AFIPS

CONFERENCE
PROCEEDINGS

VOLUME 33
PART TWO

1968

FALL JOINT
COMPUTER
CONFERENCE

December 9-11, 1968
San Francisco, California

The ideas and opinions expressed herein are solely those of the authors and are
not necessarily representative of or endorsed by the 1968 Fall Joint Computer
Conference Committee or the American Federation of Information Processing
Societies. ' '

Library of Congress Catalog Card Number 5544701
THOMPSON BOOK COMPANY
National Press Building
Washington, D.C. 20004

© 1968 by the American Federation of Information Processing Societies, New York,
New York, 10017. All rights reserved. This book, or parts thereof, may not be
reproduced in any form without permission of the publisher.

Printed in the United States of America

CONTENTS

PART II

PROGRAMMING SYSTEMS I1I

- WRITEACOURSE: An educational programming language...........
A table driven compiler for use with automatic test equipment........

On the basis for ELF: An extensible language facility.............. ...

MEMORY TECHNIQUES—HERE TODAY
Associative processing for general purpose computers through the use

of modified memories.
Addressing patterns and memory handling algorithms................

Design of a 100-nanosecond read cycle NDRO plated wire memory.

High speed, high current word matrix using charge storage diodes for

rail selection.

AUTOMATED MAINTENANCE AND CHECKOUT OF HYBRID
SIMULATION FACILITIES

Automatic Checkout of a large hybrid computing system.............
Hybrid diagnostic techniques......................................

DYNAMIC RESOURCE ALLOCATION

Demand paging in perspective.................,
Program behavior in a paging environment.
JANTUS: A flexible approach to real-time time-sharing................

A parallel process definition and control system.....................

HUMAN AUGMENTATION THROUGH COMPUTERS AND
TELEOPERATORS (A Panel Session—No papers included in
this volume)

LABORATORY AUTOMATION

A computer system for automation of the analytical laboratory.

Real-time time-sharing, the desirability and economies.............

E. Huni,

M. Zosel

R. L. Mattison,
R. T. Mitchell
T. E Cheatham,
A.
P.

Jorrand

H. Stone
S. Sisson,
M. Flynn
T. I'shidate

S. Waaben,
P. Carmody

J. C. Richards
T. K. Seehuus,
W. Maasberg,

W. A. Harmon

B. Randell,
C. Kuehner
B. Brawn,
F. Gustavson
J. Kopf,

P. Plauger
D. Cohen

. Friedl,

. Sederholm,

. Lusebrink

. F. Macefield

A modular on-line computer system for data acquisition and

-experimental control.............l 1065
A standardised data highway for on-line computer applications........ 1077
Use of a computer in a molecular biology laboratory.................. - 1089
A small computer as an on-line multiparameter analyzer for a neutron
SPECETOMEEET\ttt 1099
Applications of digital computers to the long term measurement of
blood pressure and the management of patients in intensive care
SIEUABIONS 1105
HAND PRINTED CHARACTER RECOGNITION
Some conclusions on the use of adaptive linear decision functions. 1117
Experiments in the recognition of hand-printed text: Part I—Character
TeCOBMItION. 1125
Experiments in the recognition of hand prmted text Part II—Context
analysis. 1139
The design of an OCR system for reading handwritten numerals. 1151
OPERATING SYSTEMS I/OPERATING SYSTEMS II
The dynamic behavior of programs.....................ooiuin. ... 1163
Resource allocation with interlock detection in a multi-task system. 1169
Cage dual processing. PR 1177
An operating system for a central real-time data processing
COMPULET. . .. 1187
NEW MEMORY TECHNIQUES
Holographic read-only memories accessed by light-emitting diodes. 1197
Semiconductor memory circuits and technology..... 1205
214—D Core 8earch MemOrycooooueeriene e 1213
Design of a small multi-turn magnetic thin film memory. 1219
HYBRID SIMULATION TECHNIQUES
An adaptive sampling system for hybrid computation................ 1225
A new solid state electronic iterative differential analyzer making
1233

maximum use of integrated circuits................

H. P. Lie,

R.W. Kerr,

G. L. leler,

D. A. H. Robinson
I. N. Hooton,
R.C.-M. Barnes
J.F. W. Mallett,
T. H. Gossling
M. G. Silk

8. B. nght

J. L. Corbett

. Kiessling,
. Tunis

. Munson

.H urley,

D.H.R. Vilkomer-
son,

R. S. Mezrich,

D. I. Bostwick

W. B. Sander

M. W. Rolund,

P. A. Harding

W. Simpson

G. A. Rahe,
W. Karplus

B. K. Conant

A general method for programming synchronous logic in analog

COMPULALION. 1251
APPLICATIONS OF COMPUTERS TO PROBLEMS OF THE
ATMOSPHERE AND GEOPHYSICS
Computer experiments in the global clrculatlon of the earth’s
atmosphere. 1259
Computational problems encountered in the study of the earth’s
normal MOdes. o . 1273
PROGRESS IN DISPLAYS (A Panel Session—No papers in this volume)
COMPUTER GENERATED PICTURES—PERILS, PLEASURES,
PROFITS _
Computer animation and the fourth dimension...................... 1279
Computer displays in the teaching of physies........................ 1285
Art, computers and ma.themafics PN 1292
CAMP—Computer assisted movie production.. 1299
What 200d 18 8 baby?. . . o oottt 1307
A computer animation movie language.iii.... 1317
NEW TRENDS IN PROGRAMMING LANGUAGES
CABAIL—Environmental design of a compiler-compiler............... 1321
Cage test language—An interpretive language designed for aerospace... 1329
An efficient system for user extendible languages.................. ... 1339
Program composition and editing with an on-line display.............. 1349
BULK MEMORY DEVICES
New horizons for magnetic bulk storage deviees...................... 1361
Laser recording unit for high density permanent digital data storage.... 1369
A magnetic random access terabit magnetic memory................. 1381
Diagnostics and recovery programs for the IBM 1360 photo-digital
storage system. e 1389
SIMULATION IN THE DESIGN AND EVALUATION OF DIGITAL
COMPUTER SYSTEMS
‘Simulation design of a multiprocessing system....................... 1399

R. A. Moran,
E. G. Gilbert

A. Kasdham

F. Gilbert,
G. Backus

A. M. Noll

J. L. Schwarte,
E. E. Taylor
C. Csuri,

J. Shaffer

J. Whitney,

J. Citron

N. Winkless,
P. Honore

D. Wezner,

S. E. Anderson

F. D. Risko
K. McFarland,
M. Hashiguchs
S. Damron,

J. Miller,

E. Salbu,

M. Wildman,
J. Lucas

D. P. Gustlin,
D. D. Prentice

R. A. Merikallio,
F. C. Holland

A simulation study of resource management in a time-sharing system. ..

Performance of a simulated multiprogramming system................

THE COMPUTER FIELD: WHAT WAS PROMISED, WHAT WE
HAVE, WHAT WE NEED (HARDWARE SESSION)
Hardware design reflecting software requirements....................
What was promised, what we have and what is being promised in
character recognition............
High speed logic and memory: Past, present and future...............

REAL-TIME INFORMATION SYSTEMS AND THE PUBLIC
INTEREST
"Real-time systems and public information..................
National and international information networks in seience and
technology
Real-time computer communications and the public interest...........

COMPUTER DESIGN AUTOMATION: WHAT NOW AND WHAT
NEXT? ’

Functional design and evaluation..................................
Interface between logic and hardware...............................
Hardware implementation................... oo ..
Hardware fault detection. iiirivirinnnnnnn.

1411

S. L. Rehmann,
8. G. Gangwere, Jr.
M. M. Lehman,
J. L. Rosenfeld

S. Rosen

A. W. Holt
A.W. Lo

C. W. Churchman

H. Borko

M. M. Gold,
L. L. Selwyn
P. E. Rosove
H. Sackman

WRITEACOURSE:

An educational programming language*

by EARLHUNT and MARY ZOSEL

University of Washington
Seattle, Washington

The problem

Computer applications in education are becoming
more and more prevalent. Perhaps the most talked
about use of computers in the schools is to control the
educational material presented to students ... the Com-
puter Assisted Instruction (CAI) application. CAI re-
quires that two problems be solved. Someone has to de-
cide what material should be sent to a student, and
when, and someone has to arrange that the computer
actually do what is desired. The first problem, what
should be done, is a topic for educators and psycholo-
gists. Our concern is with the second. How can we make
CAT a convenient tool for the educator?

We will assume that the educator has access to an
interactive system, but that system was not specifically
designed for computer assisted instruction. Once the
educator has determined the form of a lesson, he would
like to be able to go to the typewriter, type in the
instructions, and then leave the typewriter knowing
when he returns with a student, the computer will be
prepared to conduct the lesson. The problem is that the
computer ‘“understands’ instructions only in a very re-
stricted set of languages. The form of these languages
has, for the most part, been dictated either by the inter-
nal design of the machine or by the requirements of
mathematicians and statisticians who are, after all, the
largest group of users of general purpose computers.

The language problem can be solved in several ways.
The educator could, himself, become proficient in com-
puter programming. This diverts his time from the prob-
lem he wishes to pursue. He could acquire a specially
designed computing system which had languages and

- *This research was supported by the Air Force Office of Scien-
tific Research, Office of Aerospace Research, United States Air
Force, under AFOSR Grant No. AF-AFOSR-1311-67.
Distribution of this document is unlimited.

923

equipment suitable for his use. This alternative
is extremely expensive (the equipment alone would
rent for $100,000 a year or better) and is feasible
only for large research projects. He could hire a com-
puter programmer and tell him what the computer was
supposed to do. This introduces another specislist
into the research team, and has the disadvantage
that the computer will then act as the programmer
thought the educator wanted it to act. The educator
may not discover a misunderstanding until after it has
been built into the programming system, at which point
it is hard to fix.

We advocate another alternative, placing in the gen-
eral purpose computing system a language which is easy
for the educator to use. This is the solution which was
taken over ten years ago by mathematicians, when they
were faced with the prospeet of writing mathematicsin a
language which was designed for machine execution,
rather than for problem statement. The great success of
languages such as FORTRAN and ALGOL testifies to
the feasibility of the approach. In the next ten years an
educator’s language may also be needed.

What should the characteristics of such a language
be? By far the most important requirement is that the
language should be natural for the teacher. Its syntax
and semantics should conform to his writing habits.
Insofar as possible, and there are limits on this, the form
of the language should not be determined by the physi-
cal characteristics of the computer on which it will be
used.

Readability is a second requirement, It will often be
necessary for a person to understand a program he did
not write. The structure of the programming language
should be such that the basic plan of a program can be
communicated without forcing the reader to master the
intricacies of each line of code.

A judicious choice of a language can also ensure the

924 Fall Joint Computer Conference, 1968

availability of a computer. Any language which is not
tied to the physical characteristics of a computer re-
quires a translator. Pragmatically speaking, then, the
language is defined by the translator program. Thus
the educational language can be ‘“‘inherited” by any
machine for which its base language translator exists.
We are by no means the first to recognize the need for
an educator’s language. Several others have already
been developed. The best known are probably IBM’s
COURSEWRITER? and System. Development Cor-
- poration’s PLANIT.? These languages are admirably
suited for the particular computer configurations for
which they were developed. For a variety of reasons,
however, we believe that they fail to meet the criteria
we have listed. Our principal criticism is that they
either are too much influenced by the way a computer
wishes to receive commands, instead of the way a person
wishes to give them, or that they contain features which,
although quite useful in themselves, would not be avail-
able except in specially designed computing systems.

The WRITEACOURSE Language.

We have developed an educational language, called
WRITEACOURSE, which is consciously modeled after
the ALGOL arithmetic programming language,” which it
resembles in its syntactic structure. The basic unit of
discourse is the statement, corresponding roughly to an
English sentence. Statements are grouped into larger
units called lessons, and lessons into courses, similar to
‘the way a group of subroutines make up a program.
Statements are composed of instructions. In WRITEA-
COURSE there are only ten instructions. Physically,
they are English words, such as ADD and PRINT,
which have been chosen to have a meaning as close as
possible to their meaning in the natural language.

Limiting the commands of the language restricts us.
There are actions which can be executed by a computer,
but which are difficult to express in a restricted idiom.
The initial users of WRITEACOURSE have not found
this to be a great problem. They appear to be able to
say almost everything they want to say without exten-
sive training.

The WRITEACOURSE translation program has been
written entirely in the PL/I programming language,®
which we expect to be widely available in a few years.
We assume that the particular configuration has an
interactive computing capability, in which the user can
exchange messages with a program from a remote sta-
tion equipped with a typewriter or other keyboard de-
vice. By 1970 this sort of capability should be common
in universities, at a price well within the reach of a
modest research budget.

An earlier version of WRITEACOURSE* was de-
fined for the Burroughs B5500 computer only, using the

extended ALGOL provided for that machine.! Thus the
early version was not machine independent in the sense
that our present program is, although it would be a
fairly straightforward task to adopt it to some other
computer which had an ALGOL compiler. ,

Our approach should produce an easily maintained
system. This is a very important point. Undoubtedly
there will be errors in any system as eomplicated as a
programming language. Also, different users will want to
extend the language to suit their own purpose. Since the
translation program is written in a commonly available,
user oriented language, the educator will find that there
are many people who can understand and alter it. This
will be particularly true in universities, where Comput-
er Science departments and computer centers will
regularly offer undergraduate courses in PL/I program-
ming,.

A user’s view of the language.

The purpose of developing WRITEACOURSE was
to have a language which could be easily understood by
educators. We can test this now by presenting a frag-
ment of a WRITEACOURSE lesson. Hopefully it will
be readable with only a minimal explanation.

The following statements are taken from a frag-
ment of a WRITEACOURSE lesson. They appear
exactly as they would be typed by an instructor, with
the exception of the numbers in parentheses at the be-
ginning of each line. These have been introduced for
ease of reference in explaining the lesson.

(1) 20 PRINT “THE ANGLE OF INCIDENCE IS
EQUAL TO THE ANGLE OF ...”

(2) ACCEPT CHECK “REFLECTION” “RE-
FRACTION” IF 1 CHECKS THEN GO TO 5|

(3) IF 2 CHECKS THEN PRINT “NO, THE
ANGLE OF REFRACTION DEPENDS ON

(4) THETYPEOF LENS”|

(5) PRINT “TRY AGAIN” ACCEPT CHECK
REFLECTION” IF 0 CHECKS THEN

(6) PRINT “THE CORRECT ANSWER IS RE-
FLECTION”|

(7) 5 PRINT “HERE IS THE NEXT QUESTION"|

What would happen when a student executed this
lesson? The first statement (statement 20) to be exe- -
cuted is the statement beginning on line (1) and extend-
ing to the end of statement ma.rker(“l”) on line (2).
Statements always begin on a new line; otherwise, they
may be typed in any way convenient. Line (1) would
print the question THE ANGLE OF INCIDENCE IS
EQUAL TO THE ANGLE OF ... on the computer-
controlled typewriter. At line (2) the ACCEPT in-
struction would print an underscore (‘") on the next
line. This would be a signal to the student indicating

WRITEACOURSE 929

that an answer was expected. At this point the paper
in front of the student would look like this

THE ANGLE OF INCIDENCE IS EQUAL TO
THE ANGLE OF ...

The computer would then wait for the student, who
would type whatever he thought was an appropriate re-
ply, then strike the carriage return key of the typewriter,
indicating that he was through with his answer. The
program would ACCEPT this answer, and CHECK it
against indicated possible answers. Suppose the student
had typed

REFRACTION

The CHECK command on line (2) would match this
answer against the quoted statements “REFLEC-
TION” and“REFRACTION.” The quoted statements
are called check strings. In this case the answer would
be identical to the second check string, so we say that
“2 CHECKS.” At line (2), however, the question asked
is, “DOES 1 CHECK?” This would only be true if the
student had replied REFLECTION (the correct an-
swer), in which case control would have been transferred
to the statement named 5, at line (7) of the lesson,
which continues with a new question.

However, 1 did not check, so the next commands to be
executed are those on line (3), which begins a new, un-
named statement.’ Lines (3) and (4) are straightforward.
The computer asks if 2 CHECKS, which it does, since
the student’s reply was identical to the second check
string.8 Upon determining this, the computer types out
the correcting response given on lines (3) and (4).
Next the statement beginning on line (5) is executed.
This prints another line, urging the student to try
again, and an underscore (the ACCEPT of line (5))
telling him an answer is expected. The student will now
havein front of him

THE ANGLE OF INCIDENCE IS EQUAL TO

THE ANGLEOF ... REFRACTION

NO, THE ANGLE OF REFRACTION DEPENDS
ON THE TYPE OF LENS

TRY AGAIN

Assume that he replies correctly, printing REFLEC-
TION. This will be read by the ACCEPT statement in
line (5) and the immediately following CHECK state-
ment will determine that 1 CHECKS is true. IF O
CHECKS tests to see if nothing checked, i.e., O
CHECKS is true if the student’s answer does not match
any of the check strings. In this case, the condition O
CHECKS would be true for any answer other than
REFLECTION. Looking at the final three lines of the
conversation, we have

TRY AGAIN
REFLECTION

'HERE IS THE NEXT QUESTION

But suppose that the student had not been so bright.
The final lines could have read

TRY AGAIN

WHO KNOWS?

THE CORRECT ANSWER IS REFLECTION
HERE IS THE NEXT QUESTION

M ore sophisticated programming

The example just given was very simple. Using the
computer’s capabilities more fully, WRITEACOURSE
makes possible the specification of a much more com-
plex branching sequence. There is also a limited arith-
metical capability. A set of counters (temporary vari-
ables) are provided to keep track of intermediate re-
sults. Counters can be used either to do arithmetic or to
record the number of times a student takes a particu-
lar path through a course. This turns out to be a power-
ful device. We will give a few examples.”

Counters are named by preceding a number with the
symbol “@.” Thus @10 means ‘‘counter 10.” Three
commands are defined for counters, SET (counter num-
ber) TO (value), ADD (value) TO (counter number,
and SUBTRACT (value) FROM (counter number).
They have the obvious meaning.

SET @10to 0
establishes 0 as the value of counter 10, while
ADD5TO @10

sets the value of counter 10 to 5 plus its original value.
It takes little imagination to see that the counters can
be used to keep scores on a student’s responses, through
the device exemplified by

IF 1 CHECKS THEN ADD 1TO @7.

The value of a counter may also be printed. To do this
the name of the counter is included in & PRINT com-
mand. When the command is executed, its current value
will be printed. The statement

SET @8 TO 5 PRINT “THE VALUE OF 8 IS@8”
will print
THE VALUE OF 8 IS 5.

The content of a counter is a value, so arithmetic can
be done on counters. ADD @2 TO @3 would set the
value of counter 3 to the original value of counter 2
plus the value of counter 3. ‘

There are actually three groups of counters. Counters

926 Fall Joint Computer Conference, 1968

50-99 are lesson counters, their values are carried over
from one use of a WRITEACOURSE lesson to another.
There are several reasons for doing this. For instance, a
counter can be used to keep track of the number of stu-
dents executing a lesson, or the number of students who
miss a particular question. Counters 1 to 49 are the
temporary counters. They are set to zero when a student
first signs in for a session with the computer. They are
retained for that student, however, for the duration of
the session even if he switches WRITEACOURSE les-
sons. Finally, Counter O is a special counter set by the
computer’s internal clock. It can be used to time a stu-
dent’s responses.

A set of Boolean IT statements are provided to check
the value of a counter against another counter, or some
constant value. The command IF @4 = 7THEN GO
TO 6 will cause a transfer to statement 6 only if counter
4 contains 7. The normal arithmetical relations of
equality and ordered inequality are permitted.

Counter numbers may also be used for a computed
GO TO. GO TO @2 is an instruction to go to the state-
ment whose number is contained in counter 2. Of
course, the instructor who writes this command must
insure that counter 2 will contain the name of a state-
ment whenever this command is executed.

Let us look at an example which uses some of these
more complex commands.

(1) SET @54, @41 TO O PRINT “WHAT DIS-
COVERY

(2) LEAD TO LASERS?”|

(38) 3 ACCEPT CHECK “MASER” “QUASER”

(4) “CANDLES” IF 1 CHECKS THEN GO TO 6|

(5 ADD1TO @41 IF O CHECKS THEN GO TO

40

(6) IF2 |CHECKS THEN PRINT “THAT IS IN
ASTRONOMY.”

(1) GOTO40| ’

(8) IF 3 CHECKS THEN PRINT “DO NOT BE
SILLY.” |

(9) 40 IF @41 < 3 THEN PRINT “TRY AGAIN”
GOTO3|

(10) ADD 1 TO @54 PRINT “THE ANSWER IS
MASER.” |

(11) 6 PRINT “HERE IS THENEXT QUESTION"|

the following exchahge might take place between the
student and computer.

WHAT DISCOVERY LEAD TO LASERS?
QUASBER

THAT ISIN ASTRONOMY.

TRY AGAIN

MASER

HEREIS THE NEXT QUESTION.

The first statement sets counters 54 and 41 to zero,
then prints the basic question. Statement number 3
through statement number 40 establish a loop, which
checks the student’s answer for the correct answer or
two anticipated wrong answers, prints an appropriate
message for a wrong answer, then gives the student
another chance. If the correct answer is detected (if 1
CHECKS in line (4)), the loop is broken by a transfer to
statement 6. If a wrong answer is detected, the question
isreasked. Counter 41 is used to keep track of the num-
ber of wrong answers. If three wrong answers are given,
the correct answer is printed, and the program con-
tinues on. If this alternative occurs, however, the value
of counter 54 is incremented by 1. Recall that counter
54 is one of the lesson counters, i.e., its value carries
over from one user of the lesson to another. At some
later time, then, an instructor could interrogate the les-
son to see how many students had failed to answer this
question in three or fewer tries.

Lessons and courses

Statements are grouped into lessons, and lessons into
courses. Roughly, a lesson can be thought of as the num-
ber of WRITEACOURSE statements needed to carry
on the computer’s part of a computer-student inter-
action lasting about half an hour. Another important
functional distinction is that a lesson is the WRITEA-
COURSE unit to which counters are attached. Thus if
@54 appears in two different statements in the same
lesson, it refers to the same counter. If the two state-
mentsareindifferent lessons, they referto different coun-
ters. Note that this is not true for temporary counters,
since they remain attached to a student for the duration
a student-computer conversation. Thus if it is antici-
pated that a student will use more than one lesson dur-
ing a single session, the results accumulated while the
first lesson is active may be communicated to the second
lesson via the temporary counters.

Lessons themselves are grouped into courses. Fune-
tionally, the chief distinetion of a course is that it is pos-

sible to activate one lesson from within another, pro-

viding that the two lessons are in the same course. Sup-
pose a student signs in, with the intention of taking a
course in Romance Literature. He would begin by indi-
cating that he wanted to work on the first lesson of this
course. He would do this by replying, in response to a
computer question, that he wished to work on LES-
SON1/LIT 47. LIT47 is assumed to be a course name,
and LESSONI1 a lesson of the course. Let us suppose
that this lesson is going to discuss the novel Don Quijote.
The instructor might want to check to make sure the
student knew enough Spanish to understand some of
phrases. This can be accomplished by the following
statement.

WRITEACOURSE 927

(1) 1 PRINT “DO YOU WISH TO REVIEW
SPANISH?”

2) ACCEPT CHECK “YES” IF 1 CHECKS
THEN CALLSPREVUE/LIT47 |

If the last command on the second line is activated, it
will suspend the current lesson now active (LESSON1/
LIT47), and load the lesson SPREVUE/LIT47. Both
lessons must be in the same course. Upon completion of
SPREVUE/LIT47, control would be returned to the
statement in LESSON1/LIT47 immediately after
line (2).

The command LINK (lesson name) / (course name)
will also change a student from one lesson to another
within the same course. In this case, however, there is
no automatic return to the calling lesson after the called
lesson is completed. The normal use of LINK is to
string together several lessons which the instructor
wishes to have executed in sequence.

Using WRITEACOURSE -

The steps in using WRITEACOURSE will now be
described. The steps a student must go through to ini-
tiate a lesson have been kept to a minimum. He types
XEQ and then supplies the lesson name and course
name when requested. After a lesson is over, he may
type XEQ and go through another lesson, or type
STOP to terminate the session.

When an instructor constructs a lesson, the process
is necessarily more involved. After calling the system
the instructor sends the message /// COMPILE indi-
cating a course is to be established or modified. (In
general, the symbols “///” precede compiler com-
mands.) If a new course is to be written, the order is
sent.

///PROGRAM NEW lesson/course

The translator will then be ready to accept the lesson.
Each statement is checked for syntax errors as it is
received. If there is no error, the next statement is re-
quested. Whenever an error is detected, a message is
printed indicating where it occurred. After determining
the corrected form, the instructor re-enters the state-
ment, from the point of the error to the end. When the
instructor wishes to stop working on the lesson, he types
///END. The lesson will be automatically stored in the
computing system’s files. If the instructor desires, he
may order a check for undefined statement numbers ref-
erenced by GO TO instructions before the lesson is re-
corded.

The instructor may modify existing lessons or obtain
a listing of lessons, using the commands ///ADD,
///DELETE and ///LIST.

System implementation.

WRITEACOURSE has been tested on an IBM
360/50 with a remote 2741 terminal. The translator
was written in the RUSHA4 subset of PL/I, provided by
Allen-Babcock Computing (8). The only non-standard
PL/I used is the timer function. WRITEACOURSE
lessons are incrementally compiled into a decimal inte-
ger code, which is stored in a data file. The storage file
for each course consists of 64 tracks of fixed format data
with a block size of 252 bytes. The internal code is
edited whenever a teacher makes a modification. The
execution program interprets this code to produce the
sequence of events planned by the instructor. The first
block of code in a course contains the names and loca-
tions of the lessons in it. Each lesson occupies 38 blocks
of the file, and is divided into five parts.

1. The instruction table, which contains the compiled
decimal code with approximately one code word
for each instruction in the lesson.

2. The statement number table, which contains the
statement numbers with a pointer to the corre-
sponding instructions.

3. The counters attached to the lesson.

4. The print tables, which contain all of the strings
to be printed.

5. The print table index, which contains a pointer t->
the location of each string. '

Since the source code is not saved, the compiled code
must be used whenever the lesson is changed. To obtain
a listing of the lesson, the code is interpreted, as if it
were to be executed, and the source code is recon-
structed. When a section of a lesson is deleted, the in-
struction table and the statement number table are
closed up to eliminate the desired portion. The strings
in the print tables are marked inactive, for later garbage
collection. Code is added to a lesson by opening a hole
in the instruction table and statement number table of
the proper length, and then inserting the compiled code. .
New print strings are added to the end of the print
tables.

A pointer is kept in each table to indicate the last
entry in the table, so that new code can be added to the
end of a lesson. Source code is input to the compiler one
statement at a time. The compiler analyzes the state-
ment instruction by instruction. If it detects any errors
it requests that the user re-input the statement from the
instruction containing the error to the end.

WRITEACOURSE is broken into several programs
in order to fit within the limited computer space avail-
able in a time-shared system. The programs operate as
overlay segments, with PL/I external variables used to
communicate between them. The modular structure of

928 Fall Joint Computer Conference, 1968

WRITEACOURSE should facilitate system additions
or modifications. Figure 1 shows the basic overlay struc-
ture. The functions of each program are indicated in
the figure.

START

/ initialize \
. >
7

/N

COMMON EXMON
(COMpilation MONitor) (/’ (EXecution MONitor)
Handle file , STORAGE Set up lessons for
operations c°:z::"' execution
and lesson for and handle
modifications lessons £{le operations
AN
]: _ 4
COMPIL - EXECUT
Accept lesson Interpret the
statements from user internal code and
check syntax, and handle student
produce internal cods) responses
FIGURE 1
Status

The earlier ALGOL version of WRITEACOURSE has
been successfully used by people with little program-
ming experience. Although the current version, at the
time of this writing, has not yet been put into general
use, the programming is completed. A limited number
of manuals describing the language details and use of
the system are available from the Department of
Psychology (Cognitive Capabilities Project), the
University of Washington. Listings of the translator
and manuals will be provided upon request and at cost.

REFERENCES

1 Burroughs B56600 information processing systems extended Algol
language manual
Burroughs Corporation 1966

2 SLFEINGOLD CHPFRYE
User’s guide to PLANIT
System Development Corporation 1966
3 J FELDMAN DGRIES
Translator writing systems
Comm ACM Vol 11 Feb 1968
4 SHENDRICKSON E HUNT
The WRITEACOURSE language programming manual
Department of Psychology University of Washington 1967
5 IBM 1500 operating system compuler-assisied instruction
coursewriter 11
Form CAI-4036-1 IBM
6 IBM operating system /360 PL/I: language spectﬁmtwns
Form C28-6571-2 IBM 1966
7 P NAUR (Editor)
Revised report on the algorithmic language Algol 60
Comm ACM Vol 6 pp 1-17 Jan 1963
8 RUSH terminal user’s manual
Allen-Babeock Computing Inc 1966

FOOTNOTES

1. This research was supported by the Air Force Office of
Scientific Research, Office of Aerospace Research, United
States Air Force, under AFOSR Grant No. AF-AFOSR-
1311-67. Distribution of this document; is unlimited.

2. We wish to express our thanks to Sidney Hendrickson for
his comments and work on an earlier version of the language.
3. There is an unfortunate ambiguity in the word ‘“program”,
sinee it is used by educators to mean a sequence of interchanges
between student and teacher, and by computer scientists to
mean the sequence of commands issued to a computer. We shall
use “lesson” when we mean “sequence of educational steps”
and “program” when we mean “sequence of commands to
be executed by a digital computer.”

4. At this point the mind of people not familiar with modern
computer technology tends to swim. It is possible to carry
this process even further (3).

5. The statement had to end at line (2) because of the IF..
THEN command. The general rule is that when a question of
the form IF condition THEN is asked, the commands between
the word THEN and the next | are executed only if the condition
is true. If it is false, as it is in this case, the command immediate-
ly following the |, ie., the first command of the next statement,
is executed.

6. More complicated matches are possible, which do not re-
quire exact identity. For instance, it is possible to ask if a
check string is included anywhere in an answer, so that, in
this case 2 would check if the answer had been IT IS REFRAC-
TION.

7. A manual describing the language in detail is available.

A table driven complier for use with automatic test

equipment

hy ROLAND L. MATTISON and ROBERT T. MITCHELL

Radio Corporation of America
Burlington, Massachusetts

INTRODUCTION

When generating compilers for use with auto-
matic test equipment (ATE), a substantial need
ariges for flexibility in both the source and object
languages. Flexibility is desirable for two rea-
sons: (1) The field of ATE construction is rapidly
expanding’ and (2) the hardware and support
software design, development, and debug cycles
are often going on simultaneously. In earlier, more
standard compilers, the modifications and/or ex-
tensions of either language could easily create
chaos for the systems programmer.

In an attempt to facilitate compiler implementa-
tion and growth, a table driven system, the Uni-
versal Test Equipment Compiler (UTEC), has
been developed. As in other table driven sys-
tems,? the function of defining a source language
has been dissociated from the actual translation
mechanism. The source language is specified to
the generator which creates a set of tables for sub-
sequent use by the translator. A dual-purpose
meta-language has been created for use in the
gsystem. This language is used to specify the syn-
tax of a particular source language and the mean-
ing to be imparted to the various allowable con-
structs of that language.

A typical ATE system consists of various pro-
grammable devices for applying stimuli to, and
obtaining measurements from, the unit under test
(UUT) .2

A requirement peculiar to ATE compilers is the
creation of a wire list specifying connections be-
tween the ATE and the UUT. An equipment
designator has been included in the system to
handle the wire list and to insure that the wire
list remains fixed despite source program recom-

pilations. This is necessary due to the cost in-
curred in the production of this wiring,

The wide range of computers currently used in
ATE dictates that the output of UTEC be a sym-
holically addressed code which must then proceed
through the second pass of a normal two pass as-
sembler. Since this reduced assembler could be
different for each type of ATE, it will be excluded
from the following discussion.

The flow of information through the UTEC sys-
tem is depicted in Figure 1. The source language
specifications and translation logic are defined to
UTEC using the meta-language and are fed into
the generator. From this, the generator produces
translation tables for use by the translator. The
generator also accepts the ATE hardware con-
figuration and produces equipment tables for the
equipment designator. When a source program is
input to UTEC for translation, the translator uses
the translation tables and outputs an intermediate
code ready for assembly. Whenever ATE equip-

EQUIPMENT SPECIFIATION 7~ | EQUIPMENT TABLES

[] :! GEN ,
LANGUAGE DEFINITION TRANSLATION TABLES
it i

EQUIPMENT
- REQUESTS .

INTERMEDIATE
CODE

EQUIPMENT
ASSIGNMENTS

ASSEMBLER

ATE MACHINE CODE
(PAPER TAPE, CARDS, MAG. TAPE)

FIGURE 1—System flow block diagram

929

930 Fall Joint Computer Conference, 1968

ment must be specified by the translator, it inserts
a symbolic into the intermediate code, and requests
the required equipment from an available equip-
ment pool in the equipment tables. The request is
tied to the intermediate code by the symbolic. The
equipment designator now processes the equip-
ment requests and, using the equipment tables,
produces equipment assignments for each symbolic
in the form of a symbol table.

The META-language

We now present a language, SYNSEM, (SYN-
tax and SEMantics) for explicitly defining a prob-
lem oriented language (POL).* SYNSEM itself
is a twofold problem oriented language which (1)
specifies the syntax of the POL’s and (2) specifies
the semantics of the allowable constructs in a
POL. SYNSEM is therefore divided into two sub-
languages: SYN for specifying syntax, and SEM
for specifying semantics.

Problem oriented languages currently in use
with ATE are tabular in format. The reason for
this, and examples of such languages have been
previously presented,”” and, therefore, will not
be considered here. Let it suffice to say that fixed
fields are generally adhered to, with one field set
aside for the function or verb and the remaining
fields for modifiers of various types. Each verb-
modifier complex is referred to as a source state-
ment.

The goal of SYN is to allow format-syntax type
information to be specified for each verb of the
POL. This information is encoded into a table by
the generator and will be used by the translator
whenever the verb is used in a source program.

SYN is comprised of various disjoint subsets of
any commonly used character set. Three of the
subsets are given below:

NUMBERS = {A, B,C, D,E, F, G, H,1, M, X, 0,}
LETTERS = {P, Q; R’ Uv V’ W’ Y}
MAIN UNITS = {K}

To specify a numeric modifier, a letter is chosen
from NUMBERS and repeated so that the number
of times the letter appears equals the maximum
number of digits the modifier may contain. Alpha-
betic modifiers are handled in a similar way by
choosing from LETTERS.

If desired, a MAIN UNITS modifier may be
used with any verb. When the letter K is recog-

nized by the generator, the 4 characters immedi-
ately following the K are taken as the MAIN
UNITS and entered into a dictionmary with the
verb. MAIN UNITS are used to further dis-
tinguish the verb when more than one source
statement uses the same verb.

As an example, consider the following SYN
statement to specify the verb CONNECT with the
modifier VDC:

CONNECT AAA KVDC BBB PPPP

The modifiers may be 2 numeric (A and B), 1
alphabetic (P), and the MAIN UNITS for this
form of CONNECT is VDC.

Once SYN has been used to specify a given verb,
a SEM “program” is written, later to be executed
by the translator, which analyzes the verb-modi-
fier relationship and generates the desired inter-
mediate code for the source statement. The SEM
language is composed of a number of semantic in-
structions, some of which are described below. A
maximum of 750 such instructions can be used
in any one SEM program. A statement in SEM
consists of a semantic instruction followed by its
possible modifiers. A three digit label is optional
for all statements. A three digit branch is re-
quired with some instructions and optional with
others. If a branch is given on optional instruc-
tions, it is considered unconditional.
instructions are divided into three categories: (1)
Code producing, (2) Modifier handling and (3) .-
Control.

CODE, CVAR, CALPHA, and CSIGN are four
of the code generating instructions. CODE tells
the translator to output the characters which are
literally specified with the CODE instruction.

CODE 3 PS1

will cause the three characters “PS1” to appear
in the intermediate code. CVAR, CSIGN, and
CALPHA each are used with an identifier which
the translator references to find the data to be
output. The identifiers with CVAR and CSIGN
must be numeric.

CSIGN NUM1

will generate a + or — depending on the sign of
NUM1

CVAR NUM1 4 2
will cause the value of NUM1 to be coded using

The SEM

Table Driven Computer 031

four characters with two implied decimal places.
If NUM1=46.913, the characters 4691 will be
coded.

CALPHA W1 3

will cause the three leftmost characters of W1
to be coded.

TEST, RANGE, and the four arithmetic opera-
tors ADD, SUB, MUL, and DIV are some of the
modifier handling SEM instructions. TEST causes
the translator to compare a referenced quantity
with a group of characters specified following the
instruction. RANGE causes a check of a refer-
enced quantity to see if it is numerically between
two limits. Execution of either a TEST or RANGE
instruction by the translator can cause a branch
in program flow to a labeled SEM statement if the
comparison fails.

TEST A 3 AMP 40

causes a comparison of the three leftmost char-
acters of A with the three characters AMP,

RANGE B 20.0 30.0 40

causes a comparison of B to see if 20.0<B < 30.0.
If the above comparisons are satisfied, the trans-
lator executes the next sequential instruction:
otherwise, statement 40 will be processed next.

JUMP, SCWL, ROUTINE and EQUI are each
SEM control instructions. JUMP is used with a
SEM statement label and causes an unconditional
transfer by the translator to the labeled state-
ment. SCWL informs the translator that all of the
intermediate code generated for a particular
source statement must be saved with a label for
future use. The SEM language is provided with
a subroutine capability through the ROUTINE in-
struction. ROUTINE may be followed by a param-
eter list of from one to seven -dummy param-
eters. The CALL instruction, followed by the
actual parameters, is used to invoke a SEM sub-
routine. The EQUTI instruction is used to cause
the translator to generate a symbolic equipment
request for the equipment designator. Its modi-
fiers must be a unique symbolic, which will be
placed in the intermediate code by the ECODE
instruction, a type number referencing a particu-
lar pool of equipment, and a set of “connections”
to which a specific piece of equipment from that
pool should be wired.

A control card called REQUIRED is. used be-
tween the two parts of the SYNSEM language

and lists all required modifiers in the SYN portion.

The following example shows the combined use
of the SYN and SEM languages to specify the
verb CONNECT modified by VDC.

CONNECT AAAA KvDC JC JD
REQUIRED AC
NEWN UN1
CODE 1 S
RANGE A 0 50 10
EQUI 5 UN1 C D
ECODE UN1
CVAR A 4 2 20
10 RANGE A 51 120 30
EQUI 6 UN1 C D
ECODE UN1
CVAR . A 5 2
20 CODE L2 ES . 40
30 ERROR A OUT OF RANGE
40 END

The above program is suitable for input to the
generator which would create the necessary table
entries for later use by the translator after it sees
the CONNECT VDC verb in a source program.
For example, suppose the statement

CONNECT 4.2 VDC J14 J3-5

was processed by the translator. The code pro-
duced by the previous definition would be

S;00005 ;0420ES

EQUIPMENT
SYMBOLIC

which would cause the ATE to connect 4.2 volts
of direct current between points J1-4 and J3-5.
The equipment symbolic number 00005 was pro-
duced by the SEM instruction NEWN.

In a compiler for use with ATE, there is an-
other function of the meta-language, other than
defining source statement syntax and semantics.
It is to specify equipment available in any ATE
configuration. This is done in UTEC by the two
instructions, SYMBOL and DATA.

All equipment is divided into types, e.g., power
supplies, signal generators, voltmeters, and each
type is given a number to identify it. One SYM-
BOL instruction and as many DATA instructions
as there are pieces of equipment in a type are
uvsed to define that type.. The SYMBOL instruc-
tion tells how many pieces of equipment in the
type, how many connection terminals each has,
and the total table area required to store requests

032 Fall Joint Computer Conference, 1968

for this type. Each DATA instruction gives an
equipment name and the ATE connection termi-
nals for it.

When a new POL or a modification to an exist-
ing POL is defined to UTEC by means of SYN-
SEM, the syntax of the language and its seman-
tics are stored into tables by the generator. Since
ease of language modification is a requirement,
three tables have been implemented as linked
lists.* The format list is used to hold the syntax

gpecification for each verb in the language. The -

logic list is used to hold one entry for each SEM
instruction specified in a verb definition. The logic
modifier list holds SEM instruction modifiers
which are not suitable for entry in the logic list.
A dictionary is also used which contains the name
of each function defined by SYNSEM as well as
various pointers to the lists. Since UTEC is de-
signed to handle POL’s for automatic test equip-
ment, it automatically controls the assignment of
equipment and produces wire lists. A pair of
equipment tables, the hardware name table and
hardware usage table, are built by the generator
to aid in these tasks.

The generator

The generator division of UTEC accepts the
definitions of verb syntax and semantics written
in the SYNSEM language, and assembles this in-
formation into all the necessary tables and lists.
It also has the ability to delete and equate verbs
in the lists, and to build the equipment tables. The
generator is used whenever a DEFINE, EQUATE,
DELETE, or EQUIPMENT control card is en-
countered and is divided into four corresponding
sections as follows:

Define: Following the DEFINE control card,
the SYNSEM language is used to define verbs.
First the syntax of a verb is given using the SYN
language. The verb is placed into the dictionary.
The syntax specification is analyzed character by
character, determining the type of each argument
encountered. It counts the number of characters
or uses a standard count allowed in each argument,
and thus builds the format list. It also enters the
symbolic character of each argument along with
its format list position into an argument table for
later reference by the REQUIRED control card
and SEM language instructions. At the comple-

tion of analyzing the syntax, the argument table
contains the one letter symbolic of each argument,
in the order in which they will appear in the
source statements. The REQUIRED control card
containing the one letter symbolic of each required
argument follows the SYN syntax specification.
Each argument is found in the argument table
and its format list position obtained. The format
list is thus modified to indicate which arguments
in the syntax are required with each usage of the
verb. After the REQUIRED control card is pro-
cessed, the generator must load the SEM pro-
gram, which gives the semantics of the verb, into
the logic and logic modifier lists. There are four-
teen different formats for the thirty-six SEM in-
structions. There are fourteen corresponding rou-
tines in the generator to handle the building of the
lists. For each instruction, the correct routine is
called to set up the list entries. When a modifier
of a verb is referenced by an instruction, the one
character symbolic of the SYN language is given
as a modifier to the SEM instruction. This char-
acter is looked up in the argument table and its
integer position number is used for the logic list
entry. (When a source statement is parsed by the
translator, each argument is loaded into a table
at the same position as is used for containing its
SYN symbolic character in the generator.) Vari-
ables may be established in the SEM language by
a symbolic name. This symbolic name is placed
into the argument table after the symbolic SYN
modifier characters, thus establishing a location
for numeric reference in the logic lists entries and
for storage use by the translator. The argument
table provides storage only within a single defini-
tion, in that each new source statement starts
using this table at its top, destroying symbolic
names from previous source statements. The SEM
instructions SX and TX provide storage locations
for use throughout an entire source program com-
pilation. A table exactly like the argument table
is used, except that the location symbolic name is
never destroyed, thus giving each definition access
to the same location and providing for exchange
of information between definitions. If a SEM in-
struction requires alphanumeric information, or
if one entry in the logic list is not sufficient to con-
tain all the necesary data for the instruction, a
pointer to the logic modifier list is placed in the
logic list entry, and as much space as necessary
is used in the logic modifier list. A two digit op

Table Driven Computer 933

code (1-36), for access by the translator; and a
brance and link address, are always in a standard
location in each logic list entry.

Equate: Many verbs in a particular POL de-
veloped for use with automatic test equipment
are similar in syntax and semantics. For example,
the source statement for connecting a stimulus to
deliver volts is very similar to the statement for
connecting kilo-volts or milli-volts. The equate
section of the generator was therefore developed
whereby two or more verbs may share the same
definition, and therefore the same list area. The
name of the verb to be equated is placed in the
dictionary and all the pointers associated with the
equated verb are used with the new one, thereby
using the same definition. In order that the small
differences of the two verbs can be taken into ac-
count, the CHFLG SEM instruction must be used
in the original definition. This instruction requires
two indicators which are stored in the dictionary.
A definition always sets them to zero, but they may
be set to any desired value by the language de-
signer using the EQUATE option. The CHFLG
op code can test the value of these indicators and
thereby set up branching logic in the SEM lan-
guage program to control the translation,

Delete: The generator section of UTEC main-
tains a list of available cells to which the DEFINE
section looks as it makes the various list entries
for a given definition. The purpose of the DE-
LETE section is to remove previously defined
verbs from the dictionary and to restore their
various list entries to the list of available cells.
This is done by changing the link at the bottom of
the list of available cells to point to the top of the
list entry for the deleted verb. This makes the
last list entry for the deleted verb the bottom cell
on the list of available cells.

Equipment: In this section, the generator builds
the hardware name table and allocates area in the
hardware usage table, both of which are used by
the equipment designator. All equipment of each
type which the system has available is defined in
the SYNSEM language by the SYMBOL and
DATA instructions. The generator calculates the
area required in each table section, and sets up
the pointers in the hardware name table and hard-
ware usage table. The DATA cards contain the
name of one piece of equipment along with its

terminal connections in the allocated positions in
the hardware name table.

Translator

The analysis and translation of source programs
and the subsequent output of intermediate code is
handled by the translator.

When analyzing a source statement, the verb is
first checked against the list of defined verbs in
the dictionary. When a match occurs, an attempt
is made to verify any main units allowed with the
verb. Once a verb and main units match is made,
the associated dictionary entries are used as refer-
ences to the format and the logic lists where in-
formation specified by the SYNSEM program for
this source statement has been stored by the gen-
erator. -

Using the format list as a guide, the translator
parses each source statement and creates an argu-
ment table as it goes. A left to right scan of the
source statement is initiated looking for a modifier
of the type specified in the first format list entry.
If the modifier is found, it is placed in the first
position of the argument table. The scan continues
looking for the next modifier as called for in the
next format list entry and places it"in the next
#vailable argument table position. An error con-
dition exists if the scan fails to verify a modifier,
unless that modifier is not required in which case
a dash is placed in the argument table in the next
position. The scan finishes when the entire format
list for this verb has been considered and an argu-
ment table entry is present for each item in the
list. Once the format scan has been completed, the
translator turns its attention to the logic list
where the algorithm for generating intermediate
code has been stored for this source statement.
Each entry in the logic list is a numeric represen-
tation of one of the SEM instructions. A two digit
op code is extracted from each entry which identi-
fies the particular SEM instruction requested.
Once the instruction is known, the translator is
able to completely dissect the logic list and modi-
fier list entries for this instruction and perform
the desired operation. All references by the in-
struction to the verb modifiers are made by simply
referencing the argument table position for that
modifier, as the parsing algorithm already has
inserted the modifiers in the table. As an example,
consider the following SYNSEM specification:

934 Fall Joint Computer Conference, 1968

CONN AAA KVDC

.

JC JD

RANGE A 10.0 20.0 100

The generator creates the argument table as
shown in Figure 2.

BN
gaRp»

FIGURE 2—Argument table of generator

Since the character A is in position 1, this posi-
tion number is used in the logic list when the
RANGE instruction is processed by the generator.
When the source statement:

CONN 14.6 VDC J101-42 J16-33
is parsed by the translator, the argument table is
filled as shown in Figure 3.

1 14.6

2 VDC

3 J101-42
4 J16-33

FIGURE 3—Argument table of translator

When the translator discovers the RANGE in-
struction number in the logic list, it decodes a
reference to position one in the argument table for
the number it is to test. In the example, the num-
ber 14.6 is checked to determine if it is between
10.0 and 20.0. ‘ ~

Each logic list entry provides the translator
with the position of the next instruction to be con-
sidered, or in the case of conditional instructions,
the translator must pick the next instruction from
two or three choices after it performs the current
instruction. C

The translator continues through the logic list
until the END op code is discovered, at which time
it has completed its analysis and code generation
for the source statement under consideration. The
next statement is read and the entire process re-
peats. When the translator reads the END verb
it turns the intermediate code generated for the
program over to the assembler for final object
code production.

Equipment designator

Each time the translator processes a source
statement which requires the use of ATE equip-
ment, an entry on a tape is generated by means of
the SEM instructions EQUI or PREAS. This tape
is called the request tape. The translator itself
has no ability to select equipment from the avail-
able equipment pool in order to satisfy the needs of
the source statement. The SEM language program
used to translate these source statements requir-
ing equipment first generates a unique symbolic
number which will be used by it to symbolically
refer to an equipment name in the intermediate
code it produces. It then determines the type of
equipment required by the source statement and
generates the request tape entry. Each such en-
try generated tells the type of equipment desired
and the symbolic number used to identify it, and
tells how the terminals of that equipment should
be connected. In the case when a specific piece of
equipment must be used in a particular manner,
the translator also processes an equipment pre-
assignment by producing a request tape entry
which gives the specific name of a device and tells
how it is to be connected.

The function of the equipment designator is to
read and process the entries on the request tape
produced by the translator, It attempts to match
an equipment name of the correct type to each
symbolic number and produce information de-
scribing how each piece of equipment is to be con-
nected. In the assembly of the intermediate code,
each symbolic number is replaced by the matching
equipment name as provided by the equipment
designator.

The equipment designator operates using two
tables: the hardware name table and the hardware
usage table. The hardware usage table is divided
into two sections for each equipment type: the
hardware assignment section and the hardware
request section.

" The hardware assignment section for each
equipment type contains one assignment indicator
and one row for each piece of equipment of that
type. The indicator gives the status of the equip-
ment while the row contains references to the con-
nections made to this equipment.

The hardware request section for each equip-
ment type can contain a number of requests for
equipment of that type. Each request section en-
try is made up of an indicator and row like those

Table Driven Computer 935

in the assignment section, plus a half-word which
is used to hold the unique symbolic number for the
request. The number of entries allowed in the re-
quest section for a particular type of equipment is
specified in the SYNSEM equipment definition,

The requests processed by the designator fall
into two classes: (1) Those which name specific
pieces of equipment, and (2) Those which sym-
bolically seek an assignment of any piece of equip-
ment of a specified type. When fulfilling requests,
two passes are made over the request tape with
the items in classes one and two being handled on
passes one and two respectively.

On pass one, the designator simply reads the
requests, and in the hardware assignment section,
sets the indicator for the named piece of equip-
ment and fills the rows with the connection refer-
ences. Before the first pass, all indicators reflect
an equipment available status. After pass one,

the indicators of the equipment named in pass

one are set to indicate one of two states: (1) Hard
preassigned-specified equipment may only be used
as stated. (2) Update preassigned-specified
equipment should be used as stated if possible, but
may be used differently if needed. This preassign-
ment is automatically generated at the end of each
compilation for each piece of equipment used. It
then is submitted on the following run to insure
that the same wire connections will be generated
whenever possible, even when changes are made
in a source program.

On pass two, the designator tries to assign one
piece of equipment to each symbolic request. In
addition, it creates the matching list to be used
by the assembler when processing the symbolic
references in the intermediate code.

Each request causes a scan of the hardware as-
signment section for the type of equipment re-
quested. If the connections of the request match
those of a piece of equipment already used, the
request is matched with that equipment. If the
connections of the request do not match those of
any already used, a new piece is assigned to match
this request. If all the equipment of the type re-
quested has been used, the request is put into the
hardware request section and saved. When the
entire request tape has been read in pass two, the
designator is finished unless some unfulfilled re-
quests. remain in the request section. If unfulfilled
requests do exist, the designator scans the assign-
ment section for all equipment which was update

rreassigned but not used in this compilation, It
resets the indicators of these equipments to re-
fiect an available status. An attempt is then made
to assign the unfulfilled requests to the equipment
made available. If the request still cannot be satis-
fied, it remains in the hardware request section.
Finally, a wire connection list is produced from
the hardware assignment section giving all the
equipment used in the compilation and how it is to
be connected. How the equipment was used in re-
lation to a possible previous compilation is also
stated. Error conditions are produced based on en-
tries remaining in the hardware request section.
New update preassignments are also generated
for use if the program is to be changed and re-
compiled, so that a similar wire list can be pro-
duced.

CONCLUSION

At this time, UTEC has been completely written
and checked out using FORTRAN IV, and a lan-
guage developed for use with one type of auto-
matic test equipment (LCSS) currently being
produced by RCA has been implemented using
UTEC.

The implementation of another language for a
second type equipment is being considered at this
time.

It is interesting to note that after having defined
the language to UTEC, the users could evaluate
the quality of the language and its usefulness, and
suggest changes and improvements.

These changes were easily incorporated into the
language almost daily during a shakedown period,
thus allowing them to be tested within days after
they were conceived. The overall effect was to
gstimulate ideas for improvement. Thus, a much
more effective language than that originally speci-
fied was developed.

REFERENCES

1 BJEVANZIA
Automatic test equipment: a million dollar screwdriver
Electronies August 23 1965
2 PZINGERMAN
A syntazx-oriented translator
Academic Press 1966 ch 1 pp 13-19
3 VMAYPER
Programming for automated checkout—Part T
Datamation April 1965 Vol 11 No 4 pp 28-32
4 VMAYPER
Programming for antomated checkort Part—IT
Datamation May 1965 Vol 11 No 5 pp 4246

936 Fall Joint Computer Conference, 1968

5 BLRYLE Proc ACM 19th Natl Conf August 1964 Phila Pa

The atoll checkout language 7 BHSCHEFF

Datamation April 1965 Vol II No 4 pp 33-35 Stmple user oriented compiler source language for programming
6 MV WILKES : ‘automatic test equipment

Lists and why they are useful Communication of the ACM April 1966 pp 258-266

On the basis for ELF—An extensible

language facility*

by T.E. CHEATHAM, JR., A. FISCHER and P. JORRAND

Computer Associates, Inc.
Wakefield, Massachusetts

INTRODUCTION

There are two basic premises which underlie the
development of ELF. The first of these is that there
exists a need for a wide variety of programming lan-
‘guages; indeed, our progress in the understanding and
application of computers will demand an ever widen-
ing variety of languages. There are, in fact, ‘‘scientific”
problems, “data processing” problems, “‘information
retrieval’” problems, “symbol manipulation’ problems,
“text handling”’ problems, and so on. From the point of
view of a eomputer user who is working in one or more
of these areas there are certain units of data with which
he would like to transact and there are certain wunit
operations which he would like to perform on these data.
The user will be able to make effective use of a computer
only when the language facilities provided allow him to
work toward a desired result in terms of data and opera-
tions which he chooses as being a natural representation
of his conception of the problem solution. That is, it is
not enough to have a language facility which is formally
sufficient to allow the user to solve his problem; indeed,
most available programming languages are, to within
certain size limitations, universal languages. Rather,
the facility must be natural for him to use in the solu-
tion of his particular problem.

The second premise underlying our work is that the
environment in which programs areprepared, debugged,
operated, documented and maintained is changing and
that the language facilities currently available do not
properly reflect these changes. We are speaking, of
course, of the advent of computer-based files and of
interactive computer systems which permit the user to
be more intimately involved with his program than was
possible with a batch system. A modern language sys-
tem must be developed with this kind of environment

*This work was supported, in part, by the National Aeronautics
and Space Administration under contract No. 12-563

937

in mind, but should still be adaptable to the older en-
vironment.

Let us now explore briefly the implications of these
two premises and examine some alternative approaches
to providing an appropriate language facility.

The “classical”’ approach to providing a large variety
of languages has been that of developing languages and
their translators—and often even their operating en-
vironments—independently. However, it seems clear
that the cost of creating and maintaining an ever
increasing number of language systems is not tolerable.
Somehow we must both provide the variety of Tacilities
but, at the same time, also reduce the number of dif-
ferent systems. It would seem that there are two ex-
treme approaches to the problem of developing a
language facility which provides all things to all men.
These are referred to as the shell approach and the core
approach. The shell approach calls for the construction
of one universal language which contains all the facili-
ties required for every class of users. PL/I with the
“compile-time”’ facility is probably the best current
example of a shell language. In contrast, the core ap-
proach calls for the development of a small “core’” lan-
guage which, by itself, is probably not appropriate for
any class of user, but which contains facilities for self-
extension. A particular class of users then extends the
core language to create a language which is appropriate
for their problems. There are, to our knowledge, three
current languages which are, to some extent, core lan-
guages: ALGOL-D, GPL, and ALGOL-68.

The shell approach does have a certain appeal. Like
the modern supermarket it promises us a great variety
of both ordinary and sophisticated products. But the
overhead inherent in utilizing such a system is rather
large. As in the supermarket the user must pay for both
the space to contain the products he is not using and the
extra time to access the desired product. Perhaps a more
important difficulty inherent in the shell approach is

938 Fall Joint Computer Conference, 1968

that whenever a meaning is prescribed for a construction,
that same meaning is forced upon all users, even though

‘the construction might reasonably mean sevetal things.

" In PL/I this has lead to such anomalies as: both of the
boolean expressions 5 <6 <7 and 7 <6 < 5, are
true; the interpretation A*B where A and B are ma-
trices is the matrix whose (i,j)* element is the product
of the (i,j)* elements of A and B. It is not that these
kinds of interpretations are ‘“bad”—the point is that
they are built-in and unchangeable. No matter what
meaning one might like for 7 < 6 <5 (we like false) or for
@3,j)* element of A*B, (we like the inner product of
the i** row of A and of the j* column of B), that meaning
provided by the designers is now fixed. One must re-
vert to procedures if he wishes to introduce new opera-
tors or to detour around the built-in, operators when he
needs to vary the meaning of those originally provided.
And this becomes even more cumbersome when, as in
PL/I, procedures can produce only scalar results. We
would maintain that our reasons for rejecting the shell
approach are not based on speculation; the difficulties
_ currently being experienced with the implementation
and utilization of full PL/I provide ample evidence.

Thus it is our contention that the most reasonable
approach to providing the desired variety of language
facilities is that of providing an extensible language
supported by an appropriate compiling system. We do
not, however, suggest that we can now devise a single
.universal core language which will adequately provide
for the needs of the whole programming community;
the diversity in “styles” of languages and translation
mechanisms will probably always be sufficient to en-
courage several language facilities. ELF, which is the
subject of this paper, provides a facility in the “style”
of such languages as ALGOL-60, PL/I, and COBOL.

Now let us discuss the second premise, concerning the
environment in which we envision programming being
done. Our basic assumption here is that the programmer
does not approach the computer with a deck of cards or
magnetic tape which constitute a complete and inde-
pendent run: a “run”’ deck which would commence with
control cards, followed by his problem and then by his
data, and which would result in the system accepting
these, compiling his problem, running it against his
data, and finally burying him in dumps or some other
visible output. Rather, the programmer’s unit transac-
tions should be thought of as acts of updating some file.
He might insert a few corrections to his program text,

might call for some incremental change to some execut- -

able form of his program, and then might let his pro-
gram run.

If he is working in an interactive system, he might
maintain intimate control over the proceedings, respond-
ing to messages as they occur instead of having to wait

for the final results before he can exert any control.
We do not suggest that ELF is a solution to the prob-

~lem of providing a language for the effective use of a

modern time-shared* system with permanent users’
files. Indeed, there is really very little experience now
accumulated in using such facilities, as most of the lan-
guage facilities now in use on the available systems
were developed as ‘‘batch” languages. It is to be hoped
that work such as that now underway at Carnegie-
Mellon under Perlis’ direction will provide some
guidance in this area. !

We do suggest, however, that we can now devise an
extensible language facility in such a manner that it is
cognizant of an avilable filing system and provides for
interactive control; we will discuss our point of view on
the relation of the language to the system in a later sec-
tion.

The remainder of this paper is divided into four sec-
tions. In the next section we will discuss the overall de-
sign criteria which have guided the development of the
language. Following this, we will present an overview of
the language with the object of providing the reader
with a general feeling for the language as well as for the
translating and executing mechanisms which we en-
vision. Following this we will discuss the kinds of fea-
tures and facilities which will be in the language; the
purpose of this section is to justify and describe certain
constructions proposed for the programming language
component of ELF. The final section is devoted to a
summary and conclusion.

Design criteria

Perhaps the most eloquent defense of the overall de-
sign criteria to which we have tried to adhere was given
in the 1966 Turing lecture by A. J. Perlis. ** There
Perlis framed the problem as that of providing for sys-
tematic variability in a language. All acceptable lan-
guages provide for constant as well as for variable oper-
and values. However, a great deal more variability
must be provided if a language is to be extensible. There
must be means of providing for variability in the
types of quantities with which we deal, in the operations
on these quantities, in programs or procedures, in the
syntax of programs, in regimes of control; in the bind-
ing of programs to other programs and data, in the
means of accessing data, in the employment of the
various storage and input/output resources afforded
by the system, and so on. However, we must provide
for this variability very carefully so that we retain the
necessary control over the efficiency of use of the com-

*That is, interactive’ how the intimacy between the user and
the system is arranged does not concern us.

ON the Basis for ELF - 939

puter, orelseourresult will be a purely academic exercise.

In our design of ELF we have looked to a number of
“users’ as sources of constraint; unless the language
facility is properly matched to its users, it will not be
an effective tool. These “users” include the program-
mers who will read and write in the language, the com-
puter which will execute programs, the compiler or

translator which will prepare executable programs, and

the operating system which will provide the environ-
ment for the preparation and execution of programs.
In addition, we feel that there are two other important
sources of constraint: the traditions established by
current languages, and the practicality of the language.
Let us now briefly discuss the nature of the constraints
which each of these various sources imposes.

Programmers

People have to learn and use the language. Indeed
we hope that people will even read prograins in the lan-
guage in addition to writing them. However, we find
that different people have rather different ideas about
the form in which a program should be cast. Most
serious programmers adhere to the basic expression
forms where these forms are appropriate—using the in-
fix, prefix, and postfix operators plus parentheses which
have resulted from the years of development of mathe-
matical notation. The form of program text which is
not inherently “expression-like” is, of course, not so well
established. We note here, however, that the usual
“out’ for introducing new operations into a language—
the use of functions or procedures—does not provide an
adequate notation for the majority of operations. If the
number of arguments required exceeds three or four, the
user has difficulty in associating the ‘““meaning’’ of an
argument with its position in the argument list and he
might be considerably better off with some keywords to
help him focus on what is what. Also, if the nesting of
function calls gets to be more than two or three deep,
the “LISP-unreadability’’ problem becomes serious. We
would also note that, for the user, an important cri-
terion is that he should not have to introduce and deal
with constructs which are unnecessary to the solution
of his problems. The arithmetic expression form provides
a facility which is both natural to a large class of users,
and which also very effectively hides the setting up of
temporary storage for intermediate results. Simi-
larly the various renderings of McCarthy’s conditional
expressions as well as the iteration or looping facilities
which-appear in many programming languages have, as
a secondary effect, that of eliminating the need of
introducing temporaries or labels which are used only

once (see Refs. 2 and 9 for interesting discussions of this
point).

Computers

The abilities of current and projected computers must
also be viewed as a source of constraint. That is, we
should try to “match” the basic types and operations in
the language with those available in “standard” com-
puters (and here we have reference to CPUs, not the
whole “system”). Thus, for example, although our
mathematical natures might encourage us to define only
integer quantities and operationsasprimitive, and obtain
floating point quantities and operations by extension,
this would surely be foolish when we are faced with
computers which by-and-large have floating point
quantities and operations as primitives. Similarly, we
reject the notion of quantities and operations drawn
from set theory as primitive in the language because of
the wide variety of implementation strategies which
might be employed in providing for these. Such quanti-
ties and operations should be introduced via extensions.
We must presume that the facilities available in cur-
rent computers mirror, to some extent, the basic
facilities which the users require.

Compilers

The past several years have-witnessed-the-emergence
of a considerable body-of experience:and technology-in
compiling programs. Unfortunately, most recent lan-
guage developments seem to ignore this technology and
demand new and ever more difficult and expensive
translating mechanisms. We have attempted to reverse
this trend and-to adhere rather strictly to the technol-
ogy available—to provide a language which can be
effectively and efficiently translated and for which the
known techniques of code generation and optimization
will apply. ’

Operating systems

The constraints which might be imposed 'by the
peripheral devices and operating systems which are to
be used must be noted. Thus, the:means for encoding
messages to and from the computer are rather strictly
dependent upon the devices (and software) which are
available; our adherence to a conventional string lan-
guage with reasonably conventional characters is die-
tated by this consideration. The control structure in-
herent in modern computers must also be kept in mind;
for example, the notion of “interrupt” is basic in'most
computer systems and our language facilities should
reflect this. Further, the availability of various kinds of
storage having varying degrees of accessibility plus the
needs of the operating system to allocate the storage
and other resources of the system must not be ignored.

940 Fall Joint Computer Conference, 1968

Tradition

The “tradition” which has been established-by such
languages as ALGOL-60, PL/I, COBOL, and LISP
and which is being established by ALGOL-68, GPL,
and ALGOL-D should be considered as a source of
constraint. That is, it does not seen reasonable to re-
invent and re-cast the facilities available in those
languages just to be different. Our departures from the
facilities available there should be well thought out
and well justified. It will be-clear that we have in fact
departed in more-or-less significant ways from all these
languages; we hope that our arguments for doing this
are convineing.

Practicability

The final source of constraint which we have tried to
observe is that of practicability. It is our intention that
the language-be as efficient and useable as any of the
conventional programming languages. In adhering to
this constraint we have failed in many ways to reach
all the goals of variability which Perlis prescribed. Thus,
ELF provides a language which has the kinds of
variability which we can imagine being handled with
reasonable efficiency. Another generation of language
development will be desirable when we better under-
stand other kinds of variability and can devise mecha-
nisms for handling them efficiently.

Overview of the extenstble language facility

There are a number of facets of ELF that are of
interest. In this section we will look at three of these.
First we will look briefly at the base language (BASEL).
Following this we will consider a compiler for BASEL,
and the ways in which it might be extended. Finally we
will consider the interface between the language system
and the operating environment.

The base language

BASEL has four kinds of primitive program elements:

a Names identify the objects that a program manip-
ulates.

b. Operators manipulate the objects. These include '

the assignment operator, operators such as plus
and less than, and procedure calls. '

¢. Control statements are used to specify the order in
which the expressions are executed.

d. Declarations are used to define objects and opera-
tors, and give them names.

These program elements are embedded in a block struc-
ture which is a generalization of that in ALGOL-60.
In the next section we will discuss the elements of the

language in somewhat more detail; for the moment it
will suffice to think of the language as similar to
ALGOL-60 but with provisions for new data types and
operations (or, if ALGOL-68 is familar to you, similar
to ALGOL-68).

A BASEL compiler

Second we want to explore the compiling mechanism
which we have in mind. Although one does not con-
ventionally talk about compiling techniques in describ-
ing a language, we believe that it is helpful in this case.
Our choice of language constructs, notations, and
mechanisms has been strongly influenced by what we
feel can be readily handled by the current compiling
technology. Thus understanding our view of the kinds
of compiling mechanisms envisioned is rather impor--
tant. For present purposes we want to think of the com-
piler for the language as consisting of several “compo-
nents,”’ including: a lexical analyzer, a syntactic ana-
lyzer, a parse interpreter, and a user controlled opti-
mizer, plus other components for generating machine
code and filing it, or for interpretively executing some
“internal” representation of the program text, and so
on. We shall have no particular interest in these latter
components here; let us now consider the other compo-
nents.

Lexical analyzer

The lexical analyzer will be responsible for isolating,
identifying, and appropriately converting the source
input (e.g., typed characters) thus producing a stream
of “token descriptors’’ representing constructs at the
level of “identifier,” “literal,” “operator,” ‘“delimiter,”
and so on. We anticipate that, although the lexical
analyzer will be “table driven” by tables derived from a
grammar which specifies the structure of the tokens,
these tables will not ordinarily be changed or extended
by the average user and we will thus think of them as
fixed.

Syntactic analyzer and parse interpreter

We intend that the syntactic analyzer be essentially
an operator precedence analyzer. An operator prece-
dence analyzer is, of course, one of the simplest and
most efficient kinds of syntactic analyzers available.
Operator precedence analysis works only on a rather re-
stricted set of languages. However, as Floyd demon-
strated in his original paper on this method ,* ALGOL-
60 is close to being an operator precedence language;
further, those changes Floyd proposed to the original
syntax rules for ALGOL-60 and to certain constructions
in the language in order to make it operator precedence

ON the Basis for ELF 941

did no real violence to the language but actually made
it cleaner and more symmetric. Thus, a language does
not necessarily suffer in richness of style because it was
designed with this method of analysis in mind. Another
important reason for the choice of this method is that
those properties of the operators which, properly en-
coded, are required to ‘“drive” such an anlyzer are
exactly the properties which the user has in mind when
he'specifies an operator, namely, the precedence, in the
sense of order of evaluation of that operator relative to
other operators.

It will be convenient to think of the operators avail-
able in the language as including binary infix (e.g. ‘+’
or ‘<’), unary prefix (e.g. 1-’), unary suffix (e.g. ‘V),
unary outfix (e.g. ‘[I’), n-ary “distributed” (e.g. ‘if ...
then ... else’ or Yincrement ... by ..."), and functional”’
(e.g. MAX (...,...)" or 'SIN()’). Each operator (actually
each fixed “part” of each operator) will enjoy one of
four relations with respect to all other operators (or
parts of operators), namely: takes precedence, yields
precedence, has equal precedence, or none. The user
will introduce a new operator (syntactically) by
specifying the precedence of each of its parts rel-
ative to the precedence of operators already avail-
able. It will generally be the case that a given operator
will be defined for operands of a variety of data types;
the “syntactic analyzer” will isolate a phrase—an
operator plus its operands—by using the precedence re-
lations, and then the parse interpreter will then deter-
mine the “meaning” or “interpretation’” of the phrase in
accordance with specifications which are either built-in
(e.g. with ‘4’ operating on two integers) or supplied as
extentions by the user (e.g. with ‘4’ operating on two
quaternions). One of the “‘dispositions”” which the parse
interpreter might make of some phrase is to place the
operands of that phrase into some previously given
(macro) ‘“‘skeleton” and re-submit the resulting text for
syntactic analysis. This will provide what are essentially
the “lexical macro” and “syntactic macro” facilities
proposed in. !

User controlled optimizer

There are certain operators which require a larger
context than the phrase in which they oceur for their
interpretation, particularly if one has a goal of produc-
ing optimal coding and either does not have, or perfers
not to overburden, a code optimizer. An example here
would be the coding of the multiplication of two con-
formable matrices in the three contexts:

A*C (A+B)*C (A+B)*(C+D)
Thus, it may be that one might desire an algorithm for
matrix multiplication which required only one tem-

porary scalar for the first case, a temporary row for the
second, and a full temporary matrix only for the third.
On the other hand, one might use temporary rows for
all three cases, giving up storage efficiency in the first
case and computation efficiency in the third. The point
is that there are cases in which the determination of the
appropriate means for performing some operation de-
pends upon some context. The user controlled optimiza-
tton phase provides for this. It would also be in this
stage that the user would have the ability to tinker
with such things as the allocation of storage, the means
of access (e.g., via some hardware or software ‘‘paging”
scheme) to certain quantities, and so on.

Briefly, we think of the parse interpreter as construct-
ing what in effect is a computation tree representation
of the analyzed program text; each node of this tree
would be labelled with the data type of the value it
represents. The user controlled optimizer may then be
thought of as a mechansim which “walks” over this
computation tree, inspects context as appropriate, and
re-organizes and re-constructs portions of this tree.
The mechanism has certain similarities with those pro-
posed in ALGOL-D, but with a control and sequencing
strategy similar to that of the GSL component of the
CGSsystem (see Refs. 12, 13 and 15)

Interface view

Now let us briefly consider the interaction of the
language with the environment in which programs are
constructed, debugged, and executed. First, we want to
emphasize that we would expect the language to include
the means for the kinds of communication with the
operating environment which are typically handled
via “control’”’ or “job’’ statements as well as the kinds
of communications which have to do with “editing.”
We presume that there is a filing system which contains
such things as: (1) program text which we might want
to incorporate into the input stream to the compiler
during some run, (2) specifications of modes of programs
or procedures which our current program might want to
reference, (3) modifications or extensions to the com-
piler which we might want incorporated for processing
our current program text, (4) an “executor’’ which ean
execute programs as they are represented following the
interpretation of the parse and user-controlled op-
timization, (5) data which has been previously input or
generated and then filed, (6) and so on. Clearly there :
must also be means for placing any of these items in the
filing system. Thus, a ‘““run’’ or ‘“‘session’’ might be one
in which we input a number of extensions to the lan-
guage including new data types and operations over
them, with the result that they are filed in such a fash-
ion that we can later call the compiler, mentioning
that it is to include these extensions. Another type of

942 Fall Joint Computer Conferencé, 1968

session might be the input of program statements
with the expectation that they be executed directly.
Another might be the input and editing of a program
with the expectation of filing it for later execution. That
is, a “unit transaction” within the ELF system will
typically utilize material previously developed and filed,
and result in material to be filed. There will be a number
of forms which this material might take, ranging from
or certain programs within the compiler at the other.
So long as this philosophy of operation is understood, we
will not go into further details here; we intend to spell
out more details of the linguistic forms and possible
system mechanisms to attend to problems in this area
in a subsequent paper.

The base language

In this section we will present the basic concepts and
mechanisms which are introduced in BASEL, the base
language component of ELF. It is not our purpose to
provide an introduction or primer for the language.
(One must see Ref. 3 for this.) Rather, we hope that our
discussion will, as it were, “soften the blow’’ and make
the details of BASEL appear reasonable. Thus we will
suggest the kinds and means of variability which
BASEL permits. We might also note that we are not
attempting to justify all the concepts and notions in
the language. This section is divided into two parts:
First we will discuss the fundamental notion of value
-and show how it is handled in BASEL, comparing
BASEL to other languages. Then we will present the
declarations and expressions which manipulate values.

Values

One of the basic characteristics of a programming
language is the variety of values it can handle, and the
way in which these may be manipulated (that is, read
in, stored, named, declared, operated upon, passed as

parameters or returned as results of functions and writ- -

ten out.) The larger the variety of values a language can
manipulate, the more “powerful” that language is; the
more uniformly these values are treated, the easier
that language will be to write, compile and extend.

We will use FORTRAN II to demonstrate what we
mean by “a value.” FORTRAN handles only real
values and integer values in a general way. One may
read and write alphabetic values, but must treat them
as if they were integers. Also, FORTRAN has arrays,
but no concept of an array value which may be treated
in all ways as a unit.

We can distinguish two aspects of a value: (We have
been strongly influenced here by ALGOL-68.)

— its data type or mode (that is, the “class” it be-
longs to, that aspect which
determines the contexts in
which it is meaningful and
the operations which apply
toit.)

— its meaning (that is, its interpretation,
the objeet which it repre-
sents.)

Example:

The number 3.14159 has the mode real and its mean-
ing is an approximation to the number pi.

One must be able to store values, and thus we are led
to think about variables. We see that we can treat
variables like values, having both mode and meaning.

Example:

A real variable has the mode loc real (a location in
which to store a real value) and its meaning is the
address of that location.

We have made a distinction here between the mean-
ing of a variable and its value (that is, the value stored
in it.) We can refer to either (as will be described later)
and speak of the mode of either. This makes possible a
simple and uniform treatment of pointers. We see that a
pointer is simply a variable in which the meaning
(address) of another variable is stored.

Example:

A pointer to a real variable has the mode loc loc real
and its meaning is the address of a box in which we
can store the meaning of a real variable (a loc real).

Continuing this line of thought we see that we can
describe the mode of any pointer in terms of the mode of
the thing it points to, which permits a compiler to decide
whether it is meaningful to use that pointer in any
given context.

The aggregate-value is another generalization of the
concept of a value to which the notions of mode and
meaning must also apply. We must go further than
PL/I did. The PL/I declaration

DECLARE 1 A
2 Al INTEGER

2 A2 FLOAT

ON the Basis for ELF 943

declares an instance of an aggregate, but there is no way
of speaking of the mode of that aggregate indepen-
dently of this instance. One result of this is that such
aggregates may not be returned as the results of func-
tions. This difficulty also arises with arrays in ALGOL-
60 and FORTRAN,

So in addition to a set of ‘‘basic modes” (like real) we
need a set of “mode constructors’ which can be used to
combine the basic mode descriptors into deseriptions of
more complicated values.

Basic modes

We have adopted the following set of modes as basiec:

integer value written int

real value real
boolean value bool
character value char

Mode constructors
Vartables:

If 9 is a mode, then loc 9N is the mode of a variable
which can store a value of mode 9. (“loc¢” in
BASEL serves the same purposes as “ref”’ in
ALGOL-68. The differences will be explained later.)

Aggregates:

An aggregate is a sequence of values. BASEL has
three ways of describing these.

tuple: A tuple is an ordered list of values. These are
used primarily as the actual parameter list in a
function call, but they can also be computed,
constructed and stored in variables.
If 91y, IMs,... 9T, are modes, then
tuple (M1, Ms,...9M,) is the mode of an aggregate-
value whose parts are n values of these modes.

Examples:

tuple (real, int, char)
tuple (loc real, real)

row: A row is a homogeneous aggregate. We treat
this case separately for two reasons: first, rows
are particularly simple to implement, and second,
this is the only way to describe a variable-
length aggregate.
If n is an integer value and 9N is a mode, then
row n of M is the mode of a homogeneous series
of n values, each of mode 9. These are numbered
from 1 ton and may be accessed by number.
Note that this is a more elementary notion than
the array of ALGOL-60.

Examples:

row 3 of real

row 6 of loc char (This might be used to
describe a character
string variable.)

row any of int (This describes a vari-
able length row of
integers.

struct: The mode constructor struct attaches names to

the elements of an aggregate, permitting these parts
to be accessed by name. If 91y, My, - - -, M, are modes
and e, e, -+ e, are identifiers, then struct (9Msey,
Maes, -+ - Mne,) is the mode of an aggregate-value
with n named parts. (This mode constructor is exactly
the same as in ALGOL-68.)

Examples:

struct (realr, real i)
might be used to describe a complex number.

struct (loc int level, row 50 of loc bool elem)
might be used to describe a push-down-
stack which can hold up to 50 boolean
values. The integer varieble ‘level’ would
store the index of the current top of the
stack.

Procedures:

A procedure is a parameterized description of a
value. (This value is usually specified by giving an
algorithm by which to compute it.) In BASEL,
procedures are also considered to be values, which
may be stored, passed as parameters, etc. Because
of this we are interested in the mode of procedures.
Since procedure calls are used in expressions, the
procedure’s mode must embody information about
its domain and range, in order for the compiler to
ensure the meaningfulness of expressions involving
procedures. Therefore we define the mode of a
procedure as follows: if 9, NMs, - - - M, and I are
modes then proc (91, My, « - M) M is the mode of
a procedure which takes n parameters of modesdls,
My, - - -, ete. and returns a result of mode 9. If the
procedure takes no parameters, empty parentheses
are written. If it returns no result, the word “‘none”
is used in place of the mode of the result.

Examples:
proc (real) real describes the mode of of the
sine function.
proc (inf) none might be used to de-

scribea procedure which

944 Fall Joint Computer Conference, 1968

opens the file designa-
ted by the integer code.

could describe a proce-
dure which returns the
current time of day ex-
pressed as two integers
representing hours and
hundredths of hours.

could be used to de-
scribe a DUMP proce-
dure.

proc () struc (int, int)

proc () none

Dynamically varying modes

Occasionally it is useful to permit a variable to store
values of more than one mode, or to permit an expres-
sion to produce a value whose mode depends on the
data. The mode-descriptor operator ‘union’ is used to
build the description of a mode which is not completely
fixed, but can be one of a fixed finite set of modes. The
mode of a value stored in a ‘loc union’ can vary dynam-
ically among the fixed set of modes specified by the
‘unton’. The mode of the value of an expression can
vary if that expression contains a conditional whose
‘then’ and ‘else’ clauses have values of different modes.
If 9my,..., M, are modes than union (9My,... NM,) describes
an object whose meaning may have any one of the given
modes; which one may not be known until run time, and
may change.

Meanings

Certain values of the basic modes have pre-defined
representations. These are:

the non-negative integers written 0, 1, 2, - -
the non-negative reals 0., 3.96, .5, 3.7 e-2
the boolean values true, false

the character values ‘A’ -2, 1,2,

.o » £ ¢ ’ll
[N ’

Because these are conventional representations of
their meanings, they are sometimes called ‘literals’.
Through declarations, the programmer can give other
names to these values. In fact, it is possible to name any
value that can be computed. ‘

Since an unbounded number of modes can be defined
in BASEL, the language must provide a consistent way
of denoting a value of any mode. o

The conventions we have chosen are:

A value of mode fuple (9, - -+, 9M,) is denoted by
writing [vy, V1, - - - Va]. Bach v; denotes a value of
mode M.

A row or a structure is denoted by writing a row or
struct mode followed by a tuple with the appro-
priate number of elements, each of which has the

appropriate mode.
A procedure of mode proc (M, 2, -+, M,) M is
written: proc (MMufy, ofs, « ++, M) (E)

“where the f; are the names given to the dummy
parameters, and E denotes an expression whose
value has mode 9. If the procedure returns no
result, then E must denote an expression with no
value.

Finally, if 917 is a mode then

a 9N creates a value of mode 91T.

Examples:

Mode A Value of that Mode

tuple (ént, int, int) 1,5+ 7, 4]

tuple (real) [sine X]

row 4 of bool row 4 of bool [true, true, true,
- true)

»”

complex (0.5, 2.] (“complex
has been declared as a
synonym for the mode
struct (real r, real 1).)

proc (int A, int B) Gf A > B
then A else B) ‘

a loc int (This causes an
integer variable to be cre-
ated. Its contents are not
initialized. This expression
then denotes the new ad-
dress.)

struct (real 1, real 1)

proc (int, int) wmt

loc int

Declarations, expressions and programs

Declarations

A declaration attaches a name to a value, thereby
creating an object. In BASEL, any value which can be
computed or denoted may be named. BASEL has four
kinds of declarations, which we will consider in the fol-
lowing order:

— mode declarations

- data declarations

— operator declarations
- meaning definitions

ON the Basis for ELF 945

Mode declarations

A mode declaration defines a name for a mode.
This name then acts as a synonym for that mode.

Ezxamples

let complex be struct (real re, real im)
This describes a complex number. Having
given a name to the mode expression, the fol-
lowing expressions become exactly equivalent:

struct (real re, real im) [1.4, .2]
complex [1.4, .2]

let tree be struct (char top, row 2 of loc tree son)
This describes a recursive tree structure, in

which each node has two sons.

Data Declarations

As with mode declarations, a data declaration
defines a name for a value. Within the scope of this
declaration that name and the value it denotes are
completely synonymous.

Examples
let pi be 3.14

This declares “pi” to be a name for the real
value “3.14”’. Notice that pi is a name for a
constant, not a variable. One would never be
able to store another value in pi.

let X be a loc real

As mentioned. above, the expression “a loc
real” causes a new loc real to be created, and
denotes the resulting address. This declaration
makes X a synonym for that address.

let MAX be proc (int 1, int j) (¢f 1 > j thenielse j)

This declares that MAX is a name for a pro-
cedure which computes the maximum of its
two integer arguments.

Operators

In BASEL an operator is simple a collection of re-
lated procedures plus some information on how a
call on that operator is to be written. This syntac-
tic information is declared with an operator declara-
tion, written as follows:

let (operator name) be (shape) prec (precedence
relation) where the (shape) may be

prefix
suffix

infixl, (left associative)
infizR (right associative)
infix (non associative)

and the precedence relation specifies that the
precedence of the new operator is either =,
(equal to), > (just greater than) or < (just less
than) that of some previously defined operator.

Examples:

let T beinfizR prec >*
let ! be suffix prec >*
let sin be prefix prec >!

If these three declarations were given in this
order, the resulting precedence relations would
be:

prec of T > prec of sin > prec of ! > prec of *

After an operator has been declared one or more mean-
ing definitions are used to associate procedures with that
operator. These are written:

let (operator name) mean (procedure-value)

Example:

let + mean proc (bool a, bool b) (if a then — b
elseb)

This definition states that “-+’’is to be mean-
ingful when written between two boolean values,
and is to denote “exclusive or” in that context.
A call on this operator would be written: x 4+ y,
where x and y are boolean values. When the pro-
cedure is executed “x” is bound to dummy
parameter “a’” and “y”’ is bound to “b.”

The term ‘“‘generic” is commonly used to describe an
operator that can have different meanings, depending
on the modes of its operands. A particular meaning is
chosen in a given context by matching the modes of the
operands to the modes of the formal parameters in one
of the procedures attached tothe operator. This “match”
is made according to the conventions described later
for procedure calls.

Expressions

Program Structure

In BASEL a program is a compound expression.

A compound expression has a body, which is written
between “begin’’ and ‘‘end” or between
“(“a.nd”)”.

The body itself is a series of blocks separated by
commas.

946 Fall Joint Computer Conference, 1968

A block begins with a declaration part and ends pression followed by a tuple-valued expressidn. The call
with an expression part. is evaluated in four steps:
The declaration part is a series of declarations each '
terminated by a *;”. This part may be omitted.
The expression part is a series of clauses separated
by “exit” s.
A clause is a series of expressions separated by “;”’s.
Finally, the syntax of an expression corresponds to
M 13 bh 2
conventional usage. Statements such as ‘“‘go to”,
“for”, ““if”’, compound expression, and the empty 3
statement are also canIdered to be expressions. effect as replacing the procedure call by the
A compound expression may be used anywhere . .
& name is logal. - ~ following compound expression:
8as ‘ (let f1 be vy + - -3 ; let £ be Va; E)
4. This compound expression is evaluated.

1. The tuple expression is evaluated resulting in the
tuple of values, [vi, Vs, . . ., Va]. Note that these
values may be of any mode including loc modes
and proc modes. Thus we may have calls by value,
address or procedure.

. The procedure expression is evaluated resulting in
the procedure: proc (9Mfy, Mofs, - -+, Maf,) (E).

. The parameters are bound. This has the same

The evaluation of a compound expression In order for a procedure call to be legal, the modes of

the values v; must “match” the modes of the dummy
parameters. For the basic modes, the definition of
“match” is the natural one; ‘“match” only becomes
complicated when “union” is involved. The precise

A compound expression (or a program) is evaluated
by serially evaluating its blocks. At most one of
these blocks may have a value, and this value,
if any, is taken as the value of the compound

expression. : deﬁniti()n follows:
A block is evaluated by : A mode P of an actual parameter “matches” a mod.e
(1) Elaborating its declarations, in order. The Q of a dummy parameter (we will write P < Q)if
scope of a declared name or operator mean- — P is union (M, « -+, IMy,) and Vi, M € Q
ing is the smallest block which contains that or Q is union (M, --+, 9M,) and A, such that
declaration. ‘ P c o,
(2) Evaluating the expression part until the first or P is int, bool, real or char and Q is respectively
“exit” is encountered. The expressions in this int, bool, real or char.
part are evaluated in order except, of course, or P is loc 91 and Q is loc 9’ with oW 9’ and
any “go to”’ commands are obeyed. The M < M. ‘
value of a block is the value, if any, of the or P is tuple (M, -+, M) or struct (Mey, * -,
last expression evaluated in it. Mae,) and Q is respectively tuple (913, ---,
The value of each kind of expression is defined as N'n) or struct (M'sey, - - -, IM'aea) Where Vi, IMs
follows: c o ,
: or Pis proc (3, - - -, M,) M and Qis proc (Mg, - -+,
The go to statement and the empty statement 91’,) 9N’ where 9N C 91/, and V. 9 € M.
have no value.
A conditional is evaluated in the conventional Some other aspects of BASEL
way, its value is the value, if any, of the selected n ’
expression. ' Assignment

The value of a “‘for” statement is the series of

. in i ignment.
values produced by the repeated evaluated of The infix operator — is used to denote assi

its scope The assignment of a value v, ?f any mode 9N, to a
' variable V of mode loc 9 is written v — V.
Since the use of an operator is considered to be a call
on one of the procedures associated with it, in all other
cases an expression is nothing but a set of procedure
calls ordered with respect to the precedence of the
operations involved. Its value is the value, if any, re-
turned by the last procedure call.

The assignment I — J where I and J are both
integer variables (loc int) is meaningless, since both
I and J stand for their meanings, which are ad-
"dresses. One must write: val I — J, which explicitly
fetches a value from I and stores it in J. In BASEL
there is no automatic built-in mechanism to fetch
the value of a variable or to do any of the other
Procedure calls transformations performed by the “COERCION"

A procedure call is written as a procedure-valued ex- mechanism of ALGOL-68. Of course, one can

ON the Basis for ELF 947

freely define extended meanings for “—”’ and other
operators, which would make the expression
“I + 1—I"” meaningful.

Allocation

We have already mentioned that the expression a
‘“an’’, where 91 is a mode, causes a value of mode 91
to be created. Thus allocation is caused when N is
“loc 9'”’. If 9N’ is in turn a ““loc” a second location
is not created. This is a major difference between
loc in BASEL and ref in ALGOL-68 where the
declaration:

ref ref real Y = refreal ()

causes two locations to be allocated, the first one
pointing to the second one, which in turn can store
areal.

In addition to the block-entry-time allocation
caused by declarations of variables, BASEL also
permits dynamic allocation: if V is a value of mode
9, then aloc V stores V in a newly created location,
and returns its address as a result. This result, of
course, has mode loc 9.

Using a “union”

With “union”’, BASEL allows dynamically varying
modes. But in order to use an object of “union’
mode it is often necessary to check the current
status of the mode. This is done with a ‘“when”
conditional expression, defined as follows:

when (name of the object) is M then E, else E,

where 91 must “match’ the deelared mode 9’ of
the object.

In such expression, all uses of the object in E, are
treated exactly as if the object’s mode were 9% rather
than 9.

SUMMARY

BASEL derives its simplicity and power from a general
and unifying notion of data objects. Data objects in
BASEL comprise not only the usual integers, reals,
booleans, and character strings, but procedures, point-
ers, and aggregates as well. Aggregates may be built
out of any objects whatsoever, so that arrays of arrays
and arrays of procedures are but special cases.Similarly,
any object may be pointed at, so that procedure vari-
ables and aggregate variables are treated just like
integer variables.

This generality in the treatment of objects greatly de-
creases the number of special constructs which need
appear in the language. Any object may be named using
a declaration, so that separate statement types are not
needed to name procedures, variables, arrays, and
numeric constants (the latter is not allowed in ALGOL-
60). Similarly, a single parameter passing mechanism
serves to allow call by value, call by address, and call by
name (procedure) for all three are simply BASEL data
objects. Arrays and procedures may be passed to other
procedures as arguments and may be returned by them
as results. Location valued procedures are likewise per-
mitted, allowing the user for example to define new sub-
seripting functions. The left and right sides of an assign-
ment statement may be evaluated using exactly the
same set, of rules; the compiler need not distinguish be-
tween them.

To enable the wide class of data objects to be used
effectively, BASEL allows the user to extend the
meaning of existing operators as well as to define new
ones. Thus, the user is free to define (or leave undefined)
as he chooses such strange combinations as the con-
catenation of a real and an integer or the square root of
a character.

Unlike many other generalized languages, BASEL is
designed to be compiled with as little as possible left to
be interpreted at run time. Efficient compilation
is enabled by the mode information which the program-
mer specifies (as he is required to in most other higher
level languages). Only when complete mode information
is not known until run time is the type checking done
interpretively (asindeed then it must).

We hope that BASEL has helped to illustrate that
power and generality are not necessarily bought at the
cost of complexity—indeed, careful generalization can
provide power and at the same time make a language
much simpler, both to learn and to implement.

REFERENCES

1 T E CHEATHAM JR .
The introduction of definttional facilities into higher level
programming languages
Second Edition Proceedings of the AFIPS Fall Joint Com-
puter Conference San Francisco November 1966 Vol 29
Washington DC Spartan 1966 pp 623-637
2 E W DIJKSTRA
Letter to the edifor
Communications of the ACM Vol 11 March 1968 ppl47-148
3 AEFISCHER P JORRAND)
BASEL The base language for an extensible language facility
Mass Computer Associates Inc CA-6806-1311 June 1968
4 R WFLOYD
Syntactic analysis and operator precedence
Journal of the ACM 10 July 1963 pp 316-333
5 JVGARWICK JRBELL LD KRIDER
The GPL language '

948 Fall Joint Computer Conference, 1968

Control Data Corporation Palo Alto California Programming
Technical Report TER-05, 1967
6 JVGARWICK
A general purpose language (GPL)
Forsvarets Forskningsinstitut Norwegian Defence Research
Establishment Intern Report S-32
7 BAGALLER AJPERLIS
A proposal for definitions in ALGOL
Communications of the ACM Vol 10 April 1967 pp 204-219
8 GFLEONARD JR GOODROE
An environment for an operating system
Proceedings of the ACM 19th National Conference Philadel-
phia Pennsylvania 1964 New York ACM 1964 pp E2 3-1-E2
3-11
9 PJLANDIN
The next 700 programming languages
Communications of the ACM Vol 9 March 1966 pp 157-166
10 AJPERLIS ;
The synthesis of algorithmic systems
First ACM Turing Lecture Journal of the ACM Vol 14

11

12

13

14

15

January 1967 pp 1-9

A JPERLIS

Private Communication

R M SHAPIRO S WARSHALL

A general purpose table driven compiler

Proceedings of the AFIPS Spring Joint Computer Conference
Washington DC April 1964 Balitmore Spartan 1964 pp 59-65
R M SHAPIRO LJZAND

A description of the compiler generator system

Massachusetts Computer Associates Inc Wakefield Mass
CA-6306-0112 June 1963

A VAN WIJNGAARDEN BJMAILLOUX JELPECK
A draft proposal for the algorithmic language ALGOL 68

IFIP Working Group 2 1 MR 92 January 1968

N WIRTH H WEBER

EULER: A generalization of ALGOL and its formal definition
Part I

Communications of the ACM Vol 9 January 1966 pp 3-9

Part IT

Communications of the ACM Vol 9 February 1966 pp 89-99

Associative processing for general purpose
computers through the use of modified memories*

by HAROLD S. STONE

Stanford Research Institute
Menlo Park, California

INTRODUCTION

Tbe concept of the content-addressable memory has
been a popular one for study in recent years,!:2:3+4 but
relatively few real systems have used content-addres-
sable memories successfully. This has been partly for
economic reasons—the cost of early designs of content-
addressable memories has been very high—and partly
because it is a difficult problem to embed a content-
addressable memory into a processing system to in-
crease system effectiveness for a large class of problems.

In this paper, we describe a relatively inexpensive
modification to the memory access circuitry of a general
purpose computer that will permit it to perform some of
the operations that can be performed in a content-
addressable memory. The major restriction is that the
memory must be a 214D memory.5¢ The modification
results in a new access mode to memory, one which
permits a bit slice from a number of different words in
memory to be accessed. Memory can be viewed as a
collection of N X N arrays of bits such that an access
can be made to either the i** row or the i*? column of
an array. Although this capability is somewhat limited
by comparison to the capability of large content-
addressed memories as they are normally conceived, it
is ideally suited to that class of problems that requires
both conventional and associative processing. A good
example of this type of problem is the Gauss-Jordan
algorithm for matrix-inversion which involves a search
through a matrix for the numerically greatest element.

In the next section we further describe the functional
behavior of the modified memory and illustrate its use
through a series of examples. The subject of the third
section is the modification of a 214D memory in order to

*This research was supported by the Office of Naval Research
Information Systems Branch, under contract Nonr-4833(00)
with Stanford Research Instltute

permit row-column access. The last section contains an
evaluation of the technique and a summary.

Associative processing with row-column operations

The functional behavior that is described in this
section is not novel; it was first described nearly a
decade ago. The reason for its resurrection is due to the
ease with which it can be implemented in present tech-
nology using techniques described in the next section.

The basic idea is illustrated in Figure 1. Memory is
viewed to be partitioned into multiple arrays of bits,
each of size N X N, where N is a power of two. Memory
accesses can be made in one of two modes, row mode
or column mode. In either mode, a particular array in
memory is selected by the high order bits of an effective
address while the least significant log, N bits select
either a row or a column. This behavior is essentially:
the same as that of the horizontal-vertical computer
described by Shooman.” Row selection is equivalent
to word selection in a. conventional computer. The
column selection mode has no counterpart in conven-

~ tional computers and is the mode that supports

949

limited form of associative processing.

There is a major difference between Shooman’s
vertical-horizontal processor and the idea that is de-
veloped in this paper. Shooman conceives of two sep-
arate collections of registers and processing logic to be
used in his processor, one for vertical processing and
one for horizontal processing. An implementation of
Shooman’s idea is described in Ref. 12. What we de-
scribe here uses just one collection of registers and logic.
This characteristic comes about because in the modi-
fied memory all data is transferred between memory
and a common data register for both row and column
operations.

To be more specific, Figure 2 showsan N X N array of
bits and shows the contents of the memory data register -

950 Fall Joint Computer Conference, 1968

BIT————

worp © ! 2 v+ Nel
0
|
2
N_'_| EFFECTIVE MEMORY ADDRESS
\ 1 [T 1]
SELECTS log, N bits
\‘ AN ARRAY e —
N SELECTS A COLUMN
OR ROW IN ARRAY

FIGURE 1—The logical organization of memory. The mode of
access is determined by the instruction

both after reading the k* column and after reading the
the i*® row. Note carefully that rows are placed in the
register such that the first bit, b;o, is at the left end of
the register and that the first bit of a column, by, is
placed at the right end of the register.

To illustrate how row-column accessing is useful for
associative processing, we now consider several ex-
amples. The notation that is used in the examples needs
a brief explanation. Symbols written in capital letters,
such as X and Y, are symbolic addresses. Subseripted
letters such as R; denote hardware registers which are
part of a central processor. The symbols ‘““— and
“&" denote row and column operations respectively.
Symbolic addresses that are followed by bracketed
symbols such as X[I] denote indexed addresses such
that X[I] is the address obtained by adding the contents
of memory location I to the address of X.

Thus, we have the primitive operations:

R, <« X; Fetch a row and place it in R.

Y «Ry; Store R; as a row at address Y.

R.=X; Fetch a column addressed by X
and store in R,.

Y &Ry, Store the contents of R, as a

column at address Y.

Let X and Y be the base addresses of two N X N
bit 0, 1 matrices in memory. Then rows of X can be
stored as columns of Y by iterating the instructions
below for different values of the index variables.

R, « X[I];
Y[J] & Ry;

If I is equal to J and the loop is repeated for I = 1,
2,. .., N, Y will contain a copy of X rotated a quarter
turn. If I = N-J, then Y will contain the transpose of
X where the transpose is taken about the minor diag-
onal.

To aid in search operations, we introduce the machine
function NORMALIZE. The NORMALIZE instruc-
tion left shifts a specified register until a “1” appears.
in the left-most position or until N shifts are performed
if there are no “1°”’s in the register. A count of the num-
ber of shifts is placed in another designated register.
In our symbolic notation we use the form

R < NORMALIZE (R,);

to mean that R, is normalized and the shift count is
placed in R2. :

As an illustration of the use of the column operation
for searching consider the problem of scanning a status
vector array to find a vector with a “1”’ in the i*® bit
position. The pair of instructions that perform the
search are

R, &= STATUS [1;

R contains N-j where j is the index of a vector with
a “1” bit in the i*® position. (For programming conven-
ience, it would be wise to implement the NORMALIZE
command so that the result left in R, would be j in-
stead of N-j.)

Now consider the problem of searching an array for a
vector that contains a particular field matching a
specified pattern. The technique that we use is to per-
form an iterative sequence of column operations on the
pattern field. In the instruction sequence below, register
R: holds the pattern, Rs holds columns fetched from
memory, and R; holds a 0, 1 vector that contains a 1
bit in a bit position if the corresponding word in the
array has matched the pattern on all preceding opera-
tions. The sequence is initialized so that the left-most
bit of the pattern lies in the left-most bit of Ry, and Rs
is initialized to all “1’”’s. “NOT”’ and “AND”’ are full
register logical operators.

Associative Processing for General Purpose Computers 951

Fetch the next column of the
pattern;

R, = X[I];

IF LEFTBIT(R;) = 0 THEN
R, «— NOT Ry;

Rs — R3 AND R,; Mask out bits in R; that
disagree with . pattern for

this iteration.

Ri « LEFTSHIFT(R1);

The sequence of instructions must be repeated for
values of I ranging over the index field. After the final
iteration, Rs contains a ““‘1”” in positions that correspond
to words with fields that matech the pattern. A NOR-
MALIZE command can be used to obtain the addresses
of words that satisfy the search criterion.

Note that the search procedure effectively looks at
N words but the number of fetches required is equal
to length of the pattern. Hence, for short patterns,
considerably fewer than N memory fetches will serve to
search N words. Patterns that occupy a full word can
be processed about equally well in row mode or in
column mode. ‘

Searches need not be made on “equality’’ matches.
A slight modification of the instructions above is all
that is required to implement a threshold search. We
use one more register, Ry, that contains “1’’s in positi-
tions that correspond to words with fields greater than
the pattern. Ry, R, and R; are used as before. R, is

initialized to all “0”’s prior to executing the sequences
below.

R, &= X[1}; Feteh next column
of the pattern;

IF LEFTBIT(R;) = 0 THEN
BEGIN R, < R, OR (R; AND R,);
Re <= NOT Ry;
END;
R; < R; AND Ry;
R, « LEFTSHIFT(R,);

The statement immediately after the “BEGIN”
updates the vector in R, such that a word is greater
than the pattern if it had been greater on the previous
iteration or had been equal before and is greater on the
current iteration. At the close of a sequence of itera-
tions of the rrogram steps given above, the vectors in
Rs and R, uniquely identify all words that are either
equal to the pattern or greater than the pattern. All of
the remaining words are clearly less than the pattern.

- COLUMN |b""-“l . . . Lbz,x l LI I ok

Sets that satisfy any of the relations “=", “5£7 “>
“>7,¢“<” and ““<” can be obtained easily by simple
operations on the vectors in R; and R,. ‘“Between
limits” or “‘outside limits” searches can be done by
using three registers for each limit, i.e., one register to
hold thelimit pattern, and two that funetion as counter-
parts of R3 and R,.

A number of other operations are also possible with
row column accessing. Many of these are given in
Shooman’. The examples given here and in Reference 7
should suffice to illustrate the power of idea. It is appro-
priate at this point to consider the implementation.

The memory modification

The memory modification can be developed from a
discussion of the functional requirements of row-column
processing and the constraints of conventional memory
technology. We begin by examining the N X N matrix
in Figure 2.

In a conventional memory, the bits in the matrix
are stored so that the columns of the matrix lie on
separate and distinet sense lines of the memory. Be-
cause of constraints of conventional memory technology,
during any memory cycle no more than one bit per
sense line can be read or written. For row operations,
selection cireuitry activates all bits of a specified row,
each of which lies on a different sense line. The physical
portion of a core memory that is threaded by a sense
line will be called a bit plane in the following material.
For both 214D and 3D memory organizations, the
entities that we call bit planes correspond to physical
planes of memory stacks, but the correspondence is
usually not true for 2D memories.

For column operations, the technology constraint is
severely restrictive. With physical memory organized

boo | bo,i | Po,2 e+« |bo,Nt

byo | b [ba| = o o |PyNa ~
THE LOGICAL
bao| Bayi | D22 | ¢ ¢+ ¢ |Pan- LAYOUT OF

DATA IN MEMORY

, "N-l.z R bN—l,N'I

ROW l o l b ‘ b, 2 |

O
DATA APPEARING
' IN PROCESSOR

REGISTER

FIGURE 2—The result of fetching a row and a column from an
N X N array

952 Fall Joint Computer Conference, 1968

as shown in Figure 2, columns of arrays will lie wholly
within bit planes, and thus no more than one bit per
column could be accessed during any memory cycle
under the assumed constraint. In order to overcome the
constraints of memory technology, memory can be
organized as shown in Figure 3. Each row in the array
corresponds to a row in the array shown in Figure 2,
but in Figure 3, the matrix is stored such that the i*"
row is cyclically shifted to the left by i bit positions.
Careful examination of the figure shows that both rows
and columns of the matrix have the property that
exactly one bit lies in each plane. The bits are scattered
and shifted, however, so that the memory access cir-
cuitry must be constructed to take this into account.

Figure 4 shows how row and column selections must
function when data is held in a skewed fashion. In

WORD | MEMORY PLANES |
| SR w ;
0] boo bo) bo2 bos
| by by b3 bio
2 byp by bso by,
3 by3 bso bz, bss
MEMORY
PLANE INDEX O 3 2 |

FIGURE 3—Physical layout of a 4 X 4 array in memory

0 3 2 i 0 3 2 |
0 bo)
Ly [Pz | | b3 bio by,
by,
b3,
by [[i2] [biz] |Pio by | | bor] [Pai] | b2y
bio| by | |bi2]|bi3 bay | [b2i] P11 | | Por

FIGURE 4—Examples of a row and column access to a 4 X 4
array

FIGURE 4a—Access to row 1 followed by a right shift of 1 bit

FIGURE 4b-—Access to column 1 followed by a right shift of 2
bits

Figure 4a, the first row is read into a data register, and
must be cyclically shifted right one bit to place in a
standard format. In general, an operation on the i*®
row requires a right cyclical shift of i bits after a read
cycle, and a left cyclical shift of i bits before a write
cycle.

Column operations are somewhat more complex.
Examination of Figure 4b shows that N different words
must be accessed to obtain all of the N bits in one col-
umn. Specifically, the memory planes must be able to
support simultaneous selection of bits in different rows.
We shall return to this point later. The planes in Figure
4 are numbered from left to right as 0, N, N-1,. . .,1.
The selection of the i*® column is such that the j®
plane must select the bit in word (i+j) mod N. After
access, the word must be cyclically shifted to the right
by N-i-1 bits. The skewed storage technique has been
used in the Illiac IV design,® where Illiac IV memory
modules correspond to bit planes here, and full word
operands in Illiac IV correspond to bits. _

Thusfar, the discussion has been functional in nature.
Now we must take a closer look at memory technology.
Among the conventional memory organizations only
one can easily be adapted to permit accesses to different
bits in different bit planes. This memory organization
is the so-called “214D’’ memory, and its organization is
shown in Figure 5. i

In the figure, it is shown that addresses are split into
two eomponents, X and Y, and are separately decoded.
There is a single set of X drivers for all planes, but
there is an individual set of Y drivers for each bit plane.
The several sets of Y drivers act in unison for selection
purposes in the normal mode of operation. It is pre-
cisely the multiplicity of Y drivers that permits the
memory aceess circuitry to be modified to support the
column mode of operation.

FIGURE 5—The organization of a 214D memory system

Associative Processing for General Purpose Computers 953

ID—ano
D—or Y DRIVERS ~ BIT PLANE
R K
N LINES R o
CARRYING : g
A DECODED i LNES | c
WORD ADDRESS | | A PART | ;}D*G
- 1
LA !

DECODED ARRAY
X - DRIVE LINES ADDRESS /LINES

FIGURE 6—Modifications requirec. for the i*® memory plane.
The modifications are enclosed by the dashed rectangle

For eolumn mode operations, it is necessary to modify
the drive circuitry slightly in order to place independent
control in each plane for the selection of the Y driver to
be energized. The requirements are that each plane
energizes either the driver corresponding to the decoded
Y address (row mode) or the driver corresponding to
the sum of decoded Y address and bit plane index
(column mode).

Since the plane index is fixed for each plane, it is not
necessary to use an adder in each plane to implement
associative access mode. Consider, for example, the
schematic diagram of the memory drive circuitry for a
single bit plane as shown in Figure 6. In this figure, the
X drive lines link all bit planes and effectively select a
particular N X N bit array for interrogration. The Y
drive lines select either a row or a column from the
N X N array. The circuit in Figure 6 is intended to
be identical to that in Figure 5 except for the two level
logie cireuit shownin dashed rectangle.*

The two level logic circuit has the following property.
In row mode, signal A is false, and the output of the Y
decoder is fed directly to corresponding drive lines in
the selection matrix. Note that all planes act identically
in this condition, so that each plane returns a bit from
the same word address. When signal A is true, the out-
put of the Y decoder is displaced cyeclically by an
amount i in the i*® plane. Thus, each plane reports a
bit that belongs to a different word of the N X N
array, and in fact reports the bit indicated by Figure 4.

The signal displacement in column mode i# “end-
around.” That is, if the decoded address is the j*®

address, then line (i+j) mod N will be activated in the
i*" plane.

*Actually, X and Y axis selection circuits of 214D memories
are more complex than is indicated in Figures 5 and 6. In most
implementations, the Y address lines are partitioned into two sets
which are separately decoded. The decoder outputs are connected
in a cross-bar arrangement and the Y lines that thread cores are
located at the crosspoints. The modifications shown in Figure 6
is easily adapted to the cross-bar method of selection.

M

In terms of logic circuitry, the two level circuit
shown in Figure 6 is the only modification that is
necessary for the access circuitry.

One possible adverse effect of the two level logic
circuit is a small increase in the total memory cycle
time. This increase is expected to be less than one per-
cent in magnetic storage technologies, and is likely to
be more than balanced by an increase in memory
effectiveness. However, in newer technologies, such as
integrated circuit memories, the increase in cycle time
may be somewhat larger.

We turn our attention now to the problem of cyecli-
cally shifting data prior to entry to the memory and
after retrieval from memory. The two shifts are called
preshifts and postshifts, respectively. To solve the
shifting problem note that the amount of a preshift or
a postshift can be derived from the mode and the
effective memory address. Let the least significant log,
N bits of an effective address be called the s index.
(s for shift). Then, the shift direction and amount is
given by the table below.

TABLE I
Mode Preshift amount Postshift amount
row s bits left s bits right
column N — s — 1 bits left N-s-1 bits right

Note that the value of N-s-1 can be computed by taking
the 1’s complement of s in a register with logz N bits.
Consequently, it is extremely simple to compute the
shift amount because it is equal to the lower address
bits in row mode or the 1’s complement of these bits in
column mode.

A good candidate for the shift circuit is the barrel
shifter shown in Figure 7. Shifters of this type have been

—i"™ BIT OF
SHIFT AMOUNT

SHIFT AMOUNT

U

L]

_ /S
[T1]
l,/

[TyPicAL CELL|

FIGURE 7—A barrel shift register with a detailed view of a
typical cell .

954 Fall Joint Computer Conference, 1968

implemented in several commercial computers. A
shifter with log, N stages can cyclically shift N bit
words by any amount from 0 to N-1. Each stage shifts
either 0 or 27 bits depending on the i*® bit in the binary
representation of the shift amount. For our purposes,
it is most likely that two shifters are needed, one for
postshifting and one for preshifting. The two shifters
should be placed on the data paths between memory
and processor, and not between the memory data reg-
ister and the memory. The reason for the placement on
the data paths is that there is-a possibility for over-
lapping the shift operation with other operations,
whereas if the shifters were placed between data regis-
ter and drivers or sense amplifiers, the effect would be
to increase the memory cycle.’

A good example of masking the effect of shifting
time through overlap of operations occurs for write
cycles. Normally, write cycles are preceded by clear
cycles to clear memory in the bit positions that are to
receive new data. The clear cycle can proceed as soon
as an address is available. While the clear cycle is
active, data can be shifted into the proper format and
be ready for storage when the write cycle begins. Post-
shifting after read cycles will tend to increase the time

‘required to access data but it will not increase the
memory cycle time.

The barrel shifters thus are used to translate between
a standard data format for the processor and one of N
different storage formats. Because data within the pro-
cessor are held in a standardized form, manipulation of
data within the processor can be done in conventional
ways. Conventional load and store commands can be
issued from the central processor without regard for
the fact that data might be cyclically rotated during
the transfer. In essence, the physical form of data stor-
age is completely invisible to the processor.

What has been gained, of course, with the barrel
shifter, the modified memory, and the modified storage
format, is the capability for performing associative
operations in a general purpose computer. The net cost
of the memory modification is two-barrel shift registers,
and some logic in the Y address circuitry. The cost is
undoubtedly a small fraction of the cost of the memory
and processor. There may be some impairment of per-
formance because of increased access time, but this is
unlikely to be significant because the delays through a
microelectronic barrel shift register are very small
compared to the cycle time of a core memory.

SUMMARY AND CONCLUSIONS

The performance benefits to be derived from row-
column addressing depend greatly on the effectiveness
of column mode operations in reducing the number of
memory accesses. The greatest benefit of column mode

addressing is for those operations in which a small

- portion of a large number of words in memory must be

accessed. Scaling and magnitude searches fall in this
category. Take, for example, IBM System/360 long
floating point words with 7-bit exponents and 56-bit
mantissas. Sealing and magnitude searches over 64-
word groups can be done with approximately eight
accesses by accessing the exponent field of the groups in
column mode, This is essentially how one would con-
duct the search for a pivot element in a Gauss-Jordan
reduction.

Since the word-length effectively determines the
number of different words that are accessed in a column
operation, it is desirable to have as large a word length
as possible. In present technology, it is feasible to
implement memories with up to 64 or 128 bits/word.
It appears that reasonably good performance improve-
ment is possible with 64-bit words, so that a useful
implementation of row-column accessing is possible
within present technology. .

Some analysis is required to determine the utility
of eolumn accessing for common operations such as
symbol table searching and sorting. Hash-addressing
used in combination with column mode access is one
possible method for performing table searching. Hash-
addressing normally involves a search when conflicts
oceur®-!! and this search might be speeded with column
access. The biggest improvement would come when
tables are nearly full, at which time there is a high
probability that a search will take place after the
computation of the hash-code.

Ultimately, the performance improvement to be
derived from the techniques that have been described in
this paper are determined by the applications. While
we cannot predict what benefits might accrue at this
time, the fact that row-column accessing can probably
be achieved for little cost within present technology
indicates that the benefits of an implementation of the
technique will almost certainly outweigh the cost of
implementation.

REFERENCES

1 AKAPLAN
A search memory subsystem for a general purpose computer
AFIPS Proc of the 1963 FICC Vol 24 Spartan Books Balti-_
more Md pp 193-200

2 RGEWING P M DAVIES
An associative processor
AFIPS Proc of the 1964 FJCC Vol 26 Spartan Books Balti-
more Md pp 147-158

3 BT McKEEVER
The associalive memory siructure
AFIPS Proc of the 1965 FJCC Vol 27 Part 1 Spartan Books
Baltimore Md pp 371-388

4 A GHANLON

Associative Processing for General Purpose Computers 955
Content-addressable and associative memory systems—a survey US Patent 3 277 449 October 4 1966
IEEE TEC Vol EC-15 No 4 pp 509-521 August 1966 9 D LSLOTNICK
5 TJGILLIGAN Unconventional systems
2-1/2D high speed memory systems—past present and future AFIPS Proc of the 1967 SJCC Thompson Book Co Washington
IEEE TEC Vol EC-15 No 4 pp 475-485 August 1966 DC pp 477481
6 JR BROWN JR 10 WD MAURER

First and second order ferrite memory core characteristics and
their relationship to system performance
IEEE TEC VOL EC-15 No 4 pp 485-501 August 1966
7 WSHOOMAN
Parallel computing with vertical data
‘Proceedings of the EJCC Vol 18 december 1960
8 WSHOOMAN
Orthogonal computer

11

12

An tmproved hash code for scatter storage

CACM Volume 11 Number 1 pp 35-38 January 1968
R MORRIS

Scatter storage techniques

CACM Volume 11 Number 1 pp 38-43 January 1968
P AHARDING M WROLUND

A 2-1/2 D core search memory

Fall Joint Computer Conference December 1968

Addressing patterns and memory handling algorithms

by SHERRY S. SISSON* and"
MICHAEL J. FLYNN #x

Northwestern University
Evanston, Illinois

INTRODUCTION

One of the principal problems facing the designer
of a high performance computer system is the
efficient handling of memory. In arranging a
memory system the designer, lacking knowledge
of the programs to be run, usually selects “worst
case” assumptions concerning addressing pat-
terns. This paper is an attempt to compare a set
of selected disparate programs and analyze their
actual addressing traces with respect to the vari-
ous memory algorithms.

In high performance systems an increase in the
bandwidth* of memory must be achieved to in-
sure an ample supply of instructions and operands
to the central processing unit. More efficient pro-
gram storage organizations are needed to decrease
effective memory access time to a time compatible
with the processor cycle time,

Three methods by which storage bandwidth can
be improved are: (1) making use of a high speed
immediate storage by transferring blocks of words
between local and main storage as required (varia-
tions- of this method have been called paging),
(2) interleaving independent. memory units in
order to obtain a faster effective access time, and
(8) using a high speed virtual memory (look-
ahead unit) in the central processing unit in order
to obtain -an optimum instruction or data flow.

This method anticipates the actual information

requirements of the system.

*Present Address: Bell Telephone Laboratories
Naperville, Illinois 60540

**Author’s time supported in part by U.S. 'A‘tomic Energy
Commission, Argoune National Laboratory, Argoune, Illinois

‘Storagé bandwidthisthe retrieyal rate of words from memory.$

The purpose of this project is to evaluate these
system organizations by studying recorded ad-
dress traces of executed programs. Blocking, in-
terleaving, and looking ahead configurations were
evaluated and compared with similar results pre-
sented in the hterature This work was done in
two parts. ‘

1. The first step was to write a simulator which
chronologically recorded on tape storage de-
mands requested by a test program as this
program was being executed. This simula-
tor was then used to generate addressing
pattern tapes of three representative test
programs. The memory requests of each test
program were written on tape in the order
used by the program and were flagged to
indicate whether they were data or instruc-
tion requests.

2. The second step consisted of statistical
analysis of the data. This study was done by
adapting various program organizations to
the data generated by Part 1. Three sta-
tistical programs were written. All of them
gathered information for: a) the instruc-
tion stream** b) the data stream c) in-
struction and data stream combined. These
statistical programs determined the fre-
quency of run lengths, number of jumps
within a look-ahead unit for various level
sizes, and the interference occurring for
various interleaving configurations.

The results of the data analysis can be used to
give an indication as to how blocking, interleav-
ing, and look-ahead organizations improve the
speed of execution of actual programs. First, a

**Stream is defined to be a sequence of data or instructions as
seen by the machine during the execution of a program.®

958 Fall Joint Computer Conference, 1968

DATA BUS

S E

REQUEST BUS

MEMORY CYCLE

1 ACCESS REGENERATION;
L] I]

! NUMBER OF
REQUESTS PER
MEMORY CYCLE

XXX L)

|
|

—

-

NUMBER OF MEMORY UNITS,M
NUMBER OF REQUESTS PER MEMORY CYCLE

FIGURE 1

BANDWIDTH=

general review of program storage organizations
will be presented, followed by descriptions of the
simulator, test programs, and analysis programs.
The final sections present the results of the adap-
tions of program storage organizations to the test
program address traces, and conclusions.
Organization of storage (memory) systems

Concept of interleaved storage
The concept of interleaved storage is developed

LARGE MAIN MEMORY

{
- PAGE

LOCAL STORAGE

CPU

FIGURE 2

from the idea of using M independent memory
units instead of one main memory. The words of
a program and its data are distributed successively
among the memories modulo M such that memory

1 contains addresses 1,1 +~ M, 1 4+ 2M, etc., as

shown in Figure 1. By increasing M for a given
computer, the memory bandwidth is increased be-
cause the number of accessing conflicts is de-
creased. Recall that bandwidth is the service rate
of the main memory. This bandwidth must proc-
ess fetching of instructions and operands, storage
of results, and input/output demands.

In his paper, Flores* studied the limiting effect
of the number of memory banks on computer re-
sponse time and developed an equation relating
a waiting time factor to relative memory cycle
time based on a queuing model. His work was
based on the assumption that the demands are in-
dependent of response; therefore, the demand
distribution is stationary. As a result, the prob-
ability of the arrival of a demand request in a
small fixed time interval is the same as any other
period. Only the worst case condition of random
memory addressing was considered. In reality,
programs execute demands somewhere between
the extremes of sequential and random. The in-
terleaving results of this project used actual pro-
gram addressing patterns. From these results,
one can get an idea as to the effect of the assump-
tion of random storage demand. The results are
presented and contrasted with Flores’ predicted
results,

Blocking and look-ahead design
Gibson’s block-oriented system

Another approach to the bandwidth problem is
a block-oriented design presented by Gibson.® He
proposed a block storage method where a request
to main memory moves a block of words to a local
store. Statistical results are presented. on how
big a block should be and what the size of local
storage should be. Of course, the optimum con-
figuration at any one time depends on the pro-
gram being executed ; thus, one must find an over-
all best configuration for the system.

Gibson’s simulations results show that for a
local storage size of 2048 words the number of
accesses to main storage is relatively independent
of the block size. This result indicates that the
block size should be kept as small as possible. If
large blocks are used, then the local store size

Addressing Patterns and Memory Handling Algorithms 959

should be increased in order to get good per-
formance compared to conventional storage. The
local storage replacement algorithm used does
have some effect on the usefulness of local storage,
while the size of the program being executed has
little effect on local storage characteristics. As a
reference the paging results of this project will be
compared to Gibson’s block storage results.

Look-ahead systems

Look-ahead systems are employed in large-scale
computers in order to increase program execution
speed and to smooth fluctuations in memory de-
mand. The Stretchs system included a look-ahead
unit in its design for these reasons. Other sys-
tems incorporating a look-ahead feature are the
IBM System 360 Model 91* and CDC 6600.

Look-ahead, as the name implies, is anticipatory
in nature unlike the block transfer method which
operates on demand. Instruction look-ahead is
counter driven by the expectation of instructions
to lie in a strict sequence. Data look-ahead is

driven by the expected instruction stream. Figure

3 shows the types of look-ahead units that were
applied to the address traces. A comparison of
the performance of these look-ahead models will
be presented as part of the results.

Simulator description
Simulator program description
INSTRUCTION LOOK~AHEAD

FORWARD | BACKWARD|CENTERED

T LOOK-AHEAD

ALGO— | CONTENTS | CONTENTS | CONTENTS

RITHM | orx+1 | OF %—I OF N ;'aNsseTlsR?g;ON
To%+N | TO%-N [%*-LN l
%=PRESENT

waoe T [] wwstRuction: counter
NTEN INSTRUCTION REGISTER

DATA LOOK-AHEAD

INSTRUCTION . . DATA
LOOK-AHEAD . (4 LOOK-AHEAD
REGISTERS | : | : REGISTERS
NlL.e ° N

¥ c(¥)
» - c(s)
o . C(e)
C(a)=CONTENTS
OF &

FIGURE 3

ADDRESS TAPE FORMAT
THE TAPES CONTAIN BINARY RECORDS, 24 WORDS PER
RECORD.

THE ADDRESSES ARE WRITTEN ON TAPE IN ORDER OF
USE DURING EXECUTION OF THE TEST PROGRAM

RECORD FORMAT:
St I7_18 35
worp 1 (2 ADDRESS 0———— -0
. L] L L
[] []
e <o . . <
L] [(] L]
L] [] L L4
[] . ° °
[] L] [] L
. . ° .
L
WORD 24 | ° ° .
F ADDRESS IS IN DATA STREAM

DL = 1|
= O IF ADDRESS IS IN INSTRUCTION STREAM

FIGURE 4

This program was written in FAP, the IBM
7094 assembly language, for the purpose of moni-
toring the execution of other FAP programs. The
simulator keeps an instruction location counter
for the test program being monitored. This loca-
tion counter is used by the simulator to read the
next instruction of the test program and record
the location on tape. If an instruction requires an
operand, the absolute address of the operand is
recorded 'on tape following the instruction address.
Any index modification of the operand is done
before recording the address. One level of in-
direct addressing can be handled, with all absolute
addresses requested during the indirect address-
ing process recorded on tape. These addresses are
written on tape in the order requested by the test
program and are flagged to indicate whether it
was an instruction stream or data stream address.
The format of the tapes is shown in Figure 4.

Some difficulties were encountered in writing
the simulator. The execute command (XEC) was
used to run a test program under control of the
simulator. The major problem with this method
of control is that when XEC executes a transfer,
the simulator loses control to the transferred lo-
cation. This problem was partly solved in the fol-
lowing manner: Before execution of a transfer,
the simulator inserts at the transferred location
a transfer to a location in the simulator program
and sets a flag to indicate that this was a transfer

960 Fall Joint Computer Conference, 1968

operation. After execution of the transfer in-
struction (conditional or unconditional), the simu-
lator, replaces the original instruction into the
test program. If the transfer was taken, the in-
struction location counter is updated to the trans-
ferred location. This method works except when
control is transferred to a protected area in core
during an input/output sequence.

The input/output problem was resolved by plac-
ing any test program I/0 code in the simulator
and placing an unconditional transfer to this code
in the appropriate test program location. As the
simulator is executing the test program, it looks
for a transfer to I/0 code before executing an
instruction. When it finds one, the I/O code is
executed. The simulator then reads the next in-
struction of the test program and continues exe-
cution. Because the simulator performs the 1/0,
rio addresses used during I/O execution are re-
corded on tape. :

T'est program descriptions

This simulator was used to simulate and re-
cord the accessing patterns of three test programs.
In an attempt to get a representative sample of
patterns, programs with varied characteristics
were run.

Differential equation solution

The first program was an iteration problem
which solved the Van der Pol differential equation
using Hamming’s method. The Van der Pol equa-
tion,

2 ;
%—s(l —x2)3—:+x=0

is used to describe non-oscillatory systems. Input
parameters were given to the program for e,
h, and the first four x and y points. The next 96
points were calculated using the input parameters
and Hamming’s predictor-corrector equations (see
Ralston” p. 189) :)

Predictor: y%s:1 = yas
' + (4h/3) 2y'n = Y51 + 2y’ n-2)

Corrector: yus: = (1/8) (9ys — Ya_s)
+ (30/8) (Vi) + 2¥'n — ¥'amd)

Where: yon+1is the estimated initial value of y a4,

vy’ . is the derivative of y,,

y ', is the ith approximation to y.i1.

The corrector formula was reapplied at each point
until the change was less than 0.0001. Each x,y
point plus the number of times the corrector was
applied at each step were printed at the end of the
program. This program passed through a few dis-
tinctive loops many times as each new point was
predicted and the corrector formula applied. The
simulation of this program caused 83856 accessing
requests to be recorded on tape.

Data processing problem

A data processing program was run as the sec-
ond test program. Data cards are initially read
and stored sequentially in storage. Each card
contains an employee name (last name first), num-
ber, and codes indicating marital status and sex.
After all the cards are read into storage, the fol-
lowing steps are performed.

1. The cards are sorted so that the employee
numbers are in ascending order.

2. The input information is used to prefix each
employee name by MR., MRS., or MISS.
Each prefixed name is reversed to last name
last before going to the next employee name.
Several logical and shift commands were
user to prefix and reverse a name and place
it left adjusted in storage,

3. Any leading zeroes on the employee number
are replaced with blanks.

4. The employee names, each with the proper
prefix and followed by the employee’s num-
ber, are printed in numerical order.

When executed by the simulator, this program
requested 190608 accesses to main storage.

Machine simulation

The last test program was a program which
simulated the language of a nonexistent machine
on the IBM 7094. It interpreted control cards-and
simulated the instructions of the nonexistent ma-
chine. The main program read and interpreted
the control cards which included such commands.
as IDMP, LOADER, PRINT, SNAP, and START.
After the START control card was read, the pro-
gram transferred to a decoding routine which
read and decoded the instructions of the nonexist-
ent machine. Each instruction was simulated by

Addressing Patterns and Memory Handling Algorithms 961

a command subroutine. A very small program,
consisting of a few control cards and instructions,
was written in this new language for the test pro-
gram to simulate. The test program requested
1392 addresses when it was executed, enough to
get an idea of the characteristics of this program.
There was more input/output in this program
than in the other two test programs. Recall that
memory requests in an input/output section of
code are not recorded by the simulator, thus a por-
tion of the test program access pattern is not con-
sidered in the program analysis.

Analysis program descriptions

When executed, the following programs made
three passes of an address tape, one for each of
the three addressing streams.

Run length program

The first program written recorded run length
information. A run length is defined as the num-
ber of addresses increasing in value by one over
the previous address in an addressing pattern.
When an address breaks the sequential pattern,
this address is taken as the start of a new run
length. A table is printed showing the run lengths
that occurred in the program and the number of
times each run length occurred. Also recorded are
the total number of instruction, data, and com-
bined stream references used by the test pro-
gram. This information can give an idea of the
size and number of loops occurring in a program,
and of the sequential nature of a program.

Blocking and look-ahead program

Blocking and look-ahead characteristics were
obtained by the second analysis program. The
program as written with the assumption that
only one page can reside in local memory (readily
available to the processor) at a time. For a given
page size, the number of new pages requested by
a test program is printed. Along with the page
count, the number of addresses used by a test pro-
gram assuming single word access is printed. It
should be noted that the blocking analysis pro-
gram considered accesses to memory, not dis-
tinguishing between fetches and stores. The look-
ahead section looked for three situations for a
given number of levels (N).

1. It considered that N levels followed the cur-
rent address (forward look-ahead).

2. N was considered to be the number of se-
quential addresses preceding the current ad-
dress (backward look-ahead).

8. The levels were considered to be centered
with N/2 addresses preceding the current
address and N/2 following.

The analysis program printed the total number
of jumps occurring within N for each situation
(forward, backward, and centered). The blocking
and look-ahead data were collected first on the
combined stream and then on the instruction
stream and data stream separately.

Interleaved storage program

The last program tabulated information on in-
terleaved storage. It required three input param-
eters, relative memory cycle time, relative proc-
essor cycle time, and the number of memory banks
used. Several items were tabulated for each set
of input parameters, including the following.

1 A count was made of the number of inter-
ferences that occurred. An interference
occurs when service is requested of a mem-

- ory bank which is still busy with a previous
request. ,

2. The total wait time due to memory bank in-
terference was recorded ; the wait time being
the total time in cpu cycles that the cpu had
to wait because the requested memory bank
was busy.

3. The total processing time was tabulated.
This time included one cpu cycle for each
memory access plus the wait time,

4. The number of accesses to memory was
printed. ,

5. The occupancy ratio (busy ratio divided by
the number of banks) was calculated. The
busy ratio is the ratio of memory cycle time

.. to processor request rate. ~

Increasing the number of banks for a given
relative memory cycle time proportionately -de-
creased the occupancy ratio. Results were ob-
tained on’all three addressing streams. When the
instruction stream was used alone, the data
stream and any of its effects on processing time
were ignored. Therefore, the results are worst
case interference figures for the given relative
processor and memory cycle times.

962 Fall Joint Computer Conference, 1968

CUMMULATIVE PER CENT OF ADDRESSES

20 30 40 50 60
RUN LENGTH, WORDS

FIGURE 5

Results
Run length results

The run length results in Figures 5 - 7 show the
sequential nature of the three addressing streams
fore each test program. They are a plot of the
percentage of addresses which are of a given run
length size or less. The figures show the worst
and best case range of results. From observation
of these figures, one can see that the instruction
stream run lengths are significantly longer than
either the data or combined stream run lengths.
Because a run length is a number of sequential
addresses, this longer run length of the instruction
stream indicates that the instruction stream is
more sequential than either the data or combined
streams. The difference is more marked in pro-
gram 1 where the mean instruction stream run
length is 14.4 words while the data and coinbined
stream mean run lengths are just over 1 word.

CUMMULATIVE PER CENT OF ADDRESSES

COMMULATIVE PER CENT OF ADDRESSES

4 6 8
RUN LENGTH, WORDS
FIGURE6

100

90+

80+

704

60-

S —

a 6 8 10
RUN LENGTH,WORDS

FIGURE 7

Addressing Patterns and Memory Handling Algorithms

963

The wide range of instruction stream run lengths
generated by program 1 and 2 is reflected by their
large standard deviations of 13.7 and 8.8, respec-
tively.)

MEAN RUN LENGTH, WORDS

COMB INST DATA
TEST PROGRAM 1 1.08 14.44 1.05
TEST PROGRAM 2 1.09 4.52 1.04
TEST PROGRAM 3 1.33 3.78 1.38

RUN LENGTH VARIANCE
(STANDARD DEVIATION IN PARENTHESES)

COMB INST DATA
TEST PROGRAM 1 0.08(0.29) 187.5(13.7) 0.07(0.27)
TEST PROGRAM 2 0.13(0.37) 77.1(8.8) 0.09(0.30)
TEST PROGRAM 3 0.73(0.86) 13.7(3.7) 0.39(0.63)

TABLE 1

For all three programs, the data run lengths
are short with means ranging from only 1.04 to
1.40 words. This almost random referencing of
data is primarily due to the initial data layout.
For example, program 1 sequenced through large
tables; but in between referencing a location in
the table, constants and temporary storage loca-
tions were referenced. Perhaps the single data
stream should be considered as two streams, one
referencing the tables, and another referencing
constants and temporary storage locations. The
short combined stream runs strongly reflect the
data characteristics. '

In general, one can observe from these figures
that the instruction stream is significantly more
sequential than either the data or combined
stream. This difference gives an indication that
the instruction and data streams should be treated
as separate memory areas in a computer organiza-
tion.

Look-za.head results

Another way to observe the sequential nature
of program accessing patterns is to investigate its
branching characteristics. A look-ahead unit an-
ticipates the sequential nature of the instruction
stream alone. An instruction operand is obtained
from memory as a part of the look-ahead process
and is saved along with the instruction at a single
level of the unit. One problem with a look-ahead
unit is that its effectiveness is diminished when
a program branches to a location outside the unit.

BACKWARD
RANGES, - " " L

"

BRANCH QN
INSTRUCTION \\

N\

FORWARD
o o= o

CENTERED

80

404 CENTERED

N

[Se—.

£ \ *~\~

S \ BACKWARD ~Fm—w e
o
2 \

3 60 - \

(2]

w

2

[™\ (__FORWARD

w S—

& ‘\\
-

4

w

()

[: 4

w

a

FULL

INSTRUCTION
STREAM

20 ¢

A L—

NUMBER OF LEVELS IN A UNIT

FIGURE 8

Results in Figure 8 depict the probability of an
instruction reference to a point outside a look-
ahead unit for a given size. The best and worst
case results for each look-ahead model are plotted.

Results were also obtained on instruction stream

10
o7 GIVEN A
BRANCH

INSTRUCTION

60

PER CENT REFERENCES OUTSIDE UNIT

Y T ' T T T
o 2 4 8 16 32 64

NUMBER OF LEVELS IN A UNIT

FIGURE 9

964 Fall Joint Computer Conference, 1968

" branching to instructions just previously executed
(backward look-ahead) and on branching to in-
structions in both the forward and backward di-
rection. For all test programs the three different
look-ahead configurations are plotted on the same
figure so that the configurations may be compared.
Similar results are also plotted for the data stream
in Figure 9.

Instruction stream

Test program 1 demonstrates the best look-
ahead characteristics because of its highly se-
quential accessing pattern. For any of the look-
ahead configurations, program 1 had a probability
of less than 0.07 of not finding any given instrue-
tion within the look-ahead. However, this pro-
gram was also the least sensitive to look-ahead size
with the probability of not finding a given instruc-
tion within the unit decreasing by only 0.01 up
through the 64 level unit size,

The most significant improvement in the prob-
ability of finding a reference within a unit came
when expanding from 2 to 4 levels for the forward
and backward cases. For example, for the best
forward unit results the probability of a branch
instruction transferring out of 4 forward levels
is 0.54, down 0.23 from 2 levels. The same prob-
ability at 4 levels in the backward unit was some-
what higher at 0.78, down 0.17 from 2 levels.

Each level plotted on the centered look-ahead
reflects the combination of the forward and back-
ward results of the next lower level. The branch-
ing improvement decreases rapidly for the first 8
levels, then decreases more slowly for the rest of
the range.

Branching conclusions

Based on the results in Figure 8, a centered
unit would be most desirable, but this configura-
tion may also be the most difficult to implement.
A unit of at least 8 levels is needed before the
centered look-ahead performs any better than the
forward configuration. If a smaller unit were re-
quired, then the forward look-ahead would pro-
vide the best performance. A timing simulation
study was made for the Stretch computer to get
information as to the effect of a forward look-
ahead unit on relative program execution speed.?
The Stretch results indicate that the biggest im-
provement in speed came when expanding to 4
levels. The same characteristic is displayed by the

M% I"“"""ln....)

test program branching patterns. This compari-
son indicates that program branching behavior is
a direct indication of look-ahead applicability.

Blocking results

Another method for improving program execu-
tion speed is by use of blocking techniques. The
first results were obtained by the paging analysis
program with the assumption of only a one-page
local storage. From previous observations of the
run length curves, one would expect paging to be
most applicable to the more sequential instruction
stream. Figure 10 reveals, as expected, that the
instruction stream always has a smaller probabil-
ity of not finding a word in local storage than
either of the other streams. It takes only a 4-word
page to bring the instruction stream probability
down to less than 0.5 while the data stream needs
a 32-word page to achieve the same performance.
A 64-word page brings the probability of not find-
ing an instruction reference down to less than 0.1.
However, at this large size, the number of refer-
ences made to local storage represents a small
fraction of the number of words transferred to
local storage. A large number of words are now
being transferred from main memory to local

Addressing Patterns and Memory Handling Algorithms .965

8.0
6.0
5.0
40
30
= FLORES
520
<
£ INSTRUCTION STREAM
ONLY
=
So ALL PROGRAMS
Z g
z
o 6
£ 5|
g
W
2
.2
A
2 4 6 8 1.0

OCCUPANCY RATIO
(NUMBER OF REQUESTS PER MEMORY CYCLE.Ty)

NUMBER OF MEMORY UNITS

FIGURE 11

storage that are of no use to the program. Obser-
vation of Figure 10 also points out that program
size is not a determining factor of paging char-
acteristics, ;

When only one page is saved in local storage,
the combined stream demonstrates very poor
blocking characteristics. Gibson ¢ states that,
theoretically, local storage should be able to save
at least four pages, one to accommodate the in-
struction stream, two for source data operand
areas, and one for the output data operand area.
Gibson made a paging study using a 2048-word
local store and the combined addressing stream.

The effect of a larger local storage on test pro-
gram 3 can be observed in Figure 10.8 - A 512-
word local storage, administered on a first page
in first page out basis, was used to obtain this
data, With a 16-word page the probability of not
finding a reference in local storage decreases from
0.68 with a one-page storage (16 words) to 0.02
with a 512-word storage, an improvement of well
over one order of magnitude. The number of refer-
ences outside local storage is less than the refer-

8.0

6.0
5.0

4.0

3.0
FLORES

n
o

DATA STREAM
ONLY ALL PROGRAMS

W s o @ O

AVE. WAITING TIME (IN UNITS OF Tyy/2)

OCCUPANCY RATIO
(NUMBER OF REQUESTS PER MEMORY CYCLE TND

NUMBER OF MEMORY UNITS

FIGURE 12

ences required by the central processing unit for
smaller page sizes, similar to the 2048-word local
storage characteristics.

Interleaved storage results

The last type of program organization adapted
to the addressing patterns was the interleaved
storage model. Figures 11, 12, 18 are plots of the
average waiting time, expressed as a multiple of
memory access time (Memory cycle, T, divided
by two), versus occupancy ratio. These figures
show the best to worst case range of results. The
waiting time is the average additional amount of
time, above the access time, that is required to
process a request due to conflicting requests. All
three addressing streams are shown, along with
the results of Flores.*

The data and combined stream delay times are
always less than half of T, but longer than the
instruction delays. The curves.show that the
combined stream is no more memory limited than
the data stream alone. The randomness of the

966 Fall Joint Computer Conference, 1968

8.0

6.0
5.0

4.0

o
=)

n
(=)

COMBINED STREAMS
ALL PROGRAMS

AVE.WAITING TIME(IN UNITS OF Ty /2)

2 4 6 .8 1.0

OCCUPANCY RATIO
NUMBER OF REQUESTS PER MEMORY CYCLE Ty
-NUMBER OF MEMORY UNITS

FIGURE 13

data stream causes the greater blocking times.
One way to make the data stream wait times more
compatible with those of the instruction stream
would be to separate the data stream into three
operand areas as enumerated in the previous sec-
tion. '

Flores’ curve, shown in the figures for compari-
son purposes, was derived from an open loop
queuing model assuming a uniform random ac-
cessing pattern. It should be used only as a limit-
ing factor in considering program execution
speeds and not for determining the optimum wait-
ing time for a system. Comparison of the test pro-

gram addressing patterns with - Flores’ random -

accessing pattern reveals that fewer banks are
needed to obtain a reasonably low memory waiting
time for the test program patterns. With an oec-
cupaney ratio of 0.5, the average waiting time is
less than one-half of the wait with random ac-
cessing. Increasing the occupancy ratio to 1.0
causes an insignificant increase in the waiting
time of the test program addressing patterns as

—COMPARISON BETWEEN
MODEL 9! SIMULATION
(RANDOM ADDRESSING) &

[72]

w ACTUAL TRACE

o -8 CYCLE MEMORY
© WITH 6 CYCLE ACCESS
4

_ls-

w

=

-

(2]

(2]

w2]

Q MODEL 91 SIMULATION

<g

1\

ACTUAL TRACE

0 T ' v
0 16 32 48

INTERLEAVING FACTOR
FIGURE 4

compared to Flores’ curve. It should be noted that
the test program waiting times are slightly opti-
mistic because interferences generated by input/
output sequences were not included in the access-
ing pattern.

The relative improvement of the accessing rate
that occurs as interleaving and memory speed are
improved can be demonstrated in another manner.
Figure 14 depicts the average access time in cpu
cycles as a function of interleaving. Notice that
the amount of interleaving yields an exponential-
ly diminishing improvement. Similar results
were obtained from a simulation of the IBM Sys-
tem 360 Model 91 storage system.* The Model 91
simulation also used a random addressing pattern,
which resulted in longer average access times than
those of the test programs,

CONCLUSION

The objective in the design of a general-purpose
computer is a system which executes programs as
fast as possible, and is technically and economical-
ly feasible. The analysis of dynamic address traces
provides a quantitative measure of system per-
formance which can be used to guide computer
system design. This project examined program
accessing patterns, looking for characteristics

Addressing Patterns and Memory Handling Algorithms 967

which would lead to more efficient storage utiliza-
tion by programs. Final evaluation of the opti-
mum method of organization depends on hardware
costs for the various configurations which were
rot considered in this study.

The major methods of organization are block-
ing, interleaved storage, and look-ahead. Results
indicate that separation of the instruction and
data streams improves program performance.
The results of a one-page local storage show that
the test program performance is much improved
with a page size of 4 or more words. However,
the results presented using a larger local storage
reveal that performance is improved by more than
an order of magnitude when more than one page
is saved in local storage. Interleaved storage per-
formance is good with the combined stream, but
could be significantly improved by using separate
streams. Reasonably low access waiting times are
produced by using enough memory units to offset
the ratio of memory to processor cycle times.

A look-ahead unit would be more applicable to
an interleaved storage organization than an or-
ganization with local storage. A centered look-
ahead handles program branching more efficiently
than the other configurations at a size of 8 or more

levels. If a smaller look-ahead is to be considered

for a system, a forward look-ahead would provide

the best performance.

REFERENCES

1 D W ANDERSON F JSPARACIO R M TANASULO
The Model 91: Machine philosophy and instruction handling
IBM J Res and Dev January 1967

2 L J BOLAND G D GRANITO A M MARCOTTE
BUMESSINA JWSMITH
The model 91 storage system
IBM J Res and Dev January 1967

3 WBUCHHOLZEd
Planning a computer system
New York McGraw-Hill 1962

4 TFLORES
Derivation of a waiting time factor for a
J ACM Vol 11 pp 265-282 July 1964

5 MJFLYNN
Very high-speed computing systems
Proc IEEE Dec 1966 pp 1901-1909

6 D GIBSON
Considerations in block-oriented systems design
AFTIPS Conf Proc Vol 30 pp 75-80

7 ARALSTON
A first course in numerical analysis
New York McGraw-Hill 1965

8 SSISSON
Statistical analysis of computer accessing systems
Thesis for the MSEE degree Electrical Engr Dept N orl:h-
western Univ Evanston Iilinois June 1968

rsmlp
tiple band Yy

Design of a 100-nanosecond read-cycle NDRO

plated-wire memory

by TAKASHI ISHIDATE

Nippon Electric Co., Lid.,
Kawasaki, Japan

INTRODUCTION

Plated-wire memories are now attaining a promising
position in main memories. UNIVAC claims that, in the
non-destructive readout (NDRO), the cost of peripheral
circuit can be reduced, since peripheral circuits are use-
ful enough to maintain multiple words. However, the
NDRO is most effective only for slower memories with
a comparatively small number of interface bits. Themain
memories such as 72-bit-per-word 100-nsec read-cycle
memory system cannot be improved by the use of the
NDRO as recommended by UNIVAC.

This paper deals with the best use of the NDRO
techniques in the high speed operation of memory sys-
tem.

Reasons for adopting NDRO

The advantage and disadvantage of NDRO opera-

tion of plated-wire memory are as follows.
Advantages:

(1) The NDRO memory is more reliable as compared
with the DRO memory againhst temporary errors.
In the DRO memory, stored information will be
definitely destroyed, if the readout signal is de-
tected in the wrong sense or if there is any mal-
function in the recirculation loop.

(2) The read cycle time is short. There is neither re-
write time nor recovery time of digit noises in the
NDRO memory.

(3) If the word current for writing is compatible with
that for reading, we can store information exclu-
sively into desired bits of a word, while reading the
remaining bits. This gives rise to efficient use of the
memory.

(4) From the similarity between NDRO memory and
electronically changeable read-only memory
(ROM), most of the NDRO techinques can be uti
lized in ROM.

Disadvantages:

(1) The output signal level obtained by NDRO modeis
generally lower than that obtained by DRO mode,
because, in the NDRO operation, the readout word
field is kept considerably below the amplitude
which brings the magnetic vectors along the hard
axis of thin magnetic films. Low output signals
make the sense circuit more complicated.

(2) When the thin film is operated by NDRO mode, the
domain wall is apt to creep, and the yield of good
plated wires fall, thus increasing the cost of mem-
ory planes.

(3) The read cycle time of NDRO is short. But the time
required to write information increases due to the
limited word current for writing.

(4) The difference between read cycle time and write
cycle time is not favorable to the control unit of a
processor to access the memory.

Design objectives

The following items were selected for the design,
anticipating the demand of performance characteristics
in the 1970’s.

(1) Unit capacity of the memory is 16,384 words of 72
bits each.

(2) The memory must have a read cycle time of 100
nanoseconds, a read access time of 70 nanoseconds,
and a write cycle time of 200 nanoseconds.

(3) Input and output signal levels must be compatible
with those of CMLs.

Timing
The time should be determined for each functional
block before the detail system design is given. The

timing waveforms are shown in Figure 1.
Read operation is repeated at a rate of 10 M cycles

969

970 Fall Joint Computer Conference, 1968

per second. The time delay for the address decoding and
for the propagation of word current from the current
source to the memory plane is estimated as 30 nano-
seconds. R

The peak of readout signal appears 10 nanoseconds
after the mid-point of the rise of the word current.

The maximum propagation time of the signal in the
memory plane is assumed to be 15 nanoseconds. The de-
layed signal is shown with broken lines.

Each of the circuit delays admitted, in the sense am-
plifier, in the polarity detecting strobe circuit, and in
the output buffer, is 5 nanoseconds.

For write operation, 200 nanoseconds-are allotted.
The word current has two timings. The timings are
called “Word Phase I’ and ‘““Word Phase I1.”

O 20 40 60 80
A

100 120
A 1

» gineering feasibility and cost

140 160
1 N 1

Digit current consists of a pair of pulses, one positive
and the other negative. The first timing is called ‘“Digit
Phase I”” and the second “Digit Phase I1.”

The digit current timings shown by broken lines mean
that the digit driver advances the digit current in the
same amount as the propagation delay in the memory
plane. _

This technique insures the precise time relation of the
word and digit current for any address.

System design

The system design should be accomplished taking en-

into consideration-

Some of the possible combinations of word and bit
nanoseconds

180 200 220 240 260
I] 1 1 [l

Read Instruction

Address

Word Current

Sense Signol

- Output Buffer

Write Instruction

Address

Word Phaée I

15"
o

Digit Phase

Word Phase II

-~
—/__\‘:__ \\\
——— — — — — —

Digit Phase II
-~

P

Word Current

Digit Current

Figure 1—Timing waveforms

Design of 100-Nanosecond Read-Cycle NDRO Plated-Wire Memory

sizes are shown in Figure 2. If the costs of pheripheral
circuit are as in Table 1, the total peripheral costs be-

come as follows:

[A] $17,100
(B] $13,400
[C] $9,600 .

Word Driver

Sense Amp./Digit Driver

Matrix-Switch

72 bits $1 16 K words $10 Lo
144 bits $1.5 8 K words $7.5 8 K words $1.5
288 bits $2 4 K words $5 4 K words $1
TABLE 1—Assumed c;)sts per unit of peripheral circuits
728B 1448 2888B
Sense
I6KW /Digit BKW Sense/oig“ ak Sense/Digit
; w i
l HEREE HERERNEEERE
|| - I s [l [
— — { o8Il :Memory! Plane ;
® |
x | | S [|Memoryl Plane 28— | l l
- X
£ [u vor | I
s [remen 283 l
c | |] |
2 —{Plane Case (C)
8 || .
o | |
»
o [Case (B)
5
—
Case (A) 728 728
Sense Sense
/Digit /Digit
| | | 1448 TT1] 2888
8KW Wotrix— Switch l 4KW | Matrix - Switch j
HEEEE [HEREERERRENE
— | §x—] I :
—] | POE 'Memory! Plane |
g | I 3‘575;__ | '
= x| |Memory|Plane s l l I
|22z l
23s I

Case

(¢)

Case

(B') Figure 2—Some of the possible combinations of word and bit sizes

971

972 Fall Joint Computer Conference, 1968

If the selection-matrix as used by UNIVAC is intro-
duced into [B] and [C], the total costs are as follows:

[B'] 13,000
[C'T $ 8,800

Thus we see that the selection-matrix method is not
very effective. The cost down, less than ten percent,
will not be sufficient to compensate the considerable cir-
cuit delay in the matrix. This method could advanta-
geously be used with the byte-by-byte machines. Thus,

we chose the case [C].

1 Intersection/bit or 2 Intersections/bit

Information is stored in a restricted area of the plated
wire, which is surrounded by word line. Intersection of
plated wire and word lineis sufficient to store one bit ofin-
formation. However, we have two-intersections-per-bit-
system in the plated-wire memory, reminding us of two-
cores-per-bit system in the ferrite core memory.

Features of one intersection-per-bit system and two
intersections-per-bit system are compared in Table 2.

2 Intersections/Bit System

(1) By making the distance between the wire (1) It is possible to make the wire pitch

smaller. However if the space occupied by a
pair of bit lines is considered this system
has not always a higher density.

(2) The comparatively wide space left be-
tween the word line and the ground plane
increases the effectiveness of word field to the
cylindrical film.

The common mode noise on the word line is
eliminated at the differential sense amplifier.

Items 1 Intersection/Bit System
'g a%ld ground plane as small as possible, a bit
B W pitch of 1 mm is feasible.
= & '
<§ ':‘: (2) If the terminating resistors are connected
g g between adjacent lines cross-talks can be.
[3 .
0.8 made considerably small.
Capacitive To reject common mode noises, conventional
Noise from transformers or baluns must be used.
Word lines
. o Some of the bit connection system requires
255 E common mode rejection means such as trans-
E 2 g < o formers,because the maximum common mode
2 & *3‘5 & voltage swing to the input of conventional
B 885 linear IC’s is about 1 volt which is less than

the voltage generally occurring.

As a matter of principle, no voltage change
at the sense amplifier occurs.

Memory Cell

The cost per bit of & memory cell is low.

The cost is about twice as much as that in

Cost the one-intersection-per-bit system.

(1) The length of a word line is short so Difficulties arise in the drive circuit.
Length of that the overall size of the plane is small.
the Word (2) Since the back voltage of the word line
Line is smaller with regard to the same word cur-

rent, the design of an IC word driver is easier.

Wiring and stacking of the plane must be The signal-to-noise ratio is increased be-
Readout done carefully in order to avoid the noise cause two readout signals from each inter-
Signal from outside the plane. section are added.

TABLE 2.—Comparison of 1 intersection/bit system and 2 intersections/bit system.

The smaller the back voltage of the word line, the
easier the introduction of the IC word driver, and one-
intersection-per-bit system is adopted for a 100 nsec
read-cycle memory.

The connection of digit lines is shown in Figure 3.

This connection prevents the common mode volta,gg? of a
digit driver from being applied to the sense amplifier.

Bipolar digit drive system
The use of bipolar digit current to write the informa-

Design of 100-Nanosecond Read-Cycle NDRO Plated-Wire Memory

973

tion is popular in NDRO memory systems.!+?
The advantages of the bipolar drive are as follows:

(1) A larger output voltage can be obtained, because
even if the information is stored with a large digit
drive current, the information in the other location
is hardly destroyed.

(2) As a matter of principle, no de level shift occurs on
the digit line. This allows the d¢ coupling of a sense
amplifier to digit lines.

(3) A transformer can be used in the digit drive circuit.
It can make the circuit simple and reduces the cost.

(4) As mentioned in (1), the threshold of digit current
beyond which the creep of walls happens can be in-
creased. The increase is favorable to improve the
yield of usable plated wires.

It was found that the bipolar digit drive system has
following merits.

If two phases of timing are provided for the word cur-
rent, one for the even planes and the other for the odd
planes, it will become unnecessary to invert the polarity
of readout signals or digit currents according to the
plane of the selected word. ,

As shown in Figure 1, the information is written by
the coincidence of ¢“World PhaseI and ‘“Digit Phasel
for the even planes. For odd planes, the information is
written by “Word Phase II” and “Digit Phase I1.”

Since the polarities of the digit current in “Digit
Phase I’ and “Digit Phase II” are always opposite, the
odd planes and even planes are written automatically in
the opposite sense by the same digit current pair.

A schematic diagram of the digit logic which controls
digit driver is given in Figure 4.

0 ~ 1023

Control of word timing or digit timing

When the propagtion delay of signals in the memory
plane is not negligible compared with the duration of
readout waveforms, it is not efficient to add up two
waveforms by a differential amplifier; the one directly
travels to one of the input terminals of the amplifier;
the other travels once to the opposite end of the memory
plane and then returns to the other input terminal of the
amplifier through a balancing digit line.

The time difference of two waveforms to be added is
so significant that the peak amplitude of the resultant
waveform is greatly influenced by the position of signal
source in the memory plane.

However, if the direct waveform is used exclusively as
a signal, the change in the peak amplitude of the signal
with the selected address will be slight and dependent
only on the attenuation of signals in the digit line. It
should be noted that the delay of signal waveforms be-
comes remarkable.

Methods to compensate the propagation delay of sig-
nals by adjusting time relations of pulses have been
discussed in many papers. There are two main methods.
One is achieved by controlling the timing of word cur-
rents against a fixed timing of digit circuitry,® and the
other employs strobe pulses and digit drive currents
with controlled timings against a constant word
timing 56

In the word control system, the delay time of the
readout signal, spent after the address information has
been given, is always adjusted to the worst case.

In the digit control system, the readout signal is ob-
tained as soon as possible. The digit control system will

/);, Word Phase [

/ Even Plane /

5T A
;r/ (// / 5:R
1024 ~ 2047 /p Word Phase I
R / — / 0dd Plane / sk

th

Digit

2048 ~ 307!

/4 -
/A Word Phase II Sense -
Amplifier

Driver.

e

/ Even Plane /
4 /

i

3072 ~ 4095

174 ; :ER
/)'; Word Phase I

A

——

A
vy
b

#
Z

f

Odd Plane / .
/

/4

Figure 3—Connection of digit lines

work most satisfactorily when used in the connection
shown in Figure 5, where the digit driver and sense am-

974 Fall Joint Computer Conference, 1968
Digit
Phase 1
Digit
Phasell -
(a) Conventional
Even/Odd
Piane
Digit
Phase I
{(b) New System
Digit
Phase IT v 4
] Posit.ive
_ _ Driver []
‘Write i
Information Negative
’ Driver Lo
pamm— to Planes
Positive &1}
Driver
| | Negative | |
Driver
, (c) Driver Logics
Figure 4—Digit logics
Word Line
L i A i
R
v . // / AAA E\
B "‘Dl | £/ Mn 7 My
R (04 (74 (V4
/5
é i / / / R
. N
T Z 7 7R
Digit [v 2 :
Driver i — £
—T ya / /. ®
Sense —E§_1 o / ({ ~ .'\A/\,—g
Amplifier ’
= / /; /
yd /

WA

R = The chordcvterisiic inpedance of digit lines

Figure 5—A digit ‘driver and a sense amplifier are connected on the same side of the memory plane

side.

plifier are connected with the memory plane on the same

Features of both methods are listed in Table 3.

Design of 100-Nanosecond Read-Cycle NDRO Plated-Wire Memory 975

Items Word Control Digit Control’
When the selected memory location is far-
Word from (near to) the sense amplifier, the word Fixed.
Timing timing occurs early (late). i
When the selected memory location is far
Strobe Fixed from (near to) the sense amplifier, the strobe
Timing timing occurs late (early).
When the selected memory location is far
Digit Fixed from (near to) the digit driver, the digit
Timing timing occurs early (late)
TABLE 3—Comparison of word control system and digit control system
Write Read
) (Word Phase 1)
Write Read

(Word Phase II)
N N

- Word Current

Digit Current

/Mg Strobe Pulse

Figure 6—Timing waveforms in the digit control system

Let the memory location nearest to the digit circuitry
be M,, and the farthest M, in Figure 5, then an example
of the time relation using the digit control system isas
shown in Figure 6.

In the cases such as write-after-write, read-after-read,
and write-after-read, the time separation of succeeding
timings may be smaller than the typical value. How-
ever, it is not so serious as will be shown in the case of
the word control system. _

Figure 7 shows another time relation of word and
digit timings when the word control system is employed.
The timings of digit circuitry are fixed irrespective of
the selected memory location.

As shown in Figure 7, the time separation of succeed-
ing word currents becomes very small in the worst case.

The reason why the situation is worse with the word
control system is that the time relation is adjusted only
by the word current, causing a significant approach of
leading and trailing word currents.

/ .///

Ma /7 T MY Mg/’-- \ n

I\ 7N AN
N e st

A N\

Word Current
Di git Current

Strobe Pulse

Figure 7—Timing waveforms in the word control system

The timing generator for a total system is shown in
Figure 8. The delay circuits connected with address de-
coding logies are used to control the bit timings in ac-
cordance with the memory address selected.

Strobe circuit

A two-stage monolithic differential sense amplifier is
followed by a modified CML circuit which detects the
polarity of readout signals at the strobe timing, and
also holds it as long as the strobe pulse is present.

As shown in Figure 9, the polarity detecting strobe
circuit consists of a current switch made of transistors
Qi and Qo, feed-back loops made of transistorg Qs and
Qu, steering transistors Qs and Qs, and an emitter Qs
which makes the current switch inactive when the
strobe pulse is absent. '

At the moment the base level of transistors Qy is
shifted from -0.8 volt to -1.6 volt, i.e., the strobe pulse is

976 Fall Joint Computer Conference, 1968

given, the current switch is turned on. Since both the Word seleztion matrix
transistors Q: -and Q. cannot conduct simultaneously,

3 . . Diode-steered transformer matrix” and transistor
one of them assumes ‘“‘on’’ state answering to an imbal- . - \ .
matrix? can be selected as word selection matrices.
ance, however small, present between the base levels of , o
. . The feature of the two methods are compared in
input transistors Qs and Q,. T
. able 4.
Word (Even Plane) Word (Odd Plane)

SV

.

Execute E 3
1 L

Instruction %V 3300
|Dz D — D D
53 14 53 150
-5V Write
150 300
Strobe
300
32 150
9 53 53 300
D D D D
é}_ 17 150
Write

Digit Phasel Digit- Phase I
(Arabic figures show delays
in nanoseconds)
Figure 8—Timing pulse generator D= Delay Lines

Design of 100-Nanosecond Read-Cycle NDRO Plated-Wire Memory 977
Items Diode-steered Transformer Matrix Transistor Matrix
(1) The current capacity must be large (1) The current required is 1/8 times the
enough to supply the word current. word current.
Switch (2) The characteristic impedance of the bus (2) The characteristic impedance of the
Lines line must be as low as possible to minimize bus line can be made higher.
the voltage shift of the bus line. A large part L. .
of the power wilbbe wasted in the terminating @) fI‘he voltage swing 15 a function of
register transistor parameters, It is generally smaller
: than the peak amplitude of the back volt-
(3) The voltage swing must be greater than ages on the word line.
the peak amplitude of the back voltage on the
word line.
Problems in the No particular problems exist., Since the bus line is apt to ring, a damping
current Switch resistor must be added.
Lines
Problems in the There is hardly any current in the ground Instead of the voltage source bus line the
Ground Line plane, because the transformer prevents com- ground or power line supplies the current to
mon mode current. ~ the word line. Accordingly the impedance of
the ground or power line must be kept as
low as possible.
(1) The balance in the transformer windings (1) ‘Transistors with less collector-to-base
Problems in the must be improved to prevent the common capacity are recommended.
Half-Selected mode voltage on the primary winding from (2) The voltage swing of the base driver
Word Current inducing a differential mode current in the (voltage switch) must be designed to be
secondary winding, small.
(2) Diodes with less junction capacity must
be used.
TABLE 4.—Comparison of word selection matrics
Figure 9—Polarity detecting strobe circuit
Output
£470 ézoo ézoo %470
9 <
100 l
90 1 P
)/ N Strobe
' mn Pul
90 ulise
to Planes pPCTB % 1K 720 % IK
90 .
- o -6V
100p
90 11
1
Differential

Amplifier

978 = Fall Joint Computer Conference, 1968

When production is taken into consideration, a tran-
sistor matrix is preferred in the NDRO plated-wire
memory. A blockdiagram of word selection circuits is
shown in Figure 10.

Ezxperimental results

A cross-sectional model of the system was con-
structed, and it worked as expected.

The memory stack consists of four modules each con-
taining eight planes. Each plane has 128 word lines by
288 plated-wire digit lines.

The memory wire is prepared by electroplating perm-
alloy onto a bronze phosphide wire 0.13 mm in di-
ameter. The plated wires are spaced at 1.0 mm centers
and the word lines are spaced at 1.5 mm centers.

The back EMF of the word line for 300 milliamper-
word current with a rise time of 20 nanoseconds is ap-
proximately 14 volts. A 40 milliampere digit current

gives rise to a typical output signal of 10 millivolts,

The basic logic element exclusively used in the experi-
mental model is a current-mode-logic cireuit 4 PB 80
which has two four-input gates. Typical propagation

delay of u PB 80 is 3 nanoseconds.

A monlithic integrated differential amplifier xPC7B
is used for the sense amplifier. It has a bandwidth of 40
MHz and a voltage gain of 40 dB.

Transistor selection matrices and digit drivers are
temporarily constructed by discrete components.

The propagation delay and the attenuation per 1-K
words were measured. The results obtained are 14 nano-
seconds and 1.5 dB.

Adjustment of terminating resistors was necessary to
minimize the digit noises.

The use of diodes, connected back-to-back in series
with the digit line, was satisfactory.

The minority carrier strage in the diodes and the
junction capacity gave rise to a slight ringing on the
digit line.

CONCLUSION

It has been pointed out that the delays in address decod-
ers, sense amplifiers and strobe circuits are the princi-

Address Decoders
Registers .
Memory Plane
o e e J
- Matrix
Selection
Z /
: W / / / /
® ' 7
E> Base Line é
Selecti .
election x Va 4
b _
N 5 y
Emitter Line s V
Selection § a7
[> Word Phasel 2
c Z /
D :
LJ;> . v
d / ﬁ
I:>WordPhoseI[AR
(Word Phase 1) : ((

for Read Cycle

Emitter Line Selection

Read / Write
Word Phase 1
Word Phase IT

(Word Phase 1)

Bose Line
Selection

Emitter Line Selection
(Word Phase 1)

Figure 10—Blockdiagram of word selection circuits

Design of 100-Nanosecond Read-Cycle NDRO Plated-Wire Memory 979

pal factors determining the read cycle time of the mem-
ory.

Small-scaled transistor selection matrices in combina-
tion with CM L decoders were employed, and a decoding
delay of 30 nanoseconds was obtained.

A polarity detecting strobe circuit was developed
with a modified CML circuit. The strobing delay ob-
served was less than 5 nanoseconds.

The method to compensate the propagation delays in
the memory plane was discussed. It was shown that it is
desirable to control the timing of digit ecircuitry.

ACKNOWLEDGMENT

This paper is a part of work done jointly by many re-
search engineers of the Central Research Laboratories
of Nippon Electric Co., Ltd.

The author would like to express his cordial thanks to
Dr. I. Someya and Dr. Y. Sasaki for their support and
guidance, and also to his colleagues, particularly
Messrs T. Furuoya and H. Murakami for their coopera-
tion in the construction of his memory system.

REFERENCES

1 CFCHONG R MOSENKIS D K HANSON
Engineering design of a mass random access plated wire memory
Proc FJCC 363 1967
2 JP McCALLISTER C F CHONG
A 500-nanosecond main compuler memory ulilizing plated-wire
elements
Proc FJCC 305 1966
3 BAKAUFMAN PBELLINGER HJKUNO
A rotationally switched ROD memory with a 100-nanosecond cycle
time
Proc FJCC 293 1966
4 SAMEDDAUGH K LPEARSON
A 200-nanosecond thin film main memory system
Proc FJCC 281 1966
5 TISHIDATE :
Circuil techniques for one hundred nanosecond thin film memory
Colloque International sur les Techniques des Memoires
Editions Chiron Paris 1966 p 671
6 T ISHIDATE
Delay compensation concept in very high speed memories
NEC Res and Dev 9 129 1967
7 EEBITTMANN
A 16 K-word, 2-Mc magnetic thin film memory
Proc FJCC 93 1964

High speed, high-current word-matrix using charge-

storage diodes for rail selection

by S. WAABEN and P. CARMODY

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

INTRODUCTION

Diode matrices used to select the path of an unidirec-
tional or bidirectional matrix current are well known.*=3
Conventional matrices use a low storage diode cross-
point for unidirectional current and a charge-storage
diode erosspoint for bidirectional current. For typical
magnetic memory cells the required currents approach
1 ampere. Also, for magnetic thin film memories the
required word current duty cyele is small, typically 30
ns out of a store eyele time of several hundred nano-
seconds. To conduct such currents, the required silicon
area for a diode is almost one order of magnitude less
than that required for a transistor. Since the cost of a
semiconductor device is strongly dependent on the
silicon area used, diode matrices are therefore com-
monly used for the economical selective drive of mag-
netic memory stacks. For many memory system con-
figurations, because of the significant cost of high cur-
rent transistor matrix selection switches, the cost per
word line of matrix rail selection is comparable to that
of the individual word selection diode. Large matrices
are therefore commonly employed to share the switch
cost among many matrix crosspoints. The penalty is
more stray impedance and system noise as well as diffi-
culty of reliable assembly of large arrays. It will be
shown how this rail selection switch function can be
implemented advantageously by a circuit combination
of a low cost, high-current charge-storage diode and
an inexpensive 100-200 mA current transistor. No
transformers are needed. Furthermore, the usual num-
ber of rail selection transistors ecan typically be halved
by a tandem diode matrix arrangement.

In this paper the basic schemes are presented. The
design tradeoffs are then given and discussed. Experi-
mental results are shown.

Basic charge-storage diode rail selection

Figure 1 is the schematic of a diode matrix of 32 word

rails and 32 diode rails for a plated-wire store which
will be used*as an example. The distributed word rail
loading capacitance is 32 X 32 pF ~ 1000 pF. The dis-
tributed diode rail capacitanceis 32 X 3 pF = 100 pF.
Resistors for biasing the matrix diodes in such a man-
ner that nonselected diodes will remain backbiased are
also shown. Note that inherent in all diode matrix
selection schemes the matrix rail selection switches
must carry the current of the selected path.

To select the crosspoint of a word rail and a diode
rail, one of the 32 word rails is changed from zero volt

_to E, volt by turning the charging current L. on. If

I is constant then the word rail voltage rises linearly
to E; volt. When the rail voltage reaches Ei, CSD; goes
into forward conduction and the rail voltage is thus
clamped to E;. From this point on, charge is accumu-
lated in CSD; by the continued flow of Iea:. All matrix
diodes remain backbiased since the diode rail voltage is
more positive than the glamped word rail voltage.

Similarly, the closure of a diode rail selection switch
generates a current flow through CSD,. Charge has
now been accumulated in the two matrix rail charge-
storage diodes, CSD; and CSD,. The charging currents
L and L. are supplied via two selected low current
transistors. In the reverse conduction phase of the
charge-storage diode, the voltage drop across the diode
is the junction voltage across the forward biased junc-
tion of a reversely conducting diode minus the IR drop
across the body resistance. Therefore, by closing a
common control switch transistor to ground potential,
current will flow in the selected path as long as there
is charge available in the electrically floating charge-
storage diodes. Notice that the current handling and
turn-on and turn-off requirements on the matrix rail
selection switches are relaxed and decoupled from the
high-speed, high-current requirements of the seleeted
matrix path. Rise time, amplitude and duration of the
current pulse are determined by the circuit parameters
and the common control circuitry described below.

981

982 Fall Join.t Computer Conference, 1968

DIODE RAIL BIAS VOLTAGE
+E3

#Ez
TIMING | |
WORD RAIL
= SELECTION ke KQ
< : < .
. WORD RAIL
chy DIODE RAIL
—a! [_ o ‘
.50, /\4\/ . ,
300nH

C'N

Lo
M e @%
|

+E,0—d¢

Ichzf [

TIMING | DIODE RAIL o/~ CHARGE STORAGE
——"| SELECTION TXCSD., 3 DIODE C.S.D.
T 4
Tt BASIC .50
NORMAL COMPUTER Sonmon 503 +Eq
AAA
DiooE w YV O
— CURORRE?‘JT — R
LONG T TIMING
CHARGE STORAGE
DIODE T

FIGURE 1—A basic 32X32 diode matrix with charge-storage-
diodes for matrix rail selection

As an extension on the basic scheme the number of
rail selection switech drivers ¢an be reduced by a cireuit
arrangement where groups of the rail selection diodes
are shared by common switch drivers. Figure 2 illus-
trates this principle as applied to the diode rails. A
16 word rail by 64 diode rail matrix is shown selected
by 16 + 8 4+ 8 = 32 medium current transistor switch~
es. This should be compared to 80 high-current switches
for a classical 16 X 64 matrix. Alternatively, 64 switches
would be required for a square matrix covering the same
1024 matrix crosspoints. It can be seen that the charge-
storage diodes are also arranged in matrix form which
we shall refer to as being in tandem with the original
matrix.

The practicality of the basic scheme presented above
depends on a tradeoff between particular circuit param-
eters and requirements. A brief analysis of typical
cireuit performance will be presented next.

Required charges

Word current charge area

The nominal plated-wire store word current pulses
shown in Fig. 3 require the following amounts of charge:

t

QNDRO = fidt = 14-0.4-40-10~ = 4 nC

0

QDRO = 15-1-50-10~° = 25 nC

This amount of charge must be supplied by CSD,, CSD.
and the common control eircuit. The following arith-
metic indicates the relative sensitivities of the param-
eters involved. For a desired word current peak I,
tI.” the re-
rise

2Qs. Also since

and a cbnstant rising current slope s =
quired charge Q is given by: I, =
s = %, where E is the fixed driving voltage minus the

semiconductor junction drops of a selected path, and
L is the driven word loop impedance, it follows that

Consequently for a fixed available Q,a10 percent varia-
tion of E or L will result in 5 percent variation of I peak.
This reduced sensitivity to variations in L is significant
because L may vary from word loop to word loop while
Q and E are more readily controlled in a memory sys-
tems environment. The charges of the matrix capaci-
tance will be discussed next. ’

Matrix capacitance charges

To change the voltages at the matrix terminals
charge must be supplied to or drained from the matrix
rail capacitances. Here only the charges at the word
rail will be discussed. .

The word rail terminal of the word line must for
pulses with equal rise and fall times supply twice the
basic 25 nC for the DRO and 4 nC for NDRO. At the
word rail terminal there are three possible sources of
charge available to supply the word current (see Figures

land 4):

(a) Therail selection switch.
(b) The charge-storage diode CSD:.
(¢) The word rail capacitance. .

To attain a linearly rising word current the voltage on
the word rail must remain constant during the rise time
of the word current pulse. Therefore the role of CSD,
is twofold (I) to limit and clamp the charging of the
selected word rail ecapacitance to a well-defined voltage
and (II) to implement a low impedance charge reser-
voir at a fixed votage level during the rising portion of
the word current. This buffer can in principle be either
the CSD or the large word rail capacitance of 1000 pF.
However, such a charge drain from the word rail eapaci-

High Speed, High Current Word-Matrix 983

|+54

DIODE

— RAIL NO. !
SWITCH]
Ieh,

e, (3 :
R?v'hvcuq fx ;f T
#%s o %s %

|
' ' DIooE
E; RAIL
Ien, A |Ag A; Ag |8 [B2 yBs |Be Hi [H2 (H3
DIODE | j’
—»| GROUP A
SWITCH

WORD RAILS* 16, SWITCHES= |6 g%w
DIODE RAILS= 64, SWITCHES = 8+8

l+Ez Ten,

oH

FIGURE 2—Tandem diode matrix with charge-storage-
diodes. There are 16 word rails and 64 diode rails. The word rails
are operated as indicated in Fig. 1. The diode rail charge-storage-
diodes are arranged in a diode matrix of eight groups of diodes
(A, B, . . ., H) each of eight diodes. After charging, a selected
crosspoint is driven by the closure of the common control eircuit.

tance will produce access noise during read. It follows
implicitly from the discussion above that in the case of
the 8 nC necessary at the word rail terminal for NDRO
that the charge storage feature of the word rail diode is
in some ways incidental. For NDRO operation in par-
ticular the matrix access time is dominated by the
charging time, say 75 ns, of the word rail capacitance
of 1000 pF charged to 15 volts at the corresponding
charging current of 0.2 A. The finite lifetime of the ca1-
riers in the CSD does, however, set a practical limit to
how small a rail selection current one can realize and
still achieve a 1 ampere DRO pulse. The next section
will summarize the charge-storage- dlode phenomena
briefly.

Charge-storage diode properties

The continuity equation for charge deseribes the
charge flow through a diode:

dQ Q .
dt 7 ®)

The term — is the amount of charge disappearing by
T

recombination in the diode and the other terms expresS
the conservation of charge. Assume a current Ip i°
conducted in the forward direction for a period of time

tp. Charge is accumulated in the diode. The efﬁclency ‘

E of this charge reservoir measured at time tpis:

Charge Available _
Charge Supplied

Lrr(1 — e —t/7)
IF M tp

E=

I000mA

A WRITE
‘ m

400 mA
NDRO

-
TIME nS

20 ‘ 50

t
Qnpro® fi.-dt.=-;—-04-20°I0‘9=4nCOUL
o

. , |
Qurite® [irdt = 1-50-10"9=25ncOUL
(o]

FIGURE 3—Current, time and charge for nominal word currents

It follows that the longer the lifetime = the higher the
efficiency. The necessary charging time is given by :

b= (1-2)

Figure 5 shows typical calculated tradeoffs using this
expression.

Notice that limiting the peak current with a common
control charge-storage diode eases the charge uni-
formity requirement on the many rail selection diodes.
The rail diode requirement is therefore only single
ended; namely, more charge is required by the rail
diodes than the amount in the common control diode.
A simple common control circuit for a 400 mA peak
NDRO pulse is implemented using a short lifetime
diode, thus securing a maximum peak word current
which is insensitive to the duration of the charging
pulse. The 1.0 A peak DRO pulse is conveniently im-
plemented using a longer lifetime diode for common

control.
Razil selection switches

The rail selection switches can be implemented in a
variety of ways. The ‘“optimum’ choice depends heav-

Fall Joint Computer Conference, 1968

084
Q v°z
l(zoo mA)
ON
l@ *NPN"
‘LJ" c"' —je—4 WORD RAIL
c.8.0,
OFF v
1 -DRO
- » .4 AMP-NDRO
32

charging circuit. The current branches

FIGURE 4-—A word rail
‘ are indicated.

ily upon the state of the art of the integrated semicon-
ductor technology.

Figure 4 is the schematic of a simple word rail selec-
tion switch implemented with a charge storage diode
and a medium current transistor. For selection Q, is
cut off and Q. is driven into conduction. The word rail
voltage is now rising as the current flowing through the
emitter of Q. charges the 1000 pF. Eventually the CSD,
goes into forward conduction and the word rail voltage
is clamped to E;. The charge flow through the emitter
of Q; is now accumulated in the CSD. In this manner a
selected word rail resides at + 15 volts and will remain
short circuited to this voltage as long as there is charge
available in the CSD. A Darlington pair circuit reduces

300

t=- Tln(I-Q/IfT)

0 i S A L i L 1

0 100 200 300 400 500 600 700
TIME (ns)

800

FIGURE 5—Typical calculated tradeoffs from:

tr = '—T]n(l —_ &—)
) r.IF

50 nS, 200 mA/DIV

FIGURE 6—The branch currents monitored at the word rail
terminal shown diagrammatically in Fig. 4. Vertical scale
I = 200 mA/div. Horizontal scale 50 ns/div.

the required selection switch standby current drain by
one order of magnitude. It is also worth mentioning
that such a circuit provides isolation between the high
current access circuit and logic circuitry. This feature
is important for access noise minimization.

The schematic of a charge-storage diode diode-rail

125 nS, 200 mA/DIV

FIGURE 7—Traces 1 and 3 of Fig. € extended for DRO
operation. Horizontal scale 125 ns/div.

High Speed, High Current Woi‘d-Matrix 985

i=200mMA/DIV
v=5Vv/DIV
t=125NS/DIV

FIGURE 8—The voltages at a pair of selected diode and word
rails: 5 volt/div, 125 ns/div. The DRO current is also shown,
200 mA /div.

selection switch is similar to that of the word rail. The
function of this switch is similarly to provide a short
circuit at the matrix rail for at least as long a time as
current is driven through a selected loop.

Experimental results

Both the simple and the tandem diode matrices have
been implemented. Oscilloscope traces for the simple
matrix are shown here. The traces for the tandem ma-
trix are similar but more complex. The stored charge
required can be produced by a fairly large range of
combinations of charging current amplitudes and dura-
tions. As an example, Figure. 6, trace 1, shows the charg-
ing current from the word rail selection switch. The
NDRO word current is shown as trace 4. Trace 2 is the
current charging the word rail capacitance. When the
word rail voltage rises to the turn-on level of CSD, this
current decreases to zero. The charging and reverse
current of the word rail diode is shown as trace 3.

To generate the word current pulse the following
operations take place in the common control circuit.
First a 100 Q resistive discharge path is switched on.
This path starts discharging the 100 pF stray capaci-
tance of the diode rail slowly. Thus the word current
rises with a rounded slope and less access noise is gen-
erated. The full word current is reached by switching
CSD;to ground.

50 nS, 200 mA/DIV

FIGURE 9—The DRO and NDRO pulses are shown
superimposed. Vertical, 200 mA /div. Horizontal,
50 ns/div.

DRO word current is generated by increasing the
duration of the charging of the diodes. Figure 7 shows
traces 1 and 3 of Figure 6 extended to accumulate suf-
ficient charge for the 1 ampere DRO pulse. The word
and diode rail voltages during DRO operation are
shown in Figure 8. The upper trace is the diode rail volt-
age, which is initially at the excessive bias value of 25
volts. The lower trace shows the word rail voltage ini-
tially residing at ground level. For selection the word
rail voltage rises to the clamped level of E; and the
diode rail voltage drops to a value low enough to per-
mit charging of CSD, and CSD; while still maintaining
a reverse bias on the selected access diode. This bias
condition prevails until the common control circuit is
activated. As mentioned above the word current ceases
when the common control diode CSD; is depleted of
charge. The rail voltages are subsequently recovered to
the initial conditions. Figure 9 shows the NDRO and
DRO pulses superimposed for comparison. A diode
of approximately 300 ns is calculated from the wave-
forms shown.

CONCLUSION

Charge-storage-diodes in combination with 100-200 mA
selection transistors can readily be arranged for diode
matrix rail selection of five to ten times larger currents.
The limit of the reduction of the current handling re-
quirement on the rail selection transistors is determined
by (1) the available time for charging of the diodes and
(2) the lifetime of the carriers in the charge-storage-

986 Fall Joint Computer Conference, 1968

diodes. The switching speed requirements on the tran- REFERENCES
sistors are also relaxed since the matrix current pulse is
not conducted via the rail selection transistors. Further- 1 AMELMED RSHEVLIN

more, the number of rail selection transistors can typ- , ﬁ;‘ﬁde Ifm’e%gg”etz:"g ”“1’;"5"()’ Y
rans P ec 195¢

ically be halved by charging the rail selection by shared 9 TRFINCH A HBOBECK

driver transistors. The waffle iron store
_ ISSCC Digest of Technical Papers 1963 pp 12-13
ACKNOWLEDGMENTS 3 GADODSON JARUFF
. . Charge storage diode for memory applications
It is a pleasure to thank T. R. Finch for active interest ISSCC Digest of Technical Papers 1964 pp 104-105

and constructive comments.

Automatic checkout of a large hybrid

computer system

by JESSE C. RICHARDS

Lockheed Missiles and Space Company
Sunnyvale, California

INTRODUCTION

This paper describes the Automatic Preventive Main-
tenance (APM) Program used on the hybrid computer
system installed in 1967 at Lockheed Missiles and Space
Company, Sunnyvale, California. This is one of the
largest hybrid computer systems in the world. It has
a multi-processor digital computer (CDC 6400) with
five remote entry display units (CDC 211), 32K core
storage, and a large storage disc. Because of these capa-
bilities the APM program has many unique operating
features. The size and the cost of the equipment make
it imperative to keep downtime to a minimum. To do
this the system is subjected to many layers of manual
and automatic checks. This paper will concentrate on
the APM tests of the analog to digital linkage equip-
ment and the analog computer section with the empha-
sis on the analog computer section. The digital com-
puter section of the hybrid computer is majintained by
the vendor and therefore is not included in the dis-
cussions of the APM program.

Background

When LMSC ordered its hybrid computer in April
1966, an integral part of the procurement was a soft-
ware preventive maintenance (APM) program. The
digital computer section had a diagnostic routine fur-
nished by the vendor. The APM program had to be
defined for the four analog computers and the two link-
age equipments, Intracoms. Shortly after the contract
for the hybrid computer system was awarded, meetings
were held with vendor representatives to outline the
AMP tests desired and to define the goals. The initial
set of APM tests were designated Phase I tests. The
Phase I tests were to be simple mechanizations and rep-
resent a limited investment in programming time and
in checkout patchboards. A complete evaluation of the

987

Phase I tests would determine the future direction of
the APM tests.

Phase I APM guidelines
Our overall thinking on what APM tests should do
can be summarized by the following formula.

T=C+A+D+R)

Where:

T = Total time to prepare computers for hybrid
operation

C = Time to run tests

A = Time to analyze test results

I = Time to isolate the malfunction after analyzing
test results _

R = Time to change, adjust or repair faulty units

The APM tests were designed to minimize the terms
enclosed within the brackets. The overall guidelines
established for the Phase I APM tests were as follows:

Speed The total time of testing was to be a maximum of
one-half hour for each of the four analog computers or
two hours for the entire hybrid system.

Simple Mechanization The tests were to check individ-
ual units as opposed to checking a long chain of units,
in order that a malfunction could be easily pinpointed
to a particular unit. This made the digital programs
required for the various tests simpler to write and de-
bug.

Stand Alone Each test would run independently so that
the tests could run in any order.

No plugging in of Cables or Auziliary Equipment The
tests would be run without altering the equipment con-

988. Fall Joint Computer Conference, 1968

figuration. No cables were to be disconnected nor were
auxiliary black boxes to be plugged into the com-
puter.

Stmultaneous testing Up to four analog computers could
be checked simultaneously. Unused analog computers
could also be checked out while a hybrid problem was
running.

Minimum Equipment Tie-up Where possible the test
would tie up only the particular machine under test.

DVM Readings The DVM would normally be tested
first and then would be used as the measuresment stand-
ard. Only one DVM reading of an output would be
taken rather than taking a number of readlngs and
averaging them.

Format of printout Printout was to be of the exception
type; that is, only bad units would be listed, and thus
the results would be easy to interpret.

Hybrid System Software Tests were to use standard sys-
tem software and the normal system configurations,
thus testing the system in the way that it would be used.

Eage of Operation Tests were to be easy to operate and
require a minimum of special training to perform.

Hands Off A test would run to completion without
pauses for operator intervention.

Patchboards Patchboards would be wired with normal
patch cords and not “hard wired.” Special equipment
would not be mounted on the patchboard. No effort
would be made to load all tests on one or two patch-
boards.

HINDSIGHT ADDITIONS
Print/out '

Where a test of a unit such as a multiplier involves a
series of thirteen tests, there are thirteen possible fail-
ures. Rather than list bad units under each of the tests,
the printout lists the units in a column and the various
test results in a row next to each unit. This presents a
much better one glance picture of a particular unit.

Figure 1 shows a sample of our present printout on
multipliers.

Display unit control

As originally delivered, the tests ran from card
decks. Everything was converted to be run from the
remote display units. The APM tests all reside on the
‘mass storage device (disc) and can be copied into the
central memory for execution at any time.

System description

Figure 2 is a block diagram of the hybrid computer
configuration. The list of equipment and a brief system
deseription is included in APPENDIX (A).

Hybrid computer tests

The APM tests of a hybrid computer system fall into
three major categories. They are:

Discrete tests

Discrete tests are tests of logic units, such as flip-
flops, Nand gates and binary-decimal up/down count-
ers, or tests of units that have a predetermined logic
output pattern for a logic input pattern. Tests of the
general purpose logic and linkage equipment fall into
this category. These tests are performed very efficiently
under digital computer control. In a hybrid computer
system many of these tests can be performed only un-
der digital computer control. These tests originate and
terminate in the digital computer without being trans-
formed out of the discrete world.

Hybrid unit tests

Units that are not exclusively digital or analog fall
into this category, such as analog-to-digital converters
and digital-to-analog converters. The inputs to these
units originate on one type of computer and terminate
on the other. Consequently these tests are less adapt-
able to digital checkout than the discrete tests.

Analog computer units tests

Analog computer units, such as multipliers, integra-
tors, amplifiers, servo set potentiometers and resolvers,
operate in a linear-parallel fashion and are the least
adaptable to digital computer check out. These units
have to operate correctly over a + full scale voltage
range, a frequency range up to 100 khz at accuracies to
within + 10 MV and under various load conditions
and modes. The present generation of analog computers
are not designed with good APM features nor has much
work been done on providing standard APM software.
For these reasons, the analog computer section of the
hybrid computer system poses a real challenge to an
effective APM system.!

Overall maintenance philosophy

All computers are checked out between 12:30 and
7:00 a.m. All units are checked in place and in a stand-
ard configuration. Only those units testing bad are re-
moved. No units are ever removed from the computer
for periodic checking,.

Automatic Checkout of Large Hybrid Computer System 989

—99.00 —99.00 +99.00
+99.00 —99.00 - —99.99
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.10 . 0.00

FIGURE 1-—Abbreviated example of multiplier test printout all errors below tolerance printout is zero

+X = +00.00 +20.00 . —20.00
+Y = +00.00 +30.00 +30.00
0 0.00 0.00 0.00
1 0.00 0.00 0.00
454) 0.00 0.00 0.00
455 0.00 0.70 0.80
[bormavcompurer j
MAIN
I DISPLAY l
CONSOLE
R
cpPy
! (32K) I
I bo PERIPHERA]L PROCESSORS] ' l
[
:_I 1/0 DATA CHANNELS]_‘I
CARD 1T T T DISK
READER FILE
CARD @
PUNCH
INTRACOM INTRACOM
LINE
PRINTER @
ANALOG ANALOG ANALOG ANALOG
COMPUTER COMPUTER COMPUTER | | COMPUTER

FIGURE 2—LMSC hybrid computer system

It is assumed that if the equipment is operational at
7:00 a.m., it will perform properly for the next two shifts
(16 hrs.) (The customer then runs an automatic pateh-
board verification program and a check run to verify
proper computer performance.) An accurate count is
kept of the units adjusted and replaced on APM vs
problem time. The ratio of these two numbers is con-
sidered a good measure of the APM effectiveness.

Method of performing automatic PM tests

The method of performing the APM tests is unique
and may be of interest to some Readers. A Remote Dis-
play Entry Unit (Display Unit) with a 1000 character
display capacity and a keyboard is located at each
analog computer. The display unit keyboard, through
software programs, allows complete control of all dig-
ital computer programs. Photograph #1 is a picture of

this unit. All APM tests are run from these display
units, therefore the technician never has to leave the
test area except to get patchboards and listings. The_
display unit has a normal display shown in Figure 3. To
start the APM tests, the technician selects E on dis-
play unit keyboard. Now the display shown in Figure 4
is presented on the display unit scope face. Assume
Test 21 is to be run; the technician types 21 on the key-
board (as per instructions on the remote unit scope
face). This copies the digital program required for that
test from the disc into central memory, and the display

1. Type Task X, X = Code Letter
2. Press SEND Key

Code Task

Directory of Tasks
“Job Control

Variable Display and Modification
Program 1/0
Preventive Maintenance
Source Modification
Unassigned

Hybrid Utility

Dayfile Scan
Engineering Aid

~“EOEEHD QW >

* = Tagk assigned at this sta.tion (Max. of 5)
FIGURE 3—(The normal CDC 211 display)

990 Fall Joint Computer Conference, 1968

-PREVENTIVE MAINTENANCETESTS—INTRACOM
ANALOG
~—INTRACOM TESTS—
11 Mode and Discrete Tests
12 P.UI.G. Test

13 Interrupt Test
14 Patchable Logic Test
15 Analog Equipment Test

—ANALOG TESTS—

21 Linear Board Test (1)

22 Linear Board Test (2)

23 Potentiometer Test

24 Patchable Logic Test (1)

25 Patchable Logic Test (2)
3140 Non-linear Board Tests 1-10

—To select test—type test numbers, iPres SEND Key—

FIGURE 4—This display appears when “E shown in
Figure above is selected.

21 LINEAR OBARD TEST (1) INTRACOM
ANALOG W

Test Covers DVM, Reference DAC, ANA Subsystem, power
supplies. All amplifier inputs'and outputs in summer configuration

*+ REMINDERS **

Mount analog board, PMLINEAR
Press digital computer button on analog
Press analog controller button on Intracom
No logic or intracom board required

- Drop logic board.

Sl S

—To start test—type GO, press SEND Key;—To return to initial
display—Type O, Press SEND. ' ‘

FIGURE 5—The CDC 211 display when test 21 is selected.

shown in Figure 5 appears on the scope face. The tech-
nician performs the tasks described under reminders,
then types GO into the display unit keyboard. The dig-
ital program now performs the test and prints a hard
copy on the line printer and lists the three worst cases
on the remote display. Figures 6A, 68, 6C show the

*Ek Rk x % ANALOG LINEAR TEST 1 * % * % % % % + »
POWER SUPPLY CHECKS

Power Supply Value Value Tolerance
Address Expected Read Error Specified
500(6A) 100,00V 100,00V .00V .02V
501(6A.) -100,00V —100,00V .00V .02v
556(5Y) 100,00V —5,79V .21V .30V
557(5Y) —-00,00V —100.00V .00V .02V

* = Non-Adjustable
FIGURE 6A—Abbreviated printout of test 21 power supply test

¥* %% %%+ ANALOG LINEAR TEST 1 * %% * * *
REFERENCE DAC ERRORS

Amplifier Value Value Error
Address Expected Read

200 11.11V 0.00V 11.11V
201 11.11V 0.00V 11.11V
207 —99.99V 0.00V 99.90V
210 —99.99V 0.00V 99.99V

FIGURE 6B—Abbreviated printout of test 21 reference DAC
: errors, (no test board on)

* ok kx ANALOG LINEARTEST 1 * * * ** *
SUMMER TEST ERRORS

Amplifier Value Value

Address Expected Read Error
0 47.83V 0.00V 47.83V
1 47.83V .01v 47 .82V
166 47.83V 0.00V 47.83V
167 47.83V .01V 47.82V

First half of linear board test is complete.

FIGURE 6C—Abbreviated printout of test 21 summer errors
(no test board on)

hard copy of the test results and Figure 7 shows the
display that appears on the remote display. In a normal
well maintained machine, the errors on each test will
be less than three, therefore, the technician can look
at the remote display and, depending on his schedule,
make the repair immediately or run all of the PM tests
and make the repairs all at once.

This sequence of selecting a test on the remote dis-

21 LINEAR BOARD TEST (1) INTRACOM

] ANALOG W

Test Completed

143 Reference DAC errors

1 Power Supply Errors
120 Summer Errors
WORST CASE SUMMARY

TEST ERROR ADDR EXPECTED MEASURED
REF DAC 236.52V A206 —99.99V —136.53V
PWR SUPL 1.14V . P503 —150.00V —~151.14V
Summer 185.32V. A 48 47.83V —137.49V

—See printer listing for additional details—
—To return to initial display-type 0, press Send—
10.04.17. END

FIGURE 7—Remote display of the errors on test 21
(no test board on)

Automatic Checkout of Large Hybrid Computer System 991
play, performing the reminders listed on the display, in summerts n;odes- (Uses all amplifier inputs
3 3 i : p and outputs.
ang runmn%}f hecigsé lgiggﬁmueg unf;l%lall. bests ai?-) run. 22 Tests 120 amplifiers in HIGH-GAIN mode, 12 secs.
ecause the 18 & time-Sharing mulil-pro- checks 60 combination amplifiers and all D/A
cessing digital computer, tests can be run on more than switches. Checks all computer modes for
one analog computer or Intracom simultaneously. At proper operation.
the present time, the APM tests can be run on the 23 Potentiometer Test: Se? all 114'; dse;VO set gomiﬂ-
1 tentiometers to a value selec rom a sec.
complete hybrid computer .system (four analog com- Ir):ndom number tablo. The potentiometers
puters, and two Fntra,coms) in approximately one hour. are patched to amplifier inputs and the sm-
After performing all of the tests and correcting the plifiers are read out to verify connections
malfunctions, the individual tests can be rerun as neces- through the patchbay and patchboard.
sary to insure proper performance. 24,25 Analog Computer Logic: Test the same as
Test 14, but performed on the analog com-
puter patchable logic.
Test summary 31 Integrators: Sixty integrators rate tested in 2 min.
. four time scales. Tests for drift and hold. 15 secs.
Table I is a summary of the APM tests. Performs derivative check on all integrator
inputs. Checks initial condition input for
accuracy. Tests all limiters by measuring
. slope of the limit.
Test % I inkage T Time for test 32* Mlll)ltipliel' Test: Tests multiplier accuracy. 2 min.
ntracom—TLinkage Tests with thirteen different sets of input voltages. 50 secs.
33,34,35,36 Multiplier Test: Tests multipliers in 63 secs.
11 READ-WRITE discretes and parallel 3 sec. DIVIDE, SUMMER, SQUARE, and :
READ-WRITE. Generates 66 patterns on SQUARE ROOT mode.
the WRITE discretes and checks for correct 37 Resolver Test: Tests resolvers accuracy with 15 secs.
. pattern on the READ discretes.) ten différent input values.
12 Precision Interval Generator (PIG): Initial- 20 secs. 38,39,40 Resolver Tests: Resolvers tested in 1R, 8 secs.
izes the PIG and verifies proper initial count. ROTATION, and INVERSE modes.
Checks for monotonic countdown. Exercises :
all three modes, RESET, HOLD and RUN.
Repeats test 10 times. TABLE I—APM Test summary
13 Interrupt test: Checks all interrupts for 5 secs.
proper operation in all three modes. *Tests 32 through 40 are run non-stop under digital control or
14 Intracom patchable logic: Tests all counters, 22 secs may be performed individually.
Nand gates, flip flops and inverters. Tests
counters in Binary and BCD in both up and .
down counting. , Total patchboards required, 4 analog, 4 Intracom
15 Digital to Analog (DAC) and Analog to 50 secs and 4 analog logic. '
D igit”‘l 3"“‘?&8’:}1@3&)\;"3: Sets all %‘:CCS Total time required to check one analog computer—
and reads wi e measure . . ~
accuracy. Uses DACs as inputs to ADC 10 mmutfes and 5 seconds. Total time to check 1 Intra
channels to measure ADC accuracy. com, 4 min.
16 DAC Ramp Test: All DACs are incremented 2 min.
one bit at a time. One DAC is nulled against Test discussion
all other DACs on the analog board and the L. . ,
error is displayed on the strip chart recorders. A brief description of the APM tests is given In Table
16A DAC-ADC Test Static: One master DAC is 2 min. I. The tests are being constantly revised and updated.
incremented one bit at a time to < full scale. : : y i few of the tests
Some of the difficulties encountered in a
This is used as the input to 16ADC channels. . o . . . : e
The ADC readings are used to st 16 DACS, may give some insight into problems involved in writing
Each of these DACs is nulled against the APM tests for analog computer units.
master DAC. The outputs of each null error The servo potentiometer test (Test 23, Table I)
amplifier is displayed on strip chart recorders. could hardly be simpler. In the initial test, each of the
168 DAC-ADC Test Dynamic: This is the same -2 min. 144 servo potentiometers was set to values ranging
z::;sizel%ﬁﬁ:;%ﬁ:%?&:ﬁ%éhp:: from .005 to .9950. For example, Potentiometer 1 would
formance for all combinations of voltage be set to .005, Potentiometer 2 would be sef', to '0],'00
jumps on alternate channels. etc. This method produced two unforeseen d1ﬁicu1t1e§.
17 ADC TRACK and HOLD: Tests all track 30 secs If the tests were run more than once, all of the potenti-
:;(tls?ﬂdd;‘ﬁnit? g%iclgumcy in TRACK and ometers would be set correctly as a result of the first
or in X :
21 Checks reference DAC at 9 settings, DVM, 12 secs. test and therefore subsequent tests would ’not exercise

all analog power supplies and 120 amplifiers

the system.

992 Fall Joint Computer Conference, 1968

The second fault was that each potentiometer was
checked at the same point each day. The potentiometers
would pass this test but fail to set properly at some
other point. This problem could have been solved by
setting each potentiometer to several settings but this
would cause extra wear on the servo potentiometers and
the time for performing the test would be too long. To
overcome these problems a revision was incorporated
that set each potentiometer once from a random number
table.

Originally no automatic tests were performed on the
limiters. They were considered troublefree and automat-
ic testing was not considered necessary. Manual checks
were performed once a week. When downtime due to
bad limiters became a problem, the APM test shown in
Figure 8 was added. The limiters have a maximum set
value of 115 volts. Measuring two points above this
value and calculating slope, gives a fair indication of
limiter operation that is independent of the actual
limiter setting. This test has solved the limiter down-
time problem.

The resolver test, Figure 9, is performed by setting
the servo potentiometer at several discrete points and

LIMITER
REF.
DAC sJ
() 10

EOUT

MAXIMUM

LIMITER SETTING t’
A

FIGURE 8—Mechanization of limiter test

Pl1 0 100 SIN 6
| f——== 100 COS 6.
RESOLVER -
UNDER
TEST

- FIGURE 9—Mechanization of resolver test

reading the resolver outputs with a DVM to determine
resolver accuracy. The accuracy of the servo potentiom-
eter is +20MV and the DVM is +30MYV. In addition,
the resolver blows up the input error.

Using the output 100 Sin 6 as an example of this

d(100 S:n *) = 100 Cos 6 dé 2)
Th ling | 5 VOLTS
e scaling is 28.6 RADIAN
dVv .
Therefore: W = 28.65
dVv
And . d0 = m
Therefore:
, dv
100 Cos 6d8 = 100 Cos 0 5365
= 3.48 Cos 6dV
at =0

= 3.48dV.
Therefore near zero the error in the Sin output is
Error = 3.48 AV + DVM error + UNIT error.

With the errors shown above, the error in the output is
99.6MV plus the unit error. To get meaningful test
results. this would have to be reduced to 5 to 10 MV
maximum error.

Converting the multiplier test from manual to an
APM test demonstrates some of the problems en-

* countered in automating a test. The APM test now used

is essentially the same as the resolver test with servo
set potentiometers providing the x and y inputs. The
error on the output is '
XAY + YAX 4 DVM error + UNIT error (3)
Where AX and AY are INPUT errors.

Automatic Checkout of Large Hybrid Computer System 993

-REF —P +REF
+REF—P -REF

-Xx MULT

-XY/100
SAWTOOTH
GENERATOR

RECORDER

FIGURE 10—Mechanization of the manual multiplier test

Figure 10 is the mechanization for an excellent man-
ual test that is accurate and relatively fast. It would
have been very desirable to convert this test to auto-
mate the printout, so that only excessive errors were
printed out. To test the ninety multipliers in each ana-
log computer in a similar fashion would require mount-
ing stepper switches on the analog patchboards to re-
duce the number of outputs to twenty-four channels or
less. If this were done, the ADC channels could be used
to read out the error detector circuits. This may be the
best technical approach but so far our efforts have been
concentrated on improving the accuracy in the present
APM test. Although the stepper switch approach would
solve the multiplier test accuracy problems, it would
not help on the resolvers and other tests where accuracy
is a problem. A more general fix is desirable.

The ADC-DAC tests are an example of how a simple
test can grow. The original APM test tested the DACS
for accuracy. Then set the DACS to various voltages.
Each DAC was then used as an input to an ADC chan-
nel. All ADC channels were scanned one thousand times
and a histogram was printed out. It was impossible by
looking at the test data to isolate troubles. T'o determine
static calibration accuracy tests a test was added that
tested all ADC channels at 31 points where all inputs
were the same. This separated the problems into static
accuracy and dynamic switching problems. Further
problems were encountered in the proper addressing of
ADC channels and with the multiplexer switching. To
isolate these problems another test was added that rip-
pled a zero through all DAC-ADC channels then rip-
pled 90 volts through all channels.

Troubles still persisted in the ADC area so the ramp
test was added. This test is described in the summary
under tests 16, 16A and 16B. This test checks 20 DACS
and 16 ADC channels at 2% points. A printout of the
possible errors on the line printer would require 16 X
25 printouts. Using the strip recorders is an efficient

method corhpressing all of this data. In addition, it
allows the one way test of the DACS.

The integrator rate test essentially integrates a
known voltage for a known period of time repeat-
ing this for each time scale. The measurement
error in the integrator rate test ignoring drift is:

Measurement error

= (AVT + ATV) K + DVM ERROR (4)

Where:

K =

Ql =

C = Integrator capacity in UF
V = Input voltage
T = Time of integration

AV = Error in input voltage

AT = Error in time of intagration

In order to eliminate software timing errors, the
timing for this test is generated on the analog computer
logic board where counters are initiated by discrete
lines from the digital computer. The counter is clocked
at a 100KC rate. The input voltage comes from the
Reference DAC, the most accurate voltage source on
the analog computer.

Another problem area of the integrator rate test is
that time scale selection relays are welded if the time
scale is changed in any mode but POT SET and can be
welded then, if large charges remain on the integrating
capacitors. To guard against this, fail safe logic has been
incorporated to prevent time scale changingexceptunder
the proper conditions.

Advantages of phase I APM tests

Although the above account sounds bleak, the APM
tests are useful. Some of the advantages of the APM
tests that have been verified in the last year of opera-
tion are: ‘

Guaranteed Checkout A printed record of each test in-
cluding the date and time the test was performed in-
sures that the test was performed. An imperfect auto-
matic test done in exactly the same way each night is
better then a perfect manual test improperly performed.

Speed The large volume of tests performed and recorded
could only be done under digital control. More units
are checked in more ways than can be done manually.

Only Method For many of the tests there is no method
to perform the tests manually and consequently the

994 Fall Joint Computer Conference, 1968

test must be done under digital control. All hybrid and
~ Intracom tests fall in this category.

Reduced Drudgery Most PM tests are repetitive, routine,
and tedious when performed manually. Digital com-
puter control performs this part of the job better than
the technician and allows the technician to use his
energies on the troubleshooting part of his job.

System Usage The tests use both hardware and soft-
ware in the same manner that a customer does.

Flexibility The test programs can be modified with
minor wiring changes on the test patehboards.

Low Downtime The downtime of the system for 16 hour
per day operation is very low. This is due to many rea-
sons, but the APMs are definitely a contributing factor.

Shortcomings of phase I tests '

The major shortcomings of the APM program is in the
analog computer area. The analog computer as de-

livered is not designed for APM. The following are the -

major shortcomings:

A ccuracy The readout using the analog computer DVM
is only accurate to .01%, ==10MV. System noise adds an
additional 10MV of uncertainty therefore 4=30MYV is
the best that can be obtained under general conditions.
Potentiometer settings which are used as inputs on
some tests can have errors of £=20MV. A large number
of units are tested in parallel, consequently the potenti-
ometer outputs may go through several relays and
amplifiers before becoming the input to the unit under
test. The accumulation of all these errors can be several
times the specifications of the unit under test.

Frequency Response The analog computers as furnished
have no means of automatically making frequency re-
sponse tests of the different analog units. To do this
would require some method of generating frequencies
of interest and meaguring their relative amplitude.

Noise The present tests cannot detect high noise levels.
Although noise may give a high DVM reading, this is
not a reliable noise test. Hardware to do this is readily
available. -

M anu'a.l Tests The APM tests must be supplemented by
manual tests to overcome the above listed short-
comings.

Maniual Baclcup Manual backup tests are required for
the analog computers. These can be run with a digital

computer down This allows an all analog computer
problem to be run.

" Future goals

Several modifications are under way to improve the
Phase I APM tests. The major emphasis will be to elim-
inate the shortcomings listed above.

In order to improve accuracy, the following is being
done:

Multiple DVM Readout Instead of reading the DVM
once, the DVM will be read 4 to 5 times and the read-
ings will be averaged. This will provide an improve-
ment in accuracy of the DVM readings.?

Precision voltage sources

Two programmable remote control voltage dividers
are being installed. These will provide two voltages on
each analog computer accurate to £2MV. This will
prov1de more accurate input voltages and will allow
nulling techniques to be used on the tested units.

Frequency generators and peak reading detectors

The addition of these two units will allow automatic
frequency response and noise tests of the various com-
puting units.

With these improvements installed, a complete check
of all units in the analog computer to manufacturer’s
specifications can be performed each night.

APM cost and effectiveness

The cost of the hybrid system is approximately $500
an hour for an 80 hour week. Downtime of 134%, or 1
hour per week costs $500 per week or $26,000 per year.
Over the five year expected life of the equipment this
amounts to $130,000 total cost. The cost of the APM
programs to date is approximately 114 years of pro-
gramming time plus 12 checkout boards. It is felt that
the expenditure to date for the APM will reduce down-
time over the five year period enough to return the
APM costs many timesover.

The present downtime in the hybrid system is ap-
proximately 5%. This places an upper bound on the
inerement of improvement that could be obtained by
future expenditures on the APM program. The system
with infinite maintenance has a minimum downtime
figure that can be attained because of limits in relia-
bility and maintainability factors. This figure appears
to be approximately 2%,. These cost factors influence
the amount of future investment that will be placed in
the APM program.

SUMMARY
The APM testing of large hybrid computers is neces-

Automatic Checkout of Large Hybrid Computer System 095

sary and feasible. The large volume of eqaipment and
the high cost of downtime make a “‘complete’ check out
necessary. This can only be done by utilizing a digital
control checkout. The shortcomings in the present APM
program especially in the analog computer area can be
overcome. Close customer-vendor cooperation ecould pro-
duce very efficient general purpose APM programs for
hybrid systems that would reduce acceptance costs,
long term maintenance costs, and downtime costs.

ACKNOWLEDGMENTS:

Douglas Theis and John Casaccia of Astrodata/Com-
cor programmed and patched the original APM tests.
Much of the software work at LMSC has been done by
Kenneth Bedient, Roger Hollingworth, David Lee and
Stanley Ross. The test ideas are the combined ideas of
all the people associated with the hybrid lab at LMSC
and vendor representatives.

REFERENCES

1 TKSEEHUUS
Hybrid computer technigues to aid computer maintenance
SIMULATION Vol 7 Number 5 p 231

2 KA KORN
Hybrid computer techniques for measuring statistics from
quantized data
SIMULATION Vol 4 Number 4 p 229

APPENDIX A
Intracom

An Intracom is a device which interfaces analog com-
puters with the digital computer. There are two Intra-
coms in the LMSC system. Each Intracom is divided
into three controllers as follows:

I/0 channel controller
Interrupt channel controller
Analog computer controller

Each controller has its own 6400 channel for digital
communication. The I/0 channel controller is further
divided into six subsystems as follows:

I/0 interrupt subsystem—contains 24 real-time
priority interrupts.

Discrete subsystem—contains 68 discrete read
lines and 68 discrete write lines.

D/A subsystem—contains 40 double-buffered dig-
ital-to-analog converters.

A/D subsystem—contains an analog-to-digital
converter with 32 input channels, plus 8 indepen-
dent sample/hold controllers.

P.I.G. subsystem—contains a preeision interval
generator (real-time counter).

Intracom mode subsystem—contains logie for
slaving and controlling the modes of the Intracom
and analog computers.

The interrupt channel controller contains logic for
handling the 24 interrupt lines for processing by the
hybrid monitor program. These are the same 24 inter-
rupt lines that are mentioned in the preceding I/0
channel controller description.

The analog computer controller contains logic for the
following interface with the analog computers:

Setting or reading a mode.

Setting or reading an address register.

Reading a DVM

Setting a reference DAC.

Outputting a CI-5000 BCD code.

Reading status conditions of the analog computer.

Each Intracom also contains a patchable logic group
containing the following logic elements:

36 general-purpose counters.
72 general-purpose flip-flops.
12 delay flops.

48 five-input NAND-Gates.
180 two-input NAND-Gates.
72 inverters.

48 general-purpose indicators.
24 function switches.

Analog computer

There are four CI-5000 analog computers in the sys-
tem. Normally two analog computers are connected to
each Intracom. Each analog computer has the following
components:

60 integrators (with derivative check feature). All
have 4 time scale

60 summing amplifiers.

48 hybrid operated digital attenuator devices.
(HODAD’S*) ,

144 servo-set potentiometers.

32 hand-set potentiometers.

3 continuous resolvers.

90 multipliers, of which 24 are associated with
resolvers.

288 analog trunk lines (24 are D/A, 24 are A/D).

44 inverters associated with multipliers.

22 card-set function generators.

1 card-set surface generator.

24 relays (DPDT).

30 comparators.

30 hand-set feedback limiters.

*Trademark

Fall Joint Computer Conference, 1968

16 function switches (8 are SPTT, 8 are DPTT).

3 recorders.
1 noise generator.
1 oscilloscope.

144 logic trunk lines and associated line drivers.

32 general-purpose flip-flops.
9 delay flops.

24 four-input NAND-Gates.
24 two-input NAND-Gates.

24 logic inverters.

4 four-bit counters.

4 four-bit shift registers.

24 lamp drivers.

8 logic switches.

3 clocks.

1 cycle counter.

24 holes on analog patchboard for ADC channels.
24 holes on analog patchboard for DAC’s.

Hybrid diagnostic techniques

by THOMAS K.SEEHUUS and WILLIAM A. HARMON

Boeing Company
* Huntsville, Alabama

and

WILLIAM MAASBERG

International Business Machines
Huntsville, Alabama

INTRODUCTION

The Automated Maintenance Procedures at the
Boeing Company’s Huntsville Hybrid Facility were the
result of a joint development effort by the Boeing Com-
pany and International Business Machines. (IBM).
The analog and linkage portions are the responsibility
of Boeing while the Digital System is maintained by
IBM. »

The combined effort has resulted in highly efficient
Diagnostic Maintenance procedures that have given us
a profitable degree of reliability for all elements of the
Hybrid System.

Equipment configuration

The sfringent requirements for diagnostics resulted
from the complexity and size of our Hybird Installation.
Although many requirements have changed as portions
of the system have been updated, our maintenance
philosophy has remained the same.? The present
equipment complement of the Boeing Huntsville Hy-
brid System is listed in Figure 1. The major compo-
nents of the system are four Applied Dynamic (ADI)
analog computers, sixty channels of digital to analog
conversion (DAC), fifty multiplexed channels of analog
to digital conversion (ADC) and an IBM 360 Model 44
Digital Computing System. '

The real time monitor currently operating on the
360/44 Hybrid Computer at Boeing Huntsville was de-
veloped jointly by Boeing and IBM almost two years
ago. It was decided that some sort of system test cap-
ability was also needed to aid in debugging the software
and assure a maximum level of hardware reliability.

ADI ANALOG COMPLEMENT (4 CONSOLES)

1024 OPERATIONAL AMPLIFIERS (256 SUMMER-INTEGRATORS 256 SUMMERS, 512 INVERTERS.
640 SERVOSET POTENTIOMETERS .
160 HANDSET POTENTIOMETERS
172 ELECTRONIC QUARTER-SQUARE MULTIPLIERS
128 VARIABLE DIODE FUNCTION GENERATORS
40 FIXED SIN-COS DIODE FUNCTION GENERATORS
48 FIXED X2 DIODE FUNCTION GENERATORS
16 FIXED LOG X DIODE FUNCTION GENERATORS
80 HARD LIMITERS
112 + COMPARATORS
48 TRACK TRANSFER UNITS
4 HIGH-SPEED REP OP CONTROL UNITS

LINKAGE EQUIPMENT COMPLEMENT

50 ANALOG TO DIGITAL CONVERTER CHANNELS
60 DIGITAL YO ANALOG CONVERTER CHANNELS
€ DISCRETE OUT WORDS {32 BIT)
6 DISCRETE IN WORDS (32 BIT)
32 PRIORITY INTERRUPT LINES
| ANALOG CONTROL GHANNEL

DIGITAL COMPLEMENT (I1BM)

| 1BM DIGITAL COMPUTER ,360 MOD /44

3 MAGNETIC TAPE UNITS, 9-TRACK (2401)
! MAGNETIC TAPE UNIT , 7-TRACK (2401)
| LINE PRINTER (1403)

! OUTPUT PRINTER {1053)

| CONSOLE TYPEWRITER (1052)

2 VISUAL DISPLAY UNITS (2260)

4 170 DATA ADAPTERS (2701}

Figure 1—Equipment complement

Basically one must be able to detect a malfunction and
rapidly isolate it to a specific portion of either the soft-
ware or hardware. Consequently, a System Test
(SYSTST) program was developed.

The SYSTST program has been very successful, both
during debugging of the initial Real Time Monitor and
as aid in checking out improvements. The program is

997

998 ~ Fall Joint Computer Conference, 1968

readily available to application programmers to confirm
suspected hardware malfunctions. Thus, the problem
areas are immediately identified as either the applica-
tion program or hardware. Corrective action is then
initiated. Should the problem be hardware, the evi-
dence collected by the SYSTST program is given to
either the IBM Customer Engineers or the Boeing Hy-
brid Operations Personnel, who conduct detailed diag-
nostics and tests to locate and correct the malfunction.

360/44 Hybrid System Test Program (SYSTST)

A. SYSTST philosophy

SYSTST was written to fulfill the following primary
objectives:

1. Aidininitial debugging of the 360/44 BPS Hybrid
Monitor System

2. Aid in maintaining and improving the system

3. Test the Real Time I /O for a basic level of opera-
tion and accuracy

A secondary objective was to develop in SYSTST a
basic test framework which could be easily modified,
expanded, and developed into a rigorous test of the
360/44 HBPS software and hardware.

B. SYSTST organization

Although the individual tests were written to satisfy
primary objectives, the final organization of SYSTST
was dictated by the secondary objectives of flexibility
and expandability. Consequently, SYSTST consists of
one main program and a number.of test subprograms.
The main program contains the operator communica-
tions routines necessary for test completionand diagnos-
tic action as a result of error. The test subprograms are

entered from and returned to the basic program asillus-

trated in Figure 2.
At the present there are six test subprograms which
accomplish the following tasks:

Test display system

Test real time tape, single unit

Test real time tapes, all units

Test analog I/0 from foreground

Test interval timers

Test analog I/0, interval timers, and tapes in
real time

S P o

SYSTST is readily capable of expansion in either of two
ways: '

1. Expa,nsion and refinement of the present test sub-
programs

SYSTST
Entry

Initialization

Status Lost Test Message Program
€ Regi Successfully from
rror egister Completed i Test Interrupt
|]
A
Complenop,

ecision

A\ / __/—-@

Figure 2—SYSTST flow chart

2. Addition of any number of new test subprograims

C. Diagnostics and error messages

It is readily apparent in Figure 2 that there are
several basic error or diagnostic messages as well as pro-
vision for handling messages which are unique to a given
test. These test exit messages are further described be-
low:

1. STATUS ERROR

If during the course of a test, any I/O request
results in an error or unusual condition indication
from the I/O device, the test will be terminated, the
test subprogram exited, and the following diagnostic
message displayed:

STATUS ERROR

1. STATEMENT: CALL XXXXXX 2. LOGI-
GICALUNIT: X

3. STATUS: X 4. I/0 OLD PSW: XXXX
XXX XXXXXXXX

5. CSW: XXXXXXXX XXXX XXXX

Hybrid Diagnostic Techniques . ggg

2. LOST REGISTER

Each test subprogram is responsible for checking
all the registers (except those used by the FORTRAN
compiler) each time a call statement is made for a
real time function. If a register is lost, the test is
terminated, the test subprogram exited, and the fol-
lowing diagnostic message displayed:

REGISTER LOST DURING EXECUTION OF:
CALL NNNNNN

REGS: 0123456789101112131415
LOST: XXXXXXXXXX XXXX XX

(X =0 indicates register not lost, X =1 indicates reg-
ister lost. Registers 0, 1, 13, 14 and 15 are normally
employed in Fortran branching and linking and, con-
sequently, are not checked. Any additional registers
used by the compiler in setting up a specific call can-
not be checked.)

3. TEST SUCCESSFULLY COMPLETED

The above diagnostic message isb felt to be suffi-
ciently self-explanatory. ;

4. ERROR OR DIAGNOSTIC MESSAGE FROM
TEST

Use of this SYSTST return path is entirely at the
discretion of the test subprogram writer. This option
is used whenever the programmer wants to terminate
his test subprogram and idicate a unique reason, or
whenever he wishes to output a unique message upon
successful test completion. It should be noted that a
programmer may print or display any data or mes-
sages; he may also request any operator response de-
sired during the course of his test subprogram.

5. PROGRAM INTERRUPT

Any errors which would normally result in a pro-
gram interruption and the resultant abnormal end of
job (ABEOQJ), will cause immediate test termination,
return to SYSTST MAIN, and display of the follow—

ing message:

PROGRAM INTERRUPTION

INTERRUPTION CODE: XX INSTRUCTION
COUNTER: XXXXXX
D. SYSTST OPERATION

SYSTST OPERATION is relatively easy and self-
explanatory, as the main program and each of the

test subprograms were written with the following
philosophies:.

1. The operator will communicate the SYSTST only
through the display system (although some test
data may be output on the printer, depending on
the test subprogram).

The operator will be kept informed of test progess.

3. The operator will be given explicit instructions
when a decision and/or response is required.

4. The operator will initiate no unrequested entries,
except to request a hard copy of the display
(which he may do at any time by depressing the
shift and print keys).

5. Any test subprogram may be entered in any order
and any number of times. The cumulative numbers
of entries and successful completions are displayed
each time a test selection decision is requested.

N

Analog and linkage diagnostics

The maintenance and calibration of analog computer
components and linkage equipment is accomplished by
the use of Hybrid Diagnostics. The use of diagnostics
for analog computer maintenance is a relatively new
procedure and initially their effectiveness and ease of
application were not fully realized. It was found in de-
veloping the -diagnostics that most of the antiquated
manual checks and calibrations could be adapted to dig-
ital control. In addition, some components that pre-
viously could not be adequately tested can now be
checked under digital control.

Another result of using Automated Diagnostics is
that operational tests and calibration checks require
much less time, making possible more frequent testing.
Figure 3 shows a comparison of the time required to run
manual and diagnostic tests. The use of diagnostics
enable maintenance personnel to apply more time to
areas previously neglected. In addition to time savings,
a thorough maintenance program can be established
that does not entirely depend upon the proficiency of
the maintennance personnel. An automatic check is
consistently thorough and accurate.

The Hybrid Diagnostics used at the Boeing Hunts-
ville Facility are grouped into two types: general opera-

DIAGNOSTIC CHECK
MINUTES

MANUAL - CHECK

TYPE OF CHECK :
i - MINUTES

STATIC CHECK 60 : 3
INTEGRATOR RATE 60 2
INTEGRATOR DRIFT 120 2
COMPARATOR GAP 30 1
MULTIPLIER - 60 . 1
NON-LINEAR 120 8

Figure 3—Comparison of diagnostics

1000 Fall Joint Computer Conference, 1968

tion and calibration. General operation diagnostics

check the overall operation of equipment that requires

no calibration, such as logic devices. The calibration
diagnostic is capable of checking accuracy as well as
general operation. The calibration diagnostic can be
used, in many cases, to aid the technician performing
calibration or repair.

The analog and linkage diagnostics have been written
as subroutines of a main calling program. Each diagnos-
tic need not be loaded separately when going from one
to another. Figure 4 is a flow chart of the diagnostics.
The diagnostic subroutines and calling program reside
on magnetic tape in core format. They are loaded in
approximately five seconds, after which they are acces-
sible from the IBM 2260 Display Unit. Figure 5 is a
photograph of the 2260 displaying the program options.
Following are descriptions of the analog and linkage
diagnostics.

Non-linear preventive maintenance diagnostic

Basic observations

Our approach is based upon the contention that all
non-linear components have one thing in common: they
produce a predetermined non-linear function when they
receive a linear or ramp function as an input. There-
fore any non-linear device may be tested using a highly

RETUAN

accurate ramp synchronous with a highly accurate pre-
determined non-linear function. This enables one to
test all members of the non-linear family as relatively
simple functions.

The ability to generate a ramp function synchronous
with a desired non-linear function became the key to a
successful diagnostic test. This capability is available
in the digital portion of our hybrid system, but the
conversion equipment does not meet the accuracy re-
quirements for specification testing. At this point we
perceived the need for two digital to analog converters
of high accuracy.

Design objectives for high accuracy DAC

Accuracy equal to or better than .005%,

An integral part of our present hybrid system
Ease of maintenance and calibration

Controlled manually or automatically

vaws

The high accuracy DAC shown in Figure 1 met all
design objectives. It requires 16 bi-polar amplifiers,
1 bi-polar integrator, 15 electronic switches, 2 poten-
tiometers, and 3 free 100 K resistors. Fifteen bits
plus sign was selected because this DAC has the-accu-
racy required. We did not go to sixteen bits because the
least significant bit of a sixteen bit DAC is well within
the noise level of our system.

TROUSLE
SHOOTING
AlDS

1

-

ET8|

INTECARTOR
oRiFT

INTEGRATOR
L1114

STATIC -

o
wirnt

REPEAT
TYPICAL SPTION

ON- LIREAR
CHECK

1 ' " n
SR SRS - N

(T Wi "e-ae
eneck THeer : LT
rrionITY »e-aae
INTERRUPT CNECK

ALL OPTIONS SANE A5 MMBER 1 . 1

pIsTORETE
-t -
CHECK

e o r —— — — ———— —— — -, - — - m—— —— - — o —

Figure 4—Diagnostic flow chart

Hybrid Diagnostic Techniques 1001

Figure 5—2260 display

The high acecuracy DAC operates as follows: The
plus volt reference is applied to the first summer on the
left. Plus 50 volts is available at the input to electronic
switch number one and is halved at the input
to each succeeding electronic switch. The electronic
switches may be operated manually at the analog con-
sole or by discrete lines from the digital. Each electron-
ic switch has a 100 K resistor that is used as an input
resistor to the summer at the top of Figure 6. The cor-
rect polarity of voltage is observed throughout the
string by the use of bi-polar amplifiers. The negative
output of the upper summer is fed into a gain of one,
while the positive output determines the initial condi-
tion of the integrator. The sign bit of the digital to ana-
log conversion determines whether the integrator is in
initial condition or operate. If the sign is positive,
the integrator will be in I C, with a negative sign in
operate. The integrator is in times 100 mode to impart
a filtering effect. This limits frequency response but
keeps the DAC within design specifications.-

The plus and minus 100 volt adjustments are neces-
sary to compensate for the slight inaccuracies of the
various components. They are adjusted in the following
manner:

1. Throw all bits except the sign bit on
2. Set the 4100 v adjustment to +99.997 volts

DAC OuTPUT

Figure 6—High accuracy DAC

3. Throw sign bit on
4. Set—100 v adjust to—99.997 volts

Caution: The plus 100 adjustment must be set first.
The accuracy of the DAC was verified in the follow-
ing manner: the DAC test was conducted using the
technique and equipment shown in Figure 7. The DAC
is the input to one side of a null meter with a calibrated
test voltage theother input.
The bit by bit error plot shown in Figure 8 verified

+100

—10Qe

[C/

00000

DECADE_RESISTOR BOX
DEKAVIDER RV622A
ACC. .0001%

NULL METER

I

FLUKE MOO. 80!-H

% PATCHBOARD CONNECTION

Figure 7—DAC test configuration

o e - - foon Toselae | — | - k]
ig
1 R D . 7
¢ s
: s
5 . 5
T | "
% - I t—Atier Safance | .
2 AN Sefore Balance ! 3
29 AN 2
. I}
=|‘ S \\ " . . . 1
= g L. H b
E.L 7 L So— S S -
;l; i * - - Ny __—\ 1
=_y : . | J R o
7 1 N \ 2
3/ i IS . N i i i\ \,
Lor N \
p o N
- Al 8
5 Vi -
— ! <
) I : e
! i ! i }
v-. ssewn l : : e s2
I I F R E R R E R R R R R R R ss
- @ ~ - ~ o w O o oa
HEEEE R LR R R LR
- yours +)

Figure 8—Vacuum tube DAC (Balance)

1002 Fall Joint Computer Conference, 1968

that our design specifications could be met on a vacuum
tube analog after a careful balance of all amplifiers.

The bit by bit error plot shown in Figure 9 was taken
on a different analog console after a complete balance of
amplifiers, in addition to setting the plus and minus 100
v adjustments.

S ucuumuazm;-_ S D L

S R)

Figure 9—Vacuum tube DAC (Bit steps)

The plot shown in Figure 10 is an error plot in 10
volt steps from 100 v to—100 volts. This also
falls within design specifications. Figures 11 and 12
were taken on a solid state console without balancing the
amplifiers. The plus and minus 100 v adjustments were
made, however.

T 1 T
L P

M TUBE T
i YOUT STEPS

-gA_._::'-._*'u -

'{mvs
1

witt

BRNCRE

i H B ____.... S S—— o - - —_—
e S e B OO @O O e e O O -3 2 3 £ =3
T EEEIEEEEEESE] -3 =3 S g
- - @ o oo
.~ 23E88sss3zsszs3css323:
- vours +

Figure 10—Vacuum tube DAC (Volt steps)

The preceding tests have given us confidence that
the DAC will meet accuracy requlrements on any well-
maintained console. co

1 { ! i
H T
!
T STERS
+5 5
3 i Vi
=l' . N . . . ,/‘/ i
=X .
3 i e
N~ ;
= H 4 H 2
N T H H i &
— et 4
- ‘ el
! : H i
I ; H -I- ’,-;
S gotrsnrasnoaseznNzTasnenSE2sss
CEEREEER R R R R $refRissiacazisas
Figure 11—Solid state DAC (Bit steps)
T T
T |
SOLD ST
.) TOLT STEPS
§ 5
. 4
+ -y N +
-

AN ANAIVAURE:
1g / g \ !
- T , | ko
3 ’ I i 3
N i 4
4 : 4
5 b s 5

|] B
[S -
X3 FEE R E Y EEEESTFEEEEEN
DO DO D ODOO P OO OO OO OO
£3833335:3232338888838' |
- vours +

Figure 12—Solid state DAC (Volt steps)

Testing non-linear components

The test configuration shown in Figure 13 is the
method used for daily checks. During the development
stages the output of the error amplifier was plotted
together with plots of desired function and the actual

INPUT NON~LINEAR
RAMP COMPONENT
oAC UNDER TEST
.o 360
MOD Sl I e
o a4
DESIRED
FUNCTION 100 [1()()—1()()']
DAC

Figure 13—Non-linear test configuration

Hybrid Diagnostic Techniques 1003

function. The first tests conducted were on an X2 card.
The results of these tests are shown in Figure 14. The
plot took three hybrid runs. On the first run the
desired curve was plotted, the second was a plot of the
actual output of the X2 card, and the third, a plot of
the error between the two.

Figure 14—X2 plot

Our next step in the verification on the testing proce-
dures was to repeat our previously described plotting
and-testing for other members of the non-linear family.
Figures 15, 16 and 17 show the results. All plots shown
were generated using a ramp input to the tested non-
linear device in 0.5 volt steps.

Figure 15—Cosine plot

i

T iﬂlmﬂi it
!lIlIIHIIIlillIIiilIIIIIIIllllliill!ﬂllll!ixh‘ il
T T

fisL "S.n sliiiill!h; ,l!l!!"iE T I!l!lilhl
] !! e e R

i \ | B
st b il eii ’il ! S IH!‘!!'H!:H:

Illiil Al H'!! IH'I'IHIIJIIIIIIlllill’lilHIIIIiliﬂllllllllhlﬂiﬂlﬂ!!l‘hil

il Hﬂﬂﬂi!ﬂ!“l!!ll"’.lﬂl!lll.!' HHLiHIEt lilﬂ{'l!llle'mlll“llihlllﬂIﬂllﬂll!ﬂlllll!lli‘i!i!l!lllﬂ i
I TSSO SO A A S lﬂlﬂlﬂﬂﬂii
i !E”Hhi!ilﬂ'!!lll!i!"!'uiﬂ:;i.!!!lﬁx. Mﬁ;ﬂﬁi ik

Figure 17—Log plot

Diagnostic technique

The program implements two of the highly accurate
DACQC’s, one to provide a comparison curve (Figure 13).
The outputs of the non-linear devices are summed with
the comparison curve (opposite polarity into 100 gain
amplifiers). The amplifier outputs, which represent 100
times the non-linear device error, are connected to
ADC’s. The following steps describe the method used
to check Sine, Cosine, and Logarithmic devices:

1. First the circuitry and components used to test
non-linear devices are checked by the program to
insure proper operation. In the event of error, a
pause results that allows the operator to investigate
prior to program excution.

2. Error amplifiers associated with non-linear devices
under test are enabled by descrete logic.

3. The input ramp is stepped from—100 to 4100 volts,
in one-half-volt increments and is applied to the
non-linear device under test. At each inerement

1004 Fall Joint Computer Conference, 1968

the program uses the value of the ramp to calcu-
late the value of the comparision curve. Each ADC
is read at every increment and the error magnitude
is compared to the previous reading. The larger of
the errorsissaved.

4, Following the last one-half-volt increment, the larg-
est error reading for each non-linear device is com-
pared to that device’s tolerance. Out-of-tolerance
readings are recorded together with the address of
the non-linear device and error amplifier.

The non-linear diagnostic program has an option for
continuous operation. The ramp and comparison curve
are operated continuously with the 100 gain amplifier
outputs observed on an oscilloscope or recorder. The
diagnostic may be used to analyze errors and perform
necessary calibration or repair.

Total run time for thenon-linear diagnostic program
is approximately eight minutes.

The settling time, and therefore the frequency re-
sponse of the high accuracy DAC, limits our testing to
-very low frequencies. We found no way to overcome
this deficiency. The use of the integrator as the output
amplifier was required to keep the noise level of the
DAC within the 5 millivolt design specification. This
problem should be rectified in the future and dynamic
testing of nonlinear components using the method
described will indeed become a reality.

Multiplier preventive maintenance diagnostic

The objective of the Multiplier Diagnostic Program
is to insure that all multipliers function within their
specified tolerance. The analog boards used in this diag-
nostic may be used manually to analyze errors and
make necessary calibrations. All multipliers in an analog
console may be checked simultaneously by the following
steps:

1. A ramp varying between—100 and +100 volts is
applied to the X input of all multipliers. A
constant—100 volts is supplied to the Y input.
Multiplier outputs are summed with the inverted
ramp (4100 volts to—100 volts) by means of 100
gain amplifiers. The amplifier outputs, which rep-
resent 100 times multiplier error, are connected to
ADC’s.

2. The ADC’s are continuously read as the input ramp
varies from —100 volts to +100 volts. A compari~
son of the averages of selected readings is made and
the largest average is saved. When the ramp ends,
the X input and Y input to the multipliers are ex-
changed under program control. The ramp is re-
started and the same procedure is used to obtain the
largest average reading.

3. The largest average reading for each multiplier
is compared to a predetermined tolerance. Out-of-
tolerance readings for X or Y inputs are recorded
together with the multiplier and error amplifier
address.

The above check may be used manually by control-
ling the exchange of inputs with analog push buttons.
The ramp is allowed to run continuously and the 100
gain amplifier outputs may be observed on amroscillo-
scope or a recorder. Total run time for Multiplier
Diagnostic Program is approximately one minute.

Static preventive maintenance diagnostic

The Static Diagnostic Program will check the follow-
ing equipment on an analog console: -

Every input and output on all operational amplifiers
All servo set potentiometers for proper operation
All analog trunks

Mode control logic

. The analog addressing system

. All reference and electronic switches

. Hand set potentiometer fuses

N oW

Permanently wired patchboards are used in conjunc-
tion with the Static Diagnostic to check the above com-
ponents.

The Static Diagnostic requires three minutes hybrid
time. To isolate bad components the computer modes
and addressing are controlled manually. The actual
value of the suspected components is read on the console
digital volt meter, and appropriate action is taken using
conventional trouble shooting techniques.

Integrator rate preventive maintenance diagnostic

The Integrator Rate Diagnostic is used to check all
time scales as well as relay and electronic switching.
The programming sequence is described in the following
steps:

1. The integrators are allowed to integrate at one volt
per second (X1) for eight seconds. The integrators
are then switched, via relays, to hold. All inte-
grators are checked for the proper reading and if they
are in error by more than a predetermined amount,
the address, actual reading, specified value, and
calculated error are recorded. '

2. The above step is repeated for all additional time
scales. (X10, X100, X1000)

3. Electronic switching is checked using the X10 time
scale by the procedure outlined in step one.

Total hybrid time for the Integrator Rate Test is two
minutes. ‘

Hybrid Diagnostic Techniques 1005

Integrator drift preventive maintenance diagnostic

The objective of the Drift Diagnostic is to period-
ically check all integrators for excessive drift. Drift is
checked in both operate and hold using the X100 capac-
itor. While the integrators are being checked, they
continue to drift. To prevent erroneous data, each inte-
grator’s drift rate is computed individually with respect
to time.

Comparator gap preventive maintenance diagnostic

The Comparator Gap Diagnostic determines the input
value at which the comparators are switched. These
values are used to calculate gap and offset. Perma-
nently wired patched boards are maintained with thefol-
lowing configuration: All comparators have their logic-
one outputs tied to the hold control line of integrators.
The associated integrators are input by a control inte-
grator. The control integrator is also patched to a one-
thousandth gain amplifier, whose output is the input to
all comparators. The hybrid test stores the voltages
at which the integrators are placed into hold. These re-
corded values are used to compute the gap and offset.
The comparator address, on value, off value, and offset
are recorded.

The total hybrid run time for the Comparator Gap
Diagnostic is one minute.

Discrete preventive maintenance diagnostic

The objective of the Discrete P. M. program is to in-
sure that each Discrete-out and Discrete-in bit is prop-
erly aligned and is capable of representing both logic
levels. This objective is accomplished in the usual man-
ner by trunking Discrete-out Units to corresponding
Discrete-in Units. The digital computer then sets each
Discrete-out bit and checks that the corresponding
Discrete-in bit 1s on. The majority of time required
for the completion of the Discrete P. M. program is a
function of the amount of print-out. Total time is nor-
mally less than ten seconds.

Priority interrupt preventive maintenance diagnostic

The objective of the Priority Interrupt Diagnostic is
to insure that all available priority interrupt lines will
provide the desired number of interrupts at the proper
priority level. There are eleven priority interrupt lines
available which supply the capability of interrupting
the computer program on one of eleven discrete levels of
interrupt. A logic-one on any priority interrupt line will
cause an interrupt request. This request will be honored
immediately, if none of the following conditions exist:

1. An equal or higher priority interrupt still has control
of the computer program.

2. The requested level of interrupt is temporarily dis-
abled because the system is executing some nonre-
entrant code.

3. The request level of interrupt was never enabled by
the program.

The Priority Intérrupt Diagnostic checks the individ-
ual priority interrupt lines in the following steps:

1. The program enables all available priority interrupt
lines. The seven highest level interrupts are trunked
to seven discrete-out lines. The remaining four inter-
rupt lines are hard wired to the overflows of interval
timers and the end of conversion of the ADC’s.

2. The program sets the seven discretes to a logic-one,
starts the timers, and reads the ADC’s.

3.The program analyzes the order in which the lines
were serviced and checks that each line was serviced
only once. Any error in the order or any multiple
servicing of the interrupt lines will result in the re-
cording of the improper line.

4.The program applies a signal to the first priority
interrupt line and checks that the proper level of
interrupt occurs only once. The remaining lines are
checked in the same manner. Any error will result
in the recording of the improper line.

Total run time for the Priority Interrupt Diagnos-
tic is less than one second.

Interval timer preventive maintenance diagnostic .

The Interval Timer Diagnostic provides a means for
checking both interval timers in their four modes of
operation. These modes provide a means for setting the
timer register to a particular time which will provide a
priority interrupt at the end of the desired interval
(overflow).

The following is a description of the four modes of
operation:

1. Upon selection of mode one, the desired time is
immediately loaded into the timer register, regardless
of the timer state. The timer will then stop after the
desired interval has elapsed.

2. The selection of the second mode will cause the time
register to be loaded with a new value immediately
upon overflow. The new value will automatically be
reloaded at subsequent overflows.

3. The third mode causes the timer register to be loaded
immediately with the desired time interval, regard-
less of the timer state. The new value will automati-
cally be reloaded at subsequent overflows.

4. The selection of the fourth mode results in an imme-
diate stop of the timer. -

1006

Fall Joint Computer Conference, 1968

Integrator drift preventive maintenance diagnostic

The objective of the Drift Diagnostic is to period-
ically check all integrators for excessive drift. Drift is
checked in both operate and hold using the X100 capac-
itor. While the integrators are being checked, they
continue to drift. To prevent erroneous data, each inte-
grator’s drift rate is computed individually with respect
to time.

Comparator gap preventive maintenance diagnostic

The Comparator Gap Diagnostic determines the input
value at which the comparators are switched. These
values are used to calculate gap and offset. Perma-
nently wired patched boards are maintained with thefol-
lowing configuration: All comparators have their logic-
one outputs tied to the hold control line of integrators.
The associated integrators are input by a control inte-
grator. The control integrator is also patched to a one-
thousandth gain amplifier, whose output is the input to
all comparators. The hybrid test stores the voltages
at which the integrators are placed into hold. These re-
corded values are used to compute the gap and offset.
The comparator address, on value, off value, and offset
arerecorded.

The total hybrid run time for the Comparator Gap
Diagnosticis oneminute.

Discrete preventive maintenance diagnostic

The objective of the Discrete P. M. program is to in-
sure that each Discrete-out and Discrete-in bit is prop-
erly aligned and is capable of representing both logic

levels. This objective is accomplished in the usual man-

ner by trunking Discrete-out Units to corresponding
Discrete-in Units. The digital computer then sets each
Discrete-out bit and checks that the corresponding
Discrete-in bit 1s on. The majority of time required
for the completion of the Discrete P. M. program is a
function of the amount of print-out. Total time is nor-
mally less than ten seconds.

Priority interrupt preventive maintenance diagnostic

The objective of the Priority Interrupt Diagnostic is
to insure that all available priority interrupt lines will
provide the desired pumber of interrupts at the proper
priority level. There are eleven priority interrupt lines
available which supply the capability of interrupting
the computer program on one of eleven discrete levels of
interrupt. A logic-one on any priority interrupt line will
cause an interrupt request. This request will be honored
immediately, if none of the following conditions exist:

\

1. An equal or higher priority interrupt still has control
of the computer program.

2.The requested level of interrupt is temporarily dis-
abled because the system is executing some nonre-
entrant code.

3. The request level of interrupt was never enabled by
the program.

The Priority Interrupt Diagnostic checks the individ-
ual priority interrupt lines in the following steps:

1. The program enables all available priority interrupt
lines. The seven highest level interrupts are trunked
to seven discrete-out lines. The remaining four inter-
rupt lines are hard wired to the overflows of interval
timers and the end of conversion of the ADC’s.

2.The program sets the seven discretes to a logic-one,
starts the timers, and reads the ADC’s.

3.The program analyzes the order in which the lines
were serviced and checks that each line was serviced
only once. Any error in the order or any multiple
servicing of the interrupt lines will result in the re-

_cording of the improper line.

4.The program applies a signal to the first priority
interrupt line and checks that the proper level of
interrupt occurs only once. The remaining lines are
checked in the same manner. Any error will result
in the recording of the improper line.

Total run time for the Priority Interrupt Diagnos-
tic is less than one second.

Interval timer preventive maintenance diagnostic

The Interval Timer Diagnostic provides a means for
checking both interval timers in their four modes of
operation. These modes provide a means for setting the
timer register to a particular time which will provide a
priority interrupt at the end of the desired interval
(overflow).

The following is a description of the four modes of
operation:

1. Upon selection of mode one, the desired time is
immediately loaded into the timer register, regardless
of the timer state. The timer will then stop after the

~ desired interval has elapsed.

2. The selection of the second mode will cause the time
register to be loaded with a new value immediately
upon overflow. The new value will automatically be
reloaded at subsequent overflows.

3. The third mode causes the timer register to be loaded
immediately with the desired time interval, regard-
less of the timer state. The new value will automati-
cally be reloaded at subsequent overflows. -

4. The selection of the fourth mode results in an imme-
diate stop of the timer.

Hybrid Diagnostic Techniques 1007

The timer modes, registers, and priority interrupts
are checked in the following manner:

1. The program checks the first and fourth modes of
operation by using them to check each bit of the
timer register. This is accomplished by setting the
register’s highest order bit, stopping the timer, and
recording the contents of the register. The highest
order bit is then turned off and the next lower order
bit is turned on. The contents of the register are re-
corded. This procedure continues until all bits have
been checked.

2. The program checks the third mode of operations by
using it to load the timer register with a known value.
After the timer overflows, the value reloaded into the
register is recorded. This cycle is continued for two

additional overflows to insure that the values loaded -

at each overflow remain the same.

3. The last overflow, resulting from step (2), changes
the value in the timer register under control of the
second mode. After the register isloaded, its contents
are recorded. The register value is recorded for two
additional overflows. The proper operation of the
second mode is assured if the register values are iden-
tical and have been changed from step (2).

Through the above steps thepriorityinterrupts caused
by interval timer overflows are checked for proper se-
quencing. :

The total run time for the Interval Timer Diagnostic
isless than one second.

DAC—ADC preventive maintenance diagnostic

A complete analysis of the operation of digital to ana-
log converters and the analog to digital converters re-
quires the use of two diagnostic programs. One program
is a static check of each magnitude bit to insure proper
operation and value. The other program is a dynamic
check to reveal any intermittence in overall operation or
crosstalk. The following is a description of these pro-
grams:

Static diagnostic
DAC

The Static Diagnostic uses the digital to analog con-
verter, located within an analog console, for a standard.
This console-DAC is controlled by the program and its
accuracy is maintained to within == .003 volts.

A single unit of linkage-DAC’s contains 30 individual
digital to analog converter channels. These channels
may be checked simultaneously in the followingmanner:

1. Theleast significant bit of the console-DAC and the
30linkage-DAC’sis turned on.

2. A comparison is made between the output of the
Console-DAC and the 30 linkage-DAC’s by means of
30 error amplifiers with gains of 1000.

3. The outputs of the error amplifiers are read by
analog to digital converters and are recorded.

4. The least significant bit is turned off and the next
higher order bit is turned on. This error is recorded
and procedure continues until all bits have been
checked.

5. After checking the highest order bit, all magnitude
bits are turned on and the linkage-DAC’s are checked
at full scale positive.

6. The sign bits of all the DAC’s are turned on and

the above steps are repeated until the error for full
scale negative has been recorded.
The relays and amplifiers used in this diagnostic are
checked by the program before execution. In the
event of an error, a pause results that allows the
operator to investigate the malfunction prior to
program execution. Total time required is one
minute.

ADC

The analog to digital converter static diagnostic also
uses the console-DAC as a standard. A single unit of
linkage-ADC’s contains 25 individual analog to digital
converters which may be checked simultaneously in the
following manner:

1. The program makes use of the same analog equip-
ment by switching out the linkage DAC’s and chang-
ing the 1000 gain amplifiers to unity gain.

2.The least significant bit of the console—D;;&C is
turned on and fed to 25 unity gain amplifiers.

3.The outputs of these amplifiers are read by the
linkage-ADC’s. The program then compares these
values with the original console-DAC value and re-
cords the difference.

4. The console-DAC is stepped in the same manner as
in thelinkage-DAC test until the errors for each bit,
both positive and negative, are recorded.

The total time for execution of the linkage-ADC

Static Diagnostic is less than one-half minute.

Dynamic diagnostic
DAC-ADC

The Dynamic Check provides a method for checking
dynamic response of the linkage equipment. Any inter-
mittence of operation may be found quickly and iso-
lated by various program options. The dynamic check
supplies a varying voltage to an ADC, samples the ADC
at a definite time interval, and fires the DAC to the
sampled ADC value.

1008 Fall Joint Computer Conference, 1968

The check is accomplished by combinations of the
following options:

1. The inputs to the first and second ADC units are pro-
gram coupled to corresponding outputs of the first
and second DAC units, respectively.

2.The inputs to the first and second ADC units are
program coupled to corresponding outputs of the
second and first DAC units, respectively.

3. Any input of either ADC unit can be selected to
control the outputs of both DAC units.

The program is completely flexible in that any com-
bination of units and their synchronization may be se-
lected. An option is available to use the interval timer
to control the timer interval. The synchronization of
the DAC’s and the ADC’s may be controlled by the
interval timer, an external signal, or by the program.
Detection of any intermittence is accomplished by
applying a signal of varying amplitude to the desired
ADC and observing the output of the desired DAC with
a recorder.

This test may be used continuously to locate a mal-
function.

Present diagnostic schedule

The scheduled frequency of Diagnostic Routine
execution can be seen in Figure 18. We must admit that
the schedule is the result of experience (four years)
rather than a highly technical evaluation. The sched-
ule evolved from a trial and error method but has
proven itself over the past year to be more than ade-
quate for our needs. The high reliability of our hybrid
‘system has proven:the worth of both the diagnostics
and the frequency of use.

PERFORMED DAILY PERFORMED WEEKLY

STATIC CHECK INTEGRATOR DRIFT

INTEGRATOR RATE NON-LINEAR
DISCRETE MULTIPLIER
INTERVAL TIMER TRUNKING
DAC-ADC HI-ACCURACY

PRIORITY INTERRUPT

Figure 18—Diagnostic scheduled frequency

Trouble shooting aids

Figure 19 shows the balance of the options available
in our Preventive Maintenance Program. These options
are used as needed for trouble shooting and in some
cases, to aid in automated calibration techniques.

DAC-ADC DYNAMIC CHECK INTERVAL TIMER CHECK

DAC-SET CHECK PRIORITY INTERRUPT CHECH
READ ADC-DISPLAY CHECK SUB CHANNEL TEN CHECK
DAC-ADC LIGHTS TEST HYBRID SET-UP ROUTINE

DISCRETE ON-OFF CHECK

Figure 19—Trouble shooting aids

SUMMARY

In the process of preparing this paper we were
forced to review our efforts over the pastfour years,
and we feel that some of these reflections may be of in-
terest. As we stated some years ago,? the approach we
used was forced upon us by both the relatively new de-
sign of our equipment and the fact that we were em-
barking upon the establishment of a new technology;
which, if not new to the world, was at least new to us.
We began with a staff of nine, which consisted of three
degreed engineers experienced in programming and
design, plus six technicians. Only two members of the

- technician force were experienced in analog. Looking

back, we would not have had it any other way. We
found, in a hybrid environment, it was easier to establish
new habits of work performance than it was to break
old ones.

We designed our diagnostic routines in a serial
manner and began using them as they became opera-
tional. As each new test was designed, we attempted to
check components not covered by previous tests. In
retrospect, we feel that this was and is a valid approach.
Not all diagnostics used today were anticipated in the
beginning. Some we designed as the need became ap-
parent. We have tried to remain flexible in our ap-
proach to diagnostics and have redesigned and updated
as our needs and equipment varied. The diagnostics
outlined in this document have been stable for the past
year. We see no need for further revision, unless our
equipment is changed.

It is our firm belief that the time and money spent on
developing this system for maintaining our hybrid
equipment has been well worthwhile. Our prime objec-
tive has been and is to provide our customers with
maximum operation time coupled with a minimum
maintenance effort. In this goal we have succeeded. The
Boeing Huntsville Facility operates 18 hours per day,
six days a week (sometimes seven); the operation is sup-
ported by a six hour maintenance period on third shift.
Our down time during the past year has averaged six
hours per month on the analog and linkage equipment
plus ten hours per month for the digital portion.

Hybrid Diagnostic Techniques 1009

Down time is defined as that time between the notifi-
cation of a maintenance technician and the appropriate
repair.

We have found the Diagnostic Routines invaluable
as a trouble shooting aid when the applications person-
nel have trouble with their simulations. The application
engineers over the years have grown to trust our diag-
nostics and use them as they would a core dump to
isolate problem areas. This we feel has been our greatest
compliment.

REFERENCES

1 GH GALE

Boeing—Huntsville hybrid system

Simulation Vol 5 No 4 1965

2 TKSEEHUUS

Hybrid computer techniques to aid computer maint ce
Simulation Vol 7 No 5§ November 1966

3 TKSEEHUUS M TBENNET

A hybrid oriented method for testing analog non linear equipment
Presented at a joint meeting of the Southeast and Midwest
Simulation Councils January 1968 Miami Florida

Demand paging in perspective

by C.J. KUEHNER and B.RANDELL

International Business Machines Corporation
Yorktown Heights, New York

INTRODUCTION

The method of storage allocation known as “demand
paging,” first introduced by the designers of the Atlas
computer, ! has a very appealing conceptual simplic-
ity. Furthermore, the possibility that this technique
could be used to allow programmers to ignore the prob-
lems of organizing information flow between working
storage and one or more levels of backing storage was, to
say the least, very tempting.

However demand paging has its limitations. Some
were foreseen—several years ago Dennis and Glaser?
pointed out that page-turning was potentially dis-
astrousif applied to the wrong class of information. This
however did not prevent the implementing of systems
which in at least their initial versions have had grave
performance problems arising from excessive paging.
Such problems have caused much work on various more-
or-less ad hoc attempts to improve system performance.
The purpose of this paper is to survey the various
techniques that have been proposed or used in an at-
tempt to improve the performance of demand paging
systems. By this means it is hoped to make clear the
relationships between the various apparently com-
pletely separate techniques, and to aid the understand-
ing of both the potentials and the problems of demand

paging.

Demand paging

The two essential characteristics of demand paging
are clearly conveyed by its title:

(i) Information is demanded by a program at the
moment it is needed, without any prior warning.
The “demand” is in fact implicit, and arises out
of an attempt to use information not currently in
working storage.

fii) Information is transferred to and from working
storage in units of a page. Such pages are of equal
size (typically 1024 words). Correspondingly, the
working storage.is regarded as being logically

equi-partitioned into page frames.

These characteristics together imply one of the bene-
fits of demand paging, i.e., the removal from the pro-
grammer of the burden of explicity stating what infor-
mation is to be transferred to and from working storage,
and when these transfers are to take place. However, as
should become clear in the main part of this paper, it is
also these two characteristics which are the source of the
performance problems actually experienced in some sys-
tems,® and predicted by several analytict and s1mu1at10n
studies.’

The typical symptom of theseperformanceproblemsis
a low CPU utilization, together with a high utilization
of the channels between backing and working storage,
arising from an excessive amount of page-turning (ex-
cessive, that is, in relation to the amount of processing
achieved). A system exhibiting such behavior is often
said to be ‘‘paging itself to death.”

These inefficiencies derive from two fundamental
causes. Firstly a program, while awaiting satisfaction of
a page demand, will continue to consume system re-
sources—notably working storage. This is discussed in
reference ¢ and illustrated graphically in Figure 1. Itis
clear that if page transfers are very frequent, or con-
sume a lot, of time, much of the resorce utilization will be
non-productive. The second cause is somewhat more
subtle, and is due to the non-linear relationship which
has been found to hold between program efficiency (e.g.
Q average number of instructions executed between page
demands), and the number ‘of page frames allocated to
the program.” This relationship is llustrated in
Figure 2. It will be seen that although a program will
continue to run quite well withasomewhatsmallersetof
pages than the totality it references, its performance
falls off rapidly when the set of pages is reduced beyond
a certain point, often termed the parachor of the pro-
gram8 If a system is such that programs are often
forced to operate with less than their parachor of pages
in working storage, the system performance is likely to
be far from aceeptable.

1011

1012 Fall Joint Computer Conferénce, 1968

SPACE

PAGE [
FRAME
SIZE

REAL
TIME

.

P P P P ‘P P
PROGRAM AWAITING . PAGE

N\
' PROGRAM ACTIVE
P AVERAGE TIME FOR PAGE FETCH

FIGURE 1—Storage utilization with demand paging

Three basic factors are involved in determining
‘whether a demand paging system will succumb to the
fate of being paged to death. These are:

(i) Thesystem hardware characteristics
(ii) The program load
(iii) The operating system strategies

Of these factors the first is in some senses the most

important; because an attack based on this area is by
far the most likely to be successful in reducing the pag-
ing rate to an acceptable level. For example a drastic in-
crease in the size of the working storage will overcome
all but the most perverse of operating system strategies.
However, adding more working storage capacity
indefinitely is of course a trivial solution. The difficult
question is what is the minimum amount of working
storage which must be added in combination with vari-
ous backing store designs to produce the required level

" of performance at minimum cost? Nielsen 8 has shown
the effect of unbalanced system designs in which optimi-
zation of any but the critical system element has had
little effect on overall system performance. A descrip-
tion of techniques available for determining the com-
ponents of this balance in specific systems is beyond the
scope of this paper,? however several general re-
marks may be in order.

Belady 7 has shown the effect upon system perform-
ance of reducing the delay associated with obtaining
information from backing stores. From such an analysis
it is clear that as one reduces the delay in obtaining a re-
quired page, one can obtain the same performance level
with a significantly smaller amount of available work-

EFFICIENCY

s S ——

SPACE
SHARE

PARACHOR

FIGURE 2—Efficiency versus space sharing

ing storage. Such results suggest the use of bulk core
store as the solution to the performance problem. 1©
However, at this time it is difficult to justify the use of
such devices on a cost/performance basis in any but the
most demanding of circumstances due to their rela-
tively high cost. Conversely, the same results may be
interpreted to show that flailing arm disks are a poor
choice as backing storage in demand-paging environ-
ments. What effectively occurs in systems employing
these devices is that the core latency effect shown in
Figure 1 prohibits efficient operation unless a vast
amount of working storage capacity is available. Con-
sequently even though such devices are cheap, the per-
formance obtainable does not yield a viable cost/per-
formance ratio.

If one is free to vary the hardware complement, it can
almost be guaranteed that an acceptable level of per-
formance may be obtained. Such hardware solutions,
however, are in some senses a brute force approach
aimed at providing an environment which is insensitive
to the difficulties caused by program load and operating
system strategies. On the other hand, attacks on the
factors of program load and operating system strategies
can be considered as attempts to extend the area of
practicality of demand paging. Therefore the remainder
of this paper is concerned solely with the various pro-
posed software solutions to the problems of demand
paging.

Prior to entering into this discussion however, two
notes of caution should be injected. First is the ques-
iton of cost. The cost of hardware solutions is easily de-

Demand Paging in Perspective 1013

terminable in terms of rental or purchase dollars. This is
not the case with software solutions in general. Al-
though one would like to compare specific solutions of
equal cost, it is not possible without a knowledge of the
cost and skill of the software talent available to a speci-
fic installation. Second, the implementation of one, two
or all of the techniques described below does not guaran-
tee the transformation from an unacceptable to an
acceptable level of system performance. In fact, a priori,
it is very difficult to predict the magnitude of the per-
formance improvement which would be obtained on a

specific system by implementing one or several of these

techniques.

Program load

The instructions and data whose storage and trans-

mission form the load on the system resources such as -

storage and channels are comprised of both user pro-
grams and system programs. In fact certain parts of the
operating system are users of the very resources that
they have the tagk of allocating.

This load has properties of both volume and strue-
ture, both of which can be the source of problems. The
effect of the volume of data and instructions on limited
storage and channel resources should be readily under-
standable. The effects due to the structure of the pro-
gram load are much more subtle. There is one easily-
determined measure relating to the structure of a given
program load, namely the working set size!' The
working set of a program is the collection of distinet
_ pages to which storage references were made during a
given execution interval. The largest working set size
of a program is then the number of pages occupied by
the program and its data. At the opposite end of the
spectrum a single page is also a working set, but for an
extremely short execution interval. (To complete the
execution of even a single instruction will normally re-
quire more than one page.) Working set size is hence a
function of the interval during which storage references
are observed. Obviously a plot of average working set
size against length of execution interval observed is
monotonically increasing. However, it should be
remembered that for a given interval of observation
different stages during execution of a program may well
result in extremely different working set sizes and com-
positions.

Unfortunately the working 'set size measure is far
abstracted from the underlying characteristics of pro-

gram load structure which affect its value. These

characteristics include:
(i) programming style
(ii) degree of modularity of code -
(iii) layout of data
The various techniques for increasing the efficiency of

paging systems deseribed in this section all have as their
goal a reduction primarly in the average value of the
size of the working set and also in the volume of the
program load. It is convenient to discuss separately
techniques which can be supplied to an existing program
load, and those of relevance during the initial design of
programs for a paging system.

Program load improvement without recoding

The prospect of modifying the instruction flow and
data layouts of an existing complex program load in
order to reduce the average working set size is not
exactly attractive. Hence some attempts have been
made to achieve such a reduction by simply repacking
the modules (which may be greater or less than a pagein
extent) that make up the program layout in virtual
memory. Comeau!? has reported on a brief series of
experiments in which the modules which constituted an
entire operating system were presented to the system
loader in various different orders. One rearrangement
was found that reduced the rate of page transfers by
over 809, from that caused by the original version of the
operating system.

This technique is obviously very simple to carry out,
assuming one knows how to choose a good reordering
of the modules. Any rational choice requires at least
some information about the dynamic interaction of pro-
gram modules and the pattern of referencing activity.
Possible classes of information include:

(i) frequency of reference to the various modules
(ii) sequence of references to the modules

(iii) frequency of reference to the various pages

(iv) sequence of references to pages

Such information could be obtained during trial runs
of the operating system. Two problems immediately
come to mind. Firstly, there is no guarantee of consis-
tency in data gathered from different runs. Secondly,
the data regarding modules concerned with the actugl
paging function will vary as the working set composi-
tion changes, due to different packing arrangements.
However these are probably minor problems comparefi
with that of computing an optimal, or even near-opti-
ma] module ordering from the obtainable reference in-

formation. ;
Summing up, in the present state-of-the-art, any but

~ the most minor attempts at re-packing are probablv

best regarded as last-ditch efforts at recovering from
inadequate hardware, operating svstem strategies, and/
or programming style.

Program load improvement via redesign and
recoding

The style of program design required to obtain good

1014 Fall Joint Computer Conference, 1968

performance from a paging system in the face of inade-
quate hardware or operating system design is quite
different from the conventional. In such circumstances
adherence, by both programmers and compilers, to a
set of programming commandments is as important as
it is distasteful. The distastefulness arises from the need
for a continual awareness of the part of the programmer
of the (at least approximate) position of page bound-
aries in relation to his instruction and data layouts.

Necessary commandments include:

(i) Do not reference a wide variety of pages in rap-
id succession. It is better to localize activity for a
reasonable interval, and then move on to a
different locality, rather than to intermix ref-
erences to the much larger combined locality.
Minimize space requirements for instruction
and data storage only insofar as this permits
adherence to commandment (i). (The assump-
tion here is that it is worth trading increased
backing storage utilization for decreased paging
activity).

(iii)) Avoid excessive modularity of programs. Pro-
gram modularity, although very helpful if one
must introduce changes and modifications to
existing codes, can reduce execution performance
substantially. If an operating system is com-
posed of literally hundreds of program modules,
any but the most trivial of work requests
necessitates tens or hundreds of control trans-
fers. Such transfers are costly in terms of unpro-
ductive CPU time but even more critically, in
the worst case, each transfer could require that a
distinet page of information be referenced. It
should be clear, therefore, that a distinet trade-
off exists between the effective static level of pro-
gram modularity and the amount of dynamic
control transfers which directly result.

(iv) Design data layoutsto take account of the order
in which data items are to be processed. For ex-
ample, if an nxn matrix (where n is slightly larg-
er than the page size) is to be scanned re-
peatedly by rows then storing it by columns
would be unwise, to say the least. (For a detailed
discussion see McKellar and Coffman.?)

" (i)

The more frequently a particular program is to be
used, the more important is adherence to these rules.
Therefore of necessity systems programmers must be
particularly circumspect. It should also be noted that
adherence to the rules must be maintained during pro-
gram modification (in the case of extensive and repeated
modification this can be quite difficult).

However there have been some quite successful
attempts to redesign fairly simple algorithms in order to
improve their paging performance. For example the

papers by Cohen* and by Bobrow and Murphys
describe list processing systems in which the dynamic
storage allocation of list elements has been designed to
group elements which are likely to be referenced in quick
succession into the same page. Each system has thus
enabled very large list processing applications to be run,
with an efficiency surprisingly close to that attained by
small applications which fit entirely within core storage
(for example Cohen reports that only a factor of 3 in
speed was lost, éven though the average access to back-
ing store was 104 slower than access to core storage).
Another study which gives evidence of the performance
improvements that can be obtained, particularly when a
program has a very limited number of page frames
allocated to it, is that by Brawn and Gustavson.!® This
report describes an extensive set of experiments investi-
gating the effect of programming style on performance
obtainable from the M44/44X experimental demand
paging system. The experiments involving improvement
of a sorting algorithm are particularly interesting. A
series of changes were made to the original straight-
forward implementation of the algorithm. Each change
affected the sequence, but not the number, of page
references. The changes were simple to implement, but
involved considerable thought about the logic of the
program and its behavior in a paging environment. It
was found that the amount of real core storage needed
for reasonable performance was reduced by a factor of
over six.

Operating system strategies

If the hardware and the program load are such that
programs can usually have more than their parachor of
pages in working storage while they are executing, then
quite simple operating system strategies will suffice.
However in general very careful thought must be given
to the problem of achieving a high probability that
there is always a task in working storage readv for CPU
activity, and avoiding running programs in an exces-
sively space-squeezed environment. This is difficult
enough in a simple multiprogramming environment,
but is even worse in a time sharing environment. In such
circumstances there is the added need to give all users
frequent service, so that simple requests can be an-
swered quickly. Hence execution requirements which
turn out to be lengthy will be subject to time slicing
and, in all probability, to being paged in and out of
working storage repeatedly.

It is convenient to consider the functions of an
operating system which are relevant to this paper as
being scheduling, allocation, and dispaiching. Here
scheduling is understood to be the maintenance of an
ordered list of the jobs that are competing for the ser-

Demand Paging in Perspective 1015

vices of the allocator. The allocator controls the alloca-
tion of working storage between such jobs from this list
as it chooses to service. Finally, should there be more
than one job ready and waiting for a CPU when one be-
comes available, the dispatcher makes the choice.
Ideally a design should guarantee the harmonious co-
operation of these three mechanisms under a wide
variety of load conditions. Unfortunately even untried
theoretical approaches to this goal are few in number,
one of the most developed being that of Denning.

However we are getting beyond the scope of this
paper. The rest of this section is a discussion of various
more or less isolated approaches to improving the
strategies, and hopefully the performance, of demand
paging systems. The techniques to be described can be
divided into those concerned primarily with scheduling
and those concerned with allocation.

Scheduling

Inpaging systems experiencing performance problems,
the scheduling function must be viewed in a somewhat
different light than one normally finds in the literature,
where scheduling algorithms are compared and op-
timized in isolation of the system being scheduled. In
such cases scheduling is econsidered the dominant system
controlling function and allocation is reduced to pro-
viding space for jobs as the scheduler dictates. The re-
sult of such an approach in a system containing a re-
source class more critical than processing time is, in
general, a significant degradation of performance. The
problem is that few ‘‘schedulers” sample the resources
of the system and base their decisions on the results. In-
stead they attempt toinject and remove jobs from execu-
tion on the basis of arbitrary pre-set bounds for time-
slice, quantum time, amount of occupied storage, ete.
The ef'fect' upon performance in a demand-paging svs-
tem of cyeling a job into and out of execution is eritical.
One can easily see why this may be so from an analysis
of Figure 1.

The key to improving performance via scheduling in
such systems is to subordinate the scheduling function
to that of allocation. Jobs should be introduced and re-
moved from the system on the basis of the state of the
system resources by the scheduler under the control of
the allocator (with few if any exceptions). Once a job
has been introduced into the system and acquires its
parachor of pages, one should be hesitant to remove it
and lose the investment unless it has been in execution
for a lengthy period of time. The period of time-slice
should be an upper bound exception and not the general
rule of operation.

The above philosophy of scheduling is concerned with
when, and under whose control, items should be entered
or removed from the list of jobs competing for working

storage. There remains the problem of which jobs
should be selected for adding to the list when circum-
stances make this desirable. The two scheduling tech-
niques that have been proposed for improving the per-
formance of demand paging systems, which are de-
seribed below, are concerned with this latter problem
area.

A fairly simple and frequently proposed technique of
reducing the amount of paging is to arrange that re-
quests for use-of the same program are batched to-
gether. This can be quite successful, particularly in
those time-sharing systems where many users are mak-
ing continual use of a substantial program, such as a
compiler, or a text editing and filing program. In a very
large system the fact that the similar requests are
batched together might not even be apparent to the
user, the delays caused by waiting for a batch to be ac-
cumalated being quite small and perhaps even being
outweighed by the effect that reducing the amount of
paging has on system efficiency.

A more autocratic proposall? is to dynamically limit
the programmer response rate. The theory is that al-
though a system should respond to a programmer’s re-
quest immediately, it will be good for the system, and in
all probability the programmer, if his rate of response to
the system is controlled. One simple method would be to
lock the terminal keyboard after a system response,
for a period of time in some way proportional to the
amount of system resources used in providing the
response. This is intended both to limit the load in the
system, and to encourage users to think before they
type. The aceeptability or quantitative performance im-
provement that such a scheme would yield remains to
be proven.

Allocation

As mentioned earlier, it is considered the function of
the allocator to decide when to allow the scheduler to
introduce new jobs into contention for working storage
space and to decide which requests for working storage
it should attempt to service. This enables the allocator
to control the level of multiprogramming (i.e., number
of independent contenders) in working storage during
any time interval. If the modifications to the existing
operating system modules would be too extensive to
incorporate this scheduling-allocation procedure, one
can introduce a new almost autonomous mechanism to
the original operating system to perform such a func-
tion. Such a mechanism, termed the “load-leveler,” was
in fact added to the M44/44X system. The scheme
chosen for the load leveler was to periodically examine
recent CPU utilization and paging rate, and when neces-
sary request the scheduler to temporarily remove jobs
from the list of those being serviced by the allocator.

1016 Fall Joint Computer Conference, 1968

The jobs which are temporarily set aside are chosen
from among those which are not experiencing frequent
interaction. .

The need to move a job which has reached the end of
its time slice out of working storage temporarily can be
a source of considerable difficulty. Such a job may have
painstakingly accumulated the ration of page frames
that it needs for effective progress. If on next being
eligible for a time slice it must demand pages one-at-a-
time, its initial progress will be minimal. (This is borne
out by the simulation results given by Fine et al.?)
The technique known as “pre-paging” (Oppenheimer
and Weizer is intended to avoid this situation. Pre-
paging involves fetching a set of pages, which are be-
lieved to be the working set of a job, into working
storage before the job is allocated to a CPU. The ob-
vious difficulty with prepaging is deciding what to pre-
page (i.e. Q the composition of the working set). The
problem which involves predicting future program
activity, is very similar to that of designing a page re-
placement algorithm.® A straightforward approach
is to prepage the last (n) pages referenced during the
program’s previous time slice. A major factor in
choosing the magnitude of (n) should be the speed of the
backing store. One theory is that the longer it takes to
fetch a page on demand, the larger (n) should be. Al-
though this will increase the probability of fetching un-
wanted pages, it should avoid many subsequent page
demands and reduce the overall space-time product for
the execution of this job.

A logical extension of pre-paging is ‘‘paging by func-
tion.” This involves the use of special program direc-
tives indicating that a certain set of pages will all be re-
quired for a certain function to be performed. These
pages will then all be brought to working storage at
once, rather than one by one, on demand. A correspond-
ing directive can be used as a form of “block page re-
lease,” indicating that all of the indicated pages have
been finished with, and can be replaced. A possible
source of the information needed to use these program
directives intelligently might be the sort of program

module interaction data discussed in an earlier section.’

Lessonstobe learned

It is convenient to attempt to summarize the above

discussion by considering separately the effects of the:

demand and the paging concepts.

The idea of having a running program notify the sys-
tem of its need for a particular resource when it has
reached the state of not being able to make any further
progress until that resource is granted to it is at one end
of the spectrum of possible resource allocation strate-
gies. The other extreme is to allocate the entire resource
requirement to a program from the beginning of its life

time in the system. (This of course requires complete
knowledge of all the resources that a program will need.)
In the former case inefficiencies arise from non-produc-
tive resource utilization while a program is awaiting
satisfaction of its demands. In the latter case the inef-
ficiency arises from giving a program resources for a
longer period than it requires thereby making them un-
available to other users. Corresponding to the above
comments on resource allocation, a similar discussion
applies to the spectrum of strategies possible for con-
trolling the deallocation of resources.!!+1

A correct choice of allocation and deallocation
strategies for a particular system involves an appreci-
ation of the cost of non-productive resource utilization,
the time taken to satisfy a resource demand, the fre-
quency with which such demands are likely to be made,

“and the probability of getting accurate advance notifi-

cation of resource needs.

It should be noted that this problem is not peculiar to
paging systems, or even indeed to the particular re-
source of storage space. However experience has shown
that a wrong choice of strategy can have drastic effects
in a dynamic storage allocation system. This would ap-
pear to be due to the fact that in most systems working
storage is a very critical resource, and also becausé of the
non-linear relationship that holds between program
efficiency and space allotment. (Experimental evidence
for this relationship comes from paging systems, but
there is no reason to believe that it may not also apply
to dynamic allocation systems which allocate differing
sizes of blocks of working storage.)

On the subject of paging, it is clear that one of the
most obvious difficulties that arise in the design of a
paging system is that of choosing a page size. From the

_viewpoint of avoiding the transfer to working storage of

a large amount of information which may not be used, a
small page size is desirable. On the other hand if too
small a page size is chosen the overhead caused by very
large page tables will be excessive. It seems clear that if
the basic hardware and operating system strategies are
adequate for the program load, an adequate choice of
page size can be made, and a very simple page replace-
ment technique for working storage allocation will suf-
fice. The problem arises when this is not the case, and it
is necessary for programmers to maintain a continual
awareness of the underlying paging environment while
designing or modifying programs. In these cir‘cun}-
stances the page size becomes a straight jacket and,.lf
only for reasons of programmer convenience, 2 multiplic-
ity of sizes of storage areas would be preferable. There
is in fact some evidence® to suggest that such an
environment permits higher utilization of working stor-
age than one in which only a single page size is per-
mitted. However so much depends on programming

Demand Paging in Perspective 1017

style and methods of compilation that a definitive com-
parison is extremely difficult.

CONCLUSIONS

The software techniques for improving the perform-
ance of demand paging systems deseribed above all
attempt in their various ways to perform one or more of
the following functions:
(i) provide advance warning of page demands
(ii) reduce the working set of programs, and hence
their parachor
(iii) ensure that programs are not excessively space-
squeezed (ideally that each program is given just
over its parachor of pages)

(iv) provide explicit identification of the working set.

When one attempts to abstract the common de-
nominator of these techniques it becomes clear that
they are not just attempts to ‘““tune” the basic demand-
paging philosophy, they in fact attempt to negate both the
“demand” and the ‘“paging’’ characteristics. Prepaging,
for example, attempts to avoid the ‘“demand” page ex-
ception with its attendant overhead and delay, as well
as avoiding “paging’’ by attempting to select a meaning-
ful portion of the program to preload. The result is a
storage management system which is a mixture of
striet paging and slow swapping.

It is important therefore to remember that demand
paging is but one of the many possible techniques of
dynamic storage allocation. As with any strategy its
range of efficient use is limited. The simplicity of work-
ing with uniform units of allocation and the potential
efficiency of bringing into working storage only those
units of information which are actually referenced are
the strong points of demand paging. The demand pag-
ing systems so far implemented have in general shown
that these advantages are purchased at the cost of
rather more working storage, and /or faster backing stor-
age, than have heretofore been considered necessary for
the throughput and response times that have been ob-
tained. A final conclusion on the merits and limitations
of demand paging must however await the accumula-
tion of more experience of their use in actual user en-
vironments.

ACKNOWLEDGMENTS

The authors would like to thank L. A. Belady, M.
Lehman and F. Zurcher for numerous discussions and
suggestions which aided in the preparation of this paper.

REFERENCES

1 T KILBURN D B G EDWARDS M J LANIGAN
F H SUMNER
One-level storage system

IRE Transactions on Electronic Computers 11 2 1962 pp
223-235
2 JBDENNIS E L GLASER
The structure of on-line information processing systems
Proc 2nd Congress on Information Systems Sciences Spartan
Books Washington DC 1965 pp 5-14
3 J N BAIRSTOW
Time-sharing
Electronic Design 16 9 1968 pp C1-C22
4 JLSMITH
Multiprogramming under a page on demand strategy
Comm ACM 10 10 1967 pp 636-646
GHFINE CWJACKSON PV MCcISAAC
Dynamic program behavior under paging
Proc 21st ACM National Conference Thompson Book Co
Washington DC 1966 pp 223-228
B RANDELL CJEKUEHNER
Dynamic storage allocation systems
Comm ACM 11 5 1968 pp 297-306
7 LABELADY CJKUEHNER
Dynamic space sharing in compuler systems
Report RC 2064 IBM Thomas J Watson Research Center
Yorktown Heights New York May 1968
8 N R NIELSEN
The simulation of time sharing systems
Comm ACM 107 1967 pp 397412
9 JESHEMER G A SHIPPEY .
Statistical analysis of paged and segmented computer systems
‘General Electric Company Technical Repcrt Phoenix Arizona
April 1966
10 H CLAUER
Bulk core in a 360/67 time-sharing system
AFIPS Conference Proceedings Vol 31 1967 FJCC
Washington DC 1967 pp 601-609
11 PIDENNING
The working set model for program beharior
Comm ACM 11 5 1968 pp 323-333
12 L. W COMEAU
A study of the effect of user program optimization in & paging
system
ACM Symposium on Operating System Principles Gatlinburg
Tennessee Oct 1-4 1967
13 ACMcKELLAR E G COFFMAN
The organization of matrices and matriz operations in & paged
multiprogramming environment
Technical Report No 59 Dept of Elec Eng Computer Sciences
Laboratory Princeton University February 1968
14 JA COHEN
Use of fast and slow memories in list processing languages
Comm ACM 10 2 1967 pp 82-86
15 D GBOBROW DL MURPHY
Structure of a LISP system using two-level storage
Comm ACM 10 3 1967 pp 155-159
16 BBRAWN F GUSTAVSON
An evaluation of program performance on the M44/44X system
Part 1 Report RC 2083 IBM T J Watson Research Center
Yorktown Heights New York May 1968
17 R LPATRICK
Time-sharing tally sheet
Datamation 13 11 1967 pp 4247
18 G OPPENHEIMER N WEIZER
Resource management for a medium scale time sharing oper-
ating system
Comm ACM 11 5 1968 pp 313-322
19 L ABELADY

ot

6

<

1018 Fall Joint Computer Conference, 1968

A study of replacement algorithms for a virtual storage computer A note on storage fragmentation and program segmentation
IBM Systems J 5 2 1966 pp 78-101 Report RC 2102 IBM T J Watson Research Center Yorktown
20 BRANDELL Heights New York May 1968 ’

Program behavior in a paging environment

by BARBARA S. BRAWN and FRANCES G. GUSTAVSON

IBM Watson Resarch Center
Yorktown Heights, New York

Study objectives

This paper is the result of a study conducted
on the M44/44X system, an experimental time-
shared paging system designed and implemented
at IBM Research in Yorktown, New York. The
system was in operation serving up to sixteen
users simultaneously from early 1966 until May
1968. Conceived as a research project to imple-
ment the virtual machine concept, the system has
provided a good deal of information relating to the
feasibility of that concept.” The aim of this study
is to investigate the concept more thoroughly from
a user’s viewpoint and to try to answer some im-
portant questions relateds to program behavior in
a paging environment. As an experimental sys-
tem, the M44/44X provided an.excellent vehicle
for the purposes of this study, and the study itself
forms some basis for an evaluation of the system.

It is recognized by the authors that the results

and conclusions presented here are to a great ex-
tent characterized by a particular configuration of
a particular paging system, and as such do not con-
stitute an exhaustive evaluation of paging sys-
tems or the virtual machine concept. Nonetheless,
we feel that the implications of the conclusions
reached here are of consequence to other system
implementations involving paging. '

Conventional vs automatic memory management

There has been much written about the benefits
and/or disadvantages of paging machines and the
virtual machine concept.2®* However, little data
have been obtained which sheds a realistic light on
the relative merits of such a system compared to
- a conventionally designed system. From a pro-
gramming point of view there is little question
that any technique which obviates the necessity

1019

for costly pre-planning of memory management
is inherently desirable. The question that arises
is—given such a technique, how efficiently is the
automatic management carried out?

From a user’s point of view this can s1mply
mean—how long does it take to run a program
which relies on the automatic memory manage-
ment, and is this time comparable to the time it
would take to run the program if it were written
in a conventional way where the burden of mem-
ory management is the programmer’s responsibili-
ty. It is this user’s viewpoint that forms one focal
point for this study.

The role of the programmer

Perhaps the most important aspect of the study
concerns the role of the programmer. How does
the role of the virtual machine programmer differ
from that of the conventional programmer? For
a conventional system the role of the programmer
is well defined—the performance (i.e, running
time) of his program is usually a direct result of
his ability to make efficient use of system resourc-
es. How much he is willing to compromise effi-
ciency for the sake of ease of programming may
depend on how often the program is to be run.
In any case, the decision rests with him. (There
of course exist many applications where his choice
of programming style or ability have little effect
on performance; this case is of little interest to
our study.) '

When faced with the problem of insufficient ma-
chine resources to accommodate a direct solution
of his problem, the conventional programmer is
left with no choice but to use some procedure
which is inherently a more complex programming
task. The quality of the procedure he chooses may

1020 Fall Joint Computer Conference, 1968

have a dramatic effect on performance but it is at
least a consistent effect and often quantifiable in
advance. In any event, because conventional sys-
tems have been around a long time, there are
many guidelines available to the programmer for
achieving acceptable performance if he should
wish to do so.

The role of the virtual machine programmer is
not nearly so well defined. One of the original at-
tributes claimed for the virtual machine concept
was that it relieved the programmer from consid-
eration of the environment on which his program
was to be run. Thus he need not concern himself
with machine limitations. As was pointed out
previously, the question is—given that the pro-
grammer does in fact ignore all environmental
considerations, what kind of efficiency results?
Assuming that the answer to this question is some-
times undesirable, that is, running time is unac-

ceptably long, another question arises. Can the

programmer do anything about it? Clearly it is
difficult to conceive of his being able to reorganize
his program in such a way as to assure improved
performance if he has no knowledge of the en-
vironment nor takes it into consideration when
effecting such changes. Thus if the premise of
freedom from environmental considerations is to
be strictly adhered to, there can be no way for the
programmer to consciously improve performance.

Should this premise be compromised to allow
the programmer to influence performance through
exercising knowledge of the system environment?
This study assumes that this should indeed be the
case and shows that there is much to be gained
and little to be lost. It should be emphasized, how-
ever, that the original premise need not be com-
promised at all in so much as it would, of course,
not be necessary for the programmer to ever as-
sume the responsibility of having knowledge of
the environment (unlike in the case of the con-
ventional programmer faced with insufficient ma-
chine resources). It would only enable him to have
better assurance of acceptable performance if he
chose to do so.

Clearly, the many interesting questions concern-
ing the role of the virtual machine programmer
and his effect on performance are worthy of pur-
suit. We feel that the measurements obtained in
this study of program behavior in a paged en-
vironment provide a valuable insight to such ques-
tions and serve as motivation for further consid-
eration of them.

Test environment

Before discussing the results of the study we
feel it is advisable to describe the environment in
which they were obtained. Thus included herein
are brief descriptions of the M44/44X system and
the methods employed to obtain and measure the
test load programs. (More complete information
is available in References 1, 5 and 7.) It is as-
sumed throughout this discussion that the reader
is generally familiar with the concepts of virtual
machines, paging, time-sharing and related topics;
however, a short general discussion on paging
characteristics of programs is included in order
to establish an appropriate reference frame for
the presentation of the experimental data.

The experimental M44/44X system

To the user a virtual computer appears to be a
real computer having a precise, fixed description
and an operating system which provides various
user facilities and links him to the virtual machine
in the same way as the operating system of a con-
ventional system links him to the real machine
(Figure 1). Supporting the virtual machine defi-
nition. is a transformation (control) program

Conventional System Virtual System

Real Machine

Real Machine

Transformation

|

| . Virtual
I Machine
| .

FIGURE 1—Conventional and virtual systems

Program Behavior in Paging Environment 1021

which runs on the real machine. This program, to-
gether with special mapping hardware, “creates’”
the virtual machine as it appears to the user. Im-
plementation of multi-programming within the
framework of the virtual machine concept permits
the transformation program to define the simul-
taneous existence of several separate and distinet
virtual machines.

The virtual machine programmer may write
programs without knowledge of the transforma-
tion program or the configuration of the real ma-
chine—his concern being the virtual machine de-
scription, which is unaffected by changes in the
real hardware configuration or the transformation
program. In the M44/44X system the real ma-
chine is called the M44, the transformation pro-
gram is MOS, the virtual machine is the 44X and
the virtual machine operating system is the 44X
Operating System (Figure 2).

The real computer

Figure 3 shows the hardware configuration of
the M44 computer. It is an IBM 7044 with 32K,
86-bit words of 2 ,sec core which has been modi-
fied to accommodate an additional 184K words of
8 usec core and a mapping device. The resident
control program together with the mapping de-
vice and its associated 16K, 2 ,sec mapping mem-
ory, implement the 44X virtual machines on a de-
mand paging basis in the 8 ,sec store. The back-
up store of the M44/44X system, which is used
for both paging and permanent file storage, con-

Virtual Machine 44X
— 44X Operating] User
System
Virtual Machine 44X
44x System
Real Machine
MOS and
Ma4 Mapping

Device, :

I

I

L Virtual Machine 44X
Operating

44X System

FIGURE 2—M 44/44X Multi-programming system

Additional
1050's

Teletype 33

Additional
Teletype 33's

7750

Non-Overlapped
Channel A Omitted

e I eYaYeYeYaTa)
PEEgeYeYatatata

Mapping —)
Device Channel D W

=)

Channel E

32K 192K
2usec | | Busec

FIGURE 3—M44/44X hardware configuration

sists of two IBM 1301 II disks. The page size (a
variable parameter on this system) used for our
tests was 1024 words (1 K). The average time
required to seek and transmit one page from the
disk to core is 0.21 second for that page size (com-
puted from our data). The IBM 7750 serves as a
message switching device, connecting a number
of IBM 1050 terminals and teletype 33’s to the
system. To facilitate measurement our tests were
not run from terminals (foreground) but as back-
ground jobs from tape. (The system makes no dis-
tinction between the two for the single pro-
grammed case—nor for the multi-programmed
case as long as all jobs on the system are of the
same type, i.e., all background or all foreground.)

The control program

MOS, the control program, resides in the non-
paged 2 ysec store. This M44 program “creates”
and maintains each virtual 44X machine and en-
ables several 44X’s to run simultaneously, allocat-
ing the M44 resources among them. All 44X 1/0
is monitored by MOS, and all error checking and
error recovery is performed by MOS. Some of the
design parameters of MOS are easily changed to
facilitate experimentation. The variable param-
eters include the page size, the size of execution
store (real core) made available to the system, the
page replacement algorithm, the time slice and the

1022 Fall Joint Computer Conference, 1968

scheduling discipline (via a load leveling facility).
The last two parameters mentioned are applicable
only in the multi-programmed case. As previously
stated, the page size used throughout the study
was 1024 words. The size of real core was, of
course, one of the most important parameters and
was varied to investigate paging properties of the
programs (in -both the single and multi-pro-
grammed environments).

For the single programmed part of the study
the page replacement algorithm employed was
FIFO (First In-First Out). If a page in real core
must be overwritten, the page selected by FIFO
is the one which has been in core for the longest
period of time. Data were also obtained for single

programmed paging behavior under a minimum.

page replacement algorithm developed by L. Be-
lady.¢ A non-viable algorithm, MIN computes the
minimum number of page pulls required by ex-
amining the entire sequence of program address
references, »

For the multi-programming part of the study,
a time slice of 0.1 second was used. Runs were
made using three different page replacement al-
gorithms to determine the effect of this design
parameter on system performance. (Available
real store is competed for freely by all the 44X’s.)
The three algorithms were FIFO, BIFO, a biased
version of FIFO which favors (on a round robin
basis) one 44X by choosing not to overwrite the
pages associated with it for a preselected interval
of time, and AR, a hardware supported algorithm
which chooses a candidate for replacement from
the set of pages which have not been recently
referenced. (These algorithms are described more
fully in Refs. 1 and 6.)

The virtual machine

Each virtual 44X machine is defined to have 2%
words of addressable store. The virtual memory
speed of a 44X is 10 ysec (44X programs are exe-
cuted in 8 usec store and a 2 ysec mapping cycle
is added to a memory cycle) ; the CPU speed is 2
uSec. The user communicates with the 44X vir-
tual machine through the 44X Operating System,
a 44X program which permits continuous process-
ing of a stack of 44X jobs; it contains a command
language, debugging facilities, a FORTRAN IV
compiler, an assembly program, a relocatable and
absolute loader facility, routines for handling a
user’s permanent disk files and a subroutine li-
brary. '

Test load problems

Test problems were chosen from the scientific,
commercial, list processing and systems areas of
computer applications. The problems chosen in-
volved large data bases which required the pro-
grammer of a conventional machine to concern
himself with memory management. The problems
discussed in this paper include matrix inversion
and data correlation from the scientific area and
sorting from the commercial area. (A complete
report on the entire study can be found in Ref. 7.)

Programs were initially coded for each prob-
lem in two ways:

i) a conventional manner where the burden
of memory management is assumed by the
programmer (conventional code), and

ii) a straightforward manner utilizing the
large virtual memory (“casual” virtual
code).

Simple modifications were then made to the
“casual” virtual codes to produce programs better
tailored to the paged environment. Our interest
lay in comparing the performance of the different
versions of the virtual codes under variable paging
constraints in both single and multi-programming
environments. We were also interested in compar-
ing the conventionally coded program performance
with that of the virtual (i.e., automatic memory
management) codes given the same real memory
constraints. :

It should perhaps be noted here that for our
purposes a program’s performance is directly re-
lated to its elapsed run time. Thus in a paging en-
vironment, where this elapsed time includes the
time necessary to accomplish the required paging
activity, poor paging characteristics are reflected
by increased run time and thus degraded per-
formance.

Measurement techniques

A non-disruptive hardware monitoring device
capable of measuring time spent in up to ten
phases of program execution was used for all
7044 runs and relevant single-programmed 44X
runs. In addition, for 44X runs (both single and
multi-programmed), a software measurement
routine in MOS was utilized. This routine collects
data while the system is running (using the clock
and a special high-speed hardware counter) and
on system termination produces a summary of the

Program Behavior in Paging Environment . 1023

data including; total time, idle time, time spent in
MOS (including idle time), number of page ex-
ceptions, page pulls, page pushes and other per-
tinent run data.

All programs were run in binary object form
as background jobs residing on a system input
tape; all output was written on tape. For the
multi-programmed runs, a facility of MOS was
used which permits several background jobs to be
started simultaneously. For the single pro-
grammed study the 44X programs were first
run and measured on the system with sufficient
real core available to eliminate the need for pag-
ing; these same programs were then run (and
measured) in a “squeezed core” environment, i.e.,
with insufficient real memory available, thus ne-
cessitating paging.

Program behavior under paging

Program performance on any paging system is
directly related to its page demand characteris-
- tics. A program which behaves poorly accom-
plishes little on the CPU before making a refer-
ence to a page of its virtual address space that is
not in real core and thus spends a good deal of time
in page wait. A program which behaves well
references storage in a more acceptable fashion,
utilizing the CPU more effectively before refer-
encing a page which must be brought in from
back-up store. This characteristic of storage ref-
erencing is often referred to as a program’s “lo-
cality of reference.”® A program having “good”
locality of reference is one whose storage refer-
ence pattern in time is more local than global in
nature. For example, although a program in the
course of its execution may reference a large num-
ber of different pages, if in any reasonable interval
of (virtual) time, references are confined to only
a small set of pages (not necessarily contiguous in
the virtual address space), then it exhibits a de-
sirable locality of reference. If, on the other hand,
the size of the set is large, then the locality of
reference is poor and paging behavior is corre-
spondingly poor. (The “set” of pages referred to
in the above example corresponds roughly to Den-
ning’s® notion of a “working set.”

All programs typical of real problems exhibit
badly deteriorated paging characteristics when
run in some limited real space environment. What
is of interest is the extent to which the space can
be limited without seriously degrading perform-
ance. Clearly, the size of this space is related to

the program’s locality and provides some indica-
tion of the size of what might be called the pro-
gram’s critical or characteristic working set. As
the single programmed results presented below
show, the effects of programming style on the
relative size of this space can be enormous.

Single programmed measurement results

We first measured the behavior of the 44X pro-
grams in a controlled single programmed environ-
ment. The results obtained are discussed in terms
of the relative effects of programming style on
performance for three problems: T1-—Matrix In-
version, T2—Data Correlation, and T4—Sorting.
In each case we are concerned with showing how
even simple differences in programming technique
can make a substantial difference in performance.
Unquestionably there are further improvements
which could be made in the algorithms employed;
however, we feel that our point is best illustrated
by the very simplicity of the changes made.

Timing and paging overhead data are given for
actual runs made on the system employing a FIFO
page replacement algorithm. Also, in order to es-
tablish that these results were not unduly in-
fluenced by that page replacement algorithm, cor-
responding computed minimum paging overhead
data are given (obtained through interpretive pro-
gram execution and application of L. Belady’s®

" MIN algorithm).

The data collected for the comparison of the
automatic and manual methods of memory man-
agement is also discussed in this section.

Problem T1 ... Matrix inversion

The virtual machine codes for this program
were written in FORTRAN IV and are intended
to handle matrices of large order. They all em-
ploy an “in-core” technique since the large ad-
dressable virtual store permits the accommodation
of large arrays (the burden of real memory man-
agement being assumed by the system through
the automatic facility of paging). The curves in
Figure 4 give the respective program run times

as a function of real core size for the three differ-

ent versions which were written for the virtual
machine. These times are for inverting a matrix
of order 100 (which is admittedly not an unusual-
ly large array, but sufficiently large to illustrate
our point without requiring an impraectical amount
of CPU time).

Fall Joint Computer Conference, 1968

1024
O Tlux 42 PAGES (CASUAL CODE)
O TLIX 42 PAGES O TI.IX* 35 PAGES (MOST IMPROVED CODE)
O TLIX% 35 PAGES -—-- MIN REPLACEMENT ALGORITHM
A TLIX%% 35 PAGES —— FIFO REPLACEMENT ALGORITHM
3000 | IK PAGE SIZE | K PAGE SIZE
FIFO REPLACEMENT ALGORITHM i SINGLE PROGRAMMED
Q SINGLE PROGRAMMED 2500 ’
4
8 2500 » 5727 @I0K 7335 @24K
e} [e] 2
» . o
B A @ 2000
3 s
~ 2000~ g 0
2 < (]
=1 o l
T F 1500 9
2 1500 8 '
= - <
3 g '.
1000 |- ',
1000 |- |
‘. °
500 I !
500 | ||
LG \r"gﬁa&r‘
\
o | |] L I L 1= 40 L
8K 16K 24K 32K 40K 48K 8K 16K 24K 32K 40K 48K

REAL CORE SIZE (K =1024 WORDS)

FIGURE 4—Effects of real core size
T1—Maitrix inversion (100x100)

All three programs employ the same algorithm,
a Gaussian procedure utilizing a maximum pivotal
condensation technique to order successive trans-
formations. The differences in the three versions
are extremely simple. The “casual” version,
T1.1X, stores the matrix in a FORTRAN double
subscripted array of fixed dimensions (storage al-
located columnwise to accommodate a matrix of
up to order 150), reads the input array by rows
and prints out the inverted array by rows. The
innermost computation loop traverses elements
within a eolumn. Version T1.1X** is the same as
T1.1X except that variable dimension capability
was employed (thus insuring the most compacted
allocation of storage for any given input. array).
Version T1.1X* is the same as T1.1X** except
that the input and ouput is columnwise instead of
rowwise. Obviously neither of these changes is
complicated or of any consequence in a conven-
tional environment; however, as clearly shown in
Figure 4, they make a considerable difference in a
paging environment.

The paging overhead data is shown in Figure 5
for the casual (T1.1X) and the most improved
(T1.1X*) versions for both the FIFO algorithm
(corresponding to the time curves of Figure 4)

REAL CORE SIZE (K=1024 WORDS)

FIGURE 5—Effects of page replacement algorithm
T1-—Matrix inversion (100x100)

and the MIN algorithm. This paging overhead is
given in terms of the number of page transmis-
sions required during execution of the respective
program when run with a given amount of real
core available under the discipline of the particu-
lar page replacement algorithm. (Each reference
to a page not currently residing in real core re-
quires a page to be transmitted from backup store
into real core [a “pull”’] and often also requires
a page to be copied from real core onto backup
store [a “push”]. The total number of pulls and
pushes is the number of page transmissions.
Given a particular real core size, the MIN al-
gorithm employed gives the theoretical minimum
number of pulls required. Belady has shown that
the number of page transmissions obtained by
this algorithm differs insignificantly from the
number obtainable by minimizing both pulls and
pushes.)

As can be seen in Figure 5, there is no great
disparity between the paging overhead sustained
under FIFO and the theoretical minimum possible
‘(under MIN) for either of the programs. In par-
ticular it should be noted that the paging behavior
of the well coded program is considerably better

under FIFO than that exhibited by the casual pro-
gram under the most optimum of page replace-
ment schemes. Certainly these data support the
argument that improvement in programming style
is advantageous to performance, irrespective of
what page replacement scheme is used.

Clearly there are modifications which could be
made to the algorithm itself which would further
improve performance through improved locality
of reference. McKellar and Coffman® have indeed
shown that for very large arrays, storing (and
subsequently referencing) the array in sub-matrix
form (one sub-matrix to a page) is superior to the
more conventional storage/reference procedure
employed in our programs. (For the 100100 ar-
ray, however, the difference is not significant.)

Problem T2 Data correlation

For the other problem in the scientific area an
existing conventional FORTRAN program, which
required intermediate tape I/0 facilities because
of memory capacity limitations, was modified to
be an “in-core” procedure for the virtual machine.
The problem, essentially a data correlation pro-
cedure, involves reconstructing the most probable
tracks of several ships participating in a joint
exercise, given a large input data set consisting
of reported relative and absolute position measure-
ments. The solution implemented is a maximum
likelihood technique; the likelihood functions re-
lating the independent parameters are Taylor ex-
panded to yield a set of simultaneous equations
with approximate coefficients. The equations are
solved (using the inversion procedure of problem
T1), the solutions are used to recompute new ap-
proximate coefficients, and the process is reiter-
ated until a convergent solution is reached. (Each
iteration involves a single pass of the large data
set.) The measured position data, together with
the accepted solution are used to compute the re-
constructed ships’ tracks. (This final step re-
quires one pass of the data set for each ship.)

For the first (or “casual”) version, T2.1X, the
conventional code was modified for the large vir-
tual store in the most apparent way. The large
data set, a mixture of fixed and floating point vari-
ables stored on tape for the conventional version,
was stored in core in several single-subscripted
fixed dimension arrays, one for each variable in
the record format. As the curve for this program
in Figure 6 shows, the performance is rather poor.
This is accounted for in part by the fact that the

Program Behavior in Paging Environment 1025
A T2.0X 54PAGES
O T2.1X% 45 PAGES
3500 |-
1K PAGE SIZE
FIFO REPLACEMENT ALGORITHM
SINGLE PROGRAMMED
3000 |-
[2]
(=1
8 2500
(%]
w
(7]
1
-
Z 2000}
4
2
'4
I
£ 1500 |
e A
1000 |-
500 |-
S 0N O A
o) ! | 1 1 1 | 1
8K 16K 24K 32K 40K 48K 54K

REAL CORE SIZE (K=1024 WORDS)

FIGURE 6—Effects of real core size
T2—Data correlation

manner in which the data are stored causes a glob-
al reference pattern to occur due to the program’s
logical use of those data. Version T2.IX* attempts
to improve the locality by storing the data com-
pactly in one single-subscripted floating point ar-
ray, such that all of the parameters comprising a
single logical tape record in the conventional code
are in sequential locations. (The conversions ne-
cessitated by assigning both fixed and floating
point variables to the same array name increased -
the CPU time slightly.) The curves in Figure 6
clearly show that this modification resulted in a
significant improvement.

The same ordered relationship exhibited under
FIFO holds for the casual and improved versions
under the MIN algorithm (Figure 7). Although
in the case of the poorly behaving code, the MIN
algorithm does appreciably better than FIFO
given a core size of 32K where FIFO performance
has already deteriorated badly. The improvement
is short lived, however, since deterioration under
MIN occurs with any further decrease 'in real
core size,

1026 Fall Joint Computer Conference, 1968

It should be noted that the actual data set used
for these runs was not exceptionally large (as the
total number of pages referenced indicates).
Again, practicality demands that we settle for a
data case of reasonable size. The case at hand in-
volved six ships (resulting in 26 equations) and a
rather small data base of only 240 reports. The
data base storage requirements in the case of the
well coded program, T2.1X*, were satisfied by
four pages. In the case of T2.1X, however, the
several large fixred dimension arrays used to store
the data in that program required 13 pages; thus
not only was the data ordering poor but a great
deal of space was wasted as well.

Once again, there are probably other improve-
ments that could be made. For example, because
the program is divided into several subroutines
(17) of reasonable length, a change in the order
of loading the routines could improve (or de-
grade) performance. We have illustrated here
only the effects of a change in the manner of stor-
ing the data base.

A T2.X 54 PAGES
O T2.Ix* 45 PAGES
=== MIN REPLACEMENT ALGORITHM
~— FIFO REPLACEMENT ALGORITHM
IK PAGE SIZE
A SINGLE PROGRAMMED

?

PAGE TRANSMISSIONS
g 2
8
T]

8K 16K 24K 32K 40K 48K 56K
REAL CORE SIZE (K=1024 WORDS)

FIGURE 7—Effects of page replacement algorithm
T2—Data correlation

Problem T4 Sorting

Sorting, a classical example of the necessity for
introducing complicated programming techniques
to accommodate a problem on a conventional mem-
ory bound computer, also affords an excellent ex-
ample of how drastically programming style can
effect performance in a paging environment.
Ideally, if memory capacity were sufficient for the
entire file to be in core, the sort programmer
would only need to concern himself with the in-
ternal sorting algorithm and never be bothered
with the other plaguing procedures involved with
doing the job piecemeal. This was the approach
taken, programming the virtual machine codes
assuming that the file could be accommodated in
virtual store.

Initially, two different algorithms were coded—
the Binary Replacement algorithm (basically a
binary search/insertion technique employed in a
generalized sorting program in the Basic Pro-
gramming Support for IBM System 360) and the
Quicksort® algorithm (a partitioning exchange
procedure). When the completed programs were
run with a reasonably long data set, it became im-
mediately apparent that the Binary Replacement
algorithm was exceptionally bad for large lists
because of the amount of CPU time required.
(Note that this characteristic presents little prob-
lem for the internal sort phase of a conventional
code which never deals with a very large list.)
We will, of course, acknowledge that someone
more knowledgeable in the field of sorting than
we would have recognized this characteristic of
the algorithm beforehand. Our experience none-
theless pointed out rather dramatically that an ac-
cepted technique for a conventional machine need
not be acceptable when translated to a virtual ma-
chine environment, irrespective of its paging be-
havior! Because of its unacceptable CPU char-
acteristics, the algorithm was discarded and our
efforts were concentrated on Quicksort since that
algorithm is efficient for either small or large
lists.

Four versions were ultimately coded for the
virtual machine, each of which is described below.
All of the changes made to get from one version
to another were simple and required little pro-
grammer time. None of these changes altered the
total number of pages referenced; they simply im-
proved the locality of reference. The time curves
in Figure 8 and the paging curves in Figure 9

PAGE TRANSMISSIONS

Program Behavior in Paging Environment 1027

4000+
3500 -
B T4.1XQ 129 PAGES 4730 SECONDS
O T4.1XQ% 130 PAGES AT 64K
® T4.IXQR 129 PAGES
3000 O T4.1XQR¥ 129 PAGES
IK PAGE SIZE
g FIFO REPLACEMENT ALGORITHM
% SINGLE PROGRAMMED
Q 2500
w
"
L}
w
=
" 2000}
F3
2
@
2
[~3
e 1500
1000 -
so0 Q
%o—c O
o 1 1 1 1 1] 1 1
16K 32K 48K 64K 80K 96K 112K 130K

REAL CORE SIZE (K =1024 WORDS)

FIGURE 8—Effects of real core size
T4—Sorting (10,000 10-word items)

O T4.IXQ _ 129 PAGES (CASUAL CODE)
A TA.IXQR* 129 PAGES (MOST IMPROVED. CODE)
~==-MIN REPLACEMENT ALGORITHM
——FIFO REPLACEMENT ALGORITHM
1 K PAGE SIZE
SINGLE PROGRAMMED
5000| 11983 @ I2K 13653 @ 80K
| 8164 @ 64K
! \
i
4000+ \
| \
[R
! \
3000F | \\
!
| \
! \
i
2000 | ¢
.]
| \
{ \
\
ioool- 1 : v
] o
1 g \3
______ \
AR A

16K 32K 48K 64K 80K 96K

REAL CORE SIZE (K=1024 WORDS)

2K 128K

FIGURE 9—Effects of page replacement algorithm
T4—Sorting (10,000 10-word items)

show dramatically how important these relatively
minor modifications were to performance. (The

size of the file in the case shown is 100,000 words,
occupying 100 pages in virtual memory.)

T4.1XQ, the “casually” coded version, reads in
the entire file, performs a non-detached keysort
utilizing the Quicksort algorithm and a table of
key address pointers, then retrieves the records
for output by using the rearranged table of point-
ers. The records themselves are not reordered dur-
ing the sort thus storage references are random
and global during both sort and retrieval, making
locality of reference poor. Deprived of only a
small amount of its required store, this program
behaves very badly. Note that although the MIN
curve in Figure 9 does show some improvement in
paging behavior over FIFO, the improvement is
of no consequence since performance is still quite
unacceptable.

T41.1XQ* treats the file as N sublists; each is
read in, then sorted using the non-detached key-
sort routine of T4.1XQ. (N is 10 for the case
shown; thus the 100 page file is logically divided
into sublists of 10 pages each.) When all the sub-
lists have been sorted an N-way internal merge,
using the table of pointers, retrieves the records
for output. This modification improves the locality
of reference for the sort phase (for the case
shown, the size of the-characteristic working set
during the sort is approximately 12; 10 for the
current sublist, one instruction page and one page
for pointers) but the storage reference pattern
remains random during merge-retrieval since the
records are not reordered within the ten sublists
(during this phase the characteristic working set
therefore includes all the file pages).

T4.1XQR is the same as T4.1XQ except that a
record sort is performed instead of a keysort, i.e.,
the records are reorderd while being sorted, leav-
ing an ordered list to be retrieved for output. The
now sequential reference pattern substantially im-
proves paging behavior for the retrieval phase
(each page of the file is referenced only once for
that phase). Moreover, because of the record re-
ordering, locality during the sort phase benefits
substantially from the partitioning characteristic
of Quicksort. Performing a record sort, of course,
results in a penalty in CPU time (especially for
large records) since the transfers involve the en-
tire record instead of the key only. (For this rea-
son, it would not be wise to choose a sorting al-
gorithm which requires an exceedingly large num-
ber of transfers.) However, the penalty paid is

1028 Fall Joint Computer Conference, 1968

relatively insignificant in view of the improved
paging behavior,

T4.1XQR* is the same as T4.1XQ* except that
it performs a record sort instead of a keysort. The
comments made on improved locality during the
sort phase for both T4.1XQ* and T4.1XQR also
apply to this version. In addition, because the rec-
ords are now in sequential order within each sort
area (due to record reordering) the merge/re-
trieval phase also exhibits desirable paging char-
acteristics (as long as there are enough pages
available to accommodate at least one page from
each sort area, i.e. N pages plus instruction and
control pages—approximately 13 for the case
shown),

Clearly, the behavior of T4.1XQR and T4.IXQR*
demonstrates that the large virtual store can be
used effectively and in a simple manner if thought
is given to the environment. The curves for
T4.1XQ and T4.1XQ* demonstrate equally clearly
that it can be disastrous not to do so.

Automatic vs programmer-controlled memory
management

The objective of this part of the study was to
compare the effectiveness of automatic and manual
(programmerfcontrolled) memory management.
To meet this objective, our test problems were
programmed to run on a conventional machine,
using accepted manual methods to accommodate
them on the available memory. The efficiency of
any program written for a conventional machine,
of course, depends on how skillful the program-
mer is in utilizing available system resources. We
felt that, although in no way optimum, the effi-
ciency of the programs coded was characteristic of
what is normally achieved under practical con-

straints of programmer time. (It should be noted .

that the programmer time involved in writing
and debugging these conventional codes far ex-
ceeded that required for the corresponding virtual
codes.)

The data presented in the previous sections
clearly show that the effectiveness of paging as
an automatic memory management facility de-
pends not only on internal characteristics of the
particular system but also on user programming
style. We thus felt that an effective comparison
of the two memory management methods should

include the effects of virtual machine program-'

ming style. ‘We also felt that our comparison

should in some way include the effect which over-
lap capability can have on conventional code effi-
ciency since, in a multi-programming environ-
ment, that capability does not exist for the indi-
vidual user. (We were aware that almost any
proposed comparison would be subject to question
on one count or another because of the lack of
adequate control; we nonetheless feel that the
comparison is reasonably unbaised and has suﬁi—
cient validity to be of interest.).

To make the comparison we proposed to run
both the conventional programs and the corre-
sponding virtual programs (i.e., those which util-
ized the large virtual store), in their respective en-
vironments, which were constrained to be equiva-
lent with respect to real machine resources. All
of the conventional program I/O was tape I/0
and the CPU and memory speed were the same for
both the conventional and virtual machines. In
each case the virtual programs were run with the
gize of available real core equal (to the nearest
page) to that actually referenced by the corre-
sponding conventional program. The numbers in
Table 1 are computed ratios of the respective vir-
tual code run times to corresponding conventional
code run times; therefore numbers less than 1 are
favorable to the automatic method.

TABLE 1—Comparison of automatic and programmer
controlled memory management

Casual Virtual Code Best Virtual Code Casual Virtual Code Best Virtual Code
ve va v va

Code Code Code Code
T1 - Matrix
Inversion
200 x 200
72, - Data
Correlation
Té - Quicksort
100,000 word file
b-wy)m—l
c oy Cod
T4 - Quicksort
100,000 word file
-vay Merge]
Conv. Code,
T4 -~ Quicksort

1,000,000 word file
wq m..
Conv cm

The data indicate that, if reasonable program-
ming techniques are employed, the automatic pag-
ing facility compares reasonably well (even fa-
vorably in some instances) with programmer con-
trolled methods. While not spectacular, these
results nonetheless look good in view of the sub-
stantial savings in programmer time and de-

bugging time that can still be realized even when
constrained to employing reasonable virtual ma-
chine programming methods.

Multi-programming measurements

The importance of programming style to paging
behavior was clearly demonstrated in the single
programmed part of this study. We were inter-
ested in learning if it would have similarly dra-
matic effects on performance in the domain more
common to paging systems, i.e., multi-program-
ming. Because the most notable changes in be-
havior were observed in the sorting area, we
decided to plan our measurement efforts around
these programs. An extensive measurement pro-
gram was undertaken which was designed to give
us insight into the relative effects on performance
of the following: programming style, page re-
placement algorithm, size of real core, number of
users and scheduling. It should be noted that the
question of performance in a multi-programmed
environment involves both the individual user
response and total system thruput capability. Al-
though the study addressed both of these aspects,
the results discussed here pertain only to the
latter. (A complete in-depth report on the entire
multi-programmed measurement study is given
in Ref. 7, Part IIIL.)

The effects of programming style

The two versions of the sort program used for
this study were the ‘“casually coded” version,
T4.1XQ, and the “most improved” version, T4.-
1XQR*. Multiple copies of a given program were
run simultaneously (as background jobs) on the
system with the full real core (184K) available.
(No more than 5 background jobs can be run
simultaneously because of tape drive limitations.)
The curves in Figure 10 compare the multi-pro-
gramming efficiency obtained with the two differ-
ent programming styles. These curves are plots
of Time/Job vs the number of (identical) jobs
run simultaneously on the system (Multi-program-
- ming Level). '

Clearly the efficiency of the system is nearly
identical whether multi-programmed at the two
level or the five-level in the case of the well-coded
program, T4.1XQR*, but is substantially degraded
for each additional job in the case of the casually
coded version, T4.1XQ. In fact, multi-program-
ming at even the two level for that program is

Program Behavior in Paging Environment 1029
AT4I%Q (CASUAL CODE)
O T4.1XQR *(MOST IMPROVED CODE)
BIFO REPLACEMENT ALGORITHM
1200 i~ 1K PAGE SIZE
0.1 SECOND TIME SLICE
REAL CORE SIZE - 184K JAN
PAGE REQUIREMENTS -
129 PAGES/JOB
1000 |-
NO LOAD LEVELER
12]
o
3
g 800
@
2]
[*]
2
W 600
-
A
400 -
D\ﬁ | %
O T4IXQR
200 = —=0——0 OPTIMUM -
—_— e ——— e —— = T4.IXQ
OPTIMUM
A | i] |
| 2 3 4 5

MULTI-PROGRAMMING LEVEL

FIGURE 10—Effects of programming style
T4—Sorting (10,000 10-word items)

worse than running sequentially. (For T4.1XQR*
multi-programming is consistently more advan-
tageous than running sequentially up through the
five-level.)

The effects of load leveling

One of the capabilities available on the M44/
44X system aimed at improving efficiency is that
of dynamically adjusting the load on the system
in order to attempt to avoid the overload condi-
tion which is characterized by excessive paging
coupled with low CPU utilization. When this load
leveling function is activated, the system periodi-
cally samples paging rate and CPU utilization,
compares them with pre-set criteria to determine
it a condition of overload or underload exists, and
then takes action appropriately to adjust the sys-
tem load by either setting aside a user, i.e., remov-
ing him temporarily from the CPU queue, or re-
storing to the queue a user who was previously
set aside. The function of the load leveler is thus
essentially one which affects scheduling.

The extremely poor behavior exhibited by the
casual code when multi-programmed made this
case a likely candidate for studying the effects of
load leveling. Figure 11 shows the remarkable
improvement which the load leveler achieved

103¢c Fall Joint Computer Conference, 1968
A T41XQ (CASUAL CODE) -NO LOAD LEVELER
A T4IXQ (CASUAL CODE) - LOAD LEVELER ACTIVE A BIFO :
O T4.IXQR* (MOST IMPROVED CODE) NO LOAD LEVELER B AR LOAD LEVELER
1200 |- BIFO REPLACEMENT ALGORITHM ® FIFO
| K PAGE SIZE) A BIFO .
0.1 SECOND TIME SLICE '
REAL CORE SIZE - 184K o soof- 9 f_.‘l';o > NO LOAD LEVELER
PAGE REQUIREMENTS
1000~ |29 PAGES/JOB REAL CORE SIZE - 64K
IK PAGE SIZE
] | 0.1 SECOND TIME SLICE
2 g 400 PAGE REQUIREMENTS-129 PAGES/JOB
S soof- 3
& g
2 o
S & 300} 8
g 600 S
a y 8 N— =" __g
= : ==
A F ool g—o
400 |- a—_ : OPTIMUM
o A
o— A7 o o O T4IXQR* 100 |- -
200~ A—éio— =T o T - ~™ OPTIMUM
D U S —— (]
OPTIMUM
1 | | | 1 . | 1 | - | |
] 2 3 4 5] 2 3 4 5

MULTI - PROGRAMMING LEVEL

FIGURE 11—FEffects of load leveling
T4—Sorting (10,000 10-word items)

when there were three or more jobs involved. Un-
fortunately, the efficiency is still substantially
worse than in the sequential case. We nonetheless
feel that the potential for improved performance

achieved through the use of an automatic dynamic .

facility such as this is promising and indicative
that it would be well worth implementing—in par-
ticular if it can be kept simple and efficient as is
the case with the M44/44X load leveler.

The effects of page replacement algorithm

As might have been suspected from the single-
programmed MIN study, the role of the page re-
placement algorithm appears to be of relatively
little significance. In the case of T4.1XQ, runs
were made using the more sophisticated AR al-
gorithm but the data collected differed little from
that obtained for the BIFO algorithm, Similarly,
in the case of T4.1XQR* the difference in the re-
sults is inconsequential for those runs made where
all of real core (184K) was available. (Figures
10 and 11 show the BIFO data.) However, when

the same T4.1XQR* runs were made with the real

core size restricted to 64K there was some change
in performance for the different replacement al-
gorithms. The curves in Figure 12 compare the
effects of using the different algorithms for T4.-

MULTI-PROGRAMMING LEVEL

FIGURE 12—FEffects of page replacement algorithm
T4.1XQR*

1XQR* multi-programmed (up to the five-level)
with only 64K of real memory available to the en-
tire system, i.e., shared by all the users. The level
of multi-programming for which the efficiency is
optimum is in all cases three; however, in the case
of the AR algorithm, multi-programming at the
five-level with only 64K of real memory is still
more advantageous than running the five jobs se-
quentially (with the same 64K of real memory).
Note that this is also true when running under
the other algorithms with load leveling.

The effects of real size

Performance is so poor for the T4.1XQ program
given the full 184K of real memory, that it is ob-
viously unnecesary to show how bad things would
be given an even smaller memory! In the case of
T4.1XQR* however, performance for the system
is so close to optimum that we were curious to

learn just how small the real core size could be

before performance would be worse than in the
single-programmed case (for the same size of
real memory). The curves in Figure 13 compare
Time/Job for the single-programmed case, with
multi-programming at the three and five levels for
different real core sizes. Runs were also made
multi-programmed at the five level with the load

Program Behavior in Paging Environment

1031

AR REPLACEMENT ALGORITHM

I K PAGE SIZE

0.1 SECOND TIME SLICE

PAGE REQUIREMENTS - 129 PAGES/J0B
NO LOAD LEVELER

8

8

(o}
a

TIMEAJOB - SECONDS

8

100~

1 1 1 1 !
32K 48K 64K 96K 128K 184K
REAL CORE SIZE
(K=1024 WORDS)

FIGURE 13—Effects of real core size
T4.1XQR*

leveler activated and real core sizes of 48K and
32K. As can be seen in Figure 18, while improving
performance, the load leveler was not able to im-
prove it sufficiently to compare favorably with the
single-programmed sequential case.

When viewed in the perspective of page require-
ments per job, the performance of the system is
remarkable for the well coded program. Five jobs,
each requiring 129 pages, shared a 32K memory
and still behaved reasonably well! (The time per
job is even a few seconds less than that required

for the overlapped 2-way merge conventional -

code.) On the other hand, the performance for the
casual code given the full memory capability of
184K is at best (load leveled) quite a lot worse
than sequential and at worst (not load leveled) a
minor disaster.

The data which we have presented here on
multi-programming represent only part of that
collected for the study. The cases chosen are ob-
viously the extreme ends of the spectrum. One
would not (hopefully) encounter all “bad” pro-
grams running at the same time on a system under
real time-sharing conditions, nor (regretfully) is
one likely to encounter all “good” programs. The
real situation lies somewhere inbetween—and,
most likely, so does the characteristic perform-
ance of the system. We have not directly addressed

the question of individual thruput (or response)
time in the data shown here; however; we have
shown that total system thruput is most certainly
affected by the programming style employed by
the users on the system. We have shown in our
other work (Ref, 7) that this is also true for in-
dividual response time (often even if system thru-
put is unaffected).

SUMMARY

The single programmed data presented in this
paper give strong support to the conclusion that
the effects of programming style are of significant
consequence to the question of good performance
in a paging system. Indeed, as the MIN results
indicate, the basically external consideration of
programming style can be considerably more im-
portant than the internal systems design consider-
ation of replacement algorithm. We feel that data
obtained for the multi-programmed case, some of
which were presented in the previous section, fur-
ther support our conclusions. In view of these
results, we feel that this aspect of performance
must not be disregarded in future endeavors to
implement paging systems. Programming tech-
niques should be developed at both the user and
system levels which are aimed at achieving accept-
able performance on such systems. For example,
higher level language processors such as FOR-
TRAN should be designed for paging systems to
produce good code for the environment as well as
to perform well themselves in that environment.

While we support the stand that paging and
virtual machines are inherently desirable concepts
with much potential, we strongly feel that in order
to fully realize that potential in terms of practical
performance characteristics, the notion of pro-
gramming with complete unconcern for the en-
vironment must be discarded. Our data have
shown, however, that one can often realize ac-
ceptable performance by employing even simple
techniques which acknowledge the paging environ-
ment. Their simplicity leads us to feel that the
programming advantages inherent to the concept
of virtual systems can, to a great extent, still be
preserved.

ACKNOWLEDGMENT

We would like to acknowledge E. S. Mankin for
his extensive contribution in preparing the test
load programs for the sort area.

1032 Fall Joint Computer Conference, 1968

REFERENCES

1 R W O’NEILL
Experience using a time-shared multiprogramming system with
dynamic address relocation hardware
SJCC Proceedings Vol 30 1967 pp 611-621

2 P WEGNER
Machine organization for multiprogramming
Proceedings of 22nd ACM National Conference Washington
DC 1967 ACM Publication P-67 pp 135-150

3 GHFINE CWJACKSON PV MCISAAC
Dynamic program behavior under paging
Proceedings of 21st ACM National Conference Washington
DC 1966 ACM Publication P-66 pp 223-228

4 Adding computers—Virtually
Computing Report for the Scientist and Engineer Vol III No
2 March 1967 pp 12-15

5 The M44/44X user’s guide and the 44X reference manual
IBM Corp T J Watson Research Center Yorktown Heights

6

7

10

New York September 1967

L ABELADY

A study of replacement algorithms for a virtual storage computer
IBM System’s Journal Vol 5 2 1966 pp 78-101

BSBRAWN F G GUSTAVSON

An evaluation of program performance on the M44/44X system
Parts I IT IIT :)

R C 2083 IBM T J Watson Research Center Yorktown
Heights May 1968

P JDENNING

Working set model for program behavior

CACM Vol 11 5 May 1968 pp 323-333

A CMcKELLAR E G COFFMAN

The organization of malrices and matrixz operations in a paged
multiprogramming environment :

Princeton University Technical Report No 59 February 1968
CARHOARE

Quicksort

Computer Journal Vol 5 April 1962 to January 1963 pp 10-15

JANUS: A flexible approach to realtime timesharing *

by J. O. KOPF and P. J. PLAUGER

Michigan State University
East Lansing, Michigan

INTRODUCTION
Motivation

A third generation computer seems to cause as
many problems as it solves; not because it is dif-
ficult to program or too problem directed—quite
the contrary. The problems arise because such a
computer lends itself so willingly to all applica-
tions—realtime data acquisition, process control,
scientific calculations, bookkeeping and conversa-
tional time-sharing. In a nuclear physics labora-
tory, there are enough imaginative people inter-
ested in each of these subjects that eventually all
are implemented with some success. The central
problem, then, is to develop an operating environ-
ment compatible with open-ended development of
any or all types of computer usage. Ideally, one
seeks a standard operating system providing the
framework and resources to aid all such develop-
ment.

In our case, the desired priority of computer
usage was to be: 1. realtime data acquisition and
control; 2. interactive on-line operations, espe-
eially data analysis; 3. background operation. In a
nuclear physics experiment, realtime operation
is normally characterized by immense buffers—
which are updated at each input event, rather
than transmitted as sequential data—indicating
the desirability of a small resident monitor, and
non-permanently dedicated interrupt routines and
buffers. Event rates as high as 50,000 events/
second may be expected, implying the need for a
powerful computer to perform quickly the opera-
tions necessary to each event.:?

The Michigan State University Cyclotron Lab-
oratory installed a Scientific Data Systems
Sigma-7 computer in January 1967. We have con-
structed operating system JANUS for the Sigma-7

*Supported by the National Science Foundation.

1033

to meet the goals outlined above. JANI.JS. has
proved to be far more powerful than we originally

expected.

The SDS Sigma-7

The SDS Sigma-7 is a high-speed, integrated
circuit machine with sophisticated timesharing
hardware.? It features a 32-bit word, with dis-
placement indexing by 8-bit bytes, half-words,
words and doublewords, and direct addressing to
128k words. Timesharing hardware includes mas-
ter/slave modes, rapid context switching (Ex-
change- and Load-Program-Status-Doubleword in-
structions), a powerful interrupt structure with
certain functions inhibitable under program con-
trol, program traps which are independent of the
interrupt structure, and mapping hardware.

The Sigma makes extensive use of scratch-pad
memories ; integrated flip-flop registers whose ac-
cess time is insignificant compared with core mem-
ory. Thus there are 16 distinct registers, effec-
tively accumulators. Instructions normally refer-
ence one or more of these registers. In addition,
the computer treats these registers as the first
16 locations of memory: all instructions are valid
for register-register operations. The computer is
thus effectively a two-address machine, where one
address space is a subset of the other. Further-
more, four registers may be used in a block as a
decimal accumulator (81 digits plus gign), seven
others may be used as index registers (post index-
ing), and any even-odd register pair may be used:
for double precision work.

The hardware also makes use of hard-wired
table look-up and translation for certain fune-

“tions. An example is the map. Memory is naturally

divided into 512-word pages. The map congists of
a scratch-pad memory of 256 bytes, one for each
page of virtual memory (virtual memory is the
full address space of the machine, independent of

1034 Fall Joint Computer Conference, 1968

the actual core memory available). When the map
is in operation, the first byte of the effective vir-
tual address is used as an index to look up a trans-
lation byte from the map, which replaces the orig-

inal byte to form the actual address used to make -

the memory reference. As a result, contiguous
virtual pages need not be in contiguous actual
memory; under a properly initialized map they
act as though they are. Associated with each page
is a two-bit access process code which can inhibit
slavemode from writing, executing, or even read-
ing words in the page. In conjunction with a rapid
access disc (RAD), this hardware provides the
swapping control needed for efficient timesharing.

In addition, the computer has two major means
of communicating with the external world. The
Input-Output Processor (IOP, of which there may
be up to 8) is designed for sequential transmission
of data asyncronously with the operation of the
computer. The Direct I/0 (DIO) provides for the
transmission of one word at a time to or from the
registers, under program control. JANUS nor-

]

.

S

/

—— MONITOR

~ L

FIGURE 1—Hardware resources of the MSU Sigma—7 system.
Items labelled “J” are handled by JANUS. Those labelled ““S”
are shared by all users on a cyclic basis. All others are loaned out
on a first come, first served basis for exclusive use.

mally uses the IOP for conventional I/O opera-
tions; the DIO for acquisition and control.

Figure 1 details the resources available on the
MSU Sigma-17.

Other approaches

Before going into the details of JANUS, we
should perhaps explain why we felt existing ap-
proaches were inadequate for our needs.

Conventional realtime systems are usually
geared for one application, or one set of appli-
cations. One cannot randomly start and stop arbi-
trary functions, even though the particular re-
sources needed may be standing idle. In particu-
lar, one cannot ‘“batch” process (i.e. compile, load

-and run a series of purely computational pro-

grams) to take advantage of the usually large
CPU time available between interrupts.

By dividing memory into foreground and back-
ground areas, it is possible to operate a batch
system in conjunction with one or more realtime
operations. Aside from the fact that either of
these areas is frequently; a) unused for long
periods of time or, b) inadequate for many jobs
that could be run in full memory, there is a more
sophisticated drawback. Since realtime operations
must often use the same resources as the batch, a
large resident monitor is needed to handle common
operations and to prevent conflicts. Furthermore,
since realtime operations occur on an interrupt
basis, the monitor must either be reentrant to
several levels or must inhibit interrupts while it
is active (or a little of both). The former solu-
tion makes the resident even larger and slower—
the latter interferes with fast response to real-
time events.

Conventional time-sharing systems* can be
geared to provide the random stop/start of real-
time which we desire, and are better geared to
adapt efficiently to dynamically changing memory
availability. But the usual approach has been to
take an already large foreground/background type
monitor and to add a swapper, job scheduler and
elaborate 1/0 queuing routines to the resident. The
dedicable memory left over can be vanishingly
small,

Figures 2 and 38 caricaturize the distinction we
made between what we saw in conventional ap-
proaches to realtime timesharing and what we
envisioned for JANUS.

There still remains the problem, not yet men-
tioned, of the hybrid job. It is often desirable to

JANUS 1035

JANUS TIME
RESIDENT TIMESHARING

FIGURE 2—Caricature of a ‘‘conventional” realtime time-
sharing system, It is characterized by a large resident monitor and
rather rigid frame-at-a-time use of remaining memory.

construct programs having a small realtime part
and a large problem-solving part that could hap-
pily be timeshared. The question is raised as to
specifying such an animal. How is communication
between the two parts effected ?

We found the answers to these questions, and
the inspiration for answering many more, in the
definition of PL/1.°

Design of JANUS
Terms and philosophy

The PL/I language definition provides a vocab-
ulary and a philosophy (we have probably cor-
rupted both). In PL/I a piece of code containing
all routines needed to perform a job, or distinct
part of a job, is a task. A task can start one or
more subtasks to perform asynchronous opera-

Lo]
TRAP (HARDWARE)

CORE 3
SERPHRR 11 s]
.| TRAPS
+
I 0 INTERRUPT
. CLs]
C CLOCKS
nd C 2]
mt INT. INTERRUPTS
et =]
DISKPAGES (684) MAP

Ls]
RAD

=1 [
TTY (CONSOLE) DIO REGISTERS (8)

—3 — EI3
TTY-PT MT SCRATCHPADS (4)

[| [] []

CR LP EXT. INTERRUPTS (8)
—3 I

cp PLOT

RESOURCE CHART MSU Z7

FIGURE 3—Caricature of JANUS system, with small resident
and intertwined tasks having both dedicated realtime and
timeshared parts.

tions; it can go into a wait state until certain
events, signalled by other tasks, occur, On can
specify on-units to be activated when conditions
are raised (interrupts or traps). These are the
terms needed to describe what JANUS does.

Equally important is the philosophy. PL/T is
a modular language with the built in attitude, “If
you don’t know about this option, it isn’t there. I
will do what you most likely want done.” With
only 16k words of core memory, one must neces-
sarily begrudge the presence of excess code. This
is the philosophy by which JANUS works.

It should be emphasized that JANUS does not
require the PL/I compiler to operate, nor do we
plan to write one. The concepts are quite useful
without the compiler.

Timeshared monitors

A monitor is used to provide certain functions,
such as control and I/0, which a user either does
not want to implement himself, or cannot be
trusted with. However, these functions may be
made modular in. form, and can thus be loaded
from a library,

1036 Fall Joint Computer Conference, 1968

The amount of code that truly must be resident
in a timesharing system is really quite small. A
scheduler (JOB CHANGER) and