AFIPS

CONFERENCE
PROCEEDINGS
VOLUME 32

1968

SPRING JOINT
COMPUTER
CONFERENCE

APRIL 30- MAY 2
ATLANTIC CITY, NEW JERSEY

The ideas and opinions expressed herein are soley those of the authors and are
not necessarily representative of or endorsed by the 1968 Spring Joint Computer
Conference Committee or the American Federation of Information Processing
Societies.

Library of Congress Catalog Card Number 55-44701
THOMPSON BOOK COMPANY
National Press Building
Washington, D.C. 20004

©1968 by the American Federation of Information Processing Societies, New
York, New York, 10017. All rights reserved. This book, or parts thereof, may
not be reproduced in any form without permission of the publisher.

CONTENTS

COMMERCIAL TIME-SHARING - THE SECOND GENERATION

Time sharing versus batch processing: The experimental evidence H. Sackman
Computer scheduling methods and their countermeasures E. G. Coffman, Jr., L. Kleinrock 11
Some ways of providing communication facilities for time shared

COMPULINE .t etirenreeeeneeernseeeareeeocenesenns e H. L. Steadman, G. R. Sugar 23
The Baylor medical school teleprocessing system W. Hobbs, J. McBride, A. Levy 31

COMPUTER AIDED DESIGN

Some techniques for shading machine renderings of solids A. Appel 37
A system for interactive graphical programming W. Newman 47
Automation in the design of asynchronous sequential circuits R.J. Smith, J. H. Tracey, 53

W. L. Schoeffel, G. K. Maki

SCIENTIFIC APPLICATIONS OF GENERAL INTEREST

Interpretation of organic chemical formulas by computer A. N. DeMott 61
A simulationinplantecology i, R. E. Boche 67
A major seismic use for the fast-multiplyunit R. D. Forester, 73

T. J. Hollingsworth, J. D. Morgan
A generalized linear model for optimization of architectural
Planningouuiiii i e R. Aguilar, J. E.Hand 81

COMPUTERS IN COMMUNICATIONS SYSTEMS

Standards for user procedures and data formats in automated

information systems and networks, J. L. Little, C. N. Mooers 89
Procedures and standards for inter-computer communications A. K. Bhushan, R. H. Stotz 95
An error-correcting data link between small and large computers S. W. Andreae 105
Graphical data proCessingo.euoeeeeenreeeeeerereeenns E.J. Smura 111
The advancing communication technology and computer

COMMUNICALION SYSEMS vt e nsenenaninneeecaennns S.J. Kaplan 119

HYBRID COMPUTER SYSTEMS AND TECHNIQUES

Analog computer simulation of semiconductor circuits P. Balaban, J. Logan 135
Stable computing algorithms for partial differential equations R. Vichnevetsky 143
BASP - A Biomedical Analog Signal Processor W. J. Mueller, P. E. Buchthal 151
Electrically alterable digital differential analyzer................. G. P. Hyatt, G. Ohlberg 161

COMMERCIAL DATA PROCESSING

DATAFILETWO ...ttt iaeieaean R.J.Jones 171
GIPSY - A Generalized Information Processing System G. Del Bigio 183
The ISCOR real-time industrial data processing system W. M. Lambert, W. R. Ruffels 193
Martin Orlando reporting environmento.... M. J. McLaurin, W. A. Traister 197

Simulation applications in computer center management T. F. McHugh, Jr., E. Scott 209

MULTIPROGRAMMING OPERATING SYSTEMS

Multiprogramming system performance measurement and

ANALYSIS .t H. N. Cantrell, A. L. Ellison 213
Multiprogramming, swapping, and program residence

priority inFACOM i M. Tsujigado 223
A storage hierarchy system for batch processing D. N. Freeman 229
Burroughs B6500/B7500 stack mechanism E. A. Hauck, BR. A, Dent 245

ADVANCES IN MAGNETIC MEMORY DESIGN

A compact, economical core memory with all monolithic

electronicscoiiiiiiiiins. S R. W. Reichard, W. F. Jordan, Jr. 253
A progress report on large capacity magnetic fitm memory
development il i e I. Raffel, A. H. Anderson, 259

J.

T.S. Crowther, T. O. Herndon,
C. Woodward
C.C.
T.Y.

Afast2/AmMasS MEMOTY . covvvernrereernennneennnunannnnnnns M. Schuur v 267
A magnetic assoCialiVeE MEMOKYvvuuryennrrnnerrnnennnennnn. Feng 275
SWITCHING THEORY
Selection and implementation of a ternary switching algebra....... R. L. Herrmann 283
Application of Karnaugh maps to Maitracascades G. Fantauzzi 291
Universal logic circuits and their modular realizations S.S. Yau, C. K. Tang 297
Sorting networks and their applications K. E. Batcher 307
MAN-MACHINE INTERFACE
The Sylvaniadatatablet iiiiiiiinaaann. J. F. Teixera, R. P. Sallen 315
Computerinputofforms i A. P. Feldman 323
Machine-to-man communication by speech Part1 F. Lee 333
Machine-to-man communication by speechPart I1............... J. Allen 339
A system of computer support for neurophysiological
INVESHIZatioNS, €1C. . ..ottt i ittt i e F. Abraham, L. Betyar, 345
R. Johnston
Graphical data management in a time-shared environment. S. Bowman, R. A. Lickhalter 353
LANGUAGES: TODAY AND TOMORROW
On the formal definitionof PL/T, .. K. Bandat 363
LISP A: A LISP-like system for incremental computing E.J. Sandewall 375
TGT: Transformational grammartester D. L. Londe, W.J. Schoen 385
DATAPLUS: A language for real time information retrleval
for hierarchial databasesc.ociviieiiiiiinnnnnnnn. N. Sinowitz 395
A language design for concurrent processesc0iunn L. G. Tesler 403
Control of sequence and parallism in moduliar programs L. Constantine 409
GENERAL INTEREST
Anatomyofareal-timetrialo ittt Kamman, D. R. Saxton 415

A. B.
Fourth generation computer SyStemsoovvvvnnereeeen... ~ C.J. Walter, M. J. Bohl, 423
A. B. Walter

Fourth generation computer organization
Optimal control of satellite attitude by a random search
algorithm on a hybridcomputer

Evaluation and development techniques for computer assisted
INStIUCHION PrOZIAMS .« oo vt v et teee et eemnaeeaeaaannenenns

Computer capacity trends and order-delivery lages 1961-1967

DIGITAL SIMULATION TECHNIQUES

Error estimate of a 4th order Runge-Kutta method with only one
initial derivativeevaluationccoviiiiinnennnnnn.
Improved techniques for digital modeling and simulation of
NONIINEAT SYSLEIMS .. v v v ittt e ee s enneeeeaeaaneeeneennnann
Extremal statistics in computer simulation of digital
COMMUNICAtION SYSTEMS & v vttt vteiee et reinenenennannnns
MUSE: A tool for testing a multi-terminal system in a multi-
terminal environmentt i e e

FAULT DIAGNOSIS

Diagnostic engineering reqUirementsvuveeruunereeennnn.

Self-repair techniques in digital systems.

A study of the data commutation problems in a self-repairable
MUILIPrOCESSOr ..ottt i et

A distinguishability criterion for selecting efficient
AIagnOSHIC tESTS .« . ivr et ier it i ei e i e

S.E. Lass

W. P. Kavanaugh, E. C. Stewart,
D. H. Brocker

M. Tarter, T. S. Hauser,

R. L. Holcomb
M. H. Ballot, K. E. Knight

A. S. Chai
J. S. Rosko
M. Schwartz, S. H. Richman

E. W. Pullen, D. F. Shuttee

J.J. Dent
F.B. Cole, W. V. Bell

K. N. Levitt, M. W. Green,
J. Goldberg

H.Y. Chang

435

443

453

461

467

473

483

491

503
509

515

529

Time-sharing versus batch processing;

the experimental evidence

TY QA MYrans

vy H. SACKMAN
System Development Corporation
Santa Monica, California

INTRODUCTION

Time-sharing of computer facilities has been widely
acclaimed as the most significant evolutionary step
that has been taken in recent years toward the
development of generalized information utilities.
The basic techniques of interactive man-computer
time-sharing were developed in the 1950’s in connec-
tion with realtime command and control computing
systems, initially in SAGE air defense. Time-sharing
was practiced in these pioneering systems in the sense
that many military operators at separate consoles—
consoles equipped with push-buttons, CRT displays
and ‘light guns—were able to request and receive
information from the central computing system at
essentially the same time. These historical roots
reveal that time-sharing is an outgrowth of realtime
system development.

The emergence of time-sharing systems as general-
purpose online computing facilities is primarily a
development of the 1960’s. The users of such systems
are a more or less random and changing collection of
people at any point in time, typically but not neces-
sarily working on unrelated tasks with different
computing programs, entering and leaving the system
independently of one another, and using it for varying
and largely unpredictable periods of time; such use
approaches that of a public utility, roughly analogous
to the quasi-random pattern of telephone traffic.

Experimental time-sharing systems were designed
and operated in the first half of this decade. The
Massachusetts Institute of Technology developed the
Compatible Time-Sharing System (CTSS) used for
Project MAC (Corbato, Merwin-Daggett, and Daley,
1962);' the System Development Corporation
developed TSS, the Time-Sharing System for the
Advanced Research Projects Agency of the Depart-
ment of Defense (Schwartz, Coffman and Weissman,
1964),2 and RAND developed JOSS, the Johnniac
Open-Shop System (Shaw, 1964)3 Commercial
applications have sprouted and are rapidly spreading

with practically all computer manufacturers market-
ing or developing some version of time-sharing hard-
ware, software, and support facilities.

In batch or offline processing—the operational
workhorse of most contemporary data processing and

" the evolutionary predecessor of time-sharing —the user

typically has indirect contact with the computer.
Batch processing has been the rule for economical
operation, with stacked jobs done one at a time on a
waiting-line basis. Job scheduling is often mediated by
programed operating systems based on job priority
and estimated computer running time. Turnaround
time may take minutes, hours, days or even more
than a week before completed outputs are returned in
response to job requests. Proponents of stacked-job
systems argue that throughput time, useful computa-
tions per unit time, is at a maximum with minimum
waste of computer resources.

In contrast, time-sharing permits fast and direct
access to the computer when the user wants it
(provided that guaranteed access is available). For
many types of data-processing tasks, the user can get
what he wants in minutes rather than hours or days.
He may exert continual control over his program
and he is free to change his mind and do things
differently, at least within system capability, as he
interacts with the computer. Time-sharing typically
means expense-sharing among a large number of
subscribers, with reduced computing costs for many
kinds of applications. And perhaps most significant
of all, the online nature of time-sharing permits direct
man-computer communication in languages that are
beginning to approach natural language, at a pace
approaching normal human conversation, and in
some applicatipns, at graded difficulty levels appro-
priate to the skill and experience of the user. Time-
sharing systems, becuase of requirements for expand-
ed hardware and more extensive software, are
generally more expensive to build and operate than
closed-shop systems using the same central computer.

2 Spring Joint Computer Conference, 1968

Time-sharing advocates feel that such systems more
then pay for themselves in convenience to the user, in
more rapid program development, and in manpower
savings.

Time-sharing, however, has always had its critics.
Their arguments are often directed at the efficiency
of time-sharing, that is, at how much of the computa-
tional power of the machine is actually used for
productive data processing as opposed to how much
is devoted to relatively non-productive functions
(program swapping, idle time, etc.). These critics
claim that the cost-effectiveness of time-sharing
systems is questionable when compared to modern
closed-shop methods, particuiarly the most advanced
versions of fast-turnaround batch systems. Since
online systems are presumably more expensive
than offiine systems, there is little justification for
their use except in those situations where online
access is mandatory for system operations (for
example, in realtime command and control systems).

Time-sharing advocates respond to these charges
by saying that, even if time-sharing is more costly
with regard to hardware and operating efficiency,
savings in programmer man-hours and in the time
required to produce working programs more than
offset such increased costs. The critics, however, do
not concede this point either. Many believe that
programmers grow lazy and adopt careiess and in-
efficient work habits under time-sharing. Easy access
to the computer, they claim, tends to make users
more prone to casual and costly trial and error
computer runs with poorly prepared. problems, in an
effort to trade off computer time against human time,
as compared to the batch environment in which
computer time is at a premium and programers do
more extensive desk checking. in fact, they claim that
instead of improving, user performance is likely to
deteriorate. '

While the controversy continues to rage, many
computer installations, pursuing their own unique
evolutionary paths, are quietly assimilating the best
of both worlds. Time-shared systems are tending to
find it convenient to run short jobs to-completion and
to interleave stacked production jobs into long
pauses in online operations as ‘‘background” tasks.
Conventional operating systems are becoming less
conventional by incorporating, in novel forms, many
features associated with -time-sharing (e.g., direct
coupled and remote batch systems). Of special
interest are the high capacity, fast turnaround batch
systems such as those reported by Lynch (1967).1
With the continued growth of computer installations,
the evolutionary varieties of oniine and offline
facilities are diversifying into new forms and are also

converging into hybrid forms. It may well be that
many large computer complexes of the future will
offer a variety of services in a spectrum of optional
online, offline and mixed operational modes.

The above arguments are characteristic of the
specuiative controversy that has attended the recent
rapid growth of time-sharing. For various and complex
reasons —which range beyond the purpose and scope
of this paper but which are treated elsewhere in
detail by the author (1967)® —the growth of an applied
experimental tradition in man-computer communica-
tion has not been vigorously pursued in the computer
sciences. Over the last two years, however, this
subjective and predisciplinary tenor has finaily,
and somewhat belatedly, taken a more objective and
scientific turn with the advent of experimental
in the literature. Five such studies are available
and together they comprise an instructive and valuable

body of knowledge on methodology and findings
(Erikson, 1966,% Gold, 1967;7 Grant and Sackman,

1967% Schatzoff, Tsao and Wiig, 1967° and Smith,
1967'%). The objectives of this paper are to criti-
cally review and evaluate these studies, summarize
areas of agreement and disagreement, point up key
gaps in these initial experiments, and sketch the more
promising avenues for future research.

Comparative methodology of the experimental studies

Table I outlines and summarizes the main character-
istics of the five experimental studies. Unfortunately,
an outline of this kind can not do justice to the
extensive details of each study, and the interested
reader is referred to the original articles. The aim of
this section is to review comparative methodology
to help determine the technical scope and limitations
of these studies. Table I breaks the description of each
study down into five categories — subjects, problems,
computer system facilities, experimental procedure,
and performance measures. Each of these is discussed
in turn.

There are a total of 212 subjects in all five studies.
It probably comes as no surprise to anyone that
college students form the bulk of this population,
with only one sample showing a highly experienced
group of programmers (Grant and Sackman). It will be
noted later that the three studies with small samples
were organized around relatively efficient experi-
mental designs to optimize the information yield
from the results.

A critical experimental control factor, not shown
in Table I, enters into the selection of subjects. This
factor is the nature of the computer-reiated experience
of the subjects and their bias, as a result of their

Time-Sharing versus Batch Processing

il Smith
imental Erikson Gold Grant and Sackman Schatzoff, Tsao and
m‘:‘;&m (1966) (1967) (1967 Wiig (1967) (1967)
SUBJECTS
Sample Size 9 60 12 4 127
Type of Subjects Programmer irainees Undergraduate and gradu- : ced prog ot i students :J‘:detg-dui:: ::d gradu-
ate students rom an setting wptitude tory aning Coure

Experience Level

Less than one year

78% of subjects had taken

Average of 7 years

“Some” programing

Most subjects had less

at least one programing experience experience than a year experience
PROBLEMS
i i Ve : Two easy “warmup” pro-
Number and T: f Two problems, a sort- One problem, simulation Two problems, algebra Four problems: Monte]
‘l:::,m::: ypee ing routine and s cube Mplmo' construction and maze Carlo integration, blems and four experimental
puzzle industry algebraic sorting, Pig problems; cosine i_nﬁmu
Latin translator, text series, matrix sorting,
format conversion language translation,
heuristic program
) . i Moderately difficult for
ifficulty Level Conceptually simple Moderately difficult, Moderately difficult for Moderately difficuit
Piffentty open-emﬁ problem highly experienced for skilled student beginners
programers subjects
i A few hours Approximately 60 hours Approximately 40 Approximately 60 hours to
Av'er:::: Completion - 18 to 20 hours to g.:?.,phu b(’;ﬂ’l prob- hours to complete all complete all problems
lems problems
ONLINE/OFFLINE
FACILITIES B " .
i il i i SDC Q-32 Ti MIT Time-Sharing, IBM rroughs B-5500 batc]
Online Facility SDC 0-‘32 Time- m}- -_y:;.:.snnm s‘mi,‘i ime- 2094 system st Stanford with
Sharin “instant” turnaround
. P " o i . . Same facility, with normal
tch Facitit! Same facility-simula- MIT Batch Facility, IBM Same facility—simula- IBM 7094 scientific f
Batch Facility ted offline conditions 7094 tion of offline condi~ batch facility turnaround
tions
Language Used “TINT-interpretative DY NAMO-simulation JTS (higher-order lan- Not mentioned Burroughs Extended ALGOL
bigher-order language language used in time- guage) and SCAMP

for time-sharing

sharing and batch modes

(machine language)

Batch Turnaround
Time

Uwy several
minutes, variable

6 hours (daytime), 10
hours (overnight), variable

Constant at two hours

Not mentioned

Variable, usually hours

EXPERIMENTAL
PROCEDURE

N . i . - : hed groups of sub-
Ex| tal Desiy 2X2 Latin Square: two ‘Two matched groups of 2X2 Latin Square: two Graeco-Latin Square: !hlc > b
perimen e problems vs. on/off subjects problems vs. on/off 4 problems, 4 sub- jects, each subject takm;‘
comparison comparison jects, vi. onfoff com- two problems on “‘batch”
pagison and two on “instant™
isti Analysis of variance, varief tri Analysis of variance, Analysis of variance, Descriptive statistical
Statistical Tests mmym b i ty of non?“‘:;.‘: e f}clo’; analysis correlational :mlyﬂ; comparisons; no tests of
tests two groups statistical significance
i C d order Q ire items, dead- Biographical items, Counterbalanced order Counterbalanced ordfr of
Experimental Controls of problems and ex uestio item pro::em grap! 4 experi- of experimental design “batch” and “instant” modes
mental variables mental order
Motivational Controls Trainee class grades Class grades Job assignment Not mentioned Class grades

Recording Procedures

Computer records and
personal logs

Computer records, student

logs and questionnaires

Computer records, experi-

menter logs, paper and
pencil test

- Computer recording,

work logs, paper and
pencil test

Computer recording,
student logs and ques-
tionnaire

KEY PERFORMANCE
MEASURES

Debug man-hours

Computer time

Program size

Individual differences

Basic Programing
Knowledge Test Scores

Problem-solving h

Debug h

Computer time

Task performance

Ratings of written reports

Cost comparisons

Questionnaire items

Coding man-hours
Computer time
Program size

Program running time

Individusl differences

Basic Programing Know-
ledge Test scores

Elapsed time

Analysis

Programer’s time
Computer time

Number of compils-
tions

Total Cost

Initial program preparation
Keypunch time

Time to prepare new run
Number of runs
Computer runs per trip
Elapsed time

Computes time

Submission intervais

Questionnaire items

TABLE I — Comparative characteristics of five experimental studies

comparing time-sharing with batch processing

experience, toward time-shared or batch systems.
For example, Erikson’s subjects were trained primari-
ly in online programing, whereas Schatzoff, Tsao
and Wiig indicated that their subjects had most of
their previous experience in batch systems and used
batch-oriented procedures in the experimental time-
sharing mode. The other three studies had subjects
with various degrees of mixed online and offline
experience. Obtaining equal familiarity and equal
skill in online and offline activities is a difficult kind
of experimental control. An antidote to this problem,

only partially encountered in these studies, is to

~ deliberately select subjects on the basis of equal
experience and to offer them extensive and equal
practice sessions in both modes up to some standard
level of proficiency.

The problems cover a fairly wide area of program-
ming and problem solving. They include mathematical
problems, various puzzles, sorting procedures, and a
simulation model. While many of these are typical of
program tasks, they can hardly be put forth as repre-
sentative. For example, there are no large data

4 Spring Joint Computer Conference, 1968

base or statistical analysis problems—the kinds re-
quiring large data storage and much computation,
which often lend themselves more efficiently to
batch processing. On the other hand, neither were
there any particularly long, exploratory programs,
such as those encountered in graphics and dispiay-cen-
tered systems, that lend themselves more efficiently to
time-sharing. All problems were individual rather than
_team-oriented tasks. Perhaps most basic of all,
there are no empirical norms available to determine
the representativeness of the various data processing
tasks. ‘

The difficulty level of most studies varies from
“conceptually simple” to ‘“‘moderately difficult.”
There were no reported cases of subjects who were
unable to complete the experimental tasks even
though some studies indicated missing data. The
average time for subjects to complete their experi-
mental tasks varied from a few hours up to 60 hours.
The longer problems give some idea of the man-
power costs of conducting this kind of research and
underscore the general tendency to use students
or trainees.

‘The problem posed by Gold for his student subjects
differed from the other four studies in that it was not
a programming task. The experimental vehicle was a
computerized simulation model of the construction
industry and its market; the student’s task was to
formulate and construct a set of decision rules to
maximize his profits as an independent, small-scale
builder in this simulated, cyclical market. The com-
puterized simulation model provided criterion per-
formance scores which constituted feedback for the
students by indicating their profit level in response
to decision rule inputs for this open-ended problem.

The oniine/offline facilities reveai key dilemmas
faced by the experimenters in attempting to construct
unbiased and equal conditions for an objective
comparison between time-sharing and batch process-
ing. In the two SDC studies, time-sharing was real
and batch processing had to be simulated on the
QQ-32 Time-Sharing System. In Smith’s study, the
basic system was-batch and time-sharing was simulat-
ed by providing “instant” turnaround time (several
minutes); there were no conversational or interactive
features in this simulated online condition. While
Smith's study is primarily a comparison between
conventional batch and fast-turnaround batch, it is
included here because of the useful information
it contributes to timing and feedback aspects of the
time-sharing/batch controversy. The two MIT studies
were the only ones offering ostensibly comparable
online and offline modes without resorting to some
form of simulation.

The computer language employed is another
difficult control variable. Gold and Smith were able
to have their subjects use the same language which,
they claimed, was equally applicable and useful for
both modes. Erikson used TINT, an interactive
ianguage, for the noninteractive mode. In the Grant-
Sackman study, most subjects used JTS, originally
a batch processing language, later adapted to time-

~ sharing. Schatzoff, Tsao and Wiig do not mention

any languages at all; since they indicate that their
subjects used batch procedures in the time-sharing
mode, and that their subjects only had a brief indoc-
trination in time-sharing, one cannot help but wonder
whether their comparison provided reasonably
comparable starting conditions under both experi-
mental modes. This same criticism applies, at least
in part, to the two SDC studies.

Experimental control problems are compounded
further with respect to turnaround time under the
batch mode. These turnaround times vary from
minutes, to hours, to next-day turnaround. Only
Grant and Sackman controlled this variable at a
constant value of two hours. While this procedure
provided rigorous experimental control over turn-
around time, it was obviously unrealistic in not
providing variability in turnaround service. The
other investigators apparently left their subjects to
the vagaries of their particular operationai batch
system without obtaining exact measures of turn-
around time for each run. In addition, for all studies,
it is not clear whether subject waiting time during
batch turnaround was spent working on the problem,
or not working on the problem, and for some of the
studies, whether it was included or excluded in sub-
ject logs of man-hours spent on the experimental
task. Fuiure studies in this area should incorporate
systematic variation and control of machine turn-
around time, and careful recording of what the
subject does during this time. Lack of experimental
controls in this area unquestionably increases error
variance in performance measurement and decreases
the reliability of the final results.

The next category in Table I, experimental proce-
dure, reveals a remarkable spectrum of experimental
designs for the five studies. The Graeco-Latin
Square configuration of the Schatzoff, Tsao and Wiig
study is the most sophisticated experimental design,
whereas the Smith study merely compared mean
scores of matched groups without any reported
measures of dispersion or any tests of statistical
significance. With a sample of four subjects, the
Schatzoff, Tsao and Wiig study had to have optimal
statistical efficiency to demonstrate reliable results,
whereas with Smith’s sample of 127 subjects, ob-

Time-Sharing versus Batch Processing 5

served mean differences are correspondingly more
reliable. Nevertheless, the absence of statistical
tests and neglect in reporting measures of dispersion
in the data from which statistical tests may be con-
structed, are to be deplored since these practices
reduce the cost-effective yield of an experiment,
leave quantitative results ambiguous, and deprive
the larger community of useful information on
individual differences.

The three experiments using Latin-Square designs
employed analysis of variance and correlational tech-
niques to the findings, which not only provided
statistical tests for online/offline comparisons, but
also yielded valuable information on problem and
individual performance differences. The Grant-
Sackman study was the only one which included an
exploratory factor analysis of subject performance.
Gold’s tests were exclusively non-parametric, and
as in Smith’s study, no quantitative findings on
individual differences were reported.

The experimental controls included matching of
groups in the studies with the largest samples (Gold
and Smith) primarily on the basis of questionnaire
items. The remaining three studies, using Latin-
Square designs, involved stratified samples of sub-
jects (e.g., experienced programmers, high-perfor-
" mance students, trainees) with random assignments of
subjects to the various test conditions in accordance
with the experimental design. Motivational controls
essentially consisted of class grades for students
and fulfillment of job assignments for the experienced
SDC programmers. Individual competition probably
spurred most subjects to work hard at their assigned
‘tasks and to keep most of their problem strategy and
" tactics to ‘themselves, at least in the three small
sample experiments. These motivational constraints
were probably less effective in the two experiments
with the larger subject samples.

The recording procedures characteristically in-
cluded computer recording for machine usage, sub-
ject logs for man-hours spent on experimental tasks,
questionnaires for selecting and matching subjects
and for collecting observations and ratings on self-
performance. Gold collected the most comprehensive
questionnaire data on his subjects before, during,
and after the experiment. Items included biographical
data, problem-solving behavior, and comparative
attitudes toward time-sharing and batch processing.
Paper and pencil tests of programmer ability were used
in three studies. Schaizoff, Tsao and Wiig selected
students who received a grade of A on the IBM Data
Processing Aptitude Test; in the two SDC studies,
the Basic Programming Knowledge Test (developed
at the University of Southern California) was adminis-

tered to the subjects. Of the various recording
procedures, the computer records were probably the
most objective and the’subject logs were the ones
most open to intentional and unintentional errors.
In the thiree studies with small samples, it was easier
to keep the subjects under surveillance, to monitor
their manual reporting procedures, and to tactfully
resolve discrepancies as they arose. In the two larger
sample studies, experimenter monitoring of individ-
uals had to be more indirect. Neither Smith nor
Gold discuss possible errors or bias in student re-
porting procedures in any detail.

The last category in Table 1 covers the experimental
payoff, performance measures. The two key perform-
ance measures running through all five studies are
man-hours and computer time required to complete
experimental tasks. The computer time measure is the
most straightforward. Man-hour measures appear in
various forms and are partitioned in different ways.
For example, the two SDC studies distinguish coding
time from debugging time; Gold uses a single measure
of problem-solving time; the other two studies incor-
porate an overall measure of elapsed time with differ-
ent ways of slicing man-hours spent on experimental
tasks. Cross-comparisons are somewhat difficult be-
cause measures are defined differently for different
contexts.

The three studies utilizing Latin-Square designs de-
vote some attention to the analysis of individual per-
formance differences. Although individual differences
were not originally a key objective of these studies,
there was an unavoidable serendipitous fallout of hu-
man differences from the analysis of variance in each
investigation. The study of individual differences was
carried furthest in the Grant-Sackman experiment
through an exploratory factor analysis of performance
measures. :

Questionnaries bearing on subject preference be-
tween online and offline operations were used in the
Gold and Smith studies. This performance measure,
while subject to the problems that plague question-
naire reliability and validity, is of special interest in the
time-sharing/batch controversy in providing an index
of user attitudes and in testing for a bandwagon effect.

The SDC studies used final program size and run-
ning time as measures of performance. It is surprising -
that these objective, easily obtainable, and obvious
measures of programing efficiency were not reported
in the other two studies requiring completed programs.
It would be of value to test whether programs are
written more efficiently, as measured by these two
indices, in the online or the offline mode.

The performance measures in two cases (the Gold
study and the Schatzoff, Tsao and Wiig study) in-

Spring Joint Computer Conference, 1968

clude estimates comparing online/offline costs which
incorporate man and machine factors. In both cases
these costs were derived from experimental measures
of human and machine time which were used as em-
pirical parameters in simple cost models.

‘The Gold study had some unique measures of per-

formance. The most notable is task effectiveness—

how well the subject performed his task, as measured
by his profit in the simulated construction industry
model. Whereas the other studies measured effective-
ness in terms of how long it took the subject to com-
plete a standard task, Gold was also able to obtain a
quantitative measure of how well the subject per-
formed (profit). Goid’s study was aiso unique in ob-
taining written .reports from each subject to assess
their mastery and grasp of the experimental task from
an independent source of (verbal) data. He was also
the only experimenter who required his subjects to
give a standardized account of their computer runs on
a run-by-run basis. These various measures enabled
Gold to obtain more diversified data than any of the
other studies on problem-solving and decision-making
activities in the online and offline setting.

In an attempt to explore the relation between paper
and pencil tests and performance on experimental
tasks, the two SDC studies incorporated scores on
the Basic Programming Knowledge Test in their analy-
ses of individual differences. Since sampie sizes
were small, and since validity correlations of success-
ful paper-and-pencil tests of job performance are tradi-
tionally moderate to low, these tests, at best, were ten-
tative probes.

Summing up, what are the chief methodological
characteristics, strengths, and weaknesses of these
five studies in regard to subjects, problems, computer
facilities, experimental procedure, and peirformance
measures? The subjects. were primarily students or
trainees —experienced data processing personnel
were used in only one study. While the experimental
problems ranged over a broad area, involving many
types of data processing tasks and procedures and
requiring many hours for successful solution, certain
types of tasks prominently occurring in batch process-
ing and in time-sharing are not encountered, and it is
difficult to assess how representative these problems
are for data-processing in general and how well they
are balanced for an objective online/offline compari-
son. Some of the toughest problems were met in pro-
viding comparable time-sharing/batch facilities;
matched computers and equivalent languages posed
many problems, and the crucial variable of batch turn-
around time was generally not systematically con-
trolled. The experimental procedures show diverse
ievels of experimental sophistication, with the most

critical problems occurring in the observation and
measurement of human performance. Even at this
early stage, the range of performance measures is
impressive, covering a variety of man-machine in-
dices; on the other hand, the patcity of automatically
coliected measures of human and program perform-
ance, particularly in the online setting, is somewhat
disappointing. More powerful online techniques, such
as regenerative recording of user performance—a
technique for capturing the complete real-time interac-
tion between the user and the computer so that it
can be played back in its entirety for later analysis
(Sackman, 1967)'! —should be developed and applied
to the experimental investigation of a broad spectrum
of user tasks.

Results of experimental studies

In this section the key results of each of the five
experiments are successively summarized in tabular
form and briefly evaluated; a composite box-score
of the results of all five experiments is also presented.
The next section, Interpretation, provides a cross-
comparison and an overall evaluation of method and
findings. The tabular format for the results of each
experiment essentially consists of a list of key perform-
ance variables, with observed scores in the online
and offline mode, and obtained statistical significance
for the observed difference (providing such tests were
conducted); additional notable findings follow this list,
and each table concludes with a box-score listing what

. the author believes to be the most significant results

of the given study.
Time-Shared Batch Statistical

Performance Measure Mode Mode Significance
Debug Man-Hours 5.0 9.6 .06*
Computer Time (sec.) 146 492 .06*
Number of TINT Statements 51 53 -
Range of Individual Differences 8:1 and 7:1 and -

in Debug Man-Hours 3:1 6:1
Range of Individual Differences 5:1 and 4:1 and -

in Computer Time 4:1 3:1

*
Nonparametric tests of mean differences in adjusted scores.

BOX _SCORE

1. Time-sharing requires fewer man-hours and much less computar time for
debugging with programer trainees tham a simulated noninteractive mode
when an interpretive language developed for time-sharing is used in
both modes.

2. Individual differences in performance are larger than online/offline
system differences.

TABLE II —Main results of the Erikson study

e QLo o Mol Dt
1 HIC-J{1al'lg veISuS DAiCH rroCessig /
Time-Shared Batch Statistical] Time-Shared Batch :tati;zical
Performance Measure Mode Mode Significance Performance Measure Mode Mode ignificance
Problem-Solving Man-Hours 15.5 19.3 .05 Elapsed Time (days) 29.5 46 .08
Task Performance (profit) $1404 $1215 .002 ‘Analysis Time (min.) 3059 2295 -
*.
Computer Time (min.) 7.13 1.25 .001 Programer Time (min.) 5672 2737 .02
Understanding of Problem Higher Lower .04 Computer Time (min.) 92 101 -
(rating of written report) N
Compilations 118 49 .05
Overall Cost No appreciable difference - mpiia
. Total Cost (dollars) 1579 1075 .08
Subject Preference More Less .001 otal Cost (
desirable desirable
i i :1 to 4:1
Range of Individual Differeaces 7:1 4:1 - Range of Individual Differences for above variables 3 o

in Problem Solving Man-Hours

*,
There is an additionmal editing load under time-sharing with DYNAMO that is
not present under the batch mode. Comparable adjusted figures are not
available.

BOX SCORE

1. Time-sharing requires fewer man-hours than batch processing in a problem-

solving task with a sample of 60 students.

2. Time-gharing is
batch processing.

ied by a higher level of effectiveness than

3. Batch processing requires much less computer time than time-sharing for
the given problem.

4. Time-sharing is strongly preferred by student subjects over batch
processing, and this preference grows with increasing exposure to both
modes.

TABLE I — Main results of the Gold study

Time~Shared Batch Statistical
Performance Measure Mode Mode Significance
*
Debug Man~Hours 19.3 31.2 .05
Computer Time (sec.) 747 548 -
Program Size {machine words) 2534 2339 -
Program Run Time (sec.) 3.7 3.7 -
Range of Individual Differences 14:1 and 6:1 and -
_ in Debug Man-Hours i3:1 9:1
Range of Individual DIfferences 3:1 and 7:1 and -
in Computer Time 11:1 8:1

Two factors: programing speed and

program economy

Factor Analysis of
Performance Measures

*
Analysis of variance on transformed scores.

BOX SCORE

1. Time-sharing requires fewer man-hours to debug programs for highly
experienced programers than a simulated batch system with a two-hour
turnaround time.

2, Computer time, program size, and prozram rumning time are not
ificently influented by batch versus fimessharing modas under the
conditions of this experiment.

3. Individual performance differences ia a highly experienced group of
programers are considerably larger than observed system differences
between time-sharing and batch processing.

4," An exploratory factor amalysis of the experimental data revealed two
basic programing skills--programing speed and program economy.

TABLE IV — Main results of the Grant-Sackman study

2.

30X SCORE

Students experienced in batch techniques and who are inexperienced in
time-sharing techniques, and who essentially use batch procedures under
both modes, use less of their own time and incur lower man-machine c~3ts
to prepare, code and debug programs under the batch mode than in time—
sharing. .

Time-sharing, even with subjects unfamiliar with its use, requires less
total elapsed time than batch processing to prepare, code and debug
programs.

In a select group of students, individual differences in performance
are much larger than system differences between time-sharing and batch
processing.

While time-sharing required more compilations than batch processing
under the conditioms of this experiment, there was no significant
difference in the expenditure of computer time under both modes.

The above conclusions are contingent upon the type of programing languages
used in both modes and the extent and variability of batch turnaround
times--both of which were not reported in the original article.

TABLE V— Main results of the Schatzoff, Tsao and Wiig study

l “Instant"” Batcn”
Performance Measure Mode Mode
Initial Program Preparation (min.) 440 405
Time to Keypunch Original Program (min.) 109 108
Time to Prepare New Run 311 293
Number of Runs per Student 7.1 6.6
Computer Runs per Trip 2.5 1.9
Elapsed Time (days) 3.0 3.7
Computer Time (average min. per rum) .277 .186
Intervals Between Successive Computer l
Ruas (min.) First Quartile 40 210 |
Median 205 450 (est.) |
Third Quartile not reported not reported
Student Preference 70% 243

*
No

BOX SCORE

tests of statistical significance were reported.

Instant turnaround batch results in less elapsed time than coaventional
batch to prepare, code and debug programs for a relatively large sample
of student users.

Instant turnaround results in heavier computer time expenditure than
conventional batch processing.

Instant turnaround is preferred by substantially more students than
conventional batch processing. i

Instant turnaround is associated with changes in programing working
patterns that are characterized by shorter interyals between successive
job runs and earlier completion of the experimental task.

The above conclusions are contingent upon the variability of the data
and derived tests of statistical significance wiich were not reported
in the published study.

TABLE VI—Main Results of the Smith Study

8 Spring Joint Computer Conference, 1968

Interpretation

What are the consistent patterns, the ambiguities,
and the gaps in the findings of the five studies? Six
types of performance measures in the data are re-
viewed: subject time, computer time, system costs,
user preference, individual differences and special
measures. Composite results for the first four meas-
ures are shown in Table VII.

Couputer User
_Map-Hours Time ____ Costs Preference |
Erikson ‘rhu-Shumg‘ Time-Sharing Time-Sharing Time-Sharing
1.9:1 3.4:1
Gold Tine-Sharing Batch Approx. Time-Sharing
1.2:1 5.7:1 Same
Grant and Time-Sharing Batch Approx. Time-Sharing
Sackman 1.6:1 1.4:1 Same
Schatzoff, Batch Time-Sharing Batch Not Reported
Tsao and 2.1:1 1.1:1 1.5:1
wiig
Smith Inumt" Batch Approx. Instant
1.2:1 1.5:1 Same
Madian for Time-Sharing Batch Approx. Time-Sharing
All Studies 1.2:1 l.4:1 Same Preferred
.’rhc mode showing a reported advgntage appears in each box together
with its favorable ratio; e.g., this eatry shows lese man-hours for
time-sharing at a 1.9:1 ratio.
**urastant” batch s treated in this table as a simulated version of
time-sharing.

TABLE VII—Composite Experimental Box-Score: Time-Sharing
Versus Batch Processing

Four out of five studies show time-sharing (or its
simulated equivalent) to result in less human time in
producing programs or solving problems than batch
processing (or its simulated equivalent). Only the
Schatzoff, Tsao and Wiig study shows a reverse trend,
and these authors admit to their subjects’ use of batch
techniques under time-sharing. Further, these authors
do, in fact, show less elapsed time for completion of
experimental tasks under time-sharing. On the other
hand, the Erikson study, which shows the greatest rel-
ative performance advantage for time-sharing (almost
2:1 in trainee man-hours), was based on the use of an
interactive interpretjve language in both modes, which
created a favorable bias for time-sharing. With these
qualifiers at both extremes in mind, it appears that
time-sharing does tend to require less elapsed time
and fewer man-hours to produce programs and solve
problems. The magnitude of this performance advan-

tage is not very large — the median improvement for all
five studies is roughly 25 percent less human time
under time-sharing than in batch processing. No
claims are made for the meaning or the stability of
this or the other medians, but they do give a crude rul

1L LT ULIUL 11 UuL Yy UuU sivyL aviuuv ius

of thumb for the pooied resuits of these five studies.
The comparative results on computer time show no

clear-cut trend. They range from a 6:1 ratio in favor
of batch processing in Gold’s study (an admittedly

inflated ratio since computer times in the two modes
are not strictly comparable), to middle-of-the-road
ratios varying from 1.5:1, to 1.4:1 in favor of batch in
the next two studies (Smith, and Grant and Sackman)
to 1.1:1 in favor of time-sharing in the Schatzoff,
Tsao and Wiig study to a 3:1 ratio in the same direc-
tion in Erikson’s study. The conservative conclusion
is that computer time is highly sensitive to the unique
conditions of each experiment and that no consist-
ent advantage seems to accrue to either mode as far as
the pooled data of these studies are concerned. On the
other hand, the median ratio is 1.4:1 in favor of batch
computer time, and perhaps this might serve as a
“best” estimate for the pooled data.

The combined results for human time and computer
time, assuming that the reported trends are reliable,
reinforce the hypothesis that in time-sharing the user
trades off computer time for his own time. That is, to
state the extreme case, rather than check out his pro-
gram as thoroughly as he can at his desk, the time-
sharing user is more likely to take a less-polished ver-
sion or only a partially checked program to the com-
puter for a trial run than his batch counterpart. Time-
sharing critics will assail this practice by claiming that
the user develops careless and lazy work habits
through excessive reliance on extra computer runs;
time-sharing advocates will assert that such behavior
allows more intelligent exploration and testing of al-
ternative solutions at a natural pace for the user when
and as problems arise. While there is probably some
truth to both positions (which are not mutually exclu-
sive), it is hoped that future experimental analyses of
problem-solving stages in both modes will lead to
improved hypotheses in the dynamics of man-comput-
er communication that will supersede these rather
crude stereotypes of user behavior under time-shar-
ing and batch processing.

The data on system costs also shows no definite
trend. While only two studies reported cost estimates,
the overall results indicate that one study shows
definitely less expense for time-sharing (Erikson—
less computer time and fewer man-hours), three
studies show roughly equal costs for both modes
{computer time and man-hour results in opposite cost
directions), and one (Schatzoff, Tsao and Wiig) shows

Time-Sharing versus Batch Processing 9

a 50 percent cost advantage for batch processing.
Here again the results are contingent upon unique ex-
perimental conditions.

The comparative results on user attitudes show a de-
cided preference for time-sharing in Gold’s study and
a strong preference for “instant” over conventional
batch in Smith’s study. In the two SDC studies, al-
though a formal poll was not taken, most subjects
apparently preferred time-sharing over the simulat-
ed oftline conditions. Schatzoff, Tsao and Wiig do
not report any opinion data. The available evidence,
such as it is, indicates that time-sharing and “‘instant”™
batch (minutes of turnaround time) are preferred over
conventional batch (hours of turnaround time). There
are no data to indicate how time-sharing would fare
against fast-turnaround batch:. While it is not at all
surprising that the subjects liked easy access to com-
puters and fast computer response, it is nevertheless
desirable to demonstrate this experimentally. User
preference for the interactive conversational features
of time-sharing over and above the fast response of
instant batch is still a moot point.

Individual differences were investigated in those
three studies using analysis of variance techniques. In
each case, performance differences between subjects
were larger and overshadowed system differences be-
tween time-sharing and batch processing. The ob-
served ranges were sometimes at an order of magni-
tude between best and poorest performers —even with
relatively stratified subject samples. "Although no
measures of the dispersion of subject performance
were reported in the Gold and Smith studies, it is
hoped that such analyses will be forthcoming since
these two studies have the largest user samples. Ex-
cept for the Grant-Sackman exploratory factor analy-
sis of individual performance differences, no systemat-
ic analysis of human differences was attempted.This
factor analysis resulted in two well-defined and es-
sentially independent factors—one concerned with
programming speed (low coding and debugging time,
and low computer time) and the other with program
economy (smaller and faster running programs). While
the entire area of individual differences in man-com-
puter communication, from economic, system perform-
ance and humanistic points of view, is probably
more important than operating system differences,
nevertheless, little has been done and virtually nothing
is known about such individual differences.

Gold’s study is the only one that attempted to assess
how well the experimental task was done and how well
it was understood. He found that the time-sharing
group made a significantly larger profit in the simu-
lated construction industry market and that they also
understood the problem better than the batch process-
ing group, at least as determined by independent rat-

ings of written reports from both groups. These find-
ings, but just for this one study, support the conten-
tion that time-sharing leads to a higher-quality end
product than conventional batch.

The distribution of successive computer runs in
Smith’s study shows interesting differences between
the instant and the conventional batch modes. Median
turnaround time for subjects to prepare their next run
is more than twice as short in the instant mode. Prob-

lem-solving speed is apparently slower under conven-
tional batch. As time-sharing adherents have often
pointed out, ready accessibility of computer services
lends itself to natural pacing in problem-solving tasks,
whereas the forced delays inherent in conventional
batch turnaround time tend to disrupt normal problem-
solving patterns and inhibit spontaneous closure. Un-
fortunately, the intervals between successive compu-
ter runs under batch, and between successive console
sessions under time-sharing were not reported in the
other studies, thus, the above hypothesis is still con-
jectural. Nor does this hypothesis bear upon the dif-
ferences between instant batch versus interactive
time-sharing. A

The two SDC studies, at least as far as program size
and running time are concerned, are neutral with re-
spect to Gold’s results in that no significant program
differences were found between time-sharing and sim-
ulated batch modes. It would be of interest if online/
offline experiments were conducted in which subjects
were instructed to write short and fast-running pro-
grams in addition to solving the experimental tasks.
Without such instructions subjects are likely to con-
centrate primarily on working solutions rather than on
operating costs of the finished product. Program size
and running time can be used to measure comparative
“quality” of final programs—a useful measure in
realtime computing systems, for example, where
space and running time are often at a premium.

What is the composite picture of experimental com-
parisons of time-sharing and batch systems, at least
as depicted by the available studies, and what are
the main gaps in this portrait? The rather blurred por-
trait that emerges seems to show that time-sharing
is more likely to get the job done faster, perhaps at
higher quality, at a working pace preferred by users.
Batch processing may, more often than not, require
less computer time, and perhaps at somewhat less
cost than time-sharing. Prior familiarity with batch
or time-sharing, and built-in individual or institutional
bias toward one or the other, especially if coupled to
computer system tools or languages built for one mode
rather than the other, could easily shift the balance in
the familiar direction. Overshadowing these system
differences are wide-ranging individual differences
which seem to account for most of the observed vari-
ance in performance.

10 Spring Joint Computer Conference, 1968

Except for Gold’s exploratory work on the quality
of the user’s final product, virtually nothing has been
done on human creativity in the online/offline setting.
No studies have been performed on the distinctive
characteristics of conversational interaction in time-
sharing and whether these characteristics offer any
advantage over fast batch systems. No work has been
done on a comparative error analysis of user perform-
ance between time-sharing and batch processing ex-
cept for some preliminary tabulations listed by Smith
(1967)."> There are no detailed case histories on the
real time pattern of problem-solving—a kind of time-
and-motion study of human decision making—that
occurs under online and offline conditions, away
from the computer as well as at the computer. Until
we understand the behavioral dynamics of man-com-
puter communication we can hardly expect to under-
stand the relative tradeoff between alternative modes
of data processing, including the comparison between
time-sharing and batch processing. It is not within
the scope of this paper to develop a systematic frame-
work for comparative analyses of user performance;
this has been done elsewhere by the author.' Suf-
fice it to say that it is an encouraging sign of the times
that significant experimental attempts have been made
to obtain open scientific data on camparative man-
computer systems, and that the application of comput-
ers to human affairs is becoming more a shared, ap-
plied science and less a secretive, crude, trial-and error
technology.

REFERENCES

I FJ CORBATO M MERWIN-DAGGETT R C DALEY
An experimental time-sharing system
Proceedings of the Spring Joint Computer Conference 1962
pp 335-355

2 J I SCHWARTZ E G COFFMAN C WEISSMAN
A general purpose time-sharing system

W

w

10

Proceedings of the Spring Joint Computer Conference 1964
vol 25 pp 397-311

C J SHAW v

The JOSS system

Datamation vol 10 no 11 November 1964 pp 32-36

W C LYNCH

Description of a high capacity, fast turnaround university
computer center

Proceedings of 22nd National Conference Association for
Computing Machinery Thompson Book Co 1967 Washington
D C pp 273-288

H SACKMAN

Experimental investigation of user performance in time-shared
computing systems: retrospect prospect and the public interest
SP-2846 System Development Corporation Santa Monica
California 5 May 1967

W J ERIKSON

A pilot study of interactive versus noninteractive debugging
TM-3296 System Development Corporation Santa Monica
California 13 December 1966

M GOLD

Methodology for evaluating time-shared computer usage
Doctoral Dissertation Massachusetts Institute of Technology
Alfred P Sloan School of Management 1967

E E GRANT H SACKMAN

An exploratory investigation of programmer performance
under on-line and off-line conditions

SP-2581 System Development Corporation Santa Monica
California 2 September 1966

M SCHATZOFF R TSAO R WIIG

An experimental comparison of time sharing and batch pro-
cessing

Communications of the ACM vol 10 no 5 May 1967 pp 261-265
LYLE B SMITH

A comparison of batch processing and instant turnaround
Communications of the ACM vol 10 no 8 August 1967 pp
495-500

H SACKMAN

Computers system science and evolving society

John Wiley and Sons Inc New York 1967

LYLE B SMITH

Part one: a comparison of batch processing and instant turn-
around

Part two: a survey of most frequent syntax and execution-time
errors

Stanford Computation Center February 1967

Computer scheduling methods and their countermeasures

by EDWARD G. COFFMAN, JR*

Princeton University
Princeton, New Jersey

Py |
LEONARD KLEINROCK**

University of California
Los Angeles, California

INTRODUCTION

The simultaneous demand for computer service by
members from a population of users generally results
in the formation of queues. These queues are con-
trolled by some computer scheduling method which
chooses the order in which various users receive at-
tention. The goal of this priority scheduling algorithm
is to provide the population of users with a high
grade of service (rapid response, resource availabil-
ity, etc.(, at the same time maintaining an acceptable
throughput rate. The object of the present paper is to
discuss most of the priority scheduling procedures
that have been considered in the past few years, to dis-
cuss in a coherent way their effectiveness and weak-
nesses in terms of the performance measures men-
tioned above, to describe what the analysis of related
queueing models has been able to provide in the way
of design aids, and in this .last respect, to point out
certain unsolved problems. In addition we discuss the
countermeasures which a customer might use in an
attempt to defeat the scheduling algorithm by arrang-
ing his requests in such a way that he appears as a high
priority user. To the extent that we can carry out such
an undertaking, the single most important value of this
consolidation of the results of analysis, experimenta-
tion, and experience will be in the potential reduction
of the uncertainty connected with the design of a
workable service discipline.

By a grade or class of service we mean the availa-
bility of certain resources (both software and hard-
ware), a distribution of resource usage costs, and a
well-defined distribution of waiting or turn-around
times which applies to the customer’s use of these re-

*This research was supported in part by the Bell Telephone Lab-

oratories, Murray Hill, New Jersey.

**This research was supported in part, under Contract DAABO7-
67-0540, United States Army FElectronics Command, and also
in part by the Advanced Research Projects Agency (SD-184).

sources. In multi-access, multiprogramming systems
throughput may conveniently be measured in terms of
computer operating efficiency defined roughly as the
percentage of time the computer spends in perform-
ing user or customer-directed tasks as compared with
the time spent in performing executive (overhead type)
tasks. We shall avoid trying to measure the program-
mers’ or users’ productivity in a multi-access environ-
ment as compared with productivity in the usually less
flexible but more efficient batch-processing environ-
ment. For discussions on this subject see References

1 and 2 and the bibliography of Reference 3.

With a somewhat different orientation some of these
topics have been covered elsewhere. In particular,
Coffman,* Greenberger® and in more detail Estrin
and Kleinrock® have reviewed the many applications
of queueing theory to the analysis of multiprogram-
ming systems. In addition, Estrin and Kleinrock have
surveyed simulation and empirical studies of such sys-
tems. Howeyer, in contrast to the purposes of the
present paper, the work cited above concentrates on
mathematical models and on service disciplines to
which mathematical modeling and analysis have been
to some extent successfully applied. We shall extend
this investigation to several priority disciplines not
yet analyzed and to others which more properly apply
to batch-processing environments. Furthermore, as
indicated earlier, the present treatment investigates on
a qualitative basis the detailed interaction of the cus-
tomer and the overall system with the service disci-
pline.

Classification of priority disciplines

Before classifying priority disciplines consider the
following very general notion of a queueing System.
In Figure 1 we have shown a feedback queueing sys-
tem consisting of a computer (service) facility, a queue
or system of queues of unprocessed or incompletely

11

12 SpringJoint Computer Conference, 1968

processed jobs (or more generally, requests for ser-
vice), a source of arrivals requesting service and a
feedback path from the computer to the system.of
queues for partially processed jobs. The system will
be defined in any given instance by a description of
the arrival mechanism, the service required from the
computer, the nature of the computer facility, the ser-
vice discipline according to which the selection of ser-
vice requests from the system of users is determined,
and the conditions under which jobs are ‘“fed back”
to the system of queues. In all of the service disci-
plines discussed in the next section we make the fol-
lowing assumptions: 1) the arrival mechanism is
such that if the arrival source is not empty it generates
new requests according to some probability distribu-
tion, 2) the service disciplines are such that the com-
puter facility will never be idle if there exists a job
in the system ready to be executed.

CYCLED (PARTIALLY PROCESSED) UNITS

SYSTEM OF DEPARTURES

QUEUES

ARRIVING
UNITS

PROCESSOR

Figure 1 —Feedback queueing system

There are a variety of ways to classify priority ser-
vice disciplines. Indeed, one point of view is expressed
by saying that priorities may be bought (e.g., in disci-
plines where bribing is allowed,” earned e.g., by a pro-
gram demonstrating favorable characteristics in a
time-sharing system), deserved (e.g., by a program ex-
hibiting beforehand favorable characteristics), or a
combination of the above. For our purposes we shall
classify a given priority method according to the prop-
erties listed below.

A. Preemptive vs. non-preemptive disciplines

This characteristic generally determines how new
arrivals are processed according to the given disci-
pline. If a low priority unit is being serviced when a
higher priority unit arrives {(or comes into existence
by virtue of a priority change of some unit already in
the system) then a preemptive service discipline im-
mediately interrupts the server, returns the lower pri-
ority unit to the queue (or simply ejects it from the
system), and commences service on the higher pri-
ority unit. Note that non-preemptive disciplines in-
volve preplanning in some sense. However, the ex-
tent of pre-planned “*schedules’ may vary wideiy.

B. Resume vs. restart

This characteristic determines how service is to
proceed on a previously interrupted (preempted) job
when it comes up for service again. With a resume
priority rule no service is lost due to interruption and
with a restart rule all service is lost. Assuming that
the costs of lost service are intolerable in the applica-
tions of concern to us we shall treat only resume rules
and systems in which such rules are feasible.

C. Source of priority information

Service disciplines may be classified according to
the information on which they base priority decisions.
Such a list would be open-ended; however, the sources
of the information may be considered to fali in one of
three not necessarily disjoint environments: 1) the job
environment whereby the information consists of the
intrinsic properties of the jobs (e.g., running time, in-
put/output requirements, storage requirements, etc..),
2) the (virtual) computer system environment (e.g., dy-
namic priorities may be based on the state of the sys-
tem as embodied in the number of jobs or requests
waiting, storage space available, location of jobs
waiting, etc.) and 3) the programmers’ or users’ en-
vironment in which management may assign priori-
ties according to urgency, importance of individual
programmers, etc.

D. Time at which information becomes known

Classical service disciplines assume that the in-
formation on which priority decisions are based is
known beforehand. On the other hand, time-sharing
disciplines are a prime example of service disciplines
in which decisions are based on information (e.g., run-
ning time and paging behavior, which is obtained only
during the processing of service requests. Such in-
formation, of course, is used to establish priorities
based on the predicted service requirements of re-
quests which at some time were interrupted and re-
turned to the queue.

All of the priority scheduling methods to be dis-
cussed are applicable to the infinite input population
case (in which the number of possible customers is
unbounded) as well as to the finite population case
(in which a finite number of customers use the sys-
tem) —see Reference 6.

Priorities based only on running times

The intent of systems using a so-called running-
time priority discipline is that the shorter jobs should
enjoy better service in terms of waiting times. The
FCFS (first-come-first-served) system is commonly
used as a standard of reference to evaiuate the suc-

Computer Scheduling Methods and Countermeasures 13

cess of this intent. The first two algorithms below as-
sume job running times are known at the time they ar-
rive at the service point, while most of the remain-
der, which have arisen primarily in connection with
multiprogramming systems, assume that no indica-
tions of running times are known until after jobs have
been at least partially run.

A. The shortest-job-first (SJF) discipline®

This is a non-preemptive priority rule whereby the
queue is inspected only after jobs are completely
processed (served) at which times that job in the queue
requiring the least running time is the next to receive
service to completion (and thus there are no cycled
arrivals). The SJF descipline has the obvious advan-
tage of simplicity and the somewhat less obvious ad-
vantage that the mean customer waiting time in the
system is less than in any system (including the FCFS
system) not taking advantage of known running times.
However, it is clear that significantly long runaing
jobs suffer more in an SJF system than in an FCFS
system. Thus, the reduction in the first moment of the
waiting time comes at the cost of an increase in the
second moment (or variance). We discuss the SJF
discipline further in connection with the following dis-
cipline.

B. The preemptive shortest-job first (PSJF) discipline

With this discipline the SJF priority rule is applied
whenever a job is completed as well as whenever there
is a new arrival. If a new arrival has, at its time of
arrival, a service requirement less than the remain-
ing running time required by the job, if any, in ser-
vice, then the latter job is cycled back to the single
queue and the computer given over to the new arrival.
The job returned to the queue is subsequently treated
as if its running time were that which remained when
it was interrupted; i.e., we have a preemptive, resume
discipline.
~ The PSJF discipline has the advantages over the
SJF and FCFS disciplines of further accentuating
the favoritism enjoyed by the short running jobs and
further reducing the average waiting time in the sys-
tem. (Again, the variance will be increased.) Indeed,
it has been shown that the PSJF discipline is the opti-
mum running-time priority discipline in these last two
respects. This relationship between the SJF and PSJF
disciplines is seen in part by observing that time-of-
arrival receives some consideration in the SJF disci-
pline but, bécause of the preemption property, none
at all in the PSJF discipline.

The principal disadvantage of the PSJF discipline
in the computer application is the cost associated with
interrupting a job in progress, placing it into auxiliary

(queue) storage, and loading the higher priority job
for execution. Although this swapping process with
auxiliary storage devices may not always be neces-
sary, depending on the size of main storage, it may out-
weigh the advantage of PSJF scheduling over SJF
scheduling. Since it is usuvally difficult to expect ad-
vance knowledge of exact running times, it is en-
couraging to note that in a thorough study by Miller
and Schrage?® it is shown that even with partial indi-
cations of running times significant improvements in
mean flow time are possible at the expense of in-
creases in'the second moment.

It is obvious that the major effect of these disci-
plines on the programmer-users of such systems is
a salubrious one in that it causes them to produce fas-
ter, more efficient jobs. However, the reaction of a
user with a job ready to be submitted to an SJF or
PSJF system depends to some extent on what infor-
mation regarding the state of the system is available
to the user. If the user can see only the queue length
(and this is usually available) then whether or not he
balks (refuses to join the queue) depends on how long
his job is, his knowledge of the distribution of the run-
ning times of jobs submitted to the system, and his
assessment of his chances were he to decide to come
back later. If indications of the running times of jobs
in the queue are known at arrival time then good esti-
mates of waiting time are possible; thus, longer jobs
wanting fast service are more likely to balk. With
knowledge only of queue length, however, it would
appear that less balking would occur with the SJF
and PSJF systems than with the FCFS system. On
the other hand, reneging (leaving the queue after join-
ing it and before being completely serviced) would be
more likely since long jobs are likely to progress rath-
er slowly toward the service point.

The countermeasures available to the users of the
SJF system in attempts to defeat (or take advantage
of) the computer scheduling algorithm are rather ob-
vious. Firstly, it is clearly advantageous to submit
as short a job as possible. The natural consequence
of this action suggests that a user partition his request
into a sequence of short independent requests. Sec-
ondly, unless special precautions and penalties are
provided, the users may purposefully lie about (i.e.,
underestimate) their required running time. Such
countermeasures lead to a situation in which the at-
tempted discrimination among jobs becomes ineffec-
tive and preferred treatment is given to those users
displaying the use of clever and/or unethical tactics.
We will continue to observe this unfortunate result
in the other scheduling algorithms.

So far we have been discussing computer operating
disciplines as if there existed but one queue of jobs

14 Spring Joint Computer Conference, 1968

waiting in the central processor. This is not generally
true if we consider also the queue or queues of jobs
waiting for the use of input/output (I/O) devices. The
executive or supervisor system itself may be one of
the “jobs” in the I/O queues. In a general batch-pro-
cessing or time-sharing system it is more realistic to
assume that jobs consist of phases or tasks whose re-
quirements alternate between the use of the central
processor and the use of some I/O device. Then the
SJF policies may be defined just for the central pro-
cessing time (as implied above) or by the sum of cen-
tral processing and 1/O time.

It is not our intention to discuss I/O scheduling
disciplines in any detail but it should be kept in mind
that a job completion in the central processor system
may simply mean that the given job has reached a
point where it requires an I/O process before continu-
ing. Similarly, an arrival may mean a job returning
from the I/O system for more computing time. This
is not to say, however, that 1/O and central process-
ing scheduling are independent processes; indeed, it
may be necessary that one of the criteria for assign-
ing priority (external or internal to the comput sys-
tem) be which I/O devices are required and for how
much time. This is taken up again below.

C. The round-robin (RR) discipline

This well-known scheduling procedure was first
introduced in time-sharing systems as a means for
ensuring fast turn-around for short service requests
when it is assumed that running times are not known
in advance. As seen below the RR discipline falls
within a class of so-called quantum-controlled ser-
vice disciplines in which the size (q) of the quantum
or basic time interval is to be considered as a design
parameter. In an RR system the service facility (com-
puter) processes each job or service request for a max-
imum of q seconds; if the job’s service is completed
during this quantum then it simply “leaves” the sys-
tem (i.e., the waiting line and the central processor),
otherwise the job is cycled back to the end of the sin-
gle queue to await another quantum of service. New
arrivals simply join the end of the queue.

As can be seen, the use of running time as a means
of assigning priorities is implicit in the RR disci-
pline, whereas it is explicit in the previous two dis-
ciplines. Running time priorities are assigned after
a job has been allocated a quantum of service —if the
~ job requires additional service it suffers an immediate
drop to the lowest (relative) priority and sent to the
end of the queue. Furthermore, it is clear that the RR
policy uses both running time and time-of-arrival to
make (implicit) priority decisions. This latter depen-
dence is seen by noting that all jobs arriving at any

time earlier than a given job will have been allocated
at least one more quantum of service when the given
job reaches the service point.

The extent to which the RR discipline maintains the
shortest-job-first policy (in a posterior fashion) de-
pends on the quantum size. Clearly, if q is allowed
to be infinite we have a FCFS system. On the other
hand as q approaches zero we have in the limit a so-
called processor-sharing system'® in which the part of
the processor not devoted to executive or overhead
functions is “divided up” equally among the jobs cur-
rently in the system. In short, we have a system with
no waiting line wherein it is possible to execute all
jobs simuitaneousiy but at a rate reduction for an in-
dividual job which is proportional to the number in
the system. (The computer systems with multiple pro-
gram counters approximate to some extent the RR be-
havior with q very close to zero). Despite the better
service for short jobs as q decreases, questions of ef-
ficiency generally dictate against quantum sizes too
small in conventional computer systems. We elaborate
on this shortly. '

The extent of discrimination by the RR discipline
in favor of short jobs also depends on the distribu-
tion of job running times. In particular, the RR disci-
pline clearly does not take advantage of any knowl-
edge gained by the quantum-execution of a job beyond
the fact that the job simpiy requires more. For exam-
ple, the distribution of job running times may be such
that any job requiring more, than two quanta will with
probability .95 require in excess of 10 quanta. In this
event the desire to favor shorter jobs would indicate
that all jobs having received two quanta should not
come to the service point for the third time until all
jobs in the system have received at least two quanta.
The distribution of job running times that is appiica-
ble to RR scheduling in this respect is the exponential
distribution, which also corresponds to the assump-
tion that has been found analytically tractable in most
queueing theoretic studies of the RR discipline. This
arises from the so-called memoryless property of the
exponential distribution which means in our applica-
tion that after executing a job for q seconds (with q
arbitrary) the distribution of the remaining time to
completion is always the same (and equal to the origi-
nal distribution). Thus, it is the continued identical
uncertainty in job running times that constitutes the
primary job characteristic making the simple RR dis-
cipline desirable.

It is immediately evident from the definition of the
RR discipline that the basic disadvantage consists of
the swapping (removing one job from and placing an-
other job into service) necessary for jobs requiring
in excess of q seconds of service. Many approaches

omputer Scheduling Methods and Countermeasures

—
wn

* to the solution of this problem have been taken. For
example, increasing the size of main memory so that
many jobs may coexist there eliminates much of the
need for swapping. Of course, this is a limited and
possibly expensive solution. Also, overlapping the
swapping of one job with the execution of another in
'systems with appropriate memory control and storage
capacity makes the swapping process a latent one so
that the suspension of the central processor for input/

output processes is reduced. Nevertheless, with mod--

ern, large-scale multiprogramming systems, the swap-
ping process remains a principal bottleneck to effi-
cient operation with many users. ,

Several analytical studies of RR disciplines have
been. carried out':'%2¢ with the goal of determining,
for a system defined by a given arrival process and job
running time distribution, the interaction between sys-
tem performance (efficiency, throughput, or waiting
times) and the swap-time and quantum size param-
eters. As verified by experience, analysis has shown
how performance deteriorates sharply when the quan-
tum size for a given swap time and system loading is
made lower than a certain minimum range of values (or
alternatively when loading becomes too heavy for a
given quantum size). The priority disciplines described
in the next section illustrate techniques whereby this
excessive deterioration of service is avoided to some
extent.]

As regards countermeasures, the mere reduction
of one’s job length gains little. However, if a user were
to partition his job into many smaller jobs, then he
would achieve superior performance than a user with
an identical job which was left intact. Again, the clever
user wins. An interesting property of the ¢ = 0 case
is worthy of note, namely, that all customers have
identical ratios of service time to mean time spent in
system!

D. The multiple-level feedback (FB) discipline

The FB discipline differs from the RR discipline in
a way which is analogous to the way in which the
PSJF rule differs from the SJF rule. In an FB system
a new arrival preempts (following the quantum, if
any, in progress) all jobs in the system and is allowed
to operate until it has received at least as many quanta
as that job(s) which has received the least number of
quanta up to the time of the new arrival. Alterna-
tively, the FB system may be viewed as consisting of
multiple queue-levels number 1, 2, 3, ... with new ar-

rivals put in queue-level 1, jobs having received 1.

- quantum and requiring more in queue-level 2, etc.
After each quantum-service the next job to be oper-
ated will be the one at the service point of the lowest
numbered, non-empty queue-level.

Once again, shorter jobs receive better service at
the expense of the longer jobs, and large jobs are not
allowed to interfere or delay excessively the execution
of small jobs. However, the mean flow time is the
same in the RR and FB systems. (In this regard, we
note the existence of a conservation law'® which
gives the contraint* under. which one may trade the
speed of response among a population of users.) The
choice between the RR and FB priority disciplines
is determined basically by how much one wants to
favor short jobs, for the basic algorithms involve the
same amount of swapping. It is true, however that the
FB discipline is somewhat more costly to implement
in the sense that indicators must be used to keep
track of the amount of service received by each job.

In the FB system, the users’ countermeasure is
again to partition his work into many smaller jobs each
requiring a small number of quanta (one quantum each,
optimally).

Observe that the RR, FB, and FCFS disciplines
may be combined in a variety of useful ways. Two
combinations that have been used are described be-
low.

E. The two-level FB or limited RR discipline

With this discipline jobs are permitted to “‘round-
robin” only until they have received a fixed number
of quanta. At this point they are put into a “back-
ground” which is only serviced when there are no
other jobs in the system. The background queue may
be executed in a FCFS fashion or in a RR fashion with
perhaps a larger quantum size. Here, the user counter-
measures by forming many jobs from one, each such
requiring no more than the fixed number of quanta
which prevent his falling into the background queue.

F. The FB discipline with a finite number of levels

In this system a job after receiving a fixed maximum
of quanta according to the FB rule (case D) is made to
join a background which is to be serviced in one of the
ways mentioned above. A further degree of freedom
may be added to this or the simple FB rule by remov-
ing the constraint that the quanta allocated at differ-
ent queue-levels be the same.

A question that immediately arises is how one goes
about establishing the values of the quanta, the num-
ber of levels, or any of the other parameters of these
running time priority disciplines. With a specified
arrival process and job running time distribution,
analysis has been only partly successful in the attempt

*In particular, the sum of the products for each class of users of
the utilization factor (mean arrival rate times mean $ervice time)
and the mean waiting time remains constant.

16 Spring Joint Computer Conference, 1968

to relate the performance measures of interest to the
structural parameters of the system.’? For further
_results simulation or empirical study®® will, in many
cases, prove the more rewarding approach.

Observe that if g is made zero in the basic FB

erve t q de zero in the basic FB
system we have a processor-sharing type of system
in which the jobs sharing the processor at any point
in time are those which have received the least amount
of service. Thus, a new arrival immediately preempts
those jobs sharing the processor and is allowed to
operate until its attained service is equal to that of
the former or until it completes. It can be seen that
the RR and FB processor-sharing disciplines differ
in structure in precisely the same way as the SJF
and PSJF disciplines. Furthermore, from our earlier
remarks it is evident that the former priority rules
represent the best that one can do with, respectively,
non-preemptive and preemptive priority disciplines
designed to favor shorter jobs when running time is
not known in advance.

G. Declaration of mode — interactive or batch

The time-sharing system at the University of Cali-
fornia at Santa Barbara'* uses an interesting varia-
tion of the above methods. A user is required to state
whether his job is interactive (short, frequent requests)
or batch (longer, usually single requests). Time is
divided into fixed length segments such that during
the first half of each segment, the interactive jobs are
served in a round robin fashion until their half-seg-
ment is exhausted (or until their collective requests
are satisfied). The remainder of the segment is then
used to service (to completion, if possible) as many of
the batch jobs as possible. During the first half-seg-
ment, some interactive jobs will drop from the queue
after one quantum of service (e.g., those requiring
the acceptance of a single button-push), etc; thus in
this system, there is a benefit in declaring the nature
of your job in an honest way, since in the case where
there is only one batch job and many interactive jobs,
the batch job receives better service if that user de-
clares himself as being in the batch mode.

The discussion of balking and reneging when run-
ning time is assumed unknown applies without change
to the RR and FB disciplines analogous to the SJF
and PSJF disciplines, respectively. Another effect
that may need to be taken into account in the design
of a time-sharing discipline is that of ‘“jockeying”
among queues of users awaiting service at a console.
(This complication of balking and reneging has re-
ceived little attention in the literature.) As before,
users are encouraged to produce fast running jobs
for the RR and FB disciplines. In time-sharing
applications this might be better stated by saying that

users are encouraged to produce “frequently interact-
ing” jobs. In a given multiple-level RR system, for
example, long jobs may avoid being put into a back-
ground by communicating (artificially, if necessary)
with the on-line user at a frequency such that its
running time never exceeds the foreground quantum
during any operation interval. In effect, the job is
alternating between the foreground and input/output
queues in a way"that provides better service than
if it were put into the background. Obviously, this
is an example where the more clever users of a sys-
tem tend to defeat the purpose of the service disci-
pline.

As a final remark it should be noted that the exist-
ence of saturation in a system with any of the dis-
ciplines we have discussed, except for the RR dis-
cipline, depends on the ciass of jobs being considered.
For example, in an SJF, PSJF, or FB system it is
clearly possible that loading be such that jobs with less
than say five minutes running time will have a finite
expected wait while those with greater than five min-
utes running time will have an infinite expected wait
(in the infinite population case). Of course, the sys-
tem as a whole is saturated if a finite threshold of this
nature exists, since the processor is not able to com-
plete all jobs submitted to it. For the RR discipline
(as with the FCFS system) there exists a single satura-
tion point which, when reached, causes all jobs to
have an infinite expected wait. (This stems from the
continued interference of long jobs with the execution

~ of short jobs.)

State-dependent running time priority disciplines

The principal motivation behind state-dependent
disciplines is the desire to reduce the overhead and
swapping costs in the execution of quantum-controiled
service. It is of particular interest to prevent or mini-
mize the collapse of RR system performance under
heavy loading; i.e., to provide a more graceful dete-

rioration of service with increases in loading.

A. Cycle-oriented RR disciplines

A basic design parameter of such systems is the so-
called cycle or response time which is set and used
to control as desired the maximum amount of time
required to execute one round-robin through all
active jobs. In one variation,!? after completing a
given cycle or round-robin, the subsequent round-
robin quantum is determined by dividing the fixed
cycle time parameter by the number of jobs requiring
service; the time represented by the result of this
division is then allocated to each of the jobs requir-
ing service at the beginning of the eycle. Subsequent
cycles are then determined in the same fashion. Usu-

Computer Scheduling Methods and Countermeasures

17

ally, some minimum allocation time (quantum) is
always given because of the otherwise seriously de-
grading effects of swapping during heavy loading.
Although the cycle time therefore increases at ex-
cessive loading, it is clear that system performance
degrades more gracefully than otherwise in that the
loss of swapping is reduced as the load increases.
The present discipline is state-dependent in the sense
that the amount of time received by a given job in a
given cycle depends on the number of active jobs in
the system at the beginning of the cycle.

In another (two-level) RR variation?® a maximum
cycle time is similarly imposed on the amount of time
taken to process a “foreground” queue (i.e., a queue
of interactive, on-line user jobs) and a background
queue consisting of conventional production type
jobs. In this time interval each foreground job is given
a fixed quantum; if there is any time remaining in the
cycle it is devoted to the background job processing,
otherwise another cycle is initiated. To limit swapping
overhead (and thereby provide graceful degradation
during periods of heavy loading) the cycle is extended
in the event there are too many foreground jobs to
process for one quantum in one cycle.

It is clear that the advantage of a reduced variance
in RR response times is compensated in cycle-orient-
ed disciplines by the slower reaction to changes in
loading or input activity (we have implied that the
queue is examined only at the end of the round-robin
cycles). Statistically, however, this disadvantage
would seem to be a minor one. Of course, it is also
possible to make the value of the cycle time param-
eter dependent on system loading (number in the
system). Just how this is to be done in a useful way,
however, presents a difficult problem. In these dis-
ciplines, the countermeasure of partitioning a long
job into many small jobs is extremely effective.

B. Input-dependent disciplines

In one such (RR) discipline each time a new arrival
occurs the job,l if any, in service is allocated an addi-
tional quantum of execution time.!® In this way the
RR discipline reacts to heavy input activity by in-
creasing time allocation and thereby reducing the
amount of overhead and swapping. During light to
moderate input activity the straight RR discipline is
little effected by this change.

Another such discipline orders the queue of inter-
active user’s jobs by interarrival time. Thus, those
users communicating with the system at the faster
rates will receive the shorter response time. The
obvious countermeasure here is to initiate false 1/O
commands. This technique, of course, may be com-
bined in various ways with both RR and FB disci-
plines.

C. Priorities based on storage allocation

Apart from the number in the system the most
important other source of internal priority infor-
mation is the current allocation of storage and the
availability of I/O devices to perform storage alloca-
tion functions. This, of course is tied in with the swap-
ping problem discussed earlier. In batch processing
systems requiring maximum efficiency this infor-
mation may serve as the only criterion for assigning
priorities; at a decision point with this type of dis-
cipline a schedule of job operations is computed as
far as necessary in advance such that storage is well
utilized in some reasonable sense.

This sort of scheduling is also applicable to the
cycle-oriented RR disciplines described earlier. Thus
a job is executed once per cycle, but where it exe-
cutes in the cycle is made dependent on what turns
out to be the best way (or at least a good way) to
sequence the use of main storage so that I/O is mini-
mized and overlapped as much as possible with com-
putation. Clearly, the cost that must be compensated
in this operation is the (potentially substantial) over-
head time required to produce ‘“good” schedules.

In the latest generation of multiprogramming sys-
tems, storage structure and the processes of storage
alloeation have been made more elegant by the con-
cepts of virtual memory and paging.'* In paging
systems jobs (programs and data) are paginated into
sets of fixed length pages or blocks of computer words
so that the logical unit of information transfer within
the supervisory system becomes a page. This also
means that jobs may be operated (at least in part)
when only a proper subset of the job’s pages are in
main storage. The synthesis and analysis of efficient
storage dependent, running time priority disciplines
that take advantage of this added flexibility is a dif-
ficult, important, and as yet unsolved problem.

Inclusion of externally generated priorities

The classical priority disciplines in which priorities
are determined external to the computer system are
described as follows. At any point in time with pre-
emptive rules or just after service completions with
non-preeemptive rules the job next to be serviced
is the one with the highest priority (i.e., the job having
been assigned the lowest priority number). That
discipline receiving the most attention in the litera-
ture is one for which the number of priorities is
finite or countably infinite; i.e., in one-to-one cor-
respondence with the integers.!” This gives rise to
levels of queues containing jobs of the same priority;
these queues are generally ordered by time of arrival
to the system. The advantages and disadvantages
of preemptive vs. non-preemptive priority rules are the

18 Spring Joint Computer Conference, 1968

same as those discussed for the PSJF and SJF rules
in an earlier section.

There has been a variety of ways by which exter-
nally generated priorities have been included in
the running time priority disciplines described in
previous sections, These are classified as follows.

A. RR disciplines with external priorities

A technique used with RR disciplines consists of
making the quantum size to be allocated dependent
on the priorities of the active jobs.!® Thus, a higher
priority job would be allocated a larger quantum
than a lower priority job. In the limit where the
quantum size is zero we have a processor-sharing
system in which the fraction of the processing rate
received by a job is determined by an externally
assigned priority. .

Another technique which smacks of the multiple
level schemes given below involves the specification
of (relative) time delays as priorities.?® Consider the

following implementation, for example: Each arriving.

job is assigned a (priority) number which is based
on the given job’s externally assigned priority and
on the number currently possessed by the other active
jobs in the system. After a given quantum-service
(which may consist of multiple quanta) the next job
to receive service is the one having the lowest prior-
ity number. The jobs having the same priority number
are ordered by time of arrival and serviced in that
sequence. Each time a job is serviced for one quantum
its priority number is increased by one. Thus, with
a non-preemptive system we see that the number
assigned to an arriving job indicates how much time
it is to be allocated for operation before it joins
the round-robin of jobs already in the system; this
in turn is determined by an external priority assign-
ment.

B. Multiple level disciplines with externally assigned
priorities '
The simplest and most natural method of including

external priorities applies to the multiple level,

disciplines in which each level is used to correspond
to an external priority number as well as to a given
level of attained service.!'? In this way conventional
priority scheduling is combined directly with the
various FB disciplines described earlier. However,
variations in these types of disciplines may be ob-
tained by the selection made for the means of order-
ing the queue-levels. Specifically, the queues may be
ordered by time of arrival to the system, by time
of arrival to the queue, or by a combination of one
of these with ordering by priority; i.e., by the queue
level of original entry to the system. (Note that
ordering by time of arrival to the queue and by

time of arrival to the system amounts to the same
thing in the basic FB discipline without external
priorities.)

One time-sharing scheduling discipline of the
above type that has received considerable attention

time according to job size (storage requirements),
queues are ordered by time of arrival to the queue,
and quantum sizes are exponentially increasing
with the queue level (i.e., level one provides on
quantum, level two provides two quanta, level three
provides four quanta, and so on.? Priorities based
on storage requirements are assigned so that the
larger jobs receive the lower priorities (enter at the
higher queue levels). In this fashion efficiency is
kept high by reduction in swapping time, since large
Jjobs are given more time to operate between swaps.
Furthermore, the large jobs are not allowed to interfere
with the small, presumably faster, and more efficiently
scheduled jobs. Clearly, users of such systems are
further encouraged to write small jobs, again possibly
by breaking larger jobs up into autonomous and small
sub-jobs.

For a given application the design of the general
disciplines just discussed requires a means for evalua-
tion of the best values for the quantum distribution,
the specification of the storage-dependent priority
assignment rule, and the selection of the best method
for ordering queue levels. Here again is a synthesis
problem similar to the one mentioned earlier. At
present no generally applicable, well-defined proce-
dure exists; experiment by simulation and empirical
study has been used thus far. Some encouraging work
towards the optimal synthesis of such systems has
been reported by Fife.!8

In all of the externally assigned priority methods,
the user who can influence the assignment of external
priorities has a great advantage over the others.
This is taken up next.

C. User controlled priority assignment

According to this type of discipline the user is al-|
lowed in some way to bid for, or simply buy the prior-
ity he desires (or can afford) for his job. One such dis-
cipline is the so-called bribing model” in which system
users offer a bribe (based on an “impatience™ factor
of their own) to obtain a preferred position in the
queue of waiting jobs. All those bribing strategies
are then considered which minimize an appropriately
defined cost function over the set of users.

Another (quantum-controlled) system!® of this
sort has been used which provides a quantum size
that is proportional to the priority a user decides
to assign his job, and which increases with the size
of his job (in order to maintain a reasonable operating

Y

mputer Scheduling Methods and Counte

efficiency). What constrains the priority a user assigns
to his job is the fact that he is charged a fee for use
of the system which is proportional to the product
of the priority he has selected times the sum of the
computing and I/O time required by the job. In this
particular case, as well as in the bribing case, if a
user is capable of learning what all the other users
have assigned as their priorities (or bribes) then
he need merely “go one better” and choose a slightly
higher priority (or bribe) to achieve superior service.
Note when the system is heavily loaded that all
users see a “slow” system and so they tend to in-
crease their self-assigned priorities (or bribes) in
an iterative fashion; the result is an ever increasing
cost to the user for a constantly decreasing grade of
service! Clearly, the user population as a whole
should in such case, act in collusion to prevent such
runaway conditions.

Dynamic or time-dependent priorities

There have been a number of priority disciplines
proposed in which jobs receive an external priority
that changes in a dynamic way once the job is in
the system. These disciplines were motivated by
other applications but it will be clear that they may
be considered candidates for scheduling computer
operations.

So far we have treated disciplines in which the
waiting time experienced by a job is not used to
directly influence the priority decision. The dis-
ciplines below are structured so that this information,
weighted by an external priority number is used
in the process of selecting from the queue which
job is to be serviced next.

A. Delay-dependent disciplines

In the first variation to be discussed® a job’s
priority is increased, from zero at the time of arrival,
linearly with time in proportion to a rate (externally)
assigned to the job’s priority class. Each time a new
job is to be selected for service according to the
non-preemptive or preemptive variations of this
scheme the “attained” priorities of jobs in the system
are compared, and that job with the highest attained
priority is selected next for service. If the priority
classes are assigned according to a shortest-job-
first policy it can be seen that this rule moderates
the SJF and PSJF rules by reducing the probability
of excessively long waits.

In another variation?! jobs are similarly assigned
external priorities related to the urgency of service.
However, with this discipline a given job takes
precedence over another job in the queue if, and only
if, the difference between the former’s (external)

priority and that of the latter is not less than the
time the latter has spent waiting. This scheme may
be implemented as a preemptive as well as a non-
preeemptive discipline. Again, this is an example
in which management becomes concerned about
a job that has waited for a long time.

B. Priorities based on general cost accrual®

In the most general such system arriving jobs have
associated with them a cost accrual rate which is
some arbitrary function of time. In a preemptive or
non-preemptive mode the discipline is executed by
servicing (at each decision point) that job which
minimizes over all jobs the cost accrued by the sub-
sequent waiting time. The cost accrual attributable
to a given job over a given time interval is calculated
simply by integrating the cost rate curve over the
given time interval. It is of interest also that one may
introduce deadlines by making the slope of the cost
rate function infinite after a suitable interval of
time.

The simplest case of the general discipline exists
when the cost functions are constant and identical
for each user. It can be seen that this corresponds
to a system in which cost accrues linearly with
time and where the priority minimizes the average
wait (i.e., we have the PSJF or SJF rules depending on
whether or not we have preemption). If we assume
constant valued functions that may differ for each
job we have the so-called c/t rule. This rule amounts
to selecting for service that job whose ratio of constant
cost rate (c) to known or average service time (t)
is the smallest.

In these systems, it is not usually to one’s advantage
to partition jobs into smaller ones in an attempt to
defeat the system. In fact, it may pay to group many
jobs together so that they all enjoy an early arrival
time to the system.

Priority disciplines in multiprocessor systems

In providing the additional degree of freedom of the
number (and perhaps types) of processors many
different possibilities come into existence, most of
which have not been fully tested or analyzed as yet.
In this section we shall examine briefly the application
of previously discussed disciplines to multiprocessor
systems and certain disciplines for which analyses
exist in the literature but which arose out of other
applications.

A. Processors-in-series systems

Multiple channel (server) queueing systems are
broadly classified in the literature according to
whether the servers are being used in parallel or in

20 Spring Joint Computer Conference, 1968

phasé type service. By phase type service we mean
that the processors are being used in sequence:*
one phase of a given job are being serviced on a given
processor. In general, each processor will have a
queue of jobs (phases) which is fed by the output
of some other processor or by an external scurce.
Such a system applies, for example, to the alternating
I/O and computing job structure described in another
section. Here, we assume that at least one central
processor and at least one I/O processor is being used
in a cyclic way by a given job. Other applications of
this discipline)which may be combined with other dis-
ciplines at each of the separate queues) are to be
found in computer systems dedicated to the processing
of certain, large phase-structure jobs.

B. Processors used in parallel

The simplest extension of the previous disciplines
to multiple processors is simply to treat the processors
in a first-available-first-used fashion.?® In large,
general-purpose systems in which the processors
are identical this single queue approach offers the
advantages of simplicity, flexibility, and efficiency.
The disciplines may be made more effective in those
systems where jobs are designed to operate on one
or more processors depending dynamically on avail-
ability.?

However, several other variations of ‘“‘parallel”

 priority disciplines exist when the set of processors

or the input jobs are not homogeneous. The simplest
such case arises when jobs fall into one of two
categories; a foreground of fast service jobs and a
background of perhaps less important production
type jobs. These conditions are appropriate to the
so-called variable-channel discipline in which the
number of processors made available to the fore-
ground jobs is made dependent on (increases with)
the number of foreground jobs in the system. The
number of foreground processors increases only
after a maximum queue length has been reached;
i.e., with each newly arriving job after the fixed
maximum has been reached a new processor is made
available (if possible) to serve the job at the head
of the queue.

Two other possibilities are 1) the existence of
special purpose processors, and 2) processors of
different computing speeds that may be allocated
by external priority or by job requirements. In
this regard, we may ask that a user estimate his job
length or type and then assign him to a processor
which has been optimized for such jobs. If, after
some processing, it is found that a user has made
a poor estimate, he is penalized in some way (e.g.,
by being forced to move to the end of a queue on

another processor). His penalty for overestimating
his work is to be placed on a processor which is not
“tuned” to jobs of this type.5

The coming importance of networks of computers?®
creates another source of applications for the above
types of multiple-queue disciplines. Computer net-
work disciplines will also have to be dependent on
transmission delays of service requests and jobs or
parts of jobs from one computer to another as well
as on the possible incompatibilities of various types
between different computers. The synthesis and
analysis of multiprocessor and multiple processor
network priority disciplines remains a fertile area of
research whose development awaits broader muiti-
processor application and an enlightening experience
with the characteristics of these applications.

CONCLUSION

We have listed above a variety of possible computer
scheduling methods suitable for many situations.
This list is by no means complete. In fact, this wealth
of possible algorithms produces an “embarrassment
of riches” in that we do not really know how to select
the most useful scheduling methods. As we have in-
dicated, the possibilities are considerable.

We have also attempted to discuss briefly the
possible counter-measures available to a user of the
computer which would allow him to defeat or take
advantage of the system for the various algorithms
described. Indeed we have shown that in most
cases, there is such a countermeasure! One hopes
that there exists an efficient scheduling method
which is immune to such manipulations.

REFERENCES

1J 1 SCHWARTZ E G COFFMAN C WEISSMAN
A general purpose time-sharing system
Proc SICC 1964
2 F T CORBATO
R C DALEY
An experimental time-sharing system
Proc SICC 1962
3 G BELL M W PIRTLE
Time-sharing bibliography
Proc IEEE December 1966
4 E G COFFMAN
Studying multiprogramming systems through the use of
queueing theory
Datamation July 1967
5 M GREENBERGER
The priority problem
MIT Project Rep MAC-TR-22 November 1965

6 G ESTRIN L KLEINROCK

M MERWYN-DAGGETT

Measures models and measurements.for time-shared computer

utilities
Proc ACM Natl Conf August 1967

Computer Scheduling Methods and Countermeasures

21

i

1

1

1

1

1

7 L KLEINROCK
Optimum bribing for queue position
Journal of operations research (to appear)
8 T E PHIPPS JR
Machine repair as a priority waiting-line problem
Operations Research vol 4 1956
9 L W MILLER L E SCHRAGE
The queue M|G|1 with the shortest remaining processing
time discipline
Rand Corp Report P 3263 November 1965
See also
L E SCHRAGE
Some queueing models for a time-shared facility
PhD Dissertation Dept of Indust Engineering Cornell Univ
February 1966 '
0 L KLEINROCK
Time-shared systems: A theoretical treatment
Journal of the ACM April 1967
L KLEINROCK
Analysis of a time-shared processor
Naval Res and Log Quart March 1964
2 E G COFFMAN
Stochastic models for multiple and time-shared computer
systems '
PhD Dissertation Dept of Engineering UCLA June 1966
3 L KLEINROCK
A conservation law for a wide class of queueing disciplines
Naval Res and Log Quart June 1965
4 G CULLER
Univ of Calif at Santa Barbara (Private Communication)
5 E G COFFMAN
Analysis of two time-sharing algorithms designed for limited
swapping
Journal of the ACM (to appear)
6 J B DENNIS
Segmentation and the design of multiprogrammed computer
systems
Journal of the ACM October 1965
7 A COBHAM
Priority assignment in waiting line problems
Operations Research Feb 1954

—

18 D W FIFE

19

20

2

—

22

23

24

25

26

27

28

29

An optimization model for time-sharing

Proc SICC 1966

G SUTHERLAND

Paper presented at the symposium: Computers and commu-
nication: Their system interaction

Sponsored by the IEEE groups on Communication Tech-
nology and Electronic Computers Santa Monica Calif January
1967

L KLEINROCK A FINKELSTEIN

Time-dependent priority queues

Journal of ORSA (to appear)

J R JACKSON

Waiting time distribution for queues with dynamic prioriiies
Naval Res and Log Quart March 1962

L KLEINROCK

Sequential processing machines (SPM) analyzed with a
queueing theory model

Journal of the ACM April 1966

D F MARTIN

The automatic assignment and sequencing of computations
on parallel processor systems

PhD Dissertation Dept of Engineering UCLA January 1966
A L SCHERR
An analysis of time-shared computer systems

PhD Dissertation Dept of Electrical Engineering MIT
June 1965

(See also the bibliography in reference 6)

B KRISHNAMOORTHI R C WOOD

Time-shared computer operations with both interarrival and
service times exponential
Journal of the ACM July 1966

Time-sharing system{360 development workbook

I1BM Internal Document

E T IRONS
A rap{d turn-around multi-programming system
Comm of the ACM March 1965

E G COFFMAN

Bounds on the parallel processing of bulk queues
Naval Res and Log Quart September 1967
T MARILL L G ROBERTS

Toward a cooperative network of time-shared computers

Proc FICC 1966

Some ways of providing communication
facilities for time-shared computing

by HOWARD L. STEADMAN and GEORGE R. SUGAR

ESSA Research Laboratories
Boulder, Colorado

INTRODUCTION

Since July 1965 we have been using time-shared com-
puting services as a computing aid for technical pro-
grams at the Boulder laboratories of the National
Bureau of Standards and the Environmental Science
Services Administration (ESSA). We proceeded
slowly through the steps of first studying time-shared
computing, visiting various installations, installing a
terminal and using an outside service, experimenting
with a variety of services, acquiring several more
terminals and providing regular service, and finally
acquiring our own time-shared computer. At first
service was obtained from the General Electric Com-
pany in Phoenix, then in addition from System De-
velopment Corporation in Santa Monica, from IBM
in Los Angeles, from Tymshare in Palo Alto, and from
Com-Share in Ann Arbor. Service is now being pro-
vided by an SDS-940 time-sharing system operated
by ESSA in Boulder.

Throughout the build-up period there has been a
steady increase in our needs for Teletype terminals,
communications lines, switching facilities, data sets,
etc. We have obtained most of these from the local
Telephone Company (Mountain States Telephone and
Telegraph Company). However, because we have
often been the first customer in our area to ask for a
particular service or feature, we have in effect educat-
ed the telephone company in the communications
requirements for time-shared computing. This was a
slow process and in some cases the services obtained
‘were not as good as we had expected.

‘“The purpose of this paper is to relate some of the
problems we encountered in providing communication
for time-shared computing, the solutions for some
of these problems, and some possibie approaches
to solving the others. While many organizations using
a time-sharing computer have had some experience
dealing with computer manufacturers, their experience

with communications problems had often been limited -

23

to obtaining conventional telephone service for their
staff. We hope that by relating some of our problems
and soluticas we will help other time-sharing users
solve their own communications problems. The body
of this paper is organized into three major sections.
The first discusses the Teletype terminals themselves
and some of the options that we found useful. The
second part discusses communicating with a computer
in a distant city and describes our initial facilities
for the SDS-940. The third part discusses a number of
alternate ways of providing the required communica-
tion facilities.

Teletype terminals

While most telephone companies are well equipped
to handle the installation of telephones, even colored
Princess or Trimline instruments, such items as Tele-
types and data sets are sometimes alien to their expe-
rience. The special terminal options which many time-
sharing systems require create additional problems.
These are not limited to technical details such as
full-duplex and half-duplex terminals, upright and
inverted operation, TWX versus TWX' service,
etc., but extend to simple mechanical problems such
as making a terminal “portable.” For example, after

“much discussion the Telephone Company decided that
(it was indeed possible to furnish wheels and a tele-

phone plug on a Model 35 Teletype for $7.50 per
month extra. However this was subject to the restric-
tion that the terminal not be moved between floors
in our building since the wheels might catch in the
crack between the elevator and its shaft and tip the
terminal over. We have long tried to persuade the
Company to furnish a portable Model 33 Teletype
and have recentiy succeeded. They had considered
this smaller machine to be less stable than the larger
Model 35 and therefore more dangerous to put on
wheels. (We had heard that some telephone companies
would furnish a portable Model 33 terminal and we

24 Spring Joint Computer Conference, 1968

have made our own Model 33 portable at a cost of
$20 including parts and labor.) In fairness to the
Telephone Company we must say that they have
tried to meet all of our needs. The principal problem
seems to be that anything that has not been done
before locally may require a very long time to accom-
plish.

Our first terminal was a Model 33ASR Teletype
connected for half-duplex Data-Phone service (‘“‘up-
right”). As a next step we wanted a terminal to com-
municate with the SDC time-sharing system. At that
time it too was equipped for Data-Phone service but
for “inverted” mode in contrast to the upright mode
that our terminal used. The difference between these
two modes lies in which of two carrier frequencies
is used by the originating terminal for sending and
which is used for receiving. Since normal Teletypes
are equipped both to originate and to answer calls
it is necessary that the Teletype be able to use either
carrier for either sending or receiving. However the
standard Teletype does not have the flexibility re-
quired to operate in both upright and inverted modes.
The solution proposed by the Telephone Company
was to install another terminal for inverted service
and this was done. It was not until some time later
that we persuaded the Company to equip all of our
terminals with a simple switch that allowed us to
operate them in upright or inverted mode. (It now
appears that upright mode has been adopted as stan-
dard for time-shared computer service and the special
switch is no longer needed.)

The next special feature we required was full-duplex
operation to permit a lecture and demonstration of
the Berkeley time-sharing system. It was not until
late on the day before the lecture that the terminal
was installed and it was not clear whether it worked
or not. The installer had not worked with a full-duplex
terminal before and his uncertainty about the operat-
ing condition of the terminal was not the least reassur-
ing to us. After the speaker arrived, a quick test on-
line to the computer showed that indeed the terminal
was the proper one. (We later learned that the only
internal difference between a full-duplex Model 35
Teletype and a half-duplex one was the location of
one wire on the terminal board of the data set. When
later it became clear that we would require full-duplex
terminals to use the Tymshare system in Paloc Alte
we ordered full/half-duplex switches for all of our
terminals. This option, much to our surprise, became
available at no extra cost.)

Other features that we have obtained include forms
control and sprocket-feed platens on Model 35 Tele-
types, slashed zeros (#), escape keys, and remote
reader-start and TD call-in on Model 33 Teletypes.

(This last option allows the computer to start and
stop the paper tape reader on the Teletype. It is stan-
dard on Model 35 but a special option on Model 33
terminals.) We have also obtained multi-contact dis-
tributors. These are devices that provide an inter-
face to other apparatus such that signals originating
in the other apparatus are transmitted as if they were
sent from the Teletype keyboard itself.

As can be seen from the above, we have obtained a
large variety of special features on our terminals.
Table I lists the options which we have been able to
obtain along with the charges made by the Telephone
Company. Others in our area now have no difficulty
in getting these same features. However, new features
may still be hard to get. We can offer two hints to
those who want special features that are new to their
telephone company. First, ask for only one new fea-
ture at a time. Second, find another telephone com-
pany that has installed the feature you want and in-
form your local company. If you can do at least one
of these two things and then wait a while, you can
probably get any feature that is technically feasible.

TABLE I
Availability and Moathly Rental Costs for Yarious Teletypewriter Options

Model Wumber

ISR IXSR IS ISR
Base cost #2445 43348 $10+3%0 $0. 30
Data sct (always required) $25+ 925 J254+325 425+ 425 425+ $25
Paper tape reader and punch 8 X s x
Full/balf duplex switch $.50 3.5 $.50 $.50
Upright/inverted svitch 2 2 32 32
Escape key »x x © n
Slashed zero (f) x x x x
Even parity keyboard x © * w

TD call-in and remote reader start E 3 x $h X
Portable machine (wheels and telephone plug) i 114 3 x
Parallel-input interface from external spparmtus S0+ 335 30+ 335 $1h 835 41k« 835

(Multi-contact distributor)

Parallel-output interface to external apparatus 35 + 315 $5 + $15 $5+ 315 45 + 815
Sprocket feed platen and farms control 85 + 825 $5 + 825 $5 + $25 $5 + $25

Fotes: X weans not svailsble
C means no charge
S means standard featwre

When tvo costa are glven,
the first 1 the monthly rent and the second
1s the installation cherge.

Communications

Our first terminal was connected as an extension
on our internal telephone system. We reached the
computer in Phoenix by first dialing an outside line
and then dialing the computer over the regular toll
telephone network. The communication cost for these
calls to Phoenix was about $25 per hour. We could
have used TWX service instead of Data-Phone ser-
vice but the cost of calls to Phoenix would have been
slightly higher. However, for other distances TWX
may be less expensive. As usage built up we found
it advantageous to get a WATS line that provided un-
limited service to Phoenix for $1,000 per month.

As use of time-sharing increased, we added other
terminals and at first connected them to the one

+
mmunication Fa

ime-Shared Computing 25

WATS line. This arrangement turned out to be singu-
larly unsatisfactory since, for at least one combination
of terminals, a new user could come on the line and
disconnect another user. It was never clear whether
this was done accidentally. While we were puzzling
over how to provide better communications at lower
cost, we learned of so-called FX or foreign exchange
lines and it was by using these that we were able to
effect a major reduction in communication costs.
Foreign exchange lines provide direct connections
to a telephone exchange in a distant city. In our case,
for example, an FX line to Phoenix provided us with
the same telephone connection we would have had if
we had been in Phoenix. This meant that a call to
Phoenix was a “local” call for us insofar as the
mechanics of placing the call was concerned. This
gave us, in effect, a sort of private line to the Phoenix
computer without requiring any special arrangements
at the computer. Now this would be of little advantage
relative to WATS service except for one thing. Since
the Federal Government is a large user of TELPAK
service we were able to get our FX lines at essentially
TELPAK D rates which are about 45¢ per mile per
month for each voice-grade circuit. A small private
user would have to pay the private line rate of about
$2.00 per mile per month for this same service. The
low rate for FX lines put the break-even point for FX
versus regular toll rates at about 20 hours use per
month. At one point our total monthly use reached
about 700 terminal hours and we had 2 FX lines to
Phoenix and 8 FX lines to Palo Alto (for the Tym-
share computer) to handle this load.

During the period when we relied completely on
outside time-sharing service, all of our terminals
(about 30) were connected to our internal telephone
exchange and the FX lines were terminated at the
switchboard. Thus any terminal could, by dialing
our own telephone operators, connect with any of
the services which we used. This arrangement also
provided control over the use of the FX lines for
unauthorized calls. Further, if the FX lines were
all busy, our operator could place regular toll calls
for the user. Obtaining time-sharing service became
a matter of dialing ‘‘operator” and stating which com-
puter service was desired.

In installing our own system, an SDS-940, we
sought to provide an interim communication system
which would allow access to either our system or
the commercial services which we were using. Our
purpose was to avoid any sharp cut-over from the
outside services to our own system just in case the
new machine didn’t work right immediately. The
interim system described below was chosen primarily
because it was the cheapest one which provided the
needed facilities.

Figure 1 shows the current communication arrange-
ment for our time-sharing system. Lines are provided
for internal and outside users. All equipment is pro-
vided by the Telephone Company. The total cost for
the arrangement in Figure 1 is $6,361 per month.

oot DATA
TTY = er - X LINES TO PHOENIX
© " AND PALO ALTO
g DATA '
TTY — oy xes et D)
701 ; 10 LINES
et
gl CDATA XCHANGE . DATA ;
TTY L SET HANGE SET
: SDS - 940
18{ Lo o : COMPUTER
Prarat I _ DATA
TTY — ser BOULDER | 1. SET |
CENTRAL ' 14 Lines
Trarer.DATA EXCHANGE_[BATA] }
{TTY — g7 SET
4{ /
gt DATA
gTTY SET

Figure 1 —Present system

This is broken down in Table I1. Although this system
works moderately well, it has several significant draw-
backs. The first is that it is somewhat expensive and
the telephone company expects to increase the rates
on some of the items. Second, it places a considerable
load on the in-house exchange which at the same time
must absorb increases in normal telephone use. Third,
it lacks flexibility with regard to connection to other
communication networks such as ARS or Western
Union Telex service.

TABLE II

Monthly Cost For Present System

(See Figure 1)
Equi pment No. Unit Cost Total Equipment Cost
Teletypes ko $100:L $4,000
Data sets 6l 25 1,600
Central exchange lines 36 17.50 630
T01 exchange lines L6 2.85 _1in
Total $6,361

J’l'his 18 an average price for a mixture of Model 33's and Model 35's
with a variety of options.

26 Spring Joint Computer Conference, 1968

Some other alternatives for obtaining facilities

For communication with our DSD-940 we require:
(1) terminals, (2) transmission facilities, and (3) a
“line-concentrator.” The need for the first two is
clear. The need for the third is also clear when we
consider that there are more Teletype terminals than
entry ports to the computer. For each of the three
facilities there are several choices of equipment and
often several choices of suppliers or methods of supply
for each piece of equipment. We first consider facil-
ities supplied completely by the Telephone Company
and then consider composite facilities supplied from
any combination of sources. This separation is a
logical one since the Company insists on supplying
either complete systems or just leased private lines.

Compiete systems available from the
telephone company

The Telephone Company has proposed the system
shown in Figure 2. The costs for this system are
shown in Table III. Clearly this system offers little
savings over our current system and in fact, on the
basis of the cost and trouble for converting, is not a
desirable change. The actual cost will probably be
greater than shown in the table. This is a result of
the Telephone Company policy of requiring 5-year
leases on some switching equipment. The system
proposed has a $250-per-month termination penalty
for the unexpired part of a 5-year lease. In view of
the rapid developments in time-shared computing it
is unlikely that any system designed now will meet
our m?eds for the next 5 years. We would therefore
incur a considerable termination penalty and the actual
cost of the system in Figure 2 will probably be higher
than that for the current system.

TABLE ITI
Monthly Costs For Telephone Company Isolated Switching System

(See Flgure 2)

Equipment No. Unit Cost Total Equipment Cost
Teletypes Lo $l(>01 $4,000
Data sets 6l 25 1,600
Lines:
Radio Bldg. 28 1.50 b2
Main Campus 10 b ko
30th St. Bldgs. 2 6 12
Computer Ports® 2h 15 360
Total $6,054

1
This is an average price for a mixture of Model 33's and Model 35's
with a variety of options.

2,

The ccst of the concentrator is included in this Item.

There 1s a termination charge of $250/mo. for the unexpired part of
u tive year lease.

oo™t IDATAL pessemossmonns___ DATAL | SDS - 940
CTTY 7 seT N\ soaTED | 1 SET
; TELEPHONE - | 24
40{ | COMPANY LINE |
] £
o CONCENTRATOR.
e DATA ___oaTA
CTTY — ser a o Sp7 £ COMPUTER

Figure 2 — Telephone Company isolated switching system

Another proposed arrangement would use only our
internal telephone system (701). In studying Table II
one quickly notices that lines connected through the
central exchange are far more expensive than lines
connected through the 701. We have the present
split arrangement, because the 701 does not have
enough capacity to handle the whole time-sharing
foad. Naturally one question is whether the capa-
bility of the 701 can be increased and the cost of doing
it. This can be done and Figure 3 shows this arrange-
ment. The costs are shown in Table IV. Although this
system does not offer significant savings it is clearly
preferable to the system of Figure 2. There is still a
termination penalty for the extra switching equip-
ment required. However, it is probable that this equip-
ment wouid simply be kept and used to meet increased
demands for normal telephone service and no penalty
would be incurred.

. TDATA DATAT | SDS-940
TTY —{seTi~__| wes | SeT —)COMPUTER
40} | 701
{ TTY | 0ATA _— ExcHaNGe, _{DATA 34
SET., LSEL)

Figure 3 —Expanded 701 system

Composite systems

Terminals and data sets — Terminals could in theory
be any one of several devices. However from the
viewpoint of cost, availability and compatibility with
the current system, Model 33 or 35 Teltypes are the
best choice. These can be either leased or purchased.
In principle terminals can be leased from the Tele-

Providing Communication Facilities for Time-Shared Co

mputing 27

phone Company or Western Union. However the
Telephone Company will lease Teletype units only
in conjunction with other equipment and Western
Union will lease only Model 35 Teletypes. If termi-
nals are purchased, we would favor the Model 33
over the Model 35 because of a 1:4 cost ratio. If ter-
minals are purchased, we must also arrange for their
maintenance. At present we know of four possibi-
lities; maintenance by ESSA, GSA, Western Union,
and RCA Service Company. Initial estimates are

4L o

that maintenance would cost aboui $25 per month
per terminal.

TABLE IV

Monthly Cost For Expanded 70l System

(See Figure 3)
Equipment No. Unit Cost Total Equipment Cost
Teletypes 4o $100l $4,000
Data sets 64 25 1,600
701 exchange lines 6l 2.85 182
Increase TOL Capacity2 35 3.95 138
Total $5,920

l'rhis 18 an average price for a mixture of Model 33's and Model 35's
with a variety of options.

2‘_l'here is a termination charge of 1,/2 the cost for the remaining
part of a 5 year lease.

We do not yet have final estimates of maintenance
costs or of life expectancy for the terminals. Based
on information obtained so far and assuming a useful
life of 2 years for Model 33 equipment, a purchased
Model 33 KSR Teletype would cost approximately
$20 per month plus maintenance or $45 per month.
The Telephone Company lease cost is $42 per month.
Western Union has not yet filed a tariff on Model
33 Teletypes. They have offered to lease Model 35
Teletypes to us at $70 to $95 per month including
maintenance.

Any of the terminals discussed above will require
some form of data set or modem. In examining the
various arrangements available from the Telephone
Company we find that they all include a substantial
number of data sets which must be leased at $25 per
month each. In many cases there is no technical need
for an elaborate data set and this is therefore an area
where substantial saving can be effected. For exam-
ple, when private lines are used, suitable modems can
be purchased for less than $100 and Western Union
leases modems for $13.75 per month. The Telephone

Company charges $25 per month for a modem to con-
nect Model 33 and 35 Teletypes to private lines.
This makes the rental of Teletypes from them more
costly than any of the other alternatives.

Another type of modem that is readily available
is the acoustic or magnetic telephone coupler. These
are available from a number of sources at purchase
prices as low as $250. We are already using a number
of them and find that they are adequate for most of
our needs. The use of these telephone couplers per-
mits most telephones to be used as entry points to
the computer.

Transmission facilities— Off our main campus and
perhaps outside of the building where the SDS-940
is installed there is no choice of lines other than from
the Telephone Company. There are two types of
lines available —type 1000 for DC and low frequency
signalling and type 3000 for voice frequency signalling.
Either type has an approximate monthly lease cost
of $1.50 per half-duplex circuit within the same build-
ing and $1.00 per % mile per half-duplex circuit out-
side the building, with a $4.00minimum per line. Such
leased lines are the only answer for off-campus build-
ings. For terminals on the main campus we have con-
sidered the installation of our own wiring, however,
we have not yet obtained any cost estimates for doing
this. An additional possibility for remote locations
where we expect to have a significant number of ter-
minals is to place a line concentrator there to reduce
the number of lines to the computer. Lines within the
main building could then be provided either by us or
the Telephone Company.

A problem in using type 3000 lines is that they
transmit a.c. only (300-3000 cps); therefore tone
signalling must be used. Fortunately, as mentioned
earlier, suitable modems are readily available at low
cost. A problem in using type 1000 lines is that either
the SDS-940 system must be modified to accommo-
date them or a special interface must be provided
external to the computer. Therefore there is no oppor-
tunity to effect a major saving by using type 1000 lines
in place of type 3000 lines. ‘

Switching facilities—The switching facility need
not be a general exchange. In particular only one-way
switching is required. Also no choice needs to be ex-
ercised by the originating terminals. Therefore a sim-
ple line concentrator is all that is required. (The Rand
Corporation has taken this approach for their JOSS
time-sharing system.) A suitable system can be ob-
tained for approximately $6000. This would accomo-
date up to 200 terminals and 40 computer “ports.”

Optimum systems

A comparison of the alternatives shows that a com-

28 Spring Joint Computer Conference, 1968

posite system will be less expensive than one obtained
completely from the Telephone Company. The two
best alternatives are a system using telephone couplers
on the regular internal telephone system or a system
using private lines and a purchased line concentrator.
Figure 4 shows a system using telephone couplers.
It is similar to the system of Figure 3 but eliminates
the need for obtaining Teletypes and data sets from
the telephone company. Table V gives the projected
costs for this arrangement. We would save $1640
per month by converting to it.

t B DATA

k __DATA____ SDS - 940
NBS SET =) COMPUTER
40 i

_ 701 : 24
%

EXCHANGE: {DATA

TTY —{CoUPLER 252 L SET i

Figure 4 —Telephone coupler - 701 system

TABLE V

Equivalent Monthly Cost For Telephone Coupler - 70l System

(See Figure 4)

Equipment No. Unit Cost Total Equipment Cost
Teletypes 4o $551 $3,400
Data sets 24 25 600
Couplers 40 10 Loo
701 exchange lines 6k 2.85 182
Increase 701 Capacityz 35 3.95 138

Total $h,720

1‘1’h:|.s is an average price for a mixture of Model 33's and Model 35's
with a variety of options. We estimcte that leasing from Western
Union or purchase of Teletypes will average st least $15 per month
less than Telephone Company rates.

2‘l'here 18 a termination charge of 1/2 the cost for the remaining part
of a 5 year lease.

Figure 5 shows the system using private lines and
a purchased line concentrator. The costs for this
system should not exceed those shown in Table VI
and will probably be somewhat lower. With it we
would expect to save $2330 per month over our pres-
ent communication facilities. This arrangement has
the additional advantage that it is the one best able
to provide for connections to the time-sharing system
from ARS, Telex, the regular telephone system, etc.
Any system we get must be able to accommodate a
small number of such special inputs. One alterna-
tive is simply to dedicate some of the computer ports

to these types of services. This is however an undesir-
able method since the number of ports is limited.
With our own switcher (and probably with one leased
from Western Union) we can connect these terminals
to the exchange input lines as shown in Figure 4,
thus providing access to outside and special trans-
mission facilities without having to dedicate ports to
particular kinds of inputs.

§0S-940
ICOMPUTER

24

o 3
[r1Y [-wooeu] _aooenl])
LINE
{ CONCENTRATOR

[TTY —iooei]-LEASED
40{2 TTTY_ g._mmméy

ARS, TELEX

Figure 5 —Purchased switching system

TABLE VI

Eqiivalent Monthly Cost For Purchased Svitching System

(See Pigure 5)

Equipment No. Unit Cost Total Equipment Cost
Teletypes 4o $ 851 $3,%00
Modems 64 32 192
Exchange 1 2502 250
Lines:

Radio Bldg. 28 3 84

Main Campus 10 8 8o

30th St. Bldgs. 2 12 2

Total $4,030

lwe estimate that leasing from Western Union or purchase of Teletypes
will average at least $15.00 per month less than Telephone Company rates.

2aned on a two year service life after installation.

Tariffs

Tariffs are often mentioned by the common carriers
as a reason why this or that cannot be done. To a
considerable extent, tariffs are the carriers’ catalogs
and price lists and simply reflect the business policies
of the carriers. They are not, although you may get
the impression they are, immutable laws writ in stone.
They are sometimes easily changed upon application
to the appropriate regulatory agency. Unfortunately,
the carriers’ business policies are sometimes rather

mmunication Facilities for Time-Shared Computing 29

L4300 30 343

inflexible and may be difficult to get modified to ac-
commodate new services properly. This has been
especially true in regard to connecting customer-
owned equipment to the telephone system. However
the trend within the FCC is toward increased flexi-
bility in regard to the use of these “foreign attach-
ments,” and this should make it much easier to use
composite systems than it has been in the past. Our
experience has been that it is useful to vigorously pur-
sue our requests for new or unusual services even
though the initial reaction from a carrier is that it
cannot provide these services. In several such cases
service arrangements that we proposed were initially

rejected by the carrier as illegal or unacceptable
for other reasons and were later found to be legal
and acceptable.

CONCLUSIONS

There are a number of alternatives for meeting the
communications needs of a time-shared computing
system. We have found that an amazing variety of
services can be obtained from the telephone company
and that there are often good alternatives to use of
telephone company equipment. In our case the investi-
gation of these alternatives is leading toward sub-
stantial cost saving and improved service to our users.

The Baylor medical school teleprocessing
system—operational time-sharing on a

system / 360 computer *

by WILLIAM F. HOBBS and ALLAN H. LEVY

Baylor University College of Medicine
Houston, Texas

and

JANE McBRIDE

IBM Corporation
Houston, Texas

INTRODUCTION

The Baylor TeleprocessingvSystem (BTS) is designed |

to operate as a time-sharing system. It accomplishes

the following functions:

1. It allows several jobs initiated from various
terminals to run concurrently with one batch job
stream.

. It permits the use of high-level languages for
the construction of all programs, including those
designed for remote terminals.

3. Itinsulates the user program from changes in the

operating system by providing a set of macro-

instructions and interface routines for input
and output over telecommunication lines.

It provides certain utility functions for the ter-

minal user, including the ability to build, alter,

and retrieve data sets, and to communicate with
the machine operator and other terminal users.

5. It provides a means by which programs originally

written to run as batch jobs may be used from

aremote terminal.

It insulates user programs from hardware errors

originating during data transmission.

The system has been operational since July, 1967
on an IBM System/360 Model 50 with 256,000 posi-
tions of core storage. The terminals which the system
supports include a cathode ray tube-keyboard ter-
minal (IBM 2260 Display Station), and 2 types of
typewriter terminals (IBM 2740 and IBM 1050).

6.

*Supported in part by grant FR-259 from the National Institutes of
Health, grant HM-509 from the Division of Hospital and Medical
Facilities, United State Public Health Service, and grant RT-4
from the Bureau of Social and Rehabilitation Services, HEW.

31

Both local CRT terminals (cable-connected to a con-
tol unit which is directly attached to the channel)
and remote CRT terminals (connected by telephone
lines) are supported by the software. See Figure 1
for the configuration of the Baylor machine.

The primary programming support under which
BTS was developed is Operating System/360—~MFT
(multiprogramming with a fixed number of tasks).
0S/360~MFT, when it is loaded, divides core stor-
age into a number of sections or partitions. These
partitions are fixed in size until the Operating System
is reloaded. OS/360—MFT must be utilized with at
least two partitions if teleprocessing and batch jobs
are to operate concurrently. Minor modifications are

required to OS/360. These changes are incorporated

into the standard systems generation procedures.
Other programming support under OS/360 which is
used by the teleprocessing system includes BTAM
(Basic Telecommunications Access Method) and
Basic Graphics Support.

If thereris no batch job work to be done, one parti-
tion, for teleprocessing only, may be used. The tele-
processing monitor dynamically subdivides its parti-
tion as terminal jobs are requested until all available
core is used. As soon as a terminal job ends, its core
is freed and made available for another terminal user.
Each job is storage protected (write protect only)
so that it cannot alter or destroy any other job in
the system. The system time-shares between the tele-
processing programs and the batch job stream if
there is one. Time-slicing and control transfer during
wait status are both utilized to accomplish time-shar-
ing. Additional details are set forth in a later section.

The system provides extensive language interfacing

32 Spring Joint Computer Conference, 1968

TEXAS INSTITUTE FOR REHABILITATION AND RESEARCH
COMPUTER FACILITY

PRINTER]
1403-N1-|

DR DR
KAUFMAN BAY-RAD McCLOSKEY BAYLOR DEV

Eom T [
270)

BAYLOR BAYLOR

DR. NOALL DR. WATT DR.McCLOSKY

cic VIT ST HQ MED REC PT

[] PARAMOUR
BAYLOR

— LOCAL 1967 -68
---REMOTE 1967-68

Figure 1—Operational configuration. The system serves both sci-

entific users at Baylor University College of Medicine and the

hospital data management system at the Texas Institute for Reha-
bilitation and Research (TIRR)

so that teleprocessing programs may be written in
Assembler Language, PL/1, FORTRAN or COBOL.
Programs written in Assembler Language input and
output data to and from a terminal through macro-
instructions. All high level language programs
access terminals through CALL statements.

Each terminal is assigned a unique 8-character sym-
bolic name which identifies its location and terminal
type. This terminal name plus the time and date
comprise the message prefix which is added by the
system to every input message. A program can thus
explicitly identify the source of every input message
by inspection of the terminal name in the message
prefix.

Space for all data sets for all teleprocessing jobs
must be allocated at the time the teleprocessing sys-
tem is loaded and initialized each day. Terminal users
cannot create additional data sets. They can, however,
read or alter any existing data sets that are defined for

their use at system initialization time. Definition of
files used in the system is handled by the Job Control
Language of OS/360.

It is advantageous, although not essential, to have
only checked-out programs running in the teleprocess-
ing partition. BTS thus includes a teleprocessing simu-
lator which allows any programmer to debug his tele-
processing program as a batch job. The simulator uses
the card reader and the printer to simulate terminal
input and output devices.

Terminal operation

The command language or set of control statements
is dependent of the type of terminal in use. A con-
trol statement is recognized by its first two char-
acters—“3.” The teleprocessing monitor responds
to the successful entry of any control statement with
an “OK.”

Baylor Medical School Teleprocessing System 33

The command language consists of seven control
statements:

$$SACCOUNT
$$EXECUTE (or $$EXEC)
$$SEND

$$DDNAMES

$$EDIT

$SEOT

$$CONSOLE

b I Py

A terminal user ordinarily would first wish to enter
a $$ACCOUNT statement as follows:
$SACCOUNT (B123, B1234, JONES)

This statement records on disk the user’s pertinent
accounting information: department number, project
number, name and time of sign on. This accounting
information must be recorded before a user is allowed
to execute a program. Accounting information, once
recorded, is not cleared until a user sends a $$EOT
control statement. At this time another accounting
record is written to clock off the user.

Once a user has established his accounting record,
he can then execute a program. Programs to be exe-
cuted from terminals must be stored in one of several
teleprocessing libraries -on-disk. When a user wishes
to execute a program, he must tell the teleprocess-
ing monitor the program name, the amount of core it
requires, and the program type. The program type
may be:

1) SINGLE—only one copy of the program may
be in core at any time. (Example - a file update
program)

2) COPY —the program handles only one terminal
but multiple copies may be in core and execut-
ing concurrently.

3) MULTIPLE—the program handles multiple
terminals so that only one copy ever need be in
core.

If no program type is specified, the monitor assumes
type SINGLE. A user might call into execution the
message switching program with the following control
statement:

$SEXECUTE (SWITCH, 2000, MULTIPLE)

He is asking for the program named SWITCH
which uses 2,000 bytes of core storage and handles
multiple terminals. If 2,000 bytes of core are avail-
able, the program will be executed immediately and
the user will receive a message from the pregram
SWITCH with instructions on how to message-
switch.

As another example, a user might enter the follow-
ing $$SEXECUTE statement:

$SEXEC (ELCOMP, 40000)

He is requesting the program named ELCOMP
which uses 40,000 bytes of core and is type SINGLE.
If 40,000 bytes of core are available, the program will
be executed immediately; if not, the user will be in-
formed that all core is in use, and he should try again
later.

When a user wishes to end a program he is exe-
cuting, he issues the following control statement:

$SEND

This statement frees the core of the program he is
executing, but does not clear the accounting infor-
mation of the user. Thus he is now free to execute any
program he wishes.

A terminal user may request the exclusive use of a
data set by means of the $$DDNAMES control state-
ment as follows:

$SDDNAMES (DATAT1, DATAY2)

The teleprocessing monitor checks its list of data
set names previously entered with a $$DDNAMES
statement and notifies the user if DATA1 or DATA2
is already in use. If neither is already in use, both are
added to the list and the user receives his “OK”
response. s SR

A terminal user can request special editing functions
by means of the $$SEDIT control statement. Two
levels of editing are available. Level 1 editing merely
translates all character codes to internal EBCDIC
codes. Level 2 editing removes all typewriter control
and function key characters from the text of input mes-
sage. The system default is level 2 editing. A user
may also request that blanks be suppressed on incom-
ing data and that small letters be translated to corre-
sponding capital letters.

To end a session at the terminal, a user might enter
the following control statement:

$SEOT
If he is executing a program, the program will
be terminated and its core will be freed. In any case,
his accounting information will be “logged off” on
disk. The monitor will respond, as usual, with an
“OK” when the user is cleared.
A terminal user may communicate with the machine
room operator by means of a $$CONSOLE state-
ment. He might send the following statement:

$$SCONSOLE (MY JOB WILL RUN 5 MIN
PAST SHUTDOWN TIME. MAY WE
DELAY SHUTDOWN?)

The entire message within the parentheses will be
printed on the console typewriter in the machine
room, together with a prefix which identifies the send-

34 Spring Joint Computer Conference, 1968

ing terminal. Thus the operator may send a reply back
to the terminal if necessary.

There are seven different control statements in the
command language of BTS. Frequently a user wishes
to specify special data set or editing information
and he must enter several statements. Therefore, the
use of catalogued control statements is the sub-
stantial assest for the terminal user that OS/360
catalogued procedures are for the Job Control lan-
guage user. A disk data set (hereafter called the Con-
trol Statement Library) contains sets of control state-
ments which may be called by the terminal user with
just one entry. For example, a set of control state-
ments called SWITCH exists on the Control State-
ment Library. The set contains the following control
statements:

$SACCOUNT (B999, X9999, ANYNAME)
$SEDIT (2,F)
$SEXEC (SWITCH, 2000, MULTIPLE)

A terminal user can invoke these control statements
~ (and, hence, execute the program named SWITCH)
by entering the following command:

$$SWITCH

The terminal user can also add, change, display, or
delete sets of control statements in the Control State-
ment Library. However, password protection is avail-
able (if wanted) so that a set of control statements may
be displayed and used but not altered.

Time-sharing the teleprocessing partition

One feature of BTS is its ability to handle multiple
teleprocessing jobs within one OS/360 partition. To
implement this capability requires two changes to
0S/360:

1) The task control block tabie in the nucieus must
be expanded to handle additional teleprocessing
task control blocks.

2) Two system termination (ABEND) modules
must be changed. Both of these changes can be
incorporated into the standard systems genera-
tion, using the source modules for. the termina-
tion routines.

When OS/360 is loaded, the system is initialized
with at least one partition. Under OS/360 — MFT one
task control block (TCB) is created for each partition
of core storage. The TCB controls the execution of
each successive job within the partition. See Figure 2
for a sample layout of core storage after OS/360—
MFT has been initialized with two partitions.

BTS is the first job scheduled by the Operating
System. The initialization Routine builds a number, N,
of teleprocessing task control blocks where N will
be the maximum number of teleprocessing jobs that

CLEUS PARTITION 0 PARTITION |
MASTER | T P BAT
SCHEDULER, MONITOR STREAM
T.CB. T.CB. TC.B.
|
PRIORITY PRIORITY PRIORITY

=255 =254 =253

Figure 2—Layout of core storage after initialization of OS/360-
MFT for two partitions

can execute concurrently. N is defined in the Tele-
processing System Tables and can be changed by re-
assembling that module. The teleprocessing task con-
trol blocks (TCB’s) are added to the OS/360 TCB
chain and given priorities below the teleprocessing
monitor, while the priorities of the other lower
Operating System partitions are shifted down. See
Figure 3 for a sample layout of core storage after
0S/360--MFT has been initialized with two partitions
and BTS has been initialized for three concurrent
teleprocessing jobs.

NUCLEUS PARTITION O PARTITION |
MASTER T.P. BATCH
%%HBEDULEszr'I,gNITOR +{PRIORIT Y=254) 5 TRE AM

B D
s)(|
PRIORITY=L50

PRIORTY238 [&kr [<@RIORITY 25
| ICB.
0S / 360
NUCLEUS TR PRORIT <252
TCB. =
E'S%R «(PRIORITY 254)
ICB.

Figure 3—Layout of core storage after initialization of OX/360-
MFT for two partitions and BTS for three concurrent teleprocess-
ing jobs

The teleprocessing task control blocks wait in a
non-dispatchable mode until a terminal user requests
a program. At that time, the monitor gets core for the

Baylor Medical School Teleprocessing System 35

requested program, completes other Operating Sys-
tem control blocks and puts the program into exe-
cution under the control of one of the teleprocessing
task control blocks. From this time until the telepro-
cessing program terminates, it is handled by OS/360
like any other program executing under a standard
task control block.

When the teleprocessing program terminates, BTS
frees all of the core used by the terminating pro-
gram, and the task control block is made non-dis-
patchable, waiting to be re-used by another tele-
processing job.

The system time-shares using two methods:

1) Time-slicing with circular rotation of task con-

trol block priorities.

2) CPU control transfer when any task goes into

wait status.

Time-slicing is accomplished using an equal priority
algorithm. At the end of each specified time interval
(for example, 100 milliseconds) BTS takes the user
task with the highest priority and gives it the lowest
priority. The priorities of all other tasks on the chain
are incremented by one, thereby giving a new job the
highest user priority. When each time interval expires,
the circular chain of task priorities is re-adjusted. If
a batch job stream is in use, its priority is also rotated
on the circular chain.

CPU control transfer when a task goes into wait
status is handled by the OS/360—-MFT dispatcher.
Dispatching is attempted on a task priority basis,
searching down the ‘chain until a task is found that
can utilize the CPU. If no task is found, the system
waits until an event (such as I/O) completes so that
some task can use the CPU.

The combination of the two methods described
above provides the advantages of concurrent exe-
cution of multiple jobs and attempted full CPU utiliza-
tion.

Language interfacing to terminals

The large majority of teleprocessing programs
need to communicate directly with one or more ter-
minals. In order to facilitate this communication, the
capability is provided to get a message from a terminal
(GETMSG), to put a message out to a terminal,
(PUTMSG), and to break conversational mode with a
terminal (BREAK). Macro-instructions provide
these capabilities to the Assembler Language pro-
grammer. Interface routines allow the high level lan-
guage programmer to make use of these functions via
a CALL statement. '

For example, an Assembler Language program may
issue the following macro:

GETMSG DATAAREA, 96

The next message received from a terminal in con-
versational mode with this program will be placed in
DATAAREA. The maximum length of the message
will be 96 bytes which includes the message prefix of
15 bytes, 80 data bytes, and an end of block char-
acter (EOB). The program can then look at the 8-
character symbolic terminal name in the message
prefix to find the source of the data.

The same Assembler Language program may issue
the following macro-

PUTMSG ADDRESS=DATAAREA+135,
LENGTH=80 DEST=BCOMPS60,
PRIOR=0, LINE=12
START=1, ERASE=NO

The monitor will then send (with a priority of zero)
to the terminal named BCOMPS60 (Baylor Comput-
ing Science 2260) 80 characters of data beginning at
DATAAREA + 15. The 80 characters of data will
be written on Line 12 of the 2260 and a START MI
symbol will then be put in the first position of Line 1.
The 2260 screen will not be erased prior to the write.
If the terminal indicated by the parameter ‘DEST’
were not a 2260, the last three parameters would be
ignored.

An Assembler Language program may also issue
the following macro:

BREAK BCQMPS60

The monitor will then break conversational mode
between the specified terminal and the program issu-
ing the BREAK. If the specified terminal is the last
or only terminal in conversational mode with the pro-
gram, the program will be terminated and its core
will be freed.

The same three teleprocessing capabilities (GET-
MSG, PUTMSG, and BREAK) are available to all
high level language programs written in PL/1, CO-
BOL, or FORTRAN.

For example, a PL/1 program may request a mes-
sage as follows:

CALL GETMSG (STRING, RETURN);

The next message received from a terminal in con-
versational mode with this program will be placed in
STRING (which is a character string variable of
varying length). The return code will be placed in
RETURN.

Likewise, a FORTRAN program may wish to send
a message:

CALL PUTMSG (ARRAY, LENGTH, DEST,
PRIOR, RETURN)

The data in ARRAY will be sent to the terminal
specified by. DEST with the priority specified in

36 Spring Joint Computer Conference, 1968

PRIOR. The return code from the write will be placed
in RETURN.

In the same manner, a COBOL program may break
conversational mode as follows:

CALL ‘BREAK’ USING TERM, RETURN.

Conversational mode will be broken between the pro-
gram and the terminal specified by TERM. If the
specified terminal is the last or only terminal in con-
versational mode with the program, the program will
be terminated and its core will be freed.

With the language interfacing facilities of the Baylor
Teleprocessing System, no special training is required
for application programmers to make active use of the
system. They are free to use the language with which
they are familiar, and by doing so, they can access
any terminai on the system.

Terminal input/output

Two basic types of terminals are supported by BTS.
Local CRT terminals are connected to the central
processor by cables. All other terminals are connected
by means of telephone lines. Different programming
methods are used for these terminal types.

Because of the relatively high speed of local CRT
terminals, no queues of messages are maintained for
them. Read and write operations involving these
terminals are always carried out immediately when
they are requested by a problem program.

For all other types of terminals, two output queues
at different levels of priority are maintained for each
telecommunications line. Each PUTMSG to one of
these terminals causes a message to be placed in one
or the other queue according to its priority. These
queues are maintained both in core and on direct
access storage. A sufficient amount of text is kept in
core to insure that the communications lines are kept
active. Additional text is spilled to direct access
devices.

When a line becomes idle, the following method is
used to determine what operation to carry out next:

If any high priority messages are enqueued for
transmission on the line, the next message (on a first
in-first out basis) is dequeued and sent. if no high
priority messages are awaiting transmission and some
terminal on the line is using a problem program the
line is left idle until the program issues a GETMSG.
At this time a read operation is begun on the line.

If no terminal on the line is using a problem pro-
gram, low priority messages (if any) are transmitted.
When no low priority messages remain to be sent, a
general polling operation is begun on the line. That is,
each terminal in turn is interrogated to see if it wishes
to send a message.

A dynamic buffering technique is used. This method
allows buffers to be assigned to a line from a common
pool of available buffers even while a channel input
operation is in progress. Thus, individual input mes-
sages may vary greatly in length without tying up
large amounts of storage to handle worst-case situa-
tions.

The Baylor Teleprocessing System has proven use-
ful for the research environment in which it was devel-
oped. It is presently supporting several groups of
scientific users, including those involved in mass
spectroscopy, radiotherapy treatment planning, and
gynecological cancer control. It is also the support
system for a comprehensive computer-oriented hos-
pital data management project at the Texas Institute
for Rehabilitation and Research. With this operational
load, it has been found that the size of core storage is
the single most important limitation. We plan system
support for low speed large core storage and for the
IBM 2314 direct access device. It is felt that such
additional machine capacity will remove present
limitations and enhance the operational capabilities
of the system.

Some techniques for shading machine renderings of solids

by ARTHUR APPEL
IBM Research Center
Yorktown Heights, N. Y.

INTRODUCTION

Some applications of computer graphics require a
vivid illusion of reality. These include the spatial
organization of machine parts, conceptual architec-
tural design, simulation of mechanisms, and indus-
trial design. There has been moderate success in the
automatic generation of wire frame,! cardboard
model,?2 polyhedra,®* and quadric surface® line draw-
ings. The capability of the machine to generate vivid
sterographic pictures has been demonstrated.®
There are, however considerable reasons for devel-
oping techniques by which line drawings of solids
can be shaded, especially the enhancement of the
sense of solidity and depth. Figures 1 and 2 illustrate
the value of shading and shadow casting in spatial
description. In the line drawing there is no clue as
to the relative position of the flat plane and the
sheet metal console. When shadows are rendered, it
is clear that the plane is below and to the rear of
the console, and the hollow nature of the sheet
metal assembly is emphasized. Shading can specify
the tone or color of a surface and the amount of
light falling upon that surface from one or more
light sources. Shadows when sharply defined tend
to suggest another viewpoint and improves surface
definition. When controlled, shading can also empha-
size particular parts of the drawing. If techniques
for the automatic determination of chiaroscuro
with good resolution should prove to be compet-
itive with line drawings, and this is a possibility,
machine generated photographs might replace line
drawings as the principal mode of graphical commu-
nication in engineering and architecture.

A picture strictly rendered in chiaroscuro de-
fines the scene in a dark and light area pattern,
colored or in tones of grey and no lines are made.
Rembrandt and Reubens were masters of chiaro-
scuro. In order to simulate the chiaroscuro of a
photograph many difficult problems need to be
solved such as the effect of illumination by direct
and diffuse lighting, atmospheric diffusion, back

37

reflection, the effect of surface texture, tonal spec-
ification, and the transparency of surfaces. At pres-
ent, there is the® additional problem of hardware
for display of the calculated picture. Devices pres-
ently available use lines or points as the principal
pictorial element and are not comparable to oil
paint, or wash, or crayon in the ability to render the
subtle changes in tone or color across an area.
The best we can hope to do is to simulate the half-
tone process of printing.

Figure 1—- A machine generated line drawing of an electrical con-
sole and an arbitrary plane in space

This paper presents some recent experimental
results in the automatic shading of line drawings.
The purpose of these experiments was to generate
pictures of objects consisting of flat surfaces on a
digital plotter and to evaluate the cost of gener-
ating such pictures and the resultant graphical
quality.

3g Spring Joint Computer Conference, 1968

Figure 2 — A shaded line drawing of the scene in Figure 1

Previous work

Considerabie work has been done in the digitiz-
ing of photographs.”® Especially successful are the
pictures transmitted from spacecraft.® The significance
of this work is the demonstration of the quality of
digitally generated pictures.

L. G. Roberts has accomplished the converse of the
problem being discussed in this paper by developing
techniques for the machine perception of solids which
are assemblies of convex poiyhedra moduies.*
His work suggests the possibility that it may be
more useful to analyze the contents of a photograph
and to create a mathematical model of the scene.
This analysis can be used to generate any view of
the scene with greater graphical control.

G. Lasher has written a program which can be
used to generate three dimensional graphs of math-
ematical functions which are unique for values of
X and Y. This program, which was used to illustrate
an article in theoretical physics,’! generates con-
tour curves of the surface, constant coordinate
curves and renders only those curve segments that
are visible in a perspective projection. A shading
effect occurs in these pictures because the projec-
tion of the surface rulings tend to concentrate as the
surface becomes tangent to the line of sight. This
effect contributes significantiy to the vividness of
the renderings.

J. L. Pfaitz and A. Rosenfeld have applied their
notionis on encoding plane regions to shading two
dimensional maps.!? Their notion of skeleton repre-
sentation is that a region can be specified by a list
of points on a plane and a radius; all parts of the piane
within the radius of the point are within the region
described. For shading, a set of parallel straight lines
are generated and those portions of the lines which be
within the region are rendered. The angle and spac-
ing of the set of parallel lines can be varied and other
textures can be generated.

A vivid automatically shaded picture of a poly-
hedron was generated by a subroutine written by
B. Archer for an article by A. T. Coie.® The shad-
ing is accomplished by varying the spacing of paral-
lel lines. The spacing of lines on a particular surface
is proportionai io ihe illumination. No attempt was
made to determine the shadow cast by the polyhedron
and the methods described are inadequate for drawing
more than one convex polyhedra at a time.

Recently, C. Wylie, G. Romney, D. Evans, and A.
Erdahl®® published an algorithm for generation of
half-tone pictures of objects described by assemblies
of triangular bounded planes. Their results are toned
pictures generated with calculation time competi-
tive with line drawings. However their scheme sets
the source of illumination at the viewpoint, and since
a point iight source cannot see the shadows it casts,
no shadows are rendered.

Previous work in the automatic determination of
chiaroscuro demonstrates how the computer can
improve the level of graphics designers can work with.
The primary limitation has been neglect of shadow
casting from arbitrarily located light sources. Also
no work has been done on the control of the toned
picture to take into account the surface tone or coior
of an object. Any system for rendering in chiaroscuro
should solve economically at least these two problems.
It can be seen from previous results that toning an
area by varying the spacing of parallel lines is not
entirely satisfactory. This technique is economic but
has several disadvantages. The lines when widely
spaced do not fuse to form a continuous tone. The
viewer does not then perceive the object but is dis-
tracted by the two dimensional pattern. Depth per-
ception is reduced. These lines also tend to suggest
a surface finish which may not exist. A good standard
for evaluating toning mechanics can be the ben-day
pattern used in printing. This pattern enables a great
range of dark and light with good tonal fusion. The
half-tone process uses many small dots arranged in a
regular array. The size of dots are varied to create a
degree of grayness, smail dots where white predomi-
nates are light and as the dots increase in size such that

Techniqliés for Shading Machine Renderingé of Solids 39

they eventually blend together the toned region be-
comes darker. In order for the dot pattern not to be
distracting, the dot spacing should be at least seventy
dots to the inch. The large dot density required for
- toning indicates that calculation schemes for toning
should be as resolution independent as possible. For
an algorithm to be resolution independent it must
enable perfect resolution. It may not be possible for
contemporary hardware to take advantage of such an
algorithm but this should be the goal.

Toning on a digital plotter

A great many experiments were conducted t»
evaluate the quality of various toning techniques that
would be applicable to digital plotting. A simulation
technique tested was to shoot random light rays from
the light source at the scene and project a symbol
from the piercing point on the first surface the light
ray pierced. These symbols would concentrate in
regions of high light intensity, and a negative print of
the hard copy could be made which would approxi-

~mate a photograph if enough light rays are generated.
Even for about 1000 light rays results were splotchy.
Generating light rays in regular patterns improved the
graphic quality but did not allow economic tonal con-
trol. During these experiments, various symbols were
evaluated for graphic quality and speed of plotter
generation. The plus sign or a small square were to
give best results. Eventually the best technique from
graphic and economic considerations for toning was
found to be plus signs arranged in staggered rows
with shadows outlined. This arrangement is most
easily seen in Figure 2. The size of plus signs were to
be rendered proportional to darkness required.

Ignoring atmospheric diffusion, the intensity of
light incident upon a unit plane area from a point
light source is: ’

1=S (Cosine L)/D?
where S is the intensity of the light source, L is the
angle of the normal to the plane and direction of light
at the illuminated area, and D is the distance from the
illuminated point to the light source. For experimental
purposes it was assumed that the light source is so far
from the objects being illuminated that variations in
L and D are insignificant. L need be calculated only
once for each surface. Also since we are interested
in simulating illumination only to the extent that com-
parative light and darkness of surfaces are displayed
and also because the range of toning on the digital
plotter is limited, we did not concern ourselves with
the actual intensity of the single light source. The
comparative intensity of illumination of a point on
a plane then is proportional to Cosine L. The apparent
illumination of a flat surface then will be constant

over the surface. The digital plotter does not generate
light as a cathode ray tube but makes a dark mark. The
size of this mark should indicate an absence of light.
So the degree of darkness at a point or the size of
plus sign rendered is
H*=1—-Cosine L
For simplicity it can be assumed that if a point is
in shadow the largest allowable mark will be rendered
on that point. For point j then, the size of symbol H;
is the maximum symbol H,. H; is proportional to the
dot spacing. During early experiments of the size of
symbols rendered on a point not in shadow was
H;=1— Cosine L »
- However it was found that results were confusing; it
was difficult to detect the difference between surfaces
in shadow and surfaces almost parallel to the direction

.of light. In actual viewing of a solid, surfaces almost

parallel to the direction of light reflect a considerable
amount of light due to the surface roughness, but as
soon as the surface faces away from the light source,
no light can be reflected and the apparent illumina-
tion changes sharply. In order to simulate this effect a
contrast factor, h, usually .8, was introduced. So then

H;=h H; (1-Cosine L) (1a)

if the surface point j is on faces the light source and
H; = H,if point j is in shadow. (1b)

We are faced now with essentially at least four pro-
gramming problems:

1. Given a viewpoint and a mathematically de-
scribed scene what is the point in picture to point
in scene correspondence? This problem is to de-
termine what visible point, if any, on the objects
being rendered project onto a particular point in
the picture plane.

2. Given one or more light sources what is the in-
‘tensity of light falling on a point in the scene?
This problem includes the determination of
which regions are in shadow.

3. Given a light source what are the boundaries of
the shadow cast and how much of this cast
shadow can be seen? If the picture could be
rendered large and/or if symbol density could be
large outlining the shadows could be dispensed
with.

4. How can the tone or color of a surface be speci-
fied and how should this specification affect the
tones rendered?

Economic solutions to the first two problems are
most critical. If an economic point to point corre-
spondence technique could be found that would per-
mit dense symbol packing, the problem of casting
shadow outlines could be eliminated. The problem of

40 SpringJoint Computer Conference, 1968

determining how much light falls on a flat surface not
in shadow is trivial, and even for curved surfaces this
is not difficult, but economically determining exactly
what regions of the scene are in shadow is a very diffi-
cult problem.

A

S

Figure 3 — An assembly of planes which make up a cardboard model
of a building

N

N

Figure 5— A higher angle view of the building. 7094 calculation time
for this picture was about 30 minutes.

OBSERVER

LIGHT SOURCE
"\ UNE OF SIGHT_

DARK SHADED
REGION

PICTURE

PLANE
SHADOW |
BOUNDARY
Py, DOES NOT
CORRESPOND TO
ANY POINT ON
3 THE OBJECT

Figure 6 —Point by point shading

Point by point shading

Point by point shading techniques yield good
graphic resuits but at large computational times. These
techniques are docile, require the minimum of storage

and enable easily coded graphical experimentation.
Figures 3, 4, and 5 are examples of point by point
shading. Referring to Figure 6, the technique in gen-
erating these pictures was as follows:

1. Determine the range of coordinates of the pro-
jection of the vertex points.

2. Within this range generate a roster of spots
(P;,) in the picture plane, reproject these spots
one at a time to the eye of the observer and gen-
erate the equation of the line of sight to that spot.

3. Determine the first plane the line of sight to a
particular spot pierces. Locate the piercing point
(P,) in space. Ignore the spots that do not corre-
spond to points in the scene (P,,).

4. Determine whether the piercing point is hidden
from the light source by any other surface. If the
point is hidden from the light source (for example
P,;) or if the surface the piercing point is on
is being observed from its shadow side, mark on
the roster spot the largest allowable plus sign H.
If the point in space is visible to the light source
(for example P,) draw a plus sign with dimen-
sion H; as determined by Equation 1.

This method is very time consuming, usually re-
quiring for useful results several thousand times as
much calculation time as a wire frame drawing. About
one half of this time is devoted to determining the
point to point correspondence of the projection and
the scene. In order to minimize calculation time for
point by point shading and maintain resolution, tech-
niques were developed to determine the outline of cast
shadows. Ouilining shadows has the advantage that
all regions of dissimilar tones on the picture plane
are outlined. Even when projected shadows are deli-
cate, and symbol spacing is large, the shadows are
specified and the discontinuity in tone is emphasized.

The strategy for point by point determination of
shadow boundaries is as follows: (Referring to Fig-
ure 7)

NON-SHADOW-|
CASTING LINE

SURFACE UPON WHICH
SHADOW WILL FALL

Figure 7 —Segment by segment outlining of shadows

Techniques for Shading Machine Renderings of Solids 41

1. Classify all surface line boundaries into shadow
casting and non-shadow casting. A shadow cast-
ing line is from the viewpoint of an observer
at the light source a contour line. For assemblies
of flat surfaces, a contour line along which all
surfaces associated with this line appear on only
one side of this line.

2. Determine whether the observer is on the shad-
ow side or lighted side of all surfaces.

3. Subdivide all shadow casting lines, one at a
time, into small segments (K1, K2), usually .005
units, and determine the midpoint of this seg-
ment (KM).

4. Generate a light ray to the midpoint of the seg-
ment (KM). If any surface lies between KM and
the light source go on to the next segment. Deter-
mine the next surface behind KM that the light
ray to KM pierces within its boundary. If no sur-
face lies behind KM go on to the next segment.
A point can cast only one shadow. Project K1,
KM, and K2 onto the surface to obtain K18,
KMS, and K25, the shadows of K1, KM, and
K2. If KMS lies on a surface which is seen from
its shadow side go on to the next segment. This
particular shadow boundary is invisible. Also
a shadow cannot fall within a shadow.

5. Test KMS for visibility. If KMS is hidden from
the observer go on to the next segment.

6. If KMS is visible project the line (K1S-K2S)
onto the picture plane and draw the projection.

As can be expected, determining the outline of

shadows by this described strategy is very time
consuming usually requiring as much time as a point
by point line visibility determination.

Methods of quantitative invisibility

In a previous report, the notion of quantitative
invisibility was discussed as the basis for rapidly deter-
mining the visibility of lines in the line rendering of
polyhedra.* P. Loutrell has implemented several tacti-
cal improvements for this application.’® Quantitative
invisibility is the count of all surfaces, seen from
their spatial side, which hide a line from an observer
at a given point on the line.

The methods of quantitative invisibility are useful
because techniques for detecting changes in quanti-
tative invisibility along a line are more economical
than measuring the visibility, absolute or quantitative,
at a single point. These techniques are applicable only
to material lines which are lines that have specific end
points and that do not pierce any bounded surface
within its boundary. Objects that are manufactured
contain only material lines. A contour line is a line
along which the line of sight is tangent to the surface

of the solid. For polyhedra, given a specific viewpoint,
a contour line is a material line which is the inter-
section of two surfaces, one of which is invisible.
For a given viewpoint the quantitative invisibility of
a material line can change only when it passes behind
a contour line. Figure 8 illustrates how quantitative
invisibility varies as a line passes behind a solid.
Notice that only surfaces which are viewed from the
spatial side affect the measurement of quantitative
invisibility. In determing line visibility for line draw-
ings only those segments of the line for which quantita-
tive invisibility is zero are drawn. For this application
only the quantitative invisibility of vertex points are
stored and changes in quantitative invisibility along
a line are measured and discarded as soon as com-
mands to the graphic device are generated. The
methods of quantitative invisibility can be applied
to shading a picture if the changes in quantitative
invisibility of a line from the light sources and the
observer are stored and compared.

TYPICAL MATERIAL LINE

NON-CONTOUR
LINE

TYPICAL CONTOUR
LINES

Figure 8 —Changes in quantitative invisibility. Object A is in front
of and does not touch object B

The method of cutting planes

In descriptive geometry, the intersection of simple
quadric surfaces is determined by passing carefully
chosen planes through the quadric surface to deter-
mine the intersection curve of the quadric surface and
the plane; and from these first and second degree
surface intersections the intersection curve of one or
more quadric surfaces can be deduced. This procedure
is time consuming but does solve a problem difficult
for most mathematicians. This technique of manual
rendering is the inspiration for the method of cutting
planes for shading machine renderings of solids. Point
by point shading techniques are expensive because

42 Spring Joint Computer Conference, 1968

it is difficult with good resolution to correlate the
shading of adjacent spots on the picture plane. With
simple codings, the method of cutting planes enables
such correlation in one direction, with more elaborate
coding the correlation can be in all directions.

The basic concept of the method of cutting pianes
is that when the intersections of a plane that passes
through the observation point and assemblies of planes
which can enclose one or more polyhedra are pro-
jected onto the picture plane, these projected inter-
sections are colinear. In detail, as illustrated in Fig-
ure 9, the strategy is:

LIGHT SOURCE

ICS (INTERSECTION OF CUTTING
PLANE AND SOLID)

TYPICAL
ILLUMINATION
SWEEP PLANE

PICTURE PLANE

ICP(INTERSECTION
OF CUTTING PLANE

ZONXN
X "' 8 PICTURE PLANE)
VA 9\
."-K

OBSERVER
TYPICAL CUTTING PLANE

PROJECTIONS OF ICJ,ICK
ONTO PICTURE PLANE.

ICK

Figure 9—The method of cutting planes

1. Generate a cutting plane which passes through
the observation point.

2. This cutting plane will intersect the picture plane
along a specific line (ICP).

3. This cutting plane will cut or pass through the
surfaces of the polyhedra and generate the inter-
section ICS which is a string of three or more line
segments. Each of these segments is a material
line (ICJ).

4. All the IC]J of the polyhedral faces and a particu-
lar cutting plane will project colinear onto the
picture plane. This colinear projection is the line
ICP.

5. These intérsections ICJ for a particular cutting
plane can then be measured for changes in quan-
titative invisibility by techniques previously re-
ported*!>. Those intersections ICJ which
prove to be completely invisible can be quickly
determined and need be analyzed no further. We
have now determined a correspondence between
a line on the picture plane and a series of lines
in the scene to be rendered.

6. Those lines of intersection ICJ which are on sur-
faces which face away from the light source can
be rendered with no further analysis. These
lines are completely in shadow and along their
visible projected length plus signs of the maxi-
mum size (H,) can be generated.

7. Lines of intersection ICJ which are on surfaces
which face toward the light source can be ana-
lyzed to determine changes in quantitatives
invisibility from the viewpoint of the light source.
Those projected portions of the lines which are
hidden from the light source are rendered by a
series of plus signs of size H;. Those portions
which are visibie to the light source are rendered
by a series of plus signs whose size is determined
by Equation 1.

3

BSOS
SO
e

*
3
0
.

Figure 10—Two views of a machine part where the light source is
moved relative to the object

Techniques for Shading Machine Renderings of Solids 43

The resolution of shading by the method of cutting
planes is no longer limited by the spot to spot spacing
on the picture plane but by the spacing of the cutting
planes intersections with the picture plane. For com-
parable resolution the calculation time for shading by
cutting planes is slightly less than the square root of
the time for shading by point by point methods.

4
¢S
o5

&

N
oS
.

*
’:
&

£y

4
4,4
e

Figure 11— Another machine part. 7094 calculation time for this
picture was about 30 seconds

The speed of calculation is very dependent on how
effectively the measurements of quantitative invisi-
bility of all the lines in the scene are stored and cor-
related. This list is the basis for determining visibility
along cutting plane intersections. The first version of
the Fortran 1V program used to generate Figures 10
to 14 was experimental and is not as fast as theo-
retically expected. Pictures were plotted on an IBM
1627 (Calcomp). A faster version which can take
into account more than one light source is under devel-
opment for operation on a 360/67. The larger core,
greater data storage capacity and time sharing capabil-
ity of this machine will be utilized. The method of
cutting planes which enable rapid correspondence of
projected points to real points in the scene certainly
includes the illumination of the object by more than
one light source of differing intensities. The size of

Figure 12 — Assembly of the two previously drawn machine parts.
7094 calculation time: about 50 seconds.

plus signs drawn on a particular spot can be the sum
of the shadow intensity from all the light sources.

HDRAWN=YH, 2)

where H is the shadow intensity from a particular
light source.

The more intense the light source, the more intense
the shadow it causes when a point cannot see this
source of light,

I TOTAL =Y, 3)
where I is the intensity of the light source

Hq = I/l TOTAL @)

Where Hg; is the shadow intensity in the absence of
light from light source i.
H; = H,; when a point is in shadow

H,;= H (1-CosineL) h (&)
when a point is seen by light source i.

It is also possible to exercise tone control for em-
phasis while generating the half-tone picture. A list
of comparative surface tones can be entered which
will describe the basic tone of each surface. For ex-
ample, if a scene consists of object A with four sur-

44 SpringJoint Computer Conference, 1968

faces and object B with six surfaces and object A is
lighter than object B the surface tone list would be
(.5, .5, .5, .5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0). The size
of the shading symbol can then be determined by

HT, = (H; X FLIGHT + FTONE) TONE, (6)

where FLIGHT and FTONE are influence factors of
light and surface tone, and TONE;, is the relative tone

A
SIS
RHRKRS
RS

.

2
(>
o+

&

-
o8
o2

o
&

o
2R
K
0500505
RS
G

2

2
2

25
o,

25

]
25

I+

&S

R
5

035

&

2
9308
SRS
3%
58
e
o3
7
5%

,
-t
o
¢
&
o
5%

R

b
KR
40
AR
g3
thale?.

Figure 14— Another view of the machine part shown in the previous
figure. The light source has been moved relative to the object. No-
tice the light passing through the opening in the object

of surface k. FLIGHT and FTONE enable the con-
trol of highlighting. Master copy for the preparation
of color process plates for letterpress printing have
been generated using mathematical models similar to
equation 6. It is obvious that once the basic prob-

lems of determining how light falls on the object are
solved, considerable artistic freedom is possible.

Figure 15— Assembly of the three machine parts. 7094 calculation
time for this view was about two minutes

ACKNOWLEDGMENTS

The author is grateful to G. Folchi, Dr. G. Lasher,
and Dr. P. Loutrell for some helpful discussions. R.
L. Ennis, J. J. Gordineer, J. A. Mancini, Mr. & Mrs. E.
P. McGilton, W. H. Murray, and G. J. Walsh among
others were helpful with plotter output and other
machine problems. The author is deeply indebted to J.
P. Gilvey and F. L. Graner for their continuing sup-
port and encouiragement of this project.

REFERENCES

1 T E JOHNSON
Sketchpad 111: A computer program for drawing in three
dimensions.
Proc AFIPS 1963 Spring Joint Computer Conf Vol 23 pp
347-353

2. A APPEL

The visibility problem and machine rendering of solids
IBM Research Report RC 1618 May 20 1966

Techniques for Shading Machine Renderings of Solids 45

3 P LOUTREL
Determination of hidden edges in polyhedral figures: convex
case
Technical Report 400-145, Laboratory for Electroscience
Research NYU September 1966

4 A APPEL
The notion of quantitative invisibility and the machine ren-
dering of solids
Proc ACM 1967 Conference pp 387-393

5 R A WEISS
BE VISION a package of IBM 7090 Fortran programs to draw
orthographic views of combinations of plane and quadric sur-
faces
JACM 13 April 1966 11 194-204

6 H R PUCKETT
Computer method for perspective drawing journal of space-
craft and rockets
Vol I No 1 pp 44-48 1964

7W S HOLMES H R LELAND G E RICHMOND
Design of a photo interpretation automaton
AFIPS Conf Proceedings 1962 Fall Joint Computer Confer-
ence Vol 22 pp 27-35

8 R W CONN
Digitized photographs for illustrated computer output
AFIPS Conference Proceedings 1967 Spring Joint Computer

Conference Vol 30 pp 103-106
9 Lunar Orbiter Surveys the Moon Sky and Telescope Vol 32

No 4 October 1966 pp 192-197

10 L G ROBERTS
Machine perception of three-dimensional solids
Technical Report No 315 Lincoln Laboratory MIT May 1963

11 G LASHER
Mixed state of type-I superconducting films in a perpendicular
magnetic filed
The Physical Review Vol 154 No 2 pp 345-348 Feb 10
1967

12 J L PFALTZ A ROSENFELD
Computer representation of planar regions by their skeletons
CACM Vol 10 No 2 February 1967 pp 119-125

13 A J COLE
Plane and stereographic projections of convex polyhedra from
minimal information
The Computer Journal

14 C WYLIE G ROMNEY D EVANS A ERDAHL
Half-tone perspective drawings by computer
AFIPS Conf proceedings 1967 Fall Joint Computer Confer-
ence Vol 27

15 P LOUTRELL
Phd Thesis NYU September 1967
NYU September 1967

A system for interactive graphical programming*

by WILLIAM M. NEWMAN#**

Harvard University
Cambridge, Massachusetts

INTRODUCTION

A system is described in this paper for developing
graphical problem-oriented languages. This topic is of
great importance in computer-aided design, but has
hitherto received only sketchy documentation, with
few attempts at a comparative study. Meanwhile dis-
plays are beginning to be used for design, and the
results of such a study are badly needed. What has
held back experimentation with computer graphics
has been the difficulty of specifying new graphic
techniques using the available programming lan-
guages; the method described in this paper appears
to avoid this difficulty. = :

Defining a problem-oriented language

Notation
Any description of an interactive process must de-
fine the response of the system to each input. For
this reason it is convenient to describe graphical prob-
lem-oriented languages in terms of actions and re-
actions. An action is simply an input which may pro-
duce a response; the corresponding reaction défines
this response, and in addition any unmanifested effect
of the action on the state of the machine. The same
action may cause a different reaction on different
occasions: for example, movement of the light pen
may affect the display in a number of different ways.
. It is therefore convenient to treat the system as a
finite-state automaton, and to say that the reaction is
determined by the state of the program as well as by
the action. In other words, the actions are inputs to
the automaton, which cause it to change state; reac-
tions are the outputs.
Just how convenient this is for describing inter-
active processes is illustrated by the following exam-
ple. A ‘rubber-band’ line! can be created by means of

*The work described in this report was supported by a Science
Research Council Contract, No. B/SR/2071, “Computer Process-
ing of Three-Dimensional Shapes.”

**Formerly at the Centre for Computing and Automation, Imperial
College, London.

47

a light pen and one push-button, in a sequence of five
operations: ‘

1) press button to start pen tracking;

2) track pen to starting point of line;

3) press button to fix starting point;

4) track pen to end point;

5) press button to fix end point and stop tracking.

The ‘rubber-band’ effect is created by displaying a

- line joining the starting point to the pen position

throughout stage 4.

Figure 1 shows a state-diagram representing this
sequence. Each branch represents an action, and the
resultant reaction is specified in the “arrowhead.”
Only valid actions are included; for example, pen
movements are meaningless in state | and are there-
fore omitted. The inclusion or exclusion of an action
may add semantic properties to the diagram. This is
shown by the ‘pen movement’ branches on states 2
and 3, which imply pen tracking during those states
and make explicit reference to tracking unnecessary.

button

display

starting point

pen movement

pen movement

Figure 1 — A state-diagram representing rubber-bank line-drawing

48 Spring Joint Computer Conference, 1968

The state-diagram has been used in this way as the
basis of a method for defining problem-oriented lan-
guages. A particular advantage of this technique is
the way an immediate reaction can be associated with
each action in a sequence; this is of great importance
in graphical programs. On the other hand the state-dia-
gram offers no direct method of attaching semantic
functions to groups of actions, and is therefore of
little use for describing phrase-structured grammars.
This is less of a drawback than it seems. An interactive
problem-oriented language need not possess a com-
plex structure to function efficiently, and benefit can
often be gained from simplifying the language as much
as possible. Roos, for example, has noted the difficulty
experienced by some engineers in using the relatively
simple languages of the ICES System.?

The basic function of the state-diagram, as illus-
trated in Figure 1, is to indicate the actions which may
validly occur during each state, and the reactions and
changes of state which they will cause. A number of
additions have been made to this basic notation. Nor-
mally, branching takes place when a user action
matches an action defined in the diagram. Branching

may however be over-ridden by the result of a test

. routine included in the branch definition. Further-
more, branching may be initiated by the program itself
by means of system actions: thus the result of a pro-
cedure may determine to which of several states the
program will branch. A procedure of this kind is called
a program block and is attached to a state rather than
to a branch; it is executed every time the correspond-
ing state is entered. Program blocks need not termi-
nate in a system action, but may instead be used to
provide some sort of continuous background activity.

These are the essential additions to the notation.
One other has been included for convenience in
programming ‘conversational’ systems, in which
each input message produces a predetermined output
message. This message can be coded within the
reaction procedure or program block, but it is con-
venient to be able to state it separately as an output
string or response. States therefore possess a response
as well as a program block, and reactions are similarly
defined as two components, a response and a pro-
cedure. The procedure is represented as an instruction
for executionor IEX.

The suggested form of these additions tc the
notation is shown in Figure 2; a somewhat similar
notation has been used by Phillips® to describe real-
time control programs. Figure 2 illustrates how the
first example could be entended to permit the removal
of lines and initialization of the program. These two
functions are controlled by the commands DELETE
and RESTART; as explained below, commands may

be typed at the console typewriter, or may be arranged
to appear on the screen as light-buttons. After
giving the command DELETE, the user points the
light pen at each line to be removed. Deletion is
carried out by a test routine DLAST, which also
tests whether any other lines remain on the screen.
When none remains, or the user gives the command
DRAW, the program changes state. RESTART
causes the program to enter the initial state 4, ex-
ecute its program block PBGO and return to state 1
when initialization is complete.

The language

A Network Definition Language has been devel-
oped so that problem-oriented languages, defined in
the form of state-diagrams, can be compiled into
interactive programs. W. R. Sutherland* has shown
that programs can be described directiy to the com-
puter in graphical form, and this technique has ob-
vious applications to the input of state-diagrams.
However, much of the information in these diagrams
is in character form, and would be difficult to describe
in purely graphical terms. For this reason, and because
it is more suited to off-line preparation, a character-
based language was preferred. The following remarks
and examples are intended to give a general impres-
sion of this language, which is described elsewhere
in some detail .3

The state-diagram is described by defining each
state in turn; each such state definition is followed
by a list of the branches from that state and their
properties. The ordering of the state definitions,
and of the branch definitions within a list, is im-
material. State and branch definitions are constructed
from statements, each defining one property as in
the following examples:

RESP PRESS BUTTON

PB PB22
IEX REPROG

These define a response “Press button,” a program
block called PB22 and an instruction for execution
named REPROG, respectively.

Each state has three properties (name, response
and program block) and each branch has seven.
For convenience, however, the language permits
certain statements to be omitted if the value of
the property is null, meaningless or zero. The only
statements which are syntactically necessary are
those defining the names of states and the actions
of branches. The remaining statements in a siate or

branch definition must follow these, but can be given
in any order.

A System for Interactive Graphical Programming 49

PBGO press “delete” ,

; button to point

: track at line to

delete
system
pen hit
“restart” L yes DLAST no
press program
button to block
draw button button
press
button when [> IEX
complete
test
9 button <> routine
DLINE
pen STORPT b | response
movement pen
movement

Figure 2—An extended diagram including responses, and with
provision for drawing and deleting lines and for initialization

Somie care has been taken to avoid explicit refer-
ences to peripherals in the language. As a result,
state-diagrams are largely device-independent and
compile into similarly device-independent programs.
For example, a ‘pen movement’ action may originate
as movement of a light pen or tracker ball, as a pair

of typed coordinated, or even as two numbers read
off a tape. Any such compatible set of actions is

called a category, and the definition of an action
must include the category name in the first statement.
Some actions, such as typed commands, require a
further property to define the message content. A
command ‘“‘restart” would be defined thus:

ACT 0

MES RESTART

The first statement indicates an action of category
0, which includes light-button hits as well as typed
commands; the second defines the message content.
Numerical names have been used for categories so
that extensions to the category list can be made
more easily.

Table I shows the state-diagram of Figure 2 coded
by means of the language into a network definition
and illustrates the use of the state entry to define
a change of state. If no state entry is mentioned
in a branch definition the state remains unaltered.

Compiling and executing an interactive program

Bilingual programming

The Network Definition Language contains no
facilities for coding the procedures named in state
diagrams. It is intended rather to be used in con-
junction with a procedure-oriented language, each
language being used for the tasks to which it is most
suited. Some readers may disagree with this approach,
which requires the programmer to be bilingual.
The fact remains that procedure-oriented languages
on to which powerful control facilities have been
grafted rarely make for easy programming. It there-
fore seems reasonable that interactive programs
should be written in two languages, one procedure-
oriented and the other control-oriented.

50 Spring Joint Computer Conference, 1968

STAT

RESP
ACT
MES
SE
ACT
MES
SE
ACT
SE

STAT

RESP
ACT
ACT
IEX
SE

STAT

RESP
ACT
SE
ACT
IEX

STAT

INIT

PB
ACT

1 Comment:

PRESS BUTTON TO TRACK
0
RESTART

PRESS BUTTON TO DRAW
7

10

STORPT

3

3

PRESS BUTTON WHEN COMPLETE

10

1

7
DLINE

4

PBGO
5

State definjtion, state |

State 1 response, “Press button to track”

Branch definition, action of category 0 (command)
Message “restart”
State entry, i.e. branch leads to state 4

Branch definition; command “delete” leads to state §

Branch definition, category 10 (button)
Pressing button leads to state 2

State 2 definition

State 2 response

Branch definition, category 7 (pen movement)
Branch definition; pressing button leads to state 3

STORPT stores pen position as starting point when button is pressed

State 3 definition
Branch definition; pressing button leads to state 1

Branch definition, pen movement
DLINE computes and displays fresh line at every pen movement

State 4 definition

Initial state, program starts here

Program block PBGO, executed on entering state 4
Branch definition, category 5 (system)

SE 1

STAT 5

RESP POINT AT LINE TO DELETE
ACT O

MES DRAW

SE 1

ACT 6

TEST DLAST

SE 1
END

Completion of PBGO leads to state 1
State S definition
Branch definition; command ‘“draw” leads to state 1
Branch definition: category 6 (pen hit)

Test routine DLAST deletes indicated line
If last line, branch to state 1

TABLE I: The example of Figure 2 coded into Network Definition Language

This bilingual approach permits an interactive pro-
gram to be created as three separate components,
namely the control component, procedure component
and supervisor. The supervisor contains routines for
handling interrupts and maintaining the display; at
its nucleus is a program which analyses and interprets
inputs. This program, the Reaction Handler, is basi-
cally a table-driven syntax analyser.® The tables to
which it refers are ring-structures and include a model
‘of the state-diagram, created by compiling the net-
work definition with a Network Compiler. These
tables form the control component of the program.
They contain references to the test routines, program
blocks and instructions for execution, which constitute
the procedure component and are compiled separately.

The decision to use ring-structures for the Reaction
Handier tables was made for a number of reasons. It
permitted null-valued entries to be omitted from the

tables, and others such as message and response
definitions to be of variable length. It meant that a
package of routines would be available for building
data structures for computer-aided design. It also
allowed a much more flexible approach to the design
of the Reaction Handler, since the tables could be
easily extended or rearranged. The ring-processing
package, which has been described in another paper,”
was based on the ASP language of J. C. Gray.? It
differs from the earlier ring languages of Roberts? and
others in the ease with which dynamic aiterations can
be made to the structure. In particular, elements can
be attached to rings or removed from them without
altering the element size, since the connections are
made by ring starts and associators which need not
be contiguous with the element. This flexibility has
made it possible to write an on-line, incremental Net-
work Compiler.

mming 51

The network compiler

The essence of an incremental compiler, as de-
scribed by Lock,'? is that each statement is inde-
pendently compiled into executable form, and can
later be modified without complete recompilation.
Normally this means assigning a number to each
statement so that it can be referenced. In the Network
Compiler it was found sufficient to assign names to
the states and branches; individual statements could
then be referenced by the property name. Branch nam-
ing has since been discarded in order to save space,
and it is therefore no longer possible to refer back to
individual branch definition statements. Users have
not found this to be a great disadvantage.

The first statement in a state or branch definition
causes the Network Compiler to set up a correspond-
ing ring element; the two classes of element are called
state elements and branch elements. An extra word is
provided in the state element to hold the state name.
Each further statement in a definition has the effect
of attaching to the element a definition ring defining
the named property. The manner in which rings define
properties is shown diagrammatically in Figure 3. The
value of any property of an element can be found by
selecting the definition ring with the appropriate
attribute in the associator, and ascending it to the
ring start; the element attached to this ring start con-
tains the value.

7 DLINE
branch category iex
element
\
\
\
\
\
: e

v ring start L

category”

-d)— associator : ;

Figure 3 —Defining properties by means of definition rings. This
shows the ring structure defining a branch of category 7 with an
IEX called DLINE. An assocator is shown in detail

Statements defining state entries are treated in the
same fashion: the ring to which the branch element
is attached leads to the named state element. Each
state element has such a state entry ring, whose
constituent elements define the set of branches lead-
ing to this state. A second ring, the permitted action
ring, starts from each state element, and defines the
set of branches leading from that state; this set in-
cludes branches which return to the same state and
therefore possess no state entry. Figure 4 shows part
of the ring-structure resulting from compiling the net-
work definition of Table 1.

press button
to track i :
state
response
. state 1 \Z
state
category ~entry
element cat 0 "'/‘93
4
branch N festart
element | B r
delete 5
B message
permitted
action
cat. 1013 /4 | ring
B N ;
-O-O 103
press button state
todaw [/ entry
D fing
state 2 \Z l@)
STORPT 3
8 O] -
perpitted
action
cat.7 ring
B -

Figure 4—Part of the ring-structure resulting from compiling the
network definition of Table I

As mentioned above, the Network Compiler is
designed for on-line use, and may be operated from
the teleprinter or from the display using light-buttons.
The teleprinter has proved the more convenient for
on-line compilation, but the light-buttons and dis-
played responses provide a valuable aid, particularly
to the novice. The compiler will also accept paper

52 Spring Joint Computer Conference, 1968

tapes prepared off-line. It has error-checking facilities,
and will halt at any erroneous command on the tape
until the correct version is typed.

The reaction handler: modes

A program under the controi of the Reaction Han-
dler may be in one of three modes: these are interrupt-
ed mode, reaction handling (or RH) mode and wait-
ing mode. Waiting mode does not imply inactivity,
but that the program has reached one of the-states in
the state-diagram and is ready for an action to occur.
It may therefore be engaged in computation (user wait-
ing for computer) or looping on a dynamic stop)com-
puter waiting for user):

During waiting mode any action by the user will
cause the program to switch to interrupted mode, and
a stimulus to be passed to the Reaction Handler. The
stimulus specifies the device involved and may also
refer to a block of data or message, such as a tele-
printer character or a pair of light pen coordinates.
Device name and message address are stored in a
five-word element which forms the head of a queue of
stimuli.

The program then enters RH mode and the Reac-
tion Handler processes the first stimulus in the queue.
Stimulus processing is a form of syntax analysis,
whose goal is to match the stimulus to an entry in the
appropriate table. If this goal cannot be reached, the
stimulus represents an ungrammatical action. If how-
ever the goal is reached, the table may specify a fresh
goal to be attained. Eventually the process stops,
either when it fails to reach a goal or when it arrives
at an ultimate goal where no further goal is specified.
The Reaction Handler then fetches the next stimulus
from the queue and processes it; when the queue is
empty the program returns to waiting mode.

At any time the Reaction Handler may be interrupt-
ed by a user action, and a further stimulus may be
added to the end of the queue. To prevent the queue
from growing uncontrollably, software flip-flops or
latches are used to govern the rate at which each de-
vice generates stimuli. The light pen latch, for exam-
ple, is set when a pen stimulus enters the queue and
cleared when it has been processed; while it is set,
all fresh pen positions are ignored.

Stimulus processing

The first task of the Reaction Handler on receiving
a fresh stimulus is to establish what category of action,
if any, the stimulus represents. This it does by refer-
ring to a category table. Once an action has been
recognised in this way, it is matched against descrip-
tions in a branch table of the branches leading from
the current state. This second phase determines what
reaction and change of state should occur, and it is
convenient to describe this phase first.

The branch table is in fact the ring structure created
by the Network Compiler, as described above and
illustrated in Figure 4. The Reaction Handler’s first
goal is to find a branch of the appropriate category
which belongs to the current state. This can be done
by searching in parallel the permitted action ring and
the category definition ring. If any branch elements
belong to both rings, the next goal is to find among
them an element whose message definition matches
the stimulus message. A series of message compari-
sons therefore takes place; before carrying out a com-
parison on a branch element, the test routine is exe-
cuted.

reaction takes place: the reaction response is dis-
played, and the IEX is executed. If no match can be
achieved, the Reaction Handler will accept any
branch element with a ‘null’ message. The final
goal is the branch’s state entry. If none exists, there
is no change of state. If on the other hand the branch
element is attached to a state entry ring, the new
state’s response is displayed, and the program block
address is used as a transfer address when the pro-
gram eventually returns to waiting mode. This ad-
dress may be modified by a jump displacement in-
cluded in the branch definition: this is a method of
achieving multiple entries to a program block. If the
state has no program block, the program transfers to
a standard dynamic stop address.

The most time-consuming part of this process is the
parallel ring search, which becomes particularly un-
desirable when repeated actions such as pen move-
ments are taking place very frequently. The parallel
search is therefore avoided by scanning through the
permitted action ring at every change of state. At
each branch element on the ring an activity bit is
set which allows a simple search through the category
definition ring to be carried out whenever an action
of that category occurs.

set-up e!ema!t
function | clear set up
buffer ‘V“ menu

il =
=

element keyboatd_v_' button w-
ring

E3

4 £
fetch
buffer

down-ring

terminator
El_(mmgl contents —gﬂiﬂ xj)ﬂ
2k

put in
buffer
L
d ex

Figure 5— A category table ring-structure, capable of dealing with
typed commands and light-button commands

A4

Svstem
ysiem

The first phase of the reaction handling process, in
which an input stimulus may be recognized as a
particular category of action, is carried out in a similar
fashion to the second. During this phase the Reaction
Handler uses the category table, a fragment of which
is shown in Figure 5. When a stimulus is received, it is
first matched with a source element containing the
same device name as the stimulus. A search is then
carried out along the down-ring from this element,
in an identical fashion to the second-phase search
along the category ring. If a matching element is found
on this ring, its IEX is executed. The next goal is
to find an up-ring from this element, leading to a cate-
gory element: this ring is treated in the same fashion as
the state entry ring in the second phase. The category
element forms a link between the category table and
the branch table, and the down-ring which starts at
this element is in fact the category definition ring used
in the second-phase search.

The first phase of reaction handling performs two
important functions. It is capable of concatenating
stimuli so that the combined input string can be treated
as a single action by the second phase; it is also re-
sponsible for grouping together actions of the same
category. Both functions are illustrated by Figure 5,
which depicts the ring-structure for dealing-with input
commands. Typed commands originate as a string of
characters, each of which matches with element E2
and is stored in a buffer. When the terminating charac-
ter is typed, the IEX of element E1 exchanges the
single-character stimulus message for the complete
buffer contents, and the second phase of reaction
handling commences from the “Category 0’ element.
Light-button hits produce stimuli containing the com-
plete command as an input message. These match
with element E3 and lead immediately to the second
phase.

When the program changes state, the old activity
bits must be cleared and the new ones set. The Reac-
tion Handler must also carry out various set-up func-
tions, defined as properties of the source elements.
These functions include such operations as clearing
buffers, starting pen-tracking and setting up the light-
button ‘menu.’” Source elements are themselves held
on a ring, whose members define the set of active
devices. The display is treated as a number of dif-
ferent ‘devices’: light pen interrupts are separated into
light-button hits, tracking interrupts and so forth, and
passed to the Reaction Handler under different de-
vice names.

In its general layout, the category table closely re-
sembles the branch table, and is set up by a very
similar compiler. This Category Compiler is also in-
cremental, and accepts table descriptions written in
the Category Definition Language,” which differs

only slightly from the Network Definition Language.
In general, a complete category table suits most pro-
grams, but it is convenient to be able to edit out un-
wanted categories with the aid of the Category Com-
piler in order to save space.

CONCLUSION

At the time of writing, the Reaction Handler system
has been in use for only a few months. Nevertheless
it has during this brief period demonstrated a number
of valuable features. In particular, the Network Defini-
tion Language provides a very efficient means of
writing graphical programs, and simple experiments
with graphical techniques can now be carried out in
a matter of hours instead of weeks. Both the language
and the underlying state-diagram concept are ex-
tremely simple, and can be used by those with very
little programming experience.

The adoption of a bilingual approach has undoubted-
ly helped to make this possible, and it is interesting to
compare other systems of a similar nature. The use of
a separate language to define a program’s control
sequence has been proposed before, but it is rare to
find explicit reference to the need for two languages in
interactive programming. The ICES System employs
what amounts to a bilingual method, in which a Com-
mand Definition Language is used to define the con-
trol sequence. The language is designed around the
use of card-image input, however, and is not particu-
larly suitable for interactive programming. Command
Flow Graphs are used in a similar fashion to state-
diagrams, but the concept of program states is not
employed.

A much more powerful facility for treating problem-
oriented languages of a very general nature is provided
in the AED System.!' Language syntax can be de-
scribed by means of the AEDJR Command Lan-
guage,!? the extreme generality which this system
permits is attractive, but is probably unnecessary in
graphical programs. The Command Language is
very complex, and its efficient use obviously re-
quires considerable experience.

The processing of basic characters by the AED Sys-
tem is carried out by the RWORD System. This
system is particularly interesting, as it employs the
concept of representing programs as finite-state
automata. It possesses many of the features of the
Reaction Handler, but avoids the explicit definition of
program states, a feature which has been found valu-
able in practice. RWORD instead uses a very neat
regular-expression language for defining vocabulary
words, and avoids the use of tables in order to speed
up program execution. It is clearly capable of produc-
ing more efficient programs than is possible using the

54 Spring Joint Computer Conference, 1968

Reaction Handler’'s ring-structured category net-
work.

Nevertheless, the Reaction Handler -has performed
quite satisfactorily as a real-time supervisor. It
provides a fast response to all types of user action,
including pen movement where a good response is
essential. It does so at the expense of a high system
overhead, which may reach as much as 20% during
pen-tracking. In a display processor, which is idle
most of the time, this is quite acceptable.

Less acceptable is the space consumed by the super-
visor. The system was developed on an 8K DEC
PDP-7 computer and Type 340 display, and in this
machine the supervisor occupies nearly 4K. Besides
the Reaction Handler, this includes the ring-process-
ing package, a full set of interrupt-handling and output
routines, and a software character generator. Some
difficulty was experienced in coding the ring-process-
ing routines as pure procedures, due to the lack of
index registers on the PDP-7. It seems likely that the
size of the supervisor could be greatly reduced by
using a machine equipped with index registers and a
hardware character generator.

ACKNOWLEDGMENTS

1 wish to thank Mr. C. B. Jones for his extensive
assistance in programming the system. I am also
grateful to Mr. Alan Tritter for suggesting including
the test routine; and to many members of staff of the
Centre for Computing and Automation, Imperial Col-
lege, and of the Cambridge University Engineering
and Mathematical Laboratories, including Professor
W. S. Elliott and Messrs G. F. Coulouris, C. A. Lang
and R. J. Pankhurst, for their advice and encourage-
ment.

REFERENCES

1 1 E SUTHERLAND
Sketchpad: a man-machine graphical communication system
Proceedings of the 1963 Spring Joint Computer Conference
2 D ROOS
ICES system design
MIT Press Cambridge Massachusetts 1966 p 25
3 C S E PHILLIPS
Networks for real-time programming
Computer Journal Volume 10 May 1967 p 46
4 W R SUTHERLAND
On-line graphical specification of computer procedures
MIT Lincoln Laboratory Technical Report No 405
Lincoln Laboratory Lexington Massachusetts
5 W M NEWMAN
Definition languages for use with the reaction handler
Computer Technology Group Report. 67/9 Imperial College
London October 1967
6 T E CHEATHAM K SATTLEY
Syntax-directed compiling
Proceedings of the 1964 Spring Joint Computer Conference
7 W M NEWMAN
The ASP-7 ring structure processor
Computer Technology Group Report 67/8 Imperial College
London October 1967
8 J C GRAY
Compound data structures for computer aided design:
a survey
Proceedings of the ACM 20th Anniversary Conference 1967 .
9 L G ROBERTS
Graphical communication and control languages
Information System Sciences Spartan Books 1964
10 K LOCK
Structuring programs for multiprogram time-sharing on-line
applications
Proceedings of the 1965 Fall Joint Computer Conference
11 D T ROSS
The AED approach to generalized computer-aided design
Proceedings of the ACM 20th Anniversary Conference 1967
12 D T ROSS
AEDJR: An experimental language processor
MIT Electronic Systems Laboratory Memorandum 211, 1964

Automation in the design of asynchronous

sequential circuits*

by R. 1. SMITH, Il 1. H. TR
University of Missouri at Rolla
Rolla, Missouri

ACEY, W,

INTRODUCTION

Sequential switching circuits are commonly classi-
fied as being either synchronous or asynchronous.
Clock pulses synchronize the operations of the syn-
chronous circuit. The operation of an asynchronous
circuit is usually assumed to be independent of such
clocks. The operating speed of an asynchronous cir-
cuit is thus limited only by basic device speed. One
disadvantage of asynchronous circuit design has been
the complexity of the synthesis procedures for large
circuits. :

This paper describes a computer program'2 which
automatically generates the complete set of design
equations for asynchronous sequential circuits. Many
of the algorithms employed are new and have been
shown to be much more practical than classical tech-
niques for the synthesis of large circuits.

Minimum or near-minimum variable internal state
assignments are generated using two of the Tracey
algorithms.® An evaluation procedure predicts which
of several codes generated will most likely yield the
least complex design equations. Next-state equations,
including don’t-cares, are then produced without con-
structing transition tables. Output-state equations are
also generated. Finally, simplified normal form design
equations containing no static hazards are produced.
The program is capable of designing circuits much too
large to design manually.

The operation of a sequential circuit is often
described by means of a flow table.* An example is
shown in Figure 1. The columns of a flow table repre-
sent input states, while the rows represent internal
states assumed by the circuit. Each flow table entry
specifies the next internal state and output which
result from the given input and internal states. When
the next-state equals the present state, that state is
said to be stable and is customarily circled. Unstable

*The research reported in this paper was supported in part by
the National Science Foundation through Grant GK-820.

=
(7]
@)
an
Q
e
T}
1]
o3|
=
o

w3

states correspond to transitions within a flow table
column.

L, 1

| {D/10 4
3 4 @0l
/01 3700

| @/ @00
| ®/I0 2

I5

O pHp WM

Figure 1 — Flow table

A sequential circuit is operating in fundamental
mode if the inputs are never changed unless the cir-
cuit is stable internally. If, in addition, each unstable
state leads directly to a stable state, the circuit is
said to be operating in normal fundamental mode. The
computer program described in this paper automati-
cally generates design equations for asynchronous
sequential circuits operating in the normal funda-
mental mode. Circuit specifications are conveniently
input in flow table form. Input state binary codes are
specified by the program user. A summary flow chart
of the procedure followed by the synthesis algorithm
is shown in Figure 2.

55

s6 Spring Joint Computer Conference, 1968

The program used to implement the design proce-
dure suggested above is written in PL/1. This lan-
guage was chosen because of its bit-string data for-
mat, Boolean operations, and the controllabie storage
feature. The program consists of about 2000 PL/i
statemenis divided into 8 subroutines.. The system
was designed to run on an IBM 360/40 but could be
run on a somewhat smaller machine.

Figure 2 — The programmed synthesis algorithm

State assignment algorithm

The internal state assignment procedures employed
are a modification of those described by Tracey.?
Either completely or partially simplified flow tables
may be input to the program. Flow table simplifica-
tion is not presently included in the synthesis proce-
dure, but will be included in a later version of the pro-
gram.

The Tracey state assignment algorithms are based
on the following theorem which is reproduced with-
out proof. “A row assignment to a flow table which
allots one internal state per row is satisfactory for the
realization of normal fundamental mode flow tables
without critical races if and only if for every transition
Si, Sy, a) if (S, Sp) is another transition in the same
column, then at least one internal state variable parti-
tions the pair {S;, S;} and the pair {Sy, S,} into sepa-
rate blocks; b) if Sy is a stable state not involved in
any transitions in the column, then at least one internal
state variable partitions the pair {S;, S;} and the state
Sy into separate blocks; and c) for i # j, S; and S, are
in separate blocks of at least one internal state varia-
ble partition.”

Constraints generated as. a result of applying the
above theorem may be listed in Boolean matrix form,
with each row corresponding to a partially specified
state variable. Consider, for example, the constraint
list generated by the flow table of Figure 1. The con-

straints shown below are generated on a per-column
basis in satisfying theorem parts a) and b):

Constraint Boolean
List Matrix
12345
(14; 23) 0110-
(15;23) 011-0
{ 3;24) -101-
24; 5) -0-01
25; 14 10-10
(1 4 0--1-

The program forms all partitions associated with the
topmost stable state of column 1, then all irredundant
partitions due to the second state, and continues until
all stable states in the column have been examined.
The process is then repeated for the remaining col-
ums. '

Note that for the above example, none of the col-
umn-generated constraints partitioned flow table rows
1 and 4; the constraint (1;4) was thus included in the
list to satisfy theorem part c). The program checks all
pairs of flow table rows, and generates additional par-
titions as required by c).

The state assignment problem now becomes one of
finding a minimum number of internal state variables
satisfying all of the constraints just generated. This
problem has been shown to be analogous to the gener-
ation of maximal compatibles by the Paull-Unger al-
gorithms for flow table simplification. A set of com-
pletely specified state variables, at least one of which
covers each constraint, corresponds to the maximal
compatibles. These completely specified state varia-
bles will be referred to here, therefore, as maximal
constraints. The selection of a minimum number of
maximal constraints, and hence minimum number of
internal state variables is similar to the covering prob-
lem in the Quine-McCluskey method for simplifying
Boolean equations. Details of these algorithms are
available in the literature and will not be given here.*>¢

As in the Paull-Unger Method A,> maximal con-
straint generation may begin with the assumption that
no constraints exist. Then each constraint is examined
for contradictions to this assumption and all implied
partitions are generated. After each constraint has
been so examined, one is left with the set of maximal
constraints. In another approach, Paull-Unger Meth-
od B, one begins with the list of constraints and seeks

Automation in Design of Asynchronous Sequential Circuits 57

to enlarge each through the complete specification of
the corresponding state variable until all enlarge-
ments are found that cover one or more of the original
constraints. Both procedures were programmed and
the second was found to be nearly a factor of two fas-
ter than the first in this application.

As stated previously, the selecting of a minimum
number of maximal constraints is similar to the cov-
ering problem in Boolean equation simplification. A
branching method has been used which is capable of
producing ail irredundant minimum-variable assign-
ments. Operating speed of this algorithm is increased
by reorganization of the maximal constraint list, based
on the idea that those maximal constraints including
the largest number of the original constraints would
most likely be members of a minimal cover. Internal
representation of each maximal constraint is restruc-
tured in such a manner that the covering problem can-
not be further simplified using column dominance
~ techniques.

It is obvious that either of the two assignments be-
low satisfy all of the constraints shown above:

Assignment #1 Assignment #2

12345 12345
y,01100 vy01101
v 01101 V01110
vs01010 V01010

Furthermore, these are the only two significantly
different minimum assignments which successfully
code the Figure 1 flow table.

It has been found that even with certain look-ahead
provisions in the branching routine, generation of
minimum variable assignments becomes a time-con-
suming problem for typical flow tables of 12 rows or
more. A second and much faster algorithm has been
programmed. It is an approximate method, and gener-
ates near-minimum variable codes.

The fast algorithm reduces the Boolean matrix cor-
responding to the maximal constraints through the
use of an approximate reduction technique. A con-
straint is constructed which seems to include a large
number of matrix rows. The included matrix rows are
then removed. This process is then continued until
all rows of the original matrix are included in at least
one of the generated constraints. This reduced matrix
corresponds to a near-minimum variable state assign-
ment.

The fast Boolean matrix reduction program usually
produces satisfactory assignments having less than
1¥5 times the minimum number of variables. Assign-
ment generation times for large flow tables may be re-

duced by two orders of magnitude using this approxi-
mate procedure. Near-minimal assignments have been
efficiently generated for flow tables having up to 75
specified next-state entries and 150 constraints with
approximately 15 minutes computer time on an IBM
360/50. Many satisfactory assignments are often gen-
erated. One of these may be selected by a test routine
or chosen by the designer. The test routine, to be
discussed below, chooses a “good” assignment for
reduced hardware realization.

Design equations

As the example above illustrates, the code gener-
ating algorithms frequently produce several satisfac-
tory assignments. Generated codes may be evaluated
by a procedure due to Maki,” which selects that assign-
ment most likely to have simple next-state equations.
Consider, for example, the assignments and next-state
equations shown in Figure 3. Note that the next-state
equations for column I; Assignment #1 are much less
complex than those for Assignment #2.

Assignment # | Assignment#2

N1 Y2¥3 Y Y2 ¥3 I
—

00O 0O 0O I 1 4

I O | I 0 | 2 2

|l 0 O R 3 2

0O 0 | 0O O | 4 4

o 1 | I 1 0 5 5

O1 O o1 O 6 S
.

Yisy+.. Y =(y+y2))+ ..

Y=yt .. Yo =yoy3' [+..

Yz =11+ ... Y3=(YZ'+y3)I|+...

Figure 3 — Partial flow table and assignments

The test procedure searches for that assignment
with a maximum amount of reduced dependency in the
next-state equations. Two types of reduced depen-
dency are easily detected from the assignment. First,
observe that Y is dependent only on the input in the
given example. This can be predicted by noting that
ys has the same value, 1, for all stable states in the
column. A second observation is that Y, is dependent
only on the input and the present state of y,. Similarly,
Y, is a function only of y, and the input. This can also
be predicted by simply noting that y, and y, are never
excited to change state for any transition under input
I,. In other words, one need simply observe that y,

58 Spring Joint Computer Conference, 1968

and y, have the same value for state pair (1, 4), state
pair (2, 3) and again for state pair (5, 6). Observe the
increased complexity of the next-state variables in
Assignment #2 of Figure 3 as a result of its failure to
insure reduced dependency. The programmed rou-
tine based on this method will evaluate each generated
state assignment for reduced dependency in just a few
seconds.

"~ Maki has also described a procedure for obtaining
next-state equations without construction of the tradi-
tional excitation matrix.” An algorithm derived from
his method is presented here.

Each internal state transition may be associated
with a p-subcube of the n-cube defined by the input
and internal state variables. Furthermore, all of the
next-state entries of p-subcubes associated with a
single stable state will be identical, and equal to the
row code of the stable state. Consider, for example,
the application of Assignment 1 to Column I, of Fig-
ure 3, as shown in Figure 4.

In the transition between rows 2 and 3, all states
in the p-subcube y,y, (y; = 1, y, = 1) must have the
same next-state entries, namely that of stable state 3,
110. A tabular form of p-subcube generation may be
illustrated as follows:

Y1 ¥2 ¥3

110 (@ Stable Row Code

1 11 3 Unstable Row Code
11 - P-Subcube Resulting from

Transition

The transitions from rows 4 and 5 to stable state 1
define the remaining two p-subcubes listed in P,1 of
Figure 3. Note that the Boolean sum P; of these
terms represent all next states requiring specified
entries under input 1.

Y| Yo¥3] PI, “yve t Y tA'YE
000 1| |On Yj = niveli
e 2] 30 Y2 =y
t1o 3|®2 Yz=0-
oo1 4| 1 Op = ty'y2' + yi¥y3) Iy
o10 s5f 1 02=wwl

SN

Figure 4 — Partial flow tabie, specified p-subcubes and 1-sets

Notice that if y; is 1 in the stable state row code,
then next-state variable Y; = 1 for all states in p-sub-
cubes associated with that stable state. For example,
since in row 3 y; = 1, all states in the p-subcube v,y
will have next-state variable Y, = 1. In other words, all
p-subcubes associated with transitions to a stable
state will appear in the Boolean sum-of-products next-
state equation Y, if digit i of the stable row code is one.

As the p-subcubes are generated by the computer

program, they are added to the appropriate next-state
1-set lists only if the corresponding next-state variable
is 1 in the subcube (see Figure 3). The final results are
(partially simplified) Boolean equations representing
the 1-cells of the next-state variables.
- The synthesis program also generates the output
equations of the sequential circuits. The output corre-
sponding to a given stable state is also associated with
all unstable states leading to the stable state. All p-
subcubes generated previously are grouped according
to stable state. If an output variable is 1 for a partic-
ular stable state, the associated p-subcubes become a
partial list of 1-sets under the corresponding input.
The output 1-sets for Column I, in Figure 1 are shown
as sums in Figure 3.

To permit further simplification of the design equa-
tions generated above, it is desirable to compute the
unspecified entries for all equations. Fortunately,
unspecified p-subcubes are common to all the design
equations. A Boolean equation for don’t-care entries
is generated by simply taking the complement of the
available equation for specified entries (see Equation
Py, in Figure 3).

Complementation of a Boolean sum-of-products ex-
pression may be performed by complementing the
expression, multiplying out the result, then simplify-
ing the resultant sum-of-products expression to obtain
the solution. The procedure used here is a modifica-
tion of that method. Simplification illustrated by

AA+B+0)=A and
AA'+D+E)=AD+E)

is performed both before and during the multiplication:
of the product-of-sums expression. Redundant terms
are also deleted. A brief example will perhaps illus-
trate the method employed. Figure 5 shows comple-
mentation of the sum of p-subcubes shown as P, in
Figure 3.

A normal-form Boolean equation for each next-state
variable may be obtained by combining the don’t-care
terms found above with the appropriate next-state 1-
sets. Since the output associated with don’t-care in-
ternal states may be assumed to be unspecified, the
output-state equations also include the same don't-
care terms.

Automation in Design of Asynchronous Sequential Circuits 59

P = yy2 + ¥R + 9ys

P'Il =y + y2) - {yy + yo) (y; + y3)

y|(y2') +y>+y3: (Y|l + yz') (y+ y2)
Ny2 +n+(yyz+ yyz)(y+ yo)
N+ ¥ 'vey3

Figure 5 — P-subcube complementation and simplification

The program then finds prime implicants of each
design equation produced above. A conventional con-
sensus algorithm is used and will not be presented
here.

A covering algorithm is used to find simplified, but
not necessarily minimal design equations. Instead of
covering the 1-cells of a design equation the program
covers the 1-sets originally generated from flow table
columns. (Recall that a 1-set is.a subcube containing
one or more vertices or 1-cells for which the expres-
sion is 1.) The problem of generating and covering a
large number of 1-cells is thus avoided. More impor-
tantly, it can easily be shown that by covering the 1-
sets, all static hazards associated with vertical flow
table transitions are eliminated from combinational
circuit outputs. A static hazard exists when there is a
transition between a pair of adjacent states having the
same output, during which it is possible for a momen-
tary improper output level to occur. Using two-level
AND-OR synthesis, if each product (prime implicant)
covers only 1-sets, all transitions within that 1-set are
static-hazard-free; static hazards may only be caused
by input-state changes which correspond to horizontal
transitions on the flow table.

A procedure for eliminating the remaining *‘hori-
zontal” hazards has been included. It is based on the
restriction that only one input-state variable at a time
changes. All pairwise combinations of a design equa-
tion’s products (prime implicants) are examined for
horizontally adjacent 1-sets. If such an adjacency is
found, a static hazard exists. Since a horizontal transi-
tion may only originate at a stable. state, the static
hazard cannot possibly cause a malfunction unless
one of the 1-sets includes a stable state.

Consider, for example, the illustration shown below,
which is the simplified design equation for Y, of Fig-
ure 1, using Assignment 1:

Y,=y;'Vw+y,v+yw

{where the input variables are v w)
Note that the horizontally adjacent l-sets y;'v'w and
y,w’ appear as the first and third terms. If any stable

state has a code in the subcube y,y;'v’ then a static
hazard exists which may cause a malfunction. Note
that stable state 3 in columns I, and I, both satisfy

Y.=y;'vVwty,v+y,w +yy,'v-

Program performance

Execution times obtained using the program de-
scribed here depend on hardware and software effi-
ciencies, as well as the complexity of the input flow
table. The solution times stated here were obtained
using an IBM 360/50 computer and the IBM Release
13 PL/1 Compiler.

Simplified ‘design equations for flow tables of 6
rows by 4 columns (24 cells) have been produced in 45
seconds to 4 minutes, depending on problem complex-
ity. Eight row by 4 column tables usually are solved in
1.5 to 8 minutes. Three assignments for a 12 X 4
(48 cell) flow table have been produced in about 8
minutes, Wwith next-gtate equations (unsimplified)
generated in 3 minutes per assignment. Two satisfac-
tory codes for a 18 X 4 (72 cell) flow table were found
in 15 minutes. Computation times for large problems
have been found to be extremely problem-dependent.

SUMMARY

A description of a programmed algorithm for the syn-
thesis of normal fundamental mode sequential circuits
has been presented. The program permits the logic
designer to input his asynchronous sequential circuit
specifications in the form of a flow table and obtain all
next-state equations and output equations in the form
of simplified sum-of-products. Two internal state as-
signment algorithms are available to the designer. One
will generate a minimum-variable assignment but may
be lengthy to execute while the other will execute
much faster but guarantees only a near-minimum var-
iable solution. A testing routine is then available to
aid the designer in deciding which of several satisfac-
tory state assignments will tend to reduce the complex-
ity of the design equations. A “‘good” assignment will
be selected and simplified next-state and output equa-
tions will be generated based on the selected assign-
ment. The complete program has been written in PL/1
and is running on an IBM 360/50 computer at the Uni-
versity of Missouri at Rolla. Flow tables with up to 75
specified next-state entries have already been run
and much larger flow tables will soon be generated
for experimentation purposes.

REFERENCES

I RJ SMITH 1l
A programmed synthesis procedure for asynchronous sequen-
tial circuits

60 Spring Joint Computer Conference, 1968

Masters Thesis University of Missouri at Rolla 1967
2 W L SCHOEFFEL
Programmed state assignment algorithms for asnychronous
sequential machines
Masters Thesis University of Missouri at Rolla 1967
3 J H TRACEY
Internal state assignments for asynchronous sequential
machines
IEEE Transactions on Electronic Computers Volume EC-15
pp 551-560 August 1966
4 D A HUFFMAN
The synthesis of sequential switching circuits
Journal of the Franklin Institute vol 257 pp 151-190 and

275-303 March and April 1954
M C PAULL S H UNGER
Minimizing the number of states in incompletely specified
sequential switching functions

IRE Transactions on Electronic Computers vol EC-8 pp 356-
367 September 1959
E J MC CLUSKEY
Minimization of Boolean functions
Bell System Technical Journal pp 1417-1443 November 1956
G K MAKI
Minimization and generation of next-state expressions for
asynchronous sequential circuits
Masters Thesis University of Missouri at Rolla 1967

Interpretation of organic chemical formulas by computer *

by ALBERT N. DeMOTT

Computer Research
Rockville, Maryland

INTRODUCTION

Over the last few years, a frequently discussed
problem in the area of chemical information systems
has been the need for some means by which chemists
could communicate with the system in terms of their
normal chemical language, the structural formula,
rather than requiring them to use special, machine-
oriented notations. The Walter Reed Army Institute
of Research (WRAIR), as part of its Chemical
Structures Storage and Retrieval System,! has
developed an economical and effective computer
program to analyze structural formulas as normally
written by chemists, producing as output a detailed
description, in machine-oriented format, of the atoms
in the molecule and their connections to each other.
In principle, any trained chemist can prepare com-
pounds for entry in the system master file, or questions
for searching it, without any special training in the

WRAIR system. The program is now being used in -

daily operations and is, we believe, the only opera-
tional program capable of performing this function
without major restrictions on the formulas which can
be accepted. As a special case of the general problem
of the man-machine interface, the program may well
be of interest outside the chemical field, particularly
since many of the techniques used have no essential
relation to chemistry.

The operational cost of this facility compares
favorably with the cost-of preparing the connection
tables,? fragment lists, systematic names,® or other
special notations* required by many chemical re-
trieval systems. Execution time on an IBM 7094
computer averages about five to seven minutes per
thousand compounds. In the environment in which
the program is currently operating, preparation of
input to the program requires one and a half to
two minutes of clerical time per compound, and about
five minutes of 7094 time per thousand compounds.
The program accepts well over 95% of the chemically-

*This paper is contribution No. 330 from the Army Research
Program on Malaria.

correct structures presented to it, and the accuracy of
interpretation of those accepted (excluding com-
pounds for which warning messages are issued)
closely approaches 100%. The only limitations on the
freedom of the chemist in writing formulas are the
following: (1) Organic, rather than inorganic, chemical
conventions must be followed where the two systems
differ. (2) The structural formula must be given in
enough detail to resolve any ambiguities which
might normally be resolved by the context of dis-
cussion. (3) A few specialized types of compounds
.(such as polymers, coordination compounds, and
stereo isomers) cannot be handled. (4) In a few cases
of variant usage, the chemist is restricted to one of
the options normally open to him; in general, however,
the program will handle all or most of the conventions
commonly used.

Background

The number of known organic compounds has
increased rapidly over the last ten or fifteen years,
creating a critical need for rapid means of retrieving
information about compounds related to the com-
pound a chemist may be currently studying. For
example, an urgent problem in the medical field,
at present, is to find new anti-malarial drugs which
will be effective against the drug-resistant strains
of the malaria parasite which have appeared recently
in southeast Asia. When a research worker finds a
compound with some effectiveness in treating the
disease, his first need is to obtain information about
the biological activity of known related compounds,
as a guide to determining what modifications to the
molecule might offer promise of increasing the activity
of his potential drug. A manual search of files contain-
ing several hundred thousand compounds is impracti-
cal, no matter how well cross indexed they may be,
since the portion of a molecule which is relevant
for one search is likely to be irrelevant for nearly
all others. In the example just cited, in fact, the
question of which portion of the molecule is relevant

61

62 SpringJoint Computer Conference, 1968

is precisely the question the search is intended to help
answer.

To solve this problem, WRAIR has developed a
computerized storage and retrieval system which
allows the user to specify any chemically valid
structure or portion of a structure. The system
will then retrieve all compounds in the file which
contain that structure as a part of their molecules.
Retrieval is on the basis of a successful mapping of
the structure of the question into the structure of
the compound on file. In order to permit such a
mapping the file entries must contain, and input must
provide, a specification of the characteristics of
each atom in the molecuie and a specification of aii
the pairs of atoms which are bonded directly to each
other (with the nature of the bond given in each
case). On the other hand, the structures of new
compounds for the file, whether obtained from
published catalogues, submitted by the chemists
who have synthesized them, or gotten from some
other source, will nearly always be specified orig-
inally by means of conventional chemical formulas.
The formulas can be, and in the past have been, con-
verted to an atom-by-atom and bond-by-bond format
by manual methods, but this is a tedious task which
must be performed by trained chemists. Further-
more, the original formula is lost in this process and is
not available at retrieval time. The program which
is the subject of this paper was created to bridge
this gap. The preparation of input can be entrusted
to relatively unskilled clerical personnel, since
their only task is to copy the chemist’s original
drawing. Furthermore, since the original formula
is' provided to the system in a binary coded form,
it can be conveniently included in the master file
entry for the compound and printed on a iine printer
at retrieval time. It can also be provided to the user
during initial processing in conjunction with rejection
messages and warnings of ambiguities and sus-
pected errors.

In the current operational environment of the pro-
gram, input is prepared by typing on a chemical type-
writer.® The paper tape output from the typewriter
is converted to magnetic tape and processed by com-
puter into line-by-line order. Output from the program
consists of a fairly conventional connection list.
The details of this input and output are beyond the
scope of this paper, however, since they do not
affect the logic of the program. Relatively minor
coding changes would suffice, in fact, to provide
output in other formats (such as a connectivity
matrix) or to accept input prepared in other ways,
provided the input represents a line-by-line image
of the formula and preserves the original geometric
relations.

The problem

Organic chemical formulas are a language which
has grown up over the past 100 years with little
attempt at standardization. Its “rules of grammar”
have never been codified, and must be deduced
from the actual practice of chemists. In principle,
a formula is a conventionalized picture of a molecule
as projected on a plane, but the emphasis must be on
the word “conventionalized.” Each atom is rep-
resented by an element symbol consisting of one
or two letters, and the connections between atoms
are indicated by straight lines (single, double, or triple
according to the nature of the bond) connecting two
element symbols. In practice, however, the name
“structural formula” is misleading. Only the major
outlines of structure are shown by means of bond
lines—the details must be inferred by the reader.
For example; the characters “SO,” in an organic
(but not in an inorganic) formula mean that two
oxygens are each double bonded to a sulfur atom
and that the sulfur atom in turn is single bonded to
each of two other atoms in the molecule. (The bond
lines for the latter bonding may or may not be writ-
ten.) If you ask a chemist why “SO,” represents
this structure and no other, the answer will be, in
substance, “Because it does.” Chemically it is per-
fectly possible for two oxygens to be single bonded to
a sulfur atom with each oxygen single bonded in
turn to some other atom, and such structures do in
fact occur. They are never, however, represented
by “S0,.” Most ‘“structural” formulas include
lengthy strings of element symbols, subscripts,
parentheses, and brackets. Their structure is obvious
to a chemist, but not at all apparent to a layman.

The problem of interpreting chemical formulas is
therefore twofold: First, the program must be able
to trace the chains and rings formed by bond lines,
occasionally in extensive patterns resembling chicken-
wire. Second, it must be able to determine the struc-
tures implied by strings of symbols which give no
explicit indication of the mutual relations of the
atoms represented.

Basic procedure of the program

Input to the program consists of structural formulas
whose individual characters have been arranged
in line-by-line order, including all blanks within
each line. One formula is read in, stored in a two-
dimensional matrix, and a starting node is chosen
arbitrarily. For the purposes of the program, a node
may be a string of symbols, but for simplicity let
us assume that all nodes in the structure are singie
atoms with or without attached hydrogens. The

and its characteristics (including the number

atoms and it

Interpretatioh of Organic Chemical Formulas by Computer 63

of attached hydrogens, if any) are recorded. A dot
at the corner of a ring structure is interpreted to
represent a carbon atom with enough attached
hydrogens to make up its full valence of four. Next,
all adjacent matrix cells are checked for bonds
pointing to the node. Each bond found is traced and
the matrix location of the atom at its far end is entered
in a table of unprocessed nodes. This entry also
records the nature of the bond and identifies the atom
at the node currently being processed. The location
of the node table entry is then stored in the matrix
cell at the far end of the bond.

When all bonds pointing to the node have been
traced, the valence of the atom at the node is checked
to make sure it agrees with the total of the bondings
shown. A new starting point is then chosen by taking
an entry from the node table, and the new node is

_processed in the same manner. If a matrix cell
-containing a bond pointing to the node is found to
have a node table reference in it, the information in
the entry is used to record the bonding between
the atoms at the two nodes. The table entry is then
erased. Processing of the molecule is complete
when no entries remain in the node table.

Interpretation of strings of symbols

When a node consists of a string of element sym-
bols, subscripts, brackets, and parentheses, the prob-
lem becomes vastly more complicated. The bulk of
the coding in the program is devoted to handling this
problem.

Two basic approaches to the problem of inter-
preting such strings were considered in designing
the program. The first approach would be to analyze
strings entirely by program logic, taking each element
symbol separately and inferring the relation of its
atoms to the other atoms in the string. In terms of
an analogy with natural languages, it represents
interpreting a sentence word by word, allowing for
all the changes in meaning of a given word which
can be produced by changes in context, and for the
variation in the relation between two words which
results from changes in their relative positions and
the presence or absence of other words in the sen-
tence. In the case of chemical formulas, one of the
major difficulties in this approach is the fact that
most chemical elements can take on any one of
several different valences (i.e., have different number
of bonds).

A second approach to interpreting strings would
be, using the linguistic analogy, to analyze the sen-
tence in terms of phrases instead of individual words.
Chemically, this would mean defining a set of glyphs
(i.e., groups of element symbols and auxiliary char-

acters), each of which would represent one and only
one arrangement of atoms and bonds. Many such
glyphs can, in fact, be defined, and the approach
offers obvious advantages from the standpoint of

simplicity of programming. The approach was used
with considerable success by E. B. Gasser and

C. W. Gregory at Colgate-Palmotive Company in

~ designing and implementing for a small computer

an experimental predecessor to the present program.
The final decision, however, was in favor of using
program iogic exciusively, and experience has con-
firmed that the decision was a good one. First, it
was found that a number of lengthy glyphs would need
to be defined, with many glyphs being subsets of
longer ones. This would require lengthy table searches
and repetitious processing of element symbols as
overlapping fields were tested successively against
the glyph table. Program execution would be slow.
Second, the number of glyphs to be defined would

be large (probably on the order of 1,000), and few
would be used by chemists with absolute consistency.

To require a chemist to consult such a glyph list
to ensure that his structure would be interpreted
correctly would defeat the primary goal of the pro-
gram, and would open wide opportunities for errors.
Third, and most vital, a study of a set of representa-
tive formulas led to. the conclusion that it would in
fact be possible to abstract a set of rules simple
enough to be practical from a programming stand-
point, and universal enough to insure reliable opera-
tion of the program. Furthermore, it appeared possible
to define criteria for identifying genuinely ambiguous
formulas and either rejecting them or issuing a warn-
ing to allow the chemist to check the program’s
interpretation. The flexibility of the program logic
approach appeared to be more valuable than the
definiteness of the glyph approach. :

The original set of rules turned out, not unexpect-
edly, to be thoroughly inadequate; but progressive
refinement as problems became apparent has pro-
duced, with no changes in the basic logic, a program
which comes very close to meeting the goals orig-
inally defined. At present, two typewritten pages
are sufficient to specify the conventions which
chemists must observe in writing formulas for input
to the system.

A complete description of the rules used to inter-
pret strings of element symbols is beyond the scope
of this paper, but the basic principles are as follows:

1. Since Western languages are written from
left to right (and most chemists are Westerners)
strings are usually written, and can usually be ana-
lyzed, from left to right.

2. The bondings on each atom will exactly equal
one of its normal valénces, unless another valence

64 SpringJoint Computer Conference, 1968

has been specified in the formula. Except for oxygen
groups (see rule 5 below), the valence will be the
lowest compatible with the valences of surrounding
atoms.

3. A string, since it resembles a chain in appear-
ance, will normally a chain s
(with or without side branches) and, except in con-
nection with oxygen groups, it will not contain
any rings. A straight chain should be preferred over
a chain with branches, where both are possible.

4. Each string represents a single molecule, or
portion of a molecule, and each atom in the string
must be bonded directly or indirectly to every other
atom in the string.

S. Oxygen, particularly subscripted oxygen, is

most likely to be bonded as a side atom, rather than
as part of the main chain, even if this requires assign-
ing the atom to which it is bonded a valence higher
than its lowest normal valence.

6. Triple bonds are rare, and a pattern of one
double and one single bond is preferred over a

triple bond.

renresent

v Sl

trcture
ruciure

In processing a string, the general procedure is
to take each atom in turn (treating subscripted sym-
bols other than oxygen as if an equivalent number
of symbols had been written side by side). First,
any written bonds approaching the atom vertically
or from the left are traced and their value is sub-
tracted from the valence of the atom. (Bondings
are made or entries added to the bond table in the
same way as for structures shown in full detail.)
Next, the valences of the atom are used to satisfy
all unsatisfied valences remaining on previous atoms
" in the string, unless all atoms in the string so far have
the same valence and no written bonds are present
“on any of them. In the latter case, the atom will be
left unbonded. Last, any bonds approaching the atom
from the right will be used to satisfy valences on
whatever atom still has unsatisfied valences. This
will not necessarily be the atom being processed,
but may well be an earlier one. The program then
requires that unsatisfied valences be left on at least
one atom in the string, unless the end of the string
has been reached. In the latter case, all valences
must be satisfied. If at any stage of processing the
valences on the atoms are such that the above rules
. cannot be followed, the valence of one of the atoms
involved is raised to its next higher value.

In addition to the main processing routine described
above, three special routines are provided to deal
with (1) oxygen groups, (2) alkane chains of the form
C,H,, and (3) groups inverted from their natural
order becuase they occur at the left end of a string.

Parentheses and brackets

Although several special usages occur, and are
provided for by the program, brackets and paren-
theses are most often used in one of two ways:
(1) The parenthetic group may represent one or more
branches from the main chain of the string. This is
referred to as “fanwise bonding.” If the parentheses
carry a subscript, all the groups represented will
be bonded to an atom or atoms in the main chain.
If an oxygen group precedes, each parenthetic group
will be bonded to a different atom within the oxygen
group. Otherwise, all groups must be bonded to the
same atom. (2) The group may represent a unit which
is repeated as part of the main chain. This is called
“chain bonding.” The groups are bonded to each
other in a chain, with the first group bonded to a
preceding atom in the string and the iast group
bonded to an atom which follows. :

The two usages are distinguished by counting what
might be called “handles” on the group. If the group
has only one handle, it is bonded fanwise. If it has two
handles it is chained. Handles are counted by first
processing the group as if it were a string in itself,
reserving one valence on the first atom in the group
if the group is not at the beginning of the whole
string. A handle is then defined as (1) a reserved
valence, (2) unsatisfied valences on any one atom in
the group, or (3) a written bond extending to some
atom outside the group.

Parentheses and small brackets are expanded
and processed when the end of the group is reached
in normal processing of the string. Large brackets
(which may enclose substructures rather than single
strings) are processed when interpretation of the
structures within them has been completed.

SUMMARY

The program described in this paper meets a need
which has been recognized for a number of years, by
allowing communication between chemists and
computers in terms familiar to all trained chemists.
Certain limitations stiil exist, but our experience
has been that when a formula must be rewritten to
meet these limitations the result is nearly always a
formula which chemists consider better chemically.
Since these same formulas are used as part of the
output for searches, this can be a distinct advantage.
The program is economical in operation, and some
two years of use have shown it to be reliable and
subject to progressive refinement.

ACKNOWLEDGMENTS

All work on this program has been supported by the

Interpretation of Organic Chemical Formulas by Computer 65

U. S. Army Medical Research and Development
Command.

The original design work was performed by the
author at the Service Bureau Corporation and was
initially implemented by him and by other employees
of the Corporation working under his supervision.
Some modifications were made by the author while
at Computer Applications Incorporated, and a
major revision was carried out by him at Computer
Research.

REFERENCES

1 D PJACOBUS D E DAVIDSON A P FELDMAN
J A SCHAFER }
Experience with the mechanized chemical and biological
information retrieval system
Presented before the Division of Chemical Literature

American Chemical Society Chicago Illinois
September 1967

2 W S HOFFMAN
An integrated chemical structure storage and search system
operating at Du Poni
Presented before the Division of Chemical Literatue
American Chemical Society Chicago Illinois
September 1967

3 G G VANDERSTOUW I NAZNITSKY J E RUSH
Procedures for converting systematic names of organic
compounds into atom-bond connection tables
Journal of Chemical Documentation vol 7 no 3 1967

4 E HYDE F W MATTHEWS L H THOMSON
Conversion of Wiswesser notation to a connectivity matrix
for organic compounds
Presented before the Division of Chemical Literature
American Chemical Society Miami Beach Florida
April 1967

5 A FELDMAN D B HOLLAND D P JACOBUS
Automatic encoding of chemical structures
Journal of Chemical Documentation vol 3 no 4 1963

A simulation in plant ecology

by RAYMOND E. BOCHE

Texas Technological College
Lubbock, Texas

INTRODUCTION

The purpose of this paper is to present some results
from a preliminary study investigating the applica-
tion of the computer sciences to problems in plant
ecology. Results include a model which simulates the
growth of a forest in a particular time dependent en-
vironment and an implementation of that model using
a digital computer and assumed data. At present the
model is somewhat restricted in level of detail and
range of applicability. It is, however, believed to be a
pioneer in plant sciences, and further study will surely
suggest directions for refinement in level of detail. The
range of applicability is constrained by factors not
modeled to a young, growing forest of natural occur-
rence in a particular environment. Validity is antici-
pated, not for individual trees, but for the entire forest
presented as an ecological system.

Purpose and scope

The general purpose of the model described here is
to investigate the feasibility of computer simulation of
plant growth processes. The specific model developed
devotes unusual attention to adaptability and flexi-
bility in order to provide ready means of incorporat-
ing improvements and modifications suggested by
plant physiologists or plant ecologists. This approach
recognizes the strongly qualitative and descriptive
aspects of these sciences and makes allowance for the
shortage of quantitative knowledge and relationships
required by the model.

The specific model, a young, growing forest of
natural occurrence in a particular environment, will
allow us to predict changes in composition of a forest
as influenced by the ecological interactions. The
model includes and accounts for three of the five prin-
cipal limiting factors in plant ecology, light, tempera-
ture, and moisture. The exclusion from consideration
of the remaining two factors, soil fertility and soil
type, limits the application of the model to forests of
natural origin; thus assuring some degree of soil type
compatibility for species present. Excluding soil

67

fertility limits the scope of the model to relatively
short periods of time during which soil fertility re-
mains relatively constant and uniform in its effect on
species present.

It should be emphasized that the model is for growth
in a natural environment; consequently, it does not at
present encompass such considerations as probability
of seedlings started, human intervention, or other
extraordinary influences such as fire.

Feasibility

Before embarking on this project, it is appropriate to
investigate its feasibility. Toward that end, it would
seem that three major areas must prove amenable to
computation if the model is to satisfy our general
purpose.

First, growth must be predictable from environment.
Given a plant of known heredity and of known
previous history, it is possible, by applying the
principles of plant physiology, to predict with con-
siderable certainty the physiological reactions
which will be evoked in that plant upon its ex-
posure to a given complex of environmental con-
ditions.

Second, ecological interaction must be predict-

able given a particular flora subjected to a particu-
lar environment.
Ecological measurement has been sufficiently
perfected to give material aid in predicting the
hazards to be encountered in critical areas under
various types of land use and management.

Third, the interactions must be ‘“modelable” and
“computable.”
Important in plant ecology is the principle of
limiting factors, which says in effect that the least
favorable of conditions present will prove epistat-
ic. In particular, photosynthisis or plant metabo-
lism, will be controlled by the least favorable of
soil fertility, soil type, light, temperature, and
moisture.

68 Spring Joint Computer Cbnference, 1968

The three above definitive statements were ab-
stracted from the Encyclopaedia Britannica and, to-
gether, give strong indications of feasibility for the
proposed study.

Basic model strictiire

1. General flow

A forest, for our purposes, will be defined as two or
more established trees that interact ecologically with
one another. The first step in the model is to initialize a
particular forest (thru observation or assumed data)
and measure its initial composition.

The second step is to apply an amount of growth
resources (temperature, light, and moisture) deter-
mined as a result of a simulated period of climate.

At each time step of the model, the moisture added
is allocated to individual trees. The temperature,
light, and moisture that would otherwise be available
during the climate period are then modified by the
influence of neighboring trees. The actual moisture
availability determined is based upon moisture evap-
oration rates influenced by light and temperature, pre-
vious moisture present, and potential losses to the sub-
soil during the period.

Finally, growth takes place at a rate determined by
moisture, temperature, and light. Growth rates used
vary with individual species and give account of cur-
rent season and present state of maturity. Moisture
used in growing is removed from the soil.

Composition .is measured, as requested by input
data; the processing of successive climate periods
continues until completion.

2. Simplifications and analogs

The particular sample of a forest selected or as-
sumed will be a straight line. In the case of observed
data, a strip of some appropriate, but as yet undeter-
mined, width will be selected; all trees within that strip
will be assumed to occur on a single straight line.
This simplification is believed to be essential to the
computational feasibility of the project and causes no
significant detraction from realistic representation
of the physical world. To simplify calculations the
line is chosen in a north-south direction. Thus we will
be modeling a “two-dimensional” forest. It should be
recalled that we are interested in the ecological sys-
tem, rather than individual trees. Such a simplifica-
tion may cause loss of information concerning indi-
vidual trees, but the loss of information to the overall
model should prove to be well within the bounds of
significance in the best climate sub-mode! we can hope
to construct, or in the best plant growth models we
can conceive.

An important model analogue used is the depict-
ing of shading by an angle, (determined by species,
season, and latitude) with shade occurring to the north
during the daylight hours within the area of the right
triangle, specified by the height of a tree and its shad-
ing angle. (Figure 1) The effects of shade on tem-
perature and light (and hence on evaporation and
growth) are modeled by analogy. The single angle
selected will result in less area of shade than actually
exists during the early morning and late afternoon
hours; but in so doing, account is taken of the much
reduced heat and light intensities occurring at those
hours.

Figure 1 —Shade angle

Other simplifications and analogies are, in general,
less crucial to the model and are encountered primarily
in level of detail.

3. Level of detail

Every reasonable attempt has been made at every
point to select a level of detail commensurate with
the return of enlightening information and to provide
flexibility in model construction and implementation,
allowing modular adaptability over a broad range of
detail levels. We are unlikely to have achieved an
optimum level of detail in this early model. Also, since
a major purpose of the study was to investigate feasi-
bility, it has been appropriate in some cases to quite
consciously avoid detail that would tend to improve
validity but have little bearing on feasibility. An ex-
ample is that the present model considers all moisture
below the surface as a single number for each tree.
The number indicates a total amount available with-
out regard to root zones or soil stratification.

The climate model is, at present, a yearly cycle of
temperature, moisture, and light means, each quanti-
fied as a single number occurring per time period.
The time period selected was one month with model
runs extending for ten years of simulated time.

A Simulation in Plant Ecology 69

Principal model features
1. Climate

During each period of simulated time the climate
determines the quantities of additional resources made
available for growth. The “model” of climate used
here is simply a table depicting typical precipita-
tion, temperature and light during each month.

Precipitation is moisture added in centimeters dur-
ing the month. Light is the approximate number of
hours of daylight per day reduced slightly during
months normally experiencing considerable cloud
cover or fog. Temperature was entered as a single
number determined for each month as follows: Mean
daily high and low temperatures for the month were
assumed to occur at 1 p.m. plus 20% of time until
darkness and 1 a.m. plus 90% of time until daylight
respectively. It was assumed that temperature rises
and falls linearly from high to low during the day.
The positive portion of the above temperature func-
tion reduced by 50°F. was integrated between the
limits, daylight and darkness, to determine the single
temperature input for the month.

2. Shade

During the daylight hours shade occurs to the
north of each tree. As noted above, an angle, 0, is
used together with the tree height to determine a
triangular area in which shade occurs. The shade an-
gle, 6, will generally be smaller for evergreen than for
deciduous trees except during those periods of dor-
mancy in which the shade angle is reduced for the
leaf shedding deciduous species. If any other tree
exists wholly or partially within the shaded area,
its light and temperature environment, and hence, its
growth rate, is modified. The “shade factor,” a num-
ber between 0 and 1 indicating the percent shaded, is
determined for each tree at each time step by the
following procedure.

After resetting all shade factors to zero, perform the
following computation for each tree in the system,
working from south to north (Figure 1).

For tree n, d, =n, tan 6.

Find d, for the next tree to the north.

If d, 7 e,, begin again at step 1 with tree n+ 1.

. h;=tan 0/(d,—d,)

. h;=min(hs,h,)

. Shade factor = max(h,/h,, present shade factor).
Return to step 2 above to see if more than one
tree to the north is shaded by the present tree.

During each time period, loss of moisture added
occurs due to evaporation from the soil at a rate de-
pendent on whether or not the ground is shaded at the
center of the ‘“‘moisture zone.”

NownawN-

3. Moisture Zones

The extent of a tree’s root system limits the range
or distance in each direction in which soil moisture
will be available to it. The model assumes that, in the
absence of conflicts, all moisture which falls within
a distance equal to a tree’s present height in either
direction becomes available to its roots directly or
through capillary action. This distance, or “natural
moisture zone,” is illustrated in Figure 2 with 45°

triangles. (Other angles could be used and varied by

species and state of maturity.)

335

304

HEIGHT (m}
- —~ » n
o @ °]
T T R S

[
PR

comonre oo T T TTIT Toe 1T ST o

ZONE | 2 3 4 5

Figure 2 — Moisture allocation

When natural moisture zones overlap, as is gener-
ally the case, the trees must compete for the mois-
ture that falls in the overlapping zones. The moisture
zone algorithm begins by preparing a table of the
starting and stopping co-ordinates of each tree’s nat-
ural moisture zone. The entire forest is then divided
into moisture zones. Associated with each zone is a
list of trees competing for moisture in that zone,
(Table 1). First we search the table of natural mois-
ture zones to find the tree with the smallest starting
co-ordinate. The co-ordinate and tree are entered as
the first line of Table 1. We continue by selecting,
for each line, the next smallest co-ordinate from the
natural moisture zone table and entering it in Table 1.
The co-ordinate entered terminates the preceding zone
and begins a new one. If a starting co-ordinate is se-
lected, the list of trees competing in the preceding zone
is copied and the new tree added to the competition.
If a tree’s stopping co-ordinate is selected, the list is
copied with that tree deleted. Zones of zero length
will be subsequently ignored.

4. Moisture allocation

The moisture that falls in each moisture zone will
be allocated to the trees competing in that zone by
some combination of the following rules. (A weight-
ing factor has been provided as input.)

70 Spring Joint Computer Conference, 1968

TABLE 1

MOISTURE ALLOCATION

MOISTURE STARTING STOPPING

ZONES* CO-ORDINATE CO-ORDINATE TREES CONFLICTING IN ZONE
1 95 102 1
2 102 112 1 5
3 112 123 I 5 6
4 123 126 1 5 6 2
5 126 127 I 5 6 2 3
6 127 130 1 5 6 2 3 4
7 130 131 1 5 6 2 &
8 131 131 1 5 6 4
9 131 133 1 5 6
10 133 143 1 5 6 7
11 143 145 1 5 6 7 8
12 145 146 5 6 7 8
13 146 162 5 6 7 8 12
14 162 163 6 7 8 12

* At Time Zero

Rule A allocates moisture in direct proportion to
the heights of the competing trees.

Rule B projects with the 45° angle the heights of
all competing trees to the center of the zone and then
allocates moisture in proportion to the projected
heights.

Rule C allocates moisture in inverse proportion
to distances from tree basis to the center: of the zone.

Results presented later were obtained using Rule C.

5. Growth

Each species has associated with it an ideal growth
rate which is a function of height. The growth that
actually occurs during a climate period will be de-
termined by reducing the ideal growth by some
amount for each unfavorable environmental condition
encountered. 1deal conditions for each species, mois-
ture usage rates, and sensitivities, are input param-
eters.

A tree is selected, and its ideal growth for the period
is determined as a function of species and height. If
the tree is deciduous and dormant in the present
climate period, its projected growth is reduced by an
input factor.

The absolute difference in the temperature number
that occurred and the ideal temperature is divided by
the sensitivity. The sensitivity is the temperature dif-
ferences that reduces growth by 10%. Thus, from the

quotient of the .above division, we determine a new
growth rate.

The growth is multiplied by the hours of light per
day in the current period divided by twelve. If atree is
entirely shaded (shade factor equals one) the growth
rate is reduced by the “zero light rate” input factor
for that species. If the tree is partially shaded, the
growth rate is reduced to a proportionate rate be-
tween the zero light rate and the last determined rate.

The moisture needed for growth is determined
first, from a usage rate multiplied by height, and then
by one plus the projected growth in meters. A sub-
soil loss is determined as a percentage of moisture
present. If the available moisture is greater than that
needed for growth and subsoil loss, the moisture is
removed and growth takes place. If adequate mois-
ture is not present, the actual growth will be that
fraction of the projected growth for which mois-
ture is available.

Preliminary results

At the time of this writing no field data collection
has taken place. Therefore the results obtained so far
have been the outcome of qualitative model testing.
Primarily, this testing has been the operation of the
model under extreme conditions such as total ab-
sence of some necessary growth resource. Other
tests have included such things as operation with
and without ecological interference as controlled by
spacing of individual plants. A sensitivity analysis
has also been performed in order to insure ‘“rea-
sonable” responsiveness to major factors modeled.
Validity of basic model structure has now been as-
sumed, since behavior under the tests indicated above
is of a form and direction anticipated by initial as-
sumptions.

The output from a typical model run is included
below (Table 2 and Figure 3). The forest in this partic-
ular example was obtained by random shuffling of
data cards representing a deciduous and an ever-
green species. (Similar model runs with more than 100
trees have been made.) In Table 2, co-ordinates and
heights are in meters. Shade factors and moisture
present are described above. The trees at each end
are generally in a superior competitive position, and
hence “less representative.” The third and fourth
trees illustrate markedly the effect of changing en-
vironment with time. Others illustrate such effects
as declining growth rates caused by the increased
moisture requirements accompanying increased
heights.

This particular, somewhat abstract, forest has been
run many times with many variations of model param-
eters. As a result of the adaptability and responsive-

A Simulation in Plant Ecology 71

HEIGHT

~

TREE

10
11
12
13
14
15
16
17
18

173
176
182
189
190

191

197

* At Five Years

ness demonstrated, we are able to conclude that the
model will prove valuable in its present form and help
to open the gates to a large number of computer stud-
ies and applications in the plant sciences.

Evg.

Evg.

B0
COORDINATE (m)

Figure 3 —Results

TABLE 2
RESULTS

INITIAL HEIGHT HEIGHT

25 26.96 28.93
4 5.41 6.76
2 336 4.12
2 3.45 4.1

30 30.47 31.02

30 31.9 33.57

15 15.54 16.25

25 26.90 28.52
2 2.7 3.16
2 4.05 5.45

10 10.61 11.36
30 3118 32.51
15 15.71 16.39
4 5.46 6.56
2 2,70 3.12
2 3.81 5.15

10 10.62 11.25

30 32.04 34.08

0.00
0.00
0.81
0.00
1.00
1.00
1.00
0.03
0.75
0.00
0.19
0.00
0.00

0.00

41.5

0.0
65.1
70.4

0.0

228.1

1820.6

The future

A step preliminary to future development will be
an extensive data collection effort. Data collected
over extended periods of time and taken from many
different geographic regions for many different species
and forest densities will be necessary to properly
adjust, or “fine tune,” model parameters.

Additional levels of detail may be considered. A
stratified soil model seems to be a most promising
possibility and would allow for finer accounting of
moisture availability, soil type, and fertility in the root
zone of individual trees.

A less difficult, but logical, next step will be the
ascribing of measures of economic importance to
the forest. Such a measure will allow the present
model to be used as a “laboratory” for the investiga-
tion of many forest management practices. For ex-
ample, quantitative results concerning the value of
thinning to reduce shading could be determined by
simply applying the model repeatedly with various
thinning criteria applied to the same forest. Such a
study made in the physical world, by experimentation,
would not only take many years to complete, but
would depend on the critical assumption that each
forest or subforest under study was completely equiv-
alent and subjected to the very same environmental
influences during the entire duration of the study
period.

The adaption of the principals and algorithms of
the present model to crop plants has already begun.
The emphasis, here, must change from one of reaction
to natural influences to that of reaction to soil manage-
ment practices. Also, our attention must focus on the
fruit of the plant rather than the plant itself. However,
the many similarities make the present model an im-
portant first step in this direction.

REFERENCES

1 F'W WENT
The experimental control'of plant growth
Chronica Botanica Company Waltham Massachusetts 1957
2 R E BOCHE
Some algorithms for allocation of environmental resources
determining plant growth
Symposium on Physiological Systems in Semi-Arid Environ-
ments. Sponsored by the University of New Mexico and the
National Science Foundation Albuquerque New ' Mexico
November 1967 Proceedings to appear 1968

A major seismic use for the fast-multiply unit

by ROBERT D. FORESTER*
Digital Seismic Corporation
Houston, Texas

and

TIM J. HOLLINGSWORTH and JAMES D. MORGAN

Petty Geophysical Engineering
San Antonio, Texas

No matter how much speed or capacity you add to
your computer system, programmers will develop soft-
ware which will tax it to its limits. Programmers at
Petty Geophysical Engineering are no exception.
Two years ago a fast-multiply unit which can multiply
and add 2,000,000 times per second was added to their
CDC 3200 installation. Soon afterwards they devel-
oped a sophisticated program for enhancing seismic
signals which depends heavily on the unit’s great
speed. The program is called “APE”, which is an
acronym for Automatic Phase Editing. It has proved
to be a valuable tool in the search for oil.

In order to see how the APE program fits into the
scheme of seismic exploration for oil, we will broadly
describe how seismic data are gathered in the field
and processed in the laboratory.

Figure 1 shows a diagrammatic cross section of
how seismic data are collected in the field. Dynamite
is loaded at the bottom of shotholes drilled through
the earth’s weathered layer. Sound energy emitted by
shooting the dynamite spreads downward and is re-
flected upward by discontinuities in the velocity or
density of the earth’s layering. Ray paths symbolize
the directions along which the energy travels. The re-
turning echos are sensed by a surface array of geo-
phones and recorded on magnetic tape in analog or
digital form. The weathered layer tends to be irregular
and can cause reflected events to mismatch in time
from one geophone to the next. -

Figure 2 shows a photographic plot of multi-
channel, seismic data recorded on magnetic tape.
Energy for a single shot was recorded by an array of
24 geophone groups, each geophone group represent-
ing a seismic trace. The horizontal sub-surface cover-
age of the geophone array was about % mile. In this

*Formerly Vice President-Service Development, Petty Geo-
physical Engineering, San Antonio, Texas.

example, the time extent of the recording shown is
1.9 seconds. The maximum time length of the original
magnetic recordings is usually about 6 seconds. For
most digital processing purposes, each trace is sam-
pled 3000 times; thus for a 24-trace record, the com-
puter must handle 72,000 samples of data. Qur center
processes tens of thousands of records like this each
month. In terms of digitized data samples, this
amounts to an input of over a billion pieces of infor-
mation per month. ' ' R

GEOPHONE

WEATHERED LAYER

T

CHANGE IN
VELOCITY OR!
DENSITY

\ ! “*~RAYPATH

Figure 1 — Cross section of seismic reflection shooting

REFLECTION TIME IN SECONDS

Figure 2 — A 24-trace seismogram

74 Spring Joint Computer Conference, 1968

The processed records are assembled into cross
sections like that shown in Figure 3. This section com-
prises 6 records representing a horizontal sub-surface
coverage of about 3 miles. The depth p