantages (for the initial system) the negatives of al
most every element cited for the macro approach.

Macros defining the particular test (via parameter
lists) are assembled into table structures which serve as
the data base during test execution and provide system
specialization control information for use during test
initialization. The macro language is divided into four
logical divisions which functionally correspond to those
of COBOL. Thus, the Identification Division consists
of user specified information for unique identification of
a test run or series of runs. The Environment Division
defines the virtual terminal population being emulated
as well as user specified message volume and scheduling
constraints. The Data Division provides the templates
necessary for query generation and response analysis.
Finally, the Procedure Division defines the information
necessary to proceed through a transaction. That is, the
decision information necessary to decide "what to do
next". For example, what query to send next based up
on an analysis of the last response received.

Test initialization takes the linked HCEE programs
and tables (on tape in self loading format), performs
b~ic communication startup and housekeeping func
tions, and dynamically generates certain table entries
from the data supplied at test generation time. In addi
tion, the first message to be sent across every active
line is generated and scheduled.

During test execution, HCEE generates, transmits,
and logs queries and receives, analyzes, error codes, and
logs target system responses. Although a limited amount
of controlled console operator intervention during test
execution is acceptable, the execution phase is capable
of running with no outside intervention and with no
calIon external data storage except for logging purposes.

Following termination of a predetermined test inter
val supplied by the user, the test result analysis phase is
initiated. During this phase the Log Tape is sorted in
to a variety of sequences (as called for by the user spec
ified reports) and the report generation sub-programs
are executed using the log as input, to produce target
system performance reports for diagnostic and efficiency
measurement purposes.

All four phases of HCEE may be executed con
tiguously on a load and go basis, or they may be broken
into three parts: Generation, Initialization and Exe
cution, and Result Analysis.

Basic facilities

HCEE incorporates the following features:

A Communications Environment Emuiator 507

:t. Control
1. Spceifieatioll by the user of desired test in

terval length, and line transaetioll volume
as a time dependent function.-

2. Specification by the user of both the real and
virtual (terminal) hardware environment
in terms of the number, line distribution, ..
and type of terminals to be emulated.

3. Specification by the user of context depend
ent, scheduled time intervals to be applied
in initiating queries that represent the con
tinuation of transactions.

4. Specification by the user of the syntactic and
semantic rules which establish the relation
ship between target system responses re
ceived and the next call generated from the
same terminal. These rules are supplied as
logical table structures which can be
probabilistic ally weighted to ensure the
generation of a prescribed transaction
mix, and the production of a statistically
vittble sample of certain expected operator
behavior patterns, as (for example) "think
time" to absorb received information.

5. Specification by the user of errors to be in
troduced into the transmitted data stream
either in accord with statistical measures of
type and frequency or continual generation
of specific errors.

b. Query Generation
1. Generation of fixed or variable length (for

mat) queries with dynamic selection of key
user specified parameter fields.

2. Dynamic selection of the appropriate query
to generate within an interactive context
defined by the user in a transaction syntax
definition.

c. Response Analysis
Identification of fixed or variable length target
system response types fixed keyvwrd or para
meter matching search methods.

d. Error Detection
1. Dynamic marking during test execution of

all response errors. These trrors include
invalid (unrecognized) target system re
sponses as well as valid hardware and
system error conditions, such as line a..':lSO

ciated errors.
2. Dynamic marking during test execution of

all calls which are generated after their
scheduled transmission time, distinguishing

508 Spring Joint Computer Conference, 1969

a. deterioration in HCEE performance from
a reduction in Target System efficiency.

e. Reporting (and result analysis)
Post mortem production of a comprehensive set
of HCEE test performance analysis reports in
cluding such critical measures as response time
gra.phically plotted as a function of transaction
volume, polling delay (interval measuring oper
ator request to actual transmission) as a function
of volume. HCEE service time by message type,
etc.

Emulator program components

HCEE incorporates various fixed and generated
components (elements). Each element, along with a
brief description of its function, is presented below.

1. Executive-The central element. It is responsi
ble for interrupt management and time slice al
location.

2. Terminal Operations Subsystem-The genera
tive and analytic component of HCEE. It is
composed of a fixed element, the Diagrammer;
and generated elements, the Query-Response
Lists, V ocabulary Lists, and Transition Dia
grams. The Diagrammer traverses the Transition
Diagrams using the Query -Response Lists in
conjunction with the Vocabulary Lists for Query
generation and the Query-Response Lists alone
for Response analysis. The balance of the paper
will concentrate on this subsystem.

3. Transaction Scheduler-The element which pro
vides the time increment at (relative to current
time t) at which to initiate a transaction for a
particular terminal. The decision of what at to
produce is based on user supplied volume con
straints and a random number generator. The
Transaction Scheduler is activated by the Com
munications Subsystem.

4. Communications Subsystem-This element is
responsible for transmission and reception of all
traffic to and from the system under test. The
Communications Subsystem is. triggered by the
Executive Routine following an interrupt from
the multiline controller.

5. Path Selector-The module which has the final
responsibility for selecting which query to send.
It chooses the query on a user specified percent
age basis from a population of queries selected
as a result of analysis by the Diagrammer.

6. Console Routine-The element which is respon
sible for outputting system messages to the con-

sole and allowing the console operator to input
action requests.

7. Buffer Linker-The element which has the re
sponsibility for linking buffers of a message to
gether and activating the Diagrammer in the
case of a fully linked Response, or the Communi
cations Subsystem in the case of a fully linked
Query.

8. ~:Iessage Logging Routine-The element which
logs to magnetic tape all transmissions between
the system under test and HCEE

Figure 1 illustrates the relationships between the ele
ments of HCEE.

The key

Before continuing with the narrative, it is advan
tageous to diverge slightly and define some essential
terms.

1. Query-Any message generated and transmitted
by HCEE regardless of initiating impetus. In
other words, even if the message in question is
an answer to a request from the target system,
it is considered a query.

2. Response-Any message received' by HCEE
regardless of whether solicited by HCEE or not.

3. Transaction-A sequence of messages (made up
of queries and responses) which perform an iden-

I • VC£CUTIY£

COMIIUfICATIONS IIT£RRUPT - ~ MANAGOIENT r---- LOG ROUTINE ~ US'tSTEM ~TOR I-

,........ 1
tobe 11_e!
IIIIIIecI,

BUFFER CONSOlE
--t

LINKER ROUTINE

,
_tel

....,
I to be,
I j

I
T_.OpIr.SuIIIya.

~--IQ-RII"I
! I ! 0-, l VaoIII. ! !

II~
Figure I-Basic elements of HCEE

tifiable application function. For example, a
transaction involving a sale might consist of:

a. How many widgets in stock (query)
b. Ten widgets in stock (response)
c. Sell 10 widgets to ABC Co. (query)
d. Confirm 10 widgets to ABC Co. (response)

4. Transition-State-Diagram-A nodular structure
providing finite reference points for states of the
system. A completed action on an object may be
considered as a state of being of that object.
There are indicators and conditions associated
with that state and there is an expectation of
one or more of a finite number of future op
erations which might occur on the object as a
result of what has already taken place. For ex
ample, consider a ball at rest on the ground.
It's state of being may be defined as "at rest."
This state carries with it information, some of
which may be indicators, some descriptors, some
measures of expectancy of future events. An
example of an indicator may be recognition of
the fact that the ball is stationary; a descriptor
might be that it has zero kinetic energy; ex
pectance, that it will be thrown up in the air or
that it will be thrown against a wall. Any other
occurrence is an error or failure of the system
involved. Further, consider that at the moment
anything happens to the ball, it is started on the
way to a new state of being regardless whether
what happens is expected or not. If we now d~
fine the state of being as a "node," the process of
determining which of several possible futures has
occurred as execut~on of an action routine, and
completion of that p'ocess as a.rrival at a new
state of being (node), then we have explained the
concept behind 1 he opening description as a
"Nodular Structure.'" All that remains is to
emphasize that ali possible relationships are
predetermined by the user. Should he make a
mistake in defining a relationship, or if he leaves
out a relationship, the system will be immedi
ately aware of the mistake. In that sense the
process is a heuristic one and allows checkout of
the logical dependencies between information.

Terminal operations subsystem

The Terminal Operations Subsystem is the heart of
HCEE. It contains the prime processing components
and is responsible for the generation of queries, checking
of responses and maintenance of transaction flow within
HCEE. It provides a user with the ability to drive his
simulated system over a sustained interval (which may

A Communications Environment Emulator 509

be measured in minutes or hours), without creating an·
extremely large, highly specific test case library; with
surety that he will exercise every path through the tar
get system· that he can conceive of and describe, in
cluding error paths. Moreover, the user is assured that
events within the network will occur in a timely manner,
in accord with volume and operator (or syetem) re
action time constraints defined by him.

The test transaction structure of HCEE is in the
form of directed strings of items (Queries and Re
sponses) which permit an exceptionally complex set of
relationships to be described. The simplest variation is a
one dimensional sequence such as:

Complex networks which introduce choice may be con
structed similarly:

•••• ETC.

For response analysis purpo~s, it is presumed that the
-paths emanating from a Query Node represent all pos
sible responses to that Query Node (including a default
or error state) and conversely that the paths from a Re
sponse Node represent all possible queries generatable
as a result of the response. The Query jResponse mech
anism may be further improved by assigning selection
probabilities to various queries so that queries are gener- •
ated roughly with the frequency that they are expected
in the actual system. This ability has the added advan
tage of facilitating experimentation to determine the
effect on a system of different message type loading
within a specific overall volume.

Test data base

The Test Data Base consists of a collection of transi
tion diagrams (Transaction Logic Network) similar to
those just described, which reference a file of user
created skeletal message descriptions known as "Query
Response List". The Query entries within the Q-R
Lists may in turn reference a set of key word strings or
"Query Vocabulary List" which supplies variable word

510 Spring Joint Computer Conference, 1969

I :

~ -'

.. QII

R,

R2

Rill

Figure 2-Relationship of transition diagrams to query
generation tables

values for inclusion in generated Queries. The relation
ships are illustrated in Figure 2.

o : : : node = state defined by the transmission or
reception of a specific message type
(nodes are either Q or R type where
Q = query and R = response).

: : : path = implicit execution of an Action
Routine (query generator or re
sponse analyzer) necessary to
move from one node (state) to the
next as directed by the path.

: : : first node for transactionn

: : : transaction terrnination node which
corresponds to a return of the ter
minal involved to an idle state.

: : : Format Template for query n which is
used by the query generator to produce
the actual message.

: : : Identification template for response m
which is used by the response analyzer.

W 1 ... 'N k Variable length word strings (circular liILked
lists) l-k which serve as lexical source ma
terial for query building, i.e., varying data
elements such as part numbers, which are
inserted into defined fields in a query tem
plate to create a complete query ready for
transmission.

The transition diagrams themselves are represented
by a set of variable length records, one for each X ode
in the network. They are created during the test gener
ation process from user supplied information. The
Query K ode referred to in Figure 3 is the place at which
a particular Query is generated and a subsequent re
sponse is analyzed. Upon positive identification of the
response, control passes to the proper Response Node
for preparation of the next Query. Non-identification of
a response, indicating either a failure somewhere within
the system or a mistake in describing the system by the
user, causes control to pass to the error routine associ
ated with the Query Node. HCEE supplies a single
common error routine. The user is free to replace it or to
add others as he wills. Query path selection using the
associated probability measure, and calculation and
assignment of the required intermessage interval, are
done by the Path Selector subroutine of the
Diagrammer.

R:>DE TYPE :: QUERy

~-RESPONSE L.IST POINTER

NUMBER OF PA'mS ~TING FROM THIS R:>DE

ERROR ROUTINE

TARGET R:>DE (R 1)

TARGET R:>DE (R ~

R:>DE TYPE • RESPONSE

QUERY-RESPONSE L.IST POINTER

NUMBER OF PATHS EMANATING FROM THIS R:>DE

TARGET R:>DE (Q 1)

INTERMESSAGE INTERVAL (Time of delay before

transmission of this QUERY)

FREQUENCY OF USE (A probabilistic weighting factor

to assure selection among Queries

based on real system expectation)

TARGET R:>DE (Q~

Figure :3-Record structure for transmission diagrams

Query-response list

The Query-Response List is acted upon by programs
called Action Routines, which are executed by the sys
tem while it is traversing the Transition Diagrams.
There are two basic types of Action Routines; the Re
sponse Analyzer and the Query Generator. The Re
sponse Analyzer determines which Response Node to
activate. That is, it decides which Response type of a
nlLTUber of possible Responses has actually arrived. The
Query Generator concatenates the fields specified in the
Query-Response List with values extracted from the
Vocabulary List so as to create complete messages from
the skeletal formats of the Q-R List.

Query-vocabulary list

Creation of a wide variety of queries from a single
Query skeleton is made possible by the Query-Vocabu
lary Lists. Included in a Query skeleton record are a
series of field descriptors which define fields as constant
or variable. Variable field identifiers contain pointers to
vocabulary list records containing a series of possible
values for the particular field. Normally the values will
be selected sequentially on a round-robin basis. The
technique allows the inclusion of deliberate data errors
to check data handling characteristics of the Target
System. Figure 4 illustrates a vocabulary list field.

Sample network

The diagrams of Figure 5 give a pictorial representa
tion of a very simple one transaction network. In this
illustrative example, the first query of the transaction
will be "DO YOU HAVE" and then one of a set of items
listed in a Vocabulary List. There are three possible re
sponses, "YES," "NO," or "REPEAT MESSAGE".
In the case of the first two responses, the transaction
is terminated. In the case of "REPEAT MESSAGE",
50 percent of the time a new query will be sent and 50
percent of the time the transaction will be terminated.

Diagrammer

The Diagrammer is the central control routine which
coordinates the activity of the Response analyzer and
Query Generation Action Routines. At any point in
ti:l~e, for a given terminal, a set of transaction continu
ation possibilities exist. The set consists of those paths
emanating from the current node address of that termi
nal. Earlier it was stated that recognition of a particular
Response led to generation of a specific Query. Actually
there may exist a number of valid queries. When selec
tion of a single Query from a population is needed,
control passes to the Diagrammer, which retrieves the

A CommurJcations Environment Emulator 511

POINTER POINTER TO ~RD l«lRD
TO FIRST CURRENTLY LENGTH ONE
LIST ACCESSED
ELEMENT ELEMENT

~
VOCABULARY
LIST POINTER
IN QUERY RE<DRD
OF Q-R LIST

IILE

Figure 4-A vocabulary list entry

TRANSITION
DIAGRAM

Q-R LISTS

QUERY
Q[,ISTl
3
ERRORRTH

36
t------... OLIST

.. ~C!!.O_N.!_
2 --iJ.---

R2
R3

RBSIIORSI

C

~r----
c
.:~TL __

~~~l __ ~ .;v.! __ 
IILE X _ V 

1_ VOCABl r--
... 21 

RLIST1 
ACTIOR2 

E~~i IDLE _ 

- -1~ US 1II 2_ 
RLIST2 
ACTION2 RESPONSE _ 

~IST3 ~ ~ 
~E--- _ 

- -591% R> 
~~---- ,~~~~---~ 
4 RLIST3 
591% ACTION2 

--6 

--REPEAT 
1 

-7 

-

~ u 
-MESSAGE 

Figure 5-A sample transaction network 

.. ~RD 

N 

VOCABULARY 
LIST 

.. FIRST PTII 
CUM P'1'R 
5 
ITEM! 
5 
ITEMS 
6 
ITEM1_ 
5 
ITEM3 

current node address and in turn activates the Path 
Selector, which may apply a uniformly distributed 
random number generator and/or path frequency in
formation present in the node record, to select a single 
query generation path. Responses are processed and 
identified by a series of comparisons rather than selec
tions. 

Path selector 

The prime responsibilities of the Path Selector are 
selection of the next Query to generate within a given 
transaction context, and calculation of the time at which 
the message should be transmitted. We must distin-



512 Spring Joint Computer Conference, 1969 

r--

L __ _ 

a.FER I ana I 

EXECUTIYE 

ROUTINE 

__________ .L __ _ 
- --, 

I I 
ERROR ROUTINES 

Figure 6-Relationship of terminal operations subsystem to 
balance of Honeywell communications environment emulator 

guish two eonditions, each with its mvn scheduling re
quirements; initiation of a transartion and generation 
of a query within nn on-going transaction. 

Every line or line group (defined as a number of lines 
with completely homogenous initial transaction re
quirements) has one or more transaction initiation 
nodes (Node 0 for Query initiate transactions-Null 
Node otherwise). Each possible transaction path for a 
given line or line group emanates from one such unique 
node. Each potential transaction carries a usage fre
quency (provided by the user) which the path selector 
uses as a selection constraint. Scheduling for Trans
action Start activity is not done by the Path Scheduler, 
but rather by the Transaction Scheduler. This latter 
routine selects inter-transaction intervals based upon 
transaction volume constraints imposed by the user. 

Query selection for on-going transactions has already 
been described. Scheduling for such queries is done by 
the Path Selector. This is accomplished by adding a user 
defined inter-message interval to the arrival time (from 
system time zero) of the activating response, and post
ing the result as the scheduled transmission time. 

CONCLUSION 

We have just described a technique for providing a real 
time checkout facility to a programmer or software de
signer writing a communication based system. The de
sign is flexible, modular and expansible. The program 
is expected to be ready by the fourth quarter of 1969. 



Development of New York City's 
geographic data network 

by ROBERT AMSTERDAlVl 

Ojfice of Adminiatration, Ojfice of the Mayor 
New York City, New York 

INTRODUCTION 

N ew York City has begun the coordinated development 
of a network of information systems which will assist 
all agencies of the City government in exchanging 
information needed for routine operations, planning 
and analysis. The approach used. here places oper
ational requirements in the paramount position. That 
is, the methods by which agencies can receive, use 
and transmit data vary widely and depend largely on 
the services each agency is required to provide. Thus, 
the concept frequently proposed, of a massive central
ized urban data bank was found to be in~equate. 
Instead, New York is developing a series of systems 
using various methods for data handling as determined 
by the requirements on each system. The heart of 
this network is a system which stores and transmits 
current information on the data elements which are 
used by agencies throughout the City government. 
These are elements relating to the basic geographic 
environment of the city; the land, streets, buildings 
and location of public facilities. 

This paper discusses the factors which determined 
the overall design, the principal components of the 
network and the areas in which current work is pro
gressing. 

Considerations in designing an urban information system 

Rationale 

The reasons for developing a coordinated urban 
information structure are well documented.1 To review 
them briefly: 

1. Many agencies of local government need the 
same information but their resources for gather
ing and maintaining these data vary widely. 
For example, both assessors and redevelopment 

planners must evaluate the condition of existing 
structures in relation to the neighborhood in 
which the building is located. The assessor's 
department, because it has a continuing responsi
bility to know the use of every piece of taxable 
land in the city, has developed detailed records 
to maintain data on every parcel and systematic 
procedures to update these records. The de
velopment planner is concerned with only a 
small portion of the city, his concern is im
mediate and he generally does not have the 
time or facilities to develop the information 
base he needs. 

2. Each agency generally needs its data organized 
in a different fashion. Again, using the example 
of the assessor and the redeveloper, the former 
generapy must handle his files sequentially to 
be sure that no parcel has been overlooked. The 
developer needs to examine parcels in a block 
or neighborhood orientation in order to de
termine what portion of the community is 
best suited for redevelopment. 

3. Many agencies in local government organize 
their data according to district lines determined 
by the particular service they are providing. 
For example, -school districts are drawn to meet 
the distribution of school-age population and 
the locations and capacities of schools. Sani
tation districts are drawn with consideration 
for the location of incinerators and the garaging 
of collection trucks. It should be noted that in 
many localities the different services are per
formed by administrative units with overlapping 
jurisdictions. Thus a suburbanite frequently 
finds his water is provided by one administrative 
unit, schools are administered by a different 
unit, police by a third unit and fire protection 

513-------------------------------



514 Spring Joint Computer Conference, 1969 

by a fourth. For this reason, data which is 
collected and sununarized by one agency is, 
in aggregate form, useless to another agency. 

4. Agencies frequently collect and stOie duplicate 
information. Because of the reasons cited above, 
or because one agency is not aware of the data 
which another one possesses, there is· much 
duplication of data gathering. Very often this 
involves extra burdens on the public. For 
example, in New York City, if an individua1 
acquires a piece of property, he may be required 
to register this fact in up to four different 
offices. 

5. In many cases one agency can easily obtain 
information which several other agencies need 
but have great difficulty in acquiring. For 
example, many agencies in N ew York need 
information on structural details of buildings 
which can be obtained most easily from the 
architect when he files his plans. 

6. Files which have significant relationships in 
common frequently cannot be compared because 
of differences in the schedules of updating or 
the method of data acquisition. In many cases 
an agency must be cautious in combining data 
from two files because they cannot determine 
whether the same standards were used for both. 

7. There are many requirements to analyze or 
sununarize data contained in files which are 
maintained manually. The size of the files 
makes it a practical impossibility to summarize 
their contents. 

Obstacles to automation 

In the past there have been a number of obstacles 
which have made it unfeasible to consider automation 
of many local government files. Large random-access 
storage devices, reactive terminals and graphic display 
equipment have started to change this balance but 
for most cities these obstacles are still appreciable: 

1. City records have a long life of usefulness. A 
distinctive characteristic of most local govern
ment records is that the data is of interest for 
many years after it is acquired. In industry, 
by comparison, if a record is more than a year 
old it would probably be of value to no one. 
City records of building plans, title transfers 
and birth certificates, as examples, are main
tained permanently. Any plan for record auto
mation must adequately justify the cost of 
permanently storing records which may only 
be searched sporadically if at all. 

2. City files are large and only grow larger. 

3. The records tend to be long and complicated. 
They will generally contain many types of 
data, frequently in a cOlilplex pattenl that is 
difficult to systematize. When automation is 
considered, decisions are generally made to 
leave out some data elements that are difficult 
to classify or not immediately useful. In many 
cases the· elements omitted are later found to 
be necessary and are acquired for additional 
cost that could have been avoided. 

4. Some data must be protected by the agency 
acquiring it. Government agencies collect much 
information which is generally agreed to require 
confidential handling. As one example, the 
number of employees in a firm could be valuable 
information to a competitor. :;\tIore familiar is 
the information on individuals collected by 
the U. S. Census Bureau, departments of 
social services and police. Where sensitive 
information is involved, the originating de
partment will always aggregate the data to 
the block or district level before releasing it 
to other agencies. 

5. City files are hard to match because of problems 
of identification. In matching addresses, for 
example, a structure may be known by more 
than one house number or the street name may 
be commonly spelled in a number of different 
manners. In addition some agencies do not 
identify a property by house number. The 
assessor, for example prefers to use lot numbers. 
The developer, who may be acquiring or sub
dividing lots, may use a series of parcel numbers. 

Conclusions from earlier work 

I t is important for anyone who works in this field 
to keep abreast of other efforts. Since much of the 
activity in developing urban data bases has been 
federally funded, hard-learned lessons have been very 
well documented.2 The following advice is particularly 
worth reiterating. 

1. A grid system (x, y coordinates) is essential in 
any urban information system in order to provide 
a fixed point of reference. It is also useful in 
calculating distance, direction, area and prox
imity. 

2. Data should be collected at the parcel or building 
level wherever feasible and aggregated when 
necessary to meet specific uses. 

3. Data should be captured at its source and 



Development of New York City's Geographic Data Nehvork 515 

transmitted to a data processing center by the 
source department. 

4. Data files should be maintained by the source 
department, if possible as a by-product of 
their routine operations. 

5. No organization can be expected to contribute 
to an activity on a continuing basis unless the 
organization receives some benefit in return. 

6. "Systems for urban information handling should 
not be designed to serve planning alone, but 
should be able to provide data to other agencies 
of local government."3 

Data processing environment in New York City 

EDP operations of the City of New York presently 
involve eighty-nine computer installations including 
those in the courts, schools and colleges. Twenty-four 
computers are used by agencies directly responsible 
to the Mayor. These are used primarily for batch 
sequential processing of tape files running to 21 reels. 
The computers are located at sites throughout th~ 
City Hall area. Many agencies with large data pro
cessing requirements have multiple installations. 

As might be surmised, the volume of data processed 
by the City is vast and any attempt to centralize the 
data of general interest in one place would present 
problems of administration and coordination beyond 
those already discussed. 

There are two factors in New York's administrative 
situation which aid the objective we are concerned 
with. First is the fact that all local agencies gathering 
geographic data on New York City are responsible 
to the Mayor. In many other communities there is 
a division between· city and county functions which 
makes coordination of files an impossible consideration. 
Very frequently property assessment is a county 
function as in Cook County, Illinois, where Chicago 
is located. The second factor is that l\tlayor John 
Lindsay has re-organized many departments in new 
superagencies. This has started processes of central
ization, cooperation and re-examination of existing 
data resources and needs. These processes have greatly 
aided the coordination of data sources on a city-wide 
basis. 

Scope of N ew York City' 8 geographic information system 

General 

New York City consists of five counties containing 
approximately 48,000 blocks separated by 9,000 differ
ent streets. The blocks are divided into 830,000 lots 
which hold over 900,000 buildings. City government 

responsibilities covering the streets, the shoreline, the 
land and the buildings is spread through more than 
twenty separate agencies. Figure 1 presents New 
York's geographic data network as it might look at 
the administrative level when the network is fully 
developed. All agencies shown will be routinely ex
changing data with a central Geographic Information 
System (GIST). In addition, many of the agencies 
will be exchanging data with each other. The lines 
shown between agencies indicate the most probable 
links that will be required. Most of these links win 
probably consist of manually transported magnetic 
tapes. In some cases batch teleprocessing and on-line 
communication may be required 

Four components of this network will be described 
in this discussion: the GIST system and the three 
agencies whose data-gathering activities ",ill furnish 
the principal support to the network. 

GIST is intended to serve as the fulcrum or central 
switchboard for the network. It will facilitate coordi
nation and exchange of data among agencies through 
various types of standardization and correlation. For 
example, it will be able to identify the building corre
sponding to a known tax lot number; it will recognize 
when two addresses on different streets identify the 
same building. These are typical of the problems 
which restrict coordination and use of many records 
at present. 

GIST will maintain files on data items of wide 
general interest. Its files will be maintained and updated 
through the activities of operating agencies as a by
product of their own data processing. The GIST System 

Figure I-Conceptual view of geographic data network 



516 Spring Joint Computer Conference, 1969 

will function as part of a municipal EDP Service 
Center, with capabilities for processing geographic 
data to satisfy various requests: simple queries, complex 
analyses, matching and checking of addresses, auto
matic generation of maps and overlays. It may, at 
a later stage of development, serve the general public. 

The GIST files will be restricted to current-status 
data. The files of the operating agencies will contain 
the supporting historical records and detailed infor
mation which generally are used only by the agency 
which collects them. 

Near the center of the network are three agencies 
wbich generate more than 90 percent of the data 
which other agencies are interested in obtaining: 
City Planning, Finance Administration and Housing 
and Development Administration. 

The Department of City Planning, which is the 
arbiter of zoning, determines the pattern of land use 
in the City, i.e., what kind of buildings may be erected, 
their size, their use. It also establishes where public 
improvements will be located, such as schools, parks 
and highways. To support their decisions the Depart
ment conducts research on economic activities, resi
dential trends and population movements. They assist 
the Bureau of the Census in planning the census
taking in the City. Most of their research results are 
available for general circulation, but partly because 
of the effort of correlation needed to utilize results of 
different studies, it is generally preferable at present 
to focus on particularly critical areas of the City at 
anyone time. 

One significant file which City Planning maintains 
is the Address Coding Guide. Similar files are main
tained by many localities to meet the requirements 
of the Bureau of the Census. The file relates house 
addresses to census blocks, tax assessors' block numbers, 
health areas, police precincts, planning districts and 
other zones of significance. The file is used for locating 
buildings and coding addresses so that data can be 
sum:marized geographically for statistical purposes. 
Use of the file as an index is restricted by the fact 
that it is nlaintained on tape (five reels) contains 
approximately 54 million characters. Almost all of 
this file will be duplicated in the central GIST system. 

The Finance Administration combines three de
partments: Registrar, which maintains the records of 
property ownership, Property Assessnlent, which 
determines the fair values of land and buildings, and 
the Finance Department, which collects taxes on 
property, water and sewer use, incomes and other 
sources. These departments have complete and system
atically maintained records covering all buildings in 
the City. It should be noted, however, that there are 

some significant weak points in their files. For example, 
when properties are taken by the City, either through 
condemnation or forfeiture, or when properties are 
transferred by will or by court action, the title is 
frequently not recorded in the Registrar's Office. Also, 
since many property owners pay their taxes through 
banks or mortgage companies, their identity cannot 
be precisely determined. Finally, since the assessors 
are not concerned with tax-exempt properties, the 
records on these buildings, which include city-owned 
buildings, are not always complete. 

Most of the assessors' more important data are 
already machine-readable. These include the lot 
dimensions, building size, building use, assessed value 
and current owner or mortgage holder. However, 
property assessment is becoming more sophisticated, 
making more systematic use of data on convenience 
to public services, comparisons with similar buildings 
and character of neighborhood. All of these items are 
of wide interest and when captured in machine-readable 
form, would be maintained in the central system as 
well as in the Property Assessment System. Similarly, 
the Registrar's records on ownership and mortgages 
are being considered for computer conversion and 
these data are also of importance to many agencies. 

The Housing and Development Administration 
consists of five agencies concerned with the various 
aspects of new construction, relocation and maintenance 
of the housing stock. Three departments are significant 
here. First, the Department of Buildings which reviews 
all new building plans, inspects elevators, boilers and 
on-site construction and issues permits for demolition, 
construction and occupancy. Next, the Department 
of Development which plans and develops publicly
financed housing. Finally, the Department of Rent 
and Housing :Nlaintenance which supervises l'ent
controlled apartments and, through various programs, 
seeks to assure that all housing is adequately main
tained. 

A major effort is now in progress to develop a Housing 
Data Bank which will enable the many operations 
within HDA to draw on each other's resources. This 
is being developed in conjunction with several major 
applications which should greatly improve the effective
ness of housing maintenance and inspection programs. 
The Housing Data Bank, as presently planned, would 
reside in a combination of fast and slow random-llccess 
storage. It would contain approximately 3.1 billion 
characters. Only a small portion of these items are of 
general interest outside HDA. 

It may be noted from the above that the different 
agencies are, for some programs, interested in all 
parts of the city while for other activities their interest 



Development of New York City's Geographic Data Network 517 

is centered on specific areas or particular types of 
buildings. There is no reason therefore, to expect that 
the City's automated files ",ill be equally complete 
for all data being collected nor do they need to be. 

Current activities 

Several components in the data network are presently 
in development. The Police Department's SPRINT 
System, using on-line terminals to locate requests 
for help and dispatch police cars and ambulances, 
will be in operation by the end of 1969. The Model 
Cities Conunittee, which is developing detailed data 
bases for the Model Cities areas has been using complex 
matrices to determine the optimum mix of renewal 
projects for a neighborhood. The Housing and De
velopment Administration, as mentioned earlier, is 
designing several major applications around a large 
Housing Data Bank. 

The remainder of this discussion will be on the GIST 
System, its overall design and current development. 
GIST is being developed by the Office of the Deputy 
Mayor-City Administrator, Dr. Timothy W. Costello 
under the supervision of Dr. E. S. Savas, Deputy 
City Administrator. 

Overall design of GIST system 

1. Files 
GIST will be supported by three principal files. 
The items planned for inclusion in each are 
shown in Tables I through III. The source 
shown next to each item identifies the agency 
which will provide and maintain that item. The 
method and schedule of maintaining each item 
in the GIST files will be established for the 
convenience of the source agency. Briefly, the 
files are as follows: 

a. The Street-Name File ",ill contain the legal 
name and commonly used names for every 
street. In addition, street code designations 

in wide use, such as Police and Buildings 
Departments, will be included. The GIST 
system will generate a five-letter code for 
each street for internal identification and 
sorting. 

b. The Block-Face File will contain one record 
for each block side. Thus, for a norma] 
rectangular block, four records would be 
maintained. Each record will contain 10-
cational data relevant to the block or 
block face. This will include tax block 
number, census block number, range of 
house numbers, rurection of traffic and 
geographic coordinates at each corner of 
the block. These coordinates have been 
determined through work by the Tri
State Transportation Conunission using. 
aerial photos. Accuracy is to the thousandth 
of a mile - that is, to within five feet. 
Other data included will be block ad
jacencies. These describe the spatial relation 
of the block face to its neighbors, e.g., 
around the comer, across the street, di
rectly opposite, etc. These data will simplify 
many types of districting and routing 
applications where it is necessary to know 
the orientation of a block side. 

c. The Building/Lot File will contain one 
record for each lot, major structure and 
owner. If a structure occupies two or more 
lots, there will be added records for the 
extra lots. If there are two or more major 
structures on one lot, there will be an added 
record for each additional structure. If 
distinct portions of a lot are held by differ· 
ent owners, particularly if part of the lot 
is publicly owned, there will be a separate 
record for each owner. 

Each file will be related to the others, that is, Table 
I will serve as a rurectory to Table II, Table II as a 
directory to Table III. 

Table I Street-name file 

There will be one record in the Street Name File for each street name in common 
use. 

Item 

Borough 
Common Name 
Official Name 
Building Department Street Code 
Police Department Street Code 
GIST Code 

Source 

City Planning Department 
Being developed 
City Planning Department 
Building Department 
Police Department Sprint System 
Being developed 



518 Spring Joint Computer Conference, 1969 

Table II Block-face file 

IDENTIFICATION DATA 

Item 

Record Identification 
Borough 
Tax Block No. 
Tax Block Suffix 
S - Street Name 

t 
r - Street Suffix 
e 
e - Street Ending 

t 
City Sectional Map No. 
Census Tract 
Census Block 
Census Block Suffix 
Type I Adjacent Block sides 
Type II Adjacent Block sides 
Type III Adjacent Block sides 

DISTRICTS 

Health Area 
Health District 
Police Precinct 
Fire Company 
Sanitation District 
Hospital District -
LOCATION 
Street Segment Identification 
Number of block sides on block 
Block Side No. 
High House No. 
Low House No. 
High Intersecting Street 
Low Intersecting Street 
High block side No. 
Low block side No. 
Geographic coordinates: 

High Corner: XH 
YH 

Low Corner; XL 
Y L 

Each record will be as complete as possible for infor
mation concerning building description, land de
scription, mvnership and current pennits and violations. 
It will be the user's responsibility to determine how 
accurate, complete and current the file is for the items 
he plans to use. 

Source 

Being developed 
City Planning Department 
City Planning Department 
City Planning Department 
City Planning Department 

City Planning Department 

City Planning Department 

City Planning Department 
City Planning Department 
City Planning Department 
City Planning Department 
City Planning Department 
City Planning Department 
City Planning Department 

Dept. of Health 
Dept. of Health 
Police/Sprint 
Fire Department 
Sanitation Department 
Police/Sprint 

Being developed 
City Planning Department 
City Planning Department 
City Planning Department 
City Planning 'Department 
City Planning Department 

City Planning Department 
City Planning Department 
City Planning Department 
City Planning Department 
City Planning Department 
City Planning Department 
City Planning Department 

2. Operation 
The capabilities, functions, and plan of oper
ation for GIST are shown in Figure 2. 

The user, representing any City agency, 
will enter his data into processing together 
with instructions which define the format of 



Deveiopment of New York City's Geographic Data Network 519 

Table III Building/lot file 

There will be one record in this file for each building~ lot and owner. 

OWNERSHIP DATA 

Item 

Owner/Manager's Name 
Owner/Manager's Address 
Mortgage Holder's Name 
~1ortgage Holder's Address 
IDENTIFICATION 
Principal House No. 
Range of Numbers for House 
Tax Lot No. 

LAND DESCRIPTION 

Frontage 
Depth 
Irregular Plot Code 
Total Area 
Present Land Use Code 
Special Land Features 
Zoning Classification 

BUILDING DESCRIPTION 

Year constructed 
Type of construction 
Frontage 
Depth 
Total area 
Floor space (sq. ft.) 
No. of stories 
Latest alteration (date) 
No. of buildings 
Private garage (res.) 
No. of establishments 
No. of dwelling units 

PERMITS AND VIOLATIONS 

Demolition permit (date) 
Construction permit (date) 
Certificate of Occupancy (date) 
Crane permit (date) 
Violations (no.) : 

Fire Department 
Buildings Code 

Health 
Sanitation 

Air Pollution 

Source 

Finance Administration and others 
Finance Administration and others 
Finance Administration and others 
Finance Administration and others 

Finance Administration 
To be developed 
Finance Administration 

Finance Administration 
Finance Administration 
Finance Administration 
To be determined 
City Planning Dept. 
To be developed 
City Planning Dept. 

Finance Administration 
Buildings Department 
Buildings Department 
Buildings Department 
Buildings Department 
Buildings Department 
Buildings Department 
Buildings Department 
Buildings Department 
Buildings Department 
Buildings Department 
Buildings Department 

Buildings Department 
Buildings Department 
Buildings Department 
Highways Department 

Fire Department 
Housing and Development Admin

istration 
Health Service Administration 
Environmental Protection Admin

istration 
Environmental Protection Admin

istration 



520 Spring Joint Computer Conference, 1969 

Figure 2-GIST-Geographic information system 

his data fields and indicate what processing is 
to be done. For regular users, standard in
struction routines will be provided. 

If the input records contain house addresses, 
the input will first be processed in Phase I. 
The street names will be verified and, if neces
sary, reformatted and corrected. A street code 
will be added to facilitate internal identification 
and record sorting. A master file such as that 
in Table I will be required with a record for 
every street name in common use. 

If a street name is not recognized, an error 
message will be produced by a method which 
facilitates correction. Subsequent tasks will be 
determined by the user's instructions. In the 
simplest case, he may want a new item, such 
as health area or assessor's lot number, added 
in a designated field on each record. These 
items would be obtained from Tables II or 
III. The end product would then be a tape 
with the same number of records and in the 
same format as the original but with the re
quested data added. 

The' user's initial input could be identified 
by means other than house address. For example, 
data could be identified by tax block, by street, 
by health area or by geographic coordinates. 
It will be possible to request data concerning 
buildings within a given set of geographic 
boundaries or within a circle of given radius 
from a focal point. 

More complex tasks will be supported as 
they become feasible: records may be combined 
or split on the basis of master file data, records 
may be selectively updated, etc. The variety 
of tasks can be gauged from the items included 
in the GIST tables. 

Another series of tasks will be required so 
that input data can be used to update the 
master file. This will involve splitting and 
consolidating existing records. Initia!ly, the 
files will be stored on tape. When the system 
is fully implemented, the files will be located 
on random-access devices. It is expected that 
eventually the system will be modified to 
accept data and queries entered from on-line 
consoles. 

The output of Phase I processing will be 
in the form of a tape. Dependent on the user's 
instructions, t:his 'Will be returned to the user 
for further processing at his own installation 
or it will be entered in GIST Phase II. 

Phase II will select and sort data from 
designated input files which have been through 
Phase I processing. These can be one or more 
files which the user has supplied, either from 
his own agency or frolD other cooperating 
agencies or from the GIST files. Various ma
nipulations and data transformations could be 
performed. Output would be in the format 
specified by the user. Tape, cards, printed 
output, or maps would be produced, at the 
option of the user. 

Each task described win probably require 
a number of programs to accomplish, and a 
set of user instructions will be required to 
specify the various tasks. RPG and natural 
language are among the instruction vocabu
laries being considered. 

Current development of GIST 

Full implementation of the GIST system is expected 
to take five years. However, two capabilities planned 
for GIST will be available by the end of 1969. These 
should assist the solution of specific information 
handling problems which are present in many City 
agencies. 

1. Standard A ddress Generator 
The first is a set of programs which will accept 
any file of machine-readable records that contain 
street addresses and reformat and standardize 
those addresses for computer handling. If the 
house-number field overlaps the street-name 
field, the two fields will be separated and re
formatted for subsequent processing. The street 
name will be verified and minor spelling errors 
corrected. If the street name cannot be verified, 
an error message will be produced. In the final 
program output, for each record successfully 



Developm.ent of New York City's Geographic Data Network 

processed, a field will be added to the start of 
the record containing the reformatted identifi
cation data. Included in this data will be a 
five-letter street name contraction. 

This output tape will be available for sorting, 
matching or other processing that the user 
chooses. These programs include the functions 
shown as steps 1 and 2 in Phase I processing 
in Figure 2. This application will facilitate the 
analysis of data in street address files and 
permit matching of data contained in address 
files of different departments which are in 
incompatible formats. 

The prog1,'ams will operate on IBM 360/30 
or larger machines utilizing 16K DOS/TOS 
operating system with core storage of at least 
32 K bytes. It will be a modification of a set 
of programs produced for the U. S. Bureau of 
the Census. 

2. Geographic Conversion and Mapping 
The second capability is a set of programs 

and files which can operate on standardized 
addresses (such as those obtained through the 
Standard Address Generator) to provide certain 
kinds of locational information. It will, for 
example, provide the health area, tax block or 
census block number for a given address. It 
will provide the approximate geographic co
ordinates for an address, and it will have the 
capability of drawing maps. 

Thus, for example, it will be possible to 
generate a map of registered voters showing 
the number of registered voters in each building. 
It would prepare maps showing the distribution 
of ambulance calls in a borough. It would also 
be possible to generate a map showing the 
addresses and locations where new construction 
permits or demolition permits had been issued. 
It could select and map any information which 
could be identified by street address or located 
to a geographic area. 

The output could be a tape with the desired 
locational data added to each record. It would 
be possible to use this tape selectively for 
plotting and mapping. Figure 3 shows a map 
section which has been drawn by a computer 
as a demonstration of the mapping capability. 
The map is of a section of upper Manhattan. 
The number, obtained from the Board of 
Elections list of registered voters, shows only 

_I ! 3 ! I ! • \., 1 .. 1 I I t _I 

D~D 
... 1 • I ! I, 

~I 

, I • •• - ~I 

D
~! I L 

.. ,- D' ! ~.1:M 
, r'. 

I • ! t.. 

'" , I • rat 

I~ ;/ wi L 

'1 .. Era'1 

Figure :{-Computer-generated map showing addresses of 
registered voters 

the houses where registered voters live. This 
capability should have use in a variety of 
planning and resource allocation activities. 

REFERENCES 

1 SYSTEM DEVELOPMENT CORPORATION 
Report of the APOF conceptualization study 
Santa Monica California March 31 1966 

2 CITY ENGINEERING DEPARTMENT 
A.n information retrieval system for urban areas 
Vancouver British Columbia May 1967 
EAST-WEST GATEWAY COORDINATING COUNCIL 
The role of locational control in an information system 
St. Louis County Missouri September 1967 
S ARMS 
Jfap/model''51/stem-t.echnical concepts and program 
descriptions 
Portland Oregon February 1968 
COUNTY EXECUTIVE 
Management information system 
Nassau County New York March 1968 
METROPOLITAN PLANNING COMMISSION
KA~SAS CITY REGION 
Integrated information system for urban planning 
Kansas City Missouri August 1968 

:3 METROPOLITAN DATA CENTER 
Metropolitan data center project 
Tulsa Oklahoma 1966 





Requirements for the developlllent of 
computer-based urban information 
systems 

by STEVEN B. LIPNER 

The M a8sachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

Since early in this decade urban planners and systems 
analysts have advocated the development of computer
based urban information systems. Such systems would 
store detailed data about the environment in which 
planning agencies and governments operate. They 
would be organized to lend integration to data from 
diverse sources, to provide quick preparation of reports 
and to simplify and automate numerous clerical 
functions. Many attempts have been made to develop 
urban information systems with the characteristics 
mentioned above. Most have been unsuccessfuP for 
a combination of technical and organizational reasons. 
This paper considers some technical requirements for 
planning information systems which deal with data 
associated with urban locations. The requirements are 
developed on the basis of experience in providing a 
prototype urban information system to the Boston 
~Iodel Cities program. The next section describes 
briefly the experience of providing an infOlmation 
syst~ to the Boston Model Cities program. Succeeding 
sectIOns draw on this experience to develop general 
technical requirements for urban information systems. 
~ tec~ique for aggregating data by geographic area 
IS presented and its implications for system file structure 
and utilization are explored. 

Information system for the Boston Model Cities 
Administration 

During the spring of 1968, M.LT. staff members 
held a number of meetings with members of the staff 
of the Boston Model Cities Administration to determine 
how M.I.T. might assist Boston's IVlodel Cities pro
gram. One of the major desires of the :NIodel Cities 
staff members was to see if an urban information 

system could be used to aid their planning and program 
evaluation activities. The Model Cities Adminis
tration was undertaking a survey which would de
t~rmine the land use, building condition, and building 
Slze associated with each parcel in the Model NeiO'hbor
hood Area. It was agreed that this data would m:ke an 
acceptable basis for a prototype urban information 
system. l\10del Neighborhood residents employed by 
the M.odel Cities Administration were trained in key
.punchmg and prepared approximately 8000 cards, one 
for each parcel in the area. (For comparison, the city 
of Boston contains about 100,000 parcels.) 

The survey data was input to the ADIvIINS2,3 
system operating on the time-shared 70944 at the 
MIT Computation Center. ADMIKS is an inter
active program capable of performing data selection 
and cross-tabulation. It was designed for use in the 
analysis of social science surveys, and is best suited to 
operating on small files of coded or integer-valued data 
items. It is weakest in the areas of data modification , 
large file handling, and real or alphanUllleric data 
manipulation. 

Initial preparation of the data for AD1VlIKS analysis 
was judged too complicated and machine-oriented a 
task to be performed by persons with little computer 
training. Accordingly the data was prepared for 
analysis by MIT personnel experienced in programming 
and in the use of ADJVIINS. The data preparation 
was simplified by the ability of ADMIXS to accept 
data in arbitrary codes and formats and by the inter
active mode in which it is used. Errors in the data 
were reported by ADMINS programs and corrected 
by using the time-sharing system's general purpose 
editing capabilities to modify the input files. 

The analysis of the 1\10del Cities survey data was 
performed by three groups of people: MIT staff 

523----------------------------------



524 Spring Joint Computer Conference, 1969 

members with substantial computer experience, pro
fessional urban planners with little or no prior computer 
experience, and ~1odel Xeighborhood residents with 
neither computer experience nor extensive formal 
education. All three groups easily mastered the me
chanics of producing desired cross-tabulations, although 
a natural "fear" of .the computer terminal had to be 
overcome by those new to it. 

The response of the planners to the prototype urban 
information system was both interesting and signifi
cant. Although they had been instructed in the use of 
ADl\1INS at the terminal, and given freedom to 
produce reports as needed, the planners preferred to 
contact l\lIT or :\10del .x eighborhood personnel, 
describe verbally the required tables, and have the 
resulting hard copy delivered to them. 'Vhether this 
phenomenon was caused by the lack of proximity of 
the planners to the terminal, by the relatively tedious 
ADlVIINS language, or by a basic reluctance of plan
ners to use the computer directly remains undetermined. 
(Placement of a terminal at the Model Cities office has 
been planned for some months but has been delayed 
by various administrative and operational problems.) 
When the planners have more direct access to a termi
nal and are provided with a system which, unlike 
ADl\lINS, is designed to serve as a true urban informa
tion system, it should be possible to detem1ine if 
experienced planners without computer experience 
can successfully be trained and encouraged to use a 
computer as a planning tool. The implications of such 
a determination are discussed in the next section. 

The analytic results produced for the planners 
using ADlVIINS were useful, and all agreed that they 
were pleased with the results of the analysis. The 
limited computer experience, however, whetted the 
planners' appetites for more diverse capabilities. These 
capabilities included: 

1. The ability to aggregate data by arbitrary 
geographic areas such as school districts, with
out being required to list explicitly every block 
contained in each area. 

2. The ability to produce maps and graphs as 
well as tables. 

3. The ability to merge data gathered by operating 
agencies and survey research organizations 
with stored data. 

4. l\10re general capabilities for numeric and 
alphabetic data processing than those provided 
byADMINS. 

The experiment in computer-aided lVIodel Cities 
planning has been successful in two senses. First, it 
provided valuable insights into the capabilities required 
of an urban planning information system. Second, it 

introduc'ed a group of planners to computer-aided 
analysis. In th;j future these planners should provide 
valuable data on the mode of man-machine communi-
catioll appropriu,tc for all urbal1 p!annillg illformatio11 
system. 

Requirements for urban information systems 

The experimental provision of computer support 
to planners described in the previous section provided 
several insights into the capabiJities required of an 
urban infonnation system and the specific features 
required to implement them. Perhaps the most im= 
portant capability indicated is that of combining and 
using in a single information system data from a 
variety of sources. Special surveys are BJn expensive 
and short-lived source of planning data when compared 
\-vith operational data which must be maintained, often 
in machine-readable form, by agencies other than the 
planning department. Operational data from a given 
agency, in order to be useful to the planner, must be 
combined with planning survey data and often with 
data from other public or private operational agencies. 
Since different agencies often use different identifiers 
for each parcel, and since the street address is the only 
corrunon and (presumably) unique parcel identifier, 
t.he conclusion is reached that a useful planning infor
mation system must deal with parcels identified by 
street address. Address matching programs5 have been 
developed which standardize the formats of street 
addresses keypunched in free format. They must be 
included in an urban information system, along with 
file structures appropriate for the identification of 
parcels by street address. The need to merge data 
from differing sources implies the possibility of varying 
amounts of data describing a single parcel. Such 
possibilities must be handled by a flexibJe but efficient 
data file structure. 

A second major requirement of an urban information 
system is the ability to aggregate parcel data by 
arbitrary geographic area. This ability is especially 
important in view of the numerous overlapping ad
ministratjve and planning districts into which urban 
areas are divided. Programs have been developed6 ,7 

which aggregate data into districts by first assigning 
coordinates to each parcel, and then testing each parcel 
to see if its coordinates lie within a distIict. Such 
programs work but seem suited mainly to sequential 
storage systems using fast computers. The reasons for 
this observation and an alternate technique based on 
street addresses will be presented in the next section. 

The importance of graphical display of data to 
planners was emphasized during the initial work with 
model cities planners. Any really useful urban infor-



Requirements for Development of Computer Based Urban Information Systems 525 

mation system must produce graphical as well as 
tabular output, preferably with minimal user de
scription of coordinates, scales, etc. Existing programs 
and systems8 are capable of producing a wide variety 
of graphic outputs. The major problems in applying 
these to urban information systems are, first, assuring 
that the outputs they produce are those required by 
planners and second, integrating the graphic com
ponents with data management components to mini
mize the complexity a.nd cost ot producing the outputs. 

The area of man-machine communication is one 
which may be critical to the success of urban planning 
information system design. The experiment described 
above produced results which can only be described as 
inconclusive. However experience in the use of com
puters by engineers9 would seem to indicate that the 
use of computers by persons who are not computer
oriented is greatly aided by the availability of inter
active problem-oriented languages. In order to produce 
definitive results in the area of communication between 
computer and planner it will be necessary to provide 
both better terminal access and a problem-oriented 
language superior in both power and usability to that 
of ADlVIINS. The growing presence of planners who 
have had computer training should provide further 
assistance in improving man-machine communications. 

In re-examining the requirements developed in this 
section, we find that all except those of geographic 
aggregation of data, address matching and graphical 
output would be common to any powerful information 
system: file structures which allow items to be de
scribed by varying numbers of attributes, file structures 
for rapid data retrieval, and powerful problem-oriented 
retrieval languages are all provided by many modern 
information systems.1O ,ll Of the required features 
which appear unique to urban information systems 
the mosL significant seems to be that of geographic 
aggregation of data. Address matching is essentially 
a preprocessor function· and graphic output an im
portant output processor, while the geographic aggre
gation method will have a significant effect on the 
cost of many retrieval requests and some influence on 
internal file organization. For this reason, the next 
section is devoted to a brief description of an alternative 
to existing schemes for geographic aggregation of data. 

A technique for geographic aggregation of parcel data 

The problem of geographic aggregation of parcel 
data in urban information systems has typically been 
handled by "point-in-polygon" programs.6 ,7 Such 
programs require that each parcel which is included in 
the information system be identified by its x-y co
ordinates. An area for which data is to be aggregated 

is described as a polygon by specifying the coordinates 
of its vertices. Each stored parcel is tested by counting 
the intersections of a ray of arbitrary direction origi
nating at its identifying point with the sides of the 
polygon. If the count is even, the point (and hence 
the parcel) is outside the polygon. If the count is odd, 
the point is inside (Figure 1). 

A1though the point-in-polygon test is a workable 
technique for geographic aggregation of data, it poses 
two problems. First, and less significant is the probleln 
af assigning coordinates to every parcel. This problem· 
is easily solved by representing every street as a 
sequence of line segments and using the numerical 
value of each parcel's address first to select the segment 
containing the parcel and then to define the parcel's 
coordinates by interpolation between the segment's 
end points. The second and more serious problem 
presented by the point-in-polygon technique involves 
processing time. Since the point-in-polygon technique 
is a test on one parcel, every parcel recorded by a 
system must be tested to determine which parcels 
should be aggregated into a given area. Thus, the 
technique is ill-suited to systems employing direct
access storage devices which could allow selective 
access to desired parcel data. Furthermore, the calcu
lations required to determine whether or not each 
parcel lies in a given area involve one line intersection 
for each side of the area. On some small computers 
this calculation may be relatively time-consuming. 
Thus even if the parcel data base were recorded on 
tape, the time required to select those parcels in an 
area could be governed by processing time rather than 
by the time required to move and read the tape. 

Techniques have been ~uggested12,13 which, by 
dividing an urban area into subareas, would reduce the 
sequential file searching required by the point-in
polygon algorithm. These techniques would require 
checking of the retrieval area for overlap with pre
established subareas before individual parcels i.n the 

8 Count • 2; --+--------------------4--
Point 8 outside 

__ -+ __ ---'~------+_- C 0 u n t • 3; 
Point A inside 

Figure I-Point-in-polygon test 



526 Spring Joint Computer Com'erence, 1969 

subareas were examined. If the check showed no over
Jap, no further examination of the subarea would be 
required. Otherwise every parcel in the subarea would 
be checked. The disadvantages of this method are 
principally associated with the size of subareas. A 
large number of small subareas requires a large number 
of overlap tests, while if a small number of larger 
subareas are used, there will be a large number of 
parcels requiring point-in-polygon testing included in 
each selected subarea. 

An alternative to the point-in-polygon technique 
for the geographic aggregation of parcel data was 
suggested first by FarnsworthI4 and later proposed 
independently and in more detail by Parsons.IS The 
algorithm involves using a map of the street network 
of the urban area within which new geographic areas 
are defined. Given a list of the names of the streets 
surrounding the area of interest, the algorithm produces 
a list of those parcels within the area. The paragraphs 
below present an illustration of the algorithm, followed 
by comments on the map file struct.ure required to 
implement it. 

In considering the map of Figure 2, let us assume we 
wish to isolate the area bounded by streets A, H, D 
and E. We first scan the street A until we locate the 
set of street segments (portions of a street between 
two intersections) on it between E and H. We then 
scan street H, marking the segments between A and 
D, street D for the segments between Hand E, and 
street E for the segments between D and A. Since the 
list of bounding streets was given in a clockwise di
rection, we know that blocks inside of the desired 
area are to its right. If we have recorded the numbers 
of the blocks to the right and left of each segment, 
seen facing in the direction of increasing addresses, 
we may nmv isolate those blocks L,'1side the bounding 
streets. To do this we record blocks to the right of 

INCREASING ----- ADDRESSES 

A 
XI I XII Xli! I 

X I II III I XIV 

XXI I IV V VI 
\ 

XV 

XX I Vll VIII I X I XVI 

I I XIX XVlII XVII 
I I 

I B 

c 

o 

E F G H 

Fignre 2-Map for geographical ret,rieval 

segments whose increasing address direction coincides 
with the direction of the area boundary (street A and 
E) and blocks to the left of segments whose addresses 
run opposite to the boundary (streets D and H). 
Applying this procedure we obtain the list of contained 
blocks in Figure 3. 

As we make the list of contained blocks, we may also 
make a list of non-contained blocks (Figure 4). These 
are blocks opposite the contained ones which lie just 
outside (to the left) of the area boundary. Now we 
may make a list of blocks adj acent to those blocks 
listed in Figure 3, excluding blocks already listed as 
contained or non-contained. This list contains only 
one block, block V. Enumerating the blocks adjacent 
to block V we find that all have already been listed as 
contained. Thus all blocks within the area of interest 
have been isolated. From the list of blocks in the area, 
we may develop a list of the address ranges along COll

tained streets or of the parcel numbers of parcels 
contained in the area. 

The algorithm and problem described are reliable 
only when used with a street network in which no 
two streets intersect more than once. Techniques have 
been developed by the author which generalize the 
algorithm to handle cases in which two streets may 
intersect more than once, by eliminating resolvable 
ambiguities or by reporting the presence of irresolvable 
ones. The generalization requires changing the initiai 
analysis of the list of streets bounding the area from a 
one-pass to a multiple-pass operation. The first pass 
isolates all possible sequences of segments which could 
surround the desired area. The second and succeeding 
passes eliminate incorrect paths by searching for 
discontinuities in the transitions from one street to 
the next. The process is continued until one correct 
path femains Of until no further incorrect ones can be 
detected. 

Two files are used to allow a computer program to 
implement' the algorithm described above. The first 
contains data about street segments for every street 
in the map, whiJe the second contains lists of the blocks 

Figure :3-First list of contained blocks 

XI, XII, XIII, XIV, XV, XVI 

XVII, XVIII, XIX, XX, XXI, X 

Figure 4-List of non-contained blocks 



Requirements for Development of Computer Based Urban Inforll1ation Systems 527 

adjacent to every block in the map. The first file is 
used to isolate the sets of blockg just inside and outside 
an area described by its bounding streets. The segments 
along a street are ordered by increasing address range, 
and aach segment is described by left and right block 
numbers, beginning and ending node numbers, . and 
intersecting streets. Additional data on street address 
ranges and node coordinates for each street are typi
cally included to broaden the utility of the segment 
file. The block file must include the numbers of the 
blocks surrounding each block, and should contain 
data to allow conveTIlion from the numbers of the 
blocks in the desired area to the data themselves-either 
as street names and address ranges, as parcel numbers, 
or as disk identifiers of data records. Both files de
scribed above may' be produced as by-products of the 
DL'\IE editing technique16 described by Cooke and 
::\laxfield. 

The algorithm outlined above for using a street 
network to facilitate geographic aggregation of parcel 
data has both advantages and disadvantages when 
compared to the point-in-polygon technique. Its 
principal advantage is that it is essentially a direct
access technique. The time required to isolate the 
identifiers of those parcels in an area is proportional 
to the number and length of the streets surrounding 
the area and to the number and complexity (number 
of adjacent blocks) of blocks in the area. Small areas 
may be isolated very quickly. If some sort of direct
access storage is used for parcel data, the parcels in the 
area are the only ones retrieved. If sequential storage 
is used, the algorithm can at least produce a list of 
parcel identifiers (for example address ranges) which 
will allow much speedier checking of individual parcels 
than would be the case with the point-in-polygon 
routine. The principal disadvantage of the street net
work technique is its limited flexibility. While the 
point-in-polygon technique may be used to select 
parcels in any area, the network technique is clearly 
applicable only to areas made up of whole blocks. This 
problem is potentially most serious in analyzing areas 
such as new highway corridors which do not follow 
~)lock boundaries. I t seems possible that performing 
such analysis by using the point-in-polygon technique 
on a set of parcels selected by the network technique 
might be more economical than applying it to an 
parcels in a city. However, this hypothesis must be 
verified. 

File structure 

The basic implication of the geographic aggregation 
technique proposed above is that a direct-access file 
system is very desirable. The principal requirement of 

this structure is that it be capable of being tied to 
the block data of the street map file. One flexible 
way of establishing this tie is to use street address as 
the major identifier of each parcel and to store street 
names (or identification numbers) and address ranges 
in the block file of the street map. The street names 
and address ranges defining all block faces (one side 
of a segment) in an area could be merged together 
and sorted into an order corresponding to that of the 
parcel data file. Then retrieval from the parcel file 
could be directed by the sorted output of the aggre
gation algorithm. Retrieval of data about those parcels 
in a given area could proceed at a speed governed 
only by the efficiency of the parcel file's indexjng scheme. 
Variable amounts of data for a single parcel could be 
stored either in variable-length data records or in 
multiple files each using street address as primary 
identifier. Two major advantages of using street 
address as the primary parcel identifier are, first that 
an inquiries about parcels by street address would 
be facilitated and, second, that additions or deletions 
of occupied addresses within a block face necessitate 
no alterations to the network data describing that 
block face. 

If a sequential file structure is to be used for parcel 
data, for reasons of restricted data access, economy, 
or data volume, the comments about using street 
address as primary identifier still apply. Although 
sequential processing becomes imperative, the sim
plicity of processing allowed by using street address 
ranges as output from the geographic aggregation 
algorithm will still minimize the actual processing 
time required to select parcel data. This minimization 
may be important when processing data on a small 
machine or in a partition of a large one. 

A planned experimental system 

The techniques used above are to be put into practice 
in an experimental information system for use by the 
Boston Ylodel Cities Administration and :VIIT Urban 
Systems Laboratory. The system will include a street 
network file and street network geographic aggregation 
algorithm. The street network file will be tied to a 
parcel data file by street addresses. ::VIultiple parcel 
data files will be used to handle multiple data sets 
(initially housing survey and demographic survey files) 
on direct-access storage. Control and problem-oriented 
language faciJities will be provided by the ICES 
systemY The system should be implemented by June, 
1969 and will be operated as a planning aid for the 
IVIodel Cities Administration by N[odel Cities and 
lVIIT staff members. In addition to providing basic 
statistical and cross-tabulation facilities, it is hoped 



528 Spring Joint Computer Conference, 1969 

that the system will allow the addition of analytic 
and modelling capabilities by planning researchers. 

ACKNOWLEDGIV[ENT 

The work reported here was aided and influenced by 
many people over the last year. Especially worthy of 
mention are Professor Charles ~Iiller, Professor Robert 
Logcher, ::\1r. William Parsons, NIr. Ronald Walter, 
lVlr. Donald Cooke, and J\'liss Betsy Schumacker of 
M.I.T., J\Ir. Edward Teitcher and Mrs. Colette Good
man of the Boston Redevelopment Authority, and 
Mr. Nlichael Warren, J\1r. Richard Harris, ::vlr. Samuel 
Thompson, and lVlr .. John :Vlyers of the Boston ::Vlodel 
Cities Administration. The work reported herein was 
conducted at and sponsored in part by the Urban 
Systems Laboratory of the l\IIassachusetts Institute 
of Technology. 

BIBLIOGRAPHY 

o .E DIAL 
Crban information systems: A bibliographic e.-:say 
Urban Systems Laboratory MIT H)6~ 

2 S MciNTOSH D GRIFFEL 
The ADM INS primer 
Center for International Studies MIT 

:{ S McINTOSH D GRIFFEL 
The language of ADMINS 
Center for Internationai Studies wi I T 

4 P A CRISMAN 
The compatible time-sharing system: A. pro{frammer's guide 
MIT Press 

5 H H COCHRAN 
A.ddress matching by computer 
Proc Sixth URISA Conference 1968 

ti It B DIAL 
SI reel aridresN C()lwef'sioh pro(J/'a1/i 
Urban Dab, Cen.ter University of Washington 

7 S ~()nBl'~CK B It YSTEDT 
Con~puter carlo{jraph,1J poinl-in-po!yuon PJ'o(f!Ylnl8 

BIT 7 1967 
8 D F COOKE 

Systems, yeocoding and mappinu 
Proc Sixth URISA Conferenee 1 \)6~ 

H C L MILLER 
Jf an-machine communications in civil enfjineerinf/ 
I )epartment of Civil Engineering MIT 

10 R E BLEIER 
Treating hierarchical data structures in the Sf)C Hme
shared data mana(fement systems (TDll,fS) 
Proe A C M ~at.i()nai Conferenee H)67 

11 E W FRANKS 
£t data mana(femenl system for lime-shared .file pmc('.8.'1iny 
Ilf::,in(f a croso'?-index .file and self-definht{l enlries 
Prot S.J C C 1!l66 

12 K J DUEKER 
Spatial data system . .:; 
:'\orthwestcrn UniverHity 

1:1 S B LIP~ER 
File structures for urban information 8:t!idems 
Internal Working Doeument :M I T 1!l6R 

14 G L F AR~S"YORTH 
Contiguity analysi,<; using censw~ data 
Pro(' Fifth Annual URISA Conferenee 1967 

15 W A PARSONS 
l T npnbli8hed class project report 
MIT Subject 1 152 1968 

10 D F COOKE W II MAXFn~LD 
The development of a geographic base .file and ito'? 1I.<:e.<; fo/" 
mappinfl 
Proc Fifth Annual UH.ISA ConferenC'e 1967 

17 D ROOS 
ICES system: General description 
Department of Civil Engineering MIT 



Automatic traffic signal control 
systems-o-the metropolitan 'l'oronto 

• experIence 

by JOHN D. HODGES, JR. 

UNIVAC Division of Sperry Rand Corporation 
Los Angeles, California 

and 

DOUGLAS W. WHITEHEAD 

Metropolitan Toronto Roads and Traffic Department 
Toronto, Canada 

INTRODUCTION 

Like a number of fast growing North American cities, 
Metropolitan Toronto is faced with the ever increasing 
problems of greater motor vehicle traffic volume, con
gestion and accidents. Metropolitan Toronto today 
has more than 700,000 vehicles registered in its 240 
square miles, for a per capita density that rates behind 
only Los Angeles. In addition over 100,000 vehicles 
from outside the area converge daily on the City. 

In 1957, Mr. S. Cass, Metro's Commissioner of 
Roads and Traffic, along with a consulting firm began 
to explore the methods open to them to improve ex
isting roads and streets and, in so doing, gaining greater 
traffic throughput per dollar in comparison with the 
building of expensive, new main arteries. The concept 
of computer controlled traffic signals to co-ordinate 
and thus improve traffic movement seemed to be an 
answer, providing it was feasible. 

Their preliminary investigations indicated that 
if a general purpose computer were operated in real
time and on-line, it could: 

1. Take in traffic information from a large number 
of vehicle detectors, determine the interval 
length required at each individual intersection, 
and optimize these for overall system efficiency 
considering existing conditions. 

2. Determine the optimum time relationship or 
offset between individual intersection, con-

sidering the existing traffic speed and direction 
of flow. 

3. Directly control the individual signals to pro
duce optimum conditions. 

4. Check the signal operation and resulting traffic 
movement to ensure that conditions were opti
mum. 

It was further shown that a real-time computer could 
alleviate many of the restrictions and problems con
fronted in~Ousing the normal electro-mechanical or more 
specialized analog equipment to control signals. A 
computerized traffic signal control system would allow 
for: 

529 

1. Flexibility in changing certain signal phase 
arrangements and concepts by only changing 
the computer programs and not the signal 
equipment. 0 

2. Co-ordination of data between a variety of 
types and makes of signal equipment and vehicle 
detectors. 

3. Having a variety of operational plans available 
and implementable in very short periods of 
time. 

4. Collecting current, complete and accurate traf
fic flow information from all system signals 
for use in determining system performance. 
reliability, and optimum traffic control plans. 



530 Spring Joint Computer Conference, 1969 

The computer based traffic control system concept 
was seen as the best approach to the problem of moving 
more traffic through ::\1etro Toronto's streets in less 
time, but some doubts were still raised as to its oper!1-
tional feasibility. So, in the summer of 1959, the l\letro
Dolitan Traffic Department began a pilot test of an 
Automatic Traffic Signal System. Xine traffic signals 
along 1. 7 miles of one of Toronto's busiest streets 
were linked to a computer and automatically con
trolled until the Spring of 1961. A comparison of this 
automatic system with the usual time-cycle control 
of traffic lights produced these results: in the evening 
rllsh hours, computer control reduced the a,rerage 
delay per vehicle by 11 percent; in the morning rush 
hour by 28 percent; and it reduced congestion by 
25 percent. TheRe dramatic resultR were achieved 
with a very limited test system and gave credence to 
the concept of computer controlled traffic signal SYR-
terns. • 

In 1961 the Metropolitan Council decided to go 
ahead with the installation of a l\1etro-wide automatic 
traffic signal control system. At that juncture, a time 
phased implementation program was begun. By the 
end of 1969, some 850 intersections will be under com
puter direction. As of February 10, 1969, 594 traffic 
signals are under the control of a UNIVAC 1107-
UNIVAC 418 computer system. 

The most important factor in the ~letro Toronto 
system and the one that makes it the most flexible 
yet attempted, is that every l\fetro street with signal
ized intersections is to have sensors reporting to a 
central computer. Computer decisions are based on 
traffic situations at different levels. Certain decisions 
are made at the individual intersection level without 
regard to anything else. Other decisions are made at 
the control area level (15 signals), the group level 
(6-7 control areas) or the system level (5-6 groups). 
The computer can detect and analyze major traffic 
movements and make traffic signal adjustments to 
prevent potential congestion. 

As the installation of the system progressed, theories 
were put into practice; some worked and others fell 
by the wayside. Through trial and error, two basic 
modes of control have emerged as practical methods 
for the system. Due to the flexibility of the system, 
the computer is able' to implement control gradually 
across the City and combine a simple mode with a 
more sophisticated and ultimate mode of control. 

At the present time there are several different levels 
of sophistication. Many areas of the City are entirely 
pre-programmed 'With all changes in signal timing 
initiated by time of day or manual intervention. 2\1any 
other areas have traffic responsive control at critical 

intersections (TR2 mode) but have area strategy 
changing by time of day. A few areas have traffic 
responsive control (TR2) at critical intersections and 
traffic responsi\Te area control. One area has all inter
sections traffic responsive and complete traffic respon
sive area control. 

The traffic control system dynamically senses 
traffic from detectors strategically placed at each 
intersection. Acting like an inductance loop, they 
detect the presence of a metal mass and transmit 
signals to the central computer site via telephone lines. 
The computer complex consists of a UNIVAC 418 
Real-Time Computer that acts as a com.lJ.lunications 
and message switching device interfaced to a U~IVAC 
1107 thin-film memory computer and its peripheral 
equipment. The 418 :b..as controlled 500 sigp..aJs in a 
fixed time mode without the 1107. 

The actual traffic count is maintained by the com
puter. By the use of audio tones, signals are sent over 
telephone lines connected to a ::\fultiplexer at the 
central site. Through it, the signals are distributed to 
their correct address in the Input Scanner, which, in 
turn, is looked at several times per second by the 
UNIVAC 418. Thus, a detection followed by the 
absence of a vehicle presence is one car count to be 
stored in the computer memory. After some data 
reduction in the 418, the information is transmitted 
to the 1107, which determines the optimum traffic 
light pattern for the City and returns the information 
to the 418. 
. From there, the information goes to the Output 
Distributor. The Distributor contains electlical relays 
that relate to specific signal locations, which open or 
close in response to the 418. Thereby each unique 
traffic control bbx at an intersection can be addressed 
by the 418 computer. 

~lonitors in the traffic control boxes provide data 
to the 418 computer to confirm that the controller 
responded correctly to instructions. Should any part 
(or all) of the system malfunction, the computer "Will 
relinquish control of the signals effected to local phase 
timers in the traffic control boxes. To provide complete 
protections, the 418 must report constantly via a hold 
relay to- each controller; otherwise, the controller will 
automatically take over on a pre-set time cycle. The 
complete cycJe of examining the traffic situation 
throughout ::\1etro Toronto, and taking. action if 
required, is performed once every second. At the 
same time, the 1107 stores data for future analysis and 
runs other programs concurrently. The benefits derived 
from such a control system are numerous: 

1. The optimization of traffic control signals has 



greater throughput and fewer involuntary steps. 
2. Flexibility of control allows the system to be 

tailored to specific areas and situations within 
the whole system. 

3. Manual control of signals by police is reduced, 
permitting better allocation of police manpower. 

4. Accidents and abnormal traffic congestion are 
sensed and correction methods automatically 
implemented where possible. 

5. Nlillions of dollars worth of wasted citizens' 
time and capital equipment can be saved. 

6. Reduction in accidents due to better control 
can save citizens an estimated 1~ million dollars 
annually, not including doctors' fees, lost time, 
lawyers' fees and court awards. 

The computer system 

The computer system consists of a large UNIVAC 
1107 general purpose scientific computer with a 
UNIVAC 418 real-time process control computer as 
an on-line input-output front end for interface between 
the 1107 and the traffic signal control and traffic 
detection equipment. 

Primary computer complex 

The primary computer, which is used for control 
and data processing functions, is a UNIVAC 1107 
Central Processor equipped with: 

1. A thin film control memory having a capacity 
for 128 words of 36 bits each with an access 
time of 300 nanoseconds. 

2. A ferrite core memory having a capacity for 
32,768 words of 36 bits each with an access time 
of three micro-seconds. This can be enlarged to 
accommodate 64,000 words, if necessary. 

3. A real-time clock providing time resolution to 
one millisecond and having interrupt capability. 

4. Input-output capability for simultaneous trans
mission of 250,000 words per second over 16 
in, or 16 out, channels. 

5. Control console featuring a ten-character per 
second buffered type printer and enter keyboard 
along with 15 index, 16 arithmetic and 36 
control registers. 

Peripheral equipment directly associated with the 
1107 comprises: 

1. A magnetic drum memory having a capacity 
for 4,700,000 alphanumerical characters with 
a transfer rate of 360,000 characters per second. 

2. Six magnetic tape handlers each providing a 
recording density of 1,000 bits per inch with an 

.. A~utomatic Tra...~C Sigr~l Control Systems 531 

inter-block spacing of three-quarter inches and 
tape speed of 100 inches per second, with a 
transfer rate of 180,000 characters per second. 

3. A high speed printer capable of providing 
either single or multiple copies at a rate of 600 
lines per minute with 128 characters per line. 

4. A card reader with a capacity for 600 cards per 
minute, each having 80 columns. 

5. A card punch capable of producing an output 
of 150 cards per minute, each having 80 columns. 

Secondary computer complex 

The secondary computer, which acts as the on-line 
input-output device for the 1107 to which it is coupled 
through a special inter-computer synchronizer, is a 
modified UXIVAC 418 having: 

1. A ferrite core memory for 16,384 words of 18 
bits each which can be modified to give 8,192 
words of 36 bits. In each case, the access time 
is four microseconds. 

2. Input-output capability over eight channel:s 
for 18 bit, or four channels for 36 bit words. 

3. Control console featuring a ten-character per 
second buffered type printer and entry key
board. 

4. Input-output facilities using punched paper 
tape, operating at a rate of 200 input or 110 
output characters per second in six columns. 

Operation 

The basic function of the computer is to inspect each 
individual signal once per second and to determine if 
its aspect should be changed. This is done by comparing 
the elapsed time for the current indication with that 
time considered necessary to satisfy both the needs of 
the alternating traffic flows and the system as a whole. 

Control plan 

To provide for predictable variations in the require
ments (both at and between individual signals) and 
to facilitate the implementation of special arrangements 
(such as flashing operation) many different control 
plans are available. They are maintained either in 
memory or on drum depending on their frequency of 
use. The plan actually in effect at any time may be 
changed either manually by console type-in or auto
matically by time of day and/or volume criteria. 

Traffic data file 

The computer itself maintains a traffic data file 



532 Spring Joint Computer Conference, 1969 

which is continuously up-dated to show in one second 
increments for each intersection or vehicle detector: 

1. The elapsed time for the current interval. 
2. The presence or absence of a vehicle on a 

secondary detection. 
:3. The occurrence of a pedestrian push button 

actuation. 
4. The number and duration, in :32nd of a second, 

of the pulses coming from each primary detection. 

The 1107 processes the raw data to give traffic 
volume, speed and density over sampling periods of 
any desired length. By using appropriate input param
eters, estimates of delay, congestion, etc., can also 
be arrived at; thus, a very complete picture of current 
traffic conditions can be obtained. 

Signal control 

The control procedure governing the operation of 
any signal and repeated continuously at intervals of 
approximately one second, is as follows: 

1. Read-in the Signal ~lonitor Code. 
2. Ideiltify the current interval and note the time 

fo,r which it has remained unchanged. 
3. Check to ensure that the monitor code is valid. 
4. If not valict, repeat check in three successive 

scans. If still not valid, the signal will be dropped 
from computer control and the operator noti
fied by console print-out that this action has 
been taken. 

5. If the code is valid, check whether or not any 
pre-emption is allowed or necessary. If so, set 
the special function selector and terminate the 
interval. 

5. If no pre-emption is required, determine whether 
the interval may be extended. 

7. Determine the required interval length. 
8. Issue the change order when the computed and 

elapsed time equate. 

Interval length 

For a pre-determined mode of operation, the exact 
length of all intervals will be specified in the parameter 
list. However, for traffic responsive operation, only 
minimum values will be given for those intervals whose 
duration may vary. The need for extension beyond 
these minimum values is detenuined by a special 
computer sub-routine. A great many different time 
determination procedures may be used. These may be 
either for different signals, for the same signal at 
different times of the day, or f-or different traffic 

conditions. For any signal, the actual procedure to be 
used at any instant will be specified by the control plan 
in effect. In the general case, variations are only required 
in the length of the nonnal green time. But, in certain 
instances, the advanced green tim.e IP..ay also be made 
responsive to traffic demand. 

Where all signals operate independent of each other, 
the length of the normal green indicstions can be 
calculated in any way desired including predetermined, 
semi-and fully-actuated and fully traffic-responsive. 
There are very few signals of this nature in Metro
politan Toronto. 

Where the operation of signals on a given street or 
in an area must be co-ordinated to permit progressive 
movement, the determination of interval lengths must 
be made in accordance with modified routines designed 
to accept the limits imposed by the required cycle and 
offset relationship. 

Pickup and dropout 

With the computer correctly loaded with appropriate 
programs, a manual type-in at the 1107 console engages 
the pickup routine which automatically brings the 
selected signals under computer control. If the field 
equipment does not respond to the pickup instructions, 
a fail message will be printed out and further attempts 
at activation are made by direct manual instruction 
from the operator. 

Pickup occurs at each intersection as its timing dial 
reaches the appropriate point. The whole system can 
be under control in little more than two local cycles 
which is never more than about three minutes. 

A manual type-in terminates system control of 
signals. A dropout routine is actuated and adjusts the 
offsets of each group of related signals to a good otr
peak compromise which can then be provided by the 
local timing dial. When the correct relationship has 
been established, the timing dial is started by the 
computer and operation continues without interrup
tion. Following dropout, the operation of each signal 
is monitored for approximately five minutes and any 
deviation from normal is indicated by a console print
out. 

Accomplished in this way, dropout may take up 
to fifteen minutes to complete, but the signals will 
hold in the correct relationship for weeks if necessa..-ry, 

Analysis 

The computer can carry out a series of analytic 
functions on a pre-determined schedule or on demand. 
These include both on-line and off-line analysis. 



On-line analysis 

Aspect changes at anyone signal or vehicular move
ment past anyone detector can be displayed on the 
418 console as they occur. This provides useful informa
tion for service peIsonnel engaged in checking equip
ment. Aspect infOl'mation is available even when the 
system is not under computer control. 

A RECORD routine analyzes and prints out infor
mation from a.ny four signals together with a.ny sixteen 
detectors to show, at one second intervals, actual clock 
time, signal aspect, the number of vehicles passed 
during the previous second, length of the pulse pro
duced by the last vehicle, and the existence of conges
tion for each approach. 

A SEKSOR routine is designed primarily for testing 
the acceptability of detector information. Results are 
printed out at fifteen minute intervals to provide an 
inunediate record of traffic conditions and an indica
tion of the need for servicing. 

Off-line analysis 
-, 

Various routines are available for off-line analysis 
of information stored on magnetic tape. These routines 
can perform the following functions: 

1. Print volumes, average pulse lengths, and lane 
occupancy for individual detectors, or groups 
of detectors, for any time interval from one 
second to several hours, and for any combination 
of days. The information can be presented in 
numerical or graphical form. 

2. Produce summaries of actual aspect timing on 
a second by second, cycle by cycle or hourly 
basis. i 

3. Draw space tme charls of co-ordinated arleries 
on a second by second basis. 

4. Simulate delays, stops, queue length, etc., for 
one intersection based on the real vehicular 
inpllt and actual signal aspects. 

5. Calculate congestion for up to 200 approaches 
individually and as a group. 

6. Produce graphs of delay for a variety of offsets 
and graphs of stops for a variety of offsets, 
based on an average platoon arrival distribution 
that is calculated from recorded data. The 
computer also produces a figure of merit which 
estimates the imporlance of co-ordinating a 
parlicular link. 

7. Produce volume figures which are corrected 
for double lane counting losses so that computel 
produced volumes are within ± 10 percent of 
actual volumes. 

Automatic Traffic Signal Control Systems 533 

After four or five months have elapsed, the detector 
information contained on the original data tape on a 
second by second hasis is averaged over 1;) minute inter
vals, to provide for long-term data storage and more con
venient preparation of weekly, monthly or yearly 
comparisons. One tape can hold a year of data in this 
way. This compressed data tape may be analyzed at 
any time to provide any required information except 
that concerning signa] aspect. The original data tape 
is normally cleared and re-used after six months, unless 
some Court action is pending. 

Performance 

Area control 

On almost every street there is, at some point, a 
natural discontinuity for through traffic. On the other 
hand, there are many areas in which signals are so 
closely spaced or traffic conditions are so similar that 
close co-ordination and a more or less identical mode of 
operation is mandatory. Combining these two factors, 
some sixty so-called Control Areas, each of which can be 
considered as more or less independent unit, have been 
created. Signals in these Control Areas can be operated 
in any required way without reference to conditions in 
adjacent areas. ~1any of these Control Areas include 
signals in network formation, only those on a single 
street, or those on a section of a major arterial route. 

The Control Area concept has simplified program
ming, data handling and evaluation, while increasing 
operational flexibility. Insofar as is practicable, both 
the initial connection of signals into the system and all 
future development work is carried out on a Control 
Area basis. 

Route control 

To provide a thorough check on equipment and a 
later basis for comparison, the initial operation of each 
group of signals on a conunon street has been in a strict 
pretimed progressive mode, using plans prepared by 
the computer. A comparison between this mode of 
operation and the previous non-coordinated arrange
ment shows a very distinct improvement. Over a large 
area, travel time and the number of involuntary stops 
decreased by an average of some eleven and forly-five 
percent respectively. The average speed and number of 
vehicles passing in a given time increased by some thir
teen and ten percent respectively. 

During the next stage of development, the same 
predetermined plans were used. However, critical inter
sections were put in the TR2 traffic respoI13ive control 
mode and area control parameters were selected on a 



534 Spring Joint Computer Conference, 1969 

volume basis as well as a time of day basis. The thinking 
here is that any feedback control system must have an 
inherent lag in response time in order to be stable. 
Secondly, the time scale on which area control param
eters are determined and implemented is quite large. 
Thirdly, providing the appropriate area strategy, for 
say the peak of the morning rush houI, creates small 
problems if done too soon and creates large problems 
if done too late. 

Therefore, if the traffic responsive mechanism has 
not ini tiated a particular rush hour plan by a certain time, 
then that plan will automatically be implemented by 
time of day. 

This type of traffic responsive operation proved quite 
successful in that the duration of peak hour congestion 
was considerably reduced, though it was not eliminated, 
while the increased· flexibility allowed the system to 
automatically adjust for the variations in traffic demand 
resulting from holidays, spOlting events, etc. 

In periods of light traffic, one of the major problems 
lay in the close spacing of many minor signalized inter
sections which prevented two-way progressive' move
ment at any reasonable speed. To overcome this prob
lem, secondary detectors have been installed and a 
number of these intersections operated in a semi-traffic 
responsive mode. Their yield point has been determined 
by the through street requirements and the minor street 
use times. Another method used is to have several 
minor signals operated in a flashing mode, with red 
presented to the side street and amber to the major. 
One hundred and fifty signals currently operate in such 
a way at certain times of the evening. 

Critical intersection control 

TR2 control 

To overcome uneven traffic flow at critic';}.l inter
sections, the proportion of green time allotted to either 
phase can vary almost directly with instantaneous 
demand, while retaining a fixed cycle length. It was 
found that during pe9.k periods the average delay per 
vehicle could be reduced by some twenty-seven percent. 

TRI control 

A very few major. arterial intersections are sufficiently 
isolated that they cannot be considered as part of a 
progressive system on either street. In these cases best 
results have been obtained using an improved volume 
density type of control. In these instances both cycle 
length and split vary in accordance with the aJmost 
instantaneous demand. With this type of operation, it 
has been possible to reduce the averagE' delay per vehicle 

to about thirty seconds, or ten percent, while handling 
a peak volume equivalent to some fourteen hundred 
vehicles per Jane, per hour of green. 

With both these modes of controJ, it has been found 
that serious trouble could develop if volume alone, or 
volume and density alone, were used as the basis for 
split variation. If, for any reason, congestion developed 
on one approach and not on the others, in a given sam
pling period the detectors might indicate that the street 
on which free flow was taking place was carrying the 
larger volume and hence it would be given the larger 
share of green time. This process could be cumulative 
until the congested street is actually receiving its mini
mum allowable green in spite of its urgent need for more 
time. To overcome this, a congestion identification 
routine is used. This routine detects congestion by 
an2lyzing pulse lengths and volumes. The routine pro
vides compensation by artificially increasing the count 
on the affected street, for TR2, and by ensuring a large 
minimum green time for TRl. 

Turning movement control 

At a great many intersections where turning move
ments present a problem but are not sufficient to war
rant a completely separate phase, conditionshave been 
greatly improved by using a split phase arrangement. 
In this arrangement the green for one direction comes 
on in advance of that for the other. During this usually 
short interval, the green for the favoured direction is 
caused to flash rapidly, this alerts the drivers to its 
presence and duration while, at the samr time, allowing 
the feature to be omitted at any time without the need 
for special signs. To provide for clearance and increased 
safety, the flashing green is changed to a steady indica
tion for about two seconds before the opposing direc
tion is allowed to move. 

It is hoped that this selection can shortly be made in 
accordance with traffic demand at least at those inter
sections where separate turning lanes are provided and 
detectors can be located to record the movement, 

Accident control 

A comparison 'was made of Police statistics for two 
similar downtown sections of the City, each approxi
mately two square miles in area with some ninety sig
nalized intersections. It was shown that in one where 
no change was made in signal operation, traffic accidents 
increased by five and one-half percent over a two year 
period, while in the system where control was intro
duced, there was an accident decrease of about seven 
and one-half percent. A comparison of conditions on 
three major arteries has shown that accidents have 



decreased by some sixteen percent although the volume 
of traffic has increased by some twelve percent. 

Snow plans 

It has been found that during even light snow, control 
efficiency drops sharply simply because of the time re
quired to start a vehicle on slippery pavement. (This is 
especially true for any approaches on inclines.) On the 
thcorJ that once movement has started it should be 
allowed to continue for as long as is reasonable, special 
plans have been designed to provide considerably longer 
than norma.] signal intervals. Longer ambers are also 
used with these plans. 

Economic benefits 

Given the amount of accident reduction that the com
puterized traffic control system has produced (some 10 
to 15 percent), it can be safely projected that the sys
tem should be saving the citizens of Toronto and its 
enviro~ some 172 million dollars a:rmually. This is based 
on the fact that property damage from auto accidents 
in Toronto runs to well over 15 million dollars annually. 
The sa.vings from the increase in traffic flow has been 
estimated at about 18 million dollars per annum, based 
just on vehicle operating costs. If the personal time 
saved could be estimated in dollars, this figure would 
increase dramatically. Thus, we have a community 
savings of some 20 mil1lion dollars per year ona capital 
outlay of only five million dollars for the total system. 

When the computer was moved recently from the 

Ant0111atic Traffic Signal Control Systems 535 

old City Hall to the new Police Headquarters, Toronto 
residents found themselves caught up in a three-week 
traffic jam since the lights were on their own automatic 
controls. ::\Iotorists were warned of the move and cau
tioned to leave for work earlier than usual. Once the 
Computer System, that hae reduced traffic tie-ups by 
20 percent was no longer controlling the traffic lights, 
motorists found that in some cases they needed up to 
an extra hour to get to work. The earlier system pre
dictions of the saving of some 9,000 vehicles hours of 
delay per day proved to be a gross understatement dur
ing those hectic weeks. 

ACKXOvVLEDG.:.UEXT 

::\'fuch of this report is based upon the efforts and 
documentation of .J. T. Hewton, ::\Ietro-Toronto 
Traffic Control Center, Senior Operations Engineer 
from 1963 to .January 1968, 

REFERENCES 

A CHRISTEXSE~ R B CODY 
Jlethods of traffic signal control with on electrON compllter 
Traffic Research Corporation 

:2 KCS LIMITED 
it centrally-controlled traffic signal s,l/stem for 
metropolitan Toronto 

;3 TRAFFIC RESEARCH CORPORATIOX 
The control of traffic signals in nwtropoWon Toronto with 
an electronic comp'uter 

4 D \VHITEHEAD 
The Toronto system: Intersection evaluation and control 
Metropolitan Toronto Roads and Traffie Department 





A panel session-Education of computer professional 

ELLIOTT I. ORGANICK, Chairman of Session 

University of Houston; currently at 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

Inter-relating hardware ·and software in 
computer science education 
by JACK B. DENNIS 

Massachusetts Institute of Technology 
Cambridge. Massachusetts 

The major portion of graduates from curricula in 
computer science will be professionally involved in the 
design, specification, implementation or theoretical 
foundations of computer-based information systems. 
They will participate in the selection of computer 
hardware, or will be called on to judge the merits of 
proposals from suppliers. To be competent in exercising 
these responsibilities, it is essential that students of 
computer science thoroughly understand the relation
ship between computer organization and the imple
mentation of programming languages and information 
systems. 

Given this objective, there is a serious anachronism 
in the teaching of programming and computer organiza
tion in contemporary university curricula: Computer 
organization is often taught as the final example in a 
course on logical design by instructors who do not 
profess knowledge of compiling techniques and software 
issues. Conversely, programming courses are based on 
conventional assumptions of computer organization 
(Von Neuman) as if they were axioms of nature. 
Moreover, the communication paths that could lead to 
reorganization and accommodation of the intellectual 
substance of both areas are frequently blocked by 
circumstances: Either the areas are the "property" of 
separate academic departments, or the faculty is 
divided by disparate interests. 

There is critical need for cooperation between faculty 
in programming and in computer organization to jointly 
develop curricula that interrelate hardware and software 

principles for realizing the functional requirements of 
computer systems. The ACM Curriculum Proposal does 
not represent sufficient progress toward this objective. 

In the undergraduate Computer Science program of 
the M.l. T. Department of Electrical Engineering, we 
have developed a three subject sequence in computer 
systems and programming intended to interrelate 
software and hardware principles: 

1. Programming Linguistics 
2. Computation Structures 
3. Information Systems 

Students enrolling in the sequence are presumed to have 
had the experience of expressing programs in an 
algebraic language and seeing them run (with success 
and failure) at a computer installation. 

The first subject, "Programming Linguistics," treats 
the important concepts in describing. and interpreting 
algorithmic procedures on the basis of a formal semantic 
theory. Features of practical programming languages 
are related to the theory. Discussion of hardware is 
deliberately omitted so an unencumbered appreciation 
of linguistic principles can be achieved. 

In "Computation Structures" the student learns the 
properties of memory and logic components that 
interact strongly with the process of planning a com
puter organization. A graph model of parallel computa
tions is used both to describe modular hardware systems, 
and, as a starting point for developing combined 

537 



538 Spring Joint Computer Conference, 1969 

hardware and programming techniques, for realizing 
the linguistic features studied in the first course. 

The subject "Information Systems" makes use of the 
material from the preceding subjects in studying the 
analysis, design and implementation of computer-based 
informations systems. 

The second subject of this sequence is the key to 
inter-relating hardware and software concepts. A signifi
cant difference from conventlonal curricula is that 
students begin in their study of "Computation Struc
tures" with a thorough. understanding of the features 
found in a variety of source programming languages. 
With this background they are prepared to study the 
principles by which these features may be made 
available to computer users through the combination of 
hardware technology and programming concepts. An 
outline of this subject as it is currently taught at 
M.I.T. is given below. 

C omputa;tion structures 

1. Logic Design: Elementary combinational circuit 
synthesis; registers and gating; asynchronous 
modular systems (macromodules); sequential 
circuit synthesis; elementary implementation of 
arithmetic operations. 

2. Memory Systems: Physical principles; name 
space-value space; distinction between location
addressed and associative memories; addressing 
by key transformation for associative retrieval. 

3. Computation Schemata: Representation of a 
computation (in digital logic or as an abstract 
algorithm) by a set of operators that transform 
the contents of a set of memory celis. The domain 
and range cells of the operators are indicated by 
a data flow graph. The constraints that govern 
the sequencing of operator applications are 
specified by a precedence graph. Necessary and 
sufficient conditions for deterministic (unam
biguous) operation are formulated. Extensions 
are made to represent procedures involving 
decision and iteration. 

4. 11achine Organization: Study of the principal 
forms of single-sequence processor organization 
and the corresponding techniques for compiling 
arithmetic assignments and conditional expres
sions: A simple single address machine; a 
stack·{)rgapized machine; macbines having mul
tiple general registers; machines having several 
functional units. 

5. Parallel Processing: Multiprocess computer 
systems; process state, supervisor programs and 
scheduling; primitive procedure steps for repre
sentation of parallel computations: The fork, 

Join and quit primitives; Dijkstra semaphores
the pes) and yes) operations. Process interlocking 
problems and their resolution. 

6. Nesting and Recursion: Representation of an 
operator of one schema by a second schema. 
Naming of input and output quantities. Occur
rence of multiple activations of a procedure 
through parallelism or recursion. Local data 
areas; use of stack storage allocation for single 
process implementation; base registers. 

7. Information Structures: An information struc
ture is modelled as a directed graph, without 
directed cycles, containing a directed path (not 
necessarily unique) to each node from a par
ticular node called the root. Static operations on 
information structures; implementation by use 
of indexing. Dynamic operations; implementa
tion by linked blocks in a location-addressed 
memory; garbage collection; implementation 
with associative memory. 

Let's not discriminate against good work 
in design or experimentation 
by GEORGE E. FORSYTHE 

Stanford University 
Stanford. California 

I am distressed that graduate education in computer 
science is forcing students into a theoretical mold, and 
away from the vital practical problems of software 
engineering, I therefore urge that graduate computer 
science departments pay attention to the problems of 
experimentation and design in computer science. This 
might be done, for example, by employing faculty with 
interests in design and experimentation, by offering 
courses and examinations in these areas, and/or by 
accepting Ph.D. dissertations involving substantial 
designs or experiments of high quality. I believe that 
the last is the most important action to be taken now. 

I t seems to me that one main function of an educa
tional system is to furnish society with imaginative 
performers and potential leaders in all the various areas 
of life. Within the computing field, there is a huge need 
for persons to create well designed, well documented 
software systems that exploit computers in the manifold 
ways we know to be possible. While the field will surely 
be advanced farthest by the creation of good new ideas, 
there remain enormous steps to be taken in exploiting 



ideas already known. Thus our educational system in 
computing should do three things: 

1. teach the leading ideas now believed to be 
relevant to computing, and inspire students with 
the desire to keep on learning after they graduate; 

2. seek out and inspire a few leading minds capable 
of augmenting our stock of ideas 'with good new 
ones and show them how to do it; 

3. inspire a generation of students to design and 
e;Periment with good systems with the ~ethods 
now known and soon to be discovered, and show 
these students how to do a good job of it. 

By accepted custom, the Ph.D. degree requires the 
student to perform in steps (1) and (2): he passes 
examinations in relevant ideas, and he writes a dis
sertation whose main requirement is to contain some 
original theoretical work. I believe these two steps are 
entirely correct for a Ph.D. in a theoretical subject like 
pure mathematics. 

But the very point of founding schools of engineering 
and departments of computer science was that society 
needs concentration on work relevant to today's 
technology. This implies a certain abandonment of 
learning for learning's sake, in favor of work on problems 
whose solution is actually needed. In the computing 
field, this implies to me that we must not confine our 
students to Ph.D. dissertations that are of the classical 
type, but should be prepared also to accept first class 
work in design or experimentation. 

Students are attracted to computer science because it 
has a lot of action, rather than just contemplation. From 
the start, our students are creating programs that do 
things, and they enjoy it. Many of them are eager to keep 
on designing and programming systems, and it seems 
almost criminal to tum this eagerness off. Instead, our 
graduate departments should be accepting this urge to 
produce, and concentrating on channeling the design, 
experimentation, and production into worthwhile 
projects, done with high standards. 

It has been argued that design and experimental work 
are fine, but should be rewarded with a different 
degree-one analogous to the degrees of Engineer or 
Doctor of Arts. I disagree, mainly because different 
degrees tend to acquire different levels in the hierarchy 
of snobbery, and I refuse to admit that excellent work 
in design is any less important than excellent work in 
theory. The Ph.D. degree has become the accepted 
reward for first class performance in graduate school 
(e.g., in experimental physics), and should be retained 
in that function. Any further assessment of the quality 
of a person's work can be passed along in personal 
letters of recommendation. If my recommendations 

Education of Computer Professional 539 

were followed, I would expect to see more Ph.D. theses 
with titles like 

"A very high-performance compiler for PL/1 on 
System/360" ; 

"Study of all calls on the scientific subroutines 
on the CDC 6600 at NYU in October 1969, and a 
resulting proposal for reorganizing the library." 

In summary, the purpose of our educational establish
ment is to reward students for developing their educa
tional and performance potential as much as they can. 
Let us use the Ph.D. as a reward for first class work in 
any aspect of our field, and not discriminate against 
work in design or experimentation. 

Applied computer science 
by LOTFI ZADEH 

University of California 
Berkeley, California 

It is a truism that we are in the throes of an informa
tion revolution of which one obvious manifestation is a 
very rapid growth in the number of users of computers 
and computer-like information processing systems. 

It is also evident that the number of computer users 
is growing much more rapidly than the number of 
computer scientists and engineers. As a result, computer 
science may become user-influenced to a much greater 
extent than other fields of science and engineering. This 
was in evidence at the .1968 IFIP Congress in Edin
burgh, at which the ratio of non-professional users to 
computer scientists was far greater than, say, the ratio 
of non-mathematicians to mathematicians at the 1966 
International ::\Iathematical Congress in ::\1oscow. 

The overwhelming preponderance of computer user~ 
over computer specialists is certain to have a profound 
impact on computer science education in the years 
ahead. One likely effect is that much of the training in 
the use of computers will be taking plaee outside of 
computer science departments and will be tailored to 
the needs of students in particular fields. Another 
possible effect is a splitting of computer science into 
pure computer science and "applied" computer science 
a la the division of mathematics into its pure and 
applied branches. 

If one believes, as this panelist does, that an organiza-



540 Spring Joint Computer Conference, 1969 

tional fractionation of computer science into "pure" and 
"applied" components is undesirable, then greater 
attention will have to be devoted to making it possible 
for a computer professional to receive a Ph.D. or 
equivalent degree on the basis of a thesis that is 
primarily applied in nature. By this is meant a thesis 
which contributes not to computer science per se but to 
a nontrivial application of it in some field external to 
computer science. For example, an acceptable Ph.D. 
thesis of this nature might deal with the application of 
computers to medical diagnosis; or to problems in air 
traffic control; or to simulation of neural nets, etc. 

It is essential that a student electing to do his 
dissertation in an applied field should devote a sub
stantial amount of time to familiarizing himself with it. 
Thus, if his thesis is concerned with, say, the medical 
diagnosis by computer, he should be prepared to spend a 
month or two in a hospital acquainting himself with 
various aspects of medical diagnostics. The Ph.D. 
dissertation of G. A. Gorry* of Project ::\'IAC, ::\I.I.T., 
is an excellent example of a thesis of this type. 

In summary, although one can find isolated examples 
of Ph.D. theses in what might be called "applied" 
computer science in various institutions, this panelist 
believes that a conscious effort should be made to 
encourage work of this type within computer science 
and electrical engineering departments and accord it the 
same respectability as research in pure computer 
science. 

Identifying and developing curricula in 
software engineering 
by ALAN J. PERLIS 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

One basis for developing an education program is the 
recognition of a continuing need for a certain class of 
professionals in our society. The need may be redressed 
because: 

An influential or significant part of the society may 
have a need for professionals that is not being met by 
the educational system. 

An influential or significant part within the education 
system may observe an unrecognized need of society 
and begin to prepare what will eventually be needed. 

* G. A. Garry, "A System for Computer-Aided Diagnosis," 
September 1967, MAC-TR-44. 

The educational system may not respond to external 
pressures because it sees the need as temporary or 
non-critical, or it just may not be interested in such 
problems. The educational system may say it hasn't the 
resources to provide the professionals or settle for a 
merely adequate solution. It may even delay solving the 
problem by an act of generalization or systematization 
that, at best, functions to postpone. 

The present graduate programs of computer science 
arose from the second process. As a result th~re is an 
aspect of computer education that is not being provided 
in response to a situation of the first kind. I refer of 
course to the education of a class of people that I shall 
call software engineers whose training and goals are 
quite different from those of our current computer 
scientists. 

These badly needed people are engineers and their 
domain of specialization is software-its design, produc
tion, and servicing, Actually this is too restricted a 
view: Their specialization is computerware, both hard 
and soft. Actually they deal with a spectrum of st~;\tes 
of computer matter each stable only in certain 
environments. 

It requires little insight or sleuthing to see that such 
engineers are in very short supply and the need for them 
is acute. Accepting this state of affairs, certain questions 
need to he put and then to be answered by the educators 
and the employers of such people. 

1. Should training be conducted in the university 
or in technical or trade or junior college schools 
or indeed in all? 

2. If in a university, in what department or 
discipline or school should it be conducted? 

3. If in a department or interdisciplinary program, 
at what levels should degree programs be offered 
and in what order of priority? 

4. Do these programs exist in the steady state as a 
separate discipline or as a minor or option or 
modification of existing ones? 

5. Is the need going to persist and, if so, will it 
persist in its present form? Will the people be 
educated for the coming generations of systems 
problems? 

6. Why do we speak of engineering and not 
science? 

I t is here suggested that the proper place to start is at 
the master's level. From that program one can move up 
to the doctoral and down to the bachelor's programs. 
The master's program should not be a faceless one 
turning out computer scientists whose grasp and reach 
could not attain the computer science doctoral degree. 
The engineering component of this education is 



paramount. The goal should be concentration on known 
tools and their effective use and not on periods of 
intense innovation or discovery. The choice from 
competing designs is more important than the discovery 
of the existence of designs. The issue of stability is more 
critical than that of growth and change. The determina
tion of task magnitude is as important as the discovery 
of method. The directing of teams is as critical as the 
spark of breakthrough. The professional accomplish
ment of mean tasks that are of peripheral importance to 
the society are distinct from the devotion only to the 
bizarre, rare and new. 

At the moment there are few studies being made 
of the problems of training these people. Rather than 
reproduce a curriculum here, I should like to list 
questions that a trained engineer should be able to 
answer: 

1. Given a software task, similar to familiar ones, 
and a set of computers, evaluate the machines 
and the task to make a meaningful choice of 
machine and representation of the software 
system that is optimal. HoI What is optimal? 
How relevant are the issues of manufacturer 
support? Compatability? Stability? X atural 
gradients for change, growth, and improvement? 

2. Given a software task, what is a rational 
schedule for its completion given various person-

Education of Computer Professional ;341 

nel situations? How do you get, train, or even 
recognize adequate programmers? Hmv do you 
set up work loads? 

3. If n people are programming a system, what do 
you do when the n + 1st arrives, etc. ? 

4. How do you test t3, system? What kind of a 
system do you organize to handle and respond to 
pressures on a system? 

5. Hmv do you market a system? What makes a 
system useful'? How do you copy someone else's 
system? 

6. How and what do you learn from building a 
system? vVhat goes into the inventory stockpile 
after spending time on a software task? 

7. What are the tools of the trade? How are they 
catalogued? Related to diverse hardware? 

8. How do you tie together disjointed systems into 
coupled ones solving enlarged tasks? 

I look upon the professional education of software 
engineers as an amalgam of mathematics, management 
science, computer science and practical experience 
gained from contact with actual software systems and 
associated problems. 
Some of the master's may continue onto the doctorate 

in computer science, but the program is not seen as 
being merely preparation for a doctorate in computer 
science. 





SAL-Systems Assembly Languages 

by CHARLES A. LANG 

University Mathematical Laboratory 
Cambridge, England 

INTRODUCTIOl\ 

The Cambridge Computer-Aided Design group is 
writing some general purpose software tools that aim to 
assist scientists and engineers to apply their problems to 
the computer with maximum ease. These tools include 
a storage allocation system, a data structure package, a 
compiler-compiler for mixed graphical/verbal on-line 
languages, a package of procedures for generating pic
tures and transmitting them to a display, plotter, or 
file, and programs for operating a link between a multi
aGcess computer and a satellite computer. When the 
group started late ,in 1965 it had to determine what 
language to use to write these systems. After struggling 
with the difficulties of assembly code for some time for 
those programs for which FORTRAN was unsuitable, 
we decided to design and implement a more suitable 
language; Systems Assembly Language (SAL) is the 
result. The purpose of this article is to explain the think
ing behind SAL rather than to expound on the finer 
details of the language itself. We feel that this type of 
language which combines the freedom and flexibility of 
assembly code with many of the facilities normally as
sociated with high level languages, could be useful to 
many other workers. Further, this type of language 
could perhaps usefully be provided on all computers. 

Design requirements for SAL 

The design of a programming language is a compro
mise between various requirements; the requirements 
for SAL are now discussed. 

Clarity 

A programming language provides the conceptual 
framework within which a programmer must think 
about his problem, so influencing his method of solu
tion. The language should enable the programmer to 

543 

state clearly the computing operations he wants per
formed; further, the program must be clear to read 
both by himself and others. A high level language such 
as FORTRAX, ALGOL or AED meets these require
ments better than assembly code, but these languages 
fail to meet the other requirements discussed below. 

Effectiveness 

The language itself must be easy to learn (a short 
programming manual is desirable), and capable of being 
compiled efficiently to produce efficient code. These 
requirements must not be achieved at the expense of the 
language's generality or practicability. The target is a 
high "power to complexity" ratio, the view being taken 
that if the basic operations provided by the language are 
well chosen, then these provide the tools with which the 
programmer may fashion more complicated and special
ized operations. We have tried to achieve this by making 
the syntax of SAL very general, avoiding exceptions and 
special cases as far as possible. Also as much as possible 
has been left out of the language rather than the re
verse. For example, a stack is frequently used in -system 
programs, so at first we planned facilities to set up, oper
ate and destroy stacks. Later, however, we abandoned 
this idea as we realized that the kind of stack we were 
planning (a first-in, first-out stack which stacked single 
computer words), might not be the type of stack re
quired by all. Furthermore, such a stack could very 
readily be programmed using other features of the lan
guage. To build in the generality for all possible forms 
of stack would have been too complicated for this type 
of language. We have met our target of producing the 
compiler, documenting it and writing a programming 
manuaP in a single man-year. None of the contending 
languages available in our laboratory, FORTRAN, 
ALGOL, and CPL meet the above requirements; they 
were, of course, never intended for use primarily as 
languages for writing system programs. 



544 Spring Joint Computer Conference, 1969 

There exists a whole spectrum of languages starting 
with assembly code at the lower end, then higher level 
machine dependent languages, then higher level ma
chine independent languages, and eventually reaching 
the highest level ones such as P AL2. To put SAL in per
spective it comes somewhere inbetween a simple ma
chine independent language such as BCPL3, and a ma
chine dependent language like PL3604, both of these 
languages being intended for writing compilers and 
systems. In PL360 assembly code type instructions are 
written together with ALGOL-like declarations, itera
tive and conditional statements and a block structure. 
SAL contains several high level facilities not available 
in PL360, so is roughly parallel in the spectrum with 
YIOL940,5 a language for the SDS 940 which "permits 
the expression of clear, co~cise algorithms and the pro-
duction of efficient tight code". 

Suitability for writing system programs and 
machine dependence 

The language must contain basic features required 
for writing system programs. In particular, these include 
explicit address manipulation, data structures, control 
of iterative and conditional operations, bit manipula
tions, character manipulations, arithmetic and logical 
operations, intercommunication between separate pro
gram modules (perhaps written in different languages), 
cont.rol of peripherals, and the ability to separate pro
gram and data (so that a single copy of a program may 
be shared in a multi-programmed environment). SAL 
attempts to provide these facilities as described in a 
later section, though it is not currently strong on char
acter manipulations. 

While we applaud machine independent progra.mming 
wherever possible, we recognize that there are times, 
even if very few, when machine dependent programming 
is desirable, for example when very high efficiency is 
essential, or intimate control is required over the ma
chine such as in the control of peripherals, or loading of 
machine registers. SAL caters for this machine depen
dence in two ways. First, machine registers may 
be referred to in any arithmetic, logical or condi
tional expression. Second, assembly code may be 
embedded quite freely anywhere in a SAL program 
and may refer directly to declared variables. This 
permits easy communication between the assembly 
code and the rest of the program. This feature was 
specified in the ALGOL 60 report6 and has been in
cluded in many implementations of ALGOL and FOR
TRAN and also in AED.7 Both PL360 and ::VIOL940 
include both of these features. 

No run-time system 

The language must have no run-time system of any 
kind. That is, nothing shall be loaded along with the 
program "behind the users' back", such as an input/ 
output package, or run-time routines to operate stacks 
or dynamic use of working space. In this sense, SAL is 
like a conventional assembly language. This require
ment allows SAL to be used to write any type of system, 
leaving the programmer quite free to control every
thing loaded into the core along with his system pro
gram. Further, the consequence of each statement 
should be clear to the programmer. 

Ability to run together programs written in 
different languages 

The general purpose system programs we write are 
intended to be used as tools by other programmers for 
particular applications. Despite the many attempts, no 
programming language has yet been devised which is 
suitable for all programming tasks. Apart from this the 
more comprehensive a language becomes the more un
wieldy the compiler and system that goes along with it 
tends to become also. The user of the tools must not be 
forced to write his own application programs in the same 
language as used to write the tools. Rather, he should be 
free to write his programs in whatever language is most 
suitable for his application. This means that SAL pro
grams must run within some mixed language system 
where programs written in separate languages may be 
compiled separately but loaded and run together. Many 
such systems exist, but often the methods used for in
terlanguage communication (which are a function of the 
loading system as well as the languages) are limited to 
the FORTRAN requirement. This provides one way of 
calling procedures and passing arguments, plus com
munication via "COMMON." As a result of these re
strictions, some languages, notably ALGOL, are not in
cluded in a mixed language system. The same loader, 
however, is sometimes used to load into core the com
piled code of these languages, and of languages within 
such a mixed language system. A further requirement 
is that a SAL program must have equal freedom to as
sembly code programs, to communicate with programs 
written in any language that may be loaded into core 
with a SAL program by the same loader. 

Examples of mixed language systems are the Proj
ject MAC system on the IBM 7094 where assembly 
code, FORTRAN, MAD, AED, etc., programs may be 
loaded together, or the SCOPE system on the CDC 
6600. The system at Cambridge is known as The Mixed 
Language System (:MLS) and will be referred to later. 



SAL 

The language 

The language description is divided into t,vo sections. 
First there is an example, rich \vith comments, that 
uses many features of the language. Second, the unusual 
or special features of the language are described. The 
syntax is listed in the appendix. SAL is designed for the 
Titan (Atlas II) computer, which has a 48-bit word. 
Floating point operations use the single 48-bit accumu
lator. There are 128 index registers (called R-lines) of 
24 bits each. All integer arithmetic is performed on 
half-words (24 bits) using the index registers as accumu
lators. 

the facilities of the language as possible rather than to 
write the most succinct program. These examples, in 
conjunction with the syntax of SAL in the appendix, 
attempt to convey eoncisely the facilities of SAL. Only 
the more unusual facilities are descrihed in more detail 
in the sections below. 

Examples of SAL programs 

Program 1 generates a picture of a cubic and trans
mits it to a satellite computer 'with a display. Program 
2 is a group of procedures which may be used to 
generate a picture consisting of Hnes and points for the 
Digital Equipment Corporation PDP7/340. Roth pro
grams are highly annotated, comments being intro
duced by a bar (/) and terminated by a bar, semi-colon or 
newline. They have been tested and proved to work. 
It is suggested that readers take a first quick look at the 
program example here. They should not, hO\vever, ex
pect to understand the details until they have finished 
reading this paper. 

The following examples show what a SAL program 
looks like. An attempt has been made to use as many of 

PROORAM 1 

Imain program to plot e cUbio on the d1sp 1eY 

GLOBAL LABEL BUFFER,POINT,LINE,SEND lentry pOints to procedures 
lin program 2 

GLOBAL LABEL START lentry point to this main program 
INTEGER X,XTHIs,YTHIs,XLAST,YLAST,WSPACE(15),DFILE(1&e) 
SLINE 2 ARGl,ARG2,ARG3 9& LINK 
Iset up variable space for pure procedures 

GLOBAL LABEL DUMP 
START, S77-PTR WSPACE(9) 

Iset up 

MAIN1, 

MAIN2, 
LOOP, 

OSELECT & loutput stream se1ecteO for me •• ages 
X-1 
buffer for display file 
ARGI-PTR DFILE(t)I ARG2-1&&, ARG3-0FERROR, 
LINK-MAINl, GOTO ~UFFER, 
Iplot a po1nt at &,41 ARGI-a, ARG2a4, 
LINK-MAIN2, GOTO POINT 
XLAST-e, YLAST-4 
WHILE X<11 DO 

REPEAT 

XTHIS-X*le, YTHIS-X*(X*(X-2)+3)+4 
ARGI-XTHIS-XLAST, ARG2-YTHIS-YLAST 
X-X+1 
X~AST-XTHIS, YLAST-YTHIS 
LINK-LOOP 
GOTO LINE 

Isend display file to tne satellite 
LINK-DONE, GOTO SEND 

DONE, OSTRING IIDISPLAY FILE TRANSMITT~O 
II, STOP 
DFERROR, uSTRING •• DISPLAY FILE OVERFLOW 
II, STOP 

FINISH 



546 Spring Joint Computer Conference, 1969 

PROORAM 2 

idispiay file system 
Ithis routine contains procedures bUffer,point,11ne,send 
Ithe procedures are written as pure prooedures, so Use external 
Ivariables rather than global, local, or common variables 
larguments are passed to the procedures bY value in index registers 
IB2,B3 •••••• etc, and the result, if any, 1s returned 1n ~l. 
Ion entry to the procedYre the return addreSs is 1n age 

GLOBAL LABEL BUFFE~,POINT,~INE,3END ientry pOints to procedures 
RELSTART INTEGER a77 e 
INTEGeR 877 DFLOC,DFOVER,DFNEXT,DFEND,~ODE,NEXTrtOD,TEMP 
BLINE 2 ARG1,ARG2,ARG3 9& LINK lmnemonic na~es for index registers 

iset up manifest constants 
PARWD IS 014117, XCOrt IS 022&&0, YCOM IS 0222eee 
OXYCOM IS 02eee3e~, ENDCOM IS 0492eee, HA~F IS 04 

IbUffer(dfloo,dfsize,dfover) 
Iprooedure buffer is called to set up a bUffer at address dtloc 
land size dfs1Ze in whioh the display file is to De built, one word 
lof dlsplay file per half word. 1f 1t overflo~s exit from cuffer 
lis made to address dfover 

BUFFER, DF~OC-ARGl IpicK up first argument 
DFEND~ArtG2+ARGl idfend marks ena ot display file buffer 
DFOVERaARG3 
~DFLOCzPAR~n If1rst word in the display f1le is parameter 

Imode, setting scale,1ntensity anj light pen sensitivity 
MODE-PAR 'mode of last word 1n tile is parameter 
DFNEXTcDF~JC+HALF Idfnext marks the next free buffer location 
GOTO LI~K I return to call1ng program 

Ipoint(x,y) 
Iprocedure point adds two commandB to the ~l.play file to set x ana Y 
Ix and y must be positive and leas then lea4 

INTEGER B77 COORD, RETURN 
POINT, I set d1spaly file to recelve polnt mo:!e word. 

RETURN-POINTl, NEXTMUO-PO, 
GOTO MODE 

POINT1, Icheck to see if therei. apace 1n t~e at.Play file buffer 
IF OFNEXT+l GE DFENO THEN GOTO OFOVE~ END 
COORO-ARGl AND 1&23 
COORO=COORD SHIFTRC 3 
~OFNEXT-XCOM+COJRO Ix polnt comman4 
DFNEXT-OFNEXT+HALF 
COOROaAHG2 AND 1&23 
COORD-COORD SHIFTRC 3 
~OFNEXT·YCaM+COJRO Iy polnt command 
DFNEXT-DFNEXT+HALF 
GOTO LINK Ireturn 



Iline(delx,dely) 
Iline adds words to the display file to generate lines. 
Idelx and dely may be in the range -le24<DEL<1~24 
Ithe maximum length that may De displayed bY one command 
lis 127, so several com~ands may have to be built 

INTEa~R B77 N,D~LX,DELy,INCRX,INCRY,REMX,R~MY 
LINE, IF ARGl GE 8 THEN DELX=ARGl ELSE DELX=-ARGl E~D 

IF ARG2 GE e THEN OE~Y~ARG2 ELSE DELY--ARG2 END 
IF DE~X GE DELY THEN TEMP-DELX ELSE TEMP-DELY END 
1'4=1 
WHILE TEMP>127*N DO N-N+l, REPEAt 
INCRX=DE~X/N, INCRY-OELY/N 
REMX-DELX-INCRX*NJ REMY-DE~Y-INCRY*~ 

Ibuild display file commands 

SAL 547 

IF OFNEXT+N/2 IN/2 as each command occupies a nalf wordl 
GE DFEND TnEN GOTO OFOVBR END 
RETURN=LIN~l, NEXTMOO-VEC, GOTO MODE 

LINE1, FOR N-N STep -1 UNTIL 1 DO 
DEL.X-INCRX 
IF REM X GT e THgN REnX-R£MX-l, D~LX·DELX+1 END 
IF ARGl LT & TH~N DELX-DELX AND 02eee END Ineg bit 
DE~Y·INCRY 
IF REMY GT e TH£N REMY=REMY-l, D~LY-DELY+l END 
IF ARG2 LT & THeN DELY=DELY AND 02e&e END Ineg bit 
D!~Y-DELY SHIFTLC 8 
~DFNEXT-DXYCOH+DELX+DELY 

~~tNEXT.~DFNEXT SHIFTRC 3 
DFNEXT-DFNEXT+HALF 

REPEAT 
GOTO LINK 

lend of procedure !1ne 

Iprocedure send transmits the display file to the satellite 
SEND, Iclose off disRlay f11e 

IF DFNEXT+l GE DFEND THEN GOTO DrOVER END 
RETURN-SENul, NEXTMOo-SUa, GOTO MODE 

SENDl, ~DFNEXT-ENDCOft, DF~EXT-ufNEXT+HALF 
ble~DFNEXT-DFLOC Inumber oft words 
Bll-2eee laddress in satel11te 
d12-e IData word for satellite 
B13 a OFLOC 
1811 a e ~ 'select link to satel11te 
le13 1& 13 e Isend display file 
GOTO LINK 

ICO~P HOD 9,016&e&&,18 
Iparameter word 
INTEGER 877 MODNijM 
PAR, IF NEXTMOD-PAR THEN GOTO RETURN END 
Iset up mode change in previous word 
PARI, IF NEXTMUDcPO THEN MQONUM-1 ELSE 

IF HEXTMOD-veC THEN KODNUM-4 ELSE KOuNUK-7 END END 
MOD(DFNE~T-HALF)-KODNUM 

hODE-HEXTMOD, GJTO RETURN 



548 Spring Joint Computer Conference, 1969 

Ipoint mode 
PO, IF NEXTMOD~PO THEN GOTG RETURN EUD J GOTO PARl 

Iveotor mode 
Ivector mode words are treated differently. They must 
Ifirst escape into parameter mode by addition of a single bit, 
Ithen a whole new parameter word with the required mode ohange 
I must be added to the display file 

VEe, IF NEXTrtODzVEC THEN GOTO RETURN END 
·(DFNEXT-HALf')c~(DFNEXT-HALF) OR 04ee&ee 'add escape bit 
IF DFNEXT BO DFEND THEN GOTO OFOVER ENO 
·DFNEXTz~ iset null parameter word 
DFNEXT-DFNBXT+HALF 
GOTO PARl 

Isubroutine mode 
SUB, GOTO PARl 

FINISH 

Special features of the language 

Sections of program ending with the word FINISH 
are known as routines. A routine may itself contain 
several procedures. Note that statements may be ter
minated either by a semi-colon or by a newline. 

Declarations, control of space, and intercommuni

cation between programs 

Particular attention has been given to the ability to 
write pure procedures, i.e., separation of code and data, 
control of data space, and communication between pro
grams, whatever language they may be written in. 
Variables may be declared in different data spaces as 
explained below. Most operations in SAL are carried 
out with 24-bit words, called half-words in Titan ter
minology. Variables may be declared either as type 
INTEGER (for want of a better name) or as type 
LABEL. This paucity of types simplifies the compila
tion process, and gives the programmer more flexibility, 
as he can assign any conceptual type (integer number, 
logical, string, character, list head etc.) to an integer 
variable and mix these conceptual types in arrays and 
other forms of data structure. Integer variables may be 
declared in several ways as discussed below. A special 
feature of SAL is that labels may be mixed with integer 
variables in arithmetic and logical expressions (see 
next section). 

NQ floating point operations are provided in SAL 
except by using embedded assembly code. REAL vari
ables may be declared (distinct from integer variables 
as they are 48-bit numbers) for use with this embedded 
assembly code as well as for communicating with FOR
TRAN programs. 

Local Integer Variables 

e.g., INTEGER X, XTHIS, YTHIS 

These variables are local to the routine in Which they 
are declared. Space is assigned for them by the compiler 
at the end of the code of the routine. Consequently, the 
local integer variables of separate routines do not share 
the same space in core. 

Global Variables 

e.g., GLOBAL INTEGER RED, WHITE, BLUE 

Global integer variables allow for communication be
tween separate routines. 

e.g., if routine A declared: 

GLOBAL INTEGER RED, WHITE, BLUE 

and routine B declared: 

GLOBAL INTEGER GREEN, RED 

then both routines may reference the same variable 
RED. Space for global integer variables is allocated by 
the loader at load time. 

External Integer Variables 

External integer variables provid three facilities: the 
ability to write re-entrant code, dynamic allocation of 
space, and a further method of communication between 
routines. These variables are not referenced directly, 
but relative to an address held in an index register. It is 
the programmer's responsibility to store in an index 
register the address of some space that is to be used for 
the variables. 



three of which are: 

INTEGER B77 DFLOC, DFOVER, DFXEXT 

Before such a declaration is made, however, the user 
Program 2, for example, uses index register 77, and 

declares several external integer variables, the first 
must declare where, relative to the address in the index 
register the variables are to be allocated: 

e.g., RELSTART INTEGER B77 0 

This allows variables for different routines, referenced 
relative to the address in the same index register to be 
separated. For example, another routine might make 
the declaration: 

RELSTART INTEGER B77 7 

The space used by the external integer variables in Pro
gram 2 is set up in Program 1 by the statement: 

B77 = PTR WSPACE(O) (PTR is explained 
in next section) 

N ow let us consider the three facilities mentioned 
above, starting with re-entrant code. As external integer 
variables are r~ferenced relative to an address in 
an index register, a new set of variables may be 
referenced by changing this address. The Titan oper
ating system is multi-programmed, and saves and re
stores index registers for each program when switching 
between programs. Hence, several users may share the 
same program, each one setting up the same index reg
ister to contain the address of space to be used by the 
variables. Single users too may have requirements for 
re-entrant code to implement recursive procedures, or 
to handle program traps (for example from the satellite 
computer). In this single user case, it is the user's re
sponsibility to ensure that the address in the index 
register is set up before re-entering some code. 

External integer variables also provide a method, 
under user control, to dynamically allocate space, pro
ducing an effect similar to that provided automatical
ly by some block structured languages. Suppose, for ex
ample, there was declared in one section of code: 

RELSTARTINTEGER B250 

INTEGER B25 P,Q,R,S 

and in another: 

RELSTARTINTEGER B250 

INTEGER B25 OAK, ASH, ELlVl 

then assuming that the content of index register 25 was 

SAL 549 

identical in each section of program (the address of an 
area in core for use by these variables) then P, Q,R 
would use identical locations to OAK, ASH, EL::\1. 

Finally, routines may communicate via external 
integer variables. For example, if two routines both 
declared: 

RELSTART INTEGER B25 0 

INTEGER B25 P,Q,R,S 

then P ,Q,R,S would be accessible to both routines. 
Index register 25 could be set up by either of these 
routines, or another one. 

Index Registers 

Index registers may be referred to by giving their 
number prefixed by B, for example, B2, B3, B4, B90, or 
they may be referred to symbolically by making a dec
laration: 

e.g., BLINE 2 ARGI, ARG2, ARG3 90 LINK 

This declaration makes ARGI, ARG2, ARG3 equiv
alent to B2, B3, B4 and LINK equivalent to B90. 

Common Variables 

Common variables are included in SAL purely to 
permit communication with routines written in FOR
TRAN: 

e.g., CO~VEvl0N /SHAPES/ ROUND, SQUARE 

The name between the / / enables named common to be 
referred to for communication with FORTRAN IV 
programs. 

Arrays 

Single dimensional arrays are declared by giving the 
size of the array after the name: 

e.g., INTEGER YLAST, WSPACE(05) , DFILE(lOO) 

INTEGER B27 A, B(50), C(50) 

GLOBAL INTEGER D,E,F,G(IOOO) 

COMMON jSHAPEj PENTAGON(5) 

Space for arrays is allocated in the same way as for 
single variables. Local integer arrays are assigned by the 
compiler at the end of the routine, the user must set up 
the space for external integer arrays, and the loader 
assigns the space for global integer arrays, as it does for 
common integer arrays which are actually assigned 
within the common area. 



550 Spring Joint Computer Conference, 1969 

Reals 

Real variables may be declared for use with embedded 
machine code, and as arguments when calling FOR
TRAN procedures (see section on procedures), by the 
declaration: 

e.g., REAL NUMBER, RESULT 

Labels 

A local label is declared automatically by placing one 
-in a progra...T!l: 

e.g., ~VIAIN2, XLAST = 0; YLAST = 4 

A label may be declared GLOBAL by the declaration: 

e.g., GLOBAL LABEL BUFFER, POINT, LINE, 
SEND 

Global labels are used for communication between rou
tines, in particular to provide entry points. Thus a 
global label may be declared in several routines, but 
placed only in one routine. For example, BUFFER is 
declared global in Program 1 and Program 2, but 
is placed only in Program 2. The section on procedures 
explains how labels are used to define procedure entry 
points. 

Address manipulations 

SAL has very flexible facilities for handling addresses, 
as may be seen from the syntax. A label (global or local) 
may be used in any arithmetic or logical expression. 
When an expression is being evaluated the value taken 
for a label is the address assigned to that label, whereas 
the value taken for a variable is the contents of the ad
dress assigned to that variable; these are sometimes 
referred to as left and right hand values, respectively.3 

Thus, if L is a label we could write: 

A=L+2 

Indirect addresses are indicated with -7. Thus: 

means take the value (see above) of A and use that as 
the address to store the value contained in the address 
given by the value of D, plus 2. The generality of the 
syntax (see appendix) permits the -7 operator to oper
ate on expressions: 

e.g., -7 ( -7A) = -7 (B + 2 * C) 

-7 X = -7 ( -7 ( -7 ( -7 D))) + 1 

To illustrate further the use of a labei in an arithmet
ic expression and the -7 operator, suppose TABLE is 
the label marking the beginning of a table of addresses 
and an offset is in OFFSET, we could write: 

GOTO -7 (TABLE + OFFSET) 

since any arithmetic expression may follow a GOTO 
statment. The GOTO statement transfers control to the 
address given by the value of the expression following 
GOTO. A simple case is GOTO L, the value of the 
arithmetic expression L being the address of label L. 

The address of a variable may be obtained with the 
PTR (pointer) operator: 

e.g., A = PTR D 

hence -7 (PTR A) is identical to A. 

Data structures and components 

The comprehensive address handling facilities de
scribed above plus the component feature provide the 
basic means for building and manipulating data struc
tures. They are particularly suited to list, tree and ring 
type structures. 

The component feature, similar to that in AED,7 
allows data to be read from or written to any field in 
any half-word in a contiguous block of store. The block 
of store is referenced by a pointer, which is any expres
sion whose value is an address. 

A complete half-word may be referenced using a com
ponent defined by a name and an offset: 

e.g., ICOMP NEXT 0 

This declares NEXT to be an integer component, 
with offset 0 as shown in Figure 1. Suppose PI con
tains a pointer to a block of store, then a value may be 
set in the first half-word with a statement: 

NEXT(Pl) = 1024 

Suppose we declare the next half-word (half-words are 
indicated by the increment 04, a rather unnatural 
Titan convention) to be a component SIZE: 

e.g., ICOlVIP SIZE 04, 0770 I 0 indicates octal. 

This time we have further declared that the component 



1024 IEXT 

SIZE 

Figure I-Components 

SIZE refers only to that part of the word specified by 
the mask 0770. When reading to or writing from such a 
field, only those bits corresponding to ones in the half
word are referenced. 

If it is desired to shift data to the left before writing, 
or to the right after reading, then a count for the shift 
may also be specified: 

e.g., ICOMP SIZE 04, 0770, 3 

If the half-word offset by 04 from PI contained 0123456, 
then the statement: 

SIZE(P1) = 077 

would change it to 0123776. 
The pointer may be specified by any arithmetic ex

pression. We could, for example, set the SIZE compo
nent in the block pointed to by the NEXT component of 
PI, as shown in Figure 1, by the statement: 

SIZE(NEXT(PI» = 53 

Reference to machine registers 

As explained earlier the Titan computer has 128 in
dex registers which are used as accumulators for integer 
arithmetic. These index registers may be referred to 
directly in any expression: 

e.g., B27 = A + B26 + -+ B25 + NEXT(B24) 

or if names have been declared for the index registers, 
then: 

BLINE 24 POINTER, ADDR, ABC, RESULT 

RESULT = A + ABC + ~ ADDR + NEXT 
(POINTER) 

This feature allows efficient use of the machine reg
isters while using high level statements, without the 
need for lapsing into assembly code. 

SAL 551 

Embedded assembly code and the lack of an Algol 

type block structure 

Titan assembly code may be freely embedded at any 
position in a SAL program. Declared variables may be 
referenced, so providing communication between as
sembly code and other statements. Index registers may 
be referred to by their declared names. The four parts of 
a Titan assembly code instruction are: 

Op. code Index register (Ba) Index register (Bm) 
Address or number 

Suppose we want to send a block of 1000 words of 
data to the satellite computer attached to Titan 

Data is in array J 
B1 = 1000 

B2 = 3000 

1013 1 0 J 

I 
set B1 to number of 
words to be sent 

I 
set B2 to some address 

. in satellite 

I where data are to be 
sent 

I send data to satellite 
using assembly 

I code order 

IF A = 2 THEN . . . .. I carry on with rest of 
program 

SAL does not have an Algol-like block structure. We 
could not convince ourselves that it would be any ad
vantage to have one in this simple type of language. 
The advantage of being able to use the same name for 
different variables in different blocks is minimal. We 
had a strong incentive not to use a block structure with 
any automatic dynamic allocation of local variables 
within the blocks, as we wanted to be able to freely em
bed assembly code without restrictions. This includes 
the ability to jump using assembly code to any label or 
computed address. If there were a block structure the 
programmer would have to take special action when 
jumping into or out of a block, unless it was a purely 
lexicographic block' structure as in PL360. An earlier 
section explained how the programmer may achieve the 
effect of automatic allocation by using external integer 
variables. 

Procedures 

As several conventions for passing arguments to pro
cedures have grown up in the laboratory, we decided 
not to include any set way of defining or calling pro-



552 Spring Joint Computer Conference, 1969 

cedures in SAL. Any piece of code, however, may be 
considered as a procedure, with global or local labels 
marking the entry points (there is usually only one), 
specific code having t.o be wrlttf'n to pick up the argu
ments depending upon how they are passed. Calls to 
procedures must set up the arguments, save the return 
address, then jump to the entry point. 

There is, however, an exception to this. SAL runs 
within the ~\Iixed Language System CULS) where as
.sembly code, FORTRAX and SAL programs may be 
compiled separately but loaded and run together. With
in :\ fLS the standard method of passing arguments and 
calling procedures is the method required by FOR
TRAX. A general SAL feature allows calls to be made 
to procedures uRing this method. by preceding the call 
with .\ILS: 

e.g., :.'IlLS SETUP (A, B, C) 

A = }ILS CALCULATE(B) 

the latter example ha vinga value. The syntax allows 
the argument list to be preceded by any declared name. 
I t is very useful permitting this name to be a variable, 
the value of which is the address of the entry point to 
the procedure. This is not quite as general as BCPL 
where the identity of the procedure may be given by the 
value of an expression. 

e.g., INTEGER CHOICE 

CHOICE = ~ (TABLE + OFFSET) 

I Table contains entry points 

]\'ILS CHOICE(10) 

This standard method of calling procedures could not 
be universally adopted for SAL since FORTRA~ pro
cedures and calling sequences are not pure procedures. 

One of the strong points of SAL is its ability to com
municate with programs written in other languages. To 
ease this problem further :\ [. Richards has suggested 
declaring the names to be used for procedure calls to 
indicate to the compiler the type of call that must be 
setup: 

e.g., FORTRAN SETUP, CALCULATE 

ALGOL CUBIC 

BCPL STRING, LIST 

Calls to procedures need not then be preceded by a 
special ,yard as at preRent. (:\ILS). 

P.g., RETep(A,B,C) 

x = CURle(y) 

LIST = LIST + 1 Z = LIST(P.Q,R) 

Input/ output 

The input/output facilities are very Titan dependent 
so are not explained in any detail. Data transfers in 
Titan are arranged in "streams," enabling data to be 
read from any input device and sent to any output de
vice in a genemlized vvay. Facilities are provided to 
select an input or output stream, read or write n. single 
alphanumeric character, a string of characters, or n. 
binary chan-tder (12 bits). :\ [ore complient.ed operatioIls 
such as reading or writing numbers in different formats 
must be specifically programmed (probably by proce
dure call). 

Implementation 

The SAL compiler has been implemented using the 
Brooker-:Uorris compiler-compiler.8 At the beginning 
of the project we chose to use the compiler-compiler as 
we believed th<l.t it would provide the fastest method 
Df producing a SAL compiler and give us the flexibility 
to modify and experiment with the language. Hindsight 
tells us that we could almost certainly have written a 
compiler from scratch, in SAL, in the same time, es
pecially allowing for the 2-3 month period learning to 
'use the compiler-compiler. The SAL compiler produced 
by the compiler-compiler takes 16K and is not very 
fast (it generates about 30 instructions per second). 
This inefficiency is considerable since a SAL compiler 
written in SAL would probably be between 4 a.nd 8K 
and operate a good deal faster. It is a serious criticism 
of the compiler-compiler that one cannot produce a 
more efficient compiler for a simple language like SAL. 
On the other hand, it does enable us to modify and px
periment with the language very easily indeed. 

K 0 particular effort was made to make the generated 
code extremely efficient. Programs coded in assembly 
code are about 15 percent longer when written in SAL. 
Like an assembly code programmer, the SAL program
mer has the ability to control the size and running 
efficiency of his program by careful attention to the 
code he "Hites. \Ve refer here to the correct choice of 
language facility for a particular operation, and most 
definitely not to the sort of "tricks" which delight some 
assembly code programmers. 



Future developments 

The REPLACE feature 

A simple macro feature built into SAL would enhance 
its usefulness. The proposed form of a macro definition 
IS: 

REPLACE name of macro BY delimiter replacement 
text delimiter terminator. 

Arguments of the macro call would be indicated in the 
replacement text by some indication such as .AI .A2 for 
arguments 1 and 2 and so on. For example, let us define 
a macro to enable us to add a word to a push down stack: 

REPLACE STACK BY * 
~.AI = .A2 

.AI = .AI + 1 ;* 

A call STACK(S,X) would be then expanded to: 

~S=X 

S=S+l 

This feature was not included as the compiler-compiler 
does not permit the input string to be modified before 
being processed by the syntax analyzer. 

At present all macro generation must be done by a 
pre-pass using the .;\IL/I macro ~enerator.9 

An ENTRY feature 

The most common way of saving a link when enter
ing a procedure is to store it in index register BOO. 
Hence having set up arguments. a procedure call would 
be: 

e.g., B90 = RETX; GOTO PROC 

RETX, A = B 

This practice means that a label must be defined for 
every return address, which is tedious, and reduces the 
readability of the code. A simple ENTER statement, 
which saved the return address in B90 automatically, 
then transferred control to the procedure would be most 
useful: 

e.g., ENTER PROC 

A=B 

SAL .5,53 

CONCLUSIOKS 

SAL has been in daily use for about nine months. Pro
grams written in SAL have included a command for the 
Titan multi-access system, routines to plot display 
files punched from our PDP7 on the Calcomp plotter 
attached to Titan, a general purpose ring structure 
package, and a system to define and transform three
dimensional pictures in Titan and transmit them to the 
PDP7 for display (Programs 1 and 2 are not part 
of this system). The language facilities, aided by a clear 
manual with a good index at the back! have proved 
most successful. We have achieved our objective in that 
system programs have proved easier to write, read and 
debug in SAL than in FORTRAN or assembly code. 
Weare particularly pleased with SAL's ability to com
municate with program segments written in other lan
guages, and look forward to the inclusion of BCPL in 
the Titan Mixed Language System. The size of the 
compiler (16K) has proved a disadvantage, as the Titan 
multi-access system discriminates against large pro
grams; on-line users would get faster response if the 
SAL compiler ,,,,ere smaller. 

One man-year of effort has produced a system writ
ing language which combines features normally associ
ated with high level languages with the freedom and 
flexibility of assembly languages. Has the time not rome 
when a SAL-like language should be the basic language 
provided for a computer rather than the conventional 
mnemonic assembly language? While being more com
plicated than an assembly language (to compile, not to 
code in) it is still simple, so the added time and core 
required for compilation should not be excessive. In any 
case, these are offset by the time likely to be saved in 
coding and debugging. 

ACKNOvVLEDG lVIENTS 

I particularly want to acknowledge the splendid efforts 
of Heather Brown and Philip Cross with whom I have 
had many fruitful discussions about the language. 
Heather Brown implemented the first version of the 
compiler, always smilingly incorporating language 
changes as they arose. Philip Cross has done marvels 
to improve the efficiency of the compiler-compiler, and 
incorporated new language features found desirable in 
the light of experience. 

APPENDIX 

The syntax oj SAL 

Notation for describing the syntax 

The notation is similar to that used by Brooker and 



554 Spring Joint Computer Conference, 1969 

Morris.S An example of its use is the following descrip
tion of an IF statement: 

I F expression condiiion expression THEN statements 
END 

As can be seen, a syntactic form is· defined by concate
nating its constituents. A constituent that is itself the 
name of a syntactic form is in italics. The remaining 
constituents are literals. 

A special notation is ne~ded to indicate parts of syn
tactic forms that may optionally be repeated and/or 
omitted. In this notation a constituent or series of con
stituents that may optionally be omitted is written: 

[constituents?] 

Constituents that may be repeated any desired number 
of times are written: 

[constituents*] 

and constituents that may be omitted or repeated are 
written: 

[constituents*?] 

The SAL IF statement has an optional ELSE clause so . ' 
IS defined as: 

IF expression condition expression THEN state
ments [ELSE statements?] END 

Any number of names may be declared by an INTE
G ER declaration statement which is defined as: 

INTEG ER declaration-name [,declaration-name*?] 
terminator 

and an expression is defined as: 

[sign?] term [operator term*?] 

A constituent is defined by writing all its possible 
forms in a list separated by commas. Particular forms 
are excluded by saying BUT NOT. Thus operator and 
sign as used above in the definition of an expression 
might be defined: 

operator = +, -, * 

sign = operator, BUT NOT * 

Syntax definitions 

A separator is defined as 

separator = space; tab, comment, continuation symbol 

To aid clarity, separator has been omitted from the 
syntax definitions below. It may be included anywhere 
in a SAL program. 

Basic constituents 

terminator = ;, newline 
letter = ABC D v. F G H T T TT T l\,K NAT) , , , ,.LJ, , , ,1.,.J ,ft,L,lU.,l ,v,r, 

Q,R,S,T,U,V,W,X,Y,Z 
digit = 0,1,2,3,4,5,6,7,8,9 
octal-digit = 0,1,2,3,4,5,6,7 
start-letter = letter, .letter 
alphanumeric = letter,digit,. 
decimal-constant = [digit*] 
octal-constant = O[octal-digit*] ,J [octal-digit*] 
b-line = B[digit*] ,name 
constant = decimal-constant [octal-constant *?], 

[ octal-constant*] 
name = start-letter [alphanumeric*?], BUT NOT 

B digit, 0 digit, J digit, END ,ELSE 
label = name 
array-variable = name ( expression) 
declaration-name = name, name(constant) 
component = name (expression) 
pointer = PTR variable, PTR array-variable 
indirect-address = ~ b-line, ~ va~able, ~ array-

variable, ~ (expression) 
character-string = : :[any-character*?] [newline?]: : 
sign = +,-
operator = +, - ,,!,,/ 
term = constant, b-line, label, variable, array

variable, component, pointer, indirect
address, (expression) 

expression = [sign?] term [operator term *?] 
address-term = constant, label, va.riable, array

variable, *,. 
address-expression = [sign?] address-term [sign 

address-term *?] 
destination = b-line, label, variable, array-variable, 

component, indirect-address 
shift = SHIFTLA, SHIFTLC, SHIFTRA, 

SHIFTRC 
condition = EQ, =,NE,GT, >,LT, <,LE 

Declarations 

GLOBAL LABEL name [,name*?] terminator' 
INTEG ER declaration-name [,declaration-name *?] 

terminator 



GLOBAL IXTEGER declaration-name [,rleclam
tion-naJne*?] tel'lninator 

RRLSTART IXTEGER b-line constant terminatoJ' 
TXTEGER b-line decla1'ai1~on-naJJle [,declarahon

name*?] terminator 
REAL cleclaration-n01ne [,decla1'a#on-name*?l 

terminator 
B LIXE [b-list*] terminator 

b-list = [bnum?] name [,nallle*?] 
bnum = b-line, [digit*] 

CO:.\L\fOX [c-list*] terminator 
c-h.c;;t = / [name?] / declaration-name 

[,declaration-name *'?] 
ICO:.\fP name constant [,constant?] [,con.~tant?] 

terminator 

Preset (compile-time) declaration 

SET declaration-name [TO declarahon-name?] = 
address-expression [,address- e,r:pression *?] 
terminator 

Compile time constants 

name IS address-expression terminato)' 

Placing a label 

label, 

Assignment statements 

destination = expression terminator 
destination = character-string terminator 
destination = term AX]) term terrm:nator 
destination = tenn on term terminator 
destinat?:on = X 01' term terminator 
deshnation = term shift term ternu:natol' 

Transfer of control, iterative and conditional 
statements 

GOTO expression terminator 
STOP terminator 
FOR de8tinaMon = expression STEP expl'essioll 

UNTIL expression DO state-
1nents terminator REPEAT 
terminator 

WHILE expression cond1'fion expression DO state
ments terrninator REPEA T 
terminator 

IF expression condition expression THEX state
ments [ELSE statements?] EXD 

~achine code statements 

op ba bm address-expression terminafor 

SAL .555 

Setting up half-words of data 

l-rw 1)8 wldres.'l-cxpressioi/ [,(((ldre.'l:,!-().r:7)}·ess/'oll *'?] 
terminator 

Reserving space 

I{ESEHVE address-ex]J1'essiot/ termil/otoj' 

Input and output statements 

Omitted as they are ~o Titan dependent. They pr()
vide for ~ett.ing up and manipUlating input and output 
streams and reading or writing; a binary number, a 
character, or a "record" (a f5tring of eharaet,{'rs ter
minated hy a "('arriag(' cont.rol charH,rter". FOJ"(·xampk. 
a "newline"). 

Procedure cans using the ~LS conventions 

:\fLS name (argument [,argument*'?] terminator 
rle.~tination. = ~\fLS name (argument [,arg1l7l1ent*'?]) 

terminator 

End of a routine 

FIX ISH terminato]' 

REFEHE~CES 

H BW)\V~ 
SAL Ilser'8 lIIanual 

University Mathematieal Laboratory Cambridge .June l!)6~ 
2 A EVAXS 

PA.L-A lan(Jllaye desi(Jlled for leachin(J PJ'o(J!'(wlllliny 

lin(Juistic8 
Proe 2;{]'<1 Xational AGM ConfeJ'en(~e )1)61-\ 

;{ M RICHARDS 
RCPL: .-l tool for compileI' wrihil(! and systellls pro(frallllltiltf/ 

Proe S .J C C IH6!l (t.his issue) 
4 ~ WIRTH 

P L360 A proY1'01I//)/ill(J lan(fllaye for the 8{)O CO/II /IlIlel8 

J AeM Yol 15 Xo 1 January HWlS 
f) H HA Y .J F HCLIFSOX 

.l!()L.IJ.~O: PJ'eliliduary specificatio" fur UII .1l{/ol-likl' 
II/achilll' oriel/ted lallYl/auc for Ihe 8/)8 n·w 
Interim Tedl Report 2 Projeet flS!IO Stanford Hesea)'('1i 
Institute March 1 n6~ 

6 p ~AGR Editor 
Revised report on the algorithlllic lultuuaue .llgol fiO 
Computer Journal Vol .~ p ;~4\1 January 1116:{ 

7 j) T ROSS 
.lED-O prOfjrallllllin(/ malllwl 

Preliminary Release 
~lassachusetts Intititut.e of Technology (ktobel' 1 ~164 

H R A BOOKEH et al 
The cO/llpilel' compilel 
Annual Review in Automatic Pl'Ogramming 
Pergamon Press 196;{ 

HPJ BROWX 
The Jf L/lmacro processor 
C AC:\f Vol 10 X 0 10 October 1 \167 





BCPL: A tool for compiler writing and 
system programming 

by l\1ARTIN RICHARDS* 

U niver&ity Mathematical Laboratory 
Cambridge, England 

INTRODUCTION 

The language BCPLI (Basic CPL) was originally de
veloped as a compiler writing tool and as its name 
suggests it is closely related to CPL2,3 (Combined 
Programming Language) which was jointly developed 
at Cambridge and London Universities. BCPL adopted 
much of the syntactic richness of CPL and strived for 
the same high standard of linguistic elegance; however, 
in order to achieve the efficiency necessary for system 
programming its scale and complexity is far less than 
that of CPL. The most significant simplification is 
that BCPL has only one data type-the binary bit 
pattern-and this feature alone gives BCPL a char
acteristic flavour which is very different of that of CPL 
and most other current programming languages. 

BCPL has proved itself to be a very useful compiler 
writing tool and it also has many qualities which make 
it highly suitable for other system programming appli
cations. 

We will first outline the general structure of BCPL 
and later discuss how well it is suited to applications 
in the fields of compiler writing and system program
ming. 

The language 

BCPL has a simple underlying semantic structure 
which is built around an idealised object machine. 
This method of design was chosen in order to make 
BCPL easy to define accurately and to facilitate ma
chine independence which is one of the fundamental 
aims of the language. 

* The work was started while the author was employed by 
Massachusetts Institute of Technology. It was supported, in 
part, by Project MAC, an M.LT. research program sponsored 
by the Advanced Research Projects Agency, Department of 
Defense, under Office of Naval Research Contract Number 
Nonr-4102(0l). 

The most important feature of the object machine 
is its store and this is represented diagrammatically ill 
Figure 1. It consists of a set of numbered boxes (or 
storage cells) arranged so that the numbers labelling 
adjacent cells differ by one. As will be seen later this , 
property is important. 

Each storage cell holds a binary bit pattern called 
an Rvalue (or Right hand va1ue). All storage cells are 
of the same size and the length of R values is a constant 
of the implementation which is usually between 24 and 
36 bits. An R value is the only kind of object which can 
be manipulated directly in BCPL and the value of 
every variable and expression in the language will 
always be an Rvalue. 

R values' are used by the programmer to model ab
stract objects of many different kinds such as truth 
values, strings and functions, and there are a large 
number of basic operations on Rvalues which have 
been provided in order to help the programmer model 
the transformation of his abstract objects. In particular, 
there are the usual arithmetic operations which operate 
on Rvalues in such a way that they closely model 
integers. One cal~ either think of these operations a:; 
ones which interpret their operands as integers, per
form the integer arithmetic and convert the result 
back into the R value form, alternatively one may 
think of them as operations which work directly on bit 
patterns and just happen to be useful for representing 
integers. This latter approach is closer to the BCPL 

n n+1 n+2 n+4 

Figure I-The machine's store 

557 ------------------



!l58 Spring Joint Computer Conference, 1969 

philosophy. Although the BCPL programmer has direct 
access to the bits of an R value, the details of the binary 
representation used to represent integers are not de
fined and he would lose machine independence if he 
performed non numerical operations on R values he 
knows to represent integers. 

An operation of fundamental importance in the ob
ject machine is that of Indirection. This operation has 
one operand which is interpreted as an integer and it 
locates the storage cell which is labelled by this integer. 

. This operation is assumed to be efficient and, as will 
be seen later, the programmer may invoke it from with
in BCPL using the rv operator. 

Variables and manifest constants 

A variable in BCPL is defined to be a name which has 
been associated with a storage cell. It has a value 
which is the R value contained in the cell and it is 
called a variable since this Rvalue may be changed by 
an assignment command during execution. Almost all 
forms of definition in BCPL introduce variables. The 
only exception is the manifest declaration which is used 
to introduce manifest constants. 

A manifest constant is the direct association of a 
name with an R value; this association takes place at 
compile time and remains constant throughout execu
tion. There are many situations where manifest con
stants can be used to improve readability with no loss 
of runtime efficiency. 

Lvalues and modes of evaluation 

As previously stated each storage cell is labelled by 
an integer; this integer is caned the Lvalue (or Left 
hand value) of the cell. Since a variable is associated 
with a storage ceil, it must also be associated with an 
Lvalue and one can usefully represent a variable dia
grammatically as in Figure 2. 

Within the machine an Lvalue is represented by a 
binary bit pattern of the same size as an Rvalue and so 
an Rvalue can represent an Lvalue directly. The 

Name 

I 

i 
Lvalue Rvalue 

Figure 2-The fOlm of a variable 

process of finding the Lvalue or Rvalue of a variable is 
called Lmode or Rmode evaluation respectively. The 
idea of mode of evaluation is useful since it applies to 
expressions in general and can be used to clarify the 
~~emantics of the assignment command and other 
fEatures in the language. 

_"imple assignment 

The syntactic form of a simple assignment command 
is: 

El E2 

where El and E2 are expressions. Loosely, the meaning 
of the assignment is to evaluate E2 and store its value 
in the storage cell referred to by El. It is clear that the 
expressions El and E2 are evaluated in different way:::; 
and hence there is the classification into the two mode:::; 
of evaluation. The left hand expression El is evaluated 
in Lmode to yield the Lvalue of some storage ceil and 
the right hand side E2 is evaluated in Rmode to yield 
an Rvalue; the contents of the storage cell is then 
replaced by the Rvalue. This process is shown dia
grammatically in Figure 3. The only expressions which 
may meaningfully appear on the left hand side of all 
assignment are those which are associated with storage 
cells, and they are called Ltype expressions. 

The tenns Lvalue and Rvalue derive from considera
tion of the assignment command and were first used by 
Strachey in the CPL reference manual. 

The lv operator 

As previously stated an Lvalue is represented by a 
binary bit pattern which is the same size as an Rvalue. 
The lv expression provides the facility of accessing the 

El := E2 

1=~t1on 1~uat1oD 
Lvalue 

;-\ 
I' 

~ 

Identical 
bit patterns 

\ 

\ 
\ 

\ 
\ 
. ../ 

Lve.lue 

Rvalue 

,I ~ep~~. 
II in the cell 

~_s_to_r_ag_e_ce_l¥ 

Figure :3-'T'~~ process of assignment 



Lvalue of a storage cell and, as will be seen, this ability 
is very useful. 

The syntactic form of an lv expression is: 

lv E 

where E is an Ltype expression. The evaluation process 
is shown in Figure 4. The operand is evaluated in 
Lmode to yield an Lvalue and the result is a bit pattern 
identical to this Lvalue. The lv operator is exceptional 
in that it is the only expression operator to invoke 
Lmode evaluation, and indeed in all other contexts, 
except the left hand side of the assignment, expressions 
are evaluated in Rmode. 

The rv operator 

The rv operator is important in BCPL since it 
provides the underlying mechanism for manipulating 
vectors and data structures; its operation is one of 
taking the contents (or Rvalue) of a storage cell whose 
address (or Lvalue) is given. 

The syntactic form of an rv expression is as follows: 

rv E 

and its process of evaluation is shown diagrammatically 
in Figure 5. The operand is evaluated in Rmode and 
then the storage cell whose Lvalue is the identical bit 
pattern is found. If the rv expression is being evaluated 
in Rmode, then the contents of the cell is the result; 
however, it is also meaningful to evaluate it in Lmode, 
in which case the Lvalue of the cell is the result. An 
TV expression is thus an Ltype expression and so may 

Iv 

i:.'" Rvalue 

E 

1 Lmode 
evaluation 

V~alue 

" \ 

Identical 
, ,,' bit patterns 

Figure 4-The evaluation of an LV expression 

TV 

BCPL 559 

E 

1 
Rmode 
evaluation 

Rvalue 
~ , 

/ 

~ 

Lvalue 

, 
" '. Identical 

bi t pat terns 

" " / 

Figure 5-The evaluation of an RV expression 

appear on the left hand side of an assignment command, 
as in: 

rv p t 

and one can deduce that this command will update the 
storage cell pointed to by p with the Rvalue of t. 

Data structures 

The considerable power and usefulness of the rv 
operator can be seen by considering Figure 6. This 

, , 

v 

l~ode evaluation 

Rvalue 
;'\ 

Identi'cal 
bit patterns 

\ 
\ 

\ 
\ 
\ 

\ 
~ 

Lvalue 
! 

+ 3 

lR!node 
evaluation 

Rvalue 

, Identical 
/" bit patterns 

I 

I 

Figure 6-An intrepretation of V + 3 



560 Spring Joint Computer Conference, 1969 

diagram shows a possible interpretation of the expres
sion V + 3. Some adjacent storage cells are shown and 
the left most one has an Lvalue which is the same bit 
pattern as the Rvalue of Vo One wil] recall that an 
Lvalue is really an integer and that Lvalues of adjacent 
cells differ by one, and thus the R value of V + 3 is 
the same bit· pattern as the Lvalue of the rightmost 
box shown in the diagram. If the operator rv is applied 
tQ V + :3, then the contents of that cell will be accessed. 
Thus the expression: 

TV (V + i) 

acts very like a vector application, since, as i varies 
from zero to three, the expression refers to the different 
elements of the set of four cells pointed to by V, V can 
be thought of as the vector and i as the integer sub
script. 

Since this facility is so useful, the following syntactic 
sugaring is provided: 

El 1 E2 is equivalent to rv (El + E2) 

and a simple example of its use is the following com
mand: 

v l (i + 1) : = V l i + 2 

One can see how the rv operation can be used in 
data. structures by considering the following: 

V 1 3 == 1'v (V + 3) by definition 

== .TV (:3 + V) since + is commutative 

==31V 

Thus V 1 3 and 3 1 V ares emantically equivalent; 
however, it is useful to attach different interpretations 
to them. We have already seen an interpretation of 
V 1 3 so let us consider the other expression. If we 
rewrite 3 1 V as Xpart 1 V where Xpart has value 3, 
we can now conveniently think of this expression as a 
selector (Xpart) applied to a structure (V). This 
interpretation is shown in Figure 7. 

By letting the elements of structures themselves be 
structures it is possible to construct compound data 
structures of arbitrary complexity. Figure 8 shows a 
structure composed of integers and pointers. 

Data types 

The unusual way in which BCPL treats data types 
is fundamental to its design and thus some discussion 

V----~)~ 
I I The cell referred 

to by Xpart.J, V 
Xpart 

~-

Figure 7--An interpretation of X part 1 V 

36 

Figure X-A stl'Ueture of int.egers and pointer:; 

of types is in order here. It is useful to introduce two 
classes: 

a. Conceptual types 
b. Internal types 

The Conceptual type of an expression is the kind of 
abstract object the programmer had in mind when he 
wrote the expression. It might be, for instance, a time 
in milliseconds, a weight in grams, a function to trans
form feet per second to miles per hour, or it might be a 
data structure representing a parse tree. It is, of course~ 
impossible to enumerate all the possible conceptual 
types and it is equally impossible to provide for all of 
them individually within a programming language. 
The usual practice when designing a language is to 
select from the conceptual types a few basic ones and 
provide a suitable internal representation together with 
enough basic operations. The term Internal type refers 
to anyone of these basic types and the intention is 
that all the conceptual types can be modelled effectively 
using the internal types. A few of the internal types 



provided in a typical language, such as CPL, are listed 
below: 

real 

integer 

label 

integer function 

(real, Boolean) vector 

:Much of the flavour of BCPL is the result of the 
conscious design decision to provide only one internal 
type, namely: the binary bit pattern (or Rvalue). In 
order to allow the programmer to model any conceptual 
type many useful primitive operations have been pro
vided. For instance, the ordinary arithmetic operators 
+, -, * and / have been defined for Rvalues in such 
a way as to model the integer operations directly. The 
six standard relational operators have been defined and 
a complete set of bit manipulating operations provided. 
In addition, there are some stranger bit pattern opera
tions which provide ways of representing functions, 
labels and, as we have already seen, vectors and 
structures. All these operations are uniformly efficient 
and can usually be translated into one or two machine 
instructions. 

The most important effects of designing a language 
in this way can be summarized as follows: 

1. There is no need for type declarations in the 
language, since the type of every variable is 
already known. This helps to make programs 
concise and also simplifies such linguistic prob
lems as the handling of actual parameters and 
separate compilation. 

2. It gives the language nearly the same power as 
one with dynamically varying types (e.g., P AL4) 
and yet retains the efficiency of a language 
(like FORTRAN5) with manifest types; for, 
although the internal type of an expression is 
always known by the compiler, its conceptual 
type can never be. For instance it may depend 
on the values of variables within the expression, 
as in the vector application V t i, since the 
elements of a vector are not necessarily of the 
same conceptual type. One should note that in 
languages (such as ALGOL6 and CPL) where 
the elements of vectors must all have the same 
type, one needs some other linguistic device in 
order to handle dynamically varying data 
structures. 

3. Since there is only one intenlal type there can 
be no automatic type checking and it is possible 

BCPL 561 

to write nonsensical programs which the COlll

piler will translate without complaint. Thii:> 
slight disadvantage is easily outweighed by the 
simplicity, power and efficiency that this treat
ment of types makes possible. 

Syntactic features of BCPL 

One of the design criteria of BCPL was that it should 
be a useful system programrning tool and it was feit 
that high readability was of extreme importance. 
The readability of a program largely depends on the 
skill and style of the programmer; however, his task 
is greatly simplified if he is using a language with a 
rich set of expressive but concise constructions and if 
all the little syntactic details have been well thought out. 

The syntax of BCPL is based OIl the syntax of CPL 
and, although the underlying semantics of the two 
langua~es are very different, they look superficially 
alike. 

One of the most important requirements necessary 
before one can obtain a reasonable degree of readability 
is an adequate character set which contains both capital 
and small letters. A comparison has been made between 
two hardware versions of the same large BCPL pro
gram, one using nearly the full ASCII character set. 
and the other using the same set without any small 
letters. Although there is no accurate measure of 
readability, it was agreed by all who made the compari
son that the difference between the two versions was 
very significant. The lengthening of identifiers to avoid 
clash of names, and the fact that system words and 
identifiers were no longer distinct both increased the 
difficulty of reading the program. There are satis
factory implementations of BCPL using a restricted 
character set, but such a set should only be used where 
absolutely necessary. 

BCPL follows CPL in the selection of commands. 
There are the three basic commands: assignments, 
routine commands and jumps, and there is the large 
variety of syntactic constructions to control the flow 
of control within an algorithm; some example forms are 
given below: 

test E then C or C 

ifE do C 

unless E do C 

until E do C 

while E do C 

C repeatuntil E 

C repeatwhile E 



562 Spring Joint Computer Conference, 1969 

C repeat 

for Name = E to E do C 

where E denotes any expression and C any command. 
A very useful pair of additional commands are 

a. break which causes a jump out of the smallest 
enclosing loop command, and 

b. return which causes a return from the current 
routine. 

One of the most noticeable ways in which this large 
selection of constructions improves readability is by 
the considerable reduction in the need for labels and 
goto commands. For instance, the BCPL compiler 
itself consists of 88 pages of BCPL program and con
tains only 29 labels which is about one label per three 
pages of program. It is interesting to see how experi
enced FOR TRAX programmers fill their first few 
BCPL programs with labels and how their program
ming style improves as they gain facility. 

The BCPL syntax for declarations and definitions 
is far simpler than the corresponding syntax in CPL; 
this is mainly due to the elimination of types from the 
language, and the lower emphasis placed on declara
tions in BCPL. 

The purpose of a declaration in BCPL is threefold: 

a. To introduce a name and specify its scope. 
b. To specify its extent. 
c. To specify its initial value. 

The scope of a name is the textual region of program 
in which it may be used to refer to the same data item; 
this region is usually a block or the body of a function 
or routine, and it depends on the way in which the 
name was declared. The extent of a variable is the time 
through which it exists and is associated with a storage 
cell. Throughout the extent of a variable, its Lvalue 
remains constant and its R value is only changed by 
assignment. Nlost forms of declaration initialiM the 
variables they define, as in: 

let f (t) = 2*t + 3 

let x = 36 + f(4) 

In this example, the variable f is initialized to a value 
which represents the function defined, and x is initial
ized to 47. 

In BCPL, variables may be divided into two classes: 

1. Static variables 
The extent of a static variable is the entire 
execution time of the progra.m; the storage cell 

is allocated prior to execution and cQntinues to 
exist until execution is complete. 

2. Dynamic variables 
.t\ d~lrla/mic variable is one ,\;ilhose exterlt starts 
when its declaration is executed and continues 
until execution leaves the scope of the variable. 
Dynamic variables are particularly useful when 
using recursive functions and routines. The 
kind of variable declared depends on the form 
of declaration used; out of the nine methods of 
declaring names in BCPL, five declare static 
variables, three produce dynamic variables and 
the remaining one declares manifest constants. 

Function and routine calls 

In BCPL as in CPL, there is a rigorous distinction 
between expressions and commands which shows itself 
in the syntax of the language; it also causes the seman
tic separation of functions from routines. In many 
respects functions and routines are rather similar; 
however, a function application is a kind of expression 
and yields a result, whereas a routine call is a kind of 
command and does not. 

The syntactic form of both functioll applications 
and routine calls is as follows: 

El(E2, E3 ....... , En) 

where El to En all denote expressions. The expressions 
E2 to En are called actual parameters. The evaluation 
process is as follows: 

1. All the expressions E 1 to En are evaluated ill 
Rmode to yield Rvalues. 

2. A set of n-l adjacent new storage cells are found 
and the values of E2 and En are stored in them. 

;~. The function or routine corresponding to the 
value of El is found and the formal parameters 
are associated with the cells .containing the 
arguments. This association is performed from 
left to right and there is no need for the number 
of actual parameters to equal the number of 
formals. 

4. The body of the function or routine is then 
executed in the new environment . 

. 5. When the body has been completely evaluated, 
execution returns to the call. For a routine call 
there is no result and execution is now complete; 
however, for a function application there is a 
result which is the Rvalue of the function body. 

All functions and routines in BCPL are automati
cally recursive and so, for instance, one can call a 
function while an activation of that function is already 



in existence. In order to allow for recursion and yet. 
maintain very high execution efficiency, the restriction 
has been imposed that all free variables of both func
tions and routines must be static. Randell and RusselF 
give a good description of the kind of mechanism 
normally required for recursive calls in ALGOL; 
however, with this restriction, a recursive call in BCPL 
can be very efficient. 

The mobility of the BCPL Compiler 

A program is machine independent if it can be trans
ferred from one machine to another without change. 
Complete machine independence is rarely achieved; 
however, it is a goal well worth striving for. For large 
systems, mobility is often a more useful measure than 
machine independence. :\lobility is a measure of how 
easy it is to transfer a system from one machine to 
another; it differs from machine independence because 
the program often requires some redesign and repro
gramming. For example, when moving a compiler from 
one machine to another it is necessary to rewrite the 
code generator and usually part of the lexical analyzer. 
Writing a compiler in a machine independent language 
is an important factor in obtaining mobility but it does 
not ensure it; it is at least as important to design the 
overall structure of the compiler with mobility in mind. 
The BCPL compiler has been designed with this aim 
and has been transferred successfully to seven other 
machines without much difficulty. 

BCPL is a simple language to compile and it has a 
straightforward compiler written in BCPL. The com
piler is easy to follow and it produces fairly good object 
code at an acceptably fast speed. Its general structure 
is shown in Figure 9. The rectangular boxes represent 
the different logical parts of the compiler and the round 
boxes the various intermediate forms the BCPL pro
gram takes ,vhile it is being compiled. These interme-

CG 1----..,., (*<:hlne CodV 
"--__ ..oJ 

Figure 9-The structure of the BCPL compiler 

BCPL .563 

diate forms will be briefly sketched by considering the 
transformations of the program shown in Figure 10. 

The input form of the program is first transformed 
into an internal tree structure called the Applicative 
Expression Tree (AE Tree); this is done by the syntax 
analyzer which is composed of a set of machine inde
pendent parsing functions (SYX) and a lexical analyzer 
routine (PP). The AE tree structure for our example 
program is shown in Figure 11. 

The AE tree is then translated by Trans into an 
intermediate object code called OCODE. OCODE was 
specially designed for BCPL and it is a simple language 
whose statements cause basic transformations on an 
imaginary stack machine; it was designed to be as 
machine independent as is practical to keep the changes 
to Trans to a minimum when the compiler is moved to 
a new machine. 

The Code generator translates OCODE statements 
into the machine code of the object machine. The imple
mentor is free to choose between relocatable binary 
and assembly language, and it is usually found that the 
ability to generate both is very valuable, 

$( let x = a 

if x .!!:. 2 do x:::I x + 2 

finish $) 

Figure 10-An example BCPL program 

LET 

8 
IF 

NE / 
f-' 

. 

ASS 

/ 
1?LUS 

Figure 11-The AE tree form of Figure 10 



.564 Spring Joint Computer Conference, 1969 

In order to transfer BCPL to a new machine, one 
must choose a suitable strategy and this usually depends 
on the locality of the machines, their basic compati
bility and the facilities available on the recipient 
machine. The basic process is to write both a code 
generator for the new machine and a suitable machine 
code interface with the new operating system; one then 
modifies and corrects the few machine dependencies 
in the syntax analyser and Trans, and finally compiles 
the new compiler using the new code generator. The 
process is complicated by the fact that the work cannot 
be carried out entirely on one machine. In practice, 
the more work that can be done on the donor machine 
the better; however, one often has no direct access to 
that machine and a different strategy must be applied. 
In this situation it is usually better to implement a 
temporary code generator for the recipient machine in 
some standard language such as FORTRAN or SNO
BOL8 and then use it to compile the OCODE files of 
the syntax analyzer and translation phase of the com
piler. One can then construct a temporary BCPL 
compiler on the new machine and use it to compile 
itself. The compiler can then be polished to fit well in 
its new operating environment. 

The cost of transferring BCPL depends largely on 
the computing facilities available, and one can expect 
it to be between one and five man months. 

The use of BCPL for compiler writing 

There S,re many reasons why BCPL is suitable for 
compiler writing and probably one of the most impor
tant of these is the ease of programming in the language. 
This together with its inherently high readability com
bine to make BCPL a very flexible language. The 
richness and variety of useful commands are valuable 
and the built in recursion is almost essential. In order 
to see how well these features may be used together we 
will consider a short excerpt from the BCPL compiler. 
Figure 12 shows the overall structure of the main part 
of translation phase. The directive get 'HEAD2' causes 
the compiler to insert a file of BCPL text and compile 
it with what follows. This insertion facility is very 
useful when co-ordinating many separate parts of a large 
program. This example shows how the switchon com
mand may be used with manifest constants to good 
effect. It is executed by evaluating the controlling 
expression HI 1 x and then jumping to the case corre
sponding to the value found. The expression appearing 
in the case labels are manifest constants and denote the 
possible AE tree operators that Trans must deal with 
(the constants LET, TEST and REPEAT are declared 
in the inserted file HEAD2. If the value of Hl1 x 
does not correspond to any case then execution con-

get 'HEAD2' 

~ Trans(x) be 

$ (1 sn tchon HIJ,x .!!!.!:£ 

$( default: return 

case LET: -

case TEST: -

case REPEAT: -
Figure 12-The structure of Trans 

tinues at the default label. Since all the case constants 
are known by the compiler it is possible to implement 
the switch very efficiently, even constructing a hash 
table if this method of switching is appropriate. This 
combination of manifest constants and switchon com
mands is very effective and it has been used frequently 
in the BCPL compiler. 

Recursion is also very useful in many compiling 
situations particularly in parts concerned with the 
creation and analysis of tree structures. Figure 13 is 
a detailed excerpt, again taken from Trans, and it 
provides an example of a typical use of recursion. The 
section of program shown is used to translate the AE 
tree form of a test command into OCODE. The variable 
x is the formal parameter of Trans and it points to a 

~ TEST: $( ~ L, M := NextpararnO, Nextpara.'TI() 

Jurnpcond(H2J,.x, false, L) 

TranS(H3~x) 

Comp,j1l.'1lP (M) 

Complab(L) 

Tra.ns(H4~x) 

Complab (\{) 

return $ 

Figure 13-A det.ail from the body of Trans 



TEST node. The form of this node is shown in Figure 
14; the pointers to E, C1 and C2 represent the branches 
to nodes for the Boolean expression and two altenlative 
commands of the test command. These components can 
be accessed by the expressions H2 1 x, H3 1 x, and 
H41 x, respectively. To execute a test command,first 
the Boolean expression is evaluated and then, if the 
result is true, the first alternative is executed, alterna
tively the second. The general form of the object code 
is as follows: 

1. Code to evaluate E. 
2. Code to jump to label L if the result is false. 
3. Code corresponding to the translation of Cl. 
4. An unconditional jump around the code for C2. 
5. A directive to set label L. 
6. Code for C2. 
7. A directive to set the lahel used in step 4. 

As can be seen the program to generate this code is 
very straightforward. First, two local variables Land 
M are declared for the two labels. The call for Jump
cond then compiles the code for steps 1 and 2. Its first 
argument is the Boolean expression of the test command 
and the other arguments specify the kind of conditional 
jump required and the label to jump to. The next 
statement is a call for Trans which will compile the 
first alternative Cl. This is an example of the recursive 
use of Trans. The calls for Compjump and Complab 
generate code corresponding to steps 4 and .5, and then 
there is a second recursive call for Trans to translate 
C2. Finally, a directive to set label :\1 is compiled and 
then, since the lest command has now been completely 
translated, a return is made to the current call of Trans. 

One should note how convenient it is not to have to 
declare the types of the variables such as x, Land :\1, 
and one should also note how well the use of manifest 
constants, switchon commands, recursion and simple 
data structures combine to produce a very effective and 
readable means of writing this part of the compiler. 
Although there is considerable variance in the style of 
programming used in the different parts of the compiler, 

X --------l!I..) TEST 

.... , E 

'--;;> Cl 

\.. C2 

Figure 14-The AE tree form of a test command 

BCPL 565 

the facilities and syntactic qualities of BCPL have 
made it possible to achieve this high standard of sim
plicity and readability throughout. 

The way in which BCPL treats data types allows the 
programmer great freedom to organize his symbol 
tables, property lists, tree structures and stacks in the 
most suitable fashion for his particular application. 
Admittedly BCPL only provides the basic operations 
and the compiler writer must write his own system, 
but this is easy to do and he does not suffer the disad
vantage of having to use a system in which inappro
priate design decisions have already been made. The 
philosophy of BCPL is not one of a tyrant who thinks 
he knows best and lays down the law on what is and 
what is not allowed; rather, BCPL acts more as a 
servant offering all his services to the best of his ability 
without complaint even when confronted with appar
ent nonsense. The programmer is always assumed to 
know what he is doing and he is not hemmed in by 
petty restrictions. ::\1achine code programmers tend 
to like the way in which BCPL combines the advantages 
of a high level language with the power to do address 
arithmetic and to be able to manipulate binary bit 
patterns without invoking a great weight of expensive 
machinery. 

When planning and writing a compiler in a com
mercial environment one must make a compromise 
between the quality of the product and its cost. The 
quality of a compiler is affected by many factors such 
as its size, its compile speed, the efficiency of the object 
code produced, the usefulness of the error diagnostics, 
the accuracy and quality of its documentation, its 
maintainability and in some cases its flexibility and 
mobility. Only the first two of these are directly im
proved by writing the compiler in a more efficient 
language, while the others tend to suffer because the 
compiler is harder to write. Although efficiency is 
important in a compiler writing language, this consid
eration should not totally dominate its design. The 
author believes that the compromise in the design of 
BCPL between efficiency and linguistic effectiveness 
is near optimal for compilers of medium to large scale 
languages especially if flexibility is required. 

REFERENCES 

M RICHARDS 
The BCP L reference manual 
Memorandum-69/1 The University Mathematical 
Laboratory Cambridge England January 1969 

2 J BUXTOX J C GRAY D PARK 
CPL elementary programming manual 
Edition II The University :\lathematical Laboratory 
Cambridge England 1966 



566 Spring Joint Computer Conference, 1969 

:1 C STRACHEY (editor) 
CPL working papers 
Cambridge University ;Mathematical Laboratory and 
London Institute of Computer Science 1965 

4 A EVANS JR 
A language for teaching programming linguistics 
Proc 23rd National ACM Conference 1968 

5 IBM Reference Manual 
709/7094 FORTRA~ Programming System 
Form C28--6054-2 

6 P NAUR (editor) 
Revised report on the algorithmic language ALGOL 60 
The Computer Journal Vol 5 January 1963 349 

7 B RANDELL L J RUSSELL 
ALGOL 60 implementation 
Academic Press 1964 

8 D J FARBER et al 
SNOBOL, a string-manipulation language 
JACM Vol 11 Xo 1 January 1964 

APPENDIX 

The syntax given below is Bachus N aur FOrol with the 
following extensions: 

1. For improved readability, the syntactic cate
gories for expressions, commands and definitions 
(namely E, C and D) are not surrounded by 
meta linguistic brackets. 

2. The symbols { and } are used to indicate 
repetition, for example: 

E { , E } ~ means 

E I E, E I E, E, E I ... etc 

This syntax is ambiguous and is simply intended to 
list all the syntactic contructions available. 

The canonical syntax of BCPL 

E .. = (name) I (stringconst) I (charconst> I 
(number) I true I false I (E) I valof (block) I 

lvE I rvE I E(Elist») lEO I E(diadicop)EI 
(monadic op) E I E ~ E, E \ 
table (collHtant) {, (constant) } ~ 

< diadic op) :: = J I * I / I rem I + I - I 
= I ~ Ils I gr Ile I ge I 
lshift I rshift I 1\ I V I == ~ 

(monadic op) :: = + I - I not 

(E list) :: = E {, E} ; 

(constant) :: = E 

C .. = (E list) : = (E list) I E ( (E list») lEO I 
golo E I (name) : C I if E do C \ unless E do C I 
while E do C I until E do C I C repeat I 
C repeatuntil E I C repeat while E I 
test E then C or C I break I return I finish I 
resultis E I for (name) = E to E do C \ 
switch on E onto (block) I case (constant) : C I 
default : C I (block) I (empty) 

D .. (name) ( (FPL ») = E I (name> ( (FPL ») be C I 
(name list) = (E list) 
(name) = vec (constant) 

(FPL) :: = (name list) I (empty) 

(name list) :: = (name) {, (name) }; 

(block> :: = $( (block body) $) 

(block body) :: = C { ; C} ~ I 
(declaration) } I ~ { ; C} ~ 

(declaration> :: = let D {and D} ; I static (decl body) i 
manifest (decl body) I 
global (decl body) 

(decl body) :: = $( (C def) {; (C def)l ~$) 

(C def) :: = (name): (constant) I 
(name) = (constant> 

(program) :: = (block body> 



EXDAMS-EXtendahle Dehugging and 
Monitorilli! SYstem * - .. -- . ·0 --, 

by R. M. BALZER 

The RAND Corporation 
Santa Moniea, California 

INTRODUCTION 

With the advent of the higher-level algebraic lan
guages, the computer industry expected to be relieved 
of the detailed programming required at the assembly
language level. This expectation has largely been real
ized. Many systems are now being built in higher
level languages (most notably MULTICS).l 

However, our ability to debug programs has not 
advanced much with our increased use of the higher
level languages. As Evans and Darley2 point out: 

We find that, broadly speaking, a close analog 
of almost every principal assembly-language de
bugging technique exists in at least one debugging 
system pertaining to some higher-level language. 
However, on-line debugging facilities for higher
level languages are in general less well-developed 
and less widely used (relative to the use of the 
languages) than their assembly-language counter
parts. 

'Ve have, in general, merely copied the on-line assem
bly-language debugging aids, rather than design totally 
new facilities for higher-level languages. We have 
neither created new graphical formats in which to 
present the debugging information, nor provided a 
reasonable means by which users can specify the pro
cessing required on any available debugging data. 

These features have been largely ignored because of 
the difficulty of their implementation. The debugging 
systems for higher-level languages are much more 
complex than those for assembly code. They must 

* This research is supported by the Advanced Research Projects 
Agency under Contract No. DAHC15 67 C 0141. Any views or 
conclusions contained in this Memorandum should not be 
interpreted as representing the official opinion or policy of 
ARPA. 

567 

locate the symbol table, find the beginning and end of 
source-level statements, and determine some way to 
extract the dynamic information-needed for debug
ging-about the program's behavior, which is now 
hidden in a sequence of machine instructions rather 
than being the obvious result of one machine instruc
tion. Is it any wonder that, after all this effort merely 
to create a minimal environment in which to perform 
on-line higher-level language debugging, little energy 
remained for creating new debugging aids that would 
probably require an increased dynamic information
gathering capability. 

EXDAMS (EXtendable Debugging And Moni
toring System) is an attempt to break this impasse by 
providing a single environment in which the users can 
easily add Il:ew on-line debugging aids to the system 
one-at-a-time without further modifying the source
level compilers, EXDAMS, or their programs to be 
debugged. It is hoped that EXDAl\1S will encourage 
the creation of new methods of debugging by reducing 
the cost of an attempt sufficiently to make experi
mentation practical. At the same time, it is similarly 
hoped that EXDAl\1S will stimulate interest in the 
closely related but largely neglected problem of moni
toring a program by, providing new ways of processing 
the program's behavioral information and presenting 
it to the user. Or, as a famous philosopher once almost 
said, "Give me a suitable debugging environment and 
a tool-building facility powerful (and simple) enough, 
and I will debug the world." 

Design goals 

EXDAMS was designed to satisfy three needs: first, 
as a vehicle to test some proposed, but unimplemented 
on-line debugging and monitoring facilities; second, 
as an extendable facility to which new debugging and 



568 Spring Joint Computer Conference, 1969 

monitoring aids could be added easily, then tested; 
and, third, as a system providing some measure of inde
pendence of not only the particular machine on which 
it is being run and the particular implementation of 
the language being debugged and/or monitored, but 
also of several source languages in which users' programs 
could be written and debugged and/or monitored. 

The normal techniques for on-line debugging, in
volving dynamic manipulati~n of a running program, 
were inappropriate for these three ambitious design 
goals, because, first, these techniques were both imple
mentation-dependent and difficult to control; and, 
second, certain important facilities; such as the ability 
to run the programs backwards, are impossible with 
these techniques. 

Therefore, the program· to be debugged will run 
with an EXDAMS routine that will monitor it, collect 
necessary information about the program's actions, 
and store this information on a history tape. Subse
quently, EXDAMS debugging routines can retrieve 
any information from the history tape, format it, and 
present it to the user. Thus, assuming the history tape 
is complete (i.e., contains all relevant data), any debug
ging and/or monitoring tool involves only retrieving, 
then formatting, data from this static file. 

The parts of EXDA~IS which analyze the program 
and collect its history (the program -analysis and 
history gathering phases discussed in a later section) 
are language dependent. However, the major portion 
of EXDAMS, and the portion chosen for experimen
tation-the debugging and monitoring routines-in
teract with only the history file. They are there
fore independent of both the implementation of 
the source language and the source language itself-to 
the extent the history file is independent of the differ
ences between source languages, as it is for the common 
algebraic languages (PL/I, ALGOL, FORTRAN, etc.). 

With this approach, the three design goals have 
been achieved. Any debugging and monitoring aids 
can be added to EXDAMS easily by writing the appro
priate file-search and formatting routines. Moreover, 
these aids are independent of the implementation of 
the source language and, to a certain extent, of the 
source language itself. 

However, efficiency has been sacrificed. This ap
proach is based on the insulation from the running pro
gram that results from the production of a history 
tape of the program's behavior. The production and 
replaying of this history involves large amounts of 
I/O. However, the flexibility gained far outweighs 
the inefficiency introduced, especially when one is 
studying alternative debugging and monitoring aids. 

The EXDAMS system output device is a cathode 
ray tube (CRT) display, and all the debugging and 

monitoring aids utilize its two-dimensional and high
data-rate capabilities. Some aids, in addition, use 
the CRT's true graphic (point and vector) and dynamic 
(time-variant) capabilities. The input devices are 
a keyboard and some type of graphical pointing device, 
e.g., a light-pen, RAND Tablet, joy-stick, mouse, or 
keyboard cursor. 

Before describing how EXDAMS works and how 
new debugging and monitoring aids are added to the 
system, we present some of the aids currently being 
added to the basic EXDAMS system to give the reader 
a better understanding of the types of debugging and 
monitoring aids that are possible in EXDAMS. 

Debugging and monitoring aids within EXDAAfS 

EXDAMS contains two types of debugging and mon
itoring aids-static and motion-picture. The static aids 
display information that is invariant with execution 
time (a time value incremented as each source statement 
is executed and used to refer to particular points in 
the execution of a program), such as the values of 
variables at the time an error occurred, a list of all 
values of a variable up to a given execution time, or 
a display of a portion of the source code. 

The motion-picture aids, on the other hand, are 
execution-time sensitive; that is, the data they display 
may vary with execution time. These motion-picture 
aids include the last n values of a set of variables, the 
current instruction and subroutine, and the current 
values of a set of variables. The user can run motion
picture aids either forwards or backwards at variable 
speeds, by controlling execution time. 

EXDAMS' most attractive features, from the user's 
standpoint, are (a) his ability to control his program's 
execution time, moving at variable speed either forwards 
or backwards, while a debugging and/or monitoring 
aid constantly updates its display of information; and 
(b) his ability to stop execution time at any point, switch 
to another aid, and continue perusing the behavior 
of his program. 

Static displays 

Error analysis 

The user requests the value of certain variables at 
the time an error occurred. The system displays the 
value of these variables. and all other variables in the 
error-causing source language instruction, the type of 
error, and the source instruction in error. 

Source code 

A portion of the user's source code is displayed in 



optional formats that may include indications of the 
number of executions per statement and the removal 
of levels in the source code (such as the bodies of do
groups or the code in the THEN or ELSE clauses) 
below a certain depth, to afford the user a broader 
view of his program. 

The user may request this display in two manners. 
He may call for the code around a certain label by 
requesting SOURCE AT and specifying a label, or a 
label plus or !pinus some nlLll1ber of source statements. 
He also may call for, at any time, the source code around 
the exact statement that caused a particular value 
of a variable by requesting SOURCE FOR and speci
fying the desired value (the source statement causing 
that value will be marked by its brightness). That 
is, EXDAMS can associate any value with the exact 
source. statement that produced it. 

This ability, and its inverse of associating any source 
statement with the values it produces, is fundamental 
to the EXDAMS philosophy of debugging and moni
toring that the activity of a program may be viewed 
in either the data or the control spaces. The data space 
shows which manipulations a program performs, which 
values change, and the sequence in which they change. 
The control space demonstrates how a program performs 
its manipulation. 

In a canonic debugging situation, according to the 
EXDAMS philosophy, the user first ascertains what is 
happening, then decides whether this behavior is cor
rect, and finally, if it is not correct, determines how 
the program performed these operations, at the same 
time seeking the error in the program and/or data. 
Thus, any comprehensive debugging and monitoring 
system must include powerful facilities in both the 
data and the control spaces and provide a simple means 
of alternating between corresponding poin~ in either 
space, as the user's needs or personal preferences dictate. 

Flowback analysis 

By calling for FLOWBACK FOR and specifying a 
particular value, the user requests EXDAMS to ana
lyze how information flowed through his program to 
produce the specified value. This analysis appears 
in the form of an inverted tree, with the bottom node 
corresponding to the value for which the flowback 
analysis was desired. Each node consists of the source
language assignment statement that produced the 
value, the value itself, and links to nodes at the next 
level. These nodes correspond to the non-constant 
values in the assignment statement displayed in the 
node that links with these nodes. These nodes have 
the same format as the original and are linked to nodes 
for all non-constant values used in the particular assign-

A=8+C-l0; 
= 105 

Figure 1 

EXDAMS 569 

K 

= 107 

ment statement producing their value. Thus, Figure 1 
shows a flowback analysis for a particular value of A. 

This display shows that the assignment statement 
"A= B+C-IO;" produced the specified value of A, 
and its value here was 105. The values of Band C 
used in this assignment to A were 8 and 107, respec
tively, and were produced by the assignment state
ments "B=R-1;" and "C=A+E;", respectively. 
Each of the other nodes is explained in the same manner. 

As many levels as will conveniently fit on the screen 
will be displayed. The user can request a similar flow
back analysis along any particular branch. He can 
also call for the source code around any assignment 
statement in the flowback analysis and, as described 
in the section Motion-Picture Displays below, watch 
the execution either forwards or backwards from any 
point. 

A similar type of flow back analysis is possible for 
the control space, which displays the flow of control 
through the program between any two points in ex
ecution time (i.e., between two nodes in the flowback 
analysis). In a non-parallel processing environment, 
this is simply a linear sequence, unless one wishes to 
indicate control sequences at a lower level (within a 
subroutine or do-group) as a closed loop out of the 
main flow of control. 

Motion-picture displays 

In all the following examples, the information dis
played is a function of execution time, whose rate of 
change the user may increase or decrease, stop, or 
reverse. Such control, together with the ability to 
alternate between different debugging and monitoring 
aids, enables him to discover and pinpoint the bugs 
in his program. 



570 Spring Joint Computer Conference, 1969 

Values Source code 

This facility displays the values of the variables or 
labels specified by the user. Each specified variable 
or label is assigned a contiguous set of columns on the 
display in which their values will appear. (The label 
values will be a checkmark indicating at what point 
in the execution the label was reached.) These values 
will be ordered according to execution time, so that 
a value produced earlier than another will appear higher 
on the screen (Figure 2). This display can be scrolled 
up or down to show other . values that cannot fit on 
the screen at the same time. This scrolling alters ex
ecution time appropriately. The user can change the 
direction of scrolling (and execution time) or stop at 
any point. Once stopped, he may alter the list of vari
ables on the screen and restart, or he may request the 
source code for a particular value displayed. 

ABC R1 S FILE LABEL2 

12 

0 

FILEI 

-10 

JOE 

'101'B 
'O'B 

3001 

1000 

HAL 

'liB 

I 

1000 

Figure 2 

This facility allows the user to watch his program 
statements execute either forwards or backwards. The 
statement being executed will appear brightened on 
the screen. If it is an assignment statement, the value 
of the assignment will also be displayed. If the instruc
tion being executed is not on the screen, the portion 
of the program containing this instruction will be 
displayed. The user can command the system to follow 
subroutine calls and, as in the static display of source 
code, to display all levels. 

Map 

This facility is an extension of the source-code facil
ity and is an adaptation of Stockham's work on flow 
analysis. 3 The user specifies nodes (labels) to be dis
played. All code between these nodes may be consid
ered a single macro statement, for the purposes of 
execution-time advancement. Thus, as the user varies 
the execution time, the node corresponding to the code 
being executed brightens and, as execution moves 
from one node to another, a displayed arrow indicates 
this shift. The length of time a node brightens is deter
mined by either a common execution-time rate for 
each macro statement or by the execution-time rate 
for all statements executed within the macro statement. 

The former display is most useful for following pro
gram execution while searching for a bug, while the 
latter is well-suited to monitoring applications in which 
the user is trying to determine how the program operates 
and where it spends most of its time. The EXDAMS 
environment-allowing the user to dynamically stop 
the display, expand some nodes into several separate 
nodes, collapse other nodes into a single node, and 
then continue or reverse direction-should greatly 
improve the usefulness of this display. 

Windows 

The current values of the variables specified appear 
in "windows" (i.e., areas on the display screen) as 
execution advances or reverses. If the value exceeds 
the size 8f the window, as much will be displayed as 
possible. In the case of arrays, the system will display 
in the window the value being changed and as many 
array elements, and their indices, around it as can fit. 
In addition, for either arrays or strings, certain vari
ables can be specified as pointers or indices into these 
data representations. 

The values of these variables appear in graphic, 
·rather than numeric or alphanumeric, form according 
to the position of an arrow directed at the character 
or element at which the pointer or index is also directed. 



Thus, in a buffer application, where many buffers 
are scanned and processed and new buffers created, 
the user can watch the data in the buffers change dy
namically, and see the pointers and indices move back 
and forth through the buffers. 

Windows with transitians 

This facility performs the same operations as the 
preceding Windows facility except that, in addition, 
it indicates the interrelationships between the dis
played variables. As each new value is displayed, a 
flowback analysis determines whether the current 
value of any displayed variable was used in the creation 
of the new value. If so, an arrow indicating this depen
dence appears, linking the windows of these variables 
to the window of the variable being changed. To obtain 
more detail for a particular transition indicated by 
the arrows, the user may define a new display relevant 
to that transition only, then either re-advance or re
verse execution time. After completing the study of 
this particular transition, he may return to his original 
display. 

The EXDA.~:S environment 

EXDA.;.\fS is a four-phase system predicated on the 
assumption that neither an incremental compiler 
nor a special debugging compiler designed for 
EXDAMS requirements would be available for 
the source language being debugged and/or mon
itored. If either is available, considerable restruc
turing of these phases would be prerequisite to the 
full utilization of these capabilities. The four phases 
are program analysis, compilation, run-time history
gathering, and debug-time history-playback. 

Program analysis 

The first phase analyzes the user's source program as 
it performs four functions, the most important of which 
is the creation of a model of that program. This model, 
the heart of the debug-time history-playback, is the 
means by which values gathered on the history tape are 
interpreted and by which portions of the source code are 
retrieved, and is the repository of all structural informa
tion known about the program. The use of the model 
for these functions will be explained in the section 
Debug-Time History Playback but the contents of the 
model will be discussed here. 

The program analysis produces both a symbol table 
and a random-access file of the user's source program 
for the history-playback. As it analyzes the program, 
it also builds a model of the program, and inserts de-

EXDArvIS 571 

bugging statements iuto the program to provide the in
formation necessary for history-gathering. In general, 
the history contains all the dynamic information needed 
to update execution time either forwards or backwards, 
while the model contains all necessary static informa
tion. 

Each model entry consists of an indicator of the type 
of model entry, a pointer to the associated source state
ment, and an index to an entry in either the model or 
the symbol table, depending on the type of entry. * 

The model contains both the static control-informa
tion and the variable alteration-information of the 
user's program. The control-information consists of the 
CALL, GOTO, IF-THEN-ELSE, and DO-END struc
ture of the program, while the variable alteration-in
formation consists of the names of the variables on the 
left-hand side of assignment statements and those 
altered by input statements. 

The debugging statements added to the program 
pass the relevant run-time information to the run-time 
history-gathering routines. ** 

The updated program is passed to the compilation 
phase, while the symbol table and model are saved for 
the debug-time history-playback. 

Compilation 

The standard source-language processor compiles the 
source program, as updated during program analysis. 

Run-time history-gathering 

The compiled version of the updated program is run 
with a set of run-time routines that it calls. These rou
tines gather dynamic information about the program's 
behavior. This information is collected in a buffer that 
is written out when full. It is the history tape of the pro
grams's behavior and, together with the symbol table 
and model, is sufficient to recreate the program's be
havior in either the forwards or backwards direction of 
execution time. This history contains, basically, the 
values of the variables on the left-hand side of assign
ment statements, the direction (THEN or ELSE) 
taken in IF statements, the direction (remain in or 
flow out) taken at the end of DO-LOOPS, and the 
point from which a GOTO or CALL was issued (to 
facilitate execution-time backup). t 

* Appendix A explains the use of the index field for each type 
of model en try. 

** Appendix B details these statements. 

t Appendix C presents the precise information placed in the 
history. 



572 Spring Joint Computer Conference, 1969 

Debug-time history-playback 

This phase contains the debugging and monitoring 
aids which present the history information to the user 
in a usable form on his display screen. It also interprets 
the user's commands for alternative displays and/or 
execution-time variations, and provides an editing 
capability for modifying discovered bugs and for re
turning this modified program to the four phases for 
another debugging iteration. 

The main function of this phase is to assemble in
formation from the history and display it on the screen. 
Appropriately, the main routine in the phase is the in
formation retriever used by all the debugging and 
monitoring aids to retrieve desired information from the 
history. It accepts (a) requests from the processing rou
tines for information on a certain variable or set of 
variables and (b) a direction for execution-time. Using 
this direction, it searches the history for the next occur
rence of a value change for any variable in the requested 
set. It returns the name of this variable, its new· (or 
old, if executing backwards) value, and its attribute. 

Special calls facilitate the next subroutine call, 
goto, return, assignment, iteration, or conditional 
statement to be retrieved, so that all information in the 
history is retrievable through this routine. The calling 
routine describes what information to retrieve, and com
bines, processes, and formats it for the display routines 
that interact with the display equipment. 

The information retriever moves a marker through 
the model as values are read in from the history. This 
movement serves three purposes: 

1. To permit interpretation of the bits in the his
tory. Since the values in the history are not of a 
fixed length, knowledge of the type of the next 
value allows the routine to correctly interpret 
the value and position itself at the next value. 

2. To associate the values in the history with state
ments in the source program (through the 
pointer to the source statement in the model), 
enabling users to alternate between values in 
the data space and the associated source state
ments in the control (program) space. 

3. To reduce the amount of I/O necessary. By 
using the model to interpret values from the 
history, we need store only the value of source 
variables and not also the identification of the 
variables of which it is the value. This reduces 
the amount of I/O by roughly one-half; since 
the system is I/O-bound, this obviously im
proves the system's response. 

The addition of new debugging and/or monitol'ing 
facilities 

To add a new debugging and/or monitoring facility 
to the EXDAM:S system, first, extend the command 
language of EXDAlvIS to include the new commands 
needed to control the new facility and to route control 
to the new routine for these commands. As long as these 
commands do not conflict with existing ones, this is an 
easy task. 

Second, obtain the information required to respond 
to the new commands by requesting it from the infor
mation retrieval routine as described in the previous 
section. This is the essential issue in the EXDAMS 
philsophy: All the information required by a routine 
can be obtained easily, by request, without interacting 
with the source program, the object code, or the history, 
but only with the information retrieval routine. 

Third, process and combine the obtained information. 
The ease or difficulty depends entirely on the facility 
being added and is independent of the information 
collection mechanism. 

Finally, format and display the processed inform.ation. 
Again, the effort required depends entirely on the 
facility being added and is independent of the mon
itoring mechanisms. 

Thus, the EXDAMS environment reduces the prob
lems of collecting information for a debugging and/or 
monitoring facility, but provides only minimal capa
bilities in the processing and presentation of this in
formation. If the collection of information is a major 
problem in the creation of a debugging and/or mon
itoring facility, then EXDAMS has met its design goals. 
In addition, 1:).S we gain more experience in the types of 
processing and formatting required, we may also be able 
to provide capabilities that facilitate these areas. 

Example 

To illustrate the EXDAMS system, we present an 
example source program written in PL/I,4 followed by 
the major transformations performed on it by 
EXDAMS. 

Original source program * 

1. example program: PROCEDURE OPTIONS 
(MAIN); 

2. DECLARE 
3. a (10, 3) CHARACTER (8) EXTERNAL, 

* The reserved keywords4 of the source language are in all 
capital letters. 



EXDAMS 573" 

4. i BIXARY FIXED, 19. ELSE 
5. switch BIT (1), 
6. search_string CHARACTER (8) VARYIXG; 

20. PUT LIST ('switch turned off') ; 
21. end_program: 

7. 22. i = j * i - 5; 
8. 23. RETURX; 
9. GET FILE (input) LIST (switch, search_string); 24. EKD example -'program; 

10. IF switch THEX 
11. loop: DO i = 1 TO 10; 
12. DO j = 1 TO 3; 
.13. IF a(i, j) = search_string THEK DO; 

Symbol table 

14. PUT LIST (i, 1 < j); 
15. CALL abc (i, i + j * 3); 
16. GO TO end_program; 
17. END; 
18. END loop; 

Symbol 

Number Name 

1 A 
2 ABC 
3 END PROGRAM 
4 EXAl\1PLE PROGRAM 
5 I 
6 INPUT 
7 J 
8 LOOP 
9 SEARCH STRING 

10 SWITCH 
11 SYSPRINT 

12 DUMMY 
13 DUl\fMY 
14 DUMMY 
15 DU1VIMY 
16 DUMMY 
17 DUMMY 

The data are formatted here to facilitate reading, 
but this format does not reflect actual internal repre
sentation. The dummy entries (12 through 17) at end 
of the Symbol Table represent the types of expressions 
being passed to a subroutine or output. 

Model 
Entry 

Attributes :Number 

ARRAY (*, *), CHARACTER (8) 
PROCEDURE"(*, *) 
LABEL 26 
PROCEDURE 1 
BINARY, FIXED 
FILE, STREAM 
BINARY, FIXED 
LABEL 6 
CHARACTER (8), VARYING 
BIT (1) 
FILE, STREAM 

BINARY, FIXED 
DECIMAL, FIXED 
BINARY, FLOAT 
DECIl\1AL, FLOAT 
CHARACTER (*), VARYING 
BIT (*), VARYING 



574 Spring Joint Computer Conference, 1969 

Model 

To facilitate the reader's interpretation, the pointer 
to the source code is represented here as a line number 

Model Source 
Entry Code 

Number Entry Type Pointer 

1 PROCEDURE 1 
2 GET 9 

3 GET ASSIGNMENT 9 
4 GET ASSIG N1VIEKT 9 
5 IF 10 

6 LABEL 11 
7 ITERATIVE DO 11 

8 ITERATIVE ASSIGK:MENT 11 
9 ITERATIVE DO 12 

10 ITERATIVE_ASSIGN~1ENT I 12 
11 IF 

I 
13 

in the original program, and an explanation of the index 
field of the model entry has been added. 

Index to 
Model or 
Symbol 
Table Explanation of Index 

29 Index of associated END model entry. 
6 Index of Symbol Table of file associated 

with GET. 
10 IIndex of symbol receiving new value. 
9 Index of symbol receiving new value. 

22 Index of model entry for end of THEX 
clause. 

8 Index of label in Symbol Table. 
21 Index of model entry for associated END 

statement. 
5 Index in Symbol Table of iteration variable. 

20 Index of model entry for associated END 
statement. 

7 Index in Symbol Table of iteration variable. 
19 IIndex of model entry for end of THEX 

clause. 

(Notice there is no entry for the non-iterative DO statement in line 13 of the source code.) 

12 PUT 14 11 Index of Symbol Table entry of file receiv-
ing new value. 

13 PUT ASSIGNMENT 14 5 Index in Symbol Table of first output value. 
14 PUT ASSIGN:NIENT 14 1"" 11 Index in Symbol Table of second output 

value. (This is a dummy entry for the 
attributes (bit) of the output expression.) 

15 CALL 15 2 Index of label in Symbol Table. 
16 CALL PARAMETER 15 5 Index in Symbol Table of value being 

passed as first parameter. 
17 CALL_PARA1VIETER 15 12 Index in Symbol Table of value being 

passed as second parameter. (This is a 
dummy entry III Symbol Table that 
represents the attributes of the expression 
being passed.) 

18 GOTO 16 3 Index of label in Svmbol Table. 
19 SHORT IF END 17 11 IIndex of model ~ntry of associated IF 

: statement. 
20 ITERATIVE END 18 9 IIndex of model entry of 3&lociated itera-

tive do. 
21 ITERATIVE END 18 7 Index of model entry of associated itera-

tive do. 
22 ELSE I 19 ?'"' _0) Index of model entry of end of ELSE clause. 



EXDAlVIS 575 

I I Index to 
Model Source Model or 
Entry Code Symbol 

Number Entry Type Pointer Table Explanation of Index 

23 PUT 20 11 Index in Symbol Table of file receiving ne" 
value. 

24 PUT ASSIG Nl\1:ENT 20 16 Index in Symbol Table of first output value 
(This is a dummy entry for the attribut es 
(character) of the output expression.) 

25 FULL IF END 20 5 Index of model entry of associated IF 
statement. 

26 LABEL 21 3 Index of label in symbol table. 
27 ASSIGNMENT 22 5 Index in Symbol Table of variable left 0 f 

assignment statement. 
28 RETURN 23 4 Index of associated procedure label III 

symbol table. 
29 PROCEDURE-END 24 1 Index of model entry of associated pro-

cedure statement. 



576 Spring Joint Computer Conference, 1969 

Augmented source program 

The altered or inserted source statements are italicized to facilitate their recognition. 

example program: PROCEDURE OPTIONS (MAIN); 
DECLARE 

loop: 

a (10,5) CHARACTER (8) EXTERNAL, 
i BINARY FIXED, 
switch BIT (1), 
search_string CHARACTER ca) VARYING; 

DECLARE condition tester RETURNS (bit 1)); 
GET FILE (input) LIST (switch, search string); 
CALL bit_value (switch); /*record new-value*/ 
CALL character value (search string); /*record 

new value*/ - -
IF condition tester (switch) THEN DO; /*record 

valu e of if condition*/ 
CALL goto_issued_from (5); /*record index 

of model entry from which control passed 
to label*/ 

CALL outside do loop; /*record control outside 
of do-loop*/ -

DO i=I to 10; 
CALL inside do loop; /*record control 

inside of-do~loop*/ 
CALL binary fixed value (i); /*record 

new value*/ -
CALL outside do loop; /*record control 

outside of-do~loop*/ 
DO j=I TO 3; 
CALL inside do loop; /*record control 

inside of-do~loop*/ 
CALL binary fixed value (j); /*record 

new value*/ -
IF condition tester (a(i,j)=search string) 

THEN DO; /*record value of if condition*/ 
PUT LIST (i,i<j); 
CALL binarY_fixed_value (i); /*record 

output value*/ 
CALL bit value (i<j); /*record output 

value*7 
CALL called-,rom (15); /*record index 

of model entry of call 8tatement~/ 
CALL binarY_fixed_value (i); /*record 

value of passed parameter*/ 
CALL binary-'ixed_value (i+j*3); 

/*record value of passed parameter*/ 



EXDAM:S 577 

CALL abc (i,i+j*3); 
CALL goto issued from (18); /*reaord 

index of model-entry of goto 
statement*/ 

GOTO end program; 
CALL end-then alause: I*reaord end 

of thei alaise*/ ~ . 
CALL inside_do_loop; /*reaord aontrol 

at end of do loop*/ 
END; /*expliaitly end eaah iterative 

do loop*/ 
CALL outside_do_loop; /*reaord aontrol 

outs~de of do-loop*/ 
CALL inside_do_loop; /*reaord aontrol at 

end of do-loop*/ 
END loop; 

CALL outside_do_loop; /*reaord aontrol outside 
of do-loop*/ 

CALL end then alause; /*reaord end of then 
alause*/ -

END; /*end non-iterative do group inserted 
after if statement*/ 

ELSE DO; /*add do to enclose added statements 
within else clause*/ 

PUT LIST ('switch turned off'); 
CALL aharaater value ('switah turned off'); 

/*reaord output value*/ 
CALL end else alause; /*reaord end of else 

alause*/ -
END; /*end non-iterative do group inserted 
. after else statement*/ 

CALL goto_issued_from (25); /* reaord index of 
model entry from whiah aontrol passed to label*/ 

end program: 
- i=j*i-5; 

CALL binary fixed value (i); /*reaord new value*/ 
CALL return-issued from (28); /*reaord index of model 

entry of return statement*/ 
RETURN; 
END example-program; 



578 Spring Joint Computer Conference, 1969 

History file 

We assume the input value for switch and search 
string to be TRUE and 'XYZ', respectively. We further 
assume that the first element of array A that matches 
this string is A(2, 1). The format of the values in the 
file facilitates reading. Comments appear on the right. 
The reader can start either at the end of the history and 
work backwards to the beginning of the program, or at 
the beginning of the hi story and work forward towards 
the end of the program. 

Value 

TRUE 
XYZ 

TRUE 
5 

OUTSIDE_DO_LOOP 

INSIDE_DO _LOOP 

1 

OUTSIDE_DO_LOOP 

INSIDE_DO_LOOP 

1 

FALSE 
INSIDE_DO _LOOP 

INSIDE_DO_LOOP 

2 

FALSE 
INSIDE_DO_LOOP 

INSIDE_DO_LOOP 

3 

FALSE 
INSIDE_DO_LOOP 

OUTSIDE_DO_LOOP 

INSIDE_DO _LOOP 

Comments 

Input value of SWITCH. 
Input value of SEARCH_ 

STRING. 
Value of if-condition. 
Index of model entry from 

which goto was issued. 
Control is outside outer 

do-loop. 
Control is inside outer do

loop. 
Value for iteration variable 

1. 
Control is outside inner do

loop. 
Control is inside inner do

loop. 
Value for iteration variable 

J. 
Value of if-condition. 
Control is at end of inner 

do-loop. 
Control is at beginning of 

inner do-loop. 
Value for iteration variable 

J. 
Value of if-condition. 
Control is at end of inner 

do-loop. 
Control is at beginning of 

inner do-loop. 
Value for iteration variable 

J. 
Value of if-condition. 
Control is at end of inner 

do-loop. 
Control IS outside inner 

do-loop. 
Control is at end of outer 

do-loop. 

Value Comments 

IKSIDE DO LOOP Control is at beginning of 
outer do-loop. 

2 Value for iteration variable 
1. 

OUTSIDE_DO_LOOP Control is outside inner 
do-loop. 

IKSIDE DO LOOP Control is inside inner do
loop. 

1 Value for iteration variable 
J. 

TRUE Value of if-condition. 
Output value on file 

SYSPRIKT. 
2 

FALSE Output value on file 
SYSPRINT. 

15 Index of model entry from 
which call was issued. 

2 

5 

Value of parameter being 
passed. 

Value of parameter being 
passed. 

18 Index of model entry from 

-3 
28 

which goto was issued. 
New value for I. 
Index of model entry from 
which return was issued. 

REFERENCES 

1 F J CORBATO V A VYSSOTSKY 
Introduction and overview of the multics system 
Proe F J C C Spartan Books, Washington,D.C. 
1965 185-196 

2 T G EVAXS D L DARLEY 
On-line debugging techniques: A survey 
Proc F J C C Spartan Books Wasington D.C. 
1966 37-50 

3 T G STOCKHAM JR 
Some methods of graphical debugging 
Proc IBM Scientific Computing Symposium on 
Man-Machine Communications Thomas J. Watson 
Resarch Center Y orkto""n Heights ~ Y 
May 3-5 1965 

4 IBJ.7I,1 operating system/360 PL/I: Langua!Je specification~ 
IBM Corporation White Plains ~ Y Form C28-6571-4 
1967 

5 H FERGUSO~ E BERNER 
Debugging systems at the source language level 
CACM Vol 6 ~o 8 August 1963430-432 

6 M HALPERX 
Computer programming: The debugging epoch opens 
Computers and Automation Vol 14 ~o 11 Xovember 1965 
28-31 



APPENDIX A 

Use of index field in model entries 

Model Entry Use of Index Field 

PROCEDURE, BEGIN, Index of associated END 
ITERATIVE_DO, model entry. 

DO WHILE 
END 

IF 

ELSE 

SHORT_IF _END, 
FULL_IF _END 

CALL, 
FUNCTION INVO-

CATION, GOTO, 
LABEL 

RETURN 

GET, 
PUT 

ASSIG Nl\IEKT, 
GET _ ASSIG Nl\1EKT, 
PUT _ ASSIG Kl\IEKT, 
ITERATIVE ASSIGN-

MENT, CALL_ARGU
MENT 

Index of associated PRO
CEDURE BEGIN, ITER
ATIVE_DO, or DO_ 
WHILE model entry. 

Index of associated ELSE 
(if this is an IF-THEN
ELSE statement) or 
SHORT_IF _END (if this 
is an IF-THEN statement) 
model entry. 

Index of associated FULL 
IF END model entry) 

Index of associated IF 
model entry. 

Index in Symbol table of 
associated label. 

Index in Symbol table of 
associated Procedure label. 

Index in Symbol table of 
associated file. 

Index in Symbol table of 
associated variable (or 
dummy entry if an expres
sion). 

EXDAMS 579 

.APPENDIXB 

Statements added to user program to produce 
EXDAM S history 

In the additions described below it is assumed that 
DO-EXD brackets are placed around statements as 
necessary to preserve the semantics of the user program, 
e.g., when the THE~ clause is expanded from one 
statement to two or ~ore. 

1. For each variable on the lefthand side of an 
assignment statement, each parameter in a func
tion or procedure call, and each variable in an 
input or output statement, a call to the appro-) 
priate (as determined by the item's attributese 
value saving routine, passing the item as th. 
argument, is inserted after the source statment 
In addition, for each parameter in a function or 
procedure call these same value saving calls are 
also inserted before the source statement. 

2. For each IF statement the condition is replaced 
by a function call (which saves the value of the 
condition) with the condition as the argument 
of the function call. 

3. At the end of a THEN clause a call is made to 
the END THEN CLAUSE routine. - -

4. Similarly at the end of an ELSE clause a call is 
made to the END ELSE CLAUSE routine. - -

5. Before a CALL statement, a RETURN state
ment, or a GOTO statement or the occurrence of 
a label a call to the CALL_ISSUED _FROM, 
RETURN_ISSUED_FROM, or GOTO_IS
SUED _FROM routine (passing the entry 
number of the associated model entry as the 
argument) is inserted. 

6. Before an ITERATIVE DO or DO WHILE - -
statement a call to OUTSIDE DO LOOP is 
inserted. After the source statement a call to 
INSIDE_DO_LOOP is inserted. In addition, 
if the source statement is an ITERATIVE DO 
statement, a call to the appropriate value saving 
routine (passing the control variable as argu
ment) is inserted after the call to INSID E _DO _ 
LOOP. 

7. Before an END statement which is an end to an 
ITERATIVE DO or DO WHILE statement - -
a call to IXSIDE_DO_LOOP is inserted, and 
after the END statement a call to OUTSIDE 
DO LOOP is inserted. If the END statement 
specifies a label, it is replaced by the appropriate 
number of simple END statements before the 
above additions are made. 



580 Spring Joint Computer Conference, 1969 

APPEXDIXC 

Information recorded in history for each type of statement 

Statement Type 

1. Assignment 

Information Recorded in History 

Value of each variable on left 
hand side of assignment state
ment after the assignment is 
made. 

2. IF Value of if-condition. 
3. end of then clause Indication of end of then clause. 
4. end of else clause 
5. Call, function in

vocation goto, 
and return state
ments 

6. iterative_do, 
do while 

7. input, output 

Indication of end of else clause. 
Index of model entry associ
ated with source statement, 
and for return statement, in
dex of model entry to which 
return is being made. In addi
tion, the value of each argu
ment in the call or function 
invocation is saved both before 
and after the call or function 
invocation. 
Indication of the start and end 
of do JooP and two indicators 
signalling each iteration around 
the loop. Also, for iterative_do 
loops, the value of the control 
variable is saved each time 
around the loop. 
Value of each variable (or 
expression) for which a value 
was input or output after the 
input or output operation. 



Maximunl-rate pipeline systems 

by L. W. COTTEN 

N alional Security A.gency 
Fort Meade, Maryland 

INTRODUCTION 

There is widespread opinion that we are fast approach
ing the physical limit in speeds for computers. The 
grounds for such conclusions are traceable to signal 
propagation delays in interconnections, delays en
countered in traversing several levels of combinatorial 
logic, and to systems organizations. Clearly, these a~eas 
must be addressed if we are to realize phenomenal Im
provements in computer logic speeds over the next dec
ade. Subnanosecond logic circuits will be available; 
however, design innovations are needed to exploit this 
performance at the systems level. 

Trends in the organization of current high-per
formance systems (Parallel bits X clock rate ~ 1()9 

bits/sec.) have tended toward three types of parallelism. 
These are arrays of processor elements, processing of 
operand bits in parallel, and pipeliningl-6 or comp~c
tion of operations in the time domain. In the processmg 
of blocked operands or data arrays7,8 all three are po
tentially complementary rather than competitive. 
Since most large problems permit iterative processing 
of blocks of operands, pipelining becomes attractive be
cause the rate of doing work can be increased consider
ably without a corresponding linear increase in ha.rdware 
cost .. The pipeline queue is the result of organizing logic 
into an assembly-line process where output rate is 
independent of the latency or total delay of the pipeline. 
At any given time a number of operands are in various 
stages of processing, thus the additional hardware 
usually takes the form of tem,?orary storage and process 
control. 

The purpose of this paper is to explore the problem of 
maximum-rate pipeline operation from a vie\vpoint 
that differs markedly from current practice. The results 
will be termed maximum-rate pipelines to distinguish 
from conventional pipeline systems. In truth, conven
tional pipelines as presently designed are a special case 
of the maximwn-rate pipeline which constitutes the 

general case. To clarify, all pipeJine systems in existence 
today are based on a rate which is the reciprocal of the 
delay through an elemental pipeline section, typically 
consisting of a parallel register and perhaps three levels 
of logic. In contrast this paper proposes a rate of opera
tion largely dependent on the delay difference of the 
various logic paths through the pipeline section. Since 
this difference delay can be made considerably less 
than total delay, higher theoretical rates are possible. 
Indeed, such rates are suprisingly independent of both 
propagation delays through X-I levels of gating be
tween clocks, and pure signal transmission delays 
caused by distances between gates. As will be shown, 
the maximum rates are limited by uncertainty or 
variability of paths, and basic circuit switching rate. 
The latter limit has long been recognized.9 It is hoped 
that the following treatment will provide helpful in
sight and some design directions that will prove useful 
in overcoming some of the problems1o,ll in the high-
performance environment. . . 

As a guide to readers, the next two sub-tOPICS wIll 
discuss conceptual aspects of maximum-rate pipelines, 
while the remaining sub-topics will consider the com
plexities of implementation. The latter subjects may 
be selectively examined depending upon individual 
interests. While 50 l\lHz floating point arithmetic 
units have been designed using the conventional pipe
line concept, no maximum-rate design results are avail
able' however a numerical example to aid under-, , . 
standing is given at the end of the discussion on lOgIC 

level variability. 

A maximum-rate pipeline queue 

The validity of maximwn-rate pipeline systems, as 
with pipeline systems in general, is dependent upon the 
ability of designers to relate data processing problems 
to an assembly-line job queue. Feedback is sometimes 
permitted to slightly reduce average rate, but in gereral 

.581 



582 Spring Joint Computer Conference, 1969 

can usually be deferred in time at hardware expense. 
For example, this problem has been investigated in the 
case of accumulators.12 Since pipeline systems designers 
~"'"t- rlnvy""",. .. ,,t->'o+a +ha ohili+'tT t." l'PQ"hTP "11t. fpprlh!'l.fl1-
,lJ.J.uou '-'Lv.LJ...&.Vl. .... ~lJ.1..il.AIlJV \J.J...J..V lAII"-'.L.L.L"J V'OJ .L"-'IV"-' .... " '-' ............ " .&......, ...... ~rv'_'V .... :It.. 

dependencies, and multiple path interactions will be 
considered later, it would appear that attention could 
now turn to the case of a unidirectional pipeline. In 
the interest of brevity and intuitive understanding, 
a physical analog of an elementary queue offers some 
utility. 

Consider the conventional pipeline, Figure 1, case 1. 
Distance X is defined to be interstation separation, 
and does not include the finite station width. The prop
agation velocity V between stations is assumed to be 
positive in the direction shown and non varying. S is 
defined to be service time at each station, and includes 
the time needed to traverse the station width. Service 

I. CONVENTIONAL PIPELINE 

~ V-+ t2; 

2. IDEALIZED MAX-RATE PIPELINE 

;&: 
• fl Q 

3. REALIZABLE MAX- RATE PIPELINE 

~ ~',\;;5; ;& ;& 
• ~~X 1+ fl ('] 

~::~:~, I - , -, 

Figure I-Pipeline queue examples 

LOGIC LEVELS ----+ 
I 2 3 • • N 

D D D • • • D-{ 

D D D • • • D-{ 
• • • • • 
• • • • • 
• • • • • 

D D D • • • D-{ 
n.. SL 
SENDING CLOCK RECEIVING CLOCK 

Figure 2-Generalized pipeline section 

time S is analogous to data sampling and temporary 
storage in logic pipelines, and X/V corresponds to 
propagation delay through logic circuits and inter-
cor..nections bet'v,reen temporaIJT storage latches, as 
seen in Figure 2. Under these conditions throughput 
rate is: 

Rl = 1/ (S + X/V) units/second (1) 

The rate Rl surrunarizes the present level of sophistica
tion in pipeline machine design. Borrowing heavily 
from the notion of a communications channel contain
ing many information symbols or bits in transit, onE: is 
enabled to visualize the idealized maximum-rate pipe
line, Figure 1, case 2. If S includes time consumed in 
tra'lersing the finite station \vidth, then ideal rate R2 is: 

R2 = l/S units/second (2) 

Ideal rate R2 is impossible to realize in practice, be
cause of symbol interference caused by path eccentric
ities. In theory, the rate approaches l/S as eccentricity 
is made to approach zero. 

In practical circumstances the eccentricity is usually 
predictable within acceptable bounds, and can be com
pensated for in Figure 1, case 3, by the addition of a 
separation ~x. Under assumptions that the receiving 
station can undergo minor repositioning or phasing 
relative to the sending station, the rate becomes: 

Rs = 1/ (S + 6.X/V) units/second (3) 

If V is a univelsal constant, the velocity of light for 
example, its effect could be minimized by reducing the 
quantity 6.X/V, where 6.X is intersymbol separation as 
distinguished from X, interstation separation. The time 
Sin (3) is equivalent to the width of one Nyquist inter
val, *13,14 and l/S corresponds to the rate of complete
ness property which represents the maximum input 
sequence rate for which any finite state machine can be 
built.15 ,16 

A maximum-rate pipeline section 

The main result of this paper is to apply the ffiaX

rate queue concept to a generalized max-rate pipeline 
section which may be joined with other max-rate or 
compatible-rate sections to construct max-rate systems. 
The design of the generalized max-rate section is related 
to two characteristics of the continuous data stream, 

* The ~ yquist interval is the minimum useful pulse width 
resolvable by logic gates. 



r
SAMPLE t VARIABILITy ...... 
INTERVAL INTERVAL 

N 

~ T + T I ~ T + L ~ D. 
i I 

DATA ~"0l ~ 

S T REA M ~~ ~ "" "" "" "" "" "" "" "" "" '\j 

SAMPLING I 1--:. 
CLOCK . 

T~ 1:-'~~.Ji~ ''--R_-1-J-----J
1

--

J 

Figure a-Continuous data stream 

Figure 3. The sample interval is a function of the fixed 
clock-pulse width, defined to be T, and clock skew 
(LlT). Skew LlT is the total range of variability in ar
rival time of the clock pulse, as observed at the clocked 
latch. The clock could be present as late as time T + LlT, 
therefore the sample interval width is: 

Sample = T + LlT (4) 

The variability interval is defined as the time interval 
over which one di.screte data arrival occurs, but whose 
exact arrival time cannot be predicted, and haH the 
time not observable because it is indistinguishable from 
the preceding state. The variability interval, observed 
at the receiving latch input, is a function of a composite 
combinatorial path leading from the sending latch 
clock. The variability additively builds up over path 
delay (P) through a pipeline section composed of N 
logic circuit levels, each with level delay Di, such that 

Variability = (Ll T + P max) - P min 

N N 

(LlT + L max D i ) - L min Di 

N N 

LlT + L ])i - L Di 
i-I i=I 

N 

LlT + L (Oi - Di) 
i=l 

M:aximum-rate Pipeline Systems 583 

Combining the results of (4) and (5), the maximum 
clock rate R is: 

R = 1/ (Sample + Variability) cycles/second 

N 

R = 1/ (T + 2 Ll T + L: LlDi) cycles/second (6) 
i=I 

In practice, T can be made to approach One circuit 
delay for a one-circuit delay type of latch, Figure 4, and 
subnanosecond circuit delays are possible.17 The latch 
is the basic storage cell used in the sample and store 
operation. Based on past work5 reasonable values of Ll T 
are 10 percent/R. 

The most significant conclusion is that a summation 
of the circuit delay difference at each logic level con
stitutes the principle term to be minimized for higher 
rates. The effects of finite signal propagation times are 
thus reducible to arbitrarily small consequences, since 
in theory delay could be added to fast paths to minimize 
delay differences. Stating the conclusion more ab
stractly, the max-rate philosophy of design advocates 
minimizing differences in naturally occurring absolute 
quantities, whereas the classical approach to logic 
design has always been concerned with minimizing the 
absolute quantities themselves. Each philosophy will 

SL 
BIPOLAR 
CLOCK 

l.I 

Figure 4-0ne-delay sampling latch 

OUTPUT 
DATA 



584 Spring Joint Computer Conference, 1969 

offer special advantages depending upon technology, 
systems goals, and acceptable design constraints. 

Data rates and logic-path band'uridth 

Clock pulse width depends primarily on circuit delay; 
however, variability is dependent on path bandwidths, 
which suffer from losses, mismatches, and loading. 
Theoretical data rates could approach the Nyquist rate, 
2f, where f is the abrupt cutoff frequency of an ideal 
low pass filter, approximated by the logic.14 The min
imum width pulse or bit equals one Nyquist interval, 
or 1/2f. In the environment a more practical definition 
of the Nyquist rate is the maximum signaling rate at 
which intersymbol interference vanishes. This implies 
full swings, without compromise of noise margins. In 
practice the Nyquist rate for a string of gates must be 
lower than that for a single gate. This results from 
pulse width variation that is not Gaussian in steep-cut
off bandwidth limited systems. These and circuit re
laxation effects tend to hasten bit interference, espe
cially for the isolated 1 or 0 bit cases, and could lead to 
smearing and pulse pinch-off for marginal rates. 

In synchronous systems, where variability is account
ed for by retiming, the ideal rate would probably never 
exceed half the Nyquist rate of logic gates. If repetitive 
clock pulses are funished by a logic gate, the pulse width 
could equal one Nyquist interval, but pulses would have 
to be separated by one Nyquist interval. Under these 
assumptions the maximum realizable rate is: 

R = 1/ [2 (T + LlT)] cycles/ second (7) 

where: 

± j. T /2 = Random jitter for the limiting 
clock case. 

IT + 2 Ll TI = Sample interval magnitude 

I TI = Variability interval magnitude 

The variability interval is taken to be one Nyquist 
interval for this special case, and would prove too 
severe for ordinary design purposes. Instead, as provid
ed for in (6), an arbitrarily large variability interval 
may be accommodated by a corresponding rate reduc
tion. It follows also that (7) establishes an upper bound 
for (6), assuming the pulse portion of the clock system 
is implemented with logic gates. 

In practice designers empirically arrive at path-band
width and analytic approximations, as no present mode 
is available at this level of complexity. In the past, de
sign relationships have been derived for each new tech-

nology and associated effects of loading, transmission 
line phenomena, and minimum useful pulse width. In 
addition to past measures of circuit delay, it is impor
tant that future max-rate technology be given addition
al definitions of performance, Of considerable interest 
are the Nyquist rates for worst-case bit patterns, taken 
for a continuum of input transition times. This char
acterization could null out package delay influences that 
otherwise appear as additive delay in present measure
ments. The lead and package delay should be treated 
as wire delay which delays computation, but need not 
cause a reduction in rate. By similar reasoning a clock 
pulse width; on the order of a Nyquist interval, should 
not be widened to account for finite lead-package delay 
encountered while entering a latch of Lilliputian di
mensions compared to the package. A second type of 
performance characterization should be statistical 
measures of delay variability to account for production 
spreads, variable input transition times, and asymmetry 
in circuit switching characteristics. 

Jf inimizing logic level variability 

The throughput data rate approaches the maximum 
realizable clocked rate (7) when in (6) : 

N 

L ADi ---> I T\ (8) 
i=l 

It is significant that the expression (8) to be minimized 
is a summation of artificial differences, as contrasted 
with natural barriers such as signal propagation velocity 
and combinatorial gate delay through N -1 levels of 
10gic between clocks. 

A straightforward variability minimization algorithm 
is needed if several complex considerations are to be 
avoided. Statistical averaging through several levels of 
gating must not be used, as this places complex de
pendencies on all gates in a section. This is hazardous 
because in a regular m by n gate array there are m n 

paths possible, and these paths could merge mIni 
(m-2) 1(2) 1 ways. Any of these mergers, because of de
lay differences, could have relative bit offsets that 
might cause symbol interference at an output. One 
algorithm that avoids this complexity is to make each 
logic level independent from the others. This can be 
implemented by permitting designers to reduce ADi = 
fj i - D i on a level by level basis by any means avail
able, but requiring that ultimately a max Di and min 
D i be specified for every level. Designers could tailor 
each level to achieve maximum speed, or design could 
be standardized about a few restricted cases to cover 
all situations. 



Wire and loading delay is included at each level. 
Only the uncontrolled differences in the circuit-line
loading delay triplet need contribute to 1.lD i. Even here, 
longer path routing or more loading may be used to 
slow down fast lightly loaded gates. Increases in transi
tion times due to loading are accounted for .either in 
increased transmission line delay or increased delay of 
driven gates. Parallel line delays such as the six nano
second delays shown in Figure 5 would not affect the 
maximum rate as calculated in (6). In fact (6), along 
with the Figure 5 example data shown in Table I. 
predicts a 125 MHz clock rate. By contrast, 42 MHZ 
results if a summation of maximum delays along with 
clock skew is permitted to determine the period of the 
clock. 

Clock phasing 

In order to insure sampling from the nonchanging 
portions of bit intervals each receiving station clock 

iTH LOGIC LEVEL-+-

2 3 4 

Figure 5-Representative pipeline section 

Table I-Example delay data 

2 3 4 

1\ 

OJ NS. 4.1 5.9 4.2 3.0 + 6.0 

v 
OJ NS. 3.7 4.8 3.6 2.7 + 6.0 

~Di NS. 0.4 1.1 0.6 0.3 + 0 

CLOCK WIDTH T = 4.0 NS. 

CLOCK SKEW ~T = 0.8 NS. 

lV~ximum-rate Pipeiine Systems 585 

must be offset from the sending station clock an 
amount: 

N 

Clock offset = (1.lT + L: Di) Modulo I/R (9) 
i=1 

This resembles a spatially rippled clock which has been 
mentioned.Is This requirement could be met by dis
tributing a global time reference, treated as an inde
pendent machine,19 about a 50,000 gate system to with
in phase differences of say ± 0.2 ns. Next a delay ele
ment similar to Figure 6 could be used at each place 
where a phase is needed, typically for each 150-300 
gate section. A stored or wired address would establish 
the phase to be supplied. 

Since all phases were assumed to exist in (6) and 
actually only p discrete phases are available some re
duction in rate becomes necessary. The worst-case 
rate reduction need never exceed a decrease of 100 per
cent/po In reality one would use the a priori knowledge 
concerning phasing, and constrain the variability inter
val, thus the reduction in rate is more a theoretical 
entity. Lastly, the most attractive approach toward 
realizing some systems is to constrain design such that 
(9) meets the zero offset case for all sections. This re
sults in a single phase clock, and the requirement for 
multiple phases no longer exists. 

Troubleshooting a max-rate system 

Troubleshooting and stepping a maximum-rate sys
tem has some new aspects. At any time a dynamic path 
may contain more bits than storage latches such that 
storage is not available for the excess bits, or: 

N 

Excess bits = R (1.lT + L Di) - 1 (10) 
i-l 

T I ME __ -+-I~ 
REFERENCE 

Figure 6-Delay with gated phases 



586 Spring Joint Computer Conference, 1969 

This bears similarity to a delay line. The point to be 
remembered is that max-rate machines possess the com
plet.e personality of a single phase machine, with no 
excess bits, operating at a !mver rate determined by the 
max-delay section in the system. Also, to be race free in 
this mode a requirement must be met such that: 

N 

L Di ~ ITI (11) 
i=l 

Condition (11) merely acknowledges that one could 
perhaps be using a conservative sampling pulse width, 
much greater than delay through fast paths between 
some latches. 

CONCLUSIOKS 

It is possible for max-rate pipeline machines to operate 
at high rates determined by path differences, rather 
than the conventional maximum delay. The results 
apply to any technology, but would prove most useful 
when signal propagation delays approach or exceed 
circuit delay. In this case velocity of propagating signaJs 
need not limit rates if paths are equalized. The approach 
described would permit increased performance in pres
ent systems environments, and would pave the way 
for entry into the subnanosecond regime where rela
tively long transmission lines might exist between 
gate arrays. 

REFERENCES 

M J FLYNN 
Very high-speed computing systems 
IEEE Proc Vol 54 No 12 December 1966 

2 R A ASCHENBREN~ER M J FLYNN 
G A ROBINSON 
Intrinsic multiprocessing 
Proc S J C C 1967 

3 R A ASCHENBRENNER 
Time-phased parallelism 
Proc National Electronics Conferenee 1967 

4 G M AMDAHL 
"Validity of the single processor apprvach [v achieving 
large scale computing capabilities 
Computer Design December 1967 and 
Proc S J C C 1967 

5 L \tV COTTEN 

Circllit implementation of high-speed pipeline systems 
Prof' F J C C 1965 

6 S F ANDERSON J G EARLE 
R E GOLDSCHMIDT D M POWERS 
The lBi'v} System/SoO Mudd 91.' jluut'iny poinl execution un'il 
IBM journal of R&D January 1967 

7 D N SE~ZIG 
Observations on high-performance machines 
Proc F J C C 1967 

~ D L SLOTNICK 
Unconventional systems 
Computer Design December 1967 and 
Proc S J C C 1967 

H W D LEWIS 
111 icrowave logic 
Proc of International Symposium on the 
Theory of Switching 1957 

10 M 0 PALEY 
LSI and the large computer systems designer 
International Solid State Circuits Conference I96H 

11 A R STRUBE 
LSI for high-performance logic applicatiQul:l 
International Electron Devices Meeting 1967 

12 H H LOOMIS JR 
The maximum-rate accumulatvr 
IEEE Transactions on Electronif' Computers Vol EC-I5 
No 4 August 1966 

13 J M \VIER 
Digital data communications techniques 
Proe of IRE Vol 49 January-March 1961 

14 W R BE~~ETT J R DAVEY 
Data traranllis~,.ion 
McGraw-Hill Inc N Y 1965 

15 D ~ ARDEN 
Delayed logic and finite state machines 
Proc of AlEE Symposium on Switching Theory and 
Logical Design September 1961 

16 H H LOOMIS JR 
Completeness of sets of delayed-logic devices 
IEEE Transactions on Electronic Computer~ Vol EC-14 
~o 2 April 1965 

17 D H CHUNG 
The design considerations of picosecond integrated 
switcMng circuits 
SWIEECO 1966 

18 B ELSPAS J GOLDBERG R C MIN~ICK 
R A SHORT H S STONE 
Investigation of propagation-limited computer networks 
Final Report Air Force Contract AFI9(628)-2902 
Stanford Research Institute Project 4523 1964 

19 J HARTMANIS 
111 aximal autonomous clocks of sequential machines 
IEEE Transactions on Electronics Computers Vol EC-l1 
No 1, February 1962 



Systematic design for modular 
realization of control functions 

by STANLEY lVI. ALTYIAN and ARTHUR W. LO 

Princeton University 
Princeton, New Jersey 

INTRODUCTION 

The feasibility and the problems associated with the 
design of asynchronous digital systems have been var
iously studied and reported;2-6 J. B. Dennis has char
acterized modular design of asynchronous digital sys
tems in the following manner:l 

The structure of an asynchronous digital system 
may be divided into the data flow structure and the 
control structure. The storage of data, the flow of data 
and the operations performed on them take place in 
the. data flow structure. The different operations 
takmg place concurrently in the data flow structure 
are co-ordinated by the control structure. 

Each operational unit of the data-flow structure 
has, in addition to data links (data input lines) a 
control link connecting it to some part of the cont~ol 
structure. A control link consists of two wires called 
the ready line and the acknowledge line. To cause an 
operator to operate on an input, the input is made 
available to it (the operator) on the input data link 
and a ready signal is sent to it (the operator) on the 
ready line of the controJ link. After the operation has 
been ~rformed on the output placed on the output 
data lInk the operator returns an acknowledge signal 
on the acknowledge line. The time difference between 
the arrival of the ready signal and the return of the 
acknowledge signal is arbitrary and may depend on 
the operator, the input, and can even be random so 
long as. the acknowledge signal correctly implies 
completIOn of the operation. 

The control structure consists of control modules 
interconnected among themselves and to the data
flow structure through control links. Signals propa
gate in the forward direction on the ready line. 
The direction of a control link is the direction 
in which the signals propagate on its ready line. 

In addition to control links a control module can 
have conditional inputs and outputs. The conditional 
inputs convey information about the condition of 
some operation or control modules to this module 
(and thereby affect the operation of the module), 
and the conditional outputs convey the condition of 
this module to other circuits. 

Dennis has proposed a set of nine control modules 
which he has found sufficient to realize all required 
control functions (these modules are described in detail 
in Reference 9). While he has found it straightforward 
to implement control modules without conditional 
inputs, Dennis has found the design of control modules 
with conditional inputs quite complex. 

In terms of hardware design, the operation modules 
(building blocks of the data-flow structure) have been 
extensively investigated. The design of registers, adders, 
transfer devices, and other operational blocks is well 
established. On the other hand, the basic properties 
and the logical organizatIon of asynchronous control 
modules (building blocks of the control structure) has 
not been thoroughly investigated. 

This paper introduces properties of a class of asyn
chronous control modules, whose operation satisfy 
certain general constraints, and presents a systematic 
procedure for designing their logical structure. In
cluded in this class are the modules defined by Dennis. 

Although the design procedure is derivable from 
fundamental properties of these modules, it is presented 
without proof.9 One result of previous studies is: all 
but the UNIO~ module are realizable by simple com
binational logic (the UNION module requires a single 
feedback loop). 

Asynchronous control modules 

The purpose of this paper is to present a design tech-

587--------------------------------



588 Spring Joint Computer Conference, 1969 

nique for asynchronous control modules. Therefore, it 
is necessary that we: 

1. Define formally what is meant by asynchronous 
control module. 

2. Define the class of modules studied; i.e., the 
constraints placed on the control module's opera
tion. 

3. Define the model used to represent the control 
module's operation. 

Terminology and notation 

The operation of control modules is described in 
terms of (i) control links and conditional inputs and 
outputs, and (ii) input and output terminals. Every 
signal appearing on input and output terminals is 
binary; i.e., takes on the value of 0 or 1. 

A control link consists of a pair of wires (s ,f); s being 
the start line and f being the finish line. Control links 
are classified as either input or output control links. 
Input control links have their start lines as input ter
minals of the module and their finish lines as output 
terminals of the module. For output control links, the 
start lines are outputs and the finish lines are inputs 
(Figure 1 is a block diagram of a control module). A 
control link is said to be idle if its sand f lines carry the 
S9rne bina.ry signal, and it is said to be active if its sand 

Control-

Links 

Conditionsl 

Inputs 

Control 

Inputs 

Conditional 
Inputs 

Nl 

N2 

"1 

~ 

N .. 
".! 1 s .. Control Links 

COtmlOL NS 

I«I)UIE fS 

"3 Conditional , h1 Output 
gl 

(a) Control lIIOdule showing -cont;['ol links 

and conditional inputs and outputs. 

~--~-~H~l :::~ 
: conditional 

Output 

(b) Control module showing input and 

output terminal states 

Figure I---Generalized block diagrams of control modules 

(a) Control module showing control links and 
conditional inputs and outputs 

(b) Generalized block diagrams of control modules 

f lines carry different binary signals. The control link 
state (C.L.S.) for a control module with n control links 
is an ordered n-tuple 

where the state of the k input control links appear to 
the left of the slash and the state of the (n-k) output 
control links appear to the right of the slash. Li = I if 
Si and fi carry the same binary signal and Li = A if 
s i and f i carry different binary signals. If every control 
link is idle, the control link state is defined to be the 
quiesceni siaie. 

In terms of the input and output terminals, the 
control input state and the control output state are the 
ordered n-tuples X = [Xl . .. Xn] and Y = [YI ... Yn] 
respectively. If N i is an input control link, then Xi 
represents the state (X i = 0 or 1) of its start line Si and 
Y i represents the state (Y i = 0 or 1) of its finish 
line f i. On the other hand, if N i is an output control 
link, then Xi represents the state of f i and Y i represents 
the state of Si. 

In addition to control links, a control module can 
have conditional inputs and outputs. The conditional 
input state, G, and the conddional output state, H, are 
the ordered r-tuple G = [G1 ... Or] and the ordered 
k-tuple H = [HI . .. H k] respectively. Finally we define 
the total input state and the total output state as the 
vectors, [X,G] and [Y,H]. 

Two major differences exist between control links and 
conditional inputs and outputs. First, control links 
are ordered pairs of wires; one is an input terminal of 
the module and the other an output terminal of the 
module. No such relationship exists between conditional 
inputs and outputs. Second, the state of a link is either 
a~tive or idle, whereas the state of a conditional line is 
the actual signal it carries. 

The control module shown in Figure 1 is used to 
illustrate the state notation of asynchronous control 
modules. Table 1 summarizes this notation. 

General constraints 

There are three general constraints which apply to 
the operation of each control module unless stated 
otherwise. These are: 

1. Only one input terminal can change at a time. 

2. A control link in its idle state permits a change 
in the state of its s line but not its f line. Similar
ly, a control link in its active state permits a 
change in its f line but not its s line. 

3. Any change in the conditional input state must 



Syste!natic Design for Modular R~~lization of Control Functions !::on vo.., 

Table I-Terminal state notation of control modules 

Control Links, L, Conditional 

Outputs 

Ma 

Inputs Outputs 

Nl N2 Ns N4 N5 

Input lines, Xi SI Ss Ss h f5 

Output lines, Y i ft fs fs 84 S5 

Control Link State: 
Control Input State: 
Control Output State: 

L = (LtLsLs/L4L,l 
X = [XtXSXsX4Xsl 
Y = [Yt YsYsY4Ysl 

where Li = I or A 
where Xi = 0 or 1 
where Y i = 0 or 1 

Control Input/Output State: 
Conditional Input/Output State: 

X/Y = [XtXSXSX4X5/YtYsYsY4Y5] 
G/H = [G tGS/H1 ] where Gi = 0 or 1 

Hi = 0 or 1 

Total Input State: 
Total Output State: 

[XIXSXSX4XS, GtGs] 
[Yt YsYsY4Ys, HI] 

be completed before the C.L.S. is allowed to 
change. 

Since the control modules are asynchronous circuits 
the design of logic circuits which perform the desired 
modes of operation can be carried out by the classical 
primitive flow table approach. This approach, however, 
proves to be highly inefficient. For example the SE
LECT module (to be discussed below) is described by 
a primitive flow table with 32 columns and at least 16 
rows. A more efficient procedure is to construct an 
action graph of the control module. 

Action graph 

The design of a specific control module is derived 
from the action graph, which is strongly connected, 
representing the step-by-step operation of the module 
as described by its word statement. Each node of the 
graph represents a control link state, and each directed 
edge of the graph represents a specific operation which 
transforms one control link state into another. 

N odes representing control link states in which the 
conditional input state changes are called transfer nodes. 
These are the nodes at which decisions are made among 
alternative modes of operation. 

Every directed edge of the graph has associated with 
it a pair of functions (~,(J) where ~ transforms one 
C.L.S. into another C.L.S. and (J specifies the affect of 
changes in the conditional input state on the operation 
of the modules. This ordered pair is called the edge 
operator. 

The arguments of ~ specify which control input 
terminal and which control output terminals undergo 
a state change during the transition specified by the 
edge. ~(x/Y) operates on both the control input state 
and the control output state and therefore can be 
decomposed into the input control operator, ox, and 
the output control operator, oY; i.e., ~(x/y) = 
ox/oy. For example, the control operator ~(Xa/YbYc) 
= OXa/OYbYc transforms the control input/output state 
[XaXbXc/YaYbYc] into the control input/output state 
[xaXbXc/Yal\Vc] where Xi and Vi are respectively 
complements of X i and Y i. 

If an edge originates at a tranfser node, then (J = G i 
where G, is the conditional input state before the C.L.S. 
is permitted to change. For an edge originating from a 
node where the conditional inputs cannot change, (J 

is replaced by a dash (-). If the control module does 
not have conditional inputs, then the edge operators 
(A,B) reduce to ~. 

Whenever a control module has conditional outputs, 
every node of the action graph has a unique value of 
the conditional output state, H, associated with it. 
The method of design is best described by an exam pIe. 

Design of the SELECT nwdule 

The block diagram of the SELECT module, which 
has four control links, one conditional input, and no 
conditional outputs, is shown in Figure 2. The function 
of this module is to initiate one of two alternative modes 
of operation (represented by activating either N a or 



590 Spring Joint Computer Conference, 1969 

N2 

S1 "I 

f,IT " 
S3 

v 
Nl~1 

~)N3 -1 

1 f3 Y2 
SELECT SELECT 

s4 X3 Y3 

MODULE 
f4 

N4 X4 MODULE Y4 

gl 
Ml G1 

(a) (b) 

Figure 2-Block diagram of the SELECT module 

N4). The operation of the SELECT module follows the 
following word statement 

,\Vord statement of the SELECT module 

1. On receiving a start signal on control link N 1 

P start signal is immediately sent on control link 
N2• 

2. When a finish signal is eventually received on 
N 2 a start signal is sent on N 3 or N 4 according 
as the value of the conditional input state, G, 
is [1] or [0] respectively. N 3 and ~4 cannot both 
be active at the Sallle time. 

3. When a finish signal is received from N 3 or 
N 4, a finish signal is transmitted on link N 1· 

The module has now returned to its quiescent 
state, and a fresh start signal may now be 
received on N 1. 

Design procedure 

The design of the SELECT module begins with the 
construction of an action graph. The control module 
is said to be in its Q'u.iescent State when all it.R cont.rol 
links are idle. The "module remains in its Q.S. until 
the input line 81 changes its state (Word Statement 1). 
Thus the first step in constructing the action graph is 
to draw the quiescent-state node [I/III] as shown in 
Figure 3a. A change in 81 causes a change on 82 (Word 
Statement 1). This is represented by the directed edge 
labeled (1:l.(8J/82),-) as shown in Figure 3b, where the 
operation of the module is independent of the condi
tional input state. The edge operator (1:l.(8d82) ,-) trans
fers the control link state of the module from the node 
[I/IU] to the node [A/ All1 in the action graph. A 
change on /2 causes a change on 8s if the conditional 
input state is [11' or a change on 84 if the conditional 
input state is [0] (Word Statement 2). This is represented 
by the edge operator (1:l.(f2/8S) , 1) which transfers the 
node [A/All] to the node [A/IAI] and the edge operator 
(1:l.(f2/84) , 0) which transfers the node [A/All] to the 
node [A/IIA] as shown in Figure 3c. The node (A/All] 

e 
(a) (b) 

Figure 3-Determination of SELECT module's action graph 

is therefore a transfer node. If the conditional input 
state [11, then a change onh causes a change on/1 (Word 
Statement 3). This is represented by the edge opera
tor [I:l.(js//J) , -) which transfers the node [A/IAI] to 
the node [I/III]. If the conditional input state were [0], 
then a change on f4 causes a change on /J (Word State
ment 3). This is represented by the edge operator 
(I:l. (fIJfl), -) which transfers the node [A/IIA] to the 
node [I/Ill]. Both cases are summarized in Figure 3d. 
The action graph is now complete. A self-loop with the 
edge operator (I:l.l(-/-)' -) is drawn on the quiescent
state node. This artifice is introduced for the conven
ience of later discussion. The operator (I:l.l(-/-)' -), 
representing no change of input or output, is defined as 
the identity operator. 

Simplified action graph 

Because of the relationship that exists between the 
control input state, control output state, and the con
trollink state, any two of the variables uniquely deter-



Systematic Design for Modular Realization of Control Functions .591 

mines the third variable. From the definition of the 
Control Link State, 

As a result, the action graph contains redundant 
information. This graph can be simplified by replacing 
every control operator tJ.(x/y) by its input component 
ox without any loss of information. Figure 4 is the 
simplified action graph of the SELECT module. 

The action graph indicates that the operation of the 
module can be described by a sequence of input opera
tors. We define the directed path operator to be the prod
uct of the edge operators that correspond to the di
rected edges traversed in going from one node of the 
graph to another node of the graph. A path which 
begins and ends on the same node is called a cycle and 
a path operator corresponding to a cycle is called a 
cycle operator. Figure 5 illustrates the different cases 
that can arise. 

The conditional operator (} = Gi ... Gj~ can be 
simplified and replaced by 0 = ~. This simplification, 
called the reduced form of 0, is possible because (} trans
forms any conditional input state into the conditional 
input state ~ determined by the last transfer node 
encountered, independent of Gi, ... , Gj • 

The control portion of the input path operator 
(OaObOcOd, 0) can be represented by Oabcd, where the string 
of symbols abcd is said to be the argument of O. The 
argument of every path operator can be expressed in 
terms of a minimal product of the input variables. The 
minimal product has the form X~lX~2X43 ... , where 
ni i = 1,2,3, ... is the number of times ni appears in 
the argument of ox. If ni is even, then xii produces the 
same change as ( -), i.e., no change at all. If ni is odd, 
then X~i produces the same change as Xi. 

Figure 4-8implified action graph of the SELECT module 

- ~ ~ 

(e) 

Figure 5-Generalized properties of the input edge operator 

An input path. operator is said to be in its reduced 
form if every control input variable in the argument of 
o appears once or not at all. ·The canonical reduced form 
f .I: nl n2 113 '.1: 81 82 {33 h R - 1 'f o UXl X2 X3 '" IS uX'l X2 Xs '" w ere pi - 1 Xi 

is present and {3i = 0 if Xi is not present. For conven
ience the reduced form of ox'11 x~s . . . ~m is identified 
as Ok where k is chosen to be the octal equivalent of the 
binary number {31{32 ... 13m. 00 is the identity operator 01. 

If a control module has n control links, then there exists 
2n . distinct reduced-form operators. The set of 2n 
reduced-form control operators is denoted by CR. Since 
the SELECT module has four control links, CR contains 

000 = 01 
001 = OX4 

oos = oXs 

oos = OXSX4 

004 = OXs 

005 = OXSX4 

000 = OXsXs 

007 = OXSXsX4 

010 = OXl 

011 = OX1X4 

012 = OX1XS 

01S = OX1 XSX4 

014 = OX1XS 

015 = OX1 X2X4 

016 = OX1XSXS 

017 = OX1 XSXSX4 

At this point several properties of asynchronous 
control modules can be introduced. These results are 
stated without proof. Unless specifically stated to the 
contrary, all operators are assumed to be in reduced 
form. 

The action graph must be strongly connected because 
the module returns to a starting state when its required 
operation is completed. In general, this state is the 
quiescent state. Every node in the action graph has 
associated with it a maximal set of distinct input cycle 
operators. For any node ak, denote its corresponding 
set of cycle operators by ~k. Also associated with ak is 
the set gk, where gk is the set of states that the con
ditional inputs can assume when the control module is 



592 Spring Joint Computer Conference, 1969 

in the C.L.S. rerresented byak; e.g., 91 for the SELECT 
module is {0,1}. 

The action graph of the SELECT module is shown 
in Figure 4. Beginning at node al (quiescent node) 
there exists a cycle which passes through nodes a2 and 
as exactly once. Associated with this cycle is the opera
tor (016,1). Call this cycle Pl. The cycle which begins 
at a1 and passes through nodes a2 and a4 exactly once, 
has associated with it the cycle operator (016, 0). Call this 
cycle p:e. (016,1) and (015,0) belong to 1>1 by definition. 
Consider the paths that are fonned by the juxtaposition 
of Pl and P2; in particular Pl P2P2 and P2Pl Pl. Associated 
with these paths are the operators (016,0) and (015,1) 
respectively. These operators also belong to 1>1. It can 
be shown that 1>1 contains 

{(00.0), (00,1), (os,O) , (os,1), (015,0), (015,1), 

(016,0), (016,1)} 

This example illustrates the following Theorem. 

Theorem 1. If the operator (ai, G j ) e1>k, then the opera
tors (Oi, Grn) e1>k, for all like Grn e9k. 

From Theorem 1 set1>k can be partitioned into blocks, 
such that each block is identified by a distinct control 
cycle operator. Let 1> be the set of distinct control 
cycie operators that appear ill 1>k. A second partition 
of 1>k can be fonned by grouping together all of the 
cycle operators whose conditional input state are the 
same; i.e., partition 1>k into blocks 1>k(m) = {1>,Gm } for 
all Gm e9k. 1> is the same for all nodes of the action 
graph. In tenns of 1> and 9k, 1>k is represented by 1>k 
= {1>,9kl. If the control module does not have any 
conditional inputs, then the maximal set of distinct 
cycle opera.tors for every node of the graph is ~. 

Consider a control module with n control links and r 
conditional input states, G1, ... , Gr. ffic denote the 
set of r(2n) distinct reduced form input path opera
tors ffi(l), ffi(2),. , ., ffi(r) where CR(i) = {R,Gd for 
i = 1, ... , r, 

Theorem 2. The simplified action graph partitions eRG 

for i = 1, ... , r. 

The sets Dj(i), CR(i) and CRG satisfy the following re
lationship 

1 = 1, ... , l' 

and 

CRG = {CR(I), CR(2), .. "CR(r)} 

If each block, Dj(i), contains m distinct input path 
operators, then k, and m satisfy the relationship 
km = 2n , k = 2nl, m = 2n2, and nl and n2 are positive 
integers such that nl + n2 = n, for i = 1, ... , r. 

The set 5) can be determined usirlg signal fio,\v' graph 
theory7,8 (see Appendix). Since 1> is independent 
of G only the control input operator portion ai, of the 
input. pat.h operat.or need be Rhown on the simplified 
action graph. Figure 6 shows the determination of 1> for 
the SELECT module, From Figure () 1) ,vas found 
to contain 

1> = {ooo, 003, 015, 016} . 

Corollary 1: The input edge operator (op,O), trn,nsf()rm~ 
the bloek of input. pa.th npernt.ors 1)1 (k) = {D f,Gk } 

into the block of input path operator ))j(r) = {Dj,Gr }, 

Case 1: Thl: node a is not a tra.nsfer node, () = (-) 

[Di(k)] (op,-):: lJ)i'~} (op,-) 
- Dio p , Gk } 

{Dj, Gk } 

Dj(k) 

where Dj is the reduced form of D,op. 

into the kr blocks of input path operators {Dj(i)} °00 

i = 1, ... , r 

j = 1, ... , k 

where 

Dl (i) = 1>(i) 

Ds(i) = (Oa,G j ) 1>(i) 

(Oc,Gi ) $ {1>1 (i) 
(e) 

+. -.+ Dk""l(i)} (i'igUl'e 6-Determination of :D for the SI;~LI'~CT module 



Systenlatic Design for !vlodular Realization of Control Functions 593 

Case 2: The node a is a transfer node, () = Gr 

[Di(k)] (op,Gr ) = {Di'~} (op,Gr ) :: I Diop,GkGr } 

- Dj,Gr } 

= Dj(r) 

Theorem 2 states that the action graph partitions 
the set of all possible control operators into k blocks, 
each block containing the same number of elements. 
One of these blocks is ~. If ~k is known for any node 
ak, then the maximal set of distinct path operators 
associated with the directed paths from node ak to 
every other node in the graph can be computed as shown 
in Corollary 1. The assignment of blocks from the par
tition of ilia to the edges of the graph provide the basis 
for (i) deciding if the module is realizable by combina
tionallogic, and (ii) constructing the Karnaugh Maps 
used to design the module's logical structure. 
Theorem 3: A control module is realizable by a combi
national circuit if and only if every block, Di(k), appears 
at most once in the action graph, with multiple appear
ance occurring only on edges incident on the same node. 
An action graph which satisfies these conditions is said 
to be a Type I action graph. 

The design of the SELECT module can now be com
pleted. Using ~ to compute the partition on ill, we find 

Dl = ooo~ = {ooo, oos, 015, 016} 

D8 = 004~ = {004. 007, 011, 012} where 

004EE{DI+Ds } 

D4 = 005~ = {005, 006, 010, 018} where 

005 EE {D1 + D2 + Ds} 

where the operator "+" is the union or sum operator. 

The action graph of the SELECT module partitions 
ffic into the eight blocks 

DI (O) = {D1, O} 

Ds(O) = {Ds, O} 

Ds(O) = {D", O} 

D4(0) = {D4' O} 

DI(I) = {DI, I} 

Ds(1) = {Ds, I} 

D,,(I) = {Ds, I} 

D4(1) = {D4' I} 

Assigning the set of input path operators, {D1 (0), 
D I (1)}, to the self-loop of the quiescent node, results in 

the following blocks of input path operators being as
signed to the edges of the action graph 

Edge Connecting 
Xode to Xode 

Block of Input Path Operator 
Assigned to Connecting Edge 

aI -7a2 (010,-) {D1 (O),Dl (1)} = {D4(0),D4(1)} 

a2 -7 as (004, 1) {D4(0),D4(1)} = {D2 (1)} 

as -7.a4 (004, 0) {D4(0),D4(l)} = {D2 (0)} 

as -7 al (002,-) {D2 (1)} = {DI (1)} 

a4 -7 aI (001,-) {D2 (0)} = {D1 (0)} 

This assignment is summarized in Figure 7. 

From Figure 7 the SELECT module is found to 
satisfy Theorem 3 and is therefore realizable by a 
combinational circuit. It should be noted that up to 
this point the description of the operation of the control 
module and the determination that it is realizable by 
a combinational circuit has been accomplished inde
pendent of the binary (0 or 1) values that appear at the 
control module's inputs and outputs. However, the 
logical design of the control module in terms of a com
plete set of logical primitives connectives must refer 
to the total input/output states. For our design we 
shall assume that one of the quiescent input state is 
[00,0]. 

Using the total input state [00,0] the block of total 
input states and the corresponding block of control 
output states associated with each node in the action 
graph are computed and summarized in Table II. 

Table II -The control link states and the total 
input/ output states of the SELECT module 

TOTAL INPUT 
STATES 

J1(0):{ (00,03,15,16) ;o} 
JI (l):{ (00,03,15,16) ;1} 
Js(O):{ (01,02,14,17) ;o} 
J,( 1): { (01,02,14,17) ;1} 
J4(0): {(05,06,10,13) ;O} 
J4(1):{ (05,06,10,13) ;1} 

PRESENT TOTAL 
COXTROL OUTPUT 

LIXK STATES STATES 

al :[I/IIIl 
at :[I/III] 
a4:[A/IIA] 
a,,:[A/IAI] 
as:[A/ AIl] 
as:[A/AIl] 

Zl :{00,03,15,16} 
Zs:{OO,03,15,16} 
Z,,:{ 10,13,05,06} 
Z4:{ 13,10,06,05} 
Z5:{11,12,04,07} 
Z6:{ 1l,12,04,07} 

Since Ds(O) and D,,(l) do not appear in the action 
graph the cells in the Karnaugh }Iaps identified by 



10 

01 

11 

10 

594 Spring Joint Computer Conference, 1969 

Figure 7-Assignment of input path operator blocks for the 
SELECT module 

51f2 

0 1 0 1 00 0 1 0 1 

d 1 d 1 01 d 1 0 1 

0 1 0 1 11 0 1 0 1 

0 d 0 d 10 0 d 0 1 

(a) f1 

51f2 
0 0 0 0 00 0 0 0 0 

d 0 d 0 01 d 0 d 0 

1 1 1 1 11 1 1 1 1 

1 d 1 d 10 1 d 1 d 

(b) 52 

01 11 10 51f2 01 11 10 

0 0 1 1 00 0 1 1 0 

d 0 d 1 01 d 0 d 1 

0 0 1 1 11 1 0 0 1 

0 d 1 d 10 0 d 1 d 

(e) 53 

10 51f2 10 

0 0 1 1 00 0 1 1 0 

d 1 d 0 01 d 1 d 0 

1 1 0 0 11 0 1 1 0 

0 d 1 d 10 0 d 1 d 

(d) 51j. 

Figure H-Karnaugh maps of SELECT module 

Js(O) and Js(l) have "don't care" (d) entries (see 
Figure 8). It should be noted that the octal equivalent 
of the control input states belonging to J i(j) are the 
octal subscripts, k, of all the Ok E Di(j). 

The Boolean functions relating the output variables 
11, S2, Ss, and S4 to the input variables 81, f2, fs, 14, and g1 

(expressed by the Karnaugh 2\1aps in Figure 8) satisfy 
the word statement that describes the SELECT 
module's modes of operation. These Karnaugh Maps 
can now be used to construct a hazard-free combination
al circuit realization of the SELECT module which 
satisfies given cost, fan-in, and fan-out constraints. 

CONCLUDING REMARKS 

As indicated in Theorem 3 the action graph of a control 
module realizable by a combinational circuit is classified 
as Type I and it has the property that every node has 
a unique set of operators associated with it (block of 
operators assigned to the edges which terminate on the 
node). In terms of the action graph there are two cases 
in which a control module requires internal memory to 
periorm its specified function. 
Case 1 : Every edge that has the same block of distinct 
operators assigned to them are incident upon distinct 
nodes. Such an action graph is classified as Type II. 
Case 2: More than one edge originating from node 
(Xi has the same block of operators assigned to it, and 
the nodes they terminate on are distinct. Such an action 
graph is classified as Type IlL 

Although both Type II and Type III action graphs 
require internal memory, they can be designed directly 
from the action graph by (i) converting Type III graphs 
into Type II graphs, and (ii) converting Type II graphs 
into Type I graphs. The algorithm for performing the 
conversions are straightforward, but are too lengthy 
to be presented here. The algorithms are described in 
detail in Reference 9. 

ACKNOWLEDGlVIENT 

The authors would like to express their appreciation to 
Dr. John Bruno for many helpful comments. This work 
was partially supported by the National Science Foun
dation. 

REFERENCES 

1 J B DENNIS 
Computation stru..cture (lecture notes) 
COSINE Committee Lecture Series July 1968 

2 D E MULLER W S BARTKY 
A theory of asynchronous circuits 
The Annals of the Computation Laboratory of Harvard 
University 1959 

3 G ESTRIN 
Organization of computer systerns-fixed plus variable 
stru..cture computer 
Proc W J C C 1960 

4 G ESTRIN B RUSSELL R TURN J BIBB 
Parallel processing in a restru..cturable computer system 
IEEE Transactions of Electronic Computers 1963 



Systematic Design for Modular Realization of Control Functions 595 

5 W A CLARK 
M acromodular computer systems 
Proc S J C C 1977 

6 S M ORNSTEIN M STUKI W A CLARK 
A function description of macromodules 
Proc S J C C 1967 

7 S J MASON 
Feedback theory-some properties of signal flow graphs 
Proc IRE 1953 

8 J A BRZOZOWSKI E J McCLUSKEY 
Signal flo'w graph t.e.chniq1l-BS for serp..!-Bnt'l"al circuit state 
diagrams 
IEEE Trans on Electronic Computers 1963 

9 S M ALTMAN A W LO 
The properties and design of asynchronous control modules 
Princeton University's Computer Science Laboratory 
TR No 711968 

APPENDIX 

Determination of ~ from the simplified action graph 

~ can be determined directly from the action graph 
through the use of signal flow graph theory.7,s If all the 
nodes but one are removed from the action graph, then 
the path operators appearing on the self-loop of the 
remaining node, when starred, yields ~. The essential 
operations performed on the graph are summarized in 
Figure 9. 

The "*,, operator shown in Figure 9 has the following 
properties : 

a, 

(-J~ J9 - ~ C1
1 

C1
j 

(b) 

ab 

~ -~ 1 j 

Figure 9-8ignal flow graph reduction rules 

2. (aa + ab)* = aa + (aa + ab) + (aa + ab)' 

= ao + aa + ab + aaab + (aaab)' + ... 
= ao + aa + ab + aaab 





Optimizing floating point arithmetic 
via post addition shift probabilities 

A ~ 

by JANIES A. FIELD 

University of Waterloo 
Waterloo, Ontario, Canada 

INTRODUCTION 

In many computers floating point arithmetic operations 
are performed by subprograms: software packages in 
the case of most small computers, and micro-pro
grammed read -only memories in some larger systems. 
In such a subprogram there are normally several free 
choices as to which set of conditions gets a speed 
advantage. If this advantage is given to the most 
probable case then there \~ill be an increase in system 
performance with no increase in cost. 

One area in which this type of optimization is possible 
is in the processing of binary floating point addition and 
subtraction. Here there exist two possible shift opera
tions, first to align the binary points before addition or 
subtraction, and second, to normalize the result. In 
processing these shifts there are several options as to 
method, and sequencing of operations within a given 
method. To choose the variation that optimizes the 
program it is necessary to know the probability of 
occurrence of the various length shifts possible. 

Sweeneyl has reported experimentally determined 
distributions for shift lengths in alignment and normali
zation. Unfortunately the data for normalization was 
presented as total values. Subprogram optimization 
requires normalization shift length probabilities given 
that a specific alignment shift occurred. 

This paper presents a method for estimating the 
required probabilities, and an example of their applica
tion in subprogram optimization. 

Shift length probabilities 

A common representation of the fractional part of a 
floating point number is a sign bit plus a normalized n 
bit true magnitude. This form will be used in the 
analysis. The form of the exponent is not of concern. 

In normalized numbers the leading bit is always a one. 

It will be assumed that in all other bits there is equal 
probability of a one or zero. Appendix A gives the 
reasons for this assumption. 

For purpose of analysis the addition operation can be 
divided into five cases. These are considered in the 
following sections. While only the addition operation 
will be specifically considered, the results are also 
applicable to subtraction as it is just addition with the 
sign bit complemented. 

The following representations for shift length prob
abilities will be used: 

P _l-the probability that a one bit right shift is required 
for normalization. 

Po-the probability that no nonnalization shift is 
required. 

Pi-the probability that an i bit left shift is required 
for normalization (i > 0). 

Like signs" equal exponents 

When the numbers have equal exponents they may 
be added immediately since no alignment shift is 
required. With the leading bit of both words being a one, 
the sum will always contain (n + 1) bits. Thus a one bit 
right shift will always be required to normalize the result 
of the addition. Therefore 

(1) 

Like signs, unequal exponents 

When the exponents differ the smaller number must 
be shifted right until the binary points are aligned. 
Figure 1 shows the situation after the alignment shift 
of s = (n - m) bits has taken place. The x's indicate 
bits that may with equal probability be either one or 
zero. A (n + 1) bit result will occur, requiring a one bit 

-----------------------------------------597 ----------------------------------------



598 Spring Joint Computer Conference, 1969 

I ;-~-li-~"""II-----+I-~-+I-~-+I-:+I--+I x-x +-1 :--tl::~: : 
b=~~======~4=~~----~~2~1~ 
n n-I m 

Figure I-Numbers following binary point alignment 

right shift for normalization, if and only if there is a 
carry into bit n. 

Defining 

Aj = jth bit of word A 

B; = j th bit of word B (after binary point alignment) 

C; = carry into jth position 

S; = jth bit of unnormalized swn 

Then 

Pr(Cj+l = 1) = ! [1 - Pr(C j = 1)] + ~ Pr(C j = 1) 

= ! + ~ Pr(C; = 1) 

1 _1_ Pr(C1 = 1) ; 
= 2 - 2 i+l + ---=-2'-:-' ---'--

m - 1 2:: j 2:: 1 (2) 

and, since Bm = 1, 

Pr(C",+! = 1) = ~ [1 - Pr(Cm = 1)] + Pr(Cm = 1) 

= ~ + ~ Pr(C", = 1) 

If the alignment shift was one bit then Cm+! is Cn. 
However, for alignment shifts greater than one bit, only 
if all bits An- 1 through Am+! are ones will a carry 
propagate from the (m + 1) th to the nth bit. 

Hence: 

Pr(C" = 1) = Pr(Cm+l = 1) ;m=n-l 
1.-1 

= Pr(Cm+l = 1) r Pr(Aj = 1) 

;m < n-

;m:::;n-1 

Now, with 

Pr(C l = 1) = R/2 

where 

R = 1 for systems where word B is rounded 
after alignment, and 

R = 0 for systems where word B is 
truncated after alignment it 

follows that 

P -1 = Pr(Sn+l = 1) = Pr(C" = 1) = ~ . 
1 

R - 1 + ~ ; n > s 2:: 1 (3a) 

If there is rounding, overflow can occur for an 
alignment shift of n bits if word A is all ones, hence 

R 
P -1 = Pr(Sn+! = 1) = 2,,-1 ; s = n (3b) 

If the exponents differ by n (n + 1 when rounding) 
or more then no shifting is required since the larger 
number is the result. Hence 

P-1 = 0 ;s > n (3c) 

In all cases the only alternative to a one bit right 
shift is no shift, therefore 

; s ~ 1 (3d) 

Unlike signs, equal exponents 

In Figure 2 is shown a tabulation of all possible 
combinations of two n bit words with unlike signs. If all 
bits but the most significant may be one or zero with 
equal probability it follows that all the combinations 
listed in Figure 2 are equally probable. Thus to obtain 
the probability of having exactly i leading zeros after 
forming the sum requires only that the number of such 
sums be counted. 

When the sum is zero no shift is required, while a sum 
with i leading zeros requires an i bit left shift tor 
normalization. Hence 

1 
Po = Pr(zero result) = 2-1 

(4a) 



1111 1111 1111 1111 1111 

-1111 -1110 -1101 -1001 -1000 

0000 0001 0010 0110 0111 

1110 1110 1110 1110 1110 

-1111 -1110 -1101 -1001 -1000 

-0001 0000 0001 0101 0110 

1001 1001 1001 1001 1001 

-1111 -1110 -1101 -1001 -1000 

-0110 -0101 -0100 0000 0001 

1000 1000 1000 1000 1000 

-1111 -1110 -1101 -1001 -1000 

-0111 -0110 -0101 -0001 0000 

Figure 2-Array of all possible eombinations of two n-bit 
normalized numbers with unlike signs and equal exponents 

(n = 4) 

and for non-zero results 

2 
Pi = Pr(exactly i leading zeros) = 22 (n-U 

2n- i _
1 

L: (2n- 1 - j) 
i_24

-
i - 1 

131 
= 2'-1 (1 - 2i+l + 2ft ) ; 1 =s; i < n 

Unlike signs, exponents differ by one 

(4b) 

This case requires that the smaller nlunber, after the 
alignment shift, be subtra(}ted from the larger number. 
This subtraction may be considered as the addition of 
the one's complement plus one in the least significant 
position. The bit alignments are shown in Figure 3. It 
can be seen that there will be at least one leading zero 
if Cn = O. 

Considering the extra one added into the least 
significant position as a carry yields 

Pr(CI = 1) = 1 - Rj2 

where R is defined as before, and since Equation 2 
applies, 

1 1 - R .. 
Pr(C';+1 = 1) = - + -- . m - 1 > ] > 1 

~ 2 21+1' --

Optimizing Floating Point Arithmetic 599 

I: I~ I: I: 1 
1 X 1 X 1 Word A 

X x WordS 
n m 2 I 

Figure 3-Numbers follo",;ng binary point alignment and one's 
complementing of word B (exponents differ by one) 

and, since Bm = 0) 

Pr(Cm+l = 1) = ~ Pr(Cm = 1) 

Pr(8n = 1) = Pr(Cm+l = 1) 

Hence 

=~_l-R Pr(Sn = 0) 
4 2ft 

(5) 

For the first i bits of the sum to be zero requires that 
Cn- i+1 and Am be zero, and for i greater than two, that 
Am-I, Bm- 1, •.• , An-i+l, B,..-i+l also be zero. Thus 

Pr(Sn = 8n- 1 = ... = Sn-i+l = 0) 

= Pr(Cn-i+l = 0) Pr(Am = 0) 

; i = 2 

m-l 

= Pr(Cn-i+l = 0) Pr(Am = 0) II 
i=n-i+l 

Pr(Aj = 0) Pr(Bj = 0) 

;2<i:=;n 

1 (1 - R) 
= 22i- 2 2n+i- 2 

An i bit left shift will be required for normalization 
if there are exactly i leading zeros. Considering exactly 
one leading zero yields 

PI = Pr(Sn = 0, Sn-l = 1) 
= Pr(Sn = 0) - Pr(8n = Sn-l = 0) 
_ 1 
- 2 

(6a) 



600 Spring Joint Computer Conference, 1969 

and for two or more leading zeros 

Pi = Pr(S" = ... = Sr.-H1 = 0, Sn-i = 1) 

= Pr(Sn = ... = Sn-Hl = 0) 

- Pr(Sn = . . . = Sn-i = 0) 

__ 3_ ( _1 )i-l _ 1 - R 
4 4· 2n+i- 1 

;2si<n (6b) 

No shift is required when Sn = 1, or when the result is 
all zeros. 
Hence 

Po = Pr(Sn = 1) + Pr(S7I = ... = 81 = 0) 

(6c) 

Unlike signs, exponents differ by more than one 

This case is very similar to the previous one, and can 
be analyzed by the same method. The bit layout after 
binary point alignment is shown in ~igure 4. It can be 
seen that Equation 5 is applicable. 

Only one leading zero can be produced, since to obtain 
a leading zero AIt- 1 = 0 and Gn- 1 = 0, and thus 8 11 - 1 = 
B,,-l = 1. Hence no more than a one bit left shift will be 
required for normalization. 

If Cm+1, or any of An-I, ... , Am+1, is a one then Cn = 1 
and 8 ft = 1. 

Therefore 

PI = Pr(Sn = 0) = Pr(Cft = 0) = Pr(A,,_l 

= ... = A.n+l = 0) Pr(Cm+1 = 0) 

1 (3 l-R) 
= 2n- m- 1 4 - ~+l 

; 2 S s S n (7a) 

A shift of n bits ran produce a leading zero when word 

I:::I=~:I=====:I =~:I =~:I =: :1 ====:1 :==1 ::I::~: : 
n n-I m 2 I 

Figure 4-Numbers following binary point alignment and one'R 
complementing of word B 

B is rounded after the alignment shift, and the last 
(n - 1) bits of ,,\ord A are zero. 

R 
PI = Pr(Sn = 0) = ~ ; s = n 

2"-1 
(7b) 

As with the case of like signs, if the exponents differ 
by at least n (n + 1 with rounding) no shifting will be 
required as the larger number is the result. Hence 

PI = 0 ; s > n (7c) 

As the only alternative to a one bit left shift is no 
shift 

(7d) 

Application 

In Table I is a tabulation of the probabilities given by 
Equations 1, 3, 4, 6 and 7 (assuming that 2-n is 
negligible). As an example of how these probabilities can 
be used to optimize subprogram operation the addition 
of numbers with unlike signs will be considered. 

Table I-Probability Pi of an i-bit normalization shift 
after an s-bit alignment shift 

alignment shift 
s 

like signs ...... I unlike signs 

__ ,~I~~~L~I~I~I~_6 
0 1 0 1 5 13 29 61 

4 16 64 256 1024 
1 3 1 1 1 3 3 3 3 

4 4 4 2 16 64 256 1024 
2 3 5 5 3 

8 8 8 8 
3 3 13 13 3 

16 16 16 16 
4 3 29 29 3 

32 23 32 32 
5 3 61 61 3 

64 64 64 64 

I I 

For computers with ~ "shift-and-count" instruction 
for normalizing a number and counting the leading zeros 
a relat.ively st9!nda.rd subprogr9,ffi is shown in Figure .5a. 



All normalization is done using the "shift-and-count" 
instruction. 

From Table I it is obvious that in many cases a one 
bit left shift would be enough to normalize the result, 
with a correspondingly simpler and faster exponent 
adjustment routine. In most machines, however, there 
is not a direct test for a single leading zero, and a 
programmed test loses any speed advantage that use 
of the one bit shift would gain for this special case. 

For machines with a fast one bit shift Figure 5b 
presents an alternative philosophy: try a one bit shift 
and if unsuccessful proceed with the "shlft-and-count." 
It is anticipated that enough time ~ill be saved on 
single leading zero cases to compensate for the loss of 
time on the multi-leading zero cases. 

(a) (b) 

Optimizing Floating Point Arithmetic t!n1 
vv~ 

To analyze the relative merits of the normalization 
schemes of Figure 5a and 5b define 

r-time to process result with no leading zeros 

a + bi-time to normalize a number with i leading 
zeros and process the result 

c-time to shift left one bit and check if 
result is normalized 

d-time to process result after successfully 
normalizing via a one bit left shift 

For Figure 5a the average normalization time is 

7i 

Tel = rPo + L: (a + bi)P .. 
i-I 

no 

yes 

A:ro ........ ,only required 
yes "I?...... when rounding done 

~~-....,.-..;..--< resu t. ,> in add operation 

"" 
no 

yes 

(c) 

Figure 5-Possible subprograms for adding numbers with unlike signs 



602 Spring Joint Computer Conference, 1969 

while for Figure 5b it is 

11 

Tb = rPo + (c + d) PI + I: [c + a + b(i - 1)]P i 
i=2 

= T a + (c - b) (1 - Po) + (d - a) PI 

It is evident that T b may be greater or less than T a 

depending on the machine characteristics controlling 
a, b, c and d. 

For a floating point addition subroutine (with n = 18) 
for a PDP-9 computer it was found that a = 15.6, 
b = 0.4, c = 4 and d = 7. These produce the values for 
Tb shown in Table II. The second method is best for 
non-equal exponents but the first method is best for 
equal exponents. Since the information on whether the 
exponents were equal is available, the subprogram can 
be modified to the form shown in Figure 5c. This gives 
the advantages of Figure 5b to non-equal exponents, but 
retains the advantages, and improves on, Figure 5a for 
equal exponents. While an exact measure of the 
improvement in the normalization is impossible without 
the knowledge of the alignment shift distribution it 
would appear as if Figure 5c is about 3% better than 
Figure 5a. 
Execution time of subprogram in Figure 5b. 

Table II-Execution time of subprogram in Figure 5b. 

alignment shift 

o 
1 
2 or more 

SUMMARY 

T] 

Ta + 1.45 
Ta - 1.60 
Ta - 5.00 PI 

In the example above it is unlikely that the second 
method would have been considered if the table of 
probabilities indicating the high incidence of only one 
leading zero had not been available. Since the final 
subprogram is an improvement on the second method 
to eliminate a flaw detected during timing calculations, 
it is reasonable to assume that the best subprogram 
would not have been evolved without the use of 
normalization shift probabilities. 

It must be remembered, however, that Figure 5c is 
the best for a particular machine. The only data that is 
directly applicable to another machine is the table of 
probabilities. It is still necessary for the designer to 
deduce a method where specific machine features may 

be exploited to reduce subprogram time. The table of 
probabilities allows him to check if the technique 
devised does yield the expected benefit of a faster 
program. 

REFERENCES 

1 D W SWEENEY 
An analysis of floating-point addition 
IBM Systems Journal Vol 4 No 1 1965 :n-42 

2 R WHAMMING 
Numerical methods for scientists and engineers 
McGraw-Hill New York 196237 

APPENDIX A· 

Assuming equal probability of one or zero in all bits 
but the first implies a uniform distribution of numbers. 
However, Hamming2 indicates that during floating point 
calculations numbers tend to move towards the lower 
end of the normalization range. 

Using the Hamming distribution 

1 
P(x) = -

x In 2 

then the probability that bit A1I- i equals one can be 
calculated by integrating the probability distribution 
over the range of numbers for which A lI- i is one. 

1-1 i 
2 -1 II-ilt 1 

Pr(A_i = 1) = I: -- dx 
i>=O I-i/2' - 1/21+1 X In 2 

rl 
I (2 -1 2,+1 - 2i ) 

= -In II 
In2 i>=O 21+1 - 2i - 1 

1 2(2i ) (2 i 03 
= -In-----

In2 (2 i+1 !) (2,-102 

Using Stirling's formula 

fJ 
In x! = In V2r + (x + ~) In x - x + I2x 

where 0 < fJ < 1 ; x > 0 

the above expression reduces to 

= ~ + Z-i 4> ; - .541 < 4> < .361 



Thus the probability converges to ~ as j increases. 
Table III shows the actual Pr(Al1 - i = 1). 

In view of the rapid convergence to a value of ~, 
and that the maximum deviation from ~ is not large, 
it seems reasonable to assume that ones and zeros are 

Optimizing Floating Point Arithnletic 603 

equally probahle in all hit positions. Using the actual 
values from Table III for the first fmv bits would 
greatly complicate the model without significantly 
altering the result. 

Table III-Pr(An- i = 1) assuming Hamming 
distribution 

Pr(A1.-i = 1) 
--------------------------

1 
2 
3 
4 
5 
6 

0.415 
0.456 
0.478 
0.489 
0.494 
0.497 





A panel session-Software transferability 

Program transferability 

by JAMES A. WARD, Cha'irman uf Session 

Department of Defense 
Washington, D. C. 

During the early development of higher order lan
guages in 19.59, we were told that programs written in 
such languages could be run on almost any computer. 
Now, ten years later, we find that programs so written 
not only are non-transferable from one manufacturer's 
computer to that of another, but, in some instances, 
caIUlot be run on two computers of the same make and 
model wIth memories of different sizes. In the inter
vening years, computers have become much faster and 
the cost per operation has become much cheaper, while 
the cost of programming has become relatively far more 
expensive. Still, we do not have program transferability 
and millions of dollars are spent each year on the un
inspiring task of reprogramming routines on additional 
computers. 

The objection to transferability of software is that it 
is impractical: programs transferred would operate 
very inefficiently because of different internal machine 
organizations. Data is particularly difficult to transfer 
onto machines of different.word length. If such transfers 
are made there is loss of efficiency. A system that would 
provide for such transfer would unduly restrict the 
freedom of the programmer and introduce inefficiencies. 

This is why in many military systems all the com
puters are required to be identical, or in the same 
family, so that programs written for one computer can 
be used on all and that programs and data can be trans
ferred. The current procurement for World-Wide 
Command and Control is just such a system. The lack 
of transferability also makes the upgrading of a com
puter a traumatic ordeal for almost any computer 
installation in government or industry. A number of 
people who have recently gone through this to obtain 
third generation equipment seem to think that the 
government (or DoD) should freeze present hardware 
designs to prevent reprogramming for the fourth gen-

eration of computers. They seem to forget that this is a 
perennial request. I was asked to join such a movement 
over six years ago and this request has been repeated 
every year thereafter. Had this movement been success
ful, the current third generation would not have come 
about. 

The design of digital computer hardware has made 
tremendous strides during the past ten years. Further 
advancements are forthcoming throughout the field, 
particularly in military computers and scientific com
puters designed for large government problems. I feel 
it is criminal to stifle advancement; therefore, I do what 
I can to encourage new designs and internal organiza
tions. 

But we still need the compatibility among different 
machines that will permit the efficient transfer of pro
grams, data and programmers from computer to com
puter without reprogramming. Since the hardware 
design should not be unduly restricted, the compatibil
ity necessary for transfer must in large part be provided 
by software. I feel certain that this will eventually 
evolve. In fact, I am happy to report that progress 
toward solution is already on the way: 

a. The Air Force at Rome Air Development Center 
has initiated an Rand D program to determine 
requirements for software transferability. 

b. Dr. Hopper, in the Xav'Y, has developed a stand
ard COBOL by which programs in that language 
have been compiled and executed on many 
different machines. 

c. ~Iitre Corporation, under DOD contract, is 
studying the problem of transferability of data. 

d. There are also several laboratories with different 
manufacturer's machines in which any program 
written can be compiled and executed on any 
machine. 

605-----------------------------------



606 Spring Joint Computer Conference, 1969 

I am convinced that such transferability of programs, 
data, and programmers is within the present state-of
the-art. This panel from government and industry has 
peen assembled to tell what has been done and 'what is 
planned. 

Let us all cooperate to hasten the day when most pro
grams written in any higher order language can be com
piled and executed on most existing computers. The 
time, money and manpower saved by eliminating re
programming can then be used to solve other more 
interesting and useful problems. 

1> ... f bOlo ... ... rogram "rans era 11"Y 

by ROBERT W. BEMER 

General Electric Company 
Phoenix, Arizona 

General 

The problem of program transfer is such that most 
people think they understand the process better than 
they do. Optimism is rampant; success is elusive. I 
have some tenets which I believe to be sine qua non: 

• Program transfer is complicated by each element 
which is different-user, CPU, configuration, 
operating system, etc. 

• Programs must be planned for transfer. "After
the-fact" is virtually useless, like post-classification 
for information retrieval. The information loss is 
too high in the transfer from programmer to code. 
If everyone wrote and documented his program as 
a connectable black box, only the connecting 
process would need to be under the control of the 
user. 

• In twelve years of hearing proponents discuss it, 
I have not yet seen successful mechanical trans
lation of machine language programs. There are the 
processes which a translator: 

a. Thinks it can do and can. 
b. Thi.."'1ks it can't do and says so, for human 

rework. 
c. Thinks it can do and can't, and therefore 

doesn't say so! 

• Transfer should always be made on a source 
program basis. Recompilation is a trivial expense. 

• To the highest possible degree, the documentation 

of the program should be self -contained in the 
source program itself (rather than in the auxiliary 
documentation), and in a standard format and 
placement so that mechanized program tools know 
where to find the machine-readable infonnatioll 
for extraction and use. 

• Production of identical answers is (particularly for 
scientific problems) an additional requirement 
which must be specified and paid for. Differences 
may be due in part to differing internal arithmetic 
modes, but more often they are due to the over
looking of imprecision in method. On balance, 
obtaining different answers must be considered a 
healthy phenomenon. 

• The criterion which a software module/component 
must meet in order to be Relf -documented ade
quatelyis: 

'.'Can it be dropped into a program/data 
base for problem brokerage, whereupon a 
completely anonymous user may make a 
mechanical search to his requirements, find 
and use the module in his problem, and pay 
automatically a brokerage fee upon success
ful usage?" 

This would be one standard that nobody would argue 
about-if he got found money at the end of the month, 
for conforming. Perhaps this might be a better solution 
than patenting software. Only thus can the non-spe
cialist take advantage of computer utilities. 

Some information required to transfer (run) a programl 

• Program name (number) 
Program function 
Descriptors, classification (computing reviews) 

• Original computer system 
Original configuration, subset of required con
figuration, options used/available 
Other systems/configurations verified to rUll OIl 

• Operating system, requirement, linkages, inter
faces 
Running instructions 
Store requirements (resident program, nonresident 
program, data, tables, segmentation, overlay 
sequences) 

• Source language (standard, dialect) 
• Input/output data 
Data structures 
Data types 
Data elements, collating sequence 

(1) To complete while producing the program. 



• Interfaces (other units called, libraries) 
Connections (via jumps, switches, natural flow) 
Languages/processors equipped to call this pro
gram 

• :~VIethod, average runtime (for interactive simu
lators) 
Restrictions, constraints, degenerate cases, idio
syncrasies 
Range, accuracy, precision 
Changes occurring in conditions, status, original 
input 
Optional 
Infonnation specific to program transfer 
Default options-referring to international/na
tional standards 
Responsible organization 
Grade of program (thoroughness of testing) 
Test cases and answers (possible autoverification 
and answer match) 
Bibliography, references 
Copyright, price, etc. 
Source/object program listing, number of in
structions/statements 

Mechanical tools for converswn2 

• Combinatorial path exercisers through a program 
• Programs which page the source code for the pro
grammer and mechanically force him to be up-to
date 

• Programs which mechanically check the linkage of 
units of a software system to provide a directed 
graph for flow verification, ensuring that any soft
ware unit will not interface with other software 
units to which it should not be connected . 

• l\1"echanical detennination of valid paths in the 
reverse direction of flow, as a diagnostic tool for 
finding "How did we get here from there?" 

• :Mechanical verification of successful meeting of 
interface requirements when passing from one 
software unit to another in a forward direction. 

.l\1"echanical re-verification of linkage and inter
face requirements for any revisions. 

• Code acceptance filters . 
• A patch defense (correct/change ill source code 
only) 

• (De-) fiowcharters 

Mechanical capture of facilitating information3 

The source-to-object program translation process 

(2) Used during the completion stage of the program, to prepare 
against transfer problems and to ensure a well-conditioned state. 

(3)To obtain in each use of the program. 

Software Transferabiiity 607 

yields illfonnation. }luch of this is lost, but needn't be . 
Some of this infonnation concerns elements which are 
not themselves standardized, but can be part of a stand
dard list of measurements useful to program transfer. 

Therefore a language processor should be constructed: 

• To be self-descriptive of its characteristics (i.e., 
features contained, added or missing; dialects or 
differences) . 

• To afHx to the original source program, as a certifi
cation of a kind, either an identification of, or its 
actual characteristics. It may also strike character
istics or features which were unnecessary for that 
source program. 

• To inspect transferred programs for a match to its 
own characteristics. 

If the transferred program is processed successfully: 

• The identification of the new processor is also 
affixed to the source program. 

• In any area where the new processor has lesser 
requirements (i.e., a smaller table worked success
fully; a missing feature was not required), the af
fixed infonnation is modified to show the lesser re
quirement. 

Thus a source program, once processed, contains 
infonnation on: 

• The minimum known characteristics required for 
successful processing. 

• All processors (with operating systems) which treat 
the source program successfully. 

Software compatibility 

by JOHN A. GOSDEN 

The Mitre Corporation 
McLean, Virginia 

Data Exchange 

There is a growing need for data exchange, particu
larly the passing of files of data between programs that 
were produced independently. This will be needed in the 
development of computer networks and data bases; for 
example, a head office installation collecting files from 
various divisions of a corporation to build a data base. 
Both the development of formal and informal computer 
networks as well as the economic feasibility of large 



608 Spring Joint Computer Conference, 1969 

data bases are favoring the development of arrange
ments for a considerable volume of data exchange, 
whether directly over communication systems or by 
the dispatch of reels of tape and boxes of cards. These 
are very significant areas of growth that are just begin
ning to emerge in commercial EDP and are already 
creating problems within the Federal government. 

The development of data interchange is straight
forward when the correspondents have agreed on the 
format, but where there has been no prior agreement, 
conversion usually involves considerable manual jnter
vention. Some typical problems are that: 

a. The sender's format may not be specified 
rigorously and an informal description may have 
to be debugged. 

b. The sender's format may not be expressible in 
the receiver's system. 

c. The sender's format descriptions may be em
bedded in the program. 

d. The format in the sender's system may vary 
from record to record and be embedded in the 
data. 

Any of these problems may arise when either an ex
isting application is converted to a new system, or a 
new member of a cooperating network has a system 
different from that of any existing member. 

There are two basic problems: 

a. Few existjng systems have any ability to deal 
with a new format automatically, and those that 
do are limited to data described in the same 
system. 

b. The number of different, and often incompatible, 
ways of describing data is increasing; e.g., 
Format statements in FORTRAN, Data De
scription in COBOL, COl\1POOL in JOVIAL, 
FFT's in FFS. 

Any solution to this problem should not restrict 
participants in the use, within their own local system, 
of any internal data structure they like or any pro
gramming or query language they like. Therefore 
we need a standard data description language for data 
exchange. It is expected that systems should interface 
with a single way of describjng data for interchange and 
provide conversion processes in their interfaces. If a 
suitable interface is to be developed, we will not want 
to standardize formats, which would be absurd, but 
we would want to standardize ways to describe formats. 
We also ",'ill want to attach the data descriptions to the 
data, so that the transmission of both data and its 
description can be performed without manual inter
vention. 

A data description language for data interchange 
does not have to be read and understood principally by 
humans. It can be thought of as a complicated coding to 
be generated and interpreted b:l the interface 1110dules of 
systems in a network. In a well-designed system a user 
would describe data in the form provided for local use, 
and the system would translate to data interchange 
conventions. Therefore, the data description language 
should be generally compatible with data descriptions 
in current programming languages. Later, develop
ments in programming languages may be influenced by 
a desire to remain compatible with data interchange 
conventions. 

Standardization of high-level languages 

by GHACE MURRAY HOPPER 

Director, Navy Programming Language,'; Group 
WaRhingt.on, I). C. 

The terms "compatibility", commonality," and 
"transferabilit.y" are used in discussing the mobility of 
programs and programmers. The common element 
essential to such mobility is the establishment of stand
ards for programs, programmers, and documentation. 
The adoption of high-level programming languages 
such as COBOL, FORTRAN', ALGOL, and .JOVIAL 
is a required element of such standards. The high
level languages are innately self -documenting-an 
essential for transferability. Thus, their use provides 
assistance in the transfer of programs among activities; 
the conversion from one computer generation to an
other; the conversion from one computer manufacturer 
to another; and the transfer of programs for back-up 
and readiness. 

Further, the programmers, themselves, need be 
trained but once and retraining upon transfer to a new 
system is virtually eliminated. Programmers become 
capable of greater productivity per unit of time resulting 
in less cost per unit of program. However, such appli
cation of the programming languages implies that they 
themselves be standardized. A standardized language 
must he commonly acceptable, competitive, develop
able, maintainable, and useful. The standard language 
must he deye]oped, defined, approved, adopted, and 
installed. 

The installation of a standard programming language, 
in varying environmentR wit.h varied requirements, 



requires of management the normal functions of promul
gation, installation, control, evaluation, monitoring, 
and provision for maintenance and changes. The execu
tion of these functions can be assisted by the use of pro
grammed tools such as validation routines, translators, 
preprocessors, flow charters, debugging aids, and by 
standard manuals and instruction courses. 

The discussion includes a survey of the growth of the 
standard languages with implications and suggestions 
for future developments. Information supporting the 
need for the application of the languages and the re
sultant time and cost savings is introduced. The neces
sary components of an installation package are defined 
and their implementation discussed. The need for 
management inter~st, concern, support, and action is 
stressed. 

The transferability of computer programs 
and the data on which they operate 

by EDWARD MOREXOFF 

Rome Air Development Center 
Griffiss AFB. N ew York 

INTRODUCTION 

Software transferability involves the transfer of pro
grams and the data on which they operate from one 
arbitrary operating environment to another, with the 
expenditure of only a small fraction of the initial pro
gramming development time and cost. The programs 
can range from small routines for evaluating trigonomet
ric functions, to large and complex systems such as com
pilers, data management systems, or command and 
control systems. The environments in which these pro
grams are to be executed may be either slightly or 
highly dissimilar with respect to machines, machine 
configurations, or operating systems and languages 
used. 

The interest of the Rome Air Development Center in 
this area extends over a period of several years. During 
this time, both hardware and software research and 
development programs have been initiated which either 
directly or indirectly contribute to the solution of the 
problem. The utility of adopting standards, and the 
form these standards might assume, were defined in 
1967.1 

Typical of the efforts in the hardware area was a 
study leading to the definition of a microprogrammed 

Software T-ransferability 609 

computer main frame capable of efficiently executing a 
number of different machine language instruction 
sets.2 Typical of the efforts in the software area was the 
work leading to the design of a generalized data 
management system,3,4 the development of modular 
proramming design tools,5 ,6 and· the Informa tion 
Processing Code.7 

In January 1968, the Program Transferability Study 
Group* was established. Its principal objective was to 
examine the whole area of software transferability 
formally, and see what, if anything, could be done to 
eliminate the problems associated with transferring 
programs and data between arbitrary environments. 

The preliminary findings of the study group were 
released in June 1968.8 The Group found the main 
obstacles to software transferability to be loose specifi
cation of data structures, lack of programming stand
ardization, and lack of freedom when higher level 
languages were used. Possible solutions to these prob
lems are: (1) Administrative control of programming 
and documentation (2) Extensions to current languages 
(3) Use of a new programming environment which 
would eliminate the constraints of the older system. 

The problem 

The study group concluded that the problem of trans
ferring a program between arbitrary operating environ
ments was not solved by the current technology, even 
when the initial program development made use of a 
standard version of a single higher level language. 
Current practice is such as to require changes to the 
initial form of the program itself rather than simply a 
recompilation, in order to adapt the program to a 
change in environment. 

One of the principal factors necessitating such 
changes is the lack of adequate facilities for the explicit 
specification of data, programs, actions, messages, 
linkage, and the like. The programmer is instead en
couraged, if not actually forced, to make implicit in the 
form of his program many of details of its initial e!l
vironment and the data to be operated on. In order to 
transfer a program from one environment to another, 
reprogramming is required to the extent that differences 
in the two envir<;mments must be reflected in changes to 
the program. 

Closely related to the lack of adequate explicit spe
cification facilities is the lack of constraints which would 
serve to regularize the behavior of the programmer. As 
a consequence of the excessive generality and complexity 

*The Program Transferability Study Group was chaired by 
George H. Mealy. Other members included T. E. Cheatam. Jr., 
David J. Farber. Edward Morenoff and Kirk Sattley. 



610 Spring Joint Computer Conference, 1969 

in present operating systems and languages, a pro
grammer setting out to prepare a complete program 
has entirely too much freedom. In the absence of ex
plicit facilities or when such facilities are too general, 
different programmers produce entirely different pro
grammatic solutions to the same problem. A strong 
relationship is believed to exist between this difference 
and the difficulty in transferring programs. 

An example of a language which has enjoyed a mea
sure of success in the development of transferrable 
'programs is COBOL. COBOL encourages the explicit 
description of data rather than the implicit description 
inherent in most other languages. It is about the only 
language system which permits any kind of environ
ment specification. It is limited in scope, however, to 
problems which trace their origin to unit record equip
ment. This narrowness of scope appears to be one of the 
principal reasons for its success in allowing programs 
written in it to be transferred between environments. 

In addition to the use of higher level languages, the 
study group found two other basic approaches to 
solving the transferability problem, both largely un
successful. The first approach involves "decompiling" 
a binary, decimal or symbolic program written for one 
operating environment, and then generating new code 
for some other operating environment. The second 
approach is by the application of a set of management 
solutions. These solutions range from the insistence on 
replicating functionally identical hardware configura
tions to setting standard specifications on programs so 
they are completely modular with very precise func
tional specifications and clear interfaces. 

Attacks on the problem 

The second major conclusion of the study group was 
that the current state of the computer technology had 
reached a level of development at which something 
could be done about the problem of transferability 
today. Indeed, three compelmentary levels of attack 
were proposed. 

The first level of attack, designated as level A, deals 
with the definition and application of suitable admin
istrative controls, both to the programming and docu
mentation processes, using languages and operating 
systems as they exist today. The resulting standards 
would form a common subset or intersection of the 
capabilities of the operating systems and languages to 
be involved in the family of transferrable environments. 
To work at all, these standards must be enforced by a 
czar with final approval over all programming work. 

The second level of attack, designated as level B, 
deals with the development of extensions to the current 

language and system base. This involves identifying the 
deficiencies with respect to particular existing systems, 
defining how these deficiencies may be eliminated, and 
then implementing the resulting changes to equalize 
the capability of all the operating systems and languages 
in the family of transferrable environments. 

Part of the design problem at level B is to identify 
which extensions can be incorporated into the existing 
systems with a high probability of success within a two 
year period from the time they have been defined. 
Extensions not falling within this category would be 
deferred for consideration as part of attack level C. 

The third level of attack, designated as level C, 
relaxes the requirement of using the existing base of 
operating systems and languages to allow consideration 
of a wholly new programming and operating environ
ment which would substantially eliminate, for most 
practical cases of interest, the problem of program 
transferability. Within this environment the higher 
risk and/or longer term concepts would be tested and 
evaluated. 

The life of the study group has been extended. It is 
currently continuing its investigations of selected 
aspects of the software transferability problem. 

BIBLIOGRAPHY 

1 E MORE~OFF J B McLEA~ 
A.n approach to standardizing cornpuwr system." 
Proc 22nd ~ ational ACM Conference Thomp~on Book Co 
August 1967 527-536 

2 DECISIOX SYSTEMS I~C 
I nwrirn Status Report No 1 
Contract ~o F30602-68-0223 August 11 1968 

3 P J DIXO~ J D SABLE 
D_~-l a generalized data management sysle'rn 
Proc S J C C Thompson Book Co April 1967 185-198 

4 E MORENOFF J B McLEA~ 
On the design oj a general purpose data rnanagenwnl .'I!Jswm 
Proc Fourth Annual Colloquium on Information Retrieval 
Int Information Inc May 1967 1\)-30 

.~ E MORE~OFF J B McLBA~ 
Inter-program conunllnicati.ons progra/ll sir-in!! .~truct ures and 
bU.ffer files 
Proc S J C C Thompson Book Co Aprii 1967 17.j-18-i 

6 E MORENOFF J B McLEAN 
Program string structures and modular programminy 
Proc National Symposium OIl Modular Programming 
Information and Systems Press June 1968 176-186 

7 E MOREN OFF J B McLEAN 
A. code for non-numeric processing applications in on-line 
systems 
Communications of the ACM Vol 10 No 1 January 1967 
19-22 

8 G H MEALY et al 
Transferability study group 
Rome Air Development Center Technical Report. No 
TR-68-341. December 1968. 



Transferability of data and programs 
between computer systems 

by JEROME D. SABLE 

Auerbach Corporation 
Philadelphia, Pennsylvamia 

INTRODUOTION 

The cost of problem analysis and programming dom
inates by far the cost of computer utilization. This 
dominance will increase in the future as hardware 
elements become more powerful and economical and 
problems become more complex and demanding of 
highly skilled analysis. As this trend continues, the 
sophisticated user will become increasingly intolerant 
of a situation which prevents economic transfer of 
programs and data from one installation or hardware 
type to another. A standard machine independent 
environment which provides data management services 
at several levels to programmers and task programs 
should be defined. Programs would then interface with 
a set of virtual machines, or standard program en
vironments' which are independent of the particular 
hardware configuration of the installation. 

The traditional approaches to data and program 
transferability have been through (a) the use of com
patible hardware types which have presented "equiva
lent" hardware interpreters for data and program, and 
(b) the use of standard higher level procedure-oriented 
languages and compilers to trans1ate programs to a 
particular machine type. The first approch guarantees 
complete interchangeability only as long as the pro
gram's support software is duplicated but removes the 
possibility of matching special hardware types to prob
lem areas for which they may be particularly appro
priate. This restriction is unnecessarily severe in many 
cases. The second approach avoids this restriction but 
there are many problem areas for which standard 
procedure-oriented languages have not been adopted. 
Indeed, many systems will continue to be implemented 
in assembler and macro level languages. 

I would like to suggest that the problem of data and 
program transferability can be approached most 
generally by extending approach "(a)" to include soft
ware as well as hardware interpreters. Software inter
preters, or simulators, have been used in the past to 
transfer a machine language program from machine A 
to machine B. However, these have not been entirely 
successful or widely used. The success of this approach 
hinges on the ability to write programs for one of several 

Software Transferability 611 

standard environments and to describe in a standard, 
yet general, way the data structures which are to be 
transmitted and interpreted. To permit general appli
cability from machine level programs and data, through 
to higher level language programs and other character 
stream messages, requires that a wide range of data 
structures and languages be describable in a standard 
way. The language description standards must include 
the lexicographic, syntactic, and semantic levels. 

In the following paragraphs a hierarchy of data 
structure types will be described which range from 
machine and storage-oriented structures to "logical" 
data structures transmittable as character strings 
independent of physical representation. They are 
offered as one possible approach to a comprehensive 
set of data structures. 

Data structures 

The cell 

The most primitive concept to be considered is that 
of an address space. This is viewed as a region of atomic 
elements or cells which are addressable with some ad
dress word. There may be a hierarchy of cells such that 
higher level cells form an address space for a lower level 
cell. The cell is viewed as a region is which data can be 
stored and accessed rather than the data themselves. 
Several address spaces, or stores, may be involved in a 
system or network. 

A given computer will have a system of primary, 
secondary, tertiary, etc., stores associated with it. A cell 
in any store is addressable with an address or a simple 
transformation of an address. 

The truck and train 

The most primitive relocatable data structure is the 
truck. This is a module of data which can be stored in a 
cell. A sequence of trucks, called a train, may be defined 
and transmitted from one store to another. Any re
locatable data structure (the term as used here in~ludes 
programs) is ultimately handled as a train whose trucks 
are bytes, words, or pages. 

The bead, strip, and plex 

An element (e.g., train) of fixed length and defined 
field structure will be called a bead. A sequence of beads 
of the same type will be called a strip. If the beads 
contain fields which address other beads then a net
work of beads, called a plex, is formed. * 

*The terms plex and bead have been used by D. T. Ross in his 
work on the AED systems. 



612 Spring Joint Computer Conference, 1969 

The stream 

A list or list structure of byte trains of various 
lengths will be called a stream. Consider the data 
structures necessary for representing a process, or 
active job. These include a stream containing pro
cedures and subroutines, a stream for the dynamic 
working data (or activation records) of each procedure, 
and a stream for the control stack which provides 
subroutine control. Collectively, then the process can 
be considered to be a stream list. 

The item 

Finally, a data structure may be defined in terms of 
named entities, called items, which bear a defined 
relationship to each other. These items are fields, 
records, files, and statements and are independent of 
any storage structure or address space. Items may be 
independent messages or form a highly structured 
hierarchy of nested elements, files, etc. 

Specification languages 

The success of the approach to data and program 
transferability being proposed here depends on the 
adoption of a comprehensive data description language 
(DDL). The DDL must. meet a number of require
ments: 

1. It must be able to handle at least the range of 
data types listed above. 

2. The requirement to handle item structures and 
source language messages means that it should 
be capable of expressing the symbols and syntax 
of context-free languages. 

3. It should be capable of expressing the semantics 
of translation or interpretation of the source 
language strings, including procedure calls to 
other processors. 

4. It should be representable in a graphical format 
that exhibits the structure of the language or 
data being described so that it represents an 
effective tool for human communication. 

5. It should also be representable by linear strings 
amenable to transmission and computer input, 
and it should be easy to translate from the graph
ical to the linear version, and vice versa. 

CONCLUSION 

The problem of transferring data from one computer 
to another, and interpreting the data correctly: can be 
approached as a problem of constructing an adequate 
range of data structure types and devising a standard 
way of describing these types. Noone level of data 
description is adequate. Rather, there must be a range 
of structures which go from the highly machine oriented 
cell structure to the user-information oriented struc
ture. It is felt that a hierarchy of data structure types 
which is adequate for this task can be devised. The data 
types to be included have been listed above. 

The problem of data description, however, is but a 
special case of language specification and special atten
tion must be paid to the lexicographic, syntactic, and 
semantic aspects of specification. Some recently de
veloped language specification languages and general
ized language processors can be brought to bear on this 
problem. These processors can be employed as a stand
ard interface in a network of different computer types. 
When furnished with the description of the structure 
(languages) to be accepted, they can carry out the 
appropriate translation and interpretation. 

The stratification of data management servicesi nto a 
number of standard levels would make it appear to the 
programmer, that at anyone moment, he is interfacing 
with one of a number of virtual machines which form 
an upward compatable hierarchy. These services may 
be, in fact, provided by a mix of hardware and software 
modules which depends on the particular system im
plementation, and the hardware types being used in a 
given instance. Thus, each program has, as its inter
preter, a virtual machine whose interface with the pro
gram is know but whose composition may vary and is 
irrelevant except for timing considerations. A given 
installation, because of hardware and software modules 
used, may provide interpretive virtual machines only 
up to a given level, requiring programs written for a 
higher level virtual machine to undergo a translation 
process down to the appropriate level before inter
pretation can take piace. 

That the goals outlined above will be difficult to 
achieve in today's technology and market place is well 
recognized. However, I feel it is the responsibility of the 
industry to its users to embark on a comprehensive 
project to ensure software transferability across a Wide 
range of problem areas and hardware types Without 
limiting the development of new languages and ma
chines. 



A panel session-Computer-assisted instruction: 
C.ll ...... p.nt ~t~tll~-Flltll-rP. n-roh1PnlQ ----- - ---- ...................... --........ ..-.. ....... .., ......... "'" r.a. '""...., .... "-'~...., 

PATRICK SUPPES, Chairm,an o.f Session 

Stanford University 
Stanford, California 

CAl problems and prospects 

by WALLACE FEURZEIG 

Bolt, Beranek and Newman Inc. 
Cambridge, Massachusetts 

and 

SEYMOUR PAPERT 

M a8sachusetts Institute of Technology 
Cambridge, Massachusetts 

The expression "computer-assisted instruction" 
(CAl) is generally used to describe situations in which 
the computer is used as a teaching surrogate in some 
sense--whether as drill instructor, tester, or specialized 
tutor. ~Tost applications of this kind have had specific, 
limited, and modest educational goals. When used to 
administer drills or branching tests, a computer is not 
called upon to be intelligent-only useful. Yet it is 
interesting and important to ask whether the computer 
can become an intelligent artificial teacher, and more 
generally, whether there are valuable ways of using 
computers for teaching and learning. 

In artificial teaching, the computer controls the 
interaction with the student. There are applications of 
the opposite kind, where the student controls the 
machine. The most common one is the teaching of com
puter programming itself. Another is the use of a 
computer to simulate a "real" laboratory. And, there is 
a potentially rich spectrum of intermediate arrange
ments-strong instructional interactions-in which the 
student and the computer share control and direct each 
other. As an example, student programming and 
artificial teaching might be coupled by having the 

computer monitor a student's work as he uses a 
programming language to perform a simulated experi
ment or to solve a problem. No significant experiments 
in this direction can be done without a great deal of 
work; but we do know, in principle, how to make a 
program follow the steps of a student who is not 
constrained by a stereotyped pattern and how to 
diagnose his difficulties on the way. 

We shall argue that computers will make deep 
contributions to education in all three areas: 

1. first, and with capabilities already well estab
lished, through the teaching of programming 
languages; 

2. ultimately, and to an extent largely dependent 
on progress in artificial intelligence research, as 
an artificial teacher; 

3. intermediately, as an instructional monitor or 
assistant, in a number of different subjects as 
diverse as music, language, and physics. 

Along the way, we shall elaborate on specific educa
tional contributions including the following. 

----------------------------------------613--------------------------------------



614 Spring Joint Computer Conference, 1969 

1. The teaching of programming can provide a 
conceptual and operational framework for the 
teaching of mathematics. 

2. USL.Ylg an appropriate langul;tge, prograrrL11ling 
can be introduced routinely to third-graders for 
its special value in teaching the skills of clear and 
precise thinking and expression. 

3. The computer can enhance the teaching of 
"practical" subjects (such as navigation or 
speaking a foreign language) whose mastery 
requires the integration of mechanical and 
intellectual skills. 

Finally, we shall contrast the present lack of depth 
and perspective characterizing much of the work in this 
field with its rich prospects. In particular, we shall 
discuss our view that a serious investigation of the 
problems involved in developing an intelligent teaching 
system will yield rich results in the fields of computers, 
education, and psychology. 

CAl: Research requirements for 
instructional strategies 

by DUNCAN N. HANSEN 

Florida State University 
Tallahassee, Florida 

The current developments of computer-assisted 
instruction (CAl) can be characterized as a phased 
transition from the creation of hardware and language 
systems for implementation into the more fundamental 
examination of the features of optimal instructional 
strategies for CAl applications. Instructional strategies 
are the plans by which informational presentations are 
matched with the current requirements of a learner in 
order to optimize on a set of criterion objectives. The 
research approaches into the nature and process of 
instructional strategies has been twofold, namely, 
naturalistic and systematic. 

The naturalistic approach consists of three applica
tional types that developed concurrently with the 
hardware and language CAl systems. First, the 
complementary CAl type provides instruction that is 
adjusted to the stage of progress that a student has 
acquired in the conventional educational classroom; 
this approach is best exemplified by the Stanford Drill 
and Practice Mathematics Project. Secondly, the 
autonomous CAl t.ype provides instruct.ion that is the 

full corpus of an accredited course; the physics course at 
Florida State University and the library science course 
at the University of Illinois best represent the auton
omous type. Lastly, the enriched CAl type provides 
instruction on content considered as extensions of the 
conventional classroom curriculum; the simulation 
games at BOCES are excellent examples of the enrich
ment type. An analysis and comparison of the instruc
tional strategies of these three naturalistic CAl 
applicational types will be discussed. 

The systematic approach to CAl research on instruc
tional strategies resolve into six areas. First, what is the 
appropriate media for the presentation of a given 
concept? Second, what are the desirable time parameters 
for the CAl system to respond to the learner's answer? 
Third, what are the characteristics of the ~mswer 
analysis routines that promote the specified learning 
objectives? Fourth, what is the decision logic of the 
presentation plan that specifies the sequence, amount 
of practice, and termination of the instruction? Fifth, 
what are the payoffs to the instructional process within 
CAl? And lastly, what kinds and types of reports should 
be part of CAl application? Current research findings 
and implications for future investigations are discussed 
within the framework of the six aspects of instructional 
strategies for CAl. 

Instructional uses of computers to grow 
gracefully and effectively 

by ELDO C. KOENIG 

University of Wisconsin 
Madison; Wisconsin 

INTRODUCTION 

In this brief disc"ijssion, it is suggest.ed that three 
principal functions be recognized and be performed in 
parallel in order to achieve a graceful and effective 
growth in the instructional uses of computers. These 
functions are described as: 

1. the practice of teaching using computers as aids; 
2. research and development directed toward the 

practical uses of computers in teaching and 
learning; 

3. basic research in intelligent systems. 

Function (1) is dependent on function (2) and (2) is 
dependent on (3). Computer hardware and software and 



people are included in the discussion of each of the 
functions. 

The practice of teaching using computers as aids 

Computers in education today can be used most 
effectively to assist in the teaching of subjects that are 
mathematically disciplined, such as, programming, 
mathematics, engineering, physics, statistics, and book
keeping. For courses of this type, much of the knowledge 
is contained in mathematical expressions and com
munication between student and computer can be more 
easily accomplished than in verbally oriented courses. 
Computers used in courses of this type can (1) assist 
individual students in a direct learning experience, (2) 
perform the calculations in solving assigned problems, 
and (3) aid the instructor in demonstrating the func
tional characteristics of the various types of mathemati
cal equations, the effects of changes in the variables of 
computational models, and various physical phenomena 
through simulations. 

Hardware and Software. The function should employ 
existing computer systems. The one selected must be a 
practical operating system with integrated hardware 
and software and with well-defined capabilities. Because 
rapid advances will continue to be made in systems, the 
policy should be that of leasing. Currently, the choice 
can be made between the leasing of terminals of a large 
utility type system and the leasing of a relatively small 
complete system. Small computer systems are available 
with complex man-machine interfaces which make them 
very capable in special types of applications, such as, 
graphics. The leased terminals of large utility systems 
are relatively simple man-machine interfaces, and the 
systems have limited capabilities in a conversational 
mode of operation. Since the fixed cost of leasing is low 
and the usage cost is variable, the number of students 
and the amount of time each uses a system can be small 
to accommodate a minimal budget. Because a leased 
complete system has a fixed total cost, it may be difficult 
to find enough student users to make the cost per 
student a reasonable value. 

People. If current systems can be used effectively as 
aids in teaching mathematically disciplined subjects 
ranging from arithmetic in elementary schools to 
advanced college subjects, and if they can be cost 
justified for small numbers of students, then the only 
additional requirement is the training of teachers in the 
rules for communicating with the computers and in 
methods for using them. Usually, courses are offered for 
training in the rules of communication. Until similar 
courses exist for training in the new methods, teachers 
should be encouraged to experiment in developing 
simpler methods and techniques through the use of 

Computer=Assisted Instruction 615 

leased terminals of systems of limited capabilities. They 
will gain valuable experience which will prepare them 
for future systems of greater capabilities. 

Research and development directed toward the practical 
uses of computers in teaching and learning 

This function establishes teaching methods using 
computers as aids; determines the psychological factors 
related to these methods, and provides for the training 
of teachers' in practical application of these methods, 
particularly those teachers in the lower levels of 
education. 

Hardware and Software. An integrated hardware
software system for this function should be supplied as 
a practical result of research in intelligent systems, the 
third function, and should be replaced every three to 
five years with one of greater capabilities. The packaged 
system should provide for the maximum of flexibility 
and should be able to: 

a. gather and analyze physiological information on 
a human subject 

b. receive and analyze the various requested re
sponses of the subject 

c. provide flexibility in selection of the content and 
organization of learning materials and the inter
face devices 

d. provide a variety of learning strategies through a 
choice of (b), (c), and an alternating sequence or 
an integration of the two 

e. gather information on the environment of the 
subject 

f. permit a higher level of control which coordinates 
the controlling actions for (a), (b), and (c) 

g. permit a high level supervisory control with. 
flexibility for ~oordinating and directing two or 
more subjects at different terminals in competi
tive learning experiments. 

People. There should be a number of groups in 
different fields in a university performing this function, 
for example, the School of Education, Engineering, and 
Computer Sciences. The School of Education should 
place emphasis on the lower levels of education. Special 
training may be required in computational modeling, 
computers, and in the capabilities and the use of the 
man-machine interactive system to be used. 

Basic research in intelligent systems 

This research, in the broadest sense, should strive to 
use the human intelligence of a society better by 
improved ways of synthesizing intelligent systems and 



616 Spring Joint Computer Conference, 1969 

by more effective ways· of transferring knowledge from 
one generation to the next. It should also strive to 
increase the intelligent capabilities of a society by 
imparting intelligence to machines. 

Hardware and Software. Current hardware should be 
selected and developed into a hardware system, and 
initial software design should be based on the principles 
determined from the previous research system. Basic 
research should then be applied to the current machine 
system to improve its performance as a component of an 
intelligent system. The improved system, in turn, 
should further basic research which is again applied to 
produce additional improvements in performance. 
A machine system with significant improvements should 

evolve every three to five years and then should replace 
the system in research and development directed toward 
the practical uses of computers in teaching and learning. 

People. Since complete interactive systems contain 
both man and machine as components, the research 
must draw on select basic knowledges from a number 
of fields. Unifying disciplines must evolve relating the 
various knowledges, and a graduate program should be 
associated with the research effort. The students must 
be able to acquire the variety of existing knowledges, 
and through their active participation in research, they 
should have an opportunity to apply and associate these 
knowledges. The build-up of both the research effort and 
the graduate program must be gradual. 



A picture is worth a thousand 
words-and it costs . . . * 

by j. C. R. LICKLIDER 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

The present is a critical, frustrating, and exciting time 
in the history of computer graphics. A dozen significant 
trends are developing in the same field of view. Several 
much-needed trends are not developing. The technology 
is changing so rapidly that four generations of graphical 
systems are in operation at once. "Computer graphics" 
means different things to different people. This is there
fore a difficult session to" introduce." 

Perhaps the mos't important introductory remark to 
make about the session is that the papers that follow 
this one do not attempt to cover the topic of computer 
graphics. They are in computer graphics, not on it. In 
this paper, I shall not t.ry to cover the topic, either, but 
I shall take a brief look at the over-all field and try to 
sketch out enough of a map to provide an orientation 
and context for the papers that follow. In the process, I 
shall unburden myself of a few deep convictions. 

There are three main efforts in computer graphics. 
The first is to improve the capability of graphical dis
plays to represent things and processes. This ca
pability extends into dimensionality, verisimilitude, 
complexity, and motion. 

The second main effort is to improve the interaction 
between men and computers through graphics, to im
prove graphics as a medium of communication. It is 
important to distinguish between communication and 
representation. Both involve languages, but not in the 
same way. 

The third main effort is to develop applications of 
computer graphics. Applications run the gamut from 

* The ideas described herein were derived mainly from re
search supported by Project MAC, an M.LT. research program 
sponsored by the Advanced Research Projects Agency, De
partment of Defense, under Office of Naval Research Contract 
Nonr-4102 (01). 

computer-aided composition of printed pages to com
puter-aided design and dynamic modeling. 

All the foregoing pose problems of computer-system 
design and are energized and/or inhibited by economics. 

This paper will deal, then, in an introductory-and 
necessarily sketchy-way with representational ca
pability, communication and interaction, applications, 
computer-system design, and economics-all in the 
context of computer graphics. Because the art is long 
and the time fleeting, the paper will consist essentially 
of observations and assertions within those areas rather 
than reviews or analyses of them. 

Representational capability 

Although most computer graphics is limited to ar
rangements of points and line segments, together with 
perhaps a hundred elementary figures (characters), 
computers are of course capable of processing and dis
playing areal pictures replete with graded lightness 
(brightness) and varied hue (color). The work of 
Stockham! at the lVLI.T. Lincoln Laboratory and the 
University of Utah illustrates the versatility of the 
computer in handling still pictures with gray scale. 
Stockham scans a low-contrast photograph into the 
computer memory, takes the logarithm of every light
ness coefficient, applies a la Ernst Mach a second
spatial-derivative operator to each neighborhood of co
efficients to yield a new coefficient for the central 
element of the neighborhood, then takes the antilog
arithm and displays the resulting picture. Detail not 
visible in the original stands out clearly in the pro
cessed picture. But the processing requires many 
seconds for a picture with a millon elements, and 
Stockham's kind of picture processing is not kinematic 
or" on-line interactive" in the present state of the tech
nology. Nor does the computer "understand" the 

---------------------------------617---------------------------------



618 Spring Joint Computer Conference, 1969 

picture in the ~ense of forming a structured model of the 
pictured scene in which the various objects and their 
parts are represented separately in a hierarchy. Thus in 
Stockham's application we see an emphasis of high 
precision in representation and processing at a sacrifice 
of speed and structured ness. 

The work of Evans, Warnock, 2 and their colleagues at 
Utah starts with a structured model in the memory of 
the computer, rather than a high-information-content 
photograph at the input scanner. They have developed 
method's of processing that yield a halftone-like picture, 
in color, with "hidden lines" suppressed-in a small 
fraction of the computer time that would have been 
required two years ago. At the present time, however, 
even with the Utah methods, one cannot process and 
display areal (e.g., halftone) pictures fast enough to pro
duce moving pictures in real time. He can go to slow
time frame-by-frame generation of film, or he call 
schematize, or both. 

The technology for handling ~chematized pictures and 
diagrams-made up of points, line segments, and char
acters-has advanced markedly during the last two 
years. Roberts3 described some of the basic ideas, in
volving homogeneous-matrix representation and per
spective transformation. In the work that won them the 
prize at the Fall Joint Computer Conference, Robert 
Sproull and I van Sutherland4 developed hardware that 
very rapidly transforms selected parts of a model in the 
computer's memory to a line drawing on the cathode
ray screen. The hardware rej ects all the parts of the 
model-a large two-dimensional drawing or a three
dimensional scene-that would not be seen through a 
given window, and it produces the magnifications or 
perspective transformations and the clippings or trim
mings at the window frame necessary to display just 
what would be seen through the window. It does all that 
fast enough to display 3000 lines flicker-free. The" 3000 
lines" refers to what is actually displayed; there can be 
many more lines that that in the model. The hardware 
handles curved lines and surfaces. It works hand-in
glove with the Warnock hidden-line algorithm, which 
works on schematized (linear) as well as areal displays, 
and the hardware is applicable to, and will decrease the 
processing time required for, areal displays. 

The foregoing dealt with actually two-dimensional 
displays of two- and three-dimensional obj ects and 
scenes. There are interesting ways to make the displays 
perceptually, or even actually, three-dimensional. The 
method of calculating and presenting two slightly 
different" stereo" views is well known. So are methods 
based on the "kinetic depth effect," which present a 
single, changing view. When successive two-dimensional 

cross sectional images are projected in rapid sequence 
upon a moving I:!creen, the eye, becaul:!e of its per
sistence, sees the composite three-dimensional image. 
See Traub.s The computer can control the settings of a 
matrix of push rods to make a three-dimensional sur
face, a histogram rising from a plane. And, of course, it 
can synthesize a hologram. 

Of those and other approaches to 3-D, the most ex
otic appears to be one demonstrated by I van Sutherland 
and associates at Harvard last year. The computer has 
a model of a situation in its memory, and it receives 
signals from sensors that tell it where the observer is 
and in what direction his head is oriented. \Vith the aid 
of hardware described earlier, the computer then diH
plays the part of the modeled situation that the ob
server would see. The display is projected fl'OlH a small 
cathode-ray tube ou the observer's head through a semi
silvered mirror into one of the observer's eyes, and the 
observer sees the displayed part of the situation out in 
front of him. He can look around and walk arouud
and always see what he would see if he were in the 
modeled situation. When I saw the demonstration, 
the hardware was not finished, and the situation was 
just an outline room with windows, a door, and a geo
metrical piece of statuary. Even at that, it was quite au 
adventure. fiiven situations defined by thousands of 
line segments, one could surely create ::lome exciting 
experiences-and probably some very significant ones. 
As Sutherland has pointed out, the" physical" laws of 
the modeled world can be determined by the program
mer. They can change with time. They can even de
pend upon the observer's behavior. Elsewhere, the 
possibility of creating a direct four-dimensional expl'
rience has been discussed. See Licklider. 6 I shall not ~o 
through it again here, but let me say that it will be in
tellectually at least as exciting to perceive and explol'(\ a 
synthetic 4-D world as to perceive and explore a merely 
actual, merely 3-D moon. 

Most of the capabilities of representation descrihed 
in the foregoing are characteristic at present solely of 
expensive equipment and are regarded by many aH 
esoteric. I shall say something about that under the 
heading, Economics, but for the moment let it direct OlIr 

attention to the other end of the spectrum. Among 
the most significant developments as judged from a 
practical point of view, certainly, are computer setting 
of type, computer-aided preparation of diagrams and 
graphs for the printed page, computer-aided com
position of advertisements, computer-aided generation 
of films, off-line production of graphics (as with curve 
plotters and as with the Stromberg-Carlson 4020), and 
fast on-line display of alphanumeric data and text. 



A Picture is Worth a Thousand Words-And it C.osts . . . 619 

Communication and interaction 

It is of course very important in computer graphics 
to be able to represent things and processes accurately 
and in detai1. I think it is more important to be able to 
represent them in proper structural organization. I 
think it is still more important for computer graphics to 
be an effective medium of communication. Good one
way communication is good, but good two-way com
munication':':""good graphical man-computer interac
tion-is better. 

Now, as the history of art shows, and as Huggins and 
Entwisle7 will emphasize, and as I· hoped Don Hatfield 
would develop in depth in this session, the representa
tion with the greAtest verisimilitude is not often the best 
means or medium of communication. Good graphical 
communication is more a matter of linguistic expression 
than it is' of pictorial reproduction. Unfortunately, we 
in the computer world do not know much about the 
language, and unfortunately not many of us are trying 
hard to find out about it. Obviously, it does. not have 
much to to with programming languages. It probably 
does have something to do with data structures: But 
mainly it is the art of expressing ideas through con
figurations and manipulations of signs and symbols. Let 
me call that art an essential extension of computer 
graphics and then leave the topic to Huggins and 
Entwisle. I like their approach to it, insofar as the one
way language-computer to man-is concerned. 

In my assessment, however, communication is es
sentially a two-way process, and in my scale of values, 
interaction predominates over detail, gray scale, color, 
and even motion. In my iudgment, the most important 
problem in computer graphics is that of establishing 
exc~llent interaction-excellent two-way man-computer 

. communication-in a language that recognizes, not 
only points, Hnes, triangles, squares, circles, rings, 
plexes, and three-way associa~tibns, but also such ideas 
as force, flow, field, cause, effect, hierarchy, probability, 
transformation, and randomness. Nowhere, to the best 
of my knowledge, is such i~teraction approached in a 
broad problem area at the present time. The nearest 
things to exceptions are the graphical computer-pro
gramming interactions of Ellis and Sibley8 at RAND, 
the partly graphical, partly alphanumeric on-line 
augmentation of Engelbart's9 intellect at Stanford 
Research Institute, and the graphical explorations in 
architecture of Negroponte10 at M.LT. It is very frus
trating to me that five and a half years have elapsed 
since Sketchpad passed its milepost without bringing 
more progress in man-computer interaction at the level 
of ideas and concepts. 

It seems unlikely that work in computer-aided design 
of devices and structures will lead to the advances I am 

hoping for. Computer-aided design of complex systeIns 
or processes might do it. I like the name, "interactive 
dynamic modeling," for the art. I want to see de
velop a kind of combination of computer-aided design a 
la Sketchpad and computer-program siinulation a la 
on-line GPSS or OPS-in which the modeler and the 
computer engage in a high-level graphical interaction 
to formulate and test hypotheses for the solution of 
difficult problems that are not amenable to straight
forward logico-mathematical formulation, that involve 
more synthesis than analysis, more discovery than 
proof. Well, it is not much to have the name. I wish I 
had the method, the language, the software, and the 
hardware. 

Man-computer interaction of course presupposes 
computer-input devices (as well as languages) to medi
ate the communication from man to computer. The man 
should be able to signal the computer in a natural and 
synergic way, as by pointing and marking with a stylUS 
while enunciating control words or phrases. He should 
be able to write or draw on the same surface as the com
puter. I shall not develop this part of the discussion 
beyond saying that one can appreciate the problem 
after he has read the transcript of a good blaekboard 
lecture and then later (and separately) seen photo
graphs of the blackboard. "Chalk plus talk" is an 
excellent medium. N ei~her chalk nor talk alone carries 
much information. The communication must therefore 
lie in the coordination. 

Applications 

At present, it appears that three very different 
classes of application of computer graphics are success
ful: (1) routine applications in the field of publishing 
(e.g., Chemical Abstracts) that yield printed pages as 
primary output and at the same time retain the in
formation in computer-processible form for updating 
or secondary exploitation; (2) routine applications 
throughout business and industry (e.g., airline ticket
ing, display of stock quotations) that involve fast on
line display of alphanumeric data or text from com
puters; and (3) "cream" (and often highly nonroutine) 
applications in government and industry (e.g., military 
command and control, space-mission control, seismic 
prospecting for oil) in which the premium on being 
first or best is very high or in which the required results 
cannot be achieved any other way. The first two do 
not require sophisticated graphic capability. The third 
requires and can afford very sophisticated capability. 

If and when there exists and is available the kind of 
computer graphics I referred to as" interactive dynamic 
modeling," computer graphics will become a part of 
thinking and problem solving and decision making 



620 Spring Joint Computer Conference, 1969 

wherever those functions are carried out. Design will of 
course be a major application area: design of all kinds of 
systems and processes-space, urban, transportation, 
manufacturing, military-as well as devices and struc
tures. Management of government and business will 
use graphics in its" command and control." Applica
tions will abound in research and development and in 
medicine. But the application area par excellence will 
be education. Almost anything not involving muscular 
skill that needs to be explained and demonstrated can 
be explained and demonstrated best with the aid of 
'interactive computer graphics. For the sake of brevity, I 
shall leave that as a simple assertion in need of proof by 
demonstration. 

The trouble is, all those applications that depend 
upon a significant augmentation of the human intellect 
(to use Engelbart's phrase) demand a level of computer 
graphics as sophisticated as that required for the 
"cream" applications mentioned earlier-or even more 
sophisticated . 

The field is ready for and cultivating simpleminded 
applications in which computer graphics will do faster 
or less expensively things that can already be done 
without it, but the field is not yet ready to accept the 
challel~ge of" mind expansion." That carries us to the 
0(~onomics again-which we shall examine very shortly. 

System design 

The prevailing idea in computer-system design for 
graphies is that graphical display places too heavy a 
demand for processing to be handled by the (or a) 
main, central processor and that there should, therefore, 
be a satellite graphical processor for each graphics con
sole or cluster of graphics consoles. At present, the 
satellite processor is usually a small general-purpose 
computer augmented by a display processor. 

The design of the satellite processor is itself an in
teresting problem. Is it to be programmed once and for 
all and viewed thereafter as just part of the hardware, or 
is it to be thought of as remaining a programmable 
computer? Is its display processor to do nothing but 
diRplay, or should it be able to call display subroutines 
and perhaps handle the integer arithmetic of indexing? 
Sutherland and ~Iyerll have observed the tendency for 
the display processor to evolve into a general purpose 
computer and then to need a subordinate display pro
cessor, and they have determi~ied how and where to 
stop the potentially infinite regress. 

The aspect of system design that I think has not been 
thought through clearly concerns the division of tasks 
between the central computer and the satellite com
puters. There is a watershed: either all the satellites will 
be near the central eomputer, or at least one will be 

remote. If all are near, why should each satellite com
puter have a separate memory? That leads to a wasteful 
transferring of data from one memory to another. \Vhy 
shouldn't the satellite processor be precisely a display 
processor and address a block of the main memory'? 

If the satellite is remote, of course it cannot address 
the main memory directly; it must have a memory of 
its own. If one satellite is remote, all the satellites 
should have memories of their own, for it is most im
portant to preserve homogeneity for the sake of simplic
ity. 

Now we come to Bert Sutherland's Dictum: "Think 
Network!" Even if you plan to have all the graphics 
consoles in the same room as the main computer, treat 
them as if remote-because one day soon it will be de
sirable to admit a remote satellite into the system
or you will want to share software with a system that 
has remote satellites. 

The key problem then becomes the division of tasks 
and the specification of the interface between the central 
and the satellite computers. That problem must be 
solved in such a way that the satellite does not pester 
the central computer continually, yet the user should 
feel that he is interacting directly w~'th the central 
machine. I doubt that there is a good solution. 

Economics 

There are of course two main kinds of cost: (1) the 
cost of the equipment; (2) the cost of developing the 
methods and preparing the programs. The bad thing is 
that for sophisticated computer graphics both are very 
great. The good things are that the hardware eosts tend 
to drop rapidly, once they start dropping, and that, as 
soon as there is replication of hardware,' the software 
costs increase much less rapidly than the number of 
hardware systems in which the software is used. That is 
elementary, but it is ve~y important and evidently not 
well enough recognized. 

During the 25-year history of digital computing, the 
costs of arithmetic units, control units, and processible 
memories have halved approximately every two years. 
On-line terminals have not had such a "long" history
at least not in significant quantity-but it appears that 
some of the simple keyboard-and-cathode-ray-tube 
consoles that are coming into use in time-sharing sys
tems dropped from about $13,000 to about $6,500 in the 
ye.ar between the last two Fall Joint Computer Con
ferences. If some are priced at $5,000 in the exhibit 
area of this conference, it will suggest that, for a time, 
one class of equipment will be halving in cost each year. 

I do not want to make too much of such gross trend 
analysis, even though it does point to the source of 



much of the magic of our field, and I certainly shall not 
base anything on a halving of cost each year. However, 
the question of optimal research lead time is a very im
portant question, and it needs an answer. When should 
we develop the kind of computer graphics that will 
most strongly augment the intellect? When should we 
start if we want to have it ready when it will be afford
able? In their paper, Huggins and Entwisle7 will call 
educational application of interactive computer graph
ics, based on time sharing, an H economic absurdity 11 

and suggest that the facilities be used to generate ed
ucational films. Insofar as operations are concerned, 
I agree with them. But what about research? 

As basis for a rough calculation, let me take a system 
that I think would make an excellent base for a com
puter graphics laboratory. A few months ago I deter
mined...~he cost ofa graphics-oriented PDP-I0 computer 
with 256K words of 2.5-microsecond memory, 15 million 
words of disk storage, 16 consoles with storage-tube dis
plays, and quite an assortment of supporting equip
ment. It was about $700,000. If it were used 8 years, 
with an average of 10 consoles active over the 24-hour 
day, the cost per console hour would be $1. Double that 
to cover maintenance, operation, supplies, and over
head, and you have $2 per console hour to use as an 
argument that you could be within hailing distance of 
economic operation now if you had the programs. 

As I see it, the advances in methodology and soft
ware required to achieve the kind of computer graphics 
and the kind of interactive dynamic modeling I hope 
for will require about as much research effort and time 
as several laboratories have devoted to interactive 
computing since 1961. If we look ahead to 1977, and 
assume hard work in the interim, I think we can count 
on a fairly g()od methodological and programming 
capability. If the halving-every-two-years rule held, 
the over-all equipment cost would be about 12 cents per 
console hour in 1977. It need not be that low to support 
all the educational and personal applications that it 
should support. Other applications-in management, 
research, medicine, etc.-would have become economic 
earlier, of course. 

My conclusion-which is of course as tentative and 
open to bias as the foregoing estimates, and perhaps as 
simpleminded-is that now is the time to push forward 

621 

with research in the areas of computer graphics that 
people call expensive, sophisticated, esoteric, and exotic. 
I think that they are the areas in which lie the real 
promises of significant improvement in our intellectual 
processes. If we do not push forward with research in 
those areas now, we shall find ourselves with a magic 
lantern that we don't know how to rub. 

REFERENCES 

T STOCKHAM A V OPENHEIM R W SCHAFER 
Nonlinear filtering of multiplied and convolved signals 
Proceedings of the IEEE 56 August 1968 126-1291 

2 J E WAR~OCK 
A hidden line algorithm for halftone picture representation 
Technical Report 4-5 May 1968 University of Utah 

:~ L G ROBERTS 
Homogeneous matrix representation and manipulation of 
N-dimensional constructs 
Lincoln Laboratory Massachusetts Institute of Technology 
July 1966 

4 R F SPROULL I E SUTHERLA~D 
A clipp.ing divider 
AFIPS Fall Joint Computer Conference Proceedings 33-1 
December 1968 765-775 (Published separately by the 
Evans-Sutherland Computer Corporation Research Park 
Salt Lake City Utah 1968) 

5 A C TRAUB 
Stereoscopic display using rapid varifocal mirror oscillations 
Applied Optics 6 1967 1085-1087 

6 J C R LICKLIDER 
Computer graphics as a medium of artistic expression 
273-304 in Computers and Their Potential Applications 
In Museums X ew York Arno Press 1969 

7 W H HUGGINS D R ENTWISLE 
Computer animation for the academic community 
AFIPS Spring Joint Computer Conference 1969 

8 T 0 ELLIS \V L SIBLEY 
On the developrnent of equitable graphics 110 
IEEE Transactions on Human Factors in Electronics 
HFE-8 March 1967 15-17 

9 D ENGELBART W K ENGLISH 
A research center for augmenting human intellect 
AFIPS Fall Joint Computer Conference ProceedingR 
33-1 December 1968 :~95--41O 

10 N NEGROPONTE 
The architecture machine 
Forthcoming The MIT Press 1969 

11 I E SUTHERLAND T H MYER 
On the design of display processors 
Comm of the ACM 11 June 1968410--414 





Computer animation for the 
academic community 

II 

by W.H. HUGGINS and DORIS R. ENTWISLE 

The Johns Hopkins University 
Baltimore, Maryland 

INTRODUCTION 

The use of computer-graphic technology to produce 
low-cost films for education promises enormous educa
tional benefit at modest cost. For educators, these 
technical developments are but a means to an end 
which has thus far recei~ed too little attention-the 
production of visual images that in their ability to 
communicate ideas are superior to traditional graph
ical images on paper or blackboard. 

The printed word is symbolic, whereas the TV image 
is primarily iconic. New modes of iconic display may 
be needed to communicate with young people of the 
TV generation. Here, computer. animation offers re
markable possibilities-instead of static images words , , 
and mathematical symbols, we may create dynamic 
signs that move about and develop in self-explanatory 
ways to express abstract relations and concepts. 

Recent research emphasizes the importance of these 
possibilities. According to Bruner, intellectual de
velopment moves from enactive through iconic to sym
bolic representations of the world, with each level 
serving to define and give meaning to the next higher 
level. Education today primarily proceeds at the sym
bolic level; iconic modes of communication and in
struction remain virtually untapped and warrant 
much more attention. In effecting this, computer 
animation is certain to play a major role. 

The cost of 8howing 

Major efforts to develop films for the classroom 
have been made during the past decade by various 
groups interested in improving education in fields 
such as mathematics, physics, and engineering. Most 
of these films have attempted to recreate in the class
room experiments and views of real phenomena that 
the student would otherwise miss. These films are of 

high quality and made by professionals at places such 
as the film studios of the Education Development 
Center, Newton, Mass., in cooperation with one or 
more principals from the academic community. They 
have been costly to produce (around $2,000 per minute 
of finished film). Because of the growing use of these 
visual materials in schools, however, they can be justi
fied as a worthwhile investment that will reap educa
tional benefits for years to come. 

Recent advances in computer-graphic technology 
are obviously of great interest to educators. Of these 
graphical techniques, computer-generated film offers 
many attractive potentialities for the same reasons 
that studio-made films do. The production of elaborate 
visual sequences under interactive control of a human 
makes excellent economic sense for educational pur
poses provided the final product is recorded on film 
(or video-tape) for low-cost duplication and distribu
tion to many other viewers. We consider the notion 
that these sequences should be produced individually 
under the interactive control of a single student for 
his sole benefit to be an economic absurdity at present. 
The realities of the high cost of computing are all too 
evident to those of us at schools struggling to support 
even batch-processing utilization of computers for 
education. Hence, to those wealthy few, who are for
tunate to have such graphical displays available we 
direct a plea that they should consider arrangen:ents 
by which other interested members of the academic 
community can use their facilities for the very ben
eficial production of computer-animated :films for the 
entire community. 

In the remaining portion of this paper, we would 
like to discuss some aspects of computer animation 
that have received sparse attention and yet which are 
vital, we feel, to the ultimate success of films as an 
educational device. We have heard many papers and 

623 ----------------



624 Spring Joint Computer Conference, 1969 

much discussion of hardware and software for comput
er graphics at recent meetings, but virtually nothing 
concerning the design of appropriate symbols and con
ventions for portraying ideas and concepts, Enormously 
elaborate and costly equipment is used to produce 
images which are primitive and poorly designed to 
communicate the desired information. The technical 
apparatus of light-pens and data structures has so 
monopolized our attention that we have forgotten that 
all of this is but a means to an end-the production of 
visual images that are superior and more lucid than 
the traditional graphical images on paper or black
board. 

Perhaps it is unreasonable to expect those respon
sible for the development of the hardware and soft
ware to also be deeply concerned with the quality and 
properties of the graphical images that may be pro
duced, but for those of us in education, this latter 
aspect is of ultimate importance. Some of us are making 
educational films without benefit of light-pens, on
line oscilloscopes or immediate access to microfilm 
plotters.1 ,2,3 Typically, these programs have been 
worked out on paper; the desired sequences translated 
into some appropriate assembly or compiler lan
guage;4,6.8 the program run on a machine such as an 
IBM-7094 which creates a magnetic tape that is then 
sent to an SC-4020 microfilm plotter located in another 
city where the actual film is produced and returned 
to the originator after a delay of 3 to 20 days or more! 
For those accustomed to using interactive graphical 
displays, such a tortuous process must appear intoler
able. Yet, you may be surprised to learn that the long 
delay has not been as serious as one might expect 
because the conceptual design of the storyboard and 
the invention of appropriate conventions and schemes 
for showing the intended ideas and concepts in an 
accurate and perceptually clear way is even more 
time-consuming and difficult than the straightforward 
task of writing and processing the computer program 
to make the film. 

It is in the art of showing ideas and concepts that 
educators can make their greatest contribution. Al
though computer-graphic terminals would be nice to 
have at every school, these elaborate and costly facili
ties are by no means essential. For instance, a high
school student, Garrett Jernigan in Raleigh, North 
Carolina, has written a short animated film to show 
the earth-moon system in true proportion, and to 
emphasize that the moon and the earth each revolves 
around the center of mass of the earth-moon system
a nice lesson in mechanics. The movie starts with a 
far-out view of our galaxy, then zooms into our solar 
system. After the earth-moon system is identified as 
one of the planets moving around the sun, the moon 

is shown revolving around the earth, with relative sizes 
and distances accurately portrayed. A further zoom 
toward the earth reveals on close view that it too is 
also nutating around the common center of mass. 
Jernigan didn't have even a computer, but he had the 
imaginative idea which enabled him to program these 
sequences in FORTRAN IV punched onto teletype 
tape. These tapes were mailed to Johns Hopkins where 
we ran the program on our IBM-7094 and then sent 
the magnetic tape containing the graphical instructions 
to Polytechnic Institute of Brooklyn for processing on 
their SC-4020. 

The art of showing 

We shall always be grateful to J, C. R. Licklider 
tor bringing to our attention nearly 5 years ago a re
markable book by Gombrich.7 Until then, we had not 
been fully aware of how important is cultural condi
tioning in altering the perception of visual images. 
Gombrich examines in depth the notion that all art 
(and visual communication, generally) involves illusion 
and he shows that a "realistic" representation always 
incorporates unrealistic conventions that must first 
be learned and then ignored. In our own culture, where 
photographic-like representations have been so highly 
developed, most people would regard a photographic 
portrait of a human head in profile as a more realistic 
representation than a Picasso drawing showing both 
eyes in a profile view . Yet, if you were to show the two 
representations to a visually illiterate aborigine, he 
might select the Picasso as the more realistic because 
the photograph shows only one eye, whereas most people 
have two eyes (as realistically represented by Picasso). 
The conventions of perspective, which seem so natural 
and absolute to us, are quite unnatural to the savage 
who may, in fact, not even recognize a photograph 
as a picture but ·see it simply as a blotchy, discolored 
piece of paper (which it is!). (Incidentally, although 
visually illiterate people may not perceive the content 
of a still photograph, they always perceive the moving 
images in a motion picture.8 This observation empha
sizes the likely advantage of computer-animated presen
tations, particularly for elementary and secondary
school education.) 

Unlike the aborigine, nearly all school children in 
this country today are extremely literate visua.lly. 
It is estimated that on the average they will have 
spent between 10,000 to 15,000 hours watching TV 
by the time they finish school. The impact of TV on 
our culture today is hard to evaluate, but there is little 
doubt that it is enormous. For instance, one of us has 
found9 that disadvantaged first-graders of the Balti
more inner-city schools have better developed abili-



Computer Animation for the Academic Community 625 

ties to associate and use common words than the more 
privileged children of corresponding age in suburban 
schools. Furthermore, by the time children finish ele
mentary school their verbal associative structures 
appear to be much further developed than students 
of the same age who lived 50 years ago or than students 
who today are members of cultural groups in which 
TV is little used. to That these effects are a direct con
sequence of television seems very likely; slum children 
spend much more time watching TV than children 
in mIddle-class homes where a larger part of their 
time is directed by parents and teachers toward other 
activities. 

These young people of the TV generation seem to 
have developed a different kind of visual literacy 
than those of us who grew up prior to TV, and new 
modes ot visual display may be needed to communicate 
effectively with them. The printed word is symbolic, 
whereas the TV image is primarily iconic. Yet our tra
ditional modes of communication in science and en
gineering are still dominated by symbols rather than 
by the icons to which the TV generation is habituated. 
Here, computer animation offers remarkable possi
bilities that have never before existed- instead of stat
ic images and mathematical equations on the printed 
page, we may now create dynamic signs that move 
about and develop in self-explanatory ways to express 
abstract relations and concepts. These potentialities 
for iconic communication of the quantitative ideas 
central to science and engineering are only now begin
ning to be exploited; most of the imagery that we 
have seen produced by computer graphics in CAL and 
other applications has merely transferred the tradi
tional static signs and symbols from the printed page 
to the cathode-ray tube. A dynamic dimension is now 
available that requires the invention and development 
of new conventions and a visual syntax appropriate 
to this new medium if it is to be fully used for com
munication and education. (These possibilities are 
suggested by the computer pantomimes1 ,2 which com
municate quantitative concepts without using words 
or equations.) 

The technical advantages of computer-animated 
films have been discussed elsewhere.H Not only is ani
mation produced in this way likely to be much less 
costly than traditional animation, but one person can 
do the whole thing, from conception of the idea through 
programming and production of the final film. It thus 
becomes feasible to study alternate schemes for dis
playing certain ideas by developing at low cost a wide 
range of visual materials useful for empirical tests 
with student subjects for evaluating the effectiveness 
of these different schemes. 

In making a computer-animated film, if one de~ 
liberately avoids the use of traditional words and 
mathematical symbols and attempts instead to por
tray all abstract ideas iconically, he quickly learns 
that "one word is worth a thousand pictures!" He 
also soon discovers that many of the signs traditionally 
used in science and engineering are inadequate for 
conveying many familiar concepts without first in
troducing irrelevant . details freighted with erroneous 
artifacts and implications. For instance, in some recent 
research on the design of symbols for representing 
electric circuits,' we found it very difficult to indicate 
cause-effect relations. (We finally used an inelegant 
anthropomorphic symbol shaped like a human hand 
to change the value of the source signal.) 

Another unsolved problem is how to portray a con
tinuum field, such as the electric potential around a 
set of charges. The portrayal of a vector field using 
the familiar stream lines (or lines of force) leaves much 
to be desired because the direction of the lines is not 
easily shown, (e.g., arrowheads introduce broken-line 
segments which violate the portrayal of smooth con
tinuity of the field). Furthermore, when one attempts 
to superimpose two such fields, as in demonstrating the 
superposition of forward- and backward-traveling waves 
on a transmission line, a whole host of spurious effects 
result as field lines cross each other or vanish and re
appear from nowhere, and perform other atrocities. 
These difficulties arise even in showing simple, two
dimensional fields; traditional conventions are com
pletely inadequate for portraying general vector fields 
in three dimensions. New ideas are badly needed for 
representational schemes that will be free of these 
bothersome artifacts. 

The theory oj showing 

In his recent important book, Bruner (who is the 
country's leading cognitive theorist) has suggested12 

that the acquisition and understanding of information 
generally proceeds through three stages: 

1. Manipulative 
2. Iconic 

3. Symbolic 

-personal action 
-perceptual organization and 

imagery. 
-use of public language and 

other private representations. 

These stages occur in the development of every 
child. In the beginning, the child manipulates and 
experiences things surrounding him in a most intimate 
and direct way. Later, he recognizes things by their 
appearance, and the images in his environment acquire 
an autonomous status as he explores the similarities 



626 Spring Joint Computer Conference, 1969 

and differences among the concrete objects around 
him. The child begins to observe that things are related 
to other things in more or less predictable ways. As 
he becomes aware of geometrical and other invariants 
in his environment, he is abie to make predictions and 
extrapolations from what he perceives on any single 
occasion and to further refine his internalized model 
of the world. A major advance occurs when he gives 
symbolic names to these perceptions and reiatiollilhips 
and gradually begins to use words to stand for objects 
not present. Finally, through absorbing a generalized 
syntax and semantics, he learns to use words and other 
symbols to deal with ideas and thoughts for which 
there are no direct referents in immediate experience. 

As intellectual development moves from enactive 
through iconic to syrr,};olic representations of the world, 
each level serves to define the elements of the next 
higher level. Like nested macro instructions in a com
piler' the abstract symbols expand into more primitive 
instructions that are often iconic so that the abstract 
symbols will have concrete meaning. If the learner has 
a well-defined symbolic system, it may be possible to 
bypass the first two stages and communicate with 
him purely at the symbolic level. But too often, the 
learner may not possess the imagery to fall back on 
when his symbolic transformations fail to solve the 
problem, and for many persons it may be impossible 
to rely entirely on a completely symbolic mode. 

We wish to draw an analogy between the process 
of programming a computer and the process of instruct
ing a student that may (like most analogies) be of 
questionable value, but it will serve to emphasize a 
worthy point. A source program in a high-level lan
guage, like FORTRA...~, is purely symbolic and, by 
itself, has no meaning to the computer until expanded 
into a more primitive set of assembly instructions 
which are recognizable by the machine. Insofar as 
the computer is concerned, these assembly instructions 
are iconic. But they, in turn, must be defined in terms 
of actual manipulative actions performed by the built
in operations of the machine. 

In terms of this analogy, the major task of instruction 
is to provide the computer with a useful compiler, 
rather than with a multitude of FORTRAN source 
decks. Certainly no one would attempt to read a FOR
TRAN program into the computer before a working 
FORTRAN compiler had been entered into its memory. 
Yet, the analog of this is attempted every day in the 
instruction of students. No, that is not quite correct: 
a FORTRAN compiler is, in fact, first entered-but 
it, too, is written in FORTRAN! 

In his closing paragraph of Chapter 3, (page 72), 
Bruner states12 

"Finally, a theory of instruction seeks to take account 
of the fact that a curriculum reflects not only the na
ture of knowledge itself but also the nature of the 
knower and of the knowledge-getting process. It is 
the enterprise par excellence where the line between 
subject matter and method grows necessarily indistinct. 
A body of knowledge, enshrined in a university faculty 
and embodied in a series of authoritative volumes, is 
the result of much prior intellectual activity. To instruct 
someone in these disciplines is not a matter of getting 
him to commit results to mind. Rather, it is to teach 
him to participate in the process that makes possible 
the establishment of knowledge. We teach a subject 
not to produce little living libraries on that subject, 
but rather to get a student to think mathematically 
for himself, to consider matters as an historian does, 
to take part in. the process of knowledge-getting. Know
ing is a process, not a product." 

CONCLUSION 

What, then, may be concluded from all of this? We 
believe that there is tremendous untapped potential 
in the use of iconic modes of communication to give 
fuller definition to the symbols that so dominate the 
classroom today. There is a paucity of experimental 
evidence on this issue. Nevertheless, we have prepared 
a self-instructing text for use at the early college level 
to teach the major concepts of modern system theory 
by using the highly iconic notation of signal-flow 
graphs.13 Judging from student response this approach 
has been very effective. In another vein, the studies 
of Rohwer4 show that pictorial presentation of pairs 
of objects to elementary-school children leads to bet
ter association between the objects than verbal pres
entation of pairs of words representing the objects. 
At the college level, this difference vanishes, reflecting 
probably the greater symbolic competence of the older 
person. 

What may be true is that the iconic stage, largely 
ignored, has had an aborted development. Who knows 
what the potentialities may be? Young children, adults, 
people who have never been "hooked" on rea4ing, 
are those most addicted to TV-it is as if there is a 
vast starvation for meaningful communication that 
has never been met by the standard media using print
ing. Instead of bemoaning this, one could exploit it. 
What would happen, for instance, if even modest sums 
from Headstart were diverted to producing TV pro
grams of educational use to four-year-olds? 

We agree with Bruner when he states (page 34) "that 
principal emphasis in education should be placed upon 
skills-skills in handling, in seeing and imaging, and 
in symbolic operations, particularly as these relate 



C-omputer .. A...nimation for the ... L\.cadelrjc COlr~unity 627 

to the technologies that have made them so powerful 
in their human expression." He mentions the increased 
visual power and subtlety of students exposed to 
courses in visual design, and the experiments by Holton 
and Purcell at Harvard with instruction in visual 
patterns as a mode of increasing the ability of physics 
students to represent events visually and non-metrical
ly. He believes "that we have not begun to scratch 
the surface of training in visualization-whether re
lated to the arts, to science, or simply to the pleasures 
of viewing our environment more richly." 

We believe these theoretical considerations justify 
much more effort toward the development of iconic 
modes of communication, and that computer animation 
can play a major role in these developments, both at 
the research level and in the classroom. In particular, 
the subject matter of system theory offers many in
teresting opportunities for visualizing the topological 
and dynamic relationships that occur in models of 
many fields. It is a stimulating and challenging area 
for study. We commend it to you. 

REFERENCES 
1 W H HUGGINS D WEINER 

Harmonic phasors 
7-minute, 16 mm black and white silent (computer 
pantomime) film 

2 D WEINER W H HUGGINS 
Response of a resonant system to a frequency step 
12-minute, 16 mm black and white, silent (computer 
pantomime) film 

3 J R MELCHER 
Complex waves I: Propagation, evanescence, and instability 
26-minute, 16 rom black and white, sound film 
Complex waves II: Instability, convection and amplification 
23-minute, 16 rom black and white, sound film 

Note: All of these films were made under the auspices of 

the X ational Committee on Electrical Engineering Films 
and are obtainable on loan from Education Development 
Center, a9 Chapel Street, Ne,,-ton, Massachusetts 02160. 

4 K C KNOWLTON 
A. computer technique for the production of animated movies 
Proc AFIPS Conference 1964 

5 F J SARNO 
Polygraphics users manual for the SC-4020 
Polytechnic Institute of Brooklyn 333 Jay Street Brooklyn 
New York 11201 

6 W H HUGGINS D ENTWISLE 
Computer animated films for engineering education 
Final report under Grant OEG2-7-OO2816-3097 U S Office 
of Education September 301968 

7 E H J GOMBRICH 
Art and illusion 
Bollingen Series XXXV 5 Pantheon Books 1961 

8 M H SEGAL D T CAMPBELL 
M J HERSKOVITS 
The influence of culture on visual perception 
Bobbs-Merill Co Inc Indianapolis 1966 

{) DR' ENTWISLE 
Developmental sociolinguistics: Inner city children 
American Jour of Sociology Vol 74 196837-49 

10 D R ENTWISLE 
Developmental Sociolinguistics: A comparative study in 
four sttbcultural settings 
Sociometry Vol 29 196667-84 

11 K C KNOWLTON 
Carnputer-produced movies 
Science Vol 150 November 26 1965 1116-1120 

12 J S BRUNER 
Toward a theory of instruction 
Harvary University Press Cambridge Mass 1967. 
See especially Chapters 1 and 2 

13 W H HUGGINS D R ENTWISLE 
Introductory systems and design 
Ginn/Blaisdell Pub Co Waltham Mass 1968 

14 W D ROHWER 
Social class differences in the role of linguistic structures 
in paired-associate learning 
Final Report-Project No 5-0005 Office of Education 
November 1967 





Graphics in time-sharing: A summary of 
the TX-2 experience* 

by WILLIAM R. SUTHERLAND and ,JA.:.\1ES W. FORGIE 

Massachusetts Institute of Technology 
Lexington, Massachusetts 

and 

MARIE V. l\fORELLO 

Keydata Associates 
Watertown, Massachusetts 

I~TRODUCTIOl\ 

The TX-2 computer, an experimental machine at 
the M.LT. Lincoln Laboratory, has been in operation for 
almost 10 years as an on-line, graphically oriented 
facility.1 In 1964, a time-sharing system for the TX-2 
was started. This system, APEX,2 was to service a 
small number of consoles with graphic display capa
bility. To achieve hardware economy, displays were 
to be refreshed from main core memory through a 
time-shared vector generator providing analog signals 
distributed to the individual console scopes. The 
displays w.ere to be refreshed directly from a structured 
display file as experience with the Sketchpad de
velopments3 ,4 of the early 1960's had indicated was 
highly desirable for interactive graphic applications. 
Although the APEX graphic system has evolved 
through several generations of display hardware and 
corresponding software changes, the initial design 
principles of displays refreshed from structured in
formation in main core by a time-shared generator 
have remained. This paper is an attempt to collect 
and evaluate some lessons learned from our experience 
in developing and using this system. 

TX-2 is a 36-bit~ fixed-point machine currently with 
164,864 words of storage; 139,264 words of 2 J,&BeC or 
faster core and 25,600 of 1 }Lsec thin film.fi As part of 
the APEX system development, rather elaborate 
memory address mapping hardware was added to the 

* This work was supported in part by the U.S. Air Force and 
under a subcontract of M.LT. Lincoln Laboratory, with support 
from the U.S. Advanced Research Projects Agency. 

computer.2 A Fastrand II drum provides both bulk 
and swapping storage for the system. The TX-2 
operation under APEX differs from many contemporary 
time-sharing systems in that most (6 of 9) of the user 
consoles are physically located in the computer room 
and are equipped with display hardware. Limited 
remote access is possible via teletype, and a single 
remote display console can be used on the system. 

In the now customary fashion, the APEX executive 
system provides a virtual computer for each console. 
For reasons of resource allocation, scheduling, and 
protection, input and output operations are not per
formed directly by user programs but are handled as 
executive services. The APEX system provides for 
CRT output of graphical information at each console, 
and gathers and buffers interactive inputs. These 
features are invoked from user programs by supervisor 
calls on the APEX system. 

Display output 

All local display scopes are driven from a single 
analog signal generator which handles points, vectors, 
curves, and characters.6 ,7,8 The output of this generator 
is time multiplexed on a frame-to-frame basis with 
individual intensification signals determining which 
scope (or scopes) will display a particular frame. 
Both refreshed and storage displays are available as 
well as a drysilver printer which can be' switched 
manually to obtain a hard copy of any console's dis
play. The speed of the display generator output is 
controlled by the display monitor routines to compen
sate for the differences in useful writing rates between 

629---------------------------------------------------



630 Spring Joint Computer Conference, 1969 

refreshed and storage scopes. The system currently 
handles five refreshed displays which appear to be 
about the maximum that can be handled with accepta
ble flicker under our normal use conditions. There is 
no such limitation on the number of storage displays 
which could be handled, but in a mixoo system the 
painting of a complex picture on a storage scope has a 
serious effect on the refreshed scopes because of the 
slow writing rate in the storage unit. Some consoles 
have b<?th refreshed and storage scopes. 

The display generator is driven by a channel from 
data buffered in main core. The channel as well as 
the maiu processor uses the address transformation 
hardware of TX-2. As a result, a buffer file of display 
data need not occupy physically contiguous core 
pages and can be handled by tho normal dynamic core 
allocation mechanism of APEX. The buffer pages are 
always in core so that a user's display may be re
freshed even when his program and problem data 
have been swapped out to the drum. The display 
monitor routines are resident in core only when display 
services are in use. 

Displays at any console are controlled by supervisor 
calls from the user program associated with that con
sole. APEX builds and maintains structured display 
files for the refreshed scopes, but simply transmits a 
linear buffer of data to' the storage scopes. In the latter 
case the buffer remains accessible to the user program 
except when the display is actually being painted. 
The display information provided by the user program 
is in a form directly usable by the display generator 
hardware. This hardware-oriented format permits 
direct program manipulation of low-level display data 
with resulting good performance but causes changes 
in the hardware to reflect back into user programs. 

For the refreshed and structured display the super
visor calls are of four basic kinds: on-off, item, group, 
and report. The on-off call requests or releases display 
services at a console and initializes a user's display 
file buffer. The report call allows a program to interro
gate an existing display file to discover its hierarchical 
structure. This call is useful when working with a 
display buffer built by another program. 

The item and group calls reflect the conceptual 
hierarchy of the display structure. An item is a col
lection of points, lines, curves, or characters with a 
single identifying name; it is the smallest display unit, 
but may cO'ntain many display components and create 
a complex picture. A group is an identified collection 
of items and may also contain "uses" of other groups. 
A use is an offset reference to another group which 
then serves as a sub-picture. Only translation of 
sub-picture references is possible; the display hardware 

does not permit dynamic rotation, scaling, or scissoring. 
The display hierarchy starts at a reserved group 

with identifying Ilame 0 (zero), and anything C011-

tailled ill its substructure "xlill appear 011 the Heope. 
Groups which are not subordinate at some level to 
group zero are invisible. Thus, at a cost in frozen core 
requirements, two versions of a picture can be built in 
separate groups and kept in the display file for rapid 
switching of actual display between them. 

The display. file maintained by APEX for each 
console has user-supplied identifying names associated 
with each item and group. These names allow for future 
references to the display components. For example, 
a call to insert a new item into a particular group 
does an automatic replace if an item with the same 
identifying name already exists in the group. The 
identifying names are also returned by input monitor 
routines, when hits on the display are recorded. 

For structured display files, dynamic storage allo
cation, garbage collection, and ring structuring are 
handled automatically by APEX with no attentioll 
required from the user. The display file for each console 
is initially three pages (each 256 words) long and is 
expanded when needed up to thirty-two pages. Since 
the display file is always in core, expansion is done 
only when n(,"Cessary and then only to the amount 
needed. \Vhile the three page minimum is adequate 
for typical editing jobs, the thirty-two page maximum 
has occasionally been an annoying limitation for large 
complex pictures. 

Console input 

The input hardware attached to TX-2 consoles has 
included light pens, RAND and Sylvania tablets,9.lo 
shaft encoder knobs, switches, and pushbuttons. ~ ot 
all consoles have the same configuration, but a desira
ble choice has emerged. Light pens have been 
abandoned in favor of tablets for graphical input. A 
hardware comparatorll provides a "light-pen-like" 
interrupt when the analog deflection signal passes 
close enough to the tablet's pen position. A small 
number of buttons or switches is also useful as is the 
standard alphanumeric keyboard. Knobs are available 
on some consoles. 

The monitoring of all· on-line console input devices 
is handled by input monitor routines in the APEX 
system. These allow user programs to request and 
release input services and to specify the conditions 
under which the executive should interrupt programs 
to provide the requested information. Information 
from the requested inputs is stored for the user program 
in an accessible buffer. 



The input buffer is another stay-in-corefile, enabling 
the executive to accept inputs frdill t.he user's console 
even when his program is inacti~e on the drum. The 
circular buffer is 256 registers long and contains a 
list of up to 75 independent entries. Each entry con
tains information identifying the device which caused 
it, a mask stating which associated devices are being 
reported in this entry, and the input values from those 
associated devices. 

For example, a· program might request an input 
entry whenever a light button was hit (with tablet 
and comparator) and with that event a report of the 
value of the real time clock and the value of the knob 
register. Another request might specify a button push 
as the event and request an associated report of toggle 
register values. In addition to console buttons any 
desired set of keys on the standard alphanumeric 
keyboard may be used as control buttons with the 
remaining keys serving in the normal fashion. 

Monitor routines, when requested, automatically 
provide for the display of tablet input data. A· tracking 
dot on the screen follows the stylus motions, and an 
"ink" trail is generated when stylus strokes are drawn. 
Tablet track data is available to user-programs in a 
separate extension of the input buffer. Only a limited 
number of tablet pom.ts (256) are buffered alter which 
the pen runs out of ink. For most tablet usage, this 
restriction has been reasonable, but it can upon oc
casion prove extremely aggravating. The track ihput 
data is normally used by the public symbol recognition 
system described later. 

338 remote display console 

A Digital Equipment Corporation 338 display con
sole with 16K of core has been attached to TX-2. 
The console operates remotely in Washington, D.C. 
via a leased 1200 bit/sec line. This remote console 
was intended to be compatible with existing programs 
previously developed for local console operation, but 
this goal has been met only partially. Typed communi
cation can be handled both to and from the console, 
and display output can be sent to the 338, but input 
from devices other than the keyboard of the remote 
console is not allowed, and the display report call 
has not been implemented. Because the remote console 
is equipped with a standard TX-2 keyboard and its 
output display has been coded to handle the special 
TX-2 character set, many standard TX-2 programs 
are usable from the remote terminal. 

To operate this remote display, APEX provides 
special treatment for calls from programs being run 
remotely. Typed output data is first converted from 
the TX-2's character set and codes into an ASCII 

Graphics in Time-SharLn...g 631 

format and then sent to the 338 whi'ch converts again 
to its internal format. Typed input is handled similarly, 
with transmission in ASCII and conversion at both 
ends. S'fnce display output data is passed from pro
grams to the executive in a format determined by 
the TX-2 display generator hardware, and it is obvious
ly undesirable for a remote user to be concerned with 
this format, the data is reformatted ip.to a hardware 
ihdependent pi'cture description and sent as a bipary 
message to. the 338. The 338 then converts the binary 
picture description to a format suitable to tts display 
hardware. Interactive ~put from the 338, if ~mple
mented, would be handled as binary data to be con
verted into standard TX-2 input buffer formats. 

With the exception of handling communication 
protocol, the 338 is functionally similar to a local 
console, and this remote console computer is not used 
in any complex way as is done elsewhere, e.g., Graphic 
I at Bell Telephone Lab.1! The goal was to run remotely 
graphical programs developed locally at TX-2 without 
requiring program changes. 

Graphics applications 

One early and straightforward use of displays was 
in the Reckoner system.13 This system allows an 
engineer unfamiliar with progranuning to sit at a 
console and easily manipulate arrays of data. He 
operates one step at a time from a menu of numerical 
operations. Graphs plotted on the display scope are a 
common fonn of output. Service programs for this 
plotting provide automatic scaling of axis markings 
and are invoked simply by the Reckoner user. 

Because many users of the TX-2 facility are system 
creato~, the most common use of displays is in program 
editing and debugging. The TX-2 assembler and 
compilers all link to a standard text editor which allows 
changes to be made on-line to a page of program source 
text displayed on the screen. Special keys (part of the 
console keyboard) position a cursor in the text for 
controlling insertions and deletions. The editor is 
available as an easily called service, and is used by 
many sub-system programs. In particular, this editor 
is available wom the control section of compilers 
produced by the TX-2 compiler-compiler system.14 
When a source error is found during a compilation, 
a single-key edit command will automatically display 
the bad source line and its neighbors for immediate 
editing. DUling run-time debugging, displays are 
used to show data values, machine state, and other 
pertinent infonnation. Control commands can be 
given on-line from the keyboard or can be automatical
ly retrieved from a previously saved text file. 

One novel application of displays deals with the 



632 Spring Joint Computer Conference, 1969 

problems of debugging programs which use the display 
services.15 What does a user do when a program runs, 
but the picture he expects to see on the screen is either 
missing or incorrect? Core dumps of the display data 
maintained by the executive are difficult to interpret, 
A public program is available to interrogate a display 
file maintained by the executive and to present a 
picture of its item and group hierarchy on the display. 
A typical discovery that a user might then make is 
that his program did indeed make a correct display 
structure, but since he erroneously calculated zero 
length for all lines, the display was properly blank. 
This operation need not disturb the user program 
which can resume with its own display restored after 
this analysis has been viewed. 

In order to facilitate the use of tablet input in user 
programs a public symbol recognition system has 
recently been created.I6 It consists of a basic recognition 
program controlled by individual feature dictionaries. 
A separate trainer program builds these feature diction
aries from sample symbols drawn on the console tablet. 
Each user can have his own individual style and indeed 
can have several dictionaries for different applications 
and change them at will. When invoking the recog
nition service, the name of the symbol dictionary to 
be used is passed as a parameter. Standard recognition 
techniques are used17 and the recognizer is not very 
sophisticated. In particular, the recognition scheme 
is stroke oriented and uses a grid of overlapping zones 
superinlposed on each stroke. The recognizer returns 
a code for the drawn synlbol as well as position and 
size information. This recognition system has been 
used in a number of applications including a tablet 
editor and programs for circuit design. Since APEX 
provides a push-down stack of virtual memories2 for 
the user's pseudo-computer, it is very simple to re
train and revise the feature dictionary in the middle 
of a job in case of trouble with a certain few symbols. 
The speed and accuracy of the recognizer are adequate 
for on-line program control applications, using up to 
a few dozen symbols. 

High-level methods for expressing scope output and 
console input operations have produced a great deal 
of display programming activity. The obvious ad
vantages over assembly coding of clarity, brevity, and 
fewer mistakes are' a strong incentive for users. The 
compiler-compiler system on TX-2 has made relatively 
easy the implementation and evolution of an extended 
high-level language based on ALGOL. The language, 
called LEAP (Language for Expressing Associative 
Procedures)lS has associative data structuring oper
ations, reserved procedure forms for display or input 
manipulation, and real time variables such as the 

clock time and tablet stylus coordinates. Direct means 
for invoking the symbol recognizer's services are 
even incorporated. A "Recognize" statement gets tl. 

symbol from the tablet just as a "Read" statement 
gets 9" symbol from the console keyboard. \Vriting 
interactive programs which use the display is straight
forward, and experimentation and modification can 
be rapid. 

Having LEAP available as a programming too I 
has facilitated the evolutionary development of appli
cation programs for graphical programming19 , data 
analysis, logic diagram input20 , and integrated circuit 
mask layout. The large8t effort has been on circuit 
mask programs.21 ,22, A circuit designer controls the 
mask layout program with freehand figures sketched 
on the Sylvania tablet. The computer recognizes his 
rough marks as commands to create, move, group, 
and delete various integrated circuit components. 
Once a circuit design is complete, output tapes fol' 
each of the mask levels required can be punched fol' 
later use by a precision pattern making machine. 
Individual variations among designers in drawing 
style are accommodated easily by the trainable recog
nizer. 

Another application has been an experimental ani
mation system.23 The animator first sketches the 
basic picture parts which ""ill appear in the film frames. 
He then sketches pictures of a different kind; pictures 
which define the dynamics of the film and which 
determine how the basic frame components will move 
and appear in the film. This animation system is 
an example of an application where the picture infor
mation can easily exceed the capacity of core memory 
and where the computing needed to calculate the 
picture from a more compact description exceeds real
time capabilities. To meet this kind of requirement, 
APEX allows the structured display files it has built 
to be saved in bulk storage as ordinary user files. 
When a user program presents such a file to the ex
ecutive for redisplay, a quick check is made of the file 
contents, and if the check is passed, the file is inunedi
ately displayed. If moderate to large size display 
files are used for such a purpose, they can be retrieved 
from bulk storage in considerably less time than is 
required to paint the display they represent, and a 
long, essentially continuous chain of pictures can be 
presented. Of course, in this sort of application the 
presence of other display users in the time-sharing 
system will disturb the continuity of the picture 
sequence. 

I t will be noted that most of the graphics appli
cation discussed here have been in sub-systems created 
for a variety of purposes within the APEX environment. 



By using the graphic capability in unforeseen as well 
as obvious ways the creators of these sub-systems have 
made the use of on-line displays the accepted operating 
nonn. 

Critique 

Success in interactive computer graphics requires 
first that a programmer have access to convenient 
programming tools for making interactive graphical 
programs, and second that these programs ~ well 
in their operating environment. 

In the first of these areas, the progranuning tools 
available on TX-2 are a mixed lot. At the level of 
assembly code, the supervisor calls necessary to use 
the graphic capabilities lack a convenient symbolic 
notation. The high-level display and input constructs 
available in LEAP have been a success largely because 
the details of the supervisor calls are hidden from the 
programmer behind a consistent symbolism. The 
well-known lesson relearned again is that notation 
is very important, and that a clear symbolic means 
for progranuning display and input actions is necessary. 
The flexibility of a compiler-compiler system has 
been important in the trjal and error development 
of high-level programming tools for graphics. The 
LEAP compiler has been modified continually as 
programmers discovered useful constructs for inter
active programming. As a result of this unstructured 
growth, however, LEAP is not a fonnally neat language, 
and its run-time routines impose a large load on the 
time-sharing system. 

The particular display structure concepts imple
mented in APEX have been generally satisfactory. 
For some applications (the text editor for example) 
the structure is unnecessarily complex, and access to 
it is too restricted. A simple linear buffer shared by 
user and supervisor can lead to a more efficient design 
in such an application. This scheme, which allows the 
user program to structure the buffer space to suit 
its requirements, works wel1 for storage displays but 
poses a problem for refreshed displays. If the user 
program is allowed to modify the display infonnation 
while the display is actually being painted, undesirable 
artifacts are likely to appear on the scope. The simple 
expedient of stopping the refreshing action while 
making the changes will produce serious interruptions 
in display continuity in the event the time-sharing 
scheduler switches users while the change is taking 
place. In the APEXsystem these problems are over
come by having the supervisor build and maintain 
the structured display files, and considerable com
plexity in both the structures and the supervisor 
routines has resulted from the requirement of main-

Graphics in Time=S~~ring 

taining display continuity while changes were being 
effected. Our conclusion here is that while highly 
structured displays supported by a complex supervisor 
system are well suited to many applications involving 
highly dynamic interactive graphics, simple un
structured displays are adequate for much of the work 
that a system such as APEX supports, and a well 
balanced system should provide both services. 

The criterion that interactive graphical programs 
run well in their operating environment presents 
many problems. The APEX scheduler is designed to 
provide very fast response to user interactions by 
giving control to a user program within milliseconds 
following an interrupt regardless of the program's 
present position in the scheduling queue. However, 
if the responding program and the data files it requires 
are not in core memory, swapping must occur, and 
with current secondary memory hardware this means 
that the user program will not actually begin to rUll 
for a time varying from several hundred milliseconds 
to several seconds depending on the size of swap re
quired. An obvious but expensive solution for us is 
to add faster secondary memory hardware to the 
system. In the absence of that hardware, the only 
remaining course of action is to keep the responding 
programs and data in memory. APEX allows a user 
program to specify that as much as two thousand 
words of program and/or data be kept frozen in core 
memory. By judicious use of this capability the scope 
editor achieves very good response even under extreme 
time-sharing load conditions. Unfortunately, many 
interactive programs, particularly those built using' 
the higher 'level language facilities, are too large to 
be operated in frozen core. Their users either struggle 
along with inadequate response, or if the application 
is sufficiently important, achieve core residency by 
administratively eliminating other usage of the time
sharing system while they operate. Our conclusion 
here is that further work on the higher level languages 
is needed, so that the conceptual advantages they 
offer can be obtained with manageable core load and 
computer time requirements. Since it is unlikely that 
the overall run-time programs could be kept sufficiently 
small to remain frozen in core memory, it becomes 
desirable to give the end-use programmer (as opposed 
to the compiler writer) more control over the run-time 
system. He might then be able to partition his run
time program to take advantage of the frozen core 
capability. 

The perfonnance of a graphics system depends 
heavily on the performance of the display hardware. 
As one might expect, running five displays from one 
generator results in heavy flicker in the worst cases. 



634 Spring Joint Computer Conference, 1969 

The display generator itself has been modified several 
times and ~eplaced once to obtain speed improvements. 
In the present configuration performance is limited 
by the deflection circuitry in the display scopes them
selves. Good quality lines are drawn at a rate of 25 
psec per inch. Character generator speed of 80 psec per 
character is set for storage display use since the charac
ter generator speed is not under program control. 
Refresh rates slower than one frame per second per 
display have been encountered. A significant benefit 
has been obtained by using a P12 phosphor instead of 
the more usual P7. 'Vithout light pens, the need for 
the P7's bright blue flash has been eliminated; and 
the yellow P12 provides a much more restful picture. 
One conclusion is that in many cases a badly flickering 
display is more useful than none at all. For small 
text editing jobs in particular, the scopes are used 
universally in preference to a keyboard editor no 
matter how bad the flicker. The flckier experienced 
by a user with a modest picture could be improved 
at the expense of a user with a large complex picture 
if the display generator could be shared on an equal
time rather than an equal-number-of-frames basis. 
Equal-time sharing of the generator requires that its 
internal state be accessible to the supervisor program, 
a feature lacking in the present hardware. 

Buffering the five displays out of main core and 
having the main frame handle all console input inter
rupts exacts a penalty in overhead. Measurements 
show that display refreshing can consume up to 15 
percent of the available memory cycles, although 
typical displays require well under 10 percent. The 
overhead depends heavily upon the use of structuring in 
the displays. Because the channel hardware is not 
capable of handling the closed sub-routine structure 
used in some applications, main frame attention and 
extra core cycles are required to effect subroutining. 
Channel hardware to perform this task is now com
mercially available. The use of a single time-shared 
generator makes the refreshing overhead independent 
of the number of displays being refreshed. There is no 
such advantage working in favor of tables each of 
which requires main frame attention at 5 millisecond 
intervals. Tracking of tablet position with a moving 
dot on the scope costs 5 percent in overhead for each 
tablet. Inking, the display and buffering of a stylus 
track, boosts the overhead momentariiy. Clearly, if 
many tablets were to be supported, the system would 
require some peripheral processing to keep the overhead 
within reason. Display and tablet overhead have little 
effect on response time, which is dominated by swapping 
considerations, but the slowdown from memory inter-

ference can be seen in its effect on large computation 
jobs. 

A controversial aspect of the TX-2 graphics system 
design is its use of a hardware oriented format for 
display information. Besides the obvious disadvantage 
of causing hardware changes to reflect back into user 
programs when they, might otherwise be absorbed in 
supervi~or code, this hardware dependence causes a 
conceptually unnecessary translation to be made 
when a remote display or another computer in a 
network is the ultimate receiver of the display infor
mation. If the display format were restricted to a 
hardware independent format such as is used by a 
high level language like LEAP, it might be pOSSIble 
to avoid any translation for remote transmission. An 
advantage of a hardware-oriented format in an experi
mental system like TX-2 is that the mmr programmer 
can immediately make use of any new hardware 
features as soon as they are made available. If he is 
restricted to a hardware-independent format he will 
have to wait for some system programmer to complete 
the necessary translation changes, or worse, wait for 
some committee to decide on how the existing format is 
to be extended to encompass the new feature. Our 
conclusion is that systems intended to support develop
mental work in computer graphics should provide for 
both kinds of formats with translation as necessary. We 
would like to think that it may one day be feasible for 
hardware to be designed which would directly accept 
display information in an optimum hardware-inde
pendent format. 

Our experience with the 338 remote display console 
indicates a problem of major importance in future 
system design. Our choice of interfacing the remote 
console at the level of APEX supervisor calls had the 
advantage of lImiting responsibility to a few people 
concerned with the supervisor program. It was un
necessary for the writers of sub-system programs such 
as editors and compilers to be concerned with the 
nature of the console they were serving. This choice 
made major portions of the TX-2 software system 
available to the remote console. Unfortunately, many 
of these programs do not run well on the remote 
console, indicating a miSmatch between system inter
face and communications requirements. For example, 
the text editor replaces the entire visible page of text 
in the display structure whenever the cursor is moved 
or a change is made. This action is almost instantaneous 
on a local console but may take several seconds on 
the remote console because of the time required to 
transmit the new page over the phone line. Clearly, 
there are many solutions to this particular problem, 



but they all involve taking into account the problems 
of remote usage at an earlier point in the design of 
basic sub-system services. The entire editing job 
could be transferred to the remote station if an appropri
ate partitioning place in the overall system could be 
identified. For networks of time-shared computers to 
flourish, programs must be written from inception 
with network partitions in mind even though the 
initial usage will be local. The programming tools 
available must encompass network concepts so that 
new programs will be network compatible as a matter 
of course. The alternative of patching programs after 
the fact for network usage is inefficient, and considering 
human nature, probably unworkable. 

CONCLUSIONS 

The time-shared use of displays in APEX has been 
satisfactory in many respects. Much productive work 
has been assisted by the use of the scope text editor 
and by the graphic display of data. The capability for 
experimentation with graphical programs provided 
by the high-level programming tools has permitted 
the rapid evolution of application programs. 

Creating useful interactive graphical programs can 
be a long, difficult task. One difficulty is that the end 
user often does not understand his application area 
in sufficient detail to predetermine a satisfactory mode 
of console communication to and from the computer. 
Trial and error development may be the only feasible 
course, providing that the application programs can 
be created and changed easily. The TX-2 environment 
has provided a significant capability for interactive 
program development and experimentation. 

The most critical problem area remaining in general 
is that of program partitioning. For reasons of response, 
economics, and networking among others, a trend 
toward multi-computer application programs is dis
cernible. These large programs with many pieces must 
be created and modified with reasonable effort, and 
documented interface information must be generated 
as a byproduct of program development. Programming 
language constructs and tools for dealing with multi
computer environments are needed. Operating systems 
must incorporate appropriate I/O concepts and permit 
conventions for easy linkage to programs operating 
in remote and different computers. 

ACKNOWLEDGMENT 

The authors wish to recognize the contributions of 
the many people who have participated in developing 
and using the APEX system on TX-2. 

Graphics in Time-Sharing 635 

REFEREXCES 

1 W A CLARK et 801 
The Lincoln TX -2 computer 
Proc Western J C C February 1957 

2 J W FORGIE 
A time- and memory-sharing execu,tive program for 
qu,ick-response on-line applications 
Proc F J C C 1965 

3 I E SUTHERLAND 
SKETCHPAD: a man-machine graphical commu,nication 
system 
Proc S J C C 1963 

4 T E JOHNSON 
SKETCHPAD III: a computer program for drawing in 
three di'mensions 
Proc S J C C 1963 

5 J I RAFFEL et 801 
A. progress report on large capacity magnetic film memory 
development 
Proc S J C C 1968 

6 T E JOHNSON 
Analog generator for real-time display of cu,rves 
MIT Lincoln Laboratory Technical Report X 0 398 
July 1965 

7 L G ROBERTS 
Conic display generator wing mu,ltiplying digital-analog 
converters 
IEEE Trans on Elec Computers EC-16 June 1967 

8 H BLATT 
Conic display generator u,sing mu,ltiplying digilal-analog 
decoders 
Proc F J C C 1967 

9 M R DAVIS T 0 ELLIS 
The RAND tablet: a man-machine commu,nication device 
Proc F J C C 1964 

10 J F TEIXERA R P SALLE~ 
The Sylvania data tablet 
Proc S J C C 1968 

11 K H KONKLE 
An analog comparator as a psendo-light pen for computer 
displays 
T IEEE on Computers C-17 January 1968 

12 W H NINKE 
Graphic l-a remote graphical display console system 
Proc F J C C 1965 

13 A N STOWE R A WIESE X D B YNTEMA 
J W FORGIE 
The Lincoln reckoner: an operation-oriented on-line facility 
with distributed control 
Proc F J C C 1966 

14 L F MONDSHEIN 
V IT AL compiler-compiler system reference manual 
MIT Lincoln Laboratory Technical Note 1967-12 
February 12 1967 

15 R M BAECKER 
Experiments in on-line graphical debu,gging: the interrogation 
of complex data stru,ctu,res 
Proc International Conference on System Sciences 
January 1968 

16 J E CURRY 
A tablet inpu,t facility for an interactive graphics system 
International Conference on Artificial Intelligence 
May 1969 (submitted) 



636 Spring Joint Computer Conference, 1969 

17 W TEITELMAN 
Real-time recognition of hand-drawn characters 
Proc F J C C 1964 

18 P D ROVNER J A FELDMAN 
The LEAP language and data structure 
IFIP Congress 1968 August 1968 

19 P D ROVNER D A HENDERSON JR 
On the implementation of AMBIT fG: a graphical 
programming language 
International Conference on Artificial Intelligence 
May 1969 (submitted) 

20 G D HORNBUCKLE R N SPANN 
Diagnosis of single gate failures in combinational circuits 

International Solid State Circuits Conference February 1969 
21 W R SUTHERLAND 

Computer assistance in the layout of integrated circuit masks 
IEEE International Convention Digest 1968 

22 D J ECKL K H KONKLE l.l1 R SUTHERLAND 
S A IDZIK R L LUCE 
A subnanosecond ECL circuit produced with the aid of 
computer graphics 
IEEE International Electron Devices Meeting October 
1968 

23 R M BAECKER 
Picture-driven animation 
Proc S J C C 1969 



Teaching heart function-One 
application of medical computer 
animation 

by ALLAN H. GOTT and BRUCE R. KUBERT 

The Aerospace Corporatio1t 
San Bernardino, California 

and 

ALLEN F. BOWYER and GEORGE W. NEVATT 

Lorna Linda University 
Lorna Linda, California 

INTRODUCTION 

Medicine has developed current methods of teaching 
heart function over several centuries. There have 
been few fundamental changes in these teaching tech
niques over the last several decades. The method 
of text study followed by laboratory activity is es

sentially the same for both undergraduate and medical 
school students. For the latter, a more comprehensive 
study of experimental animals is involved, and surgical 
procedures are observed on patients. Once in medical 
school, almost all teaching is by demonstration, with 
a very small number of students per instructor. 

This technique of demonstration and individual 
instruction limits the number of detailed phenomem 
which may be taught simultaneously, and the rate 
at which they may be presented. However, the complete 
description of heart function includes information 
of several types. The volume, configuration, and move
ment of chambers, valve operation, pressure and flow, 
electrical wavefonns, and heart sounds all yield mean
ingful information. Specialized instruments provide 
the cardiophysiologist with massive amounts of raw 
data relating to each characteristic. Such data are often 
subjective, and when many different types are brought 
together, are usually unintelligible to medical students, 
and in fact to practicing physicians without special 
training. Thus, a major task of heart researchers and 
medical educators is to devise methods to efficiently 
integrate and disseminate heart functlOn infonnation. 
As the volume of heart physiology and research data 

637 

increases, there is a mounting need to present these 
complex interrelationships clearly and simply. This 
paper is concerned with the application of computer 
techniques to teaching heart function. 

The short history of digital computing has seen 
many pertinent developments. The 10 year history 
of computer driven plotting equipment and software 
is of direct interest in teaching the interrelationship 
of the several attributes of heart function. The initial 
application of computer driven plotters was directed 
towards static images, whether cathode ray tube or 
electromechanical plotter. Later, the effectiveness 
of programs and plotting equipment improved and 
production of multiple frames became economically 
feasible. Initial dynamic presentation applications 
were directed almost entirely to the hard sciences. 
Lately, a small percentage of applications have been 
developed for the soft and social sciences. 

The very recent history of programmed or computer 
aided instruction (CAl) also lends some insight as 
to how one can assist the teaching cardiologist. Current 
CAl practice labels a computer as anything from a 
simple sequencer to a large scale time shared system. 
Most visual teaching material has been prepared for 
conventional teaching methods. However, when based 
on properly organized material, learning results have 
consistently validated the concept of programmed 
instruction based on visual input by qualified teachers 
(teaching cardiophysiologists). 

The initiation of cooperative heart study activities 



638 Spring Joint Computer Conference, 1969 

between The Aerospace Corporation, and the Cardio
vascular Research Laboratory, Lorna Linda University 
School of Medicine, in the Spring of 1967 placed these 
disciplines in direct view of each other, and under 
circUTnstances which provided a continuing exposure 
to the latest developments in CAl. This study activity 
represents a cooperative effort by both organizations 
to determine whether the capabilities of the respective 
disciplines can be combined to provide both improved 
methods for teaching heart function, and to alleviate 
demands placed on the time of the over-burdened 
teaching cardiophysiologist. 

Initial static image production 

C.oncept 

The Aerospace Corporation has supported perspec
tive computer graphics investigations from company 
funds since 1964. On initiation of this cooperative heart 
study, it immediately became apparent that these 
capabilities should support some research applications 
in visual portrayal of cardiac phenomena. A pictorial 
representation of the exterior surface of the human 
heart and great vessels was selected, both as a first 
experiment, and as an application suitable for devel
oping basic techniques and providing broad experience. 
Following the terminology of Fetter,1 there was no 
formal aims definition other than to achieve a reason
ably satisfactory static image with hidden lines re
moved, and there was no overall communications 
design. 

Specimen preparation and film data recording 

Successful data transcription required an innovative 
approach based on the unusual application of standard 
techniques.2 The primary anatomic data was obtained 
from a post mortem heart; a series of 6 post mortem 
hearts was used to develop overall data transcription 
techniques. The particular heart serving as the final 
model was free from congenital or acquired heart 
disease. 

Each blood vessel leading to or from the heart was 
cut perpendicular to its long axis at approximately 
2 cm. from its junction with the heart chambers. The 
specimen was washed completely free of clots and 
inspected for evidence of structural abnormality. 
All heart chambers were filled with small pieces of 
plastic foam nearly transparent with respect to diag
nostic x-ray wavelengths. This foam distended, the 
chambers so that the heart resembled its relaxed (di
astolic) configuration. The specimen was next posi
tioned in a specially fabricated square plexiglass moun-

ting container 10 cm. on a side, and fitted with two 
parallel 10 cm. registration pins in diagonal corners 
1.0 cm. from each edge, as illustrated in Figure 1-
Post Mortem Heart Specimen. The container was 
open on the top and front surfaces to facilitate attaching 
heart suspension threads to mounting holes bored 
in each surface of the container. Once firmly in the 
container, the heart was ready for x-ray photography 
to record detailed anatomic information. 

The specimen and mounting container were placed 
in the beam of an x-ray polytome shown in Figure 
2--X-Ray Poly tome, which records x-ray images at 
pre-selected vertical intervals. This was achieved by 
synchronizing the opposite motions of the polytome 
x-ray tube and film holder, so that only a narrow plane 
perpendicular to x-ray tube centrum/x-ray film axis 
remained in focus. The apparatus was then adjusted 
to produce x-ray pictures of a series of these planes 
at 5.0 mm intervals from the upper to lower surfaces 
of the specimen and container. The equipment then 
produced from the heart specimen a series of x-ray 
pictures depicting chamber walls, the relative position 

Figure 1-Post mortem heart specimen 



Figure 2-X-ray polytome 

of one heart chamber to another, and registration 
pin images for picture orientation. 

Data transcription 

The polytome pictures or x-ray negatives are ex
ceptionally "noisy" because of poor edge definition 
and emulsion noise due to x-ray scatter, which cause 
all but limited details to be out of focus. Thus, the next 
step was for the noise due to the above sources to be 
"filtered" by subjective exercise of the physicians' 
past experience during examination of each negative 
in the labeled sequence. This was accomplished by 
applying his knowledge of heart structure during the 
process of "edge tracing" to convert very noisy section 
data to "filtered" clean sections clearly depicting the 
outlines of heart chamber surfaces, heart valves, and 
chamber wall thickness. 

Each individual x-ray negative was positioned on 
a light table, and a transparent sheet of mylar was 
appropriately registered. Mylar registration was of 
particular. importance, in order that level to level 
relative alignment could be maintained when the 
outlines were transcribed to polar coordinate fonn. 
The heart chamber boundaries, external heart wall, 
and registration marks were traced by the physician 
onto the mylar overlay with an india ink pen. A 
resentative tracing is shown in Figure 3-Mylar Sec
tion Outline. Each mylar overlay was coded relative 
to its associated x-ray negative, so that the sequence 
was maintained in proper order. The anatomic data 
(surfaces of the heart) was thus transfonned to outline 
fonn, and transferred to a media which would facilitate 
its specification in polar coordinate form. during the 

Teaching Heart Function 639 

Figure 3-Mylar section outline 

next step in the data transcription process. Using 
the registration marks for alignment, the set of mylar 
tracing edge outlines could be seen to provide a three
dimensional reconstruction of the heart. That is to 
say, they formed a Serial Heart Atlas. A reconstruction 
from selected Atlas sections is pictorially represented 
in Figure 4-Mylar Heart Surface Reconstruction. 

It is of substantial importance to note that this 
data transcription process was achieved without damag
ing the original heart specimen. Medical ethics were 
maintained, new research data were developed, and 
the specimen was returned to the Pathology Labora-

Figure 4-Mylar heart surface reconstruction 



640 Spring Joint Computer Conference, 1969 

tory where the remainder of the routine autopsy was 
carried out. Also, the tissue specimens obtained during 
further medical analysis substantiated the fact that 
the post mortem heart utilized was free from structural 
disease not only on the gross, but also on the Inicro
scopic level. 

The Atlas of mylar tracings was then leaved through 
rapidly several times to obtain a qualitative impres
sion as to which vertical line would best serve as an 
axis for aligning the sequence of polar coordinate plots. 
A line connecting the center of the pulmonary artery 
and the apex or bottom tip of the heart was selected 
for this purpose. Each coded piece of mylar was then 
taken in turn from the sequence and mounted on a 
light table. A sheet of polar coordinate paper was then 
registered in an appropriate position relative to pul
monary artery/apex line and the mylar registration 
marks. Thus, each "non-destructive slice" from the 
specimen, as represented by a unique mylar edge out
line sheet, was oriented in orthogonal 3-space by its 
z value (on the axis formed by the origin of the several 
polar coordinate systems) and by maintaining within 
each mylar plane a constant relationship between 
8 = 0° and the specimen box registration pins. 

The first level selected was at the bottom tip or 
apex of the heart, and sequential levels were at 0.5 cm. 
increments until the top of the pulmonary artery 
was reached. Outlines for the main body of the heart 
were transferred to polar coordinate paper oriented 
about the pulmonary artery/apex axis. When the great 
vessels began to appear at the top of the heart, the 
multiple surface capability of the perspective plot 
package was utilized. The pulmonary artery edge 
outlines were transferred as a separate surface, but 
with a base level equal to the z value of the top surface 
of the heart and zero offset relative to the pulmonary 
artery/apex axis. The aorta, superior vena cava, and 
pulmonary veins were each treated in a similar fashi on, 
except that appropriate x, y offset coordinates were 
specified relative to the pulmonary artery. At this 
point, data transcription was essentially complete. 
It remained to arrange the data in that format most 
convenient for processing by the perspective package 
driver. 

Perspective plot program 

The operating program used for initial efforts imple
mented the algorithms described in "The Perspective 
Representation of Functions of Two Variables" by 
Kubert, Szabo, and Guiliari.3 Basically, the function 
to be plotted, (f) (x, y), is given in terms of a set of 
rectangular coordinates (x, y, z) where z = f (x, y). 

As in the present case, non-rectangular inputs may be 
utilized; they are processed internally into rectangular 
values. Visibility of a rectangular surface formed by 
evaluating the function of X·i, Yi; is developed by fOrrPing 
a grid connecting all equal values of x and all equal 
values of y. For non-rectangular point arrays, a grid 
is formed, and points connected for all equal values 
of z and all equal values of O. Standard trigonometric 
methods are followed for selecting a viewing point 
,-.nd projecting the grid structure thus formed to a 
desired projection plane. The initial version of the pro
gram applied visibility test criteria between each 
point and any other points in the array near the line 
of sight. If more than one array (surface) is present, 
the tests were applied along the line of sight in each 
additional array. After completing visibility testing; 
the grid structure identified earlier was formed by 
connecting all visible points. This entire process is 
as illustrated in Figure 5-Heart Grid Projection, 
which depicts the specimen, grid overlay viewing 
point, and project on plane and image. 

Limited core availability of the IBM 7094-II con
strained array size. Thus, "square" arrays of function 
evaluation points were utilized wherever possible. 
These factors were taken into account when selecting 
the location line for parting radii for a numerical dis
section by animation experiment, and also when se
lecting the number and orientation of radii to be used 
in specifying each divided specimen thus obtained. 
Thus, each polar coordinate level was represented by 
a z value, Oorigin, ~O, number of radii, and p value 
list for the first section, and a similar set of parametws 

Figure 5-Heart grid projection 



for the second section. The external surfaces of the 
heart, and the external surfaces of each of the great 
vessels were then each divided into that number of 
subsections which would best satisfy the square array 
condition. These measures reduced the exterior sur
faces of the hem-t and great vessels to a collection of 
ordered polar coordinate points (p, 0, z) which were 
listed in an appropriate format and converted to a 
data deck. This method of representation resulted 
in 14 subsurfac.es and 780 mesh points. 

Initial results 

The first heart images were obtained during July
August '67 and required 45 minutes of IBM 7094-
II time, later reduced to 20 minutes. Examples of these 
experiments were plotted on an IBM 1627 (CaIComp) 
and are illustrated in Figure 6-Closed Heart, and 
Figure 7-Numerically Dissected Heart. In general, 
the plot routine performed as expected, and provided 
useful imagery even though minor anomalies resulted 
from the visibility algorithm and the data transcrip
tion process. At times, a normally invisible line would 
be seen at the tip and would result in spurious lines 
being drawn until it crossed the next boundary. The 
data transcription process did not provide complete 
closure between the bases of the several great vessels 
at the top of the heart, and the resulting gaps allowed 
portions of the inside of the heart to become visible. 
However, the results were sufficiently representative 
of heart structure to establish the future usefulness 

Figure 6--Closed heart 

Teaching Heart Function 641 

Figure 7 -N umerically dissected heart 

of computer animation, provided some improvements 
could be made in overall perspective plot program 
computing time. A continuing liaison effort was initi
ated between the Cooperative Heart Study and the 
Aerospace computer graphics research activities to 
both observe current progress and be well aware of 
any impending developments which might result in 
more efficient image computation. Also, additional 
activity was initiated to eliminate data transcription 
noise and obtain a numerical description of a smooth 
surface heart. Finally, planning was undertaken for 
production plotting on the Waveform Display I An
alyzer, a high speed, interactive, precision film scannerl 
recorder having a pin-registered 35 mm film transport. 

Improved image computation time 

During the latter part of 1967, the visibility test 
algorithm was substantially revised' in that the pro.. 
jection plane was divided into a rectangular grid, 
and object mesh points were projected into these pro
jection plane sub-elements. This enabled visibility 
testing to be limited only to the immediate ~ea of 
the projection plane sub-element, i.e., was the pro
jection plane sub-element occupied by another object 
mesh point and if so, which of the two competing 
mesh points was closest to the observer? This new 
algorithm resulted in roughly a geometric decrease 
in perspective program running time, since it was 
ne longer necessary to compare each object mesh 
point to all points where the line of sight crosses the 
grid in the object or objects under consideration. It 
yielded IBM 360/65 frame times of approximately 
20 sec. 

As before, occasional image anomalies became ap
parent as illustrated in Figure 8-Closed Heart-



642 Spring Joint Computer Conference, 1969 

Figure 8-Closed heart-new method 

N ew ~1ethod. Base gaps at the top of the heart still 
allow projection of small portions of the interior. How
ever, line drawing anomalies now resulted primarily 
from line segment closure errors between adjacent 
projection plane sub-elements. Limitations on the 
number of line segments allowed to occupy a projection 
plane sub-element, and on the amount of closure testing, 
would occasionally result in short erroneous connec
tions or "hanging stubs." Certain algorithm improve
ments were able to decrease this type of visual noise. 
At this time, it was postulated (and later substan
tiated) that dynamic motion would tend to effectively 
mask all but a small number of such anomalies, and 
that those remaining would be sufficiently obscured 
to not visibly detract from the overall image quality. 

Heart beat algorithm 

Basic movement data, 

Perspective plot package probable compute times 
and plot quality were now such as to justify develop
ment of a heart beat algorithm. Perturbation of the 
static heart surface image so that a dynamic (cine) 
image sequence would realistically depict the beating 
human heart from any viewing angle represented a 
significant challenge. A solution to this problem was 
achieved by a combination of data transcription 
techniques, computer graphics, innovative utilization 
of cardiac research instrumentation, and most im-

portantly, something that can be described no more 
explicitly than the creative interplay between expe
rience in cardiology and experience in data reduction. 

The starting point was the selection of an electro
cardiogram (EKG) from a healthy heart beating at 
a rate of 60 beats per minute. A bar plot depicting the 
cycle times of the right and left atria and right and 
left ventricles in the overall cardiac sequence was 
then constructed to the same time scale as the EKG. 
Chamber movement within these cycle times was 
derived from two primary sources: cineangiography 
and ultrasound. Cineangiography data is provided 
by high speed motion pictures obtained from x-ray / 
image amplifier pictures of the heart pumping biood 
containing blood-soluble radio-opaque contrast media. 
Such high speed x-ray motion pictures are then analyzed 
by a cardiologist for qualitative aspects and, by mea
suring distances on projected images for qualitative 
information. The measured dimensional changes are 
plotted against time. Ultrasonic techniques provide 
independent detennination of the same spatial data, 
i.e., variation of chamber dimensions withtime. Sound 
in the 2.5 mho range is generated at a prf of approxi
mately 1 kh. The transducer is placed on the chest 
over the heart, and the returns are displayed in a spatial
ly calibrated A-scope format, which allows direct 
observation and determination of dimensional changes. 
Spatial displacement determined according to these 
methods was then folded with the chamber cycle times 
in the overall cardiac sequence to produce the plot 
of volume vs. time for atria and ventricles shown in 
Figure 9-Heart Chamber Volume Sequences. 

Chamber static and dynamic mapping 

Conversion of this two-dil11ensional SlLTIl...T...ary ex
pression to a perspective portrayal of three-dimensional 
distributed movement required mapping of the atrial 
and ventricular areas into the grid representing the 
external surface of the heart, and establishing appro
priate vectors for each point so mapped. Chamber area 
mapping was accomplished by. hand sketching out
lines on two static perspective plots. After valida
tion, the data were then mapped onto 80 column free 
form coding sheets. Map resolution was increased by 
assuming a variation in acceleration and magnitude 
of distance moved between the center and edge of a 
chamber area, with the central region having the high
est acceleration and the edge the least. Thus, each 
external heart surface grid point was assigned a cham
ber and type designation, and a multiplier was assigned 
to each type and applied as appropriate. Specification 
of direction, acceleration, and magnitude for grid 



100 

75 
RIGHT ATRIUM 

50 

25 

0 .. -----------------------------------100 I 
15 

RIGHT VENTRICLE 

I 75 

50 

LEFT ATRIUM 

25 

0 .... --------________________________ _ 

100----

75 
LEFT VENTRICLE 

50 

2S 

0 .... ---------------------------------o 2 4 6 8 10 12 14 16 18 20 22 24 

FRAME ...at 

Figure 9-Heart chamber volume sequences 

point movement was simplified by allowing only two
dimensional variation. In particular, this variation 
was between the grid point and the polar coordinate 
origin, or, along p. Thus, for any particular time in the 
overall cardiac cycle, the appropriate displacement 
values for the four chambers were picked, and then 
folded with the appropriate type multiplier, depending 
on whether the grid point under consideration was 
in the center, mid region, or edge, of the chamber 
under consideration. 

Generalized motion algorithm 

Basic surface description method 

Although not immediately obvious, the methodology 
used in describing the heart surface and heart motion 
is quite representative of a more generalized capa
bility. A variety of data transcription techniques may 
be used, as long as they result in a systematic descrip
tion of the surface in orthogonal 3-space. The present 

Teaching Heart Function 643 

heart technique of displaced polar coordinate sections 
provides satisfactory results. Function evaluation at 
specified intervals also provides usable data. Isometric 
drawing data can be transcribed so as to provide the 
basis for logically correct object surface descriptions. 
In each of these representative data transcription 
methods, as well as other similar ones, almost any 
data transcription or data generation method will 
work, as long as it may be represented by some valid 
algorithm. 

The input data are then processed by a driver to create 
a properly organized grid structure (Px, '" z) data set. 

Basic motion description method 

Computer animation depends upon systematic per
turbation of a basic logical entity resulting from data 
transcription/driver output. The systematic pertur
bation may result from either analytical function 
evaluation or from empirically derived data. Heart 
motion was empirically determined by measuring 
spatial displacement through ultrasonic pulse displace
ment with time, and direct measurement from cinean
giography. Another logically similar method originated 
by Fetter is based on transcription of landmark (e.g., 
shoulder, elbow, wrist) movement from the photo
graphs of Muybridge.5 Identical methodology may 
be applied to other dynamic inanimate phenomena 
not conveniently expressed by analytical notation. 
In each of these cases, similarity to surface description 
methods exist, in that a driver is used to assemble the 
basic landmark movement in orthogonal 3-space, and 
also interpolate as required for mapping into the object 
surface description and for perturbation at the selected 
framing rate. 

Motion animation 

Availability of an object surface description in the 
form (P x, y, z), and motion specification in the form 
of properly interpolated empirical description of land
mark position variation with time, allows computer 
animation to proceed. If the object surface description 
and landmark motion drivers are written in generalized 
form, they may be coupled to the animation driver, and 
animation may be accomplished at any desired rate. 
If not, all motion perturbation must be related to 
silent or sound projection rates on an a priori basis. 

It should he noted that all of the preceding GEX
ERALIZED ::\fOTION ALGORITH::\I discussion is 
concerned solely with perturbation aspects of computer 
animation. Perspective, hidden line removal, list pro
cessing organization for "save" procedures, etc., are 
separate subjects. 



644 Spring Joint Computer Conference, 1969 

Feasibility test film 

Validation of the algorithm was undertaken by 
selecting a non-rotating, beating view at a heart rate 
of 60 beats per minute. This parametric combination 
allowed a full heart beat cycle to be completed in one 
second. Thus, the number of plots was determined 
by the standard sound projection rate of 24 frames 
per second. The perspective plot package drivers, 
which now consisted of the heart surface formatter 
and perturbation algorithm, were set up for 24 plots. 
After computation, the plots were produced by an 
IBM 1627 (CaIComp) using india ink on white paper. 
The plotting time of several minutes per image (frame) 
was acceptable for only the shortest animation se
quences. For validation purposes, however, the availa
bility of a large, high contrast, hard copy image sup
ported easy visual error checking. The cyclical 
characteristic movement of a beating heart allowed 
efficient use of a single sequence, in that it minimized 
the amount of raw plotting required. Repeated (film) 
printing provided unlimited viewing time "to check 
all aspects of perturbation algorithm fidelity. The 
automatic scaling and centering algorithms within 
the perspective plot package were also evaluated for 
contributions to overall image quality. 

Inspection of the actual plots which were to serve 
as the basic animation celis immediately disclosed. 
excessive image centering movement. This required 
alteration of the centering algorithm for subsequent 
animation efforts and, in the validation case, frame
to-frame registration on the two vessels having maxi
mum displacement between each other, i.e., the pul
monary artery and superior vena cava, as the individual 
plots were cut and punched to standard animation 
cell format. Static and "flip" evaluation of the cell 
booklet indicated that an approximately correct por
trayal of a heart beat had been achieved. Finally, 
labeled overlays and titling were prepared on clear 
acetate. 

Cine footage was obtained by standard animation 
photography procedures. Double printing (2 sequen
tial exposures) of each frame supplied half-rate motion 
to allow longer times for dynamic error check observa
tion. Multiple sequences of standard single printing 
supplied footage for standard motion validation. 

Overall evaluation of the feasibiJity test fiInl disclosed 
that the basic perturbation algorithm was logically 
sound.6 The only motion anomalies resulted from 
two individual grid point mapping errors (out of 780), 
and a data transcription error in specifying right atrial 
movement. As expected, minor grid line direction 
plotting errors produced by the new visibility check 
algorithms were largely masked by the dynawic move-

ment. The simple 3 minute film was a happily unex
pected success of major significance. An algorithm 
had been developed for accurately expressing natural 
physiological motion in nu..T..erical form, thus opening 
the door to high speed computing synthesis of natural 
motion by computer animation. 

Experimental teaching film 

Communication design 

During the 6 to 8 weeks ~hat were required to develop 
and validate the perturbation algorithm, communi
cation design had been occurring. A script outline 
had been developed for a film to disclose technique 
capabilities and education possibilities to cardiologists 
and physicians. Animation requirements involved 
illustrating dynamic portrayal of heart surface smooth
ing, 3600 rotation, tipping about the vertical axis 
at classical viewing positions, and computer synthe
sized dissection to allow viewing of interior heart struc
ture. As in all manual or computer animation activities, 
each scene outline was reviewed to reduce to a minimum 
the number of raw stock animation frames. At this 
point, a highly detailed animation script was prepared, 
which completely specified all data necessary to com
pute each individual frame of raw stock animation. 
This information was also required to enable correct 
sequencing of raw stock animation in assembling the 
complete scenes. 

Production computer animation 

Computer run output was produced on tape suitable 
for driving an IBM 1627 (CaIComp) incremental 
plotter. 'This resulted from the fact that the Aerospace 
(San Bernardino Operations) Mathematics and Com
putation Center has an extensive investment in plotting 
systems and applications programs, and production 
experience historically traceable to the incremental 
plotting systems programs developed at STL by K. G. 
Tomikawa and J. R. Blackmer. This type of output, 
while not of optimum efficiency, was indeed satisfactory, 
and had the substantial advantage of providing a use
ful run validation mechanism through selected hard 
copy plots. 

The script outline required several thousand frames 
of computer animation. The IBM 1627 (CaIComp) 
incremental plotter tapes were converted to a format 
suitable for driving the Waveform Display/Analyzer 
(WD/A) , a high speed, computer driven (IBM 1800), 
interactive, precision, film scanner/recorder.7 ,8 Of 
particular importance, this system possessed both 
a highly accurate pin-registered 35mm camera, and 



a real-time interactive console for monitoring plot 
production. The translation program provides: (a) 
simultaneous film recording, and a tape of WD / A 
instructions, or (b) a tape of WD/ A instructions only. 
The first capability is normally used for film image 
validation of raw animation stock frames. The second 
is used for high speed plotting at essentially tape read 
speed, when raw stock frames are assembled into scene 
sequences. 

It is interesting to note that the second capability 
was immediately developed after the first raw' stock 
frames were produced. Selected frames had been vali
dated on the IBM 1627 (CalComp) plotter, the tapes 
translated and a 35mm film master exposed on the 
WD / A. Two days of desk effort plus two days of printer 
time were required to produce a script usable by an 
optical printer operator and for production of 16mm 
master footage. This immediately indicated the pref
erability of qsing standard tape-to-tape copy, i.e., 
tape to film copy methods. 

Approximately 2 weeks of elapsed junior program
mer time developed an IBM 1816 (typewriter) con
versational tape-to-film animation sequence assembler. 
A simple tape search program and capabilities for an 
elemental dialogue concerning titling and plot frame 
identity allowed the two days for script production 
and two days of effort for producing a 16mm master 
animation scene sequence to be reduced to approxi
mately 2%: hours WD / A plot time plus a straight 
35mm to 16mm reduction run. Thus, it was now possib1e 
to eliminate optical print script preparation time, 
and to provide the optical printing operator with a 
reduce and copy job, eliminating time consuming 
optical printer sequencing. 

Film tutorial 

During production of the animation footage, live 
action footage had been shot for the remainder of the 
script. Communication design had been based on an 
aims definition to provide an experimental film out
lining teaching capabilities which could be implemented 
with this new technique. The first version of the film 
was entitled "Heart l\!lotion by Computer Graphics".9 
It was a medically oriented tutorial which outlined 
the capabilities of digital computers, incremental and 
CRT plotters, computer graphics perspective plot 
programs, anatomic data acquisition techniques, basic 
animation, and examples of computer animation and 
teaching situations. A full 24 frame sequence depicting 
one complete beat is illustrated in Figure lo-Com
plete Heart Cycle. The film was directed toward medical 
students, post-graduate physicians and patients. 

Teaching Heart Function 645 

41·,·_-····;··· .. ' 

.~ 

4141 Ii
,,;;; 

,.. .' ( , . ' ... L" : .... ,"', 1 to' 

.~ _'. 1':':- : 
:.=---= ":--

~' .•. ~ "" 
41" 

;i'qt!i'~ 

. ~\\cllit 

4I,:g;'e' I \ t"_ 

.. 
\ -' ... "+-t 1-... ~ . . A __ • 

.::--.-1-

Figure 10-Complete heart cycle 

Initial teaching experience was obtained in a variety 
of situations: (a) laymen were shown the short feasi
bility film at an Aerospace open house, (b) the physician 
co-author used both the short feasibility film and the 
"Heart Motion by Computer Graphics" tutorial during 
his teaching activities at the Loma Linda University 
School of Medicine, and (c) both senior authors have 
made a variety of presentations to selected physician 
and engineering groups. 

Two significant reactions were obtained from this 
early teaching experience: (a) medical exposure estab
lished teaching potential, particularly when combined 
with simultaneous presentation of associated cardiac 
parameters, and (b) the medically oriented scenes 
and narration were not suitable for engineering or pro
gramming evaluation. Therefore, additional live action 
scenes were developed to emphasize data conversion 
and computer programming aspects of the problem. 



646 Spring Joint Computer Conference, 1969 

A second, engineering oriented film, "Teaching Heart 
Function by Computer Animation" was prepared.1o 

These two films have served to adequately present 
salient tecPJlicru and teaching factors to both types 
of audiences. 

Advantages and disadvantages 

The unique nature of this type of material has stimu
lated forward looking teaching physicians. Particularly, 
those with sufficient exposure to advanced instrumen
tation and computational methods to produce an 
appreciation of the substantial teaching advantages 
which could be provided by audio visual material 
based on computer animation technology. Such tech
nology enables the cardiac educator to readily develop 
any desired static or dynamic normal or diseased heart 
condition. A portrayal may be developed without wait
ing for the right type of cardiac condition to become 
available for photography through open heart surgery. 
Similarly, there is no need to place impossibly large ani
mation requirements upon the already overloaded medi
cal illustrator who normally is much more of an 
anatomically trained and highly skilled detail technician, 
rather than a proficient animator. High speed computa
t.ion allows the production of animation from any desired 
viewing· point with equal ease of illustration, once 
the basic data transcription has been accomplished. 
Of particular interest, is the fact that "numerical dis
section" techniques allow internal dynamic viewing 
of any "heart preparation" desired; this type of presen
tation cannot be accomplished by any means other 
than manual or computer animation. Computer anima
tion techniques also greatly facilitate the presentation 
of any desired combination of cardiac structure and 
&SSociated functiona.l a.ttributes. Thus, the teaching 
physician can, with a minimum of effort, direct the 
production of an incremental visua1 presentation of 
increasing complexity, and where required, increasing 
functional rate, all with appropriate audio on the sound 
track. 

Audio visual material does not have the personal 
contact of the live classroom and does not allow for 
the comprehensive stimulation of fast moving question
and-answer dialogue. However, well developed instruc
tional material of the type outlined in this paper can 
summarize and greatly condense the presentation of 
significant material from many hours of classroom and 
laboratory work into two half-hour fihns or tapes. 
It should be strongly emphasized that the techniques 
of computer animation are particularly adaptable to 
utilizing experience gained over the last few years from 
programmed and computer aided instruction. And, 
that such films could be used for audiences ranging 

in size from a single student or physician to a hundred 
or more at any time during the day or night. 

Current activity 

Current activity of this aspect of the Cooperative 
Heart Study is devoted to planning teaching system 
development requirements. Immediate effort concerns 
accomplishing the additional data transcription neces
sary to specify the atria, ventricles, and valves. Sub
sequent data transcription will provide that data in 
numerical form necessary for introducing electrocardio
graph plots, ultrasonic cardiograph plots, pressure, 
and flow. The last data transcription activities will 
be directed toward introducing visual presentation 
of heart sound data. 

Parallel activities concern additional computer 
graphics research for achieving perspective presentation 
without the grid structure, but retaining sufficient 
surface and edge detail to provide adequate visual 
cues. Similarly, the present perspective plot package 
driver is being evaluated to determine what changes 
would make it more usable for high volume production 
of animation. That is to say, what data and control 
information formats will allow minimum time require
ments for input deck preparation. 

Other medic9-1 investiga.tions are being devoted to 
outlining a catalog of required normal and diseased 
presentation and, in particular, the explicit content 
and sequence of these presentations. These medical 
teaching studies are also considering whether or not 
computer animation can best be applied to teaching 
heart function through group orientation or by in
dividual consoles. Finally, if individual consoles are 
to be used, should they be film or video tape oriented 
and, should they provide only an ordered presentation, 
or should they allow random sequences based on stu
dent response? 

Other possible applications 

Finally, some limited consideration is being given 
to the identification of needs, and the analysis of the 
probability of success for extending computer animation 
techniques to other medical fields such as pulmonary 
studies or teaching obstetrics. The generality of the 
algorithm for accurately expressing natural physio
logical motion in numerical form (as earlier indepen
dently conceived by Fetter and as outlin~d in this 
paper) provides for high speed computing synthesis 
of natural motion by computer animation, and thus 
allows realistic identification of solutions to such teach
ing problems. 



SUMMARY AND CONCLUSIONS 

The historical development of a computer animation 
technique for teaching heart function has been reviewed. 
Of particular importance, early planning activities 
were organized to be ready to take advantage of future 
solutions to clearly identified problems. 

The initial feasibility test film validated the pertur
bation (heart beat) algorithm. Most importantly, 
it established a basic algorithm for expres.s1ng natural 
physiological motion, thus allowing high speed com
puting synthesis of unlimited amounts of additional 
natural motion by computer animation. At this point, 
the aims definition, communication design, and ad
ditional data transcription and computer program
ming were undertaken for production volume auto
matic drawing (computer film recording) of heart 
animation. Live action footage was photographed to 
round out communication design requirements. The 
animation and live action footage were combined 
to produce an experimental heart function teaching 
film tutorial and an engineering oriented film explaining 
programming details. Medical and engineering accep~ 
tance accorded these films well appears to justify 
additional development. 

The generality of basic data transcription and anima
tion techniques allows direct application to other 
medical teaching activities outside the area of cardi
ology such as pulmonary studies, obstetrics, and other 
similar problems. 

ACKNOWLEDGMENT 

This study was supported by Aerospace (San Ber
nardino Operations) company funded research and 
NIH General Research Support Grants 05-94 and 
01-08 through Lorna Linda University Schoo] of Medi
cine. 

REFERENCES 

W A FETTER 
Computer graphics in communication 

Teaching Heart Function 64 7 

McGraw Hill Inc ~ew York 1965 
2 A F BOWYER 

Computer graphics simulation oJ the human heart 
Proc Society of Photo-optical Instrumentation .Engineer::; 
(SPIE) 13th annual Technical Symposium August 19-20 
1968 

3 B R KUBERT J SZABO S GIULIERI 
The perspective representation of functions of two variables 
ATR--66(S9319)-1 Aerospace Corporation June 1966 

4 B R KUBERT 
A. computer method for perspective representation of curves 
and surfaces 
Aerospace Corporation 1968 

5 W A FETTER 
The second man 
16mm sound film (1968-8 minute running time) 
Available from The Boeing Company Commercial Airplane 
Division Renton Washington 

6 A F BOWYER A H GOTT 
Heart motion by computer graphics 
16 mm silent motion picture film (1968-3 minute running 
time) . 
Available from the Cardiovascular Research Laboratory 
Loma Linda School of Medicine or Data Reduction 
Department Mathematics and Computation Center 
Aerospace Corporation (San Bernardino Operations) 

7 A H GOTT 
A data communication subsystem 
Proc Third ~ational Symposium Society for Information 
Display (SID) February 1964 

8AHGOTT 
An integrated film reading and display system 
Proc Seminar-in-depth Filmed Data and Computers 
Society of Photo-optical Instrumentation Engineers 
(SPIE) June 13-14 1966 

9 A F BOWYER A H GOTT 
Heart rrwtion by computer graphics 
16 mm sound motion picture film (1968-12 minute running 
time) 
Available from the Cardiovascular Research Laboratory 
Loma Linda School of Medicine or Data Reduction 
Department Mathematics and Computation Center 
Aerospace Corporation (San Bernardino Operations) 

10 A H GOTT A F BOWYER 
Teaching heart function by computer animation 
16 mm sound motion picture film (1968-15 minute running 
time) 
Available from the Data Reduction Department 
Mathematics and Computation Center Aerospace 
Corporation (San Bernardino Operations) or toe Cardirvas
cular Research Labortory Loma Linda School of Medicine 





The many roles of computing on the campus 

by THOl\1AS E. KURTZ 

Dartmouth College 
Hanover, New Hampshire 

INTRODUCTION 

At Dartmouth College the "computer" has become an 
essential component of the university community 
comparable to the library in importance, size, and 
diversity of application. While such a statement no 
longer raises eyebrows, in few other cases has the extent 
of the infusion of computing into the life of the univer
sity community been as great, or as painless, as at 
Dartmouth. The purpose of this paper is to report some 
of the many ways in which computing has been found 
useful in teaching and research at Dartmouth, and to 
claim that these almost revolutionary (though almost 
painless) developments were generated primarily by 
having freely available to all students and faculty a 
general purpose time-sharing system equipped with a 
simple and easy to learn language (BASIC), and a 
simple and friendly user interface. l 

A brief statement about Dartmouth College will 
establish the framework of these discussions. The 
College has an undergraduate student body numbering 
about 3,000 in residence. Of these, about one-fourth 
eventually major in one of the sciences. The other 
three-fourths elect a major subject from the humani
ties or social sciences. There are about 150 graduate 
students in Ph.D programs, mostly in the sciences. In 
addItion, the three associated schools of medicine, 
business, and engineering claim about 400 students of 
which more than half are MBA candidates in the busi
ness school. The combined. faculty and administrative 
staff of all the components of the university number 
about 600, of which about 250 are teaching faculty of 
the undergraduate college. In terms of computer usage 
during the school year 1967-1968, about one-half of 
the faculty members found it convenient or necessary 
to use computing in some form in their teaching or 
research. About two-thirds of the undergraduate 
students and three-fourths of the graduate students 

also found it necessary or desirable to employ com
puting in their studies. 

A historical note: The birth of the first Dartmouth 
Time-sharing System in the spring of 1964 and its 
subsequent influence on the campus and in the computer 
world at large is fairly well-known. Not too well known 
is the fact that the first publicly demonstrated remote 
use of a computer took place also at Dartmouth College. 
The time was September of 1940, the occasion was a fall 
meeting of the American Mathematical Society, and 
the computer was a relay calculator designed and 
constructed by Dr. George Stibitz of the Bell Telephone 
Laboratories. Located in New York City, it could 
perform operations on complex numbers. A teletype 
machine located on the Dartmouth campus was con
nected to the calculator via long-distance telephone 
lines. The calculations took up to 20 seconds to carry 
out, but one reporter was moved to refer to the" light
ning-like speed" of the machine. Another reporter 
wondered whether this machine would have any im
portant use. 'Vhile this historical event bears no direct 
relationship to the much later development of the 
Dartmouth Time-Sharing System, or to any other 
time-sharing system for that matter, it does point out 
that remote usage of a computer is not a new idea. 

The many forms of computing 

Instead of talking about the role of the computer in 
college education, we should be considering the multi
plicity of roles of the many types of computing services 
in that environment. For instance, Dr. Stibitz' machine 
could perform arithmetic operations on complex 
numbers and were highly useful to the Bell Labora
tories engineers who needed such calculations. But the 
device had no use outside this narrow area. In contrast, 
the modern digital computer can at one moment be a 
number-cruncher grinding out millions of numerical 

---------------------------------------- 649----------------------------------------



650 Spring Joint Computer Conference, 1969 

calculations. At another time it may be symbol manipu
lator requiring practically no arithmetic calculations. 
At still other times it may serve as a vehicle for manag
ing a programmed instructional sequence. Because the 
word "computing" does mean different things at 
different times and in different contexts, it may be 
useful to formally recognize several fundamentally 
different functional types of computing. Of special 
pertinence to the university community are the "com
puter services" named and briefly identified below: ... 

A-computing; the computing characterized typi
cally by administrative data processing where 
large amounts of input data undergo relatively 
simple transformations to reappear as large 
amounts of printed output. 

C-computing; calculational computing where the 
main purpose is to provide numerical calcu
lations. We may wish to further distinguish 
between small, medium, and large calculational 
requirements. The amounts of input and output 
are usually small. 

V -computing; the use of the computer as a vehicle 
to support CAl and similar activities. Here, 
interaction with the user is crucial while the 
input, calculational, and output requirements 
may all be small. 

I-computing; the types of service needed to support 
information systems such as are needed for 
management decision applications or library 
automation. The prime requirement here is the 
maintenance within the computer system of 
large files. 

T-computil1g; in an educational environment, one 
of the most important forms of computing is a 
"being taught" machine. The student will 
learn about a process by representing it as a 
program that works; that is, by "teaching" the 
computer how to carry out the process. The 
need here is for quick and easy interaction with 
the user, which implies simple command and 
programming languages. 

A general purpose service 

We could choose to define the term "general purpose 
computer" as one which can handle all of these different 
types of computing functions. In theory, specialized 
computing systems should be able to provide a single 
type of service more economically than can a general 
purpose system. It is a remarkable fact, however, that 
the Dartmouth Time-Sharing Service (DTSS) has been 

able to provide exceptional t;ervice to all 1 he above 
types of computing needs except for conventional 
administrative data processing and for the very large 
number-crunching problems. Conventional adminis
trative data processing requires efficient unit-record 
input and output, and almost none of the capabilities 
of the general purpose time-sharing system is needed or 
even useful to carry out this task. With numher
crunching, any computer that devotes a significant 
portion of itH time to this task must be considered in 
part a dedicated device, and perhapH even an integral 
part of the lahoratory apparatus it serves. 

For all other purposes listed, the general purpose 
time-sharing service as has been developed at Dart
mouth College is extremely effective. It provides a 
superb service (Le., response within 5 or 10 seconds) 
for all small computational jobs requiring, say, less 
than a second of computing time. (In fact, many 
student jobs require as little as 20 to 30 milliseconds of 
chargeable computer time.) If a new program is being 
created, there is no question that a general purpose 
time-sharing system greatly simplifies the debugging 
process. 

The Dartmouth System is proving extremely useful 
in supporting large data bases of several types. The 
programs for maintaining the files in the library auto
mation project become almost trivial in view of the 
general purpose services offered by DTSS. Very little 
additional programming effort has been needed to 
develop file-maintenance and user-interface routines. 

While it would seem that special purpose computers 
are needed to support CAl, at the present time a 
flexible general purpose system (such as DTSS) can be 
an extremely useful and economical vehicle for this 
work. Since the use of the system is so easy, the special 
systems programming involved is greatly simplified. 
And because the costs are spread over such a large base 
of users, the costs of the CAl usage and program de
velopment are very small. The Dartmouth System 
provides general file-handling capabilities and all of the 
other services needed to carry out this work, except 
possibly instantaneous or synchronous response, since 
the system as a whole is asynchronous. Thus, a signifi
cant amount of experimental work in CAl is being 
carried out without investing in a specialized CAl rig; 
this factor will remain important until much more 
research and experimentation suggest the most economi
cal form for CAl vehicles. 

Finally, as a medium in which a student can express 
algorithms, the general purpose time-sharing system is 
unmatched. The quick response and the ultra easy 
modification of files at a relatively low cost ($3 to $4 
per terminal hour) make possible the use of DTSS as a 



"being taught" machine on a large scale. It is this 
capability that is now being accepted as perhaps the 
most significant role of "computing" in education. 
The "computer" does not become impatient with slow 
students, nor does it discriminate between students; all 
students are treated alike, and the ultimate test is 
"getting the right answer." 

One important category of computer services are 
those required for the construction, debugging, and 
maintenance of the system itseif. DTSS provides file 
creation and editing services, on-line assembly service, 
and a sophisticated DDT (direct debugging technique) 
that permit systems programmers to work concurrently 
with the ordinary users. DTSS allows the changing of 
official systems (compilers, editors, etc.) "on the fly" 
from one of two very privileged control consoles. 
Since the systems maintenance is done during time
sharing itself, the system can be scheduled for longer 
periods of time; it doesn't have to be "taken down" 
more than once a week for software and file system 
maintenance. 2 . 

The Dartmouth system is the victim of the myth that 
it is devoted to a single language (BASIC). Actually, 
it has never been true that BASIC is the only language 
available, even with the original system developed in 
1964. By the fall of that year users had a choice between 
BASIC and ALG0L. Later, FORTRAN and LISP 
were added. The present DTSS offers on-line service in 
BASIC, F0RTRAN IV, and ALG0L 60, and has a 
number of simulators for other computers such as the 
PDP-9. Additional services are available through fore
ground initiated background. The fi1e system is random 
access and content-independent. A system of access 
controls permits multiple simultaneous use of a single 
fi1e. There is a full range of editing services for both 
line-numbered and non-line-numbered files. String 
processing can be done using either the on-line string 
editor or a system patterned on TRAC. 

The BASIC language provides for random access 
string and numerical fi1es as well as console-compatible 
"teletype" files. While no string operators as such are 
included, any string can be mapped into a vector of 
numerical character values for arbitrary manipulation 
(the mapping can go in either direction.) BASIC is 
designed to provide the services it offers in as efficient a 
way as possible, so that the same offerings in the context 
of another language might be more costly. 

One consequence of the development of DTSS has 
been the discovery that almost all computing jobs are 
small. Jobs which in other environments require days 
or weeks of programming time and dollars worth of 
computing can be done on the Dartmouth System for 
minutes or hours of programming time and a few cents 
worth of computing. For instance, statistical programs 

l\1a.i'1Y Roles of Computing on Ca.mpus 651 

can be very simple; they do not have to provide a many
paged comprehensive report because it.is so easy to 
modify the output on the spot to suit the individual 
purpose. The public library in the Dartmouth computer 
contains short and simple programs for dealing with 
multiple linear regression, analysis of variance, and 
other statistical applications. Another example: about 
ten years ago a very extensive Markov chain analysis 
program was prepared in F0RTRAN by a colleague. 
The same program written in BASIC is about 50 lines, 
or about one-fourth as long, partly because BASIC 
contains more sophisticated statements but mainly 
because elaborate output is simply not needed. 

Another important side effect: DTSS provides a 
means of greatly hastening the intellectual development 
of both faculty members and students. Because the 
computer is so easy to use, practically no one avoids it. 
Thus, we find many students teaching themselves about 
programming without the benefit of even a single 
formal lecture, and faculty members learning about 
statistics and other quantitative methods, again with
out a noticeable investment of their time. 

The geographical extent of DTSS 

While statistical data do not tell the whole story, 
some information of this type can be useful in establish
ing the magnitude of the infusion of computing into the 
life of the College. DTSS offers terminal service primari
ly to teletypes, including the standard Model 33 and 
35 as well as the slightly faster ?\10del 37. Any other 
terminal device that uses the ASCII code and standard 
teletype data rates can also be used. Plans call for an 
implementation of the IBM 2741 terminal, which can be 
done very easily. Several small plotting devices are 
used on the Dartmouth computer through telephone 
lines operating at slow data rates (110 BAUD), and 
software for two of these have been prepared in BASIC. 
The system also operates several character display 
units requiring a standard high-speed telephone line 
connection. The system will also be connected to a 
satellite computer (PDP-9) which operates a light pen 
oscilloscope display unit. Since all of these devices 
operate over telephone lines, they could in theory be 
located anywhere on the telephone system and still be 
controlled by DTSS. 

There are about 88 teletype terminals on the Dart
mouth campus, distributed as shown in Table 1. 

In addition to the on-campus teletypes, there are 
approximately 52 teletypes in schools and colleges in 
the New England area. ~lost of these teletype machines 
are operated full-time during the day and into the night 
except for the public secondary schools. Table II shows 
the distribution of these terminals. 



652 Spring Joint Computer Conference, 1969 

Tahle I-Teletype locations at Dartmouth 
(February 1969) 

Number of 
Location Terminals 

Kiewit Center Public TTY Room (Students) 16 
Tuck School of Business 11 
Thayer School of Engineering 8 
:Vledical School 4 
Departments of Arts and Sciences 20 
Computation Center "in-house" 19 
:\Iiscellaneous (In research projects, 

homes, etc.) 10 

Table II-Location of full-time teletypes in 
outside educational institutions 

Colleges 

Bates 
Bennington 

(February 1969) 

Berkshire Community 
Bowdoin 
Colby Junior 
l\1iddlebury 
l\Iount Holyoke 
New England 
Norwich University 
Vermont Technical Institute 
University of Vermont 
Windham 
High schools 
Private (12 schools) 
Public (10 schools) 

Number of 
Terminals 

2 
1 
2 
1 
1 
2 
5 
2 
1 
2 
1 
1 

16 
15 

At the present time, most of the teletypes operate 
through the regular Centrex switching network using 
103-type datasets. Some of the teletypes in the public 
teletype room are non-switched and use the much 
cheaper 1OO-type dataset. Most of the teletypes on the 
switching network can access the computer through 
single-digit dialing. Although most of the teletypes are 
switched, it is common for a department or an outside 
secondary school or college to dial in at 8 A.l\1. and 
remain on throughout the day.2 

The Dartmouth System is designed to handle between 

120 and 150 users simultaneously. The large3t number 
of simultaneous users actually achieved under norIilaI 
conditions was 113. (This occurred in January of 
1968 using the earlier Phase I system, and included a 
large number of commercial users under the joint-use 
arrangement with General Electric in effect at that 
time.) 

Although anything approaching an exact count of 
the number of users of the service is out of the question, 
an analysis of valid user numbers against which charges 
were made shows that over 8,000 "persons" used the 
Dartmouth computer during the period 1 October 
1967 to 30 June 1968. During one month alone (May 
1968) over 4,000 "persons" used the system. Table lIP 
shows a breakdown of these figures. There is a strong 
reason to believe that the number of different users is 
somewhat higher than 8,000 since it is common practice 
in some schools and colleges to reassign user numbers 
during the year. 

Table III -Size of user community 

Group 

Dartmouth 
Undergraduate 
Graduate 
Faculty 

Other colleges 
Secondary schools 
TOTAL 

Number of Different Users 
May Year (9 months) 
1968 1967-1968 

1 ,000 
250 
100 
550 

2,200 
4,100 

2,000 
450 
150 
950 

4,600 
8,150 

The average use level for the 140 teletypes located 
throughout Dartmouth and the participatip.g schools 
and colleges is one-half to two-thirds. 

Table IV shows more detailed usage statistics for one 
week during January of 1969. (The system in operation 
during the period shown was the earlier so-called Phase 
I system but with no GE commercial customers.) 
Slightly higher usage levels are experienced near the 
ends of the terms. 

In order to save somewhat on long-distance line 
charges, one experiment using a mUltiplexing apparatus 
has been carried out and another is in progress. The 
first experiment with Mt. Holyoke College shows that 
the communications and teletype costs for five terminals 
at that distance can be as low as two terminals using 
ordinary non-multiplexed service. Table V shows the 
approximate cost breakdowns. 



Table IV -Users logged on as a function of day 
and time of day. Period covered: 

27 January 1969 to 1 February 1969, 
8AMto6 PM. 

Time Mon Tue Wed Thur Fri Sat Average 

815 35 41 14 30 40 18 30 
915 54 66 49 49 56 45 53 

1015 52 76 67 63 62 58 63 
1115 60 75 73 71 80 66 71 
1215 56 61 67 39* 67 53 57 
1315 55 59 74 61 0* 74 65 
1415 72 59 78 77 0* 71 71 
1515 68 73 74 84 69 70 73 
1615 78 74 71 71 69 70 72 
1715 58 68 55 63 63 55 60 

average 58 65 62 60 63 58 61 
peak 78 74 78 84 80 74 

* effects of severe crashing during these periods. 

Table V-Approximate cost analysis showing 
economies using a simple multiplexing 

device over a distance of 
75 miles. 

Standard approach 
Teletype (model 33, rented) 
Datasets (2 103-type) 
Long line (75 miles at $3 per mile) 

Cost per teletype per month 

With M uUiplexer 
Multiplexer (purchased) 
Teletypes (5 purchased) 
Cost per month (3 year life) 
Maintenance (estimated) 
Long line 
Datasets (2202-type) 
Total 
Cost per teletype per month 

$45 
50 

225 
$320 

$9,000 
3,000 

$ 333 
150 
225 
100 

$ 818 
$ 165 

The development of time-sharing has greatly accele
rated the emergence of the service and utility nature of 
computing. A computation center is now less concerned 
with selling time on the computer than with providing 
computational services of all sorts, and its success 
depends on the quality of the services provided. Relia
bility and time availability are decisive in affecting the 

Many Roies of Computing on Campus 653 

way the users view the quality of the service. The 
Dartmouth Time-Sharing Service is scheduled to oper
ate from 8 A.M. to midnight, seven days per week. 
Being even two or three minutes late is viewed as a 
serious matter. 

In this early stage of development of such a system 
reliability is a problem. Not only do numerous software 
bugs still exist in all such systems, but air conditioning 
and power failures are noticeably frequent. It is unfortu
nately still meaningful to measure the reliability of 
systems in terms of the crash rate. We view a crash rate 
of once per day as barely acceptable, and a· crash rate 
of once a month as nearly ideal. 

Impact on teaching and research 

The most important result of the Dartmouth project 
is the uSe which the students and faculty have been 
making of it. Very early in its existence, students 
discovered that they could have the computer relieve 
the tedium of calculations required in homework exer
cises in many areas. Instructors then began asking 
students to solve a class of problems by writing a pro
gram. A large number of students have elected term 
projects and longer-range projects involving extensive 
use of the computer. Students in the laboratory sciences 
have discovered that the computer is extremely useful 
in reducing laboratory data, and in at least one case 
the teletype machine has been moved into the labo
ratory itself. On the lighter side, the students enjoy 
using the computer for fun things such as playing a 
simulated football game or demonstrating to their 
weekend dates their "prowess" on the computer. All 
these activities of course contribute to the liberal arts 
student's understanding of computing. The use by 
students is completely open. There is no attempt to 
control the uses they make of the computer; in fact, 
there is almost no way of finding out what they are 
doing except by walking into the teletype room and 
looking over their shoulders. 

The student is not charged directly for his computer 
use; the charges for all the students are sent as a single 
bill to the College at the end of the year. Budgetary 
control is thus not exercised upon the individual student 
user but is exercised informally on the group as a whole 
through such indirect means as the control of the 
number of teletype machines available to the students 
and the level of computer service available to them 
without special additional privileges having been 
granted. 

As with students, all faculty members who have a 
need for computing in their work have easily found 
their way into the system. In addition to the obvious 
research applications of the computer that 'are well 



654 Spring Joint Computer Conference, 1969 

known and common to all universities, additional 
services either provided for or made more easily obtain
able in a general purpose time-sharing system are many. 
For instance, the instructor can prepare last minute 
examples for use in his lecturing. He can check con
jectures concerning mathematical models or theorems. 
He can perform small calculations of temporary interest. 
::\1:any of these examples of aid to teaching and research 
have been very small, and as such do not warrant 
special publication. But it must be very personally 
satisfying to spend several minutes of terminal time to 
save perhaps several hours of precious research time. 
Such benefits become highly important when mUltiplied 
by the number of faculty users. 

Classical computational problems as statistical data 
reduction become much simpler on a general purpose 
time-sharing system. Unless the. data themselves are 
extremely extensive, the ordinary statistical calculations 
are very short and permit the user to test, sequentially, 
several conjectures about his data at a single sitting. 

Simulations in management gaming become routine 
in a general purpose time-sharing system. In one case, 
a marketing game was prepared several years ago for 
use in the School of Business Administration. (The 
programming was done by the professor's son, who was 
a high school student at the time.) Students in many 
c~urses are routinely assigned silllulation problems. It 
is now very simple in the elementary statistics course, 
for instance, to have the students investigate the 
behavior of the t-test under various kinds of non
normality. 

The availability of the Dartmouth Time-Sharing 
Service has spawned several local CAl projects. These 
have been carried out by the instructors actually teach
ing the courses involved. The progra.ms were designed 
to be useful in the course, were prepared and written 
entirely by the instructor, and were tested on the 
students while the course was in progress. One program 
teaches elementary facts about climatology in the 
beginning geography course. The instructor claims that 
the use of this baby CAl program saves him two weeks 
of lecture time and does the job more effectively than he 
had previously done it. Several very extensive language
drill programs have been prepared by two different 
members of the Spanish Department. Again, the pro
gramming and design was done entirely by the instruc
tors themselves. It should be emphasized that these are 
drill rather than teaching programs, but the cost for 
their creation and subsequent use by the students is 
extremely small. Of course, if you have a program that 
works for Spanish, it can be made very easily to work 
for German or French or any other language. These 
drill exercises on the computer are being expanded to 

include other languages. This work is being done in 
cooperation with instructors at Dartmouth and in the 
schools and colleges cooperating with us. 

Besides the role of the time-sharing service in indi
vidual teaching and research, it is an ideal mediunl upon 
which to develop information retrieval systems dealing 
with large data bases. The IMPRESS project4 is 
developing an easy-to-use interface through which 
social science faculty members and their students can 
experiment and interact with real data on a daily basis. 
Since the time .. sharing system provides most of the 
capabilities needed (file storage and maintenance, and 
terminal service), the additional systems programming 
effort needed is small. ~1:ore time was thus available to 
spend on the design of the interface and the optimal 
structuring of the data for student use. 

Planning and program budgeting are rapidly be
coming essential for institutional solvency. A program 
for making broad-brush budget projections based on a 
suitable model of the institution is almost trivial. 
Furthermore, it can be invoked during administrative 
staff meetings to quickly judge the long-range financial 
effect of plans under discussion. This application has 
been implemented in DTSS for several years. The 
model grows in complexity each year as the comptroller 
personally adds to his program. 

Another important application made more tractable 
by the presence of DTSS is library automation. Since 
the service already exists, the updating and maintaining 
of circulation and serials files can be done easily within 
existing capabilities. The major effort is thus spent in 
the design of special in-library devices to provide a 
quiet and dignified interface. The in-library devices 
connect to the central system over ordinary telephone 
lines. A local satellite computer drives the interface 
devices and provides what local editing and formatting 
is needed. 

Educational users 

A recent survey of the educational uses at Dart
mouth6 shows that approximately eighty courses (out 
of a total catalog of 600 courses) in fourteen depart
ments (out of 40) used the computer in the course work. 
The total number of student enrollments in these 
courses was 5,200 (out of a total yearly student-course 
enrollment of some 27,000.) 

The figures shown in Table VI reflect "official" 
computer use only and ignore casual use by students 
such as solving homework problems. 

The extent to which computer use pervades the 
courses varies widely, ranging all the way from requiring 
the use of a canned program to series of problems for 



which extensive programs have to be written by the 
student. There are several examples of students 
preparing BASIC programs of more than 1000 state
ments for term projects. 

Table VI-Use of computing services 
in the undergraduate ~urriculum 

Number of Student 
Department Courses Enrollments 

Biology 4 511 
Chemistry 4 533 
Classics 4 101 
Earth Sciences 5 58 
Economics 6 301 
Education 3 193 
Engineering Science 10 296 
Geography 4 431 
Government 3 98 
Mathematics 16 1020 
Physics 7 1000 
Psychology 5 286 
Romance Languages 2 108 
Sociology 9 259 

Totals 82 5195 
Courses on the books 600 (est.) 27000 

13 percent 19 percent 

The only formal training in computing provided for 
students is a short exposure adjoined to the second 
course in freshman mathematics. Taken eventually by 
85 percent of all students, this exposure provides only 
two lecture hours specifically devoted to computing. 
The remainder of the exposure is oriented toward 
solving problems related to the current topics in the 
course. Separate "programming" courses are not given. 
Students who need to know the more exotic character
istics about BASIC or who need to learn FORTRAN 
or ALGOL are told to consult the many available 
manuals and texts. It is a fact that extremely simple 
constructions in BASIC are sufficient for perhaps 95 per
cent of the programs needed by students. Furthermore 
the student does not have to learn formatting of input 
data, non-intuitive grammatical or punctuation rules, 
or the difference between "fixed" or "floating". 

The formal training program includes, besides the 
two lectures, four programming assignments which are 
coordinated with the course materia1.6 

l\1:any Roles of Computing on Campus 655 

In the second term of freshman calculus, these 
problems are: 

PIE 
TRAP 
SIXE 
DIFFEQ 

approximate pi by inscribed polygons 
a general trapezoid rule program 
a Taylor series approximation 
a simple differential equation solver 

~\Iany students elect Finite 1.\1athematics instead of 
calculus as their second course. These students would 
see these problems: 

~10D 

QUINT 
BDAY 
OZ 

compute A times B mod l\1 
root of a quintic by bisection 
probability calculation 
simulated three-state ::\larkov chain 

(The first problem in each group is to "break the ice," 
and does not relate directly to the subject matter of 
the course.) 

CONCLUSIONS 

The Dartmouth system has had a strong influence on 
the curriculum. The results are almost revolutionary, 
although the method of their achievement was smoothly 
evolutionary. In four years we have seen: 

• a complete change in the way homework exercises 
are assigned in the sciences and engineering, 

• students interacting with real data in reasonably 
large amounts at a low cost and in a pedagogically 
effective manner, 

• the substitution of computer simulations of physi
cal systems in place of laboratory study of them, 

• the increased use of gaming as a teaching tool, and 
• new opportunities for improvement of teaching 
through carefully selected use of computer
assisted drill or computer-assisted instruction. 

The key points here are that teachers themselves 
are involved directly with the educational uses and that 
there is little need for extensive additional systems 
programming. 

The most important single impact of DTSS is that 
over 85 percent of the liberal arts student body know 
from personal experience what computing can and can
not do. Most of these students will never care what goes 
on inside the "black box," but they will be able to ap
proach the subject in a rational way. 

This "symbiosis" between the Dartmouth student 
and his computer is brought about because the design 
does not discriminate against the least of these users. 
The language BASIC, which is used for more than 90 



656 Spring Joint Computer Conference, 1969 

percent of the problems. is kept slmple and free from 
extraneous or non-obvious constructions. The command 
interface js likewise very simple, with the more common
ly requested services being invoked by single ~md simple 
commands. (RUN invokes a compile, a load, and an 
execute phase, although 99 percent of all users are un
aware of th;s breakdown.) As far as the ordinary user is 
concerned, the computer speaks BASIC. He never sees 
anything but the image of his program, properly 
sorted. Changes in statements are automatically sorted 
into their proper sequence prior to listing or running. 
Since only the source program in BASIC is retained, 
each RUN request invokes a complete compilation. 
However the compilers are extremely fast (between 
12,000 to 75,000 statements per minute for typical 
small student jobs in BAST C) and thus place a relatively 
small marginal burden on the system. In fact, the 
sorting of an unsorted program with lines out of order 
usually requires more than half the compile time-that 
is, compilation is no worse than about twice as slow as 
sorting. 

The simple fixed output format in BASIC also 
contributes significantly to efficiency. In a simple 
program, perhaps only one percent of the CPU execute 
time will be devoted to actual calculations; the rest 
will be spent converting the input data and preparing 
the output character stream from the numerical 
answers. A fixed output format is used, and can thus be 
implemented very efficiently. 

A final important characteristjc of the Dartmouth 

system is the quick response for small jobs. For instance, 
the system is designed to give fast service to initial run 
requests. Such a design insures as much as possible 
against losing the large mass of students and faculty 
who are the most important clients of the service. 

In summary, the Dartmouth system has proved 
to have enormous capabilities in almost all areas of 
computer application in the university from small job 
processing for students, to larger faculty research 
applications, to information systems, and as a medium 
for CAL 

HEFEHENCES 

J G KEMENY T E KURTZ 
Dartnwuth time-sharing 
Science Vol 162223-228 Oct.ober 11 1968 

2 R F HARGRAVES A STEPHENSON 
Design considerations for an educational Ume-sharing 
system 
Proc S J C C 1969 

3 J DA~VER J NEVISON 
Secondary school use of the time-shared computer at 
Dartmouth Colleg? 
Proc S J C C 196 ) 

4 E D MEYERS JR 
Project IMPRESS: Time-sharing in the social sciences 
Proc S J C C 1969 

5 W E SLESNICK 
Educational use survey 
Kiewit Computation Center 1968 

6 J G KEMENY T E KURTZ 
The Dartmwth time-sharing computing system 
~ational Science Foundation Final Report April 1967 



Design considerations for an 
educational time-sharing system 

by ROBERT F. HARGRAVES, JR. 

Dartmouth College 
Hanover, New Hampshire 

and 

ANDREWG. STEPHENSON 

Time-Share Corporation 
Hanover, New Hampshire 

INTRODUCTION 

In 1963, Dartmouth College developed a time-sharing 
system for the GE-235 and Datanet-30 computers. 
This was a general-purpose multilingual computing 
system in which the language BASIC achieved great 
popularity. This system had a great impact on the 
Dartmouth campus, and its successes led to its 
adoption by G E as a commerical time-sharing system. 
But at Dartmouth, the success of this system led to 
its own demise; the demand for the use of the computer 
by students, faculty members, and a substantial number 
of outside users meant that the system always operated 
near its peak capacity-just under 40 users. Thus 
this system which initially was judged to provide a 
convenient and powerful computing service grew 
(in the view of those grown accustomed) to have 
certain unsatisfactory characteristics. Nonetheless, 
the system continued to provide good service for the 
functions for which it was specifically tailored
providing good edit-compile-and-go service for short 
BASIC programs. In fact, it was this service which 
drew more and more people to use the computer. 

Some of the less satisfactory points of the system 
could not easily be remedied, however. Random access 
storage for retention of users' saved programs was in 
great demand. In order to keep a current pool of 
available disc storage, it became necessary to purge 
programs from secondary storage as they lapsed into 
disuse. By the time the 265 system (235 + D-30) 
left the campus, the purge period had dropped from 
30 days to 48 hours. (It was a fact that although 
purged programs were always written out onto mag-

657 

netic tape, no one ever felt strongly enough about the 
loss of a program to write the code necessary to retrieve 
a purged program from the tape.) In order to protect 
their programs, users fell to the countermeasure· of 
conscientiously calling up all of the otherwise unused 
programs in their catalogs every day in order to avoid 
having them tagged as unused and purged from the 
storage. Consequently the storage situation worsened 
horribly. 

Development of new computing languages was a 
difficult and hazardous task. Since the 235 hardware 
had no protection facilities, it was necessary for the 
executive system to trust the compilers not to over
write storage assigned to other purposes. In· spite of 
this, BASIC, ALGOL, and LISP systems were 
available and reasonably foolproof (from the point of 
view of the executive system). FORTRAN was never 
trustworthy enough to enable the system at Dart
mouth to survive the lack of index-range checking, 
due to the capricious nature of students faced with an 
opportunity to alter the executive. A watchful in
terpreter for the assembly language code, TSAP, 
made it possible to write and debug some small sub
routines, but the installation and testing of a compiler 
was necessarily an on-line operation on a dedicated 
machine. 

Programs could not reasonably be allowed to access 
data in secondary storage. Only one user program 
could reside in the core storage of the 235 at one time, 
and the I/O wait time for a rather slow disc meant 
that other user programs would be faced with ad
ditional delays. 



658 Spring Joint Computer Conference, 1969 

Some users felt a desire to increase the speed of 
computation. This was especially important for such 
simulation and modeling studies as were carried out 
by t.he engineers and business students in two of the 
professional schools at Dartmouth. 

Many of the potential users of the system were 
unable to gain access to the system because all of the 
datasets and communications ports to the computer 
were busy. It was hoped that the number of users who 
could simultaneously gain service from the system 
could be increased. 

By a cooperativ(3 arrangement with the General 
Electric Corporation; Dartmouth was able to replace 
the old 265 system with a GE-635 system. A software 
dystem had to be designed for this new machine which 
would satisfy the demands created by the older 265 
system. 

Design objectives 

In addition to correcting the defects of the old 
265 system, it was especially important to be able to 
replicate the good features of that system-namely, 
the ease of use of the command language, the simplicity 
of modifying and editing programs, and the carefree 
edit-compile-and-go service automatically provided 
for the user. 

The activities of users of the 265 system were sampled 
over a period of a few days in order to determine the 
frequency of activities such as retrieving programs 
from secondary storage, creating programs at the 
teletype, listing such programs, executing user-created 
programs, outputting to the teletype, waiting for 
input from the teletype, etc. These figures based upon 
the number of actual users on the 265 system at the 
time that the measurements were made were extrapolated 
to 200 simultaneous users which wad the design target 
for the 635 system The following rough generali
zations were obtained: 

Every 10 seconds a log-in activity would occur. 
Every three seconds there would be an edit
compile-and-go activity initiated by the user 
with a RUN command. . 
Every one second there would be a SAVE or 
OLD command requiring updating a catalog 
residing in the secondary storage. 

A few snapshots of 265 usage resulted in the following 
approximate breakdown of activities: 40 percent of the 
users were building files by typing from a teletype; 
20 percent of the users were running programs which 
were roadblocked for output to the teletype; 10 percent 
of the users were running programs which were com
peting for central processor time; 10 percent of the 

users were simply listing files on the teletype; 10 
percent of the users were idle; and 10 percent of the 
users were performing other activities. These figures 
gave a very rOl}gh idea of the type of computing activity 
whjch was to be expected on the 635 system. Proposed 
techniques of system implementation were measured 
up against this imagined activity. To some extent, 
these activity projections are unrealistic because 
users expect a good deal more service from a machine 
such as the 635 on a per user basis. Also, the activities 
attributed to the user can in part be attributed to the 
characteristics of the 265 computing system instead; 
we do not really have a measure of what the user 
would like to be doing. Also, the character of use to 
which the system is put may change. If many users 
were to shift to highly interactive programs, the nature 
of the system load could change drastically. 

Nonetheless, it is important to have a quantitative 
performance goal in mind when designing a time
sharing system and to perform gedenken experi
ments giving a O-order approximation to the estimated 
performance under the most frequent types of ac
tivity. In our experiences, the majority of all design 
decisions were easily resolved by comparing results 
of such thought experiments to previously established 
goals. The more difficult design problems can be at
tacked by building simulation models and imple
menting these models with a computer program using 
a time-sharing system; the availability of a time
sharing system was a great asset in handling the 
harder problems of system design. 

This technique was very useful in approaching the 
core storage memory management problem, in de
signing an algorithm for keeping track of the available 
space in secondary storage, and in designing a swap 
scheduling algorithm. 

Thus, although the completed system was designed 
to provide 200 users with the same service as they 
received on the 265 system, the users' appetites for 
computing have grown to the point where it would be 
very difficult to find 200 who would be satisfied with 
the restrained sort of service they previously found 
so valuable. 

Various classes of potential users of the computing 
system were recognized, and an attempt was made to 
predict their peculiar requirements. It was deemed 
important that the computing system be able to provide 
education in the rudiments of computer programming 
for the majority of undergraduates. The important 
function of humanizing the computer is accomplished 
at Dartmouth by making the computer available in 
the undergraduate liberal arts curriculum. 90 percent 
of the undergraduates avail themselves of this oppor-



Design Considerations for Educational Time-Sharing System 659 

tunity. It is extremely important that a simple enough 
command language and programming language exist 
so that a student is able to accomplish something 
in his very first session at a terminal; in this way, he 
is encouraged to make further use of the computer. 
This is not to preclude advanced features in a command 
language or programming language; the requirement 
is only that there be a small subset of these languages 
which may be used by the student when he is learning. 

After a student has learned to use the computer, the 
computing system must remain a useful tool through
out the student's educational experience. Currently, 
there are nearly 100 undergraduate courses given at 
Dartmouth which make significant use of the computer. 
Applications in classics involve analysis of Greek and 
Latin text; these analysis programs rely on the ex
istence of string-processing features in the programming 
language. Persons involved in the analysis of experi
mental data require the programming language to be 
able to access files in secondary storage in which this 
data is kept. The use of teaching programs is a blossom
ing field at Dartmouth, and this activity reinforces 
the requirement for a library in which the standard 
teaching programs can be stored and be easily access
ible to the learning student, who is more interested 
in Spanish than computing. This highly interactive 
use burdens the swapping mechanism. Undergraduates 
are being introduced to the methodology of analysis 
of sociological data which is amassed in secondary 
storage. Parallel accesses to large, shared, but rela
tively static data bases are required. Throughout 
these applications, the ease of use of the computing 
system should be maintained in order to facilitate the 
introduction of computing techniques into a broad 
spectrum of courses. 

The computer should aid faculty and graduate 
student research in the social sciences, the physical 
sciences, engineering, humanities, and the professions. 
These research demands often tax the computer at 
two extremes. On the one hand, there is the demand 
for raw compute power to handle such problems as 
occur in solid-state physics where eigenvalues must 
be sought for a proposed Hamiltonian describing the 
characteristics of a crystal.· A :Monte Carlo technique 
can be used in modeling a business activity. On the 
other hand, at the graduate level, both the sociological 
and business applications of the computer also can 
make use of large data bases, and the software operating 
system should provide the capability for randomly 
accessing these data. 

A highly important requirement is that systems 
programmers should be able to perform their mainte
nance and system development functions in parallel 
with normal time-sharing activities. In order to provide 

as much service as possible to a broad spectrunl of 
users, the time-sharing system should operate in its 
normal mode nearly around the clock. There are more 
benefits to this than simply relieving systems pro
grammers from the necessity for keeping midnight 
hours. The computing system must be able to be 
developed more fully during its expected lifetime than 
is possible with only a few evening hours for system 
development work. A stagnant computing system 
dies; the system must be extendable in order to take 
on new problems. If not, the system development 
personnel become disinterested in the system, and it 
decays rapidly if there is no one left who can make even 
trivial changes in order to cope with the ever-occurring, 
new ly-presented, unforeseeable circumstances. This' 
characteristic may be unique to the Dartmouth 
system because there are no full-time systems pro
gramming people to develop and maintain the com~ 
puting system. Undergraduates are the principal 
source of programming talent and ideas, and since 
to them this is more a labor of love than of money, 
they do not make strong contributions to projects 
in which they have lost interest. More specifically, 
this capability requires that editors, assembly programs, 
and debugging programs be made available to the 
systems programmers. The ability to test machine
language code without endangering the system is a 
must. Compilers and utility programs must not enjoy 
any privileged status, but must adhere to a standard 
set of systems interface conventions so that they may 
be debugged and· installed without heroic surgery on 
the executive system. Related to the question of system 
development is the necessity to be able to use software 
developed for other operating systems for the 635 
so that unnecessary effort is not wasted in duplicating 
such large and useful tools as macro assembly programs. 

It should also be pointed out that the design of 
the time-sharing system was not burdened by the 
necessity to do standard grade recording, class schedul
ing, payroll, and accounting-such tasks require 
large amounts of paper and card handling. Of course, 
these tasks are necessary to the functioning of the 
college, but they are accomplished economically by 
an already existing 1401 system operating inde
pendently. 

Final design 

The hardware provided by General Electric was 
to be based upon a 635 processor. The 635 has a master 
mode and a slave mode. An executive program running 
in master mode can control all input-output facilities 
and supervise the use of such features as the timer 
register and the base address register (BAR). Memory 



660 Spring Joint Computer Conference, 1969 

protection and address relocation is performed on 
the 63£) for programs running in slave mode. The 
BAR eontains an upper bound against which all 
slave mode references to memory are checked, and 
it contains an increment which is added to the ad
dresses of all references to memory. The existence of 
only one BAR means that slave programs run in 
only address space. 

The configuration of the essential pieces of the 
hardware is shown in Figure 1. The drum provides 
a mechanism for swapping slave mode jobs in and 
out of core memory. The GE Datanet-30 computers 
provide the interface from the 635 system to telephone 
company datasets. Each of these D-30 computers 
accepts data from over .50 teletypes on a bit-by-bit 
basis,and transmits only complete lines of information 
to the I/O controller. The discs each provide 16 X 106 

ASCII characters of storage which are available to 
the software system and provide general utility storage 
for users. 

The architecture of the software system was in-
fluenced by three things: 

The experiences with the 265 system. 
The published concepts of the MULTICS system. 
A realization of the limitations of the capa
bilities of a part-time staff of Dartmouth students 
and faculty members. 

From the experiences on the 265 system, a pattern 
of use to be expected at Dartmouth was predicted. 
These experiences had also familiarized students with 
the principles of a time-sharing system. The :MULTICS 
system provided examples of ways to generalize file 
structures so that a file system would be convenient 
to use and yet. would anticipate future needs.1 The 
pragmatics of getting an operating time-sharing system 

Figure I-Hardware configuration 
The D-30 computers act as communications controllers for up to 

200 teletype lines. The drum is used primarily for swapping 

running on a 6::t\ using a part-time staff and having 
only limited debugging time avai~able, emphaRized 
the need for simplieity of design. 

An important feature of the time-sharing systern 
is the concept of a file. The system was designed to be 
file-oriented. All conununications and control functions 
are accomplished through the medium of the file 
construct. The hardware of the 635 is such that the 
sm!1llest convenient element for a file is a 36-bit word. 
In its most fundamental form, a file consists of a 
contiguous string of N words residing in an unspecified 
place with words numbered 0, 1, ... , N-l. Programs 
can be allowed to alter or fetch any word in a file, 
accessing these words directly; the file appears to be 
homogeneous to the user. Since the fixed record lengths 
of various random access secondary storage devices 
for the 635 are 40 words for the discs, 64 words for 
the drum, and 108 words for the RACE, it becomes 
clear that it is necessary to isolate users' programs 
from such awkward record lengths. This also leaves 
to the executive the flexibility to select files for storage 
on the drum, discs, or RACE unit depending upon 
the amount of storage available on these devices, the 
history of past activity of the file, and the user's 
prediction of activity expected. Since all record bounda
ries have effectively been erased in the software, the 
problems of the user-'written sla.ve mode programs 
have been greatly simplified in this time-sharing 
system. The effect of this design principle is that the 
executive system is made responsible for all peculi
arities of random access storage devices. For example, 
the executive takes upon itself the responsibility of 
handling read-alter-rewrite cycles when it is neces
sary to update words which form only part of a physical 
record. Other files in this system are simple variants 
of this concept. Some files, such as magnetic tape 
files, are naturally serial and cannot be randomly 
accessed. A file containing a core image of an executable 
635 program can have a RUN conunand directed at 
it. This spawns a new job in the time-sharing system, 
and the file is then referred to as a job file. 

The fundamental computational structure of this 
time-sharing operating system is a job. A job consists 
of a 635 computer program operating on data con
tained in one address space along with the program. 
Illustrated in Figure 2 are a number of files through 
which the job conununicates. Each job in the system 
is an independently evolving computational process, 
and in principle, each can be considered to be running 
on its own independent computer. Jobs can only inter
act through files; however, this does not necessarily 
require the use of secondary storage facilities. The 
job construct has some of the flavor of the virtual 



Design Considerations for Educational Thlle-Sharing System 66i 

Figure 2-Job environment 
A single job runs with no knowledge of the job which spawned 
it. It can only communicate to files. The fault vector is an 

exception-handling mechanism 

machine techniques. Each job runs in a machine 
very much like a 635 computer. Words 0 to 31 of a 
job are reserved as a fault vector. For example, if a 
reference to memory is out of bounds, the address 
of the next instruction to be executed is stored in 
location 2, and control is transferred to location 3. 
A basic premise of this type of organization- is that 
all unusual circumstances should be communicated 
to the job itself rather than causing an abort or some 
other activity out of the control of the running job. 
A running job can initiate transferral of information 
to or from a file by executing a coded master mode 
entry (MME) instruction. Each such request specifies 
the location of a trap to which control will be trans
ferred upon completion of the file operation, inter
rupting the job at this point in order to do so. This 
allows a job to supervise many file activities which 
are taking place asynchronously. The important 
payoff of this type of organization is that it allows 
the fundamental service modules of the time-sharing 
system which handle file activities for many users to 
be structured as independently running jobs communi
cating via a multitude of files. Since all such modules 
have the uniform job structure, they can be debugged 
in time-sharing using the standard debugging tech
niques applicable to any job. 

The homogeneous structure of files erases the physi
cal record boundaries in files for programs accessing 
them. Therefore, the function of allocating records 
on secondary storage is necessarily performed by the 
executive system. In many operating systems, the 
responsibility for allocating storage for a file has been 
an irksome nuisance left to the programmer. The 
programmer is often forced to preallocate storage for 
a file before a program begins execution. A programmer 
writing in a higher-level language may very well have 
little idea of how much storage should be allocated. 
If too little is allocated, the program may be pre-

maturely terminated because no more storage will be 
allocated, or the program may run inefficiently because 
the allocated storage has been incrementruly generated 
according to previous specifications and fragmented 
into too many pieces to allow the program to run 
efficiently. If the programmer overestimates his 
storage requirements (the natural reaction), the 
program may run properly, but valuable preallocated 
storage space will remain unused. In this operating 
system, storage is allocated by the executive as it is 
needed in response to commands given by a user 
program to copy data into a file. The number of records 
allocated on a device at anyone time is always a 
power of 2; sufficient contiguous storage space is 
always allocated to at least satisfy the data being 
appended by the current copy command. If it later 
occurs that additional allocations are necessary, the 
aJlocator is restricted to at least double the amount 
of storage already allocated for a given file. The ef
ficiency of use of allocated secondary storage is around 
70 percent. This was felt to exceed the efficiencies 
actuaJly achieved by other allocation schemes in 
practice. The device addresses of the segments of a 
file which have been allocated incrementally are 
recorded in a file control block for the file; this allows 
direct random access to any word in the file with only 
one seek. The linked segment technique is not used 
since it is not suitable for randomly accessible files. 
Sincet he total length of the segments grows at least 
exponentially, the number of device addresses required 
to describe a file is small, and the device address list 
requires little core storage space. Nonetheless, if a 
file is felt to have been fragmented excessively, it 
can be reallocated contiguously in secondary storage 
by the simple expedient of copying it over with one 
copy COIhmand. This allocation scheme means that 
the management of free storage can be handled by 
a buddy technique.2 

A communications file allows two jobs to interact 
directly without the use of secondary storage. A com
munications file has one end in each of two jobs. It 
is the software analog of a channel-to-channel adaptor. 
This structure allows job-to-job interactions using the 
same proceduref:) as for more conventional files. The 
two ends are labeled master end and slave end. A 
job at the slave end of a communications file cannot 
easily distinguish this file from a conventional file. 
Since a job at the master end of a communications 
file can control and monitor all data transmitted on 
that file, a master end job can simulate a data file, 
thereby providing a useful debugging aid and also 
providing a convenient mechanism for interfacing 
running jobs to unexpected data structures. 



662 Spring Joint Computer Conference, 1969 

Scratch files are associated only \\rith a running 
job and disappear upon termination of that job. 
Catalog files are associated with a file structure which 
is part of the time-sharing operating system. The 
structure of cataloged files has been chosen to be a 
tree structure, so that algorithms which deal with 
this structure can be simply implemented. The file 
structure includes both files and catalogs. Files contain 
any information whatsoever and may be read or written 
by user programs. Catalogs contain passwords, access 
permission, attachment counts, and device addresses 
of other files or catalogs. Such sensitive data as device 
addresses, attachment counts, and coded dates are 
all critical to the proper performance of the executive 
system, therefore this information cannot be read or 
altered directly by a user job using standard file calls, 
but only through special catalog calls upon the ex
ecutive. This flexible tree structure can be constructed 
or modified by user programs and was judged to be 
sufficient to satisfy projected needs. Cross links were 
not introduced into this tree structure because of the 
maintenance problems these links would introduce in 
a dynamically changing file structure. An application 
of the tree structure of files and catalogs to time
sharing service is shown in Figure 3. To open a file 
or catalog, a supra catalog must previously have been 
opened. Two distinct sets of accesses may be granted by 
the file system depending upon whether the job at
tempts to open the file with or without a password. 
For example, a job may be given read and write 
permission on a file if it supplies the proper password 
and name, and only read permission if the job does 
not supply a password. This two-class protection 
scheme supplies most of the protection needs which 
arise in this operating system. If a higher degree of 
protection i:::; required, the catalog entry can specify 
that a trap program is to be run whenever a job at
tempts to gain access to a particular file. The responsi
bility of providing protection has been left up to the 
owner who must write a trap program which decides 
what access to the file should be granted. 

The amount of available core storage may not meet 
the total demand for core storage for all of the jobs 
which are executing in the time-sharing operating 
system at one time. In this operating system, a running 
job may occasionally be swapped out in its entil'ety 
from core onto a drum in order to make room for other 
jobs. The system multiprograms those jobs which 
coexist in core storage; execution is alternated arnong 
jobs as input/output operations and swapping are 
overlapped with job execution. Since a running job 
is also a file, the primitive file operation performed by 
the executive is a transfer of data from one file to 
another file. Therefore previously initiated file oper-

r 
L 

r 
L 

r 
L 

-, 
.J 

-, 
...J 

-, 
..J 

Figure 3-File structure 

r 
L 

r 
L 

r 
L 

-, 
...J 

-, 
...J 

-, 
...J 

This application of the hierarchial tree structure ~how~ how 
files are categorized at several levels 

ations can take place even if a job file has been swapped 
out and resides on the drum. The executive knows the 
instantaneous location of all job files, and if necessary 
it will provide buffers to continue the file transfer 
operation even if neither of the files involved in the 
transfer are located in core. This feature is especially 
important for low-speed input/output devices such 
as the teletype. 

A snapshot of the job structure which exists in the 
time-sharing operating system is illustrated in Figure 
4. The module D30IXT is at the root of the job hier
archy. This module communicates over two files 
which are really D-30 communications control com
puters. These computers communicate blocks of 
information containing entire teletype lines to the 
job D30INT in the 635 computer. Infom1ation ex
changes between the D-30 and the 635 computers 
are limited to once each half second in order to minimize 
the number of interruptions to the 635 and thus keep 
the overhead acceptable. It is the fUllction of D30INT 
to block and unblock these transmissions and to 
provide communications for· those jobs operating 
under the exec uti ve system which require teletype 



Design Considerations for Educational Time-Sharing System 663 

Figure 4-Job structure 
This is a hierarchial tree structure. The root of the tree structure 

of the Dartmouth time-sharing system is D:~OI~T 

input or output. This is done by establishing a com
munications file between D30IKT and, for example, 
a BASIC compiler operating as a running job in the 
system. Thus the job at the slave end of the com
munications file reads and writes an input/output 
device which is effectively a teletype. 

When D30IKT finds that a new teletype is on 
the system, D30INT sets up a communications 
file with LOGIN. The effect is that a new teletype 
file is presented to LOGIN. This module had the re
sponsibility for requesting the user number and vali
dating it, and tracing down the catalog tree structure 
to locate the individual user's catalog of saved pro
grams. A portion of the tree structure with which 
LOGIN deals is shown in Figure 3. LOGIN then 
passes an end of the newly created communications 
file and the newly found catalog file to SIMON (simple 
monitor). This monitor has been especially written to 
provide a basic core of services fdr many users. SIMOK 
provides file retrieval, editing and updating services, 
and calls in compilers and other service routines 
where necessary. At anyone instant in time, most 
of the users on the system use only SI1\10~ and no 
lower-level running job, thus reserving a good deal 
of system capacity for other jobs in the operating 
system. 

The three modules D30INT, LOGIN, and SIMON 
have all been written to handle m'Ultiple users; they 
are each one job in the time-sharing system. The 
compilation and execution of a user's program is 
accomplished by SIMON by spawning a job which 
accomplishes this in response ,to a user's request. 
For example, if a user wishes to execute a BASIC 
program, a file containing the BASIC compiler is 
spawned in such a manner that the necessary file 
pre-exists when thls program goes into execution. 
The compiler then reads the source text, compiling 
it directly into core and overlays the compiler with 
a package of run-time subroutines. The code in the 

compiler and the run-time package is pure procedure, 
but the existence of only one BAR for this machine 
requires that each BASIC program in execution has 
along with it its own copy of the run-time package. 
Other languages currently available under this system 
include FORTRAN, ALGOL, and LAFFF. LISP and 
ALGOL-68 efforts are underway. 

Background capabilities are being introduced to 
allow persons with long-running jobs or jobs which 
require special peripheral equipment such as the card 
reader or line printer to initiate such service requests 
from a teletype. The user creates a file of information 
describing the background request whlle using a 
teletype in normal time-sharing under SIMON. The 
user types the command BACKGROUND in order 
to have his job control language statements checked 
for validity by BACKSYS. If this background request 
is found to be proper, it is written into a queue of 
background requests. A wakeup signal is then sent to 
the background monitor (BACKMON) which intro
duces these jobs into the system. This monitor operates 
in such a way as to attempt to optimize the mix of 
running jobs to achieve satisfactory performance for 
background jobs without undue loss of performance 
for foreground jobs. The file and job organizations 
pay dividends here: A BASIC program running under 
SIMO:N conducts teletype input/output over a com
munications file normally attached to D30INT and 
ultimately a teletype. In background operation this 
communications file is linked to BACKMON whlch 
supplies input from a user-specified input file, and 
directs output to a user-specified output file, inter
posing a copy of the input file for clarity. 

A capacity for software simulation of other oper
ating systems and for efficient debugging of machine 
language programs has been implemented by means 
of the SQUEEZE primitive for the executive system. 
This technique was very successfully used in MOLD, 
an earlier operating system for the 635 developed as 
a vehicle for the construction of further time-sharing 
operating systems. The name SQUEEZE is taken 
from the fact that the base address register (BAR), 
which limits the range of allowable memory references, 
is set to a smaller range (squeezed) by this call. Ad
ditionally, all actions of an executing program which 
would normally cause some executive response, such 
as execution of a ::\tiME (master mode entry) in
struction, divide-check, etc., are brought to the at
tention of the program whlch issued the SQUEEZE 
by resetting the BAR to its unsqueezed value and 
saving the program status appropriately. The effect 
of this simple technique is that a program may be 
embedded in an outer program, and that outer program 



664 Spring Joint Computer Conference, 1969 

can be written to interpret l\1~1E's, divide-checks, 
etc. of the inner program in any way deemed fit. 
An 'outer program called DDT has such a capability, 
and allows patching, dumping, and breakpointing 
capabilities for debugging any of the jobs in the system. 

If the SQUEEZE technique" were useful only for 
debugging programs, it would have been well worth the 
effort for this cuts down checkout times for assembly
language jobs by a factor of ten over the load-run-me
dump technique. However, this technique also reaps 
benefits in providing the capability to write outer 
programs which can simulate the action of other 
operating systems for the 635. For example, the 
GECOS operating system is simu1ated using this 
technique. The ma"cro assembly program, G MAP, 

d r1Er'!OS ." developed to run un e1' u v ,runs normauy unaer 
this simulator until a l\1~fE or other caust. for executive 
action is encountered. The simulating program de
termines the action which GMAP expects GECOS 
to perform, and it initiates a corresponding action 
by making an appropriate call in the time-sharing 
operating system. This technique has meant that 
many useful programs operating under other 635 
operating systems have been taken over directly 

without modification and function usefully in the 
current time-sharing system. 

ACKNOWLEDGl\1ENTS 

The work described in this paper was performed by 
a group of persons under the direction of John G. 
Kemeny, and the authors are pleased to have been 
privileged to work with these people. Thomas E. 
Kurtz, Stephen J. Garland, John S. McGeachie, and 
Gordon Bull made significant contributions. Sidney 
W. ~1arshall and Neal F. Weidenhofer were Dartmouth 
graduate students who were essential to the success 
of the project. The Dartmouth undergraduates who 
were responsible for major aspects of the system were 
David Magill, Peter Nielsen, Steven Hobbs, Gregory 
Dobbs. Anthony Dwyer; Paul Velleman, and Andrew 
Behre~. Ronald Foottit, William Forfar, and Rajendra 
Kanodia accelerated progress during six-month visits. 

REFERENCES 

1 F J CORBATO V A VYSSOTSKY 
Introduction and overview of the multics system 
Proc F J C C 1965 

2 K C KNOWLTON 
CAe M Vol 8 1965623-625 



A flexible user validation language for 
time-sharing systems 

by JOHN S. lVIc GEACHIE 

Mandate Systems Inc. 
New York, New York 

INTRODUCTION 

Dartmouth College has recently developed a general 
purpose time-sharing system for its General Electric 
635 computer, capable of supporting approximately 
150 simultaneous users. The system provides computing 
services to some 3000 faculty and students ~:m campus, 
as well as to more than 6000 teachers and students at 
over 30 colleges and secondary schools scattered through
out New England. At any given time during the school 
year, therefore, there are close to 10,000 potential users, 
of which some 4000 use the time-sharing system every 
month. 

Each of these potential users (henceforth referred to 
as "subscribers") may access the system to create, 
store and retrieve his own programs, and to make de
mands upon the computer's time for the processing of 
these programs. As users are billed for their use of the 
computer and associated storage devices, it is highly 
desirable that each user uniquely identify himself to 
the computer in order to prevent masquerading, i.e., 
Smith may not pretend that he is Jones so as to access 
Jones' programs at Jones' expense. In addition, it is 
conceivable that a given user might captivate sufficient 
system resources to significantly degrade the service 
that the system provides to the user community as a 
whole. This is because a time-sharing system operates 
by giving a small portion of the total system to each 
user for a short period of time, and any user who ab
sorbs too much of the system in time, space, or I/O 
capacity may cause a disproportionate loss of service 
to the remaining users. 

There are therefore two clearly distinguishable func
tions which must be performed when someone attempts 
to access the time-sharing system. First, is he allowed 
to use the system at all? Second, if he is allowed access~ 
then what resources are available to him? The twofold 
task of defining adequate security controls and reason-

able resource limitations for each of 10,000 users turns 
out to be quite complex. 

The process of providing the computer with the re
quired information about each subscriber is called the 
validation process, and the purpose of this paper is to 
relate some of the approaches taken to the problem of 
validating such a large number of subscribers. A num
ber of the techniques developed appear to be applicable 
to time-sharing systems other than the one at Dart
mouth College. The process of matching the stored 
computer data with an incoming user is called the 
login process; it will not be covered in this paper. 

Before proceeding it will be useful to describe some 
additional factors relevant to the validation process. 
The sheer volume of information is considerable, but 
the job is further complicated beca~se it is not "one
shot", i.e., it is not possible to tell the computer lots of 
things about ten thousand people and then forget about 
it. The academic environment in which the Dartmouth 
Time-Sharing system (DTSS) operates has an interest
ing property: every .J une, large numbers of subscribers 
graduate, and every September there are roughly 3500 
new ones in the colleges and high schools that make 
regular use of the system. In addition, every term a 
few courses are taught whose students require some 
special privilege in order to access a resource not nonnal
ly available. Examples of system resources are: core 
memory, central processor time, secondary storage 
(drum, disc, etc.), and all peripherals. Certain privileged 
system functions are also grouped in the same category, 
such as the ability to change subscriber privileges, to 
access system accounting data, etc. 

Of the many requirements that the validation pro
gram (used to feed subscriber data into the computer 
system) would have to meet, two were of paramount 
importance. First, the large numbers involved made it 
imperative to permit manipulation of sizable blocks of 

665----------------------------------



666 Spring Joint Computer Conference" 1969 

users as single entities. Second, the program command 
language would have to be simple enough to enable 
secretarial and administrative personnel to handle all 
of the validation procedures. The latter requirement was 
partly because the operators and programmers were too 
busy with other essential activities, and partly because 
that type of function seemed to be an obviously ad
ministrative one. 

I shall now attempt to describe how these objectives 
were achieved. The fundamental identification of each 
subscriber within the time-sharing system is his user 
number. This is an eight character identification 
sequence composed of two parts: the group (first five 
characters), and the number within the group (last three 
characters, which are numeric). A group is largely an 
administrative entity; for example, most of the sub
scribers from any given high school would belong to the 
same group, as would most of those from any. one 
corporation. Thus user numbers HDH31000 through 
HDH31999 would all belong to group HDH31. Associ
ated with each user number there may be an arbitrary 
sequence of up to eight letters or digits which the user 
must apply to the computer when attempting to access 
the system: this is called a password, and provides an 
additional level of security. For example, the password 
for most students at Dartmouth College consists of the 
first three letters of their last name. Furthermore, most 
of the terminals connected to the system are teletype
writers (leased from the telephone company), each of 
which has an identification sequence (called an answer
back drum), which may be interrogated by the com
puter. It is therefore possible to determine from which 
device a given user is calling, and to refuse him service 
if he is calling from a device for which he is not author
ized. 

The security provisions are thus controlled by three 
factors: the user number, its password, and an answer
back drum. Whenever a user attempts to access the 
system, he supplies the first two, and the latter is 
automatically transmitted to the computer upon 
receipt of a special signal. An additional control is 
provided by the time of day. It was considered useful 
to be able to restrict certain users to specific periods 
during the day, and consequently each user number 
has associated with it a legallog-on time, defining those 
time periods during which he may access the time
sharing system. 

Given that a user can access the system, i.e., he 
supplies the correct user number and password, and is 
using an "authorized" terminal during a "legal" time 
of day, the computer now detennines the quantity and 
type of system resources that he may use. This is done 
by means of various parameters associated with each 

subscriber's user number. Experience with previous 
time-sharing systems at Dartmouth College has shown 
that the most critical resource is disc storage, used to 
save user programs between sessions with the computer. 
Two parameters control disc usage: OPE, the catalog 
storage allotment, determines the total amount of stor
age which a user may occupy with his saved programs; 
the other determines the total amount of temporary 
storage that he may use while actively accessing the 
system; it is called the scratch storage allotment, and 
everything in scratch storage is lost when the user signs 
off the system. Another parameter determines the 
amount of continuous central processor running time 
that a subscriber may use. 

Finally, each user number has a set of special per
missions associated with it. These permissions are of the 
onloff type, and control a wide variety of miscellaneous 
functions such as: the ability to use the Background 
system (for very large or long running jobs); the ability 
to use the Operations Monitor (control of system func
tions such as shut-down, accounting, statistics, etc.); 
the ability to use the printer; and so on. 

The totality of the data required for each subscriber 
is called his validation record. All the validation records 
for a given group are stored in a validation file on 
secondary storage. The Dartmouth system has a tree
structured file system, in which the validation data 
files are accessible much like ordinary user files or pro
grams, except that they are better protected. 

In order to cut down on both the amount of typing 
and the disc space required to create and store a valida
tion record, a user classification scheme was developed 
which takes advantage of the fact that there are 
significant subsets of the user population who have 
approximately similar requirements for storage space, 
running tirlle, log-on tirl1es, pennissions, etc. Each 
subscriber is assigned a user code which becomes an 
integral part of his validation record; this code is com
pletely independent of the group to which the sub
scriber belongs, and separates users into categories 
having similar requirements. For example, all high 
school students are assigned one user code while all 
high school teachers are assigned another, thus placing 
them in different categories; but all the students and 
teachers from the same high school belong to the same 
group (and thus their user numbers all have the same 
first five characters). 

Given that there are large subsets of users with 
similar requirements, it would be wasteful to duplicate 
a lot of information in each validation record. Accord
ingly, validation records have variable lengths. Any 
information not present in the validation record is 
obtained at log-on time from a special data file called 



a default file. This file is indexed via the user code, and 
contains one fixed length entry for each possible user 
code. These entries contain data relating to system 
resources and special permissions; they are not con
cerned with passwords or answer-back drum sequences. 

A further simplification is achieved by noting that 
most of the users belonging to a given group will tend 
to use the same terminals, i.e., most company em
ployees will use their company's terminals and most 

. high school students win use their high school's ter
minals. In most cases, therefore, the answer-back drum 
sequences merely need to be specified as common to the 
whole group and not duplicated for each individual 
subscriber, although there are, of course, exceptions. 

A special purpose program together with an associ
ated command language were designed and imple
mented to process all the relevant subscriber data. The 
program converts this data into a format which can 
be referenced by the login program whenever someone 
attempts to access the time-sharing system. 

The validation program contains all the mechanisms 
necessary for the creation of groups, user numbers, and 
default entries; for the specification of passwords, legal 
log-on times, and answer-back drum sequences (either 
commo~ to a group or pertaining to a particular user) ; 
and for the allocation of system resources and associated 
limitations. Some additional features were installed to 
allow the convenient validation of large numbers of 
subscribers, such as the ability to accept input from a 
validation source file. This file can be created under 
normal time-sharing conditions, checked, corrected, 
and then given to the validation program, which will 
treat it exactly as if the information were being typed 
at a terminal. ", 

A t this point we discovered we had a powerful and 
flexible tool at our disposal. The number of different 
combinations and special arrangements possible was 
virtually unlimited. One of the most valuable conse
quences of the default file is the ability to modify the 
resources available to several thousand users with only 
a few commands. In particular, as more experience is 
gained about the behavior oJ the time-sharing system 
under various cO,nditions, it will be possible to quickly 
and shnply vary certain factors in the load that any 
given category of user may impose on the system. The 
structure of the validation records is such that, while 
most users will be assigned default parameters based on 
their user code, exceptions can be quickly made when 
required. 

Structure of the validation command language 

The general appearance and structure of the valida-

Flexible User V alicia tion Language 667 

tion program commands is best described with the aid of 
some examples. Consider the command sequence 

CG HDC92;C8 1000;AC 739, JSS;PR OPR,BAK; 
eC63 

The italicized portions are command verbs; the other 
strings are arguments. The line terminates with a 
carriage return. The first command, CG, indicates that 
we are going to modify group HDC92. In order to avoid 
the necessity of remembering which groups exist and 
which do not, the group will be created if it does not 
exist; the command AG (Add a Group) does exist, how
ever. The next command, CS, indicates a modification 
to the group catalog storage limit: this is the maximum 
saved storage allowed for all the users in the group, 
summed together. The units are in thousands of GE-
635 words (36 bits), and the command therefore iu
dicates a limit of one million words for the group 
catalog storage. 

The next command, A U, adds number 739 to the 
group, yielding user number HDC92739 with password 
JSS. An error message will be printed out if this number 
has previously been defined for this group. The com
mand P R will specify certain special permissiolls, in 
this case Operator (may use Operations ~lonitor) and 
Background (may use Background system). The last 
command (UC) specifies the user default code. The 
carriage, return will cause the validation program to 
create a validation record according to the data 
supplied. Note that any items missing (in particular, 
catalog and scratch storage limits, running time and 
legal log-on times for this user) will be supplied from 
default file entry number 63 when the user attempts 
to log on the system. 

The commands CG and A U are termed major com,;. 
mands, while CS, PR and CC are minor commands. 
All minor commands modify the immediately pre
ceding major command. The ordering of minor com
mands is irrelevant, as is the presence or absence of 
spaces between commands and arguments. 

Another example is 

CG HD514;AU 501,ADE;506,FOO;295, 
NONSENSE;LT12-23; CC 5 

In this sequence group HD514 is to be modified; if 
created, the standard group catalog storage limit of 
250,000 words will be supplied. User numbers 501, 506 
and 295 will be added to group HD514, with passwords 
ADE, Faa, NONSENSE, respectively. The command 
LT sets the legal log-on times to noon to midnight. The 
user code is set at 5. ~ote that the minor commands 



668 Spring Joint Computer Conference, 1969 

apply to all the user numbers appearing as arguments 
to the previous A U command. 

Still another example is 

CGHDH31 

AU 101-562;695,~INS; CS 4; SS 20; RT 8; LT12-
23;PRBAK; UC9 

These command lines will create user numbers HDH-
31101 through HDH31562, with no passwords, and 
user number HDH31695 with password MNS. Each 
of these user numbers will be allowed 4000 words of 
catalog storage (CS) , 20,000 words of scratch storage 
(SS), eight seconds of running time (RT), p.m. access 
(LT), ability to use Background (PR BAK), and a user 
code of nine. 

Default file comands have the form 

AD 6; RT 16; CS 2; SS 20; LT 6-20; PR BAK 

This example will create a default file entry for user
code six with 16 seconds running time (RT), 2000 
words catalog storage (CS), 20,000 words scratch stor
age (SS), log-on times of 6 am to 8 pm, and ability 
to use the Background system. Any user with a code of 
six whose validation record omits a system resource 
parameter will be assigned the appropriate value from 
the above default entry. If, for example, a category six 
user has no running time explicitly specified, he will be 
allowed 16 seconds. 

Answer-back drum sequences are created by com
mands sinlilar to the following: 

CG HDC55; AA 646-2643; AU 601; AA 646-3259 

The effect of the first two commands is to allow all users 
belonging to group HDC55 to log-on from the terminal 
whose answer-back drum is 646-2643; the second two 
commands specify that user HDC55601 may log-in 
from an additional terminal (646-3259). The answer
back codes as specified are not q\,lite accurate, since 
they contain a number of leading and trailing non
printing format characters, which are difficult to rep
resent here. It is possible for a user's validation record 
to specify that his answer-back drum is not to be 
checked, even though his group rrlay have some common 
answer-back entries. 

Finally, the example 

PG HDC10; PU 0-999 

may result in the following printout 

GROUP HDC10, CAT ~1AX 244 
UN 087-101 PW SBNK UC 57 
UN 259-259 PW RYIJ UC 62 

CS 500 
CS 510 SS 1000 

This printout gives the validation records for all 
valid users in group HDC10, in this case HDC10087 
through HDC10101 and HDC10259. Only those param
eters explicitly specified in the validation record are 
printed out. 

Some remarks on the internal structure of the 
validation program 

As is often the case, a cleanly designed, well-formed 
syntax greatly sinlplifies the problems of implementa
tion. The validation program is no exception. Transi
tion diagrams were drawn for the whole language, and 
a good many of these were encoded into the program. 
Whenever possible, tables have been used to drive the 
program, including, for example, a table to control the 
printing and formatting of validation entries. 

The main program loop is called the "diagrammer," 
and uses a four-entry table whose components are as 
follows: 

Word 0 ASCII representation of major command 
Word 1 Address of subroutine to decode major 

arguments 
Word 2 Address of subroutine to decode minor 

command lists 
Word 3 Address of subroutine to process major 

command 

The minor command list decoder in turn uses several 
three-entry tables to control the processing of .minor 
commands and their arguments: the format of these 
tables is similar to the major table described above, 
namely: 

Word 0 ASCII representation of minor command 
Word 1 Address of subroutine to decode minor 

arguments 
Word 2 Address of subroutine to process minor 

command 

An immediate consequence of this scheme is that an 
automatic sequencing mechanism is provided to call the 
appropriate subroutines in order. The tables also make 
the debugging very much easier. 

The program is quite insensitive to the order in 
which minor commands are typed, although for major 
commands it requires that a group command precede 
the user cOmhlands (AU, PU, CU, DU) The entire 



language was designed and coded in approximately 
two months, and is currently being used to validate 
users for the new system. The program is well pro
tected, accessible only from two control terminals and 
by a very small set of user numbers. One of the advan
tages of the ability to take input from a validation source 
file is that this file may be prepared from any terminal, 
thus minimizing the time during which a control 
tenninal must be tied up. 

An important goal of the implementation of the vali
dation and login programs was to keep the size of the 
validation data files to an absolute minimum. There are 
a variety of different entries possible within a validation 
file, most of the variations being in the interest of con
serving space. The detailed format of the validation 
records is given in Figures 1-6. Each entry type is des-

I USER NUMBER 

USER NUMBER I 1 UC 

PASSWORD -- Word 1 
-.------------ - -.- ~ ---

PASSWORD -- Word 2 

Figure I-Single user number short entries 

I 

21 UC LOW BLOCK USER NUMBER 

HIGH BLOCK USER NUMBER 0 

LOW BLOCK USER NUMBER 31 UC 

HIGH BLOCK USER NUMBER 0 

PASSWORD -- Word 1 

PASSWORD -- Word 2 

Figure 2-Consecutive user number short entries 

Flexible User Validation Language 669 

LOW BLOCK USER NUMBER 4 I UC 

HIGH BLOCK USER NUMBER 0 

PERMISSIONS 

0 r LEGAL LOG-ON TIMES 

RT I CS I SS 

NUMBER OF WORDS THIS ENTRY 

ANSWER-BACK DRUM NO. 1 

ANSWER-BACK DRUM NO. 2 

• • • 
• 

ADDITIONAL ANSWER-BACK 

DRUM ENTRIES 

• 
· · 

Figure 3-Long entry without password 

ignated by a code in bits 27 -29 of the zeroth word of the 
entry. The various entries can be broken down into 
separate categories, of which the first is the "short" 
entry, used for validation records that specify no answer
back drum checking and no explicit system resource 
parameters. Figure 1 shows the format of single user 
entries with and without passwords. All two letter 
abbreviations refer to quantities used in the command 
language. 

Figure 2 shows the validation records containing 
information for a block of consecutive user numbers. 

Figures 3 and 4 represent "long" entries, used when
ever special permissions, accesses or answer-back drum 
entries are required. Note that the upper and lower 
limits of a consecutive user number sequence may be 
equal. 

Figure 5 shows a special entry which is always the 
first validation record in a file. It contains the informa
tion for a given user group, including the common 
answer-back drum sequences (if any) . 



670 Spring Joint Computer Conference, 1969 

LOW BLOCK USER NUMBER 5 

~ ... ..r..""' ...... ~.....J....., ....... _" """u....; ... ~ .. '-' ... _.......i_ 
t 

PERMISSIONS 

I LEGAL LOG-ON TIMES 

RT I CS I SS 

NUMBER OF WORDS THIS ENTRY 

PASSWORD Word 1 

PASSWORD -- word 2 

ANSWER-BACK DRUM NO. 1 

ANSWER-BACK DRUM NO. 2 

ADDITIONAL ANSWER-BACK 

DRUM ENTRIES 

Figure 4-Long entry with password 

UC 

n -

Figure 6 shows a special entry used to tenninate a 
validation file; it is present in every such file. 

The pennissible range of values for the catalog and 
scratch storage parameters is from one to approxi
mately 65 million words. The presence of a zero is a sig
nal to use the default file parameter, and the presence 
of all ones is a signal to use the absolute system maxi
mum of approximately 68 billion words. It was felt that 
6,1) million words was sufficiently large to make any 
gradations' between that and the absolute maximum 
meaningless. The running time parameter is stored in 
the fonn of the base two logarithm of the value supplied 
to the validation program, and ranges from one second 
to approximately four hours. 

Table I lists the validation commands together with 
a brief description of their functions. 

Table I-List of validation commands 

AG-Add a group 
DG-Delete a group 
CG-Change a group 
PG-Print a group 
A U-Add a user number 
DU-Delete a user number 
C U -Change a user number 
PU-Print a user number 
AD-Add a default file entry 
DD-Delete a default file entry 
CD-Change a default file entry 
PD-Print a default file entry 
VI-Accept input from a validation source file 
VO-Direct output from print commands to a 

data file 
EX -Exit from the validation program 
UC--8pecify a user code 
P R--8pecify pennissions 
LT--8pecify legallog-on times 
RT--8pecify maximum running time 
CS-Specify maximum catalogued file storage 
SS-Specify maximum scratch file storage 

AA -Add an answer-back drum sequence 
DA -Delete an answer-back drum sequence 

0 I 6 I 
vlORD COUNT THIS ENTRY 

COf1MON ANSNER-BACK DRUM NO. 1 

COMMON ANSNER-BACK DRUM NO. 2 

ADDITIONAL COMMON 
T -ANSWER BACK DRUM ENTRIES 

Figure 5-Group validation record 

0 



777 777 777 

Figure 6-Validation file terminator 

REFERENCES 

1 J G KEMENY T E KURTZ 

Flexible User Validation Language 671 

The Dartrnouth time-sharing cornputing systern 
National Science Foundation Final Report April 1967 

2 T E KURTZ 
The rnany roles of cornputing on the carnpus 
Proc S J eel 969 

:3 J DANVER J ~EVISON 
Secondary school use of the tirne-shared computer at 
Dartrnouth College 
Proc S J eel 969 





Project IMPRESS: Time-sharing 
in the social sciences * 

by EDMUND D. MEYERS, JR. 

Dartmouth College 
Hanover, New Hampshire 

INTRODUCTION 

Assuming that one has access to a large, general-purpose 
time-sharing system, social scientists would like to have 
several computational resources. First, large quantities 
of data should be easily accessible on-line. Second, it 
should be possible to retrieve and statistically analyze 
these data without being a skilled programmer. Third, 
undergra~uates should be able to become involved with 
data analysis, and the involvement should be accom
plished with relative simplicity. Finally, faculty should 
be able to carry out their empirical research-no matter 
how complex-with equal simplicity. 

One of the major functions of Project IMPRESS is 
to design and implement such a social science package 
on the Dartmouth time-sharing system. The IMPRESS 
system may be viewed as twenty or thirty interrelated 
computer programs in BASIC and time-sharing For
tran, yet it is more than that. The system is an interface 
between the data and the social scientist; that is, the 
user may identify data files and variables by their 
customary labels, and the system will· translate this 
information into file calls, etc. Furthermore, the ~ystem 
is designed to fetch and reduce raw data as efficiently as 
possible in order to minimize the burden placed on the 
time-sharing system. 

It is often frustrating to examine a new system, 
since the reader is not always clear as to what is day
dreaming, what has been designed, and what has been 
implemented and debugged. With respect to the present 
Project, a prototype system has been fully operational 
for some time. The actual IMPRESS system has been 
designed, implemented in part, and is in stages of 
debugging and expansion. 

• Project IMPRESS (Interdisciplinary Machine Processing for 
Research and Education in the Social Sciences) is supported by 
a grant from the Carnegie Corporation. 

A sample problem 

Perhaps the discussion of the task and the solution 
would be more clear-especially to those lacking experi
ence in empirical data analysis in the social sciences
if we start by looking at a sample problem. 

As a sociologist, I have certain interests concerning 
the nation's population. So, for a typical data file, let 
us consider the l-in-l0,000 sample of the 1960 U. S. 
Censuses of Population and Housing. This file is avail
able on IBl\1 cards from the Census Bureau; each card 
represents a single person, and there are 17,939 cards in 
the sample. In round numbers, we are considering 
eighty pieces of information for each of 18,000 persons 
or 1,440,000 numeric values to be stored, retrieved, and 
manipulated. With respect to most of these data, the 
numeric values represent nominal codes; for instance, 
zero might represent males, and unity would represent 
females. 

Given data of this sort, what sort of analysis is de
sired? In simplistic terms and merely for the s~ke of an 
example, one might be interested in the associations 
among income, occupation, and education. In addition, 
it should be rather obvious that either sex or race or 
both might seriously affect the associations. For ex
ample, given certain levels of education, do blacks obtain 
the same types of jobs and/or income as do whites? 
In order to determine whether blacks are "over
educated" for the jobs they obtain, one would want to 
construct a contingency table which included the rele
vant variables. 

The two-stage system 

Now, let us compound the problem by posing the 
empirical question to students in an introductory 
sociology course. What will happen when one hundred 
students attempt to use the file? In order to be certain 

------------------------------------ 673---------------------------------------



674 Spring Joint Computer Conference, 1969 

that the load these students add to the time-sharing 
system is not fatal, it is mandatory that data retrieval 
and analysis be accomplished by means of a two-stage 
system. 

With very little thought, the individual can recognize 
that he is interested in an examination of five variables, 
as follows: 

1. Income (7 categories) 
2. Occupation (10 categories) 
3. Education (5 categories) 
4. Sex (2 categories) 
5. Race (2 categories) 

Consider the complete cross-classification of all five 
variables; this would produce a table cont:::ining 

7 X 10 X 5 X 2 X 2 = 1,400 cells. 

By reading the raw data once and reducing this very 
large file to the quite managable one containing 1400 
values, it is rather easy to write programs to obtain 
two-variable or three-variable tables from the five
variable table. Specifically, it is accessing the storage 
devices which is highly time-consuming and a potential 
burden to time-sharing. Notice that once the 14OO-cell 
tabulation is obtained, the individual may be occupied 
for thirty minutes in the analysis of the smaller tables 
which are simple reductions from the large one. He is 
doing exactly what he wants to be doing-examining 
the various relationships among five variables, taken 
two, three, or even four at a time-while imposing a 
lighter-than-average load on the system. * Notice fur
ther that, should this much accessing of storage be a 
burden on time-sharing, the instructor can perform the 
data reduction and then send his multitude of students 
off to teletypes to work with the small 1400-cell tabula
tion.** 

The imposition of the two-stage system upon the 
student or the researcher appears at first glance to be a 
limitation. Actually, this is not the case. Typically, 
given a clear statement of the substantive question, 
the social scientist can formulate a brief list of variables 

* Logically, there are 325 possible tabulations which could be 
obtained from the given 1400-0011 table. Of course, there may be 
only a dozen or so which are meaningful or of interest. 

** With a modest amount of ingenuity, this approach need not 
be a boring exercise. Suppose the instructor poses a substantive 
question and then provides a reduced table consisting both of 
relevant variables and of a few which appear to be interesting 
but are actually irrelevant to the original question. The chal
lenge is still inherent in the task, and each student has the ex
perience of attempting to answer a substantive question by 
examination of empirical data. 

which he suspects are relevant to the question. If exam
ination of one or more of the sub-tabulations obtained 
in the second portion of the two-stage system indicates 
the desirability of including additional or different 
variables, one can always return to the beginning and 
start again. 

Technical details 

Having treated our project in a rather superficial 
manner in order to give some indication of the nature 
of the task, I would like now to examine some of the 
technical details. 

First, the storage problems which face social scien
tists should be clarified. If the Census file of 1,440,000 
numeric values is to be considered as average; then 
roughly one hundred data files of this magnitude should 
be available on-line in the time-sharing system.* (1) It 
is necessary to obtain a storage device which is large 
enough to hold this much data and fast enough· to 
retrieve it promptly, and it is necessary to load the data 
into the storage device. This is not a major problem, 
since several acceptable devices are on the market; 
loading the unit need be done only once, and no one is 
especially concerned about the execution time of "once 
only" tasks. (2) Reading from the storage device during 
time-sharing is a serious concern. The two-stage system 
is one means of reducing this problem; efficient means 
of storing and retrieving data in order to obtain fur
ther reductions are discussed below. (3) The speed of 
the output device (a teletype operating at ten characters 
per second) appears to be a serious limitation to those 
social scientists with batch-processing backgrounds; 
when one is accustomed to generating masses of paper, 
the slowness of the teletype is irritating. On the other 
hand, as the scholar learns to ask for only those values 
in which he is interested and when-due to the time
sharing environment-he has the option of asking for 
other values immediately if he should change his mind, 
the output problems tend to become negligible. ** 

Second, the development of a time-sharing system 
for social scientists is partiCUlarly dependent upon (1) 
simple, powerful, and flexible file-handling capabilities 

* There is considerable variation in the size of data files in the 
social sciences. For example, in the present holdings in the 
Sociology data library at Dartmouth, there are forty-five files, 
Sample sizes range from N = 115 to N ~ 20,345, with the 
mean N = 2,190. The number of cards per observation (which 
may be misleading, since the number of columns used varies 
extensively) ranges from 1 to 20, with a mean of 5.9. 

** Furthermore, if extremely large quantities of output are 
unavoidable, as in a large stepwise regression procedure, it is 
always possible to by-pass the teletype and obtain the output 
via the on-iine printer at 1200 lines per minute. 



and (2) the capacity to chain from one program to 
another. Both capabilities are available in the Dart
mouth-written time-sharing executive for the G. E. 635. 
As one should be able to see already, the nature of the 
processing tasks require either large amounts of memory 
or the capability of segmenting tasks by chaining from 
one routine to another. 

N ow we can consider the details of the total process 
in terms of three distinct steps: (1) data storage, (2) 
data retrieval and reduction, and (3) data analysis 

Data storage 

Looking back to the' card form in which we obtained 
the sample data from the Census Bureau, it is observed 
that each card column contains a single punch. Since, 
including "blank,'? there are thirteen possibilities in any 
card column, it is ridiculous to waste a 36-bit machine 
word on each individual datum. Four binary bits are 
more than sufficient to handle thirteen possibilities; so 
the 4-bit grouping is our basic unit of analysis. The 
grouping of four binary bits is equivalent to a semi
byte or a "nibble." There are nine nibbles to a machine 
word; by packing data irt this form, we increase the 
effective capacity of the storage unit by a factor of nine. 

More by chance than by design, there are certain 
advantages to working with the nibble. Thus far in the 
discussion, we have limited consideration to nominal 
data which can be contained in a single card column or 
in a single nibble. Of course, we want our system to be 
able to treat annual income, population, I.Q. scores, 
and other continuous or multi-column variables. Using 
a one-for-one translation from card columns to nibbles, 
a nice pattern emerges after the single nibble. The left
most or high-order bit is never used to record the nu
meric value. Therefore, this bit may be used as a sign 
bit. 

~ umber of Largest 
Decimal Decimal 

Binary Equivalent 
(grouped by: nibbles) 

Digits Value 

2 
3 
4 
5 
6 

99 
999 0011 

9,999 0010 0111 
99,999 0001 1000 0110 

999,999 0000 1111 01 00 0010 

0110 
1110 
0000 
1001 
0011 

0011 
0111 
1111 
1111 
1111 

As a practical limit, it was decided that a signed s~
digit field will represent a maximum; for most of the 
work done in the social sciences, six digits is more than 
sufficient accuracy. Furthermore, by storing the assumed 

Project IMPRESS 675 

location of the decimal point as part of the header 
record for the data file, one obtains the final degree 
of flexibility required in this scheme of data storage. 
In sum, the use of the nibble 3;S the basic unit permits 
the storage of either single-column nominal data (with 
24 = 16 possible categories) or multiple-column con
tinuous data consisting of signed, rational values up 
to six digits in width. 

Another advantage of this scheme emerged by chance 
and not by design. The Dartmouth time-sharing system 
automatically creates file buffers of 0.5 K. Since we 
effectively increase everything by a factor of nine, 
these buffers appear to us to contain 4,500 nibbles each. 
It turns out that the first six counting numbers are 
each integer divisors of 4,500; so-in unpacking the 
data-we are never left in the awkward position of 
having one portion of a multiple-nibble value in core 
with the remainder about to be read into the buffer 
with the next access of the storage unit. 

One of the questions frequently raised by my col
leagues concerns the local "political" decision of which 
data are to be stored on-line in the storage unit. The 
present plan is to utilize approximately two-thirds of 
the available storage for "classic" data files obtained 
from the various data archives. The balance of available 
storage will be allotted to individual research projects 
as needs arise. By using magnetic tape back-up for 
infrequently used data files, it should be possible to 
service the large majority of requirements without 
delay. Except during the very busiest time-sharing 
hours, one should be able to retrieve even the most 
obscure file in less than one hour. 

One of the key issues which had to be faced was the 
format in which data are stored. There are two possi
bilities: bucket format and vat format, where one is 
simply the matrix transpose of the other. Bucket format 
is typical of most counter-sorter operations; the record 
(the IBM card) represents a respondent. Vat format 
is less widely used; there, the record represents a vari
able. Consider the advantages of each format type in 
terms of social science needs in a time-shared environ
ment. 

For many research problems and almost all pedagogi
cal work, vat format is the obvious choice. Since each 
record represents all respondents for a single variable, 
every numeric code transmitted from the memory unit 
to the C.P. U. is utilized in the construction of the 
cross-classification table. Since there is no "excess 
baggage," it is extremely efficient. In the example with 
Census data, given the file structure and the buffer 
size imposed by the system, the five-variable table can 
be constructed via twenty accesses of the storage unit 
if vat format is utilized; to perform the same operation 



676 Spring Joint Computer Conference, 1969 

in bucket format would require 320 accesses of that unit. 
Since most of the work to be accomplished can be done 
in this manner, it is obvious that vat format is desirable. 

After becoming involved with all of this, we discovered 
some serious limits to the use of vat format. At the 
moment, there is a system-imposed limit of eight files 
which may be opened by any user at any point in time. 
For a certain class of problems, this is unreasonably 
small. Consider the researcher working with dichoto
mies; he would be limited to an eight-variable tabula
tion at 28 = 256 cells. If it were not for the eight-file 
buffer limit, we could easily handle a twelve-variable 
tabulation or 212 = 4,096 cells" Indeed; techniques are 
described below which permit even more variables to be 
included. 

Because of the system-imposed limit on the number 
of open files and because of the need to have available 
numerous variables simultaneously, it appears that 
data must be stored in bucket format as well as in vat 
format. With many mass storage devices (especially 
the ones which are extensively electromechanical in 
design), file security requires duplication of all records. 
The obvious solution is to have one of the copies be in 
bucket format and the other in vat. Of course, there is 
a cost to be paid for this; should a read failure occur in 
one format, it will be time-consuming to perform the 
matrix transpose from the other format before the task 
can be accomplished. * 

In addition to storage of raw data, it is necessary to 
maintain header files containing relevant parameters 
for each variable in every study on the system. Before 
going to the details of the header files, it should be 
mentioned that a problem was encountered in effi
ciently relating header information to the raw data. 
Specifically, we found that we could not customarily 
use the data in the form in which we obtained them. 
Of course, it is important to maintain the data in the 
rawest possible state; however, it was necessary to re
code all nominal data such that the single-nibble codes 
started with zero and continued in sequence. Obviously, 
this adds significantly to the burden of data prepara
tion: again, since this is a "once only" task for each data 
file, it appears to be the most efficient approach. 

Within the present time-sharing system, there are 
three types of files: (1) pure numeric files, (2) pure string 
files, and (3) "teletype" files. The numeric and string 
files are relatively strict in structure, but they permit 
random access operations within files. A teletype file 
is quite flexible, may contain a mix of numeric and 

... The alternative solution to the task (double storage of bucket 
files and double storage of vat files) is even more costly, since 
this would cut in half the amount of data which can be main
tained on-line. 

string data, and must be treated serially. For most of 
the work, the best approach is to look at a numeric 
file and a string file in tandem. Category names, such as 
"blue collar" and "white collar" are stored in string 
files, and code values are stored in the corresponding 
numeric files. As simple points of information, the 
reduced data file (the five-variable table in the example) 
is stored in a teletype file, for it is necessary to include 
certain string variables along with the numeric cell 
frequencies. The raw data are stored in pure string 
files; while the data are logically numeric in nature, 
string files are used in order to accomplish the packing 
and unpacking of nine nibbles in each machine word. 

Looking at all of the files in logical order, the first is 
a file containing the names of studies available on the 
system. While the user may identify the study of in
terest to him by name, the system can obtain the code 
name of the header file for that study from this first 
"table of contents" file. For each study, there are files 
containing the names and locations of variables con
tained in the study; in addition, there are header files 
for each of these variables. The important feature of 
this complex of file structures is that the student or the 
researcher working at a teletype may refer to studies, 
variables, categories within variables, etc., by meaning
ful labels; from these labels, the system can find in the 
header records the corresponding encoded location of 
the items requested. Thus, one avoids the customary 
irritation imposed upon the researcher and the total 
confusion imposed upon the student; no one ever en
joyed thinking about the 3-punch in column 62 of card 
5, and we are happy to be done with this approach. 

As indicated above, all data are stored in the rawest 
possible state so that the user may tap whatever rich
ness of data exists. However, it is rare that one has any 
use for the raw data. For example, consider the 3-digit 
code which the Census Bureau provides for occupa
tion ... 

000 Accountants and auditors 
010 Actors and actresses 
012 Airplane pilots and navigators 

985 Laborers (not elsewhere classified) 
995 Occupation not reported 

The code numbers have no intrinsic value, and there are 
f~r too many of them to use in a tabulation. Therefore, 
header records are maintained in which are stored those 
numeric parameters and those string-variable labels 
necessary in order to reduce occupation to either a 
"standard group" or to a "standard dichotomy." For 



example, the following information permits translation 
of the raw 3-digit code into a "standard group" ... 

Punches 

000-199 
200-249 
250-299 
300-379 
380-399 
400-599 
600-799 
800-809 
810-899 
900-959 
960-994 
995-999 

"Standard Grouping" for Occupation 

Professional, technical, and kindred workers 
Farmers and farm managers 
Managers, Qfficials and proprietors (excluding farm) 
Clerical and kindred workers 
Sales workers 
Craftsmen, foreman, and kindred workers 
Operatives and kindred workers 
Private household workers 
Service workers (excluding private household) 
Farm laborers and foremen 
Laborers (excluding farm and mine) 
Occupation not reported 

The obvious solution to this 3-digit mess-using the 
hundreds digit to identify groups-is inoperable; for 
example, there are 200 possibilities for "Operatives" 
and only ten for "Private household workers." Thus, 
the header records are used to reduce occupation to a 
"standard group." In like manner, the header records 
contain the information necessary to reduce occupation 
to the "standard dichotomy" of blue collar-white 
collar. * 

Data retrieval and reduction 

. Having a variety of social science data files available 
on-line in a time-sharing system is not a particular 
advantage unless one can retrieve and manipulate these 
data with ease. First, the point has been made that
within a data file-the user can work with only a subset 
of available variables at anyone time. The selection 
process is more complex than this, for there should also 
be the capability of selecting a subset of observations. 

One class of selection procedures is statistical sam
pling. This is particularly useful for pedagogical purposes 
and includes (a) systematic sampling, (b) simple ran
dom sampling, with or without replacement, and (c) 
stratified sampling. Another group of selection methods 
involves the definition of subsets; for example, with 
reference to the CenSus file, one might be interested in 
examining data for all adult :Negroes living in the south. 
Mechanisms for logical inclusion and/or exclusion-at 
either point .in the two-stage system-are imperative 

• Actually, some "standard dichotomies"-such as the example 
here, occupation-are treated as trichotomies. Since roughly 
half of the population is not in the labor force (housewives, 
children, retired persons, etc.) it is necessary to have a third 
category for this "dichotomy": not in labor force. 

Project IMPRESS 677 

for social scientists. A third selection device is needed 
to retrieve a specific datum; when observations can be 
identified (which is not the case with Census data, 
since respondent anonymity is well-protected), the 
datum for a specific variable for a specific respondent 
is retrieved. 

To summarize, there are a variety of selection devices. 
The user selects one data file from those available, and 
he selects a subset of the variables contained within 
that file. Furthermore, he may institute a sampling 
procedure, and he may define logical subsets via inclu
sion and/or exclusion. Finally, he may select a specific 
datum for retrieval. 

In the retrieval and reduction phase, as was suggested 
above, the user may utilize either the "standard group" 
or the "standard dichotomy" built into the header 
record. These are devices for grouping raw data into 
more meaningful, manageable categories. However, the 
groupings provided by the system may not be suitable 
to the needs of a particular individual. With respect to 
categorical data, there are options for re-mapping or 
re-grouping of variables according to the user's needs. 
In addition, he may combine several existing variables 
and define a new computed variable. For example, 
income, occupation, and education might be combined 
to form a measure of socioeconomic status. * With 
respect to continuous variables, certain transformations 
(addition/subtraction . of a constant, multiplication/ 
division by a constant, log transformation, etc.) are 
available as standard functions. Although the array of 
data-manipulation devices currently available may not 
be exhaustive (even if this is our goal), that array 
clearly is suitable to the large majority of demands made 
of the syst~m. 

Tangential to the question of devices for data manip
ulation, the user may maintain a private file of re
mapped variables, new computed variables, and trans
formed variables. At that phase of execution of the 
system when he is asked to identify variables and their 
mapping mode, the user can direct the system to his 
private file to obtain the data-manipulation devices 
defined there. This technique not only eases the user's 
task; it also both ,reduces the chance of error ·and pro
vides consistency from one run to the next. 

Thus far, the task of data reduction has been viewed 
as the construction of a large cross-classification table. 
Actually, there are three devices for data reduction: 
(1) cross-classification tables, (2) sums, sums of squares, 

• In the 1960 Census data, there already is a combined measure 
of socioeconomic status provided by the Census Bureau. In this 
instance, the ability to generate a computed variable would be 
useful if the individual wanted a measure of socioeconomic 
status different than the one provided. 



678 Spring Joint Computer Conference, 1969 

and sums of cross-products, and (3) the combination of 
both. Each of these is discussed in some detail, as 
follows: 

(1) Cross-classification tables provide a device for 
reducing large quantities of raw discrete data to a file 
small enough to be manageable in time-sharing mode. 
Specifically, we want to accomplish a reduction to 
4,000 cells or less. Let it be clear that no one would 
really want to see the table with 4,000 cells; of interest 
are the numerous possible sub-tables which can be 
quickly generated from this massive one. It is a curious 
phenomenon, therefore, that some feel seriously re
stricted by such a limit. However, when the sample 
size is less than 4,000 observations, instead of entering 
cell frequencies into the working file, it is more efficient 
(in tenl1S of information transmitted) to enter the cell 
number of each observation. ** The generation of a table 
apparently so complex sounds as if it is not worth the 
effort, yet it is important to remember what is being 
accomplished by such a procedure; more information is 
being tapped per (time-consuming) access of the storage 
device. Since the working file can be saved, it could be 
days or weeks until such a large quantity of information 
is exhausted of content. The limitation to this approach 
is that it is a viable one only if the sample size is less 
than 4,000. 

(2) Generation of swns and SUH1S of squares and 
cross-products is a second device to reduce masses of 
raw data. From such a reduced file, one can perform 
correlation analysis, regression analysis, factor analysis, 
etc. t For instance, the simultaneous examination of 
fifty or sixty variables is not an unreasonable task. The 
difficulties encountered in this area are concerned with 
issues other than magnitude. 

It is often the case that our data are incomplete; if 
someone chooses not to answer an item on a questi~n
naire, there is no way to extract the data from him. In 
practical terms, what can be done when that respond
ent's data are processed~ One possibility is to discard the 

** That is, suppose one wanted to construct a cross-classification 
table from 17 trichotomous variables. This represents 129,140,-
163 cells. If the sample size is less than 4,000 then one might 
generate a working file consisting of less than 4,000 such that 
each entry represented a cell number (ranging from zero through 
129,140,162). Note that "bucket" format would be necessary 
for a task of this nature. 

t It can be argued that analysis of variance, regression analysis, 
analysis of covariance, and other procedures are special cases of 
the general linear model [James Fennessey, "The General Linear 
Model: A New Perspective on Some Familiar Topics," American 
Journal of Sociology, 74 (July 1968), 1-27]. While this notion 
cannot be challenged in theory, it is clear to us that-in terms 
of the mundane task of data retrieval, reduction, and analysis
such an approach is not practical. 

entire observation whenever one or more items of data 
are missing; customarily, this means a loss of at least 
fifty percent of the sample. Another possibility is to 
insert the mean from observations without missing data; 
although this approach takes advantage of all existing 
data and minimizes bias introduced, it creates havoc 
with respect to customary statistical techniques. A 
third approach is to replace missing values with random 
variates generated from a distribution comparable to 
the one observed with those data which are not missing; 
in subsequent multivariate procedures, one finds the 
covariance unnecessarily decreased. A fourth approach 
is to carry out repeated large regression analyses on 
existing data in order to predict values for missing data; 
here, one is bound to encounter almost all of the pitfalls 
and disadvantages of regression analysis. A fifth possi
ble approach is being explored and involves the genera
tion of sums and sums of squares and cross-products 
everywhere that data are available. Of course, a vector 
(for the sums ) and a matrix (for the sums of squares 
and cross-products) of subs ample sizes must be generat
ed. There are serious statistical problems with this 
approach, but we are convinced that this is the most 
fruitful avenue to explore. 

The second major problem with continuous data can 
be a serious one. If the individual is interested in exam
ination of residuals in multiple linear regression analysis, 
then a second accessing of the raw data is required. It 
is mathematically impossible to compare predicted and 
observed values (at the level of the observation) from 
summary data; so examination of residuals forces a 
second reading of raw data. 

(3) The combination of categorical data (cross
classification tables) and continuous data (sums and 
sums of squares and cross-products) represents analysis 
of variance problems and multivariate attribute analy
sis with dependent means. In combining the approaches 
of the first two reduction techniques, we are actually 
combining their limitations and problems. Work will 
not start in this area until the first two reduction devices 
are operating smoothly. 

Now that we have covered-even if with brevity
the major points of data storage, retrieval, and reduc
tion, let us summarize some important ideas in order to 
make an· additional point. Data are stored in two for
mats, bucket and vat. Retneval-reduction may be 
accomplished in three major ways, and there are several 
alternatives within the main ones. It is the responsi
bility of the system and not the user to determine which 
combination of alternatives is the most efficient to 
utilize. Since the working file can be in one of several 
forms, the first item in the file is a key to the form 
utilized. Only the highly sophisticated user will ever 



know that these alternatives exist; the more typical 
user will never know about these considerations. 

Data analysis 

There are three major approaches to the q~estion of 
analysis of data, once retrieved and reduced: (a) a 
standard teaching package, (b) a standard research 
package, and (c) an open-ended approach. 

The teaching package consists of a library of conver
sational-mode programs designed to lead the student 
through the process of data analysis. These are not 
Computer-Assisted-Instructional programs; rather, 
they are simply conversational-mode routines. The 
student is asked-for instance-whether he wants 
tables percentaged horizontally, vertically, or not at 
all; whether he wants to examine expected cell values, 
the matrix of differences between observed and expected 
cell values, or neither; what level of measurement 
(nominal, ordinal, etc.) his data represent and whether 
he wants a measure of association appropriate to that 
level, etc. We have attempted to design these programs 
so that the student has the opportunity to make bad 
decisions; wherever possible, we remind him of w hat he is 
doing with brief, diplomatically-phrased statements. 
Also, we consciously limit the beginning student to a 
very few, widely-accepted measures of association so 
that he will become familiar with data analysis and the 
process of posing substantive questions to empirical 
data; there is no point in terrorizing him with the multi
plicity of possible measures and techniques which are 
less than widely accepted and used. Furthermore, as 
he attains a certain level of sophistication and grows 
weary· of the time-consuming conversational-mode 
programs, he is free to turn to the research package. 

The research package is a series of programs like the 
teaching package, but the routines provide more of the 
diversity of available methodologies and also avoid the 
conversational mode (in the sense in which it is used in 
the pedagogical programs). The intent of the research 
package is to provide the most information in the least 
amount of teletype time. The problem encountered here 
is to find the right balance of information transmitted 
and time taken to do so. That,is, one could devise a 
routine for the analysis of bivariate contingency tabula
tions which would provide every known measure of 
association and every possible significance test, yet the 
teletype time required to print out all of these values 
would be such that no one would want to use the pro
gram. Thus, the research package is designed to keep 
most of the users happy most of the time. 

Finally, there is an open-ended approach available to 
sophisticated users so that they may devise their own 
analysis programs. In essence, such persons are taking 

Project HvlPRESS 679 

the working file and doing their own progranuning. 
The individual who wants to use some technique or 
some measure which is too bizarre to be included in the 
research package still has the opportunity to get his 
work done within our system. Also, the researcher 
working on new techniques and new measures can 
write his own programs and then apply them to the 
diversity of data files available on line. Providing 
this open-ended analysis option is trivial for the systems 
designers, and its availability provides true flexibility 
to those using the system. 

CONCLUDING REMARKS 

Vil e have attempted to build a data storage, retrieval, 
reduction, and analysis system which provides the 
benefits of time-sharing computation to social scientists. 
The researcher can perform sophisticated, complex 
manipulations of his data with a minimum of time, 
energy, and system familiarity. Through the very same 
vehicle, the beginning student can-in a somewhat 
limited but guided manner-experience the activities of 
the researcher in working with empirical data. There 
are several important implications of such a system. 

First, with even a modest amount of initiative on the 
part of our students, we will experience significant 
challenges in our lecturing. That is, when a student 
reads that thus-and-so is true or hears in a lecture that 
something is true and is not personally convinced, he 
will have the capability to test with empirical data the 
statement in question by investing fifteen minutes or 
less of his time at a teletype. It is conceivable that the 
availability of the system described in this paper will 
contribute to an intellectual dialogue between faculty 
and student. 

Second, because time-sharing reduces turn-around 
time to zero (by definition), the researcher will be able 
to interact with his own data. In a batch processing 
system, by the time the necessary control cards are 
punched and the routines executed and the output 
examined, it is almost possible to forget some of the 
details of the hypotheses being tested. In a t~e-sharing 
social science package, the results of one run might 
easily suggest or dictate the substance of the subse
quent run. As the researcher or the student has the 
substantive question in mind, he can explore what 
happens to initial relationships as various controls are 
introduced. 

Third, when the user is doing original work with So 

particular data file and encounters an unusual or unique 
relationship among certain variables, he will be able to 
attempt to replicate his findings by generating compa
rable runs on other data sets. As has been repeatedly 
noted in recent years, one of the important advantages 



680 Spring Joint Computer Conference, 1969 

of having data libraries in the social sciences is the 
ability to try to replicate tentative results without the 
tremendous expense of returning to the field to acquire 
more data.* 

* This is a matter of serious concern to the social scientist, since 
he does not have the laboratory and the small army of laboratory 
assistants to attempt replication for him (usually in a relatively 
short period of time and at a modest cost). To repeat a large 
survey research effort would require tens or hundreds of thousands 
of dollars and months or years of time. 

Finally, it is the case that work which would have 
required days or weeks of time with more traditional 
techniques (such as the IB::\{ 101 Electronic Statistical 
}Iachine), even if carried out by a skilled Ph.D., can 
now be accomplished in roughly thirty mL~utes by an 
intermediate-level undergraduate working at a teletype. 
What was once a research project is now a small assign
ment to be carried out by undergraduates. 



Secondary school use of the time-shared 
computer at Dartmouth College 

by JEAN H. DANVER and JOHN M. NEVISON 

Dartmouth College 
Hanover, New Hampshire 

INTRODUCTION 

Soon after the firs,t Dartmouth Time-Sharing System 
began operation in May of 1964, the local high school 
installed a teletype. Within two and one-half years, 
eight high schools had tied into the Dartmouth System. 
The effects were startling. Hundreds of students were 
taught the BASIC language. Some of them produced 
highly sophisticated programs. Teachers were using 
computer applications in mathematics and science 
courses. These effects convinced Dartmouth of the high 
value of computing in secondary education. However, 
the results were not sufficiently examined. There was no 
documentation on recommended procedures nor written 
units of classroom applications. Therefore, in the spring 
of 1967, Dartmouth College proposed that the National 
Science Foundation support work in developing, ex
panding, sharing, documenting, and publishing the 
results of computing experience in secondary schools. 

This proposal was accepted and funded in part by the 
National Science Foundation. * Eighteen secondary 
schools are now involved with the College in this two 
and one-quarter year project begun in June, 1967. 

The main purpose of the project was stated in the 
project proposal: 

". .. to demonstrate the large-scale use of the 
computer as a broad aid to secondary education 
without requiring major curriculum changes or 
extensive teacher retraining. Through materials to 
be developed cooperatively with the participating 
schools, we expect to show the value of computing 
as an aid to course teaching in many subjects, and 
as a significant mechanism for extracurricular 
education of students .... 

These materials ... will provide important guide-

• Funded under the terms of Grant NSF GW-2246. 

lines for the development of the potential of 
computers in secondary education on a broad 
front." 

The project was designed to meet the following 
objectives: 

• To demonstrate that computing can be useful in 
teaching other high school subjects as well as 
mathematics. 

• To demonstrate that computing can encourage 
students to think creatively. 

• To experiment with classroom techniques and to 
suggest practical methods for integrating comput
ing into course work. 

• To publish materials which will serve as guidelines 
for other undertaking projects to develop the po
tential of computers in education. 

These objectives are reviewed in Appendix B. 
In accomplishing the goals of the project, Dartmouth 

became a regional computer center for a group of 
secondary schools. How Dartmouth did this, the costs 
involved, and the effects in the secondary schools them
selves are the main topics of this report. First to be con
sidered is the regional system. 

The system 

The schools 

The project schools are listed in Table I along with 
their location, ninth through twelfth grade school 
population, size of their 1968 graduating class, and the 
percentage of the graduates who went to a four-year 
college. 

There are 12 public schools and six private schools 
spread over a six-state region. This group of schools 
represents a varied sample of American high schools. 
They range from small rural schools to large city 

------------------------------------681 ------------------------------------



682 Spring Joint Computer Conference, 1969 

Table I-High schools participating in Dartmouth's NSF secondary school project 

Grad- Percent to 
Popula- uating It-year 

School Location tion Class College 

* Benjamin Franklin High School New York, New York 3,200 190 47.4 
* Cape Elizabeth High School Cape Elizabeth, Maine 573 116 48.3 
* Concord High School Concord, Massachusetts 1,478 333 37.5 
* Hartford High School White River Junction, Vermont 516 135 24.4 
* Hanover High School Hanover, New Hampshire 679 110 61.8 
* Keene High School Keene, New Hampshire 1,415 284 33.1 
* Lebanon High School Lebanon, New Hampshire 536 152 34.8 
+ Loomis School Windsor, Connecticut 444 100 100.0 
* Manchester Central High School l\1anchester, New Hampshire 1,616 356 41.6 
* Mascoma Valley Regional High School West. Canaan, New Hampshire 456 61 29,.5 
+ Mount Hermon School ~'lount Hermon, l\t'lassachusetts 620 177 99.4 
+ Phillips Academy Andoyer, ~'lassachusetts 860 242 94.6 
+ Phillips Exeter Academy Exeter, New Hampshire 789 252 97.6 
* Rutland High School Rutland, Vermont 1,063 196 32.6 
# St. Johnsbury High School St. Johnsbury, Vermont 701 149 32.2 
+ St. Paul's School Concord, ~ ew Hampshire 458 95 100.0 
* South Portland High School South Portland, I\1aine 1,700 335 50.1 
+ Vermont Academy Saxtons River, Vermont 217 65 95.4 

* Public 
+ Private 
# St. Johnsbury is considered a public school for the purposes of the project. It is the sole high school for the town 

of St. Johnsbury, Vermont. It operates its teletype from 8 a.m. to 4 p.m., Monday through Friday, as do all the 
public schools. Private school hours are 8 a.m. to 8 p.m., Monday through Saturday. 

schools to highly specialized private schools. Six of the 
public schools are large city schools with popUlations of 
over 1,000 students. The rest are smaller rural and 
suburban conununity schools, one of which is in a 
college community (Hanover High School). The public 
schools are less oriented towards higher education than 
the average American school. On the average, just 
under 40 percent of the public-school students go on to 
four-year colleges compared to the 1965 national 
average of 53 percent. Ninety-eight percent of the 
private-school graduates attend four-year colleges. 

Hardware 

The schools are connected to the Dartmouth/G E-635 
Time-Sharing System via long-distance phone lines. The 
majority are utilizing the lVIodel 35 KSR teletype of the 
Bell Telephone System. The schools all had one tele
type installed for the year 1967-68 with two exceptions: 
Mt. Hermon School and South Portland High School 
had an additional teletype installed which they com
pletely supported with their own funds. The 1968-69 

school year should see additional teletypes placed m 
three more schools. 

There were no unusual hardware difficulties experi
enced by any of the schools. }lost operational problems 
were related to the central system at Dartmouth. Con
sequently, they affected all users. 

Teacher training 

The quality and the quantity of the machine usage 
contributes a large amount to the success of any com
puter project. It was felt necessary to have at least one 
teacher in each school who was proficient enough with 
the BASIO language and the hardware to feel at ease 
teaching it to students and fellow teachers. With this 
end in mind, during June of 1967, each school sent one 
teacher to a four-week summer training program at 
Kiewit Computation Center. These initial sessions 
were taught by Mr. John Warren of Phillips Exeter 
Academy. He was an experienced two-year user of the 
Dartmouth computer in a secondary school environ
ment. The teachers were instructed in the BASIC 



Secondary School Use of Time-Shared Computer 68-3 

language and possible classroom applications. They 
also received suggestions on handling teletype break
downs and telephone problems, ~nd on method of ad
ministering student use of the teletypes. 

Our first year documentation shows that these ses
sions were very successful. However, it was found that 
during the school year, few additional teachers learned 
to program the computer. The main reason for this was 
that almost all available "hands-on" time was taken by 
students. Teachers need much more time at the tele
type than students to learn the BASIC language. 
Consequently, Dartmouth decided to hold two two
week teacher training programs during the summer of 
1968. The purpose of these training· sessions was to 
raise the number of teacher users to at least four in 
each school. Four enthusiastic teachers can be much 
more influential with teachers and administrators than 
one. More teacher users should greatly increase the 
classroom use of the computer as well as the number of 
students trained in the language. (Early reports from 
teachers indicate that this is exactly what is happening.) 
A core of teachers should be a big factor in perpetuating 
good computer use in the schools. No matter how 
successful the present students are, they are only 
transients and can have little effect in the continuation 
of their efforts. Teachers, a more permanent part of the 
institution, can. 

Our experiences training teachers have taught us 
several things: 

• Mathematics teachers learn to program a com
puter easier than teachers from any other high 
school subject area. 

• Science teachers, especially those who teach 
chemistry and physics, learn fairly easily; also. 

• Social studies teachers have the most trouble 
learning. 

• Younger teachers learn easier than older teachers. 
• Experie!lced teachers 'are more successful back in 
school than beginning teachers. 

• There are exceptions to all of the above. 

These observations are what one would normally 
expect. Mathematics and science teachers are familiar 
with the kinds of thinking necessary to successfully 
program a computer. Social studies, as it is taught in 
high schools, does not demand this kind of thinking. 
Those who normally teach computer training are mathe
matically-oriented themselves and, hence, are not 
sensitive to the problems encountered by a humanities 
teacher. Younger people are often more adaptable than 
older ones. They are less experienced and hence more 
willing to try new things. We recommend to any schoo] 

who is thinking of obtaining access to a computer that 
they will improve their chances of success by training a 
young, successful mathematics teacher, who does not 
already have extra duties such as department head. 
Then, give him a reduced teaching load so he may ade
quately perform the extra duties involved. 

Special services 

As a regional computer center for secondary schools, 
the Kiewit Center provides a number of special services 
for the teachers and students. Some of these activities 
are designed to help give better computer service. 
Others were initiated to promote project ideas and still 
others are provided just for fun. Special services can be 
grouped in the two categories of problem solving and 
communications : 

1. Problem Solving-The Kiewit staff stands ready 
to assist the schools in any way possible. All 
telephone and teletype malfunctions are reported 
to the Computation Center. Not only can we 
better diagnose problems (which often turn out 
to be at the Center), but we receive faster service 
from the phone company besides. Center per
sonnel are also on hand to solve any questions 
concerning programming or to provide the use of 
peripheral equipm,ent such as the high-speed 
printer, card reader, or card punch. The project 
Coordinator handles any problems associated 
with the project itself. 

2. Communications-Providing communication be
tween the Center and the project members and 
among the members themselves proved to be 
important not only to the success of the project 
but to the success of secondary use as a whole. 
The spreading of ideas serves to test their value 
through repeated trials and to provide motiva
tion for creating new ones. Teachers' time is 
very valuable. They do not have secretaries nor 
mailing budgets. They cannot be expected to 
keep up contacts on their own. Several methods 
were used by Kiewit for providing communica
tion among the Center, the schools, the teachers 
and the students with varying degrees of success. 

These were: 

• Teachers' gossip file-This was a file in the system 
which the teachers couid call up to list or to add a 
message. It was not a very successful communi
cating device among the teachers. They had diffi
culty competing with the students for terminal 
time. When they did find themselves at a terminal, 



684 Spring Joint Computer Conference, 1969 

they did not want to spend the time required to 
list the file. 

• Student gossip file-This is a similar file for stu
dents, but much more successful. They exchanged 
school news and swapped ideas on programming 
problems. 

• Biweekly Bulletin-This is a bulletin published 
every two weeks and sent out to all the schools. It 
includes original students' program descriptions, 
descriptions of teachers' class usage, and other 
items of interest to secondary school users. Most 
student work published in the Biweekly is sub
mitted as entries for the Kiewit Cup Contest. This 
is a contest sponsored by the Center which presents 
citations to individual students who submit out
standing programs and awards a cup to the school 
which "demonstrates the most outstanding use of 
the computer." This contest in 1967-68 served a 
purpose for the project by providing a sample of the 
work the students 'Yere doing on their own. We 
have maintained it through the second year because 
of widespread student interest. 

• Teachers' conferences-Twice each year the Cen
ter holds a Saturday conference for participating 
teachers. These enable all the teachers to get to
gether and discuss problems of common interest 
and hear first-hand about new developments at 
the Center. Common procedures include open dis
cussions, presentation of classroom work, and 
guest lectures. The conferences are very popular 
with the teachers. 

• Student conference-This was a one-day con
ference organized by a group of students and the 
project Coordinator. The students came from all 
the project schools with a teacher. Most of the 
sPeakers were fellow high school students. 

• Teacher newsletters-Letters were sent containing 
information on conferences, school visits, and 
other subjects of interest only to project teachers. 

• Visits to the schools by the Coordinator-These 
proved to be necessary during the first year to en
sure that all was progressing smoothly. Some 
teachers chose not to communicat~ frequently with 
the Center. They would make suggestions and ask 
questions in person, while reluctant to phone or 
write. The visits also gave the Coordinator a 
chance to see personally what 'Yas going on in every 
school and to meet and talk with students. 

Costs 

Table II gives a cost analysis for the schools. It shows 
that the overall cost of a one-teletype operation in the 
1967-68 school year ranged from approximately $4,550 

to $12,260 a year. * It should be noted that actual com
puter time is about 60 to 65 percent of the total cost. 
The remaining costs are telephone charges. 

There is a definite difference in costs to the private 
and public schools; the private costs being higher~ The 
main reason for this is that private schools' teletypes 
are available for student use about 32 hours more per 
week than in the public schools. 

In C, all the examples are of public schools except for 
the typical private school and the highest cost school. 
I t should be noted that among the private schools, the 
range in computer costs is only $573.36 while the range 
in overall costs is $2,230.87. All these schools are using 
their terminals at close to the same number of hours and 
effectiveness. The cost difference comes with communi
cations, which is a function of the distance from the 
Kiewit Center. At the present time, differences in 
school population are not reflected in cost or usage. 
With just one teletype, it does not take very many 
high school kids to keep it going all of the available 
time. 

I t should be noted that the trend at Dartmouth, as in 
other time-sharing installations, is towards lower com
puter rates. In the fall of 1968, Dartmouth's rates for 
computer time were reduced approximately 40 percent 
for the secondary schools. This should reduce the over
all charges by a factor of 25 percent for the 1968-69 
school year. Also, under development are various 
methods for combining several teletypes on one tele
phone line. This seems to indicate that communications 
costs will also lower. 

The project's overall computer costs are somewhat 
misleading. Some of the schools are a long di.stance 
away. Under normal circumstances they would be tied 
into a closer installation. Also, the current rates reflect 
the costs of SOffie of the special services Dartmouth 
provides and the small number of commercial users on 
the system. 

According to 1965 salary figures for the states in
volved, a Dartmouth teletype connection last year 
cost $200 to $1,500 a year more than the average 
teacher. Is it worth it? To answer that question, we 
should look at what is happening in the schools them
selves. 

The schools 

To answer the question "Is it worth it?" we have to 
look at the average pigh school student sitting at a tele-

* It should be noted that the actual cost to the schools ranged 
from $0 to $5700. Sixty-five percentof the total computer and 
communications costs were financed by the NSF and Dartmouth 
College. 



Secondary School Use of Time-Shared Computer 685 

Table II -Cost figures for the secondary schools 

A. Average Cost (9-month year) * 
Overall cost 
Communication (tty) 
Computer 
Overall cost/hour 
Actual cost/school/terminal 
Actual cost/hour/terminal 

B. Average Usage 
Number of users/month 
Terminal hours/month 
Terminal hours/user/month 

Public 

$6,226.69 
$2,536.34 
$3,690.35 
$ 4.94 
$1,563.39 
$ 1.24 

68.90 
139.92 

2.03 

C. Examples of Overall Yearly Cost Per Terminal * 

School Communications 

Lowest $1,366.00 
Highest $3,335.32 
Typical Private $3,901.65 
Small Rural Local $1,417.86 
City $2,923.51 
Suburban $2,509.38 

Private 

$8,912.63 
$3,119.21 
$5,793.42 
$ 5.34 
$4,280.09 
$ 2.57 

127.00 
185.36 

1.46 

Computer 

$3,275.40 
$8,921.18 
$6,169.23 
$3,402.22 
$3,848.76 
$3,603.57 

Combined 

$ 7,074.88 
$ 2,720.40 
$ 4,354.48 
$ 5.07 
$ 2,469.47 
$ 1.77 

88.30 
155.07 

1.75 

Overall 

$ 4,541.40 
$12,256.50 
$10,070.90 
$ 4,820.08 
$ 6,772.27 
$ 6,112.95 

* 1967-68 figures. 1968-69 figures will be about 30 percent lower. 

type. When the student acts creatively and intelligently 
then the computer can be a creative extension of his 
intellect. Why is this so? If something is to be produced, 
he must teach the machine to produce it. The value of 
Dartmouth Time-Sharing to the student is in direct 
proportion to the value of the tasks the student sets for 
the machine. The computer, when used well, can serve 
as a catalyst in releasing his creativity. 

The use of the Dartmouth computer in the project 
schools as a rule in no way relates to what has commonly 
been termed CAl (Computer-Aided Instruction). In 
our case the student takes complete control of the 
machine. The success of this project hinges on what 
the student does with the computer, not what the com
puter does with the student. 

Getting the students started 

Each school introduced BASIC to the students in 
their own way. Several good write-ups on these different 
methods are included in the Top:c Outlines. * 

• See Appendix A. 

While teaching students to use the computer, some 
interesting observations were made: 

1. Students need only about 20 minutes per lecture 
or about two hours total terminal time to learn 
to use the machine (compared to 20 hours for 
teachers). 

2. Whole courses devoted to programming are 
obsolete. Students are more successful working 
with their own problems. They learn BASIC so 
quickly that any necessary instruction time is 
easily included as a topic in a standard high 
school course. There are courses taught in some 
of the project schools which are computer ori
ented. However, these courses do not stress 
computer techniques. Rather, they present 
math best taught with the aid of a computer. 

3. Time spent teaching BASIC in many regular 
courses was not time lost. Teachers found that 
they actually covered more material by the end 
of a term. Less time was spent on tedious calcu
lations. Less time was needed for drill work 
because programming a concept demands com
plete. understanding. Complex problems pre-



686 Spring Joint Computer Conference, 1969 

viously "accepted" could he demonstrated with 
success and understanding. 

4. There was no grade level found best suited for 
teaching students how to use the computer. One 
of our teachers taught elementary BASIC pro
gramming to a group of talented fourth graders. 
Several schools taught BASIC to seventh 
graders and found that the average seventh 
grade student can learn to program. 

5. No ability level has been found below which 
students could not learn to program. This is not 
to say all students learn with equal ease or are 
equally interested. However, computer work 
has shown itself not to be one of those activities 
which only the brightest of the college bound 
can handle. 

Student use 

Students used the computer both inside and outside 
of their classrooms. They used it for assigned computer 
work, for doing homework, for projects, and for fun. 
Most of the student programs entered in the Kiewit 
Cup Contest were written just for fun. These programs, 
representing a small fraction of the students' actual 
work, are quite commendable. A short summary of the 
list of Kiewit entries could hardly do justice to the 
imagination and ability of these students who had 
limited access to a computer over a short nine-month 
period. These entries are substantial evidence that, 
given an opportunity to follow his own interests and 
inclinations, a student will use the computer as a cr'ea
tive extension of his intellect. 

The list of Kiewit Cup programs includes programs 
in the mathematical areas of number theory, algebra, 
plane and analytic geometry, calculus and probability 
and statistics, and in the science areas of chemistry 
and· physics. Also, a small scattering of programs in 
almost all other academic subjects touched upon in 
high school is included. In addition, there is a large 
group of game playing and other miscellaneous pro
grams. 

The number theory and algebra programs were the 
most numerous. These included all the usual topics 
such as factoring, prime numbers, graphing, equation 
solving, and the like-many of which were very sophis
ticated. One ninth grader used N ewton"s method to 
find the square root of a number and developed a simi
lar method of his own to find cube roots. Calculus pro
grams included calculating limits, areas under a curve, 
and differentiation. One of the area programs utilized 
Simpson's Rule and another used random proportion
ing and Rieman Sums. One student submitted a clever 

a.pproximation of 1r by :\Ionte Carlo methods. The 
geometry, and probability and statistics submittals 
covered the standard calculations found in those fields. 
There were several very nice probability simulations. 
~ice simulation programs were also found among the 
physics and chemistry group. One student wrote a pro
gram to predict the orbit of the "Syncom" satellite. 
Another program teaches the valences of chemical 
radicals. A couple of the 27 different game submittals 
were considered so much fun that they were put in the 
Kiewit game library. 

More than any other group, perhaps, the miscella
neous programs are the best indication of what high 
school students can do. Some of these programs write 
poetry, compose music, teach other students topics in 
foreign languages, or science or grammar. They score 
games, analyze elections and surveys, layout the school 
newspaper, and compute payrolls. The topics are just 
too numerous to list. Some high school students became 
very interested in systems problems. One wrote his own 
abbreviated BASIC system and another developed a 
TRACE system for locating his programming errors. 
An eighth grade student wrote an excellent interpreter 
of LISP in the BASIC language. Anyone using LISP 
in the Dartmouth System uses his interpreter. 

The winners in the Kiewit Cup Contest included 
students from seventh through twelfth grades and from 
all supposed ability levels. Some of them have gone on 
to college, while others were even sent to reform school. 
Some were repeating a course when ~ use of the machine 
caught their interest. Some have never shown much 
interest in anything associated with school before. 

Students seldom allow the teletypes to sit idle at their 
high schools. The statistics on usage (Table ILB.) 
hardly leave enough idle time for standard hardware 
failures and occasional signing on and· off between users. 
These student users are not just a small hard-core, 
either. We have found that the number of students using 
the machine, at least occasionally, is around 25 percent 
of the total high school population. This figure is 
extraordinary when you consider that, for most of the 
schools, there was only one person to teach them the 
BASIC language. 

Classroom usage 

One of the project's objectives is to demonstrate that 
the computer can be a significant contribution to class 
work already found in existing school curricula. Class
room use was significant. Our first-year teachers wrote 
a set of Topic Outlines documenting their class use. 
Each outline is an explanation of how they used the 
computer in conjunction with regular classroom work. 
These outlines range from a three-class demonstration 



Secondary School Use of Time-Shared Computer 687 

to a whole-semester course. Their titles are listed in 
Appendix A. Since the majority of the first-year teach
ers were math teachers, most of the topic outlines con
cern mathematics. There are several explaining science 
usage and three or four in other fields (notably business 
and teaching BASIC). 

Because of the fourfold increase in project teachers, 
this year should see a large increase in class usage and 
documentation, especially in fields other than mathe
matics. 

During the 1967-68 year, the following class-usage 
patterns have emerged: 

* Mathematics use is heavy. However, some courses 
see more usage than others (calculus, for instance, 
as opposed to geometry). The computer lends itself to 
convincing classroom demonstrations in many topics 
such as logarithms, limits, and equation solving. 
Teachers use it to illustrate concepts usually taken on 
faith because of the massive calculations involved. Some 
courses were expanded to include topics which were 
easily adaptable to computer applications (matrix 
algebra for example). 

Teachers note an immediate transfer of enthusiasm 
from a successfully written computer program to the 
mathematics involved. Many more students than ever 
before are going beyond their normal classroom work 
and studying advanced concepts on their own. Concepts 
which they needed to know in order to write a program. 
Many teachers are turning to program writing as a 
method of teaching in mathematics courses which stress 
calculations. (Algebra, trigonometry, statistics, and 
calculus, for examples.) Writing and successfully 
running a program increases the students' under
standing of a mathematical algorithm and saves class 
time. 

Science usage is quite substantial and is increasing. 
Much of the use to date is in the chemistry or physics 
lab. The computer performs tedious calculations and 
computes class statistics. Students see that averaging 
all their results together produce better approximations 
to the predicted value. Teachers have found that the 
Chern Study and Introductory Physical Science labs 
lend themselves easily to computer work. 

A superb use of the computer in science classes is in 
answering those spontaneous what-if qu~stions that 
would normally be impossible to answer because of the 
calculations or lack of time. A computer demonstration 
can be modified in a matter of seconds or students can 
write a program themselves to answer the question. 

... A senior astronomy student asked how often the 
nine planets would line up. The class wrote a 
program (assuming all the planets were on the 

same plane) and found that it would happen 
once about every 65 million years. 

. . . One ninth grade class became concerned about 
comets. As a class they decided to write a pro
gram to determine the orbit of °a comet. The 
result was significant learning about comets, 
programming, and about forces between moving 
bodies. 

The computer has been used some in the simulation 
of science experiments. Notable in this area are popu
lation and genetics experiments in biology. 

The computer class uses in other subject areas have 
been more sporadic. Some language teachers use some 
CAl-type programs for drill. Some social studies classes 
have done election surveys and analyzed the results via 
computer. One English teacher uses it to help students 
learn literature concepts and write creatively by 
generating random metaphors and phrases. However, 
most of the work in the social sciences and humanities 
was done by students for special projects or on their 
own. 

SUMMARY 

Eighteen secondary schools throughout New England 
are involved with Dartmouth College's Kiewit Com
putation Center in a two and one-quarter year project 
supported by the National Science Foundation. The 
main purpose of the project is to demonstrate that the 
computer can be a significant contribution to secondary 
education within the existing curriculum and without 
extensive teacher retraining. Important outcomes are 
the demonstration that computing encourages students 
to think cre~tively, and the publishing of materials to 
serve as guide lines to others in the utilization of com
puters in education. 

In its role as a regional computer system, Dartmouth 
provides may auxiliary services for the schools. These 
include aid with malfunctions and programming prob
lems, fostering communication among the participants, 
and sponsoring conferences and training sessions. 

After its first yeaT, the project has been highly suc
cessful. Hundreds of students have been trained in 
BASIC and are using the computer creatively on their 
own. Teachers have written a consider.able number of 
outlines for classroom work and 1968-1969 will see the re
sults of the previous year continued with greater 
emphasis on materials for science, business, and below
average students. The project findings are being pub
lished for general distribution to those who are inter
ested in the potential of computers in education. 



688 Spring Joint Computer Conference, 1969 

APPENDIX A. 

I ndex of topic outHne8 accord1:ng to grades 

Grade Title 

4 Four Classes with Fourth Graders-Intro
duction to BASIC 

William A. Smith, Lebanon High School 
7-12 Some Suggestions for Student Programs 

Jean Danver, Dartmouth College 
7-12 A BASIC :Manual for High School Students 

(with exercises) 
Floyd l\fcPhetres, Hartford High School 

7-9 Junior High School Uses of a Time-Shared 
Computer 

G. Ralph Bolduc; Cape Eliz9"bet.h High 
School 

7-12 Some Computer Applications in Secondary 
School Science 

Spencer Laramie, l\1ascoma Valley Regional 
HighSchool 

9 Two Examples of Linear Programming in an 
Algebra I Class 

William Smith, Lebanon High School 
David Penner, Phillips Andover Academy 

9 Solution of Simultaneous Linear Equations 
John Conover, St. Johnsbury Academy 

9 BASIC in 10 Minutes a Day 
Louis Hoitsma, Phillips -lAndover Academy 

9 Introduction of the BASIC Language, Tele-
type Usage, and Elementary Programming 

Peyton Pitney, Mount Hermon School 
9 Ninth Grade Word Problems 

Warren Hulzer, St. Paul's School 
9-10 Random Sample Studies 

Charles A. Tousley, Keene High School 
10 The Binomial Theorem 

Gary Toothaker, Vermont Academy 
10 Genetics of the Fruitfiy-Phenotype Ratios 

Charles A. Tousley, Keene High School 
10 The General Solutions of the Quadratic 

Equations 
G. Ralph Bolduc, Cape Elizabeth High 
School 

10-11 Value of Cos (t]) (An Iterative Technique) 
John C. Warren, Phillips Exeter Academy 

10-11 The Circular Function 
Jolm C. Warren, Phillips Exeter Academy 

10-12 The Use oft he Computer in Air Pollution 
Study 

John Conover, St. Johnsbury Academy 
10-11 Summer School Computer Course 

John Hauber, Loomis School 

(/rade Title 

10-11 Slope of a Line and Common Solutions for 
Systems of Linear Equations 

G. Ralph Bolduc, Cape Elizabeth High 
School 

11 Areas and Perimeters of Circles and Ellipses 
Paul Kenison, Manchester Central High 
School 

11 Slopes of Exponential Functions 
George H. Lewis, Concord High School 

11 Five Ionization Reaction Problems 
Spencer Laramie, Mascoma Valley Regional 
HighSchool 

11 Area Under Trapezoid 
Charles A. Tousley, Keene High School 

11 Introduction to Logarithms 
Charles A. Tousley, Keene High Schooi 

11 Finding Nth Degree Equations from a Set of 
Tabular Values 

Paul E. Kenison, ~1anchester Central High 
School 

11-12 Finding Approximations for Irrational Zeros 
of Polynomial Functions 

Peyton Pitney, ~1ount Hermon School 
11-12 Three Simple Examples of Computer Use in a 

Physics Laboratory 
John .Ylartin, Rutland High Scnooi 

12 Using a Time-Shared Computer in Devel
oping the Law of Sines, the Law of Cosines, 
and the "Solution of Triangles" 

Floyd l\1cPhetres, Hartford High School 

12 Free Falling Bodies and Projectile :Motion 
Spencer Laramie, M~coma Valley Regional 
HighSchool 

12 Computer Course for Business Students 
Ann Waterhpuse, South Portland High 
School 

An Adult Education Course in BASIC 
Programming 

John Martin, Rutland High School 

8-12 Collected Uses of a Computer in Probability 
and Statistics 

Mary Hutchins, Hanover High School 

12 Two Programs on Riemann Sums 
George R. Smith, St. Paul's School 

12 Numerical Integration 
G. Albert Higgins, Jr., :\Ilount Hermon 
School 

11-12 A Unit in Matrix Algebra 
Ann Waterhouse, South Portland High 
School 



Secondary School Use of Time-Shared Computer 689 

APPENDIX B 

Summary of NSF -proposal objectives 

I. Meeting Objectives 

Following is a summary of the project finds to date, 
as they relate to its objectives as set forth in Part II of 
the initial project proposal. 

1. To demonstrate that computir't{j can be useful in 
the teaching of subjects other than mathematics. 

The computer has been of use in many sub
jects other than mathematics as testified in the 
main body of this paper. These subjects include 
all of the high school sciences, modern languages, 
social studies, English, and several business 
courses. 

One significant obstruction to demonstrating 
the computer's usefulness in teaching in the 
social sciences is the average social science 
teacher's inexperience with statistics. Indeed, 
some high school students have a much be~ter 
grasp of applied statistics and their use on the 
computer, than many college professors of the 
social sciences. 

2. To demonstrate that computing can encourage the 
student to think creatively. 

Literally hundreds of programs received from 
students testify to the student's creative ability. 
The very nature of going from a rough idea to an 
articulate set of specific directions in a working 
program is in itself a highly creative act. 

Several of the more complicated games written 

by some advanced students as well as some of the 
less involved programs written by slow students 
may stand, each in its own way, as the most 
outstanding intellectual creation that student 
will make in hjs four years in school. This claim 
is backed by the fierce pride students have in 
their programs. They are their very own. They 
made them and they work. 

3. To demonstrate that computing can be effectively 
introduced into secondary schools without exten
sive curriculum changes or teacher training. 

The 1967 four-week training session for 
teachers was shortened to two weeks in the 
summer of 1968. This speaks for itself. Com
mentary on teacher and student training during 
Teachers' Conferences also confirm the ease and 
speed with which computing can be introduced 
into schools. 

4. To experiment 1fftth techniques for introducing 
computing to the student, and for helping the 
teacher integrate computing in his courses. 

Techniques for introducing the computer 
abound in the Topic Outlines and are discussed 
in the body of the First Year Report. Over 30 
Topic Outlines written by teachers themselves 
we now have available. 

5. To develop materials that will aid other schools to 
take full advantage of the opportunities computing 
provides. 

The report on a Four-Week Training Session 
for Teachers, the First Year Report, and the 
collection of Topic Outlines should allow other 
schools to take full advantage of our experience. 





Health inforlnation and planning 
systems: The need for consolidation 

byP. F. GROSS 

University of Saskatchewan 
Regina, Canada 

INTRODUCTION 

In a previous paper,! an evaluation was made of the 
state-of-the-art at that time in the use of the computer 
in hospitals, and as with any state-of-the-art evaluation 
. ' It serves only as a static focal point along a somewhat 
dynamic continuum. Various problems of using the 
computer in hospitals (and in the wider framework of 
health care), as well as some of the then-current issues 
in hospital automation, were also discussed briefly. 

In this paper, it is proposed to focus attention on 
these issues and problems, with a view to advancing 
some curative remedies for what seem to be continuing 
ills, as well as advancing some thoughts on the pre
ventative aspects for future health automation ills. 

Finally, the research for this and the previous paper 
was carried out during visits over the past four years to 
projects in four countries (U.S.A., Canada, Britain and 
Australia) and during a continuing project, of which 
the writer was Project Director, involving eight hospitals 
in South Saskatchewan, Canada. 

The continuing issues/problems of medical automation 

Introduction 

The five problems that appear to be most prevalent 
in medical automation (because of their continuing 
nature more than any other factor), are as follows: 

a. the current level of interest of medical personnel 
in automation, as affected by (b) and (c) 

b. the nature of present medical education and by 
the success or otherwise of computer system 
analyst/programmer education, 

c. the state-of-technology with respect to com
puter hardware and software for medicine , 

d. the medico/legal problems of computerized 
medical records, 

e. the problems of rationalizing research proj
ects mto the development of large scale on-line 

I 
. ' , 

rea -tIme computer systems in hospitals (at 
present) and in health regions in the future. 

These problems are discussed now in some detail. 

Current level of medical personnel interest 

At ~t glance, this supposed problem does not appear 
to eXist, since a majority of the more successful proj
ects in medical automation are at present headed up 
by personnel with medical qualifications: Collen at 
Kaiser Permanente,2 Lindberg at University of Mis
souri, 3 Caceres at the U.S. Medical Systems Develop
ment Laboratory,4 Vallbona at TIRR,6 Lamson at 
UCLA,6 and Barnett at MGH7 are names familiar to 
the reader. 

The above mentioned projects meet some of the gen
erally accepted criteria for judging successes in the 
area of medical automation, which criteria might be: 

• that the system is actually working, not proposed 
for implementation. 

• that the modus operandi and the results are gen
erally accepted by other workers in the field and 
the user organization. 

• that the modus operandi is standalone, not in 
parallel with a manual system. 

• that as pioneer yentures, they serve as beacons for 
future projects in similar areas, particularly to 
emphasize that the most successful projects are 
those where the problem is ". .. reasonably de
lineated, heavily oriented towards simple technol
ogy and involves individuals who are primarily 
oriented towards technology ... "8 

The latter opinion of Barnett re the oriemjation 
primarily towards technology as a predictor of success 

691----------------------------------



692 Spring Joint Computer Conference, 1969 

in this area is very pertinent and does not necessarily 
preempt the "interest of medical personnel" as another 
necessary ingredient for success. Also, there are a large 
number of hospital proj ects aimed specifically at the 
business operations of the hospital that do not neces
sarily require full-time medical personnel support, the 
most impressive of which projects is probably Boston 
Children's Hospital Medical Centre. 

With the foregoing sample of projects in medical 
automation that have been acclaimed by workers in 
and outside of the research area, the reader may well 
ask why the matter is even raised as a problem. As the 
liters.ture on medical automation since 1964 indicates, 
there are at least 400 separate projects in progress as at 
1969 in different parts of the world, and this number is 
growing, despite the number of projects that have not 
been successful. [Should the reader doubt the quoted 
figure, he is referred to a forthcoming book (Computers 
in Hospital and Health Systems) By the writer, in which 
book the bibliography lists over 400 separate projects]. 
With this number of on-going projects, the relative 
number of judged or potential successes does seem small. 
However, the most disturbing features of the large 
number of projects are: 

• that they appear to duplicate work done earlier or 
similar work at present being undertaken by others. 

• that only a very small proportion of the projects are 
operating without a parallel manual system, i.e., 
a majority of the projects are, at best, experimental 
models. It is claimed that the cause of this some
what sporadic resistance by medical personnel to 
using the automated systems in the clinical lab
(Yrfitory (which is one of the more successful areas 
of automation endeavour in automatic data 
acquisition, storage and retrieval) is H ••• an array 
of unrelated instruments that can 'be more trouble 
than they are worth. If physicians are offered a 
good system . . . you will find them quite willing 
to try it ... ''i 

A more significant cause of the non-implementation 
of project output is the small numbers of medical per
sonnel who are actively involving themselves in the re
search studies in the various institutions being studied. 
Dr. Barnett has indicated some possible causes for this 
situation when he states that " ... the application of 
computer technology offers hope, but the realization 
of this hope in the near future [this statement was made 
in October, 1967] will require a much greater commit
ment than is presently true on the part of N.I.H. [U. S. 
National Institute of Health], the medical academic 
community and the health services community. The 
critical weaknesses are: (1) lack of imaginative and com-

petent personnel to constitute the task force, and 
(2) an artificial separation both in N.I.H. and in the 
academic community between medical practice and 
medical administration and between research, develop= 
ment, implementation and service ... HIO (emphasis 
supplied). 

Some of the factors mentioned so far are not related 
specifically to medical education, such as level of 
N.I.H. funding in the United States of medical auto
mation research and the general quality of computer 
hardware and software. Both these problem areas will 
be discussed further on. 

At this point, it is relevant to dwell on medical ed
ucation as it affects the present and future develop
ment of computerized health information systems. In 
iate 196'7, Dickson noted that" ... it is evident that 
basic knowledge in the area of physiological systems 
is not deep enough, nor broad enough to set up patient 
monitoring systems or intensive care units that will 
have the desired sophistication ... "10 Notwithstanding 
that this comment is directed towards the state-of
knowledge in a specific area of biomedical endeavor, 
a similar state of knowledge of medical automation and 
its problems exists generaUy in the medical profession. 
Since computer science is of only recent origin by com
parison with medicine, it is safe to assume that a ma
jority of the medical profession have never been re
quired to take a formal course in the elements of medical 
automation, let alone the specifies of the subject. 

The extent of possible remedies might be summarized 
briefly at this point: 

1. It would seem that the computer education of 
the coming medical profession must commence 
at the undergraduate ievei as a required course. 
The progress being made by the University of 
Missouri, the University of Oklahoma, Baylor 
College of l\iedicine and the University of 
California at Los Angeles should serve as guide
lines in this respect. 

2. It would seem that continued efforts by pro
fessional bodies such as A.M.A. and A.H.A., 
through continuing short courses for medical 
personnel who have graduated, should be sup
ported by government and other funds to enable 
a large number of courses to be given. 

3. It would seem that universities might aid hos
pitals in their geographical area to commence 
in-house training within hospitals, regardless of 
whether the hospitals are training hospitals 
attached to the universities or not. 

4. It would seem that the desirability of bringing 
together various disciplines to discuss modes of 



attack on various. problems of medical automa
tion has been proved by conferences such as the 
international conference held in Washington in 
September, 1967,8 by various national confer
ences such as the N ew York Academy of Sciences 
effort in January, 1968 and by a restricted number 
of conferences (such as F JCC and SJCC) where 
computer personnel attempt to resolve the con
tinuing hardware/software problems that are 
discussed further on. 

Summary: It is contended that the present level of 
interest of medical personnel in the automation of the 
medical enyironment is dangerously low. It is suggested 
that, as one of the factors that appear to correlate 
strongly with ultimate project success is medical person
nelleadership, the medical profession should recognize 
the challenge of automation and upgrade medical ed
ucation accordingly, a factor discussed in the next 
section. 

Contemporary medical education and' systems 
education 

The second problem considered relevant to the pres
ent discernible plateau in medical automation research 
is the current lack of emphasis on the role of automation 
in the medical curriculum (but not the professional 
MPH or MHA curriculum), coupled with the general 
level of application system design expertise currently 
available. We shall discuss the two problems separately. 

Medical education 

The general lack of emphasis on the role of the com
puter in the medical curriculum suggests that the 
planners of such a curriculum have not yet fully realized 
that the computer will and is playing an important 
role in medical care. With a few notable exceptions 
[University of Missouri, University of Oklahoma, 
Baylor College of Medicine (Texas) and the University 
of California at Los Angeles], universities have not 
adapted to the challenge of the computer in medicine, 
the general exceptions being those universities involved 
directly with research either through research units 
within colleges of medicine or those colleges with affili
ations with large health science centres. 

With the consequent shortage of medical personnel 
with computer interests from their academic prepara
tion, and with the present overcrowded syllabus in 
medical schools all over the globe, little relief can be 
seen for the present lack of medical personnel interest 
in automation, except indirectly through that small 
proportion of the medical profession who are biomedical 

Health Information and Planning Systems 693 

research workers. One possible solution would seem to 
lie in the funding of several large medical academic 

, operations, such as those listed above, in the hope that 
(a) the person with a particular interest in medical 
automation might be drawn to these centres; (b) the 
centres might be encouraged to publish even more 
widely the results of their work. 

Another solution would appear to be the limited pro
liferation of reputable journals such as Computers and 
Biomedical Research (Academic Press) and Methods of 
Information in Medicine as media which attempt to 
span the medical and computer technology gap. 

As the foregoing suggests, the reporting of on-going 
projects has been something less than objective or 
adequate, and through access to accurate project re
ports and articles in medical journals, the medical 
profession may be gently coerced into reading into 
subject matter which, at present, confuses rather than 
enlightens. 

Systems education 

Without considerably extending the length of this 
paper by paraphrasing the contents of the two recent 
papers,ll,12 it is contended that the dangerously low 
availability of expertise in the systems analysis and 
design of the hospital business or medical processes 
will present a serious, continuing hazard to the well
meaning hospital with intentions to automate. The 
medicalj administrative interface of the modern hos
pital is difficult enough to bridge with adequate knowl
edge of both domains, but the current systems person
nel shortage is forcing hospitals to accept people with 
little or no knowledge of those domains. There is nothing 
like a ~adly designed system to destroy confidence in 
any sector of industry, but the ever-vigilant opponents 
of automation in hospitals are particularly effective in 
their destruction of the reputations of hospital proj
ects that are not meeting objectives. 

Thus, there are two basic problems posed here: 

• the availability of application systems designers 
generally 

• the lack o{ relevant systems career preparations at 
the universities in particular, notwithstanding the 
excellence and relevance of degree programs in 
Information Systems at the University of Pennsyl
vania (MBA Information Systems Option), New 
York University School of Commerce (Computer 
Science major) and the University of Maryland 
Department of Systems Management. As has been 
indicated,12 the available media for preparing the 
systems designers of the future are generiilly turn
ing out a by-product not adequately prepared for 



694 Spring Joint Computer Conference, 1969 

systems analysis/design in any sector, particularly 
the health sector. 

The possible solutions to the education problem 
posed have been suggested,12 and generally it appears 
that a massive up-grading of systems education at all 
levels is required. For the conference at which this paper 
is presented, this is a sobering thought that might be 
considered at this point. 

Hospital administration education 

It might be mentioned that the discussion thus far 
has not referred to the current trends in education for 
MPH and MHA programs in U.S. and Canadian uni
versities, since it would seem that the professional 1fPH 
and MP A programs appear to have recognized the role 
of the computer in medicine, and no problem is seen to 
exist. 

Summary: It would seem that the current state of 
medical and systems education does not reflect the 
need to impart more relevant education to medical 
personnel and to the systems analyst/designer attempt
ing to IIl:atch medical needs to existing computer hard
ware/software technology. This latter aspect is dis
cussed now. 

Computer hardware/software technology 

At the present moment, the problems posed by the 
lack of, firstly, suitable input devices; secondly, by 
large low-cost bulk storage devices and, thirdly, by 
computer system reliability and cost are as serious as 
any of the other problems posed so far. 

The input problem is causing other problems related 
to medical/ward personnel' satisfaction with hospital 
information systems to 'date. It has long been recog
nized that what the computer industry needs is a re
liable, low-cost, graphic display/keyboard terminal, 
and in the hospital, the requirements of such terminals 
have been summarized by Hofmann et al.13 

Another paperu by Barnett and Greenes has sum
marized some of the relev~nt problems in achieving a 
working man-machine interface in computerized hos
pital system~ as well as summarizing the 1968 state-of
input/output terminal technology. Essentially, the 
development of suitable terminal equipment is seen as 
being 4-5 years down a rather long road. 

The availability of generalized software for the hos
pital information system has not led to a marked trend 
towards its implementation by the growing number of 
hospitals involved in the on-line, real-time mode of 

operation through time sharing. As other workers in 
other industries have found, generalized software is 
not easily modified for the particular requirements of 
those industries. 

The gloomy picture of hardware and software in
adequacies does not, of course, apply to all areas of hos
pital automation. In the clinical laboratory, the auto
mation success stories far outweigh the failures for 
reasons that have much to do with Barnett's evaluation 
quoted earlier. 8 Essentially, successful laboratory auto
mation projects have been marked by: 

• restricted and relatively simple goals 
• hardware that is relatively simple and not subject 
to technological failure 

• an adequate feasibility study prior to selection of 
hardware and development of software systems, 
such a study being fully documented and its pro
posals accepted by all the parties concerned. 

On the question of the need for a computer language 
that would enable physicians to use natural language 
input for data storage and retrieval,14 the computer 
manufacturers have not yet indicated any formal in
terest in developing such a language. In the interests of 
consuming main core and processing time, it would 
seem that the current version of the JOSS language in 
use by the MGH investigators is certainly superior to 
most high level languages in use in other projects. 
Because the question of medical personnel leading the 
development of medical information systems would 
seem to be a preoccupation to this point, one might 
hope to see far more flexible languages than FOR
TRAN, PL/l or COBOL soon becoming available to 
aid physician/investigators in developing better sys
tems. Realistically, this development might be expected 
around 4-5 years up that long road being travelled by 
the computer terminal developers. 

As at 1969, the ball has been long enough at the man
ufacturer's feet for some results to start appearing. 
It is perhaps time for Government to adequately fund 
a private development, given guidelines by workers in 
the field, perhaps through NIH or through SIGBIO. 

Summary: The computer manufacturers have not 
adapted to the challenge of developing useable hard
ware and software for other than limited applications of 
which the laboratory is one. It could be expected that 
their comparative successes in this area might spur 
them on to the more pressing problems of hardware 
and software for the wider concept of the hospital in
formation system in the various areas of patient care, 
allowing that the pa1ient accouming area has been 
successfully automated in a number of on-going proj
ects. 



Medico-legal problems of the automated medical 
record 

With considerable research effort being expended 
in the search for an acceptable computerized medical 
record suitable for medical research and for day-to-day 
operation of a hospital, there has been very little con
sideration of the legal aspects of such a record. How
ever, because the public is now more willing to com
mence litigation against hospitals and practitioners 
who are negligent or who give the slightest cause to 
suspect negligence, it is with considerable interest that 
many hospital administrators watch: 

• the rulings of Courts on the legality or otherwise 
of computerized medical records. 

• the actions that hospitals take to maintain the 
security of medical records in an on-line, real-time 
environment. 

In the first place, hospital records, generally speak
ing' constitute a source from which information may 
be obtained, but they are rarely evidence in themselve~. 
At present, the legal process depends in most cases, 
and certainly in cases heard before juries, on oral 
testimony. Although there are many classes of docu
ments which, once they have been identified, are ad
missible as evidence, this principle generally df'es not 
apply to records such as hospital records, which are 
really no more than notes made contemporaneously 
of matters observed at the time by various persons in 
the hospital. 

Again, there have been many occasions when.a d~ctor 
or a nurse, when his attention is directed to other parts 
of his own notes, is forced to admit that his original 
opinion, expressed in the witness box or in another 
section of his notes, is wrong. Because it is not possible 
to cross-examine a document, oral evidence still re
mains relevant and necessary .16 

Again, questions as to signatures on and documenta
tion of records, their maintenance and retention, accu
racy of the recorded material (clearly the wrong diag
nosis applied to a patient leading to wrong treatment, 
as perhaps might occur if extensive coding is required 
of the user, could give rise to a suit for damages), and 
the confidential nature of records have been discussed 
by Springer .16 

Of particular interest is the protection of security of 
medical· records in a time-shared system environment. 
The system has to ensure that the system prevents the 
wrong person from gaining access and that it does not 
prevent the right person from gaining access. A recent 
paper by Segall17 is of considerable relevance here. 

At this date, there is at least one ruling by an Indiana 
court on the admissibility of computerized evidence.l6 

Health Information and Planning Systems 695 

In view of the relevance of such a ruling on the doc
trine res ipsa loquitur (which allows a plaintiff to put 
the burden of proving non-negligence on the defendant), 
it is repeated here. "As complicated mechanical devices 
of our modern age achieve perfection, and greater re
liance upon them is justified, it follows that the doctrine 
(res ipsa loquitur) has a broader application ... " 
(Ball l\1emorial Hospital vs. Freeman 196 N.E. 274 
[Supreme Court, Indiana, 1964]). 

Summary: It may be fortuitous that rapid advances in 
the development of the hospital information system 
concept have not proceeded rapidly, since a litigation
conscious population might have been well served by a 
computer system that periodically had hardware and/ 
or software malfunctions. Since other industries using 
computers have had their share of system malfunctions 
leading to destruction of operating records or to the 
production of spurious cheques, it could be expected 
that hospitals will also have their share of automation 
woes. 

The human life is one expensive commodity that far 
outweighs an operating record or a spurious cheque, 
and in the absence of any known court rulings on the 
admissibility of the computerized medical record, 
hospital administrators must seek wise counsel before 
implementing computer sy.stems that have control of 
living processes, such as in patient monitoring or in the 
treatment of patients with severe drug allergies. 

The reliability of the available hardware/software 
does not, at present, justify blind faith. 

Problems of hospital automation rationalization 

As one peruses the literature on research projects 
that are at present under development, it becomes 
apparent that many researchers are working in fields 
that are remarkably similar to those being researched 
by other workers. It would seem that the health author
ities at federal level, by funding small and large projecto, 
have created a situation where the small projects are 
useful only as deILonstration projects, while the larger 
projects do not seem to be proceeding within the con
straints of an overall plan of research for the nation. 

The reason for this situation is that there is no 
overall plan for Hospital/Health Information System 
development, such as partly exists for Law Enforce
ment (NCIC System in U.S.A.) or for Education, 
because: 

1. of difficulties in deciding what criteria should be 
used to assess the merits ot alternative projects 
recommended for funding; 



696 Spring Joint Computer Conference, 1969 

2. the attempts to develop the concept of the ad
vanced "total" information system beyond the 
concept stage have failed badly to date, since, 
after many years of seeing project after project, 
cut back development to something far less 
grandiose than the "to~al" concept presupposes, 
the medical profession, the funding bodies and 
workers in the field have not yet seen an econom
ical' workable system. The reasons for this con
tinuing situation have been elaborated on else
where by Barnett and Greenes,14 and will not be 
discussed here. 

The most obvious result of this apparent setback is 
that hospital planners are now attempting, with con
siderable success, to develop automated systems for 
smaller functional areas of the hospital, and, at the same 
time, attempting to relate such development to the 
"total" information system framework, which has not 
been adequately documented since Dr. Fred Moore's 
pioneer work in 1962.18 When one considers that the 
Lockheed company planned for at least four years be
fore the first computer program was written for its pro
duction planning and control system, and only then 
commenced a five-year, five-stage development plan for 
1965-69, it seems that our first efforts in large scale 
medical automation were defying precedent. 

Notwithstanding the growing number of middie-sized 
and large hospitals which are now completely dependent 
upon computers for parts of their day-to-day operation, 
it should now be possible to conceive of a standard sys
tem design for a certain total bed capacity of a hospital 
or a group of hospitals, based on the past success stories 
in certain areas of hospital operation. The USNIH 
grant19 to Lockheed to investigate the design of two 
separate information systems, one mechanical, the 
other computerized, was ostensibly aimed at rational
izing some of the on-going project development in hos
pital automation. 

The basic requirement of such standardized systems 
is transferability, and, in this respect, the present non
standard mode of operation of hospitals across the 
world, their autonomy in many countries and the need 
to ensure that any standardization does not give any 
one manufacturer an advantage over his competitors, 
may all complicate the path to standardization. In 
the interests of efficiency a.nd eeonomy, it is doubtful 
whether such standardization can be validly deferred 
much longer. For one possible benefit that might be 
reaped by such a move, consider the decision that com
puter manufacturers might be forced to make with re
spect to the resources allocated to medical hardware/ 
software development if they were faced with the 
formidable strength of large groups of hospitals demand-

ing useable hardware/software according to specifica
tions of a government sponsor. One has only to consider 
that the lack of a united front from CAl researchers has 

at least two of the manufacturers, who quite rightly 
demand that users tell them specifically what they want 
in hardware. 

Summary: The need to rationalize system develop
ment in hospital automation has been realized by a 
number of researchers in the field, and government 
health authorities have made some tentative moves 
towards standardization. 

I t is suggested that the general lack of manufacturer 
zeal in developing workable, reliable hardware and soft
ware for the medical care operations of a hospital might 
be overcome by a united front from research groups in 
the field, supported by government directive. 

Rationalization for health information systems 

Introduction 

In the above section, we discussed some of the pro
blems that hospital automation is causing as at 1969. 
In this section, we discuss the concept of the Health 
Information System for a community, or for a state 
(or province) or for a nation. Lest this whole treatise 
fall apart on the basis of one definition, we define a 
Health Information System to be a set of procedures 
and processes aimed collectively at supplying health 
authority management at various decision making levels 
with information that is required by those managers 
to function effectively. Included in the procedures and 
processes might be combinations of manual and/or 
electro-mechanical and/or electronic data processing 
equipment. Depicted in its broadest sense, the schema
tic in Figure 1 attempts to represent information flow, 
in one concept of such a system, through community, 
state (provincial) and national decision making levels. 
[Figure 1 does not attempt to show all the relevant 
health care support units that should or could use such 
an information system at various levels.] Other broad 
concepts of what constitutes the health information 
system have been outlined by Bartscht20 and by 
Flagle.21 ,22 Since there have been very few attempts to 
assess inputs, outputs and mechanisms by which such 
a system might be planned, it is probably relevant to 
briefly outline some of the present on-going research 
that is producing information on the health of an in
dividual, albeit in an uncoordinated fashion with re
spect to other research groups. These research projects 
outlined are not exhaustive, but representative of at
tempts to derive meaningful data that could serv"e as 



I. Rtg,onal lc.vd 

larqe S!or aqt tor 
_ AdrNtustr.)t,ve / (.n.iI,'-C 1031 det<Ol 

- P.a.llc.nl d'ClI3N>Sls/+reatm.u..! d;!tOl 

_ [)n,q usaqe d.a~CI 

_ F~rll'he5 usage d.ata 

laiqU Stor.oqt to," 
Vd.rid 1(5 of da.fa 
listed abovt! 

STATES, iEG~ " rLlMt usus 

Figure I-A schematic of a health informatio n system 

input in a manner similar to that depicted in Figure 1, 
to large epidemiological studies of health communities. 

The projects referred to are: 

(i) the Kaiser Permanente Multiphasic Test 
Screening System at Oakland, California. 

(ii) the Medical System Development Laboratory 
of the National Centre for Chronic Disease 
Control of the U.S. Public Health Service sys
tem for EKG recording and analysis. 

(iii) the on-going record linkage studies in England, 
Maryland and New York in various health 
populations. 

(iv) the Medical Audit Program and Professional 
Activity Study (P ASjlVIAP) of the CPHA. 

The Kaiser Permanente multiphasic test 
screening system 

At Kaiser Permanente .l\ledical Centre in Oakland, 
California, a major research effort in the use of multi
phasic test screening for preventative health care has 
been in progress since 1964. (For a detailed treatment 
of the form of testing and an assessment of the impact 

Health Information and Planning C!.ll!"l 
Ul1' 

that such multiphasic test screening centres could have 
on health care, the reader is referred to published papers 
on the Kaiser Study.23.24 At this moment, there is no 
other lVledical Centre in North America that possesses 
the test screening facilities and the requisite data pro
cessing facilities employed by the Kaiser group, al
though the proceedings of the 1968 Conference/Work
shop on Regional ~1edical Programs suggests that 
Tennessee, IVIissouri, Indiana and Connecticut will 
soon achieve working systems in various areas of those 
states. [The matter of whether the optimum mix of 
tests is in use at Kaiser or whether all the tests given 
are required will only be answered by a research effort 
lasting several years, and will not be discussed further 
here.] As the 1966 Senate hearings23 and the above 
mentioned conference/workshop25 reveal, several other 
entities in the U.S.A. are moving in the same direction 
as Kaiser, a situation that, at some time in the future, 
will require a linking of information flowing from test 
screening of large populations in different areas of the 
U.S.A. Despite the reservations of some physicians who 
see test screening with automated follow-ups as an en
croachment on their professional sanctum sanctorum, 
there is sufficient reason to expect that only inadequate 
f1mding of such efforts, and perhaps a lack of improve
ment in computer speed and core storage, at reduced 
cost could halt any impetus arising from Kaiser's de
velopment at Oakland. 

The Medical Systems Development Laboratory 

The Medical Systems Development Laboratory has 
developed a computer system to measure values of 
heart rate, amplitudes and durations for wave-forms 
of the standard 12-lead ECG and to make an English
language translation of these measurements. During the 
past four years, over 75,000 ECG's have been processed, 
and it has been shown that, with limited direction from 
medical personnel, the system is useful in the detection, 
management and rehabilitation of persons with cardio
vascular and associated diseases. Furthermore, the 
system decreases observer error and variation, reduces 
ECG costs and conserves scarce physician time for 
direction patient care.4 

.l\fore significantly, a plan for a nationwide data pool 
of computer processed ECG's has been put into effect, 
with 35 investigative groups participating during the 
first year, with a combined annual output of 70,000 
ECG's and an anticipated 200,000 in the second year. 
Also, it has been shown that it is feasible to process 
ECG's and spirograms from remote sites using con
ventional telephone circuits in an on-line, real-time 
mode, and also that outpatient care and emergency 
room services are possible. 



698 Spring Joint Computer Conference, 1969 

As research into heart disease is a major concern 
at this moment, it is not difficult to imagine the effect of 
a nationwide data pool of information in a research 
effort: nor is it difficult. t.o t.ie t.he jmpact. of such rese9"rch 
into the type of multiphasic screening approach in 
operation at Kaiser and other centres. The whole con
cept of preventative health care assumes new propor
tions, particularly if each health region, chosen by 
criteria as yet not universally agreed on, was financially 
capable of supporting the screening and data processing 
facilities required. The Tennessee Mid-South proposals 
for such a system are indicative of trends in this di
rection.26 

Medical record linkage study 

In various areas of the world, particularly in the 
U.S.A. and England, research into various aspects of 
comprehensive patient care as revealed by record link
age is proceeding, with the Oxford (England) studies27 

and the Maryland Psychiatric Case Register studies,28 
probably the best documented. Compared to the two 
previous research endeavours, this research is typically 
centered on a region, even though the New York studies28 

are centered on a smaller population. The fundamental 
problem experienced in the Italian studies,27 the lack 
of data in a suitable format or the lack of data at all, 
has been met in all studies to date, and it is not difficult 
to postulate that the existence of data at municipal, 
regional and state level must precede any substantial 
research findings at a national level. The recent proposal 
of a research effort by the MRC in England 30 is funda
mentally the first step in the right direction. 

The PAS/MAP system 

At a national level, a research effort enabling a 
medical audit of over 1240 hospitals annually dis
charging nearly 10 million patients across the U.S.A. 
(and other parts of the world) has been in progress for 
some years through the facilities of the Commission on 
Professional and Hospital Activities, which is an ed
ucational and scientific organization sponsored by the 
American College of Physicians, the American College 
of Surgeons, the American Hospital Association and the 
Southwestern Michigan Hospital Association. 

Inherent in this system of medical audit (called the 
PAS/MAP system) are two basic criteria: 

• the establishment of a standard relevant to the 
different treatments being given in hospitals 

• accurate reporting of the actual treatment given 
to the patient during his stay. 

Since the participating hospitals, in reporting their 

monthly statistics to the central computer facility in 
l\fichigan, are forced to code their treatments into a 
fixed format reporting sheet, some measure of standard
ization is present, but it would be unrealistic to think 
that all relevant information on a patient treatment 
can be included on any fixed format coding sheet. For 
this reason, while the PAS /l\1AP is a first step towards 
a nationwide pool of information (since 1240 hospitals 
is not the full complement of hospitals in U.S.A.), there 
appears to be a real need to incorporate systems such 
as PAS/IVIAP (or the Pittsburgh HUP system) within 
a national plan of health care funded by the national 
govem..-rnent, and Vvith all health care units, down to the 
smallest nursing home or hospital, participating. The 
possibilities for the rational disposition of the nation's 
funds for new or improved health facilities in the small
est region, as distinct from the ad hoc methods in vogue 
in most nations of the world, are apparent here, as are 
the possibilities of comparison of cost and effectiveness 
of patient care in different regions. The development 
of realistic simulation models of health care for the 
nation looms as a possible output (given sufficient re
search into the validity and extent of the input param
eters of the health care process), enabling long term 
planning of expensive health care facilities to be under
taken. Some results reported by Centner et al. 3 and by 
Ryan and Dillard 32 are significant steps in a move to
wards the Total Health System Model, as is the steady 
progress being made in econometric modelling of the 
health sector by Feldstein,33 Yett and Mann 34 and 
others. 

Problems of health information system research 
rationalization 

Introduction 

As Elam has noted, " ... our problem [in America] 
is not that we lack technology; we have enough to 
frighten us all. It is not that we lack a concept of com
prehensive health care or that there have not been 
isolated attempts to practice it. What we do not have is a 
marriage of technology and comprehensive personal 
health care, and an' assessment of the results (emphasis 
supplied). . . . "26 

As has been suggested earlier, the success of Collen's 
work at Kaiser Permanente (and Jungner's work in 
Sweden) has led to proposals for similar systems in 
regional medical programs now developing as a result 
of Public Law 89-239. One of the most significant of 
these programs is the Tennessee Mid-South Regional 
Medical Program described by Elam,26 where re
searchers are attempti:qg t~ determine whether com
prehensive, family=oriented health care in a neighbor-



"hQQd health centre cQQrdinated with an autQmated 
multiphasic screening labQratQry will result in im
prQved mQrtality, mQrbidity, health service utilizatiQn 
and health attitudes amQngst a PQPulatiQn. The de
terminatiQn Qf whether such a prQgram reduces the 
CQst Qf medical care and, at the same time, whether it 
imprQves and restQres the family unit, is also. prQPQsed. 

There are many Qther Qn-gQing develQpments acrQSS 
the U.S.A. fQr similar studies to. implement the aims Qf 
Public Law 89-239. Since these prQPQsals invQlve the 
use Qf health care facilities including hQspitals, what are 
the likely prQblem areas that might fQrestall the 
achievements expected fQr cQmprehensive health care 
using autQmated health infQrmatiQnsystems? 

The problem areas 

The majQr prQblem areas are thQse already discussed 
in the paper to. this PQint, and essentially they are re
lated to. reSQurces-manpQwer, mQney, machinery-and 
to. the methQd Qf attack. 

Manpower - As has been suggested, manpQwer prQb
lems will PQssibly appear in varying prQPQrtiQns Qf: 

• medical personnel with little Qr no. knQwledge Qf 
autQmatiQn, even at such a level as WQuld render 
the automatiQn Qf screening prQgrams mQre mean
ingful to. them . 

• systems analyst/programmers with little Qr no. 
knQwledge Qf medical systems. 

If we cannQt sQlve the manpQwer prQblems that exist 
in current iSQlated hQspital prQjects, there WQuld seem 
to be little chance Qf adequately staffing regiQnal de
velQpments Qf health infQrmatiQn systems, particularly 
if all systems require staffing Qf the Qrder suggested 
belQw. 

Costs - The financial crunch that has hit all sectQrs 
Qf the eCQnQmy will WQrsen' the fundiot?; situatiQn fQr 
medical research prQgrams such as enVisioned by 
Tennessee, 9Qnnecticut a:r;:td Qther fQrward-looking 
states. It is wQrthwhile recQrding the actual level Qf 
CQst Qf autQmatiQn in hQspitals that have grQuped to
gether by studying the IndianapQlis HQspital AssQcia
tiQn repQrt36 Qn estimated expenditures, and attempt 
to relate N repetitions Qf such a cost to a natioswide 
hookup Qf health care systems. 

FQr a cQmputer system capable Qf SUPPQrting thir
teen area hQspitals (6000 beds plus) and five health 
agencies, the prQPQsal estimated that 

.79 people WQuld be required in the periQd 1968-71 
to administrate, analyze, design, prQgram and 
Qperate the system; 

Health Information and Planning Systems 699 

• the system, if cQmmenced in 1966, WQuld CQst 
$9.4 milliQn by the time all aspects Qf the system 
were Qperating in 1971, at which time the Qper
ating CQst WQuld be $2.4 milliQn per annum. 

It is emphasized that the IndianapQlis studies are 
just Qne Qf a number Qf shared hQspital cQmputer 
studies QngQing at this mQment in the U.S.A. Assuming 
that such hardware and people SUPPQrt is capable Qf 
performing the data processing tasks of an automated 
(in the equipment sense) "multiphasic test screening 
labQratQry fQr a regiQn cQntaining hQspitals and health 
agencies, the CQst Qf renting autQmatic, multichannel 
analyzers plus the CQst Qf reagents is estimated at 
being in excess Qf $0.20 per test, withQut allQwance fQr 
labQr, space and allied CQstS.36 

Hardware - As has been indicated earlier, the hard
ware required fQr cQllecting and prQcessing multiphasic 
test screening data is already in use at Oakland, but 
when many hQspitals are linked tQgether in remQte 
access to a central facility, the size, speed and CQst Qf 
direct access stQrage, plus the input terminal prQblem 
PQsed earlier, WQuld still be present. 

Thus certain elements Qf a cQmprehensive health , 
care prQgram can already be autQmated, while Qthers 
will depend very much Qn manufacturer mQtivatiQn be
fQre wQrthwhile results will appear. 

In essence, it WQuld appear that existing systems 
staffing shQrtages, CQupled with the current lim~ted 

level Qf cQmputer expertise in the medical prQfessiQn 
and the need to. pressure manufacturers to. prQvide 
reliable wQrking hardware fQr a large-scale remQte 
access, time shared hQspital QperatiQn, should lead to. 
the cQnsolidatiQn Qf all that is gQQd in Qn-gQing hQspital 
autQmatiQn prQjects into. Qne Qr two. prQjects supporting 
a comprehensive health care system. 

This cQnsolidatiQn Qf expertise, funding and pressure 
Qn manufacturers by the federal government and by 
grQUps such as SIGBIO, WQuld result in the one Qr t~Q 
prQjects being adequately funded and supPQrted WIth 
staff and equipment CQmmensurate with the system 
needs. It WQuld nQt necessarily mean the future cut
back Qf funds Qn all Qn-gQing prQjects, but WQuld 
prQbably mean that the rate Qf increase Qf new projects 
might decrease. 

At this mQment, it is dQubtful if subsequent evalua
tiQn Qf the efficiency Qf such cQnsideratiQn WQuld nQt 
indicate 

• better use Qf the available human resources (sys
tems and medical) 

• a favQurable benefit/ CQst ratio. cQmpared to a pro
liferatiQn Qf smaller projects 

• that manufacturers reacted apprQpriately to. pres
sure to design equipment fQr such systems. 



700 Spring Joint Computer Conference, 1969 

CONCLUSION 

Some of the more significant problems and issues in 
medical automation have been discussed, and related 
to each other. 

It is suggested that current human resource short
ages, together with the costs of and working efficiency 
of large-scale computer hardware facilities, should 
lead to a consolidation or rationalization of on-going 
research into medical automation .. 

The effects of automation within a comprehensive 
health care system might really be felt if such rational
ization led to more efficient use of all resources, financial 
and others. 

ACKNOWLEDGMENTS 

The critical advice of Drs. Barnett, Caceres, Collen, 
Lamson and Vallbona through their correspondence, 
is greatly appreciated, as is the typing expertise of 
Miss S. Wenger, Secretary of the Faculty of Admin
istration, University of Saskatchewan, Regina. 

BIBLIOGRAPHY 

P F GROSS 
The computer in health care: Needed-A. plan for 
development 
World Hosp:tals Vol 4 : 4 189-200 October 1968 

2 M F COLLEN 
The multitest laboratory' in healh care of the fu'ure 
Hospitals JAHA 119-125 May 1967 

3 D LINDBERG 
Computers and medical care 
Spr:ngfield IlLno:s Charles C. Thomas 1968 

4 C CACERES 
In: Computer.], electrocardiography and public health
A nport of recent studies 
PHS Publication 1644 USPHS US Depar~ment of 
Health Education and Welfare June 1967 

5 C VALLBONA et al 
A non-line compu,ter system for a rehabilia/rion hosp1:tal 
Methods of Information in Medicine Vol 7 : 1 
31-39 January 1968 

o B G LAMSON 
Data processing in a medical centre""-Progress report 1966 
Department of Patho!ogy Schoo! of Medicine Center for 
the Health Sciences University of Californ:a Los Angeles 
1966 

7 Massach'USetis General Hospital Computer Projec'
Progress Report May 1966 to September 1967 
MGH Memorandum 10 October 1967 

8 Personal communication from Dr. O. Barnett of 
Massachusetts General Hospital 28.1.69 

9 N LINDGREN 
Future goals of engin'3ering in biology and medicine 
IEEE Spectrum 93-100 November 1967 

10 G 0 BARNETT H J SUKENIK 
Hospital information systems 

Inv:ted paper given at NJH Conference 
Future Goa~s for Engineering Biology and Medicine 
September 9 1967 reproduced in MGH Memorandum 10 
October 19 1967--.see reference 7 

11 P F GROSS 
Crisis in system education 
Canadian University 3:4 30-33, 56 June 1968 

12 P F GROSS 
Systems education-Needed: A reass,essment and upgrading 
Faculty of Administration University of Saskatchewan 
(Regina) January 1969 (mimeo) 

13 P B HOFMAN W A GOUVEIA G 0 BARNETT 
Computers: great future perilo'US present 
Modern Hospital July 1968 

14 G 0 BARNETT R A GREENES 
Interface aspects of a hospital information system 
Paper presented at N ew York Academy of Sciences 
Conference on Use of Data Mechanisation and Computers 
in Clinical Medicine January 15'--17 1968 

15 G SAMUELS 
~~1 ed7ico-legal aspects of clinical records 
National Hospital Volll : 5 9-18 February 1967 

16 E SPRINGER 
You, the computer and the law 
Medical Record News 15 February 1965 

17 J SEGALL 
Legal implications of autornated hospital information 
systems 
Paper presented at the Conference on Advances in the 
Applications of Computers in Hospital Management 
University of Michigan Engineering Summer Conference 
May 15-19 1967 

18 F MOORE 
Health information systems: Volumes 1 and II 
University of Southern California School of Medicine 1962 
(Available from USC Bookstore 2025 Zonal Avenue 
Los Angeles 33) 

19 New contracts 
Computers and Automation 50 September 1967 

20 K BARTSCHT R JELINEK 
A management information and control system for 
health services 
Paper presented at University of Michigan Engineering 
Summer Conference on Advances in the Applications of 
Computers in Hospital Management May 15-19 1967 

21 C FLAGLE 
CriteloW for evaluation of health service informatio-n systems 
Paper presented at University of Michigan Engineer:ng 
Summer Conference on Advances in the Applications of 
Computers in Hospital Management May 15-19 1967 

22 C FLAGLE 
Implications of health service information systems 
Paper presented at University of Michigan Engineering 
Summer Conference on Advances in the ApplicaCons of 
Computers in Hospital Management May 15-19 1967 

23 Detection and prevention oj chronic disease utilizing 
multiphasic health screening techniques 
Hearings from the Subcommittee on Health of the Elderly 
of a Special Committee on Aging-U.S. Senate 49th 
Congress Second Session September 20-22 1966 U.S. 
Government Printing Office 

24 M COLLEN 
The rnultitest laboratory in health care of the future 
Hospitals JAHA 119-125 May 1 1967 



25 Proceedings of conference/workshop on regional medical 
programs January 17-19, 1968, Volumes I and II 
National Institute of Health US Public Health Service 
US Department of HEW Washington DC 

26 L ELAM et al 
Health evaluatiOn studies utiliz.ing a multiphasic screening 
centre operating with a comprehensive health care program 
for persons in an urban poverty area 
In 25 Volume II 1-4 

27 Mathematics and computer scie'nce in biology and medicine 
Proceedings of a Conference held by [U,K.] Medical 
Research Council in association with the Health 
Department Oxford July 1964 

28 W PHILLIPS 
Record linkage for a chronic disease register 
Paper presented at the International Symposium on 
Medical Record Linkage Oxford England July 1967 

29 D NITZBURG 
The methodology of computer linkage of health and vita' 
records 
Reprint from Social Statistics Section-Proceedings of 
Amer Stat Assoc 1965 

:~O U.K. council proposes medical data bank 
Datamation 105-106 September 1967 

Health Information and Planning Systems 701 

31 S CENTNER et al 
Computer simulations to assist rational resources allocation 
in health science education 
Health Science Functional Planning Unit 
University of Toronto November 1967 

32 J RYAN C DILLARD 
A. computer model of the total emergency care system 
Paper presented at 6th Annual Southeastern Regional 
Meeting of ACM and National Meeting of Biomedical 
Computing University of North Carolina June 15-17 1967 

:3:3 M FELDSTEIN 
Economic analysis for health service efficiency 
Amsterdam North-Holland Publishing Company 1967 

34 J K MANN D E YETT 
The analysis oj hospital costs: A review article 
The Journal of Business Vol 41 : 2 191-202 April 1968 

35 EDP implementation planning study, technical report, 
Indianapolis hospital development 
Information Science Associat.es Cherry Hill New Jersey 1966 

36 D SELIGSON 
Provision of optimum chemical laboratory services for 
3,000,000 people 
In Proceedings of Conference/Workshop on Regional 
Medical Program op cit 4-6 





Computer assisted instruction in the 
diagnosis of cardiac arrhythmias * 

by E. J. BATTERSBY 

V anderbilt University School of Medicine 
~ ashville, Tennessee 

INTRODUCTION 

Disorders of heart rhythm, known as cardiac ar
rhythmias, are most accurately diagnosed from selected 
electrocardiographic (EKG) tracings. Their interpre
t~tion is necessary for the correct treatment, some
t~mes o~ an emerge?-cy basis, of a large number of pa
tIents WIth heart dIsease. Analysis of the contour and 
sequencing of component waveforms taken with the 
knowle~ge of the set of defined electrophysiologic 
mecharusms allows categorization and in most instances 
specific identification of the rhythm. Most of these 
dia~oses depend upon the specification of the site 
or sites of electrical impulse generation in the heart 
and its subsequent spread through speciali~ed con
duction pathways. The logical process leading to the 
diagnosis is inferential because the tissues involved 
in impulse generation and specialized conduction are 
of suc~ small mass as to have no direct electrical repre
sentatIOn on standard EKG leads. Only the electrical 
activation of larger masseE of cardiac tissue as a re
sultant of those fundamental mechanistic events pro
duces the component waveforms of the clinical elec
trocardiogram. 

It is the purpose of this paper to describe a digital 
computer simulation of the events that are the deter
minants of cardiac rhythm and the resultant activation 
of those portions of the heart that result in the genera
tion of the clinical electrocardiogram. The simulation 
is intended to assist instruction in the inferential pro
cess of arrhythmia diagnosis. A number of analog de
vices with a restricted repertoire of rhythm disorders 

* This publication is supported by the following Grants: 

US, PHS Career Development Award, Grant #1-K3-HE-10 
130 ! 

US, PHS Program Project Research Grant #HEO 8195 
US, PHS Cardiovascular Training Grant #5 T2 HE 5025 

are available but to the author's knowledge the system 
described herein is the first allowing programming of 
the basic mechanism of rhythm determination. 

To be useful in training medical and paramedical 
personnel in this important subset of clinical electro
cardiography several goals must be met. The language 
of coding used to change basic mechanisms must be 
minimal and in phrases acceptable to a student of elec
trocardiography. The simulation should be based 
upon accepted mechanistic behavior of well defined 
electrophysiologic components and not merely a set 
of arbitrary "function generators". The output of the 
simulation should be an analog signal that appears to 
the student as a bona fide EKG lead as would be re
corded from a patient in real time. Changes in the 
behavior of the underlying mechanism during the 
course of a rhythm strip generation must be imple
mentable with display of the resultant without any 
break in continuity of the analog output across the point 
of change of mechanism. Not necessary but desirable 
from the pedagogic point of view would be expansion 
of the time base of the output to provide a "slow mo
tion" electrocardiogram for oscillographic viewing. 

Two versions of this program have been implemented. 
One is in Fortran IV and was written to define the 
logic in an easily communicable form and to yield a 
detailed sequential listing of events to provide inter
actions of events. The version described herein in de
tail is written in assembler language for an SCC-650/2 
digital computer with a 12 bit word length and 8 K of 
memory. During the input of parameters, each com
mand is evaluated for syntax and the appropriate 
parameters inserted into the model. When a command 
is given to execute the model, a poll of all the functional 
modules is conducted at a simulation interval of 1/200th 
of a second. As particular portions of the simulated 
heart are fired, those contributing to the EKG appear 

-----------------------------703 -------------------------------



704 Spring Joint Computer Conference, 1969 

as a string of numbers stored in memory. The form of 
each type of waveform is available in a pre-defined 
list. At the time of display the string is passed to the 
D-A converter for display. 

Operational logic 

Pacemakers 

After electrical discharge a pacemaker region under
goes a predictable recovery cycle leading to spontane
ous discharge if uninterpreted. This type of periodic 
behavior is the mechanism that allows the heart to 
produce its own intrinsic repetition cycle. During the 
initial phase of recovery the pacemaker is said to be 
refractory and is insensitive to waves of depolarization 
travelling in adjacent tissue. After this refractory period 
local discharge may "enter" the pacemaker region and 
discharge it causing it to return to the beginning of 
the recovery cycle. This is known as pacemaker ~eset
ting and pacemakers protected from this discharge 
from without are known as parasystolic. When re
peatedly reset from without the duration of the re
covery period from onset to spontaneous discharge may 
be lengthened and when subsequently released from 
such suppression will gradually return to its basic 
period over the course of several be,ats. This escape 
phenomenon is termed warming. For the description 
of these kinds of pacemaker behavior five specifications 
are necessary. The length of the refractory period is 
set as fixed data. The pacemaker command in the sim
ulation language supplies an identification number, 
a number describing the length of the spontaneous 

Figure I-Pacemaker logic flow 
This is the chain of tests performed on each simul2.tion cycle 

of a pacemaker. Further description is in text 

discharge cycle and' two Boolean variables specifying 
whether or not the parasystolic and warming phenom
ena are in effect. Thus, with blanks as separators 
a typical cO!!LTP..and appears as follows: P2 75 W; which 
specifies that pacemaker two has a cycle length of 
0.75 seconds and exhibits warming. The absence of a 
P in the third argument means that the parasystolic 
bit is not altered. The location of pacemaker two in 
the geometry of the heart will be considered in the 
Interaction section. 

Figure 1 describes the logical steps for a pacemaker 
during a single cycle of the simulation. Excepting 
some details it may be read as follows: 

IF 

THEN 

local depolarization has occurred and 
the pacemaker is neither para...'3ystolic 
nor still refractory 

reset the clocks and GO TO EXIT 

ELSE IF if the discharge clock countdown is 
complete 

THEN 

EXIT 

set the indicator to note attempt to 
fire adjacent tissue and reset the clocks 

reset the local depolarization counter. 

Specialized conducting tissue 

The most important functional elements of the 
specialized conduction system join the two upper cham
bers of the heart, the atria, with the two lower cham
bers, the ventricles, as a conductor of impulses in either 
direction. A~ there is ample physiologic evidence that 
alterations ih conduction may occur at several levels 
in this longitudinally distributed pathway it is simu
lated by a chain of similar modules that may be sepa
rately controlled by parameter modifications and which 
interact with adjacent elements. This pathway, be
cause of its relatively slow conduction velocities pro
vides a delay in normal circumstances between the 
electrical activation of the upper and lower cardiac 
chambers. In abnQrmal situations, it may produce 
an unusually long delay or fail to conduct. This trans
mission line, known by several names to electrocardiog
raphers, will be called the junctional tissue in this 
paper. 

A typical recovery pattern for t:b.,is junctional tissue 
may be divided into four phases in terms of its behavior 
in transmitting impulses. For an initial period of time 
following discharge the tissue is said to be refractory 
meaning it will not respond in any way to the arrival 
of an impulse. In the second phase, impulses may be 
partially conducted in the region but will not in turn 
execute the next succeeding segment. Sequential con-



C01:nputer Assisted Instruction in Diagnosis of Cardiac Arrhythmias i05 

duction will f9.i1 as in phase 1 but the partial discharge 
of the segment will result in resetting of the recovery 
sequence back in time. The effect upon subsequent 
conduction behavior for impulses arriving later may 
be different. In phases 3 and 4 sequential conduction 
does occur. In phase 4 after full recovery the conduc
tion delay is a fixed minimal time. In phase 3, still 
incompletely recovered, the segment conducts with 
a delay that is a nonlinear function of the time still 
necessary to accomplish full recovery. 

A typical. command specifying the behavior of such 
a segment appears as follows: J3 100 40 10; denoting 
that junctional element three requires 1.0 second for 
full repolarization of which 0.4 seconds is the length 
of phase 3 and 0.1 seconds is the length of phase 2. 
Phase 1 is the remainder· and the fixed delay of phase 
4 is fixed data in the program. 

Figure 2 shows in schematic form the logic of this 
type of conduction module. Boolean "up" and "down" 
are specified so as to indicate the direction of conduc
tion. Thus, when an impulse is passed to such a segment 
simulator a directional indicator is passed which will 
determine the subsequent passing sequence if the seg
ment conducts. The initial test is to determine if the 
impulse pass bit is set. If it is the recovery clock is 
checked for phase. If in phase 3 or 4 the delay is cal
culated and used to set the impulse clock and the direc
tional flags are set. If in phase 2 the recovery clock is 
partially reset and no impulse action is taken. No 
action is taken if the impUlse switch is off on entry or 
if it is on and the segment is in phase 1. Then the 
clocks are advanced and at a cycle when the impulse 

From Exteraal a_ 

IWPULSE J:NTaT I , ___ 
PHASE PHASE PHASJ: 

I loa. z 
~~. eee 

Figure 2-Junctional element logic flow 
This is the chain of tests perlormed on each simulation cycle 

of a Junctional Element. External Routines refer to similar 
logical modules of adjacent ·Junctional Elements. Further 

description in text 

clock countdown is completed an impulse will be passed 
in the direction prescribed by the directional flags. 

Certain abnormal rhythms are attributed by elec
trophysiologists to reentry paths. These are conduc
tion pathways isolated in such a way as to be protected 
from complete discharge by a wave of electrical de
polarization passing through their region. Rather they 
are shielded and slowly conducting conduction limbs 
whose cycle is initiated by a passmg impulse and whose 
transit time is slow enough that when they exit locally 
or in nearby tissue they may initiate another impulse 
propagation. This cycle may then recur or be extin
guished on the next pass. These may behave in certain 
instances as "rebound pacemakers" and in other in
stances to return impulses back through a strip of 
specialized conduction tissue in the opposite direction 
from which it entered. 

The reentry command has the form R4 20 3; in 
which the first specification identifies the rebntry path, 
the second specifies a delay of 0.20 seconds, and the 
third argument allows a single digit of zero through 
eight that sets up "chances-in eight" of the event 
occurring at any particular trial by reference to a random 
number generator. 

This type of logic may also be used to specify bypass 
pathways of conduction with fixed delays that are 
invoked to explain certain types of abnormal impulse 
propagation. 

Interaction 

The communication among the elements described 
above and the larger masses of cardiac tissue whose 
electrical activity is seen in the standard electrocardio
gram depends upon their relative geometric disposition 
as well as their functional properties. Figure 3 shows 
the spatial relations of the elements simulated in the 
model. The principal potential pathways of conduction 
are indicated by directed arrowheads. Programmed 
reentry loop paths are omitted for simplicity. 

The spread of excitation in one of the elements of 
the atria or ventricles has several consequences. It 
may reset the spontaneous depolarization cycle in an 
adjacent pacemaker. It may after a period of time 
initiate activation of an adjacent element. It will supply 
from a table amplitude information to the D-A con
verter routine for display. Since the direction of de
polarization of the portions of the atria may be either 
upward or downward and the direction of the ventric
ular septum rightward or leftward, and since this 
will affect the resultant waveform, these possibilities 
are accounted for in the program and the waveform 
element tables. The waveform of repolarization of 
ventricular elements is seen on the surface electro-



706 Spring Joint Computer Conference, 1969 

t> PACEMAKERS 

O JUNCTIONAL 
ELEMENTS 

RIGHT 

TOP 

z t>,==:::!::=::: ATRIA 

BOTTOM 

6 

SEPTUM" LEi"T 

VENTRICLES 

Figure 3-Disposition of the simulated portions of the heart. 
Note that a string of junctional elements connects the atria 
(the upper portion of the heart) with the ventricles (the lower 
portions of the heart). The septum is the wall separating the 

two ventricles 

cardiogram and is supplied to the display modules. 
Note that transmission from the fifth junctional 

element downward is by two pathways, one to the 
right ventricle called the right bundle branch and one 
to the left ventricle and to the left side of the septum 
called the left bundle branch. Normally, conduction 
down this latter pathway will cause left to right de
polarization of the septum. Since certain changes 
in the EKG waveform will result from deletion of 
either or both of these pathways, such an option is 
included in the programming language. 

Simulation language 

An interpretive program for the simulation language 
was written in assembler language for an SCC-650/2 
digital computer with 8 K of memory and a 2 micro
second cycle time. This allows teletype input of com
mands and viewing of the output immediately after 
construction of a rhythm strip either on an oscilloscope 
face or a strip chart. So as to be able to execute pre
viously tested programs in the simulation language~ 
command strings can be input from paper tape. For 
the remainder of this discussion keyboard input will 
be assumed. 

Commands in the language may be divided into 
three types: 

1. Those that establish electrocardiographic param
eters. 

2. Those concerned with storage and display of 
the rhythm strips. 

3. Exits out of the command program and input 
;ta~~na "'ala ... ~I"Io"I'CI 
\A.\J Y .a.vv ~\.J~\.JV uv~a.;;;r. 

Each command is preceded by a colon supplied 
by the program and indicates readiness to accept the 
command. Each command is terminated by a semi
colon and at any time prior to the entry of the semi
colon terminator, a colon may be used to delete the 
command. Comments fields are admitted. A command 
is syntactically evaluated after the entry of the semicoln 
terminator and before execution. Syntax error mes
sages are generated and allow immediate reentry of 
a correct command. 

Type I commands that determine EKG parameters 
are those described under pacemakers, junctional 
elements and reentry paths and four others. Time of 
the simulated rhythm strip in integer seconds from 
one to thirty may be specified by the command: 

TIME 8 SECONDS; A command exists establishing 
normal parameters so that the rhythm will be pro
duced by pacemaker one and transmitted without 
conduction delay or disturbance resulting in normal 
sinus rhythm in the electrocardiographer's language. 
This is of the form: 

NSR; and is useful in establishing baseline initial 
conditions. Lead selection commands allow the operator 
to view either of three lead displays. Lead II is the 
standard body surface lead used in rhythm diagnosis 
and is established by the command: 

LEAD II; In addition, a lead taken in special cir
cumstances from within one of the atria in which the 
atrial deflections may be more clearly discerned may 
be designated. Finally, a lead not available to the 
clinical electrocardiographer is generated which shows 
by spikes the passage of conduction through any or 
all of the junctional elements. The command: 

BBBL; establishes block of the left bundle branch 
and commands :;Ire available to create or remove block 
of either the left or right bundle branch. 

Storage and display commands allow storage and 
retrieval for display of generated rhythm strips. The 
command: 

UPDATE; states that the operator is ready to begin 
generation of a new string of rhythm strips. This simply 
resets a memory pointer. If it is desired to have the 
rhythm strip displayed on an output device during 
generation the command: 

VIEW; is used. This will generate the segment ac
cording to the functional element parameters then 
present. The command: 

ENTER; will do exactly the same but without 
display. Display of the sequence of arrhythmias gener-



Computer Assisted Instruction in Diagnosis of Cardiac Arrhythmias ""'''''''' lUI 

ated since the last update command without break 
in continuity is accomplished by the conunand: 

DISPLAY; 
Other conunands are not formally part of the lan

guage but used in the present implementation to trans
fer control to a debugging program and a device flip
flop that transfer control to the paper-tape reader 
when executed on the teletype and vice versa. 

The coding of the simulation language is minimal 
and is in terms readily accepted by the student of 
electrocardiography. More detailed description of 
the command structure is specified in a manual de
fining the language and, the presentation here is ab
stracted from that source. 

RESULTS 

By definition, rhythm changes that are produced by 
other than the mechanisms defined in the model can
not be prqduced.They are few and in general not 
amenable to the usual type of analysis that this simu
lation is expected to assist in teaching. While they 
might be included in the repertoire by supplying a 
list describing them this would not increase the use
fulness of the simulator as a pedagogic tool. 

A wide variety of important rhythm disorders can 
be produced yielding a noise free signal and the op
portunity to view special leads that is not usually 
available in the clinical setting. The underlying mechan
isms are clearly defined by the operator's input com
mands. Some examples of the tracings produced l>y 
the machine will be considered to illustrate certain 
features of the system. 

Figure 4 illustrates how the display command may 
be used to portray as a continuous tracing two segments 
that were sequentially created with a change in mechan
ism between them. The test below the records is the 
nonerating program. Strip 1 is a two second run of 
normal rhythm. Then the rate of pacemaker three 

.. ' .... :UPDATE::NSR::TIME 2 SECONDS ::VIEW: (Strip 1) 
:TIME S SECONDS ::P3 550 ::Y; ACTIVATES 
THE UPPER NODAL FOCUS AT A RATE 
SUOHTLY GREATER THAN THE SINUS RATE 
OF 100 .:VIEW; IStrip 2) 
:DISPLAY; (Strip 3) 

Figre 4-Demoilstration of fusing of two separately generated 
strips. See text 

(upper nodal focus to the electro cardiographer) was 
increased and a five second record created. Then, by 
use of the display command the entire seven seconds 
are seen as continuous record. The point of fusion is 
indicated by the triangle. 

The interval of time between the onset of the wave 
associated with the firing of the atria and that asso
ciated with firing of the ventricle is usually constant 
in normal situations. If the period of the pacemaker 
firing the atria is shorter than the recovery period of 
a junctional segment the arrhythmia seen in Figure 5 
may result. Because of incomplete recovery this inter
val is progressively longer until conduction is blocked; 
recovery is allowed and the cycle repeats. 

Note also the atrial waveform obscured in the 
portion of the record indicated by the triangle. An 
experienced cardiologist would recognize this. The 
short strip below shows the appearance of the special 
atrial lead in this circumstance showing the clear pre
sentation of the atrial wave obscured in the upper 
tracing which would alert the student to the obscured 
wave in the standard tracing. 

Figure 6 shows the usefulness of the other lead se-

Figure 5-Demonstr~tion of the use of the simulated intra
atrial lead (bottom strip). See text 

!II!!! !!111m! !I!! Iii! i!lllill:ii'I .' Iii, ~ ,~,' mnUmnm'iillWi 111i 
WI~~ ~m !II~ I!!l !!I! i~l! "!' !!~ I!!! iI!~ ;!I! I!!! ! II " i,'1 hUh!' film! In!l ": 
·!nu~!!I! 'j~ !:arl!,lil!~ !!1.lrK:: t!!I'~lt " ! I ,: IIUl !fi!ifii !I!i !;~ [lit 
'!'! 1m Pli'mi "II 9i ·h 1111111 JIll !m~ II!'! "if! ,m I dl I i! ad !II! 7ri! f!Il Iii! fil: !H! 1m l ....... I •.•..• I.lt.l.I. • .•..• I •. I.II!.! -

Figure 6-Demonstration of a lead marking activation of one 
of the junctional elements (bottom strip). The effect of the non
conducted impulses marked by triangles on subsequent con
duction is seen. This is an instance of so-called concealed con-

duction 



708 Spring Joint Computer Conference, 1969 

lection option. Here the lower strip shows activation 
of one of the junctional elements indicated by a spike. 
At the two instances indicated by the triangles the 
junctional element is activated by an adjacent pace
maker while LTl phase 2 of its recovery cycle. It does 
not propagate the impulse but the effect on subsequent 
conduction is seen. In the first case the interval between 
atrial and ventricular activation is prolonged (indicated 
by the bar) and in the second instance the spread of 
the impulse is blocked. This is an example of what 
a cardiologist would refer to as "concealed conduction." 

Strip chart recordings produced by the system have 
been used by the author as instructional material for 
continuing education courses for physicians and for 
students in the medical school curriculum. On line 
oscilloscopic displays have been used in the education 

of Coronary Care Unit nurses. At present, there is 
no proof that this approach that synthesizes rhythm 
abnormalities from underlying mechanisms will allow 
students to develop the analytic ability that under
girds arrhythwia diagnosis. A classroom is currently 
being supplied with teletype and output devices and 
a proposal to train half a medical school class using 
the system and the other half in the standard manner 
is being entertained. It is hoped that this will yield 
information as to whether this experiment in computer 
assisted instruction is in fact superior to standard 
classroom instruction. The emphasis has been thus 
far on the instructor as user, rather than the student, 
In the course of the planned evaluation it is expected 
that the student will be able to interact with the simu
lator on an individual basis. 



Hospital automation: Something 
more than a computer 

by WALTER L. BENNETT, CHARLES F. STROEBEL 
and BERNARD C. GLUECK, Jr. 

The Institute of Living 
Bartford,. Connecticut 

INTRODUCTION 

The introduction of computer techniques into the 
hospital environment offers an exceptional opportunity 
to reassess traditions and procedures developed over 
the years of a non-automated era.1 However, there is 
an apparent danger that computer applications evolv
ing in many hospitals tend to perpetuate the stereo
typed roles of departments and personnel confined 
within traditional organizational boundaries. Their 
primary emphasis on conventional business or other 
specialized areas serves to sustain long ,standing and 
often outmoded rituals and procedures, imbuing them 
with the aura of modern automation. Such stereotype 
can be avoided by centering design of the computer 
system on the patient and his care as the crucial basic 
unit, thereby optimally meeting the needs of both 
patient and staff. 

This approach provides "something more" than 
mere automation; it reduces communication barriers 
by integrating and focusing the efforts of the admin
istra tion and a diverse staff on optimizing the care of 
the patient; it encourages a redefinition of traditional 
duties and roles to minimize the functioning of human 
beings at repetitive, mechanical tasks which can easily 
proliferate with an unimaginative installation of data 
processing equipment; it encourages a fuller and more 
flexibJe version of the ultimate capabilities of computer 
technology in providing complete medical care. 

This paper reviews and generalizes on the experi
ence gained in the application of the patient centered 
concept to the implementation of a computer based 
infonnation system in a 400 bed private psychiatric 
hospital, using an IBM 1440 computer and 12 Bunker 
Ramo cathode ray tube terminals for on-line service 
eight hours a day for the past two years. 

The proliferation of computers in hospitals has 
been extensive. A survey made in the Fall of 19622 

showed that only 39 hospitals were using computers. 
Four years later, January 1966, the American Hospital 
Association reported in their annual survey of "Hos
pitals Accepted for Registration" that 586 hospitals 
either had their own computer or received computer 
services through a service bureau. From the Fall of 
1965 to May, 1968, ECHO, a national organization 
of hospital personnel engaged in the installation of 
computer systems, experienced a membership increase 
from 74 representatives of 49 instutitions to 457 repre
senting 241 private institutions plus numerous state 
and federal hospitals systems. 

A review of current periodical literature and ECHO 
membership applications describing the status of 
hospita1s' automation programs reveal that the major
ity of operating systems emphasize patient billing, 
accounts payable, general ledger, payroll,inventory, 
and statistical reporting programs. A smaller number 
report the development of computer applications serv
ing the research department or the clinical laboratory. 

In the vast majority of hospitals, it appears that 
the implementation of computer services is under the 
direction of the comptroller, a comparable adminis
trative officer' to whom the data processing personnel 
report, a research scientist, or a laboratory technician. 
In relatively few instances is the responsibility for 
an automation program vested at an administrative 
level where the joint requirements of the whole hos
pital-clinical, research, business affairs-are seen 
in their proper perspective and can be effectively incor
porated into an overall plan. 

Considering those in whom control of computer 
programs is commonly vested, this concentration 

700---------------------------------



710 Spring Joint Computer Conference, 1969 

of attention and resources in the more conventional 
and better understood uses of the computer for business 
or scientific purposes is understandable. Another factor 
which may contribute to perpetuation of this emphasis 
on specialized areas .is the lessened likelihood that the 
status quo in clinical areas will be disturbed by the 
encroachment of computers on traditional doctor / 
patient/nurse relationships. 

A study made by McKinsey and Company3 on the 
profitability of computers employed by large companies 
has clear relevance to hospitals attempting to secure 
maximum returns on their investment in an automation 
project. The study found that In.any large companies 
have unprofitable computer installations because "tech
nicians", not "managers", control the ways they are 
being used. The report further states that unless com
panies go beyond the "super clerk" uses of computers 
and apply the machines to crucial management and 
operations problems, the heavy expense of a computer 
installation will probably not be justifiable. 

From the findings of the McKinsey study emerge 
three fundamental principles pertinent to the problems 
and organization of a hospital: 

1. The direction taken toward design of a com
puter project should follow what engineers 
recognize as the "Systems Approach".4 Simply 
stated, this calls for consideration of total 
systems needs before proceeding to the selection 
and design of compatible components. 

2. Development of a hospital management infor
mation system calls for the commitment of the 
highest level medical and administrative staff 
to the direction and support of the project, 
thus securing a perspective which visualizes 
the relationship of the many functions, or 
sub-systems, of the hospital to each other and 
to the total needs of the hospital. 

3. InterdisciplinalY specialists should be mem
bers of the development team; i.e., physicians 
who understand the problems of data pro
cessing; researchers who understand the prob
lems of the physician and the programmer; 
accountants who see the relationship between 
other hospital sub-systems and their own; sys
tems specialists who can relate successfully to 
the other members of the group. 

The Institute of Living patient centered information 
system has departed from the standard pattern seen 
in the majority of hospital systems which center around 
and cater primarily to a single component of the hos
pital complex or sets of isolated components. Adherence 

to the "Systems Approach" is exemplified in its stated 
objectives: 

1. To provide a more effective method than other
wise possible through traditional means, to 
record, communicate, and display, when re
quired, a comprehensive and dynamic profile 
of patient progress. This is accomplished through 
provision of simple inquiry procedures with 
which the user can extract an almost limitless 
variety of information through an on-line ter
minal. 

2. To streamline administrative procedures, there
by freeing professional personnel for more pro
ductive purposes in the patient care and hospital 
management areas. 

3. To increase the efficiency, economy, and safety 
of patient logistics; i.e., scheduling of medica
tions, meals, diagnostic procedures, patient 
privileges, etc. 

4. To provide a better and more sophisticated 
means to record, analyze, and present psycho
physiological data on all types of patients for 
clinical and research purposes. 

5. To satisfy the need for financial, personnel, 
and other conventional business applications; 
i.e., payroll, accounts receivable, personnel 

. data, financial reports, accounting, inventory 
control, etc. 

Progress toward these objectives has been achieved 
in the implementation of a hospital dependent, reactive 
system which has been in daily operation for two years 
serving the clinical, administrative, and research needs. 
The system includes the following features: 

1, An automated master patient record file of 
current and historical information on all in
hospital patients (see Figure 1). 

2. Twelve key areas of the hospital are equipped 
with Cathode Ray Tube terminals with alpha
numeric keyboards which hospital staff members 
use to update the patient file and request infor
mation as needed (see Figure 2). 

3. A privacy feature has been incorporated to 
insure positive identification of a person at
tempting to operate a terminal and to prevent 
unauthorized personnel from entering or re
ceiving privileged information. 

4. The administrator, clinician, or researcher can 
request a report on any group of the hospital 
population according to desired parameters re
ceiving an immediate reply; for example, sex, 
age, diagnosis, religion, origin, and/or length of 
stay. An example is shown in Figure 3. 



DEMOGRAPHIC INFORMATION: Patient's residence, 
marital status, religion, education, 
occupation, birthdate, sex, citizenship, 
social security number. 

ADMISSION DATA: Date, legal basis, type of 
admission, time and place of previous 
patient stays, referring party, personal 
physician (office and residence). 

LOGISTICS: Residence, group, observation, 
and doctor assignments (current and 
history), date and type of privilege, 
place, time, and frequency of departures, 
visits, and returns. 

QUANTITATIVE BEHAVIORAL ANALYSIS: MMPI, MHPA, 
scores and rater ID, (current and history), 
nursing note scores, special behavior 
data. 

MEDICAL EVALUATION: Duration of illness, 
drug study group code, diagnosis, medi
cation data, mental status. 

BILLING: Room and medication rates, charges 
and credits, current balance, billing 
party for all or specified charges. 

FAMILY AND FRIENDS: Responsible party, emer
gency notification, other relatives 
(address, occupation, and telephone 
number of above persons) • 

PHYSICAL MEDICAL DATA: Neurologic and physical 
exam results, blood type, drug sensitiv
ities, other abnormalities. 

Figure 1-Master patient record file data 

5. Since daily behavioral observations are the basic 
laboratory data for psychiatric patients, a pa
tient's behavioral status, over time, can be 
graphically displayed as desired using factors 
derived from an automated nursing note system, 
as shown in Figure 4. These "fever chart" dis
plays have been found especially meaningful and 
useful to clinical personne1.6 Figure 5 is another 
example of a similar display comparing two pa
tients on the factors derived from the scores 
achieved on the l\1innesota-Hartford Person
ality Assay. 

6. Computer aided instruction is provided through 
interactive procedural aids displayed on the 
terminal screens. Examples are the availability 
of a glossary to define terminology presented in 
an on-line mental status description and a self
administered test in the use of the newly adopted 
international list of diagnostic categories. 

7. Automation of pharmacy orders provides a 
record of patient medications, produces labels 
for the pharmacist as a by-product, and notifies 
clinicians when it is necessary to renew a drug 
order. 

Hospital AutOInation 711 

Figure 2-0n-line cathode ray terminal 

8. Payroll, patient billings, census, and other re
lated applications are also provided. 

The programs, written in Autocoder, run on an IBM 
1440 computer utilizing 16,000 c~acters of core 
storage, three 1311 disk drives, a 1442 card reader/ 
punch, and a 1443 printer. A Bunker-Ramo 200 Dis
play System provides the on-line capability with Bun
ker-Ramo 204 Display Stations and a Teletype Corpora
tion Model 35 RO. By the end of the year it ~ 
anticipated the system will be transferred to a Univac 
494 with central processor backup, Fastran drums 
and tape storage. The number of terminals will be 
expanded to approximately 40 in order to provide com
plete coverage of all hospital areas. 

In retrospect, the following three premises on which 
system design philosophy has been based appear as 
crucial factors.6,7,8,9 

First, the patient, his care and treatment, have 
been recognized as the center of the hospital universe. 
Every activity is directed toward this end; no machine 
or automated procedure is permitted to disturb the 
therapeutic relationship between the patient and his 
environment. 



712 Spring Joint Computer Conference, 1969 

INPUT REOUEST (CODED); 

I. DATE RESTRICTIONS - MO.l DA. I YR. TO PRESEN' 
2. INCLUDE SEX I EQUAL TO I FEMALE 
3. INCLUDE MAR!TAL. STATUS! EQUAL. TO! MARRIED 
4.INCLUDE RELIGION I EQUAl TOI PROTESTANT
S.INCLUDE EDUCATIONI EQUAL TOI ATTENDED POST-

HIGH SCHOOL TRAINING 

OUTPUT DISPLAY; 

29049 
9A 

35498 

44000 

UNDER 
39 
49 
59 

lisT 

MRS JONES, NELLIE R-
COLE GRAY, C. - T 

MRS SMITH. CLYDE C. 
TO. I GRAY. C. 

MRS TAYLOR, GRACE W. 
W. H. SIMPSON, G. 0 

TOTAL 3 

AVERAGE LENGTH OF STAY FOR THE 
PATIENTS IN THIS GROUP IS 44 DAYS. 

Figure 3-An example of the master patient file "extractor" 
capabilities 

100 
SOCIAL ADAPTATION 

3 5 7 15 17 19 21 23 25 

DAYS 

Figure 4-A longitudinal 25-day display of three nursing note 
behavioral factors for a sociopathic patient compared with the 
group mean (=50). Compared with the group mean, this 
patient "ras more socially adaptive and showed an increase in 
anxiety over the 25-day period. The psychiatrist believed that 

therapy wouid not be effective until anxiety had been moDilized 

MINNESOTA - HARTFORD PERSONALITY ASSAY 
04-21-IT MEAII ADMISSIOII I'RO'ILES I AIIO 14 I'OSITlV£ Sl'l1e.1 

COWA"IIOII 0' I'OIlTI'IE "lID II!lATI'IE l"OUl'S 

100-

90- - --

40 - - - - -

30-

20 - - - - -
I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 

I AIIO 14 
YES 
• AIIO 14 
NO 

61 16 51 16 64 1111 47 45 I. 115 10 58 12 54 61 5' 

" 77 1111 711 .~~ ~~ 47 44 .: 114 n 10 .~: 51 ': 511 

47 57 n 55 

45557053 

Figure 5-A patient behavior profile produced by scoring 
twenty factors of the Minnesota Hartford Personality Assay. 
The normal profile is equal to a score of 50 on each factor with a 

standard deviation of 10 

Accordingly, from the point of view of both the 
systems engineer and the hospital, a patient centered 
information system provides the most logical approach 
to a viable system, as illustrated by Figure 6. 

Secondly, the Human Factor is a critical element 
in the success of the computer project. The degree of 

Med i co I 
Services 

Figure 6-A schematic illustration of t.he patient-centered
hospital system concept 



appropriateness and acceptability of new techniques 
is directly proportioned to the understanding and 
contributions of the users in their development. to 

To this end, all levels of hospital staff, from top 
medical and administrative down, who might in any 
way come into contact with the system or be affected 
by it, have been involved in the design effort. This 
involvement has included on a continuing basis the 
following, as appropriate to the needs of the individual: 

1. Exposure to the potential- usefulness of com
puters in the care and treatment of patients 
through booklets, visual aids, lectures, group 
discussions, visits to other hospitals, etc. 

2. Solicitation of ideas, even if apparently far
fetched, as to how a computer might be used 
in the hospital. 

3 Assistance and advice in setting objectives 
and priorities for their accomplishments. 

4. Active participation in the development of 
automated procedures by those involved; for 
example, pharmacists, nurses, the chairman 
of the pharmacy committee, and data processing 
personnel were closely involved in design and 
implementation of the automated medication 
file. 

5. Frequent personal consultation by project 
staff members with the users of the system 
for their guidance and advice especially to ensure 
the proper use of the unique terminology em
ployed by clinicians, nurses, and other pro
fessionals. 

It has been observed that the mere involvement of 
key personnel from all departments can of itself improve 
hospital efficiency and patient care procedures, auto
mated system or not. 

Thirdly, the man/machine interface plays a vital 
role in the successful integration of an automated sys
tem into the hospital environment. 

It is recognized that the users of the system need 
to enter, receive, and utilize information comfortably, 
effectively, and preferably without an intermediate 
filter, such as a clerk, ward secretary, nurse, or other 
personnel. For the majority of the' hospital staff their 
only contact with the computer will be the means of 
communication. Quite literally, to them this is the 
computer. 

In a more conventional business environment, a pro
cess control situation, or a computational research 
effort, such emphasis on choice of communications 
device may not be warranted. In these areas one can 
expect clerks, engineers, or scientists to be familiar 
with various types of terminal equipment. Where one 

Hospital Aut01nation 713 

must deal with personnel both unfamiliar with and often 
resistant to "machines", a psychological, and often 
a physical, barrier is interposed to the free flow of 
information on which the system depends. 

By centering the system on the patient rather than 
on the "computer", new and productive patterns of 
staff interaction have been encouraged, leading to a 
re-analysis of every dimension of hospital operation 
that affects patient care. We conclude that the ultimate 
potential for applying the patient centered concept 
depends not on hardware which is already planned 
or available, but, most importantly, on capable medical, 
paramedical, research, and data processing personnel 
who can use the computer as a means and not an end 
for crossing traditional interdisciplinary barriers in 
the care of patients. 

This does not mean the potential of the computer 
to monitor, condense, and analyze information is being 
relegated to a secondary level of consideration. With 
the acquisition of adequate third generation hardware 
we plan to use the data base now being accumulated 
for continuous monitoring by the computer for essential 
missing data, "essential" being determined by con
tinuous comparison of already received data with 
paradigms of illness or treatment p.rediction patterns. 
We assume the essential information will vary con
siderably from one clinical problem to another, and 
hope to exploit the resources of advanced computer 
technology to make the models as varied and numerous 
as necessary. 

We would judge that the ultimate success of an in
formation system can be evaluated by the degree of 
increased communication and interaction it encourages 
amongst these various specialists; this criterion implies 
that all relevant judgments would be used in the care 
of the patient. Early evaluation of such a system at 
the Institute of Living demonstrated a significant 
increase in such communication.ll This approach has 
used the computer as something more than an instru
ment for automation. 

ACKNOWLEDGMENTS 

The computer project at the Institute of Living has 
been supported in part by NIMH Grant MH-08870, 
Bernard C. Glueck, Jr., M.D., Principal Investigator 
and Director of Research. This research was also sup
ported by ~I~1H Grant l\1H-08557 and by the Gengras 
Foundation. 

The authors acknowledge the assistance of Mr. R. 
Peter Ericson, Miss Dorthie McIntyre, and Mrs. 
Dorothy E. Reiss. 



714 Spring Joint Computer Conference, 1969 

REFEREKCES 

C F STROEBEL W L BENNETT R P ERICSON 
B C GLUECK JR 
Designing psychiatric computer inf{)nnat'l~()n. syste.m,s: 
problems and strategy 
Comp Psychiat Vol 8 No 6 1967 

2 R H GIESLER 
How many hospitals u,.'~e automatic data processinr, 
equipment 
Hospitals JAHA Vol 38 January 1964 

3 Me KINSEY AND COMPANY, INC 
Unlocking thR computer's profit potf'niial 

4 W L BE~NETT 
The systerm approach to hospital automation 
Hospital Financial Management J HFMA January 1969 

5 M ROSENBERG B C GLUECK JR 
W L BENNETT 
A. utomation OJ behavioral observations on hospitalized 
psychiatric patients 
Amer J Psychiat 123 1967926-929 

6 B C GLUECK JR C F STROEBEL 

The computer and the clinical desicion process: II 
Supplement to the American Journal of Psychiatry 
Vol 125 No 7 January 1969 

7 W L BENNETT 
How to live with a computer and tik.e. it 
Medical Record News J iLt\MRL Vol 39 
No.3 1968 42-44 

8 W L BENNETT J A HOUCK 
A three step plan Jor automation 
Hospitals JAHA Vol 41 196761-66 

9 W L BENNETT 
.4 viable computer-based hospital information system 
Hospital Management Vol 103 196743--47 

10 M ROSENBERG R P ERICSON 
The clinician and the computer-affair, marriage, or 
divorce'! 
Supplement to the American Journal of Psychiatry 
Vol 125 No 7 January 1969 

] 1 M REZNIKOFF D HOLLAND C F STROEBEL 
Attitudes toward computers among employees of a psychiatric 
hospital 
Mental Hygiene Vol 51 1967419--425 



A position paper--Computers in medicine: 
Automation vs. improvement of status quo 

by ALVAN R. FEINSTEIN 

y ale University School of Medicine 
~ ew Haven, Connecticut 

Computers have thus far been applied in medicine 
most effectively in situations where a standard mecha
nism already exists for dealing with the data: in the 
accounting problems of administrative work; in sorting 
and printing out the resl}lts of laboratory tests; and in 
conventional types of mathematical calculation per
formed during research or other activities. Despite these 
obvious and desirable successes, computers have not yet 
had an important impact on the more inherently clinical 
features of medical strategy and tactics. The intellectual 
qualities of scientific practice in clinical medicine do not 
appear to have been significantly affected by the many 
theoretical models and grandiose systems proposed 
during the recent exuberance of "computers m 
medicine." 

Perhaps the greatest barrier to true progress in 
applying computers to clinical problems is the premise 
that satisfactory scientific approaches now exist for 
acquiring medical data and for interpreting the data 
during diagnostic and therapeutic decisions. Since this 
premise is not valid, enonnous amounts of time, effort 
and money may be expended in constructing com
puterized systems and models that will be obsolete or 
inadequate for the real needs of clinical medicine. 

Computational approaches to diagnosis might have 
been useful 40 years ago, but are often obviated today 
by the modern precision of individual pathognomonic 
paraclinical tests. With the aid of radiography, biopsy, 
cytology, endoscopy, and diverse laboratory procedures, 
many diseases can be accurately identified today 
without the use of complex inferential logic or statistical 
computations of probability. The major intellectual 
need in diagnosis today is for a better way of choosing 
the tests rather than calculating the names of diseases. 
Such improved strategies cannot be devised and 
checked, however, until appropriate clinical algorithms 
are constructed to demonstrate the flow of logic in the 

diagnostic "work-up," and until appropriate medical 
data are assembled to show the values and risks of 
paraclinical tests at each step in the logical sequence. 
The construction of such algorithms and the assemblage 
of such data require attention not to computers and 
statistics, but to the basic ingredients of clinical 
reasoning and activities. 

Current systems for acquiring and storing the data 
of patients' histories are ingenious but inadequate 
because the types of data, the necessary descriptive 
constituents, and their subsequent tactics of application 
are not clearly recognized or defined. J\fany critical 
types of information-such as iatrotropic stimuli, subtle 
nuances in symptom descriptions, sequential patterns 
of symptoms, and the effects of co-morbid ailments, as 
well as the entire class of communications that are 
transmitted non-verb ally-are omitted from informa
tion now being stored in automated systems, and 
inadequate attention has been given to the different 
rational procedures that must be used when the same 
data are analyzed for different clinical purposes. 

The automated interpretation of electrocardiograms 
and of other paraclinical tests cannot be effective until 
specific, rigorous criteria are established and stand
ardized for the diagnostic interpretations. Such criteria 
have not been developed for most of the "diseases" of 
modern medicine. ~{ost of the existing diagnostic 
criteria for disease are derived from observations made 
at necropsy, but the histopathologic concepts have not 
been subjected to careful studies of observer variability, 
and precise criteria have not been formulated and 
accepted for integrating the combination of clinical, 
technologic, and morphologic data that must be used 
for diagnoses made in living patients. 

Concepts of "normality" are currently in a state of 
confusion because the "normality" defined by a 
statistical Gaussian curve is quite different concept 

------------------------------------------- 715 -------------------------------------------



716 Spring Joint Computer Conference, 1969 

from the "normality" defined by a state of health or 
disease. Moreover, regardless of which definition is used 
for "normality," a satisfactory range of epidemiologic 
populations has not been assembled and followed as a 
source of reliable data for analysis. 

"Support systems" for clinical decisions will be 
intellectually chaotic until they recognize and separate 
the different types of data and reasoning used for 
diagnosis, prognosis, and therapy. Each type of reason
ing requires different data, different logic, and different 
criteria. Because the taxonomic categories for data are 
currently undefined or incomplete; because standardized 
interpretive criteria do not exist; . and because the 
available data are not satisfactory either in epidemio
logic range or in temporal extensiveness-the current 
attention to s-ystem rather than to data, clinical logic, 

and criteria seems directed at peripheral rather than 
basic issues. 

By providing a magnificent means of storing, 
retrieving, and counting complex data, computers offer 
clinicians an opportunity for major improvements in the 
scientific practice of medicine. The opportunity will be 
lost if the computer is used merely to automate a 
defective status quo. A more exciting challenge of the 
computer is the incentive it offers clinicians to explore 
the basic data and complex reasoning of clinical 
medicine, so that intellectual clarity and precision can 

, be established for constructing suitable clinical 
algorithms, for developing appropriate criteria fOf 

decisions, and for performing new research projects that 
will yield respectable data with which to enlighten the 
future rather than embellish the past. 



An analytic model of multiprogrammed 
computing 

by ROBERT R. FENICHEL 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

and 

ADRIAN J. GROSSlVIAN 

Borden, Inc. 
New York, New York 

INTRODUCTION 

The work described in this paper was undertaken in 
order to provide estimates of the throughput capacity 
of certain multiprogrammed computer systems. In 
particular, we consider those systems whose users are 
never simultaneously receiving input-output and cen
tral processor attention. Systems making" use of "de
mand paging" tend to fall within this class. 

Our definition of "throughput" should be made more 
explicit in this introduction. We initially considered a 
model in which the measure of system performance 
was response time. But this model required us to phrase 
each result in terms of user reaction time; the same 
system can give snappy service to lethargic users and 
inferior service to a more energetic clientele. 

The current model looks to system perfomance in 
tenns of completed interactions per unit time. * This mea-

• This measure is identical to that used by Gaver (Journal of 
the Association for Computing Machinery, Vol. 14, No.3, July 
1967, pp. 423-438), and it is useful to compare our work to h~s. 
Gaver's work is characterized by sophisticated statistical analysIs, 
and Gaver's analytic assumptions were made in order to facilitate 
his manipulations. For example, Gaver assumes that the service 
times of input-output peripherals approximate an exponential 
distribution (page 428). While this approximation can be made 
to fit real system behavior quite closely, the effect of the as
sumption upon the whole analysis is not clear. Insofar as real 
equipment behaves less smoothly than the distribution suggests, 
is the system degraded or improved? 

Many of Gaver's idealized systems differ in what prove. to 
be only minor ways. For example, he compares systems w~ch 
differ only in the variances of the distributions of their respectIve 
parameters. It is greatly to Gaver's credit that these com-

------------------------------717 

sure has the merit that it is indifferent to the energy and 
even to the total number of competing users of the sys
tem. Our only assumption in using this measure is that 
the number of users is sufficient to maintain a non-zero 
load on the system at all times. 

We wish to understand the effects of each of our 
analytic assumptions. In particular, we make the fol
lowing claim: Each of our assumptions is optimistic. To 
the extent ~that our model over-simplifies, it over-esti
mates expected system performance. 

For example, we assume of many parameters that 
they are taken from distributions of zero variance. This 
is always an optimistic assumption. In every case, these 
parameters may be regarded as demands upon system 
components. The variances which we bar could only 
lead to the idleness of a component; utilization, like 
time, cannot be recaptured. 

System: CPU, care, drum 

We shall first consider a system whose resources are 
a single central processing unit (CPU), some fixed 
quantity of executable memory (core), and a drum. . 

Our first assumption is that there is a fixed, determlIl
able number k which is the number of user programs 
simultaneously in core. ** In any paged environment, of 

parisons were published, but we perceive the~ as stric~ly ~ega~ive 
results. That is, Gaver has shown that dIfferent dlstnbutlons 
really are not ever very different. 

.. To take account of shared code, we prorate its ownership 
among its users in the obvious way. 



718 Spring Joint Computer Conference, 1969 

course, programs may be only partially in core. We 
count a given program among the k if, and only if, it is 
either (1) now using the CPU, (2) waiting for the CPU 
and sufficiently loaded so that the system would trans
fer the CPU to it were the CPU free j or (3) not using or 
waiting for the CPU (that is, using or waiting for some 
other component of the system) and as fully loaded into 
core as the least-loaded program in condition (1) or (2). 

Certainly, k is bounded by the physical size of core; 
each core-resident user needs at least the space which 
will be necessary for storage of his current machine 
conditions. But in order to decrease the frequency of 
page requests, the system's supervisor will probably 
limit k so as to increase the quantity of core provided 
to each core-resident user. If the supervisor wisely at
tempts to allot core space for the working-set! of each 
user, k may have to be quite small indeed.2 

During the time that a user's program is in core, its 
state will cycle between 

a, waiting for or receiving CPU service, and 
{j, waiting for or receiving a single page from the 

drum. 

We specifically ignore, in this analysis, all core re
quirements of other peripheral devices which may be 
present. For example, we assume that if one of the users 
comes to wait for typewriter action, he effectively dis
appears from the system. In particular, such a user is 
not tying up any of the k blocks of valuable core. 

We assume that during each interaction, each user 
will require exactly C seconds of CPU attention. Sim
ilarly, we assume that each user will require that D 
pages be fetched from the drum on his behalf during 
every interaction. "ltV e specifically ignore the problem of 
writing pages back onto the drum. t We assume, more
over, that in a single-interaction cycle of 

the C seconds of CPU attention are divided among the 
intervals of state a into D + 1 equal pieces. 

Our fundamental concern is with the rate at \vhich 
user programs leave state a; that is, the rate at which 
users cease to require CPU service. 

We know, after all, that only D / D + 1 of this flow 
is toward state {3. The remainder of the flow from a 
consists of users v:ho have completed their use of core. 

t This as~umption is not neeessarily very generous. Espe('iaily 
in systems utilizing much pure-procedure pl'Ogramming, the 
read/write ratio may he very high. Also, reading is inherently 
more difficult than writing, since an item to he read must he 
read from where it is written, whereas an item to he written ean 
well be placed \vhel'e (:onvenient. 3 

This flow out of core is exactly the rate at ·which the 
system produces evidence of useful work. 

In order to compute these flow-rates, we shall need 
to compute the occupancy levels a and b, where a is the 
number of user programs in state a ilnd b = k - a is 
the number of user programs in state {3. 

It is convenient to discuss the system in terms of the 
follmving figure: 

THROUGHPUT: F1 No.2 "~Fl~ ,,\2 

m:--.a~~ I a , Waiting for A ~ 
~r rece1v1ng Flow No. 1 

,...------...". 

1 -It---c_pu 

se_rvice----.' I ! ! 
8 : Nai ting for 

Flow No. 4 or receiving 

1 page 

Figure l·-Flo\VF:: CPU/drum ~yHtem 

In terms of this diagram, we have already stated that 

Flow No. 1 
1. Flow No.2 = D + 1 

D X Flow No. 1 
2. Flow No. 3 = -----

D +! 

3. a = k-b 

Moreover, over any long run it must be true that the 
number of user programs which have arrived at state (:3 

is exactly equal to the number of user programs which 
have left that state. The most optimistic possible as
sumption (by the old congestion/idleness argument) 
is that the rates of flow Nos. :i and 4 are constant 
over time. But then, 

4. Flow No.3 = Flow No.4 

N ow to solve for the unknowns of the diagram (that is, 
for a, b and the four rates of flow) it will be necessary to 
determine the functions! and g such that 

5. Flow No.1 = f (a) 



A!1..alytic Model of Multiprogrammed Computing '710 
'.J...O 

6. Flow No.4 = g (b) 

We can begin to describe f right away. If a is zero, 
naturally f is zero too (that is, the CPU disposes of 
zero users per second when there are zero users who 
want to use it). When a is an integer greater than 
zero, the CPU disposes of a user every C / D + 1 sec
onds; the flow is just D + 1/ C users per second. 

But what if a is non-integral? For example, suppose 
that only one user program can fit into cor~. If D i~ not 
zero, then the average number of programs seeking CPU 
attention must surely be properly between one and 
zero. The most optimistic interpretation we can make 
is that f (a), for a non-integral, may be computed by 
linear interpolation from the values of f at the surround
ing integral values of a. 

Thus, in summary, we have as the CPU output rate' 

7a. f(a) = 0 [if a = 0] 

7b. f (a) = (D + 1) /e [if a ~ 1] 

7c. f (a) = a X (D + 1) /e [if 0 < a < 1] 

The function g (b) is almost as easy to develop. For 
any integer bo, it is a trivial simulation task to find the 
output of a given drum under the assumption that 
exactly bo entries are always in its queue. The points 
obtained rise steeply at first, but then they level out to 
an asymptote at the capacity of the drum. Because the 
second differences of these points are all negative, it is 
once again optimistic to fill in the curve by means of 
linear interpolation between adjacent points. That is, 

8a. g (b) = 0 

8b. g (b) is determined by 
drum simulation 

[ifb = 0 

[if b is integral] 

8c. g (b) = g (entier (b» + (b - entier (b» 
X (g(entier (b) + 1) 
- g (entier (b) ) ) [if b is not integral] 

N ow that f and g are known, a and b are uniquely de
termined by equations (1) through (6); standard ap
proximation methods can be used to solve: 

9. D f(a) = g (k - a) 
D+l 

One approximation method is displayed in Appendix A.4 

System: CPU, core, drum, disk 

The system.could even be more complicated, and the 
same technique would work. For example, a new f 
function could easily take account of any number n , , 
of anonymous processors. We could even add other 
peripheral devices; the CPU-drum system might stand 
to a disk, say, as the CPU alone stands to the drum. 
Such a system would look like: 

THROUGHPUT : 
Flow No. 2 

~ 
a: Waiting for 

or receiving 

1 
CPU service 

8 : Waiting for 

Flow No. 4 

y: Waiting for 
'"--------1 

Flow No. 6 or receivin 

Figure 2-Flows: CPU/drum /disk system 

1 

With a + b + c = m user programs in core, Ds disk 
pages read per interaction, and 

10. Flow No.6 = h (c) 

for some function h like fand g, we can determine h by 
simulation of the disk and then we can compute a, b 
and c as we computed a and b above (see Appendix B5). 

When a, band c have been calculated, a great deal of 
information is available. Since the best possible flow 
rates from system components are simple functions of 
the physical characteristics of the component, utiliza
tion levels can be computed. Thus, 

(
a) f(a) 

CPU utilization = min 1, -n = 
(D + Ds + 1) X n 

Drum 
utilization 

= ~_-,-g_(b_) __ _ 
drum rotational speed in 
pages/ second 



720 Spring Joint Computer Conference, 1969 

Disk 
utilization 

= _h--.:(:.....,:.c) _____ _ 
best possible disk transfer 
rate in pages/second 

One c.an even compute the core utlHzation of the 
modeled system, according to the following argument: 

All the core in the system (m) is distributed be
tween rotating storage (b, c) and the CPUs (a). No 
core in the former class can be considered idle; every 
addition to the drum queue definitiely makes the 
drum more effective, and similarly for the disk. If 
any of this core were removed, the system would 
suffer. 

Of the a user programs grouped around the CPU s' 
however, only n are receiving service. The excess users 
(if a > n) are just waiting, and their presence does not 
improve the effectiveness of the CPU s. If this excess 
core is removed, the model shows no change in through
put. That is, 

Core utiliza.tion = min (1, n + ! + c) 

Utility of the model 

We believe that this model has three distinct sources 
of utility. 

1. Our assumptions of zero-variance behavior may 
be reasonable for some special-purpose systems 
(e.g., reservation systems). The model should 
accurately predict the behavior of such systems. 

2. However close the model's assumptions are to 
the realities of other systems, these other systems 
can surely do no better than the model expects 
them to. The model provides upper-hound values 
for the performance of these systems. 

3. The model suggests at least qualitative explana
tions for many complex system phenomena. 
For example, the model allows a simple explana
tion of how increasing paging demands might 
be met by increasing CPU performance. 

ACKNOWLEDGMENTS 

The work described in this paper was initiated while 
the authors were consultants to the MEDINET De
partment of the General Electric Company. Several 
discussions with MEDINET employees, particularly 
T. N. Hastings, were seminal to the work. P. J. Denning 
of M.I. T. reviewed an early draft of the paper and made 
many helpful suggestions. 

The work was supported by Project MAC, a Mas
sachusetts Institute of Teclmology Research Program 

sponsored by the Advanced Research Projects Agency, 
Department of Defense, under Office of 1'\ aval Research 
Contract No. N01'\R-4102 (01). 

REFERENCES 

1 P J DENNING 
The working set model jor program behavior 
Communieations of the Association for Computing 
Machinery Vol 11 ~o 15 May 196X :~2:3-:{:{:{ 

2 L C VARIAN E G COFFMAN 
Further experi'mental data on behavior ()f proyramB in a 
paging ent'ironlllenl 
Communications of the Association for Computing 
Machinery Vol 11 No 7 July IH68 471-474 

:3 P J DENNING 
Effecis of scheduling on file memory operations 
Proc S J C C 1967 

APPENDIX A 

Sample ALGOL routines for computing a and b given k 
real procedure f(a) ; 
real a; value a; 
begin if a = 0 

end; 

thenf: = 0 
else if a ~ 

then f: = (D + l)/C 
else f: = a X (D + l)/C; 

real procedure g(b) ; 
real b; value b; 
begin own real array ig [O:k] ; 
comment The array ig is magically filled by simulation. 

real eb; 

The entry ig [n] is the proper value of g(b) for 
b = the integer n; 

eb: = entier (b); 
ifb = eb 

then g: = ig [b] 
else g: = ig [eb] + (b-eb) X (ig [eb + 1] - ig [ebl) 

end; 
procedure Distribute k (k, D, C, a, b, tolerance); 
comment Half-interval attack upon k = a + b; 
real k, D, C, a, b, tolerance; 
value k, D, C, tolerance; 
begin real frac, CPU output, drum input, drum output; 

a: = k; 
frac: = k/2; 

aset: b: = k - a; 
CPU output: = f(a); 
drum input: = D X CPU output/CD + 1); 
drum output: = g(b); 
if drum input> (1 + tolerance) X drum output 

then a: = a - frae 



Analytic Model of Multiprogrammed Computing 721 

else if drum input < (1 - tolerance) X drum out
put 

then a: = a + frac 
else go to done; 

frac: = frac/2; 
go to aset; 

done: end Distribute k; 

Sample ALGOL routines for computing a, band c given m 
procedure Distribute m' (m, C, D, Ds, tolerance, n, a, 

b, c, CPU output, drum output, disk output, 
throughput) ; 

real m, C, D, Ds, tolerance, n, a, b, c, CPU output, 
drum output, disk output, throughput; 

value m, C, D, Ds, tolerance, n; 
begin real k, frac, disk input; 

procedure Distribute k; 
begin real frac, drum input; 

real procedure f; 
begin if a ;::: n 

thenf: = n X (D + Ds + l)/C 
elsef: = a X (D + Ds + l)/C 

endf; 
b: = k; 
frac: = kj2; 

seta: a: = k - b; 

CPU output: = f; 
drum input: = (D/(D + Ds + 1)) X CPU out
put; 
drum output: = g(b); 
if drum output> (1 + tolerance) X drum input 

then b: = b - frac 
else if drum output < (1 - tolerance) X drum 
input 

then b: = b + frac 
else go to donek; 

frac: = frac/2; 
go to seta; 

donek:end; 
c: = m; 
frac: = m/2; 

setk:k: = m - e; 
Distribute k; 
disk input: = (Ds/ (D + Ds + 1)) X CPU output; 
disk output: = h(c); 
if disk Otltput > (1 + tolerance) X disk input 

then c: = c - frac 
else if disk output < (1 - tolerance) X disk input 

then c: = c + frae 
else go to donem; 

frac: = frac/2; 
go to setk; 

donem: throughput: = CPU output/CD + Ds + I): 
end 





Measurement based automatic analy·~is 
of FORTRAN programs * 

E. C. RUSSELL and G. ESTRIN 

University of California 
Los Angeles, California 

INTRODUCTION 

A graph model of computer programs has b~en de
veloped in a series of studiesI - o directed toward im
proving analysis of the structure of programs executed 
on different computer configurations. One inherent weak
ness of the model has been the need for estimates of the 
mean number of times a program would cycle around 
its loop structures and estimates of branching prob
abilities. Extensive improvements were made in the 
model on the assumption that good estimates would be 
inserted during a manual transformation of a given 
program into a computer processable graph representa
tion. The combination of improved tools for measure
ment of program activities and recently developed 
analysis programs now permit automatic analysis of 
source programs. The automatic analysis is based on 
more reliable measured a priori statistics. This paper 
discusses a valuable by-product of this measurement 
and analysis which directs attention toward those parts 
of a program which are leading candidates for applica
tion of optimization techniques. In particular we pre
sent an example of the automatic analysis of programs 
written in the F0RTRAN IV language. F0RTRAN 
was selected as a first target for analysis because there 
exists a large number of time-consuming programs 
written entirely in F0RTRAX. 

The first part. of the paper presents a simple summary 
of the graph model of programs. The second part deals 
with a particularization of this model to F0R TRAN 
programs. The last part presents the results of an ex
periment which illustrates the use of the graph model 
based on measurements. Automatic analysis pro-

* This research was sponsored by the Atomic Energy Commis
sion [AT(I1-1) Gen 10 Project 14l, the Advanced Research 
Projects Agency ARPA SD 184, and the Office of Naval Research, 
Information Systems Division. Reproduction in whole or part 
is permitted for any purpose of the United States Government. 

cedures obtain an ordering of F0RTRAX statements 
according to their frequency and time-of -execution 
along with other structural data. 

The computational model 

A principal goal of the several investigatorsI - o 

who have developed a graph model for representing 
computer programs has been to study the structure 
of the program for analysis of its space and time 
requirements on a variety of hardware configurations. 
This model is illustrated in Figure 1. 

The salient properties of the model are: 

1. There is one original vertex (VI) 
2. There is one terminal vertex (vs) 

(When either of these conditions does not exist. 
a pseudo-vertex is appended. Thus multiple terminal 
vertices are connected to a pseudo terminal vertex 
and multiple origin vertices are preceded by a pseudo
origin vertex.) 

3. Each vertex is connected to other vertices 
by directed arcs. There may be more than one arc 
directed either to or from a vertex, in whieh 
case the interaction of the arCR is specified 
by a logic condition. Arcs may enter a vertex or 
leave a vertex in a simultaneous ("AND") 
fashion or in an exclusive ("OR") fashion. The 
"AND" condition indicates situations in whieh 
multiple-processors may be used to advantage. 

4. Cycles are represented by arcs which are directed 
from Vj to Vi where j ~ i. This impJies that care 
is taken in the choice of numbers for vertices. 

Thus far only structural properties of the program 
are described. The remainder of the description is 
concerned with the definition of the operation to be 
performed at each vertex. Such a description includes: 

723 ------------------------------------



724 Spring Joint Computer Conference, 1969 

Figure I-Graph model of a computation 

5. The block of instructions required to perfonn the 
computation. 

6. The identification of required input data. 
7. The identification of required output data. 
8. The amount of intennediate (temporary) storage 

required. 

One of the goals of this modelling process is· the a 
priori analysis of the execution of a program on a par
ticular hardware configuration. In order to complete 
the program description for this purpose, the following 
additional parameters are required: 

9. For each "exclusive or" output, a probability 
for each arc. 

10. The iteration factor for each cycle (These two 
parameters may be derived from a single 
"frequency count" for each vertex.) 

This model has the advantage over some others 
(Rodriguez8), that only a single type of vertex exists. 
Variations such as input connections, output con
nections, actual computations, etc., are described 
parametrically. This le.ads quite naturally to the 
description of the graph in terms of Boolean matrices. 

Additional generalizations are also possible. In the 
experiments performed, FORTRAN statements are 
taken as the primitive computations represented as 
vertices. It may not always be desirable to make such 
a choice. In highly parallel computations, a refinement 
or "blowup" of a particular vertex may reveal parallel 
processing potential within complex statements. Con
versely, large portions of the program may represent 
such a minor portion of the computatioh time, that it 
may be helpful to collapse portions of t~e graph into 
single vertices. Such transformations are pdssible, given 
that all the above descriptive parameters are available. 
For the present an entire F0RTRAN program is 

. analyzed and represented as a single graph. If sub
programs are referenced, they must be described 
parametrically prior to their inclusion. The parametric 
description of a subprogram can be developed inde
pendently and a library of subprograms prepared. 

Particularization to FORTRAN programs 

Nomenclature 

Vertex definition 

The application of the model to FORTRAN will 
be made at the statement level. That is, each executable 
FORTRAN statement will be assigned to a unique 
vertex. Other choices could be made: for example, if 
more than one vertex per statement were permitted 
then each arithmetic operator could be assigned to a 
unique vertex and analysis of parallel arithmetic ex
pressions could be performed. This would result in 
graphs with large numbers of vertices. On the other 
hand, a single vertex could be made to represent several 
statements or even an entire subprogram. This would 
provide for smaller graphs but could obscure potenti~ 1 

parallelism. With an initial analysis at the statement 
level, a refined analysis could then be performed on 
those portions of the program which consume significant 
portions of execution time, whereas less significant 
portions can be collapsed into fewer vertices. 

Each program will contain one origin vertex (WI) 
which is predecessor to all other vertices in the graph. 
(A program with multiple entries will still have one 
pseudo-origin with immediate outbranchings to the 
various entry points.) 

Each program will contain one terminal vertex (wn ) 

which is successor to all other vertices in the graph. 
(lVlultiple exits from the program will be tied to this 
one terminus.) 

For each vertex, the input data set, I i, consists of the 
names of those variables which are referenced by the 
statement represented by the vertex. For example, for 
an arithmetic assignment statement this includes all 
variables in the expression and any subscripts. 



Measurement Based Automatic Analysis of FORTRAN Programs 725 

For each vertex, the output data set, 0 i, consists of 
the names of those variables which are modified by the 
execution of the statement represented by the vertex. 

Arc definitions 

Three categories of connections between vertices 
will be established; sequential connections, logical 
connections and loops. 

Each executable F0RTRAN statement which does 
not explicitly specify the successor statement implicitly 
"falls through" to the next executable statement in 
the program. These connections (of the form (w i, w i+1) ) 

are designated sequential connections. There can be 
only one sequential successor vertex for each vertex. 

Each executable F0RTRAN statement which does 
specify explicitly one or more successor statements 
produces connections which are designated logical 
connections. The connections are of the form (w i, w i) 
where i ~ j. 

Some of the arcs of a program represent the return 
path of a programmed loop. Of course, any one arc 
in a cycle can be selected as the return path but often 
one' is recognizable from the syntax of the language 
(e.g., the F0RTRAN "DO" statement). Each arc 
which closes a programmed loop is designated as a 
feedback connection. 

Gra.ph representation of FORTRAN IV 

A complete specification for the graph representation 
of FORTRAN statements is given in the Appendix. 

Experimental measurements 

Two attributes of the vertices of a graph are deter
mined from experimental measurement. These are: 
(1) vertex activity number and (2) vertex single-exe
cution time. 

Vertex activity in a sequential program 

Vertex activity can be determined by making some 
minor modifications to the source program before exe
cution. These modifications are similar to those out
lined in "SNUPER CO::\1PUTER, A Computer In
strumentation Automaton," Estrin.9 For these experi
ments, however, only vertex activity and loop activity 
are desired and not all arc activity as in the reference. 
Because of this, the artifact introduced is considerably 
reduced. The required measurements are as follows: 

1. the number of times the program is entered. 
2. the number of times each labeled statement is 

executed with special treatment of DO loops 
and unusual branches. 

3. the number of times the auxiliary statement of 
a "logical if" is executed. 

From these measurements, the entire set of vertex 
activities and loop factors may be calculated. 

Introduction of artifact 

The artifact introduced into FORTRAX program~ 
consists of a series of subroutine calls. RoutillO E~"IIT 
(i) is introduced to perfonn the activity of counting 
the number of times vertex i is executed. For efficient 
execution, the subroutine E':\HT is written so as to 
perfonn the emit table address calculation and then 
modify the calling instructions to perfonn the counter 
incrementing with "inline" code after the first encounter 
of that call. 

The monitoring of vertex activity must be introduced 
at the following points in a FORTRAN program: 

1. iHeasurement of origin vertex: 

Following the SUBROUTINE or FU~C
TION statement or preceding the first execut
able statement of main program, insert 
CALL E':\1IT (i). In order to properly monitor 
entries into a program via the ENTRY state
ment, the CALL E':\lIT which follows an 
ENTRY must not be executed if control 
"falls through" from above the ENTRY 
statement. For example: 

A=B 

ENTRY FIRST 

CALL EIVIIT (i) 

C=D 

would record an erroneous measure of entry to the 
program at FIRST. In such a case the following is a 
correct modification of the program: 

A=B 

GO TO XX 

ENTRY FIRST 

CALL El\lIT (i) 

XX CONTINUE 

C=D 

2. Measurement of labelled statement: 
Replace labelled (executable) statement L : s 
by L : CALL E:NlIT (n) where L is the state-

... 



726 Spring Joint Computer Conference, 1969 

ment label (external formula number), s is 
the statement and n is the vertex nunlber 
assigned to s. 

3. :;Vleasurement of DO loops: 
Insert a CALL EMIT (n + 1) after the DO 
statement where n is the vertex number 
assigned to the DO statement. 

4. Measurement of unusual branches: 
In the case where CALL or READ statements 
provide unusual returns, the activity of the 
succeeding statement must be monitored. 
For example: 

CALL SUBl (A,B,$2) 

A=D 

2B = C 

The activity of the statement A = D is not 
known unless specifically monitored. 

5. Measurement of logical IF statements: 
In order to monitor the conditional statement, 
it is necessary to introduce "CALL EMIT" 
but the restriction is a single statement as 
the conditionally executed branch. Therefore 
the. following scheme is proposed (as in Est
rin9). 

a. Negate the logical condition 
b. Replace the conditional statement by 

a 'GO TO' statement branching around 
the original conditional statement and 
an inserted 'CALL EMIT.' For example: 

IF (t) s 

becomes 

IF .KOT. (t) GO TO XXX 

CALL EMIT (i + 1) 

s 

xxx COXTINrE 

c. On the other hand, if s cannot pass control 
to the next executable statement, the 
control is simpler: 

IF (t) s 

becomes 

IF (t) s 

CALL El\1IT (i + 2) 

where Wi is the vertex assigned to the 
IF statement. 

Two problems in implementation now occur. 
If this logical IF is the terminal statement -
of a DO loop, the program meaning has been 
altered. Also, the statement label XXX 
may already have been used. If the logical 
IF is the terminal statement of a DO loop, 
the DO reference should be changed to XXX. 
(This might be most easily implemented by 
adding a unique terminal for each DO of 
the fonu XXX COKTINUE.) The uniqueness 
of statement labels can be guaranteed by 
keeping track of all statement label references 
or generations during the source program scan. 

Subprogranl inclusion 

There are at least two methods of including sub
programs in the analysis. The first is to do an inde
pendent analysis of the subprograms and provide 
only the aggregate attributes of the subprogram for 
inclusion in the programs which call it. 

The second method is to combine the subprogram 
with its dynanlic ascendants replacing CALL statement 
by GO TO XX statements where XX is the first ex
ecutable statement of the subroutine (now a part of 
the same graph). The RETURX from a subroutine 
is replaced by a GO TO (nl,Il2,na ... ) ILX where Ill, 
n2 ... are the statements after each CALL to the sub
routine and IXX is an index specifying which particular 
call is being executed. In the process of including a 
subprogram in the graph, all of the COM]\10N state
ments can be systematically eliminated. This involves 
transforming variables used in the subprogram to 
their calling program equivalent names and generating 
unique names for local subprogram variables. 

Discussion of experiment 

A process flow chart describing the experimental 
procedure is illustrated in Figure 2. The program to 
be analyzed goes through a process which produces 
two types of outputs. The first type of output (on the 
left) is the actual graph model of the program in ma
chine-processable form. The second type is the modified 
source FORTRAN program ready for compilation 
and for execution during which raw frequency data 
is to be gathered. The post-execution program analyzer 
accepts the two sets of output data and produces the 
listed vertex and program attributes. 

Figure 3 gives a listing of our example program 
which was written to simulate the UCLA Boolean 
Analyzer. lO It has 127 vertices as defined in Part 2 of 
this paper. These 127 vertices are numbered on the 
right of the listing. Figure 4 shows the computer gen-



Measurement Based Automatic Analysis of FORTRAN Programs 727 

00l'PUl' 
-vertex Freouenc1es 

Vertex Execution T1Jne 
Prq:mm Attributes 

a) Total Executlm T1me 
b) Total ~ St;orap:e 
c) 'le:rtex !Teouenc;v P.ankll'F 

Corresporxience Between 
POfmWl statenents arx! 
Machine I.artr:uar.e ~ 
auencell maintained 

d) Vertex Executlon-T1me Rank1rF, 

Figure 2-The measurement and analysis processor 

erated graph representing the Boolean Analyzer pro
gram. Figure 5 shows a computer generated matrix 
representation of the graph. It is a connection matrix 
with 127 columns and 127 rows. The presence of a 
"1" in position i, j indicates that there is an arc directed 
from vertex j to vertex i. The connection matrix has 
been triangularized such that non-triangular elements 
would represent program loops. The actual feedback 
arcs of the program loops are represented as a list of 
ordered pairs and shown in the upper triangular portion. 
Figure 6 is a list of vertex attributes. The column head
ings are defined in the legend at the top of the table. 
Figure 7 shows computer generated plots of the fre
quencies of execution and computation times of the 
vertices. They are ordered to produce a monotonically 
decreasing plot using a logarithmic vertical ordinate. 
~ ow consider a progranuner seeking to make use 

of the above analY:3is results. First, he must have rea
sonable confidence in the set of input data used to 
obtain vertex measurements. The plot of ordered ex
ecution times (Figure 7) then permits him to select 
the most important vertices as candidates for optimi
zation and to detennine their characteristics from the 
list of vertex attributes (Figure 6). In the present 
example, seven of the vertices use 95.4 p~rcent of the 
total time. These vertices are listed in Table I and show 
that two small subroutines account for 76 percent of 
the execution time. In this example further analysis 
indicated. that a change in sequencing of the two sub
routines shou1d in itself produce considerable improve
ment and validating measurements are in process. 
When it is desired to study the detailed structure of 
the routines represented. by vertices other analysis 
tools come into play. For example a question was 

e 
,···.· • .,s IS A reATIIA'Ii !Y PRS;j,A,,1oI St""UL,AT! ... G T,.[ oJc.L. ... B~ltI.£" ....... AI. "'I[. 
~ ••••• ,.lIe~QA"''''EIJ: ""IGU[l, A ... "Alh~ ')£" ... 11,.. 1tJ' [trtGl"i[£AI'rIIG, J.~.L.."'. 

l"'IrEG£AL,ltUI!>OO,2i?I,TCI22I,I..ITI221 
I""T(~[A A ... OflOOOOI"HTll21.T( .. P ...... 
c!t .. ~!tP<i TC,I..'U,N 
C! .... "N/'5TeA/qo ...... SlT 

r"'T~:iEIl TI"[l,"I"(2 
;~ .. ~ ~;~!~~CI lL.t~pq.lC.h22' 

28IltJhZ .. ,J·;1 
1 "£'" t 5~ 100 11 .... C£.'. "'. ',T 

loIqlTE 16.801, 

102 ~:D~i~.~ -I, lCOO;) 

10. ~~;:~~ 11 .... 0 .......................................... ', 

J~ I"lTF' .'iT. 1001 .... T.IOO 
4~DE .... .,0£.1 

t M T!! 19"9,lCO.lOOi."!!J0( 

! ••••• ""'"OE I I"" T~I .. OIC ""EA"TlS~ 

~'::':::~~~oIoTI!!J'" ,,. ~"'.JI'''L.IC''IIIT5. 

e 

.. AITEc6.102Z1 
085I'1,IIIT 
ltE .. 't'5,1020ilL.eUII.I(J'1(.1' .... ' 
wqlTE t6,lQ2]1 ILItUfl,lq~.c.l'''' I 

!\. lIIIIA!T~ !~. ~O~41 't TT,It]I.1C1I.1."l. \ 
"'''ITE '6.,IOSI 
~~I!~O l-l~~l 
CA\.L.S"SEtL.I 

: ~g: ~:~:~T 
TE,.. .. ·L!!JuCIC,JI.TCIJI 

10_ ~~~~~]I 10",,101,10" 

L_I·l 
~~; i~~CI( !L.,A,It, 

1.0IC!JNTINU[ 
110C8NilNU( 

NT,.,.T'·I00 
l"f ... T'.L.E.OIGIt T8 113 

111 !~!~b~'1001 112,U10111 

68T8100 
III Nr. ... TF 

Mf!!J lOll 

! ••••• ..ao£.11 
~ ..... "fl1[ I~I..IC ... NT SELECTld'" 

t13':'l 
D8U"I(].I,'" 
TCcl(]hO 

11" :;~:I('K]h2 

1.1 

U5 ~:~'1 
C"'LL.MASlCCA,1(1 
H .. ' .... "€.OIO!!JT!!J 121 
C.t.LL.TRACI(IL,,.,A' 

1~ ~:~:;N[.01 Get T!!J 124 

121 ~:~~18"'~ ILl 
0!!Jt22J.l, ... · 

12~ Ltt\JCI('J)_TCtJI 
123 ~:~I(.GT.'5001 Ge T8 111 

CALLB"SE{LI 
'C.t.LLMASI(A,I(J 

U-lor+! 
121 H'fAI 129,1]0,12' 

12' ~:::: 
CALI. BASE CLI 

110 l'U.OT .... 1)GeTe1.!5 

Ul ~L:~ 11'5 
C"'LLeASEtLJ 
C"LL"'''$I(CA,I(J 
rr,AI1l9.1lt-O'139 

IH •• 1 
C"'LL.TAACI( {L,,,,., 

1-0 Ir~'i!;"'~t'~:ICT!!J 131 

1'2 ~!;;.~'I CLSUtl"'I~I,J~hl'''' J 

'" D814] IS_l.N 
1-]i~II('JS)-2 

GeT812] 
14!5 IrCICT-GT-tOOl G!!J T!t 160 

""'ITE (6.10061 
081501(1_1,1( 
WRITE 16,100) H.8iUIKl,II.hIlN ) 

1'50 :;:I~~ ~("l0041 ILIT(II,hh'll ) 

160I(T_I(T+1( 

~~;~o ., 
wQlfE 16.10061 

1620816]1"'1,1( 
1') A'[AQc '" tLl'U, rp.I~"IA'I,N I 

Of! 1101(\_111( 
... ~ITE 16.1001, (L"UCKlIlhht,N 1 

170 :;!;~.!6'100'" ILITtl" l_l,N ) 

!:!~TeGT'1001 G~Te 162 

Ir,«T} 10162'167 
1000 reA .... fcl2 .. 11 
lOOt ~8 • .., .. T I.J]) 
100] ""iII'I"I"T(1"'0,2211) 
lOO_"SAI'IATI1II'.22"11 
l00,,,..,..AT 111-1O,·LI5T81' P.111[ 1~IC"~T!i'1I 
l020'8tr1Afc221tJ 
102'2 ''' ..... T (lHl.IT[~"5'" 'hO'1 
1021'IM""AT fll-lO,22IlJ 

C102- teA ..... T 111010.'·[10:"'5" SYSTEM ,~ eee .. c .... '" EQi,lATI8"5: ''1'00'\ 

C·····JtI!!JOElt ... al .... "",."PEA ... treN 
~.UO •• 5 ... sTE"' .. e~ .. "'5eL.E.&.,..(?V ... TI8NS 015CAI"'I"IA"IT DETE""r ... ,Tle ... 

2'00 .qPE 16.10241 
wttP'£C6,1I001 ... !'I 

1100 "e ........ Tt 10010. ' ......... V .... IAItL[S.·,I .. ,Jlh'IJI( ...... Y ..... IAIIL.ES.',I.' 
OI'l205r_t, ... T 
A£ .. O I !Ii, 1020 I I LeUl1 ,1( 1 ~1(.1"221 
wA'ITE C 61 1023) it .. eull ,I( I ~1(-1' 221 

ZO! '-rTI[ C6,100-1 U ... tT(l(hl(."ZZI 

:~!;;.~::!~8' 
·'1 
~I~~O l_l,NI 

C.t.LL. IIN"'A,. 11.1 
D' 210 J'II ... T 
D8201l1(_lIZ2 
TEf'IP_TCtIl(J+L&uIJ,I(J 
I"CTE'-.']) 2tI8,210'~01 

zoe ~~~~!~ 
C .. LL.T .... CI(/L ... ,.! 
GftT,,220 

Z10CS".TI""[ 
no C8NT1NU£ 

"'T,. .... T" ... 10C 
r~I"'TF.LE.O) Gil TIt ZS!5 
r"I ... T"·1-:10/212,211,211 

211 NT_lOa 
68T82oo 

212 :!.~~2QO 
215 lII"It( 1',8581 
l!a F!ttt"' .. T (lH(),'DISCAI~IN"NT'1 

:~;: ~ISCRI tN'~1 

[NO 

. 
tO~ t 1 

it 
U 

" ,. 
16 
11 
11 .. 
20 .. 2. 
23 .. 
2' .. ., .. .. 
'" 11 

lZ .. ,. .. .. 
]7 

" '0 

!! 
'0 .. .. 
:: 

~i 
~~ 
61 .. .. 
'0 
'1 

g 
g 

Figure 3-FORTRAN example (the Boolean analyzer simulator) 

raised in one study as to the distribution of machine 
language instruction types executed in a subroutine. 
A machine language instrumentation program was 
utilized to obtain the answer. 



728 Spring Joint Computer Conference, 1969 

MAIN 

i MUD tW LOOP 

r 
t 
~ rn 
~~ 
1 f 
I r 
it l . 

... ltl 

r 
I t-
! j 

1 t 
Figure 4-Flow graph of Boolean analyzer 

Table I 

Percent 
Vertex Execution 

Importance Vertex # Vertex Name Time 

1 48 CALL MASK (A,K) 45.3 
2 23 CALL BASE (L) 15.7 
3 65 CALL BASE (L) 15'07 
4 26 TEMP = LOU(K,J) 11. 7 

+ JC(J) 
5 27 IF (TEMP = 3) 

104, lOS, 104 3.4 
6 84 WRITE(6, 1(03) 

(LOU (Kl,I), 
I = I,N) 1.9 

7 85 WRITE (6, 1004) 
(LIT(I), 
1= 1, N) 1.9 

REFERENCES 

1 B BUSSELL 
Properties oj a variable structure computer system in the 
solution of parabolic partial differer-utial equatio'n~ 
PhD Dissertation University of California Los Angeles 
1962 

2 G ESTRIN R TURN 
A utomatic assignment oj computations in a lIariable 
structure computer system 
Trans IEEE EC-12 December 1963 756-773 

;{ D F MARTI~ G ESTRIN 
Experirnenls on models oj computations and systems 
Trans IEEE EC-16: February 1967 59~!:) 

4 G R WOOD 
Application of a restructurahle computer system to 
nurnerical 'Weather prediction computations 
UCLA Report No 66-14 February 1966 

5 E C RUSSELL 
A.utornatic assigmnent oj computational tasks in a 
IJariable structure computer 
UCLA Report No 63-45 August 196;{ 

6 J L BAER 
Graph models oj computaticms jor computer systems 
PhD Dissertation Department of Engineering University 
of California UCLA Report ~ 0 68-46 October 1968 

7 D P BOVET 
Memory allocation in computer systems 
PhD Dissertation Department of Engineering University 
of California UCLA Report No 68-17 June 1968 

8 J E RODRIGUEZ 
A graph model jor parallel computations 
PhD Dissertation Massachusetts Institute of Technology 
September 1967 

9 G ESTRIN D HOPKINS B COGGA~ 
S CROCKER 
Snuper computer--a computer instrumentation automaton 
Proc S J C C 1967 

10 M A MARIN 
Investigation oj the field oj problems jor the Boolean analyzer 
PhD Dissertation Department of Engineering University 
of California UCLA Report No 68-28 June 1968 

APPENDIX 

Complete specification of the graph representation of 
FORTRAN rv 

In the following specification for the representation 
of FORTRAN statementa, these symbols will be used: 

1. Wi represents the vertex assigned to the current 
statement. 

2. W i+1 represents the next sequential statement. 
3. Wn represents the statement with FORTRAN 

label n. 
4. "(w"Wj)" represents an arc directed from Wi 

to Wj. 
5. A variable "rill be represented in a dictionary 

by its attributes: 

p j-the number of bytes of storage (precision) 
n,-the name of the variable 



Measurement Based Automatic Analysis of FORTRAN Programs 729 

KOUENTIAL CINNECTIIII "ATIUlC 
123o\56719Ol23'-567I90123o\567I90123.-567I90123o\S67190123o\567190121.-567190111.-5671901230\567190123.16"901130\5671901130\167""1130\16' 

1 • 
2 l' 
3 .1 • 
.- .. 1' 
S ••• t. 
6 •••• 1. 
7 ••••• 1. 
1 ...... 1. C'IQ.£I IN 1It,\PM 
, ••••••• 1. NEAD TAIL. 

10 •••••• ··1. 
II •••••• ···1. • • 
12 ••••••••• U. 1 1 
11 ••••••••••• ,. 17 " 
,_ •••••••••••• 1. II U 
15 ••••••••••••• 1. II II 
1 ••••••••••••••• ,. 16 tl 
17 ••••••••••••••• 1. -, ., ,_ .... ······.·····1. .. " " ................. ,. .. .. 
to •••••••••••••••••• ,. 70 10 
11 ••••••••••••••••••• ,. •• .. 
II •••••••••••••••••••• ,. " " 
!! ~~~!'e'!'o!-!o'!'!ee'! ••• '!'!'! •• !. tI ,. 
24 •••••••••••••••••••••• ,. 101 10' 
n ••••••••••••••••••••••• ,. lot .1' 
H •••••••••••••••••••••••• ,. III lSI 
17 •••••••••••••••••••••• ,'.1. ttl liS 
n •••••••••••••••••••••••••• ,. , 15 
" ••••••••••••••••••••••••••• ,. 5 H 
10 •••••••••••••••••••••••••••• ,. I SM 
'I ••••••••••••••••••••••••••••• ,. I' " 
• •••••••••••••••••••••••••• ,..... 1- II 
n •••••••••••••••••••••••••••••• 11. .. 10 
,. •••••••••••••••••••••••••••••••• ,. u .. 
II ••••••••••••••••••••••••••••••••• ,. to M 
H •••••••••••••••••••••••••••••••• ,.,. to ,. 
17 ••••••••••••••••••••••••••••••••••• 1. " III 
• •••••••••••••••••••••••••••••••• , •• 1.. tt I~ ., .................................. , ... . 
40 •••••••••••••••••••••••••••••••• , ••••• 1. " ....................................... , . . , ........................................ , . . , ......................................... , . .. .......................................... , . .. ........................................... , . .. ............................................ , . . , ............................................. , . .. ............................................... , . . , ............................................... ,. 
10 •••••••••••••••••••••••••••••••••••••••••••••••• ,. 
I, •••••••••••••••••••••••••••••••••••••••••• • •••••• 1 • .. ....... ~ .......................................... ,. 
IJ ••••••••••••••••••••••••••••••••••••••••••••••••••• , • 
.. ••••••• • ••••••••••••••••• • •••••••••• • ••• ••••• ••••••• 1 • 
• ••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 • .. ...................................................... , . 
• , •••••••••••••••••••••••••••••••••••••••••••••••••••••• '1 • 
.. •••••••••••••••••••••••••••••••••••••••••••••••••••••• "1. 
It ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
60 ••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •• 1. 
" •••••••••••••••••••••••••••••••••••••••••••••••••••••• • •••• 1. 
61 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• s. 
61 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , • 
.. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• S.I. 
II ••••••••• , ••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 • .. ....................................................... · ..... ··.s· " ...................................................... ··.·· .. ····s· 
.................................................................... t • . , ................................................................... ,. 
70 •••••••••••••••••••••••••••••••••••••••••••••••••••••• •• •• ········.·s· 
11 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •• s· 
11 •••••••••••••••••••••••••••••••••••••••••••••••••••••••• , ••••••••••••• ,. 
73 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
1.· •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1. 
71 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• s· 
76 •••••••••••••••••••••••••••••••••••••••••••••••• ,., ••••••••••••••••••••••• ,. 
77 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1. 
, ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 • ." .......................................................................... ·.·1. 
10 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 •• '. 
I' ................................................................................ ,. 
II •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
a ••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••• , • .. .................................................................................. ,. 
• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •••••• 1 • .. ...................................................... ····.·····················1····· I' •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •••••••• 1. 
II •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
It ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
10 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. " .......................................................................................... ,. 
tI •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1. 
n •••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••• • •••••••••••••• 1. 
" ....................... • •••••• 1 ••••••• ' ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 

II ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 • .. ............................................................................ · .............. ···1. 
". ................................................................................................ ,. " ................................................................................................ ,. " ............ , ................................................................•...................... 

100 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •••• 1. 
101 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
101 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
101 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
so. ....................................................................................................... 1. 
lOl •••••••••••••••••• ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ·.·1· 
lOA •••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
101 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , •••••••• ,. 
101 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
lot ............................................................................................................ ,. 
110 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1. 

Iii : ::::: :::: ::::::: :::::::::: :::::::::: ::::: :::::::::::: ::::::::: ::: ::::::: :::: ::::: ::::: ::::::: :::::::::: :::::!i. 
III •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••• •• 1. 
11" .............................................................. ,t.' •••••.•.•••••••.•.••••.•••••••.•••••••.•. , •••.••••••••••••••••••••••• '1' 
III •••••••••••••••••••••••• , ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •••• s· 
116 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •• s. 
117 ••••••••••••••••••••••••••••••••••••••••••••••••• ., .................................................................. ,! 
11 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , •••• 

IG ::::::::::::::::::::::::: ::::::::: ::: ::::: ::: ::: :::::::::::::::: ::::::: ::::::::::::::::::::::::::::::: ::::: :::::::: :!~i. 
Sit •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ! ••••••••••••••••••••••••••••••••••••••• ! •• ,. 
III •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,. 
In •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ! •••• I. 
, ...................................................................................................................... • •••• 1· •• 

I: : ::::: ::::::::::::: ::: ::::::: ::::: ::: ::::::::: :::::::: ::::::::: ::: ::::::::::::::: :::::::::: :::: :::: :::::::::::: :::: :;:::!::: i. 
1r7 •••••••••••• t·.· .. ···.··.·····.·.····················· .......................................................................•. 

Figure ;j---Conneetion matrix of Boolean analyzer 



730 Spring Joint Computer Conference, 1969 

VERTEX OESCRIPT I e ~ o • T • 

VERrEX EXr[RNA~ L9GIC leeA" 5JQ8GRAIoiI SINGLE_ rREQUENCY ceMPUTATI~' ~[L'TlvE 
N8. .8RMU\.A N8. STeRAGE ST'QAGE EXECUlI·" T 1"[ TI"E l"peRT'''CE LEVEl. 

-I '1 0 0.0 1. 0.0 127 
-2 '1 1 0 .389S.2 I· 43S,S.2 31 
-3 '1 0 2 •• 8 I. •• S 6. 

0 2 -I 0 10 190.9 32. 6236.S 38 
5 1 I 0 1 '3S91.0 2. 877S2.0 27 
6 -6 '1 0 I S0593.0 2. 161186.0 25 
7 -7 '1 0 2 •• 8 2 • 9.6 53 
8 102 -I 0 5 12.0 20000. 200000.0 23 , -9 .\ 0 2· •• 8 2. 9.6 !52 

10 -10 0 0 · 9.2 2. 11!h" 08 10 
11 '11 -I 0 2 0.8 O. 0.0 126 " II! . 1 0 3 '.2 2. 1"'- 09 12 
13 '13 0 0 3 700 2. 1'·0 50 13 
l' 100 1 0 3 177.3 1. 171.3 06 10 
15 '15 -I 0 1 80593.0 I. 805'3.0 30 15 
16 '16 -I 0 2 •• 8 1. •• 8 63 16 
17 ·\7 '1 I 7 •. 03909.3 5. 21950'.5 2. 17 

I: 'I~ '1 1 7 80611.3 5. 003056.5 18 18 
-I 1 · 80600.2 5. 003001.0 19 19 

20 '20 '1 0 1 80593.0 1. S0593.0 29 20 
21 -21 -I 0 2 •• a 1. •• S 62 21 
22 -22 -I 0 3 S.O 59009. 472392.0 I' 22 
23 '23 '1 0 3 609.2 590.,. 35"2633.6 2 23 
2. '2' '1 0 2 o.a 59009. 283.]5.2 21 2. 
25 -25 -I 0 2 ... 285653 • 137113 •• ' S 25 
26 -26 -I 0 12 32.7 SI~355. 2676020S.0 • 26 
27 -27 0 0 9.6 818355. 785620S.0 5 27 
2. 10' -I 0 0.0 53n5 •• 0.0 125 2S 
2' -29 -I 0 •• 8 4'552 • 2184'106 36 29 
30 '30 -I 0 8.0 4552. 36016.0 33 30 
31 -31 -I 0 223.8 0552. 101a137.6 10 31 
32 108 -I 0 2.0 281101. 562202.0 II 28 
33 110 1 0 0.0 590'!h 0.0 I?' 32 
3' '3' '1 0 8.0 1. S·O 55 33 
35 '35 0 0 9.2 10 '.2 5. 3_ 
36 .]6 0 0 11.6 O. 0.0 123 35 n 111 -I 0 •• S O • 0.0 122 36 
38 112 '1 0 6.S O. 0.0 121 36 
39 113 -I a 6.S 1. 6.8 56 35 
00 -.0 -I 0 ... 1. •• a 61 36 
41 -41 -I 0 12.0 10. 120.0 H 31 
"2 ,,- -~ I) 2'3 •• 10. 231.0 45 38 
U -03 -I 0 •• S 1. •• a 60 39 .. .... -I 0 o.s 1. o.a 59 '0 
45 ·.5 .~ 0 •• 6 I. ..a 58 41 
06 115 1 0 •• 8 5~995 • 283176.0 i'2 '2 
07 -.7 -I 0 S.O 5e"'5. '71960.0 15 U .. -'S -I 0 1762.5 5eq95. 10397S675.2 1 .. ., -" 0 0 9.2 5S'95. 5'2750.0 13 .5 
50 '50 -I 0 225.a '607. 10'0260.6 9 '6 
51 -51 0 0 ,.2 '607. '2380.0 32 .7 

~~ 120 -I 0 0 10.0 55. 550·0 39 .S 
-53 -\ 0 3 60'.2 55. 33506.0 35 .9 

5. 121 -I 0 3 7.2 55. 3'6.0 02 50 
55 '55 '1 0 2 •• S 55. 26"0 00 51 
56 122 '1 0 11 30.3 550. 16665.0 37 52 
57 '57 0 0 • '.2 55. 506.0 00 53 
58 131 I 0 5 11.2 O. 0.0 120 5' 
5' '68 -I 0 3 60,.2 O. 0·0 119 55 
60 '69 -I 0 · 1762.5 O. 0.0 liS 56 
61 '70 0 0 3 6 •• O. 0.0 117 57 
62 139 -I 0 2 •• 8 O • 0.0 116 5S 
63 -72 -I 0 5 223.a O. 0.0 115 5' 
6' 100 2 0 9.2 O. 0.0 11. 60 
65 .,. '1 0 6.8 O. 0.0 113 61 
66 102 -I 1 80611.3 O. 0.0 112 62 
67 -76 -I 0 ,.2 O. 0.0 1\1 63 
68 -77 -I 0 •• 8 O. 0.0 110 64 

" -78 -I C •• S o • 0.0 109 65 
70 103 '1 0 23.1 O. 0.0 lOS 66 
71 ·ao -I 0 •• 8 O • (100 107 67 
72 12'3 1 0 6.8 55. 31400 01 68 
7] -5' -I 0 60,.2 55. 33506.0 30 " ,. -60 '1 0 1762.5 55. '.16937.5 26 70 
75 12' -I 0 7.2 55. 396.0 '1 71 
76 128 2 0 6.' 5S995. 377568.0 20 7i' 
77 12' -\ 0 7.2 5S"" '2-'56.a 17 73 
78 -6' -\ 0 S.O !5~ct'9_. 071952·0 16 7' 
7, '65 '1 0 60,.2 5eq9 •• 1593'123.2 3 75 
SO 130 2 0 9.2 M'95. 5'i'75".0 Ii' 7' 
S\ 1.5 0 0 11.2 I. 1\.2 5\ 77 
a2 -82 -I 0 80595.0 \. 80595.0 2e 7a 
u -83 -\ 0 ... 8 \. 0.8 57 79 
a. -.. '1 I S06\1.3 55. H33620.a 6 S~ 
85 150 .\ 1 e0600.2 55. H3300'.6 7 81 
16 \60 '1 0 9.2 O. 0.0 106 78 
87 -17 '1 0 0.0 o. 0.0 105 79 
as ·sa .\ 0 •• 8 O • 0.0 10. SO 

" -., '1 0 S0593.0 O. 0.0 103 .1 
90 \62 1 0 •• S o • 0.0 102 82 
'I 163 '1 I 03')09.3 O. 0.0 101 83 
92 "2 -I 0 •• 8 O • 0.0 100 8' n -'3 '1 1 S0611.3 O. 0.0 " 85 ,. 170 -I ! eO!C1h2 c. 0,0 ,~ U 
95 -95 -I 0 8.0 O. 0.0 97 87 

" ." 0 0 9.2 O. 0.0 " as 
" ,9' '1 0 6.S O. 0.0 95 19 ,. ." 0 0 6.0 O. 0.0 '0 ,~ 

" 200 1 0 S0593.0 O. 0.0 93 I. 
100 ·100 '1 0 80593.0 O. 0.0 92 15 
101 -10\ -I 0 0.8 O. 0.0 '1 16 
102 -102 -\ 1 03'09.3 O. 0.0 '0 17 
103 -103 '1 1 S0611.3 O. 0.0 S9 18 
100 205 '1 1 0 S0600.2 O. 0.0 88 19 
\05 -lOS .\ 0 I 10593.0 O. 0.0 87 20 
106 -106 -I 0 , IS6.9 O. 0.0 a6 21 
107 -107 -I 0 2 0.8 O. 0.0 S5 22 
loa -loa -I 0 2 •• a O • 0.0 S. 23 
10' -109 '1 0 3 8.0 O. 0.0 83 20 
1\0 -110 -I 0 3 0.6 O. 0.0 S2 25 
111 -ill -j 0 2 •• 8 O. 0.0 ~1 26 
112 -112 -I 2 •• 8 O. 0.0 80 i'7 
113 -113 -I 12 3Z.7 O. 0.0 79 2a 
110 '11' 0 0 9.6 O. 0.0 78 29 
115 20S -I 0 0.0 O. 0.0 77 30 
116 '116 -\ 3 8.0 O. 0.0 76 31 
117 -117 '1 5 223.S O. 0·0 75 32 
1\8 210 '1 1 2.0 O. 0.0 70 30 
119 220 1 0 0.0 O. 0.0 73 33 
120 -120 '1 3 S.O O. 0·0 72 3' 
121 -121 0 ,.2 O. 0.0 71 ]5 
122 .~. 0 110-6 O. 0.0 70 36 
123 211 -I o.s O. 0.0 " 37 
120 21~ '1 6.8 O. 0·0 65 37 
125 Zl5 '1 SO!95.0 O. 0.0 67 36 
126 -126 '1 7.0 O. 0.0 66 37 
127 -"'" I 0.0 10 '.0 65 1S 

TeTA\. PltEOICTED EXECUTleN TIME. 229326976.0 

TeTA~ PREDICTED ~ec.~ STeAAGE • 13 

TeTA~ ""[DICTED PR8GRAM ST8RAGE • .32 

"'AXIMUM SEQUE~TIAL C!><PUTATI8~ STRI~G • 90 

Figure 6-Vertex attributes of Boolean analyzer 



Measurement Based Automatic Analysis of FORTRAN PrOOT.Rm~ 731 ., .. _- - -- ----- ~ - - -0-----

~ 
II!IT-llW-__ 

RELATrVE IMPORTANCE OF VERTEX 
ROUTINE MAIN 

RELATrVE IMPORTANCE OF VERTEX 
ROUTINE MAIN 

Figure 7-Vertex frequency and computation time 

s)-the number of elements (for arrays) 
t)-the type of variable 

Program delimiters 

Three FORTRAN statements will be processed as 
program delimiters 

1. SUBROUTINE name (a1,a2,a3, ... ,an). will be 
represented as vertex Wi with input data set 
(a1,a2,a3, ... ,an ). This input data set is given 
a special designation Ip, the parameter list. 

2. type FUNCTION name *s (a1,t12,a3, ... ,an ) 

is represented just as in (1) with the following 
additions. The function name is added to a list 
of functions to be recognized as distinct from 
input vaIiable~. 

3. END will be represented as the terminal vertex 
W z • All statements which would terminate 
the execution of the program will be connected 
to w z. The output data set of w z is Ip. 

Specification statements 

The specification statements are non-executable. 
They provide information about the type, precision 
and dimensionality of variables, together \\-ith possible 
sharing of storage between variables. 

1. type *s a1 *Sl (k1)/X1/, a2 *S2 (k2)/X2/, ... ,a3 *sn 
(kn)/xnl Each variable in a type statement 
will be entered in the dictionary according to 
the following conventions: 

a. name (ni) is stored directly 
b. type (t i ) is taken from the statement type 

(INTEGER, REAL, LOGICAL, COM
LEX) 

c. precision (Pi) is either determined from 
the statement (if included) or defaults to 
the following values: 

type t.; Pi 

INTEGER 1 4 

REAL 2 4 

LOGICAL 3 4 

COMPLEX 4 8 

d. size Si is computed as product of k i expres-
SIOn. 

2. DIMENSION a1 (kl), tl2, (k2), ... , an (len) 
Dimensioned variables will be entered into 
the dictionary (if not previously defined by a 
type of COMMON statement) and the size 
(Si) is computed from k i . 

3. COMMON /r1/a1 (k1), ~ (k2) ... /r2/a3 (k3), ... 
Conunon variables are entered into the diction
ary (if not previously defined by a type or di
mension statement) and the size (Si) is com
puted from k i . In addition, all variables in 
COMMON blocks are placed in a special set, the 
common list Ie. 

4. EQUIVALENCE (aI, a2, a3, ... ), (a4, a5, ... ), ... 
The equivalence statement has two effects on the 
program description. First, the storage allocation 
for defined variables is altered. If the variables 
in an equivalence class are not completely 
overlapped then some modification of the 
calculation of the amount of storage is required. 
This is especially jmportant when such variables 
lie in COMMON blocks. If storage allocation 
were the only reason for using equivalence state
ments, they could be ignored in this analysis. 
However, the values of variables may be refer
enced by any name which happens to be assigned 
to the cell. Thus, it is imperative to include all 
"aliases" when preparing the input and output 
data sets. A well-written program for a single 
processor may obscure potential parallelism due 
to storage sharing. 

Control statements. 

The control statements are the source of the majority 
of logical control arcs. The FORTRAN statements 
included in this group are the GO TO statements 
(unconditional, computed and assigned), the IF 
statement (aritlunetic and logical), the DO, CON
TINUE, PAUSE, RETURN, CALL, and STOP 
statements. 

1. GO TO statements 
a. GO TO n 

the unconditional transfer statement pro-



732 Spring Joint Computer Conference, 1969 

duces an arc of the form (Wi-I,Wn ). 

This statement does not result in a new 
vertex. 

b. GO TO (nl,n2, ... ,nk) j 
the computed GO TO statement is 
represented by a vertex (Wi) with multi
ple out-branchings (Wi,Wnl), (WiWTi2)' ... , 
(w i,WTik)' Wi has exclusive-OR output 
logic. Ii = {j} 

c. GO TO j, (nl,n2, ... ,~) 
the assigned GO TO statement is repre
sented exactly the same as (b) 

2. IF statements 
a. IF (e) nl,n2,na 

The arithmetic if statement is represented 
by a vertex Wi with exclusive or output 
logic and out-branching arcs (W i,W1'l)' 
(\\7 i,Wn2)'(W i,Wna)' The input data set 
consists of all variables referenced in the 
arithmetic expression "e.' l 

b. IF (e) s 
the logical if statement is represented 
by a vertex Wi with exclusive or output 
logic and outbranching arcs (Wi,WHI), 
and (Wi,WH2). The input data set con
sists of all variables referenced in the 
logical expression "e." Statement "s" 
is treated as a separate vertex (w i+l). 

3. DO n i = ml,'fYl,.<J,ma 
The DO statement is represented by a 
vertex Wi with Ii = {ml,~,m3} and 0, = {i}. 
Arcs produced are (Wi,WHl) and (Wn,WHl). 
The latter arc is a feedback connection for 
the loop. 

4. CONTINUE 
The CONTI~TTJE statement is r-epr-esented 
by a vertex Wi with L = cf>, 0, = <I> and out
branching arc (w i,W HI)' 

5. PAUSE 
The PAUSE statement is represented by a 
vertex Wi with Ii = cf> 0, = <I> and out
branching arc (Wi,Wi+I). 

6. RETURN 
The RETURN statement produces an arc 
of the form (w i-I,WJ. This statement does 
not result in a new vertex. (w z is the pseudo
terminus of the program.) 

7. STOP 
The STOP statement is repreRented just the 
same as a ret.urn. 

8. CALL name (al,a2, ... an) 
The CALL statement is represented by a 
vertex Wi. In the usual case t.here is a single 

outbranching (w ijW ~+l)' However, it is pos,"ii
ble to specify other return paths as parameters 
to the subroutine in the form CALL name 
(al,... & anI'" & an2) in which &a~l 
and &ar.2 represent statement numbers ill 
the calling program. In this case, multiple 
outbranching arcs are generated Cw i,W i+1), 

(w i,Wnl), W i,W~), ... with output logic exclusive 
ot. In the absence of further information, a.ll 
parameters are assumed to be members of 
both Ii and Oi. Also any CO~L\rON variables 
must be considered part of hoth sets. Thus 

Input/output statements 

There are five I/O statements which will be incll1de(l 
in this discussion: READ, WRITE, E~D FILE, RE
WIND and BACKSPACE. 

1. READ Ca, b, END = nl, ERR = 112) list 
This statement is represented by a vertex Wi 

with input data set Ii = {a,ml,m2.' . 1 where 
{1l11,tn2 ... } represent allY loop limits ill thp. 
list. 0 i = {list}. The exclusive-outbranch
ing arcs are (w "w i+l) and optional arc~ 
(W"Wnl) and (w i,W~). Other variations 011 

the READ statement are processed Rimilarly. 
2. WRITE (a,b) list 

This statement is represented by a vertex 
Wi with input data Ret Ii = {a, ml, m2, ... , 
list} where {ml,m2, ... } represent any loop 
limits in list and list represents the variableR 
to be output. 0, = 0 and there is a single ou1-
branchin~ (W"Wi+l). 

3. ENDFILE a 
REWIND a 
BACKSPACE a 

The structure of these three statements is tlH~ 
same, Each is represented by a vertex Wi with 
Ii = fa}, Oi = <I> and a single outbranching 
arc (W,:,WHl). 

Arithmetic statements 

The arithmetic statement, most generally of the 
form "a = e" is represented by a single vertex, Wi, 
with 0, = {a} and Ii = {kl' ... ,kn b1, ... ,bn} where 
the k's are subscripts used anywhere in the statement 
and the b's are variables in the arithmetic expression 
"e". A sinJ2:le outbranchin~ arc (Wi,WHl) is produced. 



Software measurelnents and their influence 
upon machine language design * 

by L. PRESSER and M. A. lVIELKANOFF 

University of California 
Los Angeles, California 

INTRODUCTION 

At present, software development is responsible for a 
large part of the total cost of computer systems. A .seg
ment of this cost is traceable to the development of 
programming language (e.g., FORTRAN, ALGOL, 
PL/I) translators which constitute major components 
of any software package. 

Albeit machine languages have evolved through the 
various computer generations, the machine language of 
present day conventional computers is still too elementa
ry (e.g., string manipulation operations require con
siderable set-up time) for a simple and concise imple
mentation of translators and for carrying out the actual 
translation process in a manner which makes effective 
use of the available hardware. 

In order for future information processing systems to 
make effective use of the available technology, an 
appropriate evaluation! .of the complete operation of 
present information processing systems is needed. In 
particular, we are interested here in obtaining informa
tion concerning the manner in which the translation of 
programming languages may influence the machine 
language design of future computers, the objectives 
being the production of a wefl-balanced integrated 
design and the simplification of the translator writing 
task. 

In this paper we shall discuss a specific programming 
language translator and a measurement control center, 
and associated software artifact, incorporated into the 
translator at implementation time in order to gather, 
optionally, information about the translation process. 

• The work was supported by Atomic Energy Commission 
AT(lI-I) Oen 10 Pro,j. 14; Advanced Research Projects Agency, 
SD 184; Information Systems Division Office of Naval Research. 
Reproduction in whole or in 'part is permitted for any purpose 
of the United States Government. 

-------------------------------------733 

Utilizing a number of benchmark programs measure
ments are collected to determine the relative effort 
spent in the various sections of the translation process 
by this particular translator. The type of information 
so obtained contributes to a better understanding of 
how the translation of programming languages may 
influence machine language design. 

Translation technique 

The system described here is essentially the MET A5 
translator writing system.2 This system has been ex
tended and implemented at UCLA on both the IBM 
SYSTEl\'1/360 and the SDS SIGMA 7 computers. 
Henceforth, for purposes of this paper, we may view 
this translator writing syst43m as a translator for the 
lVIETA5language. 

The META5 system employs a two-pass technique. 
The first pass transforms, interpretively, a META5 
program into a pseudo-code or intermediate language 
(i.e., between machine and programming language) 
representation. The second pass interpretively executes 
the pseudo-code on the associated pseudo-machine. 

Essentially, given a language, we refer to a computer 
and associated routines which behave as a pseudo
machine for which the given language is the machine 
language as an interpreter of that language. 

Through a bootstrapping approach a pseudo-code 
version of the program which transforms META5 pro
grams into pseudo-code programs was obtained. * 
Execution of this program, on the pseudo-machine, is 
what constitutes the first pass of the overall process. 

* First, Oppenheim'st implementation was bootstrapped to the 
IBM SYSTEM/3W; obtaining a META5 to PL/I translator 
in PL/I. The next bootstrapping produced a META5 to pseudo
code translator, in pseudo-code, on the SYSTEM/360.4 



734 Spring Joint Computer Conference, 1969 

Measurements 

The primary type of measurementsfi ,6 in which we are 
interested are: 

1. Event statistics (in particular as required to 
determine' that part of the total translation 
effort contributed by the various sections of a 
translator) : 

a. Time 
b. Frequency 

2. Employment of resources (storage space in par
ticular) 

3. Interaction with the Operating System 
4. Structure of translated programs 

The measurement process can be carried out to vary
ing degrees.6 Hence, the control information supplied 
by the Operating System to the translator may contain 
an indication of the amount of effort to be dedicated to 
the collection of measurement data. 

At the completion of the translation process (in the 
case of META5 at the completion of each pass), the 
collected measurement information is processed, for
matted, and recorded on the appropriate data set 
(organized collection of related information) which is 
then made available to the Operating System. This is 
done in the same manner as for the other various forms 
of output. 

When a translator is being specified it is possible to 
indicate the type of measurements desired and the 
maximum cost one is willing to pay for the obtainment 
of the measurements. This cost may be stipulated as a 
percentage of the time employed by the measurement
free translation process as far as timing specifications is 
concerned, and as a percentage of the resources (storage 
space in particular) employed by the translator when it 
contains no measurement artifact, as far as the utiliza
tion of resources is concerned. 

It is to be emphasized that the introduction of meas
urement artifact for collecting most of the type of meas
urements in which we are interested should be an in
expensive undertaking if this task is taken into con
sideration during the design of the translator; moreso 
if the translator is a well-organized and well-designed 
translator. What may involve some cost is the process
ing and formatting of the measurement data obtained. 
However, this is considered as a separate task subse
quent to the translation process proper. 

A special unit has been incorporated into the control 
section of the META5 translator with the sole purpose 
of controlling the collection of information about the 
translation process. This unit controls simple software 
measurement artifact which has been introduced into 
the system. 

From the programmer's point of view, the meas
urement instrumentation consists of a set of possible 
measurements (i.e., l\IEASUREl, MEASURE2, ... , 
NIEASUREI, ... where I > 0) where each of :1fEAS
UREI gathers information on a specific set of events 
and each can be turned ON/OFF (for either the first 
or the second pass) at the META5 language level by 
appropriate control commands. 

In the lVIET A5 case the measurements (only the 
collection of event statistics is discussed in the sequel) 
are obtained as follows. The META5 implementation 
consists, in part, of a pseudo-instruction decoder and a 
set of routines. Each time a pseudo-instruction is de
coded a series of calls is made to the appropriate rou
tines in order to execute the pseudo-instruction. Most 
of the measurement artifact has been introduced at the 
decoder level. Each time a routine is called the measure
ment artifact increments a frequency counter associated 
",ith that routine and records the clock; when that rou
tine returns, the clock is recorded again and the elapsed 
time added to a time counter associated with the routine. 
These measurements provide statistics on the various 
pseudo-instructions. 

Measurement artifact has been introduced at various 
other points (very few outside decoder) in order to 
record the activity associated with certain specific 
events. For it""lstance, the clock is recorded right before 
and just after an I/O ·operation and the elapsed time 
recorded and associated frequency counter incremented. 
Also, measurements are gathered on the total time spent 
in such events as the pseudo-code loading process. At 
the end of a pass the collected measurement data are 
processed, formatted, and output in an easy-to-read 
form. Figure 1 displays a structural diagram of the 
l\1ETA5 system which includes an indication of the 
location of its measurement artifact. 

The perturbation introduced into the translation 
process by the measurement activity is relatively minor, 
as shown below. 

1kf eas".,trement data 

The results of a number of benchmark measurements 
are tabulated in Tables I through III. 

The benchmark programs utilized were: 

)lET A5 to pseudo-code. Denotes the translation 
(first pass) of META5 
(which is written in l\IE
TA5) to pseudo-code. 

ECR to pseudo-code. Denotes the translation 
(first pass) of a META5 
program to pseudo-code. 
This program analyzes 



RECOGNIZER 
UNIT 

LOADER 

DECODER 

BACKTRACK 
UNIT 

COMMUNICATION 
Ind 

CONTROL UNIT 

STORAGE 
HANDLER 

UTILITIES 

ERROR 
PROCESSOR 

Figure 1-8tructural diagram of the MET A5 system 

RM to pseudo-code. 

CK to pseudo-code. 

Execution of ECR. 

Execution of RM. 

FORTRAN programs for 
purposes of parallel exe
cution.· 
Denotes the translation 
(first pass) of a META5 
program to pseudo-code. 
This program accepts as 
input certain logical 
equations and produces 
as output wire-list in
formation. a 

Denotes the translation 
(first pass) of a META5 
program to pseudo-code. 
This program reformats 
META5 programs into a 
specified format.7 
Denotes the execution 
(second pass) of the ECR 
program. The input data 
used was a FORTRAN 
program which simulates 
a Boolean Analyzer.s 

Denotes the execution 
(second pass) of the RM 

Software Measurements 735 

program. The input data 
used was a small set of 
logic equations. 

Tables I through III are self-explanatory; however, 
some of the salient points should be noted: 

1. Status restoring, in the backtracking process, 
represents the most time-consuming (about 29 
percent) section of a META5 translation (first 
pass) process. 

2. Inputting and outputting together represent the 
second most time-consuming (about 25 percent) 
section of a IVIETA5 translation (first pass) 
process. 

3. String comparisons and table look-ups together 
represent the third most time-consuming (about 
20 percent) section of a META5 translation 
(first pass) process. 

4. Arithmetic operations constitute a relatively 
minor part (about 2 percent) of a META5 trans
lation (first pass) process .• 

5. The effect of the measurement artifact is rela
tively minor (:::; 6 percent). 

6. The system is printer bound when source listings 
are requested. If no listings are required the 
translator is compute bound. 

7. The backtrack stack requires many levels (37 
levels for the benchmark programs used here). 

Finally, the following definitions may clarify the 
headings appearing in Table III. 

The inputter is a unit which obtains, decodes, and 
places in a repository buffer, elements from the input 
stream. It permits backtracking the head of the input 
stream if required, and allows the optional advancing of 
the head of the input stream past certain characters 

Table I 

L1st~ or IIOIIl'Oe ~ on! 

~or_ .... 167.01. 137.5911 123.~ 61.9» 133.758 19._ 

L1st~ or ..,.....,. _ on! 

m~or_ .. 151.978 131.082 117.6~ 58.~ 126.~ 18.~ 

1Iou.t~orllOlll'Oe_ 

on!~d_ •• 1.a.722 117.702 J08.~ 53.7l1li 122.880 17.rtT2 



736 Spring Joint Computer Conference, 1969 

J_Sn~1>e ___ tol1at~ 

of __ ••••••.••• 

'_Sn1ntos'pftt1 .. _1m __ to 

~of_ •••••• 

12 

Table II 

17 
15 

_iaw..- ....... . 2211.591 173.383 159.602 78.-19 193.925 26.23'1 

fIo.of_Sn_ 

-~ ........... . 253 3l.8 231 121 IS' 37 

110. of _ output •••••••• .,.,. 575 ~ 2!!5 70!! 15'1 

_heiptof __ --............ . 37 Jl 31 29 20 I' 
on.~-. __ 
cadoSnIl1~ •.•.•••• 27.Wi 27.~ 27.~ 27._10 2l.~ 18.308 

Table III 

'""-*"P (Sie _ 1) 

Ia1.-l~ --.. -.. _]a I-~ - AJ'I. -(SIe_2) -.-... -"--~ ~ ~ 
~ - - - ObI - ... - ~ 

ISle ,.-.. ,.-.. 
_31 -- --- -

ICII5 to 

~ I' 31 12 

ICllto ---- 13 26 I' 11 

III to ---- 15 32 1 11 11 

at to ---- 15 :ze 1 10 10 12 --or IDI 12 17 11 111 111 

--or III 111 11 23 17 

_2: 'l!>o~lJ..ot.I_lB1ool~ __ .lar~ ... (no_1 __ ... _-1 
to tho .." __ or ln1al ~'l. 

_3: _ ... -"-w1tbtbo_ortbo1qlut_;tbllthU __ ~1IIpl1.1toollo 

to tboiqlutWr. ~. _. ~ ~ ... __ lJ..ot.I_ thU 001I00I18 _ tod. ... 
_____ lIboladlqlut_. 

(e.g., blanks). The inputter is a component of the lex
ical analyzer. 

The outputter is a unit which serves as a repository 
buffer for the output stream and allows the specifica
tion of output record format. It also permits backtrack
ing the head of the output stream if required. 

CONCLUSIONS 

This paper suggests the stipulation of a measurement 
control center and associated artifact as a regular 
feature of programming language translator specifica
tions. Experience shows that the introduction of the 
software measurement artifact required for the collec
tion of the type of measurement data discussed here is a 
simple and inexpensive task if carried out at translator 
design time. Furthermore, the sample data presented 
here indicate that the optional measurement activity 
places a minor burden on the translation process. 

The information to be gathered with such systems can 
have great influence on future computer architecture, 
especially machine language design, and in the simplifi
cation of the translator writing process. In addition, 
this type of data aid in the determination of the direc
tion of effort for future translator improvement and in 
the evaluation of newer translator versions. 

I t should be emphasized that the results presented 
here were obtained on a single translator and specifically 
on the :YIETA5 SIG:J,IA 7 inlplementation with which 
the authors were involved. Thus, even though there are 
no reasons to consider the implementation in question 
atypical, the data must be viewed in proper perspective. 

It is also worth noting that ~lETA5, as implemented, 
is an interpretive system. If it were a compiling system 
with, for example, elaborate optimization as a goal, the 
relative percentages would show some changes. 

These measurements substantiate the fact that the 
translation of programming languages is not an arith~e
tic-oriented problem but rather a string-manipulation 
problem. Hence, as far as the translation of program
ming languages is concerned, a machine language based 
on string manipulations rather than arithmetic opera
tions, should allow the effective, simple, and concise 
implementation of programming language translators. 
These considerations suggest some very interesting 
nonconventional machine organizations. 

As far as the determination of syntactic structure is 
concerned, the high cost of backtr~wking serves as strong 
justification for the considerable effort spent by many 
researchers on precedence techniques6 which do not re
quire the backtrack mechanism. 

Finally, it is indeed worth mentioning some simple 
hardware generally absent from present-day computers, 
which would facilitate the coding of software measure
ment artifact. To wit: 



1. A variety of clocks, especially very fast clocks 
(of the order of an instruction cycle) with a very 
fast access time, as well as clock manipulation 
instructions. Another type of clock which would 
be useful would be clocks which accumulate time 
intervals. 

2. A number of counters, as well as counter manip
ulation instructions. 

There is no reason why these features could not be 
incorporated into a system at system design time in the 
same manner, for instance, that hardware facilities have 
been added to the newer generation of computers for 
purposes of error detection and correction. 

REFERENCES 
G ESTRIN et al 
Snuper computer-A computer instrumentation automaton 
Proc S J C C 1967 

Software Measurements 7:{7 

2 j) K OPPEXHEIM 
The Jlf ETA.5 language and sysieul 
~ystem 1 >evelopment Corp Report 1':\1 -23!Jo 1006 

;~ R MAX DELL 
Private communication 

-1 E C RUSSELL 
Private communication 

5 G ESTRIN 
.vleasurement definitions and discussiolils 
Unpublished paper 

6 L PRESSER 
The structure, specification, and evaluation of translators and 
translator writing systems 
PhD dissertation Dept of Engineering University of 
CalifOlnia Los Angeles 1968 

7 C KLI~E 
Private communication 

SMA MARIN 
Investigation of the field of problems for the Boolean analyzer 
PhD dissertation Dept of Engineering University of 
California Los Angeles 1968 

g T E CHEATHAM JR 
The theory and construction of compilers 
Computer Associates Inc Report CA-6606--0111 1966 





More on simulation l$ln011~u)'p.~ $lnd 
-~--~-- ----

design methodology for computer 
systems * 

by DAVID L. PARNAS 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

INTRODUCTION 

In an earlier paper! we attempted to set forth (1) a 
design methodology for computer systems which made 
heavy use of simulation and (2) a simulation language 
intended to facilitate the use of the design method
ology presented. The basic justification for the design 
methodology presented an old precept from engineering 
design: a problem must be defined before it is solved. 
The result was a methodology which laid great stress 
on specifying the behavior of a system or a component 
in a system before producing the design. The simula
tion language, SODAS, was designed to allow a design 
to proceed in a hierarchical way, treating any system 
as a set of components, specifying the behavior of those 
components, then treating the components themselves 
as systems. By means of the SODAS language it was 
to be possible to evaluate the design at any stage in 
its development without excess effort. 

One of the most fruitful results of the publishing of 
"SODAS ..... "1 has been a number of useful dis
cussions on design methodology and simulation with 
other workers. Probably the most fruitful of these 
discussions has been with Brian Randell, who had been 
interested in similar problems, but with a somewhat 
different emphasis and result.2 A major result of those 
discussions has been the realization that while the 
basic design methodology described in "SODAS ..... "1 

* This work was supported by the Advanced Research Projects 
Agency of the Office of the Secretary of Defense (F 44620-67-
C--D058) and is monitored by the Air Force Office of Scientific 
Research. This document has been approved for public release 
and sale; its distribution is unlimited. 

is most general and should apply to all sorts of computer 
system design problems, the specific characterization 
of it given in "SODAS ..... "1 itself fails to meet 
such application requirements. 

An examination of the work leading to and motivat
ing .SODAS shows that all the motivating examples 
fall Into a rather restricted class of hardware modules. 
!hat class can be roughly characterized as single level *. 
Involving no interpretation of programs or even mi
croprograms. It is not surprising then that we find that 
the particular description of the design methodology 
given in "SODAS ..... "1 and the structure of SODAS 
itself are fairly closely restricted to that class of system. 

I t is our purpose in this paper to explore a somewhat 
less restricted expression of our basic design met hod
ology in an attempt to extend it beyond the limited 
confines covered by "SODAS ..... ".1 In particular, 
we expect to explore the design of computer systems 
consisting of at least two (and often more) levels of 
hardware and software. We shall refer to our system 
class as the design of Operating Computer Systems 
(OCS), since it usually includes both hardware and the 
software known as the operating system for the hard
ware. It is also our hope to take into account the con
cepts about multilevel simulation given in Zurcher 
and Randell,2 working them into the design of a sim-

* It is necessary to note here that we are deviating from the 
way that level is used in "SODAS ..... "1 to a usage that is more 
consistent with Zurcher and Randell.2 In "SODAS ..... ",1 level 
referred to level of detail, i.e., the number of levels of definition 
design completed in a state of partial design. The use of level here 
is somewhat more complex and will be defined more precisely in 
the text. 

739------------------------------------



740 Spring Joint Computer Conference, 1969 

ulation language which is more broadly applicable 
than SODAS.** 

The principal difference between the class of systems 
discussed in "SODAS ..... "1 and the class that "\ve are 
now interested in arises from the existence of a program 
known as the operating system, which should be con
sidered an integral part of the design problem. Early 
computers were designed with no thought of an operat
ing system, simply because they were to be run without 
an operating system, As the need for an operating 
system became apparent, these were designed separate
ly from the fixed piece of hardware and had as their 
aim efficient and convenient use of that piece of hard-
ware. 

The premise that we should proceed by specifying 
the behavior of a syste~ before desigpjng its compo
nents implies that we can no longer look at an operating 
system as an item to be placed on a previously designed 
piece of hardware. The actual design should begin with 
a specification of the overall behavior of the hardware/ 
software combination. It continues by dividing the 
system into components and they, in turn, are designed 
with little or no attention to the question of what win 
be hardware and what will be software until very late 
in the design. 

In the type of system that SODAS deals with, the 
nature of the svstem building block was clear; each 
hardware moduie is composed of smaller or lower level 
hardware modules until one gets to the realm of logic 
elements. For syst3ms of hardware and software (OCS) 
we must use as a component or building block a unit 
which will allow us to postpone the decisions about the 
hardware/software tradeoff. The unit we have selected 
is the "sequential process", a rather fuzzy concept 
which has been discussed elsewhere.3 ,4,5 For our present 
purposes we note that a sequential process is a fully 
ordered set of events in an operating computing system 
and may be performed either by hardware or software. 
By building a design as a set of such processes we can 
postpone the hardware/software decision as long as 
desired. 

Difficulties with SODAS 

In the following section we shall attempt to discuss 
some of the difficulties that the existence of hardware 

** We have chosen in this paper to talk not about languages, but 
about. the characterist.ics or features of languages. We will not at 
any stage in this paper give a syntax OC the language, or even a 
part of that syntax. Rather, we shall talk exclusively about 
properties that a language must have for the purposes outlined 
here. In part this is due to a feeling that the syntax of the language 
is an irrelevant detail as well as the fact that the syntax of the 
language is far from frozen at thiR stage, 

and software as part of a system design introduces 
into any attempt to use SODAS for such designs. 

10 The existence of interconnectors at a lower leve 1 
(further progress in the design) that did not 
exist at higher levels (earlier in the design). 

In the hardware modules any wires that 
connect parts of one subsystem with parts of 
another subsystem must exp licitly connect those 
two subsystems. As a rule (though not invari
able) all significant interconnectors between 
two components are specified at the time that 
the functions of those components are spec ified. 
"X 0 new interconnections show up as the design 
progresses. In operating systems this is not the 
case. It is reasonable and desirable that at 
certain stages in a design the several sequential 
processes will be described as entirely indepen
dent of each other except for certain explicit 
attempts at communication. At a later stage 
in the design we will note that these processes 
have an implicit intercommunication because of 
resource sharing. In SODAS with its require
ment of explicit interconnectors, this would 
require that the descriptions at the upper leve 1 
be rewritten. This vio lates a design criterion 
for SODAS-the use of SODAS should require 
no extra effort 

2. The problem of hidden resources. 
At an early stage in the design it will be 

reasonable to assume that all of a certain class 
of resource that will ever be required by a 
process will always be available. At a later 
stage we decide that for cost reasons it will not. 
The process will then go to use that resource, 
find that it is not there and ,v':1it until it is 3.'v'ail= 
able. SODAS will not permit us to add this 
level of detail without rewriting the description 
we produced at the more abstract level. 

3. Communication through global variables. 
The pretense that all communication is 

through an explicit set of wirel'1 or variable:-; 
becomes unreasonably restrictive when talking 
about software operating systems. The simu
lation language and design methodology must 
recognize the communication of processes 
through global variables and files as well as 
more subtle means of communication (e.g., 
changing the instruction counter of a process 
or changing its code). 

4. Expansion of time points to time intervals. 
At early days in the design of an OCS certain 

sequences of computations can be considered 
. ". t'" t' to he single events occupymg a pom In Ime 



Simulation Languages and Design Methodology 741 

and separated by a specified period during which 
nothing happens. It is assumed that the event 
cannot be interrupted and that no time passes 
except between events. At later stages in the 
design it often becomes necessary to recognize 
that time passes during an event since condi
tions not considered at earlier stages of the 
design may cause the process to be interrupted 
during an event. This in itself could conceivably 
be handled within SODAS, or other simulator, 
but there is no facility that would allow the 
simulation system to determine the simulated 
time of this interruption of the event unless we 
force the programmer to insert timing through
out. The latter requires either recognition of 
the problems of a later stage of design at too 
early a stage or substantial modifications to a 
description which is actually perfectly valid 
for the level at which it is written. 

Multi-level modeling-two views 

Randell and Zurcher2 have presented a view of system 
design and simulation which, on the surface, is quite 
similar to that presented in "SODAS. ~~ ... "1 Both 
papers discuss the value of being able to have a 
simulation model which simultaneously includes de
scriptions at many levels of detail which are interacting. 
Close inspection, however, of the two papers indicates 
that the word 'level' is being used in two different senses. 
The design process discussed in "SODAS ..... "1 can 
be viewed as repeated functional decomposition. Each 
unit is decomposed into a sub-unit, each with a distinct 
function. When "SODAS ..... "1 speaks of 'levels of 
detail' it is referring to the number of times this decom
position has been carried out in a given unit. Randell2 

sees a different direction of progress for a design, a 
given functional unit will initially be described as an 
abstraction from reality. Certain facts about its imple
mentation are initially ignored, \vhile certain design 
features are being explored. As one recognizes and 
deals with these facts of life \vhich were initially ignored, 
one proceeds from a high level of abstraction to a lower 
level of abstraction. Often in doing a functional decom
position one is simply iatroducing functional units 
which are needed to proceed from an abstract de
scription of a component to one which enables the 
component to exist in a restricted real environment. 
In proceeding to a lower level of abstraction one is 
often simply specifying the nature of certain compo
nents of the given component. Often, however, the two 
notions of level are quite different. In functional de
composition the functional units specified are always 
sub-units of the unit we are decomposing. That unit 

is always viewed as self contained; in contrast, it is 
common in going to a lower level of abstraction to 
recognize sub-units which must be viewed as shared by 
other components. Thus we are not simply decomposing 
a given component into its sub-components. Often, 
too, proceeding to a lower level of abstraction does 
not involve any functional decomposition at all; it 
may merely involve taking into account certain ex
ternal influences on a given component. On the other 
hand, functional decomposition does not always in
volve proceeding to a lower level of abstraction. 'fo 
avoid confusion between these two concepts, we shall 
hereafter use a "level" to refer to levels of abstraction. 
"Ex-tent of functional decomposition" will be referred to 
explicitly, where necessary, by that rather unwieldy 
phrase. 

Both extending functional decomposition and lower
ing the level of abstraction are consistent with the basic 
precept of our design methodology; both involve pro
ceeding from a specification of desired behavior to u, 

means of achieving it. 

The nature of distinct levels in oes 
To date we have left "level" as a fuzzily defined 

concept. It is necessary now that we determine the 
nature of levels of abstraction within a complete 
system, i.e., that we answer the question: Under what 
circumstances must we consider two actions in a com
puter system to occur at different levels-or-how do 
we justify the statement that two subroutines within 
the system deal with it at a certain level? 

A fairly easy answer is that there is no concrete 
realization of the term level within the system. That 
the division between levels of abstraction is entirely 
in the mind of the analyst or designer, who deter
mines what is in the top level by what he chooses to 
consider first. This rather easy answer, however, 
ignores a regularity that can be observed if one studies 
a number of examples of systems so divided into levels. 

It appears to be the case that if we have described 
a set of processes at some level when we proceed to 
the lower level, we are either specifying or modifying 
the specification of the interpreters of those processeH 
previously described. In other words, a top level 
description of a system is a description of a set of pro
cesses with an assumed interpreter, that interpreter 
being essentially passive and accomplishing the actionH 
specified by the process description as directly U,H 
possible. When we move down to a lower level, we 
begin to assign more complex fUIlctions to the interpret
er, e.g., managing the resources being used by the 
process and suspending action on the proces.'3 should 
immfficiellt resources be available. 



742 Spring Joint Computer Conference, 1969 

What SODAS needs 

SODAS was designed under the assumption that all 
the component descriptions andlor process descrip
tions could be run using the same fixed interpreter. 
There was no provision for making any substantial 
alterations to the behavior of the interpreter or for 
including new ones as part of the design process. Thus 
SODAS HAS AN IXHERENT LL\UTATION TO 
SINGLE LEVEL SYSTE?vlS. 

Each of the difficulties pointed out earlier can be 
neatly avoided by providing the ability to (a) make 
certain changes in the operation of an interpreter 
supplied as part of the system and (b) to provide for 
the possibility of some simulated processes being the 
interpreters for others. 

SOCS 

Having explored a little further the nature of the 
design process for an OCS, we shall now look at the 
design of a simulator for use in designing an OCS 
(SOCS). We can first review the features that we found 
missing from SODAS. 

1. Communication through global variables rather 
than interconnectors. 

2. A flexible interpreter. 
:3. Ability to sL."'1lulate a process which is beL.l1.g 

interpreted by other processes being simulated. 
4. Integration of the process describing languages 

with the network description language. * 
We may also list the features that we found in 

SODAS that were missing in such process oriented 
languages as SL\IULA. 4 

1. Ability to have a process that consists of a set 
of processes, e.g., recursive structure. 

2. Ability to handle difficult cases of simultaneous 
events. 

3. Ability to handle structural descriptions of 
hardware. 

4. The "wait until" or monitoring feature found in 
SOL, proposed for SODAS, but missing in 
SE\lULA. 

It is not possible at this point to give a detailed 
description of the SOCS language. It is clear that it 
will be somewhat reminiscent of SL\IULA with extra 
constructs to provide the features that we have dis
cussed. It is desirable that the language be such that a 
SIl\1ULA program could be run without substantial 

* This refers to the fact that SODAS was a language for con
necting components described in other languages rather than a 
language system, 

changes though we would not object to extensive 
surface changes. Although not essential, it will probably 
prove convenient to provide constructions which allow 
processes to be dealt with as SOL facilities or stores. 
The sub-languages and connection concept will be 
carried over from SODAS, though with a somewhat 
subdued role as it will be possible but not necessary to 
leave the SOCS language to describe a process (SODAS 
allowed no primitive process to be described in SODAS 
itself). At present the problem of simultaneous events 
looks somewhat less central than it· did earlier and will 
be provided as an optional, run time resolver rather 
than the compile time solution planned for SODAS.6 

On following a design philosophy 

It is fairly easy to talk about designing from speci
fications to plans, outside in, top down, or from process 
to processor. The way that a design should progress 
is, at least at a certain level of generality, agreed upon. 
It is quite a different matter to actually carry out a 
design in that way when dealing with an OCS. 

There are two serious difficulties that are encountered 
should one try to follow this philosophy. The first of 
these is an inability to really get started, to begin to 
write down concrete information about the design. 
One finds oneself in the position of trying to write a 
program for a machine of unknown characteristics. 
There is no starting point, no structure to build upon. 
We are used to designing processes or programs by 
starting with a very specific tool and looking for a way 
to take this rather limited tool and get around the 
limitations. Without the limited tool, with the limita
tions that we have become accustomed to suddenly 
gone, we feel lost; the space of possible first steps has 
become so large that ,eve cannot make the decision. 

This difficulty can be somewhat alleviated by pro
viding a higher level language in which to write. We 
again have restrictions; the syntax and semantics of 
that language, and the space is again reasonably small. 
(The space, however, is nowhere near as small as that 
provided by a machine language and there are very good 
machine language programmers who still cannot readily 
get started when faced with a higher level language to 
write in. This is not a widespread phenomena, however.) 

A difficulty which is expected by many people with 
whom I have discussed the philosophy is the problem 
of duplicate work. There have been many system 
designs in which simulat~on played a part, but it was 
clearly separate from design work. There was a sepa
rate group doing the simulation and it required either 
extra money or a slower effort by the design group. 
With talk of really extensive reliance on simulation, 
people with such experience see a project. in which 



Simulation Languages and Design Methodology 7Lf'.2 .-:>:u 

everything is done twice-once for the simulator and 
once for the actual system. 'Vhile some might argue 
that even such double effort would be. worth it if a 
well designed system were to result, I wish to argue 
that such double effort can and should be avoided. 
The code written for the simulator must eventually 
become part of the running system. If we write a 
description for a process in some higher level language, 
such as SOCS, and later specjfy and design an inter
preter for that process, the higher level language win 
have to be translated into a pseudo-code that is the 
language of the simulated interpreter. The translator, 
if the translation is done by a program, and the trans
lated code should both eventually become a part of 
the system. If, for example, the interpreter is designed 
directly as hardware, the code is now machine code; 
if the interpreter becomes a program on some other 
hardware, it will continue to operate on the same code. 
The effort involved in producing it for the simulation 
is not wasted; the product becomes a part of the 
system that is eventually produced. 

Another important aspect of avoiding duplicate 
work is that it not be necessary to rewrite a description 
correct at the level of detail at which it was written, 
because we are progressing further in the design' 
(We will never avoid rewriting descriptions when we 
make design changes.) This can be avoided to a very 
large extent by our ability to modify the behavior of 
processes, without altering their description, by 
altering their interpretation or interpreter. The original 
description thus remains both for purposes of explana
tion and as a specification of what is expected. 

The second real difficulty is encountered at the end 
of the design process, and has been reported to me by 
Brian Randell. Randell had been following the design 
process outlined using a facility for multi-level model
ing implemented using FORTRAN running under 
OS/360. vVhen he reached the point that he felt that 
the design was complete, he found that it could not 
become the system, since it still contained many points 
of dependency on FORTRA.X, OS, and the /360 itself. 
A design done in the way we are discussing cannot ,be 
considered complete until the only processes being 
interpreted by the system interpreter are those simu
lating the hardware. All other processes must be inter
preted by the simulated hardware or by processes being 
interpreted by the simulated hardware processes, etc. 
A system like Randell's which was not specifically 

designed to allow Olle process to interpret another, call
not alIo\v the design to proceed to that stage. 

Future work 

The alert reader will note that while we have beel! 
talking about design we have not been designing. It i~ 
our intention to design a version of SOC:S which can be 
quickly implemented. We intend to go through a 
complete design of a system of interest in itself) keeping 
a Pl:otocol of the way that the design progresses. III 
this way we hope to determine just how accurate our 
picture of the design process is and further, in what 
ways SOCS will have to be altered in order to keep from 
interferjng with or distorting the design process. We 
feel that after using the rudimentary system in a real 
design, we will have a much better picture ot the final 
version of SOCS. 

ACKXOWLEDGl\1EXTS 

I wish to acknowledge most gratefully the many 
hours of discussion that I have had with Brian Randell; 
each of those hours has improved my understanding of 
the problems dealt with in this paper. I am also grateful 
to C. Eastman and A. Perlis, who were kind enough to 
read early drafts of this paper and to provide many 
helpful comments. 

REFERENCES 

D L PAR~AS J A DARRI~GER 
SODAS and a methodology for s!Jstem design 
Proc F J C C 1967 

2 F W ZURCHER B RA~ J )ELL 
.11 ulli-level modeling-A methodology for computer 
system des'igh 
Proc International Federation of Information Processing 
Societies 1968 

a D L PAR:\'AS 
Sequential process: A. fuzzy concept 
Unpublished memo available on request from the author 

-! () J DAHL K XYGAARD 
SIMULA.-Au A,LGOL based simulation langllage 
C A C M 670-678 September 1966 

5 E W DIJKSTRA 
Cooperating sequential processes 
Technological University, Eindhoven, X etherlands 

6 D L PARXAS 
Sequential equivalents of parallel processes 
Carnegie Institute of Technology Pittsburgh Pa 
February 1967 





Calculating and plotting equipotential lines for objects 
with cylindrical geometry 

by WILLIAM W. SHRADER 

Raytheon Company 
Wayland, Massachusetts 

INTRODUCTION 

A computer program has been prepared that cal
culates the position of equipotential lines in cylindrical 
geometry for a multidielectric and multiconductor 
environment using a modified extrapolated Liebmann 
method. The output consists of printed voltages on 
evenly spaced grid coordinates, and an automatic 
drafting machine drawing of the dielectric and conduc
tor boundaries and the equipotentials. The program has 
been used to design Corona-free high voltage bushings 
and terminals, and has been applied to other problems 
where knowledge of the electrostatic field was desired. 
The program is an example of how the advent of large, 
high-speed digital computers has made possible easy 
solutions of previously intractable engineering prob
lems. Running time on the Univac 1108 computer is 
typically one to two minutes. 

The following are previous techniques used in an attempt 
to solve this type of problem. 

1. The cwnbersome tilted electrolytic tank,1.2 

2. Resistance paper that ignores th~ cylindrical 
geometry,3.4 

3. The tapered resistance analog that represents 
the cylindrical geometry properly but cannot 
readily accommodate different dielectric con
stants,6 

4. The inflexible approximate analytical methods.6 

Fortunately the author prepared and used this pro
gram before he read Reference 9 which states that this 
approach will not work for dielectric ratios of 10:1. 
The author, an engineer, has used the computer as an 
engineering design tool. The program may not be op
timum in a pure mathematical sense, but it does giv ~ 
the re:}uired engineering answers quickly and easily. 

The method of solution is iterative relaxation using a 
modified extrapolated Liebmann method7 The results 
appear similar to those obtained in Reference 8. Briefly, 
the problem to be solved is specified in terms of the 
boundaries of the materials in the region of interest, 
their dielectric constants, and the voltages, where known, 
at the boundaries of the region of interest. The computer 
then lays out a resistance analog matrix of resistors. 
The value of each resistor is inversely proportional to 
both the dielectric constant and the distance from the 
axis of symmetry of the cylindrical geometry. Typical 
matrix sizes are 48 X 80, but matrices as large as 100 
X 100 can be accommodated so that adequate accuracy 
can be obtained without the need to compensate for 
boundaries that do not fall exactly on a grid point.6 

The computer then solves for the voltage at each point 
of the matrix in terms of the adj acent four points. This 
is an iterative procedure. After the computer goes 
through the matrix several hundred times, the finish 
criterion is met (the voltage at each point changes be
tween subsequent calculations by less than one part 
in 105), and the resulting voltage matrix is printed. 
The computer also provides punched cards, if desired, 
which are the input to an. automatic drafting machine 
for drawing the material boundaries and the equipoten
tiallines. 

Sample problem 

Following is a description of the evolution of the de
sign of a high voltage feed-through blishing. Figure 1 
shows the cross section of the geometry of the problem. 
The 41kv high voltage is to be fed through air from one 
tank of oil to another. The pair of bushings is ceramic, 
and the diameter of the metal center conductor has 
been enlarged in an attempt to reduce the - voltage 
stress in the air adjacent to the center conductor. 

745------------------------------------------



746 Spring Joint Computer Conference, 1969 

AXIS OF 
CYLINDRICAL 
SYMMETRY 

~ CERAMIC Cit -6,0 

_ OIL E,,~ 2.22 

o AIR E,,-1.0 

Figure I-Geometry of high voltage feed through 

Because of the symmetry of the problem, a solution 
for the electrostatic field of any quadrant is sufficient. 
The quadrant analyzed is the lower righthand quadrant 
as indicated by the dashed line. 

Figure 2 illustrates the drafting machine output of 
the electrostatic field. Excessive bunching of the equipo
tentiallines occurs at the interface between air, ceramic, 
and center conductor. The stress in the air at ~his point 
is 50kv linch as determined from the computer matrix 
printout. It was then decided to provide an electrostatic 
shield for the critical point by undercutting the ceramic 
and metalizing the undercut surface. The result of 
providing this shielding is seen in Figure 3. The stress 
in the air at the junction of the center conductor, ceram
ic, and air is now 25kv linch. The stress in the air pocket 
between the first two ceramic fingers is also about 
25kv linch. There is a bunching of the lines at the inter-

Figure 2-Eiectrostatic field with original ceramic bushing 

section of the shield, the ceramic, and the oil, but because 
this bunching occurs in the oil, it creates no problem. 

In another application of this same bushing, a high 
voltage modulator deck wIll be located in the oil close to 
the bushing. Figure 4 shows the analysis of this situa
tion. The maximum voltage stress in air now occurs 
between the third and fourth ceramic fingers, but it is 
no greater than the maximum stress in air shown in 
Figure 3. 

The above problem was solved on a matrix grid of 
88 by 48 points. The ceramic fingers were not identical 
in the calculation because the actual ceramic fingers, 
when traced onto graph paper, did not fall on the grid 
in the same relative position. The closest matrix co
ordinates were used for each finger. Examination of the 
problem on a fuier grid has shown that the approxima
tions involved in using the 88 by 48 grid have not com
promised the results. There is an edge effect that may 
occur where the equipotentials meet the boundaries. 
This effect, particularly noticeable in Figure 4 on the 
right-hand edge, is a'local effect caused by the com
puter method of estimating the Neumann boundary 
voltages and should be ignored. 

Figure 3-Electrostatic field with modified ceramic bushing 

Figure 4-Electrostatic field near H. V. modulator deck 



Calculating and Plotting Equipotential Lines 747 

The program 

Two concepts are borrowed from techniques used 
for manual relaxation.7 One concept is that a 
solution of the problem obtained on a coarse mesh can 
be used to estimate the potentials for solution on a finer 
mesh. The second concept is that with some boundary 
voltages unknown (Neumann boundaries) a solution 
of the problem in a region larger than specified can 
yield accurate estimates of the voltages at the 
periphery of the region of interest. For the above reasons, 
the problem is solved in three successive steps where 
the dimensions of the matrix are increased by a factor 
of two for each step, and the dimensions of the problem 
are increased by a factor of four for each step. The 
final step is the solution of the problem as initially speci
fied. 

The problem shown in Figure 3 will be used as an 
example. The actual shape of the pieces are traced on 
graph paper; then the nearest coordinates on the grid 
are selected for describing each piece as shown in Fig
ure 5. The tapered ceramic fingers were identical before 
the nearest grid points were selected to describe them. 
When the voltages on the boundary are known, they 
are specified as fixed voltages. This is true for the 410 
volts (representing 41 kv) on the center conductor and 
o volts on the metal on the right-hand edge. The N eu
mann boundary, along most of the bottom edge and part 
of the right edge, i~ specified as an even gradifjnt from 
410 to 0 volts on the bottom edge, and 0 on the right 
edge. Specificatibn of the Neumann boundary is not 
critical because this value will only be used for the first, 
coarse solution of the problem. 

The program reduces the mesh size by a factor of 4 
and the coordinates of each piece by a factor of 16 (un-

10 .. ) 

_._-
- .-4 .----_. 

f:.; :~~~, 
~ f:::~:-;:j.::: :-::=1·· ~-

-- .-- .. ' 
.. _--.--

I-'--+-----'--._.---
~ .~~I~~~~tpt~l~ -L.::.::::: -~ -::- .,.~~~ 

_ ... ~~~ 
"' • •• --t .. -~--·-.··t .... J. 

:.:---:::-..:t:-_·-:--:::,·:::·· .... :---.:::: .. :++: .-
~.....::.;:::;-=- __ -=:~:':: ~:;.+~ :"'::::......-:.~- ....... -~.:-...:..:::.----I------i-----.~.....:.:..:. --- . --

W:::::r~i-~:'::~~f:t::~~;:t::~~~~~==T=-=====S-=t~]: ~ .. :-;~~ 
ffi=£p::~":f~:i:~2l=£:E=:--=e-' ftt-:--=PI-~::tf:[.H~ 

Figure 5-Problem as specified 

111111 I1I11111111111111111 
Figure 6-First solution 

less the coordinate lies on a boundary; then the coor
dinate is reduced by 4). This results ih the problem 
appearing as in Figure 6. This problem is solved, and 
the voltages within the dashed line are used as initial 
voltage estinlates for the next, more refined, solution. 
The voltages on the dashed line are the Neumann 
boundary voltages for the next solution. The second 
solution uses a ::1esh one-half the size of the final mesh, 
and the coordinates of each piece are reduced by a fac
tor of 4 as illustrated in Figure 7. The third solution 
is the final, full size solution. The initial voltage esti
mates obtained from the first and second solutions 
generally vary only a few percent from the final voltages 
of the subsequent solution. 

To solve the problem, the program lays out a matrix 
of resistors which connect each point on the grid with the 
adjacent four points. The voltage at each point is suc
cessively calculated. The calculation at each point is 
based on the voltage at the four adjacent points (refer 
to Figure 8) . Values of El through Eli are stored in the 
memory from previous calculations. 0 1 through O. 

Figure 7--Second solution 



748 Spring Joint Computer Conference, 1969 

Figure S-Resistor matrix 

represent the conductances of resistors tying theadj acent 
grid points together. The new value of E5 would be: 

RELF + E5 (1) 

RELFis the relaxation factor7 (also called the accelera
tion factor or convergence factor). RELF should lie be
tween one and two; the speed of convergence of the 
problem depends on the value of RELF chosen. This 
program uses: 

RELF = 2(1 - o.s.-vJ + j) (2) 

where the matrix has (p + 1) X (q + 1) points. For 
example, a matrix 48 X 88 uses RELF = 1.88. Origi
nally the equation is reference 7 page 273 was used; 
this equation is identical to the above equation with 
the 0.8 replaced by unity. For the few problem~ for 
which a -comparison has been made, the above equation 
leads to faster convergence than when the 0.8 is re
placed by either 0.6 or unity. 

The criterion that the iteratipn i~ finished is that no 
point changes on successive iterations through the ma
trix by more than one part in 106 of the maximum volt
age dlfierence in the matrix. Thus in the example given, 
no voltage changes by more than 0.0041 volt on the 
last iteration. This does not mean that the final voltages 
are that precise, for spot checks have shown the abso
lute accuracy in places on the grid may be only one 
part in 103

, but this is believed sufficiently accurate 
for most engineering applications. The two preliminary 

calculations (Figures 6 and 7) use one part in 103 and 
one part in 104 respectively as the finish criterion. 

The first solution (Figure 6) of the sample problem 
converged in 21 iter9J,lons; the second solution (Figure 7) 
converged in 43 iterations; and the third solution 
(Figure 5) converged in 89 iterations. 

The practical problems examined so far have had the 
relative dielectric constants not vary by more than a 
factor of 10. Metal pieces, that in the resistance analog 
are highly conductive, have always been attached to a 
boundary where the voltage is given. To determine if 
convergence would occur with a greater ratio of dielec
tric constants, the sample problem was rerun with a 
piece of material with a dielectric constant of 25 inserted 
in the air. This problem converged in 26 seconds 
after 125 iterations for the third solution with the re
sults shown in Figure 9. 

Detailed description 

The problem is laid out on graph paper where either 
the horizontal axis or the vertical axis is the center of 
the cylindrical geometry. It is assumed that the voltages 
on the vertical axis are known (such as in the sample 
problem where the vertical axis is the center conductor) 
and the voltages on the horizontal axis are unknown. 
The matrix size is determined, and the boundaries of the 
dielectric pieces and the conductors are placed on the 
grid. All coordinates are specified as row and column 
grid coordinates starting at 0, 0 in the upper left-hand 
corner. Thus a matrix specified as 48 by 88 will actually 
have 49 by 89 points. This choice of input coordinates 
simplifies both specifying the problem and scaling be
tween successive solutions, bus it complicates handling 
the matrices stored in the computer which must be sub
scripted, for example, from 1 to 49 and 1 to 89. 

Figure 9-Example shoV\ring convergence with dielectric 
ratios of 25:1 



Calculating and. Plotting Equipotential 749 

The program reads the input data in the following 
sequence. 

1. The matrix size (48 X 88) and a code number to 
indicate which axis is the axis of symmetry. 

2. The coordinates and voltages of each point 
specifying the Neumann boundaries. The' pro
gram interpolates between the specified points 
for the first calculation of the problem. 

3. The coordinates and voltages of the points spec
ifying the fixed voltages. The computer inter
polates between the specified fixed voltage points 
and sets the voltages on the boundaries to these 
values before each solution of the problem. 

4. The coordinates and relative dielectric con
stants of each piece of material. Metal is repre
sented by specifying a very high dielectric con
stant (100,000.). 

5. The voltage increment for drawing the equipo
tentiallines, if desired. 

Three matrices are stored in the computer. The first 
contains the voltages at each point (dimensioned as 
E(101, 101)); the second contains the conductances of 
the resistors to the left of each point and below each 
point (dimensioned as G(101, 101, 2)); the third con
tains the sum of the conductances of the resistors meet
ing at each point (dimensioned as SUlVIG(101, 101)). 
Although the space in computer memory is reserved 
for matrices of 100 X 100, not all of this space is used 
for smaller matrices. 

The program examines the fixed input voltages, and 
calculates 1/1000 of the difference between the maxi
mum and minimum. This is used as the finish criterion 
for the first solution of the problem. This value is multi
plied by 0.1 and 0.01 for the next two solutions. 

The size of the initial matrix is calculated to be the 
specified size divided by four (12 X 22). Next, the 
coordinates of the Neumann boundary voltages are 
scaled to. match the initial matrix size, and the volt
ages are calculated for each point in the voltage matrix 
on the Neumann boundary. 

The scale factors for scaling the voltage coordinates 
and the material coordinates are set for the first time 
through the problem; the main portion of the program 
is now entered. This main portion of the program is 
re-entered for the second and third time through the 
problem with only a change being made to the scale 
factors. 

The scaling of coordinates, whether for Neumann 
boundary voltages, fixed boundary voltages, or the 
conductor or dielectric pieces, is accomplished as fol
lows. If the row (or column) coordinate equals the 
height (or width) of the matrix, it is reduced by a factor 

of 4; otherwise it is reduced by a factor of 16. Thus all 
points specified as being on the matrix boundary re
main on the boundary. For example, the coordinates 
of the Neumann boundary voltage which was specified 
as ° volts from point (34,88) to point (48,88) are scaled 
to (2, 22) and (12, 22). (The coordinates are rounded 
to the nearest integer.) The scale factors of 4 and 16 
above are changed to 2 and 4 for the second solution and 
1 and 1 for the final solution. 

The main portion of the program: 

1. Scales all the coordinates 
2. Sets the fixed voltages on the matrix boundaries 
3. Calculates the resistor matrix 
4. Calculates the matrix of the sum of the conduc

tances 
5. Calculates the relaxation factor 
6. Iterates the calculations of the voltage matrix 

until the finish criterion is met. 

After the first or second time through, the finish 
criterion is multiplied by 0.1, the two scale factors are 
divided by two and four respectively, the voltage 
matrix is interpolated for estimating the voltage matrix 
for the next solution, and the main portion of the pro
gram is reentered. After the third time through, the 
resistance matrix is printed, and the voltage matrix is 
printed. Finally if an input value is given for spacing 
of the equipotential lines, the punched card output is 
prepared for the automatic drafting machine. 

Of the above steps, only two need further comment: 
the calculation of the resistance matrix, and the calcula
tion of the equipotential lines. 

The resistance matrix is laid out in the sequence the 
materials were specified. The materials should be spec
ified in order of increasing dielectric constants, with the 
conductors specified last. Thus the boundary of two 
pieces will represent the conductivity (or the conduc
tivity analog of the dielectric) of the piece on the bound
ary with greatest conductivity. The coordinates of the 
pieces are specified on the mesh points. They may be 
spaced any ~istance horizontally or vertically, but may 
only be spaced one mesh square apart diagonally. The 
points are specified in a clockwise direction around the 
periphery of each piece. 

The program examines the points in sequence. If a 
point lies anywhere to the right or directly below the 
previous point, resistors are inserted in the matrix. If a 
point lies to the left or is identical to the previous 
point (which may happen due to the scaling process), it 
is ignored. When the resistors are inserted, they are in
serted from the point vertically downward until a bound
ary of the piece is reached. The boundary is deter
mined by examining the remainder of the points specify-



750 Spring Joint Computer Conference, 1969 

ing the piece, looking for the nearest-below, right-to
left crossing of the boundary of the piece. Debugging 
the logic of where resistors should be inserted for the 
many possible shapes of materials required about 95 
percent of the debugging effort of the program. 

As mentioned earlier, the conductance of each re
sistor is stored in the resistance matrix. If the axis of 
symmetry is the vertical axis, conductance of the re
sistor to the left of the point at row I, column J, is: 

G(I,J~ 1) = (2J - 1) D (3) 

where D is the dielectric constant. The conductance of 
the resistor below point (I, J) is: 

G(I, J, 2) = 2 JD (4) 

If the axis of symmetry is the horizontal aXIS, the 
value of each conductance is: 

G(I, J, 1) = 2 ID 

except where I 0, where 

G(O, J, 1) D/4 (5) 

and 

G(l, J, 2) = 2(1 + 1) D 

The I and J in the above equations are based on the 
mesh where the coordinates of the upper left corner are 
specified as (0,0). T.he equation for G(O, J, 1) for the 
horizontal axis of symmetry is commensurate with the 
computer method of computing the E(O, J)'s, which 
assumes a mirror E( ~ 1, J) equal to E(1, J), and a mir
ror G( -1, J, 2) equal to G(O, J, 2). 

After the resistor matrix has been calculated, i~ is 
examined for high values of conductances. All values of 
conductance above 9999 are set to 1010. This ensures 
that the conductors are not influenced by the voltages 
in the surrounding dielectrics. This alfiP places the 
limitation on the program that all conductors must be 
attached to a boundary. (Before printing the resistance 
matrix, all conductances of 1010 are set to 99999 so that 
integers may be used in the printout.) 

Each equipotential line is calculated in the following 
manner. Each row of the voltage matrix is searched for 
the specified voltage. Linear interpolation is used be
tween grid point::; higher and lower than the specified 

voltage. Note that a given equipotential may cross a 
row mQre than once. After all crossings of each row are 
determined, all columns are searched for the specified 
voltage. This completes the list of all points where the 
equipotential crosses the lines of the mesh. These points 
are then searched to find one on the mesh boundary. 
Starting with the point on the boundary, all the other 
points in the list are searched to find the closest one. 
The process is repeated until all points are ordered in 
sequence. 

ACKNOWLEDGMENTS 

I am indebted to Tom Weil for suggesting the problem 
and providing the necessary background and references. 
Ed Maybury has provided excellent continuing guid
ance in the use of the Univac llOS. 

REFERENCES 

W J KARPLUS 
A.nalo(J sirnulalion 
133 McGraw-Hill Book Co N"ew York 1968 

2 P A EI~STEI~ 
Factors limiting the accuracy oj the electrolytic plotting tank 
Brit. J Appl Phys Vol 2 49-55 February 1951 

:3 J S BON~ESEN 
A. corona free high vol/age feedthrough terminal design for 
electronic application.~ 
Proc IEEE Electroni.c Components Conference 1965 

4 J A ROSS 
Submersible, pre-cast cable terrninators for splicing and 
terminating at distribution voltages 
Permali Ine Mount. Pleasant Pennsylvania 

5 J R HECHTEL J S SEEGER 
Accuracy and limitations of the resistor network used jor 
solving Laplace's and Poission's equations 
Pro(' IRE Vol 49 Xo 5 933-940 May H)61 

6 H MCL RYA~ C \V WOLLEY 
Sparking voltage. of (t, conductor passing thi Oiigh aft earthed 
plate 
Proc lEE Vol 114 No 1 172-178 January 1967 

7 K J BI~NS P J LA WRE~SOX 
1i. nalysis and computation of electric and 
rnagnet?:c field problems 
265-276 The Macmillan Company ~ ew York 196:{ 

8 J A SEEGER 
Solution of Laplace's equation in a multidiel.ectric region 
Proe IEEE let.tern Vol 56 No 8 1393-1394 August, 1968 

9 R H GALLOWAY H MCL RYAN M F SCOTT 
Calculation oJ electric fields by digital computer 
Proc lEE Vol 114 No 6 824-829 June 1967 

10 J) W PFJACEMAN H H RACHFORD JR 
The numerical solution of parabolic and elliptic differential 
equations 
J Soc Indust Appl Mat.h Vol :{ No 1 March 1955 



A modular system for reactor 
calculations * 

by L. JUST, A. KENNEDY, P. WALKER, A. RAGO·· 
and G. LEAF 

Argonne National Laboratory 
Argonne, Illinois 

INTRODUCTION 

The ARC (Argonne Reactor Computation) System has 
been developed to facilitate the studies required for 
fast-reactor design. The areas of physics, safety, fuel 
utilization and core-design had initial priority. Other 
general engineering capabilities will be added later. 

Reactors have traditionally been designed by means 
of stand-alone codes. However, it is rarely the case that 
a single code will suffice for an entire calculation much 
less for an entire reactor design. Usually, the solution 
of one problem becomes the input to another problem, 
but not without the intervention of conversion pro
grams. This procedure is followed until the complete 
solution is effected. 

It was inevitable that the reactor industry would 
sponsor the development of systems to automate the 
design process. The first effort in this direction was 
undertaken by the Knolls Atomic Power Laboratory 
with the NOVA project in 1964. The ARC project at 
Argonne National Laboratory was begun in 1965. Still 
later, the JOSHUA project was begun in 1968 at the 
Savannah River Laboratory. 

The ARC system, when completed, will encompass 
the field of reactor computations and automate what 
was once a series of interrelated programs. A glossary 
has been constructed that defines and formats an of the 
types of data that can be expected for reactor calcula
tions. In addition, a library of programs has been built 
that will perform the mathematical and data handling 
algorithms that occur in reactor computations. 

A "system" capability has been provided that allows 
the library and data to be used in a flexible, coordinated 

·Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

··Present address: IBM Scientific Center, Palo, Alto, California. 

manner. Reactor calculations can be accomplished by 
designing a director program that executes modules from 
the library in the proper sequence to operate on and 
produce data. 

Although such a system can be specified ·independ
ently of a choice of computer, the implementation is not 
computer independent; it depends upon a . choice of 
machine and the manufacturer's software. ARC is 
currently running on an IBM System/360 .50-75 
combination using ASP. The system runs as an ordinary 
job under OS/360 and it will run on any configuration 
which uses OS/360. Practically speaking, ARC needs a 
large amount of core and auxiliary storage, and a fast 
CPU. These restrictions are caused by the nature of 
reactor calculations rather than the nature of ARC; 
reactor calculations involve a lot of computation and 
require extensive data manipulation and storage 
capabiliti~. 

Design features 

Original specifications 

The original specifications for ARC required the 
following features: 

751 

1. Modular approach. Any major computational 
program consists of a collection of computational 
units, certain of which are common to many 
computations. A modular approach facilitates 
the construction of such programs. In addition, 
the modular approach provides a maximum 
amount of core for each module provided the 
system storage requirements remain small. 

2. Common data base or data pool. In a modular 
approach the data associated with each module 
must be potentially available to any other module 
in the system. This implies the existence of a 



752 Spring Joint Computer Conference, 1969 

data pool which is responsible for intermodule 
data management. 

3. All coding in FORTRAN IV. If all coding is 
done in high-level languages, then program 
interchange is greatly facilitated. 

4. Use of manufacturer's software whenever 
possible. 

5. Ease of use. This is probably part of the specifica
tions for all systems and is an area where much 
time can be spent even after a system becomes 
operational. 

Original iI-nplementation 

Surprisingly, a simple initial approach satisfied all of 
the criteria except 5. This approach was a huge overlay 
'program with system functions in the root segment, 
paths in region one and computational modules in 
region two. 

The overlay system shown in Figure 1 was in produc
tion before it collapsed of its own weight. Two flaws 
dictated the approach described in this paper: 

1. Overlays allow a limited number of external 
symbols, and duplicate names are forbidden. 

2. The system had to be reconstructed whenever 
any change occurred anywhere in the system. 

A small amount of assembly language coding turned 
the overlay system into a dynamic loading system. The 
computational modules of the overlay were assimilated 
into the present system with few changes. 

R 

~{ 
2 

~ SYSTEH 
r FUNCTIONS 

j 
--~--- .. -----.-----.-. ---, l~~~H' 

Figure 1 

! 1 COMPUTATIONAL : J FUNCTIONS 

The dynamic system 

The main components of ARC 

1. A librar.i of programs (08/360 load modules). 
2. ARC system subroutines that are useful to most 

modules of the library. 
3. A data set glossary that defines the data sets. 

In addition, the ARC system is predicated on the use 
of OS/360 with data in the form of 08/360 data sets. 

Modules in ARC 

ARC contains three kinds of modules, computational, 
control, and system. 

1. A computational module is defined in terms of its 
input, output, and the algorithms that manipu
late the input to produce the output. Input to 
computational modules is in the form of data sets 
and parameters lists; output is in the form of data 
sets and printed output. All computational 
modules are written in FORTRAN IV and are 
loaded and executed by control modules. 

2. A control module is a FORTRAN IV program 
that can be executed as the main program of 
ARC. A control module or path is directive in 
nature; it causes computational modules to be 
executed in the proper sequence to effect a series 
of calculations. A path performs the following 
functions: 

a. Initialization of core to provide an environ
ment for the computational modules. 

i. Permanently loads resident system 
modules. 

ii. Initializes tables. 
iii. Processes card input for later use. 

b. Directs the computation. 
c. Calls for subsets of the input data as they 

are required. 

Paths are classified as standard if they exist in 
the library at the start of a run or rwnstandard 
if they are compiled at run-time. Any path is 
allowed to use another path as it would any 
computational module. This allows a new calcu
lation to use an existing calculation if it performs 
a useful subcalculation. 

In order to initialize the system, a path must 
contain two initialized arrays. The first array 
contains the names of all of the data-sets used by 
the path and by any module called by the path. 
The placement of the name in the array deter
milles the data set reference munber associated 



with the name. The second array lists the names 
of blocks of input data that are required to 
perfom1 the calculation. Input data is divided 
into blocks with cards of the form 

BLOCK = Nk\IEn 

where N A~1En is an 8-character identifier. When 
a path perfomls 

a table that describes the input data set is 
searched for the occurrence of the block XAIVIE. 
If a block by that name that has not been 
processed exists, it is formed into data sets. 
Block names can be duplicated, and repeated 
calls of the same name process the next block by 
that name; when all blocks with that name hav::e 
been processed, that fact is reflected in ~. This 
facility is useful in repeated runs of a path. The 
absence of a block can terminate the run or cause 
another logical decision to be made. 

3. ARC system modules perform functions that are 
required by paths and computational modules. 
They are of two types: 

a. Resident. These are permanently loaded 
into core and executed by the first path to gain 
control. Resident system modules perform 
the functions of system initialization, input 
data processing, data management, and 
internal table maintenance. 

b. Transient. These modules are executed by 
cert_ain of the resident system modules. Their 
primary flllction is to ~f>rocess input data. 
One module is used <hiring initialization to 
convert input data into a data set and to 
describe the properties of that data set in 
tables held in core. Another module is used 
when a path requires a subset of the input 
data. 

System subroutines 

The second main component of ARC is a collection of 
system subroutines which form an essential part of most 
of the modules in the system. These subroutines allow 
the FORTRAN program to invoke certain of the 
08/360 macros, provide an interface to the resident I/O 
module, and communicate with the system. A group of 
system subroutines, collectively called POINTR, pro
vides a variable dimensioning capability and is included 
in the modules that require this feature. 

The system subroutines LINK and LOAD invoke the 
l\1ACR08 with the same names. 

Modular System for Reactor Calculations 753 

1. LIXK is an assembly-language subprogram 
callable from a FOR TRAX subprogram via the 
statement 

CALL LIXK (name, additional parameters) 

where "name" is either an 8-character alpha
meric quantity or a "REAL*8" variable con
taining such a quantity. The quantity must be 
the name of an ARC module. 
The subprogram LIXK causes the 08/:360 
"LINK" macro-instruction to be invoked and 
results in control being transferred to the entry 
point of the module "name." If "name" is not 
currently in core, the "LINK" macro loads 
"name" into unoccupied core before giving it 
control. Any additional parameters in the above 
call to LIKK are passed to "name." When 
control exits from "name," it returns to the 
calling subprogram at the statement immediately 
following the call to LI~K. 
LINK may be used to pass control from one 
program module to another in exactly the same 
fashion as the FORTRAX "CALL" statement is 
used to pass control from one subprogram to 
another within the same module. 

2. LOAD is an assembly-language subprogram call
able from a FORTRAN subprogram via the 
statement 

CALL LOAD(name) 

where single parameter is either an 8-character 
alphameric quantity or a "REAL*8" variable 
containing such a quantity. The quantity must 
be the name of an ARC program module. 
The subprogram LOAD causes the 08/;~60 

"LOAD" macro-instruction to be invoked and 
results in the loading of the module "name" into 
unoccupied core. If the module "name" is already 
resident in core, then either (i) no action is taken 
(if the module was declared reusable), or (ii) 
another copy of "name" is loaded (if the module 
is not reusable). 

3. Modules locate data by using the system 
subroutine D8RX. D8RX is called from a 
FORTRAN subprogram via the statement 

CALL D8RN (name, Nl, N2) 

where "name" and N2 are input parameters, and 
Nl is an output parameter. 
"N ame" must be either an 8-character alpha
meric quantity or a "REAL*8" variable con
taining such a quantity; that is, one of the 
glossary names in the array DSN AME as 



754 Spring Joint Computer Conference, 1969 

initialized in the path control module of the path 
being executed. 
The function of DSRN is to return to the calling 
progrUu'll ifl Nl a data set reference nmnber 
corresponding to the data module "name." In 
this way data set reference numbers are global to 
the system instead of local to the modules. The 
subroutine DSRN simply LINKS to a resident 
system module that performs the table search. 

4. Data management within fast memory is 
accomplished by the subroutines of POINTR. 
Each subroutine of POINTR performs a specific 
data management function and as such provides 
a "pseudo-instruction" in a set of data manage
ment instructions. Thus, the FORTRAN lan
guage has been extended to allow data packing, 
storage allocation, and storage freeing in a 
manner similar to that available in the PL/I 
language. 

arrays being stored in the container, thus 
relieving the programmer of this burdensome 
chore. Recorded in the tables are the array name 
(usually identical \vith the FORTRAN variable 
name), length, starting location, and FORTRAN 
variable type. Subsequent retrieval of arrays is 
by array name. 

5. ~'Ianagement of external data within a module is 
through the standard FORTRAN 1/0 routines 
and the data set is the organizational unit. This 
obvious approach simplified the initial program
ming but created a rather rigid data structure. 
A large amount of effort, went into the construc
tion of a glossary that describes all of the data 
sets that have been written. The glossary is 
open-ended and at all times contains the 
definitions and description of all data sets which 
are used or created in ARC. In addition, the first 
record of most data sets lists the contents and 
important parameters. 

Control of data in fast memory remains under 
the control of the module programmer, who 
provides POINTR with a large "container" 
array into which data arrays will be placed. 
POINTR contains tables which keep track of 

This discussion of the components of ARC shows that 
OS/360 is a foundation of the system. Through the 
implementation, a guiding philosophy has been "peace
ful coexistence with 08/360." 

1-1--------INITlALIZATION------......... ! ... ---------COMPUTATlON----------1 

; 0/S.36O I OIS 360 
T I ~ 11 ! ! I 

I • 
i i ~ I 

PATH 1 I i i I I I ! 
I 

i i 

JRAN- ~ 
T5II* !' ~ I I 
FOR I MOO 1 MOO 2 PATH 2 

SIENT* 
j I EXTRACT- : 

; 

I MOO 3 I SYSTEM ! 
.aD.E , : ING ! i DSEl* 

FOR ! I A I I CALLED I i . I 
PROCESS- : ISUB-SET i I TO I 

; ING ! IPRODUCE I . I 
I INPUT 

I OF THE ! 0,\". I 
i INPUT LJ 

I .1\ I 

U 
DATA DATA . SETS i 

TO BE I FOR ; 
*DE . PATH 2 
INTO 
DATA ! 
SETS I 
(DSET) 

I ! 

u 
riDBIT' SYSTEM -MOOtI.ES 
I (RSM) 

I 1/0* t I -
2 3 6 7 8 9 10 11 

Figure 2 



A sample program 

The following statements show the coding that is 
necessary to compile and execute a nonstandard path 

Modular System for Reactor Calculations 755 

(PATHl). Execution of PATHl causes the events 
depicted in Figure 2 to take place. Figure 2 is a dynamic 
picture of core with time increasing from left to right. 
ARC system modules are marked with an asterisk. 

The following statements show the coding that is necessary to 
compile and execute a nonstandard path (PATHl). 

IINSP J~B 
IIJ0BLIB DO DSNAME=M0DULES,DISP=(0LD.PASS) 
IISTEPl EXEC FTHCLG 
IIFTH.SYSIN DO * 
C DO 
C PATHl 

REAL*B DA(240)/'A.A','A.B','XYZ'.'S'I 
REAL*B DS(lO)/'BLOCK1 ' • ' BLOCK2 11 

C 
CALL SYSTEM(DA) 
CALL DATA(OS(l)) 
CALL LIrJK( 'r·10Dl I ) 

CALL LINKf ' MOD2 
CALL LINK 'PATH2 : l 

C 
C 

RETURU 
ENlJ 

1* 
I IEOT .LIB DO DSNAME=~10DULES.DISP=(0LO.PASS) 
IIEDT.SYSIN DO * 

INCLUDE LIB(SYSTEM) 
1* 
IIG0.FT09FOOl DO OISP=NEW.UNIT=DISK.SPACE=(TRK.{10.10)) 
IIG0.FTllFOOl DO DSNANE=A.A •••••••• 
IIGfi}.FT12FOOl DO DSNAME=A.B ••••• ~ ••• 
I IG0. FT13FOOl DO OSNAf.1E=XYZ •••••••• 
IIGO.SYSIN DO * 
OLOCK=BLOCKl 
DATASET=A.A 
{Data for A.A} 

DATASET=A.B 
{Data for A.B} 

BL0CK=BL0CK2 
r~00I FY=A.A 
{Cards to modify data set A.A} 

1* 

ST~1Tl 
STMT2 

STMT3 
STMT4 
STr,1T5 
STMT6 
5THT7 

STr·1T8 
ST~1T9 

STMT10 
STr'1Tll 
STt!~T12 

The FORTRAN IV program PATHl is compiled 
during time period 1 (TPl). At TP2 the path is in core 
and the I/O initialization of FORTRAN causes the 
ARC I/O module to be LOADed into core. TP4 and 
TP5 are related to the system initialization and make 

use of STMTl, STMT2, and STMT3 of PATHl. 
STMT3 actually causes system initialization utilizing 
the infonnation in STMTI. Three data sets are 
expected to be used (A.A, A.B, XYZ) and input data are 
divided into two blocks (BLOCKl and BLOCK2). 



756 Spring Joint Computer Conference, 1969 

8T::.\lT4 corresponds to TP6; it causes BLOCKI to be 
processed into data sets A.A and A.B. 8T~1T7 is 
responsible for TP9, TPIO, TPl1. P ATH2 processes 
BLOCK2 into a modification of data set A.A. In 
STl\lT12, a module named SYSTE~I is being combined 
with PATH!. 8Y8TEl\I contains all of the ARC 
system subroutines that a path requires. 

This simple example shows that the internal workings 
of the system are simple and flexible. 8ince a path is a 
FORTRAN program, complex logical structures pose 
no problems; they are composed of familiar statements. 
The computational modules are also composed of 
FORTRAN statements and the only restriction is that 
a computational module never tries to initialize the 
system. 

Current capability 

Our program library presently contains 40 modules. 
Twenty-two of these are computational modules, twelve 
are control modules and six are system moqules. In 
addition there are nine system subroutines that are 
part of each computational and control module. These 
subroutines interface with the system modules. 

The average computational module contains about 
2500 statements. About half of the computational 
modules are overlay programs and subroutine standard
ization is utilized as much as possible. 

Critique and future plans 

Problem areas 

ARC is an ambitious project pursued by a ~mall 
number of people. As such the project has been subjected 
to compromises dictated by limitations in manpower 
and time. Early in the project a decision was made to 
expend the greatest effort on the computational aspects 
of the system and to rely as much as possible on 
08/360. Consequently some of the desirable features of 
the originally specified system were deferred or com
promised. A brief criticism of the present system will be 
enlightening. 

Any large, modular scientific programming system is 
dominated by the problems of data management. These 
problems are in two areas: 

1. management of program modules, i.e., the 
ability to link computational modules in a 
complex manner; 

2. management of computed data, the ability to 
store and retrieve data. 

Program management 

'Vhile adequate linkage facilities are available to the 

module writer, job executions are not convenient for the 
user. The Data Definition statements of 08/360 are the 
external data language for this system. The quantity 
and complexity of these DD statements cause many 
errors to be made, Thus, the reactor designer may have 
little difficulty in designing and writing a new path, 
but have great difficulty making it work. In practice, 
the programmer must be quite adept to some of the 
most sophisticated uses of 08/360. 

Data management 

The method of computed data management within 
the ARC system is also not satisfactory for a third
generation system, both from the viewpoint of the 
reactor designer and the program developer. In any 
large system there is always an inherent conflict between 
the structure of the language of the user and the 
internal structure of data necessary for efficient opera
tion of the system. In ARC we have compromised. The 
Data Definition statement of 08/360 is not oriented to 
the reactor designer. The rigidly structured external 
files used in ARC cause two classes of problems. 

1. They are not conducive to efficient manipulation 
other than for the specific use that dictated their 
initial structure. Future arbitrary use and 
manipulations of these files or, more importantly, 
arbitrary combinations of parts of these files 
must necessarily be time-consuming. If, for 
example, subsequent references require that the 
file structure should be inverted, the ordering is 
in conflict for efficient operation; etc. 

2. ~'dodularity of program development is greatly 
hampered by the rigidly structured files because 
redefinition of the file structure in files produced 
by any module must be reflected in all modules 
referencing that file. This modularity would be 
enhanced if data references were instead oriented 
to FORTRAN variables. Further complexity is 
introduced since the module developer must 
concern himself not only with data of interest to 
his module but all quantities in each external file 
necessary for him to reference. 

Proposals for im.provement 

These problems have generated specifications for two 
subsystems: 

1. A generalized data management package that 
would allow modules to reference all data by 
FORTRAN variable names irrespective of core 
storage requirements. This package would have 
taken 011 the responsibility of all core manage-



ment and external file manipulation by means 
of high frequency, priority usage algorithms. 
Thus it \-vould be transparent to the module 
writer if variable names that were referenced in 
the module required external file manipulation 
or not; i.e., the system would provide him with 
an effective infinite memory. This proposal 
addressed itself to the total problem of manage
ment of computed data as well as enhancing 
modularity of program deveiopment. ThIS 

ambitious project was not undertaken due to 
lack of resources. 

2. A system that addresses itself to the problems of 
program management and external file manage
ment. This system is comprised of a program 
maintenance package, a datapool maintenance 
package, and a job control language translator. 
This too is an ambitious project that would have 
general usage outside of the ARC system. 

Current plans 

Our current plans are evolutionary rather than 
revolutionary. Three aspects must be considered: 

1. Internal algorithms. 
2. Data management. 
3. External language. 

The internal algorithms are constantly reviewed and 
are improved wherever possible. Improvements in 
algorithms should not negate work that has been done 
in other areas. 

Data management will be augmented; most of the 
data sets that have been defined will remain, but 
alternate facilities will be provided. In particular, we 
expect to construct a variable-oriented data pool. When 
chis is completed, some of the data sets will be separated 
mto many members that can be accessed directly. In 
particular, certain important variables will be referenced 
by name throughout the system. 

An external language is required to ease the burden 
of running a computation that is in production status. 
The deck of Job Control Language that is required to 

Modular System for Reactor Calculations 757 

run a job is large. While it is true that a user can 
accomplish all of the external data set manipulations 
that are required, he must specify his needs in .TCL, and 
this is clumsy. Preliminary plans have been made for a 
simplified language that will produce the JCL required 
to run any job that is in production status. 

This system, while designed for the reactor industry, 
has generality. With a suitably defined glossary and 
computational modules, it can be the basis for a 
computational system for other areas. 

REFERENCES 

1 B J TOPPEL 
Reactor computation developtnent 
Reactor Physics Division Annual Report .Iuly 1 1964 to 
June 30 1965 A~L-7110 p 339 

2 E D REILLY JR W H TUR~ER 
The automation of reactor design calclal'ions at KA P L 
Pl'oceeding~ of the Conference on the Application of 
Computing Methods to Reactor Problems May 17-19 
1965 ANL-7050 p 251 

3 B J TOPPEL 
The Argonne reactor computation system 
Reactor Physics Annual Report July 1 1965 to June :~O 
1966 ANL-721O p 349 

4 C N KELBER G JE~SEN L JUST H J TOPPEL 
The Argonne reactor computation system .4RC 
Proc of the International Conference on the Utilization 
of Research Reactors and Reactor Mathematics and 
Computation p 1428 

5 B J TOPPEL 
The Argonne reactor computation (.4RC) system 
Reactor Physics Division Annual Report July 1 1966 tu 
June 30 1967 ANL-731O p 433-436 

6 B J TOPPEL 
The Argonne reactor computatiou system A,RC 
ANL-7332 1968 

7 L C JUST S D SPARCK 
The ARC system 
AMD Internal Technical Memorandum ~o 157 196R 
unpublished 

8 J E SUICH J C JRNSE~ H C HONECK 
JOSHUA-An operating system for reactor physics 
computations 
Proceedings of the Conference on the Effective use of 
Computers in the ~ uclear Industry Knoxville Tennessee 
April 1969 





Performance testing of function subroutines * 

by W. J. CODY 

A.rgonne National Laboratory 
Argonne, Illinois 

INTRODUCTION 

The certification of numerical subroutines for an auto
matic computer is generally a difficult job. In one sense, 
certification of a subroutine is an in-depth review of its 
documentation to determine how well the documenta
tion describes the performance and programming of the 
subroutine. It in,volves, among other things, perfor
mance testing of the program being certified. Of neces
sity the details of the performance testing vary from 
one' type of subroutine to another. Indeed, in most 
cases it is difficult to define a concrete measure of per
formance for a particular type of routine. For subrou
tines for computing functions, however, measures of 
performance are rather easy to definel ,2,3 and much 
effort has gone into certifications in the past few years.3 ,4 

The present paper concerns itself primarily with per
formance testing of function subroutines and ignores 
most other aspects of certification. We set forth certain 
basic principles for such performance tests, examine 
the rationale behind them, and present in detail a sim
ple yet effective technique for testing function sub
routines. 

In what follows, we use the term subroutine to mean 
a subroutine for the evaluation of a real function of a 
single real variable. 

Preliminaries 

At the outset we must distinguish between actual 
testing of performance of a subroutine and judgement 
of quality based upon the results of the testing. The 
first process should be a rigorous one resulting in indis
putable facts and statistics, while the second is an inter
pretation of the test results which often depends upon 
the intended usage of the routine...E.g., for many Monte
Carlo uses, a subroutine that produces only two or three 

* Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

significant figures is adequate, while errors larger than 
a few units in the least significant figure of a result may 
be intolerable in precise computations. Clearly, there is 
an intimate relationship between performance testing 
and the possibility of judgement of quality. If a testing 
procedure is designed to determine precise. err?rs any 
user can determine whether or not the routme IS accu
rate enough for his purposes, but if the tests are limited 
to verifying gross accuracies the results are useful only 
to a :\1onte-Carlo user. Therefore, to be meaningful to 
the widest class of potential users quality testing should 
attempt to determine errors as precisely as possible. Of 
course there is much more to testing than determining 
numerical accuracies, but let us concentrate on this 
aspect first. . . 

We can divide the error made by a subroutme Into 
three parts: transmitted error, analytic truncation 
error and arithmetic rounding error. The first of these 
can be described as follows. Let 

y = f(x) 

be the function being computed, and assume that our 
subroutine is infinitely precise, i.e., that given an exact 
value of x we can compute the corresponding value of y 
exactly. Then, assuming f(x) is differentiable 

dy f'(x) dx 
- = X---. 
Y f(x) x 

(2.1) 

The quantity 

~ = dz/z 

is called the relative error in z and is related to the num
ber of correct significant figures· in z. Thus, equa
tion (2.1) establishes the approximate relation 

f'(x) 
8y = x f(x) 8x (2.2) 

759 



760 Spring Joint Computer Conference, 1969 

between thf.' relative accuracy of the argument x and the 
relative accuracy of the corresponding function value y. 
By the very nature of the function being computed, an 
inherited error, ox, in the input argument is transmitted 
by even a perfect subroutine into a corresponding trans
mitted error, oy, in the function value. 

A perfect subroutine is rarely attained. In most cases 
the computation is based upon the first few steps of an 
essentially infinite process, such as the evaluation of the 
first n terms of an infinite expansion. This finite approxi
mation to the infinite process introduces an analytic 
truncation error, which we denote by T(x). Since a 
computer does arithmetic on a finite subset of the real 
numbers, and treats only numbers with a given number 
of significant figures (bits, bytes, etc.), the computation 
also involves arithmetic roundoff error which we denote 
by R (x). Thus, the total error in the computation is 

f'(x) oy = x f(x) ox + T(x) + R(x). (2.3) 

The truncation and roundoff error is grouped together 
below into what we call the generated error. 

The black box philosophy oj testin{J 

In practice it is rare for a result to be devoid of 
transmitted error. The fact that computers are basically 
binary devices while initial data to a program are usual
ly expressed in the incommensurable decimal system is 
the first major source of inherited error in function 
arguments. Even if the original data to a program are 
"clean" binary data, they can quickly become contami
nated by roundoff error in the machine. Thus the argu
ment prepared for a function subroutine is seldom 
exact. Since the subroutine has no control over the 
inherited error, it cannot be held responsible for the 
transmitted error. In this sense the subroutine must 
be considered as a "black box," a separate entity which 
naively assumes that all arguments supplied are exact 
and attempts to return a machine number close to the 
corresponding function value. 

The term "black box" has many connotations. There 
are those who rightfully object to being handed a rou
tine which purports to compute a given function and 
being asked to accept this claim on faith. The blackness 
in this type of "black box" is a lack of documentation~ 
includi'Yl{} certification. We do not claim that a function 
routine should be a "black box" in this sense. We do 
say that it should behave as a "black box," oblivious to 
the program around it and aware only of the arguments 
it receives and the results it returns. Performance 
testing should treat it as such a "black box" and at-

tempt to measure only the generated error, that error 
clearly the responsibility of the subroutine. 

Err-or testing in general 

The simplest and crudest type of error testing is a 
direct comparison of computed function values against 
published tables. Since this technique involves minimal 
effort, we might expect to obtain minimal assurances of 
quality as a result-and we do. 

Such a comparison involves human handling of the 
standard, either by transcribing the table for keypunch
ing or by visual comparison of computed results against 
tabular results. This imposes practical limitations on 
the number of tabular values used and on the credibili
ty of the comparisons. It is far better to automate the 
process completely, i.e., to use the machine to compare 
computed function values against a machine-generated 
standard. 

The sparseness of entries is a second objection to use 
of published tables. A subroutine may agree well with 
tabulated values and yet give very poor results for 
other arguments. Clearly, t.he best .tests involve large 
numbers of arguments that are dense in some sense, 
and are not restricted to relatively small finite sets 
of "nice" arguments. 

Finally, comparison against tables almost always 
involves conversion of tabulated decimal arguments 
into binary arguments. The consequent introduction 
into the arguments of the generated error from the 
conversion routine, the resulting transmitted error, and 
the subsequent error in conversion of computed results 
back to decimal form all contaminate the final error 
statistics. Unless the generated error of the routine 
under test is large, this method of testing will not be 
sensitive enough to detect it. 

The Monte-Carlo approach using identities on the 
functionl a voids two of the problems mentioned above. 
It involves large sets of random arguments and allows 
the machine to construct comparison values. However 
it is still difficult to design such a test which measures 
only inherent error. As an example, consider the testing 
of a cube root routine over the interval [1/8,1]. We 
might check the identity 

(4.1) 

or the identity 

x = y;x-a (4.2) 

for several thousand random arguments. Consider (4.1) 
for the moment. Since the machine numbers form a 



Performance Testing of Function Subroutines 761 

discrete set, and the cube root is a contraction mapping 
of [1/8,1] onto [1/2,1], several different values of x must 
map onto the same value of the cube root. Cubing this 
result can return at most one of the original possible 
values of x. Testing based on (4.1) can thus be expected 
1.0 indicate errors even when the subroutine computes 
the best possible machine number representation of 
the cube root. The identity (4.2) is much better, for it 
applies the cube root to the hopefully perfect cube of 
the original argument. Unfortunately, many machines 
introd uce an error by failing to produce the most ac
curate representation of X3.5 

In this particular case, the effect of t his argument 
error is probably minor, but even roundoff error in the 
computed argument can he disastrous. Consider, for 
example, the identity 

proposed in Reference 1 for checking the exponential 
routine. From (2.2) we find 

~elll = z~z. 

If 3x = 10, a rounding error of a half-unit in the com
putation of 3x is transmitted into 5 units error in e3x 

independent of the accuracy of the exponential sub
routine. 

Additional care must be taken to choose identities 
which are independent of the analytic relations em
ployed in computing the function. Tests based on the 
relation 

r(1 + x) = xr(x), 

which is almost universally used in the computation of 
the gamma function, may verify only that the relation 
has been correctly incorporated into the subroutine. 

Bit pattern comparison 

The scheme of error checking that we describe in
volves automatic tabular comparison where the stan
dard table is generated within the machine. It requires 
the provision of a subroutine to compute standard 
values to a precision greater than that of the routine 
under test. Suppose for the moment that we are testing 
a single-precision routine. We must then provide a 
routine to compute the same function more accurately 
than sing1e-precision. Full double-precision is not re
quired, but the comparison routine must be more ac
curate than single-precision. Since final-bit accuracy is 
not required, the previously mentioned method of 

error checking using identitiesl can be used to verify 
the required accuracy of the comparison routine. 

With such a comparison routine, it is an easy matter 
to conf3truct a standard table of comparison values. We 
prefer to obtain dense sets of arguments for our tests 
by generating several thousand pseudo-random argu
ments over appropriate intervals. These arguments are 
computed in the test precision and extended to higher 
precision by appending appropriate low-order zeros. 
ComputatiollS can then be carried out \:tlith identical 
arguments in both the single and double-precision 
routines, eliminating the possibility of transmitted 
error, and a comparison of the results can be made. The 
details of this comparison will vary from machine to 
machine and individual to individual. We prefer to 
round (not truncate) the double-precision results to 
single precision and make a bit-pattern comparison of 
the results using fixed-point subtraction. We then 
tabulate the frequency of N" -bit errors in the results for 
appropriate N. These statistics show how well the 
subroutine produces the machine number closest to the 
correct function value. 

Additional statistics that are easily gathered and are 
of great interest are the maximum relative error 

(5.1) 

and the root-me an-square relative error 

(5.2) 

where F(x) is the test value and f(x) is the comparison 
value. The computaliion of these statistics is best car
ried out in the higher precision floating point arithmetic 
using the unrounded value of f(x). The results of exten
sive tests of this type are found in References 3,6. 

Some of the details of the above procedure are sub
ject to modification without destroying lihe validity of 
the process. The tests summarized in Reference 6, for 
example, included the unreported equivalent of bit 
pattern comparisons in the higher precision rather than 
the test precision. In terms of our example above, the 
single-precision result was extended to double-precision 
and the errors determined by a double-precision sub
traction. The final tabulation of errors can then be 
interpreted in units of fractional parts of the least 
significant bit of the single-precision result. This ap
proach allows some meaningful ana1ysis of the inherited 
error for the second routine in the case of the compo
sition of two function subroutines. For example, the 
computation of the logarithm of the gamma function 



762 Spring Joint Computer Conference, 1969 

might be accomplished by successively calling the 
gamma function and the logarithm subroutines. An 
intimate knowledge of t;he generated error from the 
gamma subroutine, which is the inherited error for the 
iogarithm subroutine, aJIows an estimate of the final 
transmitted error. 

Tests conducted at NASA Lewis Research Center7 

employed dense samples of evenly spaced, rather than 
random, arguments in addition to using the above 
modification. The appropriate tabulation of test results 
in this case provides valuable clues to troublesome 
argument ranges. 

Other modifications are possible, and perhaps in 
widespread use. There are clearly cases where the 
relative errors used in (5.1) and (5.2) should be replaced 
by absolute errors by setting the denominators to unity. 

Two critical matters are choice of test intervals and 
distribution of random arguments. These are intimately 
related to the internal structure of the subroutine under 
test. We feel there should be at least one separate test 
for each major computational path through the sub
routine supplemented by special tests for a reasonably 
complete set of "critical ranges" of arguments, such as 
neighborhoods of points where the method of compu
tation changes, regions where intermediate underflow or 
overflow may occur, etc. The importance of critical 
range tests cannot be overemphasized, for arguments 
causing a major breakdown in a routine are most likely 
to be found in fringe areas of computational abnor
mality. Clearly, intervals for which accuracy figures 
are not uniform should be subdivided. A uniform dis
tribution of randou! arguments is adequate for most 
interva1s, although an exponential distribution is often 
useful over extended ranges.G 

The major problem in the use of this technique for 
checking double-precision routines is the provi.sion of 
greater than double-precision comparison routines. We 
have faced this problem by either programmed triple 
precision or construction of comparison values on 
another computer with longer word-Iength.3 This latter 
technique requires care to insure no contamination of 
arguments or function values in the transfer from one 
machine to another. Both techniques are slow,. but 
tests need only be made once. 

Generalizations 

The error testing procedures described are easily 
generalized for testing of functions of two variables and 
functions of a complex variable. One major change is 
the selection of test arguments from a portion of a plane 
rather than from an interval. Regularly shaped regions, 
such as rectangles or circles, can usually be used. Many 
different combinations of uniform and exponential dis-

tributions of random arguments are possible for such 
regions. For example, tests using complex arguments 
uniformly distributed in amplitude and exponentially 
distributed in magnitude are reported in Reference 6. 

The methods of error determination described above 
can be used whenever the function value is a real num
ber. For complex-valued functions, the real and imagi
nary components of the function value can be tested 
separately as real functions of a complex variable. Bit 
pattern comparisons, maximum relative errors and root
mean-square relative errors can then be determined for 
each component as in Reference 3. But only the maxi
mum relative error and root-mean-square relative error 
can be determined when the function value is considered 
as one complex number. The viewpoint taken in testing 
should reflect the method of computation within the 
subroutine, i.e., should depend upon whether or not the 
real and imaginary components of the function value 
are computed independently. This distinction was not 
made in Reference 3. 

Table I presents the results of tests like those de
scribed, applied to Argonne National Laboratory's sub
routine ANL B457S for computing xll in single-precision 
floating point on the IBMSystem/360. Note in particu
lar that the magnitude of the inherent error is such that; 
it would be greatly distorted by even the smallest 
transmitted error introduced in the testing process. 

Table I 

TEST RESUlTS FOR ANL 8457S x**y SUBROUTINE 

Argllllellt 
Accuracy for Randolll Argullllmts 

Maxi_ 
Rall<N! F equency of N-bi tError Relative RMS 

X Y 0 1 2 3 Error Errol" 

(1/16,16) (-4,4) 1933 67 0 0 .456 • 10-6 .119 • 10-6 

(2-16 ,216) (-16,16) 1771 226 3 0 .483 • 10-6 .124 • 10-6 

(2-32 ,232) (-8,8) 1906 94 0 0 .459 • 10-6 .116 • 10-6 

(2-64 ,264 ) (-4,4) 1938 62 0 0 .442 • 10-6 .111 • 10-6 

(2-8.28) (-32,32) 1609 347 44 0 .561 x 10-6 .136 • 10-6 

(2-4,24) (-64,64) 1392 440 140 28 .633 • 10-6 .175 • 10-6 

A dditional tests 

Accuracy tests should be supplemented by other 
simple tests to round out quality testing. The first of 
these is a timing check. It is a simple matter, if an 
int.ernal clock is available, to time a subroutine for 
several thousand random arguments using a loop of 
some sort. The overhead .for the loop can be obtained by 
timing an identical loop with the test subroutine re
pJaced by a special subroutine whose only executable 



Per"formance Testing of Function Subroutines 763 

instruction is a return to the calling program. Such 
timing tests should be made for every major compu
tational path through the subroutine. Frequently it is 
possible to replace the random argument timing te~t by 
one involving a fixed argument cycJed through the 
routine several tho~nd times. It is important to loop 
enough times to minimize the effect of the coarsene~ of 
the clock. On an IBl\tI 360/50, for example, the standard 
clock is increm~nted in units of 1/50 or 1/60 second 
while subroutines typicaUy execute in less than a milli
second.3 

Other obvious tests are checks of the error returns 
by using arguments at and just beyond the lin;rits or 
acceptability. For subroutines claiming to accept all 
machine-expressible arguments this test should include 
extremely smftll and extremely large numbers to check 
for underflow and overflow problems. 

SUMMARY 

We have argued that quality testing of a function 
subroutine involves a great deal more than a quick 
accuracy check against published tables. We have de
scribed a technique for accuracy testing which is simple, 
is carried out completely in the machine, involves large 
numbers of arguments, and measures only the inherent 

error of the subroutine under test. Additional tests 
necessary for certification of function subroutines have 
been suggested. Finally, good quality tests are worth 
good documentation. 

REFERENCES 

1 C HAMMER 
Statistical validation of mathematical computer routines 
Proc S J C C 1967 

2 H KUKI 
Performance criteria for function programs of a 
single variohle 
Evaluation Guidelines, SHARE Numerical Analysis Project 
SHARE Secretary Distribution 150 May 1966 Item C-4304 

3 N CLARK W J CODY K E HILLSTROM 
E A THIELEKER 
Performance statistics of the Fortran IV(H) library for the 
IBM system/360 
Report ANL 7321 Argonne National Laboratory 1967 

4 U-Correspondence SHARE Secretary Distribution 
5 W J CODY 

The influence of machine design on numerical algorithms 
Proc S J C C 1967 

6 IBM system/360 operating system Fortran IV 
library subprograms 
IBM System Reference Library C28~596-1 

7 L R TURNER 
Private Communication 





Towards an abstract mathematical 
_~ PFII _e e _ e_.. ..'-
tneory 01 noatIng-poInt arIthmetic "* 

by DAVID W. MATULA 

Washington University 
St. Louis, Missouri 

INTRODUCTION AND SUlVIMARY 

The representation of integers by a place value sequence 
of digits taken from a radix polynomial is one of the 
profound mathematical developments of all times. It 
provides an elegant foundation for mathematical ques
tions where algorithmic procedures are needed, such 
as how to computationally effect the operations of 
addition, subtraction, multiplication, division and 
comparison. Nevertheless, as invaluable as the place 
value representation system is to computational 
mathematics, most questions regarding the mathe
matical structure of the integers are usually answered 
with proofs which make no reference to any representa
tional fonn of the integers, but are based solely on an 
abstract characterization of the integers. 

For example the existence of an infinite number of 
primes (a fact known in Euclid's time) is provedl by 
contradiction simply by considering what could be the 
factors of the number which would be the successor of 
the product of all primes if there were only a finite 
number of primes. Also the fundamental theorem of 
arithmetic, which states that all integers have a unique 
prime factorization~ is readily establishedl by mathe
matical induction, as are many important structural 
questions about integers. The tool of mathematical 
induction is effective since its methodology, which is 
to prove a statement about integers by proving that 
it must hold on the successor integer to the set on which 
it is assumed to have been established, parallels the 
abstract recursive characterization of the integers 
whether by Peano's postulates or by the set theoretic 
hierarchy of ordinal numbers. 

*This research was partially supported by the Advanced Re
search Projects Agency of the Department of Defense under 
Contract SD-302. 

If we extend this discussion beyond integers to the 
rational numbers, again we see that the representational 
notation of a repeating decimal can be valuable for 
effecting efficient computational algorithms. But if 
we consider the question "Is the square root of 2 ra
tional?" a procedure which attempts to find the actual 
representation of v'2 and seeks to prove that it is a 
repeating decimal is cumbersome and illconceived. 
Instead, if we utilize the abstract characterization of 
rationals as· ratios of integers, then the aforementioned 
question is equilvalent to asking for an integral solution 
of a2 =2b2, and from known number theoretic results 
on the structure of the integers this is immediately 
seen to be impossible. 

The point we wish to emphasize by the discussion of 
the preceding paragraphs is that the raison d'etre of 
the representational notation for integers and rational 
numbers is to effect efficient algorithms for computa
tion, whereas the abstract characterization is invaluable 
for theoretical purposes. 

Within most computers the scientific calculations 
are usually effected not with integers or rational num
bers, but rather in a system of floating point numbers 
which will herein be referred to as an F. P. system: 
These numeric systems are relatively new to mathemat
ics and practically all infonnation with regards to 
both the theory and computational application of 
F.P. systems is couched in a representational notation. 
This is not unexpected since the development and 
utilization of floating point numbers evolved to fulfill 
certain necessities of computerized computational 
requirements rather than by any intrinsic mathematical 
interest in the structure of such numeric systems. 
However, with over a decade of computational experi
ence behind us, the need for a thorough understanding 
of the mathematical structure of these numeric systems 

765--------------------------------



766 Spring Joint Computer Conference, 1969 

is ever more apparent. This need is not based on any 
esthetic concern purely to study and understand the 
structure of F.P. systems, but rather on the hard real
ity that many underlyL11.g computational difficulties 
can be attributed directly to the st-ruct:ure of F.F. sys
tems. With no extant mathematical theory of F.P. 
systems available, and with most discussions of floating 
point numbers couched in a representational notation 
ill suited for theoretical investigation, many important 
questions which are raised in the introductions of texts 
on numerical analysis are often grouped under the 
term "roundoff error" and receive little further defini
tive consideration. 

It is perhaps surprising that computational mathe
maticians, working within the "exact science" of mathe
matics, have remained oblivious to a serious nll-mber 
of theoretic and algebraically based study of the mathe
matical structure of F.P. systems. Thus for example 
while it is well-known that the failure of multiplication 
and division to be closed operations in F.P. systems 
leads to different context dependent meanings for the 
multiplicative operator, most discussions merely point 
out that these "pseudo multiply" and "pseudo divide" 
operations mean that F.P. systems are not algebraic 
fields. No positive attempt is made to study what these 
systems are. Furthermore, many computational prob
lems involve finding a root of an equation f(x) = 0, 
thus it seems that more attention should be devoted 
to the study of F.P. systems so as to ascertain when 
such roots exist! The fact that the computed value of 
f(x) may depend on the order of execution of the arith
metic operations composing f (x) makes this a difficult 
but therefore still more essential area for serious mathe
matical investigation. 

It is well-known that an abstract characterization 
of floating point numbers places the study of this cla3S 
of numbers within the field of number theory. Many 
important questions relative to F.P. systems can thus 
be attacked by applying the wealth of results available 
in number theory. In the next section we develop such 
a characterization of floating point numbers, for which 
we prefer the term digital numbers, and spaces of these 
digital numbers which are known as significance spaces.2 ,3 

Some suggestive examples are given which demon
strate the power of the application of number theoretic 
results to yield theorems relevant to the structure of 
F.P. systems. 

Since any computational number system in a com
puter is limited to a finite set of representable numbers, 
floating point numbers have been favored since on the 
one hand, they allow convenient algorithms for effect
ing numeric operations, and, on the other hand, they 
are reasonably conveniently spaced, so that the real 

numbers expected to be encountered can all be ade
quately approximated and resultant calculations gen
erally closely represent calculations with real numbers. 
A full understanding of the structure of F,P, systems 
then must, for our purposes, provide a precisely defined 
relationship with the real number system. In the third 
section the relationship of floating point numbers to 
the reals is established through the definition of con
version mappings. It is then pointed out how a broad 
view of these mappings allows one to formulate a valid 
mathematical expression corresponding to any floating 
point computational expression without recourse to 
pseudo airth.."netic operations or "E" error terms. 

Finally, in the last section, selected topics concerning 
numerical difficulties with F.P. systems are presented 
in this new mathematical formulation. 

Digital numbers and significance spaces 

A floating point number is typically represented by 
a finite sequence of digits to an assumed base along 
with an integral exponent for locating the "decimal" 
or radix point. If we assume tlJ-e radix point is at the 
right of the sequence of digits, then a floating point 
number is of the form afJl", where a and T are any posi
tive or negative integers and {3 is a fixed base. The 
dependence of the floating point number on the choice 
of base is very important, since a real number repre
sentable by a finite number of digits in one base does 
not necessarily have a terminating expansion in another 
base. For the purposes of abstract characterization we 
prefer the term digital number to the term floating 
point number. 

Definition: The real number x is a digital number to the 
base f3 ~ 2 if and orJy if x = exf3T for some integers ex, 
T. The {3-digital numbers, D~, is the set of all digital 
numbers to base {3. It is evident that xED~ for some {3 
if and only if x is a rational number, so that the {3-
digital numbers for {3 = 2,3, ... pro·vide subclassifica
tions of the rationals. It should be noted however that 
the sets D~ and D., are not disjoint for {3 ~ ,¥, since 
every pairwise intersection contains at least all the 
integers. With these preliminaries a framework has 
been provided for discussing the possibilities of exact 
conversion of floating point numbers between various 
bases. 

Exact floating point base conversion 

In working with binary and decimal numbers it is 
readily observed that any binary integer or fraction 
can be represented as a terminating decimal. However 
the reverse does not hold, since 0.2 in decimal may be 



Towards Abstract M:athelnatical Theory of Floating-Point Arithmetic 767 

easily verified to have an infinite binary expansion. 
Thus in our abstract notation these observations mean 
that D 2CD10, D10¢D2• It is therefore interesting to 
speculate on whether an F.P. system with a given base 
fJ will have each floating point number exactly repre
sentable by a finite number of digits to some other 
base "(. 

Theorem 1: D,3 C D'Y if and only if plfJ (p divides fJ) 
i11lplies p! 'Y for all primes p. 

Proof: Assume plfJ implies pl"( for all primes p. 
Let xED,3, then x = a{f" for some integers a, T • We 

may assume T<O, for otherwise x is an integer and is 
therefore in D'Y' If m is the highest power of any prime 
which divides fJ, then from the assumption, fJl-ym. Thus 
fJ = "(m/k for some integer k, and {f" = k-T"(Tm. There
fore x = ak-T"(Tm, and since T<O, ak-T is an integer so 
that x E D'Y' 

To complete the theorem assume there exists a prime 
q such that qlfJ, qT"(. Then clearly q-l E D,3, and if 
q-l E D'Y then q-l = a"(-T must hold for some positive 
integers a and T. Thus "(T = aq so that ql"(T, and 
since q is prime, qh, a contradiction. Therefore q-l 
D'Y and D,3 ¢D'Y' 

Since any computational F.P. system involves a 
finite set of digital numbers to some base fJ, it is clear 
that another F.P. system with base "( can absorb ex
actly by conversion the original F.P. system if and only 
if both (1) "( contains all of the distinct prime factors 
of fJ, and (2) the new F.P. system has a sufficient num
ber of digits. 

To consider the question of whether two F.P. sys
tems can be truly equivalent we first note the following 
general result which is immediately obtained from 
Theorem 1. 

Corollary: D,3 = D'Y if and only if the condition plfJ 
<==:}ph holds for all primes p. 

Although it is evident from the binary representa
tional notation that every octal number with a finite 
number of digits can be represented as a terminating 
hexidecimal number and vice versa, the non trivial 
observation that the base 12 and base 18 digital num
bers are the same follows immediately from this corol
lary. 

However, it should be stressed that two different 
numbers with the same number of digits base 12 may 
require different numbers of digits base 18, and vice 
versa, so we cannot yet make any conclusions about 
whether two differently based F.P. systems can contain 
exactly the same set of real numbers. 

Hence even though knowledge of the structure of 
floating point number systems can be gained by looking 
at the sets D,3 they do not constitute suitable charac
terizations of floating point number systems since there 
is no bound on the number of digits in each digital 
number of D,3 nor on the magnitude of these numbers. 
In fact, Di3 is dense in the real numbers for any {3, that 
is, there is an infinite number of members of D,3 in any 
arbitrarily small interval of the real line. The next 
step towards characterizing a system of floating point 
numbers is to limit the number of digits in each digital 
number allowed in the system. This has been accom
plished by the definition of a significance space.2,3 

Definition: For the integers fJ 2:: 2, called the base, and 
n 2:: 1, called the significance (or precision), let the 
significance space, S~, be the following set of real num
bers: xeS~, if and only· if x = a{f" for some integers a, 

T where lal <(3'1. 

Thus the sig!lificance space, S~, is seen to be com
posed of certain digital numbers to the base {3, and, 
in particular, the constraint lal < fJn for the number 
x = a(JT assures us that the integer portion, a, can be 
represented by n digits to the base fJ and a sign. Note 
that since a significance space does not imply a bound 
on the exponent part, T, of x = a(JT, S~ still contains 
an infinite number of elements. However, any closed 
interval of real numbers disjoint from zero contains 
only a finite number of elements of S~. A further con
straint bounding the exponent part of each digital 
number would fully characterize a system of floating 
point numbers, however, the significance space as just 
defined is a more tractable mathematical structure to 
analyze. Furthermore the significance space is the 
appropriate tool for understanding the more perplexing 
computational numeric difficulties, specifically those 
which are not simply attributable to underflow and 
overflow. 

Although most of the theoretical results which are 
relevant to computational difficulties in F.P. systems 
must await the definition of conversion mappings of 
the next section, an interesting example relating a 
theoretical property of significance spaces to a compu
tational problem with floating point numbers is con
tained in the following. 

Tape updating problem4 

Suppose a floating point number is read in from a 
B.C.D. coded tape and converted to binary for internal 
machine reference and then reconverted to decimal for 
preparing the new updated output tape. One would 
like to believe that any such "constant datum" which 



768 Spring Joint Computer Conference, 1969 

is never changed in the successive tape updatings will 
remain invariant despite the frequency of updating. 
However, a little reflection suggests that the successive 
conversions of this datum may cause the value of this 
constant to drift, especially if all conversions are effect
ed by truncation rather than rounding. The following 
observation relates this practical problem to a theo
retical question about significance spaces. 

Successive truncation conversions between two 
differently based F.P. systems monotonically decreases 
the magnitude of a number until a real number exactly 
representable in both F.P. systems is encountered. This 
suggests looking at the il'ltersection of the corresponding 
two significance spaces, with the result4 that for the 
bases 2 and 10 with fixed numbers of digits nand m 
respectively, the set S; n S~ has only a fillite number 
of elements. 

In particular the mi.rilmum strictly positive value in 
8;4 n sIo is 2-10• Thus returning to the tape updating 
problem, if a quantity y <2-10 appears on a 7·significant 
digit B.C.D. tape which is updated on a binary machine 
with truncation conversions in both directions, then 
the quantity y will monotonically decrease, thereby 
losing all accuracy, and eventually underflow. 

In conclusion, the abstract mathematical characteri
zation of floating point numbers is seen to be a tool 
having great potential for furthering our understanding 
of the actual difficulties encountered in practical com
puterized numeric calculations, 

The generalized conversion mapping 

Since only a finite set of real numbers can be repre
sented exactly in an F.P. system, the element of "round
off' error" enters when we encounter a numeric quantity 
which is not one of the Hnite set of representable n1L'tTI-
bers. This phenomena can be encountered in two ways; 
(1) If input data are not in the appropriate base a con
version is necessary and the converted number may 
not equal the original number, (2) all four arithmetic 
operations, addition, subtraction, multiplication and 
division, are not closed operations within a system of 
floating point numbers so an arithmetic operation may 
only approximate the correct result. 

These two kinds of error are usually treated sepa
rately, the first being largely ignored since I/O is gen
erally non-recurrent allowing only one small error to 
enter from this source. The latter error is generally 
described in representational notation either by (1) de
scribing the full set of digits that would occur in the 
exact operation or by (2) storing an appropriate re
mainder term in a register, and then specifying whether 
the computer hardware utilizes the additional informa
tion to round or truncate to an approximate result, 

Note that a common aspect to both of these phenom
ena is that a real number is encountered that is not 
exactly repre~ntable by the fixed n digits to the base 
{3 avail9~ble for 9~ specified set of machine representable 
nllillbers. Both approximations may be made explicit 
analytically by introducing the notion of a generalized 
conversion mapping whose domain is the real numbers 
and whose range is the significance space S~. As we 
are interested in both rounding and truncation proce
dures, the following two generalized conversion map
pings2 provide analytic characterizations of these approx
imation procedures. 

Definition: The truncation conversion mapping, T~, 
and the rounding conversion mapping, R~, of the real 
numbers into S~ are defined, for n ~ 1, (3 ~ 2, by: 

Truncation conversion: 

{

max {y!y ~ x, YES;} 
T~(x) = ~in {y y ~ x, YES; } 

Rounding con version: 

for x > 0, 
for x < 0, 
for x = O. 

r min {ylX < (y+y')/2, y E Sa } for x > 0, 
R;(x) = i min {y x ~ (y+y')/2, y E S~} for x < 0, 

lO for x = 0, 

where y' is the successor of y in Sa defined for y :;I: 0 
by y' = min {z I z > x, z E Sa} . 

Note that a distinction is made in the definition of the 
mappings of positive and negative numbers so that 
Ta( -x) = -1p(x) and R~( -x) = -Ra(x). 

Utilizing these definitions for describing input con
versions by truncation to an F .P. system with six 
significant digits base 16, one may simply state that 
the decimal numbers 2.594, 3.5 X 106 and the binary 
number 11.1~ become T~6 (2.594), T~6 (3.5X106) and 
~6 (11.1 2) respectively. This notation is self contained 
and unencumbered by any additional description of 
the actual method of representing decimal and binary 
numbers in a hexidecimal system. Turning to the 
precise characterization of arithmetic operations in 
F .P. systems, rounded multiplication of x and y in the 
above F.P. system is succinctly denoted by R~6 (x·y), 
where x . y has the usual meaning and no "pseudo 
multiplication" symbol need be introduced. This pro
cedure is readily extended to precisely describe whole 
arithmetic expressions. For example, if X, Y, and Z 
are input values which are truncated into an F.P, 
system of six digits base 16, and if the following FOR
TRAN expression using X, Y, and Z is executed in 
this F. P. syst.em utilizing rounded arithmetic, 



Towards Atstract ~lr.athern.atical Theor,i of Floating-Point Arithmetic 769 

x * Z * * 2 - SQRT(Y + 1000, * X)/2, (1) 

then a mathematical characterization of this expression 
is given by the following formulation: 

R~6(R~6(T~Q.(X) 'R~6([T~6(Z»)2» 

- R~6 (R~6 ( -vi R~6 (T~6 (Y) + R~6 (1000T~6 (X) ) ) ) /2,) ) 
(2) 

. The latter expression (2) is illustrative of how a 
computerized calculation can be abstractly defined, 
however, we do not suggest that such unwieldy ex
pressions need often be written, Rather, if f(x) is the 
desired function of x which we wish to calculate on a 
computer, then we can let f*(x) refer to the appropriate 
function of the form of (2) for computational analysis 
purposes, 

The collection of such functions available for com
puterized calculations can be characterized as follows, 

Definition: For n ~ 1, f' ~ 2, the floating point rounded 
n-digit base {3 digital functions, denoted F~, are exactly 
those functions generated by the following rules: 

1. Constant Functions: 

C E S~ =} C E F~ 

2, Primitive Variables: 

x a variable with domain S~ =} x E Fa 

3, Composed Functions: 

Let f(Xl, x?, ' , "Xk), g(Yl, Y2, ' , ',Ym) E Fpbefunctions 
of k and m variables respectively, then 

h(xl, ' , " Xk, Yl, ' , " Ym) 
= R~(f(xl, x?, ' , " Xk) + g(Yl, Y2, ' , " Ym» e F; 

h(xl, ' , " Xk, Yl, ' , " Ym) 
= Rp(f(xl, X2, ' , ., Xk) - g(Yl, Y2; , , ., Ym» E F8 . 

h(Xl, ' , " Xk, Yl, ' , " Ym) 
= R8(f(xl, X2, . , "Xk) X g(Yl, Y2, ' , " Ym» E F; 

h(Xl, ' , ., Xk, Yl, ' , " Ym) 
= R8(f(xl, X2, ' , " Xk)/g(Yl, Y2, ' , " Ym» e F~ 

where appropriate modification of the arguments of the 
function h is assumed if any of the variables Xi are 
identical to any of the variables Y j, 

Thus F~ includes mathematical characterizations of 
the computerized arithmetic expressions which are 

available on an n-digit base f' machine with rounded 
arithmetic excluding underflow and overflow considera
tions (the case of truncated arithmetic may be treated 
similarly). A computerized version of f(x) then is an 
approximation in function space, with some function 
f*(x) E F~ approximating f(x). Note that F~ effectively 
includes the special functions (exponential and trig
onometric) since these are generally calculated on 
machines via polynominal or repeate4 fraction approx
imations, however the function resulting from point
wise numerical integration of a function f*(x) E F~ 
would generally not be in F~, since inequality side 
constraints are used and this is not part of the procedure 
for creating functions of F~, The utility of this defini
tion of F~ is that the theoretical questions about the 
properties of the class of expressions which can be 
executed in the floating point hardware of the computer 
can be abstracted to the level of investigating proper
ties of Fa. 

In summary the generalized conversion mapping 
stands out as the important analytic tool which allows 
us to abstractly characterize both base conversion 
mappings and the functions equivalent to computer
ized floating point realizations of arithmetic expressions, 

The analysis of floating point number systems 

It will be instructive to demonstrate the formulation 
of questions relevant to the structure of floating point 
number systems in terms of the analytic structures we 
have just introduced, The following five topics are not 
intended to be exhaustive but do cover a wide range of 
numerical questions relevant to floating point arith
metic. 

It is not our intention to suggest that the new for
mulations of these problems will provide their immediate 
resolution, rather we propose that these formulations 
provide the precise mathematical characterizations 
which are the necessary first step in any serious attempt 
to develop a general theory of floating point arithmetic, 

Errors of base conversion 

In an earlier section the tape updating problem 
pointed out one difficulty with decimal to binary base 
conversion under truncation, Another question rele
vant to base conversion is: "how many digits should 
be available in the computer's floating point numeric 
base to maintain the distinctness of different input 
quantities of a fixed number of decimal digits?" This 
question may be formulated mathematically as: "Giv
en m ~ 1, and f' ~ 2, what is the minimum value of 
n such that the restricted mapping R8 : S~ ~ S~ is a 
one-to-one mapping of S~ into (but not necessarily 



770 Spring Joint Computer Conference, 1969 

onto) S;?" In the solution2 to this problem it should 
be noted that although elementary inequality conditions 
are adequate to establish a number of digits, n, which 
is sufficient to insure a one-to-one mapping; the neces
sity condition required to verify the minimlli'"ll value of 
n was found by applying Kronecker's Theorem6 from 
number theory to the appropriate number theoretic 
formulation of this problem. 

Proceeding further, the question of whether an iterat
ed in-and-out conversion can always identically return 
the original number is . formulated by asking for those 
conditions on n, (J, m, 11 such that x = R;(R;'(x» for 
all XES;. This problem was completely resolved 3 by 
the same methods referred to above. It is instructive to 
compare the general results of this abstract treatment3 

with a previous paper' which utilized representational 
notation to establish only the simpler part of the general 
theorem on i...l1-and-out conversion. 

Algebraic structure of floating point calculations 

Arithmetic calculations with floating point numbers 
are intended to provide a realizable computational 
process resembliIig operations in the field of real num
bers. However, quite apart from the approximations 
necessitated when calculating with floating point num
bers, the invariance of the value of aritlunetic expres
sions under the familiar procedures of rearrangement 
and cancellation is not obtained. Thus the algebraic 
structure of floating point calculations is also only an 
approximation to the algebraic structure of the reals. 
This fact has been pointed out many times by showing 
that the pseudo-operations of addition and multiplica
tion realized in floating point calculations do not 
possess the structure of a field. 

Without appealing to pseudo operations, where the 
addition and multiplication symbols must have mean
ings context dependent on the representational form 
of the numbers on w:hich they operate, the questions 
relevant to field theoretic structure can be succintly 
stated utilizing significance spaces and conversion 
mappings so as to preserve the normal meaning of the 
arithmetic operators in the real number system. In 
the following we fonnulate all the questions in our 
notation and state the answers without proof, as they 
are generally well-known and in any case represent 
instructive exercises. 

Doe8 Floating Point Arithmetic Satisfy the 
Axioms of a Field? 

If for x, YES;, we declare floating point addition, 
subtraction, multiplication and division of x and y 

to be given by R;(x+y), R~(x-y), R;(x' y) and 
R;(x/y) respectively, then we have for: 

Fl. Closure under addition: 
Is R~(x + y) E S~ for all x, YES;? 
Answer: Yes 

F2. Closure under multiplication: 
Is R;(x.y) E Sa for all X,y E S~? 
Answer: Yes 

F3. Associativity of addition: 
Is R;(x + R;(y + z» = R~(R;(x + y) + z) 
for all x, y, z E S;? 
Answer: No 

F4. Associativity of multiplication: 
Is Ri3(x·Ri3(y·z» = Ri3(R3(x'Y) ·z) for all x, y, 
z E',S;?' . . 
Answer: No 

F5. Commutativity of addition: 
Is R~(x + y) = R;(y + x) for all x, y E S~? 
Answer: Yes 

F6. Commutativity of multiplication: 
Is R;(x·y) = R3(y'x) for all x, YES;? 
Answer: Yes 

F7. Identity under addition: 
Does there exist x E S~ such that Ra(x + y) 
R;(y) for all YES;? 
Answer: Yes (zero) 

F8. Identity under multiplication: 
Does there exist x E S~ such that R3(x' y) 
R;(y) for all YES;? 
Answer: Yes (unity) 

F9. Inverses under addition: 
For each x E Sa does there ex~t y E S~ such that 
Rp(x + y) = O. 
Answer: Yes 

FlO. Inverses under multipJication: 
For each· x E Sp does there exist YES; such that 
Rp(x.y) = I 
Answer: No. 

Note: Question FlO has many interesting 
sidelights and has been the subject of a rather 
extensive investigation.7 Thus, for example, in 
S~o the number 3 has the inverse .334, yet 
R~o(I/3) = .333 is not an inverse. 

FI1. Distributivity: 
Is Rp(x·R;(y + z)) = R~(R3(x'Y) + R;(x'z) 
for all x, y, Z E Sa? 
Answer: No 



Towards Abstract :Mathematical Theory of Floating-Point Arithmetic 771 

The failure of many of the axioms of a field means 
that many different functions can be suitable candi
dates for approximation of the single real function f(x), 
and study should be given to detennine if a best choice 
is possible. 

Roots of equations 

A general mathematical problem is to find a root 
of the equation f(x) = 0, and when f(x) is suitably 
behaved it is assumed that this is not difficu1t to solve 
via algorithmic procedures with real arithmetic. How
ever numerical work in evaluating f(x) is actually 
performed with a specified approximation f*(x)E Fp, 
and it appears pertinent to investigate the question of 
whether f*(x) = 0 has any roots XES;. 

Letting f(x) = ax + b be a simple linear equation 
with a, b E S; and choosing f*(x) = R; (R;(a·R~(x)) 
+ b) E Fp, it is observed that a root of f*(x) = 0 must 
satisfy R; (a· R~(x)) = -b. 

For the case b = -1 this corresponds to finding an 
inverse of a in S~ and it has already been pointed out 
that such inverses need not exist, and, even when they 
do, they are not necessarily given by R~ (l/a). The, 
actual solution of R~ (a· R~(x)) = -b necessitates 
solving a Diophantine equation subject to an inequality 
constraint, and there is small utility in pursuing this 
course. 

However two pertinent observations emerge from 
this discussion. (1) f*(x) = 0 need not have a solution 
even though f(x) = 0 has, so that iterative schemes 
which attempt to find a root of f(x) by working with 
f*(x) must be designed with this knowledge in mind. 
(2) f*(x) is a piecewise continuous step function of the 
real variable x, thus f(x) - f*(x) is a piecewise con
tinuous function in x giving the error in the computer
ized realization of f(x), and it is this well defined func
tion which should be scrutinized for error bounds in 
applied numerical analysis. 

Integration and differentiation of f* (x) 

The erratic behavior of a digital function f*(x) as a 
function of x is a phenomena of immense importance 
to numerical integration and differentiation. For our 
purpose, a typical numerical integration procedure for 
detennining Ji f(x) dx will divide the region 1 to 2 
into N parts, evaluate f*(x) at these N mesh points and 
average them, and then proceed through the same 
procedure at 2N points (halving the interval), and 
compare the results to see if a suitably small difference 
is attained. It is evident that as this halving procedure 
is continued one generally will converge towards Ji 
f(x) dx as long as the 2kN mesh points at which f*(x) 

is evaluated is much smaller than the t3 n- 1+ 1 points 
of Sp in the interval [1,2]. However as the number of 
halving procedures increases so that 2kN approaches 
pn-l+ 1, the integration procedure will begin to add 
significance to the erratic behavior of f*(x) and suc
cessive halvings may well determine a result deviating 
more from Ii f(x) dx than previous results. Further
more, increasing the halving procedure so that 2kN < 
pn-l~ 1 does ~ot generate any new points but merely 
duplIcates pomts already calculated, and it should be 
evident that the consequent convergence of the numer
ical procedure does not in any way substantiate the 
calculated result as a meaningful estimate of Ii f(x) dx. 

In performing numerical integration one must tread 
his way along the same path as the physicist perform
ing the classical derivations of thermodynamics, where 
each of the infinitesimal intervals on which the limiting 
procedure of the calcu1us depends must stilJ be 1arge 
enough to allow a sufficient number of atoms so that 
the statistical behavior of the assemblage of atoms is 
meaningful. Thus the numerical analyst is obHged 
to verify convergence of the integration when Z'N« 
pn-l+ 1, otherwise the results .should be considered 
spurious. 

To appreciate the difficulties possible in numerical 
differentiation observe that f(x) = x/ (x+2) is a mono
tonically strictly increasing function of x for positive 
x, yet f*(x) = R;(x/R;(x+2)) exhibits a very peculiar 
?ehavior. Note that as x~l, x ESp, each successive x 
ill.creases the numerator, yet the denominator, R~(x+2), 
will not change with every successive increasing value 
of x E S~ in this range, and when it does change the 
proportional increase in the denominator will be greater 
than in the numerator for x sufficiently close to unity. 
Therefore f*(x) shows an oscillating behavior as x~l, 
hence numerical differentiation schemes which utilize 
too fine a difference in x may pick up this spurious be
havior of f*(x) and yield even the wrong sign for the 
derivative. 

It should be pointed out that the stock answer of 
carrying more digits, that is, increasing n in the expres
sion f*(x) = R~(x/R~(x+2)), would certainly decrease 
the error function f(x) - f*(x), but does not alter the 
oscillatory behavior of f*(x) compared to the monotonic 
behavior of f(x). 

Accumulated roundoff error 

The accumulation of roundoff error is the most 
perplexing difficulty with computerized calculations, 
and no overall resolution of this problem is available. 
The simple propa.gative calculation of error bounds 
yield bounds which are generally too wide when the 



772 Spring Joint Computer Conference, 1969 

same variable is encountered more than once in a cal
culation procedure, since the correlation of the errors 
which are introduced is not reflected in the bounds. 
Thus if it is known that a~f(x) ~ band 2a ~ g(x) 
S 2b, then clearly 2a - b S g(x) - f(x) S 2b - a, 
whereas if actually f(x) = x, g(x) = 2x, then the sharp 
bounds would be a S g(x) - f(x) S b. 

Statistical treatments of roundoff error have given 
useful heuristic bounds but the fundamental problem 
we wish to treat is deterministic. It is possible and 
convenient in our notation to treat certain controlled 
sequences of accumulating error. For example the 
treatment of accumulated conversion error has been 
fully described,4 and it is suggested that the following 
kind of investigations of accumulated calculation error 

Let f(x) = Xk, and define f*(x) as follows: 

flex) = R~(x) 

fi(x) = Rp(x· fi-l(X) for 1 < j S k 

f*(x) = f1:(x) 

A study of the behavior of f*(x) should yield some 
light on accumulated correlated multiplicative error. 

Similar studies with recursive division and with poly
nomial evaluation with all coefficients unity might pro
vide valuable insight towards understanding the overall 
phenomena of accumulated roundoff error. 

REFERENCES 

W J LEVEQUE 
Topics in number tMory 
Vol I Addison-Wesley Reading Massachusetts 1955 

2 D W MATULA 
Base conversion rnappings 
Proc S J C C 1967 Vol 30 311-::ns 

a D W MATULA 
In-and-out conversions 
CAe M Vol 11 Xo 1 January 196847-50 

4 D W MATULA i 

A.ccumulated conversion error in mixeit-1ase computation 
J A C M (submitted for pubiication) 

5 G H HARDY E M WRIGHT 
A.n introduction to tM tMory of numbers 
Oxford London England 1960375 

6 I B GOLDBERG 
27 bits are not enough for 8-digit accuracy 
CAe M VolIO No 2 February 1967 105-106 
D W MATULA 
The inverse(s) of a floating point number 
In preparation 



A panel session-Small computers for data terminal 
network control· 

GEORGE W. PATTERSON, Chairman of Session 

Sanders Associates, Inc. 
~ ashua, New Hampshire 

Small computers in data networks 

by C. B. NEWPORT 

Honeywell, Inc. 
Framingham, Massachusetts 

Small computers, costing between, say $10,000 and 
$50,000 each, are rapidly proving to be very important 
elements in data communications networks. The value 
of these machines lies in their high speed data manipula
tion capability rather than in their computing power; 
in fact, the direct arithmetic capability rarely exceeds 
simple binary addition and subtraction. 

The uses of these small computers can be grouped 
into two main areas: 

1. Remote message concentrators and terminal 
controllers, and; 

2. Communication interfaces for larger machines. 

The primary function of remote concentrators is to 
reduce line costs by multiplexing the data from many 
low speed lines, up to 150 Baud, on to one or more 
medium speed lines. This function, by itself, can be 
achieved by many hardwired devices as well as· by a 
stored program computer; however, the use of a 
computer with significant storage and data manipula
tion capability immediately brings many other ad
vantages. Data can be blocked before transmission over 
the medium speed line, thus, normally eliminating 
demultiplexing at the large computer site, code conver
sion and data editing can take place, and various 
terminal control functions such as automatic answering, . 
polling and error control can be implemented quite 
flexibly. 

The system that Honeywell has implemented in 
conjunction with American Airlines on the Sabre 

reservation system is a good example of both concentra
tion and terminal control (see Figure 1). 

DDP-516's with two Data Line Controllers interface 
to the two 2400 Baud lines used for data transmission 
and hub polling on the Sabre network. On the low speed 
side up to 60 IB1\I 1977 agents sets operating at 148.5 
Baud are interfaced to the DDP-516 via a multi-line 
controller. The DDP-516 handles the functions of 
assembling data blocks, editing out meaningless blanks, 
responding to polling messages, and the generation and 
checking of error control information. A number of 
these remote concentrators have now been in operation 
for more than six months and they have demonstrated 
an improvement in response time of about 30 percent 
over the previous IB:111006 hardwired terminal control 

AMERICAN 
AIRLINES 
RESERVATION 
COMPUTER 

773 

2400 BAUD FDX COMMUNICATIONS LINE 

DDP-516 

UP TO 60 1977 
AGENTS SETS 

,- - --1 
J Line I 

---;Printer: -_. 
L.. __ • .J 

Figure 1 

DDP-516 



774 Spring Joint Computer Conference, 1969 

units. This is largely due to the data editing taking place 
in the DDP-516 so that redundant information does 
not have to be transmitted to Sabre or to the agents sets. 

As an indication of the flexibility of the system it was 
found desirable to add a line printer since some of the 
reports required on a daily basis from Sabre took an 
inordinately long time to print on the IBM 1977, 15 
character/second agents sets. The standard DDP-516 
line printer was, therefore, added to the system, but 
since this is only an output device, it was not possible to 
treat it simply as a higher speed version of the 1977 
terminal. The Sabre system always responds with a 
message directed to the terminal that made the request, 
so "output only" terminals are normally excluded. In 
this case, with the DDP-516 as the terminal controller, 
it is possible to monitor input messages from the 
appropriate agents sets and look for the code indicating 
that reply is required on the line printer. The message 
that is actually passed on to Sabre is then a modified 
version of the request which makes it appear to Sabre as 
though it had come from the line printer. Sabre then 
makes its reply back to the apparent originating 
terminal as usual, and the print-out appears as requir.ed 
on the line printer. This kind of modification would be a· 
major undertaking with a hardwired controller. 

The price of the DDP-516 system, with 12K of core, 
was approximately half that of the corresponding 
hardwired system. Price comparisons are however , , 
misleading and need to be considered in each individual 
situation. In particular, the programming costs need to 
be considered in relation to the design costs of a 
hardwired system and general comparisons only tend to 
be useful when significant quantities are being con
sidered, say, above 10 or 20, so that one-time costs 
become minimal. 

The second use for small computers in data communi
cations, interfacing to larger computers, is illustrated by 
a number of applications in which DDP-516's and 416's 
have been interfaced to IBM 360/50 and 360/67, 
Honeywell H-12oo and 2200 and, perhaps, more 
interestingly, large scale DDP-516 systems. 

The Honeywell H-1648 Time-Sharing System (see 
Figure 2) illustrates the use of a 4K DDP-416 computer 
to provide the communications interface to a pair of 
32K DDP-516's which are providing a time-sharing 
service for up to 48 simultaneous users. The two 
DDP-516's, the Control Computer and the Job 
Computer, are normally fully occupied providing the 
time-sharing and computing operations required by 
users, while the DDP-416 is dedicated to handling the 
communications lines. The control computer is the 
heart of the system and provides the terminal users with 
the ability to create and manipulate files on the disc 

Figure 2 

complex. When computing operations are required 
(rather than control or editing functions) such as 
compilation of a file or the running of an already 
compiled file, then the control computer schedules these 
tasks, provides core allocation and disc references for 
the job computer and initiates operation via the ICCD 
(Inter-Computer Communications Unit). The job 
computer allocates a predetermined time period (be
tween 100 ms and one second) for the running of each 
job and if it is not completed within that time, swaps it 
out on to the disc and starts the next job. The I/O 
structure on the DDP-516 allows processing concur
rently with transfers to and from the disc so that delays 
due to disc access time are not important. 

The DDP-416 handles all communication functions 
and simply presents the control computer with strings 
of characters and an indication of the terminals from 

I 
I . 

lIT 
Figure 3 

HONEYWELL 

11-2200 



UP TO 
-128 
DIAL-IN 
LINES 

tio BAUD 02- ::;::.. 
1485 BAUD 

.......... if~ .. 
- 121: -/' Figure 4 

JItlX IBII 
.~~~~~360/50 

CJWIlIEL 36~/67 

which they have been received. The DDP-416 is used 
as a bit sampler and is continually scaruring the state 
of the incoming lines at eight times the bit frequency. 
The interface is designed to be able to receive signals 
from both dedicated lines and from the switched 
network. The samples of the incoming lines are pro
cessed to determine the state of the line, and if in the 
character mode, successive samples are used to assemble 
the character. 

To achieve complete verification that the DDP-416 
has received the character correctly echo-back checking 
is used. At each terminal the teletype keyboard and 
printing mechanisms are connected respectively to the 
transmit and receive sides of the full duplex communica
tion line, and each character received by the DDP-416 
is immediately echoed back to be printed. The user can 
then be sure that if the teletype is correctly printing the 
characters which he types, the characters will have been 
successfully received by the computers. 

The DDP-416 is capable of handling at least 64 lines 
at 110 Baud and if a DDP-516 is used this can be 
expanded up to 128, although in this time-sharing 
application the remainder of the system is not designed 
to handle more than 48 simultaneous users. 

The use of a small computer as the communications 
interface provides cost saving and an increase in 
flexibility over a hardwired interface. Perhaps, the most 
significant feature in a system that is subject to high 
peak luads is the ability of the communications pro
cessor to provide flexible buffer storage which can be 
dynamically allocated to the busy lines, and temporarily 
suspend the passing of data to the larger computer. In 
addition, if echo-back is used, the input from the 
terminal can be slowed down by simply delaying the 
echo-back. In a system with many random inputs, peak 
loads will only last for a very short time, so these 
buffering and delaying techniques are very useful in 

increasing ultimate system capacity without causing 
noticeable effect to individual users. 

The use of a small computer as a terminal 
controller for a large computing system 

by H. B. BURNER, R. MILLIO~, O. W. RICHARD 
and J. S. SOBOLEWSKI 

Washington State University 
Pullman, Washington 

In the spring of 1967 Washington State University 
began investigating the possibility of replacing or 
supplementing its IB~1 2702 terminal control unit with 
a small computer. We hoped to realize four significant 
advantages from such a move: 

1. A small computer-being programmable-offered 
the opportunity of increased flexibility in the 
control of remote terminals. 

2. The prices of small ~omputers had decreased to 
the point that it seemed reasonable to expect 
such a system to cost less than the IB::.YI 2702. 

3. Since IB:\I required that each TTY line be 
connected to the 2702 via a 3233 line adapter and 
a 103A or 103F data set, we felt that significant 
savings might be obtained through lower incre
mental costs per line, achieved by providing 
either direct TTY connection or the use of lower 
cost data sets on leased private lines. 

4. By handling as many communication problems 
as possible in the small computer, we hoped to. 
reduce substantially the amount and complexity 
of system modifications in the large computer. 

We should emphasize that our primary concern was 
the internal campus network which involves only local 
communication lines. There was no thought of using the 
small computer at a remote location as a data concen
trator in order to minimize long distance line costs. This 
is, of course, an application of small computers to which 
many companies, particularly time sharing services, 
are addressing themselves. 

During the past 18 months we have been working 
closely with the Interdata Company on a system 
designed to meet the above objectives. The system is 
being delivered in two stages, the first of which has been 
operating successfully for some months. The second 
stage is being installed at the time of writing. 

Stage 1 consists of an Interdata ~r1odel 3 processor, 



776 Spring Joint Computer Conference, 1969 

a ~fultiplexor Control Unit and an interface to the 
IB1\I 2870 1\1 ultiplexor Channel. The 1\1 ultiplexor 
Control Unit connects 32 low speed terminals to the I/O 
bus of the }'lodel 3 through four data line units ea.ch 
of which by using appropriate couplers can accept data 
from or send data to 8 remote terminals via direct 
telegraph lines, TWX lines, and switched or private 
telephone lines. 

To facilitate handling of the multiplexor data, 
Interdata has provided a special BIlH (branch of 
multiplex) instruction implemented in the read-only 
memory of the ::\fodel 3. This instruction, which is 
executed as a result of a clock interrupt every 1/7 of a 
bit time, assembles and disassembles the characters bit 
by bit stripping or adding the start and stop bits. By 
interrupting 7 times per bit time, we are able to ensure a 
sample close to the center of each bit pulse. When a 
character is completely assembled, it is placed in a fixed 
location in core memory corresponding to the terminal 
from which it was sent. Similarly, on output a character 
is taken from a fixed location in memory and sent out to 
a given terminal. 

The interface between the Interdata system and the 
IB1\I 2870 was designed initially to make the Interdata 
appear as much like an IB':'\I 2702 as possible. Thus, for 
example, each terminal attached to the Interdata is 
treated as one of the possible 256 devices that can be 
attached to the 2870. Also, transmission to and from the 
2870 is always in byte mode. However, as a result of 
early tests with the system, several changes were made 
to the interface including the addition of extra command 
and status bits to provide more control to the program 
operating in the Interdata. This enables us to use the 
system as a controller in either a polling or contention 
situation. 

When operating in a polling environment, the 
program in the Interdata is controlled by the 360/67 via 
interrupts. When the 360 requests data from a given 
terminal, an input switch is set for that terminal. The 
program continually scans the one-character-per
terminal buffers for input. When input is available, that 
is, when a character has been typed, it is converted to 
360 format and placed in a line buffer for the terminal 
provided the input switch is set. If a backspace or line 
delete character is received, the line is appropriately 

edited and when the terminating character (x- off) is 
typed, the edited line is sent to the 360. 

When the 360 has data to be sent to a terminal, the 
data is read, converted, and placed in the line buffer for 
the terminal. In addition, an extra carriage return and 
line feed are inserted after the 72nd character to allow 
printing of full printer length lines. An output switch 
for the given terminal is then set. Once per character 
time, the output switch is checked. If set, a character is 
transferred from the line buffer to the one-character-per
terminal buffer for transmission to the terminal. 

With this system all of our objectives have been 
realized. However, in an attempt to gain even greater 
flexibility and lower the per line cost, we plan to expand 
the system in January 1969 with the addition of a 
second processor-an Interdata l\lodel 4. All of the 
processing with the exception of the BI2'\1 instruction 
will then be done on the l\10del 4, a processor which is 
seven to ten times as fast as the IVlodel3. The lVi ultiplexor 
Control Unit and the read-only memory of the Model 3 
will be altered to accommodate 64 lines, and we 
anticipate that virtually all of the available time on the 
l\Iodel 3 will be taken up in executing the expanded 
BI11 instruction. However, there should be relatively 
little interference with the l\10de14 so we expect to have 
available 1.5 to 20 times as much processing capability 
as we now have. Between 5 and 10 percent of this 
capacity will be used in servicing four 2400 hand lines 
connected directly to the :Model 4. 

It is clear that a terminal controller such as we have 
described can simplify the organization and operation 
of the operating system within the primary computing 
system. Differences among terminal devices and codes 
can be accommodated within the controller so that all 
devices appear the same to the primary system. In 
addition, control characters such as backspace and 
shift can be recognized by the controller and appropriate 
editing action taken before the information is trans
mitted. In fact, we expect within the next few months 
to be able to provide immediate syntax checking of each 
statement of a FORTRAN program as it is entered 
from a terminal into our remote-job-entry batch 
processing system, thus providing one of the most 
useful features of conversational programming in an 
essentially batch processing environment. 



A systelD for designing fast 
programming language translators 

by VICTOR SCHNEIDER 

University of Maryland 
College Park, Maryland 

INTRODUCTION 

This paper demonstrates a straightforward algorithm 
for converting programming language grammars into 
pushdown-store automata translators. The language. 
grammar is written as a "translation grammar" in 
which, for each syntactic rule, there is a corresponding 
"rule of translation" that recursively specifies the reverse 
Polish string translation of the objects in the syntactic 
rule. This augmented grammar is transformed directly 
into a flow chart for the appropriate translator. 

To prevent the necessity of backtracking during 
translation, an algorithm is presented for converting 
nondeterministic translators into deterministic (i.e., 
single-scan) translators. 'Those languages for which this 
backtracking elimination algorithm fails contain as a 
subset the ambiguous programming languages. 

From considerations of machine topology, upper 
bounds on memory storage requirements and computa
tional times are derived for this class of translato~. The 
upper bound on memory storage is shown to be propor
tional to the length of the input program. The upper 
bound on translation time required by these machines is 
also shown to be proportional to the length of the input 
program. 

A detailed example, drawn from the ALGOL gram
mar, illustrates an actual application of the ideas in 
this paper. 

Notation and basic definitions 

Let V be a finite set of symbols, which we will call the 
vocabulary. Elements of V are denoted by letters, such as 
d, e, f, G, H, I, etc. Finite sequences of symbols, 
including the empty sequence e, are called strings and 
are denoted by late small letters, such as x, y, Z, etc. 
The set of all strings over a set such as V is denoted 
byV*. 

A context-free grammar (abbreviated CFG) is an 
ordered four-tuple 

G = (V, T, P, S) 

where 

(a) V is a vocabulary of symbols. 
(b) T is a proper subset of V called the terminals. 
(c) P is a finite, nonempty set of syntactic rules Pi 

of the form U ~ x, where U ~ x, U is in 
V - T, and x is in V* - {e}. For a rule Pi = 
U ~ x, U is called the left part and x the right 
part of Pi. 

(d) S is a special symbol in V - T, the initial 
symbol. 

As is usual, we say that x directly produces y. 
(x = > y), and conversely y directly reduces to x if and 
only if there exist strings u, v, such that x = uZv and 
y = uwvand 

Z~wisinP. 

x produces y (x === > y), and conversely y reduces to x 
if and only if either 

x=y 

or there exists a sequence of nonempty strings (wo, 
Wl, .•. , wn ) such that x = Wo and y = Wn and 

Wi = > W i+l (i = 0, 1, ... n - 1 and n ~ 1) . 

x is a sentence of G if x is in T* - {e} and S produces x. 
A contextjree language (abbreviated CFL) is then the 

set of terminal strings that can be produced by grammar 
G from its initial symbol S: 

L(G) = {x: (S:: > x) & (x E T* - {eD} 

777 ---------------------------------



778 Spring Joint Computer Conference, 1969 

Let S produce x. A parse of the string x into the symbol 
S is a sequence of rules PI, ... P n such that Pi directly 
reduces Wi-l into Wi(j = 1, ... , n) and x = Wo, S = w". 

Let x = aI, ... a, be a string of symbols a i in T, Then, 
in some reduction sequence in which x = wo, let x 
reduce to Wi = uak ... ar, with u in V* and 1 ~ k ~ r. 
If Pi directly reduces string wi into w ft.l and P;1 

directly reduces w i+1 into w i+2, then (P;, P il) is called a 
leftm.ost reduction sequence if 

W ft.1 = u'ak' ... a r u' in V* x (V - T) 

and 

W ft.' = u"akll ••• a r u" in V* x (V - T) 

and 

k ~ k' ::; k" ::; r . 

or 

Wft.l = u'w and Wft.2 = u'A 

and 

A parse (Pt, ... , P ,,) is called a leftmost parse if and only 
if the sequences (P i, P i+l) are leftmost reduction 
sequences for i = 1, ... , n - 1. 

If (PI, ... , P n) is a parse of string x into symbol S, 
there exists a permutation of (PI, ... , P n) that is 
leftmost. We define an unambiguous grammar G to be 
one in which every x in L(G) has exactly one leftmost 
parse. 

We next define a normal form for CFG'~, in terms of 
which a leftmost parsing algorithm can be designed. 
The correspondence between this leftmost parsing 
algorithm and a pushdown automaton model to be 
introduced will then become apparent. Subsequently, 
an algorithm for facilitating single-scan leftmost parsing 
in a large class of grammars will be developed. 

Normal form grammars 

A grammar G = (V, T, P, S) will be said to be in 
normal form if an the rules in P are of the forms 

or 

or 

or 

with Ail, Ai:!, Ail, Akl in V - T and ak2, 3m1 in T. 
A very simple algorithm exists for converting any 
grammar H into a grammar H' in normal form such 
th9J. L(H) = L(H'). Because of this algorithm, all 
derivations of sentences in L(H) are in one-to-one 
correspondence with derivations of sentences in L(H '). 
The algorithm works as follows: 

All productions in P of H that are already in normal 
form are taken into P' of H'. The remaining 
productions in P are of the form 

x ~ Xl ... Xn , (n > 2) & (Xi E V) . 

Each production of this form is transferred to P' as 
a sequence of productions. 

Jv ~ Jv-1Xv+l for v = 1, ... , n - 1 

where I n- 1 is X. Jo is Xl if Xl is in V - T of H; 
otherwise an additional rule of the form 

is included in P'. The J lI are treated as new elements 
in V' - T' of H', and the Jv are distinct from the 
elements in V - T of H. 

The fact that the J lI of the algorithm are "new and 
distinct" leads to a simple proof of the one-to-one 
correspondence between derivations of sentences in 
L(H) and L(H'): Since each rule of P corresponds to a 
particular rule or sequence of rules in pI, it follows that, 
for each derivation possible in H, there is a correspond
ing derivation in H', and conversely. Because of this 
unique correspondence, it also follows that ambiguity 
in L(H) is equivalent to ambiguity in L(H'). 

Leftmost parses and normal-form grammars 

In order to describe the algorithm for producing 
leftmost parses of the sentences of a grammar G in 
normal form, we introduce boundary markers ~ to the 
vocabulary of G. A new initial symbol S' now takes the 
place of S in G, and three new rules are added to G: 

This has the effect of putting boundary markers at both 
ends of all strings produced by the grammar. 

Let Wo = ~ al ... an 11: be a string in the language 



Systems for Designing Fast Prograw..:ming Language Translators 779 

of such a grammar. In the initial step of the leftmost 
parsing algorithm, rule P~ is applied, yielding string 

Mter j steps, Wo has been reduced to 

In this configuration, KI, ... , Kr are ail symbois of 
V - T in the grammar. If Wo is in L (G), the leftmost 
sequence of rules P~ = PI, ... , P j are precisely the first j 
reductions of the leftmost parse of Wo to S'. Capital 
letters are assumed to be members of V - T of the 
grammars in the remaining discussion. 

For the (j + 1) - th reduction, five different cases 
must be distinguished: 

(0) S' does not produce w j, where w j 
Kras •.• an ~. 

If S' does produce Wj, we have to distinguish betw~en 
the following possibilities: 

(1) A rule of the form P i+I = ~I ~ as reduces w j 
to Wj+I. 

(2) A rule of the form P i+I = K;. ~ Kr reduces w j 
to Wj+l. 

(3) A rule of the form P i+I = K;.-I ~ Kr-IK r 
reduces W j to W i+I. 

(4) A rule of the form P i+1 = K;. ~ Kras reduces Wj 
to Wi+I. 

That only these cases need be considered is proved in 
[13]. Note that each of the applications of rules P i+1 in 
cases (1)-(4) leaves the length of string w i+I either the 
same as that of W j or reduced in length by one symbol. 
This fact is used in a later proof of the upper bound on 
computation time required by the leftmost parsing 
algorithm. 

In general, the decision concerning which of the cases 
(1) to (4) apply for the (j + I)-th step of a leftmost 
parse must be made in terms of context. As an example, 
there may exist rules in the grammar having Kr-IK r and 
Kras on the right part. To decide which case applies at 
a given step of the parse then requires algorithms for 
discovering what symbols can legally be adjacent to the 
symbols being reduced in that step of the reduction 
while Wo is a sentence of G. The algorithms to be given 
in what follows are similar to those of Floyd2 and Wirth 
and WeberI6 in that they construct all legal cooccur
rences of triples of symbols in some language from that 
language's grammar. 

Case (1) 

For a rule of the form P i+1 = K;+I ~ as to apply for 
the (j + 1 )-th reduction, there must be one or more 
symbols Z in V - T such that Z ~ KrY is in P and 
Y ~ > ~+1U, with u in V*. 
Since the set {K: W ~ > Ku & u E V*} can be con
structed, the context in which Case (1) applies can be 
found. The pairs (Kr, as) are the contexts in which the 
rule ~1 ~ as applies. 

Case (2) 

For a rule of the form PHI = r<.~· Kr to apply for 
the (j + 1) - th reduction, there must be one or more 
symbols Z in V - T such that either 

Z ~ Kr-IY is in P 

and Y ~ > Xu with u in V*. 

and X~RT whereR ~ > K; 

and T ~ > a8y, with y in V*. 

or Z~ Ya8 is in P 

and y ~ > uX with u in V* 

and X ~ Kr-IR 

where R ~ > K;. 

The pairs (Kr-l, as) are the contexts in which the rule 
K; ~ Kr applies. 

Case (3) 

For a rule of the form P j+1 = K;-I ~ Kr-IKr to 
apply for the (j + l)-th reduction, there must be one 
or more symbols Z in V - T such that 

Z ~ YX is in P 

and X b > a~u, with u in V*. 

and y ~ > w K;.-I with w in V* 

The pairs (Kr- I, a8 ) are the contexts in which the rule 
K~-I ~ K r-IK r applies. 

Case (4) 

For a rule of the form P j+l = K;. ~ Kras to apply for 



780 Spring Joint Computer Conf~rence, 1969 

the (j + 1) - th reduction, there must be one or more 
symbols Z in V - T such that 

and y ~ > K;.u with u in V*. 

The pairs (K r- 1, a8 ) are the contexts in which rule K; ~ 
K,.8.8 applies. 

Mter the contexts for which cases (1)-(4) apply have 
been determined, there may in general still exist rules 
having the same contexts. The existence of such rules in 
a grammar may imply t.he necessity of backtracking 
methods for use in parsing a given string of that 
grammar. Or, such a grammar may be ambiguous. In 
the following section, we sketch a formal model for this 
normal-form leftmost parsing algorithm. In terms of 
this model, we can present an algorithm for eliminating 
the necessity of backtracking in a large class of un
ambiguous CFL's. 

Pushdown automaton parsing model 

In this section, we present an automaton model of 
our leftmost parsing algorithm. This model will be called 
a bounded-context acceptor (BCA), and can be described 
intuitively as follows: It has a finite number of states, 
a finite input vocabulary, and an auxiliary memory 
stack mechanism (called a pushdown store). In addition, 
it has an initial (or starting) state, a final (or accepting) 
state, and a boundary symbol jiJ whose function in the 
scheme is analogous to the control cards used before and 
after a computer program. In general, the BCA is in 
some state, and is scanning the topmost pushdown-store 
symbol K and an input-string symbol a. In a possibly 
nondeterministic manner, the BCA goes to another 
state, either by erasing K or by erasing a in the process, 
and possibly storing a new symbol on top of the 
pushdown-store. All these notions are restated more 
precisely in what follows. 

A bounded-context acceptor P is defined to be a 
seven-tuple: 

P = (Q, T, N, M, jiJ, So, F) , 

where 

a. Q is a finite set, called the states of the machine. 
b. T is a finite set of symbols, called the input-tape 

vocabulary . 
c. N is a finite set of symbols, called the pushdown

store vocabulary. 
d. M is a mapping of N xQxT into the finite subsets of 

NxNx {So} x(T U Ie}) U (N U {e}) xQx(T U {e}) 
-{e}xQx{e}. 

e. So is the initial state of the computation, and F is 
called the final state. 

f. jiJ is a special symbol such that 

Let A = (Q, T, N, M, jiJ, 80, F) be a BCA. A con
figuration of A is an element of 

{ # } x (N - {~}) * x Q x (T - {jiJ}) * x { ~ I . 

the configuration (jiJ t SI y jiJ) denotes the fact that the 
acceptor A is in state SI, with string jiJ t on the pushdown 
store and string y jiJ remaining to be read on the input 
tape. 

By analogy to our notation for CFL's, we can define 
an initial Configuration of ~ computation to be 

Co = (jiJ Sox jiJ), 

where x E T* - Ie} is the input string to be accepted. 
The final configuration is (jiJ F jiJ). The computation 
performed by a BCA is essentially a reduction sequence 
that reduces Co to the final configuration. 

Let C j and CHI be two configurations of a computa
tion. Then, C j direztly reduces to CHI, or C j 1- CHI, if 

C; = (t Z 81 a w) , CHI = (t Y 82 b w) 

and where 

and 

and 

(y, Ss, b) E M(Z, S1, a) 

[(t = e) & (Z = jiJ) V (t E { jiJ } x (N - {jiJ D*) 
& (Z E (N - {jiJ D)] 

&[(w=e)&(a= jiJ) V (wE(T- {jiJ})*x{jiJ}) 
& (aE (T - {jiJ}) ) ] 

& r-.J [(Z = jiJ) & (a = jiJ)] 

(b E (fa} U {eD) & [(y E (Z U {e}) x (N U {e})) 
& (Z ~ jiJ) 
V (y E { jiJ } x (N U {e D) & (Z = jiJ)]. 

We next define the sequence of configurations that 
leads to a complete computation of the acceptor. 



Let 

and 

be configurations of the computation. Then 0 1 reduces to 
Ct, or 0 1 I..!... Ct, if there exists a sequence of configura
+;nnQ fR_ R. R.'\ "nnf'h ~ _ R nrl ~ TT _1 
U&V.a..a..;J , ......... u, .... ..Ll' ••• , A-.4.", 'u.a."'.a..a. vI = .......... 03u....'-A. vi ~ nj ana. 

(i = 1, ... , j) . 

Then, the language accepted by a BOA P is the set of 
input strings given by 

L(P) = {x: [(# Sox#) I.!... (# F #)] & [x ET* - tel]} . 

In the more standard pushdown-automaton acceptor 
model, 3 M is treated as a mapping from 

(N - {#}) x Q x (T U {e} - {#}) 

into the finite subsets of (N - { # }) * x Q. This formalism 
implies the existence of transitions between states in 
which the current input-tape symbol is ignored (i.e., the 
empty symbol e is erased from the input tape). When an 
input-tape symbol is used for a transition in this model . . ' 
It IS always erased during the transition. Thus, while a 
standard pushdown automaton having the same 
language can always be constructed from a BOA the . ' 
notIOn of context in determining a transition is lost, and 
the resulting acceptor will generally have fewer uniquely 
defined transitions than the original BOA. Moreover, 
given a standard pushdown automaton, a grammar for 
its language can always be found, 3 and, from this 
grammar, a BOA can be constructed to accept the same 
language, as will be seen. Hence, BOA's and standard 
pushdown automata are equivalent in computational 
power, but a BOA with uniquely defined transitions does 
not always correspond to a pushdown automaton with 
uniquely defined transitions. 

A utomaton realization of leftmost parses 

With the BOA model defined above, it is possible to 
introduce a correspondence between rules of a normal
form grammar and the states and symbols of a BOA. In 
this correspondence, the initial symbol S of a grammar 
becomes the final state F of the BOA. Furthermore, the 
BOA constructed from a normal-form grammar is a 
slightly restricted version of the BOA model. This is 
because transitions from initial state So of a constructed 
BCA can only occur together with the erasure of an 

input-tape symbol. Since the full BOA model only allows 
the pushdown store to be increased in size during a 
transition into state So, this additional restriction means 
that the pushdown store of a constructed BOA can 
increase in size by at most one symbol for each input-tape 
symbol read during a computation. 

The BOA is constructed from a normal-form grammar 
as follows: For all rules in the grammar of the forms 

(where the capital letters are nonterminals and the small 
letters are terminal symbols), the Ajl's and Ai'l's become 
states of the BOA. The Aa's become members of N , 
the stack vocabulary, and the aJ"2's become members 
of T, the input-string vocabulary. What follows is the 
algorithm for constructing a BOA that accepts the 
language of a normal-form grammar. The algorithm is 
in four sections corresponding to the four rule types 
allowed in normal-form grammars. 

I. Rule Ai ~ AaAt"2 with con.texts (A,")., a.): 

If Ai E N, then (Ai, So, a,) E M(A,")., At"2, a.). 

If Ai E Q, then (e, Ai, a,) E M(Ail, Ail, a.). 

These transitions take care of all possibilities arising 
from case (3) of the leftmost parsing algorithm. If Ai is 
in N, that means that a pair of nonterminals A~J"2 
appears on the right part of some rule of the grammar. 
Hence, Ai is stored on top of the stack, and the autom
aton transfers to its initial state, from which it 
proceeds to discover Aj2. If Ai is in Q, then Ai is either 
the second nonterminal of some rule of the grammar or 
is the first nonterminal in a rule of the form Ale ~ Aiak2. 
In either case, the stack does not increase in length 
during the' transition. 

II. Rule Ale ~ ~lale2 with contexts (Kr-I, ak2): 

If Ale EN, then (Kr-IAle, So, e) E M(Kr_l, Alel, ak2)' 

If AI; E Q, then (Kr- l, Ak , e) E M(Kr- l, Akl, ak2). 

These transitions take care of all possibilities arising 
from case (4) of the leftmost parsing algorithm. 

III. Rule Aj ~ a, with contexts (Kr, a.): 

If Aj EN, then (KrAj, So, e) E M(Kr, So, a.). 

If Aj E Q, then (Kr, Aj, e) E M(Kr, So, a.). 

These transitions take care of all possibilities arising 
from case (1) of the leftmost parsing algorithm. 



782 Spring Joint Computer Conference, 1969 

IV. Rule Ai ~ Ail with contexts (K r - l, a8): 

For every chain of rules in the grammar of the form 

Pl = A~A(1) 

P2 = A(l) -t ... A~(2) , ••• , 

P1l = A(1I-1) ~ A(1I) with n ~ 2 , 

and such that there is at least one context (l(;.-I, a;) 
common to rules (PI, ... , P 11), we introduce automaton 
transitions of the form 

(l(;.-l, A (11-1), a~) E M (l(;.-I, A (11), a~) 

These (A (1), ••• , A (11») are thus treated as states of the 
BCA. 

For all contexts (Kr-I, as) associated with individual 
rules Ai -t Ail, we have the following: 

If Aj E N, then (Kr-IA j , 80, as) E lVI(K r _ 1, Ajl, aa). 

If A j E Q, then (K r - l , Ail as) E A'l(K r _ l , Ajl, a,). 

These transitions take care of all possibilities arising 
from case (2) of the leftmost parsing algorithm. 

When all transitions of a machine have been defined 
as described above, the language accepted by that 
machine is the language of the grammar from which it is 
constructed .14 

A simple programming language translator 

The following is a simplified grammar for a computer 

programming language having nested block structure, 
conditional statements, and arithmetic assignment 
statements. The ALGOL conventions are used for 
representing symbols of the grammar; i.e., members of 
V - T are enclosed by the metasyntactic brackets 
" (" and" )", and members of T are not. The symbol 
"I" is a separator that allows two or more rules having 
the same left part to be written together. 

Table I-A grammar for a simple progranuning 
language 

G: (program) -t (body) (stat) end 

(body) -t begin I (body) (stat); 
(stat) -t (program) I (assignment) 
(assignment) -t (var) : = (expr) 
I \ I· '1 \ I ,.,. '1 \ 

~expr ) -t ~Slmple expr) I ~11 ClaUSe) 
(simple expr) else (expr) 

(simple expr) -t (term) I (simple expr) 
+ (term) 

(term) -t (factor) I (term) * (factor) 
(factor) -t (var) I (number) I [(expr)] 
(if clause) -t if (relation) then 

(relation) -t (simple expr) = (simple expr > 
(var) -t AIBlcl ... Iz 
(number) -t (digit) I (number) (digit) 
(digit) -t 0111 ... 19 

The programming language G easily reduces to the 
following normal-form grammar G' augmented by the 
addition of endmarkers: 

Table II-The normal-form version of grammar G 

G': 8 -t YIJ~ 

Y I -t Y 2 (program) 

Y2~ * 
(program) ~ Xl end 

Xl ~ (body) (stat) 
(body) ~ begin I X 2 ; 

X 2 ~ (body) (stat) 
(stat) -t (program) I (assignment) 
(assignment) ~ Xs (expr) 

Xs ~ (var) := 
(expr) ~ (simple expr) I X 4 (expr) 

X 4 ~ Xl) else 
Xl) ~ (if clause) (simple expr ) 

(simple expr) ~ (term) I Xe (term) 
Xe ~ (simple expr) + 

(term ) ~ (factor) I X7 (factor) 
X7 ~ (term)* 

(factor) ~ (var) I (number) I Xs] 
Xs ~ ~ (expr) 
X g -t l 
(if clause ) ~ XIO then 
XIO -t Xu (relation) 
Xu -t if 
(relation) ~ X I2 (simple expr) 
X 12 ~ (simple expr) = 
(var) -t AIBlcl ... IZ 
(number) ~ (digit) I (number) (digit) 
(digit > ~ 0\11 ... 19 

"What follows is a table of contexts in which the rules of G' can be applied during a leftmost parse of some string 
in L(G'): 



Systems for Designing Fast Progrannuing Language T"ranslators 783 

Table III-Contexts associated with rules in Table II 

Rule Contexts 

S ~Yl~ (e, ~) 

YI ~ Y2 (program) (Y2, ~) 

Y2~ ~ (e, '*), 

(program ) ~ Xl end (Y2, end), ( (body), end) 

Xl ~ (body) (stat) ( (body), end) 

(body ) ~ begin (Y 2, begin), ( (body), begin) 

-(body ) ~ X 2; (Y2, ;), ( (body), ;) 

X 2 ~ (body) (stat) «body), ;) 
-

(stat ) ~ (program) ( (body), end), «body), ;) 

(stat ) ~ (assignment) ( (body), end), «body), -;) 

(assignment ) ~ X3 (expr) (X3, end), (X3, ;) 

X3 ~ (var) := ({body), :=) 

(expr ) ~ (simple expr) (X3' ;), (Xs, end), (Xg, ]) 

(expr) ~ X 4 (expr) (X4, end), (X4' ;) 
----

X 4 ~ ~ else (Xs, else), (Xg, else) 

~ ~ (if clause) (simple expr) ( (if clause), else) 

(simple expr ) ~ (term) ( (if clause), else), (Xs, ;), (Xs, end, 
(X9,]), «if clause), + ), (X4, + ), (X a, +), 
(Xg, +), (Xu, =) 

(simple expr ) ~ X6 (term) (X6, +), (X6, else), (X6, ;), 
(X6, end), (X6, =), (X6, then), (X6, ]) 

X6 ~ (simple expr) + «if clause), +), (X4' +), (Xs, +), (Xg, +), 
(X12, +), (Xu, +) 

..... -

(term) ~ (factor) (X6,- +), (X6, =), (X6, then), (X6, else) 
(X6, *), ( (if clause), *), (XI2, *), 
(X4' *), (Xg, *), (Xs, *), 
«if clause), else), (Xs, ;), (Xa, end), 
(~,]), «if clause), +) -, (X4, +), 
(Xa, +), (Xg, +), (Xu, =) 



784 Spring Joint Computer Conference, 1969 

Rule 

(term) ---? X 7 (factor) 

X 7 ---? (term)* 

(factor) ---? (var) 

(factor) ---? (number) 

(factor) ---? Xsl 

Xs ~ Xo (expr) 

X9~ [ 

(if clause) ---+ X IO then 

XlO ---+ Xu (relation) 

Xu ~ if 

(rela.tion) ---+ Xl! (simple expr ) 

Xu ---? (simple expr) = 

(var) ---? A 

(number) ---? (number) (digit) 

Contexts 

(X7,]), (X7' ;), (X7, end) 

(X6, *), ( (if clause), *), (X12, *), (Xu, *) 
(X4' *), (Xs, *), (Xo, *) 

(X7, *), (X7, +), (X7, =), (X7, then), 

(X7' else), (X6, +), (X6, =), (X6, then), 
(X6, else), (X6, else), (Xa, *), «if clause), *), 
(Xu, *), (X4' *), (X9, *), (Xs, *), 
( (if clause), else), (Xs, i), (Xs, end), 
(X9' )), «if clause), +), (X4' +), 
(Xs, +), (X9, +), (811, =) 

(X7,]), (X6,]), ( (if clause ),]), (Xu,]) 
(Xu,]), (X4,]), (Xv,]), X a,]) 

(Xo,D 

(Xv, l), (X7' [), (X6, l), ( (if clause ), D 
(Xl!, D, (Xu, [), (Xs, [), (X4' D 

(X3, then), (X4' then), (Xi" then) 

(Xu, then) 

(Xs, if), (X4' if), (Xg, if) 

(Xu, then) 

(Xu, =) 

(X7, A), «body), A), 
(X6, A), (X4, A), (Xo, A), (Xa, A), 
(X12' A), (Xu, A), «if clause), A) 

( (number), 1») ... , «number), 9) 

I 
«number), *), «number), +) 
«number), =), «number), then) 

I 
«number), else), «number), ;) 
( (number ), end) 

---------------------------------11--------------------------------
(digit) ---? 0 i 1 i ... I 9 ( (number), 0), ... , «number), 9), 

( (if clause), 0), ... , ( (if clause), 9), 
(X7' 0), ... , (X7, 9), 
(X6, 0), ... , (X6, 9), 

I 
(X4, 0), ... , (X4, 9), 
(Xu, 0), ... , (Xu, 9), 

I (Xa, 0), ... , (X12,9), 

I 



· Systems for Designing Fast Programming Language T'ranslators i85 

From Table III, a flow chart of the BCA that accepts 
L(G') can be constructed. This flow chart is abbreviated 
in that, for a given state, only those contexts necessary 
for determining a transition are presented. Thus, when 
no ambiguity will be introduced, only the stack symbol 
or the input-string symbol is used for determining which 
of several possible transitions can occur. In the flow 
chart, the array N, with index i, is used to represent the 
symbols of the stack, and the array S, with index j, 
represents the symbols of the input string. Note that 
"error exits," i.e., the instances of case (0) in the 
leftmost parsing algorithm, are omitted from the flow 
chart. An error is assumed to exist at any transition in 
which the appropriate symbols are not present on either 
the input string or the stack. 

The next step after synthesizing a BCA as in Figure 1 
is to design a translator· for the language accepted by 
that BCA. To do this, we employ a notation similar to 
that used in [13], and available in numerous versions in 
the current literature. The basic idea of the notation is 
to introduce rules of translation in a one-to-one cor
respondence with the rules of the original grammar. 
These rules of translation describe the effect of trans-

NTIALIZATION 
i-O 
Ni-· 
j-I 

i-i+1 
.-------fNj-5j 

j-j+1 

(tlglt) 

l-i+1 
Ni - (If clause) 

j-j+1 

lating the right parts of the syntactic rules with which 
they are associated. As an example, we might have the 
following pairing in some grammar: 

Syntactic Rule: Rule of Translation: 

(term ) ~ (term) * (factor) (term) (factor) multiply 

This pairing of rules can be represented as a transla
tion grammar Gt = (G, 0, f), where G = (V, T, P, S) is 
the programming language syntax, 0 is a translated 
program vocabulary, and f is a one-to-one mapping 
from Pinto PxO*. The rule of translation given in the 
above example is easily recognized as one rule for 
converting from standard arithmetic notation to reverse 
Polish notation. In the translated sequence '(term) 
(factor) multiply', the translated objects corresponding 
to (term) are written out in the sequence determined 
by the rules of translation associated with the syntactic 
rules derived from (term), and likewise with (factor). 
In general, if a rule of translation is identical to the 
right part of its associated syntax rule, we write the 
symbol 'I' in place of the rule of translation. 

1-1+1 

NI- <'!:,Ie) Sj 

j-J+I 

To So 

i-I+I 
NI-(body} 

j-j+1 

To So 

Figure I-The BCA acceptor of L(G') 



786 Spring Joint Computer Conference, 1969 

We can next present the-simple programming language given above as a translation grammar: 

Table IV-Translation grammar for a small language 

Syntactic Rules: 

G: (program) ---» (body) (stat) end 

(body) ---» begin 

(body) ---» (body) (stat); 

(stat) ---» (program) 

(stat) ---» (assignment> 

(assignment) ---» (var) : = (expr) 

(expr) ---» (simple expr) 

(expr) ---» (if clause) (simple expr) else (expr) 

(simple expr) ---» (term) 
(simple expr) ---» (simple expr) + (term) 

(term) ---» (factor) 

(term) ---» (term) * (factor) 

(factor) ---» (var) 

(factor) ---» (number) 

(factor ) ~ l (expr )] 

(if clause) ---» if (relation) then 

(relation) ---» 
(simple expr )(1) = (simple expr )(2) 

Rules of Translation: 

I 

I 

I 

I 

I 

(var) (expr) assign 

I 

(if clause) (simple expr) then (expr) else 

I 
(simple expr) (term) add 

I 

(term) (factor) muUiply 

I 

numberoperand (number) 

{expr> 

(relation) if 

(simple expr)(1) (simple expr )(2) equals 

----------------------------------------------------------------------------------
(var) ~ A variableoperand A 

(var) ---» Z variableoperand Z 

(number) ---» (digit) I I 

(number) ---» (number) (digit) 1 10 (number) muUiply (digit) add 

(digit ) ---» 0 I 

(digit) ---» 9 I 



Systerns for Designing Fast Progranuning Language Translators 787 

The details of the translator grammar can be ex
plained briefly: Essentially, arithmetic expressions and 
relations are translated into reverse-Polish strings 
through the rules of translation. Conditional expressions 
are rearranged so that if, then, and else become place
markers in the translated program, and the device that 
interprets the translated program contains routines for 
passing to the statements directly following if, then, or 
else as appropriate. Since the effect of interpreting the 
translated program is to coalesce assignment statements 
into a single resultant operand that is the "value" of the 
assigned expression, the semicolon ";" that separates 
program statements is written into the translated 
program so that the interpreting mechanism can erase 
the resultant operand of an assignment. begin and end 
are likewise written in sequence into the translated 
program so that the interpretor of this program can 
maintain a list of valid identifiers corresponding to the 
program's nested block structure. 

The translator of Figure 2 is thus a relatively 
straightforward extension of the PDA in Figure 1, with 

INITIALIZATION 

i-temp-O 
Ni - # 
j-I 

i-i+1 
Ni-Sj 
j-j+1 

~ 

ft. c 

temp - Sj +loxt8mJ, 
j-j+1 

S 

other 

i-i+1 
Nj-Sj 
j-j+1 

(vao 
Code C'variableoperand) 

CodeCSj ) 

j-j+1 
S" -? 

the additional structure arising from the appropriate 
rules of translation. The sequencing of operators to 
follow pairs of operands is accomplished by noting that 
state transitions such as the one that recognizes the 
sequence 

(simple expr> + (term) 

in Figure 1 are· appropriate points for writing out 
operators (here, "add':;) into the translated program. 
Likewise, a rule of translation such as 

numberoperand (number) 

requires some temporary storage in the translator to 
store the symbols that comprise (number), finally 
writing out the translated sequence 

Code ('numberoperand') 

Code (temporarystore). 

To So 

j-j+1 
Nj-Sj 
j-"+I 

!!!!. 

other 

Figure 2-The BCA tra.nsla.tor of L(G') 



788 Spring Joint Computer Conference, 1969 

Deterministic and extended-deterministic acceptors 

An acceptor A is called deterministic if M is a partial 
mapping from 

NxQxT into NxNx{So}x(T U {eD 
U (N U {e}) x Q x (T U {e}) - {e} x Q x {e}. 

This is equivalent to saying that, for every configuration 
C of A there is at most one configuration C2 for which 
C: 1- C'/.. By an induction argument, if x is in L(A), 
there is only one sequence of configurations by which 
( # SoX #) I': ( # F # ). Thus, if A were constructed from 
some grammar G, there wouid exist exactiy one 
leftmost parse for each x in L(G), and G would be 
unambiguous. However, it is fairly easy to construct 
languages that are unambiguous and for which no 
deterministic BCA can be constructed.13 

Since not every unambiguous grammar leads to a 
deterministic BCA, it is of interest to consider methods 
for extending the BCA model to handle a larger class 
of unambiguous languages in some "almost determin
istic" fashion. This is important because any non
deterministic automaton is inefficient to use, owing to 
t he necessity of repeating its computations until the 
correct sequences of configurations are found. This 
necessity for backtracking during computations of such 
an automaton A 'with input string x in LeA) occurs 
when a configuration C1 is reached for which 

and n ~ 2. 

Since we assume that L(A) is unambiguous, there can 
exist only one C li above for which C li I.:!... (# F # ). The 
problem then becomes one of finding a general algorithm 
for processing each of t.he n possibilit.ies 9obove; toget.heT 
with their descendents, in some parallel f~hion, perhaps 
similar to the methods used for "real-time" languages.4 ,1l 

The algorithm that we present here for implementing 
parallel computations of nondeterministic BCA's in
volves a basic computational strategy: No matter how 
many alternative configurations exist at some step in a 
computation, all the configurations must have the same 
input-string symbol in common. Thus, simulation of a 
parallel computation having no more than n configura
tions active requires only one input string and n 
pushdown stores. Moreover, the number of these stacks 
in use can shrink and grow during a computation, as 
possible configurations are rejected or added. As will 
become apparent, at most p stacks will ever be in use at 
once, where p is the number of states in the original 
BCA. In what follows, it will also be apparent that 
there is no "communication" between the stacks; i.e., 
the extended BCA that results is still equivalent in 

computational power to the BCA from which it 
originated. . 

Given an iriitially nondeterministic acceptor A, the 
algorithm constructs sets of states from A, and extends 
the transition table ::.\1 to include transitions between 
these sets of states. Transitions are also defined between 
individual states of A and sets of states, and between sets 
of states and individual states. In these transitions 
involving sets of states, each state in a set is associated 
with a single stack, and the number of stacks in opera
tion during a computation increases or decreases 
depending on the relative sizes of the sets between which 
transitions occur. 

The algorithm for constructing sets of states operates 
in two phases: In the first phase, sets of states Sii are 
constructed from individual states S i of the original 
acceptor. These constructed sets have the property that, 
for a given context (Kr-z, as), each state in Sij cor
responds to one of the configurations that can result 
from a configuration containing state Si. In the second 
phase, the sets of states Sii from the first phase are used 
to construct further sets of states Siik. These sets have 
the property that, for a given context (K', as), each 
state in Sijk appears in a configuration derivable from 
some state in Sij. 

There are two cases in each phase of the extension 
algorithm, corresponding to the erasure or non-erasure 
of an input-string symbol by the configurations active 
in some step of a computation. The extension algorithm 
acts so as to force the state-set transitions of an acceptor 
to proceed by first erasing as many pushdown-store 
symbols as can be erased before all states in the set that 
results are ready to erase an input-string symbol. 
Hence, on transitions from a set of states in which, for 
some context, at least one state in the set erases a sta~k 
symbol, the remaining states that take part in the 
transition are "inactive." These inactive states present 
in a transition are carried along from one transition to 
the next until a configuration is reached in which all 
states in that state set can read the input-string symbol 
simultaneously. The formalism of the extension algorithm 
in the following section merely implement.s these ideas, 
and provides a method of determining whether, for a 
given BCA, this extension algorithm is adequate to 
prevent the necessity of backtracking. 

1t1 ultiple configurations 

A muUiple configuration C' of some acceptor A is a 
triple 

where the v;. are in N*, SG is in (P(Q) -Q) (P(Q) is the 



set of subsets of Q), w is in T*, and the number of states 
in S8 is m. 

Given a BCA, let 1- be the relation on 

(jFJN*xQxT*jFJ) U 

(jFJ N*x ... x jFJ N*x(P(Q) - Q)xT* jFJ) 

defined as follows: 

I. Let C1 = (vKS1aw), 

where [ (v = e) & (K = jFJ) V (v E { jFJ }x (N - { jFJ D *) 
& (K E(N - {jFJ D)] 

& [(w = e) & (a = jFJ) V (w E (T - { jFJ D* x { jFJ }) 
& (a E(T - {jFJ})] 

& ~ [(K = jFJ) & (a = jFJ)] & [SI E Q] . 

If (K, a) is a context of SI from which more than one 
configuration can be derived, then one of the following 
two types of transitions can be defined using multiple 
configurations. When cases (a) and (b) below both 
succeed for the same BCA state SI and context (K, a), 
then this method fails for that BCA. 

(a) Let 

Se = {c,: [(y" Ci, a) E M(K, SI, a)] 
& [Yi E ({K} U {eDx(N U {eD]} 

Then, 

C2 = «VYl, ... , VYm) Se aw) 

and 

Cd- C2. 

We say that 

M(K, 81, a) = «Yl, ... , Ym), Se, a). 

(b) Let 

Se = {Ci: [(Yi, Ci, e) E M(K, SI, a)] 
& [Yi E {K}x(N U {e})]} 

Then, 

C2 = «VYl, ... , VYm)ScW) 

and 

Cd- C2. 

We say that 

M(K, SI, a) = «Yl, ... , Ym), Se, e). 

II. Let C] = «VIKl, ... , vtKt)Sa<!w), 

where [(vi=e)&(Ki= jFJ) V (ViE{jFJ}x(N 
{ jFJ }) *) 

& (KiE(N - {jFJ D)] 

& [( w = e) & (d = jFJ) V (w E (T - {jFJ}) * x 
{ jFJ }) 

& (d E(T - {jFJ })] 

& .-"'" [(K, = #) & Cd = #)] & [Sa e P(Q) - Q] 

In reality, Ci stands for t different BCA configurations, 
one configuration corresponding to each triple 

(ViKiaJ-dW) , where j = 1, ... , t and aj E Sa . 

To discover what configurations can result from C' in a 
computation, it is necessary to trace the descenda~ts of 
each of the t configurations represented by Ci. In the 
process of tracing descendant configurations our 
strategy will be to force as many transitions as p~ssible 
in which pushdown-store symbols are erased by states 
in the sets constructed. Ultimately, a state or a set of 
states will result in which, for one or more contexts that , 
state or state set can erase an input-string symbol. The 
following construction illustrates this principle: 

(a) Let SB = {Bi : (~ai)[(aj E Sa) 
& [(Yi, B i, d) E M(Ki' ai, d)] 
& [Yi E ({Ki} U {e})x(N U {eD]} 

U {ak: (ak E Sa) & [[{Ki}X(N U {eDxQ 
::> lVI(Ki' ak, d)]} 

Then, Cll = «ViI Y ~"1, ... , V iiY ii, Vk1Kkl, ... , 
Vk1lKkn)SBdw) 

and Ci 1- Cll. We say that 

(b) Let SB = {B,: ~ai) [(ai E Sa) & [(y i, B" e) 
E M(K" a;, d)] . 

& [y, E {K,}x(N U {e})]] & 
~ (~ak) [(ak E Sa) 

& [({K,} U {e})x(N U {eD xQx{d} :::> 
M(K" ak, d)]} 

Then, C~ = «vuY."1, ... , ViPYip)SBW) 

and Ci 1- C2. We say that 

M«Kl, ... , K t), Sa, d) = «Y."1, ... , Y,p)-, SB, e) 



790 Spring Joint Computer Conference, 1969 

Note here that SB in one of the transitions above could 
be a set consisting of one or more states. When S B is a 
set consisting of one state, then the transition defined 
from S to SB has gotten rid of the alternative configura
tions represented by Sa and its contexts. 

We see that the transitions constructed above from a 
single configuration to a multiple configuration and from 
one multiple configuration to another preserve the 
actions that would be taken by the original BCA. In 
particular, the one successful reduction sequence of a 
BCA over a string ·x is contained in the extended 
reduction sequence involving multiple configurations.13 

The extra stacks used during a multiple configuration 
reduction sequence simply keep track of additional 
possibilities until all but one sequence of configurations 
is eliminated. 

In part I of the extension algorithm, the transitions 
are not uniquely defined for those BCA's in which, for a 
state s and context (K, a), the following two conditions 
apply for the same context (K, a): 

[(K Ute}) x (N Ute}) xQx {a} ::> lVI(K, s, a)] 
& [{K}x(N U {e}) xQx {e} ::> M(K, s, a)] 

When these conditions occur simultaneously, the neces
sity of simultaneously erasing and not erasing the same 
input-string symbol during a transition is incompatible 
with our parallel-processing algorithm. It may be 
possible to use "lookahead" techniques to decide which 
of the two types of transitions above should take place 
by scanning further symbols of the input tape. The use 
of these lookahead techniques to improve the extension 
algorithm will be discussed in another paper. 

The remaining condition that leads to difficulties in 
the algorithm arises when there exists a state g in some 
multiple configuration S", such that g is immediately 
descended from two or more states y iI, •.• Y i" in some 
81/ for which . 

For this transition, 1- is not uniquely defined, since 
there is no longer a one-to-one correspondence of 
pushdown-store strings and states of S", In such a case, 
more than one reduction sequence may exist for a string 
in the acceptor's language. When these two degenerate 
conditions arise during the extension of a BCA, it is 
instructive to rewrite that BCA as a rightmost parsing 
algorithm to see whether the same degenerate condi
tions arise when parsing strings of that language from 
right to left. 

We can next define the language accepted by a BCA 
in terms of a computation involving sequences of 

multiple configurations. We say that C1 /.!-. Cm when 
there exists a sequence of (possibly multiple) configura
tions (C1, ••• , Cm) such that 

Ck- 1 I~ Ck for k = 2, ... , ill . 

The language of an acceptor A which is extended to 
handle multiple configurations is then given by 

L(A) = {x: (x E T* - {e}) & [[(j~SoX~) I.!-. (~F~) 

& (SF E P(Q) - Q) & (~qi) [(qi E SF) 
& (q i = F) & (V i = ~)]] } 

With these preliminaries in mind, we can state the 
following theorems that are proved in (13). 

Theorem 1 Let P be a BCA for which 1- is uniquely 
defined for multiple configurations. Let 

P' = (Q', T, N', M', ~,So, F) 

with Q' c P(Q), N' c N U Nx ... xN, and lVI' the 
original :V1 of P together with the transitions defined on 
multiple configurations. 

Then, L(P) = L(P') . 

That this is so follows from the observation that, for /
uniquely defined on multiple configurations of P, all 
computations of P over some input st.ring x in L(P) are 
contained in a single computation of P' over x. Con
versely, no computation of P' over some input string y 
will succeed unless y is in L(P). 

Theorem 2 Let P be a BCA constructed from grammar 
G having multiple configurations for which 1- is 
uniquely defined. Then L(G) is unambiguous. 
That this is so arises from the fact that the conditions 
for uniqueness of 1- also insure uniqueness of leftmost 
parses in L(G). 

Upper bounds on storage and computation times 

This concluding section contains a fairly elementary 
proof of the fact that BCA's can accept their languages 
in time directly proportional to the length of their input 
strings (or programs to be translated). Our reason for 
including this proof is to emphasize the need for a basis 
of comparison between different compiler-writing sys
tems. Thus, if compiler-writing system A can produce a 
single-scan FORTRAN compiler whose translation 



Systems for Designing Fast Programming Language Translators 791 

speed is bounded by n2 (with n the length of an input 
program), and compiler-writing system B claims a speed 
of, say, n log(n), it would seem fairly obvious that 
system 0, with speed 3n, would be the economic choice 
for a fast, single-scan compiler system. Again, if there 
are limitations on computer memory size available for 
the compiler, and if the compiler is to run in a "load and 
go" or, possibly, a "reentrant" mode, it is desirable to 
pick a compiler-writing system that uses as little "core" 
as possibie. 

The actual size of one of our compilers is determined 
by the number of rules in the grammar of its language 
and, also, by the length of these rules. Roughly speaking, 
the number of "states" of a compiler is less than or 
equal to the number of rules in its normal-form grammar 
of the types 

The number of comparisons necessary to specify a 
transition away from one state is bounded by the 
number of contexts that can determine a transition from 
that state. Thus, the size of the compiler: program is 
related to the number of rules used in the language and 
to their lengths. 

We can speak more quantitatively about the amount 
of space required for the pushdown store of a determin-
istic BOA. Let x = al ... an be an input string to some 
BOA, and let y = ~ Kl ... Km represent the string of 
symbols on the pushdown store at some point during a 
computation. Then, after symbol ak(k = 1, ... , n), 
is "erased" by the BOA, 

m~k+1. 

This is so because, by our definition of a BOA con
structed from a grammar G: 

(a) For each input symbol erased, the stack can 
increase in length by at most one symbol. 

(b) For each stack symbol erased, at most one 
symbol can take its place. 

Hence, there are never more than (n + 1) symbols on 
the stack, where n is the length of the input string. In 
the case of an extended BOA with multiple-state 
configurations, there can never be more than k stacks 
active at once, where k is the number of states in the 
original BOA. For such a BOA, then, there is an upper 
bound of k(n + 1) symbols stored on stacks during a 
computation. 

In order to derive an upper bound for computation 
time of a BOA, we must first discover an upper bound 
on the number of actions that can be taken by a BOA 

without erasing an input-string symbol during a compu
tation. Let p be the number of rules in the grammar for 
a BOA such that the rules form a chain 

i = 2, ... , p, 

such that all rules of the chain have at least one context 
in common, and such that p denotes the length of the 
longest chain of rules of this sort in the grammar. Then, 
·without the erasure of a symbol from the pushdown 
store and the input string, at most p state transitions 
can occur. 

If ~ symbols are on the pushdown store after input 
string symbol ak has been erased, at most 

(1 + ~)(1 + p) 

state transitions can occur when erasure of stack 
symbols is allowed before symbol ak+1 is erased. How
ever, if only Wk symbols are removed from the stack, 
then at most 

(1 + wk)(1 + p) , Wk = 0, 1, ... , p 

state transitions can take place before ak+l is erased. 
Next, we can ask what total number of symbols can 

be erased from the stack during any computation, i.e., 
what is the maximum value of 

To answer this question, we note again that our BOA 
model only allows a new stack symbol to be written as a 
result of the erasure of an input-string symbol. Since, 
for an input string of length n, no more than n symbols 
can be written on the stack, no more than n symbols can 
be extracted from the stack during any computation. 
Thus, 

Finally, we can arrive at an upper bound for the 
number of configurations that can appear during the 
computation of a deterministic BOA over a string x 
of length n: 

MAX ::; (n + 1) + (p + 1) (WI + ... + Wn + n) 

or MAX ~ n(2p + 3) + 1 

We know also that 

MAX~n+l, 



792 Spring Joint Computer Conference, 1969 

where this lower bound is reached when the BCA of 
some grammar has an empiy pushdown-store vocabu
lary; i.e., is a finite-state acceptor. Hence, 

n + 1 ~ MAX ~ n(2p + 3) + 1 

The upper bound on the number of configurations 
during a computation also holds for extended BCA's 
having multiple-state configurations. This is because 
the computations of the nondeterministic BCA from 
which the extended BCA was constructed are all 
included in the computations of that extended acceptor. 

ACKNOWLEDGMENTS 

The author expresses his sincere gratitude to Dr. 
IVIichael Ha.u~son for his thoughtful criticisms and 
suggestions on the subject of this paper. The research 
for this paper was supported in part by N.A.S.A. grant 
N sG-398 to the Computer Science Center of the 
University of Maryland. 

REFERENCES 

1 J EICKEL M PAUL F L BAUER K SAMELSON 
A 8yntax-wntrolled generator of formal language proce880r8 
Comm ACM 6 August 1963 451-455 

2 R W FLOYD 
Syntactic analy.~~ and operator preced.eru:.e 
JACM 10 July 1963 316-333 

3 S GINSBERG S GREIBACH M HARRISO~ 
Stack automata and compiling 
JACM 14 January 1967 172-201 

4 S GINSBURG M HARRISON 
One-way nondeterministic real-time lisi-8torage languages 
JACM 15 July 1968 428-446 

5 S GINSBURG 
The Mathematical Theory of Context-Free Languages 1966 

. 6 S GREIBACH 
Inverses of phrase structure generators 
Doctoral Dissertation Harvard University 1963 

7 L H HAINES 
Generation and recognition of formal languages 
Doctoral Dis...<:ertation MIT 1965 

8 E T IRONS 
A syntax-directed compiler for ALGOL 60 
Comm ACM 4 January 1961 51-55 

9 D E KNUTH 
On the translation of languages from left to right 
Information and Control 8 December 1965607--639 

10 P M LEWIS II R E STEARNS 
Syntax-directed transduction 
JACM 15 July 1968 465-488 

11 C PAIR 
Arbres, piles et compilation 
Rev. Francaise Trait Inf 7 1964 199-216 

12 A ROSENBERG 
On the independence of real-time definability and certaiu 
structural properties of context-free languages 
JACM 15 October 1968 672--679 

13 V B SCHNEIDER 
The design of proce8sors for context-free languages 
~ational Science Foundation Memorandum ~orthwestern 
University August 1965 

14 V B SCHNEIDER 
Pushdown-store processors of context-free languages 
Doctoral Dissertation Northwestern University 1966 

15 V B SCHNEIDER 
Syntax checking and parsing of context-free languages 
by pushdown-store automata 
Proc S J C C 1967 

16 V B SCHNEIDER 
A fast translator system for the EULER programming 
language 
Computer Science Center Technical Report University 
of Maryland 1969 

17 N WIRTH H WEBER 
EULER: A generalization of ALGOL and its formal 
definition: parts I and II 
CACM 3 January-February 1966 13-25 and 89-99 



Generating parsers for BNF grammars * 

by FRANKLIN L. DEREMER 

M assachusetls Institute oj Technology 
Cambridge, Massachusetts 

INTRODUCTION 

The procedure described herein is in essence an exten
sion, albeit a simplification, of the work Earley! which 
in turn was based on Evans,2 Feldman,3 Floyd,4.5 and 
Standish.6 For a large subset of grammars, the pro
cedure maps the Backus N aur Form (BNF) definition 
of the grammar of a language into a deterministic left-. ' 
to-rIght parser for the sentences in that language. It is 
shown below that the procedure by design, covers all 
bounded right context gramm.ars and, as a by-product, 
some LR(k) grammars which are not bounded right con
text. See Knuth7 for the definitions of these classes of 
grammars. If two parameters are incorporated a priori 
into the procedure, one limiting the look-back and the 
other limiting the look-ahead capabilities of the parser 
to be generated, an algorithm results. For each BNF 
grammar G the algorithm either rejects G as not bound
ed right context for the specified limits or it generates a 
parser for G. 

More precisely, the algorithm maps a set of BNF 
productions into a program: a "reductions analysis" 
programt consisting of modified Floyd productions, 
really reductions, referred to below as FPL (Floyd Pro
duction Language) statments. ** The program consists 
of labeled, mutually exclusive groups of statements 
called sections. Each section has a specific task to per-

• T~ work was supported in part by the Department of Comput
er SCIence, University of Illinois, Urbana, Illinois, and in part 
by the Advanced Research Projects Agency as administered by 
the Rome Air Development Center, under Contract No. US 
AF 30(602)4144. 

t It is assumed that the reader is familiar with reductions analysis 
pro~rams and the associated stack. input string, and manip
ulatIOns thereupon. See Cheatham.s 

** This nomenclature is adapted to clarify the distinction 
between the BNF productions, which together define the granunar 
of a language, and the FPL statements which, when combined to 
form a program, describe a parser. 

form. It is activated, by transfer of control to its first 
statement :ria t.he ~ab~l, only at appropriate times. U p
on each actIVatIOn It eIther scans a new terminal symbol 
or makes a reduction (combined with an "unscan" in 
the case of a production with an empty right part) and 
then transfers control to the appropriate next section 
or it transfers control to an ERROR routine if controi 
falls out the bottom of the section. 

The algorithm is based on Earley'S intuitive notion 
that the top symbols on the stack matched against the 
right parts of certain productions should determine 
parsing decisions. It is an extension of his algorithm 
in that it provides for both finite look-ahead and finite 
l?ok-back and in that it covers productions with empty 
rIght parts. It is a simplification of his algorithm in that 
it allows reductions only at the top of the stack, there
fore reducing the number of mapping rules. 

A word about notation is in order before proceeding. 
In this paper, non-terminal symbols are represented by 
Latin capitals, terminals by lower case Latin letters, 
arbitrary strings by the Greek letter O!, and the empty 
string by the Greek E. The Greek letter (]' designates a 
symbol which matches any other symbol. 

The algorithm 

The algorithm simply consists of: (a) three rules to 
determine what sections are necessary for the program, 
(b) three rules to determine which productions should 
be mapped into statements for each section, (c) four 
rules to map the productions into statements, (d) a 
rule which prescribes the combination of some state
ments in a given section and a corresponding com~ 
bination of certain' sections, and (e) a contextual 
analysis rule for expanding statements so no two state
ments in a given section are both applicable to a given 
stack and input string configuration. The latter oper:.
tion is referred to below as making the statements 

793 



794 Spring Joint Computer Conference, 1969 

disjoint. There are also several rules for optimizations, 
some of which are given toward the end of the paper. 

a. Necessary Sections. A special START section 
and a special sect.ion for SUCCESS EXIT are 
required together with the following; 

1. A section labeled Nh is required for each 
non-terminal N which appears in the right 
part of some production as other than the 
first symbol. This section is activated when
ever one of the terminals, which may begin 
N, is supposed to be at the top of the stack. 
I t is the purpose of section Nh to verify 
that one of these terminal "head symbols" 
is indeed at the top and, depending upon 
which terminal is there, to take appropriate 
action to commence, and perphaps conclude, 
a reduction to N. 

2. A section labeled t (11", p) is required for each 
occurrence of a terminal as the p-th symbol 
in the right part of each production 11", where 
where p ~ 2. This section consists of ex
actly one statement which compares the 
first p symbols of production 11" with the top 
p symbols of the stack. It is activated only 
when the match must occur for a well
formed string. Its purpose is to verify the 
top 8)'lnbo1 and to take appropriate action 
to continue the parse. 

3. A section labeled Nt is required for each 
non-terminal N which appears in the right 
part of some production. The section is 
activated immediately after a reduction to 
N occurs at the top of the stack. The state
ments in this section indicate comparisons 
t.o t.he stack to determine which of the pro~ 
ductions in whose right part N appears is 
applicable to the case at hand. A match 
determines the appropriate subsequent ac
tion. 

b. Descriptor Sets. In order to generate the appro
priate set of statements for a given section, a 
descriptor set of pairs D = ( (11"1, PI), ... ) is as
sociated with each section label. This descriptor 
set serves to indicate to which part of which 
productions the mapping rules described below 
are to be applied. The pair (11", p) points to the 
first p symbols of production 11" as the stack com
parison symbols of the corresponding statement. 
The descriptor sets are determined as follows: 

1. D Nh : Initially DNh is empty and the fol
lowing recursive procedure is applied. The 

right part of each production 11" that defines 
N is examined. If it is empty, then (11", 0) 
is added to DNh ; if it begins with a terminal, 
then (11"; 1) is added to D Nh; otherwise it be
gins with a non-terminal and the procedure 
is applied to that non-terminal. 

2. D ter • p) contains exactly one pair (11", p). 
3. DNt : The right part of each production 11" is 

examined. If the non-terminal N appears as 
the p-th symbol, then (11", p) is in DNt• 

c. The BNF to FPL Mapping Rules. Presented in 
Table I are four rules for mapping BNF pro
ductions into FPL statements. Together with 
the descriptor sets they represent a naive first 
try at generating a parser for the grammar. Im
plicitly, the rules assume there is no question about 
which production applies to the case at hand but 
only what action is to be taken by the parser 
next, given that a certain production is appli
cable. It is the purpose of the last two rules of the 
algorithm to extend it to cover a reasonable set 
of grammars by resolving confusion about which 
productions may apply to different cases within 
a given section. 

Table I 

The BNF to FPL mapping rules. a represent:s the first !' 

symbols of production 11, a is a SYMbol which matches any other 

symbol, and q - p + 1. 

BNF Production (11. e) Maes Into FPL Statement 

(1) M ::- aN ••• -> al * Nh 

(2) H ::- a b ••• -> al * t(1I, q) 

(3) M ::- a al .. MI Mt 

(4) M ::- £ -> 0'1 .. Mia Mt 

The rules of Table I are explained intuitively 
as follows. If the first p symbols of the right 
part of production 11" are at the top of the stack and 

1. if the (p + 1 )st symbol is a non-terminal N, 
then the parser should scan (*) the next 
terminal and activate section Nh to begin 
to reduce a substring to N. 

:2. if the (p + l)st symbol is a terminal b, then 
the parser should scan the next terminal 
and activate section t(1I", q), where q = 
p + 1, to verify that that terminal is indeed 



b and to decide how to continue the parse. 
3. if the p-th symbol is last in the right part of 

the production, then the parser should make 
a reduction (~) to the symbol M of the 
left part of the production and activate 
section M t to decide how to continue the 
parse. 

4. if p = 0 and therefore the right part of the 
production is empty, then the parser should 
"unscan" the top symbol, push an M onto 
the top of the stack, and activate section 
Mt to decide how to continue the parse. The 
symbol unscanned will be a terminal since 
this statement will appear only in an Kh
type section, the activation of which is al
ways immediately preceded by a scan 
(see rule (1)). 

d. Combinations. In general, a reductions analysis 
program generated according to the above rules 
will contain sections in which some of the state
ments are not disjoint. That is, the conflicting 
statements will indicate stack comparisons (1) 
which are identical, or (2) the shorter of which 
are identical to the top few symbols of the longer 
ones. Thus, several statements may be applicable 
to a single stack and input string configuration, 
and the parser is in some sense non-deterministic. 
To render the parser deterministic it must be 
modified so it can either delay or determine the 
decisions concerning which of the several similar 
productions associated with the conflicting 
statements is applicable in various cases. De
cision delays are effected by pairwise statement 
combinations as follows. 

If two statements in a given section are not 
disjoint and if each was generated according 
to either mapping rule (1) or (2), then they are 
replaced with a single statement: one whose 
stack comparison is the shorter of the two and 
which, upon a successful stack match, scans a 
new terminal and activates a new combina
tion Section which must be added to the pro
gram." The new section is that section whose 
descriptor set is the union of the two de
scriptor sets of the sections which the original, 
statements would have activated. Of course 
the statements in the new section must be 
checked for disjointness. The old sections, of 
which the new one is a combination, should 
be checked for usefulness, since the only 
reference in the entire program to one or both 
might have been deleted by removal of the two 
statements. 

Generating Parsers for BNF Grammars 795 

e. Expansion by Contextual Analysis. The only 
decisions which cannot be delayed are those 
concerning reductions. This limitation is due 
to the requirement that reductions be made 
only at the top of the stack. Thus, conflicts with 
statements generated according to mapping 
rules (3) and (4) cannot be resolved by combina
tion. In this case the statements' comparison 
fields are expanded by contextual analysis to 
provide the parser with whatever finite look
ahead and look~back are necessary to make the 
decision at hand; i.e., 

for each of the conflicting statements the 
grammar is investigated and generation is 
begun of the strings of symbols which, in the 
context of the production associated with the 
statement, may surround the original stack 
comparison substring a of the statement. 
Appropriate comparison of the composite 
strings associated with each of the original 
statements, indicates the minimum context 
which must be checked to make the state
ments disjoint. In the worst case each state
ment must be replaced with several state
ments which differ from the original in that 
they indicate more symbols which must be 
matched in the stack and/or the input string. 

Examples 

Since the parser proceeds from left to right, always 
making reductions at the top of the stack on the basis 
of whatever finite look-ahead and look-back are neces
sary, the procedure by definition covers all bounded 
right context grammars. Further, due to the fact the 
sections of the program themselves imply certain extra 
information about the stack configuration, in the same 
sense that a state of a finite state acceptor implies in
formation about the string read, the algorithm also 
covers some LR(k) grammars which are not bounded 
right context. An example grammar in this class is 
S :: = aA I bB, A :: = cA I d, B :: = cB I d, the 
sentences of which are a cn d and b cn d. This grammar 
is not bounded right context since the clue as to whether 
to reduce d to A or B is an a or b arbitrarily far down 
the stack. The grammar is however, LR(O) and can be 
parsed by the algorithmically generated parser of Fig
ure 1. In both Figures 1 and 2 a transfer of control to 
an ERROR routine is implicit at the bottom of each 
section in case no match occurs. 

As an example of a grammar requiring both look
ahead and look-back consider the following LR (2) 
grammar. 



796 Spring Joint Computer Conference, 1969 

START (Sh) al * Ah 

hi * 
Ah <:1 * 

dl -+ 

Bh cl * 
dl -+ 

At. cAl -+ 

aAl -+ 

Bt cBI -+ 

bBI ~ 

St 

AI 

BI 
AI , 

sl 
Bj 

sl 

Bh 

Ah 

At 

Bh 

Bt 

At: 

St 

Bt 

St 

SUCCESS EXIT 

Figure I-Algorithmically generated parser for a grammar 
which is LR(O) hut not bounded right context 

P 

123 

1 S .. - cAB 

2 S .. = dA .. 
3 A .. .. = aG 

4 B .. = xe 

5 G .. = Gx t. 
6 G .. == X 

Confusion arises in the Gt section about when to 
tenninate the gathering of x's into the non-tenninal G. 
Generation of the context related to production five 
produces three possible strings for two-symbol look
ahead: 

(1) G I ~ G I x ~ G I xx 

(2) G I ~ G I x ~ aG I x ~ daG I xe 

(3) G I ~ G I x ~ aG I x ~ caG I xB 
~caG I xxe 

There are two possible strings for production three: 

(1) aG I ~ daG I e 

(2) aG 1-7 caG I B ~ caG I xe 

The confusion is between case (2) of production five 
and case (2) of production three. One possible solution 
is to construct the following Gt section: 

n.+ G I xx * t(5, 2) '-AU I 

daG I xe * t(a, 2) 

aGI ~AI At 

Note that advantage has been taken of the sequential 
nature of the program here. Since the first two state
ments will catch all configurations to which production 
five is applicable, the statement as ... c;:ociated with produc
tion three checks no extra context. That is, the restric
tion that the statements in a given section must be dis
joLnt may be relaxed in special cases where advantage 
is taken of the order in which statements are executed, 
however the contextual analysis must still be performed 
to ascertain the validity of such an optimization. 
Finally, note that had production five been G :: = xG 
the grammar would not have been bounded right con
text nor covered by this algorithmJ although it would 
still be LR(2). 

As a final, larger, and more practical example con
sider the grammar of Table II, which is Earley's ex
ample of a simple algebraic language. The corresponding 
list of necessary sections and their descriptor sets are 
presented in Table III, and the parser is given in Figure 
2. This grammar requires no special look-back and look
ahead of more than one symbol in. only one case, section 
Dt. A single pair of statements was combined in section 
Ht causing the combination of sections t (1, 2) and 
t (4, 2) to form a section labeled t (1, 2; 4,2). Note that 
such combinations are probably most efficiently effected 
by operations on the descriptor sets before the sections 
are generated. Also note that maximum advantage was 
taken of ordering the statements. 

For expositional purposes several optimizations were 
not made: (1) since the first p-1 symbols are matched 
immediately prior td its activation, a t(7r, p) section 
need match only the p-th symbol with the top symbol 
of the stack, (2) since a reduction to N occurs inunedi
ately prior to the activation of an Nt section, it need 
not match the top symbol, (3) many sections could 
have been "concatenated" to reduce transfers and 
multiple interrogations, as for example sections Dt 
t (6,2), and t (6, 3) which would form 

Dt DI;r 

bDI 

*** 
HI 

I 

Lh 

Ht 

(4) since sections Ph, Fh, and Th are identical, and are 
a, subset of section Eh, all these could have been com-



Generating Parsers for BNF Grammars 797 

S TAR T (t h) ~I * B h 
T t TI* * t (14,2) B h blr * Dh 

E±TI -+ EI E t 

bl + HI H t 
±TI -+ EI E t 

D h rl * L h TI -+ EI E t 

Lh 11 + LI L t E t EI± * t (12,2) 

'1' h 1i + pi p t (EI * t (18,3) 

( I * E h i+EI -+ sl S t 

E h ±I * Th P t 1"1 t 'Ie t (16,2) 

11 + pi P t 
T'leT.'1 -+ TI T t 

<I * 
r.-I ,-+ TI T t 

E h 
P t rHI -+ FI F t 

S h 11 * t (9.2) 
pi -+ pi "F' t 

F h 11 + pi P t 
B t ~ HI 'Ie t (0,3) 

<I * E h S t H;sl -+ HI H t 
P h 11 + pi P t E t SUCCESS EXIT 

( I * E h 

t (1.2; 4.2) Hel + BI B t Figure 2--Algorithmically generated parser for a simple 
algebraic language 

H; I * S h 

t (6.2) D; I * t (6.3) bined to save space; however this is probably undesirable 

t (8.2) L.I * t (8.3) as it implies a loss of information useful for error re-
covery, and (5) often the knowledge of one symbol on 

t (9.2) 1+1 * E h the stack implies the knowledge of several below it: for 

t (12.2) E±I * T h 
instance, an i is always below ~, and F is always 
below an i ,etc. 

t (14.2) T*I * Fh If the first, second, and fifth of these optimizations are 
applied to the program of Figure 2, the result is a pro-

t (16,2) Ftl * Ph gram with an average of less than one symbol match 

t (0.3) ~ B -f I + tl t t 
indicated per statement. Since there is an average of 1.7 
statements per section and since each section either 

t (6.3) DJrl * Lh scans a new symbol or makes a reduction, it can be con-
cluded that the parsing time required for any string of 

t (8,3) L,il -+ LI L t length n, requiring p reductions to parse it, is at most 

t (18,3) (E)I -+ pi P t roughly: 

H t HI 'Ie t (1,2; 4,2) 1. 7 * (n + p) * (the time to compare two 

o t 01 ;r * t (6,2) symbols) 

hoi -+ HI H t +n* (the time to scan a symbol) 

L t LI, 'Ie t (8,2) 
+p * (the time to make a reduction) 

D;rLI -+ 01 o t 

rLI -+ DI n t + (n + p) * (the time to transfer to a new 
section) 



798 Spring Joint Computer Conference, 1969 

Table II Table III 

Producc1on Table for a Simple Algehraic Langua~e 
tiDt of Necessary S~eticn~ and the 

p 
Corresponding Descriptor Sets for the Grammar of Table II 

11' 1 2 3 4 

<AXIOM> 0 E ::- r B 1 NECESSARY SECTIONS DESCRIPTOR SETS 

START 0: h) 0,1 
<BLOCK> 1 B ::- H e 

Bh 2,1 3,1 
<HEAD> 2 H ::- b 

D h 5,1 
3 H : :- b D 

Lh i,l 

4 H ::- H S T h 17,1 18,1 

<DECLARATION> 5 D : :- r L E h 11.1 17,1 18,1 

6 D ::- D r L S h 9,1 

<TYPE LIST> 7 L : :- i F h 17,1 18,1 

8 L ::- L 1 P h 17,1 18,1 

<STATEMENT> 9 S : :- i + E 
t (1,2) } combined to form t (1,2; 4,2) 
t (4,2) 

<EXPRESSION> 10 E ::- T 
t (6,2) 

11 E ::- ± T 
t (8,2) 

12 E : :- I ± T 
t (9,2) 

<TERM> 13 T : :- F t (12,2) 

14 T : :- T * F t (14,2) 

<FACTOR> 15 F : :- P t (16,2) 

16 F ::- F + P t (0,3) 

<PRIMARY> 17 P ::- i 
t (6,3) 

t (8,3) 
18 P : :- E t (18,3) 

H t 1,1 4,1 (cOlllbination) 

!!Q!!: 1 1s 1dencifier D t 6,1 3,2 

r 1s !!!! L t 8.1 5.2 6,4 

T c 10,1 14,1 11,2 12,3 
b is begin 

E t 12,1 18,2 9,3 
e is~ 

F c 13,1 16,1 14,3 

p c 15,1 16,3 
If the third optimization is applied, the first and last 

of the tenus in this sum can be reduced. Of course, the B t 0,2 
coefficient of the first term cannot be less than one a~d 

S t 4,3 the second and third terms cannot be reduced. Clearly, 
the algorithm with optimizations generates a practical r t 
parser for this special case. 



CONCLUSION 

Hand simulation of the algorithm for grammars of up 
to eighty-five productions indicates that results com
parable to the above can be expected for typical pro
gramming languages. For instance, gramm.ars which 
are "mostly" simple or operator-precedence produce 
parsers which operate in times comparable to the above 
and whose sizes are proportional to the size of the gram
mar (about two to four tL-rnes as !p~ny FPL statements 
as BNF productions). 

A modified version of the algorithm has been imple
mented as part of a translator writing system for the 
ILLIAC IV computer at the University of Illinois. The 
system and the modifications to the algorithm are de
scribed in detail in Beals.9 A preliminary result is a 
recognizer generated for an ALGOL-like language about 
one quarter the size of ALGOL which processes 850 
cards per minute. This device goes through the motions 
of lexical analysis and parsing, but it drives only enough 
semantic routines to check scopes of variables, types, 
etc. 

Although a proof has not been given, it seems in
tuitively reasonable that the algorithm generates cor
rect parsers. The author believes that the methods of 
Evans could, without extreme difficulty, be utilized to 
provide such a proof. 

ACKNOWLEDGMENT 

The author would like to thank Alan J. Beals for his help 
in evaluating and debugging the algorithm. Thanks are 

Generatil1g Parsers for BNF Grammars i99 

also due Dr. R. S. :x orthcote for suggested lIDprove
ments in the paper itself. 

REFERENCES 

J EARLEY 
Generating a recognizer for a BNF agrmmar 
Carnegie-Mellon Institute of Technology 1965 upnublished 

2 A EVANS 
Synt.ax analyS'is by produ.ction langu.age 
Doctoral Thesis Carnegie-Mellon Institute of Technology 
1965 

:3 J FELDMAX 
A formal semantics for computer-oriented languages 
Doctoral Thesis Carnegie Mellon Institute of Technology 
1964 

4 R FLOYD 
A descriptive language for symbol manipulation 
J A C M Vol 8 No 4 579-584 1961 

5 R FLOYD 
Bounded context syntactic analysis 
C A C M Vol 7 No 2 62-67 1964 

6 T STANDISH 
Generating productions from a restricted class of BN F 
grammars 
Carnegie-Mellon Institute of Technology Computation 
Center unpublished 

7 D KNUTH 
On the translation of languages from left to right 
Information and Control Vol 8 607-639 1965 

8 T CHEATHAM 
The theory and construction of compilers 
Massachusetts Computers Associates Inc 1967 

9 A BEALS 
The generation of a deterministic parsing algorithm 
ILLIAC IV Document No 304 University of Illinois 1969 





An extended BNF for specifying 
the syntax of declarations 

by GORDON WHITNEY 

Weatern Electric Engineering Research Center 
Princeton, New Jersey 

"1 recammend the use of suitable special metalanguages as a part of the defining 
repurts. The Backus rwtation is probably as good as anything we have at present, but it 
stiU leaves a great deal to be desired ... many syntactic rules cannot be expressed in it. 
The language reporter should ... invent and U8e such tools wherever the special meta
language i8 easier to work with than natural language." Peter Naur,l 1963. 

INTRODUCTION 

The syntax of ALGOL is specified in its defining report2 
by a grammars whose rules are given in Backus-Naur 
Form (BNF). Because of the need for precision in the 
specification of complex systems, BNF has been used to 
record the syntax of many other programming lan
guages. The rules of BNF are equivalent to context-free" 
production rules. However, due to its declarations, 
ALGOL is context· dependent, and its syntax cannot be 
fully specified by a grammar limited to context-free 
rules.6 Other grammars for ALGOL6,7.8 are more com
pact than the BNF of the defining report, but they are 
generatively no more powerful. Because of this context
dependency of declarations, even an assembly language 
cannot be fully specified in BNF. 

This paper defines an extension to BNF which permits 
the specification of the syntax of declarations, while 
retaining the definitional power of BNF as a subset. 
PL/I has been formally defined9 by specifying a model 
which will execute programs written in the language. 
This model specifies the semantics of the language but 
does not include a grammar for the syntax of declara
tions. Recent paperslO.1l.12,18 define systems capable of 
specifying the syntax of declarations. This paper is an 
extension and exposition of one of these models* (called 

• The table-grammar presented here is similar but not identical 
to a previous model.!1 The differences are as follows: 

1. The table-functions using Greek letters as function names 
have been changed to expression format using operators 

"table-grammar") in the hope that language reporters 
and implementors will be able to utilize the model in 
practical work with programming languages. Consistent 
with this purpose, a system of notation has been adopted 
(with an attendant loss of compactness) which is both 
compatible with BNF and oriented for the human 
reader of the syntax. 

Table-language generation 

A grammar defines a language by specifying the 
means by which legal strings in the language can be 
generated starting from some fixed initial configuration. 
For each class of language there exists a corresponding 
class of processors which can carry out the generative 
process. Such a processor is called a generator. This 
section will define the form of a table-grammar and the 
means by which they generate strings. 

with English names. Thus the T-function is' replaced by 
the use of create, retrieve or recreates. The p-function be
comes replaces. The II-function becomes illegal. 

2. The use of two auxiliary storage tapes rather than one 
gives the new model increased generative power. This 
also allows BNF grammars to remain nearly intact when 
table operations are added to the grammar. The table 
operations copyl4hle and erasetahle are new and are neces
sary to allow multiple tables in a two-tape system. 

3. The definition of the generation operators to perform 
recognition is new, as is the operator copy and both the 
definitions and the properties of "Regular Table Ex
pressions. " 

------------------------------------801----------------------------------



802 Spring Joint Computer Conference, 1969 

Notation 

Certain definitions will be used throughout. They will 
not be given further local definition. These definitions 
are: 

a, b, c, '" 
E 

terminals symbols. 
a terminal-string of length zero. 
terminal-strings, having an arbitrary 
value, or a range of values. 

x,y, Z 

+ 

* 

" 1\ 

this post-fix operator denotes e-free closure 
for catenation, i.e., (X)+ = { ~ Xi where 

i=1 

Xl = X and X~+l = XiX}. 
this post-fix operator denotes full closure 
for catenation, i.e., (X)* = {(X)+ U E}. 
this symbol denotes a string of either 
letters or blanks and is called a letter
string. 

Definition of a table-grammar 

A table-grammar is a 4-tuple: 

G = (categories, terminals, static-rules, 
sentence-symbol) 

where: 

1. The set of categories and the set of terminals are 
finite and disjoint. 

2. The set of categories has two disjoint subsets: 
grammar-categories and table-categories. 

3. The set of static-rules is finite. Each rule has the 
form: (>..) :: = (grammar-category U terminal U 
table-expression) * where: 
a. The leftside of a rule is a grammar-category. 
b. The rightside is called an arbitrary-string. 

4. A table-expression consists of a generation-operator 
with its respective operands. A generation-operator 
has either zero, one or two operands, and is respec
tively referred to as a niladic, monadic or dyadic 
operator. The operands for table-expressions are 
table-categories whose form is < . A'), For the 
presentation of table-expression schema it will be 
convenient to use (. i· ) to represent an incident 
table-category (i.e., one entering the table) and (. r· ) 
to represent a resident table-category (i.e., one 
already present in the table). The following are the 
schemas for the seven different forms of table
expressions: 

a. The niladic expressions are: copy table and erase
table. 

b. The monadic expressions are: create ( . i· ) 
retrieve( . r· ) and illegal < . r· ). 

c. The dyadic expressions are: 

( . i· )recreates ( . r· ) and (. i· )replaces ( . r· ) . 

Table expressions, when evaluated, have the follow
ing characteristics: 

d. Successful evaluation may be subject to certain 
restrictions. 

e. A terminal-string is returned as the value of the 
expression. 

f. Side-effects may be produced in the active-table. 
(The concept of active-table will be defined 
below.) 

,~. The sentence-symbol is a unique grammar-category. 

Concerning the evaluation of table-expressions, if the 
specified conditions are not satisfied, the current 
generation step is blocked and an alternate sequence of 
steps must be utilized. Thus invalid programs are 
eliminated at the point in the generation sequence where 
an incorrect construction would have appeared. 

String processing devices 

A string processing device is a machine with a finite 
control, with a system of one or more auxiliary tapes 
providing potentially infinite storage, and with either 
an input-tape or with an output-tape or with both. The 
device is called deterministic if in every possible con
figuration it has only one possible ·move to its next 
configuration. If the device has more than one possible 
move, it is called nondeterministic. A device with an 
input-tape is called a recognizer. A device with an input 
and output tape is called a transducer. A device with 
only an output-tape is called a generator. The sets 
defined by a context-free grammar are exactly the sets 
generated by some nondeterministic generator whose 
auxiliary storage is a pushdown and whose output-tape 
is one way. 

If an input (or output) tape of a device is one-way 
(usually this is left to right) then the device is called 
on-line and its input (or output) need not be written on 
a tape at all but need only be received (or transmitted) 
one character at a time without the use of any local 
storage. 

A table-language generator 

Figure 1 shows the type of device necessary to gen
erate table-languages. The output is one way and the 
output-string is not counted as a tape. In a one pass 
processor, as declarations of identifiers are encountered, 
they must be recorded in some form of auxiliary storage 
to allow for subsequent retrieval. The table-tape stores 
a sequence of declaration tables as a pushdown list of 



f1 n1 te set of 
production rules 

tal;1~ for 
declarations 

pushdown-tape for 
unreduced portions 
of r1ghts1des of 
rules 

Figure I-A nondeterministic two-tape generator for a. 
language defined by a. table-grammar 

tables. The top most table is designated as the active
table. When a block structure is not required, only the 
active-table will appear on the table-tape. The operation 
of the table is subject to four restrictions: 

1. Entries must be dynamic-rules of the form: 

( ( • A' ) --+ identifier). 

2. ( . A' ) is a table-category. A simple set of table
categories would be 

{ (·integer-), (-real-) (-Boolean - )l. 

3. An identifier is an element from a regular set. This 
means that an identifier can be recognized by a 
finite automaton. A simple set would be . (letter) 
( (digit» * where a3 and j49 would be identifiers. 

4. The identifiers within the active-table must be 
unique. The same identifier may not appear twice. 
Note by way of contrast that the same table
category may appear many times. Thus: 

«·real· ) --+ a56)( (·real· ) --+ j4) 

is a valid table; while 

( ( . real· ) --+ a56) ( ( . integer' ) --+ a56) 

is not a valid table. 

An identifier is said to be declared if it appears in the 
active-table, otherwise it is undeclared. Each new 
declaration which is added to the active-table must 
contain an identifier which is undeclared. 

Table-grammar generation sequences 

The operator copy table is explained in the section 
"Table operators for embedded blocks". When this 
operator is not used in a grammar, only a single table 
copy will appear on the table-tape. The description of 
generation sequences for this portion of the paper will 

An Extended BNF 803 

be limited to those generations in which only one 
table copy is present on the table-tape. A generation 
sequence is a finite list of transitive steps. Each step 
has the form: 

where ID stands for instantaneous description and 
where ==> indicates the rewriting of IDl in accordance 
with an evaluation algorithm to produce (Le., generate) 
ID2• An instantaneous description is a triple of the form: 

(terminal-string, arbitrary -string, 
table-configuration) 

where arbitrary -string represents the catenation of 
unreduced rightsides of static-rules and where a table
configuration is one distinct arrangement of declara
tions out of a potentially infinite number of such 
configurations designated To, T1, T 2, •••• In actual 
sequences, the parentheses and commas may be omitted 
with no loss of meaning by the use of disjoint alphabets. 
The active-table is erased on the last step of a generation 
sequence. 

The evaluation algorithm for a step has three parts: 

1. If IDI = (x, a"Y, T,), then ID2 = (xa, "Y, T,). 
2. If IDI = (x, (a)"Y, T ,) and (a) :: = {3 is a static-rule 

of G, then one possible value is ID2 = (x, (3"Y, T ,). 
3. If IDl = (x, table-expression "Y, T i) and the table

expression is such that given an active-table T i, the 
expression returns as its value y and as a' side-effect 
changes T, to T;, then IDli = (xy, "Y,'Tj). 

It is now possible to give a precise definition of a 
table-language. 

Definition of a table-language 

A table-language is a set of strings generated by a 
function L having two arguments: 

L(G, R) = {x where G is a table-grammar and R is 
a regular set, and where (E, sentence
symbol, To) ~ x, using the static
rules of G and using R as an 
identifier set, and where ~ is the 
transitive closure of ==> }. 

Formal properties 

Table-languages can be defined by means of a number 
of alternative models. The formal properties listed below 
pertain only to the model defined above with a unified 
identifier set and where the identifiers in the table are 
isomorphic to the terminal identifiers: 



804 Spring Joint Computer Conference, 1969 

1. The languages are properly contained in the context
sensitive languages. 

2. The languages properly contain the context-free 
languages. 

3. The languages are closed under *, homomorphism, 
and intersection with a regular set. 

4. The languages are not closed under union, catena
tion, or inverse homomorphism. 

Compound rules 

The static-rule schemas given above can be called 
simple. BNF uses a rule schema which will be called 
compuund. If (a) :: = fJ and (a) :: = 'Yare rules in a 
grammar then they can be replaced by the single 
compound rule (a) :: = fJ\-r. Compound rules will be 
used where convenient. They are generatively no more 
powerful than simple rules. 

Table entry and access 

Two basic table operations are the recording and the 
retrieval of a declaration. These operations are achieved 
by the expressions create ( . i·) and retrieve ( . r· ) 
respectively, where (. i· ) stands for an incident table
category (Le., one entering the table) and (·r· ) stands 
for a resident table-category (Le., one already present in 
the table). 

Table-entry 

The operator create is employed to specify the syntax 
of the declaration of an identifier. The expression create 
< . i· ), when evaluated, has the following characteristics: 

1. The evaluation cannot be blocked if any additional 
undeclared identifiers exist. 

2. The selected-identifier must be undeclared and is 
returned as the value which replaces the invoking 
expression within the intermediate-string of the 
generation sequence. (This will· be made more 
explicit in the sequel by examples.) 

3. The dynamic rule, (. i· ) ~ selected-identifier, is 
added to the top of the active-table. 

In summary, the expression create ( . i· ) when evaluated 
selects an undeclared identifier, places it in the output
string and adds to the active-table the indicated 
declaration. 

Table-aeeess 

The operator retrieve is used to specify the syntax of 
an identifier which can appear only if it has been 
previously declared. The expression retrie1Je ( . r· ). when 
evaluated, has the following characteristics: 

1. The evaluation is blocked if the specified resident 
category (. r· ) does not appear in the active-table. 

2. The identifier in the selected dynamic rule is returned 
as the value. 

3. There are no side-effects in the active-table. 

In summary, the expression retrieve ( . r· ) when evaluated 
selects a dynamic rule whose leftside is (. r· ) and places 
in the output-string the identifier appearing on the 
rightside of the selected rule. 

Examples of context-sensitive table-1anguages 

The context-sensitive set with strings of the form 
wIdwlI where WI = W2 and where WI and W2 are in the set 
(0 U 1)+ can be generated by the table-grammar: 

(a) :: = create (. b· ) (c) 

(c) :: = d retrieve (. b· ) 

where the identifier set is (0 U 1)+. A typical sequence is: 

(a) To => 01101 (c) TI => OnOldOnOI 

where TI = «. b· ) --+ 01101). 

The context-sensitive set with strings of the form 
WI W2 ••• Wn where Wi ¢ Wj for all i ;:C j and where w, is 
in the set (0 U l)+d is generated by the table-grammar: 

(a) :: = create ( . b· ) (c) I create ( . b· ) (a) 

(c) :: = E 

where the identifier set is (0 U l)+d. A typical sequence 
is: 

(a) To => OlOd (a) TI => OlOdlOnd (a) T2 
=> OlOdlOndlld (c) Ta => OlOdlOndlld 

where Tl = «. b· ) --+ OlOd), 
T2 = «·b·) --+ 1011d)«·b·) --+OlOd), and 
T 8 = «. b· ) --+ nd) ( (. b· ) --+ 10nd) ( (. b· ) --+ 

OlOd). 

Table operators for contextual declarations 

Programming languages utilize three different meth
ods of associating table-categories with identifiers: 
explicit declaration, implicit declaration and contextual 
declaration. Explicit declaration of variables is used in 
Algol to assure that the declaration of a variable precedes 
its use. Syntax for expU.cit declaration preceding use 
can be specified by the operator sequence: 

create {·a· ) ... retrieve (·a· }. 



An instance of contextual declaration, is the associa
tion of the category "label" with an identifier by means 
of the context in which the identifier appears. Two 
distinct contexts are used to cause such a declaration and 
these can be meanfully distinguished by the use of the 
table-categories ( . proper label·) and ( . improper 
label· ). For example, if the integer "25" appears in 
columns 1 to 5 of a Fortran statement, then the integer 
"25" has been contextually declared to be a (·proper 
label· ). On the other hand, if the integer "25" appears 
in a GO TO statement prior to its declaration as a 
( . proper label· ), then the integer "25" will initially be 
declared as an ( . improper label·). Two additional 
operators, recreates and illegal, are provided to handle 
the table activity associated with this kind of declara
tion. 

Altering a table-entry 

The operator recreates is used to alter a table-category 
as a side-effect of generating a declared identifier. The 
expression (·i· )recreates (-r·), when evaluated, has 
the following characteristics: 

1. The evaluation is blocked if the specified resident 
category (. r· ) does not appear in the active-table. 

2. The identifier in the selected dynamic-rule is 
returned as the value. 

3. In the selected dynamic-rule, the incident category 
(·i· ) replaces the resident category (·r· ). 

In summary, the expression (. i· )recreates ( ; r· ) when 
evaluated selects a dynamic-rule whose leftside is (·r· ), 
changes (. r· ) to (. i· ), and places in the output-string 
the identifier appearing on the rightside of the selected 
rule. 

Scan for an invalid category 

The operator illegal is used to specify a scan for an 
illegal table-category. The expression illegal ( . r· ), when 
evaluated, has the following characteristics: 

1. The evaluation is blocked if the sgecified resident 
category (. r· ) is present in the active-table. 

2. The value returned is' the empty-string, €. 

3. There are no side-effects in the active-table. 

In summary, the expression illegal ( . r· ) when evaluated 
is blocked if (. r· ) is in the active-table, otherwise it 
returns € and has no side-effects. 

Example of a micro-assembly language (MAL) 

An example in the form of a micro-assembly language 
(abbreviated ~IAL) will be used to illustrate the 
definitional power of the four operators given above. It 

An Extended B~~ Q(\~ 
uvu 

will further show how a BXF grammar can be altered to 
become a table-grammar while preserving most of the 
original grammar-categories. The resulting table-gram
mar is only slightly larger than the original BNF 
grammar. ~1AL is not intended to be useful as a 
programming language. A free-form syntax has been 
chosen to permit a definition which is not sensitive to 
blanks or lines. l\IIAL has "dc" for "define constant" and 
"ds" for "define storage." Statements are terminated by 
semicolons, labels have a colon suffix, and the period is 
used as a separator. 

Sample program in l\1icro-Assembly Language (J\1AL) 

a: dc. 12; 
b: ds; 
c: load. a; 

store. b; 
goto . c; 
end; 

BNF grammar for MAL 

The syntax of BNF can be defined by the following 
BNF rules: 

(program) :: = (body) end; 
(body) :: = (statement); I (statement); (body) 
(statement) :: = (declarative statement) I 

(imperative statement) 
(declarative statement) :: = 

(data label) : dc. (integer) I 
(data label): ds 

(imperative statement) :: = 
(imperative label) : (unlabeled imperative) I 
(unlabeled imperative) 

(unlabeled imperative) :: = 
goto . (imperative label) I 
(operation) . (data label) 

(operation) :: = load I add \ store 
(imperative label) :: = (name) 
(data label) :: = (name) 
(name) :: = (letter) \ (name) (digit) I 

(name) (letter) 
(integer) :: = (digit) \ (digit) (integer) 
(letter) :: = a\b\z 
(digit) :: = 0\1\9 
Semantic restraints on MAL programs 

Certain restraints on ::.vIAL programs have in the past 
been classed as "semantics." However their formaliza
tion by a table-grammar shows them to be syntactic 
though not context-free. These restraints are: 

1. All labels must be unique. 



806 Spring Joint COmputer Conference, 1969 

2. (data label) must be declared by a dc or ds state
ment before it is used in an (imperative statement). 
The op-codes "load," "add" and "store" must 
reference a (data label) not an (imperative label), 

3. A "goto" op-code must reference an (imperative 
label), not a (data label) or an improper label (i.e., 
one for which there is no proper label declaration). 

Unrestrained BNF generations 

The following generations of illegal programs are 
possible using the BKF grammar for JIAL when these 
so called "semantic" restraints are not observed: 

Generation 

(program ) ~ a :ds; a :ds; 
end; 

(program ) ~ goto .a; 
end; 

(program ) ~ a :ds; 
goto.a; end; 

(program ) ~ a :ds; 
load.b; end; 

Error 

Labels are not unique. 

Label "a" is not properly 
declared. 

The goto references a 
(data label). 

(data label) "b" not 
declared. 

The table-grammar for MAL 

The following table-grammar for l\IAL is a revision of 
the BNF grammar given .above. Rules preceded by a * 
have been altered. Unmarked rules are retained 
unchanged. Rules which do not appear have been 
omitted. 

* (program) :: = 
(body) illegal ( . improper label· ) end; 

(body> :: = (statement>; I (statement> ; (body> 
(statement) :: = (declarative statement) I 

(imperative statement> 
* (declarative statement> :: = 

create ( . data label· ) : dc . (integer) I 
create ( . data label· ) : ds 

* (imperative statement) :: = (unlabeled imperative) I 
create ( . imperative label· ) : (unlabeled imperative) 
( . imperative label· )recreates ( . improper label· ) : 

(unlabeled imperative) 
* (unlabeled imperative> :: = goto . create < . improper 

label· ) I 
goto . retrieve ( . improper label· > I 
goto . retrieve < . imperative label· > I 
(operation> . retrieve ( . data label· > 

(operation> :: = load I add I store 
(integer) :: = (digit) I (digit) (integer) 
(digit) :: = 0\1\9 
The categories (name) and <letter) have been deleted 

from the BNF grammar and are replaced by the 

identifier set (letter) ( (letter) U (digit» *. Identifiers 
then are any alphameric string beginning with a letter. 
There are three table-categories: (·data 1abel·), (·im
perat.ive label· ) and (. improper label· ). The categories 
data label and imperative label have been changed from 
grammar-categories to table-categories and their origi
nal BNF rules have been deleted. The following list 
itemizes the way in which the table-grammar satisfies 
the three "semantic" restraints given above for MAL 
programs: 

1. Identifiers are generated only by table-expressions. 
Uniqueness of declared identifiers is assured by the 
definition of the operator create. 

2. The table-category (. data label· ) is entered into 
the table only by the rule for (declarative state
ment). Declaration must precede use because in the 
rule for (unlabeled imperative), the grammar
category (operation) refers to an identifier only by 
accessing the table through "1'etrieve ( . data label· )" 
and retrieve returns as its value only identifiers 
previously declared. 

3. In the rule for (unlabeled imperative> the following 
cases are handled: 

a. create ( . improper label· > allows a label to enter 
the table before it is properly declared. 

b.retrieve ( . improper label· ) allows a label which 
was the argument of a prior goto, to be retrieved 
as a reference by another goto, still prior to its 
proper declaration. 

c. retrieve ( . imperative label· ) allows a label which 
has been previously properly declared to be used 
as the argument of a goto. 

In the rule for (imperative statement) two addi
tional cases a.re ha.ndled: 

d. create ( . imperative label· ) allows the contextual 
declaration of a label to precede its use in a goto. 

e. ( . imperative label· )recreates ( . improper label· ) 
allows a label previously referred to by a goto to 
be redeclared as a proper label. 

In the rule for (program) one final case is handled: 

f. illegal (. improper label· ) blocks the generation 
sequence in a case when goto references have not 
been redeclared as a proper label. 

Table operators for embedded blocks 

Certain programming languages allow a block struc
ture in which declarations outside of a block have a scope 
which extends inward, while declarations within a block 
are local to the block. An identifier already declared 
outside a block may be redeclared within the block to 



refer to a new address which will not agree with the one 
assigned to the same identifier when used outside the 
block. These requirements indicate that the table- tape 
must be able to operate as a pushdown store in which 
tables are handled as units of information. The top most 
table is designated the "active-table." All operators 
access only this table, while lower copies are inaccessible 
to the operators. 

Tabie-iape pushdown operations 

The niladic operators copy table and erasetable are used 
to control the table-tape as a pushdown store whose unit 
of information is a table. When evaluated, these 
operators have the following characteristics: 

1. They cannot be blocked. 
2. They return as a value the ~mpty-string, E. 

3. copytaiJle has the side-effect of placing a duplicate 
copy of the active-table on the top of the table-tape. 

4. erasetable has the side-effect of erasing the active
table from the top of the table-tape. 

Control of local and nonlocal identifiers 

The need for a special operator to provide initializa
tion for nonlocal identifiers is best explained by an 
example. Consider a table-grammar having only the 
table-category ( . real·), and whose identifiers are 
alphameric strings beginning with a letter. Let a 
generation sequence proceed until a new inner block has 
just been initialized, a copy table has just been executed, 
and the table-tape contains Tl T1• Horizontal snapshots 
of the table-tape are oriented so that the active-table is 
on the left. 

T 1 = «. real· ) ~ a5) 
« ·real· ) ~ cd). 

Let the active-table T 1 be updated via create (. real· ) so 
that the table-tape contains T2Tl and 

T 2 = «. real· ) ~ k9) 
«·real· ) ~ a5) 
«·real·) ~ cd). 

Within the active-table there is no information which 
indicates that k9 is local and that both a5 and cd are 
nonlocal to the current block. In order that such a 
distinction could be achieved, a new expression must be 
defined. This expression is (·i· )replaces (·r· ), which 
when evaluated has the following characteristics: 

1. The evaluation cannot be blocked. 
2. The value returned is the empty-string, E. 

An Extended BNF SOi 

3. As a side~effect, each instance of the specified 
resident category (. r· ), within the active-table, is 
changed to the specified incident-category (. i· ). 

Returning to the example given at the beginning of this 
section, if the expression (. nonlocal real· ) replaces 
( . real· ) were evaluated following copy table , then the 
table-tape contains TgTl and 

T 3 = «. nonlocal real· ) -7 a5)\ 
( ( . nonlocal real· ) ~ cd). 

A subsequent evaluation of create ( . real· ) would give 
a table-tape of T 4 T 1 

T 4 = «. real· ) ~ k9) 
( ( . nonlocal real· ) ~ a5) 
( ( . nonlocal real· ) ~ cd). 

In T 4, the desired distinction between local and nonlocal 
identifiers has been obtained. 

Examples of embedded blocks 

The BNF grammar 

(a) :: = [(c)] I [(c) (a)] 

(c) :: = (d) I (d), (c) 

(d) :: = 0 11 11 (d) I 0 (d ) 

generates the strings: 

(a )TO ~ [0, 1, 101 [1, 010, 0]] 

(a )TO ~ [0, 1, 101 [101, 101]] . 

(1) 

(2) 

(3) 

(4) 

(5) 

Now add the restraint that values for (d) appearing in 
the rule for (c) may appear only once at each level of 
self-embedding. This is equivalent to the restriction that 
an identifier be declared only once on each level and 
t.hat identifiers declared on an outer level may be 
redeclared on an inner level. Given this restraint, 
generation (4) is well formed but generation (5) is not, 
because 101 is repeated on the lowest level. The 
following table-grammar generates (4) but will not 
generate (5) thus satisfying the restraint stated above. 

(a) :: = [copy table (b) erasetable] I (*1) 
[copy table (b) (a) erasetable] 

(b) ( . nonlocal· )replaces (·local· ) (c) (6) 



808 Spring Joint Computer Conference, 1969 

(c) :: = (d) I (d), (c) (2) 

(d) :: = create (·local· ) I (*3) 
{·local· )recreates ( . non local· ) 

Note that (*1) and (*3) are revisions for the table
grammar of (1) and (3) respectively, and that the 
table-category (. nonlocal· ) enters the active-table in 
the rule for (b) and is utilized in the rule for (d). 

The following is the table-grammar generation se
quence for the string given in (4) above. 

( )T * r (b \ I) l b1 1 rp rp a- 0 =} L I ,a erase"a leJ .L 0 .L 0 

~ [0, 1, 101 (a) erasetable] Tl To 

=? [0, 1, 101 [ (b ) era.setable] erasetable] 
Tl Tl To 

=? [0, 1, 101 [ (c ) erasetabZe] erasetable] 
T2 Tl To 

~ [0, 1, 101 [1, 010, 0 erasetable] 
erasetable] Ta Tl To 

~ [0, 1, 101 [1, 010, On 

where: 

To = E 

Tl = « . .t.) ~ 101)( (·t·) ~ 1)( (.(.) ~O) 

T2 = «·n·) ~ 101)( (·n·) ~ 1)( (·n·) ~ 0) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Ta= «.(.) ~ 010)«·n·) ~ 101)«·(·) ~ 1) 
« .(. ) ~ 0) 

and where (.(. ) stands for (·local· ) and (. n· ) stands 
for (. nonlocal· ). 

Recognizers for table-languages 

I\1uch work has been done on the problem of designing 
syntax-directed recognizers14 for languages defined by 
BNF grammars. This section will indicate that existing 
syntax-directed techniques for BNF can be extended to 
table-languages. 

Recognition-operators 

A syntax-directed recognizer needs a means of 
carrying out each event in the recognition sequence 
which corresponds to its dual in the generation sequence. 
For a table grammar this requires that a recognition
operator be defined for each grammar-operator. While 
the same names ",-ill be used for both types of operators, 

the context will make clear which type of operator is 
intended. An additional recognition-operator, copy, is 
also provided to allow a limited form of deterministic 
recognition, The recognition-operators have access to a 
wo-rkspace which is placed on the top of the table-tape. 
The recognition-operators are defined as follows: 

copy: 

This monadic operator has as its operand a 
terminal character from a set of checkout-characters. 
The set of checkout-characters is fixed for a 
particular grammar. "copy c" reads characters from 
the input and places then in the workspace until 
one of the checkout-characters is reached. The 
operation succeeds if this character is "c" otherwise 
it fails. If the operation succeeds, the control is 
passed along this path with the workspace initialized 
for use by a subsequent table-operation. If the 
operation fails the workspace is erased and 
recognition must proceed along an alternate path. 

create, retrieve, recreate: 

These recognizer-operators utilize the workspace as 
their identifier input. If these operators succeed, 
they erase the workspace in addition to their usual 
side effects in the active-table. Since these three 
rocognition-operators require that the identifier be 
already present in the workspace, they must be 
preceded by the execution of copy which initializes 
the workspace. 

illegal, replaces, copy table, erasetable: 

These four recognition-operators are identical to 
their duals in a grammar. They neither utilize nor 
a.ffect the contents of the workspa.ce. 

A summary of the definitions for the seven operators 
for a grammar and the eight operators for a recognizer 
are given in Appendices 1 and 2 respectively. 

A recognizer for MAL programs 

The table-grammar for MAL can be revised to place 
it in right-linear form since self-embedding recursion is 
not employed. In this form a recognizer or generator 
would not use the pushdown store and would only need 
the finite control and the table-tape. A deterministic 
recognizer for MAL programs is shown in Figure 2. 
A copy with reference to the respective delimiter has 
been inserted preceding each instance of create, recreate 
and retrieve. In two cases table-operations provide 
alternative paths from a node. However in each 
situation only one of the possible alternatives can 
succeed. 



Key: 

o Sillple .tate. 

~ ri~l state. 

011 Stands for 011 ••• 19. 

~ tlDlabele4 link = 
~ =i~i: ~ ~ ~P~~; 

input strlna. 

...!!!!.L Default trauaitiODi 
follC11fe4 if all other 
transitions faU. 

Figure 2-A deterministic table recognizer for MAL programs 

Consider the three alternatives which occur following 
the path for goto: 

create ( . improper label· ) (1) 

retrieve ( . improper label· ) (2) 

retrieve ( . imperative label· ) (3) 

If the identifier in the workspace is not in the table 
then (1) will succeed, and (2) and (3)' will fail. If the 
identifier in the workspace is in the table, (2) will succeed 
if the selected table-category is (. improper label· ), 
while (3) succeeds if the selected table-category is 
(·imperative label· ). In each case there is only one 
path from the node which can succeed. If none succeed 
the device is blocked and the input-string is rejected. 

Languages with self -embedding recursion cannot be 
placed in right-linear form and would require the use 
of the pushdown store as part of the recognition scheme. 
Also not all table-languages will be deterministically 
recognizable using the copy operator with its checkout
character set and workspace. 

Regular table expressions 

A regular table expression is an extension of those 
regular expressions where operators are limited to union, 

An Extended BNF 809 

catenation and closure. Limited regular expressions, 
when embe~ded within a context-free grammar, have 
been shownI5 to be useful both in the representation of 
the syntax of programming languages and in the 
construction of processors which automatically create 
efficient recognizers. This section will indicate that the 
use of regular expressions within a rule of a grammar can 
be extended to the domain of regular table expressions. 

Union, catenation, closure & distribution 

A regular table expression is defined recursively as 
follows: 

Let "a" be ~ny terminal, E the empty-string, and q, the 
null-set, then: 

1. Any element in the set {a, E, q" create ( . i· ), retrieve 
(·r·), illegal (·r· ), (·i· )recreates(·r·), (·i·) 
replaces (. r· )} is a regular table expression. 

2. If p is a regular table expression, then so are: 
copy table P erasetable and (p) * . 

3. If PI and P2 are regu~ar table expressions defined for 
the same set of identifiers and having the sam e 
table-categories, then so are: P1P2 and PI U P2. 

4. No string is a regular table expression unless its 
being so follows from 1 to 3 above. 

It is claimed without giving the proof that regular table 
expressions are closed under union, catenation and 
Kleene closure. However it is necessary to distinguish 
between the form of an expression and the set it defines. 
If LI is the language defined by PI and ~ by P2 aDd 
L3 = LIL2 it does not follow that L3 = PlP2. If L is the 
language defined by p, then it does not follow that 
L* = (p)*. This is due to the fact that various table·, 
operators record information in the active-table so that 
generations to the right of a table-operator may not 
generate the same strings as they would if they were on 
its left. The definition of (p) * is ~ pi where pO = E and 
fJ i+1 = ppi. i=O 

The laws of distribution are obtained by definition. 
Let p, PI, ... , p", be regular table expressions, then: 

p(pi U P2 U ... U Pn) = PPI U PP2 U ... U PP" , 

and 

(PI U P2 U ... Up",) P = PIP U P2P U ... U PnP . 

Replacing recursion by the closure operator 

In clause 1 of the definition of a regular table expression 
(given above), if the domain of "a" is extended to 
include grammar-categories, then two important identi-



810 Spring Joint Computer Conference, 1969 

ties can be shown to preserve the generative power of' 
table-grammars (the proof itself is not given). 

Let PI, P2 be regular table expressions that have no 
instance of (a) within them; further let "(" and ");' be 
grouping brackets for expressions and let them be 
disjoint from the set of terminals, then: 

1. The rule (a) "- Pl (1'2) (a) can be written .,-
(a) :: = ({J2)*Pl' 

2. The rule (a) "- PI (a )(P2) can be written .. -
(a) :: = Pl({J2)*. 

In both cases, (a) is now defined without the use of 
explicit recursion. By the use of a uniform substitution 
for (a), it can be eliminated from the set of rules of a 
table-grammar. 

Extensions and limitations 

The following extensions of table-grammars can be 
readily achieved within the framework given here. Some 
limitations are cited which lie outside the present model. 
Additional extensions which can overcome these funita
tions may be possible. 

A partitioned identifier set 

For some languages, the identifier set is partitioned 
by the definitions of the language. In ASA Fortran, 
if an identifier has no explicit declaration the type is 
implied by the rule: "names beginning with letters I to 
N are type integer, all others are type real." This rule 
partitions the undeclared identifiers into two disjoint 
subsets. To handle this case create would be replaced by 
two operators create-integer and create-real. For a 
particular grammar these new operators would· be 
defined to select undeclared identifiers from their 
respective disjoint partition of the total set of identifiers. 

Use of an implicit retrieve operator 

In a very large grammar, it may be desirable to omit 
the operator retrieve and let the table-category itself, 
appearing alone in the grammar, be in effect an implicit 
call, in which the effective presence of retrieve is to be 
understood. The generative power of the notation with 
retrieve omitted would be identitical to that where 
retrieve is explicitly used. 

Limitations 

A table-grammar, as defined here, is able to specify 
the declarations of scalar variables and labels. It is 
unable to specify all the restraints required for sub
scripted variables and for procedure calls when argument 
lists are used. In addition, table-grammars are limit.ed t.o 

declarat ions where the identifier set is static. The 
IlVIPLICIT statement of Fortran sets up dynamic 
partitions of the identifier set. Even the extension of 
create given above is able to handle only static partitions 
of the identifier set. 

ACKNOWLEDGMENTS 

The author wishes to thank R, A. Stone ot Western 
Electric, Princeton, C. B. Jones of I.B.M. Vienna, 
C. N.lVlooers of Rockford Research, Cambridge, Mass., 
and M. A. Harrison of the University of California, 
Berkeley, each of whom contributed constructive sugges
tions which have been included in the paper. 

REFERENCES 

~ P ~AUR 
Documentation problems: ALGOL 60 
Communications of the ACM Vol 6 No 3 March 1963 p 78 

2 P NAUR 
Revised report on the algorithmiC language ALGOL 60 
Communications of the ACM Vol 6 No 1 January 1963 
pp 1-17 

3 N CHOMSKY 
On certain formal properties of grammars 
Information and Control Vol 2 1959 pp 137-167 

4 S GINSBURG 
The m 'Jthernatical theory of context-free languages 
McGraw-Hill 1966 

5 R W FLOYD 
On the nonexistence of a phrase structure grammar for 
ALGOL-60 
Communications of the ACM Vol 5 No 9 September 1962 
pp 483-484 

6 K IVERSON 
A method of syntax specification 
Communications of the ACM Vol 7 No 10 October 1964 
pp 588-589 

7 J W CARR J WEILAND 
A nonrecursive method of syntax specification 
Communications of the ACM Vol 9 No 4 April 1966 
pp 267-269 

8 F G DUNCAN 
Notational abbreviations applied to the syntax of Algol 
SICPLAN Notices ACM Vol 2 No 11 November 1967 
pp 28-43 

9 K BAl~DAT 
On the formal definition of PL/ I 
Proc S J C C Vol 32 1968 pp 363-374 

10 S GINSBURG S A GREIBACH M A HARRISON 
Stack automata and compiling 
Journal of the ACM Vol 14 No 1 January .1967 pp 172-201 

11 G WHITNEY 
The generation and recognition properties of table languages 
IFIP Congress Software I August 1968 pp B18-B22 

12 G WHITNEY 
The position of table languages within the hierarchy of 
nondeterministic on-line tape bounded during machine 
languages 
IEEE Conference Record Ninth Annual Symposium on 
Switching and Automata Theory October 1968 pp 120-130 



13 R E STERNS P M LEWIS 
Property languages and table machines 
Ibid pp 106-119 

14 J FELDMAN D GRIES 
Translator writing systems 
Communications of the ACM Vol 11 No 2 February 1968 

An Extended BNY 8li 

pp 77-113 
15 V TIXIER 

Recursive junctions oj regular expressions in language 
analysis 
Stanford University Computer Science Dept Report CS58 
March 1967 

APPENDIX I 

Table-expression Conditions Value-returned Side-effects 

create (·i· ) Selected-identifier must Selected -identifier Add to the active-table the 
be undeclared rule: 

( . i· ) ~ selected -identifier 

retrieve ( . r· ) There must exist within Selected -identifier None 
the active-table a rule: 
( . r· ) ~ identifier 

( . i· ) recreates ( . r· ) There must exist within Selected -identifier The selected rule is 
the active-table a rule: changed to: 
( . r· ) ~ identifier ( . i· ) ~ identifier 

( . i· ) replaces ( . r· ) None E Within the active..:table 
each (. r· ) is replaced 
by (·i· ) 

illegal <. r· ) The operation is blocked if E None 
( . r· ) is present in the 
active-table 

copy table None E A duplicate copy of the 
active-table is placed on 
the top of the table-tape 

erasetable None E The active-table is erased 

Note: (·i·) stands for an incident table-category and (·r·) for a resident table-category. E is the empty-string. 

SUMMARY OF DEFINITIONS FOR GENERATION-OPERATORS 



812 Spring Joint COmputer Conference, 1969 

Table-exoression 
.L 

copy c 

create ( . i· ) 

retrieve ( . r· ) 

( . i· )recreates ( . r· ) 

APPENDIX II 

Side-effects if operation succeeds: 
Conditions In active-table I In worksDace 

Succeeds if the next check- None 
out character is c 

Identifier in the Add the rule: 
workspace must be ( . i· ) ~ identifier 
undeclared 

I There must exist within None 

I 
the active-table a rule: 
( . r· ) ~ identifier 

I such that identifier = 
contents of workspace 

Same as for retrieve (. r·) The selected rule is 
changed to: 
( . i· ) ~ identifier 

~ 

Characters up to care 
copied into the workspace 

Erased 

Erased 

Note: a. the execution of copy must precede evaluation of expressions containing create, retrieve, or recreate. 
b. the definitions for illegal, replaces, copy table and erasetable are the same as given in Appendix 1. 

SU::vIlVIARY OF DEFINITIONS FOR RECOGNITION-OPERATORS 



A hierarchical graph model of the 
QDoYnO'W'1ll"'~~Q flro.f ........ flroO'-..OTnlQ 
O'-'.&A.a. .... .a.a ...... ""'o " ... 1'''' v~ ... « ....... 0 

by TERRENCE W. PRATT 

The University of Texas 
Austin, Texas 

INTRODUCTION 

The problem of developing an adequate formal model 
for the semantics of programming languages has been 
under intensive study in recent years. Unlike the area 
of syntax specification, where adequate models have 
existed for some time, the area of semantic specification 
is still in the formative stages. Development of formal 
semantic models has proceeded along two main lines, 
lambda-calculus models (e.g., Landin,! Strachey2) and 
directed graph models (e.g., Narasimhan,3 Floyd4). 

This paper describes a model for the semantics of 
programs based on hierarchies of directed graphs. 

A formal model or theory of the semantics of pro
gramming languages must provide descriptions on a 
number af different levels, much as the theory of 
context-free grammars provides descriptions of the 
syntax of programming languages on a number of 
different levels. At the most general level a semantic 
theory provides a framework for describing a class of 
programming languages and investigating the mathe
matical properties of their formal representations in the 
model. At this general level the context-free grammar 
model of syntax has been particularly successful, giving 
rise to an extensive mathematical theory as well as 
providing characterizations of specialized syntactically
similar classes of languages. One would hope that 
adequate models of semantics would lead to the same 
sort of mathematical development and to the classifica
tion of semantically-similar programming languages. 

At a more specific level, a semantic model must 
provide descriptions of the semantics of particular 
programming languages, much as a particular context
free grammar may be used to describe the syntax of a 
particular programming language. One· would expect 
the formal specification of the semantics of a program
ming language to allow conciseness and unambiguity in 

813 

definition and also to lead to definition of new languages 
which are more "regular" semantically. 

At a still more specific level, a semantic model must 
provide descriptions of particular programs, and these 
descriptions must be construct able from the representa
tion of the program (the syntax) in a straightforward 
manner. Thus it should be possible to construct a 
"compiler" which will translate a program in its written 
representation into its equivalent in the semantic model. 
From this representation the formal properties of the 
model may be used to guide further processing, by 
producing, for example, a more efficient program which 
is semantically equivalent or by translating the program 
into another representation, such as a semantically 
equivalent program in another language. 

At the level of complete specification, a semantic 
model must provide a representation of the data used 
by a program and allow execution of the program on 
the particular data. Thus it should be possible to 
construct an "interpreter" which will execute a pro
gram-data pair in its representation in the model. 

The importance of the development of adequate 
models of semantics stems from the probable gains to be 
realized by their use, both in the area of definition of 
programming languages, where the formal definition of 
semantics should lead to semantically unambiguous as 
well as more easily intelligible languages, and in the 
area of processor construction, where it is likely that a 
better understanding of the semantic features of 
languages will lead to more powerful and efficient 
processing techniques for those features. 

The model for semantics described in the following 
sections is based on the use of hierarchies of directed 
graphs to represent both programs and data. The 
hierarchical graph or H-graph concept which is basic to 
the model is defined in the next section, along with the 



814 Spring Joint Computer Conference, 1969 

concepts of "level" and "path" which serve as important 
structural concepts in the application of H-graphs to 
the description of programming languages. In a later 
section the basic semantic rnodei is introduced by 
structuring further the "atomic units" which lie at the 
lowest level of the hierarchy in H -graphs. Basic 
programming concepts such as "program," "data," and 
"execution of a program" are defined also. In the last 
section examples are given to illustrate informally how a 
number of semantic features of actual programming 
languages may be represented in a natural way in the 
model. Included are complete models of the semantics 
of particular Tlli~.u""lg machine, Lisp, and Fortran 
programs. Finally, a concluding section attempts to 
evaluate the model and view possible applications and 
extensions. 

Hierarchical graphs (H-graphs) 

In this section a generalization of the mathematical 
concept of "finite directed graph" is presented which 
forms the basis for the model of semantics presented in 
the next section. 

Basically, a directed graph (sometimes called a 
"network") is composed of a finite set of "nodes," and a 
finite set of "edges" connecting pairs of nodes in a 
"one-way" manner. Commonly, nodes are represented 
as circles or boxes and edges as arrows connecting nodes. 
Examples of the use of directed graphs in computer 
science include flow charts, automata transition dia
grams, PERT networks, and representations of list 
structures and trees. 

Three extensions of the basic concept of directed 
graph are of interest here. The first two lead to a 
definition of "extended directed graph," and the third 
to a defin.ition of ((hierarchical directed graph." 

Extended directed graphs 

Informally, an extended directed graph is a directed 
graph with a designated node (called the "entry point") 
and with the edges leaving each node uniquely labeled. 
Formally: 

Defn: An extended directed graph is an ordered 
quadruple (N, L, S, E) where N is a finite non-empty 
set (of nodes), 

L is a finite set (of labels), 

S is an element of N (called the entry point), and 

E is a partial function from N x L into N, defining 
the edges. If E(n, p) = q, then there is said to be an 
edge from node n to node q with label p. Note that 
there may not be two edges leaving a node with the 

same label, but two edges leaving a node with 
different labels may end at the same node; thus 
"parallel" edges are allowed. Ignoring the contents 
of the nodes, every flow chart may be considered as 
an extended directed graph. 

H-graphs 

A hierarchy is introduced into a set of extended 
directed graphs (hereafter called simply "graphs") in 
the following manner. A universe U of atomic units 
(distinct symbols) is assumed. A hierarchical graph or 
H-graph over U is (informally) a graph in which the 
nodes are considered to be "containers," each of whose 
contents is either an atomic unit from U or an H-graph 
over U. Thus in flow -chart terms, the analogue of an 
H -graph is a flow chart in which each box contains 
either an "atom" or another flow chart, whose boxes 
may in turn contain atoms or flow charts, and so forth, 
to any depth. Formally: 

Defn: If U is a set (of atomic units or atoms), then 
an H-graph over U is an ~rdered pair (N, V) where: 

1. N is a finite set (of nodes or containers). 
2. V (the contents or value function) is a function 

mapping N into U U {x:x is a graph with nodes 
from N and labels from U}. If c E N, then V(c) 
is called the cun.tenl8 or value of c. 

Levels 

The hierarchical structure of an H -graph is brought 
out by considering the levels of its nodes. 

Defn: The level of a node c is defined recursively as: 

a. 1 if V(c) E U (i.e., if c contains an atomic unit). 
b. n if V(c) is a graph (N, L, S, E), the level 

of each node in N is in the set {I, 2, ... , 
n - I}, and at least one node in N has level 
n-1. 

If a node is not of level n for any n~ then it is termed 
a recursive node. 

Defn: The node set of a node c in an H -graph is 
defined to be: 

a. if c has levell, then A, the empty set, 
or 
h. if c contains a graph (N, L, S, E), then N U 

[ U {node set of x}]. 
xEN 

Thus the node set of a node is composed of all the nodes 
"reachable" in the hierarchy starting from that node. 



Hierarchical Graph ·Model of Semantics of Program..8 81.5 

Defn: An H-graph (N, V) is relJUrsive if N contains 
a recursive node. 

Defn: The atom set of a node c is the set of values 
of all level 1 nodes of the node set of c. Thus the atom 
set of a node is the set of atomic units "reachable" in 
the hierarchy starting from that node. 

Paths 

Along with the concept of level, the idea of a "path" 
in an H-graph is important in the development of the 
model of the next section. The concept of path will be 
defined first for graphs and then extended to H -graphs. 
Informally, a path in a graph from one node to another 
is just a set of edges which may be traversed in going 
from the first node to the second, passing from node to 
node along connecting edges. Formally, 

Defn: If G = (~, L, S, E) is a graph, then a path 
from node x to node y of G is an ordered sequence 
(x, ko, kl' ... , km) where each k i is a label such that 
E(x, ko) = nl, E(nl, k1) = n2, ... , and E(nm, km) = y. 
In general, certain nodes of a graph will have no ~dges 
leaving them. Of particular importance here are the 
paths which begin at the entry point of a graph and 
terminate at such nodes. 

Defn: A path beginning at node x is a path from 
node x to a node y such that y has no edges leaving it, 
i.e., such that E(y, k) is not defined for any k E L. 

Defn: A path in a graph G is any path beginning 
at s, where s is the entry point of G. 

Extending this concept to H -graphs, if C is a node of 
an H-graph, then (informally) a path through C is 
composed by taking a path through the graph contained 
in C, a path through each of the graphs contained in the 
nodes encountered in that path, and so forth down the 
hierarchy until level 1 nodes are reached. Formally, 

Defn: If G is an H -graph and C is a node of G, 
then a path Pc through node C is represented by: 

or 
1. if C contains an atomic unit A, then (C, A) 

2. if C contains a graph, then (C, P) where 
P = (PB, eo, pno, el, ... , em, Pnm) and (s, eo, 
... , em) is a path in G passing through nodes 
s, no, ... , lim and each Pn, is a path through 
node n,. 

Defn: The atom sequence of a path is simply the 
sequence of atomic units encountered in following the 
path. In the representation given above, the atom 
sequence is simply the sequence of atomic units (not 
including edge labels) obtained in scanning the 

Level 1 

Cl: I ABC C2: I 27 

C3: I QED C4: I 10 

Level 2 

C5: 0 
*Cl .. C2 

~to 
C4 ~ 1 C3 

C6: *C2 O. Cl 

Level 3 

C7: 
o 

*C6-..... -
o 

C5 ----.- Cl 

Figure I-Three level H-graph 

representation of a path from left-to-right ignoring 
everything except atomic units. 

For example, Figure 1 represents an H-graph, where 
Cl, C2, ... , C7 are nodes each of whose contents is 
given by the contents of the correspondingly labeled 
box. One path through node C7 is represented by: 
(C7, ((C6, ((C2, 27), 0, (Cl, ABC))), 0, (C5, ((Cl, 
ABC), 0, (C2, 27), 0, (C3, QED), 1, (C4, 10))), 0, 
(Cl, ABC))). 

The atom sequence for this path is: (27, ABC, ABC, 
27, QED, 10, ABC). 

Further development of the theory of H-graphs is 
outside the scope of this paper. This brief introduction 
will suffice for the purposes here. 

The basi8 semantic model 

On the basis of the H-graph concept, an elementary 
model of semantics is developed in this section, including 
definitions of program, data, and execution of a 
program. 

Program and data H-graphs 

The semantic model is based on H-graphs with a 
more highly structured universe of atomic units. For 



816 Spring Joint Computer Conference, 1969 

the semantic model, the universe U of atomic units is 
assumed to have the following structure: 

U = D U (j> (D and (j> not necessarily disjoint) 
where D is a set of data units and (j> is a set 
of operator instances. 

D = Dl U D2 U ... U DlI (the D/s not neces
sarily disjoint) where each D i is a set of data 
units forming a data type class. 

(D, = e.g., integers, reals, bits, characters, strings) 

Similarly: 

4> = 4>1, U 4>2 U ... U 4>m (4)/s not necessarily 
disjoint) where each 4>i is a set of operator 
instances forming an operator type class. 

(4), = e.g., "add," "multiply," "popupt 
"differentiate") 

Definitions: 

1. An atomic unit a E U is said to be of type T 
(where T is a data or operator type class) if a 
E T. Since type classes are not necessarily 
dis-joint, the type of an atomic unit is not 
necessarily unique. 

2. A node n of an H-graph over U is said to be 
of type T if the atom set of n is a subset of type 
class T. 

3. An H -graph is of type T if each of its nodes is 
of type T. 

4. A data node is a node whose atom set is a 
subset of D. 

5. A data H -graph is an H -graph whose nodes are 
all data nodes. 

6. A program node is a node whose atom set is a 
subset of 4>. 

7. A program H -graph is an H -graph whose nodes 
are all program nodes. 

Operator instances 

Although the concept of data type class is familiar 
from actual programming languages, that of operator 
instance is not as common. 

Defn: An operator instance Q is an ordered triple 
Q = (I, 0, f), usually written f(I; 0), where I is a 
finite set of (input) nodes, 0 is a finite set of (output) 
nodes, and f (the operator) is a function from X in to Y 1 

where X and Yare sets of H -graphs, each H -graph in 
X and Y containing the nodes in I and O. 

A typical example would be the operator instance 

"( {A, B}, {C}, add)" or "add (A, B; C)" 

with input nodes A and B, output node C, and operator 
"add" which maps any H-graph containing the nodes 
A, B, and C, and in which A and B have numerical 
values, into the H-graph identical to the original except 
with C containing the sum of the values of A and B. 

Execution of an operator instance is a primitive concept 
by which is meant the application of the operator to its 
arguments found in its input nodes, producing values 
found in its output nodes. When an operator instance is 
executed, it is understood that the H-graphs defined by 
its input nodes completely define its arguments, in the 
sense that given the same input H-graphs, the same 
values will be produced as output. Similarly, the effect 
of an operator is assumed to be localized in the H-graphs 
produced as the values of its output nodes, in the sense 
that if the value of a node is changed by the operator 
then that node must be in the node set of one of the 
output nodes. Thus the set of input nodes of an operator 
instance in a sense specifies the maximum set of data 
structures which may influence the effect of that 
operator instance, and similarly, the output nodes 
specify the maximum extent of the effects produced. 

Note that only the input and output nodes of an 
operator instance are fixed, not the contents of these 
nodes, so that different executions of the same operator 
instance will, in general, produce different results, even 
though the input and output nodes are the same. Only 
if the H-graphs defined by the input nodes are identical 
will execution necessarily produce the same results in 
the output nodes. 

Execution of a program H -graph 

Any program node of an H -graph defines a set of 
possible execution sequences of operator instances as 
follows: 

Defn: If c is a program node, then the sequence 
PI, P2, ... , Pll of operator instances is an execution 
sequence of c if (PI, P2, ... , P1l) is the atom sequence 
of some path through c. 

Every path through a program node defines a 
possible execution sequence of operator instances. 
Execution of a program node involves the choice of a 
path through that node and execution of the operator 
instances in order from the execution sequence defined 
by that path. Corresponding to actual execution of 
programs in a programming language, the process of 
choosing a path may be represented as a process which 
in a sense actually traces out a path step by step, 
executing operator instances as they are encountered in 
the path, and choosing the next step of the path as a 
dynamic function of the results of execution of the 
previous operator instances encountered. Thus the 



Hierarchical Graph Model of Semantics of Programs 817 

choice of execution sequence is determined by the 
"data," that is by the H-graphs in the input node set 
of the operator instance being executed. The process of 
execution of a program node c of an H -graph (N, V) 
may be defined precisely as follows by use of a designated 
level 1 node P of type "label:" 

1. If c is a level 1 node, then execute the operator 
instance contained in c. 

2. If c is not a level 1 node and contains the graph 
(N, L, S, E), then: 
a. Set the current node· = S. 
b. Execute the current node (saving the name 

of the node being executed in a stack until 
execution is complete). 

c. If there is no edge leaving the current node, 
then stop (returning to the next higher level 
to continue execution if necessary). 

d. If there is exactly one edge (labeled k) 
leaving the current node, then set current 
node = E(current node, k} and go to (b). 

e. If there is more than one edge leaving the 
current node, then set the current node = 
E(current node, Yep)) and go to (b). 

Note that at a branch in a program graph the choice 
of which branch to follow is determined by the label 
contained in the designated node P. Since P may be one 
of the output nodes of an operator instance, execution 
of an operator instance may change the value of P, 
and thus the "flow of control" is determined dYnamically 
by the operator instances and the "data." Clearly, a 
path through node c is determined by this process if the 
process terminates. 

Correspondence between the model and actual 
programming languages 

The general model of the previous section serves as a 
framework for the description, comparison, and classi
fication of the semantics of different programming 
languages. A model of the semantics of a particular 
programming language is formed by specification of a 
particular universe of atomic units together with a set 
of restrictions or constraints on the types of data and 
program H -graphs which may be constructed on this 
universe. A model of a program or a data structure in 
the language then is a program or data H-graph on the 
given universe which satisfies the constraints of the 
language. The classification and comparison of the 
semantics of languages is based on the classification and 
comparison of the properties of the universes of atomic 
units and of the properties of the constraints on 
H -graphs. Although detailed descriptions of actual 
programming languages are outside the scope of this 

paper, an attempt is made in this section to develop in 
a general way a correspondence between features of 
actual programming languages and properties of the 
model. 

Particular features of actual programming languages 
may commonly be represented in more than one way in 
the model. The examples given below indicate only one 
possible way that particular constructs may be repre-
"0: ... +0,..1 u,;+1-.",,,+ ....... 0"1,,,..1; ........ +1-.0 ......... ",,;1-,.;l;+n +1-.,,+ ",+1-,.1>: .. 
O\..l..L.Lu ...... '-.&., ,Y.LlI.I...I.VU.V P.&.\,..rV.L\A.l.A..L.LLo UJ..L'-' PVOQ,LU.LL.1.UJ UJ...LQV VIJJ..L\:I.1. 

representations may be possible and even desirable in 
certain models of an entire language. 

In the examples, nodes are represented by ovals or 
polygons and edges by arrows. All nodes and edges are 
labeled. The contents of a node will ordinarily be 
written inside the oval or rectangle representing it. The 
entry point node of a graph is indicated by an * next to 
the node. Thus, for example, Figure 2 represents a node 
C whose value is a graph on nodes Cl, C2, and C3, with 
entry point Cl and E(Cl, k) = C2, E(C2, k) = 
C3, E(C3, k) = C1. The nodes Cl, C2, and C3 have as 
values the atoms A, B, and C, respectively. 

In cases where node names· and/or edge labels are not 
significant, they will ordinarily be omitted. Thus the 
same graph might be written alternatively as in 
Figure 3. Operator instances will be represented in the 
form: 

c: *Cl k, C2 

\; 
C3 

Cl:0 
Figure 2 

C: 

Figure 3 



818 Spring Joint Computer Conference, 1969 

where each h is the name of an input node and each Ok is 
the name of an output node. 

Three complete models of programs and data are 
given in this section, for Turing machines, LISP, and 
Fortran. Although no attempt is made to provide 
complete descriptions of the languages, the models of 
the particular programs used are constructed so as to 
indicate how a general model might be constructed. 

Turing machine semantics. Consider first the repre
sentation of the semantics of a particular Turing 
machine. Intuitively, a Turing machine is very simple 
semantically. Both the program (the functional matrix) 
and the data (the tape) are of simple structure. This 
makes a model of the semantics of Turing machines a 
useful test case for a semantic theory. The general class 
of Turing machines that will be modeled have a single 
tape and read head, and at each move they will (1) read 
the spubol in the square being scanned, (2) change 
state, (3) write a symbol, and (4) move left or right one 
square. 

a. Atomic units. The universe of atomic units U for 
Turing machines over a particular alphabet A is 
composed of: 

U = A' U cJ> 

where A' and cJ> are disjoint, A' = A U {left, 
right}, A is the alphabet of the Turing machine, 
{left, right} are labels, and cJ> = READ U 
WRITE U l\IOVELEFT U l\IOVERIGHT U 
NO-OP where REAL, WRITE, MOVELEFT, 
MOVERIGHT, and NO-OP are the names of 
disjoint operator type classes defined below. 

b. Data structures. 
Levell nodes. Except for the special node P and 

the nodes containing the alphabet symbols, all 
level 1 nodes correspond to tape squares 
containing a symbol from the alphabet A. 
P is the node mentioned in the execution 
algorithm for program H -graphs, and for each 
alphabet symbol a node is required containing 
that symbol (for the WRITE operator). 

Level 2 nodes. Only two nodes are needed, 
TAPE and HEAD. TAPE contains a two-way 
list (of level 1 nodes) with edges labeled "left" 
and (iright." HEAD contains a single level 1 
node which corresponds to the tape square 
being scanned. 

~. Program structures. 
Levell nodes. Contain single operator instanc~s. 
Level 2 nodes. Only one node PROG is needed, 

which contains a graph representing the 
functional matrix of the Turing machine. 

d. Operator type classes. See Table I. (H = 
HEAD, T = TAPE, V is the function which, 
given a node, returns the value of that node.) 

e. Example. For the 2-state 3-symbol Turing 
machine given in Figure 4 an H -graph repre
sentation is given in Figure 5. 

Execution of the program H -graph PR~G simulates 
the operation of the Turing machine. Execution of 
PR~G involves simply following a path from the entry 
point (node P9) of the graph in PROG to the (unique) 
node P5 of the graph which has no exiting edges. This 
path is chosen according to the algorithm of the 

Table I -Turing machine operator instances 

Class 

READ 

WRITE 
MOVELEFT 

MOVERIGHT 

NO-OP 

Form of Operator 
Instances 

READ(H; P) 

WRITE(a, H; H) 
MOVELEFT(H, T; H, T) 

lVI0VERIGHT(H, T; H, T) 

NO-OPO 

Function 

Trap.sfers V(V(H» to P (i.e., copies the symbol 
being scanned into P) 
Sets the value of the node V(H) = yea) 
Let a = V(H), set V(H) = E(a, left) where E is 
the edge function of the graph in T. If E(a, left) 
is not defined, create a new node with a unique 
name (3. Set V(H) = (3. Define E(a, left) = (3 
and E({3, right) = a and set V({3) = ~ (empty 
tape square symbol of A) 

Same definition as MOVELEFT, replacing "left" 
by "right" and "right" by "left." 
The identity operation (does nothing) 



Hierarchical Graph Model of Semantics of Programs 819 

MATRIX 

Symbol 
0 

State '\ 
1 # 

So 1 ,R, So O,R,SO #,L,Sl 

Sl 1,L,81 0,L,81 

INPUT TAPE 

7' 
Initial 
head 
position 

Halt 

Figure 4-Turing machine initial configuration 

preceding section. Thus beginning at P9, the operator 
instance in P9 is executed (corresponding to reading the 
tape square under the read head and storing the symbol 
read in node P). Then the edge leaving pg is chosen 
which is labeled with the symbol contained in P (in this 
case 0). This edge leads to PO, which becomes the 
current node. The operator instance in PO is executed 
(writing a 1 on the tape square under the read head). 
The single edge leaving PO is followed to P3, the 
operator instance contained in P3 is executed, etc. 
Execution continues in this manner until node P5 is 
reached. 

In the Turing machine representation both program 
and data have only two levels, giving a hierarchically 
simple structure. The given representation readily 
extends to arbitrary Turing machines and initial 
configurations. 

Lisp semantics. As a second example, consider the 
problem of representing the semantics of the following 
Lisp function with its argument: 

(LABEL(LAST(LAMBDA(X) (CPND 

((NULL(CDR X)) (CAR X)) 

,(T (LAST (CDR X))))))) ((A (B C) DE)) 

An H-graph model may be constructed for this function 
in such a way that extension of the model to the 
remainder of the Lisp language is possible. 

In representing the Lisp function two major problems 
arise: 

1. The sequence of operations specified implicitly 
through function composition and the order of 
evaluation conventions of Lisp must be made 
explicit in the H-graph representation. 

2. The pairing of formal parameters and actual 
parameters, and the transmission of evaluated 
arguments to the functions using them must be 
handled by explicit use of versions of the 
standard Lisp interpreter A-list and pushdown 
list.5 This is due to the fact that the H -graph 
model contains no built-in provision for argument 
transmission to subprograms. 

A representation of the semantics of the above Lisp 
function may be constructed as follows: 

a. Atomic units. Let the universe U of atomic 
units be: 

U = A U {T, ~IL} U P 

where A is the set of Lisp atoms and P = CAR 
U CDR U NU;LL U PAIR U VALUE U 
PPPUP where these data type classes are defined 
below. 

b. Data structures. Lisp list structures are repre
sented as hierarchical data graphs, where sublists 
are represented by lower levels in the hierarchy. 
A list of n elements is represented by a graph of n 
nodes, connected in sequence. If a list element is 
an atom, its corresponding graph node contains 
that atom as its value. If a list element is a 
sublist of m elements, its corresponding graph 
node contains a graph of m nodes representing 
the sublist. Thus the list: 

(A, (B, C, D), ((E, F), G)) 

is represented by the H-graph in Figure 6. To 
handle argument transmission, certain auxiliary 
data structures will be necessary: 

1. OP, a node which contains a list, used as a 
stack to hold operands; 

2. ALIST, a node which conta:ins a list, used as 
a stack to hold paired formal parameters 
and their values. 

c. Program structures. Like all Lisp program 
structures not using PROG, the program graph 
for the above function is a tree. Since the function 
contains a recursive function call, the program 
graph is recursive. 

d. Operator type classes. See Table II. (V is the 



820 Spring Joint Computer Conference, 1969 

Tape(T): co: 

right 

Cl: 

right 

C2: 

right 

C3: 

right 

C4: 

right 

C5: 

Head(H): e 
NO:G) 

PR0G: 

II 
I I 

I 
po: 

*P9: I 
I 
o 

t 

WRITE(N1,H;H) 

P2: 

MOVELEFT(H,T;H,T) 

MOVELEFT(H,T;H,T) 

Figure 5-Turing machine H-graph representation 

function which, given a node, returns the value 
of that node.) 

e. Example. The Lisp function: 

(LABEL (LAST (LAlVIBDA(X) (C~ND 

«NULL(CDR X)) (CAR X)) 

(T (LAST (CDR X))))))) «A (B C) DE)) 

is represented by the H-graph of Figure 7.' 

Note that the sequence of operations performed 
during execution of the node LAST corresponds closely 
to the sequence executed by an ordinary Lisp inter
preter: first the formal parameter, X, and the actual 
parameter, the list in C1, are paired on the ALIST, 
then X is evaluated, CDR of its value is taken, and 



Hierarchical Graph lYlodei of Semantics of Programs 821 

Table II -LISP operator instances 

Class 
Name Operator Instance Form Function 

CAR CAR(0P; 0P) 

CDR CDR(0P; 0P) 

NULL NULL(0P; 0P, P) 

PAIR PAIR('Y, 0P; ALIST,J?)P) 

VALUE VALUE('Y, ALIST; 0P) 

POPUP POPUP(a; a) 

01 *&00H*1 *&0f-0! 
Figure 6-List structure H-graph representation 

NULL of that value is taken. The value of NULL, T or 
NIL, is then used to control a branch. If T, the execution 
ends after the CAR of the value of X is taken. If NIL, 
then the CDR of the value of X is taken and execution 
descends a level at the recursive node N, which contains 
a graph of the single node LAST. The stack OP is used 
throughout to communicate results between operator 
instances. Execution of the above program H -graph 
LAST will result in the node 0P containing a graph 
whose entry point node contains the value of the 
function; thus 0P: 1* E ~ NIL lis the final state of the 

Let a = entry point of V(0P). Let (3 = entry 
point of yea). Set yea) = V((j). 

Let a = entry point of V(0P). Let (3 = entry 
point of Veal. Set yea) = a graph obtained from 
yea) by setting the entry point to E((j, t) and 
deleting node (3. If E((j, t) is not defined, set 
yea) = NIL. 

Let a = entry point of V(OP). Set yea) = 
Yep) = TifV(a)' = NILand = NIL otherwise. 

Let a = entry point of V (0P) and (3 = entry 
point of V (ALIST). 
(1) Pushdown V (ALIST), let C = new entry 

point (i.e., replace the graph in ALIST by 
*C ~ (3 ~ ... where C is a new node and 
*(3 ~ ... was the old graph). 

(2) Set V(C) = the graph *1' ~ a. 
(3) Popup 0P (i.e., replace V(0P) = the graph 

*a ~ a' ~ ... by the graph *a' ~ ... 

(1 ) Find first node Q on list V (ALIST) such 
that l' = entry point of V(Q). Then V(Q) is 
a graph *1' ~ a. Let C be a new node. 

(2) Pushdown C onto list V(0P) (i.e., replace 
*(3 ~ . " .. by *C ~ (3 ~ ... ). 

(3) Set V(C) = V(a). 

Popup list yea) (i.e., replace *(3 ~ l' ... by 
*1' ~ ... ). 

node 0P, where E is the value of the function LAST for 
the given argument. 

Fortran semantics. As a final example, consider the 
problem of representing the semantics of the following 
Fortran program: 

PR0GRAl\1 EXAl\1PLE 

DIMENSI0N M(2, 5) 

D02 I = 1,5 

:.vI(l, I) = I 

2 M(2, I) = IFACT(I) 

END 

FUNCTION IFACT(N) 

K = 1 



822 Spring Joint Computer Conference, 1969 

OP: I *XCI 

ALIST: [:E:J 
Program: 

LAST:/. 

~ *IPAIR(X,0P;ALIST,0P) 
(' 

i 
IpOPUP(ALIST;ALIST) 

Figure 7-Lisp function H-graph representation 

D0 2 J = 1, N 

2 K = K*J 

IFACT = K 

RETURN 

END 

As with Lisp, it is necessary to provide explicitly a 
mechanism for argument transmission to subprograms 
in the model of Fortran. 

The H-graph representation may be constructed as 
follows: 

a. Atomic units. 

u = I U {=, ¢} U 0 

where I = set of integers 

{¢, ¢} = set of labels 

and 

o = the union of the operator type classes 
defined below. 

b. Data structures. Simple variables are represented 
as level 1 data nodes. Two-dimensional arrays 
are represented by a graph (of levell nodes) with 
edges labeled land 2 indicating rows and 
columns, respectively, as M in Figure 8. 

c. p.rog'i'U'ln structures. The program structures 
correspond roughly to flow charts of the Fortran 
programs. Subprograms are represented by sepa· 
rate levels in the hierarchy of program graphs. 

d. Operator type classes. See Table III. (V = 
function which, given a node, returns the value 
of that node.) 

e. Example. The program may be represented as 
the H-graph of Figure 8. Note that the loops 
implied by the two D0 statements are made 
explicit in the H-graph representation, and the 
operations of array referencing and argument 
transmission which are implicit in the Fortran 
program become explicit in the model as the 
operations REF2 and SETADDR-SET, respec
tively. Execution of the H -graph EXk"\1PLE 
results in the first row of the array M being filled 
with the integers 1-S and the second row with 
the integers 1 !-S!. 



Hierarchical Graph ~,fodel of Semantics of Programs 823 

Data: 
.~----------------------------~ 

M: 

N:0 Nl{~ N2:(0 N5{~ 

I: C0 T:G) P: C0 
ARGl: 0 K:0 J: 0 

Program: 

Figure 8-Fortran program H-graph representation 



824 Spring Joint Computer Conference, 1969 

Table III-Fortran operator instances 

Class 
l\T ___ _ 
.1.'1 <:LUlt::: Opera Lor Instance Form . 

ADD 
MULTIPLY 
ASSIGN 

IASSIGN 

SETADDR 
SET 

ISEQ 

REF2 

NO-OP 

CONCLUSION 

ADD(a, (3; 'Y) 

MULTIPLY(a, (3; 'Y) 

ASSIGN(a; (3) 
IASSIGN (a; (3) 

SETADDR(a; (3) 
SET(a; (3) 

ISEQ(a, (3; P) 

REF2(a, (3, 'Y; 5) 

NO-OP( ) 

In this paper the general outline of a hierarchical 
directed graph model of the semantics of programs has 
been sketched, and a number of examples of its use in 
modeling particular features of programming languages 
have been given. lVlany interesting questions remain 
concerning such models. Preliminary indications are 
that t~e ~~del provides both mathematical tractability 
and mtUltlvely appealing characterizations of the 
semantics of programming languages. It remains to be 
shown that these indications will remain valid as more 
~xtensive ?evelopment is undertaken. At present, work 
IS proceedmg along two main lines On the one hand . . , 
attempts are bemg made to exploit the formal nature 
of the model. One would like to prove theorems con
cerning the model which would allow one to derive 
properties of particular program-data pairs given their 
representation in the model. On the other hand models 
of various programming languages are bei~g con
structed' and the problem of constructing processors 
~ased on the model is being investigated. One would 
like to be .able to translate from actual programming 
languages mto the model and vice versa. Given such 
processors, one could then manipulate the H-graph 
representation of a particular program according to the 
formal theory to produce semantically equivalent 
programs having particularly desirable properties. 

Any model of the semantics of programming lan
guages emphasizes in its structure certain semantic 
features at the expense of others. The model based on 

Sets V( 'Y) = yea) + V«(3) 
Sets V( 'Y) = yea) *V«(3) 

Sets V«(3) = yea) 

Sets V (V «(3) ) = V (a) (where V «(3) is a single 
node graph) 

Sets V «(3) = the single node graph: *a 

Sets V({3) = V(a') where a! = entry point node 
of the graph yea) 

~ • ~? ,~, (= if yea) = V«(3) 
~ets V(.t') = i 

t ;;e if V (a) ;;e V «(3) 

Sets V(5) = node corresponding to a«(3, 'Y) In 

2-dimensional array a 

N o-operation 

hierarchies of directed graphs presented here is no 
exception. Other models of semantics have tended to 
emphasize flow of control in programs and argument 
transmission to subprograms. Landin's lambda-calculus 
model of ALGOL,! for example, emphasizes argument 
transmission, restricts flow ot control to function 
composition with recursion, and does not consider data 
structure. The directed-graph model of ::; arasimhan 3 

emphasizes argument transmission and flow of control, 
representing the latter in a manner somewhat similar to 
that used here. The model of this paper emphasizes the 
structure of data and the hierarchical aspects of fimv 
of control. It subordinates argument transmission by 
incorporating no built-in argument transmission 
method. 

It is clear that the development and study of formal 
models of the syntax of programming languages has 
helped greatly to clarify the basic concepts in that area 
and also has led to the development of better methods 
for syntactic analysis in processors. It may reasonably 
be expected that similar benefits will be derived from 
the development of adequate formal models of the 
semantics of programming languages. 

REFERENCES 

1 P LANDIN 
A. correspondence between A. LGO L 60 and 
Church's lambda-notation 
Communications of the Association for Computing 
Machinery 1965 8 2 and 3 



Hierarchical Graph Model of Semantics of Programs 82,1 

2 T B STEEL (editor) 
Formal language description languages for 
computer programming 
North-Holland 1966 

;3 R NARASIMHAN 
Programming languages and computers: A unified rfletatMory 
Advances in Computers Vol 8 F L Alt editor 1967 

4 R W FLOYD 
Assigning rn,eanings to programs 
American Mathematical Society Symposium in 
Applied Mathematics Vol 19 1967 

5 J McCARTHY et al. 
Lisp 1.5 programm,ers manual 
Massachusetts Institute of Technology 1962 





A flexible standard programming 
system for hybrid computation 

by WOLFGANG GILOI, DIETER BECKERT and HANS C. LIEBIG 

Technical University oj Berlin 
Berlin, Germany 

Hardware structure of hybrid computer systems 

The combined operation of analog and digital com
puters in hybrid computer systems requires a special 
hardware interface because of the different modes of 
operation and the different ways of data representation 
in both computers. Generally, in such a symbiosis all 
the functions of the analog computer, which are norm
ally under manual control by the user, here have to be 
under control of the digital program, except for one 
case: once the digital program has started an analog 
computer run, the analog computer is on its own. 
In the case of combined simulation, i.e., if both com
puters operate simultaneously, from the viewpoint of 
the analog computer its digital partner now plays the 
role of a single, but very complex, computing unit to 
which some analog signals go and from which other 
signals come back. 

From the viewpoint of the digital computer (and in 
the following we will always adopt this point of view), 
the analog computer and the interface are an entity 
representing an external process which has to be con
trolled. We aElSume that this process may include the 
various procedures listed in Table I, which all have to 
be managed by the digital program. (For notational 
convenience the word 'program' will always stand for 
the digital program, while we shall call the analog part 
of the entire program a 'setup.') 

Table I 
List of Procedures Which are Provided by the Hard

ware Interface N on-Time-Critical Functions of the 
Hardware Interface: 

1. Control of the analog computer modes by the 
program 

2. 'Run Time' selection (of one or more analog 
computer runs) by the program 

3. Signalization of the actual start of an analog 
computer run (change of the integrator mode) 
to the program 

4. Sensing of the current mode of the analog com
puter by the program 

5. Signalization of the end of an analog computer 
run ('run time elapsed') to the program 

6. Setting of potentiometers and subsequent check
ing by the program 

7. Setting of analog switches by the program 
8. Readout of analog outputs and potentiometer 

settings under control of the program and trans
fer of these data to the digital computer 

9. Sensing of the state of Boolean variables occur
ring in the 'logic box' of the analog computer by 
the program 

Time-Critical Functions of the Hardware Interface: 

10. lVlultiplexing and sampling of analog data and 
conversion into digital form; transfer of these 
data into the digital computer at an arbitrary 
rate (serially) 

11. Transfer of Digital data into the digital-to
analog converters (in parallel), conversion (and, 
in certain circumstances, smoothing) of these 
data 

12. Transfer of overload messages and other error 
messages to the program 

13. Transfer of external interrupts (arbitrarily 
programmable on the analog computer) to the 
program 

All the procedures of items one through nine have to 
be executed while the analog computer is in the HOLD, 
RESET, or STANDBY mode. Hence, they are not very 
time critical. On 'the contrary, the procedures 10 
through 13 take place while both computers are running, 

827----------------------------------



828 Spring Joint Computer Conference, 1969 

thus imposing on the program problems of real-time 
process management. 

All this requires a digital computer that has process 
control computer capabilities such as a fast communi
cation I/O-channel (preferably with direct memory 
access or a cycle-stealing mode, respectively), a hier
archic interrupt system, and control and sense lines. In 
addition to the real-time clock which is part of any 
analog computer, either the interface or the digital 
computer has to provide a second real-time clock (de
fining the 'frame time' yet to be explained). 

In terms of harware only, the interface (plus analog 
computer) appears to the digital computer like one 
more peripheral device, yet much more complicated 
than the customary peripheral equipment. A much 
higher complexity of the data flow to and from that 
device is mandatory, varying between single control 
bits or sense bits and words or blocks of words to be 
transferred at a very high rate. In terms of the system 
programming, however, this particular peripheral: de
vice represents a complicated process, occurring in 
real-time and manageable only if a specially designed 
software interface is provided, which is as powerful as 
the hardware interface. 

The requirements for a powerful software interface and 
its structure 

The machine languages of digital computers which 
have the above-mentioned process control computer 
capabilities include instructions that energize control 
lines or check sense lines, handle interrupts, activate the 
I/O-channel and prepare its interlace hardware so that 
a block of data words can be put in or out, etc. However, 
it is much too tedious to program a hybrid computer 
that way (despite the fact that it has sometimes been 
done). In the case of the hybrid computer system 
about which this paper deals, a program written in 
machine code would require 35 instructions just for 
selecting an arbitrary analog computing element, and 
25 more instructions to read the output of that ele
ment and transfer it into the digital computer. The 
setting of one potentiometer-including a subsequent 
check of the actual setting and the handling of possible 

. error messages-takes about 150 instructions in ma
chine code. ~1any of these assembly language instruc
tions are not just simple, mnemonic words such as the 
arithmetical operation-code, but I/O-instructions which 
have to be specified, e.g., by a never-to-memorize six 
digit octal number. However, it is even worse if one 
leaves the subtle tasks of interrupt handling to the 
programmer. 

All these problems may occur in process control 
applications too, but for such a special purpose, a pro-

gram has to be written only once. Hybrid computer 
system programming, however, combines the short-term 
aspects of pure digital programming with the crucial 
difficulties of real-time data processing. 

So, first of all, one has to eliminate coding by machine 
instructions. A comfortable software package for a 
hybrid computer system has to offer the possibility of 
writing any program in one of the customary problem
oriented languages that programmers are used to, for 
example, FORTRAN or ALGOL. Of course, such a 
language has to be augmented by a number of special 
subroutines. These subroutines take care of all the 
procedures listed in Table 1. Furthermore, a special 
executive program is necessary which handles the 
synchronous operation of both computers and all the 
interrupts and error messages which may occur. 

But that is not sufficient. Analog computer operators 
d,re used to having control of the entire system at any 
arbitrary time instant. They are able to interrupt the 
execution of a program in order to change potentiometer 
settings as well as the whole setup and restart or rerun 
thereafter the program. A hybrid computer system 
should provide the same possibilities, but this cannot 
be done while the system is under control of the digital 
program. Conversely, the program may sometimes 
need the help of the human operator (at least as long as 
the automatic patching problem has not been solved 
yet). The first demand to hand over the control of the 
system to a human operator or to receive it back at any 
arbitrary moment is unique. If this is granted, there are 
actually three parties involved alternating in the con
trol of the system: the digital computer, the analog 
computer, and the human operator. This gives us 
additional reason for using the term 'software inter
face' as a supplement to the 'hardware interface,' 
meaning that only the proper design of both can make 
a hybrid computer system manageable. Additionally, 
some special utility programs are very helpful which 
perform an automatic checkout of the analog setup 
and of the entire system, thus detecting, indicating, 
and diagnosing errors and component failures. 

Hence, a hybrid computer system 'housekeeping' 
software package should at least consist of the following 
programs (names have been assigned to the various 
programs which we can refer to) : 

1. HARTRAN 

2. HYTROL 
3. ACID 

(hybrid-procedure augmented 
real-time FORTRAN) 
(hybrid system control) 
(analog computer and inter·· 
face diagnosis) 

4. STATEST (static test of the analog setup) 
5. HYBRID LIBRARY PROGRAl\fS 



HAR TRAK denotes the set of all hybrid subroutines 
by which the problem-oriented language (in our case a 
special FORTRAN version) has to be augmented. If 
the software interface is organized the way it will be 
subsequently described, HARTRAN includes also the 
executive program.· HYTROL provides the required 
man-machine-interaction. ACID is a necessary aug
mentation of the debugging programs which are al
ready existing for the digital computer. STATEST 
enables the digital computer to check-out the analog 
setup and to detect and indicate set-up errors as well 
as component inaccuracies or failures. The HYBRID 
PROGRA]vI LIBRAR Y encompasses a number of 
hybrid standard programs which usually cannot be 
found in the standard program library supplied with 
the digital computer. 

It is common practice to compose a complex program
ming system of several subsystems, because it gives a 
much better way to implement, improve, maintain, 
and change such a system. Doing so, one has to take 
care, of course, of all possible interconnections between 
the various subsystems. In order to facilitate the real
ization and the use of the subsystems, we define first of 
all a certain set of modules which are common com
ponents in all of them. The modules occur in three 
different forms: 

PROGRAMMED OPERATORS (POPs) 
STANDARD HARTRAN SUBROUTINES 

(SUBs) 
SPECIAL HARTRAN FUNCTIONS (FUNCs). 

A POP is a subroutine that has a mnemonic name, 
like any other macroinstruction, combined with a pa
rameter by which the execution is defined. The SUBs are 
standard subroutines of the HARTRAN compiler, 
i.e., they don't have to be declared and can be called 
by a CALL statement together with their name and an 
arbitrary array of parameters. The FUNCs designate 
procedures by which the output of an analog component 
or a Boolean variable is fetched from the analog com
puter. The actual variable receives the name of that 
function, and under this identifier it can be a member of 
any arbitrary arithmetic or Boolean expression (like 
the standard functions in the usual FORTRAN lan
guage). 

SUBs and FUNCs, for example, take care of all the 
procedures listed in Table I and others. POPs are 
first of all used within HYTROL and STATEST, and 
the ACID complex of test programs rely on SUBs as well 
as on FUNCs. The special library programs are written 
in HAR TRAN. We will talk about these modules in 
more detail when we come to the description of the 
various subsystems. 

Flexible Standard Programming System 829 

What problem-oriented programming language 
should be used? The standard FORTRAN language 
(especially FORTRAN II) has some shortcomings. 
For example, it does not provide the possibilities of 
recursive call of subroutines, instructions for bit ma
nipulation, and handling of interrupts. Notwithstanding, 
for two reasons, we selected FORTRAX. The first and 
most important reason was that FORTRAN is the most 
often used programming language. The intention of 
this paper is, however, not to describe just one of many 
possible implementations of a hybrid system software 
interface, but to propose a standard type of software 
interface which can be implemented on any system. 
Therefore, it has to be independent of particular as
sembler languages and it has to be based on the prob
lem-oriented language most in use. 

The second reason was an individual op.e. For our 
computer (SDS 930), a special FORTRAN version 
exists, called REAL-TI~rE FORTRAN, which does 
include all the above mentioned features, especially 
the possibility of connecting subroutines which respond 
to interrupts. Of course, this is no comfort to some
body who has to rely on the standard FORTRAN II 
version, but, even then, the construction principles 
outlined in this paper can be applied. HARTRAN 
would in this case stand for 'hybrid -procedure aug
mented FORTRAN,' and this programming system 
may lack some valuable conveniences, but it will still 
be feasible. 

The organization of the software interface; HARTRAN 
and HYTROL 

The two possible states of a hybrid system 

From the discussion in the above section, the con
cept of organization of a hybrid computer software 
interface becomes quite obvious: The system as an 
entity (hardware and software) has two possible states, 
namely: 

(I) the CONTROL state 
(II) the RUN state. 

In the CONTROL state a number of standard sub
routines can be called within the framework of HAR
TRAN. The subroutines execute the special hybrid 
procedures which we have listed in Table I under items 
onB through nine, and some more. Additionally, by 
calling a special subroutine by the name HYTROL, 
control is transferred to the console typewriter or any 
other arbitrary input device, enabling the human op
erator to interrogate or control the system. HYTROL, 
on the other hand, has to provide instructions by which 
a return to the HARTRAN program is possible. 



830 Spring Joint Computer Conference, 1969 

Another most important HARTRAN subroutine 
called OPERUN switches the system from the CON
TROL state into the RUN state. By the CALL 
OPERUN statement two different processes are started 
simultaneously: 

a. An analog computer run is initiated (switching 
the analog computer from the STANDBY, 
INITIAL CONDITION or HOLD mode, to 
the OPERATE mode). 

b. In the digital computer, a procedure called RUN 
is started that initiates a continuous scanning, 
sampling and converting of analog data, a 
manipulation of those data, and transfer of the 
digital results into the digital-to-analog con
verters. 

At this point we have to comment about the two 
different classes of hybrid computation and their con
sequences on the organization of the data transfer be
tween both computers. In the first class of operation, 
both computers operate alternatively, while in the 
second class, both computers execute a hybrid program 
simultaneously. 

For operations of the first class, the programmer 
should be given the flexibility of a random input or 
output of analog data; i.e., each I/O procedure has to 
be programmed individually, and every time the multi
plexer or DAC addresses can be arbitrarily chosen. 

Unlike the first case, the second case may be ex
tremely time-critical, especially if a combined simula
tion of a system with high natural frequencies has to be 
performed in real-time. Since in this class of operation 
an input or output sequence of analog data may occur 
hundreds or thousands of times during one computa
tion run, it would be unnecessarily awkward and time 
consuming to program this by a random access which 
needs to declare for every input or output the multi
plexer or DAC addresses. Therefore, a procedure 
should be available which performs automatically and 
periodically a certain I/O-sequence. The first address 
and the length of the input and output sequences have 
to be declared just once (in a program header). All the 
time during the execution of that program, a fixed 
sequence of multiplexer input lines are scanned and a 
fixed sequence of DACs are loaded periodically. If the 
channel has the capability to transfer data blocks auton
omously to and from the memory in a cycle-stealing 
mode bypassing the CPU (we call this the interlace 
feature), this particular I/O-mode provides not only 
a most efficient way of programming, but also the 
fastest possible way of execution. 

HARTRAN subroutines are available for both ways 

of inputting and outputting' analog data. It has to be 
emphasized that this way of programming can be used 
for any computer, while the actual subroutines of , 
Gourse, depend on its specific structure. In the following; 
we shaH find some more SUBs which are a result of the 
specific hardware structure of our hybrid computer 
system. But this is not contradictory to our claim of 
proposing in this paper a standard software interface. 
The only thing we have to try is to assume a hardware 
structure as general and flexible as could be. The SUBs 
and the corresponding POPs which may then be re
quired for a less flexible system are a subset of what we 
shall define in the following. The particular subroutines 
which can be called as SUBs or POPs have to be writ
ten for the individual system anyway. Following this 
philosophy, for example, it does not matter whet.her 
or not the multiplexer inputs are equipped with paral
lel track-and-hold circuits, or whether the DACs 
have two buffer registers or only one. Of course, the 
corresponding subroutines have to be written differ
ently, but the structure of the software interface and 
the programming language are not affected. The same 
holds for some unique hardware features of our system. 

The control state and HARTRAN 

In the following we shall list all the standard pro
cedures which can be executed by flo HARTRAN pro
gram. On the lett side we list the respective format, 
and on the right side we give a short specification of 
the procedure. Furthermore, the SUBs are classified 
by their function and a comment is made on each class. 

Analog Computer (AC) Mode Control 

CALL CON .. the next run will be 'continuous 
operation' unlimited in time 

CALL CON H .. the next run will be 'continuous 
operation' until the selected time 
has elapsed; after that the AC 
goes in 'hold' and continues when 
a new 'operate' instruction is re
ceived 

CALL REP .. the next run will be 'repetitive 
operation' 

CALL REPH .. the next run will be 'repetitive 
operation'; after the first run, the 
AC goes in 'hold' and starts the 
next repetition run only on receipt 
of a new 'operate' instruction 

CALL ITR . . the next run will be 'iterative op-
eration' 



CALL ITRH .. see REPH and replace 'repetitive' 
by 'iterative' 

CALL STY .. if the AC was in 'hold' it is now 
switched to 'reset' or 'standby: 
(both are synonymous) 

CALL SRTN ('rt', 'ot', 'ht') . . setting of the 'nor
mal' run timer 

CALL SRTC (~rt', ~ot', ~llt') .. setting of the ~com

plementary' run 
timer, 'rt' is reset 
time; lot' is operate 
time; 'ht' is hold 
time (all declared in 
milliseconds) 

Comment: A model of the AC mode control is a 
(virtual) manual control that has six push-buttons and 
six thumbweels. The push-buttons are labeled: con
tinuous operation (CON), repetitive operation (REP), 
iterative operation (ITR) , operate (OP) , hold (H), 
and reset or standby (STY). By pushing one of the 
fin:;t three buttons the mode of the next computer run 
is prepared, and by pushing the OP button this run is 
actually started. If, in addition to REP or ITR, the 
button H is s~itched on, we have the 'single run' mode. 
The combination of CON and H interrupts the con
tinuous operation after the selected run time has 
elapsed; the AC goes in the HOLD position from where 
it can be restarted in order to continue the operation. 
By the (virtual) thumbweels, the (normal) 'run timer' 
can be set, defining the three phases of a repetition cycle 
individually. The 'complementary run timer' setting 
is only required for the iterative operation. Though 
this mode does not make much sense in a hybrid com
puter system, it is part of most analog computers and 
shall thus be taken into account. 

Setting of Potentiometers and Function Generators 

CALL POTSET ('addr.u', 'value u', 'addr.v', 'value 
v', ... ) :: setting of an (unlimited) 
number of potentiometers 

CALL POTSETL ('addr.u', 'value u', 'addr.v', 'value 
v', . . .) : : setting of potentiome
ters with a printout of the actu
al addresses and settings 

CALL FGSET ('value 1', 'value 2', ... ) :: set
ting of function generators; 'value 
1', 'value 2',. 0 0 are the (fixed) 
breakpoint values of the function 
given as a decimal fraction of the 
reference (e.g.: + .4875). 

Flexible Standard Programming System 831 

Comment: 'addr.' may be any combina.tion of letters 
and figures, depending on the AC address system; 
. value' is a 4-digit decimal number following the deci
mal point (e.g.: P 127, .0178). For the error messages 
see a later section (HYTROL). FGSET, of course, 
only makes sense if the AC has digitally settable func
tion generators. (In our system, we developed these 
units ourselves.) 

Control Lines 

CALL SET ('x', 'y', 'z', ... ) .0 The control lines listed 
as parameters of the 
expression are set to 
TRUE. 

CALL CLR ('x', 'y', 'z', ... ) 00 The controllineslisted 
as parameters of the 
expression are set to 
FALSE (CLR = 
'clear'). 

Comment: The control lines are used to set or reset 
flip flops in the AC logic box. 

Selection of Analog Components and Senselines; 
Functions 

POT ('addr.') 00 The potentiometer with a named 
address is selected, and its output 
is a variable of the program identi
fied by POT ('addr.') 

Al\1P ('OOdr.') 00 The amplifier (multiplier, func-
tion generator, etc.) with the 
named address is selected, and is a 
variable of the program identi
fied by AMP ('addr.'). 

SL ('x', 'y', ... ) o. The logical values of the sense 
lines 'x', 'y', ... , are composed by 
'and' and the result becomes the 
logical value of the function. 

Comment: As mentioned above, functions can be vari
ables of arithmetical or Boolean expressions. One can 
write, for example, a FORTRAN IF statement as 
follows (x being another variable): 

IF (AMP (47) - .5800 * X) 10, 10,20 

If 'x', 'y', 'z', are addresses of sense lines, one can write, 
for example, (without having to declare 'x', 'y', and 
'z' as LOGICAL) 

If (SL(I) . OR .. NOT. SL(2, 3) 1, 1,2 



832 Spring Joint Ccmlputer Conference, 1969 

where the expression of the IF statement is 
SLI V SL2 ASL3! 

Eniry io H YTROL 

CALL HYTROL .. The control and test program 
HYTROL is called and the 
system control is handed over 
to the human operator 

Frame Time Selection 

CALL FTS('time') :: In preparing the run state, the 
time of a digital computation 
frame (see next section) is 
selected by setting a special 
real-time clock (' tillIe' = 3 
place decimal number giving 
the time in milliseconds). 

DAC Mode Selection 

CALL MODC 

CALL MODM 

CALL MODI 

.. Simple conversion (the AC ref
erence is also the reference 
for the digital-to-analog con
verters (DACs). 

.. The DAC reference voltage can 
be an arbitrary analog variable, 
hence, conversion is combined 
with an (analog) multiplication. 

.. The DACs combine the con
version with a straight-line seg
ment interpolation (or extra
polation). 

Comment: It is another special hardware feature of 
our system that the digital-to-analog converters (DACs) 
can operate in three different modes (we designed them 
ourselves tor that particular purposel). The first mode 
is just simple conversion. In the second mode the con
verters may be used as 'multiplying DACs' providing 
the multiplication of the converted digital output with 
any arbitrary analog variable. A considerable number 
of analog multipliers may be saved, and the errors 
may be reduced (since the lVIDACs are more accurate 
than analog multipliers). 

The output time fllllction of a usual DAC is a 'stair
case' function, i.e., the output voltage is constant as 
long as the digital input stored in the DAC register is 
not replaced by a new one. In the third mode, our 
interpolating (extrapolating) DACs replace the stair
case function by a straight-line segment interpolation 
(or extrapolation) between the data points, resulting 

in a better (and smoother) approximation of a contin
uous signal of which the data points are samples. For an 
interpolation, the program has to calculate the incre
ments between a current output and its sucCessor. If 
the successor is not available to the program, the inter· 
polation must be replaced by an extrapolation based on 
the current output and its predecessor. A variation of 
the time interval between two data points (= frame 
time) is automatically taken into account. If the digital
to-analog converters have only the DAC and MDAC 
modes, the l\10DI subroutine is immaterial; if there is 
only the normal DAC mode, all the SUBs of this sec· 
tion are immaterial. The mode specification holds for 
all DACs. If only part of them shall multiply, the 
others have to be patched to the reference. If only 
part of them shall interpolate, the mode is J\IODI, a..'1d 
the ones which have not to interpolate receive simply 
the increment zero. In our case, this is particularly 
simple, as we have a 24-bit word format where the 
first 16 bits are the value, and the last eight bits are the 
increment . 

Asynchronous Data Transje:r 

CALL AD 
('x', 'addr.x', 'y', 
'addr.y'7' .. ) :: transfer of dat.a blocks from the 

AC to the DC. 'x', 'y', ... are 
variables or expressions of the 
HARTRAN program identified 
by the numbers of the multiplexer 
input lines by which the variables 
are fetched. 

CALLDAC 
('x', 'dest.x', 'y', 
'dest.y', ... ) :: transfer of data blocks from the 

DC to the AC. 'x', 'y', ... are vari
ables or expressions of the HAR
TRAN program; 'dest.x', 'dest.y', 
... are the destination addresses. 

CALLDAI 
('x', 'INCx', 
'dest.x', ... ) .. transfer of data blocks from the 

DC to the AC. 'INCx', 'INCy', 
. . . are the increments of the 
variables 'x' , ' y' , . . . between 
two data points; for the other para
meters see CALL DAC. 

Comment: DAC has to be used in connection with 
MODC or MODM; DAI is only used in connection 
with MODI. 



Switch from the Control State to the Run State 

CALL OPERUN :: The system is switched into the 
run state, either for starting an 
analog computer run only (with 
no simultaneous digital opera
tions) or for a combined opera
tion of both computers. 

Comment: Most analog computers have the possi
bility to change all the -integr~tor time constants si
multaneously by a factor 10 (e.g., by a' 10 times faster' 
or a '10 times slower' switch). If this should be done 
under control of the program, the OPE operator (re
spectively the OPERUN SUB) may include a param
eter which specifies the respective integration rate. 
This has the advantage, that nothing else in the pro
gram has to be changed. We suggest this as a possibility 
but we don't feel that it makes much sense to have 
this parameter under control of the program. 

The run state 

Figure 1 illustrates the general scheme of the RUN 
procedure executed by the OPERUN subroutine. 
Right after the start of the procedure by a CALL 
OPE RUN statement, the subroutine sends (after 
having executed some preliminary instructions) an 
OPE instruction to the AC, hence starting an analog 
computer run. When the AC integrators really start, 
the AC sends a "start" interrupt to the DC causing the 
begginning of the first computation frame. By these 
means we obtain well-defined timing of computers. 
Simultaneously, both real-time clocks (the 'run time' 
and the' frame time' clock) are started. 

Every time the selected frame time has elapsed, the 
'frame time' clock sends an 'end ot frame' interrupt 
(EFI) to the DC, indicating the end of a frame and the 
beginning of the next one. Each EFI starts a combined 
input/output of analog data blocks as illustrated in 
Figure 2. Length and formation of the respective 

Figure I-General scheme of the R U~ proceduce 

F'lexible Standard Programming System 833 

---+------ one frame ----------40fo-----

dala inpul, AlO- dalo input;" 
conversion a dolo idle dolo autpuI 

li .. d painllflaolin9 manipulation "'Iime 8 DlA 
paint transform conv.rlion 

---.time 

~~I~. On?~o.9. o~~I.oll .. "'!o!.,. 
output. input. outpull input. 

frome time T,-----1 

t-~ ---- frometimeTf ____ --! 

~f------~ ~--~U~ itv:~-------

Figure 2-0rganization of a computation frame 

block have been specified together with the various 
source and object addresses by calling the DADC or 
DADI subroutines to be explained in the following. 

Eventually, the selected run time of the analog com~ . 
puter will have elapsed. The AC goes at that moment 
in the HOLD mode and sends an 'end of run' interrupt 
to the DC causing the program to switch back to the 
control state. The' start' and the' end of frame' inter
rupt are of the same priority (higher than the' end of 
run'interrupt). 

Some additional comments should be given on the 
organization of a computation frame. Each frame starts 
with an output procedure, whereas the outputs are the 
results of the computations in the preceding frame 
(in the case of the first frame they are initial values). 
This happens as fast as the digital computer can put 
out these data (in our system it takes two memory 
cycles = 3.5J,ts for each DAC). The DAC settling time 
(which in our case2 is about 0.5J,ts) is not relevant in this 
context, as in fact the DACs could be loaded simulta
neously if the DC could do that. 

Right after the output sequence follows the input 
sequence (for the current frame). Depending on the 
throughput rate of the multiplexer/converter the ADC 
may feed-in data at a lower rate than the DC could 
handle. In such a case, one can use the idle time be
tween two inputs for performing the necessary fixed
point/floating-point transformation on the current 
input. While we started with this approach, we have 
now an ultra-fast multiplexer converter in our system 
that has a higher maximum throughput rate than the 
DC can handle. (This multiplexer/converter is at pres
ent the fastest commercially available device of its 
kind and was developed by ourselves.2 It has a 15-bit 
accuracy at a maximum throughput rate of 500,000 
per second.) Therewith, we put in data at the maximum 
possible speed of the DC channel and perform the 
fixed-point/floating-point transformation later on. 
Though the total execution time is not reduced, the 
skewing errors become negligible, though parallel 



8:34 Spring Joint Computer Conference, 1969 

track-and-hold circuits (which "vould, in turn, intro
duce some other inaccuracies) are not used. 

After the outputjinput sequence and the associated 
fixed-point,ifloating-point transformations ha"'le been 
finished, the execution of the computation frame be
gins. Depending on the chosen frame time, a time 
interval follows during which the DC is idle until the 
EFI occurs. It is at least very difficult, if not impossible, 
to estimate the exact execution time a priori in order 
to choose the frame time so that any considerable idle 
time is avoided. If the computation frame, for example, 
includes branching instructions or external interrupt, 
the execution ti.--ne of a frame may not even be constant. 
This dilemma is solved by a special procedure within 
the RUN subroutine which measures the idle time, 
(t.he DC is not actually idle, but counting clock im
pulses). The minimum idle time of a computer run is 
stored and may be printed on request. Thus, after one 
test run the programmer can determine the right frame 
time. If a negative idle time occurs (i.e., if the frame 
time chosen was too short) an error message is printed 
in any case. 

The part of the program which follows the OPERUN 
statement and which constitues what we call the 'com
putation frame' may include any regular FORTRAN 
expression as well as some particular SUBS. SUBs 
which can be called within this program are listed as 
follows: 

Synchronous Data Transfer to andfrom the AC 

CALL DADC 
('DA', 'NDA', 
'AD', 'N AD') : : data transfer in both directions 

syncP..Ionized by the EFI accord
ing to Figure 2. 

CALLDADI 
('DA', 'INC.', 

DA : first memory address of the 
output data block 

NDA : length of the output data 
block 

AD : first memory address of the 
input data block 

NAD : length of the input data 
block 
The DACs have to be preset 
either to l\10DC or l\10DlVl. 

'AD', 'N AD') .. like CALL DADC but with the 
DACs in l\10DI. 
'INC' : first memory address of 
the block of increments 

Comment: CALL DADC and CALL DAD I can only 
be called at; part of the RUX suhroutine. XAD = 0: 
only transfer D-to-A; NDA = 0: only transfer A-to-D. 
Error messages are given if illegal addresses or numbers 
of data words are specified. 

External Interrupts, Sense Lines and Control Lines 

CONNECT SUB 'no' 
(FINT('no') ... ) :: SUB 'no' is the name of a sub

routine written by the pro
grammer which is sensitive 
to 'free' external interrupts 
(FINT), i.e., the subroutine 
is executed when the interrupt 
occurs. Notice that SUB 'no' 
is not a standard HARTRA~ 
subroutine. 

CALL SET ( ), 
CALL CLEAR ( ), SL ( ): See previous section 

Comment: The sense line and control line SUBs are 
used as in the control state. To write particular sub
routines which are sensitive to external interrupts and 
to connect them to the program by a simple CALL or 
CONNECT statement is only feasible in special FOR
TRAN versions. 

Return Into the Control State 

CALL HOLD .. The analog computer is switched 
from the OPERATE to the 
HOLD mode and the system 
goes into the control state. 

CALL HYTROL .. HYTROL can also be entered 
from the rU.I1. state, switching the 
system necessarily to the con
trol state. 

Comment: If an overload or a channel error (erro
neous multiplexer or DAC addresses or ADC overload) 
occurs, an interrupt with highest priority is sent to the 
DC, causing the system to return into the control 
state. Either OVERLOAD or CHANNEL ERROR 
is printed, and after that HYTROL is automatically 
called giving the user an opportunity to check for the 
error reasons or to restart the program execution. 

Software error compensation 

Intrinsic error sources of a combined computer 
system are: 

(i) the necessary sampling of analog values trans
ferred to the DC and a subsequent imperfect 



smoothing of the digital results which go to the 
AC (the DACs approximate the theoretically 
required ideal low-pass filter very poorly) 

(ii) time delay between corresponding input and 
output vectors because of the execution time 
of the digital computation frame 

(iii) time shift between the various components of 
input and output vectors because of the serial 
;n-nl1t /l"\l1t-nl1t .&,..LI,.1'''''''1 Vu.VPu.u. 

We call the respective errors' caused by these three 
sources the 'sampling errors,' the 'delay errors' and the 
'skewing errors.' The skewing errors can only be 
avoided by appropriate hardware measures such as par
allel track-and-hold circuits at the multiplexer inputs 
and double-register DACs, or-as in our case-by an 
I/O transfer rate that is so high that no appreciable 
errors occur. Some authors have suggested reducing 
sampling and delay errors by utilizing additional hard
ware in the analog computer, however, these methods 
are tedious and too expensive to be of practical use. 
Giloi has shown in an earlier papers that a much better 
error compensation can be obtained by a digital filter
ing algorithm which is part of the computation frame. 
This method reduces sampling and delay errors simul
taneously by an arbitrary high degree and is very easy 
to implement. 

It has been shown in the quoted papers that the 
error compensation is almost as good when using non
recursive filter functions as in the case of recursive 
functions, yet nonrecursive functions do not cause 
stability problems. Therefore, HARTRAN includes 
a 'filter' algorithm of the kind 

G(z) = ao + alz-1 + 3.2Z-2 + asz-s 

+ a.z-4 + 3.gZ-5 + aaz- 6 

which may be executed in the context of the RUN sub
routine by the statement 

CALLECF 
('ao', 'aI', 'at', 'as', 'ai, 'ai, 'as') :: digital error com

pensa tion filter 
passed by all the 
output-bound data 

The maximum order of the filter is six, but by setting 
some of the coefficients to zero any lower order may be 
obtained. One important parameter of the filter does 
not have to be declared, as it is the 'sampling interval' 
which is equal to the frame time and, hence, is known 
to the filter algorithm by the CALL FRA statement. 
If the frame time is changed, the filter subroutine takes 

Flexible Standard Programming System 835 

this automatically into account. (For the values of the 
coefficients 3.0, al, ... , a6 see Giloi's paper.) 3 

The control state and HYTROL 

By calling HYTROL the system is put into the con
trol state (no matter in which state it was) and the 
system control can be performed by the human oper
ator in a conversational mode. The program begins the 
dialogue by typing HYBRID CONTROL and in the 
next line a C. That means that the user is asked to 
speGify the control medium, i.e., the device by which 
he wants to communicate with the system. If he types 
TYI, he continues using the console typewriter. In the 
case of a spacious installation or, even more, if the 
digital and the analog part of the system are located in 
different rooms (as in our case), it is very convenient, 
if not inevitable, to have next to the analog computer 
console a second typewriter which is selected by typ
ing TY2. Card readers (CR) and paper tape readers 
(PR) may also be used, but only in the case when the 
system returns eventually to the HARTRAN program 
(i.e., the last statement has to be either RET or BEG). 
If an L is added to CR or PR, the instructions are 
printed. Any other statement than one of the set {TYI, 
TY2, CR, CRL, PR, PRL} typed after the C causes 
a SYNTAX ERROR message as well as any other 
violation of the HYTROL syntax. 

Mter that, the user can start any controllable func
tion of the system. For this purpose he has a set of 
l\1ACROs at hand. 

For the analog computer mode selection we have 
the following set of yIACROs 

{CON, REP, ITR, CONH, REPH, ITRH, STY} 

corresponding with the SUBs of an earlier section. An 
analog computer run in the selected mode is actually 
started by typing OPE. This is in correspondence to 
what the OPERUN subroutine is doing. 

For the setting of a potentiometer, one has to type 

POT 'name' 'value' 

(blanks are arbitrary). The reader may notice that the 
potentiometer address is now part of the name, as the 
POPs allow only to specify one parameter (the value, 
defined as in the POTSET SUB). 

The same feature holds when the AC readout system 
is activated by a MACRO. Here we write 

SEL'name' 

whereas, again, 'name' is the analog component which 



836 Spring Joint Computer Conference, 1969 

has to be selected (for example P 137, A 72). The out
put of the selected unit is converted and printed as a 
i-place decimal number plus sign (e.g., + .dddd). 

Sense lines and control lines can be checked (eRR) 
or activated (SET/eLR), respectiveiy, by the fonow
ing set of MACROs 

{CHK 'name', SET 'name', CLR 'name'} 

For the setting of the 'normal' and the 'complemen
tary' run timers and. the 'frame time,' we have the 
MACROs RTN'ddd', 

OTN'ddd', HTN'ddd' .. (reset time normal, op
erate time normal and 
hold tinlO normal) 

RTC'ddd',k 
OTC'ddd', HTC'ddd' .. (reset time, operate time 

and hold time of the com
plementa phase) 

FTS'ddd' . . (frame time selection) 

'ddd' stands in all cases for a decimal number which 
specifies the time in milliseconds. 

Finally, we have two l\IACROs which provide a return 
into the HARTRAN program (which we may have 
left by a CALL HYTROL statement). When typing 

BEG :: begin 

the HARTRAN program is started anew at the begin
ning, while by typing 

RET :: return 

the HARTRAN program continues by executing the 
SUB which follows the CALL HYTROL statement 
(the point at which the program was left). 

The execution of a procedure is actually started by 
the subsequent carriage return. If a comma is typed, 
the procedure represented by the l\IACRO in the pre
ceding line is once more executed. HYTROL provides 
some error messages and some diagnoses. Possible error 
messages are 

SYSTEM NOT READY" if the analog computer 
and/ or the linkage is not 
switched on 

SYNT AX ERROR 

OVERLOAD 

. . in case of any violation 
of the HYTROL syntax 

.. if the AU has only a 

common but no individ
ual overload indication 

Diagnosing error messages are 

OVERLOAD 'name' 

ADDRESS ERROR 

SELECTION 
I:vIPOSSIBLE 

SERVO SETTING 
IMPOSSIBLE 

TRIED THREE 
TIMES, DIFFER
ENCE ± .dddd 

.. if the AC has an individ
ual overload indication, 
'name' means the name 
of the overloaded com
ponent 

.. this message follows a 
POT, SEL, CHK, SET, 
or CRL if the name 
in this statement is none 
of the legal names of all 
the analog components, 
sense lines, and control 
lines. 

· . in this case the name in 
the preceding MACRO 
was legal but the associ
ated component is not ex
isting in this particular 
installation. 

· . follows a POT operator 
if the servo does not work 

· . the servo works, but 
after three trials the dif,;, 
ference between the nom
inal value and the actual 
setting is still more than 
0.04 percent (this thresh
old is arbitrary). The 
maximum deviation is 
printed. 

The reader may notice that by the above listed 
MACROs, any parameter of a HARTRAN program can 
be arbitrarily changed, and thus, all control and possi
bilities of on -line debugging are provided. If the user 
should decide to terminate the hybrid computation 
(because he found a mistake in the program or a 
component failure which cannot be repaired immedi
ately, or for any other reason) he types. 

.M 



Hence, the monitor system of the digital computer is 
called. The DC may start to execute any arbitrary pro
gram (or a batch of programs) under control of the 
monitor. This program batch may have nothing to do 
with the hybrid program, or it may contain standard 
I/O programs which are used in order to process the 
results of the hybrid computation (e.g., printer, plotter, 
or display routines). If the HARTRAN program ends 
with the last two statements 

CALL HYTROL 
:\1 

the system returns automatically into the monitor 
mode. 

Time-sharing of the digital computer 

With respect to digital computer utilization, hybrid 
computation is extremely inefficient and, thus, ex
pensive. The setting of a servo potentiometer for ex
ample requires some seconds, the setting of some tens 
of potentiometers adds up to minutes, during which the 
DC is idle. If the user is in the process of debugging his 
hybrid program on-line, it is even worse. In the case of 
an undebugged digital program, on the occurrence of 
an error, this program is dumped out, and the program
mer may think about his mistakes without locking the 
computer. The hybrid programmer, however, will start 
to use HYTROL (since he has this wonderful tool avail
able) in ofder to find out what is wrong. During the 
many seconds or minutes of meditation, he will hardly 
release the system. The worst of all cases occurs when 
he must halt to change his analog setup (as analog com
puter users are very likely to do). 

If the monitor is loaded together with a 'background' 
batch of programs, the user can at least immediately 
restart the execution of the background batch (by the 
~I operator) when he realizes that for some reason he 
cannot continue with his hybrid computation. But there 
are two problems: Once he has lost the access to the 
digital computer it will become difficult for him to get it 
back. The second problem is that in a so-called balanced 
system, the DC has hardly core memory enough to 
accommodate the resident part of the monitor, at least 
one background program, possibly a compiler, and in 
addition the HARTRAN program and HYTROL. 
(OPERUN and HYTROL alone take about 2.7 K of 
core memory.) 

If the installation includes a rapid access disc or drum, 
the second problem could be solved by swapping the 
hybrid program for the backgorund process and vice 
versa. From there it is only a minor step to time-share 
the digital computer all the time the hybrid program 

Flexible Standard Progranlming System 837 

is in"the HYTROL mode. Since there are only two pro
cesses competing for CPU time, a relatively large time 
slice can be allotted to the background program with
out causing discomfort to the user of the hybrid system. 

The simplest way to implement such a system is to 
modify HYTROL so that when HYTROL is called it 
sends the C message and calls the monitor right after 
that to start executing the background batch. After a 
certain time (e.g., one second) given by a real-time 
clock (e.g., that of the AC run-timer), the background 
process is interrupted and HYTROL asks whether the 
hybrid system operator has in the meantime completed 
a HYTROL statement. If the answer is yes, this state
ment is executed and the system returns to the back
ground process, as it does directly if there was no 
HYTROL statement completed. If the statement is 
RET or BEG, the background process is swapped out 
and the entire hybrid program is swapped in from the 
disc. Therefore, the digital computer is only exclusively 
assigned to the hybrid process when the latter is in its 
real production phase. :Notice that for the implementa
tion of such a system only a small part of the entire 
program package-namely HYTROL-has to be 
modified, one of the advantages of the modular struc
ture of our software interface. 

STATEST 

STATEST is a special program which executes auto
matically a static check of the analog setup, hence 
detecting patching errors as well as failures or poor 
performance of components. By virtue of a built-in 
optimization strategy, the best suited test values are 
automatically evaluated by STATEST. Everybody 
who is familiar with the static check procedure on an 
analog computer knows that this is a most crucial 
point. In the case of STATEST, however, all that has 
to be done is to give the program a description of the 
analog setup (the analog part of the hybrid program in 
treatment). As far as we know, these features are 
unique. 

The setup description consists of a list of connection 
statements, one for each component, which are written 
in the form of pseudo-equations. On the left side of 
such an equation the name of the 'object' is listed the 
output of which has to be checked. On the right side, 
the names of all source elements are listed which con
tribute to the input of that particular unit, combined 
by the arithmetic expression which this unit is per
forming. The names of the various units correspond 
with the addresses of the analog readout system. Vari
abIes (represented by the name of theu source) which 
are fed to inputs with gain factors different from one 



838 Spring Joint Computer Conference, 1969 

have to be multiplied in the equation by the re
spective gain. 

In the case of a multiplier, for example, which may 
have the name 1'.1[19 and which may multiply the out
puts of summer 846 and of function generator F3; we 
write 

lV119 = 846 * F3 

(spanks are arbitrary). If the function generator input 
comes from integrator 17, we write 

F3 = F3 (17) 

Hence, F3 denotes both the name of a component 
(on the left side of an expression) and the corresponding 
function (on the right side of an expression) which has 
to be specified by a table and which has the source 
element as argument. Potentiometers and digital-to
analog converters (DACs) are not source elements, but 
are listed as multiplicative coefficients of the associated 
variables, represented by their name and not by the 
value to which they are set. Thus the setting of potenti
ometers and DACs may be arbitrarily changed without 
any change in the connection statement list. The cur
rent settings can be found in the POT8ET list which 
has to be read-in or typed-in anyway. Figure 330 gives 
an example for one particular branch of the setup. In 
this case, we have to write 

117 = 10 * 116' + P35 * NR + 10 * 117' + F3 + S23 

Notice that the notation may be recursive if there . ' 
IS a feedback from the output of the object to its in-
put, except in the case of integrators (as in our example). 
In the static check mode, all integrators are changed in
to summers, the output of which yields the (negative) 
sum of all inputs, while the proper integrator output 
is substituted by a test value taken from the reference 
directly or via a potentiometer, or even from other 
components such as, for example, DACs. This is indi
cated in Figure 3a, and in this case we have to extend 
the connection statement list by the following two 
statements 

116' = PI * NR and 117' = P2 * PR 

etc. (PR = positive reference, NR = negative refer
ence). 

When STATEST is activated (after the complete 
setup description, including the POTSET and FUNC
TIONS list, was put in), it s\vitches the AC mode to 
'static check' and starts setting the potentiometers to 

r 
P2 

--0--.......... 117' 

PR· positive ref.-nee NR· M9Qtlve referencl 

Figure 3(a)-Example of a particular setup branch represented 
by one connection statement 

the values of the POTSET list. After that, it focuses its 
attention on the first pseudo-equation of the list. As a 
first step, it measures the output Vo of the object of this 
equation and checks whether it is in the range 

.05 Yref 5 Yo 5 Vref (Vref = reference voltage). (*) 

This may not be the case, and thus, STATEST has to 
take steps in order to enforce the validity of this con
dition. For this purpose, a search procedure is started 
which goes through all the branches of the tree which is 
a graphical representation of the input/output relations 

-t>- Primitive 

---©-- Terminal 

Figure 3(b)-Logical representation of the connection statement 
given in the text (Associated with the setup of Figure 3 (a) 



of the particular unit under consideration. (For the 
given example, such a tree is shown in Figure 3b. The 
nodes of the graph are denoted by the algebraic opera
tions and the branches by the name of the variables.) 
The program checks all the potentiometers in the re
spective equation (the potentiometers that specify the 
test values included) to see which of them has maximum 
influence on the tenninal node when being changed. 
Thereafter, the setting of the potentiometer for which 
the object output is most sensitive is changed until 
condition (*) holds. 

As STATEST has to traverse through several 
branches in order to find such a potentiometer, the oper
ations of the intermediate nodes indicate the direction 
of the change (e.g., in the case of a divider a coefficient 
of the nominator would have to be increased in order 
to increase the output of the unit while a coefficient of 
the denominator would have to be decreased, and vice 
versa). 

In any branch of the tree, the search procedure ends 
at the first potentiometer or a 'primitive' like the refer
ence. In any branch, up to three components can be 
taken into account (this is a matter of the available 
core memory). STATEST does not care if there are 
overloads in parts of the setup other than the particular 
one which is currently under consideration. Hence, the 
convergence of the procedure is always guaranteed. 

Once condition (*) holds for the current object the 
outputs of all the source elements are measured too, 
and the nominal results of the algebraic expression 
represented by the connection statement is calculated 
and compared with the actual (measured) result. Any 
deviation exceeding a given boundary e* results in an 
error message together with a printout of the error 
magnitude. The parameter e* is individually evaluated 
by the program for each one of the respective objects 
as a multiple of a common error level' E. Hence, the 
number and gain factors of inputs of the object are 
taken into consideration (e.g., a gain of 10 leads to an 
E* that is 10 times greater than E, etc.). The basic 'pre
cision parameter' E depends, of course, on the particular 
analog computer and has to be declared by the user. 

Eventually, when the program has gone through all 
the connection statements, all potentiometers are re
set according to the POTSET list. Since that procedure 
is double-checked by the POTSET SUB, it is made 
sure that no new errors are introduced after the STA
TEST procedure has been finished. There are some more 
important details of this very sophisticated program 
which cannot all be mentioned in this paper. Our cur-. 
rent STATEST version takes 10K of core memory for 
the interpreter plus some additional memory space 
for the connection statement list (approximately 1K 

Flexible Standard Programming System 839 

for a typical 100-amplifier-program). But it could 
easily be shortened to run on an 8K configuration. 
ST ATEST inbludes also a routine which searches for 
hidden algebraic loops and gives a message if there is 
one. Furthermore, it can be easily connected with a 
program that calculates the setup (such as APACHElO). 
Of course, STATEST is only loaded into core when 
needed. 

ACID and the PROGRA1itI LIBRARY 

Most of the interface and analog computer functions 
could be checked by using HYTROL, but not all of 
them. Furthermore, if one wants to check out system
atically the entire system and its reliability, it would 
be much too tedious to do it that way. All these tasks 
have to be automatically accomplished by special 
test programs. Naturally, the number and kind of such 
programs depend on the specific structure of the analog 
computer and the hardware interface, so that it is not 
possible to suggest a general concept as in the case of 
the operating system. K otwithstanding, we will give in 
the following a list of the ACID programs available and 
a short description of theIr function in order to indicate 
what these programs are about. It is almost needless to 
say that these programs use the same modules (SUBs, 
POPs, and FUNCs) as all the other parts of the soft
ware package. 

SELEC :: Test of the AC selection system (ACSS). 
Selects for a designated number of times 
every AC component. Each time the actual 
contents of the ACSS address register is 
checked via a sense line feedback. In case 
of a deviation, an error message is printed 
together with the actual address and 
number of iteration. It is also printed if 
the selection of a component is impossible 
e.g., if this component does not exist. 

2\10DE .. Test of the AC mode control. All possible 
AC modes are activated, and the actual 
mode is checked by sense lines. 

CLOCK . . Test of the AC run timer and the frame 
time clock. Both timers are set so that the 
ratio of the run time with respect to the 
frame time is an integer greater than one. 
The number of end-of-frame interrupts 
(EFIs) which fall between a 'start' and a 
'end of run' interrupt is counted. If this 
number does not correspond with the time 
ratio, an error diagnosis is given. The pro
cedure is executed for various run time 
and frame time clock settings. 



840 Spring Joint Computer Conference, 1969 

READ .. Test of the AC readout system. Test 
values are given via a DAC into the AC 
readout system and read back via the 
ADC into the DC (the AC readout system 
has a special dummy address for this pur
pose). Deviations which exceed a desig
nated level are printed together with the 
DAC and multiplexer address used. 

POT .. Repeated test of potentiometer settings. 
Arbitrary parameters are the number of 
repetitions, the increments of the pot set
tings and an error threshold. The pro
gram sets every pot to a certain sequence 
of values starting with zero and increasing 
by tHe chosen increment (until .9999). 
This procedure is repeated for a selected 
number of times. Eventually, a list is 
printed listing the name of the pot and the 
number of the iteration for each in which 
the error threshold has been exceeded. 
Additionally, the relative frequency, m~an 
and variance of. all listed errors are 
printed. 

RUNI .. Test of the system interrupts under dif-
ferent AC modes. The number of EFls is 
counted which occur in a given time inter
val and the content of the interrupt cells 
is checked. Errors are diagnosed. 

LOGIC .. Test of sense lines and control lines (via 
closed loops which have to be patched on 
the AC's logic box) 

IOAR .. Test of the I/O-address register in the 
interface and the multiplexer and con
verter address decoding. 

LOOP .. Test of the data transfer to and from the 
AC. The DAC outputs are connected 
with the multiplexer inputs.. Various values 
are given out via the DACs and received 
back VIa the multiplexer-ADC. Any 
difference between the original value and 
its received echo which exceeds a pre
selected error threshold is printed wi th the 
statistic::! of 9,11 t.he tri9Js as in POT, 

l\IULT .. Test of pairs of IVIDACs, One ]VIDAC is 
set in increments of .01 between 0 and 1. 
Its output IS multiplied by a second 
l\1DAC (which has a constant digital in
put). Kominal and actual results are com-

pared. Errors are listed, together with all 
required information. 

IDAC .. Test of the interpolating DACs. 

It is even less possible to give a general concept of the 
required LIBRARY PROGRAl\1S as these depend 
essentially on the requirements of the users. Programs 
for parameter optimization routines, function storage 
and reproduction (with and without delay), fast 
FOURIER transform, statistical parameter estimation, 
etc., etc., should be mentioned. 

It should also be mentioned that writing the digital 
part of a simulation program is in our case facilitated by 
a block oriented digital simulation language which we 
have developed and which we call SIESTA.8 SIESTA 
is a superset of the SCi-CSSL Lariguage,9 and our 
SIESTA compiler was one of the first implementations 
of CSElL. 

ACK~OWLEDGlVIENT 

The authors would like to express their grateful appre
ciation to the :\1essrs W. Franke (who wrote OPERUK 
and most of the SUBs), W. Woletz (who wrote HY
TROL), and R. Siol (who wrote most of the ACID pro
grams) for their very valuable contribution to the im
plementation of t.he system. They are also indebted to 
Mr. 1\1. E. Connelly, NL!. T. Electronic Systems Lab
oratory, for his helpful and encouraging suggestions. 

REFERENCES 

\V GILOI 
H ybl'ide Rechnersysterne 
Telefunken-Zeitung Jg 39H 1 1966 82-100 

2 W GILOI H SOMMER 
PHENO-A. new concept cJ hybrid computing elements 
Proc F J C C 1967 23-31 

3 W GILOI 
Error-corrected operatio'NF of hybrid computer 
Proc 5th International Conferenee of AICA Lausanne 1967 

4: SCIE~TIFIC DATA SYSTEMS 
Real-time FORTRAX II manual 

5 W WOLETZ 
HYTROL--ein Verkehrsprogramrn fur hybride 
Rechenanlagen 
Diploma Thesis Techn University of Berlin 
Inst of Inf Proc 1968 

6 W FRANKE 
Ein Betriebssystern fur hybride Rechenanlagen 
Diploma Thesis Techn University of Berlin 
Inst of Inf Proc 1969 

7 G BEKEY W KARPLUS 
Hybrid Cornputation Chapter 7 
J Wiley and Sons Inc New York 1968 

H P HECREN BEHG 



Sf ESTA. -A CSSL-implementalion 
Internal Report Techn University of Berlin 
Inst of Inf Proc 1968 

9 The SCi continuous system simulation language (CSSL) 

Flexible Standard 

SIMTJLATIO~ Vol ~) Xo 6 December 1967 
10 C GREEX H D'HOOP A DEBROlTX 

A.PACHE- Breakthrough in A.nalog Computing 
IRE Trans EC-ll ()ctober 1962 699-706 

QAl 
vcr.L 





A real-time programming language and 
its processor for digital control of 
industrial processe; 

by LIANG·LIANG 

INTRODUCTION 

The acceptance of digital control for large scale indus
trial processes, such as chemical, refining, power, and 
material processing is a step towards total automation 
and a further improvement in control system per
formance. Process control oriented programming lan
guages provide a control engineer with means to learn 
and hence set up, modify, and operate a control system 
with ease. They eliminate the complication of involving 
a programmer, who generally has little knowledge about 
process control engineering. The result is a reduction in 
time and dollars for digital control system generation. 

Such a language and processor has been designed and 
implemented. It has many desirable features: process 
control engineering orientation, independence of ma
chine, modular structure, convenience of capability 
expansion, and conversational mode for on-line design 
and modification. The basic concept to implement a 
digital control system is borrowed from analog control. 
The system is created by connecting elementary con
trol modules together. The rationale is that most ex
perienced process control engineers and field-proven 
control schemes are still heavily analog control oriented. 
On the other hand, the language can readily be used to 
implem~nt highly interacting, nonlinear, feedforward, 
self-tunmg types of control. Thus the language serves 
an immediate need in the process control field while 
awaiting the breakthrough of large scale multi-control
variable manipulation at the regulatory control level 
which seems still remote for actual field application. 

Speci ficalian 

Format 

A control system is to be implemented modularly. The 
basic elements are statements and functional blocks. 
Each block may consist of a number of statements. 

p OP A B I c 
Prefix Operator Operands Comment 

Figure 1---8tatement format 

The basic format of a statement is a binary operation 
with an operator and three operands. For example: 
ADD,A,B,CmeansA + B = C. 

The prefix could be the label of the last statement of 
a loop or a transfer entry. Comments could be added 
following the operand field. Such a statement format 
simplifies the syntax of the language and hence the 
source compilation. Although the format is simple, it is 
wholly adequate for this application. A variety of op
erations can be implemented. These include: arithmetic, 
control and logic functions, I/O handling, matrix, and 
decision table manipulation. The resulting control sys
tem resembles an analog control system with state
ments replacing analog control modules and blocks of 
statements replacing cabinets of control modules. 
Program modularity has further advantages for pro
~ramming and man-to-man communication, adaptabil
Ity to change and expansion. Beyond these convenience 
aspects, this organization makes it possible to imple
ment some important features, such as block execution 
according to priority (handling emergencies), sequence 
(process startup), sampling period (process normal 
control), and time-sharing (to utilize computer free 
time), on-line design and modification, and block execu
tion time estimation. 

Control system decomposition 

It is left to the judgment of the control engineer as 
to how a control system should be decomposed. Con
sider as an example, a control system is to be designed 

843--------------------------------



844 Spring Joint Computer Conference, 1969 

Consis- Stock Total llire Headbox Net Stock 
tency Flow Head Speed Level Flow 

<f 
I 

Dilution 
Water Air 

Supply 

Stock 
Flow 

Stock Consistency Pressurized Multi-Effect 
Evaporator 

Control 

Control Headbox Control 

Figure 2-Paper making process control 

for a paper making process. The control engineer may 
draw up the control schematic as he used to and 
may divide the control system into blocks according to 
functions (stock consistency control, pressurized head
box control, multi-effect evaporator control, etc.) 

Source coding 

A simple example is used to illustrate the coding of a 
source program. A single control loop is assumed. The 
control engineer assigns names to variables and 
parameters and starts to code the source program 
directly from the schematic. 

a. EBK, PRESS END OF PRESSURE 
CONTROL BLOCK 

b. DBK, TElVIP, 5 TEMPERATURE CON-
TROLBLOCK 

c. DNS, DFS DECIMAL, FLOATING 
POINT, SINGLE PREC. 

d. SUB, RT8, 
YT8, ET8 TEl\1PERATURE ER-

RORSIGNAL 
e. INT, ET8, 

K15, D3 INTEGRAL CONTROL 
f. 
g. EBK, TEi\IP END OF TEl\IP. CON~ 

TROL BLOCK 
h. 

with the interpretation: 

a. Declare the end of previous block PRESS; 

~1easurement 

YT8 

Difference 

ET8 

Integrator_ f Gain: K15 

D3 

Drive D 

Figure 3-A control loop 

b. Declare block TENIP to be executed every 5 
seconds; 

c. Declare number system to be used for the block: 
decimal, floating point, single precision; 

d. Subtract measurement YT8 from setpoint RT8 
and obtain error signal ET8; 

e. Integrate error signal ET8 with integral gain 
K15 and generate driving signal D3; 

f. More statements may be added; 
g. Declare the end of block TEMP; and 
h. l\,iore blocks may be added. 

Rules and procedures 

A fixed statement fonnat is used. Functional blocks 
must be declared. Both transfers and looping must be 
confined to the same block. Statements may be entered 
one by one through a teletype or in a lump sum through 
reading a stack of cards. During source compilation, 
the block execution time is estimated as a check on the 
proper assignment of sampling period to the block. 

On-line design and modification 

During design, check-out, installation or operation 
phase, changes made on a control system can be an
ticipated. Thus it is desirable to implement changes 
on-line, without recompiling the total source program 
and without affecting the normal running of the process 
and the control system. 

Here, the control engineer refers only to the source 
program and communicates with the computer in a 
conversational mode. A version of the source program 



is kept in the memory and is updated automatically 
whenever a modification is made. The following on-line 
modification can be made: 

a. Insert a block; 
b. Delete a block; 
c. Restore a deleted block; 
d. Modify block sampling periods; 
e. Redefine decimal place of a block (fixed point 

n,,'t'Yl 'ho ... \ • 
L.Lu..a.~.UJ"V~ J , 

f. Insert one or more statements; 
g. Delete one or more statements; 
h. lVlodify parameter or variable values· and , 
1. Modify the state of a Boolean variable. 

Some typical il1ustr8j,~ons are: 

a. ISB, CONTL, 10; 
b. ISS, CONTL, 5, 1 

ADD, SPE, STE, TQ; 
c. DLS, CONTL, 3, 2; 
d. MSP, CONTL, 5; 
e. MPV, K15, 12.5; 

Their interpretations are : 

a. After the teletype is in l\1odify Mode, the control 
engineer enters the operation code of inserting 
a block, ISB; block name CONTL; and block 
sampling period of 10 seconds. A comma is used 
to separate items and a semicolon is used 
to terminate a message. The latter initiates on
line compilation. The new block will iminediately 
be integrated to the operating program and will 
be executed once every ten seconds; 

b. Insert one statement SPE + STE = TQ into 
block CONTL following the fifth original state
ment; 

c. Delete two statements from block CONTL 
starting from the third statement·' , 

d. Modify sampling period of block CONTL to five 
seconds; and 

e. Modify the value of parameter K15 to 12.5. 

The evaluation of the result of a modification requires 
human judgment. The control engineer is expected to 
know what he is doing. A more advanced approach is 
to let the computer accept or reject a modification. 

On-line design of a' control system is an application 
e~tension of on-line modification. That is, one can prac
tICally start from scratch and build up the control sys
tem by inserting blocks and statements while the con
trol system is running. 

I mple:mentation 

The language processor is functionally divided into 

Real-Time Programming Language 845 

three major parts: Supervisor, Compiler and :\fodifier. 
The Supervisor coordinates and schedules the proper 
execution. of all the programs (language processor, 
man-machine communication, utility programs and 
control system). The Compiler translates all source 
entries into machine language object code. The Modi
fier realizes on-line modification. The implementation 
of the Compiler will not be discussed. However the 
highlights of the ::'Vlodifier will be given. ' 

After the Supervisor identifies an input as an on-line 
modification operation, the Modifier takes over and the 
proper subroutines are caned to process the request. 
Assume an input ISB, CONTL, 5; is entered. The cor
responding source will be: 

DBK, CONTL, 5 (Declare block) 

EBK, CONTL (END of block) 

and the object listing becomes (expressed in assembler 
language for clarity) : 

Ql TRUQ2 (Transfer) 

Q2 TRU SUPERVISOR (Transfer) 

where Ql is the entry point for transfer from the Super
visor. The first object instruction is a transfer to the 
second instruction, and the second, a transfer back to 
the Supervisor. 

The corresponding data file will be updated (block 
name, type, sampling period, execution condition, num
ber of statements in the block, starting and ending 
location of the block and of each statement in the 
block). The new block will now be executed every five 
seconds. Assume the statement ADD, A,B,C is to be 
inserted into block CONTL following the first state
ment. The source becomes: 

.. 
DBK, CONTL, 5 (Declare block) 

ADD,A,B,C (A + B = C) 

EBK,CONTL (End of block) 

The new object-listing is : 

Ql TRUQ3 (Transfer) 

Q2 TRU SUPERVISOR (Transfer) 

Q3LDAA (Load) 

ADDB (Add) 

STAC (Store) 

TRUQ2 (Transfer) 



846 Spring Joint Computer Conference, 1969 

where patching method is used. Suppose the statement 
ADD, A,B,C in block CONTL is to be deleted. The 
source resumes its original form: 

DBK, CONTL, 5 

EBK,CONTL 

(Declare block) 

(End of block) 

The object listing becomes: 

Ql TRUQ3 

Q2 TRU SUPERVISOR 

Q3TRUQ4 

ADDB 

STAC 

Q4TRUQ2 

(Transfer) 

(Transfer) 

(Transfer) 

(Add) 

(Store) 

(Transfer) 

Thus the deleted statement will be excluded. The 
implementation of the rest of the modification opera
tions entails little difficulty and win not be discussed. 
But there are several design considerations worth 
mentioning. Error messages should be typed out when
ever a wrong entry is made. Whether the object codes 
corresponding to a source statement is a direct insertion 
or branching to a subroutine, the choice should be an 
appropriate balance between memory space and execu
tion time. Safety features should be incorporated in the 
object program, such as saturation on arithmetic opera
tion overflows. The capability of the language should be 
tailored according to needs. :Much of the sophistication 
can be excluded for many simple appli~ations. Even 
though only teletype has been mentioned, the use of a 
CRT or a console with push buttons as man-machine 
interface is feasible. Only minor modification of the 
language processor is required. 

• 
Experiment 

The purpose of the experiment is to demonstrate the 
use of the language to design a control system on-line. 
A simplified heat exchange process with two inputs and 
two outputs was simulated by an analog computer. 

The simulated system hardware set-up is shown in 
Figure 5. 

(Combustion. Rate) CR PG (Power Generation) 

(Fluid Flow) FF FT (Final Temperation) 

Figure 4-Process model 

Digital 

I 

I 

Interface 
Analog 

Computer 
(Process 

LE:J Analog 
Recorders 

Figure 5-Simulated system hardware set-up 

Two single control loops were designed with power 
generation controlling combustion rate and final tem
perature controlling fluid flow. The control schematic 
was prepared as in Figure 6. 

The algorithm of the other control loop was the same 
except with different naming of variables and param
eters. While the process was running, the first control 
block was declared and then statements were inserted 
one after another until the control loop was constructed. 
The control gains and set-point were set respectively. 
The source listing of the first control loop was: 

DBK,CTLl,2 (Declare block) 

SBT,10, PG (10 ~PG) 

SBT,K0,RPG (K0~RPG) 

SUB,RPG,PG,EPG (RPG - PG = EPG) 

SBT,EPG,02 (EPG ~ 02) 

~IUP, K2, EPG, CRI (K2*EPG = CRl) 

INT,EPG,K3,CR2 (f K3 *EPGdt = CR2) 

ADD,CRl,CR2,CR (CRI + CR2 = CR) 

SBT, CR, 00 (CR ~00) 

EBK,CTLI (End of block) 

r'leasurement 

l'-lul tiplication Integration 

CRI 

r-1anipulated Input Display 

Figure 6-Combustion rate-power genera.tion control loop 



In the same way, the second control loop was con
stnlCted. The results shown in the following diagrams 

~Set Proportional r Gain 
r Set Integral Gain 

RPG (Setpo1nt) 

FG V~~~-~:e~~~:~---~ 
~ - ---- --- - ------ --- - - --- ---- -.. - - - - --- --- --

~ ~ 
FT ___ ~~a:_ ::m!::~!~_e ________________________ . 

FF Fluid Flow 

Step Response of Power Generation (PG) 

by Manipulating-Combustion Rate (CR) 

Figure 7-Response of process af ter first control loop installed 

I.. Set Pr,?portional LSet Integral Gain 
I Ga~n I 

~ ____ p_ow_e_r __ G_en_er.r~at_i_o_n ____________________ _ 

FT Final Temperature 

----------------------~ --=-=-=------ --- --------- ---- -- ---- -- -:-:--~-':":--:-:-~----
RFT (Setpoint) 

------------------------------------------~ 

CR Combustion Rate 

~~~----------~ -------------------------

Control of Final Temperature (FT)
by Nanipulatine; Fluid FloVl (FF)

Figure 8--Response of process after second control loop installed

Real-Time Programming Language 847

PG (a) + (b)

Power Generation

RPG(Setpoint)

FT Final Temperature

---------~-~-~-----~~=
RFT(Setpoint)

Fluid Flow

~ ~~ombust.ion Rate
n~ ~ ~ Lrr~--------------------

--

(a) Reduce the sampling period of PG-CR control
loop by half and make a step change of RPG

(b) Double the samplinG period of FT-FF control
loop and make a St9P change of TIFT

Figure 9-Response of process by modifying sampling
periods of control loops

were highlights chosen from a recorder which was run
ning while the control system was being designed Oll

line. It must be noted that they look the same as
those obtained by a digital control system designed
off-line. However, there is a difference that this con
trol system was gradually built up block by block and
statement by statement while the process was running.

CONCLUSION

The language has been recognized by individuals with
relevant training, to be quite easy to learn and use.
The organization makes both the language processor
and the control system flexible for change and ex
pansion. The statement format is simple but adequate.
Source compilation is straightforward. On-line design
and modification which resembles wire-patching on an
analog computer has been demonstrated to be feasible.
Although the language is intended for industrial process
control, it can be used for process modeling and scientific
computation. In addition, it can be integrated into other
programming languages for broader application. The
language is also effective for laboratory use as in ex
perimenting with digital control schemes.

848 Spring Joint Computer Conference, 1969

ACKNOWLEDGl\1ENTS

This paper is extracted from the author's thesis fulfilling
the requirement for a MSEE degree (1967) from Case
Institute of Technology with support from Bailey
Meter Company.

The author is grateful to his thesis advisor, Pro
fessor l\1. J. McCann. He is also gateful to Professors
M. D. Mesarovic, 1. Lefkowitz and J. D. Schoeffler
of Case Institute of Technology, and to lVlr. H. T.
Hoffman of Bailey ~1eter Company for their inspira
tion.

A new graphic display/plotter for small
digital computers

by GRANINO A. KORN, STEVENS SIMONS,
RUSSELL STEINBACH, and CLAUDE WIATROWSKI

The University of Arizona
Tucson, Arizona

INTRODUCTION

This report describes a new inexpensive cathode-ray
tube-display and recorder interface designed to provide
graphical output for many of the increasingly popular
small digital computers in the 12-to 24-bit class. Our
original design was developed to produce differential
equation solutions, phase-plane plots, correlation func
tions, spectra, and amplitude distributions for on-line
digital simulation with the 18-bit PDP-9; but the inter
face logic is flexible enough to serve many other comput
ers and applications.

Our display design does not involve the use of a
storage oscilloscope, so that "dynamic" or changing
displays are possible. A single "packed' 18- or 16-bit
display word sets both X and Y coordinates of a display
point, which halves our refresher-memory requirements.
As a novel feature, the cathode-ray beam intensity,
line-segment (vector) generation, and X-coordinate
incrementing can be controlled not only by programmed
instructions, but also by special data words correspond
ing to unused coordinate combinations. Since the dis
play then requires op.ly data words, completely auto
matic data-channel operation is possible, i.e., the
display can be refreshed or changed with the cycle
stealing automatic data channels built into many of the
newer small computers with little or no programming.
The display will also operate xy (servo) recorders and a
four-channel stripchart recorder.

The entire cost of the display interface, when built
with Digital Equipment Corporation logic cards, is less
than $1,900--exclusive of power supplies and display
oscilloscope. The use of DEC cards is convenient for
interfacing with the PDP-9, but logic costs could be
halved if the interface were assembled with integrated
circuit logic. In this case, the entire display interface
would fit on two or three logic cards.

849

Figure I-Display unit. (left) built. into the Univers.ty of Arizona's
DARE (Differential Analyzer REplacement) console. When
differential equations or analog-block interconnections are typed
onto t.he CRT typewriter (television monitor at right), Lie

display shows solution curves on-line

Basic display operation

Figure 2 illustrates the design of the digital-computer
driven cathode-ray-tube display. Referring to Figure
2a, a point (X, Y) on the oscilloscope screen is posi
tioned throl:lgh deflection amplifiers driven by g...bit
digital-to-analog converters (X- and Y -DACs).
IVIatched RC delay feed-back networks on the X and Y
amplifiers cause both deflection voltages to approach
new values exponentially with the same time constant
of about 0.7 p,sec. (Figure 2b). When the X- and Y-DAC
registers are updated simultaneously, the point (X, Y)
then generates a straight':'line segment useful for curve
interpolation and vector generation, as suggested by
Dertouzos.1

850 Spring Joint Computer Conference, 1969

PATA -TRANSFER
..PPLSE //or~)

6'ATE~ BY
SUAP£Y/cE
81T /~

RECQi'PEi'
PEN IM'()'
S/&MU.

PATA-TRANSrER PULSE (/t?T4) "?~E

-.n nL-.-__ -
I

XI PE/ZE,T/()# J"()L0~------

~ I .
I

I
I
I

Y PErL ECT/O/V V'tJLTAt;E
I

I~
---Y ~-----------

I

I I

tJA'E-.5'b"tJT / (BR/t:"#TE4S L'$E) AA'tfJ t7tYE- Sf/C) T ~

j I I I~_
I

I
I I I

BR/6#TA/E.5S CtJ/w.PE#.5'AT/OA/ J/()L rAGE" v

-V- i V'
I I

tJ/vE-SNOT -7 f.6'R/~HrE/vS PO~IVT.J

_-----" I I L
Figures 2a, b-Basic display operation. The data-transfer pulse
IOT4 from device selector A or B is gated into one-shots 1 and/or
2 and 3 by the enabling subdevice bit 12 and by 8-register bits

810 and 811. DAC's are Pastoriza Electronics Minidac's

Referring again to Figure 2a, the cathode-ray beam
intensity is determined by a switched attenuator at the
input to the oscilloscope Z-axis amplifier and three
gated one-shot multivibrators, which permit selective
brighten-i'ng of pO'i'nts a'nd/oT lines. These operations are
controlled by a 9-bit digital control register, the S
register, as follows:

1. S-register bit 814 sets two djfferent beam inten
sities by shorting a portion of a Z-axis attenuator
resistor with a simple FET switch.

2. 8-register bit 810 gates the DAC updating pulse
into one-shot No.1 to brighten the screen while
a line segment is drawn. As a new feature, a
clamped differentiating network decreases the
beam intensity as the beam slows down exponen
tially (Figure 2b). This circuit results in more
uniform lines than the original Dertouzos cir
cuit.

3. 8·register bit 811 enables monostable multi
vibrators 2 and 3 to brighten the new display
point or end point of a line segment (Figure 2b) .

Suitable instructions loading the S-register wiU thus
permit the cathode-ray beam to draw points, lines, dash
and/or dotted lines, and also to brighten calibration marks
on coordinate axes. It is also possible to cause portions of
the display to blink.

A primer on program--controlled data transfers

We must next discuss how .computer-supplied. data
words and 8-register words are entered into the display
registers. As it turns out, .. a little study of computer
data-transfer techniques Will permit us to develop a
very versatile set of display instructions.

Practically all computer-interface systems employ
a "party-line" I/O bus of the general type illustrated
in Figure 3. Here, all DAC and control registers intend
ed to receive data words are permanently wired to the
parallel computer I/O data bus. Additional party-line
wires carry control-logic signals, which select a specific
device and its mpde of operation and also synchronize
data transmission with the digital-computer operating
cycle.

For a minimum of linkage hardware, interfaces work
with programmed processor instructions. This method
permits great flexibility at the cost of some ingenuity
in assembly-language programming. Referring to Figure
3, each input/output (lOT) instruction in the processor
instruction register places a specific device-selection
code on a set of device selection lines. The device selector
associated with each individual device is essentially an
AND gate which recognizes the device selection-code
and gates one, two, or three pulses (lOT pulses) from

Graphic Display iPiotter for Small Digital Computers .851

CONTRt?LtEP
By
INSTRUCT/ON'
RE&'/STER

£JATA FROM {
ACCUN~ATOR t::::::::t:!:~~::::::!:::~~:=
OR MEM(),f'Y .r/t?

CAlLE

PATA TRAMrERKP PATA TRAHSFERREP
/NTt? PEWCE /NTO PEweE
RE&'/S'TER / REG'/SrEA'R

Figure :3-Program-controlled operation of a digital computer
with party-line I/O bus. An I/O instruction addressed to a
specific· device is recognized by a device selector, which gates
data-transfer pulses to the device in question, as shown in Figure 4

the processor into the selected device to effect data
transfers and/or other operations.

Figure 4 shows in more detail how the parallel
connected device-selection and control lines of a typical
laboratory computer system (Digital Equipment Cor
poration PDP-9) correspond to the format of an input/
output-transfer (lOT) instruction word ill the processor
instruction register.2-5 Bits 0 to 3 of the instruction
word inform the processor that an input-output opera
tion is wanted. Bits 6 to 11 place levels (0 or 1) on five
device-selection lines parallel-connected to all devices
on the I/O bus. When these lines carry the device-

/8 BIT /NST~I/Cr/()N
WORO

Figure 4-Program-controlled selection of device address and
function: device-selector operation

selection code associated with a specific device, its device
selector (essentially an AND gate, Figure 4) gates (and
regenerates) a set of one, two, or three successive pro
cessor-timed command pulses (lOT pulses) used to
effect data transfers and other operations in the selected
device in accordance with instruction bits 15 to 17.
Not all instructions and devices utilize all three pulses.
Bits 12 and 13 of the instruction word ("subdevice
bits") can similarly serve to select subdevices or can
further gate the command pulses to select device operat
ing modes.

The most common application of the device-selector
gated command pulses is data transfer from and to the
processor; note that the pulses are synchronized with
the processor operation cycle and, thus, with the
processor's ability to transmit or accept data. Figure .5
illustrates the principal data-transfer techniques:

1. Clear-and strobe Transfer from the I/O bus
parallel data lines into the flip-flops of a device
register (Figure 530). Each flip-flop is first cleared
by IOT2; then IOT4 strobes the l's on the data
bus into the flip-flop register.

2. Jam Transfer (Figure 5b). A single command
pulse (IOT4) sets or resets the device-register
bits in accordance with the data-bus levels.
J am transfers require slightly more complex
electronics than clear-and-strobe, but need only
one pulse period for transfer. Jam transfer must
be used whenever the register resetting opera-

rOT" fliT'
(e) CLEAR AND

STR()8E

Figures 5a, b, c-Parallel data transfer: clear-and-strobe (a),
jam transfer (b), and transfer into a double-buffered DAC (c).
Flip-flops with diode-capacitor gates, like those used ~n the
Digital Equipment Corporation PDP-9, are shown. Level mputs
are "0" at 0 volts and "I" at -3 volts, but flip-flop gates set or
reset the flip-flop when the level input is "0," and the pulse

input goes UP to "0"

8.52 Spring Joint Computer Conference, 1969

tion would disturb device functions. This is true,
for instance, with DACs required to have a
continuous voltage output, and also with con
trol registers which continuously establish a
device status.

3. DoUble-buffered-register Transfer (Figure 5c).
Data are transferred intothe buffer register by
either a cIear-and-strobe or jam-transfer opera
tion and are then jam-transferred into the device
register. Double-buffered DACs permit simul
taneous transfer ("updating") of the analog
output of two or more DACs.

As we shall see, suitable device-selecting instructions
can also gate lOT pulses into a counter to increment the
count. 2

Display interface and display instructions

Figure 6 shows all the registers of the display inter
face. The interface employs two separate device selec
tors, A and B. Each device selector can be addressed
by several different display instructions from the pro
cessor. Each instruction will generate a different com
bination of the two sub device bits and the three lOT
pulse obtainable from the device selector addressed,
so that many different display instructions can be
implemented (Figure 6 and Table I).

Referring to Figure 6, the most important mode of
operation involves simultaneous updating of the 9-bit

VA"E-P g lOWE" S
DATA 8/n (r,f1l11S) ~nf 8/T.S'

I
I

Figure 6-The display registers, with the data-transfer (lOT)
pulse effecting data transfers from the 1/0 bus to the variom.
registers. Subdevice bits can produce many different combinations
of the six lOT pulses available from two separate device selectors
A and B, so that many different display instructions can be

implemented

X-and Y-DACs with "packed" 18-bit PDP-9 words from
the I/O data bus:

"Load Y -DAC with data bits 0 to 8, X-DAC with
9-17, and display (Le., permit either point or line
brightening). "

Using octal notation for the instruction-register bits
in Figure 3 (each octal digit stands for three bits), the
required instruction is

DXYS: 7 0

Code for
1/0
Instruction

o 6

Device
Selector
A

4

Subdevice
bit 12

4

lOT 4 (code i:s
sum of lOT pulse
numbers)

Such use of a single "packed" I8-bit word for each
display point is very advantageous: compared to sep
arate X and Y transfers, we are halving data storage
requirements, and we are doubling the maximum possi
ble point-display rate. If one still desires, however, to
load the display with separate X and Y words (say,
to avoid the extra time. required for word-packing
operations when points are displayed in the course of a
fast computation), the instruction DXB (Table I)
employs device selector B to clear and strobe the X
buffer, which is thus loaded with data-bus bits 0-8:

DXB: 7 0 o 5 o
Code for Device ~o lOT Pulses 1, 2
1/0 Selector Subdevice
InstructionB bits are "1"

(see also Figure 780). Next, one can simultaneously load
the Y-DAC with data-bus bits 0-8 and theX-DAC from the
X-bujJer, and display the 'fes-uUin,g pvi'nt or Ur;,e:

DYST: 7 0

Code for
1/0
Instruct.ion

o 6

Device
Selector
A

6 4

Subdevice lOT Pulse 4
bits 12, 13

To plot a curve Y(X) with equal X-increments, the
X-buffer functions as a counter (Figure 7b). The in
struction DYSl increments the X-buffer, then loads Y
from the data bus and X from the X -buffer, and displays:

DYSI: 7 0

Code for
1/0
Instruct on

o 6

Device
Selector
A

6 5

Subdevice lOT Pulses 1, -t
bits 12, 13

Table I lists the most commonly useful display
instructions. Figure 7a shows in detail how the .lOT

1\1nemonic

DXYS

T'\ClT
VOL

DXB
DYST

DXC
DYSI

Mnemonic

DXYL
DYLT
DYLI
DXL

Graphic Display/Plotter for Small Digital Computers 853

Table I-Display Instructions
(see also Figures 3 and 6)

(a) Basic Instructions

Instruction Octal Code

Load Y-DAC with data bits 0-8, X-DAC 700644
with 9-17, and display

I T __ ..1 CI ____ !_J.. ___ !J..L _1_..1.._ L!J.._ n ~I'T /l"lllfJ""tfiflnn
.l.Juau 0 l-egl:SLer W Ull uaLa UU:s ~-.L I IVUO-'i-'i

Load X-buffer with data bits 0-8 700503
Load Y -DAC with data bits 0-8, transfer 700664

X-buffer to X-DAC, and display
Clear X-buffer and X-register 700505
Load Y-DAC with data bits 0-8, incre- 700665

ment X, and display

Device lOT
Selector Pulses

A 4

... 2 .ft

B 1,2
A 4

B 1,4
A 1,4

(6) Instructions Which Move the Display Point without Brightening

Device lOT
Instruction Octal Code Selector Pulses

Load Y with data bits 0-8, X with 9-17 700604 A 4
Load Y and transfer X -buffer 700624 A 4
Load Y and increment X 700625 A 1,4
Load X (Y is unchanged) 700507 B 1,2,4

(c) Instructions for Fast Drawing of Horizontal Lines

Sub device
Bits

12

13
-

12,13

-

12, 13

Sub device
Bits

-

13
13
-

(Note: Instruction bit 14 clears all data bits in the PDP-9. To draw vertical line segments, use DYST.)

Device lOT Sub device
lVlnemonic Instruction Octal Code Selector Pulses Bits

DXYC Clear X and Y, and display 700654 A 4 12
DYCT Clear Y, transfer X- buffer, and display 700674 A 4 12, 13
DYCI Clear Y, increment X, and display 700675 A 1,4 12,13
DXS Load X with data bits 0-8, and display 700547 B 1,2,4 12

(Y is unchanged)

(d) Instructions for U and V Channels

Device lOT Sub device
lVlnemonic Instruction Octal Code Selector Pulses Bits

DUVL Load V-DAC with data bits 0-8, U with 700602 A 2 -

9-17
DAL Load Y and V with data bits 0-8, X and 700606 A 2,4 -

U with 9-17
DAS Load Y and V with data bits 0-8, X and 700646 A 2,4 12

U with 9-17, and display

854 Spring Joint Computer Conference, 1969

Figure 7a-This figure shows in detail how the different lOT
pulses are gated to produce data transfers into the various
display registers. Only one flip-flop of each 9-bit register is shown.
Calibration switches can set the X, Y, U, and V registers to 0
and -10 V for calibration. The gaied pulse amplifiert> transmit
pulses (-3 V to 0 V to -3 V) when an ungated pulse input is
pulsed, or when a gated pulse input is pulsed with the level input
at 0 V. Pulse inputs P and Q are for automatic data-channel

operation (Figure 8)

Figure 7b-The X-buffer functions as a counter whose increment
size is controlled by S-register bits 12 and 13

pulses and subdevice bits corresponding to each instruc
tion gate data into the. display registers. Note the
following special features:

1. Instructions with subdevice bit 12 = "0" will
move the display point without brightening. This
is useful for creating gaps in lines or curves
without any need to reload the intensity-con
trolling ~regjster.

2. Instructions clearing either X or Yare useful

for drawing coordinate axes; selective point
brightening produces scale markers.

3. Instructions updating Y or X alone can quickly
create vertical and horizontal lines (coordinate
lines, bar charts).

The instruction DSL loads the ~regjster with data
bus bits 9-17; Table II lists the functions of the individ
ual S-register bits.

Table II -8-register bit functions

Bit

9
10
11

Function

enable data-channel clock
display POINT
display LINE,

or recorder
PEN DOWN

12} I X-increment size: 00 = I
13} 01 = 2

10 = 4
11 = 8

14 Beam intensity
15, 16, 17 Spares

The large number of different instructions possible
with only two device selectors has also permitted us to
transfer data into two additional DACs CU and V
regjsters in Figure 6), which are intended for use with a
four-channel strip-chart recorder but could, in principle,
be employed to generate a different display on an addi
tionaloscilloscope.

Automatic data-channel operation

While program-controlled display instructions can
conveniently alternate with other processor operations
(computations and data taking) through program
branching and interrupts, much more elegant and effi
cient display operation may be possible through direct
memory access with the automatic-data-channel hard
ware available with many modern small digital comput
ers. Our display is, therefore, designed to work with
one of the cycle-stealing data channels built as a stand
ard feature into the PDP-9. Only two processor instruc
tions are needed to specify the starting address and word
count of a block of memory associated with a display
picture. The processor then steals memory cycles to
output an 18-bit word directly from memory whenever
an external data-request pulse is sensed. When a complete

Graphic Display/Plotter for Small Digital Computers 855

OIC/TAL
COMPVTER

~""TA-

CHA4/#EL
HAR.PWARE

(MEMORY
.tIOPRESS

eye; E "L -
STEAL
WR/TE

REt;PeST

.PRIORITY
CI{'ANT

/#TERFACE
~

/NTER/"ACE I AS",,,,.. 1 REt?PEST M~T/WIA'ATtM
iO~/C PtliSES jl'AAlVSTABL E

FOR ~"pEt?uEM:r)

LJA?;4 "
C#AAlIVEL

CO/vTROL)
_$fi4RT//v~

(OEC W/tJ.¢
""~~ReSS

/N CARO)
_ TtJ .£J/S.PLAY

CEAlTRAL
BiOC,K' PEJ4CE

'pA'tJCESSt?,f'
CPHPLETE

-.. SELECTOR
\ (ACT/YATES

D..pA£-'P..4M I "A~' __ • _____ .",)

~AlTERRtlP.T I" - 1-"
- ___ ~, (RESTARTS ___ ~

4LOot')

I/tJ ,oATA B/TS
BITtJ----I

/N~NT /t:JT ,P//LSES

Ft7,p PAC LOA .o/~)
4R/G'#r£N'/N~ c/A'Cv/rJ'

ENABLE ItJT PULSE

Ft7' S-'F(;/ST£R
L()AP/#G'

RECt:JG'A'/17t:J# HR/O~/C PArA :"C#A#A£L
CArE ,fEtQVEST Pl/LSES FRoN

ItS rAII,-£" Nl/LT/8RATVR

ENtJCJF
BLOCK"

FRt:J,w
COMPUTER

POWER CLEAR

fOT /

TO PATA
CHANN'EL

FLAt;

,a-/c

Figure 8a-Automatic-data-channel operation. Processor in
structions set the number of words and the starting-word
address in a display block and enable the display clock. From
then on, data words are transferred to the display on each display
clock request pulse without any need for processor instructions.
A data-channel- end-of-block signal is used to interrupt the

processor, which then restarts the sequence

Figure 8b-Recognition gate for data-channel S-register transfers
(see text), and end-of-block interrupt flag

block of, say, 2,000 data words is finished, an end-of
block pulse can be used to interrupt the computer pro
gram and to reinitiate the block transfer (Figure 8a).
No other display instructions are required, and memory

locations corresponding to display points can be updated
at any time between data-channel outputs. While data
channel word transfer rates as high as 250,000 words
per second are possible, we usually set the transfer
rate (which is determined by a simple astable multi
vibrator clock, Figure 8a) at about 100,000 words per
secorid, both to give the computer a chance to compute
and to permit cleaner line-segment generation.

On the face of it, data-channel outputs involve only
rlnfn ~/'fl,.rlQ (in AUI' (l!:H:!t:> n<;\{l"\z-",rl 15Lhit. Y V UTAl'"rl", Ant:>
~'-NIV'-Af VVVI \Af'O;J' ,,\...4 '"""'-' l"''''''' :a..''''''-4 ..L'-J, ~ , ~ 'f'f "' JoJ,,.L

corresponding to each display point). Since the data
channel cannot transmit different display instructions,
it would seem that we have lost the ability to change
between the LINE and POINT display modes and to
vary display intensities. If one had more than 18 bits,
say with a 24-bit computer, one could use extra data
bits as control bits, but this is not possible with the
18-bit PDP-9 and similar small processors. A special
trick, however, permits the use of data-channel produced
data words for control purposes. We recall that, with the
2's-complement code generally employed with DACs,
the largest positive 9-bit excursion is 011111111, corre
sponding to + 9.98 volts, while the largest negative
excursion is 100000000 or - 10 volts. This maximum
negative excursion, thus, has no positive counterpart
and is, in a sense, redundant. We will, then, employ the
last 9 bits of an 18-bit data word of the form 100000000-
sssssssss (Y = - 10 volts) to set our 9S-bit register bits,
rather than for positioning the CRT beam. Referring to
Figure 8b, a simple recognition gate detects the fact
that the first 9 bits are 10000000(1 and gates the remain
ing bits into the S-register to control the beam intensity
and the POINT or LINE mode of subsequent display
points.

A second mode of data-channel operation employs
the X-buffer/counter to plot anyone-dimensional array
automatically against its index, without 'Word packing.

Operation with external oscilloscopes

To permit the use of our display interface with exter
nal cathode-ray oscilloscopes and recorders, the X and
Y deflection voltages, an intensity-control voltage, and
one of the S-register bits are brought out to front-panel
terminals (Figure 2a). In particular, the display can
thus operate with a standard five-inch oscilloscope
equipped with a Polaroid Land camera to produce
quick hard copy. For class demonstrations and visiting
admirals, the display also operates with a large 24-inch
display oscilloscope at reduced plotting rates. Depend
ing on the external oscilloscope used, the beam-inten
sifying signal can be amplified and/or inverted.

856 Spring Joint Computer Conference, 1969

Operation with xy recorders

To obtain hard copy directly at low cost, one can
simply apply the X and Y deflection voltages to an
xy recorder (servo table) at a suitably low word rate. For
more flexible recorder operation, however, we added
two additional digital-to-analog-converter channels
(U-and V -DACs and registers, Figure 6) .

For servo-table recording, one of the S-register bits
is brought out to control the recorder pen-lift solenoid,
with the pen DOWN whenever the display instructions
call for the LINE mode (Figure 230). The instruction
DUVL produces lOT 2A (Figure 730) to feed the 9-bit
U and V registers with "packed 18-bit words for xy
recorder operation. Since the relatively slow servo
recorder cannot plot more than 5 points per second, the
instructions must be tied to a suitably slow real-time-

. clock interrupt routine; slow data-channel operation
in the manner of Figure 8 is also possible. For the same
reason, the 160 pF delay capacitors shown with the X and
Y DACs in Figure 230 are replaced with 5 JLF plug-in
capacitors in the U and V channels, so that line seg
ments are drawn with a time constant of 0.1 sec.

Figure 10 shows a permanent record prepared with
the new display unit.

Operation with stripchart recorders

For simultaneous ploUing of up to four time-history
records on a multichannel strip-chart recorder, the X;
Y channels * and the U, V channels are alternately fed
packed 18-bit words at a clock-controlled combined
maximum rate of 200 words/second. Such multiple
time records are especially valuable for recording
variables in digital simulation of dynamical systems.

Discussion and follow-on program

Figures 9 and 10 show examples of display operation.
As noted earlier, our display was originally intended
mainly to produce solution curves and phase-plane
diagrams for on-line simulation of dynamical systems.
As it turned out: the display is very useful for produc
ing much more general pictures (Figure 9), so that we
are planning the addition of a light pen and protractor
dial, plus SKETCHP AD-type software6 for computer
aided drawing operations with the PDP-9.

The most useful feature of our simple display is the
possibility of refreshing the display with packed 18-bit
words from the standard automatic data channel of the
18-bit PDP-9. Since these 18-bit words fully utilize

* The small capacitors in the X and Y channels (Figure 2a) have
essentially no effect at the 50 to 200 Hz word rates used for strip
chart recording.

Figure 9-Cathode-ray-tube displays using the PDP-Y data
channel at 125,000 points/second: POINT mode (a), --LI~E

mode (b), and mixed POI~T and LI~E mode (c)

Figure lO-Hard copy produced on a Moseley xy recorder
(servo table) in the LINE mode

Graphic Display/Plotter for Small Digital Computers 857

their PDP-9 registers, we can afford to eliminate the
hardware and programming complication of a display
refreshing core or delay-line buffer. With processor and
display sharing a common memory, our automatic
data channel can do much more than refresh a single
display. The channel can also transmit and mix several
displays or parts of displays (curves, figures, characters),
each corresponding to a memory block with a program
selected starting address and block length. 3 Indeed, a
block or blocks can be displayed with the automatic
data channel while the processor modifies another
portion of the display.

The Dertouzos line-segment-generating technique,
as modified by our intensity-compensating circuit, was
thought to be especially suitable for curve interpola
tion and stroke-implemented characters. In our actual
operating experience, though, most users have employed
the LINE mode mainly for servorecorder plots; they
seem to prefer the simpler programming possible when
using only the POINT mode for CRT display. If
we need not alternate LINE and POINT modes it is,
for instance, simpler to obtain "incremental" display
operation, with successive packed words

(HI X, HI Y) = (k X + kAX, ky + kaY)

2's-complement-accumulated in the PDP-9 accumu
lator before transmission to the display or to a data
channel block.

In view of the popularity of small I6-bit digital
computers, we have also tried the display with our
9-bit DACs restricted to 8-bit operation. A display
thus obtained with packed I6-bit words has, of course,
less resolution than the I8-bit display, but still appears
to be acceptable for many purposes. This opens the
interesting possibility of combining our display system
permanently with a small I6-bit processor as a moder
ately sophisticated stand -alone display unit

The provision of the X-buffer/counter in our display
permits display ope:ration with separate X and Y data

transfers. This is mandatory with 12-bit computers
(like the popular PDP-8 series), and even speeds up
some PDP-9' programs, since no word-packing is
needed (see Appendix A for explicit programmed-data
transfer routines). It is only fair to state, though, that
all our users to date have preferred packed-word
operation with the PDP-9, so that we could have
omitted the entire X-buffer logic (including our extra
device selector).

ACKNOWLEDGMENTS

The display system described in this paper is part of a
continuing study of digital-, analog-, and hybrid
computer simulation at the University of Arizona.
For their support of this study, we are very grateful to
the National Aeronautics and Space Administration
(Grant N sG-646 and Institutional Grant to the U ni
versity of Arizona), the National Science Foundation
(Grant GK-1860 and Institutional Grant), and to
Drs. G. W. Howard, R. H. Mattson, D. L. Patrick,
A. B. Weaver, and E. N. Wise of the University of
Arizona for allocating institutional-grant funds and
University resources.

REFERENCES

1 M L DERTOUZOS
PHASEPLOT: An on-line graphical display technique
IEEETEC April 1967

2 G A KORN
Digilal-computerinterface systems
Simulation December 1968

3 P DP-9 user handbook
Digital Equipment Corporation Maynard Mass 1967

4 Logic handbook
Digital Equipment Corp Maynard Mass 1968

5 Small Computer Handbook
Digital Equipment Corp Maynard Mass 1968

6 I E SUTHERLAND
SKETCHPAD, a man-machine graphical communication
system
Proc S J C C 1963

APPENDIX A: BASIC PDP-9 DISPLAY ROUTINES

LAC X
DXB
LAC Y
DYST

LACY
DYSI

/load accumulator with X
/load X -buffer with X
/load accumulator with Y
/transfer X-buffer and Y, and display

/load accumulator with Y
/increment X-buffer, transfer
IX-buffer and Y, and display

2 ~sec
4 ~sec
2 ~sec
4 ~sec

12 ~sec

- 2 ~sec
- 4 ~sec

() ",sec

sriS Spring Joint Computer Conference, 1969

LAW 170008 /load accumulator with mask 1 J.lSec
AND Y /mask last 9 bits of Y out 2,usec
DAC TElVIP / and sa. ve result. 2 ~sec
T A~ v /load acclli'1lulator with X 2 #Lsec .1..Ul..V ~

CLL / clear the link * 1 #Lsec
LRS 9 / shift 9 places * 6 #LSeC
ADD TE:NIP / combine with Y 2 #Lsec
DXYS /transfer X, Y, and display 4 #Lsec

20 #Lsec

LAC XY / deposit X, Y in accumulator 2 p,sec
DXYS /transfer X, Y, and display 4 #Lsec

6 ~sec

* not needed if X was scaled previously

Stability contours for the analysis of
analogi digital hybrid simulation loops

by R.VICHNEVETSKY

Electronic Associates, Inc.
Princeton, New Jersey

INTRODUCTION

The use of hybrid computers for the simulation of
dynamic systems has focused interest on the ill-effects
of sampling and digital execution time upon solution
accuracy. Techniques have been proposed for the com
pensation of these effects by various authors.l,a ,7 How
ever, there has been a noted lack of common denomina
tor available to compare the relative merits of these
methods of compensation. As a rule, one may observe
that quality criteria used to evaluate different compen
sation methods have been local rather than global,
and the resulting compensation algorithms are there
fore largely tuned to whatever quality criteria has been
selected a priori.

As an example, a recent paper by Mitche1l6 shows
that compensation techniques that provide an improve
ment for slightly damped or undamped systems are
indeed detrimental when applied to the simulation of
highly damped systems. But, at just about the same
time, a paper by Deiters and N omural evaluates the
quality of compensation methods on the only merits
of their performance in the simulation of completely
undamped systems (the circle test).

The preceding remarks indicate that more meaning
ful criteria should be developed to describe the quality
of the compensation over the whole complex plane of
natural modes of the system being simulated. Such a
criterion is, at least partly, provided by the Stability
Contours method which is developed in the sequel of
this paper. In essence, this method provides regions
in the complex plane where the roots or normal modes
of the simulated system must lie to ensure stability of
the simulation.

An interesting conclusion is reached by consideration
of these stability contours; namely, that compensation
methods based on Taylor Series extrapolation fonnulae
improve stability for the simulation of undamped or

slightly damped systems, but decrease stability for
systems which are heavily damped (i.e., have roots
which lie closer to the real negative axis than to the
imaginary axis).

Reference has been made by previous authors to
problems encountered in the simulation of helicopters
and STOL aircraft.6 In that instance, one is faced with
a system which is very lightly damped in one regime
(during hover or low speed) and becomes heavily damped
in another regi;me (when speed induced aerodynamic
forces come into play). From the standpoint of a global
analysis such as that provided by the stability contours
method developed in this paper, it would seem that
none of the compensation methods suggested by pre
vious authors are adequate for the whole range of
behavior of the aircraft (unless, of course, the sampling
rate is kept high enough to satisfy worst-case stability
conditions of the simulation). To the contrary, it seems
appropriate to utilize" adaptive .. compensation schemes
that will correct by extrapolation when the simu
lated system is lightly damped, and return to non
extrapolation (or some other algorithm) during flight
regimes inducing heavily damped modes of behavior.

A model of hybrid loops

A typical situation encountered in simulation is
that in which the differential equations of a dynamic
system are integrated on the analog section of a hybrid
computer, and part of the non-linear operations in
volved in the implementation of the right-hand side of
these equations is implemented in the digital section
of that computer. In particular, this situation is found
in the simulation of aircraft where the non-linear aero
dynamic forces and moments are computed digitally,
and the corresponding integration of the equations of
motion is implemented on the analog (see Reference 10).

The sampling and digital delay occurring in the hy-

--- 859~-------------------~------------------

860 Spring Joint Computer Conference, 1969

nlNPUTS

I
I

w(t)

ANALOG
COMPUTER

dx = w
dt

DIGITAL
COMPUTER

a CONVERTERS

w= ax

n OUTPUTS
,
I

Figure I-A simplified model of a hybrid simulation loop

brid loop are conducive to instability in the simulation.
Although simplified, a model which pennits a detailed
analysis of this phenomenon is that represented in
Figure l.

This configuration corresponds to the simulation of
a system whose set of differential equations is:

or, in simple matrix notations:

dx
dt = ax (2.1)

This set of equations may either describe the whole
problem at hand, or describe the behavior of error
propagations in a more general, non-linear hybrid
problem.

In the latter case, a is the jacobian matrix of the
problem and is in general time dependent.9 However,
stability of the hybrid loop may be analyzed assuming
that a is a constant matrix. This restricts fonnally
the validity of the analysis to the cases where the
sampling period at is short in comparison to the rate
of variation of the coefficients of a. In particular, sim
ulation of VTOL, STOL and variable geometry aircraft

where regime or geometry change relatively slowly is
well accounted for by the model of Figure 1.

Stability (the uncompensated case)

In an idealized implementation of the hybrid simula
tion of the system described by equations (2.1), we
assume that all algebraic computations are perlonned
on the digital computer, while all integrations with
respect to time are taking place on the analog.

We also a§sume that a constant sampling rate at is
used, and that all analog-to-digital, and digital-to
analog, conversion operations are sL.llultaneous at
sampling time (which corresponds to the use of sample/
hold integrators in the A/D direction, and double
regiS+ueI'S in the D/A direction). We denote by Xi t.he
value of the vector of variables x(t) at time t = t i =
iat.

Using zero-order hold, the output of the digital-to
analog converters are step-1ike functions. These func
tions remain constant over one sampling period, and
can be expressed by (in the uncompensated case):

where x i-k is the value of x at time t i-e.

Thus, kL\t is the explicit value of the total sampling
and digital execution time.

In view of the previous assumptions, k shall always
be an integer, and will often be equal to unity.

During the time interval (t i , ti+l) , the output of the n
integrators of the analog computer are linear, and the
following expression can be derived:

(3.2)

The solution x i thus satisfies the finite differences
equation:

(3.3)

We apply the z-transformation to equation (3.3) and
obtain (I is the unity matrix.) :

(z - I - ataz-k) Xi = 0 (3.4)

(We use the same notation for Xi and its z-transform;
the operator z in expression (3.4) is to 'be interpreted as
that which results in the relation: zi Xi = X'+i)

Normal solutions Uj of (3.4) are those which satisfy
t.he equations:

(3.5)

U~+l = Z· U~
J 1 J (3.6)

Zj is now a constant scalar, whereas Z in (3.4) is a
formal operator whose explicit expression need not be
defined.

Substitution of (3.6) into (3.5) yields:

(Zj I - I - at·a·zr") ul = 0 (3.7)

Thus Zj must satisfy the characteristic equation:

The values of Zj which are solution of (3.8) and the
corresponding Ul, correspond to normal. modes of be
havior of the simulation. It is well known that, since
(3.3) is linear, any Xi can be expanded into a sum of
normal. modes u}, and that stability of Xi requires that
each of these modes be stable.

Thus, the condition of stability of the simulation is
that all the normal modes Uj be stable, which in view
of (3.6), is satisfied if all Zj satisfy the relation

1
U;+11
u~ = IzA < 1 (3.9)

FOIDl ally , (3.9) ensures tha~

ti}+l = Zj u} (3.10)-

constitutes a contraction mapping,4 ensuring conver
gence of (3.5).

Relation to the simulated system's roots

We observe that (3.8) is an algebraic equation of
order n(k + 1) in z, and finding all the roots may be
a complex task. But the search for the characteristic
values Zj can be considerably simplified if a change of
coordinates is made so as to diagonalize the matrix 8.,

which corresponds to reducing the original system (2.1)
to its normal modes. This is obtained by applying a
linear transformation:

y = vx (4.1)

to equation (3.4), where the lines of v are the eigen
vectors of aE; i.e.,

aT v
g

= Ag v
g I

det(aT - AgI) = det(a - AgI) = 0
g = 1,2, ·····n
VT = (VI v2 • •• vg • • • vn)

(4.2)

Stability Contours Oro ..
001

The matrix v has the property to diagonalize a, i.e.,

o

vav-1 = A = (4.3)

I
10

(.)'r stands for the transpose of (.)

Writing

v(Z - I - Llt az-k) V-I yi = 0 (4.4)

yields

(Z - I - atAz-k) yi = 0 (4.5)

Since A is a diagonal matrix, it follows that (4 .. 1) can
be rewritten, line by line, as n independent equations:

(Zg - 1 - Llt Ag Zg-k) yg = 0)

g = 1,2, n I (4.6)

The significant difference between (3.4) and (4.6) is
that the latter is a scalar equation, whereas (3.4) is an
n -dimensional equation.

We now look for the normal modes of (4.6), for each
Ag independently, which is a considerably easier task
than the original solution of (3.8).

Normal solution of equation (4.6) will be of the fonn:

(4.7)

where z; is one of the (k + 1) solutions of the char
acteristic equation:

(4.8)

Stability of the hybrid simulation is expressed by the
condition that all z~ corresponding to the (k + 1)
solutions of (4.8) for each of the n values of Ag , be in
absolute value smaller than unity.

The multiplication of roots

Since equation (4.8) is of the order (k + 1), and has

862 Spring Joint Computer Conference, 1969

(k + 1) roots, the total number of nonnal modes of
the hybrid simulation is n· (k + 1). Of these, of course,
only n are meant .to represent the original system;
the n· k additional modes are spurious, and their relative
a...--nplitude should remain SIP..ail relative to the original
modes to ensure a realistic simulation.

Stability, however, requires that all modes, original
or spurious, satisfy the stability criterion:

\z;\ < 1 (5.1)

We assume here, ot course, that the simulated
system is itself stable; i.e., that

g = 1,2, n

In the next section, we express condition (5.1) graphi
cally by the definition of stability contours in the
Ag complex plane, or plane of the characteristic roots
of the simulated system.

Stability contours

In the z complex plane, the condition of stability
is that all z~ He inside' of the unit circle.

If we transpose this condition into the A plane, the
resulting domain win be that corresponding to systems
whose hybrid simulation will be stable. The complex
transfonnation from Z plane to the A plane can be
obtained directly from (4.8), which can be rewritten:

(6.1)

A normalization to Ag • At furthermore provides a
dimensionless representation.

We call Stability Contour the line, in the Ag ' At plane,
which surrounds the domain in which the stability
condition (5.1) is satisfied. Along this line, we have:

I zl = 1 or z = e illl ; (j = v=--i)
} (6.2)

IIIE(- 00, 00)

Thus, the equation of the stability contour, obtained
by the substitution of (6.2) into (6.1) is:

A·At = (e illl - 1) e iklll (6.3)

(For simplicity, we use A here to denote any of the
roots Ag),

For instance, for k
equation reduces to:

o (no computing delay), this

(6.4)

which is the equation of a circle of unit radius and
center (-1,0) (Figure 2).

For values of k different from zero, the curve ex
pressed by equation (6.4) presents (k + 1) loops: only
that region which is in the inside of all (k + 1) loops
corresponds to the stability region. These stability
contours, for k = 0, 1, 2,3 and 4, are shown in Figure 3.
For each value of k, the stability domain is that inside
of each of the stability contours shown.

It is to be noticed that the stability domain is, as one
might expect, decreasing in size for increasing computing
delay kAt.

One may also observe that the crossing point of the
stability contour lines with the real negative axis is at
distances proportional to 1/ (k + 1) from the origin.

We now proceed to evaluate some compensation
methods by means of an analysis of their effect upon

Im~

Figure 2-8tability Contours for the uncompensated case with
no computing delay: The simulation will be stable only if all

roots >. of the simulated system lie within the circle of
center (- 1/ At, 0) and radius 1/ At. (Or, all

normalized roots (>., At) of the simulated
system must lie within the circle of center

(-1, 0) and unit radius.)

k...-o

·5

-1· ~O

Figure 3-Stability Contours for the uncompensated case-for
various computing delays ~t

stability contours. The compensation methods which
we shall analyze are:

1. Compensation by first order digital prediction;
2. Compensation by second order digital prediction;
3 .. The method of analog compensation.

Compensation by first order digital compensation

The effect of the sampling and digital delay can be
alleviated by using digital prediction based on the
present and past values of the computed digital
computer output Wi. First order prediction is obtained
when one past value of w is used in addition to the
present value Wi. This allows a linear prediction form to
be used. In essence, extrapolating w by 6Llt is given by:

= (1 + 6) Wi - 6w i - 1 (7.1)

Bearing in mind that w' = axi-k, this expression
becomes:

w·+9 = (1 + 6) ax i- k - 6ax i-k-l (7.2)

W H9 is substituted for Wi as the output of the digital
computer. Thus, the equation for the computer solution
corresponding to the uncompensated case (3.2) is, for
this method of compensation:

Xi+l - Xi = Llt wi+9

= Llt.a·[(1 + 6)X i - k - 6x i-k-l] (7.3)

or, using the z-operator:

{z - I - Llt·a[(1 + 6)Z-k - 6Z-k-lJ} Xi = 0 (7.4)

Stability Contours 863

The characteristic equation (4.8) becomes now:

(z - 1) - LltA [(1 + 6)Z-k - 6Z-k- 1] = 0 (7.5)

The equation defining the stability contour in the
A'Llt plane is:

ALlt = (z - l)zk
(1 + 6) - 6z-1

Izl = 1 (or z = eiCrJ)

1
J

(7.6)

Stability contours for k = 1; 6 = 0, .5, 1, 1 .. 5 and 2
are shown Figure 4.

These contours show clearly that while prediction is
somewhat improving the correspondence between the
stability contour and the axis Re(ALlt) = 0, the domain
of stability along the real negative axis decreases in
some inverse proportion of 6. For the uncompensated
case, the stability limit is at Re(ALlt) = -1 or one
sample per time constant. For the optimum prediction
time (6 = 1.5), this stability limit is reduced to
Re(ALlt) = - .483, or 2.07 samples per time constant.

In the imaginary direction, however, the maximum
value of Im(ALlt) on the contour is seen to remain close
to .37, in the uncompensated as well as the optimal
compensated case (6 = 1.5)1 which corresponds to 17
samples per pseudo-cycle, although undamped systems
(Re(ALlt) = 0) always yield unstable hybrid simula
tions. It will be seen in the next section that second
order prediction yields stable hybrid simulations of
undamped systems.

Note, however, that a similar effect might be obtained

Figure 4-The effect of first order digital compensation upon
Stability Contours for k = 1. (The optimum compensation;
in the Taylor Series sense, is provided for 0 = k + 1/2 = 1.5)

864 Spring Joint Computer Conference, 1969

by first order-over prediction. For instance, k = 1,
8 = 2 yields, in first order extrapolation, to stable
solutions along the imaginary axis up to 22 samples per
cycle (lower sampling rates are unstable.)

Compensation by second order digital prediction

Compensation by second order prediction is obtained
when two past values of ware used to predict w i+9 :

The coefficients bo, bi and b2 are obtained by express
ing wet) as a second order polYnomial passing exactly
through the three points (t i , Wi); (t i - I, Wi-I); (t i - 2, W i - 2)

or

This yields:

bo = 1 + 1.58 + .582

bi = - 28 - 82

b, = .5 (8 + fP)

W i+9 = (1 + 1.j58 + .582)·a·x i - k

\
j

(8.2)

- (28 + 82) ·a·xi-k-I + .5(8 + 82) ax i - k-? (8.3)

Substituting this expression in replacement of w \ in
(3.2), yields

X HI - Xi = At'a [(1 + 1.58 + .582)X i- k

- (28 + fP) X i- k- 1 + .5 (8 + fP) X i- k-2] (8.4)

which, upon making use of the z-operator and the
diagonalization of a, yields the equation for the stability
contour:

XAt=

(z - 1) Zk I
(1 + 1.58 + .582) - (28 + 82)z-1 + .5(8 + 82)z-2 .

z = e illl

(8.5)

Results are shown in Figure 5, for k = 1,8= 0, .5, 1,
1.5 and 2.

For ,the optimum value of 8, i.e., 8 = 1.5, the crossing
point of the stability contour with the real negative
axis occurs at AAt = - .22, i.e., at 4.5 samples per time
constant.

On the other hand, the stability contour for second
order extrapolation and 8 = 1.5 now crosses the

Figure 5-The effect of second order digital compensation upon
Stability Contours for k = 1. (The optimum compensation,

in the Taylor Series sense, is provided for (1 = k + 1/2 = 1.5)

5

k::2

Re(A·C.t) -·5 o

Figure 6-The effect of second order digital compenastion upon
Stability Contours for k = 2. The optimum compensation,
in the Taylor Series sense, is provided for (1 = k + 1/2 = 2.5)

w(t)

x(t)

Figure 7 -The method of analog compensation of Miura
and Iwata

imaginary axis. This occurs for a sampling rate of about
17 samples per cycle.

Figure 6 shows stability contours for second order
extrapolation for k = 2, 0 = 0, .5, 1, 1.5, 2, 2.5 (the
ideal extrapolation) and 3.

A nalog compensation

A method of analog compensation proposed by
l\1iura and Iwata7 consists in adding to the output of
each integrator O·Llt times its input (Figure 7). This
method and variations thereof were also suggested and
analyzed by Karplus. 3

It can easily be shown that the step equation
corresponding to the application of this method is:

or, for the stability contour:

For

we obtain:

(z - 1) Zk

XLlt = Oz + (1 - 0)

z = eiCll

O=k+~,

)

(z - 1) Zk

XLlt = (k + ~) z - (k - %)
(z - 1) Zk-l

(9.2)

(k + %) - (k - %)Z-l (9.3)

By comparison with (7.6), we observe that this
method of analog compensation results in identical
stability contours (and indeed, overall behavior) as those
corresponding to cases where k is reduced by 1, and first
order ideal (0 = k + %) digital extrapolation is
applied.

As a means of comparison among the three methods
of compensation analyzed, stability contours corre
sponding to k = 1 and k = 2 are superimposed in
Figure 8 and Figure 9, respectively.

CONCLUSIONS

The method of Stability Contours developed in this
paper offers a means for analyzing "in the large" the
effect of sampling and delay in hybrid loops, as well as a
meaningful tool to compare the merits of different

Stability Contours 865

Re(.~·At)

-1· -·5 o

Figure 8-A comparison of different methods of compensation
for a computing delay of one samPling period (k = 1) and

optimal extrapolation (in the Taylor Series sense) 0 = 1.5

·5

k=2

-·5 -·25 o

Figure 9-A comparison of different methods of compensation
for a computing delay of two sampling periods (k = 2) and

optimal extrapolation (in the Taylor Series sense) 0 = 2.5

methods of digital and analog compensation. It has
been applied here to analyze stability properties of
compensation methods proposed by previous authors,
namely first order digital prediction, second order digital
prediction and analog prediction (as well as the un
compensated case).

A general conclusion that appears from such an
analysis is that compensation methods based on Taylor
Series type of extrapolation algorithms improve· the
stability properties in the simulation of undamped or
slightly damped systems, but are detrimental to

866 Spring Joint Computer Conference, 1969

stability properties in the simulation of heavily damped
systems. This would suggest that, in the simulation of
time-varying systems, such as STOL, VTOL and
variable geometry airplanes, best results may be
obtained by the use of adaptive compensation methods,
where the degree of time extrapolation is made inversely
proportional to the degree of damping of the simulated
system.

REFERENCES

1 R M DEITERS T NOMURA
Circle test evaluation of a method of compen!~ating hybrid
computing errOrs by predicted integral
Simulation January 1967 33

2 R GELMAN
Corrected -inputs-A ';netrwd jor improved hybr"d simulation
Proc F J C C Vol 24 1963

3 W J KARPLUS
Error analysis of hybrid computer systems
Simulation Vol 6 No 2 February 1966 121

4 A N KOLMOGOROV S V FOMIN
Elements of the theory of functions and functional analysis

Vol I (English translation) Graylock Press Rochester N Y
1957

5 D L MATLOCK
Pulsed prediction filters applied to digital and hybrid
simulation
Simulation March 1966

6 EEL MITCHELL
The effect of digital compensation for computation delay in
a hybrid loop on the roots of a simulated system
Proc F J C C 1967 Vol 31 103

7 T MIURA J IWATA
Effect of digital execution time in a hybrid computer
Proc F J C C Vol 24 1963

8 A J MONROE
Digital processes for sampled data systems
J Wiley and Sons New York 1962

9 R VICHNEVETSKY
Error analysis in the computer simulation of dynamic systems
IT ar-;,ational aspects of the problem
IEEE Transactions on Electronic Computers Vol EC-16
No 4 August 1967 403-411

10 EEL MITCHELL J B MAWSON J BULGER
A generalized hybrid simulation for an aerospace vehicle
IEEE Transactions on Electronic Computers Vol EC-I5
No 3 June 1966304-313

REVIEWERS, PANELISTS, AND SESSION CHAIRMEN

E. Alexander
Jonathan Allen
Ramon Alonso
Joel D. Aron
William Atchinson
Algirdaz Aviaienis
Philip R. Bagley
Robert M. Barnett
Frank Bates
Max ben-Aaron
Roger H. Bender
Robert Benenati
Mort Bernstein
Frank F. Bevacqua
Christopher Billings
W. W. Bledsoe
James A. Bloomfield
Jacques Bouvard
Franklin H. Branin
D. B. Brick
J. Reese Brown, J r.
Roderick R. Brown
Thomas Burke
Peter Calingaert
Duane B. Call
Richard G. Canning
Roy B. Carlson
John J. Carr
John W. Carr, III
William C. Carter
Paul Castleman
T. E. Cheatham, J r.
J. Chernak
C. K. Chow
W. F. Chow
Carl Christinsen
Yaohan Chu
A. Ben Clymer
Edmund U. Cabler
Martin Cohn
S. F. Condon
Richard W. Conway
F. J. Corbato
W. A. Cornell
Frederick C. Cowburn
Richard Crandall
Robert Daley
L. C. Darden
Fred R. Decker
Richard DeN eufville

REVIEWERS

Peter J. Denning
Donald L. Dietmeyer
George G. Dodd
R. J. Dowe
Robert Dunn
Joseph Eachus
Jay Early
Murray Eden
Douglas Englebart
William English
Kathryn Erat
Z. W. Esper
Robert Fano
Nick A. Farmer
David J. Farrell
George Fedde
Julian Feldman
Wallace Feurzeig
Tudor Finch
Thomas Fitzgerald
Donald F orina
Franklin H. Fowler, Jr.
M. R. Fox
R. A. Freedman
E. R. Gabrielli
William Gear
E. G. Gilbert
M. E. Gilfix
Russell L. Gilstad
D. E. Goldstein
Joseph W. Goodman
William L. Gordon
A. G. Grace, Jr.
J. N. Gray
Martin Greenfield
Gabriel F. Groner
Thomas G. Hagan
Murray J. Haims
D. Hammel
Patrick J. Hanratty
William Harden
D. R. Haring
George H. Harmon
Frank Heart
Madeline M. Henderson
Gardner C. Hendrie
Robert Hengen
Robert A. Henle
Ernest G. Henrichon, Jr.
Bertram Herzog

Richard H. Hill
D. A. Hodges
Gary Hornbuckle
Austin S. Householder
S. Husson
R. E. Hux
G. T. Jacobi
William J essiman
Barry J. Karafin
Clarence A. Kemper
Allen Kent
B. Kessel
Charles R. Kime
R. E. King
Arnold L. Knoll
Kenneth Knowlton
Manfred Kochen
Eldo C. Koenig
Walter Koetke
Zvi Kohavi
Jerome M. Kurtzberg
Victor LaBolle
F. W. Lancaster
Eugene L. Lawler
R. W. Lawrence
Donald C. Lit;tcicome
Richard Little
Arthur W. Lo
Jerome Lobel
Eli Lodgenstein
Joseph T. Lundy
D. H. Mack
Richard L. Mandell
Dewey F. Manzer
Michael Marcotty
Harry Martell
E. J. McCluskey
L. P. Meissner
R. Meyers
James C. Miller
Tate Minckler
R. A. Miner
Darrell B. Miskell
E. E. L. Mitchell
Gordon S. Mitchell
George Nagy
Edward A. Nelson
F. William Nesline, Jr.
Nils J. Nilson
Kenneth Olsen

S. Ornstein Harry Scheuer Mary E. Stevens
Dale Osborn Max Scholz Thomas G. Stockham, Jr.
Jock J. Pariser Elizabeth Schumacker Warren Teitleman
Robert W. Parker Paul Seckendorf Rankin N. Thompson, Jr.
F. Pel piglia Sally Yeates Sede10w W. P. Timlake
H. Philip Peterson Oliver G. Selfridge Larry Travis
Harold Pickering Herbert SemQn Gene A. Vacca
A. Pietissanto Warren Semon Herbert F. Van Brink
Joseph Pistrang Peter W. Shantz Thomas H. Van Vleck
W. R. Plugge Alan C. Shaw Robert J. Vamey
M. Ross Quillin Paul N. Sholtz Robert Vichnevetsky
C. V. Ramamoorthy R. L. Shuey John V. Wait
Bertram Raphael John Sidney Sigurd Wasken
Robert Rappaport R. Silver l\t1aria \Veller
William H. Rawlins Warner Slack Frank Westervelt
Stanley G. Reed Sanford Smith Charles H. Whelen
Lawrence C. Roberts F. J. Sparacio Robert R. White
C. A. Rosen Jason Speyer Ronald L. Wigington
Jack Rosen Edward P. Stabler James E. Wolle
Arthur M. Rosenberg Thomas A. Standish John H. Worthington
Robert F. Rosin Thomas B. Steel, Jr. John M. Wright
F. J. Sansom E. A. Steeves Kendall R. Wright
H. M. Sassenfeld Einartt Steffend Richard K. Yamamoto

PANELISTS

Henriette D. Avram W. L. Gordon Thomas E. Osborne
Milton Bauman John A. Gosden Seymour A. Papert
Robert W. Berner Martin Greenberger T. G. Paterson
Edward Bennett Martin Greenfield A. J. Pennington
Richard Berman T. G. Hagan Alan J. Perlis
Adam Block Duncan Hansen Owen R. Pinkerman
William F. Brown William Harden J. Pistrang
James M. Brownlow John A. Harr Stanley H. Pitkowsky
G. Edward Bryan James F. Holmes Frederick Plugge
Charles T. Casale Grace rv1urray Hopper O. \,V. Rechard
Thomas E .. Cheatham, Jr. Frank J. Jasinski Nathaniel Rochester
Fernando Corbato W. Jessiman Robert F. Rosin
John E. Cox T. Kallner Jerome D. Sable
Frank Coyne Felix Kaufman Hal Sackman
John Dearden Barry Kessler Jean E. Sammet
Jack B. Dennis Eldo C. Koenig Kirk Sattley
M. L. Dertouzos William L. Konigsford Elizabeth Schumacker
D. L. Dietmeyer Butler Lambson Dan W. Scott
Howard W. Dillon William B. Lewis Joseph Seiler
John J. Donovan Andrew J. Lipinski Warner V. Slack
Raymond L. Dujack Milton A. Lipton A. R. Solomon
Kathryn Erat W. N. Locke Paul Strassmann
Alvan R. Feinstein D. F. Manzer Stuart G. Tucker
Wallace Feurzeig J. W. Meyer John Wright
George E. Forsythe Tate Minckler Lofti Zadeh
E. R. Gabrielli Edward Morenoff William M. Zani
Bernard A. Galler Allen L. Morton, Jr. Kenneth L. Zearfoss
Edward Goldstein Christopher B. Newport

Bruce W. Arden
Moses M. Berlin
James H. Burrows
Robert N. Davis
John J. Donovan
David Evans
Donald H. Gibson
John T. Gilmore, Jr.
John A. Gosden
Martin Graham
Robert M. Graham
Michael A. Harrison

C. W. Rosenthal, Chairman
G. E. Bryan
J. A. Githens

SESSION CHAIRMEN

Robert M. Howe
Charles A. Huebner
Malcolm M. Jones
Thomas E. Kurtz
Harry T. Larson
Robert Leonard
George H. Mealy
Henry S. McDonald
James L. McKenney
Richard E. Merwin
Richard G. Mills
Calvin N. Mooers

AFIPS PRIZE PAPER AWARD COMMIITEE

D. R. Heebner
C. A. R. Kagan
M. D. McIlroy

Richard M. Moroney
William H. Ninke
Elliott I. Organick
George W. Patterson
Fred H. Scaife
Robert H. Stotz
Patrick Suppes
Joseph Sussman
Leonard Uhr
James A. Ward

R. J. Preiss

1969 SJCC LIST OF EXHIBITORS

Access Systems Inc.
Adage, Inc.
Addison-Wesley Publishing Company, Inc.
Addressograph Corporation
Advanced Computer Techniques Corporation
Allen-Babcock Computing Inc.
American Telephone & Telegraph Co.
AMP, Incorporated
Ampex Corporation
Anderson Jacobson Inc.
Applied Data· Research, Inc.
Applied Dynamics, Inc.
Applied :Magnetics Corporation
Association for Computing Machinery
Astrodata, Inc.
Auerbach Corporation
Auto-trol Corporation

BASF Computron Inc.
Bolt Beranek and Newman Inc.
Boole & Babbage, Inc.
Brogan Associates, Inc.
Bryant Computer Products
Business Information Technology, Inc.

California Computer Products, Inc.
Calma Company
Clevite Corporation, Brush Instruments Div.
Collins Radio Company
Communitype Corporation
Compumatics, Inc.
Computer Applications Incorporated
Computer Automation Inc.
Computer Communications, Inc.
Computer Design Publishing Corp.
Computer Displays Inc.
Computer Methods Corporation
Computer Peripherals Corporation
Computer Products, Inc.
Computer Sciences Corporation
Computer Signal Processors, Inc.
Computer Terminal Corporation
Computer Transceiver Systems, Inc.
Computer Usage Company, Inc.
Computers and Automation
Computerworld
Control Data Corporation

Datacraft Corporation
Data Disc, Inc., Display Division
Data General

Datamark, Inc.
DataMate Computers, Div. of Gameo Industries
Datamation
Data Pathing Incorporated
Data Processing Magazine
Data Products Corporation
Datascan
Data Technology Corporation
Datel Corporation
Delta Data
Dil An Controls, Inc.
Digi-Data Corporation
Digital Development Corporation
Digital Equipment Corporation
Digitronics Corporation
Dura. Division Intercontinental Systems, Inc.
Dynamic System Electronics

Eastman Kodak Company
Edwin Industries
Elbit Computers Ltd.
Electronic Associates Inc.
Electronic Design Magazine
Electronic News, a Fairchild Publication
EMR Computer

Fabri-Tek Incorporated
Factsystem Inc.
Ferroxcube Corporation

General Automation Inc.
General Computers, Inc.
General Design Inc.
General Electric Company,

Information Systems
Information Devices Department
Process Computer Department
Specialty Control Department

Geo Space Corporation
The Gerber Scientific Instrument Co.

Hendrix Electronics
Hewlett-Packard
HF Image Systems, Inc.
Honeywell, Computer Control Division
Honeywell, EDP
Houston Instrument, Div. of Bausch & Lomb
Hybrid Systems, Inc.

IBM Corporation
IEEE

Indiana General Corporation
Industry Reports, Inc.
Inforex Inc.
Information Control Corporation
Information Displays, Inc.
Information Technology, Inc.
Infotechnics
Interdata Inc.

Jonker Corporation

Kennedy Company
Keydata and Adams Associates Inc.
Kleinschmidt, Division of SCM Corp.

Link Group/Singer-General Precision Inc.
Litton Automated Business Systems
Litton Datalog Division
Lockheed Electronics Co., Data Products Div.

McGraw-Hill Book Company
MAl Equipment Corporation
Magne-Head Div., General Instrument Corp.
Mandate Systems Incorporated
Memory Technology Inc.
Micro Switch, a Division of Honeywell
Milgo Electronic Corporation
3M Company
Modem Data
Mohawk Data Sciences Corp.
Monitor Systems, Inc.
Motorola Instrumentation & Control Inc.

The National Cash Register Company
The National Cash Register Company,

Industrial Products
Nissei Sangyo Co., Ltd.

Olivetti Underwood Corporation
Omnitec Corp., Div. of Nytronics

Peripheral Equipment Corporation
Photon, Inc.
Potter Instrument Company, Inc.
Prentice-Hall Inc ..

RCA Information Systems
RCA Electronic Components
Raytheon Company
Raytheon Computer
Redcor Corporation
Remex Electronics
Rixon Electronics, Inc.

Sanders Associates, Inc.
Sangamo Electric Company
Scientific Control Corporation
Scientific Data Systems
Spartan Books
Stromberg Datagraphics, Inc.
Sycor, Inc.
Sykes Datatronics, Inc.
Systems Engineering Laboratories

Tally Corporation
Tektronix Inc.
Teletype Corporation
Telex, Computer Products DiviSion
Texas Instruments Incorporated
Transistor Electronics Corporation
Tri-Data Corporation
Tyco, Digital Devices Division
Tymshare, Inc.

Ultronic Systems Corp.
Lenkurt Electric
General Telephone & Electronics
Sylvania Electric Products

United Computing Systems, Inc.
UTE (United Telecontrol)
UNIVAC, Division of Sperry Rand Corp.
URS Systems Corporation

Vanguard Data Systems
Varian Data Machines
Vermont Research Corporation
Viatron

Wang Laboratories, Inc.
John Wiley & Sons, Inc.

Xerox Corporation

Abel, N. E., 57
Aiexander, E. R.,373
Alsop, J., II, 1
Altman, S. M., 587
Amsterdam, R.,513
Anderson, G. B.,173
Avram, H. D., 42
Baecker, R., 273
Balzer, R. M., 567
Barnett, M. P., 75

"'03 Battersby, E. J.,'
Bauman, M., 35
Beckert, D., 827
Berner, R. W.,606
Bennett, W. L., 709
Boehm, B. W.,321
Bowyer, A. F., 637
Budnik, P. P.,57
Burner, H:' B., 775
Caplan, R.,505
Carroll, A. B.,221
Casale, C. T., 30
Cioffi, G., 139
Cody, W. J., Jr., 759
Cohen, D., 297
Cotten, L. W., 581
Crandall, N. R., 241
Danver, J. H., 681
Dayton, F. A., 241
DeLine, J. R., 257
Dennis, J. B., i);{7

DeRemer, F. L., 793
Dillon, H. \V., 44
Donovan, J. J. o 86
Duffy, G. F., 339
Dunn, L. A., 187
Entwisle, D. R., 623
Estrin, G., 723
Feinstein, A. R., 715
Fenichel, R. R.,717
Feurzeig, W., 613
Field, J. A;, 597
Fiorillo, E., 139
Fischler, M., 381
Forgie, J. W., 629
Forsythe, G. E., 538
Gartner, F. P.,339
Gilmone, J. T., 29
Giloi; W., 827
Goyal, L. N.,187
Glueck, B. C., Jr., 709

AUTHOR INDEX

Gosden, J. A., 607
Gott, A. H., 637
Gotterer, M. M.,419
Greenberger, . M., 32
Gross, P. F., 691
Grossman, A. J.,717
Hansen, D. N., 614
Happ, W. W., 229
Hargraves, R. F., Jr., 657
Haring, D. R.,483
Hillman, D. J. 447
Hodges, J. D., Jr., ,529
Hopper, G. M.,608
Horovitz, R. S., :159
Huang, T. S.,173
Huggins, W. H., 623
Jackson, P. E., 491
Johnstone, J. L., 15
Just, L., 751
Kasarda, A. J.,447
Kato, M.,221
Katzan, H., Jr., 47
Kay, R. H., 425
Kennedy, A., 751
Knudson, D. R.,475
Koenig, E. C., 614
Koga, Y., 221
Korn, G. A., 849
Kuck, D. J., 57
Kubert, B. R., 637
Kurtz, T. E., 6~9
Lamb, V. R.,321
Lambert, H. R.o 4:02
Lang, C. A.,543
Leaf, G., 751
Lee, T. M. P.,297
Lesk, M. E., 425
Lewis, G. B., 37
Liang, L.,843
Licklider, J. C. R.,617
Liebig, H. C., 827
Lipner, S. B.,523
Lo, A. W.,587
Locke, W. N.,41
McCormick, B. H., 187
McGeachie, J. S.,665
McIntosh, F. J.,229
Madnick, S. E., 1
Marcus, R. S., 331
Matula, D. W., 765
l\1aupin, J. T., 149

Maurer, W. D.,89
Meeker, J. W.,241
Melkanoff, M. A., 732
Mesko, E. S., 351
Metzger, R. A., 161

673 Meyers, E. D., Jr.,
Million, R., 775
Mobley, R. L.,321
Morello, M. V., 629
MorenoiI, E., 60~
Morton, A. L., j-r., 2 i
Murako, Y.,57
Naemura, K.,221
Naylor, W. C.,95
Nevatt, G. W., 6..~7
Nevison, J. M.,681
Newport, C. B., 773
Northcote, R. S., 57
O'Neill, L. A., 207
Opp~nheimer, G., 249
Pamas, D. L., 739
Pearlman, J. M., 505
Perlis, A. J., 540
Pratt, T. W.,813
Presser, L., 733
Rago, A., 751
Ravi, C. V., 393
Reintjes, J. F., 331
Richard, O. W.,775
Richards, M., 557
Rieber, J. E., 321
Reiter, A., 381
Roberge, J. K., 483
Rose, G., 241
Ruhsam, W. M., .75

Russell, E. C., 723
Sable, J. D., 611
Salton, G., 435
Schneider, V., 777
Schwetman, H. D., 257
Seiler, J., 38
Shrader, W. W.,745
Simons, S., M9
Snyder, R., 505
Sobolewski, J. S., 775
Steinbach, R., 849
Stephenson, A., 657
Stroebel, C. F., 709
Stubbs, C. D., 491
Sutherland, W. R., 629
Sutro, L. L., 113
Tareski, V. G., 187
Teicher, S. N., 475
Theiss, C. M., 289
Trapnell, F. M.,411
Van Tassel, D., 367
Vichnevetsky, R., 859
Vorthmann, E. A., 139
Walker, P., 751
Ward, J. A.,605
Weizer, N., 249
Whitehead, D. W.,529
Whitney, G. E., 801
Wiatrowski, C., 849
Wilhelmson, R. B.,57
Wilkes, M. V., 265
Yen, Y. T.,215
Zadeh, L., 539
Zani, W. M.,.32
Zobrist, A. L., 103

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844
	845
	846
	847
	848
	849
	850
	851
	852
	853
	854
	855
	856
	857
	858
	859
	860
	861
	862
	863
	864
	865
	866
	867
	868
	869
	870
	871
	872
	873

