
AFIPS
CONFERENCE

PROCEEDINGS

VOLUME 32

·1968
SPRING JOINT

COMPUTER

CONFERENCE

APRIL 30-MAY2

ATLANTIC CITY, NEW JERSEY

The ideas and opinions expressed herein are soley those of the authors and are
not necessarily representative of or endorsed by the 1968 Spring Joint Computer
Conference Committee or the American Federation of Information Processing
Societies.

Library of Congress Catalog Card Number 55-44701
THOMPSON BOOK COMPANY

N ationai Press Building
Washington, D.C. 20004

© 1968 by the American Federation of Information Processing Societies, New
York, New York, 10017, An rights reserved. This book, or parts thereof. may
not be reproduced in any form without permission of the publisher.

CONTENTS

COMMERCIAL TIME-SHARING - THE SECOND GENERATION

Time sharing versus batch processing: The experimental evidence
Computer scheduling methods and their countermeasures
Some ways of providing communication facilities for time shared

computing
The Baylor medical school teleprocessing system

COMPUTER AIDED DESIGN

Some techniques for shading machine renderings of solids
A system for interactive graphical programming
Automation in the design of asynchronous sequential circuits

SCIENTIFIC APPLICATIONS OF GENERAL INTEREST

Interpretation of organic chemical formulas by computer
A simulation in plant ecology
A major seismic use for the fast-multiply unit

A generalized linear model for optimization of architectural
planning ;

COMPUTERS IN COMMUNICATIONS SYSTEMS

Standards for user procedures and data formats in automated
information systems and networks

Procedures and standards for inter-computer communications
An error-correcting data link between small and large computers
Graphical data processing
The advancing communication technology and computer

communication systems

HYBRID COMPUTER SYSTEMS AND TECHNIQUES

Analog computer simulation of semiconductor circuits
Stable computing algorithms for partial differential equations
BASP - A Biomedical Analog Signal Processor
Electrically alterable digital differential analyzer

COMMERCIAL DATA PROCESSING

DATA FILE TWO .. .
GIPSY - A Generalized Information Processing System
The ISCOR real-time industrial data processing system
Martin Orlando reporting environment
Simulation applications in computer center management

H. Sackman
E. G. Coffman, Jr., L. Kleinrock

H. L. Steadman, G. R. Sugar
W. Hobbs, J. McBride, A. Levy

A. Appel
W. Newman
R. J. Smith, J. H. Tracey,
W. L. Schoeffel, G. K. Maki

1
11

23
31

37
47
53

A.N.DeMott 61
R.E.Boche 67
R.D.Fore~e~ 73
T.J. Hollingsworth,J. D. Morgan

R. Aguilar, J. E.Hand 81

J. L. Little, C. N. Mooers
A. K. Bhushan, R. H. Stotz
S. W. Andreae
E.J. Smura

S.J. Kaplan

P. Balaban, J. Logan
R. Vichnevetsky
W. J. Mueller, P. E. Buchthal
G. P. Hyatt, G. Ohlberg

R. J. Jones
G. Del Bigio
W. M. Lambert, W. R. Ruffels
M. J. McLaurin, W. A. Traister
T. F. McHugh,Jr., E. Scott

89
95

105
111

119

135
143
15t
161

171
183
193
197
209

MULTIPROGRAMMING OPERATING SYSTEMS

Multiprogramming system performance measurement and
analysis .. .

Multiprogramming, swapping, and program residence
priority in FACOM

A storage hierarchy system for batch processing
Burroughs B6500/B7500 stack mechanism

ADVANCES IN MAGNETIC MEMORY DESIGN

A compact, economical core memory with all monolIthic
electronics .. .

A progress report on large capacity magnetic film memory
development .. .

A fast 21h mass memory
A magnetic associaiive memory

SWITCHING THEORY

Selection and implementation of a ternary switching algebra
Application of Kamaugh maps to Maitra cascades
U niversallogic circuits and their modular realizations
Sorting networks and their applications

MAN-MACHINE INTERFACE

The Sylvania data tablet
Computer input of forms
Machine-to-man communication by speech Part I
Machine-to-man communication by speech Part II
A system of computer support for neurophysiological

investigations, etc

Graphical data management in a time-shared environment

LANGUAGES: TODAY AND TOMORROW

On the formal definition of PL/I
LISP A: A LISP-like system for incremental computing , ..
TGT: Transformationalgrammar tester
DAT APLUS: A language for real time information retrieval

for hierarchial data bases
A language design for concurrent processes ~
Control of sequence and parallism in modular programs

GENERAL INTEREST

Anatomy of a real-time trial
Fourth generation computer systems

H. N. Cantrell, A. L. Ellison

M. Tsujigado
D. N. Freeman
E. A. Hauck, B. A. Dent

213

223
229
245

R. W. Reichard, W. F. Jordan, Jr. 253

J. I. Raffel, A. H. Anderson, 259
T. S. Crowther, T. O. Herndon,
C. Woodward
C. C. M. Schuur

R. L. Herrmann
G. Fantauzzi
S. S. Yau, C. K. Tang
K. E. Batcher

J. F. Teixera, R. P. SaIlen
A. P. Feldman
F. Lee
J. Allen

F. Abraham, L. Betyar,
R. Johnston
S. Bowman, R. A. Lickhalter

K. Bandat
E. J. Sande wall
D. L. Londe, W.J. Schoen

N. Sinowitz
L. G. Tesler
L. Constantine

A. B. Kamman, D. R. Saxton
. C. J. Walter, M. J. Bohl,

A. B. Walter

267
275

283
291
297
307

315
323
333
339

345

353

363
375
385

395
403
409

415
423

Fourth generation computer organization
Optimal control of satellite attitude by a random search

algorithm on a hybrid computer

Evaluation and development techniques for computer assisted
instruction programs

Computer capacity trends and order-delivery lages 1961-1967

DIGITAL SIMULATION TECHNIQUES

Error estimate of a 4th order Runge-Kutta method with oniy one
initial derivative evaluation

Improved techniques for digital modeling and simulation of
nonlinear systems .. .

Extremal statistics in computer simulation of digital
communication systems

MUSE: A tool for testing a multi-terminal system in a multi-
terminal environment

FAULT DIAGNOSIS

Diagnostic engineering requirements
Self-repair techniques in digital systems
A study of the data commutation problems in a self-repairable

multiprocessor .. .

A distinguishability criterion for selecting efficient
diagnostic tests .. .

S. E. Lass 435

W. P. Kavanaugh, E. C. Stewart, 443
D. H. Brocker

M. Tarter, T. S. Hauser, 453
R.L.Ho1comb
M. H. Ballot, K. E. Knight 461

A. S. Chai

J. S. Rosko

M. Schwartz, S. H. Richman

E. W. Pullen, D. F. Shuttee

J. J. Dent
F. B. Cole, W. V. Bell

K. N. Levitt, M. W. Green,
J. Goldberg

H. Y. Chang

467

473

483

491

503
509

515

529

Time-sharing versus batch processing:
the experimental evidence

by H. SACKMAN
System Development Corporation
Santa Monica, California

INTRODUCTION
Time-sharing of computer facilities has been widely
acclaimed as the most significant evolutionary step
that" has been taken in recent years toward the
development of generalized information utilities.
The basic techniques of interactive man-computer
time-sharing were developed in the 1950's in connec
tion with realtime command and control computing
systems, initially in SAGE air defense. Time-sharing
was practiced in these pioneering systems in the sense
that many military operators at separate cons()les"":'
consoles equipped with push-buttons, CRT displays
and light. guns - were able to request and receive
information from the centrai computing system at
essentially the same time. These historical roots
reveal that time-sharing is an outgrowth of realtime
system development.

The emergence of time-sharing systems as general
purpose online computing facilities is primarily a
development of the 1960's. The users of such systems
are a more or less random and changing collection of
people at any point in time, typically but not neces
sarily working on unrelated tasks with different
computing programs, entering and leaving the system
independently of one another, and using it for varying
and largely unpredictable periods of time; such use
approaches that of a public utility, roughly analogous
to the quasi-random pattern of telephone traffic.

ExperimentaI time-sharing systems were designed
and operated in the first half of this decade. The
Massachusetts Institute of Technology developed the
Compatible Time-Sharing System (CTSS) used for
Project MAC (Corbato, Merwin-Daggett, and Daley,
1962);1 the System Development Corporation
developed TSS, the Time-Sharing System for the
Advanced Research Projects Agency of the Depart
ment of Defense (Schwartz, Goffman and Weissman,
1964),2 and RAND developed JOSS, the Johnniac
Open-Shop System (Shaw~ 1964).3 Commercial
applications have sprouted and are rapidly spreading

with practically all computer manufacturers market
ing or developing some version of time-sharing hard-
ware, software, and support facilities. .

In batch or offline processing - the operational
workhorse of most contemporary data processing and

. the evolutionary predecessor of time-sharing - the user
typically has indirect contact with the computer.
Batch processing has been the rule for economical
operation, with stacked jobs done one at a time on a
waiting-line basis. Job scheduling is often mediated by
programed operating systems based on job priority
and estimated computer running time. Turnaround.
time may take minutes, hours, days or even more
than a week before completed outputs are returned in
response to job requests. Proponents of stacked-job
systems argue that throughput time, useful computa
tions per unit time, is at a maximum with minimum
waste of computer resources.

In contrast, time-sharing permits fast and direct
access to the computer when the user wants it
(provided that guaranteed access is available). For
many. types of data-processing tasks, the user can get
what he wants in minutes rather than hours or days.
He may exert continual control over his program
and he is free to change his mind and do things
differ-ently, at least within system capability, as he
interacts with the computer. Time-sharing typically
means expense-sharing among a large number of
subscribers, with reduced computing costs for many
kinds of applications. And perhaps most significant
of all, the online nature of time-sharing permits direct
man-computer communication in languages that are
beginning to approach natural language, at a pace
approaching normal human conversation, and in
some applicatipns, at graded difficulty levels appro
priate to the skill and experience of the user. Time
sharing systems, becuase of requirements for expand
·ed hardware and more extensive software, are
generally more expensive to build and op~rate than
closed-shop systems using the same central computer.

2 Spring Joint Computer Conference, 1968

Time-sharing advocates feel that such systems more
then pay for themselves in convenience to the user, in
more rapid program development, and in manpower
savings.

Time-sharing, however, has always had its critics.
Their arguments are often directed at the efficiency
of time-sharing, that is, at how much of the computa
tional power of the machine is actually used for
productive data processing as opposed to how much
is devoted to relatively non-productive functions
(program swapping, idle time, etc.). These critics
claim that the cost-effectiveness of time-sharing
systems is questionable. when compared to inodern
closed-shop methods, particuiariy the most advanced
versions of fast-turnaround batch systems. Since
online systems are presumably more expensive
than offline systems, there is little justification for
their use except in those situations where online
access is mandatory for system operations (for
example, in realtime command and control systems).

Time-sharing advocates respond to these charges
by saying that, even if time-sharing is more costly
with regard to hardware and operating efficiency,
savings in programmer man-hours and in the time
required to produce working programs more than
offset such increased costs. The critics, however, do
not concede this point either. Many believe that
programmers grow lazy and adopt careless and in
efficient work habits under time-sharing. Easy access
to the computer, they claim, tends to make users
more prone to casual and costly trial and error
computer runs with poorly prepared problems, in an
effort to trade off computer time against human time,
as compared to the batch environment in which
computer time is at a premium and programers do
more extensive desk checking. in fact, they claim that
instead of improving, user performance is likely to
deteriorate.

While the controversy continues to rage, many
computer installations, pursuing their own unique
evolutionary paths, are qU,ietly assimilating the best
of both worlds. Time-shared systems are tending to
find it convenient to run short jobs to ·completion and
to interleave stacked production jobs into long
pauses in online operations as "background" tasks.
Conventional operating systems are becoming less
conventional by incorporating, in novel forms, many
features associated with time-sharing (e.g., direct
coupled and remote batch systems). Of special
interest are the high capacity, fast turnaround batch
sysh~ms such as those reported by Lynch (1967).4
With the continued growth of computer installations,
the evolutionary varieties of oniine and offline
facilities are diversifying into new forms and are also

converging in.to hybrid forms. It may well be that
many large computer complexes of the future will
offer a variety of services in a spectrum of optional
online, offline and mixed operational modes.

The above arguments are characteristic of the
specuiative controversy that h3:s attended the recent
rapid growth of time-sharing. For various and complex
reasons - which range beyond the purpose and scope
of this paper but which are treated elsewhere in
detail by the author (1967)<5) - the growth of an applied
experimental tradition in man-computer communica
tion has not been vigorously pursued in the computer
sciences. Over the last two years, however, this
subjective and predisciplinary tenor has finaHy,
and somewhat belatedly, taken a more objective and
scientific turn with the advent of experimental
comparisons of time-sharing and batch processing
in the literature. Five such studies are available
and together they comprise an instructive and valuable
body of knowledge on methodology and findings
(Erikson, 1966,6 Gold, 1967;7· Grant and Sackman,
19678 Schatzoff, Tsao and Wiig, 19679 and Smith,
196710

). The objectives of this paper are to criti
cally review and evaluate these studies, summarize
areas of agreement and disagreement, point up key
gaps in these initial experiments, and sketch the more
promising avenues for future research.

Comparative methodology of the experimental studies

Table I outlines and summarizes the main character
istics of the· five experimental studies. Unfortunately,
an outline of this kind can not do justice to the
extensive details of each study, and the interested
reader is referred to the original articles. The aim of
this section is to review comparative methodology
to help determine the technical scope and limitations
of these studies. Table I breaks the description of each
study down into five categories - subjects, problems,
computer system facilities, experimental procedure,
and performance measures. Each of these is discussed
in turn.

There are a total of 212 subjects in ail five studies.
I t probably comes as no surprise to anyone that
college students form the bulk of this population,
with only one sample showing a highly experienced
group of programmers (Grant and Sackman). It will be
noted later that the three studies with small samples
were organized around relatively efficient experi
mental designs to optimize the information yield
from the results.

A critical experimental control factor, not shown
in Table I, enters into the selection of SUbjects. This
factor is the nature of the computer-reiated experience
of the subjects and their bias, as a result of their

Time:-Sharing versus Batch Processing 3

Experimental Erikson Gold Grant and Sackman Schatzoff, T and Smith

Characteristics (1966) (1967) (1967) Wii&: (1967) (1967)

SUBJECTS

Sample Size 60 12 127

Type of Subjects Prop-ammer trainees Under&n\duate and "adu- Experienced prOlP"amers UnderJP"aduate students Under!P"8duale and IP"8du-
ate students from an R&D setline with h1ch prOlP"amine ate students in an introduc-

aptitude tory prOJP"amins course

Experience Level Leu than one year 78% of subjects had taken Averaa;e of7 yean "'Some" PI'Op-aminl Most subjects had less
at least one prOlP"aming experience experience than a year experience

PROBLEMS

Number and Typea of Two probleml, a _t- One problem. simulation Two problelUl. a1pbra Four problems: Monte Two easy ''warmup'' pro-

Problems Inc routine and a cube model of construction and maze Carlo InteJP"8tlon. b1e1Ul and four experimental
puzzle IndUitry algebraic sortinc. Pi, problelUl; cosine Infinite

Latin translator. text aeries, matrix sorting,
format conversion ianJUaJe translation.

heuristic prolP"8m

Difficulty Level ConceptuaDy simple Moderately difficult. Moderately difrK:ult for Moderately difficult Moderately difficult for
ope_oded problem highly experienced for skilled student beJlnners

programers IUbjects

Average Completion A few hours IS to 20 hours Approximately 60 hours Approximately 40 Approximately 60 hours to

Time 10 complete both prob- hours to complete aD complete aU problems
h!ms problems

ONLINE/OFFLINE

FACILITIES

Online Facility SOC Q-32 Time- MIT Time-8harinl SOC Q-32 Time- MIT Time-Sharins. IBM Burroushs B-SSOO batch
Sharing IBM 7094 Sharing 7094 Iystem at Stanford with

'''instant'' turnaround

Batch FacUlty Same facility~mula- MIT Batch FacUlty. IBM Same facility~mula- IBM 7094 selentirK: Same facility. with normal
ted offline conditions 7094 lion of offline condi. batch facility turnaround

tions

Lanluase Used l1NT -interpretative pY NAMO-simulation JTS (higher-order lan- Not mentioned Burroughs Extended ALGOL
I!icher-order language langUlJe used in time- guage) and SCAMP
fOr time-sharins sharing and batch modes (machine lansuage)

Batch Turnaround Usually aeveral 6 hours (daytime). 10 Constant at two hours Not mentioned Variable, ulUaUy hours

Time minutes. variable hours (ovemieht), variable

EXPERIMENTAL
PROCEDURE

Experimental Desicn 2X2 Latin Square: two Two matched croups of 2X2 Latin Square: two Graeco-Latin Square: Matched "oups of sub-
problems os. on/off lubjects problems YO. on/off 4 problems, 4 lub- jects, each subject taking
comparison (omparison jects, os. on/off com- two problems on "batch"

pqison and two on "instant"

Statistical Tests Analysis of variance, A variety of nonparametric Analysi$ of variance, Analysis of variance, Descriptive statistical
lOme nonparametrle statistici comparing the factor analysis correlational analysis comparisons; no tests of
tests two croups statistical significance

Experimental Controls Counterbalanced order Questionnaire itelUl, dead- Biosraphical items. Counterbalanced order Counterbalanced order of
of problems and experi- line for completed problem counterbalanced experi. of experimental desicn "batch" and "instant" modes
mentalVllriablel mental order

MotiVlltional Controls Trainee cia .. IP"8des CIaIS"adel Job assignment Not mentioned Class grades

Recording Procedures Computer records and Computer records, Itudent Computer records, experi· Computer recording, Computer recording,
personal lop 1 and questionnaires Menter logs, paper and work lop, paper and student logs and ~ues·

pencil test pencil test tionnaire

KEY PERFORMANCE DebuS man-bours Problem_lvinl man-hours DebuS man-hours Elapaed time Initial prosram preparation

MEASURES Keypunch time
Codins man-hours

Analysis Time to prepare new run Computer time Computer time
Computer time

Prop-amer'l time Numher of runs Tllk performance
Prosram size Prop-am lize

Computer runs per trip
Ratinp of written reports Computer time

Pro"am runnlne time Elapsed time
Individual differences ::::ber of compi Cost com parisons

Co.puler tillle Individual differences

Basic Programin&
Balle Prop-amin, Know· Total Coat Submission interVllI.

Knowledge Test Scores Questionnaire items Iedp Test scores Ouestionnaire items

TABLE I - Comparative characteristics offive experimental studies
comparing time-sharing with batch processing

experience, toward time-shared or batch systems.
For example, Erikson's subjects were trained primari
ly in online programing, whereas Schatzoff, Tsao
and Wiig indicated that their suojects had most of
their previous experience in batch systems and used
batch-oriented procedures in the experimental time
sharing mode. The other three studies had subjects
with various degrees of mixed online and offline
experience. Obtaining equal familiarity and equal
skill in online and offline activities is a difficult kind
of experimental control. An antidote to this problem,

only partially encountered in these studies, is to
deliberately select subjects on the basis of equal
experience and to offer them extensive and equal
practice sessions in both modes up to some standard
level of proficiency.

The problems cover a fairly wide area of program
ming and problem solving. They include mathematical
problems, various puzzles, sorting procedures, and a
simulation model. While many of these are typical of
program tasks, they can hardly be" put forth as repre
sentative. For· example, there are no large data

4 Spring Joint Computer Conference, 1968

base or statistical analysis problems - the kinds re
quiring large data storage and much computation,
which often lend themselves more efficiently to
batch processing. On the other hand, neither were
there any particularly long, exploratory programs,
such as those encountered in graphics and display-cen
tered systems, that lend themselves more efficiently to
time-sharing. All problems were individual rather than

. team-oriented tasks. Perhaps most basic of all,
there are no empirical .norms available to determine
the representativeness of the various data processing
tasks.

The difficulty level of most studies varies from
"conceptually simple" to "moderately difficult.;'
There were no reported cases of subjects who were
unable to complete the experimental tasks even
though some studies indicated missing data. The
average time for subjects to complete their experi
mental tasks varied from a few hours up to 60 hours.
The longer problems give some idea of the man
power costs of conducting this kind of research and
underscore the general tendency to use students
or trainees.

The problem posed by Gold for his student subjects
differed from the other four studies in that it was not
a programming task. The experimental vehicle was a
computerized simulation model of the construction
industry and its market; the student's task was to
formulate and construct a set of decision rules to
maximize his profits as an independent, small-scale
builder in this simulated, cyclical market. The com
puterized simulation model provided criterion per
formance scores which constituted feedback for the
students by indicating their profit level in response
to decision rule inputs for this open-ended problem.

The online/offline faciiities reveai key dilemmas
faced by the experimenters in attempting to construct
unbiased and equal conditions for an objective
comparison between time-sharing and batch process
ing. In the two SDC studies, time-sharing was real
and batch processing had to be simulated on the
Q-32 Time-Sharing System. In Smith's study, the
basic system was· batch and time-sharing was simulat
ed by providing "instant" turnaround time (several
minutes); there were no conversational or interactive
features in this simulated online condition. While
Smith's study is primarily a comparison between
conventional batch and fast-turnaround batch, it is
included here because of the useful information
it contributes to timing and feedback aspects of the
time-sharing/batch controversy. The two MIT studies
were the only ones offering ostensibly comparable
online and offline modes without resorting to some
form of simulation.

The computer language employed is another
difficult control variable. Gold and Smith were able
to have their subjects use the same language which,
they claimed, was equally applicable and useful for
both modes. Erikson used TINT, an interactive
ianguage, for the noninteractive mode. in the Grant
Sackman study, most subjects used JTS, originally
a batch processing language, later adapted to time
sharing. Schatzoff, Tsao and Wiig do not mention
any languages at all; since they indicate that their
subjects used batch procedures in the time-sharing
mode, and that their subjects only had a brief indoc
trination in time-sharing, one cannot help but wonder
whether their comparison provided reasonably
comparable starting conditions under both experi
mental modes. This same criticism applies, at least
in part, to the two SDC studies.

Experimental control problems are compounded
further with respect to turnaround time under the
batch mode. These turnaround times vary from
minutes, to hours, to next~day turnaround. Only
Grant and Sackman controlled this variable at a
constant value of two hours. While this procedure
provided rigorous experimental control over turn
around time, it was obviously unrealistic in not
providing variability in turnaround service. The
other investigators apparently left their subjects to
the vagaries of their particular operationai batch
system without obtaining exact measures of turn
around time for each run. 1 n addition, for all studies,
it is not clear whether subject waiting time during
batch turnaround was spent working on the problem,
or not working on the problem, and for some of the
studies, whether it was included or excluded in sub
ject logs of man-hours spent on the experimental'
task. Future studies in lhis area shouid incorporate
systematic variation and control of machine turn
around time, and careful recording of what the
subject does during this time. Lack of experimental
controls in this area unquestionably increases error
variance in performance measurement and decreases
the reliability of the final results.

The next category in Table I, experimental proce
dure, reveals a remarkable spectrum of experimental
designs for the five studies. The Graeco-Latin
Square configuration of the Schatzoff, Tsao and Wiig
study is the most sophisticated experimental design,
whereas the Smith study merely compared mean
s(.:ores of matched groups without any reported
measures of dispersion or any tests of statistical
significance. With a sample of four subjects, the
Schatzoff, Tsao and Wiig study had to have optimal
statistical efficiency to demonstrate reliable results,
whereas with Smith's sample of 127 subjects, ob-

served mean differences are correspondingly more
rdiabl~. Nevertheless, the absence of statistical
tests and neglect in reporting measures of dispersion
in the data from which statistical tests may be con
structed, are to be deplored since these practices
reduce the cost -effective yield of an experiment,
leave quantitative results ambiguous, and deprive
the larger community of useful information on
individual differences. _

The three experiments using Latin-Square designs
employed analysis of variance and correlational tech
niques to the findings, which nbt only provided
statistical tests for online/offline comparisons, but
also yielded valuable information on problem and
individual performance differences. The Grant
Sackman study was the only one which included an
exploratory factor analysis of subject performance.
Gold's tests were exclusively non-parametric, and
as in Smith's study, no quantitative findings on
individual differences were reported.

The experimental controls included matching of
groups in the studies with the largest samples (Gold
and Smith) primarily on the basis of questionnaire
items. The remaining three studies, using Latin
Square designs, involved stratjfied samples of sub
jects (e.g., experienced programmers, high-perfor-

, mance students, trainees) with random assignments of
subjects to the various test conditions in accordance
with the experimental design. Motivational controls
essentially consisted of class grades for students
and fulfillment of job assignments for the experienced
SDC programmers. Individual competition probably
spurred most subjects to work hard at their assigned
tasks and to keep most of their problem- strategy and

-'tactics to 'themselves, at least in the three small
sample experiments. These motivational constraints
were probably less effective -in -the two experiments
with the larger subject samples.

The recording procedures characteristically in
cluded computer recording for machine usage, sub
ject logs for man-hours spent on experimental tasks,
questionnaires for selecting and matching subjects
and for collecting observations and ratings on self
performance. Gold collected the most comprehensive
questionnaire data on ~is subjects before, during,
and after the experiment. I terris included biographical
data, problem-solving behavior, and comparative
attitudes toward time-sharing and batch processing.
Paper and pencil tests of programmer ability were used
in three _ studies. Schatzoff, Tsao and Wiig selected
students who received a grade of A on the IBM Data
Processing Aptitude Test; in the two SDC studies,
the Basic Programming Knowledge Test (developed
at the University of Southern California) was adminis-

Time-Sharing versus Batch Processing 5

tered to the subjects. Of the various recording
procedures, the computer records were probably the
most objective and the: subject logs were the ones
most open to intentional and unintentional errors.
Inthe three studies with small samples, it was easier
to keep the subjects under surveillance, to monitor
their manual reporting procedures, and to tactfully
resolve discrepancies as they arose. In the two larger
sample studies, experimenter monitoring of individ
uals had _ to be more indirect. Neither Smith nor
Gold discuss possible errors or bias in student re
porting procedures in any detail.

The last category in Table 1 covers the experimental
payoff, performance measures. The two key _ perform
ance measures running through all five studies are
man-hours and computer time required to complete
experimental tasks. The computer time measure is the
most straightforward. Man-hour measures appear in
various forms and are partitioned in different ways.
For example, the two SDC studies distinguish coding
time from debugging time; Gold uses a single measure
of problem-solving time; the other two studies incor
porate an overall measure of elapsed time with differ
ent ways of slicing man-hours spent on experimental
tasks. Cross-comparisons are somewhat difficult be
cause measures are defined differently for different
contexts.

The three studies utilizing Latin-Square designs de
vote some attention to the analysis of individual per
formance differences. Although individual differences
were not originally a key objective of these studies,
there was an unavoidable serendipitous fallout of hu
man differences from the analysis of variance in each
investigation. The study of individual differences was
carried furthest in the Grant-Sackman experiment
through an exploratory factor analysis of performance
measures.

Questionnaries bearing on -~H.lbjeci preference be-
tween online and offline operations were used in the
Gold and Smith studies. This performance measure,
while subject to the problems that plague question
naire reliability and validity, is of special interest in the
time-sharing/batch controversy in providing ,an index
of user attitudes and in testing for a bandwagon effect.

The SDC studies used final program size and run
ning time as measures of performance. It is' surprising -
that these objective, easily obtainable, and obvious
measures of programing efficiency were not reported
in the other two studies requiring completed programs.
It would be of value to test whether programs are
written more efficiently, as measured by these two
indices, in the online or the offline mode.

The performance measures in two cases (the Gold
study and the Schatzoff, Tsao and Wiig study) in-

6 Spring Joint Computer Conference, 1968

clude estimates comparing online/offline costs which
incorporate man and machine factors. In both cases
these costs were derived-from experimental measures
of human and machine time which were used as em
pirical parameters in simple cost models.

The Goid study had some unique measures of per
formance. The most notable is task effectiveness
how well the subject performed his task, as measured
by his profit in the simulated construction industry
model. Whereas the other studies measured effective
ness in terms of how long it took the subject to com
plete a standard task, Gold was also able to obtain a
quantitative measure of how well the subject per
forme-d (profit). Gold's study was also unique in ob
taining written -rep~rts from each subject to assess
their mastery and grasp of the experimental task from
an independent source of (verbal) data. He was also
the only experimenter who required his subjects to
give a standardized account of their computer runs on
a run-by':run basis. These various measures enabled
Gold to obtain more diversified data than any of the
other studies on problem-solving and decision-making
activities in the online and offline setting.

In an attempt to explore the relation between paper
and pencil tests and performance on experimental
tasks, the two SDC studies incorporated scores on
the Basic Programming Knowledge Test in their analy
ses of individual differences. Since sample sizes
were small, and since validity correlations of success
ful paper-and-penciltests of job performance are tradi
tionally moderate to low, these tests, at best, were ten
tative probes.

Summing up, what are the chief methodological
characteristics, strengths, and weaknesses of these
five studies in regard to subjects, problems, computer
facilities, experimental procedure, and performance
measures? The subjects _ were primarily students or
trainees - experienced data processing personnel
were used in only one study. While the experimental
problems rangeq over a broad area, involving many
types of data processing tasks and procedures and
requiring many hours for successful solution, certain
types of tasks prominently occurring in batch process
ing and in time-sharing are not encountered, and it is
difficult to assess how representative these problems
are for data-processing in general and how well they
are balanced for an objective online/offline compari
son. Some of the toughest problems were met in pro
viding comparable time-sharing/batch facilities;
matched computers and equivalent languages posed
many problems, and the crucial variable of batch turn
around time was generally not systematically con
trolled. The experimental procedures show diverse
ievels of experimental sophistication, with the most

critical problems occurring in the observation and
measurement of human performance. Even at this
early stage, the range of performance measures is
impressive, covering a variety of man-machine in
dices; on the other hand, the paucity of automatically
coHected measures of human and program perform
ance, particularly in the online setting, is somewhat
disappointing. More powerful online techniques, such
as regenerative recording of user performance - a
technique for capturing the complete real-time interac
tion between the user and the computer so that it
can be played back in its entirety for later analysis
(Sackman, 1967)11- should be developed and applied
to the experimental investigation of a broad spectrum
of user tasks.

Results of experimental studies

In this section the key results of each of the five
experiments are successively summarized in tabular
form and briefly evaluated; a composite box-score
of the results of all five experiments is also presented.
The next section, Interpretation, provides a cross
comparison and an overall evaluation of method and
findings. The tabular format for the results of each
experiment essentially consists of a list of key perform
ance variables, with -observed scores in the online
and -offline mode, and obtained statistical significance
for the observed difference (providing such tests were
conducted); additional notable findings follow this list,
and each table concludes with a box-score listing what

. the author believes to be the most significant results
of the given study.

Time-Shareci :latch Statistical
Performance Measur Mode Mode Si nificance

Debug ~n-Hours 5.0 9.6 .06 *

Computer Time (sec.) 146 492 .04*
Number of TINT Statements 51 53

Range of Individual Differences 8:1 and 7:1 and
in Debug Man-Hours 3:1 6:1

Range of Individual Differences 5:1 and 4:1 and
in Computer Time 4:1 3:1

* Nonparametric tests of mean differences in adjusted scores.

1. Time-sharing requires fewer :::an-hours and much less co",putar tille for
debugging with programer trainees than a simulated noninterac~ive !:lode
when an interpretive language developed for time-sharing is used in
both modes.

Individual differences in performance are larger than online/offline
system differences.

TABLE II - Main results of the Erikson study

Perfor.:unce Neasure

Problem-Solving Man-Hours

Task Performance (profit)

Computer Time (min.)

Understanding of Problem
(rating of written report)

Overall Cost

Subj ect Preference

Range of Individual Differences
in Problem Solving Man-Hours

*

Time-Shared Batch Statistical
Mode Mode Significance

15.5 19.3 .05

$1404 $1215 .002

*7.13 1.25 .001

Higher Lower .04

No appreciable difference

More Less .001
desirable desirable

7:1 4 :1

There is an additional editing load under time-sharing with DYNANO that is
not present under the batch mode. Comparable adjusted figures are not
available.

1. Time-sharing requires fewer man-hours than batch processing in a problem
solving task with a sample of 60 students.

2. Time-sharing is accompanied by a higheJ.: level of effectiveness than
batch processing.

3. Batch processing requires much less computer time than time-sharing for
the given problem.

4. Time-sharing is strongly preferred by student subjects over batch
processing, and this preference [;rows with increasing exposure to both
modes.

TABLE III-Main results of the Gold study

Ti;ae-Sharcd Batch Statistical
Performance :·leasure Mode }:ode Significance

* I Debug Man-Hours 19.3 31.2 .05

I Computer Time (sec.)

j Program Size (machine words)

Program Run Time (sec.)

747

2534

548

2339

Range of Indiv~dual Differences
in Debug Man-Hours

Range of Individual DIfferences
in Computer Time

Factor Analysis of

3.7 3.7

14:1 and 6:1 and
13:1 9:1

3:1 and 7:1 and
11:1 8:1

Two factors: programing speed and
I Performance Measures program economy
I
I * I Analysis of variance on transformed scores.

I

I

1. Time-sharing requires fewer man-hours to debug programs for highly
experienced programers than a simulated batch system with a two-hour
turnaround time.

2. Computer tillie, program size, and pr03ram I"UIIning time ~., not
l>igniHcertHy int'iueneed by i;stch versuil til!l .. ~shad.ng IIIOddll under th.
conditions of this experiment.

3. Individual performance differences in 3. highly experienced group of
programers are considerably larger than observed system differences
between time-sharing and batch processing.

4 .. An exploratory factor analysis of the experimental data revealed two
basic programing skills--progra::ling s?eed and program economy.

TABLE IV - Main results of the Grant-Sackman study

I

Time-Sharing versus Batch Processing 7

Time-Shared Batch

Performance !-1easure Mode Mode

Elapsed Time (days) 29.5 46

Analysis Time (min.) 3059 2295

Programer Time (min.) 5672 2737

Computer Time (min.) 92 101

Compilations 118 49

Total Cost (dollars) 1579 1075

Range of Individual Differences for above variables

Statistical
Significance

.08

.02

.05

.08

3:1 to 4:1

1. Students experienced in batch techniques and who are inexperienced in
ti::le-sharing techniques, and who essentially use batch procedures under
both modes, use less of their own time and incur lower man-machine cc.:;ts
to prepare, code ano debug programs under the batch mode than in tiIr..=
sharing.

2. Ti.I:le-sharing, even with subjects unfamiliar with its use, requires less
total elapsed time than batch processing to prepare, code and debug
programs.

3. In a select group of students, individual differences in performance
are much larger than system differences between tiIr.e-sharing and batch
processing.

4. "''hile time-sharing required more compilations than batch processing
under the conditions of this experiment, there was no significant
difference in the expenditure of computer time under both modes.

5. The above conclusions are contingent upon the type of programing languages
us.?d in both I!!odes and the extent and variability 0: batch turnaround
times--both of which were not report ad in the original articla.

TABLE V.,.- Main results of the Schatzoff, Tsao and Wiig study

I Perfor:::ance ~!easure
lI~nstant"*

Hode
Batch*

Xode

Initial Progra::l Preparation (min.)

Time to Keypunch Original Program (min.)

Time to Prepare New Run

Number of Runs per Student

Computer Runs per Trip

Elapsed Time (days)

Computer Time (average min. per run)

Intervals Between Successive Computer
Runs (min.) First Quartile

Median
Third Quartile

Student Preference

*

440

109

311

7.1

2.5

3.0

.277

40
205

not reported

70%

No tests of statistical Significance were reported.

405

108

293

6.6

1.9

3.7

.186

210
450 (ellt.)

not reported

24%

1. Instant turnaround batch results in less elapsed time than conventional
batch to prepare, code and debug programs for a relatively large sample
of student users.

2. Instant turnaround results in heavier computer time expenditure than
conventional batc.h processing.

3. Instant turnaround is preferred by substantially more students than
conventional batch processing;

4. Instant turnaround is associated with changes in programing working
patterns that are characterized by shorter intervals between successive
job runs and earlier compietion ?f the experimental task.

5. The above conclusions are contingent u!'on the variability of the da:a
and derived tests of statistical s:'gnificance w:licn were not: report:ed
in the published study.

TABLE V 1- Main Results of the Smith Study

8 Spring Joint Computer Conference, 1968

Interpretation

What are the consistent patterns, the ambiguities,
and the gaps in the findings of the five studies? Six
types of performance measures in the data are re
viewed: subject time, computer time, system costs,
user preference, individual differences and special
measures. Composite results for the first four meas
ures are shown in Table VII.

Computer User
Man-Hours Ti",e Cr.,,!: .. Preference

Eriksim T1me-Shar:lna " TilIIe-Shar:lna T1me-Shar:lna T1me-Shar:lna
1.9:1 3.4:1

Gold T1me-SbariDc Batch Approz. T1me-Shar:lna I
1.211 5.7:1 S_ I

I

I I
I Grant and T1me-Shar1Da Batch Approx. T1me-Shar1q I

1.6:1 1.4:1 Same Sackman

Schatzoff, Batch TlIle-Shar1q Batch Hot laported

Taao and 2.1:1 1.1:1 1.5:1

W11&

Smith Instant "" Batch Approx. wtant
1.2:1 1.5:1 Sama

Median for T1ma-Shar:lna Batch Approx. 'r1me-Shar:lna
All Studies 1.2:1 1.4:1 5_ Prefarred

"Tha moda showins a raported ~ appears in each box tosathar
with ita favorabla ratio; a.,., this 811.t1")' shows lass man-hours for
tillie-sharing at a 1.9:1 ratio.

""Instant" batch is treated in this tabla as a siDulated varsioa of
t1me-sharing.

TABLE VII-Composite Experimental Box-Score: Time-Sharing
Versus Batch Processing

Four out of five studies show time-sharing (or its
simulated equivalent) to result in less human time in
producing programs or solving problems than batch
processing (or its simulated eqUIvalent). Only the
Schatzoff, Tsao and Wiig study shows a reverse trend,
and these authors admit to their subjects' use of batch
techniques under time-sharing. Further, these authors
do, in fact, show less elapsed time for completion of
experimental tasks under time-sharing. On the other
hand, the Erikson study, which shows the greatest rel
ative performance advantage for time-sharing (almost
2: 1 -in trainee man-hours), was based on the use of an
interactive interpretjve language in both modes, which
created a favorable bias for time-sharing. With· these
qualifiers at both extremes in mind, it appears that
time-sharing does tend to require less elapsed time
and fewer man-hours to produce programs and solve
problems. The magnitude of this performance advan-

tage is not very large - the median improvement for all
five studies is roughly 25 percent less human time
under time-sharing than in batch processing. No
claims are made for the meaning or the stability of
this or the other medians, but they do give a crude rule
of thumb for the pooied resuits of these five studies.

The comparative results on computer time show no
clear-cut trend. They range from a 6: 1 ratio in favor
of batch processing in Gold's study (an admittedly
inflated ratio since computer times in the two modes
are not strictly comparable), to middle-of-the-road
ratios varying from 1.5: 1, to 1.4: 1 in favor of batch in
the next two studies (Smith, and Grant and Sackman)
to i. i : 1 in favor of time-sharing in the Schatzoff,
Tsao and Wiig study to a 3: 1 ratio in the same direc
tion in Erikson's study. The conservative conclusion
is that computer time is highly sensitive to the unique
conditions of each experiment and that no consist
ent advantage seems to accrue to either mode as far as
the pooled data of these studies are concerned. On the
other hand, the median ratio is 1.4: 1 in favor of batch
computer time, and perhaps this might serve as a
"best" estimate for the pooled data.

The combined results for human time and computer
time, assuming that the reported trends are reliable,
reinforce the hypothesis that in time-sharing the user
trades off computer time for his own time. That is, to
state the extreme case, rather than check out his pro
gram as thoroughly as he can at· his desk, the time
sharing user is more likely to take a less-polished ver
sion or only a partially checked program to the com
puter for a trial run than his batch counterpart. Time
sharing critics will assail this practice by claiming that
the user develops careless and lazy work habits
through excessive reliance on extra computer runs;
time-sharing advocates will assert that such behavior
allows more intelligent exploration and testing of al
ternative solutions at a natural pace for the user when
and as problems arise. While there is probably some
truth to both positions (which are not mutually exclu
sive), it is hoped that future experimental analyses of
problem-solving stages in both modes will lead' to
improved hypotheses in the dynamics ofman-comput
er communication that will supersede these rather
crude stereotypes of user behavior under time-shar
ing and batch processing.

The data on system costs also shows no definite
trend. While only two studies reported cost estimates,
the overall. results indicate that one study shows
definitely less expense for time-sharing (Erikson
less computer time and fewer man-hours), three
studies show roughly equal costs for both modes
(computer time and man-hour results in opposite cost
directions), and one (Schatzoff, Tsao and Wiig) shows

a 50 percent cost advantage for batch processing.
Here again the results are contingent upon unique ex
perimental conditions.

The comparative results on user attitudes show a de
cided preference for time-sharing in Gold's study and
a strong preference for "instant" over conventional
batch in Smith's study. In the two SOC studies, al
though a formal poll was not taken, most subjects
apparently preferred time-sharing over the simulat
ed omine conditions. Schatzoff, Tsao and Wiig do
not report any opinion, data. The avaiiabie, evidence,
such as it is, indicates that time-shari,ng and "instant"
batch (minutes of turnaround time) are preferred over
conventional batch (hours of turnaround time). There
are no data to indicate how time-sharing would fare
against fast-turnaround batch. While it is not at all
surprising that the subjects liked easy access to com
puters and fast computer response, it is nevertheless
desirable to demonstrate this experimentally. User
preference for the interactive conversational features
of time-sharing over and above the fast response of
instant batch is still a moot point.

Individual differences were investigated in those
three studies using analysis of variance techniques. In
each case, performance differerices between subjects
were larger and overshad()wed system differences be
tween time-sharing and batch processing. The ob
served ranges were sometimes at an order of magni
tude between best and poorest performers - even with
relatively stratified subject samples. 'Although no
measures of the dispersion of subject performance
were reported in 'the Gold and Smith studies, it is
hoped that such analyses will be forthcoming since
these two studies have the largest user samples. Ex
cept for the Grant-Sackman exploratory factor analy
sis of individual performance differences, no systemat
ic analysis of human differences was attempted. This
factor analysis resulted in two well-defined and es
sentially independent factors - one concerned with
programming speed (low coding and debugging time,
and low computer time) and the other with program
economy (smaller and faster running programs). While
the entire area of individual differences in man-com
puter communication, from economic, system perform
ance and humanistic points of view, is probably
more important than operating system differences,
nevertheless, little has been done and virtually nothing
is known about such individual differences.

Gold's study is the only one that attempted to assess
how well the experimental task was done and how well
it was understood. He found that the time-sharing
group made a significantly larger profit in the simu
lated construction industry market and that they also
understood the problem better than the batch process
ing group, at least as determined by independent rat-

Time-Sharing versus Batch Processing 9

ings of written reports from both groups. These find
ings, but just for this one study, support the conten
tion that time-sharing leads to a higher-quality end
product than conventional batch.

The distribution of successive computer runs in
Smith's study shows interesting differences between
the instant and the conventional batch modes. Median
turnaround time for subjects to prepare their next run
is more than twice as short in the instant mode. Prob
lem-solving speed is apparently slower under conven
tional batch. As time-sharing adherents have often
pointed out, ready accessibility of computer services
lends itself to natural pacing in problem-solving tasks,
whereas the forced delays inherent in conventional
batch turnaround time tend to disrupt normal problem
solving patterns and inhibit spontaneous closure. U n
fortunately, the intervals between successive compu
ter runs under batch, and between successive console
sessions under time-sharing were not reported in the
other studies, thus, the above hypothesis is still con
jectural. Nor does this hypothesis bear upon the dif
ferences between instant batch versus interactive
time-sharing.

The two SOC studies, at least as far as program size
and running time are concerned, are neutral with re
spect to Gold's results in that no significant program
differences were found between time-sharing and sim
ulated batch modes. It would be of interest if online/
omine experiments were conducted in which subjects
were instructed to write short and fast-running pro
grams in addition to solving the experimental tasks.
Without such instructions subjects are likely to con
centrate primarily on working solutions rather than on
operating costs of the finished product. Program size
and running time can be used to measure comparative
"quality" of final programs - a useful measure in
realtime computing systems, for example, where
space and running time are often at a premium.

What is the composite picture of experimental com
parisons of time-sharing and batch systems, at least
as depicted by the available studies, and what are
the main gaps in this portrait? The rather blurred por
trait that emerges seems to show that time-sharing
is more likely to get the job done faster, perhaps at
higher quality, at a working pace preferred by users.
Batch processing may, more often than not, require
less computer time, and perhaps at somewhat less
cost than time-sharing. Prior familiarity with batch
or time-sharing, and built-in individual or institutional
bias toward one or the other, especially if ,coupled to
computer system tools or languages built for one mode
rather than the other, could easily shift the balance in
the familiar direction. Overshadowing these system
differences are wide-ranging individual differences
which seem to account for most of the observed vari
ance in performance.

10 Spring Joint Computer Conference, 1968

Except for Gold's exploratory work on the quality
of the user's final product, virtually nothing has been
done on human creativity in the online/offline setting.
No studies have been performed on the distinctive
characteristics of conversational interaction in time
sharing and whether these characteristics offer any
advantage over fast batch systems. No work has been
done on a comparative error analysis of user perform
ance between time-sharing and batch processing ex
cept for some preliminary tabulations listed by Smith
(1967).12 There are no detailed case histories on the
real time pattern of problem-solving - a kind of time
and-motion study of human decision making - that
occurs under online and offline conditions, away
from the computer as well as at the computer. Until
we understand the behavioral dynamics of man-com
puter communication we can hardly expect to under
stand the relative tradeoff between alternative modes
of data processing, including the comparison between
time-sharing and batch processing. It is not within
the scope of this paper to develop a systematic frame
work for comparative analyses of user performance;
this has been done elsewhere ~y the author. 11 Suf-
fice it to say that it is an encouraging sign of the times
that significant experimental attempts have been made
to obtain open scientific data on camparative man
computer systems, and that the application of comput
ers to human affairs is becoming more a shared, ap
plied science and less a secretive, crude, trial-and error
technology.

REFERENCES

I F J CORBATO M MERWIN-DAGGETT R C DALEY
An experimental time-sharing system
Proceedings of the Spring Joint Computer Conference 1962
pp 335-355

2 J I SCHWARTZ E G COFFMAN C WEISSMAN
A general purpose time-sharing system

Proceedings of the Spring Joint Computer Conference 1964
vol 25 pp 397-311

3 C J SHAW
The JOSS system
Datamation vol 10 no II November 1964 pp 32-36

4WCLYNCH
Description of a high capacity, fast turnaround university
computer center
Proceedings of 22nd National Conference Association for
Computing Machinery Thompson Book Co 1967 Washington
D C pp 273-288

5 H SACKMAN
Experimental investigation of user performance in time-shared
computing systems: retrospect prospect and the public interest
SP-2846 System Development Corporation Santa Monica
California 5 May 1967

6 W j ERIKSON
A pilot study of interactive versus non interactive debugging
TM-3296 System Development Corporation Santa Monica
California 13 December 1966

7 M GOLD
Methodology for evaluating time-shared computer usage
Doctoral Dissertation Massachusetts Institute of Technology
Alfred P Sloan School of Management 1967

8 E E GRANT H SACKMAN
An exploratory investigation of programmer performance
under on-line and off-line conditions
SP-2581 System Development Corporation Santa Monica
California 2 September 1966

9 M SCHATZOFF R TSAO R WIIG
A n experimental comparison of time sharing and batch pro
cessing
Communications of the ACM vol 10 n05 May 1967 pp 261-265

10 LYLE B SMITH
A comparison of batch processing and instant turnaround
Communications of the ACM vol 10 no 8 August 1967 pp
495-500

II H SACKMAN
Computers system science and evolving society
John Wiley and Sons Inc New York 1967

12 LYLE B SMITH
Part one: a comparison of batch processing and instant turn
around
Part two: a survey of most frequent syntax and execution-time
errors
Stanford Computation Center February .1967

Computer scheduling methods and their countermeasures

by EDWARD G. COFFMAN,JR*
Princeton University
Princeton, New Jersey
~-,1 auu

LEONARD KLEINROCK**
University of California
Los Angeles, California

INTRODUCTION

The simultaneous demand for computer service by
members from a population of users generally results
in the formation of queues. These queues are con
trolled by some computer scheduling method which
chooses the order in which various users receive at
tention. The goal of this priority scheduling algorithm
is to provide the population of users with a high
grade of service (rapid response, resource availabil
jty, etc.(, at the same time maintaining an acceptable
throughput rate. The object of the present paper is to
discuss most of the priority scheduling procedures
that have been considered in the past few years, to dis
cuss in a coherent way their effectiveness and weak
nesses in terms of the performance measures men
tioned above, to describe what the analysis of related
queueing models has been able to provide in the way
of design aids, and in this "last respect, to point out
certain unsolved problems. In addition we discuss the
countermeCisures which a customer might use in an
attempt to defeat the scheduling algorithm by arrang
ing his requests In such a way that he appears as a high
pri?rity user. To th~ extent that we can carry out such
an undertaking, the single most important value of this
consolidation of the results of analysis, e~perimenta
tion, and experience will be in the potential reduction
of the uncertainty connected with the design of a
workable service discipline.

By a grade or class of service we mean the availa
bility of certain resources (both software and hard
ware), a distribution of resource usage costs, and a
well-defined distribution of waiting or turn-around
times which applies to the customer's use of these re-

*This research was supported in part by the Bell Telephone Lab
oratories, Murray Hill, New Jersey.

**This research was supported in part, under Contract OAAB07-
67-0540, United' States Army Electronics Command, and also

in part by the Advanced Research Projects Agency (SO-184).

sources. In multi-access, multiprogramming systems
throughput may conveniently be measured in terms of
computer operating efficiency defined roughly as the
percentage of time the computer spends in perform
ing user or customer-directed tasks "as compared with
the time spent in performing executive (overhead type)
tasks. We shall avoid trying to measure the program
mers' or users' productivity in a multi-access environ
ment as compared with productivity in the usually less
flexible but more efficient batch-processing environ
ment. For discussions on this subject see References
1 and 2 and the bibliography of Reference 3.

With a somewhat different orientation some of these
topics have been covered elsewhere. In particular,
Coffman,4 Greenberger> and in more detail Estrin
and Kleinrock6 have reviewed the many applications
of queueing theory to the analysis of multiprogram
ming systems. In addition, Estrin and Kleinrock have
surveyed simulation and empirical studies of such sys
tems. Howeyer, in contrast to the purposes of the
present paper, the work cited above concentrates on
mathematical models and on service disciplines to
which mathematical modeling and analysis have been
to some extent successfully applied. We shall extend
this investigation to several priority disciplines not
yet analyzed and to others which more properly apply
to batch-processing environments. Furthermore, as
indicated earlier, the present treatment investigates on"
a qualitative basis the detailed interaction of the cus
tomer and the overall system with the service disci
pline.

Classification o/priority disciplines

Before classifying priority disciplines consider the
following very general notion of a queueing system.
In Figure 1 we have shown a feedback queueingsys
tem consisting of a computer (service) facility, a queue
or system of queues of unprocessed or incompletely

11

12 Spring Joint Computer Conference, 1968

processed jobs (or more generally, requests for ser
vice), a source of arrivals requesting service and a
feedback path from the computer to the system _ of
queues for partially processed jobs. The system will
be defined in any given instance by a description of
the arrival mechanism, the service required from the
computer, the nature of the computer facility, the ser
vice discipline according to which the selection of ser
vice requests from the system of users is determined,
and the conditions under which jobs are "fed back"
to the system of queues. In all of the service disci
plines discussed in the next section we make the fol
lowing assumptions: 1) the arrival mechanism is
such that if the arrival source is not empty it generates
new requests according to some probability distribu
tion, 2) the service disciplines are such that the com
puter facility will never be idle if there exists a job
in the system ready to be executed.

ARRIVING

UNITS

SYSTEM OF

QUEUES

PROCESSOR

Figure I - Feedback queueing system

DEPARTURES

There are a variety of ways to classify priority ser
vice disciplines. Indeed, one point of view is expressed
by saying that priorities may be bought (e.g., in disci
plines where bribing is allowed,1 earned e.g., by a pro
gram demonstrating favorable characteristics in a
time-sharing system), deserved (e.g., by a program ex
hibiting beforehand favorable characteristics), or a
combination of the above. For our purposes we shall
classify a given priority method according to the prop
erties listed below.

A. Preemptive vs. non-preemptive disciplines

This characteristic generally determines how new
arrivals are processed according to the given disci
pline. If a low priority unit is being serviced when a
higher priority unit arrives (or comes into existence
by virtue of a priority change of some unit already in
the system) then a preemptive service discipline im
mediately interrupts the server, returns the lower pri
ority unit to the queue (or simply ejects it from the
system), and commences service on the higher pri
ority unit. Note that non-preemptive disciplines in
volve preplanning in some sense. However, the ex
tent of pre-planned "schedult;?s" may vary wideiy.

B. Resume vs. restart

This characteristic determines how service is to
proceed on a previously interrupted (preempted) job
when it comes up for service again. With a resume
priority rule no service is lost due to interruption and
with a restart rule all service is lost. Assuming that
the costs of lost service are intolerable in the applica
tions of concern to us we shall treat only resume rules
and systems in which such rules are feasible.

C. Source of priority information

Service disciplines may be classified according to
the information onwhich they base priority decisions.
Such a list would be open-ended; however, the sources
of the information may be considered to fali in one of
three not necessarily disjoint environments: 1) the job
environment whereby the information consists of the
intrinsic properties of the jobs (e.g., running time, in
put/output requirements, storage requirements, etc ..),
2) the (virtual) computer system environment (e.g., dy
namic priorities may be based on the state of the sys
tem as embodied in the number of jobs or requests
waiting, storage space available, location o(jobs
waiting, etc.) and 3) the programmers' or users' en
vironment in which management may assign priori
ties according to urgency, importance of individual
programmers, etc.

D. Time at which information becomes known

Classical service disciplines assume that the in
formation on which priority decisions are based is
known beforehand. On the other hand, time-sharing
disciplines are a prime example of service disciplines
in which decisions are based on information (e.g., run
ning time and paging behavior, which is obtained only
during the processing of service requests. Such in
formation, of course, is used to establish priorities
based on the predicted service requirements of re
quests which at some time were interrupted and re
turned to the queue.

All of the priority scheduling methods to be dis
cussed are applicable to the infinite input population
case (in which the number of possible customers is
unbounded) as well as to the finite population case
(in which a finite number of customers use the sys
tem) - see Reference 6.

Priorities based only on running times

The intent of systems using a so-called running
time priority discipline is that the shorter jobs should
enjoy better service in terms of waiting times. The
PCPS (first-come-first-served) system is commonly
used as a standard of reference to evaluate the suc-

Computer Schcduiing lViethods and Countermeasures
1")
1,)

cess of this intent. The first two algorithms below as
sume job running times are known at the time they ar
rive at the service point, while most of the remain
der, which have arisen primarily in connection with
multiprogramming systems, assume that no indica
tions of running times are known until after jobs have
been at least partially run.

A. The shortest-job-first (SJF) disciplines

This is a non-preemptive priority rule whereby the
queue is inspected only after jobs are completely
processed (served) at which times that job in the queue
requiring the least running time is the next to receive
service to completion (and thus there are no cycled
arrivals). The SJF descipline has the obvious advan
tage of simplicity and the somewhat less obvious ad
vantage that the mean customer waiting time in· the
system is less than in any system (including the FCFS
system) not taking advantage of known running times.
However, it is clear that significantly long running
jobs suffer more in an SJF system than in an FCFS
system. Thus, the reduction in the first moment of the
waiting time comes at the cost of an increase in the
second moment (or variance). We discuss the SJF
discipline further in connection with the following dis
cipline.

B. The preemptive shortest-job first (PSJF) discipline

With this discipline the SJF priority rule is applied
whenever a job is completed as well as whenever there
is a new arrival. If a new arrival has, at its time of
arrival, a service requirement less than the remain
ing running time required by the job, if any, in ser
vice, then the latter job is cycled back to the single
queue and the computer given over to the new arrival.
The job returned to the queue is subsequently treated
as if its running time were that which remained when
it was interrupted; i.e., we have a preemptive, resume
discipline.

The PSJF discipline has the advantages over the
SJF and FCFS disciplines of further accentuating
the favoritism enjoyed by the short running jobs and
further reducing the average waiting time in the sys
tem. (Again, the variance will be increased.) Indeed,
it has been shown that the PSJ F discipline is the opti
mum running-time priority discipline in these last two
respects. This relationship between the SJ F and PSJ F
disciplines is seen in part by observing that time-of
arrival receives some consideration in the SJF disci
pline but, because of the preemption property, none
at all in the PSJF discipline.

The principal disadvantage of the PSJF discipline
in the computer application is the cost associated with
interrupting a job in progress, placing it into auxiliary

(queue) storage, and loading the higher priority job
for execution. Although this swapping process with
auxiliary storage devices may not always be neces
sary, depending on the size of main storage, it may out
weigh the advantage of PSJF scheduling over SJF
scheduling. Since it is usually difficult to expect ad
vance knowledge of exact running times, it is en
couraging to note that in (,l thorough study by Miller
and Schrage9 it is shown that even with partial indi
cations of running times significant improvements in
mean flow time are possible at the expense of in
creases inthe second moment.

It is obvious that the major effect of these disci
plines on the programmer-users of such systems is
a salubrious one in that it causes them to produce fas
ter, more efficient jobs. However, the reaction of.a
user with a job ready to be submitted to an SJF or
PSJF system depends to some extent on what infor
mation regarding the state of the system is available
to the user. If the user can see only the queue length
(and this is usually available) then whether or not he
balks (refuses to join the queue) depends on how long
his job is, his knowledge of the distributi9n of the run
ning times of jobs· submitted to the system, and his
assessment of his. chances were he to decide to come
back later. If indIcations of the running times of jobs
in the queue are known at arrival time then good esti
mates of waiting time are possible; thus, longer jobs
wanting fast service are more likely to balk. With
knowledge only of queue length, however, it would
appear that less balking would occur with the SJF
and PSJF systems than with the FCFS system. On
the other hand, reneging (leaving the queue after join
ing it and before being completely serviced) would be
more likely since long jobs are likely to progress rath
er slowly toward the service point.

The countermeasures available to the users of the
SJF system in attempts to defeat (or take advantage
of) the computer scheduling algorithm are rather ob
vious. Firstly, it is clearly advantageous to submit
as short a job as possible. The natural consequence
of this action suggests that a user partition his request
into a sequence of short independent requests. Sec
ondly, unless special precautions and penalties are
provided, the users may purposefully lie about (i.e.,
underestimate) their required running time. Such
countermeasures lead to a situation in which the at
tempted discrimination among jobs becomes ineffec
tive and preferred treatment is given to those users
displaying the use of clever and/or unethical tactics.
We will continue to observe this unfortunate result
in the other scheduling algorithms.

So far we have been discussing computer operating
disciplines as if there existed but one queue of jobs

14 Spring Joint Computer Conference, 1968

waiting in the central processor. This is not generally
true if we consider also the queue or queues of jobs
waiting for the use of input/output (I/O) devices. The
executive or supervisor system itself may be one of
the "jobs" in the I/O queues. In a general batch-pro
cessing or time-sharing system it is more realistic to
assume that jobs consist of phases or tasks whose re
quirements alternate· between the use of the central
processor and the use of some I/O device. Then the
SJF policies may be defined just for the centrat pro
ce.ssing time (as implied above) or by the sum of cen
tral processing and I/O time.

It is not our intention to discuss I/O scheduling
disciplines in any detail but it should be kept in mind
that a job completion in the central processor system
may simply mean that the given job has reached a
point where it requires an VO process before continu
ing. Similarly, an arrival may mean a job returning
from the I/O system for more computing time. This
is not to say, however, that I/O and central process
ing scheduling are independent processes; indeed, it
may be necessary that one of the criteria for assign
ing priority (external or internal to the comput sys
tem) be which I/O devices are required and for how
much time. This is taken up again below.

c. The round-robin (RR) discipline

This well-known schedu~ingprocedure was first
introduced in time-sharing systems as a means for
ensuring fast turn-around for short service requests
when it is assumed that running times are not known
in advance. As seen below the RR discipline falls
within a class of so-called quantum-controlled ser
vice disciplines in which the size (q) of the quantum
or basic time interval is to be considered as a design
parameter. In an RR system the service faciiity (com
puter) processes each job or service request for a max
imum of q ~econds; if the job's service is completed
during this quantum then it simply "leaves" the sys
tem (i.e., the waiting line and the central processor),
otherwise the job is cycled back to the end of the sin
gle queue to await another quantum of service. New
arrivals simply join the end of the queue.

As can be seen, the use of running time as a means
of assigning priorities is implicit in the RR disci
pline, whereas it is explicit in the previous two dis
ciplines. Running time priorities are assigned after
a job has been allocated a quant~m of service- if the
job requires additional service it suffers an immediate
drop to the lo·west (relative) priority and sent to the
end of the queue. Furthermore, it is clear that the RR
policy uses both running time and time-of-arrival to
make (implicit) priority decisions. This latter depen
dence is seen by noting that all jobs arriving at any

time earlier than a given job will have been allocated
at least one more quantum of service when the given
job reaches the service point.

The extent to which the RR discipline maintains the
shortest-job-first policy (in a posterior fashion) de
pends on the quantum size. Ciearly, if q is allowed
to be infinite we have a FCFS system. On the other
hand as q approaches zero we have in the limit a so
called processor-sharing system10 in which the part of
the processor not devoted to executive or overhead
functions is "divided up" equally among the jobs cur
rently in the system. In short, we have a system with
no waiting line wherein it is possible to execute all
jobs simuitaneousiy but at a rate reduction for an in
dividual job which is proportional to the number in
the system. (The computer systems with multiple pro
gram counters approximate to some extent the RR be
havior with q very. close to zero). Despite the better
service for short jobs as q decreases, questions of ef
ficiency generally dictate against quantum sizes too
small in conventional computer systems. We elaborate
on this shortly.

The extent of discrimination by the RR discipline
in favor of short jobs also depends .on the distribu
tion of job running times. In particular, the RR disci
pline clearly does not take advantage of any knowl
edge gained by the quantum-exec1)tion of ajob beyond
the fact that the job simpiy requires more. For exam
ple, the distribution of job running times may be such
that any job requiring more. than two quanta will with
probability .95 require in excess of 10 quanta. I n this
event the desire to favor shorter jobs would indicate
that all jobs having received two quanta should not
come to the service point for the third time until all
jobs in the system have received at least two quanta.
The distribution of job running times that is appiica
ble to RR scheduling in this respect is the exponential
distribution, which also corresponds to the assump
tion that has been found analytically tractable in most
queueing theoretic studies of the RR discipline. This
arises from the so-called memoryless property of the
exponential di~tribution which means in our applica
tion that after executing a job for q seconds (with q
arbitrary) the distribution of the remaining time to
completion is always the same (and equal to the origi
nal distribution). Thus, it is the continued identical
uncertainty in job running times that constitutes the
primary job characteristic making the simple RR dis
cipline desirable.

It is immediately evident from the definition of the
RR discipline that the basic disadvantage consists of
the swapping (removing one job from and placing an
other job into service) necessary for jobs requiring
in excess of q seconds of service. l\1any approaches

Computer Scheduling 1vfethods and Countermeasures 15

to the solution of this problem have been taken. For
example, increasing the size of main memory so that
many jobs may coexist -there eliminates much of the
need for swapping. Of course, this is a limited and
possibly expensive solution. Also, overlapping the
swapping of one job with the execution of another in
·systems with appropriate memory control and storage
capacity makes the swapping process a latent one so
that the suspension of the central processor for input/
output processes is reduced. Nevertheless. with mod-
ern, large-scale mUltiprogramming systems, the swap
ping process remains a principal bottleneck to effi
cient operation with many users.

Several analytical studies of RR disciplines have
been_ carried outll ,12,26 with the goal of determining,
for a system defined b¥ a given arrival process and job
running time distribution, the interaction between sys
tem performance (efficiency, throughput, or waiting
times) and the swap-time and quantum size param
eters. As v'erified by experience, analysis has shown
how performance deteriorates sharply when the quan
tum size for a given swap time and system loading is
made lower than a certain minimum range of values (or
alternatively when loading becomes too heavy for a
given quantufilsize). The priority disciplines described
in the next section illl1;strate techniques whereby this
excessive deterioration of service is avoided to some
extent.

As regards countermeasures, the mere reduction
of one's job length gains little. However, if a user were
to partition his job into many smaller jobs, then he
would achieve superior performance than a user with
an identical job which was left intact. Again, the clever
user wins. An interesting property of the q = 0 case
is worthy of note, namely, that all customers have
identical ratios of service time to mean time spent in
system!

D. The multiple-level feedback (FB) discipline

The FH discipline differs from the RR discipline in
a way which is analogous to the way in which the
PSJF rule differs from the SJF rule. In an FB system
a new arrival preempts (following the quantum, if
any, in progress) all jobs in the system and is allowed
to operate until it has received at least as many quanta
as that job(s) which has received . the least number of
quanta up to the time of the new arrival: Alte~na
tively, the FB system may be viewed as consisting of
multiple queue-levels number 1, 2, 3, ... with new ar
rivals put in queue-levell, jobs having received 1,

. quantum and requiring more in queue-level 2, etc.
After each quantum-service the next job to be oper
ated will be the one at the service point of the lowest
numbered, non-empty queue-level.

Once again, shorter jobs receive better service at
the expense of the longer jobs, and large jobs are not
allowed to interfere or delay excessively the execution
of small jobs. However, the mean flow time is the
same in the RR and FB systems. (In this regard, we
note the existence of a conservation law13 which
gives the contraint* under which one may trade the
speed of response among a populatio~ of us-ers.) The
choice between the RR and' FB priority disciplines
is determined basically by how much one wants to
favor short jobs, for the basic algorithms involve the
same amount of swapping. It is true; however that the
PB discipline is somewhat more costly to implement
in the sense that indicators must be used to keep
track of the amount of service received by each job.

In the FB system, the users' countermeasure is
again to partition his work into many smaller jobs each
requiring a small number of quanta (one quantum each,
optimally).

Observe that the RR, FB, and PCPS disciplines
may be combined in a variety of useful ways. Two
combinations that have been used are described be
low.

E. The two-level FB or limited :Q.R <liscipline

With this discipline jobs are permitted to "round
robin" only until they have received a fixed number
of quanta. At this point they are put into a "back
ground" which is only serviced when there are no
other jobs in the system. The background queue may
be executed in a FCFS fashion or in a RR fashion with
perhaps a larger quantum size. Here, the user counter
measures by forming many jobs from one, each such
requiring no more than the fixed number of quanta
which prevent his falling into the background queue.

F. The FB discipline with a finite number of levels

In this system ajob after receiving a fixed maximum
of quanta according to the FB rule (case D) is made to
join" a background which is to be serviced in one of the
ways mentioned above. A further degree of freedom
may be added to this or the simple FB rule by remov
ing the constraint that the quanta allocated at differ
ent queue-levels be the same.

A question that immediately arises is how one goes
about establishing the values of the quanta, the num
ber of levels, or any of the other parameters of these
running time priority disciplines. With a specified
arrival proce'ss and job running time distribution,
analysis has been only partly successful in the attempt

*In particular, the sum of the products for each class of users of
the utilization factor (mean arrival rate times meari'service time)
and the mean waiting time remains constant.

16 Spring Joint Computer Conference, 1968

to relate the performance measures of interest to the
structural parameters of the system.12 For furthe~
results simulation or empirical study25 will, in many
cases, prove the more rewarding approach.

Observe that if q is made zero in the basic FB
system we have a processor-sharing type of system
in which the jobs sharing the processor at any point
in time are those which have received the least amount
of service. Thus, a new arrival immediately preempts
those jobs sharing the processor and is allowed to
operate until its attained service is equal to that of
the former or until it completes. It can be seen that
the RR and FB processor-sharing disciplines differ
in structure in preciseiy the same way as the SJF
and PSJF disciplines. Furthermore, from our earlier
remarks it is evident that the former priority rules
represent the best that one can do with, respectiveiy,
non-preemptive and preemptive priority disciplines
designed to favor shorter jobs when running time is
not known in advance.

G. Declaration of mode - interactive or batch

The time-sharing system at the University of Cali
fornia at Santa Barbara14 uses an interesting varia
tion of the above methods. A user is required to state
whether his job is interactive (short, frequent requests)
or batch (longer. usually single requests). Time is
divided into fixed length segments such that during
the first half of each segment, the interactive jobs are
served in a round robin fashion until their half-seg
ment is exhausted (or until their collective requests
are satisfied). The remainder of the segment is then
used to service (to completion, if possible) as many of
the batch jobs as possible. During the· first half-seg
ment, some interactive jobs will drop from the queue
after one quantum of service (e.g., those requiring
the acceptance of a single button-push), etc; thus in
this system, there is a benefit in declaring the nature
of your job in an honest way, since in the case where
there is only one batch job and many interactive jobs,
the batch job receives better service if that user de
clares himself as being in the batch mode.

The discussion of balking and reneging when run
ning time is assumed unknown applies without change
to the RR and FB disciplines analogous to tile SJF
and PSJF disciplines, respectively. Another effect
that may need to be taken into account in the design
of a time-sharing discipline is that of "jockeying"
among queues of users awaiting service at a console.
(This complication of balking and reneging has re
ceived little attention in the literature.) As before,
users are encouraged to produce fast running jobs
for the RR and FB disciplines. In time-sharing
applications this might be better stated by saying that

users are encouraged to produce "freguent~y interact
ing" jobs. In a given multiple-level RR system, for
example, long jobs may avoid being put into a back
ground by communicating (artificially, if necessary)
with the on-line user at a frequency such that its
running time never exceeds the foreground quantum
during any operation interval. In effect, the job is
alternating between the foreground and input/output
queues in a way' that provides better service than
if it were put into the background. Obviously, this
is an example where the more clever users of a sys
tem tend to defeat the purpose of the service disci
pline.

As a final remark it should be noted that the exist
ence of saturation in a system with any of the dis
ciplines we have discussed, except for the RR dis
cipline, depends on the ciass of jobs being considered.
For example, in an SJF, PSJF, or FB system it is
clearly possible that loading be such that jobs with less
than say five minutes running time will have a finite
expected wait while those with greater than five min
utes running time will have an infinite expected wait
(in the infinite population case). Of course, the sys
tem as a whole is saturated if a finite threshold of this
nature exists, since the processor is not able to com
plete all jobs submitted to it. For the RR discipline
(as with the FCFS system) there exists a single satura
tion point which, when reached, causes ali jobs to
have an infinite expected wait. (This stems from the
continued interference of long jobs with the execution
of short jobs.)

State-dependent running time priority disciplines

The principal motivation behind state-dependent
disciplines is the desire to reduce the overhead and
swapping costs in the execution of quantum-controlled
service. It is of particular interest to prevent or mini
mize the collapse of RR system performance under
heavy loading; i.e., to provide a more graceful dete
rioration of service with increases in loading.

A. Cycle-oriented RR disciplines

A basic design parameter of such systems is the so
called cycle or response time which is set and used
to control as desired the maximum amount of time
required to execute one round-robin through all
active jobs. In one variation,12 after completing a
given cycle or round-robin, the subsequent round
robin quantum is determined by dividing the fixed
cycle time parameter by the number of jobs requiring
service; the time represented by the result of this
division is then allocated to each of the jobs requir
ing service at the beginning of the cycle. Subsequent
cycles are then determined in the same fashion. Usu-

Computer Scheduling Methods and Countermeasures 17

ally, some mInImum allocation time (quantum) is
always given because of the otherwise seriously de
grading effects of swapping during heavy loading.
Although the cycle time therefore increases at ex
cessive loading, it is clear that system performance
degrades more gracefully than otherwise in that the
loss of swapping is reduced as the load increases.
The present discipline is state-dependent in the sense
that the amount of time received by a given job in a
given cycle depends on the number of active jobs in
the system at the beginning of the cycle.

In another (two-level) RR variation26 a maximum
cycle time is similarly imposed on the amount of time
taken to process a "foreground" queue (i.e., a queue
of interactive, on-line user jobs) and a background
queue consisting of conventional production type
jobs. In this time interval each foreground job is given
a fixed quantum; if there is any time remaining in the
cycle it is devoted to the background job processing,
otherwise another cycle is initiated. To limit swapping
overhead (and thereby provide graceful degradation
during periods of heavy loading) the cycle is extended
in the event there are too many foreground jobs to
process for one quantum in one cycle.

I t is clear that the advantage of a reduced variance
in RR response times is compensated in cycle-orient
ed disciplines by the slower reaction to changes in
loading or input activity (we have implied that the
queue is examined only at the end of the round-robin
cycles). Statistically, however, this disadvantage
would seem to be a minor one. Of course, it is also
possible to make the value of the cycle time param
eter dependent on system loading (number in the
system). Just how this is to be done in a useful way,
however, presents a difficult problem. In these dis
ciplines, the countermeasure of partitioning a long
job into many small jobs is extremely effective.

B. Input-dependent disciplines

In one such (RR) discipline each time a new arrival
occurs the job, if any, in service is allocated an addi
tional quantum of execution time. 15 In this way the
RR discipline reacts to heavy input activity by in
creasing time allocation and thereby reducing the
amount of overhead and swapping. During light to
moderate input activity the straight RR discipline is
little effected by this change.

Another such discipline orders the queue of inter
active user's jobs by interarrival time. Thus, those
users communicating with the system at the faster
rates will receive the shorter response time. The
obvious countermeasure here is to initiate false I/O
commands. This technique, of course, may be com
bined in various ways with both RR and FB disci
plines.

c. Priorities based on storage allocation

Apart from the number in the system the most
important other source of internal priority infor
mation is the current allocation of storage and the
availability of I/O devices to perform storage alloca
ti~n functions. This~ of course is tied in with the swap
ping problem discussed earlier. In batch processing
systems requiring maximum efficiency this infor
mation may serve as the only criterion for assigning
nriorities: at a decision point with this type of dis
~ipline a' schedule of job operations is computed as
far as necessary in advance such that storage is well
utilized in some reasonable sense.

This sort of scheduling is also applicable to the
cycle-oriented RR disciplines described earlier. Thus
a job is executed once per cycle, but where it exe
cutes in the cycle is made dependent on what turns
out to be the best way (or at least a good way) to
sequence the use of main storage so that I/O is mini
mized and overlapped as much as possible with co.m
putation. Clearly, the cost that must be compensated
in this operation is the (potentially substantial) over
head time required to produce "good" schedules.

In the latest generation of multiprogramming sys
tems, storage structure and the processes of storage
allocation have been made more elegant by the con
cepts of virtual memory and paging. 16 In paging
systems jobs (programs and data) are paginated into
sets of fixed length pages or blocks of computer words
so that the logical unit of information transfer within
the supervisory system becomes a page. This also
means that jobs may be operated (at least in part)
when only a proper subset of the job's pages are in
main storage. The synthesis and analysis of efficient
storage dependent, running time priority disciplines
that take advantage of this added flexibility is a dif
ficult, important, and as yet unsolved problem.

I nclusion of externally generated priorities

The classical priority disciplines in which priorities
are determined external to the computer system are
described as follows. At any point in time with pre
emptive rules or just after service completions with
non-preeemptive rules the jpb next to be serviced
is the one with the highest priority (i.e., the job having
been assigned the lowest priority number). That
discipline receiving the most attenti.0n in the litera
ture is on'e for which the number of priorities is
finite or countably infinite; i.e., in one-to-one cor
respondence with the integers. 17 This gives rise to
levels of queues containing jobs of the same priority;
these queues are generally ordered by time of arrival
to the system. The advantages and disadvantages
of preemptive vs. non-preemptive priority rules are the

18 Spring Joint Computer Conference, 1968

same as those discussed for the PSJF and SJF rules
in an earlier section.

There has been a variety of ways by which exter
nally generated priorities have been included in
the running time priority disciplines described in
previous sections. These are chlssified~s follows.

A. RR disciplines with external priorities

A technique used with RR disciplines consists of
making the quantum size to be allocated dependent
on the priorities of the active jobs.10 Thus, a higher
priority job would be allocated a larger quantum
than a lower priority job. In the limit where the
quantum size is zero we have a processor-sharing
system in which the fraction of the processing rate
received by a job is determined by an externally
assigned priority.

Another technique which smacks of the multiple
level schemes given below involves the specification
of (relative) time delays as priorities.28 Consider the
following implementation, for example: Each arriving.
job is assigned a (priority) number which is based
on the given job's externally assigned priority and
on the number currently possessed by the other active
jobs in the system.· After a given quantum-service
(which may consist of multiple quanta) the next job
to receive service is the one having the lowest prior
ity number. The jobs having the same priority number
are ordered by time of arrival and serviced in that
sequence. Each time a job is serviced for one quantum
its priority number is increased by one. Thus, with
a non-preemptive system we see that the number
assigned to an arriving job indicates how much time
it is to be allocated for operation before it joins
the round-robin of jobs already in the system; this
in tum is determined by an external priority assign
ment.

B. Multiple level disciplines with externally assigned
priorities

The simplest and most natural method of including
external priorities applies to the multiple level,
disciplines in which each level is used to correspond
to an external priority number as well as to a given
level of attained service.12 In this way conventional
priority scheduling is combined directly with the
various FB disciplines described earlier. However,
variations in these types of disciplines may be ob
tained by the selection made for the means of order
ing the queue-levels. Specifically, the queues may be
ordered by time of arrival to the system, by time
of arrival to the queue, or by a combination of one
of these with ordering by priority; i.e., by the queue
level of original entry to the system. (Note that
ordering by time of arrival to the queue and by

time of arrival to the system amounts to the same
thing in the basic FB discipline without external
priorities.)

One time-sharing scheduling discipline of the
above type that has received considerable attention
is one in which priorities are assigned at arrival
time according to job size (storage requirements),
queues are ordered by time of arrival to the queue,
and quantum sizes are exponentially increasing
with the queue level (i.e., level one provides on
quantum, level two provides two quanta, level three
provides four quanta, and so on.2 Priorities based
on storage requirements are assigned so that the
larger jobs receive the lower priorities (enter at the
higher queue levels). In this fashion efficiency is
kept high by reduction in swapping time, since large
jobs are given more ti.me to operate between swaps.
Furthermore, the large jo~s are not allowed to interfere
with the small, presumably faster, and more efficiently
scheduled jobs. Clearly, users of such systems are
further encouraged to write small jobs, again possibly
by breaking larger jobs up into autonomous and small
sub-jobs.

F or a given application the design of the general
disciplines just discussed requires a means for evalua
tion of the best values for the quantum distribution,
the specification of the storage-dependent priority
assignment rule, and the selection of the best method
for ordering queue levels. Here again is a synthesis
problem similar to the one mentioned earlier. At
present no generally applicable, well-defined proce
dure exists ~ experiment by simulation and empirical
study has been used thus far. Some encouraging work
towards the opt~mal synthesis of such systems has
been reported by Fife. 18

In all of the externally assigned priority methods.
the user who can influence the assignment of external
priorities has a great advantage over the others.
This is taken up next.

C. User controlled priority assignment
According to this type of discipline the user is al-l

lowed in some way ~o bid for,. or simply buy the prior
ity he desires (or can afford) for his job. One such dis
cipline is the so-called bribing modeF in which system
users offer a bribe (based on an "impatience" factor
of their own) to obtain a preferred position in the
queue of waiting jobs. All those bfibing strategies
are then considered which minimize an appropriately
defined cost function over the set of users.

Another (quantum-controlled) system19 of this
sort has been used which provides a quantum size
that is proportional to the priority a user decides
to assign his job, q.nd which increases with the size
of his job (in order to maintain a reasonable operating

efficiency). What constrains the priority a user assigns
to his job is the fact that he is charged a fee for use
of the system which is proportional to the product
of the priority he has selected times the sum of the
computing and I/O time required by the job. In this
particular case, as well as in the bribing case, if a
user is capable of learning what all the other users
have assigned as their priorities (or bribes) then
he need merely "go one better" and choose a slightly
higher priority (or bribe) to achieve superior service.
Note when the system is heavily loaded that all
users see a "slow" system and so they tend to in
crease their self-assigned priorities (or bribes) in
an iterative fashion; the result is an ever increasing
cost to the user for a constantly decreasing grade of
service! Clearly, the user population as a whole
should in such case, act in collusion to prevent such
runaway conditions.

Dynamic or time-dependent priorities

There have been a number of priority disciplines
proposed in which jobs receive an external priority
that changes in a dynamic way once the job is in
the system. These disciplines were motivated by
other applications but it will be clear that they may
be considered candidates for scheduling computer
operations.

So far we have treated disciplines in which the
waiting time experienced by a job is not used to
directly influence the priority decision. The dis
ciplines below are structured so that this information,
weighted by an external priority number is used
in the process of selecting from the queue which
job is to be serviced next.

A. Delay-dependent disciplines

In the first variation to be discussed20 a job's
priority is increased, from zero at the time of arrival,
linearly with time in proportion to a rate (externally)
assigned to the job's priority class. Each time a new
job is to be selected for service according to the
non-preemptive or preemptive variations of this
scheme the "attained" priorities of jobs in the system
are compared, and that job with the highest attained
priority is selected next for service. If the priority
classes are assigned according to a shortest -job
first policy it can be seen that this rule moderates
the SJ F and PSJ F rules by reducing the probability
of excessively long waits.

In another variation21 jobs are similarly assigned
external priorities related to the urgency of service.
However, with this discipline a given job takes
precedence over another job in the queue if, and only
if, the difference between the former's (external)

Computer Scheduling Methods and Countermeasures 19

priority and that of the latter is not less than the
time the latter has spent waiting. This scheme may
be implemented as a preemptive as well as a non
preeemptive discipline. Again, this is an example
in which management becomes concerned about
ajob that has waited for a long time.

B. Priorities based on general cost accrual5

In the most general such system arriving jobs have
associated with them a cost accrual rate which is
some arbitrary function of time. In a preemptive or
non-preemptive mode the discipline is executed by
servicing (at each decision point) that job which
minimizes over all jobs the cost accrued by the sub
sequent waiting time. The cost accrual attributable
to a given job over a given time interval is calculated
simply by integrating the cost rate curve over the
given time interval. It is of interest also that one may
introduce deadlines by making the slope of the cost
rate function infinite after a suitable interval of
time.

The simplest case of the general discipline exists
when the cost functions are constant and identical
for each user. It can be seen that this corresponds
to a system in which cost accrues linearly with
time and where the priority minimizes the average
wait (i.e., we have the PSJF or SJF rules depending on
whether or not we have preemption). If we assume
constant valued functions that may differ for each
job we have the so-called cIt rule. This rule amounts
to selecting for service that job whose ratio of constant
cost rate (c) to known or average service time (t)
is the smallest.

In these systems, it is not usually to one's advantage
to partition jobs into smaller ones in an attempt to
defeat the system. In fact, it may pay to group many
jobs together so that they all enjoy an early arrival
time to the system.

Priority disciplines in multiprocessor systems

In providing the additional degree of freedom of the
number (and perhaps types) of processors many
different possibilities come into existence, most of
which have not been fully tested or analyzed as yet.
I n this section we shall examine briefly the application
of previously 4iscussed disciplines to multiprocessor
systems and certain disciplines for which analyses
exist in the literature but which arose out of other
applications.

A. Processors-in-series systems
Multiple channel (server) queueing systems are

broadly classified in the literature according to
whether the servers are being used in parallel or in

20 Spring Joint Computer Conference, 1968

phase type service. By phase type service we mean
that the processors are being used in sequence:22

one phase of a given job are being serviced on a given
processor. In general, each" processor will have a
queue of jobs (phases) which is fed by the output
of some other processor or by an external source.
Such a system applies, for example, to the alternating
I/O and computing job structure described in another
section. Here, we assume that at least one central
processor and at least one I/O processor is being used
in a cyclic way by a given job. Other applications of
this discipline)which may be combined with other dis
ciplines at each of the separate queues) are to be
found in computer systems dedicated to the processing
of certain, large phase-structure jobs.

B. Processors used in parallel

The simplest extension of the previous disciplines
to multiple processors is simply to treat the processors
in a first-available-first-used fashion. 8 In large,
general-purpose systems in which the processors
are identical this single queue approach offers the
advantages of simplicity, flexibility, and efficiency.
The disciplines may be made more effective in those
systems where jobs are designed to operate on one
or more processors depending dynamically on avail
ability.23

However, several other variations of "parallel"
. priority disciplines exist when the set of processors

or the input jobs are not homogeneous. The simplest
such case arises when jobs fall into one of two
categories; a foreground of fast service jobs and a
background of perhaps less important production
type jobs. These conditions are appropriate to the
so-called variable-channel discipline in which the
number of processors made available to the fore
ground jobs is made dependent on (increases with)
the number of foreground jobs in the system. The
number of foreground processors increases only
after a maximum queue length has been reached;
i.e., with each newly arriving job after the fixed
maximum has been reached a new processor is made
available (if possible) to serve the job at the head
of the queue.

Two other possibilities are 1) the existence of
~pecial purpose processors, and 2) processors of
·different computing speeds that may be allocated
by external priority or by job reqqirements. In
this regard, we may ask that a user estimate his job
length or type and then assign him to a processor
which has been optimized for such jobs. If, after
some processing, it is found that a user has made
a poor estimate~ he is penalized in some way (e.g.,
by being forced to move to the end of a queue on

another processor). His penalty for overestimating
his work is to be placed on a processor which is not
"tuned" to jobs of this type.6

The coming importance of networks of computers29

creates another source of applications for the above
types of mUltiple-queue disciplines. Computer net
work disciplines will also have to be dependent on
transmission delays of service requests and jobs or
parts of jobs from one computer to another as well
as on the possible incompatibilities of various types
between different computers. The synthesis and
analysis of multiprocessor and mUltiple processor
network priority disciplines remains· a fertile area of
research whose development awaits broader muiti
processor application and an enlightening experience
with the characteristics of these applications.

CONCLUSION

We have listed above a variety of possible computer
scheduling methods suitable for many situations.
This list is by no means complete. In fact, this wealth
of possible algorithms produces an "embarrassment
of riches" in that we do not really know how to select
the most useful scheduling methods. As we have in
dicated, the possibilities are considerable.

We have also attempted to discuss briefly the
possible counter-measures available to a user of the
computer which would allow him to defeat or take
advantage of the system for the various algorithms
described. Indeed we have shown that in most
cases, there is such a countermeasure! One hopes
that there exists an efficient scheduling method
which is immune to such manipulations.

REFERENCES

I J I SCHWARTZ E G COFFMAN C WEISSMAN
A general purpose time-sharing system
Proc SJCC 1964

2 F T CORBATO M MERWYN-DAGGETT
R C DALEY
An experimental time-sharing system
Proc SJ CC 1962

3 G BELL M W PIRTLE
Time-sharing bibliography
Proc I EEE December 1966

4 E G COFFMAN
Studying multiprogramming systems through the use of
queueing theory
Datamation July 1967

5 M GREENBERGER
The priority problem
MIT Project Rep MAC-TR-22 November 1965

6 G ESTRIN L KLEINROCK
Measures models and measurements/or time-shared computer

uiiliiies
Proc ACM Natl Conf August 1967

Computer Scheduling Methods and Countermeasures 21

7 L KLEIN ROCK
Optimum bribing for queue position
Journal of operations research (to appear)

8 T E PHIPPS JR
Machine repair as a priority waiting-line problem
Operations Research vol 4 1956

9 L W MILLER L E SCHRAGE
The queue M/G/l with the shortest remaining processing
time discipline
Rand Corp Report P 3263 November 1965
See also
L E SCHRAGE
Some queueing models for a time-sharedfaciiity
PhD Dissertation Dept of Indust Engineering Cornell Univ
February 1966

10 L KLEIN ROCK
Time-shared systems: A theoretical treatment
JournaloftheACM April 1967

II L KLEIN ROCK
Analysis of a time-shared processor
Naval Res and Log Quart March 1964

12 E G COFFMAN
Stochastic modeis for mUltiple and time-shared computer
systems
PhD Dissertation Dept of Engineering UCLA June 1966

13 L KLEIN ROCK
A conservation law for a wide class of queueing disciplines
Naval Res and Log Quart June 1965

14 G CULLER
Univ of Calif at Santa Barbara (Private Communication)

15 E G COFFMAN
A nalysis of two time-sharing algorithms designed for limited
swapping
Journal ofthe ACM (to appear)

16 J B DENNIS
Segmentation and the design of multiprogrammed computer
systems
Journal of the ACM October 1965

17 A COBHAM
Priority assignment in waiting line problems
Operations Research Feb 1954

18 0 W FIFE

An optimization modelfor time-sharing
Proc SJ CC 1966

19 G SUTHERLAND
Paper presented at the symposium: Computers and commu
nication: Their system interaction
Sponsored by the IEEE groups on Communication Tech
nology and Electronic Computers Santa Monica Calif January
1967

20 L KLEINROCK A FINKELSTEIN
Time-dependent priority queues
Journal of ORSA (to appear)

21 J R JACKSON
Wailing time distributionjor queues wiih dynamic priorities
Naval Res and Log Quart March 1962

22 L KLEIN ROCK
Sequential processing machines (SPM) analyzed with a
queueing theory model
Journal of the ACM April 1966

23 0 F MARTIN
The automatic assignment and sequencing of computations
on parallel processor systems
PhD Dissertation Dept of Engineering UCLA January 1966

24 A L SCHERR
A n analysis of time-shared computer systems
PhD Dissertation Dept of Electrical Engineering MIT
June /965
(See also the bibliography in reference 6)

25 B KRISHNAMOORTHI R C WOOD
Time-shared computer operations with both interarrival and
service times exponential
Journal of the ACM July 1966

26 Time-sharing system/360 development workbook
IBM Internal Document

27 E T IRONS
A rap~d turn-around multi-programming system
Commofthe ACM March 1965

28 E G COFFMAN
Bounds on the parallel processing of bulk queues
Naval Res and Log Quart September 1967

29 T MARILL L G ROBERTS
Toward {/ cooperative network oftime-slwred computers
Proc FJCC 1966

Some ways of providing communication
facilities for time-shared computing

by HOWARDL. STEADMAN and GEORGE R. SUGAR
ESSAo ROesearch Laboratories
Boulder, Colorado

INTRODUCTION

Since July 1965 we have been using time-shared com
puting services as a computing aid for technical pro
grams at the Boulder laboratories of the National
Bureau of Standards and the Environmental Science
Services Administration (ESSA). We proceeded
slowly through the steps of first studying time-shared
computing, visiting various installations, installing a
terminal and using an outside service, experimenting
with a variety of services, acquiring several more
terminals and providing regular service, and finally
acquiring our own time-shared computer. At first
service was obtained from the General Electric Com
pany in Phoenix, then in addition from System De
velopment Corporation in Santa Monica, from IBM
in Los Angeles, from Tymshare in Palo Alto, and from
Com-Share in Ann Arbor. Service is now being pro
vided by an SDS-940 time-sharing system operated
by ESSA in Boulder.

Throughout the build-up period there has been a
steady increase in our needs for Teletype terminals,
communications lines, switching facilities, data sets,
etc. We have obtained most of these from the local
Telephone Company (Mountain States Telephone and
Telegraph Company). However, because we have
often been the first customer in our area to ask for a
particular service or feature, we have in effect educat
ed the telephone company in the communications
requirements for time-shared computing. This was a
slow process and in some cases the services obtained
were not as good as we had expected.

The purpose of this paper is to relate some of the
problems we encountered in providing communication
for time-shared computing, the solutions for some
of these problems, and some possible approaches
to solving the others. While many organizations using
a time-sharing computer have had some experience
dealing with computer manufacturers, their experience
with communications problems had often been limited °

23

to obtaining conventional telephone service for their
staff. We hope that by relating some of our problems
and solutlods we will help other time-sharing users
solve their own communications problems. The body
of th~s paper is organized into three major sections.
The first discusses the Teletype terminals themselves
and some of the options that we found useful. The
second part discusses communicating with a computer
in a distant city and describes our initial facilities
for the SDS-940. The third part discusses a number of
alternate ways of providing the required communica
tion facilities.

Teletype terminals

While most telephone companies are well equipped
to handle the installation of telephones, even colored
Princess or Trimline instruments, such items as Tele
types and data sets are sometimes alien to their expe
rience. The special terminal options which many time
sharing systems require create additional problems.
These are not limited to technical details such as
full-duplex and half-duplex terminals, upright and
inverted operation, TWX versus TWX' service,
etc., but extend to simple mechanical problems such
as making a terminal "portable." For example, after
much discussion the Telephone Company decided that

° it was indeed possible to furnish wheels and a tele
phone plug on a Model 35 Teletype for $7.50 per
month extra. However this was subject to the restric
tion that the terminal not be moved between floors
in our building since the wheels might catch in the
crack between the elevator and its shaft and tip the
terminal over. We have long tried to persuade the
Company to furnish a portable Model 33 Teletype
and have recently succeeded. They had considered
this smaller machine to be less stable than the larger
Model 35 and therefore more dangerous to put on
wheels. (We had heard that some telephone companies
would furnish a portable Model 33 terminal and we

24 Spring Joint Computer Conference, 1968

have made our own Model 33 portable at a cost of
$20 including parts and labor.) In fairness to the
Telephone Company we must say that they have
tried to meet all of our needs. The principal problem
seems to be that anything that has not been done
before locally may require a very long tim~ to accom
plish.

Our first terminal was a Model 33ASR Teletype
connected for half-duplex Data-Phone service ("up
right"). As a next step we wanted a terminal to com
municate with the SDC time-sharing system. At that
time it too was equipped for Data-Phone service but
for "inverted" mode in contrast to the upright mode
that our terminal used. The difference between these
two modes lies in which of two carrier frequencies
is used by the originating terminal for sending and
which is used for receiving. Since normal Teletypes
are equipped both to originate and to answer calls
'it is necessary that the Teletype be able to use either
carrier for either sending or receiving. However the
standard Teletype does not have the flexibility re
quired to operate in both upright and inverted modes.
The solution proposed by the Telephone Company
was to install another terminal for inverted service
and this was done. It was not until some time later
that we persuaded the Company to equip all of our
terminals with a simple switch that allowed us to
operate them in upright or inverted mode. (It now
appears that upright mode has been adopted as stan
dard for time-shared computer service and the special
switch is no longer needed.)

The next special feature we required was full-duplex
operation to permit a lecture and demonstration of
the Berkeley time-sharing system. It was not until
late on the day before the lecture that the, terminal
was installed and it was not clear whether it worked
or not. The installer had not worked with a full-duplex
terminal before and his uncertainty about the operat
ing condition of the terminal was not the least reassur
ing to us. After the speaker arrived, a quick test on
line to the computer showed that indeed the terminal
was the proper one. (We later learned that the only
internal difference between a full-duplex Model 35
Teletype and a half-duplex one was the location .of
one wire on the terminal board of the data set. When
later it became clear that we would require full-duplex
terminals to use the Tymshare system in Palo Alto
we ordered full/half-duplex switches for all of our
terminals. This option, much to our surprise, became
available at no extra cost.)

Other features that we have obtained include forms
control and sprocket-feed platens on Model 35 Tele
types, slashed zeros (0), escape keys, and remote
reader-start and TD call-in on Model 33 Teletypes.

(This last option allows the computer to start and
stop the paper tape reader on the Teletype. It is stan
dard on Model 35 but a special option on Model 33
terminals.) We have also obtained multi-contact dis
tributors. These are devices that provide an inter
face to other apparatus such that signals originating
in the other apparatus are transmitted as if they were
sent from the Teletype keyboard itself.

As can be seen from the above, we have obtained a
large variety of special features on our terminals.
Table I lists the options which we have been able to
obtain along with the charges made by the Telephone
Company. Others in our area now have no difficulty
in getting these same features" However, new features
may still be hard to get. We can offer two hints to
those who want special features that are new to their
telephone company. First, ask for only one new fea
ture at a time. Second, find another telephone com
pany that has installed the feature you want and in
form your local company. If you can do at least one
of these two things and then wait a while, you can
probably get any feature that is technically feasible.

TABLII I

AnUab111t7 aDd -tbl7 a_tal ~. tor 'lViowo 'l'eJ.otn>nritor Opti"".

Base coat

ilIlta eet (alllOJ' required)

Peper tape reeder and pundt.

FuJ.l/balt cluplex ow1 tob

Upright/inverted _tob

Ea""pe kq

Blaohed.ero <II)
Even parity keyboard

'I'D call-in and. reaote reader .tart

Portable .. chine < wIleel. _ telepboae plus)

Parallel-input interrace rrc. external appantu

(Mu.lti-contact distributor)

Parallel-output interface to external appt.rlltua

Sprocket feed platen and. tOil'WlIJ control

lfotea: X lleans not available
- NC .eans no charge

S aeans standard. t'Mture

\lien two eoate are g1 yea..
the first i8 the IKIIlthl1' relit and. the .ee0a4
is the installation c:barp.

Communications

33A5R

$42 + $50

t25+t25
8

$.50

$2

JIC

JIC

II!

$I<
$7

.1~ + $35

$5 + $15

$5 ' $25

Mo4el lbIiber
3" 35ASR

$33 :. *50 *110 + *50
$25 + t25 $25 + $25

X 5

$.50 $.50

$2 $2

JIC JIC

JIC 11::

JIC

$.

$7 $1
$1~ + $35 $14 + $35

$5 + $15 $5 + $15

$5 + $25 $5 + $25

$"10 + $50

$25 + $25

x
$i. + $35

$5 + $15

$5 + $25

Our first terminal was connected as an extension
on our internal telephone system. We reached the
computer in Phoenix by first dialing an outside line
and then dialing the computer over the regular toll
telephone network. The communication cost for these
calls to Phoenix was about $25 per hour. We could
have used TWX service instead of Data-Phone ser
vice but the cost of calls to Phoenix would have been
slightly higher. However, for other distances TWX
may be less expensive. As usage built up we found
it advantageous to get a W A TS line that provided un
limited service to Phoenix for $1,000 per month.

As use of time-sharing increased. we added other
terminals and at first connected them to the one

Providing Communication Facilities for Time-Shared Computing 25

W A TS line. This arrangement turned out to be singu
larly unsatisfactory since, for at least one combination
of terminals, a new user could come on the line and
disconnect another user. It was never clear whether
this was done accidentally. While we were puzzling
over how to provide better communications at lower
cost, we learned of so-called FX or foreign exchange
lines and it was by using these that we were able to
effect a major reduction in communication costs.
Foreign exchange lines provide direct connections
to a telephone exchange in a distant city. In our case,
for example, an FX line to Phoenix provided us with
the same telephone connection we would have had if
we had been in Phoenix. This meant that a call to
Phoenix was a "local" call for us insofar as the
mechanics of placing the call was concerned. This
gave us, in effect, a sort of private line to the Phoenix
computer without requiring any special arrangements
at the comput~r. Now this would be oflittle advantage
relative to W A TS service except for one thing. Since
the Federal Government is a large user of TELP AK
service we were able to get our FX lines at essentially
TELP AK 0 rates which are about 45¢ per mile per
month for each voice-grade circuit. A small private
user would have to pay the private line rate of about
$2.00 per mile per month for this same service. The
low rate for FX lines put the break-even point for FX
versus regular toll· rates at about 20 hours use per
month. At one point our total monthly use reached
about 700 terminal hours and we had 2 FX lines to
Phoenix and 8 FX lines to Palo Alto (for the Tym
share computer) to handle this load.

During the period when we relied completely on
outside time-sharing service, all of our terminals
(about 30) were connected to our internal telephone
exchange and the FX lines were terminated at the
switchboard. Thus any terminal could, by dialing
our own telephone operators, connect with any of
the services which we used. This arrangement also
provided control over the use of the FX lines for
unauthorized calls. Further, if the FX lines were
all busy, our operator could place regular toll calls
for the user. Obtaining time-sharing service became
a matter of dialing "operator" and stating which com
puter service was desired.

In installing our own system, an SDS-940, we
sought to provide an interim communication system
which would allow access to either our system or
the commercial services which we were using. Our
purpose was to avoid any sharp cut-over from the
outside services to our own system just in case the
new machine didn't work right immediately. The
interim system described below was chosen primarily
because it was the cheapest one which provided the
needed facilities.

Figure 1 shows the current communication arrange
ment for our time-sharing system. Lines are provided
for internal and outside users. All equipment is pro
vided by the Telephone Company. The total cost for
the arrangement in Figure 1 is $6,361 per month.

18{~!DL;:~

4{: V • r««·:·>:-x-:~~
r.: . gDATA!

l!.!]J Ls!.!J

Figure 1 - Present system

This is broken down in Table II. Although this system
works moderately well, it has several significant draw
backs. The first is that it is somewhat expensive and
the telephone company expects to increase the rates
on some of the items. Second, it places a considerable
load on the in-house exchange which at the same time
must absorb increases in normal telephone use. Third,
it lacks flexibility with regard to connection to other
communication networks such as ARS or Western
Union Telex service.

TABLE n

Monthly Cost For Present System

(See Figure 1)

Equipnent !fo. Unit Cost Total Equipnent Cost

Teletypes 40 $100
1

$4,000

Data sets 64 25 1,600

Central exchange lines 36 17·50 630

701 exchange lines 46 2.85 ~

Total $6,361

lThis is an average price tor a mixture ot Model 33' 8 and Model 35' s
wi th a variety of options.

26 Spring Joint Computer Conference, 1968

Some other alternatives for obtaining facilities

For communication with our DSD-940 we require:
(1) terminals, (2) transmission facilities, and (3) a
"line-concentrator." The need for the first two is
clear. The need for the' third is aiso clear when we
consider that there are more Teletype terminals than
entry ports to the computer. For each of the three
facilities there are several choices of equipment and
often several choices of suppliers or methods of supply
for each piece of equipment. We first consider facil
ities supplied completely by the Telephone Company
and then consider composite facilities supplied from
any combination of sources. This separation is a
logical one since the Company insists on supplying
either complete systems or just leased private lines.

Complete systems available from the
telephone company

The Telephone COJ;npany has proposed the system
shown in Figure 2. The costs for this system are
shown in Table III. Clearly this system offers little
savings over our current system and in fact, on the
basis of the cost and trouble for converting, is not a
desirable change. The actual cost will probably be
greater than shown in the table. This is a result of
the Telephone Company policy of requiring 5-year
leases on some switching equipment. Tlie system
proposed has a $250-per-month termination penalty
for the unexpired part of a 5-year lease. In view of
the rapid developments in time-shared computing it
is unlikely that any system designed now will meet
our needs for the next 5 years. We would therefore
incur J considerable termination penalty and the actual
cost of the system in Figure 2 will probably be higher
than that for the current system.

TABLE In

Monthly Costs For Telephone Company Isolated Svitching System

(See Figure 2)

Equipment No. Unit Cost Total Equipment Cost

Teletypes 40 $100
1

$4,000

Data sets 64 25 1,600

Li'nes:

Radio Bldg. 28 1.50 42

Main Campus 10 40

30th St. Bldgs. 2 6 12

Ccrnputer Ports2 24 15 ~
Total $6,054

lThis 1s an average price for a mixture of Model 33's and Model 35's
\11th a variety of options.

2The cost of the concentrator is !ncluded in this item.
There is n termination charge of $250/mo. for the unexpired uart of
u fi veo ye~, r lrnl~;(, ~

Figure 2 - Telephone Company isolated switching system

Another proposed arrangement would use only our
internal telephone system (701). In studying Table II
one quickly notices that lines connected through the
central exchange are far more expensive than lines
connected through the 701. We have the present
split arrangement, because the 70 1 doe~ not h~ve
enough capacity to handle the whole ttme-shanng
load. Naturally one question is whether the capa
bility of the 701 can be increased and the cost of doing
it. This can be done. and Figure 3 shows this arrange
ment. The costs are shown in Table IV. Although this
system does not offer significant savings it is clearly
preferable to the system of Figure 2. There is still a
termination penalty for the extra switching equip
ment required. However, it is probable that this equip
ment wouid simply be kept and used to meet increased
demands for normal telephone service and no penalty
would be incurred.

Figure 3 - Expanded 701 system

Composite systems

Terminals and data sets - Terminals could in theory
be anyone' of several devices. However from the
viewpoint of cost, availability and compatibility with
the current system, ~fodel 33 or 35 Teltypes are the
best choice. These can be either leased or purchased.
In principle terminals can be leased from the Tele-

Providing Communication Facilities for Time-Shared Computing 27

phone Company or Western Union. However the
Telephone Company will lease Teletype units only
in conjunction with other equipment and Western
Union will lease only Model 35 Teletypes. If termi
nals are purchased, we wouid favor the Model 33
over the Model 35 because of a 1:4 cost ratio. If ter
minals are purchased, we must also. arrange for their
maintenance. At present we know of four possibi
lities; maintenance by ESSA, GSA, Western Union,
and RCA Service Company. Initial estimates are
that maintenance wouid cost about $25 per month
per terminal.

TABLE rv

Monthly Cost For Expanded 701 System

(See Figure 3)

Equipnent No. Unit Cost Total Equipnent Cost

Teletypes 40 $1001 $4,000

Data sets 64 25 1,600

701 exchange lines 64 2.85 182

Increase 701 capaCity2 35 3.95 ~
Total $5,920

~s is an average price tor a mix':'Jre of Model 33's and Model 35'·s
with a variety of options.

2There is a termination charge of 1./2 the cost tor the remaining
part of a 5 year lea se.

We do not yet have final estimates of maintenance
costs or of life expectancy for the terminals. Based
on information obtained so far and assuming a useful
life of 2 years for Model 33 equipment, a purchased
Model 33 KSR Teletype would cost approximately
$20 per month plus maintenance or $45 per month.
The Telephone Company lease cost is $42 per month.
Western Union has not yet filed a tariff on Model
33 Teletypes. They have offered to lease Model 35
Teletypes to us at $70 to $95 per month including
maintenance.

Any of the terminals discussed above will require
sorrie form of data set or modem. In examining the
various arrangements available from the Telephone
Company we find that they all include a substantial
number of data sets which must be leased at $25 per
month each. In many cases there is no technical need
for an elaborate data set and this is therefore an area
where substantial saving can be effected. For exam
ple, when private lines are used, suitable modems can
be purchased for less than $100 and Western Union
leases modems for $13.75 per month. The Telephone

Company charges $25 per month fof' a modem to con
nect Model 33 and 35 Teletypes to private lines.
This makes the rental of Teletypes from them more
costly than any of the other alternatives.

Another type of modem that is readily available
is the acoustic or magnetic telephone coupler. These
are available from a number of sources at purchase
prices as low as $250. We are already using a number
of them and find that they are adequate for most of
our needs. The use of these telephone couplers per
mits most telephones to be used as entry points to
the computer.

Transmission. facilities-Off our main campus and
perhaps outside of the building where the SDS-940
is installed there is no choice of lines other th~m from
the Telephone Company. There are two types" of
lines available - type 1000 for DC and low frequency
signalling and type 3000 for voice frequency signalling.
Either type has an approximate monthly lease cost
of $1.50 per half-duplex circuit within the same build
ing and $1.00 per ~ mile per half-duplex circuit out
side the building, with a $4.00minimum per line. Such
leased lines are the only answer fo~· off-campus build
ings. For terminals on the main campus we have con
sidered the installation of our own wiring, however,
we have not yet obtained any.cost estimates for doing
this. An additional possibility for remote locations
where we expect to have a significant number of ter
minals is t() place a line concentrator there to reduce
the number of lines to the computer. Lines within the
main building could then be provided either by us or
the Telephone Company.

A problem in using type 3000 lines is that they
transmit a.c. only (300-3000 cps); therefore tone
signalling must be used. Fortunately, as mentioned
earlier, suitable modems are readily available at low
cost. A problem in using type 1000 lines is that either
the SDS-940 system must be modified to accommo
date them or a special interface must be provided
external to the computer. Therefore there is no oppor
tunity to effect a major saving by using type 1000 lines
in place of type 3000 lines.

Switching facilities - The switching facility need
not be a general exchange. In particular only one-way
switching is required. Also no choice needs to be ex
ercised by the originating terminals. Therefore a sim
ple line concentrator is all that is required. (The Rand
Corporation has taken this approach for their JOSS
time~sharing system.) A suitable system can be ob
tained for approximately $6000. This would accomo
date up to 200 terminals and 40 computer "ports."

Optimum systems

A comparison of the alternatives shows that a com-

28 Spring Joint Computer C'onference, 1968

posite system will be less expensive than one obtained
completely from the Telephone Company. The two
best alternatives are a system u~ing telephone couplers
on the regular internal telephone system or a system
using private lines and a purchased line concentrator.
Figure 4 shows a system using telephone couplers.
It is similar to the system of Figure 3 but eliminates
the need for obtaining Teletypes and data sets from
the telephone company. Table V gives the projected
costs for this arrangement. We would save $1640
per month by converting to it.

1

Figure 4-Telephone coupler - 701 system

TABLE V

Eql11valent Monthly Cost For Telephone Coupler - 701 System

(See Figure 4)

Equipnent No. Unit Cost Total Equipnent Cost

Teletypes 40 $85
1

$3,400

Data sets 24 25 600

Couplers 40 10 400

701 exchange lines 64 2.85 182

Increase 701 Capaci ty2 35 3·95 ~
Total $4,720

This is an average price for a mixture of Model 33's and Model 35's
with a variety of options. We estimc.te that leasing frem Western
Union or purchase of Teletypes will average at least $15 per month
less than Telephone Company rates.

~ere is a tennination charge of 1/2 the cost for the remaining part
of a 5 year lease.

Figure 5 shows the system using private lines and
a purchased line concentrator. The costs for this
system should not exceed those shown in Table VI
and will probably be somewhat lower. With it we
would expect to save $2330 per month over our pres
ent communication facilities. This arrangement has
the additional advantage that it is the one best able
to provide for connections to the time-sharing system
from ARS, Telex, the regular telephone system, etc.
Any system we get must be able to accommodate a
small number of such special inputs. One alterna
tive is simply to dedicate some of the computer ports

to these types of services. This is however an undesir
able method since the number of ports is limited.
With our own switcher (and probably with one leased
from Western Union) we can connect these terminals
to the exchange input lines as shown in Figure 4,
thus providing access to outside and special trans
mission facilities without having to dedicate ports to
particular kinds of inputs.

SOS - 940
~1I01l'fll~--'hCO"PUTER

24

Figure 5 - Purchased switching system

TABLE VI

Eq~valent Monthly Cost For Purchased Switching System

(See Figure 5)

Equipnent No. t1nit Cost Total Equipment Cost

Teletypes 40 $ 85
1

$3,400

Modems 64 3
2

192

Exchange 250
2

250

Lines:

Radio Bldg. 28 3 84

Main Campus 10 8 80

30th St. Bldgs. 2 12 ~

Total $4,030

lwe estimate that leasing from Western Union or purchase of Teletypes
will average at least $15.00 per month less than Telephone Company rates.

~ased on a two year service life after installation.

Tariffs

Tariffs are often mentioned by the common carriers
as a reason why this or that cannot be done. To a
considerable extent, tariffs are the carriers' catalogs
and' price lists and simply reflect the business policies
of the carriers. They are not, although you may get
the impression they are, immutable laws writ in stone.
They are sometimes easily changed upon application
to the appropriate regulatory agency. Unfortunately,
the carriers' business policies are sometimes rather

Providing Communication Facilities for Time-Shared Computing 29

inflexible and may be difficult to get modified to ac
commodate new services properly. This has been
especially true in regard to connecting customer
owned equipment to the telephone system. However
the trend within the FCC is toward increased flexi
bility in regard to the use of these "foreign attach
ments," and this should make it much easier to use
composite systems than it has been in the past. Our
experience has been that it is useful to vigorously pur
sue our requests for new or unusual services even
though the initial reaction from a carrier is that it
cannot provide these services. In several such cases
service arrangements that we proposed were initially

rejected by the carrier as illegal or unacceptable
for other reasons and were later found to be legal
and acceptable.

CONCLUSIONS

There are a number of alternatives for meeting the
communications needs of a time-shared computing
system. We have found that an amazing variety of
services can be obtained from the telephone company
and that there are often good alternatives to use of
telephone company equipment. In our case the investi
gation of these alternatives is leading toward sub
stantial cost saving and improved service to our users.

The Baylor medical school teleprocessing
system-operational time-sharing on a
system /360 computer*

by WILLIAM F. HOBBS and ALLAN H. LEVY
Baylor University College of Medicine
Houston, Texas

and

JANE McBRIDE
IBM Corporation
Houston, Texas

INTRODUCTION

The Baylor Teleprocessing System (BTS) is designed
to operate as a time-sharing system. It accomplishes
the following functions:

1. It allows several jobs initiated from various
~ terminals to run concurrently with one batch job

stream.
2. It permits the use of high-level languages for

the construction of all programs, including those
designed for remote terminals.

3. It insulates the user program from changes in the
operating system by providing a set of macro
instructions and interface routines for input
and output over telecommunication lines.

4. It provides certain utility functions for the ter
minal user, including the ability to build, alter,
and retrieve data sets, and to communicate with
the machine operator and other terminal users.

5. It provides a means by which programs originally
written to run as batch jobs may be used from
a remote terminal.

6. It insulates user programs from hardware errors
originating during data transmission.

The system has been operational since July, 1967
on an IBM System/360 Model 50 with 256,000 posi
tions of core storage. The terminals which the system
supports include a cathode ray tube-keyboard ter
minal (IBM 2260 Display Station), and 2 types of
typewriter terminals (IBM 2740 and IBM 1050).

*Supportoo in part by grant FR-259 from the National Institutes of
Health, grant HM-509 from the Division of Hospital and Medical
Facilities, United State Public Health Service, and grant RT-4
from the Bureau of Social and Rehabilitation Services, HEW.

31

Both local CRT terminals (cable-connected to a con
tol unit which is directly attached to the channel)
and remote CRT terminals (connected by' telephone
lines) are supported by the software. See Figure 1
for the configuration of the Baylor machine.

The primary programming·· support under which
BTS was developed is Operating System/360--, MFT
(multiprogramming with a fixed number of tasks).
OS/360-MFT, when it is loaded, divides core stor
age into a number of sections or partitions. These
partitions are fixed in size until the Operating System
is reloaded. OS/360- MFT must be utilized with at
least two partitions if teleprocessing and batch jobs
are to operate concurrently. Minor modifications are
.required to OS/360. These changes are incorporated
into the standard systems generation procedures.
Other programming support under OS/360 which is
used by the teleprocessing system includes BT AM
(Basic Telecommunications Access Method) and
Basic Graphics Support. .

If ther~is no batch job work to be done, one parti
tion, for teleprocessing only, may be used. The te'Ie
processing monitor dynamically subdivides its parti
tion as terminal jobs are requested until an available
core is used. As soon as a terminal job ends, its core
is freed and made available for another terminal user.
Each job is storage protected (write protect only)
so that it cannot alter or destroy any other job in
the system. The system time-shares between the tele
processing programs and the batch job stream if
there is one. Time-slicing and control transfer during
wait status are both utilized to accomplish time-shar
ing. Additional details are set forth in a later section.

The system provides extensive language interfacing

32 Spring Joint Computer Conference, 1968

TEXAS INSTITUTE FOR REHABILITATION AND RESEARCH
COM PUTER FAC I L I TY

lAB CIC VIT ST H Q MED REC PT C!C AOM

===::---

_, ·PAR:··

DR. BURCH ':DATA:
_/ :AD.AP.

• 226

OR McCLOSKY

1«I~~f.O<+---__ MEDREC

DR WATT ---_ __-----------~

~= =~ ,,-',..,- ,./ I \ '," -',__ BUS OFF ~

o PARAMOUR

[] BAYLOR

-LOCAL 1967-68

E'_~E~m. ----'~ ---REMOTE 1967-68
DR. NOAll DR. WATT DR. McCLOSKY BAYLOR BAYLOR METH-RAD ANDERSON DE.

Figure 1 - Operational configuration. The system serves both sci
entific users at Baylor University College of Medicine and the
hospital data management system at the Texas Institute for Reha-

bilitation and Research (TIRR)

so that teleprocessing programs may be written in
Assembler Language, PL/l, FORTRAN or COBOL.
Programs written in f\ssembler Language input and
output data to and from a terminal through macro
instructions. All high level language programs
access terminals through CALL statements.

Each terminal is assigned a unique 8-character sym
bolic name which identifies its location and terminal
type. This terminal name plus the time and date
comprise the message prefix which is added by the
system to every input message. A pro'gra!ll can thus
explicitly identify the source of every input message
by inspection of the terminal name in the message
prefix.

Space for all data sets for all teleprocessing jobs
must be allocated at the time the teleprocessing sys
tem is loaded and initialized each day. Terminal users
cannot create additional data sets. They can, however,
read or alter any existing data sets that are defined for

their use at system initialization time. Definition of
files used in the system is handled by the Job Control
Language ofOS/360.

It is advantageous, although not essential, to have
only checked-out programs running in the teleprocess
ing partition. BTS thus includes a teleprocessing simu
lator which allows any programmer to debug his tele
processing program as a batch job. The simulator uses
the card reader and the printer to simulate terminal
input and output devices.

Terminal operation

The command language or set of control statements
is dependent of the type of terminal in use. A con
trol statement is recognized by its first two char
acters - "$$." The teleprocessing monitor responds
to the successful entry of any control statement with
an "OK."

The command language consists of seven control
statements:

$$ACCOUNT
$$EXECUTE (or $$EXEC)
$$END
$$DDNAMES
$$EDIT
$$EOT
$$CONSOLE

A terminal user ordinarily would first wish to enter
a $$ACCOUNTstatement as follows:

$$ACCOUNT (BI23, B1234, JONES)

This statement records on disk the user's pertinent
accounting information: department number, project
number, name and time of sign on. This accounting
information must be recorded before a user is allowed
to execute a program. Accounting information, once
recorded, is not cleared until a user sends a $$EOT
control statement. At this time another accounting
record is written to clock off the user.

Once a user has established his accounting record,
he can then execute a program. Programs to be exe
cuted from terminals must be stored in one of several
teleprocessing libraries on . disk. When a user·· wishes
to execute a program, he must tell the teleprocess
ing monitor the program name, the amount of core it
requires, and the program type. The program type
may!Je:

1) SINGLE-only one copy of the program may
be in core at any time. (Example - a file update
program)

2) COPY -the program handles only one terminal
but multiple copies may be in core and execut
ing concurrently.

3) MULTIPLE-the program handles multiple
terminals so that only one copy ever need be in
core.

If no program type is specified, the monitor assumes
type SINGLE. A user might call into execution the
message switching program with the following control
statement:

$$EXECUTE (SWITCH, 2000, MULTIPLE)

He is asking for the program named SWITCH
which uses 2,000 bytes of core storage and handles
multiple terminals. If 2,000 bytes of core are avail
able, the program will be executed immediately and
the user will receive a message from the program
SWITCH with instructions on how to message
switch.

As another example, a user might enter the follow
ing $$EXECUTE statement:

Baylor Medical School Teleprocessing System 33

$$EXEC (ELCOMP, 40000)

He is requesting the program named ELCOMP
which uses 40,000 bytes of core and is type SINGLE.
If 40,000 bytes of core are available, the program will
be executed immediately; if not, the user will be in
formed that all core is in use, and he should try again
later.

When a user wishes to end a program he is exe
cuting, he issues the following control statement:

$$END

This statement frees the core of the program he is
executing, but does not clear the accounting infor
mation of the user. Thus he is now free to execute any
program he wishes.

A terminal user may request the exclusive use of a
data set by means of the $$DDNAMES control state
ment as follows:

$$DDNAMES (DATAl, DATA2)

The teleprocessing monitor checks its list of data
set names previously entered with a $$DDNAMES
statement and notifies the user if OAT A 1 or OAT A2
is already in use. If neither is already in use, both are
added to the list and the user receives his "OK"
response.

A terminal user can request special editing functions
by means of the $$EDIT control statement. Two
levels of editing are available. Level 1 editing merely
translates all character codes to internal EBCDIC
codes. Level 2 editing removes all typewriter control
and function key characters from the text of input mes
sage. The system default is level 2 editing. A user
may also request that blanks be suppressed on incom
ing data and that small letters be translated to corre
sponding capital letters.

To end a session at the terminal, a user might enter
the following control statement:

$$EOT
If he is executing a program, the program will

be terminated and its core will be freed. II). any case,
his accounting information will be "logged off" on
disk. The monitor will respond, as usual, with an
"OK" when the user is cleared.

A terminal user may communicate with the machine
room operator by means of a $$CONSOLE state
ment. He might send the following statement:

$$CONSOLE (MY JOB WILL RUN 5 MIN
PAST SHUTDOWN TIME. MAY WE

DELAY SHUTDOWN?)

The entire message within the parentheses will be
printed on the console typewriter in the machine
room, together with a prefix which identifies the send-

34 Spring Joint Computer Conference, 1968

ing terminal. Thus the operator may send a reply back
to the terminal if necessary.

There are seven different control statements in the
command language of BTS. Frequently a user wishes
to specify special data set or editing information
and he must enter several statements. Therefore, the
use of catalogued control statements is the sub
stantial assest for the terminal user that OS/360
catalogued procedures are for the Job Control lan
guage user. A disk data set (hereafter called the Con
trol Statement Library) contains sets of control state
ments which may be called by the terminal user with
just one entry. For example, a set of control state
ments called SWITCH exists on the Control State
ment Library. The set contains the following control
statements:

$$ACCOUNT (3999, X9999, ANYNA~1E)
$$EDIT (2,F)
$$EXEC (SWITCH, 2000, MULTIPLE)

A terminal user can invoke these control statements
(and, hence, execute the program named SWITCH)
by entering the following command:

$$SWITCH

The terminal user can also add, change, display, or
delete sets of control statements in the Control State
ment Library. However, password protection is avail
able (if wanted) so that a s~t of control statements may
be displayed and used but not altered.

Time-sharing the teleprocessing partition

One feature of BTS is its ability to handle multiple
teleprocessing jobs within one OS/360 partition. To
implement this capability requires two changes to
OS/360:

1) The task control block tabie in the nucieus must
be expanded to handle additional teleprocessing
task control blocks.

2) Two system termination (ABEND) modules
must be changed. Both of these changes can be
incorporated into the standard systems genera
tion, using the source moduies for. the termina
tion routines.

When OS/360 is loaded, the system is initialized
with at least one partition. Under OS/360-MFT one
task control block (TCB) is created for each partition
of core storage. The TeB controls the execution of
each successive job within the partition. See Figure 2
for a sample layout of core storage after OS/360-
MFT has been initialized with two partitions.

BTS is the first job scheduled by tHe Operating
System. The initialization Routine builds a number, N,
of teieprocessing task control blocks where N will
be the maximum number of teleprocessing jobs that

NUCLEUS PARTITION 0 PARTITION I
IMASTER I~ITOR I BATCH
;SCHEDULER I STREAM
T.e.B. iT.C.B. LT.C.B.

I

;

I

I
I

I

PRIORITY PRIORITY 'PRIORITY
=255 =254 =253

Figure 2 - Layout of core storage after initialization of OS/360-
MFT for two partitions

can execute concurrently. N is defined in the Tele
processing System Tables and can be changed by re
assembling that module. The teleprocessing task con
trol blocks (TCB's) are added to the OS/360 TCB
chain and given priorities below the teleprocessing
monitor, while the priorities of the other lower
Operating System partitions are shifted down. See
Figure 3 for a sample layout of core storage after
OS/360--MFT has been initialized with two partitions
and BTS has been initialized for three concurrent
teleprocessing jobs.

NUCLEUS PARTITION 0 PA~TITION I
MASTER T.P. BATCH
f.8~~DULER T .. O~I.TOR -+{PRIORITY=254) 5 TREAM

OS /360
NUCLEUS

PRI 0RtTY=25 0

Figure 3 - Layout of core storage after initialization of OX/360-
MFT for two partitions and BTS for three concurrent teJeprocess

ingjobs

The teleprocessing task control blocks wait in a
non-dispatchable mode until a terminai user requests
a program. At that time, the monitor gets core for the

I
J

I

I
I

requested program, completes other Operating Sys
tem control blocks and puts the program into exe
cution under the control of one of the teleprocessing
task control blocks. From this time until the telepro
cessing program terminates, it is handled by OS/360
like any other program executing under a standard
task control block.

When the teleprocessing program terminates, BTS
frees all of the core used by the terminating pro
gram, and the task control block is made non-dis
patchable, waiting to be re-used by another tele
processing job.

The system time-shares using two methods:
1) Time-slicing with circular rotation of task con

trol block priorities.
2) CPU control transfer when any task goes into

wait status.
Time-slicing is accomplished using an equal priority

algorithm. At the end of each specified time interval
(for example, 100 milliseconds) BTS takes the user
task with the highest priority and gives it the lowest
priority. The priorities of all other tasks on the chain
are incremented by one, thereby giving a new job the
highest user priority. When each time interval expires,
the circular chain of task priorities is re-adjusted. If
a batch job stream is in use, its priority is also rotated
on the circular chain.

CPU control transfer when a task goes into wait
status is handled by the OS/360-MFT dispatcher.
Dispatching is attempted on a task priority basis,
searching down the chain until a task is found that
can utilize the CPU. If no task is found, the system
waits until an event (such as I/O) completes so that
some task can use the CPU.

The combination of the two methods described
above provides the advantages of concurrent exe
cution of mUltiple jobs and attempted full CPU utiliza
tion.

Language inter/acing to terminals

The large majority of teleprocessing programs
need to communicate directly with one or more ter
minals. In order to facilitate this communication, the
capability is provided to get a message from a terminal
(GETMSG), to put a message out to a terminal,
(PUTMSG), and to break conversational mode with a
terminal (BREAK). Macro-instructions provide
these capabilities to the Assembler Language pro
grammer. Interface routines allow the high level lan
guage programmer to make use of these functions via
a CALL statement.

For example, an Assembler Language program may
issue the following macro:

GETMSG DATAAREA, 96

Baylor Medical School Teleprocessing System 35

The next message received from a terminal in con
versational mode with this program will be placed in
DA T AAREA. The maximum length of the message
will be 96 bytes which includes the message prefix of
15 bytes, 80 data bytes, and an end of block char
acter (EOB). The program can then look at the 8-
character symbolic terminal name in the message
prefix to find the source of the data.

The same Assembler Language program may issue
the following macro~

PUTMSG ADDRESS=DATAAREA+15,
LENGTH=80 DEST=BCOMPS60,

PRIOR=O, LINE=12
START=I, ERASE=NO

The monitor will then send (with a priority of zero)
to the terminal named BCOMPS60 (Baylor Comput
ing Science 2260) 80 characters of data beginning at
DAT AAREA + 15. The 80 characters of data will
be written on Line 12 of the 2260 and a START MI
symbol will then be put in the first position of Line 1.
The 2260 screen will not be erased prior to the write.
If the terminal indicated by the parameter 'D EST'
were not a 2260, the last three parameters would be
ignored.

An Assembler Language program may also issue
the following macro:

BREAK BC0MPS60

The monitor will then break conversational mode
between the specified terminal and the program issu
ing the BREAK. If the specified terminal is the last
or only terminal in conversational mode with the pro
gram, the program will be terminated and its core
will be freed.

The same three teleprocessing capabilities (GET
MSG, PUTMSG, and BREAK) are available to all
high level language programs written in PL/l, CO
BOL, or FORTRAN.

For example, a PL/l program may request a mes
sage as follows:

CALL GETMSG (STRING, RETURN);

The next message received from a terminal in con
versational mode with this program will be placed in
STRING (which is a character string variable of
varying length). The return code will be placed in
RETURN.

Likewise, a FORTRAN program may wish to send
a message:

CALL PUTMSG (ARRAY, LENGTH, DEST,
PRIOR, RETURN)

The data in ARRAY will be sent to the terminal
specified by. DEST with the priority specified in

36 Spring Joint Computer Conference, 1968

PRIOR. The return code from the write will be placed
in RETURN.

In the same manner, a COBOL program may break
conversational mode as follows:

CALL 'BREli",K' USING TERM; RETURN.

Conversational mode will be broken between the pro
gram and the terminal specified by TERM. If the
specified terminal is the last or only terminal in con
versational mode with the program, the program will
be terminated and its core will be freed.

With the language interfacing facilities of the Baylor
Teleprocessing System, no special training is required
for application programmers to make active use of the
system. They are free to use the language with which
they are familiar, and by doing so, they can access
any terminal on the system.

Terminal input/output

Two basic types of terminals are supported by BTS.
Local CRT terminals are connected to the central
processor by cables. All other terminals are connected
by means of telephone lines. Different programming
methods are used for these terminal types.

Because of the relatively high speed of local CRT
terminals, no queues of messages are maintained for
them. Read and write operations involving these
terminals are always carried out immediately when
they are requested by a problem program.

For all other types of terminals, two output queues
at different levels of priority are maintained for each
telecommunications line. Each PUTMSG to one of
these terminals causes a message to be placed in one
or the other queue according to its priority. These
queues are maintained both in core and on direct
access storage. A sufficient amount of text is kept in
core to insure that the communications lines are kept
active. Additional text is spilled to direct access
devices.

When a line becomes idle, the following method is
used to determine what operation to carry out next:

If any high priority messages are enqueued for
transmission on the· line, the next message (on a first
in-first out basis) is dequeued and sent. if no high
priority messages are awaiting transmission and some
terminal on the line is using a problem program the
line is left idle until the program issues a G ETMSG.
At this time a read operation is begun on the line.

If no terminal on the line is using a problem pro
gram, low priority messages (if any) are transmitted.
When no low priority messages remain to be sent, a
general polling operation is begun on the line. That is,
each terminal in turn is interrogated to see if it wishes
to send a message.

A dynamic buffering technique is used. This method
allows buffers to be assigned to a line from a common
pool of available buffers even while a channel input
operation is in progress. Thus, individual input mes
sages may vary greatly in length without tying up
large amounts of storage to handle worst-case situa
tions.

The Baylor Teleprocessing System has proven use
ful for the research environment in which it was devel
oped. It is presently supporting several groups of
scientific' users, including those involved in mass
spectroscopy, radiotherapy treatment planning, and
gynecological cancer control. It is also the support
system for a comprehensive cvmputer-oriented hos
pital data management project at the Texas Institute
for Rehabilitation and Research. With this operational
load, it has been found that the size of core storage is
the single most important limitation. We plan system
support for low speed large core storage and for the
IBtv1 2314 direct access device. It is felt that such
additional machine capacity will remove present
limitations and enhance the operational capabilities
of the system.

Some techniques for shading machine renderings of solids

by ARTHUR APPEL
IBM Research Center
Yorktown Heights, N. Y.

INTRODUCTION

Some applications of computer graphics require a
vivid illusion of reality. These include the spatial
organization of machine parts, conceptual architec
tural design, simulation of mechanisms, and indus
trial design. There has been moderate success in the
automatic generation of wire frame ,1 cardboard
modeI,2 polyhedra,3.4 and quadric surface5 line draw
ings. The capability of the machine to generate vivid
sterographic pictures has been demonstrated.6

There are, however considerable reasons for devel
oping techniqu(!s by which line drawings. of solids
can be shaded, especially the enhancement of the
sense of solidity and depth. Figures 1 and 2 illustrate
the value of shading and shadow casting in spatial
description. In the line drawing there is no clue as
to the relative position of the flat plane and the
sheet metal console. When shadows are rendered, it
is clear that the plane is below and to the rear of
the console, and the hollow nature of the sheet
metal assembly is emphasized. Shading can specify
the tone or color of a surface and the amount of
light falling upon that surface from one or more
light sources. Shadows when sharply defined tend
to suggest another viewpoint and improves surface
definition. When controlled, shading can also empha
size particular parts of the drawing. If techniques
for the automatic determination of chiaroscuro
with good resolution should prove to be compet
itive with line drawings, and this is a possibility,
machine generated photographs might replace line
drawings as the principal mode of graphical commu
nication in engineering and architecture.

A picture strictly rendered in chiaroscuro de
fines the scene in a dark and light area pattern,
colored or in tones of grey and no lines are made.
Rembrandt and Reubens were masters of chiaro
scuro. In order to simulate the chiaroscuro of a
photograph many difficult problems need to be
solved such as the effect of illumination by direct
and diffuse lighting, atmospheric diffusion, back

37

reflection, the effect of surface texture, tonal spec
ification, and the transparency of surfaces. At pres
ent, there is the- additional problem of hardware
for display of the calculated picture. Devices pres
ently available use lines or points as the principal
pictorial element and are not comparable to oil
paint, or wash, or crayon in the ability to render the
subtle changes in tone or color across an area.
The best we can hope to do is to simulate the half
tone process of printing.

Figure 1 - A machine generated line drawing of an electrical con
sole and an arbitrary plane in space

This paper presents some recent experimental
results in the automatic shading of line drawings.
The purpose of these experiments was to generate
pictures of objects consisting of flat surfaces on a
digital plotter and to evaluate the cost of gener
ating such pictures and the resultant graphical
quality.

38 Spring Joint Computer Conference, 1968

Figure 2 - A shaded line drawing of the scene in Figure I

Previous work

Considerabie work has been done in the digitiz
ing of photographs.7•8 Especially successful are the
pictures transmitted from spacecr~ft.9 The significance
of this work is the demonstration of the quality of
digitally generated pictures.

L. G. Roberts has accomplished the converse of the
problem being discussed in this paper by developing
techniques for the machine perception of solids which
are assemblies of convex poiyhedra modules. 10

His work suggests the possibility that it may be
more useful to analyze the contents of a photograph
and to create a mathematical model of the scene.
This analysis can be used to generate any view of
the scene with greater graphical control.

G. Lasher has written a program which can be
used to generate three dimensional graphs of math
ematical functions which are unique for values of
X and Y. This program, which was used to illustrate
an article in theoretical physics,11 generates con
tour curves of the surface, constant coordinate
curves and renders only those curve segments that
are visible in a perspective projection. A shading
effect occurs in these pictures because the projec
tion of the surface rulings tend to concentrate as the
surface becomes tangent to the line of sight. This
effect contributes significantiy to the vividness of
the renderings.

J. L. Pfaltz and A. Rosenfeld have applied their
notions on encoding plane regions to shading two
dimensional maps.12 Their notion of skeleton repre
sentation is that a region can be specified by a list
of points on a plane and a radius; all parts of the plane
within the radius of the point are within the region
described. For shading, a set of parallel straight lines
are generated and those portions of the lines which be
within the region are rendered. The angle and spac
ing of the set of parallel lines can be varied and other
textures can be generated.

A vivid automatically shaded picture of a poly
hedron was generated by a subroutine written by
B. Archer for an articie by A. T. Coie.13 The shad
ing is accomplished by varying the spacing of paral
lel lines. The spacing of lines on a particular surface
is proportional to the illumination. No attempt was
made to determine the shadow cast by the polyhedron
and the methods described are inadequate for drawing
more than one convex polyhedra at a time.

Recently, C. Wylie, G. Romney, D. Evans, and A.
Erdahp3 published an algorithm for generation of
half-tone pictures of objects described by assemblies
of triangular bounded planes. Their results are toned
pictures generated with calculation time competi
tive with line drawings. However their scheme sets
the source of illumination at the viewpoint, and since
a point iight source cannot see the shadows it casts,
no shadows are rendered.

Previous work in the automatic determination of
chiaroscuro demonstrates how the computer can
improve the level of graphics designers can work with.
The primary limitation has been neglect of shadow
casting from arbitrarily located light sources. Also
no work has been done on the control of the toned
picture to take into account the surface tone or color
of an object. Any system for rendering in chiaroscuro
should solve economically at least these two problems.
I t can be seen from previous results that toning an
area by varying the spacing of parallel lines is not
entirely satisfactory. This technique is economic but
has several disadvantages. The lines when widely
spaced do not fuse to form a continuous tone. The
viewer does not then perceive the object but is dis
tracted by the two dimensional pattern. Depth per
ception is reduced. These lines also tend to suggest
a surface finish which may not exist. A good standard
for evaluating toning mechanics can be the ben-day
pattern used in printing. This pattern enables a great
range of dark and light with good tonal fusion. The
half-tone process uses many small dots arranged in a
regular array. The size of dots are varied to create a
degree of grayness, smail dots where white predomi
nates are light and as the dots increase in size such that

Techniques for Shading Machine Renderings of Solids 39

they eventually blend together the toned region be
comes darker. In order for the dot pattern not to be
distracting, the dot spacing should be at least seventy
dots to the inch. The large dot density required for
toning indicates that calculation schemes for toning
should be as resolution independent as possible. For
an algorithm to be resolution independent it must
enable perfect resolution. It may not be possible for
contemporary hardware to take advantage of such an
algorithm but this should be the goal.

Toning on a digital plotter

A great many experiments were conducted t')
evaluate the quality of various toning techniques that
would be applicable to digital plotting. A simulation
technique tested was to shoot random light rays from
the light source at the scene and project a symbol
from the piercing point on the first surface the light
ray pierced. These symbols would concentrate in
regions of high light intensity, and a negative print of
the hard copy could be made which would appro xi-

. mate a photograph if enough light rays are generated.
Even for about 1000 light rays results were splotchy.
Generating light rays in regular patterns improved the
graphic quality but did not allow economic tonal con
trol. During these experiments, various symbols were
evaluated for graphic quality and speed of plotter
generation. The plus sign or a small square were to
give best results. Eventually the best technique from
graphic and economic considerations for toning was
found to be plus signs arranged in staggered rows
with shadows outlined. This arrangement is most
easily seen in Figure 2. The size of plus signs were to
be rendered proportional to darkness required.

Ignoring atmospheric diffusion, the intensity of
light incident upon a unit plane area from a point
light source is:

1= S (Cosine L)/D2

where S is the intensity of the light source, L is the
angle of the normal to the plane and direction of light
at the illuminated area, and D is the distance from the
illuminated point to the light source. For experimental
purposes it was assumed that the light source is so far
from the objects being illuminated that variations in
Land D are insignificant. L need be calculated only
once for each surface. Also since we are interested
in simulating illumination only to the extent that com
parative light and darkness of surfaces are displayed
and also because the range of toning on the digital
plotter is limited, we did not concern ourselves with
the actual intensity of the single light source. The
comparative intensity of illumination of a point on
a plane then is proportional to Cosine L. The apparent
illumination of a flat surface then will be constant

over the surface. The digital plotter does not generate
light as a cathode ray tube but makes a dark mark. The
size of this mark should indicate an absence of light.
So the degree of darkness at a point or the size of
plus sign rendered is

H*= I-Cosine L
For simplicity it can be assumed that if a point is

in shadow the largest allowable mark will be rendered
on that point. For point j then, the size of symbol H j

is the maximum symbol Hs. Hs is· proportional to the
dot spacing. During early experiments of the size of
symbols rendered on a point not in shadow was

H j = 1 - Cosine L
However it was found that results were confusing; it

was difficult to detect the difference between surfaces
in shadow and surfaces almost parallel to the direction

. of light. In actual viewing of a solid, surfaces almost
parallel to the direction of light reflect a considerable
amount of light due to the surface roughness, but as
soon as the surface faces away from the light source,
no light can be reflected and the apparent illumina
tion changes sharply. In order to simulate this effect a
contrast factor, h, usually .8, was introduced. So then

Hj=h Hs (I-Cosine L) (la)

if the surface point j is on faces the light source and

Hj = Hs ifpointj is in shadow. (Ib)

We are faced now with essentially at least four pro
gramming problems:

1. Given a viewpoint and a mathematically de
scribed scene what is the point in picture to point
in scene correspondence? This problem is to de
termine what visible point, if any, on the objects
being rendered project onto a particular point in
the picture plane.

2. Given one or more light sources what is the in
tensity of light falling on a point in the scene?
This problem includes the determination of
which regions are in shadow.

3. Given a light source what are the boundaries of
the shadow cast and how much of this cast
shadow can be seen? If the picture could be
rendered large and/or if symbol density could be
large outlining the shadows could be dispensed
with.

4. How can the tone or color of a surface be speci
fied and how should this specification affect the
tones rendered?

Econ·omic solutions to the first two problems are
most critical. If an economic point to point corre
spondence technique could be found that would per
mit dense symbol packing, the problem of casting
shadow outlines could be eliminated. The problem of

40 Spring Joint Computer Conference, 1968

determining how much light falls on a flat surface not
in shadow is trivial, and even for curved surfaces this
is not difficult, but economically determining exactly
what regions of the scene are in shadow is a very diffi
cult problem.

Figure 3 - An assembly of planes which make up a cardboard model
of a building

Figure 4-Another view of the building

, -~
----':0;-;

----L~
~,-

- -- -------- - - ~~

Figure 5 - A higher angle view of the bUilding. 7094 calculation time
for this picture was about 30 minutes.

PNpDOES NOT

CORRESPOND.TO
ANY POINT ON
THE OBJECT

Figure 6 - Point by point shading

Point by point shading

Point by point shading techniques yield good
graphic results but at large computational times. These
techniques are docile, require the minimum of storage

and enable easily coded graphical experimentation.
Figures 3, 4, and 5 are examples of point by point
shading. Referring to Figure 6, the technique in gen
erating these pictures was as follows:

1. Determine the range of coordinates of the pro
jection of the vertex points.

2. Within this range generate a roster of spots
(PiP) in the picture plane, reproject these spots
one at a time to the eye of the observer and gen
erate the equation of the line of sight to that spot.

3. Determine the first plane the line of sight to a
particular spot pierces. Locate the piercing point
(Pi) in space. Ignore the spots that do not corre
spond to points in the scene (P np).

4. Determine whether the piercing point is hidden
from the light source by any other surface. If the
point is hidden from the light source (for example
P 2) or if the surface the piercing point is on
is being observed from its shadow side, mark on
the roster spot the largest allowable plus sign Hs.
If the point in space is visible to the light source
(for example PI) draw a plus sign with dimen
sion H j as determined by Equation 1.

This method is very time consuming, usually re
quiring for useful results several thousand times as
much calculation time as a wire frame drawing. About
one half of this time is devoted to determining the
point to point correspondence of the projection and
the scene. In order to minimize calculation time for
point by point shading and maintain resolution, tech
niques were developed to determine the outline of cast
shadows. Outlining shadows has the advantage that
all regions of dissimilar tones on the picture plane
are outlined. Even when projected shadows are deli
cate, and symbol spacing is large, the shadows are
specified and the discontinuity in tone is emphasized.

The strategy for point by point determination of
shadow boundaries is as follows: (Referring to Fig
ure 7)

Figure 7 - Segment by segment outiining of shadows

Techniques for Shading Machine Renderings of Solids 41

1. Classify all surface line boundaries into shadow
casting and non-shadow casting. A shadow cast
ing line is from the viewpoint of an observer
at the light source a contour line. F.or assemblies
of flat surfaces, a contour· line along which all
surfaces associated with this line appear on only
one side of this line.

2. Determine w~ether the observer is on the shad
ow side or lighted side of all surfaces.

3. Subdivide all shadow casting lines, one at a
time, into small segments (Kl, K2), usually .005
units, and determine the midpoint of this seg
ment(KM).

4. Generate a light ray to the midpoint of the seg
ment (KM). If any surface lies between KM and
the light source go on to the next segment. Deter
mine the next surface behind KM that the light
ray to KM pierces within its boundary. If no sur
face lies behind KM go on to the next segment.
A point can cast only one shadow. Project K 1,
KM, and K2 onto the surface to obtain K 1 S,
KMS, and K2S, the shadows of Kl, KM, and
K2. If KMS lies on a surface which is seen from
its shadow side go on to the n~xt segment. This
particUlar shadow boundary is invisible. Also
a shadow cannot fall within a shadow.

5. Test KMS for visibility. If KMS is hidden from
the observer go on to the next segment.

6. If KMS is visible project the line (KlS-K2S)
onto the picture plane and draw the projection.

As cim be expected,· determining the outline of
shadows by this described strategy is very time
consuming usually requiring as much time as a point
by point line visibility determination.

Methods of quantitative invisibility

In a previous report, the notion of quantitative
invisibility was discussed as the basis for rapidly deter
mining the visibility of lines in the line rendering of
polyhedra.4 P. Loutrell has implemented several tacti
cal improvements for this application.15 Quantitative
invisibility is the count of all surfaces, seen from
their spatial side, which hide a line from an observer
at a given point on the line.

The methods of quantitative invisibility are useful
because techniques for detecting changes in quanti
tative invisibility along a line· are more economical
than measuring the visibility, absolute or quantitative,
at a single point. These techniques are applicable only
to material lines which are lines that have specific end
points and that do not pierce any bounded surface
within its boundary. Objects that are manufactured
contain only material lines. A contour line is a line
along which the line of sight is tangent to the surface

of the solid. For polyhedra, given a specific viewpoint,
a contour line is a material line which is the inter
section of two surfaces, one of which is invisible.
For a given viewpoint the quantitative invisibility of
a material line can change only when it passes behind
a contour line. Figure 8 illustrates how quantitative
invisibility varies as a line passes behind a solid.
Notice that only surfaces which are viewed from the
spatial side affect the measurement of quantitative
invisibility. In determing line visibility for line draw
ings only those segments of the line for which quantita
tive invisibility is zero are drawn. For this application
only the quantitative invisibility of vertex points are
stored and changes in quantitative invisibility along
a line are measured and discarded as soon as com
mands to the graphic device are generated. The
methods of quantitative invisibility can be applied
to shading a picture if the changes in quantitative
invisibility of a line from the light sources and the
observer are stored and compared.

TYPICAL CONTOUR
LINES

Figure 8 - Changes in .quantitative invisibility. Object A is in front
of and does not touch object 8

The method of cutting planes

In descriptive geometry, the intersection of simple
quadric surfaces is determined by passing carefully
chosen planes through the quadric surface to deter
mine the intersection curve of the quadric surface and
the plane; and from these first and second degree
surface intersections the intersection curve of one or
more quadric surfaces can be deduced. This procedure
is time consuming but does solve a problem difficult
for most mathematicians. This technique of manual
rendering is the inspiration for the method of cutting
planes for shading machine renderings of solids. Point
by point shading techniques are expensive because

42 Spring Joint Computer Conference, 1968

it is difficult with good resolution to correlate the
shading of adjacent spots on the picture plane. With
simple codings, the method of cutting planes enables
such correlation in one direction, with more elaborate
coding the correlation can be in all directions.

The basic· concept of the method of cutting pianes
is that when the intersections of a plane that passes
through the observation point and assemblies of planes
which can enclose one or more polyhedra are pro
jected onto the picture plane, these projected inter
sections are colinear. In detail, as illustrated in Fig
ure 9, the strategy is:

LIGHT SOURCE

PICTURE PLANE
ICPONTERSECTION
OF CUTTING PLANE
a PICTURE PLANE)

PROJECTIONS OF ICJ,ICK
ONTO PICTURE PLANE.

Figure 9 - The method of cutting planes

1. Generate a cutting plane which passes through
the observation point.

2. This cutting plane will intersect the picture plane
along a specific line (ICP).

3. This cutting plane will cut or pass through the
surfaces of the polyhedra and generate the inter
section ICS which is a string of three or more line
segments. Eflch of these segments is a material
line (leJ).

4. All the ICJ of the polyhedral faces and a particu
lar . cutting plane will project colinear onto the
picture plane. This colinear projection is the lirie
ICP.

s. These intersections I CJ for a particular cutting
plane can then be measured for changes in quan
titative invisibility by techniques previously re
ported4•15• Those intersections IeJ which
prove to be completely invisible can be quickly
determined and need be analyzed no further. We
have now determined a correspondence between
a line on the picture plane and a series of lines
in the scene to be rendered.

6. Those lines of intersection leJ which are on sur
faces which face away from the light source can
be rendered with no further analysis. These
lines are completely in shadow and along their
visible projected length plus signs of the maxi
mum size (Hs) can be generated.

7. Lines of intersection IeJ which are on surfaces
which face toward the light source can be ana
lyzed to determine changes in quantitatives
invisibility from the viewpoint of the light source.
Those projected portions of the lines which are
hidden from the light source are rendered by a
series of plus signs of size Hs. Those portions
which are visibie to the iight source are rendered
by a series of plus signs whose size is determined
by Equation 1.

Figure 10 - Two views of a machine part where the light source is
moved relative to the object

Techniques for Shading Machine Renderings of Solids 43

The resolution of shading by the method of cutting
planes is no longer limited by the spot to spot spacing
on the picture plane but by the spacing of the cutting
planes intersections with the picture plane. For com
parable resolution the calculation time for shading by
cutting planes is slightly less than the square root of
the time for shading by point by point methods.

Figure 11 - Another machine part. 7094 calculation time for this
picture was about 30 seconds

The speed of calculation is very dependent on how
effectively the measurements of quantitative invisi
bility of all the lines in the scene are stored and cor
related. This list is the basis for determining visibility
along cutting plane intersections. The first version of
the Fortran IV program used to generate Figures 10
to 14 was experimental and is not as fast as theo
retically expected. Pictures were plotted on an IBM
1627 (Calcomp). A faster version' which can . take
into account more than one light source is under devel
opment for operation on a 360/67. The larger core,
greater data storage capacity and time sharing capabil
ity of this machine will be utilized. The method of
cutting planes which enable rapid correspondence of
projected points to real points in the scene certainly
includes the illumination of the object by more than
one light source of differing intensities. The size of

Figure 12 - Assembly of the two previously drawn machine parts.
7094 calculation time: about 50 seconds.

plus signs drawn on a particular spot can be the sum
of the shadow intensity from all the light sources.

(2)

where H is the shadow intensity from a particular
light source.

The more intense the light source, the more intense
the shadow it causes when a point cannot see this
source of light,

I TOTAL=Lli

where I is the intensity of the light source

HSi = IJI TOTAL

(3)

(4)
Where HSi is the shadow intensity in the absence of
light from light source i.

Hi = HSi when a point is in shadow

Hi = HSi (I-CosineL) h (5)

when a point is seen by light source i.

It is also possible to exercise tone control for em
phasis while generating the half-tone picture. A list
of comparative surface tones can be entered which
will describe the basic tone of each surface. For ex
ample, if a scene consists of object A with four sur-

44 Spring Joint Computer Conference, 1968

faces and object B with six surfaces and object A is
lighter than object B the surface tone list would be
(.5, .5, .5, .5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0). The size
of the shading symbol can then be determined by

HTik = (Hi X FLIGHT + FTONE) TONEk (6)

where FLIGHT and FTONE are influence factors of
light and surface tone, and TONEk is the relative tone

Figure 13 - Another machine part

Figure 14-Another view of the machine Dart shown in the orevious
figure .. The light source has been moved ~elative to the obj~ct. No

tice the light passing through the opening in the object

of surface k. FLIGHT and FTONE enable the con
trol of highlighting. Master copy for the preparation
of color process plates for letterpress printing have
been generated using mathematical models similar to
equation 6. It is obvious that once the basic prob
lems of determining how light falls on the object are
solved, considerable artistic freedom is possible.

Figure 15 - Assembly of the three machine parts. 7094 calculation
time for this view was about two minutes

ACKNOWLEDGMENTS

The author is grateful to G. Folchi, Dr. G. Lasher,
and Dr. P. Loutrell for some helpful discussions. R.
L. Ennis,J.J. Gordineer,J. A. Mancini, Mr. & Mrs. E.
P. McGilton, W. H. Murray, and G. J. Walsh among
others. were helpful with plotter output and other
machine problems. The author is deeply indebted to J.
P. Gilvey and F. L. Graner for their continuing sup
port and encollragement of this project.

REFERENCES

1 T E JOHNSON
Sketchpad III: A compuier program for drawing in three
dimensions.
Proc AFIPS 1963 Spring Joint Computer Conf Vol 23 pp
347-353

2. A APPEL
The visibility problem and machine rendering of solids
IBM Research Report RC 1618 May 20 1966

Techniques for Shading Machine Renderings of Solids 45

3 P LOUTREL
Determination of hidden edges in polyhedral figures: convex
case
Technical Report 400-145, Laboratory for Electroscience
Research NYU September 1966

4 A APPEL
The notion of quantitative invisibility and the machine ren
dering of solids
Proc ACM 1967 Conference pp 387-393

5 R A WEISS
BE VISION a package of IBM 7090 Fortran programs to draw
orthographic views of combinations of plane and quadric sur
faces
JACM 13 April 1966 11 194-204

6 H R PUCKETI
Computer method for perspective drawing journal of space
craft and rockets
Vol I No 1 pp 44-48 1964

7 W S HOLMES H R LELAND G E RICHMOND
Design of a photo interpretation automaton
AFlPS Conf Proceedings 1962 Fall Joint Computer Confer
ence Vol 22 pp 27-35

8 R W CONN
Digitized photographs for illustrated computer output
AFIPS Conference Proceedings 1967 Spring Joint Computer

Conference Vol 30 pp 103-106
9 Lunar Orbiter Surveys the Moon Sky and Telescope Vol 32

No 4 October 1966 pp 192-197
10 L G ROBERTS

Machine perception of three-dimensional solids
Technical Report No 315 Lincoln Laboratory MIT May 1963

II G LASHER
Mixed state of type-I superconducting films in a perpendicular
magnetic filed
The Physical Review Vol 154 No 2 pp 345-348 Feb 10
1967

12 J L PFALTZ A ROSENFELD
Computer representation of planar regions by their skeletons
CACM Vol 10 No 2 February 1967 pp 119-125

13 A J COLE
Plane and stereographic projections of convex polyhedra from
minimal information
The Computer Journal

14 C WYLIE G ROMNEY D EVANS A ERDAHL
Half-tone perspective drawings by computer
AFIPS Conf proceedings 1967 Fall Joint Computer Confer
ence Vol 27

15 P LOUTRELL
Phd Thesis NYU September 1967
NYU September 1967

A system for interactive graphical programming*

by WILLIAM M. NEWMAN**
Harvard University
Cambridge, Massachusetts

INTRODUCTION
A system is described in this paper for developing
graphical problem-oriented languages. This topic is of
great importance in computer-aided design, but has
hitherto received only sketchy documentation, with
few attempts at a comparative study. Meanwhile dis
plays are beginning to be used for design, and the
results of such a study are badly needed. What has
held back experimentation with computer graphics
has been the difficulty of specifying new graphic
techniques using the available programming lan
guages; the method described in this paper appears
to avoid this difficulty.

Defining a problem-oriented language

Notation
Any description of an interactive process must de

fine the response of the system to each input. For
this reason it is convenient to describe graphical prob
lem-oriented languages in terms of actions and re
actions. An action is simply an input which may pro
duce a response; the corresponding reaction defines
this response, and in addition any unmanifested effect
of the action on the state of the machine. The same
action may cause a different reaction on different
occasions: for example, movement of the light pen
may affect the display in a number of different ways.
It is therefore convenient to treat the system as a
finite-state automaton, and to say that the reaction is
determined by the state of the program as well as by
the action. In other words, the actions are inputs to
the automaton, which cause it to change state; reac
tions are the outputs.

Just how convenient this is for describing inter
active processes is illustrated by the following exam
ple. A 'rubber-band' line l can be created by means of

*The work described in this report was supported by a Science
Research Council Contract, No. B/SR/2071, "Computer Process
ing of Three-Dimensional Shapes."

**Formerly at the Centre for Computing and Automation, Imperial
College, London.

47

a light pen and one push-button, in a sequence of five
operations:

1) press button to start pen tracking;
2) track pen to starting point of line;
3) press button to fix starting point;
4) track pen to end point;
5) press button to fix end point and stop tracking.
The 'rubber-band' effect is created by displaying a

line joining the starting point to the pen position
throughout stage 4.

Figure 1 shows a state-diagram representing this
sequence. Each branch represents an action, and the
resultant reaction is specified in the "arrowhead."
Only valid actions are included; for example, pen
movements are meaningless in state I and are there
fore omitted. The inclusion or exclusion of an action
may add semantic properties to the diagram. This is
shown by the 'pen movement' branches on states 2
and 3, which imply pen tracking during those states
and make explicit reference to tracking unnecessary.

pen movement

button

store
starting point

pen movement

Figure 1 - A state-diagram representing rubber-bank line-drawing

48 Spring Joint Computer Conference, 1968

The state-diagram has been used in this way as the
basis of a method for defining problem-oriented lan
guages. A particular advantage of this technique is
the wayan immediate reaction can be associated with
each action in a sequence; this is of great importance
in graphical programs. On the other hand the state-dia
gram offers no direct method of attaching semantic
functions to groups of actions, and is therefore of
little use for describing phrase-structured grammars.
This is less of a drawback than it seems. An interactive
problem-oriented language need not possess a com
plex structure to function efficiently, and benefit can
often be gained from simplifying the language as much
as possible. Roos, for example, has noted the difficulty
experienced by some engineers in using the relatively
simple languages of the ICES System.2

The basic function of the state-diagram, as illus
trated in Figure 1, is to indicate the actions which may
validly occur during each state, and the reactions and
changes of state which they will cause. A number of
additions have been made to this basic notation. Nor
mally, branching takes place when a user action
matches an action defined in the diagram. Branching
may however be over-ridden by the result of a test
routine included in the branch definition. Further
more, branching may be initiated by the program itself
by means of system actions: thus the result of a pro
cedure may determine to which of several states the
program will branch. A procedure of this kind is called
a program block and is attached to a state rather than
to a branch; it is 'executed every time the correspond
ing state is entered. Program blocks need not termi
nate in a system action, but may instead be used to
provide some sort of continuous background activity.

These are the essential additions to the notation.
One other has been included for convenience in
programming 'conversational' systems, in which
each input message produces a predetermined output
message. This message can be coded within the
reaction procedure or program block, but it is con
venient to be able to state it separately as an output
string or response. States therefore possess a response
as well as a program block, and reactions are similarly
defined as two components, a response and a pro
cedure. The procedure is represented as an instruction
for execution or I EX.

The suggested form of these additions to the
notation is shown in Figure 2; a somewhat similar
notation has been used by Phillips3 to describe real
time control programs. Figure 2 illustrates how the
first example could be entended to permit the removal
of lines and initialization of the program.· These two
functions are controlled by the commands DELETE
and RESTART; as explained below, commands may

be typed at the console typewriter, or may be arranged
to appear on the screen as light-buttons. After
giving the command 0 ELETE, the user points the
light pen at each line to be removed. Deletion is
carried out by a test routine DLAST, which also
tests whether any other lines remain on the screen.
When none remains, or the user gives the command
DRAW, the program changes state. RESTART
causes the program to enter the initial state 4, ex
ecute its program block PBGO and return to state 1
when initialization is complete.

The language
A Network Definition Language has been devel

oped so that problem-oriented languages, defined in
the form of state-diagrams, can be compiled into
interactive programs. W. R. Sutherland4 has shown
that programs can be described directiy to the com
puter in graphical form, and this technique has ob
vious applications to the input of state-diagrams.
However, much of the information in these diagrams
is in character form, and would be difficult to describe
in purely graphical terms. For this reason, and because
it is more suited to off-line preparation, a character
based language was preferred. The following remarks
and examples are intended to give a general impres
sion of this language, which is described elsewhere
in some detail. 5

The state-diagram is described by defining each
state in turn; each such state definition is followed
by a list of the branches from that state and their
properties. The ordering of the state definitions,
and of the branch definitions within a list, is im
material. State and branch definitions are constructed
from statements, each defining one property as in
the following examples:

RESP PRESS BUTTON

PB PB22

lEX REPROG

These define a response "Press button," a program
block called PB22 and an instruction for execution
named REPROG, respectively.

Each state has three properties (name, response
and program block) and each branch has seven.
For convenience, however, the language permits
certain stat~ments to be omitted if the value of
the property is nun, meaningless or zero. The only
statements which are syntactically necessary are
those defining the names of states and the actions
of branches. The remaining statements in a state or
branch definition must follow these, but can be ~iven
in any order, -

A System for Interactive Graphical Programming 49

G
I
I
I

pen
movement

button

D
C>
o

program
block

lEX

test
routine

Q re~o~
Figure 2 - An extended diagram including responses, and with

provision for drawing and deleting lines and for initialization

Sonie care has been taken to avoid explicit refer
ences to peripherals in the language. As a result,
state-diagrams are largely device-independent and
compile into similarly device-independent programs.
For example, a 'pen movement' action may originate
as movement of a light pen or tracker ball, as a pair
of typed coordinated, or even as two numbers read
off a tape. Any such compatible set of actions is
called a category, and the definition of an action
must include the category name in the first statement.
Some .actions, such as typed commands, require a
further property to define the message content. A
command "restart" would be defined thus:

ACT 0

MES RESTART

The first statement indicates an action of category
0, which includes light-button hits as well as typed
commands; the second defines the message content.
Numerical names have been used for categories so
that extensions to the category list can be made
more easily.

Table I shows the state-diagram of Figure 2 coded
by means of the language into a network definition
and illustrates the use of the state entry to define
a change of state. If no state entry is mentioned
in a branch definition the state remains unaltered.

Compiling and executing an interactive program

Bilingual programming
The Network Definition Language contains no

facilities for coding the procedures named in state
diagrams. It is intended rather to be used in con
junction with a procedure-oriented language, each
language being used for the tasks to which it is most
suited. Some readers may disagree with this approach,
which requires the programmer to be bilingual.
The fact remains that procedure-oriented languages
on to which powerful control facilities have been
grafted rarely make for easy programming. It there
fore seems reasonable that interactive programs
should be written in two languages, one procedure
oriented and the other corztrol-oriented.

50 Spring Joint Computer Conference, 1968

STAT 1 Comment:
RESP PRESS BUTTON TO TRACK
ACT 0
MES RESTART
SE 4
ACT 0
MES DELETE
SE 5
ACT 10
SE 2

STAT 2
RESP PRESS BUTTON TO DRAW
ACT 7
ACT 10
lEX STORPT
SE 3

STAT 3
RESP PRESS BUTTON WHEN COMPLETE
ACT 10
SE I
ACT 7
lEX DUNE

STAT 4
INIT
PB PBGO
ACT 5
SE

STAT 5
RESP POINT AT LINE TO DELETE
ACT 0
MES DRAW
SE 1
ACT 6
TEST DLAST
SE I

END

State definition, state I
State I response, "Press button to track"
Branch definition, action of category 0 (command)

Message "restart"
State entry, i.e. branch leads to state 4

Branch definition; command "delete" leads to state 5

Branch definition, category 10 (button)
Pressing button leads to state 2

State 2 definition
State 2 response
Branch definition, category 7 (pen movement)
Branch definition; pressing button leads to state 3

STORPT stores pen position as starting point when button is pressed

State 3 definition

Branch definition; pressing button leads to state 1

Branch definition, pen movement
DUNE computes and displays fresh line at every pen movement

State 4 definition
I nitial state, program starts here
Program block PBGO, executed on entering state 4
Branch definition, category 5 (system)

Completion of PBGO leads to state 1

State 5 definition

Branch definition; command "draw" leads to state 1

Branch definition: category 6 (pen hit)
Test routine DLAST deletes indicated line
If last line, branch to state 1

TABLE I: The example of Figure 2 coded into Network Definition Language

This bilingual approach permits an interactive pro
gram to be created as three separate components,
namely the control component, procedure component
and supervisor. The supervisor contains routines for
handling interrupts and maintaining the display; at
its nucleus is a program which analyses and interprets
inputs. This program, the Reaction Handler, is basi
(.;ally a table-driven syntax analYser.5 The tables to
which it refers are ring-structures and include a model
of the state-diagram, created- by compiling the net
work definition with a Network Compiler. These
tables form the control component of the program.
They contain references to the test routines, program
blocks and instructions for execution, which constitute
the pro,cedure component and are compiled separately.

The decision to use ring-structures for the Reaction
Handier tables was made for a number of reasons. It
permitted null-valued entries to be omitted from the

tables, and others such as message and response
definitions to be of variable length. It meant that a
package of routines would be available for building
data structures for computer-aided design. It also
allowed a much more flexible approach to the design
of the Reaction Handler, since the tables could be
easily _ extended or rearranged. The ring-processing
package, which has been described in another paper, 7

was based on the ASP language of J. C. Gray.8 It
differs from the- earlier ring languages of Roberts9 and
others in the ease with which dynamic alterations can
be made to the structure. In particular, elements can
be attached to rings or removed from them without
altering the element size, since the connections are
made by ring starts and associators which need not
be contiguous with the element. This flexibility has
made it possible to write an on-line, incremental Net
work Compiler.

A System for Interactive Graphical Programming 51

The network compiler
The essence of an incremental compiler, as de

scribed by Lock,IO is that each statement is inde
pendently compiled into executable form, and can
later be modified without complete recompilation.
Normally this means assigning a number· to each
statement so that it can be referenced. In the Network
Compiler it was found sufficient to assign names to
the states and branches; individual statements could
then be referenced by the property name. Branch nam:
ing has since been discarded in order to save space,
and it is therefore no longer possible to refer back to
individual branch definition statements. Users have
not found this to be a great disadvantage.

The first statement in a state or branch definition
causes the Network Compiler to set up a correspond
ing ring element; the two classes of element are called
state elements and branch elements. An extra word is
provided in the state element to hold the state name.
Each further statement in a definition. has the effect
of attaching to the element a definition ring defining
the named property. The manner in which rings define
properties is shown diagrammatically in Figure 3. The
value of any property of an element can be found by
selecting the definition ring with the appropriate
attribute in the associator, and ascending it to the
ring start; the element attached to this ring start con
tains the value.

branch
element

V ring start

-¢- associator

I

"category"

I
"

Figure 3 - Defining properties by means of definition rings. This
shows the ring structure defining a branch of category 7 with an

lEX called DUNE. An assocator is shown in detail

Statements defining state entries are treated in the
same fashion: the ring to which the branch element
is attached leads to the named. state element. Each
state element has such a state entry ring, whose
constituent elements define the set of branches lead
ing: to this state. A second ring, the permitted action
ring, starts from each state element, and defines the
set of branches leading from that state; this set in
cludes branches which return to the same state and
therefore possess no state entry. Figure 4 shows part
of the ring-structure resulting from compiling the net
work definition of Table I.

state
element 1----1

state 1

category
element

branch
element

Figure 4 - Part of the ring-structure resulting from compiling the
network definition of Table I

As mentioned above, the Network Compiler is
designed for on-line use, and may be operated from
the teleprinter or from the display using light-buttons.
The teleprinter has proved the more convenient for
on-line ~ompilation, but the light-buttons and dis
played responses provide a valuable aid, particularly
to the novice. The compiler will also accept paper:

52 Spring Joint Computer Conference, 1968

tapes prepared off-line. It has error-checking facilities~
and will halt at any erroneous command on the tape
until the correct version is typed.

The reaction handler: modes
A program under the controi of the Reaction Han

dler may be in one of three modes: these are interrupt
ed mode, reaction handling (or RH) mode and wait
ing mode. Waiting mode does not imply inactivity,
but that the program has reached one of the- states in
the state-diagram and is ready for an action to occur.
It may therefore be engaged in computation (user wait
ing for computer) or looping on a dynamic stop)com
puter waiting for user);

During waiting mode any action by the user will
cause the program to switch to interrupted mode, and
a stimulus to be passed to the Reaction Handler. The
stimulus specifies the device involved and may also
refer to a block of data or message, such as a tele
printer character or a pair of light pen coordinates.
Device name and message address are stored in a
five-word element which forms the head of a queue of
stimuli.

The program then enters RH mode and the Reac
tion Handler processes the first stimulus in the queue.
Stimulus processing is a form of syntax analysis,
whose goal is to match the stimulus to an entry in the
appropriate table. If this goal cannot be reached, the
stimulus represents an ungrammatical action. If how
ever the goal is reached, the table may specify a fresh
goal to be attained. Eventually the process stops,
either when it fails to reach a goal or when it arrives
at an ultimate goal where no further goal is specified.
The Reaction Handler then fetches the next stimulus
from the queue and processes it; when the queue is
empty the program returns to waiting mode.

At any time the Reaction Handler may be interrupt
ed by a user action, and a further stimulus may be
added to the end of the queue. To prevent the queue
from growing uncontrollably, software flip-flops or
latches are used to govern the rate at which each de
vice generates stimuli. The light pen latch, for exam
ple, is set when a pen stimulus enters the queue and
cleared when it has been processed; while it is set,
all fresh pen positions are ignored.

Stimulus processing
The first task of the Reaction Handler on receiving

a fresh stimulus is to establish what category of action,
if any, the stimulus represents. This it does by refer
ring to a category table. Once an action has been
recognised in this way, it is matched against descrip
tions in a branch table of the branches leading from
the current state. This second phase determines what
reaction and change of state should occur, and it is
convenient to describe this phase first.

The branch table is in fact the ring structure created
by the Network Compiler, as described above and
illustrated in Figure 4. The Reaction Handler's first
goal is to find a branch of the appropriate category
which belongs to the current state. This can be done
by searching in parallel the permitted action ring and
the category definition ring. If any branch elements
belong to both rings, the next goal is to find among
them an element whose message definition matches
the stimulus message. A series of message compari
sons therefore takes place; before carrying out a com
parison on a branch element, the test routine is exe
cuted.

If a matching element is found, the corresponding
reaction takes place: the reaction response is dis
played, and the lEX is executed. If no match can be
achieved. the Reaction Handler will accept any
brah~h- ~lement with a 'null' message. The final
goal is the branch's state entry. If none exists, there
is no change of state. If on the other hand the branch
element is attached to a state entry ring, the new
state's response is displayed, and the program block
address is used as a transfer address when the pro
gram eventually returns to waiting mode. This ad
dress may be modified by a jump displacement in
cluded in the branch definition: this is a method of
achieving multiple entries to a program block. If the
state has no program block, the program transfers to
a standard dynamic stop address.

The most time-consuming part of this process is the
parallel ring search, which becomes particularly un
desirable when repeated actions such as pen move
ments are taking place very frequently. The parallel
search is therefore avoided by scanning through the
permitted ,action ring at every change of state. At
each branch element on the ring an activity bit is
set which allows a simple search through the category
definition ring to be carried out whenever an action
of that category occurs.

source
element

category
element

Pigure 5 - A category table ring-structure, capable of dealing with
typed c!-,mmands and light-button commands

The first phase of the reaction handling process, in
which an input stimulus may be recognized as a
particular category of action, is carried out in a similar
fashion to the second. During this phase the Reaction
Handler uses the category table, a fragment of which
is shown in Figure 5. When a stimulus is received, it is
first matched with a source element containing the
same device name as the stimulus. A search is then
carried out along the down-ring from this element,
in an identical fashion to the second-phase search
along the category ring. If a matching element is found
on this ring, its lEX is executed. The next goal is
to find an up-ring from this element, leading to a cate
gory element: this ring is treated in the same fashion as
the state entry ring in the second phase. The category
element forms a link between the category table and
the branch table, and the down-ring which starts at
this element is in fact the category definition ring used
in the second-phase search.

The first phase of reaction handling performs two
important functions. It is capable of concatenating
stimuli so that the combined input string can be treated
as a single action by the second phase; it is also re
sponsible for grouping together actions of the same
category. Both functions are illustrated by Figure 5,
which depicts the ring-structure for dealing.with input
commands. Typed commands originate as a string of
characters, each of which matches with element E2
and is stored in a buffer. When the terminating charac
ter is typed, the lEX of element E 1 exchanges the.
single-character stimulus message for the complete
buffer ~ontents, and the second phase of reaction
handling commences from the "Category 0" element.
Light -button hits produce stimuli containing the com
plete command as· an input message. These match
with element E3 and lead immediately to the second
phase.

When the program changes state, the old activity
bits must be cleared and the new ones set. The Reac
tion Handler must also carry out various set-up func
tions, defined as properties of the source elements.
These functions include such operations as clearing
buffers, starting pen-tracking and setting up the light
button 'menu.' Source elements are themselves held
on a ring, whose members define the set of active
devices. The display is treated as a number of dif
ferent 'devices': light pen interrupts are separated into
light -button hits, tracking interrupts and so forth, and
passed to the Reaction Handler under different de
vice names.

In its general layout, the category table closely re
sembles the branch table, and is set up by a very
similar compiler. This Category Compiler is also in
cremental, and accepts table descriptions written in
the Category Definition L~nguage,5 which differs

A System for Interactive Graphical Programming 53

only slightly from the Network Definition Language.
In general, a complete category table suits most pro
grams, but it is convenient to be able to edit out un
wanted categories with the aid of the Category Com
piler in order to save space.

CONCLUSION

At the time of writing, the Reaction Handler system
has been in use for only a few months. Nevertheless
it has during this brief period demonstrated a number
of valuable features. In particular, the Network Defini
tion Language provides a very efficient means of
writing graphical programs, and simple experiments
with graphical techniques can now be carried out. in
a matter of hours instead of weeks. Both the language
and the underlying state-diagram concept are ex
tremely simple, and can be used by those with very
little programming experience.

The adoption of a bilingual approach has undoubted
ly helped to make this possible, and it is interesting to
compare other systems of a similar nature. The use of
a separate language to define a program's control
sequence has been proposed before, but it is rare to
find explicit reference to the need for two languages in
interactive programming. The ICES System employs
what amounts to a bilingual method, in which a Com
mand Definition Language is used to define the con
trol sequence. The language is designed around the
use of card-image input, however, and is not particu
larly suitable for interactive programming. Command
Flow Graphs are used in a similar fashion to state
diagrams, but the concept of program states is not
employed.

A much more powerful facility for treating problem
oriented languages of a very general nature is provided
in the AED System.l1 Language syntax can be de
scribed by means of the AEDJ R Command Lan
guage,12 the extreme generality which this system
permits is attractive, but is probably unnecessary in
graphical programs. The Command Language is
very complex, and its efficient use obviously re
quires considerable experience.

The processing of basic characters by the AED Sys
tem is carried out by the RWORD System. This
system is particularly interesting, as it employs the
concept of representing programs as finite-state
automata. It possesses many of the features of the
Reaction Handler, but avoids the explicit definition of
program states, a feature which has been found valu
able in practice. RWORD instead uses a very neat
regular-expression language for defining vocabulary
words, and avoids the use of tables in order to speed
up program execution. It is clearly capable of produc
ing more efficient programs than is possible using the

54 Spring Joint Computer Conference, 1968

Reaction Handler's ring-structured category net
work.

Nevertheless, the Reaction Handler has performed
quite satisfactorily as a real-time supervisor. It
provides a fast response to all types of user action,
including pen . movement where a good response is
essential. It does so at the expense of a high system
overhead, which may reach as much as 20% duririg
pen-tracking. In a display processor, which is idle
most of the time, this is quite acceptable.

Less acceptable is the space consumed by the super
visor. The system was deyeloped on an 8K DEC
PDP-7 computer and Type 340 display, and in this
machine the supervisor occupies nearly 4K. Besides
the Reaction Handler, this includes the ring-process
ing package, a full set of interrupt-handling and output
routines, and a software character generator, Some
difficulty was experienced in coding the ring-process
ing routines as pure procedures, due to the lack of
index registers on the PD P-7. It seems likely that the
size of the supervisor could be greatly reduced by
using a machine equipped with index registers and a
hardware character generator.

ACKNOWLEDGMENTS

I wish to thank Mr. C. B. Jones for his extensive
assistance in programming the system. I am also
grateful to Mr. Alan Tritter for suggesting including
the test routine; and to many members of staff of the
Centre for Computing and Automation, Imperial Col
lege, and of the Cambridge University Engineering
and Mathematical Laboratories, including Professor
W. S. Elliott and MessrsG. F. Coulouris, C. A. Lang
and R. J. Pankhurst, for their advice and encourage
ment.

REFERENCES
1 I E SUTHERLAND

Sketchpad: a man-machine graphical communication system
Proceedings of the 1963 Spring· Joint Computer . Conference

2 D ROOS .
ICES system design
MIT Press Cambridge Massachusetts 1966 p 25

3 C SE PHILLIPS
Networks for real-time programming
Computer Journal Volume 10 May 1967 p 46

4 W R SUTI:IERLAND
On-line graphical specification of computer procedures
MIT Lincoln Laboratory Technical Report No 405
Lincoln Laboratory Lexington Massachusetts

5 W M NEWMAN
Definition languages for use with the reaction handler
Computer Technology Group Report 67/9 Imperial College
London October 1967

6 T E CHEATHAM K SATTLEY
Syntax-directed compiling
Proceedings of the 1964 Spring Joint Computer Conference

7 W M NEWMAN
The ASP-7 ring structure processor
Computer Technology Group Report 67/8 Imperial College
London October 1967

8 J C GRAY
Compound data structures for computer aided design:
a survey
Proceedings of the ACM 20th Anniversary Conference 1967

9 L G ROBERTS
Graphical communication and control languages
Information System Sciences Spartan Books 1964

10 KLOCK
Structuring programs for multiprogram time-sharing on-line
applications
Proceedings of the 1965 Fall Joint Computer Conference

11 D T ROSS
The AED approach to generalized computer-aided design
Proceedings of the ACM 20th Anniversary Conference 1967

12 D T ROSS
AEDJR: An experimental language processor
~ IT Electronic Systems Laboratory Memorandum 211, 1964

Automation in the design of asynchronous
sequential circuits*

by R. J. SMITH, II, J. H. TRACEY, W. L. SCHOEFFEL and G. K. l\1AKI
University of Missouri at Rolla
Rolla, Missouri

INTRODUCTION
Sequential switching circuits are commonly classi
fied· as being either synchronous or asynchronous.
Clock pulses synchronize the operations of the syn
chronous circuit. The operation of an asynchronous
circuit is usually assumed to be independent of such
clocks. The operating speed of an asynchronous cir
cuit is thus limited only by basic device speed. One
disadvantage of asynchronous circuit design has been
the complexity of the synthesis procedures for large
circuits.

This paper describes a computer program1•2 which
automatically generates the complete set of design
equations for asynchronous sequential circuits. Many
of the algorithms employed are new and have been
shown to be much more praCtical than classical tech
niques for the synthesis of large circuits.

Minimum or near-minimum variable internal state
assignments are generated. using two of th~ Tracey
algorithms.3 An evaluation p-rocedure predicts which
of several codes generated will most likely yield the
least complex design equations. Next-state equations,
including don't·cares, are then produced without con
structing transition tables. Output -state equations are
also generated. Finally, simplified normal form design
equations containing no static hazards are produced.
The program is capable of designing circuits much too
large to design manually.

The operation of a sequential circuit is often
described by means of a flow table.4 An example is
shown in Figure 1. The columns of a flow table repre
sent input states, while the rows represent internal
states assumed by the circuit. Each flow table entry
specifies the next internal state and output which
result from the given input and internal states. When
the next-state equals the present state, that state is
said to be stable and is customarily circled. Unstable

*The research reported in this paper was supported in part by
the National Science Foundation through Grant GK-820.

states correspond to transitions within a flow table
column.

2

3

4

5

0)/10

3 4

@IOI @IOO

(4)/11

@/IO

Figure I - Flow table

4

®IOI

@/OO

2

A sequential circuit is operating in fundamental
mode if the inputs are never changed unless the cir
cuit is stable internally. If, in addition, each unstable
state leads directly to a stable state, the circuit is
said to be operating in normal fundamental mode. The
computer program described in this paper automati
cally generates design equations for asynchronous
sequential circuits operating in the normal funda
mental mode. Circuit specifications are conveniently
input in flow table form. Input state binary codes are
specified by the program user. A summary flow chart
of the procedure followed by the synthesis algorithm
is shown in Figure 2.

55

56 Spring Joint Computer Conference, 1968

The program used to implement the design proce
dure suggested above is written in PL/l. This lan
guage was chosen because of its bit-string data for
mat, Boolean operations, and the controllable storage
feature. The program consists of about 2000 PL! 1
statements divided into 8 subroutines .. The system
was designed to run on an IBM 360/40 but could be
run on a somewhat smaller machine.

nsr..Q -

Figure 2 - The programmed synthesis algorithm

State assignment algorithm

The internal state assignment procedures employed
are a modification of those" described by Tracey. 3

Either completely or partially simplified flow tables
may be input to the program. Flow table simplifica
tion is not presently included in the synthesis proce
dure, but will be included in a later version of the pro
gram.

The Tracey state assignment algorithms are based
oil the following theorem which is reproduced with
out proof. "A row assignment to a flow table which
allots one internal state per row is satisfactory for the
realization of normal fundamental mode flow tables
without critical races if and only if for every transition
(Sh Sj), a) if (Sm, Sn) is another transition in the same
column, then at least one internal state variable parti
tions the pair {Sb SJ and the pair {Sm, Sn} into sepa
rate blocks; b) if Sk is a stable state not involved in
any transitions in the column, then at least one internal
state variable partitions the pair {Sj, Sj} and the state
Sk into separate blocks; and c) for i =1= j, Si and Sj are
in separate blocks of at least one internal state varia
ble partition."

Constraints generated as" a result of applying the
above theorem may be listed in Boolean matrix form,
with each row corresponding to a partially specified
state variable. Consider, for example, the ·constraint
list generated by the flow table of Figure 1. The con
straints shown below are generated on a per-column
basis in satisfying theorem parts a) and b):

Constraint Boolean
List Matrix

12345
(14; 23) 0110-
(15; 23) 011-0
(3; 24) -101-
(24; 5) -0-01
(25; 14) 10-10
{ 1. A\ () 1
\ .1, -rJ V--.l-

The program forms all partitions associated with the
topmost stable state of column 1, then all irredundant
partitions due to the second state, and continues until
all stable states in the column have been examined.
The process is then repeated for the remaining col
urns.

Note that for the above example, none of the col
umn-generated constraints partitioned flow table rows
1 and 4; the constraint (1 ;4) was thus included in the
list to satisfy theorem part c)."The program checks all
pairs of flow table rows, and generates additional par
titions as required by c).

The state assignment problem now becomes one of
finding a minimum number of internal state variables
satisfying all of the constraints just generated. This
problem has been shown to be analogous to the gener
ation of maximal compatibles by the Paull-Unger al
gorithms for now table simplification. A set of com
pletely specified state variables, at least one of which
covers each constraint, corresponds to the maximal
compatibles. These completely specified state varia
bles will be referred to here, therefore, as maximal
constraints. The selection of a minimum number of
maximal constraints, and hence minimum number of
internal state variables is similar to the covering prob
lem in the Quine-McCluskey method for simplifying
Boolean equations. Details of these algorithms are
available in the literature and will not be given here.3•5•6

As in the Paull-Unger Method A,5 maximal con
straint generation may begin with the assumption that
no constraints exist. Then each constraint is examined
for contradictions to this assumption and all implied
partitions are generated. After each constraint has
been so examined, one is left with the set of maximal
constraints. In another approach, Paull-Unger Meth
od B, one begins with the list of constraints and seeks

Automation in Design of Asynchronous Sequential Circuits 57

to enlarge each through the complete specification of
the corresponding state variable until all enlarge
ments are found that cover one or more of the original
constraints. Both procedures were programmed and
the second was found to be nearly a factor of two fas
ter than the first in this application.

As stated previously, the selecting of a minimum
number of maximal constraints is similar to the cov
ering problem in Boolean equation simplification. A
branching method has been used which is capable of
producing an irredundant minimum-variable assign
ments. Operating speed of this algorithm is increased
by reorganization of the maximal constraint list, based
on the idea that those maximal constraints including
the largest number of the original constraints would
most likely be members of a minimal cover. Internal
representation of each maximal constraint is restruc
tured in such a manner that the covering problem can
not be further simplified using column dominance
techniques.

It is obvious that either of the two assignments be
low satisfy all of the constraints shown above:

Assignment # 1

1 2 345
Yl 0 1 0 0
Y2 0 1 1 0 1
Y3 0 1 0 1 0

Assignment #2

12345
Yl 0 1 1 0 1
Y2 0 1 1 1 0
Y3 0 1 0 1 0

Furthermore, these are the only two significantly
different minimum assignments which successfully
code the Figure 1 flow table.

It has been found that even with certain look-ahead
provisions in the branching routine, generation of
minimum variable assignments becomes a time-con
suming problem for typical flow tables of 12 rows or
more. A second and much faster algorithm has been
programmed. It is an approximate method, and gener
ates near-minimum variable codes.

The fast algorithm reduces the Boolean matrix cor
responding to the maximal constraints through the
use of an approximate reduction technique. A con
straint is constructed which seems to include a large
number of matrix rows. The included matrix rows are
then removed. This process is then continued until
all rows of the original matrix are included in at least
one of the generated constraints. This reduced matrix
corresponds to a near-minimum variable state assign
ment.

The fast Boolean matrix reduction program usually
produces satisfactory assignments having less than
1 Y3 times the minimum number of variables. Assign
ment generation times for large flow tables may be re-

duced by two orders of magnitude using this approxi
mate procedure. Near-minimal assignments have been
efficiently generated for flow tables having up to 75
specified next-state entries and 150 constraints with
approximately 15 minutes computer time on an IBM
360/50. Many satisfactory assignments are often gen
erated. One of these may be selected by a test routine
or chosen by the designer. The test routine, to be
discussed below, chooses a "good" assignment for
reduced hardware realization.

Design equations

As the example above illustrates, the code gener
ating algorithms frequently produce several satisfac
tory assignments. Generated codes may be evaluated
by a procedure due to Maki,7 which selects that assign
ment most likely to have simple next-state equations.
Consider, for example, the assignments and·next-state
equations shown in Figure 3. Note that the next-state
equations for column 11 Assignment # 1 are much less
complex than those for Assignment #2.

Assignment =11= I Assignment:fl:2
YI Y2 Y3 YI Y2 Y3

000 000

o I I 0

I 0 0 I I

o 0 0 0 I

o o

2

3

4

5

4

2

2

4

5 I

010

I

o I 0 6 5

YI = YI II + ...
Y2=Y2I I+···

Y3 = II + ...

YI =(YI+Y2)II+'"

Y2 = Y2Y31I1 + ...

Y3 = (Y2
1 + '13) II +

Figure 3 - Partial flow table and assignments

The test ·procedure searches for that assignment
with a maximum amount of reduced dependency in the
next-state equations. Two types of reduced depen
dency are easily detected fropl the assignment. First,
observe that Y 3 is dependent only on the input in the
given example. This can be predicted by noting that
Y3 has the same value, 1, for all stable states in the
column. A second observation is that Y 1 is dependent
only on the input and the present state of y l' Similarly,
Y2 is a function only of Y2 and the input. This can also
be predicted by simply noting that Yl and Y2 are never
excited to change state for any transition under input
11' In other words, one need simply observe that Yl

58 Spring Joint Computer Conference, 1968

and Y2 have the same value for state pair (1, 4), state
pair (2, 3) and again for state pair (5, 6). Observe the
increased complexity of the next-state variables in
Assignment #2 of Figure 3 as a result of its failure to
insure reduced dependency. The programmed rou
tine based on this method wi!! evaluate each generated
state assignment for reduced dependency in just a few
seconds.

Maki has also described a procedure for obtaining
next-state equations without construction of the tradi
tional excitation matrix.7 An algorithm derived from
his method is presented here.

Each internal state transition may be associated
with a p-subcube of the n-cube defined by the input
and internal state variables. Furthermore, all of the
next-state entri.es of p-subcubes associated with a
single stable state wi!! be identical; and equal to the
row code of the stable state. Consider, for example,
the application of Assignment 1 to Column 11 of Fig
ure 3, as shown in Figure 4.

In the transition between rows 2 and 3, all states
in the p-subcube YlY2 (Yl = 1, Y2 = 1) must have the
same next-state entries, namely that of stable state 3,
110. A tabular form of p-subcube generation may be
illustrated as follows:

Yl Y2 Y3
o () Stable Row Code

1 1

1 1 -

3 Unstable Row Code

P-Subcube Resulting from
Transition

The transitions from rows 4 and 5 to stable state 1
define the remaining two p-subcubes listed in PI of

. 1
P;"nrp 'l Nntp th':lt thp Bnnlp'.:ln c;:nm P_ nf thec;:e
.& I.b '"" -'. .L" "' ... ~ "' .. u '" "'.......... "-'''''..................... u.......... .a. 11 ""A. ~&& \J

terms represent all next states requiring specified
entries under input 11'

PI,::YI Y2+
I I "

Y, Y2Y3 I, Y, Y2 + YI Y3

000 CDII Y, • yIY2 I,

2 3 Y2 :: YI Y21,

10 3 @/2 Y3 :: 0 . Ii

001 4 0, :: (y,'Y2' + y,'Y3', I,

010 5 02 :: YIY21,

Figure 4 - Partial flow table, specified p-subcubes and 1-sets

Notice that if Yi is 1 in the stable state row code 9

then next-state variable Yi = 1 for all states in p-sub
cubes associated with that stable state. For example,
since in row 3 Yl = 1, all states in the p-subcube YIY2
will have next-state variable Y 1 = 1. In other words, all
p-subcubes associated with transitions to a stable
state will appear in the Boolean sum-of-products next
state equation Yi if digit i of the stable '9w code is one.

As the p-subcubes are generated by the computer
program, they are added to the appropriate next-state
I-set lists only if the corresponding next-state variable
is 1 in the subcube (see Figure 3). The final results are
(partially simplified) Boolean equations representing
the I-cells of the next-state variables.

The synthesis program also generates the output
equations of the sequential circuits. The output corre
sponding to a given stable state is also associated with
all unstable states leading to 'the stable state. All p
subcubes generated previously are grouped according
to stable state. If an output variable is 1 for a partic
ular stable state, the associated p-subcubes become a
partial list of I-sets under. the corresponding input.
The output I-sets for Column 11 in Figur~ 1 are shown
as sums in Figure 3.

To permit further simplification of the design equa
tions generated abov~, it is desirable to compute the
unspecified entries for all equations. Fortunately,
unspecified p-subcubes are common to all the design
equations. A Boolean equation for don't-care entries
is generated by simply ta~ing the complement of the
available equation for specified entries (see Equation
PIt in Figure 3).

Complementation of a Boolean sum-of-produCts ex
pression may be performed by complementing the
expression, multiplying out the result, then simplify
ing the resultant sum-of-products expression to obtain
the solution. The procedure used here is a modifica
tion of that method. Simplification illustrated by

A ·(A + B + C) = A and
A·(A' + D + E) = A(D + E)

is performed both before and during the multiplication
of the product-of-sums expression. Redundant terms
are also deleted. A brief example will perhaps illus
trate the method employed. Figure 5 shows comple
mentation of the sum of p-subcubes shown as Pll in
Figure 3.

A normal-form Boolean equation for each next-state
variable may be obtained by combining the don't-care
terms found above with the appropriate next-state 1-
sets. Since the output associated with don't-care in
ternal states may be assumed to be unspecified, the
output-state equations also include the same don't
care terms.

Automation in Design of Asynchronous Sequential Circuits 59

I I I I

PI I = YI Y2 + YI Y2 + YI Y3
PI

1
= (Y1

1 + Y21). (YI + Y2)' (YI + Y3)

= YI (Y21) + Y2 + Y3 . (Y1
1 + Y21). (YI + Y2)

= YI Y2
1 + YI + (YI 'Y3 + Y2

1
Y3) '(VI + Y2)

= YI + YI 'Y2Y3

Figure 5 - P-subcube complementation and simplification

The program then finds prime implicants of each
design equation produced above. A conventional con
sensus algorithm is used and will not be presented
here.

A covering algorithm is used to find simplified, but
not necessarily minimal design equations. Instead of
covering the I-cells of a design equation the program
covers the I-sets originally generated from flow table
columns. (Recall that a I-set is: a subcube containing
one or more vertices or I-cells for which the expres
sion is 1.) The problem of generating and covering a
large number of I-cells is thus avoided. More impor
tantly, it can easily be shown that by covering the 1-
sets, all static hazards associated· with vertical flow
table transitions are eliminated from combinational
circuit outputs. A static hazard exists when there is a
transition between a pair of adjacent states having the
same output, during which it is possible for a momen
tary improper output level to occur. Using two-level
AND-OR synthesis, if each product (prime implicant)
covers only I-sets, all transitions within that I-set are
static-hazard-free; static hazards may only be caused
by input-state changes which correspond to horizontal
transitions on the flow table.

A procedure for eliminating the remaining "hori
zontal" hazards has been included. It is based on the
restriction that only one input-state variable at a time
changes. All pairwise combinations of a design equa
tion's products (prime implicants) are examined for
horizontally adjacent I-sets. If such an adjacency is
found, a static hazard exists. Since a horizontal transi
tion may only originate at a stable state, the static
hazard cannot possibly cause a malfunction unless
one of the I-sets includes a stable state.

Consider, for example, the illustration shown below,
which is the simplified design equation for Y 2 of Fig
ure I, using Assignment I:

Y 2 = Y3'V'W + Y2V + YtW'

(where the input variables are v w)
Note that the horizontally adjacent I-sets Ya'v'w and
YtW' appear as the first and third terms. If any stable

state has a code in the subcube YIY3'V' then a static
hazard exists which may cause a malfunction. Note
that stable state 3 in columns 11 and 12 both satisfy

Program performance

Execution times obtained using the program de
scribed here depend on hardware and software effi
ciencies, as well as the complexity of the input flow
table. The solution times stated here were obtained
using an IBM 360/50 computer and the IBM Release
13 PL/I Compiler.

Simplified . design equations for flow tables of 6
rows by 4 columns (24 cells) have been produced in 45
seconds to 4 minutes, depending on problem complex
ity. Eight row by 4 column tables usually are solved in
1.5 to 8 minutes. Three assignments for a 12 X 4
(48 cell) flow table have. been produced in about 8
minutes, with next-~tate equations (unsimplified)
generated in 3 minutes per assignment. Two satisfac
tory codes for a 18 x 4 (72 cell) flow table were found
in 15 minutes. Computation times for large problems
have been found to be extremely problem-dependent.

SUMMARY

A description of a programmed algorithm for the syn
thesis of normal fundamental mode sequential circuits
has been presented. The program permits the logic
designer to input his asynchronous sequential circuit
specifications in the form of a flow table and obtain all
next-state equations and output equations in the form
of simplified sum-of-products. Two internal state as
signment algorithms are available to the designer. One
will generate a minimum-variable assignment but may
be lengthy to execute while the other will execute
much faster but guarantees only a near-minimum var
iable solution. A testing routine is then available to
aid the designer in deciding which of several satisfac
tory state assignments will tend to reduce the complex
ity of the design equations. A "good" assignment will
be selected and simplified next-state and output equa
tions will be generated based on the selected assign
ment. The complete program has been written in PL/I
and is running on an IBM 360/50 computer at the Uni
versity of Missouri at Rolla. Flow tables with up to 75
specified next-state entries have already been run
and much larger flow tables will soon be generated
for experimentation purposes.

REFERENCES

1 R J SMITH II
A programmed synthesis procedure for asynchronous sequen
tial circuits

60 Spring Joint Computer Conference, 1968

Masters Thesis University of Missouri at Rolla 1967
2 W L SCHOEFFEL

Programmed state assignment algorithms for asnychronous
sequential machines
Masters Thesis University of Missouri at Rolla 1967

3 J H TRACEY
Internal state assignments for asynchronous sequential
machines
IEEE Transactions on Electronic Computers Volume EC-15
pp 551-560 August 1966

4 D A HUFFMAN
The synthesis of sequential switching circuits
Journal of the Franklin Institute vol 257 pp 151-190 and

275-303 March and April 1954
5 M C PAULL S HUNGER

Minimizing the number of states in incompletely specified
sequential switching functions
IRE Transactions on Electronic Computers vol EC-8 pp 356-

367 September 1959
6 E J MC CLUSKEY

Minimization of Boolean functions
Bell System Technical Journal pp 1417-1443 November 1956

7 G K MAKI
Minimization and generation of next-state expressions for
asynchronous sequential circuits
Masters Thesis University of Missouri at Rolla 1967

Interpretation of organic chemical formulas by computer *

by ALBERT N. DeMOTT
Computer Research
Rockviile, Maryland

INTRODUCTION
Over the last few years, a frequently discussed
problem in the area of chemical information systems
has been the need for some means by which chemists
could communicate with the system in terms of their
normal chemical language, the structural formula,
rather than requiring them to use special, machine
oriented notations. The Walter Reed Army Institute
of Research (WRAIR), as part of its Chemical
Structures Storage and Retrieval System, l has
developed an economical and effective computer
program to analyze structural formulas as normally
written by chemists, producing as output a· detailed
description, in machine-oriented format, of the atoms
in the molecule and their connections to each other.
In principle, any trained chemist can prepare com
pounds for entry in the system master file, or questions
for searching it, without any special training in the
WRAIR system. The program is now being used in
daily operations and is, we believe, the only opera
tional program capable of performing this function
without major restrictions on the formulas which can
be accepted. As a special case of the general problem
of the man-machine interface, the program may well
be of interest outside the chemical field, particularly
since many of the techniques used have no essential
relation to chemistry.

The operational cost of this facility compares
favorably with the cost of preparing the connection
tables,2 fragment lists, systematic names,3 or other
special notations4 required by many chemical re
trieval systems. Execution time on an IBM 7094
computer averages about five to seven minutes per
thousand compounds. In the environment in .which
the program is currently operating, preparation of
input to the program requires one and a half to
two minutes of clerical time per compound, and about
five minutes of 7094 time per thousand compounds.
The program accepts well over 95% of the chemically-

*This paper is contribution No. 330 from the Army Research
Program on Malaria.

correct structures presented to it, and the accuracy of
interpretation of those' accepted (excluding com
pounds . for which warning messages are issued)
closely approaches 100%. The only limitations on the
freedom of the chemIst in writing formulas are the
following: (1) Organic, rather than inorganic, chemical
conventions must be'followed where the two systems
differ. (2) The structural formula must be given in
enough detail to resolve any ambiguities which
might normally be resolved by the context of dis
cussion. (3) A few specialized types of compounds
(such as polymers, coordination compounds, and
stereo isomers) cannot be handled. (4) In a few cases
of variant usage, the chemist is restricted to one of
the options normally opento him; in general; however,
the program will handle all or most of the conventions
commonly used.

Background

The number of known organic compounds has
increased rapidly over the last ten or fifteen years,
creating a critical need for rapid means of retrieving
information about compounds related to the com
pound a chemist may be currently studying. For
example, an urgent problem in the medical field,
at present, is to find new anti-malarial drugs which
will be effective against the drug-resistant strains
of the malaria parasite which have appeared recently
in southeast Asia. When a research worker finds a
compound with some effectiveness in treating the
disease, his first need is to obtain information about
the biological activity of known related compounds,
as a guide to determining what modifications to the
molecule might offer promise of increasing the activity
of his potential drug. A manual search of files contain
ing several hundred thousand compounds is impracti
cal, no matter how well cross indexed they may be,
since the portion of a molecule which is relevant
for one search is likely to be irrelevant for nearly
all others. In the example just cited, in fact, the
question of which portion of the molecule is relevant

61

62 Spring Joint Computer Conference, 1968

is precisely the question the search is "intel1ded to help
answer.

To solve this problem, WRAIR has developed a
computerized storage and retrieval system which
allows the user to specify any chemically valid
structure or portion of a structure. The system
will then retrieve all compounds in the file which
contain that structure as a part of their molecules.
Retrieval is on. the basis of a successful mapping of
the structure of the question into the structure of
the compound on' file. In order to permit such a
mapping the file entries must contain, and input must
provide, a specification of the characteristics of
each atom in the molecule and a specification of ail
the pairs of atoms which are bonded directly to each
other (with the nature of the bond given in each
case). On the other hand, the structures of new
compounds for the file, whether obtained from
published catalogues, submitted by the chemists
who have synthesized them, or gotten from some
other source, will nearly always be specified orig
inally by means of conventional chemical formulas.
The formulas can be, and in the past have been, con
verted· to an atom-by-atom and bond-by-bond format
by manual methods, but this is a tedious task which
must be performed by trained chemists. Further
more, the original formula is lost in this process and is
not available at retrieval time. "The program which
is the subject of this paper" was created to bridge
this gap. The preparation of input can be entrusted
to relatively unskilled clerical personnel, since
their only task is to copy the chemist's original
drawing. Furthermore, since the original formula
is' provided to the system in a binary coded form,
it can be' convenIently included in the master file
entry for the compound and printed on a Hne printer
at retrieval time. It can also be provided to the user
during initial processing in conjunction with rejection
messages and warnings of ambiguities and sus
pected errors.

In the current operational environment of the pro
gram, input is prepared by typing on a chemical type
writer.s The paper tape output from the typewnter
is converted to magnetic tape and processed by com
puter into line-by-line order. Output from the program
consists of a fairly conventional connection list.
The details of this input and output are beyond the
scope of this paper, however, since they do not
affect the logic of the program. Relatively minor
coding changes would suffice, in fact, to provide
output in other formats (such as a connectivity
matrix) or to accept input prepared in other ways,
provided the input represents a line-by-line image
of the formula and preserves the original geometric
relations.

The problem

Organic chemical formulas are a language which
has grown up over the past 1 00 years with little
attempt at standardization. Its "rules of grammar"
have never been coditled, and must be deduced
from the actual practice of chemists. In principle,
a formula is a conventionalized picture of a molecule
as projected on a plane, but the emphasis must be on
the word "conventionalized." Each atom is rep
resented by an element symbol consisting of one
or two letters, and the connections between atoms
are indicated by straight lines (single, double, or triple
according to the nature of the bond) connecting two
element symbols. In practice, however, the name
"structural formula" is misleading. Only the major
outlines of structure are shown by means of bond
lines - the details must be inferred by the reader.
For example; the characters "S02" in an organic
(but not in an inorganic) formula mean that two
oxygens are each double bonded to a sulfur atom
and that the sulfur atom in turn is single bonded to
each of two other atoms in the molecule. (The bond
lines for the latter bonding mayor may not be writ
ten.) If you ask a chemist why "S02" represents
this structure and no other, the answer' will be, in
substance. "Because it does." Chemically it is per
fectly pos~ible for two oxygens to be single bonded to
a sulfur atom with each oxygen single bonded in
turn to some other atom, and such structures do in
fact occur. They are never, however, represented
by "S02'" Most "structural" formulas include
lengthy strings of element symbols,. subscripts,
parentheses, and brackets. Their structure is obvious
to a chemist, but not at all apparent to a layman.

The problem of interpreting chemical formulas is
therefore twofold: First, the program must be able
to trace the chains and rings formed by bond lines,
occasionally in extensive patterns resembling chicken
wire. Second, it must be able to determine the struc
tures implied by strings of symbols which give no
explicit indication of the mutual relations of the
atoms represented.

Basic procedure of the program

Input to the program consists of structural formulas
whose individual characters have been arranged
in line-by-line order, including all blanks within
each line. One formula is read in, stored in a two
dimensional matrix, and a starting node is chosen
arbitrarily. For the purposes of the program, a node
may be a string of symbols, but for simplicity let
us assume that all nodes in the structure are single
atoms with or without attached hydrogens. The
atoms and its characteristics (including the numbei

Interpretatio~ of Organic Chemical Formulas by Computer 63

of attached hydrogens, if any) are recorded. A dot
at the comer of a ring structure is interpreted to
represent a carbon atom with enough attached
hydrogens to make up its full valence of four. Next,
all adjacent matrix cells are checked for bonds
pointing to the node. Each bond found is traced and
the matrix location of the atom at its far end is entered
in a table of unprocessed nodes. This entry also
records the nature of the bond and identifies the atom
at the node currently being processed. The location
of the node table entry is then stored in the matrix
cell at the far end of the bond.

When all bonds pointing to the node have been
traced, the valence of the atom at the node is checked
to make sure it agrees with the total of the bondings
shown. A new starting point is then chosen by taking
an entry from the node table, and the new node is
. processed in the same manner. If a matrix cell
containing a bond pointing to the node is found to
have a node table reference in it, the information in
the entry is used to record the bonding between
the atoms at the two nodes. The table entry is then
erased. Processing of the molecule is complete
when no entries remain in the node table.

Interpretation of strings of symbols

When a node consists of a string of element sym
bols, subscripts, brackets, and parentheses, the prob
lem be~omes vastly more complicated. The bulk of
the coding in the program is devoted to handling this
problem.

Two basic approaches to the problem of inter
preting such strings were considered in designing
the program. The first approach would be to analyze
strings entirely by program logic, taking each element
symbol separately and inferring the relation of its
atoms to the other atoms in the string. In terms of
an analogy with natural languages, it represents
interpreting a sentence word by word, allowing for
all the changes in meaning of a given word which
can be produced by changes in context, and for the
variation in the .relation between two words which
results from changes in their relative positions and
the presence or absence of other words in the sen
tence. In the case of chemical formulas, one of the
major difficulties in this approach is the fact that
most chemical elements can take on anyone of
several different valences (i.e., have different number
of bonds).

A second approach to interpreting strings would
be, using the linguistic analogy, to analyze the sen
tence in terms of phrases instead of individual words.
Chemically, this would mean defining a set of glyphs
(i.e., groups of element symbols and auxiliary char-

acters), each of which would represent one and only
one arrangement of atoms and bonds. Many such
glyphs can, in fact, be defined, and the approach
offers obvious advantages from the standpoint of
simplicity of programming. The approach was used
with considerable success by E. B. Gasser and
C. W. Gregory at Colgate-Palmotive Company in
designing and implementing for a small computer
an experimental predecessor to the present program.

The final decision, however, was in favor of using
program iogic exciusiveiy, and experience has con
firmed that the decision was a good one. First, it
was found that a number of lengthy glyphs would need
to be defined, with many glyphs being subsets of
longer ones. This would require lengthy table searches
and repetitious processing of element symbols- as
overlapping fields were tested successively against
the glyph table. Program execution would be slow .
Second, the number of glyphs to be defined would
be large (probably on the order of 1,000), and few
would be used by chemists with absolute consistency.
To require a chemist to consult such a glyph list
to ensure that his structure would be interpreted
correctly would defeat the primary goal of the pro
gram, and would open wide opportunities for errors.
Third, and most vital, a study of a set of representa
tive formulas led to, the conclusion that it would in
fact be possible to abstract a set of rules simple
enough to be practical from a programming stand
point, and universal enough to insure reliable opera
tion of the program. Furthermore, it appeared possible
to define criteria for identifying genuinely ambiguous
formulas and either rejecting them or issuing a warn
ing to allow the chemist to check the program's
interpretation. The flexibility of the program logic
approach appeared to be more valuable than the
definiteness of the glyph approach.

The original set of rules turned out, not unexpect
edly, to be thoroughly inadequate; but progressive
refinement as problems became apparent has pro
duced, with no changes in the basic logic, a program
which comes very close to meeting the goals orig
inally defined. At present, two typewritten pages
are sufficient to specify the conventions which
chemists must observe in writing formulas for input
to the system.

A complete description of the rules used to inter
pret strings of element symbols is beyond the scope
of this paper, but the basic principles are as follows:

1. Since Western languages are written from
left to right (and most chemists are Westerners)
strings are usually written, and can usually be ana
lyzed, from left to right.

2. The bondings on each atom will exactly equal
one of its normal valences, unless another valence

64 Spring Joint Computer Conference, 1968

has been specified in the formula. Except for oxygen
groups (see rule 5 below), the valence will be the
lowest compatible with the valences of surrounding
atoms.

3. A string, since it resembles a chain in ~ppeai
ance, will norma!!y represent a chain structure
(with or without side branches) and, except in con
nection with oxygen groups, it will not contain
any rings. A straight chain should be preferred over
a chain with branches, where both are possible.

4. Each string represents a single molecule, or
portion of a molecule, and each atom in the string
must be bonded directly or indirectly to every other
atom in the string.

5. Oxygen, particularly subscripted oxygen, is
most likely to be bonded as a side atom, rather than
as part of the main chain, even if this ·requires assign
ing the atom to which it is bonded a valence higher
than its lowest normal valence.

6. Triple bonds are rare, and a pattern of one
double and one single bond is preferred over a
triple bond.

In processing a string, the general procedure is
to take each atom in turn (treating subscripted sym
bols other than oxygen as if an equivalent number
of symbols had been written side by side). First,
any written bonds approaching the atom vertically
or from the left are traced and their value is sub
tracted from the valence of the atom. (Bondings
are made or entries added to the bond table in the
same way as for structures shown in full detail.)
Next, the valences of the atom are used to satisfy
all unsatisfied valences remaining on previous atoms
in the string, unless all atoms in the string so far have
the same valence and no written bonds are present
on any of them. In the latter case, the atom will be
left unbonded. Last, any bonds approaching the atom
from the right will be used to satisfy valences on
whatever atom still has unsatisfied valences. This
will not necessarily be the atom being processed,
but may well be an earlier one. The program then
requires that unsatisfied valences be left on at least
one atom in the string, unless the end of the string
has been reached. In the latter c~se, all valences
must be satisfied. If at any stage of processing the
valences on the atoms are such that the above rules
cannot be followed, the valence of one of the atoms
involved is raised to its next higher value.

In addition to the main processing routine described
above, three special routines are provided to deal
with (I) oxygen groups, (2) alkane chains of the form
CnHm, and (3) groups inverted from their natural
order becuase they occur at the left· end of a string.

Parentheses and brackets

Although several special usages occur, and are
provided for by the program, brackets and paren
theses are most often used in one of two ways:
(1) The parenthetic group may represent one or more
branches from the main chain of the string. This is
referred to as "fanwise bonding." If the parentheses
carry a .subscript, all· the groups represented will
be bonded to an atom or atoms in the main chain.
If an oxygen group precedes, each parenthetic group
will be bonded to a different atom within the oxygen
group. Otherwise, all groups must be bonded to the
same atom. (2) The group may represent a unit which
is repeated as part of the main chain. This is called
"chain bonding." The groups are bonded to each
other in a chain, with the first group bonded to a
preceding atom in the string and the iast group
bonded to an atom which follows.

The two usages are distinguished by counting what
might be called "handles" on the group. If the group
has only one handle, it is bonded fanwise. If it has two
handles it is chained. Handles are counted by first
processing the group as if it were a string in itself,
reserving one valence on the first atom in the group
if the group is not at the beginning of the whole
string. A handle is then defined as (1) a reserved
valence, (2) unsatisfied valences on anyone atom in
the group, or (3) a written bond extending to some
atom outside the group.

Parentheses and small brackets are expanded
and processed when the end of the group is reached
in normal processing of the string. Large brackets
(which may enclose substructures r3:ther than single
strings) are processed when interpretation of the
structures within them has been completed.

SUMMARY

The program described in this paper meets a need
which has been recognized for a number of years, by
allowing communication between chemists and
computers in terms familiar to all trained chemists.
Certain limitations still exist, but our experience
has been that when a formula must be rewritten to
meet these limitations the result is nearly always a
formula which chemists consider better chemically.
Since these same formulas are used as part of the
output for searches, this can be a distinct advantage.
The program is economical in operation, and some
two years of use have shown it to be reliable and
subject to progressive refinement.

ACKNOWLEDGMENTS

All work on this program has been supported by the

Interpretation of Organic Chemical Formulas by Computer 65

U. S. Army Medical Research and Development
Command.

The original design work was performed by the
author at the Service Bureau Corporation and was
initially implemented by him and by other employees
of the Corporation working under his supervision.
Some modifications were made by the author while
at Computer Applications Incorporated, and a
major revision was carried out by him at Computer
Research.

REFERENCES

1 D P JACOBUS D E DAVIDSON A P FELDMAN
J A SCHAFER
Experience with the mechanized chemical and biological
information retrieval system
Presented before the Division of Chemical Literature

American Chemical Society Chicago Illinois
September 1967

2 W S HOFFMAN
An integrated chemical structure storage and search system
operating at Du Pont
Presented before the Division of Chemical LiteratUl e
American Chemical Society Chicago Illinois
September 1967

3 G G VANDERSTOUW I NAZNITSKY J E RUSH
Procedures for converting systematic names of organic
compounds into atom-bond connection tables
Journal of Chemical Documentation vol 7 no 3 1967

4 E HYDE F W MATTHEWS L H THOMSON
Conversion of Wiswesser notation to a connectivity matrix
for organic compounds
Presented before the Division of Chemical Literature
American Chemical Society Miami Beach Florida
April 1967

5 A FELDMAN D B HOLLAND D P JACOBUS
Automatic encoding of chemical structures
Journal of Chemical Documentation vol 3 no 4 1963

A simulation in plant ecology

by RA YMOND E. BOCHE
Texas T echn%gical C o/lege
Lubbock, Texas

INTRODUCTION

The purpose of this paper is to present some results
from a preliminary study investigating the applica
tion of the computer sciences to problems in plant
ecology. Results include a model which simulates the
growth of a forest in a particular time dependent en
vironment and an implementation of that model using
a digital computer and assumed data. At present the
model is somewhat restricted in level of detail and
range of applicability. It is, however, believed to be a
pioneer in plant sciences, and further study will surely
suggest directions for refinement in level of detail. The
range of applicability is constrained by factors not
modeled to a young, growing forest of natural occur
rence in a particular environment. Validity is antici
pated, not for individual trees, but for the entire forest
presented as an ecological system.

Purpose and scope

The general purpose of the model described here is
to investigate the feasibility of computer simulation of
plant growth processes. The specific model developed
devotes unusual attention to adaptability and flexi
bility in order to provide ready means of incorporat
ing improvements and modifications suggested by
plant physiologists or plant ecologists. This approach
recognizes the strongly qualitative and descriptive
aspects of these sciences and makes allowance for the
shortage of quantitative knowledge and relationships
required by the model.

The specific model, a young, growing forest of
natural occurrence in a particular environment, will
allow us to predict changes in composition of a forest
as influenced by the ecological interactions. The
model includes and accounts for three of the five prin
cipal limiting factors in plant ecology, light, tempera
ture, and moisture. The exclusion from consideration
of the remaining two factors, soil fertility and soil
type, limits the application of the model to forests of
natural origin; thus assuring some degree of soil type
compatibility for species present. Excluding soil

67

fertility limits the scope of the model to relatively
short periods of time during which soil fertility re
mains relatively constant and uniform in its effect on
species present.

I t should be emphasized that the model is for growth
in a natural environment; consequently, it does not at
present encompass such considerations as probability
of seedlings started, human intervention, or other
extraordinary influences such as fire.

Feasibility

Before embarking on this project, it is appropriate to
investigate its· feasibility. Toward that end, it would
seem that three major areas must prove amenable to
computation if the model is to satisfy our general
purpose.

First, growth must be predictable from environment.
Given a plant of known heredity and of known
previous history, it is possible, by applying the
principles of plant physio'logy, to predict with con
siderable certainty the physiological reactions
which will be evoked in that plant upon its ex
posure to a given complex of environmental con
ditions.

Second, ecological interaction must be predict
able given a particular flora subjected to a particu
lar environment.
Ecological measurement has been sufficiently
perfected to give material aid in predicting the
hazards to be encountered in critical areas under
various types of land use and management.

Third, the interactions must be "modelable" and
"computable. "
Important in plant ecology is the principle of
limiting factors, which says in effect that the least
favorable of conditions present will prove epistat
ic. In particular, photosynthisis or plant metabo
lism, will be controlled by the least favorable of
soil fertility, soil type, light, temperature, and
moisture.

68 Spring Joint Computer Conference, 1968

The three above definitive statements were ab
stracted from the Encyclopaedia Britannica and, to
gether, give strong indications of feasibility for the
proposed study.

Basic model structure

1. General flow
A forest, for our purposes, will be defined as two or

more established trees that interact ecologically with
one another. The first step in the model is to initialize a
particular forest (thru observation or assumed data)
and measure its initial composition.

The second step is to apply an amount of growth
resources (temperature1 light1 and moisture) deter
mined as a result of a simulated period of climate.

At each time step of the model, the moisture added
is allocated to individual trees. The temperature,
light, and moisture that would otherwise be available
during the climate period are then modified by the
influence of neighboring trees. The actual moisture
availability determined is based upon moisture evap
oration rates influenced by light and temperature, pre
vious moisture present, and potential losses to the sub
soil during the period.

Finally, growth takes place at a rate determined by
moisture, temperature, and light. Growth rates used
vary with individual species and give account of cur
rent season and present state of maturity. Moisture
used in growing is removed from the soil.

Composition.is measured, as requested by input
data; the processing of successive climate periods
continues until completion.

2. Simplifications and analogs

The particular sample of a forest selected or as
sumed will he a straight line. I n the case of observed
data, a strip of some appropriate, but as yet undeter
mined, width will be selected; all trees within that strip
will be assumed to occur on a single straight line.
This simplification is believed to be essential to the
computational feasibility of the project and causes no
significant detraction from realistic representation
of the physical world. To simplify calculations the
line is chosen in a north-south direction. Thus we will
be modeling a "two-dimensional" forest. It should be
recalled that we are interested in the ecological sys
tem, rather than individual trees. Such a simplifica
tion may cause loss of information concerning indi
vidual trees, but the loss of information to the overall
model should prove to be well within the bounds of
significance in the best climate sub-model we can hope
to construct, or in the best plant growth models we
can conceive.

An important model analogue used is the depict
ing of shading by an angle, (determined by species,
season, and latitude) with shade occurring to the north
during the daylight hours within the ar.ea of the right
triangle, specified by the height of a tree and its shad
ing angle. (Figure 1) The effects of shade on tem
perature and light (and hence on evaporation and
growth) are modeled by analogy. The single angle
selected will result in less area of shade than actually
exists during the early morning and late afternoon
hours; but in so doing, account is taken of the much
reduced heat and light intensities occurring at those
hours.

I
I I
I hi

.t=:$~-------rl hz I
I~--JIL..--~m
1----- d2---..... I
~-----dl-----~

Figure 1 - Shade angle

Other simplifications and analogies are, in general,
less crucial to the model and are encountered primarily
in level of detail.

3. Level of detail

Every reasonable attempt has been made at every
point to select a level of detail commensurate with
the return of enlightening information and to provide
flexibility in model construction and implementation,
allowing modular adaptability over a broad range of
detail levels. We are unlikely to have achieved an
optimum level of detail in this early model. Also, since
a major purpose of the study was to in.vestigate feasi
bility, it has been appropriate in some cases to quite
consciously avoid detail that would tend to improve
validity but have little bearing on feasibility. An ex
ample is that the present model considers all moisture
below the surface as· a single number for each tree.
The number indicates a total amount available with
ouf regard to root zones or soil stratification.

The climate model is, at present, a yearly cycle of
temperature, moisture, and light means, each quanti
fied as a single number occurring per time period.
The time period selected was one month with model
runs extending for ten years of simulated time~

Principal modelfeatures

1. Climate

,During each period of simulated time the climate
determines the quantities of additional resources made
available for growth. The "model" of climate used
here is simply a table depicting typical precipita
tion, temperature and light during each month.

Precipitation is moisture added in centimeters dur
ing the month. Light is the approximate number of
hours of daylight per day reduced slightly during
months normally experiencing considerable cloud
cover or fog. Temperature was entered as a single
number determined for each month as follows: Mean
daily high and low temperatures for the month were
assumed to occur at 1 p.m. plus 20% of time until
darkness and 1 a.m. plus 90% of time- until daylight
respectively. It was assumed that temperature rises
and falls linearly from high to low during the day.
The positive portion of the above temperature func
tion reduced by 50°F. was integrated between the
limits, daylight and darkness, to determine the single
temperature input for the month.

2. Shade

During the daylight hours shade occurs to the
north of each tree. As noted above, an angle, 0, is
used together with the tree height to determine a
triangular area in which shade occurs. The shade an
gle, 0, will generally be smaller for evergreen than for
deciduous trees except during those periods of dor
mancy in which the shade angle is reduced for the
leaf shedding deciduous species. If any other tree
exists wholly or partially within the shaded area,
its light and temperature environment, and hence, its
growth rate, is modified. The "shade factor," a num
ber between 0 and 1 indicating the percent shaded, is
determined for each tree at each time step by the
following procedure.

After resetting all shade factors to zero, perform the
following computation for each tree in the system,
working from south to north (Figure 1).

1. For tree n, d1 = n1 tan O.
2. Find d2 for the next tree to the north.
3. If d1 'T e2, begin again at step 1 with tree n + 1.
4. h3=tanO/(d1-d2)
5. h3 = min(h3,h2)
6. Shade factor = max(h3/h2, present shade factor).
7. Return to step 2 above to see if more than one

tree to the north is shaded by the present tree.
During each time period, loss of moisture added

occurs due to evaporation from the soil at a rate de
pendent on whether or not the ground is shaded at the
center of the "moisture zone."

A Simulation in Plant Ecology 69

3. Moisture Zones

The extent of a tree's root system limits the range
or distance in each direction in which soil moisture
will be available to it. The model assumes that, in the
absence of conflicts, all moisture which falls within
a distance equal to a tree's present height in either
direction becomes available to its roots directly or
through capillary action. This distance, or "natural
moisture zone," is illustrated in Figure 2 with 45°
triangles. (Other angles could be used and varied by
species and state of maturity.)

35

30

25

~15

" iii
:c

10

ZONE I 4 5 6 789 10 II 12

Figure 2 - Moisture allocation

When natural moisture zones overlap, as is gener
ally the case, the trees must compete for the mois
ture that falls in the overlapping zones. The moisture
zone algorithm begins by preparing a table of the
starting and stopping co-ordinates of each tree's nat
ural moisture zone. The entire forest is then divided
into moisture zones. Associated with each zone is a
list of trees competing for moisture in that zone,
(Table 1). First we search the table of natural mois
ture zones to find the tree with the smallest starting
co-ordinate. The co-ordinate and tree are entered as
the first line of Table 1. We continue by selecting,
for each line, the next smallest co-ordin~te from the
natural moisture zone table and entering it in Table 1.
The co-ordinate entered terminates the precedirtg zone
and begins a new one. If a starting co-ordinate is se
lected, the list of trees competing in the preceding zone
is copied and the new tree added to the competition.
If a tree's stopping co-ordinate is selected, the list is
copied with that tree deleted. Zones of zero length
will be subsequently ignored.

4. Moisture allocation

The moisture that falls in each moisture zone will
be allocated to the trees competing in that zone by
some combination of the following rules. (A weight
ing factor has been provided as input.)

70 Spring Joint Computer Conference, 1968

TAB L E 1

MOISTURE ALLOCATION

MOISTURE STARTING STOPPING
ZONES· CO-ORDINATE CO-ORDINATE TREES CONFLICTING IN ZONE

95 102

102 112 1 5

112 123 1 5 6

4 123 126 1 5 6 2

126 127 1 5 6 2 3

6 127 130 1 5 6 2 3 4

130 131 1 5 6 2 4

8 131 131 1 5 6 4

131 133 1 5 6

10 133 143 5 6 7

11 143 145 1 5 6 7 8

12 145 146 5 6 7 8

13 146 162 5 6 7 8 12

14 162 163 6 7 8 12

• At Time Zero

Rule A allocates moisture in direct proportion to
the heights of the competing trees.

Rule B projects with the 45° angle the heights of
all competing trees to the center of the zone and then
allocates moisture in proportion to the projected
heights.

Rule C allocates moisture in inverse proportion
to distances from tree basis to the center of the zone.

Results presented later were obtained using Rule C.

5. Growth

Each species has associated with it an ideal growth
rate which is a function of height. The growth that
actually occurs during a climate period will be de
termined by reducing the ideal growth by some
amount for each ·unfavorable environmental condition
encountered. ideal conditions for each species, mois
ture usage rates, and sensitivities, are input param
eters.

A tree is selected, and its ideal growth for the period
is determined as a function of species and height. If
the tree is deciduous and dormant in the present
climate period, its projected growth is reduced by an
input factor.

The absolute difference in the temperature number
that occurred and the ideal temperature is divided by
the sensitivity. The sensitivity is the temperature dif
ferences that reduces growth by 10%. Thus, from the

quotient of the ·above division, we determine a new
growth rate.

The growth is multiplied by the hours of light per
day in the current period divided by twelve. If a tree is
entirely shaded (shade factor equals one) the growth
rate is reduced by the "zero light rate" input factor
for that species. If the tree is partially -shaded, the
growth rate is reduced to a proportionate rate be
tween the zero light rate and the last determined rate.

The moisture needed for growth is determined
first, from a usage rate multiplied by height, and then
by one plus the projected growth in meters. A sub
soil loss is determined as a percentage of moisture
present. If the available moisture is greater than that
needed for growth and subsoil loss, the moisture is
removed and growth takes place. If adequate mois
ture is not present, the actual growth will be that
fraction of the projected growth for which mois
ture is available.

Preliminary results

At the time of this writing no field data collection
has taken place. Therefore the results obtained so far
have been the outcome of qualitative model testing.
Primarily, this testing has been the operation of the
model under extreme conditions such as total ab
sence of some necessary growth resource. Other
tests have included such things as operation with
and without ecological interference as controlled by
spacing of individual plants. A sensitivity analysis
has also been performed in order to insure "rea
sonable" responsiveness to major factors modeled.
Validity of basic model structure has now been as
sumed, since behavior under the tests indicated above
is of a form and direction anticipated by initial as
sumptions.

The output from a typical model run is included
below (Table 2 and Figure 3). The forest in this partic
ular example was obtained by random shuffling of
data cards representing a deciduous and an ever
green species. (Similar model runs with more than 100
trees have been made.) In Table 2, co-ordinates and
heights are in meters. Shade factors and moisture
present are described above. The trees at each end
are generally in a superior competitive position, and
hence "less representative." The third and fourth
trees illustrate markedly the effect of changing en
vironment with time. Others illustrate such effects
as declining growth rates caused by the increased
moisture requirements accompanying increased
heights.

This particular, somewhat abstract, forest has been
run many times with many variations of model param
eters. As a result of the adaptability and responsive-

II II
Ie

5

I II

III

20
13

7
III

" 17

10

I 14

iii
10

tl' in
I I I I

MU iiii iiU =:: =:: .-
COOROIIlATE '.1

Figure 3 - Results

TABLE 2

RESULTS

TREE INITIAL HEIGIrr HEIGHT SHADE· MOISTURE·

!2:.... CO-ORDlNATE ~ ~ 5 YRS. ~ ~ ~

120 Evg. 25 26.96 28.93 0.00 1259.9

2 127 Dec. 4 5.41 6.76 0.80 58.2

3 128 Evg. 3.36 4.12 0.32 0.0

4 129 Evg. 3.45 4.11 0.04 0.0

5 132 bee. 30 30 .• 47 31.02 0.00 60.6

6 142 Evg. 30 31.94 33.57 0.00 50.2

148 Dec. 15 15.54 16.25 O.Sl 31.4

8 168 Evg. 25 ~6.90 28.52 0.00 51.6

9 169 Dec. 2.74 3.16 1.00 0.0

10 170 Evg. 4.05 5.45 1.00 0.1

11 173 Dec. 10 10.61 11.36 1.00 41.5

12 176 Evg. 30 31. IS 32.51 0.03 0.0

13 182 Dec. 15 15.71 16.39 0.75 65.1

14 lS9 Dec. 4 5.46 6.56 0.00 70.4

15 190 Dec. 2.70 3.12 0.19 0.0

16 191 Evg. 3.S1 5.15 0.00 0.2

17 ~ Dec. 10 10.62 11.25 0.00 22S.1

IS 197 Evg. 30 32.04 34.0S 0.00 1820.6

• At Five Years

ness demonstrated, we are able to conclude that the
model will prove valuable in its present form and help
to open the gates to a large number of computer stud-
ies and applications in the plant sciences.

A Simulation in Plant Ecology 71

The future

A step preliminary to future development will be
an extensive data collection effort. Data collected
over extended periods of time and taken from many
different geographic regions for many different species
and forest densities will be necessary to properly
adjust, or "fine tune," model parameters.

Additional levels of detail may be considered. A
stratified soil model seems to be a most promising
possibility and would allow for finer accounting of
moisture avaiiabiiity, soH type, and fertiiity in the root
zone of individual trees.

A less difficult, but logical, next step will be the
ascribing of measures of economic importance to
the forest. Such a measure will allow the present
model to be used as a "laboratory" for the investiga
tion of many forest ~anagement practices. For ex
ample, quantitative results concerning the value of
thinning to reduce shading could be determined by
simply applying the model repeatedly with various
thinning criteria applied to the same forest. Such a
study made in the physical world, by experimentation,
would not only take many years to complete, but
would depend on the critical assumption that each
forest or subforest under study was completely equiv
alent and subjected to the very same environmental
influences during the entire duration of the study
period.

The adaption of the principals and algorithms of
the present model to crop plants has already begun.
The emphasis, here, must change from one o(reaction
to natural influences to that of reaction to soil manage
ment practices. Also, our attention must focus on the
fruit of the plant rather than the plant itself. However,
the many similarities make the present model an im
portant first step in this direction.

REFERENCES
1 F W WENT

The experimental control'ofplant growth
Chronica Botanica Company Waltham Massachusetts 1957

2 R E BOCHE
Some algorithms for allocation of environmental resources
determining plant growtb
Symposium on Physiological Systems in Semi-Arid Environ
ments. Sponsored by the University of New Mexico and the
National Science Foundation Albuquerque New' Mexico
November 1967 Proceedings to appear t968

A major seIsmIC use for the fast-multiply unit

by ROBERT D. FORESTER*
Digital" Seismic Corporation
Houston, Texas

and

TIMJ. HOLLINGSWORTH and JAMES D. MORGAN
Petty Geophysical Engineering
San Antonio, Texas

No matter how much speed or capacity you add to
your computer system, programmers will develop'soft
ware which will tax it to its limits. }>rogrammers at
Petty Geophysical Engineering are no exception.
Two years ago a fast-multiply unit which can multiply
and add 2,000,000 times per second was added to their
CDC 3200 installation. Soon afterwards they devel
oped ~ sophisticated program for enhancing seismic
signals which depends heavily on the unit's great
speed. The program is called "APE", which is an
acronym for Automatic Phase Editing. It has proved
to be a valuable tool in the search for oil.

In order to see how the APE program fits into the
scheme of seismic exploration for oil, we will broadly
describe how seismic data are gathered in the field
and processed in the laboratory.

Figure 1 shows a diagrammatic cross section of
how seismic data are collected in the field. Dynamite
is loaded at the bottom of shotholes drilled through
the earth's weathered layer. Sound energy emitted by
shooting the dynamite spreads downward and is re
flected upward by discontinuities in the velocity or
density of the earth's layering. Ray paths symbolize
the directions along which the energy travels. The re
turning echos are sensed by a surface array of geo
phones and recorded on . magnetic tape in analog or
digital form. The weathered layer tends to be irregular
an4 can cause refleCted events to mismatch in time
from one geophone to the next.

Figure i shows a photographic plot of multi
channel, seismic data recorded on magnetic tape.
Energy for a single shot was recorded by an array of
24 geophone groups, each geophone group represent
ing a seismic ~race. The horizontal sub-surface cover
age of the geophone array was about Y.z mile. In this

*Formerly Vice President-Service Development, Petty Geo
physical Engineering, San Antonio, Texas.

73

example, the time extent of the recording shown is
1.9 seconds. The maximum time length of the original
magnetic recordings is usually about 6 seconds. For
most digital processing purposes, each trace is sam
pled 3000 times; thus for a 24-trace record, the com
puter must handle 72,000 samples of data. Our center
processes tens of thousands of records like this each
month. In· terms of digitized data samples, this
amounts to an input of over a billion pieces of infor
mation per month.

WEATHERED LAYER

CHANGE IN
VELOCITY OR

DENSITY

Figure 1 - Cross section of seismic reflection shooting

REFLECTION TIME IN SECONDS

Figure 2 - A 24-trace seismogram

74 Spring Joint Computer Conference, 1968

The processed records are assembled into cross
sections like that shown in Figure 3. This section com
prises 6 records representing a horizontal sub-surface
coverage of about 3 miles. The depth penetration is
about 10,000 feet. The reflection pattern extending
across the section depicts the configuration of strata
within the earth. This type of presentation is widely
used by geophysicists to detect structural and strati
graphic anomalies in the earth which may contain oil.
(To emphasize the reflection patterns, the positive
halves of the trace swings are filled in solid by an
electronic plotter.)

Figure 3 - A seismic cross section

It would be so simple if there were no noise, but
mother nature is not that kind. There are many vari
eties of noise, both random and organized, to plague
the seismic interpreter. In order to cancel noise, or
build up t.he signal-to-noise ratio, it's now a common
practice to shoot repeated coverage in an area and
then add or "stack" the data together. Such shooting
of repeated coverage has added greatly to the store
of data to be processed in the last five years. Many
computing centers have sprung up to keep up with
the increased load.

Figure 4 shows a diagram of a 12;;fold repeated
coverage field setup. The shotpoints. and geophones
are placed so that the 12 ray paths converge symmet
rically toward a common reflection point at each
reflector. Travel times along each slanted ray path
are corrected to what they would be, had the ray
path been vertical. The corrections involve a non
linear time stretching which is nicely done by a com
puter. If the weathered layer is highly variable in

WEATHERED LAYER

COMMON REFLECTION POINT

Figure 4-12-fold common-reflection-point setup

velocity and thickness, reflections may show severe
displacements from one trace to the next.

In Figure 5 there are 9 sets of 12-fold common
reflection-point l traces. Each set is to be reduced to
a single trace by addition. Owing to weathering irregu
larities and noise, the reflections are not aligned and
have a ragged appearance. Stacking events which are
badly out-of-phase would do little toward building up
the signal-to-noise ratio.

In the past, our geophysicists used to determine
tifl1.e shifts which would line up reflections by visual
correlation of reflection character. To straighten up
the reflection bands shown in Figure 5 would be a
laborious task taking most of a working day. The
APE computer program will aljgn reflections auto
mati cally. Figure 6 shows the effects of applying
APE to the data in Figure 5. The computer took only
a few minutes to generate this display of smoothly
aligned reflections.

We will now describe the basic principles which
are utilized in the total APE process, each step of
which makes use of the fast-multiply unit.

Figure 7 shows the correlation process in the time
domain. The correlation process is commonly used
to search for a correspondence between traces. In
this example we are searching for a replica of the
search signal in the field trace. As. the search signal
is moved in incremental steps past the field trace,
the amplitude values are cross multiplied and summed.
The sums constitute the amplitudes of the output
trace at the bottom of the Figure. Three sums, corre
sponding respectively to positions A, B, and C of the

en
Q
Z
0
(,)
I&J en

~

I&J
~
i=

Figure 5 - 12-fold trace collections before APE

search signal, are marked on the output trace . .In
position B the search signal is lined up exactly with
the pulse of identical shape on the field trace. The
output trace shows an amplitude peak corresponding
to position B. The arithmetic for position B, which
is noted on the right side of the Figure, could be done
by the fast-multiply unit injust 2.5 microseconds.

In the correlation process, the phases of the two
traces are subtracted from each other. Since the
search signal in this example is identical to that of
the field trace, the phases subtract out to zero for
all frequencies and a symmetric output waveform is
obtained.

At one time we tried to estimate the corrections
needed to bring traces into time alignment by simply
noting displacements among correlation peaks. Ex
perience showed that these peaks were generally
too dull to be used for the precise determination of
such corrections. This simple approach was aban
doned in favor of the APE process, which employs
cross-correlation only as a part of a more sophisti
cated scheme.

A Major Seismic Use for the Fast-Multiply Unit 75

en
0
z
0
U
w
en

~

W

~
I-

Figure 6-12-fold trace collections after APE

Convolution, which is another part of the APE
process, is depicted in Figure 8. Convolution is popu
larly ,thought of as the mathematical equivalent of
filtering. For digital filtering applications, the sliding
waveform represents the impulse response of the fil
ter to be used. The numerical technique of summing
cross multiplications is identical to that used for the
correlation process. The difference between convolu
tion and correlation is that the sliding waveform is
time-reversed in the convolution process.

The arithmetic corresponding to position B of the
sliding waveform is shown on the right. This arith
metic could also be done with the fast-multiply unit
in 2.5 microseconds.

Th'e convolution process causes the phases of the
harmonic components of the two traces to be added
to each other. Since the shape of the field trace is
identical to that of the impulse response, the output
waveform can be thought of as an impulse response
produced by double filtering. Note that the output
waveform is not symmetric.

76 Spring Joint Computer Conference, 1968

+6 I

~-3-1 FIELD TRACE .---ti......&._....1_ \""'\lJ7."'"-+---r---r:: ----

-4

6x 6·36
2= 2!! 4

~~~~~-T~~---4x-4. 16 
-3x-3· 9 
-I x-I· I 

66 

Figure 7 - Correlation in the time domain 

Figure 9 shows how convolution is used in the 
APE process. For simplification, operations involving 
only a single field trace are shown. The top trace is the 
field trace; the middle trace, the autocorrelation of 
the field trace; the bottom trace, the convolution of 
the field trace with its autocorrelation. The higher the 
order of the cross multiplication involving a given 
shaped signal, the more the final wave shape will 
ring or oscillate. Note that the convolved autocorre
lation is much more oscillatory than the original field 
trace. Such induced ringing would be bad for seismic 
interpretation because it can cause discrete reflection 
wavelets to overlap each other. Thus the APE pro
cess carried only this far would resuit in a loss of 
resolution. 

I 
+6 I 

~I 
FIELD TRACE ~ 

~ 
-Ix 6. -6 B~II +2+6 

___ ... ~~ -3 x 2. -6 
IMPULSE RESPONSE -4x-4·+16 

(TIME REVERSED) ~~...,......-+-:#l-.....L----- 2 x -3· -6 
6x-l· -6 

-8 

IT\ 
ABC 

OUT~ ~""r~i~""""'" 

Figure 8 - Convolution in the time domain 

To get rid of the ringing, we resort to a process 
called "deconvolution.2

" Figure 10 depicts the suc
cessive stages of the deconvolution process. The 
ringing trace is first autocorrelated. Using Z-trans
forms, an inverse filter is designed which when con
volved with a ringing trace will shrink the reflec
tions into spikes. In a spike trace, all frequencies 
contain equal amplitudes. Because the low and high 
frequencies brought up by the deconvolution process 
may contain excessive noi~e, it is generally necessary 
to apply to the deconvolved data a bandpass filter 
having a broad peak. To accomplish bandlimiting, 
the deconvolved trace is convolved with a symmetric 
impulse response to give the trace at bottom. The 
bandpass-filtered trace can be thought of as having 
been obtained by replacing each spike by a replica of 
the impulse response of the bandpass filter; the mag
nitude, polarity, and time position of each replica 
being determined by the spike it replaces. 



I 
FIELD TRACE 

~~ 
t 

AUTOCORRELATION 

/ 
CONVOLVED AUT~LATION 

Figure 9 - Convolution of an autocorrelation 

RINGING TRACE 

AUTOCORRELATION 

FUNCTION 

INVERSE FILTER 

(DESIGNED BY Z TRANSFORMS) 

J~_-,nL.... __ -----' r----
U DECONVOLVED TRACE 

BAND -PASS FILTERED 

TRACE 

Figure 10- Deconvolution process 

We are now ready to describe the total APE pro
cess (Figure 11). The goal is to line up traces 1 and 2 
with respect to the reference trace. Manipulations in
volving trace 1 are shown as dashed lines; those for 
trace 2, as solid lines. The reference trace is first 
cross-correlated with traces 1 and 2, respectively. 
Because phases are subtracted in the correlation pro
cess, time lead and lag relations become reversed. 
The correlation function for trace 1 leads the refer-

A Major Seismic U·se for the Fast-Multiply Unit 77 

ence trace by the amount trace 1 lags it; and the cor
relation function for trace 2 lags the reference trace 
by the amount trace 2 leads it. 

___ -----REFERENCE TRACE 

~ 

I \ 
\ ,- - - - FIELD TRACE I --

___ -------- FIELD TRACE 2 

~~ CROSS 
CORRELATIONS 

\ ,.-----} 
---............ 

~ -- , ,,/ \/ ' CONVOLVED 
WITH CROSS 

__ I \ ---........} FIELD TRACES 

______ +_~ CO~TIONS 

n L-------} DECONVOLVED 
TRACES ---..... 

---

~ 

.", FILTERED TRACES 
___ ~ I \/-----} 

Figure II - Steps in the Automatic Phase Edit process 

Traces 1 and 2 are convolved with their respective 
cross-correlations with the reference trace. The resul
tant convolutions line up in phase, but ring excessively. 
The two functions are than autocorrelated and inverse 
filters designed. The inverse filters are then convolved 
with the ringing functions to restore resolution, as 
signified by the lined-up spikes. These spike traces' 
are then convolved with a bandpass filter to yield 
aligned traces which are seismically realistic in ap
pearance. 

In the time domain, APE can cause various fre
quencies to shift by different time amounts. In other 
words, APE can produce non-linear phase shifts. 
This is demonstrated in Figure 12 where APE is ap
plied to synthetic pulses of two different frequencies. 
The raw data in the top panel consists of identical 
suites of low-frequency pulses on the left side and 
high-frequency pulses on the right side. Not ·only are 



78 Spring Joint Computer Conference, 1968 

Figure 12- Using APE to align synthetic pulses of two different 
frequencies 

the pulses statically shifted relative to one another. 
but the interval between them is not uniform. Two of 
the traces are inverted in polarity to symbolize acci
dental reversal of terminal connections in the field. 
In the middle panel, the low-frequency pulses have 
been lined up by manual editing. Note that the high-' 
frequency pulses are still misaligned because of the 
non-uniform interval between pulses on each trace. 
The bottom panel shows the results of APE process
ing. Both low- and high-frequency pulses have been 
lined up, and the traces reversed in polarity have 
been automatically inverted. (I n this example, ring
ing is yet to be removed by deconvolution.) 

APE's power of producing non-linear phase shifts 
can compensate for distortion in wavelet character 
occurring from one trace to the next. Areal variations 
in the filtering properties of the weathered layer usual
ly account for most of such distortion. Manual deter
minations of time-alignment corrections are limited 

(J) 

o 
z 
o 
u 
w 
(J) 

~ 

w 
~ 
~ 

Figure 13 - 12-fold stack before APE 

by the assumption that the filtering properties of the 
weathering do not change much throughout an area. 

Now let us again examine the effects of APE on 
field data. We have noted that APE transformed the 
ragged-appearing reflections in Figure 5 into the 
smoothly aligned reflections shown in Figure 6. In 
addition there is an improved signal-to-noise ratio 
as indicated by the fact that the intervals between the 
reflections appear cleaner and quieter. This happened 
because the APE process builds up only those fre
quencies showing trace-to-trace coherence and can
cels those that lack coherence. 

The 12-fold trace collections in Figures 5 and 6 
were stacked to yield the results in Figures 13 and 14, 
respectively. The reflections on the stacked APE 
section are cleaner, stronger, and sharper than those 
on the stacked non-APE section. Because reflection 
character has been stabilized from trace to trace, resid
ual variations in character should be more reliably 
diagnostic of changes in lithology. Because the phase 
shifting has been done objectively by a machine, 
structural anomalies will not be suspected as being 
due to human bias, as is often the case in manual 



(J) 
o 
z 
o 
(.) 
LLI 
(J) 

~ 
LLI 
:IE 
i= 

Figure 14 - 12-fold stack after APE 

editing. All these improvements effected by APE can 
help the geophysicist make more reliable seismic in
terpretations in the search for oil. 

A Major Seismic Use for the Fast-Multiply Unit 79 

SUBPROCESS 
MULTIPLICATIONS AND 

ADDITIONS 

I. CROSS-CORRELATION 7.200,000 
2. CONVOLVED CROSS-CORRELATION 7,200,000 
3. DECONVOLUTION 

A. AUTOCORRELATION 
B. CONVOLUTION WITH 

INVERSE FILTER 
C. CONVOLUTION WITH 

BAND-LIMITING FILTER 
TOTAL 

7,200,000 

7.200.000 

3,600,000 
32,400,000 

Figure 15 - Tally of multiplications and additions required to 
APE process a 24-trace seismogram 

Without the fast-multiply unit, APE processing 
would not be economically feasible. Figure 15 tallies 
the number of multiplications and additions required 
to APE process a single record of 24 traces, each 
trace having been sampled 3000 times. The number of 
multiplications and additions required to APE pro
cess one record amounts to a grand total of 32,400,000. 
The fast-multiply unit speeds through the computa
tions in just 16.2 seconds. For APE processing, a 
client currently buys 16,200 mUltiplications and ad
ditions for a penn~. APE p~oce~sing represents a big 
seismic use for the fast-multiply unit. 

REFERENCES 
. I W H MAYNE 

Common reflection point horizontal data stacking techniques 
Geophysics vol XXVII no 6 pt II December 1962 pp 927-938 

2 The MIT geophysical analysis group reports 
Special issue of Geophysics vol XXXII no 3 June 1967 pp 
411-521 





A generalized linear model for optimization 
of architectural planning 

by RODOLFO J. AGUILAR and JAMES E. HAND 
Louisiana State University 
Baton Rouge, Louisiana 

INTRODUCTION 

In the realm of architectural planning there exists a 
type of problem with which designers are frequently 
confronted whe~e financial return is the most appro
priate measure of the sy~tem's" effectiveness. In this 
category can be included. all rental and spe~ulative 
housing (single and multiple family dwellings>,," office 
buildings, warehouses, stores, many industn"al facili
ties, etc., and building complexes which combine some 
or all of these to provide comprehensive services to 
the tenant. 

Traditionally, the problem of planning for capital 
investment has been handled in a semi-empirical way, 
where the data which serve as basis for decision mak
ing may be more or less reliable and up to date, but 
where the processing of these data, to arrive at the 
optimum allocation of space for maximum expectation 
of financial return, is entirely intuitive and, conse
quently, unreliable. 

The writers have studied the allocation problem in 
detail and have concluded that once the pertinent data 
are collected, the most profitable design configuration 
can be ascertained through the optimization of a linear 
model which incorporates the most salient features 
of the real-life, planning situation. 

The allocation of rental housing (single type facility) 
has been modeled by Aguilar. 1,2 However, a mix of 
various types of uses has not been investigated pre
viously_ 

The model developed in the following section takes 
into account multi-use facilities and considers real
istic design constraints such as zoning regulations, 
parking requirements, etc. An example problem is also 
presented to illustrate application of the theory. 

The model 

Definition of terms 
The design of buildings and other architectural 

facilities for financial return is constrained by many 

81 

internal and external factors such as budget, market 
restrictions (construction costs, rentability, individual 
preferences), parking regulations, lot coverage, etc., 
in addition to environmental factors, many of which 
defy quantification. 

The procedure described in this section attempts 
to consider as many as possible of the quantifiable 
factors in optimizing architectural planning within 
the framework of economics; return on invested 
capital. 

With the information extracted from the model, 
(a type of simulation model in many respects), rational 
decisions can be formulated based upon knowledge 
of the most recent tax-depreciation structure, main
tenance costs, alternative investment opportunities, 
etc. 

Letxa be the floor area of facility type i, at levelj, 
of architectural quality k. 

The "type i facility" refers to the use made of the 
space considered; offices, apartments, stores, ware
houses, laboratories, industrial facilities, classrooms, 
etc. 

The "j lever.' denotes the location of the facility; 
first, second, ... ,nth floor level. 

The "k quality" refers to the degree of architectural 
refinement of the space; types of finishes, environ
mental control, and many other considerations, the 
effects of which are reflected in the cost of construc
tion and in the rentability of the facility. 

Similary, Let 

c~ = cost per unit of area of facility i, at level j, of ar
chitectural quality k. 

rb = rent per unit of area, per unit of time, from facil
ity i, at levelj, and architectural quality k. 

pb = probability of renting or selling facility i, at level 
j, and architectural quality k. 

and, 
qb = probability of not renting or selling facility i, at 



82 SpringJoint Computer Conference, 1968 

level j, and architectural quality k. Hence, 
p~+q~= 1. 

It will be assumed that the market is large, and that 
for the time period under consideration-, it is in a steady 
state condition, such that the introduction of additionai 
facilities for rent or sale will not affect significantly 
the parameters defined above. 

Mathematical formulation 

The total expected rent per unit of time can be ex
pressed as follows: 

L m n 

E(R)= ~ ~ ~ ph rhxh' 
~ J=11=1 

(1) 

This is the objective function to be maximized 
subjected to constraints of the types described below. 

1. Market 
a. A survey may reveal that, within a specified 

geographic region, there exist vacancy rates 
for some or all of the proposed facilities. 
These vacancy rates are in fact the q~ = 1 - p~ 
which were already considered in the formtila
tion of the objective function. Nevertheless, 
the q~ should be compared with the upper lim
its set on them by banks and other funding 
institutions. If these limits are exceeded, the 
project may be very difficult if not impossible 
to finance. Therefore, 

q~ ~ (qik) max, for all i and k. (2) 

b. Market preference.s data may indicate that the 
area of each facility type and quality must not 
exceed a certain fraction of the total building 
area. Let flk be upper bounds. to the area 
ratios; then, the constraints can be written, 

In general, 

L n 

LL~>1 (4) 
k=li=l 

because of the requirement that the ~ be upper bounds 
to the area ratios. 

The e~ are small positive constants introduced into 
the constraint equations and inequalities to avert 
degeneracy. 

*The range of the sum on the left hand side of inequality (3) varies 
for each facility type and quality and for this reason it is not given 
explicity, This convention will be used for the rest of this paper. 

2. Zoning Regulations such as: 
a. Maximum building coverage of total lot area 

which can be mathematically expressed as 
follows, 

j= 1,2, ... m, 

where Aj = maximum allowable building area 
of floor levelj. 

b. Height restrictions which could be overall 
building restrictions that j ~ m or restric
tions on each individual facility; merchandis
ing space, for example, should be located on 
lowest floors, etc. 

c. Off-street parking regulations, usually given 
as the number, ni', of parking stalls per build
ing area, ah of f~cility type i. I.n addition, the 
area, a, requin!d for each car for parking, 
drives, etc., can be easily computed and the 
off-street, surface parking restriction ex
pressed as, 

(6) 

where At = total buildable lot area (total lot 
area minus area required for landscaping, 
street rights of way, utility easements, set 
back restrictions, topographically unsuitable 
land, etc.). 

Note that( At - ~ ~ x~ )is the site area avail-

able for parking (At minus first floor area of 
building). 

3. Design decisions (massing studies). These deci
sions are made by designers for aesthetic and 
other reasons and are often arbitrary. Neverthe
less, their effect upon the economic health of the 
system can be measured by comparing all opti
mal solutions from models with different sets of 
design constraints to one having no design con
straint. The model without design constraints 
yields a solution that in this paper will be called 
the optimum optimal solution. The massing as
sociated with the optimum optimal solution may 
not be aesthetically andlor structurally accept
able and it is at this point that design constraints 
must be introduced. The constrained model will, 
in general, yield a lower value of the objective 
function. Thus, if E(R)o is the optimum optimal 
rent and E(R)c is the expected rent when the 
problem is constrained by design considerations; 



Generalized Linear Model for Optimization of Architectural Planning 83 

(7) 

where Cc is the cost of the design decisions. 
It should be realized that aesthetic values may 
affect the four parameters c5, r5, p5, and q5 as 
well as others. Ifth~ir effect is known, the param
eters should be modified accordingly and a new 
E(R)c computed. 

The ability to ascertain the effect or" design 
. decisions upon the system's economic health is a 
most valuable characteristic of the model, for it 
measures indirectly the "cost" of beauty and of 
other aesthetic factors; it represents an attempt 
to quantify some of the intangibles of architec
ture and urban planning. Design constraints may 
take different mathematical forms depending 
upon the massing restrictions. If, for example, 
the planner decides that the building should 
take the form of a tower with a spread out, s 
story base, b times or more larger than each of 
the tower's floors (Lever House type of build
ing), the constraints would be written, thus, 

(10) + ~ x5 = ~ ~ xfis+l) + ej,j = s+2, s+3, ... , m. 

The ej, j = 2, ... ,m, are, again, small positive 
constants introduced to avert degeneracy. Many 
other types of design decisions can be similarly 
formulated. 

4. Budget, generally expressed as a fixed amount of 
money, B, which must not be exceeded by all 
fees and construction costs, excluding the cost 
of land. 

Construction costs for each facility type and 
quality are, in general, functions of the total 
number of floors. Specifically, as the number of 
floors in the building increases, the costs per 
unit of area could decrease or increase. This 
variability is not usually too sensitive and can 
be conveniently expressed as a cost multiplier, 
step function of the total number of floors, m. 
Let {3ij (m) ~ 0 be such step function. Graphical
ly, it could be typically mapped as in Figure 1. 

The figure shows that {3~ (m) decreases for (a~)2 ::::; m 
< (a~)3. It further decreases for (a~)3 ::::; m < (a~)4. 
Then, it increases in the interval (ati)4::::; m < (ati)~, and 
the increase is even greater for (ah)5 ::::; m::::; (a~)6. 
These latter increases would reflect the higher costs 
of foundation and vertical transportation, for example. 

o .. 
" 
c 
o 
U 

Tolal Number of Floors 

COST MULTIPLIER STEP fUNCTION 

Figure 1 - Cost multiplier step function 

When m > (a5)6' the cost mUltiplier becomes infinite, 
denoting that (a5)6 is the upper bound to the number of 
floors due to zoning restrictions or other considera
tions. The variation shown in Figure 1 is, of course, 
only one of an infinite number of possibilities, but all 
of them will exhibit the same general sh;pe. 

In general, there will be n X m X L construction 
cost multipliers with a proportionate number of (ab)q 
nodes where changes in the costs occur. Let the node~ 
be ordered sequentially for alli f3ij (m) and renumbered 

'Yq, q = 1, 2, 3, ... ,r. Then, a typical cost multiplier, 
step function of m, would appear as given in Figure 2. 

to T. >;.. 
Talal Number of Flooro 

COST MULTIPLIER STEP fUNCTION SEQUENTlAU.Y ORDERED 

Figure 2 - Cost mUltiplier step function sequentally ordered 



84 Spring Joint Computer Conference, 1968 

This relabeling is necessary to show, for each f3b (m) 
multiplier, all points at which construction costs 
change for any type, level and quality of facility; thus, 
affording complete control upon the optimization 
process. 

The cost multipliei functions, howevci, intioducc a 
further complication in the model because the number 
of floors may not be known a priori. This is, in fact, a 
non-linear characteristic of the system, that, in this 
context, exhibits recycle loops. A method will be pro
posed to handle the non-linearity in a satisfactory, 
linear manner. Additional item~ of cost and cost co
efficients must be defined, for example: 

a. Cost of sub-surface exploration, soil investiga
tion, foundation recommendations, and report. 
Usually given as a lump sum, bs• 

b. Architectural-Engineering fees, usualiy express
ed as a p~~centage of total construction costs by a 
decimal coefficient, Ca. 

c. Fund for contingencies, also expressed as a per
centage of total construction costs. Let Cc be the 
decimal equivalent of that percentage. 

d. Cost of movable furniture, expressed as a per
centage of construction cost for each facility 
type i and quality k. Let Cik be the decimal equiv
alents of those percentages. 

e. Supervision of construction costs, generally com
puted as a lump sum, bc' which is the total salary 
or salaries of one or more supervisors for the 
anticipated duration of the construction phase of 
the building. bc is assumed constant for a given 
project. 

f. Cost of parking facilities per unit of area, Cpo 

Support space, such as halls, elevators, toilets, etc., 
is assumed to be included in the xh and for this reason, 
its cost must be apportioned among tenants and/or 
buyers (as it always is). 

From these considerations, the following constraint 
inequality can be readily formulated: 

(1 +ca +Ch){ ~ ~ (l +cn [~f3~ c~ X~]) (II) 

+ Cp a [ ~ :: ( ~ ~ x~ ) ] + b, + b, .; B. 

The constraint given above presupposes that the 
total number of floors, m, is known in advance. On 
this basis, the J3b mUltipliers are obtained without diffi
culty. In performing an optimization study, however, 
design constraints would be relaxed at some point, 
and the total number of. floors would become one of 
the unknown parameters. This, in turn, makes the f3~ 
be undetermined and a non-linear, recycle loop could 
be generated. To avoid this complication, the fol
lowing algorithm is proposed: 

Step 1. Assume that the maximum number of floors 
'Yr will be built (see Figure 2). Therefore, 
m = 'Yr and the corresponding J3h mUltipliers 
are used in inequality (11) and in the formu
lation of the mathematical model. A solu
tion is then obtained using a linear pro
gramming algorithm. 

Step 2. Suppose that the solution generated under 
these conditi~ns yields m = Asb and that 
'Yr ~ 'Yst ~ 'Yr-t· Then, the f3il used were the 
correct ones and this is an optimal solution 
for the constraints imposed. 

If on the other hand, 'Yst < 'Yr-t, the J3b 
used are incorrect and the solution is not 
consistent with its associated construction 
costs. Proceed to step 3. 

Step 3, Now; assume that the total number of floors 
m = 'Yr-l - 1, i.e., the maximum value on 
the next lower interval. Use this value of m 
to select the f3i~' formulate the model, 
and solve using linear programming. Two 
possible resuits follow: 

(I) The solution yields in = 'YS2 and 'YS2 < 'Yr-2' In 
this case, repeat step 3 for the next lower "in
terval. 

(2) The solution yields m = 'YS2 where 'Yr-t > 'YS2 ~ 
'Yr-2' Then, the optimal solution for the model 
has been obtained and m = 'Ys2' 

5. Many other constraints can be imposed upon 
the objective function to make the problem con
form to reality as much as possible. In writing 
the constraints, however, one must keep in 
mind that they must be linear, if the problem 
solution is to be obtained with a linear program
ming algorithm, and one must be careful not to 
write iineary dependent andior redundant con
straints, for they can be a source of error and 
inefficiency in carrying out the solution. 

Optimization procedure 

The model developed in" the" previous sectIon is a 
linear one in that a linear objective function is sub
jected to linear constraint inequalities and equations. 
It fits within the framework of problems which" can 
be optimized with "Linear Programming" methods,3.4 
for which computer programs are generally available. 

I t can be" shown that, after the introduction of slack 
and artificial slack variables, the matrix of the struc
tural coefficients must have the same rank as the mat
rix formed by augmenting the previous matrix with 
the column vector of stipulations, for the system to 
have basic solutions. This is a good check on the con
straint equations, and shouid be performed before em
barking upon the task of solving the problem. 



CONCLUSIONS 

The architectural planning model presented in this 
paper allows the designer to make rational decisions 
based on the information provided by the optimal solu
tions generated. It must be emphasized that the ap
proa~h proposed by the writers asserts the impor
tance of the role played by the architect-planner in 
shaping the urban environment. Even with a sys
tematic method such as the one described, he must be, 
at all times, deeply involved in the formulation of the 
model, especially at the "design constraint" level, for 
the linear model presented is' a full-fledged "simula
tion machine," sensitive to the setti~gs the designer 
gives it and responsive to the reactions of the system's 
economic health. A simple; but descriptive, func
tional example problem is given in the Appendix. 

REFERENCES 

1 R J AGUILAR 
Decision making in building planning 
Computers in Engineering Design Education College of Engineer
ing The University of Michigan Ann Arbor Vol III pp 111-26 to 
111-33 April 1 1966 

2 R J AGUILAR 
The mathematical formulation and optimization of architectural 
and planningfunctions 
Division of Engineering Research Louisiana State University 
Baton Rouge Bulletin No 93 1967 

3 W W GARVIN 
Introduction to linear programming 
McGraw Hill Book Company Inc New York 1960 

4 R W LLEWELLYN 
Linear Programming 
Holt Rinehart and Winston New York 1964 

APPENDIX 

A functional example 
An individual ~ishes to develop a 250 ft. x 400 ft. 

commercial piece .. of property located at the inter
section of 2 major traffic arteries. 

A. Market studies indicate that for a develop
ment to be rentable, available office space must 
not exceed 2 floors, stores must not exceed 1 
floor and living units, 3 floors for a "walk
up" facility. 

B. The studies further indicate that within the 
sector of the city where the property is located, 
offices have a 20% vacancy rate, stores a 5% 
vacancy rate and apartment units a 10% vacancy 
rate (occupancies must not be less than 70%, to 
obt~in financial support of a funding agency). 

C. Data on market rental preferences reveal that 
facility areas of individual types and qualities 
should not exceed the following percentages 
of total building area: 

TYPE QUALITY 

o~ 
OJ, 

~ OF TOTAL BUILDING AREA 

1. Office 1 10 
Z 40 
3 zs 

Z. Stores 1 30 

3. Apartments 1 40 
Z 30 

TABLE I - Rentability 

D. Zoning regulations. for off-street parking are: 

E. 

a. Offices-l parking space/ea. 200 sf of bldg. 
area. 

b. Stores - 1 parking space/ea. 1,000 srof bldg. 
area. 

c. Apartments - 1 parking space/ea. 800 sf of 
bldg. area. 

Further - building coverage shall not exceed 
30% of total lot area. Allow 400 sf/car for 
parking space, drives, etc., and a total of 
5,000 sf for landscaping. 

TYPE LEVEL 
QUALITY 

1 Z 3 

1. Office. 1. Ground FI'r 4.50 4.00 3.50 
Z. Second Fl'r 4.00 3 •. 50 3.00 

Z. Store. 1. Ground FI'r 3.00 -- --
3. Apartment. 1. Ground FI'r 3.00 Z.50 --

Z. Second FI'r 3.00 Z.SO --
3. Third FI'r ~.SO Z.OO --

TABLE 11- Rent ($/sq.ft./yr.) 

F. The (Bh ch) coefficients are given below in tabu
larform. 

TOTAL NUMBER OF FLOORS IN BUILDING 
1 Z 3 

TYPE QUALITY 
LEVEL LEVEL LEVEL 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .., .., .., .". 1l " : . g 1 
. 

" ] :> . . :> 0 e 0 0 u 
~ ~ . .c 

t:> '" 1 ~o. 00 -- -- ZO.OO 19.00 - 19.00 18. O~ --
II. Offices Z 8.00 -- -- 17.00 16. O~ - 17.00 15.0( --

3 5.00 -- -- 14.00 14.0C -- 13.00 13.0( 
Z. Stores 1 3.00 -- -- lZ.00 -- -- 11.00 -- --
3. Apartmenta 1 0.00 -- -- 19.00 18.00 -- 18.00 17.0( 17. 

Z 7.00 -- -- 17.00 16.00 -- 16.00 15.0( 14. 
-Cost of parklng area - $0.75 per sq. ft. 

TABLE III-Construction cost, including support space ($/sq.ft.) 

G. Miscellaneous Costs: 
a. Architectural-Engineering fees-6% of 

total construction cost. 
b. Contingencies - 1.5%' of total construction 

cost. 



86 Spring Joint Computer Conference, 1968 

c. Movable furniture-
1 ... ·Offices - 2% of total construction cost. 
2. Stores - 1 %. of total construction cost. 
3. Apartments-4% of total construction 

cost. 
d. Soil's report-$3,000 
e. Supervisio~ of construction - $2,000. 

H. Budget: Shall not exceed $800,000, excluding 
cost of land. 
Question: What types of units and how many 
square feet of each shall the investor develop to 
maximize the rent under present market con
ditions? 

The model 

Let: 
( I ~ Offices 

i =~ 2~ Stores 
l3 ~ Apartments 

{ 

1 ~ Ground Floor 
j = 2 ~ Second Floor 

3 ~ Third Floor 

f 
1 ~ Quality 1 

k= 2 ~ Quality 2 
'- 3 ~ Quality 3 

Then, from A and E, 

k=1,2,3; 
k=2,3,; 
j=2,3; k= 1,2,3,; 

j= 1,2,3. 

From B, 

ql~ = .20 < .30, j= 1,2,3; k= 1,2,3,. 

q2~ = .05 < .30, j=I,2,3, k= 1,2,3. 

qa~ =.10 < .30, j= 1,2,3; k=I,2,3. 

From B, E and Equ. (I), 

OBJECTIVE FUNCTION: 

Max E(R) 

= .80 (4.50x t
ll +4.00Xt2l + 3.50Xlal 

OK. 

OK. 

OK. 

+ 4.00 x12+ 3.50 Xl22 + 3.00 xi~)+ .95 (3.00X2tl) 
+ .90 (3.00xil + 2.50xl1 + 3.00X:l2 + 2.50x;h 

+ 2.50 x:!a + 2.00Xfa)· (12) 

CONSTRAINTS: 

I. The lowest construction cost is, from F, 
$11.00 per sq. ft. Therefore, an upper bound to 
the total building area is 800,000/11.00 == 
74,000 sq. ft. Therefore, 

xll + xll + Xlal + Xl~ + Xl2 + xi1 + xli + xil 
+ Xa21 + xa~ + Xi2 + xata + xia ~ 74,000. 

When slack variable Xl is introduced, obtain, 

x~+x~+x~+xh+x~+x&+xA+x~+x~+xk 
+ Xa22 + xa~ + xa~ + Xl = 74,000. (13) 

N~tice that the total building area is 74,00o-Xl. 

i i. Market preferences. 
From C, and introducing slack variables X2 
through x7, obtain, 

XiJI + xi~ + .25xl + X4 = 18,500 

xi. + .30Xl + X5 = 22,200 

xii + Xi2 + Xf3 + .30Xl + X7 = 22,200 

II I. Site building area. 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

From D, in Eq. (5), and with slack variable Xg, 

xli + Xli + X1
3l + X2i1 + Xail + xll + Xg = 30,000. 

(20) 

I V. Parking. 
From D., in Eq. (6), and introducing slack 
variable Kg, form, 

(21) 
+ Xg = 95,000. 

V. Design Decisions (Massing Study). 
(All floors must be approximately the same 
size) 
First floor area approximately equal to second 
floor area. 



Generalized Linear ~v1odel for Optimization of Archiieciurai Pianning 87 

xh+x~+x~+x~+x~+x~=x~+xA+xA 
+ X3\ + X3~ + e l · 

First floor area approximately equal to third 
floor area, 

Let e 1 = e2 = 1000 to avert degeneracy. This 
means the second and third floor areas will be 
within 1000 sq. ft. of the first floor area. One 
can write: 

(22) 

and, 

(23) 

Artificial slack variables must be introduced in
to eq.'s (22) and (23) before proceeding to 
optimize. 

VI. Budget. 
Under the assumption that the total number of 
floors in the building will be three (3), the 
budget constraint, from F, G, H, ineq. (11) and 
introducing slack variable xlO, can be written 
as follows: 

1.075 {1.02 (19 xlI + 17 xlI + 13 xA 

+ xI2 )} + XlO= 795,000. (24) 

The model is complete and a linear program
ming maximization of objective function (12) 
subjected to constraint equations (13) through 
(24) can now be performed. Because there are 
only 12 constraint equations, any basic feas
ible solution, including the optimal one, cannot 

contain more than 12 non-zero variables. This 
limitation could be removed by introducing ad
ditional constraint conditions. 

In accordance with the budget algorithm 
given in the paper, if design decision con
straints are removed and the optimal solution 
shows that 

(25) 

the total number of floors could not exceed 
two (2). Therefore, set X3~ = Xi3 = 0 in the mod
el and formulate the budget constraint equa
tion as follows: 

1.075 { 1.02 (20 xlI + 17 xlI + 14 XlI + 19 xl \ 

+ .50 (xlI + X321 + xl2 + X!2)} + XIO = 795,000. 
(26) 

I n a similar manner, if the new optimal solution 
shows: 

(27) 

the building can have only one (1) floor. Hence, 
set Xl2 = Xl

22 = xl2 = Xl2 = X322 = 0 in the model and 
the budget constraint becomes, 

+ 1.01 (13 x~lt) 

+.75 {2.00 (xlI + xlI + xli) +.40 (xlI) + .50 

(28) 

The budget algorithm decribes the procedure 
to follow in handling cost coefficient multipli
ers. 

When design constraints are relaxed, the 
optimum optimal solution is obtained. 



88 Spring Joint Computer Conference, 1968 

SOLUTION 

The first run, with no design constraints, yielded the 
following data. 

Ai a gross expected profit of $ i 40,570 per annum, 
build: 

12,536 sq. ft. of Quality 3, ground floor 
OFFICES 
16,700 sq. ft. of Quality 2, second floor 
OFFICES 
15,043 sq. ft. of Quality I, ground floor 
STORES 

5,865 sq. ft. of Quality I, second floor 
APARTMENTS 

This 2=lev.eI solution was obtained using con
struction costs for a 3=level comp~ex. It is there
fore necessary to change the cost coefficients in the 
budget constraint. The third level variables were as
signed large, positive cost coefficients in order to drive 
them out of solution. 

The second run, with no design constraints, 
yielded: 

At a gross expected profit of $132,640 per annum, 
build: 

4,348 sq. ft. of Quality 2, ground floor 
OFFICES 
11,660 sq. ft. of Quality 3, ground floor 
OFFICES 
12,711 sq. ft. of Quality 2, second floor 
OFFICES 
13,992 sq. ft. of Quality I, ground floor 
STORES 

3,929 sq. ft. of Quality J, second floor 
APARTMENTS 

This two-level configuration constitutes the op
timum-optimal solution with which ail other optima 
(subject to all design constraints) must be compared. 

I t is important to note that the optimum-optimai 
solution established a building area of 30,000 sq. ft. 
on the ground floor and 16,640 sq. ft. on the second 
floor. . 

The third run, for which a design constraint was 
introduced into the model (that the ground floor area 
must be approximately equal to that of the second 
floor), yielded the following space allocation: 

For a gross expected profit of $132, 126 per annum, 
build: 

9,856 sq. ft. of Quality 3, ground floor 
OFFiCES 

2,506 sq. ft. of Quality i, second floor 
OFFICES 
18,712 sq. ft. of Quality 2, second floor 
OFFICES 

1,671 sq. ft. of Quality 3, second floor 
OFFICES 
14,035 sq. ft. of Quality I, ground floor 
STORES 

Due to one decision, the designer is forced to re
linquish approximately $500/annum in profit and to 
re-allocate spaces so that a local optimum may .be 
achieved subject to the constraint imposed upon the 
building configuration. 

Various other design decisions can be incorporated 
with the same ease. This completes the presentation 
of the example problem. 



Standards for user procedures and data formats in 
automated information systems and networks 

by JOHN L. LIlTLE 
NatiQnal Bureau of Standards 
Washington, D. C. 

and 

CALVIN N. MOOERS 
Rockford Research Institute 
Cambridge, Massachusetts 

INTRODUCTION 

At the present time, a low-cost, suitably connected 
teletypewriter, and a telephone call, is the "pass
port" that can permit a person to make direct contact 
with any of more than two dozen computer-based in
formation storage and processing capabilities within 
academic and research establishments scattered 
across the country. By the same· method of access, 
one can in addition make contact with at least as many 
commercial services offering similar capabilities. By 
any reasonable estimate, there are now (Spring 1968) 
in operation more than two thousand such teletype
writer units which are being used by students, faculty, 
scientists, engineers, secretaries, and administrators. 
New accessible computer facilities, both academic and 
commercial, are being announced with regularity . .In 
addition, large projects, both privately and govern
mentally sponsored, are under way with the purpose of 
creating vast topical information stores with asso
ciated processors. An important part of some of these 
plans is the linking of the stores into large networks, 
both for the exchange of information among the stores, 
as well as for presentation of the information to, and 
service to, the directly-connected, ultimate user. 

The rate of growth of such facilities is very high, 
and it will continue to be high because of the exceed
ingly favorable user response to this mode of service. 
As recently as 1961, essentially no facilities of this 
kind were in operation. Yet, during just the past three 
years, the number of accessible processors, and the 
number. of users, has increased by at least thirtyfold. 
Such a rate of growth represents a tenfold increase 
every two years. Because of the evident enthusiasm of 
the users, the size of the untapped population, and the 

potentials of this kind of service, we can probably ex
pect this rate of increase to continue unabated for at 
least the next five years, before the saturation effects 
begin to take over. If these predictions are fulfilled 

, (and they may be exceeded), then by 1972 there will 
be in the order of 15,000 accessible automated 
storage and processor complexes, both large and 
small .. Also, there will be in use something in the order 
of 300,000 on-line terminal devices of various kinds, 
each permitting connections to automated remote sys
tems over spans ranging from one room to the next, 
up to long-haul transoceanic connections by radio 
satellite. 

These numerical predictions may be compared to 
the more than 4 million electric office typewriters 
now in use; about 80,000 commercial teletypewriter 
instruments operating in business point-to-point 
communications; and about 50,000 electronic comput
ers, both large and small, now installed. 

This happy picture of such widespread user accept
ance and the growth of a new technology is seriously 
flawed by the Babel of differing languages and control 
methods in use. Once a telephone connection to a re
mote automated storage and processor unit has been 
established, the user is absolutely helpless unless he is 
thoroughly familiar with the particular keyboard 
rituals and incantations required to elicit performance 
from the specific remote machine. It is safe to estimate 
the knowledge of at least 30 to 40 different languages 
and rituals would now be required for operation of all 
the 50 or so presently accessible automated systems. 
In each contact, the poor user must know which lan
guage and ritual to employ before he can establish 
even the most minimal communication with the re-

89 



90 Spring Joint Computer Conference, 1968 

mote machine. For example, should he type "HEL
LO" or should he press the BREAK key to get the 
computer's attention? Should he use the CARRIAGE 
RETURN or the ALT MODE key to request the 
computer to act? And so on, for something like a doz
en basic control functions. 

The present chaotic situation is rapidly growing 
worse as more systems are brought into operation. For 
each new system, the local computer programmers 
take it as their prerogative to concoct yet another 
unique language and method of control. This is a direct 
result of lack of standards subscribed to by the users 
to provide compatibility, as well as a lack of adminis
trativeguidance. If such proliferation continues, un
checked by any plan or guidance, it is predictable 
that by 1972 there will be hundreds, or more likely 
thousands, of differing control methods and languages~ 
If so, a substantial part of the great advantage of wide
spread communications and of direct access to the 
automated information systems will have been need
lessly destroyed. 

This is not a unique situation. History is merely re
peating itself. The North American railroads could 
not merge into a true system until they had undone 
a great proliferation of track gauges, couplers and 
brakes. Likewise, the power companies could not 
link together until they had abandoned a variety of 
powerline frequencies. Telegraph and telephone fol
lowed a similar course. A nationwide highway system 
depended upon undoing many local signalling and road 
marking conventions. 

In 1968 we are confronted with the ingredients of 
information systems, and again, the existing confusion 
must be undone to some extent, and a set of interface 
and operating standards must be agreed upon, in order 
to provide a viable system of information networks. 

The purpose and orientation of this paper 

The purpose of this paper is to attempt to find a way 
out of this chaotic situation by the development of 
standards for user control procedures and standards 
for data formats to be used in autoJJ}ated information 
systems and ~etworks. A goal is to make it possible 
for a person sitting before the keyboard of his on-line 
teletypewriter or display console to use a standard 
method for establishing communication with, and 
using, a remote automated information storage and 
processing system. Another goal is to PFovide him 
with a standard method for control of format and the 
interpretation of the output of such systems. 

The method of approach is to examine the complex 
environment confronting the person making contact 
with and using a remote automated information pro
cessing system, and from this examination to discover 

the fundamental functional characteristics of the situa
tion. From the study of the logical properties of these 
functional characteristics, it has been possible to for
mulate a proposed course of action that can lead to 
workable standards for use in automated systems. 

Two main areas are treated~ The first area has to do 
with the problems of elementary user control proce
dures and methods for gaining access to and control of 
automated data store and computer systems. It is 
primarily concerned with the possibility of standardiz
ing a set of certain elementary keyboard actions. It 
stops short of undertaking a detailed study of all user 
command languages (e.g., BASIC, QED, or QUICK
TRAN). 

The second area is concerned with the format in 
which data and other information are presented to the 
user~ or in which it may be interchanged between 
cooperating automated information systems. 

An important constraint has been to formulate a 
course of action which would provide users with a 
set of basic control methods and procedures, and 
methods for dealing with data formats, yet which 
would not destroy the investment in locally-estab
lished procedures or data stores. The goal of satisfy
ing this constraint appears to have been achieved. 

The results of the study in a nutshell 

In brief, the results of the initial part of this stan
dardization study are as follows. The fantastic variety 
of different keyboard control actions presently being 
used is so great that any effort of standardization by 
seeking a consensus is out of the question. However, 
it is found that there are only about twelve logically 
distinct elemental control actions which are of crucial 
importance to the user when he initially enters an 
automated information system. These elemental logi
cal actions can be standardized as to function and can 
be given standard keyboard assignments. Then the 
user, by invoking these standard actions, can have ac
cess to the full control r~sources of the rest of the sys
tem. These twelve control actions are shown in Ap
pendix I, along with suggested keyboard assignments. 

The necessity for user group action 

Because the technology of automated information 
systems is still so very new, the number of people who 
are now actually using on-line terminals and auto
mated information systems is still very small. How
ever, they already begin to provide a cross section of 
the great number of users of the future. These present 
users - since they can now realize what some of the 
problems are - hold a great obligation to the users of 
the future. It is their obligation to begin immediately 
to take the steps that are necessary to protect the vital 



interests of themselves and future users, and to do so 
before the present chaotic situation grows larger or 
becomes permanent (as it could!). 

Historically - that is, since computers first came 
into being - any layman user of a computing machine 
found himself cast in a role which was inferior to that 

. of the machine. The layman users have had to con
form to the requirements set by those in charge of the 
machines. When questions arose affecting the interests 
of the users, it was the convenience of the machine 
(speed and efficiency, or inherent limitations) which 
were cited as providing the basis for the decisions 
taken. The users had essentially no recourse, since 
the machines were in fact rare, expensive, sO'Ilewhat 
limited in capability - and most important, under the 
control of another group. 

A change in orientation is now justified. Process
ing machines are now available in abundance. They 
have speeds and power of a magnitude only hoped for 
ten years ago. Auxilliary facilities (disk stores, dis
plays, communication) have had a tremendous im
provement. As a result, we should now take a new 
look at the ways these machines are applied. More im
portant, we should reconsider the manner in which 
we think about ourselves in respect to the machines. 

In comparison to the machines, the rare and val
uable commodity has now become the person doing a 
job. The acknowledged purpose of the large scale au
tomated information system is to provide service to 
people - to provide them with information, and to ar
range and rearrange the information that they bring to 
the system. 

The on-line terminal and automated systems 

Our thinking about an automated information sys
tem should begin with the "user," the person sitting 
down at the on-line terminal keyboard. When not in
volved with an active connection to some automated 
system, the on-line terminal behaves much like an or
dinary typewriter. One makes it go by touching keys, 
and the result is line after line of printing on the page, 
or display on the screen. 

An on-line terminal can be thought of as a type writ -
er that permits one to "do things" at the keyboard - to 
do things of a most general sort. One can store text, 
edjt it~ arrange it, print it out, search for and retrieve 
information, perform computations, transmit text to 
another location, and do many other things -limited 
only by the range of facilities accessible to the system. 

Access to automated information systems will also 
be performed by a wide variety of devices with key
boards, in addition to typewriter-like devices. Thus 
consideration must also extend to such things as TV
type presentations or displays, to various photograph-

Standards for User Procedures and Data Formats 01 
7.1 

ic processes and printing methods, various high speed 
methods of printing, and the like. However, it is prob
able that typewriter-like devices will be the most 
widely used devices in the predictable early future. 
For this reason, and also for the reason that most per
sons are familiar with the typewriter, the typewriter 
will be used as the most useful point of departure in 
considering standards for user procedures in auto
mated information systems. 

The user system interface 

The confrontation between the person and the auto
mated system comes at the user's fingertips and at the 
user's eyes. The user is concerned with what he must 
do with those fingers to perform the actions that he 
desires to accomplish. Similarly, he is concerned with 
the interpretation to be given to the text which is pre
sented on a page before his eyes. 

The confrontation at the user's fingers encompasses 
the area of "standardization of user procedures," 
since it is through such user procedures that the action 
to be taken by the system is determined. 

The confrontation at the user's eyes encompasses 
the area of "standardization of data formats," since 
the form and arrangement in which the text is pre
sented on the page is most important for· his under
standing of what any particular passage of text means. 

It is at this user-system interface that we are partic
ularly concerned: first with the logical or functional 
characteristics of the system, i.e., what the system can 
do for the user; and second with the manner in which 
the user tells the system to do something for him. 
Throughout, we must view the behind-the-scenes 
technology (whether electronic, computer, or com
munication) as being in a secondary service role to the 
user, whoever and wherever he may be. 

Focus upon details or upon principles? 

Most standardization efforts, in the ordinary course 
of affairs, are concerned with achieving and stating a 
consensus with regard to a relatively large set of par
ticular details, technical aspects, physical dimensions, 
codes, numbers, material compositions, procedures, 
and the like. This course cannot be followed here. 
There is no basis for such kind of consensus based on 
overt detail. Already there are several dozen data stor
age and computer projects, and they are character
ized by vastly different details in their techniques 
for accomplishing even the simplest (which are the 
most important) things. If one has even the briefest 
conversation about these matters with a custodian of 
one of the presently operating automated systems, 
it will disclose how completely he realizes the im
possibility (and undesirability) of achieving a useful 



92 Spring Joint Computer Conference, 1968 

standard based upon a consensus of details as prac
ticed at the various automated systems. 

This kind of impediment to standardization pre
vails in both parts of this standards study. In the "user 
procedures" area, consensus is impossible because 
of the great variety of control methods used for char
acter delete, transfer of control, call for help, and 
other actions. In the "data formats" area, the possible 
number of usable formats for data is infinite. Thus 
again, consensus based upon detail is not possible. 

The only basis for achieving the consensus re
quired for ~ooperation and standardization is through 
the focus of attention to another level, a level at which 
consensus is possible. 

In user procedures, we must focus our attention up
on the various elements of logical control which are 
accomplished, and not upon the detailed key action, 
button pushing, or other ritual used to initiate each 
element of control action. Most of the elements of 
logical control are present in all systems, in one form 
or another. Therefore it is possible to discover, iso
late, and identify these basic logical elements. Then, 
with a list of such recognized logical control elements 
available for discussion, it is reasonable to expect 
that a consensus upon them can be reached, and that a 
given set of them can be chosen as being required 
and necessary for user control of automated systems. 
After a consensus is available on such a common set 
of logical control elements - then and only then.;.... will 
it be appropriate to consider choices for standard key
board methods of accomplishing the different logical 
control actions. 

A surprising outcome of this study is that it appears 
that only about twelve basic logical elements are suf
ficient when used in the proper environment. 

A similar situation prevails in the area of data for
mats. There is no hope for any success through the 
cataloging of formats to be used, and seeking a con
sensus upon them. Yet, it does appear that a consen
sus can be developed for a standard method of describ
ing formats for data. Each specific use of data can then 
have a standard and commonly understood descrip
tion of its format. Through this description, the mean
ing, or purpose, of each segment of text or data can be 
understood by the user. The same standard data for
mat descriptions can also be the basis from which the 
automated systems will be able to manipulate and re
arrange the data and place it in more useful forms. 

User procedures vs. programming languages 

In this study of standardization, it is necessary to 
have a clear distinction between "user procedures" 
and "programming languages." By "user procedures" 
we are concerned with such elemental control actions 

as: how to correct typing errors while communicating 
with the system; how to get the attention of the remote 
automated system; how to get assistance in the use of 
the automate'd system; how to take overriding con-
trol to stop undesired actions; and so on. We are also 
concerned with the procedural environment in which 
these commands are given. 

In contrast, "programming languages" are con
cerned with formal languages systems, such as FOR
TRAN, ALGOL, or COBOL, which are used for 
writing out a step-by-step description of the series of 
actions to be taken by a computer in carrying out 
some computation or manipulation. A complete pre
pared description of this kind is what is known as a 
"program." Associated with programming languages 
will often be means used by the programmers and 
technicians for writing, correcting, filing, and main
taining such programs. 

Programming languages were developed for an en
tirely different purpose than that of serving the person 
working at an on-line terminal communicating with 
the ordinary automated information system. Such 
programming languages are mainly for the techni
cians. For this reason, the conventions and habits 
that have been built up around these formal computer 
programming languages do not necessarily have any 
direct application to user control procedures. Indeed, 
some of the conventions of these languages are in
herently bad for our purposes. Therefore we should be 
most cautious about importing conventions from these 
languages (without careful examination) into stan
dards for user procedures. 

There is an intermediate class of languages which 
deserves careful consideration as to how they might 
fit into this program. These languages are in three 
groups: (1) the on-line numerical computational lan
guages specifically oriented to layman users, exem
plified by BASIC, JOSS, and QUICKTRAN; (2) the 
on-line editorial languages for text preparation and 
correction, exemplified by QED, TYPESET and 
RUNOFF, and ATS; and (3) the general on-line tele
typewriter control languages, such as TRAC. Each of 
these languages is of tremendous interest to the user. 
For various reasons, it is undesirable to attempt to in
clude them at this time within this standardization 
study. Later, it may be very desirable and appropriate 
to nominate certain of these languages for considera
tion for future standardization. U ntiI then, we should 
observe how the proposed standards for "user con
trol" and "data formats" impact upon these specific 
on-line languages. As a result of such impact, it may 
be desirable to formulate requirements for minor mod
ifications of the nominated languages in order to make 
their control features more compatible with the stan
dard user control procedures. 



Standards for User Procedures and Data Formats 93 

In further explanation of what is meant by "user 
procedures," the following situation should be con
templated: A person (meaning a person not expert in 
either programming or in computers) comes to an on
line terminal keyboard. This keyboard may be -dif
ferent from the one with which he is familiar. The 
system into which he makes a connection may be dif
ferent from the one on which he has had his training. 
Frequently he will be connected into a remote auto-
mated system \x/hich he has never used before. Such 
is the situation. In seeking standards for user proce
dures, we desire to provide a standard course of ac
tion which will allow such a person to use the new key
board, to use the local facilities, and to use the re
mote automated facilities to perform the work he 
needs to do. Attention must therefore be focussed up
on all of these aspects of the situation. 

The concern must be with respect to what the user 
will do, and how he can be guided in his actions in us
ing the individual elements of the environment pro
vided to him. We are overwhelmingly interested in the 
logical requirements of the user's task (and not of the 
logic of the machine). We are concerned with how the 
user's actions may be delimited by his human physical 
or mental capabilities and limitations. If there a;e dis
crepancies or shortcomings (as there may well be) in 
the presently available hardware or in present soft
ware facilities, these discrepancies should be dis
covered and examined. Future hardware and software 
must accommodate the user's logical requirements. 
Biological evolution is simply too slow to make the 
user accommodate! 

Formats-external vs. internal 

Data formats and file structures have long been a 
very esoteric matter. Part of their complexity and 
mystery arose from the historic development of com
puter hardware and storage media. Data formats and 
file structures were based upon the artifacts of partic
ular computers and upon the 80-column IBM tabu
lating card. Other aspects of the complexity can be ex
plained by the early limitations, both in size and gen
erality, of the available equipment. These limitations 
led the programmers to develop many complex and in
genious techniques to accomplish their tasks at hand. 

The limitations in hardware, from these earty days 
in computer history, are now rapidly disappearing
particularly the limitations in lack of storage space and 
speed of operation of the processors. Unfortunately, 
the programmers have not in general used these tech
nological advances to make things simpler. Quite the 
contrary. Contemporary programming and use of the 
systems seems now to involve more complexity than 
ever before. What is worse, some of these elements of 

complexity often obtrude into the user area, limiting 
the user in what he can do, and requiring the user to 
know unnecessary details about the internal structure 
of the system. This requirement on the user extends 
into the area of data formats and file structures. 

In this study of standards, in its concern with data 
formats, a thorough-going attitude is taken of sep
arating the external representation of the data from all 
matters of internal representation. The external rep
resentation is of paramount interest to the user. It is 
the one which he sees upon the piece of paper, or he 
sees displayed on the TV screen. The external rep
resentation is also the one that he must employ when 
he is entering new data (text or numbers) into the sys
tem. It is also the representation that he must picture 
in his mind when he operates on (edits, selects, or re
arranges) the stored data by means of his keyboard 
actions. 

In contrast, the internal representation of data is 
concerned with the manner in which particular com
puters and other hardware store and move the data 
around inside the system. This is not the user's prov
ince, and there should be no imposition upon him as to 
how it is done. For example, it should be of no concern 
to him whether the hardware represents his data by 
means of 6-bit, 8-bit, or 64-bit units within the comput
er. He should have no concern with "packing" and 
"unpacking" of characters within the computer words. 
He should not be troubled with physical file units. 
These are all aspects of the supporting technology, i.e., 
of the hardware and the programs. 

By "external representation" is meant the manner 
in which the data is presented to the user - the ar
rangement of the data in lines or columns, or the like. 
Thus the user is concerned with the various separators 
(such as spaces, or new lines) that determine the for
mat of presentation. When data is arranged in a known 
format, it is easy to know what a data element means 
(e.g., whether the name of a person or the name of a 
street). In general, the format of presentation may in
clude indentations, columnar arrangements, punctua
tion, special markers, and the like. Because files may 
be extensive, the user must also be able to command 
the display (or printout) of only a part of some file. In 
this case, he must be able to give a command in terms 
of the external representation of the data. His com
mand may depend either upon format (e.g., "show the 
next line") or upon the data element (e.g., "type the 
address"). A technique for data formats must there
fore be provided which will permit a_user to give such 
commands for the handling of the data. 

The techniques for external representation will have 
a wider application than merely facilitating what the 
local user sees and does. They can provide a standard 



94 Spring Joint Computer Conference, 1968 

format description and control method for the general 
interchange of data between automated information 
systems. In data interchange between automated 
systems, the machine at the receiving end is faced 
with some of the same problems of interpretation and 
control that a user faces. Thus the solution of the prob
lem for the human user - as a byproduct - provides a 
machine-independent solution for the interchange of 
data between systems. 

In this sense, it is appropriate to consider that "ex
ternal data representation" should deal with all mat
ters of data representation Jar the user when the data 
are written on any display medium or interchange me
dium. By "interchange medium" we must include wire 
transmission, paper tape exchange, magnetic tape ex
change, or any other form of machine readable record 
interchange. For many of these interchange media, 
standards of some sort already exist - but they are not 
standards which apply to the format of the data as the 
user sees it. I nstead, the standards for the "internal 
representation" in general permit any user "text" to 
be written, and the user is concerned only with the 
manner in which such text can be structured and put 
in format for his external use. In consequence, these 
two areas - "internal" or machine representations 
and formats, and "external" or user text representa
tions and formats - can be considered quite separate. 
In fact, it is important that such separation be pre
served, and that separate standards be developed for 
the two distinct domains. If this separation is main
tained, then the work on external data formats will not 
collide in any way with the requirements and stan
dards for message transmission, for magnetic tape 
records, or for other media representations. 

Standard descriptionJor external data Jormats 

Since data formats have a potentially infinite 
variety, it is futile to consider the standardization of 
the formats themselves. This is not attempted. The 
effort is directed first to discovering what constitutes 
the necessary logical structure behind formats in 
general. To be specific, an external data format, in 
the sense used here, consists of text segments separa
ted by various spacers or syntactic markers. These 
provide the clues to the meaning to be attached to the 
different text segments. The markers do not act in 
isolation: their meaning must be stated somewhere. 
The formal statement of the manner of the use of the 
syntactic markers, and how they are used to create the 
total format and to specify the content of the text 
segments is called a "data description." 

Data descriptions can be standardized, and this is 
one of our goals. A logical treatment of the elements 
of format generation has been developed, and from 

this suggestions for a standard method of description 
of external data formats is outlined in Part IV of the 
Reference Reports. 

ACKNOWLEDGMENT 

This paper is based in part upon the series of refer
enced reports prepared under contract by C. N. 
Mooers for the National Bureau of Standards in 1967. 
That contract was inspired in part by the insight and 
dynamic persuasiveness of Dr. Chalmers W. Sherwin. 

REFERENCES 

C N MOOERS 
Standards for user procedures and data formats in automated 
information systmes and networks 
Zator Co Cambridge Mass 
Part I - The need for standardization and the manner in which 
standardization can be accomplished 
July 5 196745 pp 
Part II - The standardizable elements of user control pro
cedures and a unified system model 
Aug 10 196739 pp 
Part III - A suggested standard keyboard assignment for the 
elemental user control actions 
Aug 1 196721 pp 
Part IV - A standard method for the description of external 
data formats 

Aug 28 196732 pp 
NOTE: The above reports were prepared under Contract No. 

CST-382 to the National Bureau ofStandartio; 

APPENDIX 1-TABLE OF ASSIGNMENTS 
ELEMENTAL USER CONTROL ACTIONS 

Description Mnemonic Suggested 
Dialog Signals Assignment* 

User Signal US ; (semicolon) 
Typewriter Signal TS (carriage return) (line 

feed) or (new line) 
Slop ST (break) 

Single-Character 
String Commands 

Delete Character DC # 
Delete Line DL & 
Literal Prefix LP 
Argument Separator AS ,(comma) 
Help HE ? 

Commands to 
The System 

Standard Me de SM SMorSTD 
Revert One Level RV RV 
Restart (or begin) RS RS 
Exit System EX EX 

"'These arc mercly suggestions for purposes of discussion. The as
signments suggested in this chart are from Part III of the Refer
ences. 



Procedures and standards for inter-computer 
communications 

by ABHA Y K. BHUSHAN and ROBERT H. STOTZ 
Electronic Systems Laboratory 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

In recent years there has been considerable discus
sion on computer communication networks,1,2,3 in
formation service systems4,5 and the computer uti 1-
ity.6,7 Sophisticated displays maintained by small pro
cessors connected to remote multi-access computers 
are also being developed.8 Such applications involving 
interaction and exchange of information between com
puters are increasing in number and pointing to the 
widening need for reliable computer':to-computer com
munications. In order to allow communication be
tween many arbitrary computers, a uniform agreed
upon manner for exchanging information is needed. 
This requires the establishment of a standard message 
format (i.e., character code structure and message 
syntax) and common communications protocol proce
dures (i.e., the agreed-upon manner of exchanging 
messages). 

This paper is an attempt towards defining the need
ed format and protocol for inter-computer communica
tions. A standard message format, based on 
USASCII* which appears to be flexible enough to 
cover the entire range of inter-computer communica
tions is proposed. For the protocol procedures, only 
guidelines are presented because a single standard 
may not be feasible due to the wide differences in hard
ware, software, and capabilities of various machines, 
and the differences in user requirements and nature of 
operation. (It should be noted that the procedures de
scribed in this paper are recommended for general in
ter-computer communications and may not necessari
ly be the best for some particular non-gene~alized 
applications.9 

) 

C omputer-to-computer communications 

Computer-to-computer communication differs from 
communcation to teletypewriters and remote terminals 

*USA Standard Code for Information Interchange. 

attended by a human operator in several important 
respects. These come about because of the absence 
of the interactive human operator from the environ
ment. When a teletypewriter is the recipient of a mes
sage, the human operator acts as a highly sophisti
cated interpreter and error detector/corrector. On the 
other hand if a computer is to act on a messflge re
ceived, it must perform these functions. The comput
er must be told the beginning and end of messages 
and it must do careful error checking, since its acting 
on a bad message can have disasterous effects. Gen
erally, this implies retransmission systems with 
schemes for block error detection and message ac
knowledgment,10,11 which are straightforward tech
niques. for machines with data storage and· program
mable processing capabilities. 

Another difference between inter-computer commu
nications and communication to terminals attended 
by a human operator is that a man can seldom take 
advantage of very high data rate lines. A computer by 
contrast is very good at making decisions rapidly so 
that it can usually interact effectively over high
speed communication lines. In fact, communication 
at high speed is economical, efficient and often essen
tial for an adequate interaction between machines. 
The cost of high-speed data transmission between 
computers is likely to be drastically reduced in the 
future with the introduction of digital transmission into 
the communications network. Transmission systems 
carrying all types of communications in a digital pulse 
stream are gradually being introduced into the Bell 
System. 12,13 Eventually they will be connected togeth
er in a digital hierarchy to form a nationwide digital 
communcations network. 

Inter-computer communication also differs from 
communication between a computer and such devices 
as tapes, discs, and printers. Computers have pro
cessing capabilities that data storage devices do not 
possess. Thus communication need not be on a mes-

95 



96 Spring Joint Computer Conference, 1968 

sage-by-message basis. The rules for inter-computer 
communication need to be and can be more elaborate, 
and the communications can be made more efficient 
and interactive. 

The present-day public facilities for data communi
cations include the Bell System and Western Union 
wideband facilities. 14,15 The Bell System 303 series 
data sets provide communications at speeds up to 
230.4 kbps on private leased lines. The data transmis
sion facilities may be synchronous or asynchronous 
and full duplex or half duplex. * Synchronous trans
mission is more efficient as it obviates the need for 
start and stop elements with each character. For this 
reason, most computer I/O terminals have only the 
synchronous adapter option available for high-speed 
links. 

The message format and communications protocol 
procedures described herein do not depend on the na
ture of the transmission network. They are recom
mended for full-duplex as well as half-duplex, and 
synchronous as well as asynchronous, transmission at 
speeds typically ranging from a few hundred bits per 
second to well in the megabits per second range. 

Standardization and flexibility 

OUf intent in the design of the message format and 
communications procedures is to provide as much 
consistency with standards as possible, without un
duly losing flexibility in operation, overall efficiency, 
and convenience of transmission. It is essential for 
this objective that all communicators employ a com
mon standard code and be able to use the existing facil
ities at little or no extra cost. The obvious choice for 
this code was the USA Standard Code for Informa
tion Interchangel6,17 (USASCII or ASCII). * In fact 
most communication carriers and computer equip
ment manufacturers have accepted this standard pro
posed by the U.S.A. Standards Institute and are man
ufacturing equipment based on it. The general mes
sage format described in this paper follows closely 
the draft proposed USA Standard Communication 
Control Procedures,18,19 and is intended to be compat
ible with equipment offered by the communication 
carriers and the computer industry. 

There have been some questions regarding the use
fulness of USASCII in a computer network environ-

*Synchronous (or character synchronous) transmission means char
acters (and bits) are transmitted at a fixed rate. Asynchronous trans
mission means the interval of time between characters can vary arbi
trarily. Full duplex is the ability to transmit simultaneously in both 
directions while half duplex is the ability to transmit in both direc
tions, but not simultaneously. 

·USASCII X3.4, 1967. The standard code is referred to both as 
the ASCII code and the USASCII code. 

ment. Alternative solutions to message formatting (in
compatible with USASCII) using fixed block lengths 
and rigid bit coding have also been proposed.3,9 It has 
been argued that it is not desirable to conform to 
USASCii, if more efficient alternatives can be found. 

It is our feeling that besides being a proposed USA 
standard, USASCII represents a very good way of 
transmitting information. Though USASCII may not 
be the best for one particular application, it appears to 
be the most reasonable for a large variety of applica
tions. Also, it can be used with intelligence to provide 
a high degree of flexibility. An alternative coding 
scheme will not be very much more efficient. than 
USASCII and still be able to provide the degree of 
flexibility and reliability that is needed for inter-com
puter communications. It may be uneconomical as 
well as unnecessary. 

In our recommendations we have adopted the basic 
framework provided by USASCII, and have extended 
it to suit the many requirements of inter-computer 
communications. For certain applications (such as 
very efficient binary text transmission) we have felt 
USASCII to be somewhat inadequate. Alternatives 
have been suggested wherever necessary and possi
ble. It is our hope that the proposed USA standards 
may be modified for the inter-computer communica
tions applications, or at least not made so rigid as to 
make suitable alternatives incompatible. 

The messageformat 

For clarity we shall first define some terms: 
A transmission - a group of one or more messages 

which are transmitted continuously 
without interruption. 

A message - a sequence of characters arranged 
for the purpose of conveying infor
mation from an originator to one or 
more destinations. It includes all 
text and the appropriate heading. 

A heading - a sequence of characters which con-
stitute the auxiliary information 
necessary to the communications of 
a text. Such auxiliary information 
may include, for example, characters 
representing routing, priority, securi
ty 7 message numbering and asso
ciated separator characters. 

A text - a block of data that is to be trans-
mitted as an entity from the sender 
to the receiver(s). 

A typical message is illustrated in Fig. 1. Each char
acter in the above message (with the exception of 
Bee) is a 7 -bit ASe I I character followed by one bit of 
odd parity (an odd rather than even parity is chosen to 



Procedures and Standards for Inter-Computer Communications 97 

r: MeSSage, 

s S 
----- 0 Heading T 

H t X 
I 

t start of block check 

Te x t 
E B 
T C -----
X 

I
C 

• 
Bec= block check 

character 

Figure I - Basic message format 

facilitate bit synchronization). The least significant 
bit is transmitted first and the parity bit is transmitted 
last.20 The characters SYN, SOH, STX, ETX, ETB 
and EaT are all standard ASCII communication con
trol characters and have a fixed code value and mean
ing. 

The message starts with an SOH (Start of Heading) 
followed by the heading (messages that have no head
ing information may start with an STX but are of 
questionable value in an inter-computer environment). 
An STX (Start of Text) signals the end of heading and 
the beginning of user's text. An ETX (End of Text) 
indicates the end of user's text and of the message. 
A block check character (BCC) immediately follows 
the ETX. (Current USASI proposals recommend the 
longitudinal block parity check. * ) 

In many systems there are limitations on maximum 
message (or transmission block) length due to such 
factors as error rates or buffer capacities. If the size of 
a text provided by the user exceeds the maximum 
message (or transm~ssion block) size, the text may be 
blocked into several messages (or transmission blocks) 
as shown in Fig. 2. An ETB (End of Transmission 
Block) is used to indicate the end of all text blocks 
except the last (which ends with an ETX), and is also 
immediately followed by a block check character. The 
error check includes the ETX or the ETB, which ends 
the checked sequence, but does not include the SOH 
(or STX) which starts it as shown in Figs. J·and 2. 

For the purpose of message block identification and 
other communication protocol needs, each of the mes
sages (or transmission blocks) should be preceded by a 
separate heading. Note that this is a modification of 
USASI standards which propose that only the first of 
these blocks should be preceded by a heading. Thus 

*This is an 8-bit character generated by taking a binary sum, with
out carry, on each of the 7 individual bits of the transmitted code 
(resulting in an even longitudinal parity). The eighth bit of the Bee 
is a character parity on the Bee itself, and is in the same sense ai 
the rest of the characters (odd in our case). 

t start at block check 

L end of block check 

* used only when messages constitute 
separate transmission blocks 

Figure 2 - Blocking of text into separate messages 

messages (or transmission blocks) which contain only 
a part of the text should be regarded as separate mes
sages insofar as communications is concerned. 

On start of transmission, SYN (synchronous idle) 
characters (the number may vary with equipment 
needs) are supplied to provide the communcations 
adapter with correct synchronization and indicate the 
start of transmission. These may also appear within 
the message (if required for synchronization), and may 
be stripped from the message on reception. An EOT 
(End of Transmission) signals the end of a transmis
sion which may have contained one or more messages, 
as shown in. Figs. 2 and 3. For half-duplex service the 
originator may go into the receive mode (temporarily 
relinquishing its right to transmit) after the transmis
sion of an EaT. (Proposed USASI standards recom
mend this 'EaT' function on ETB and ETX's also. 
This would prohibit multiple mess~ge transmission. 
We recommend that only the EaT character should be 
used for this purpose.) 

~------ Transmission ---------1 

Figure 3 - Multiple messages in a single transmission 

Multiple message transmissions of the type shown 
in Fig. 3 are important towards making the communi
cations more convenient and efficient. A message 
need not be acknowledged before the next is sent, 
and messages can be sent continuously without in
terruption. For mUltiple message transmission capa
bility it is important that all messages containing text 
and requiring an acknowledgment (for error control) 



98 Spring Joint Computer Conference, 1968 

contain a message identification in the heading. Mes
sages with identifications may now be acknowledged 
with their identification numbers.N on-text messages 
containing only heading information (such as ac
knowledgments) may have the fOimat shown in Fig. 4. 
These messages start with an SOH and end with an 
ETB. A BCC follows the ETB so that the heading 
message is error checked. For extra error protection, 
other messages containing text may also have their 
headings errors checked by the use of ETB (see Fig. 4). 

Figure 4- Non-text messages and error checking of headings 

Heading information 

Information in the heading of the message is used 
only to aid the communications program to transmit, 
receive, sequence and route the messages efficiently 
and securely. The heading information is never seen 
by the user, and all information regarding the text 
portion of the message (e.g., should the ASCII charac
ters in the text be interpreted as ASCII or binary) is 
contained in the text portion ofthe message. 

Our scheme for coding information into the heading 
is to separate the ASCII characters into three cate
gories: controi characters, key characters and argu
ment characters. As shown in Fig. 5, control char
acters are all those characters with octal values from 
00 through 37, key characters are those with octal 
values 40 through 77, and argument characters are all 
those with octal values greater than 77. 

The control characters are ASC II control charac
ters assigned meaning only in accordance with pro
posed USASI standards. The key characters have a 
predefined meaning and may be followed by a string 
of characters from the third category called the argu
ment of the key. The argument of a particular key is 
interpreted by the computer in accordance with the 
predefined meaning assigned to the particular key. 
The key completely defines the interpretation of the 
information contained in the argument. Additional 
separator characters are not needed, as key charac
ters themselves act as information separators. 

The key characters together with some control 
characters serve as heading control characters. When 

used for the purpose of heading control information, 
the standard meaning of the ASCII control charac
ters must be preserved, thus communication control 
characters like ACK, NAK and ENQ are not used in 
the heading because there exists computer/communi
cations hardware that is sensitive to these. Note also 
that proposed USASI standards disallow the use of 
these characters within a message. Additional key 
characters may be generated by using an escape 
character (a specified key or control character). The 
escape character followed by an argument assumes 
the meaning of a new key character. If a particular key 
character is not recognized by the computer software 
(or device hardware), it is to be ignored (together with 
the argument which may follow it) until the next 
recognizable key or control character appears. 

The concept of key character with arguments pro
vides a large capacity for expansion and great flexi
bility in operation, together with simple implementa
tion. The scheme, a simple extension of the proposed 
USASI standards, represents an attractive alternative 
to hardwiring particular bits in a heading. Its ad
vantage over the 'Escape' convention outlined in 
USASCII is the greater efficiency permitted by use of 
single characters instead of character sequences. 

For illustration, the heading control characters have 
been divided into three classes, representing commu
nication requirements for different appiications. For 
example, some small machines may require only a 
limited class of heading control characters. Other 
small machines (e.g., satellite computers for display 
application) may require unbuffered transmission. 
Table I illustrates a possible assignment of key char
acters and their meanings. This list may be modified 
and extended as requirements are better understood. 
in Table i, the character n stands for a binary number 
represented by the six least significant bits of the ar
gument character. A message of size n contains no 
more than 2**n characters. Since messages can be of 
variable length, n serves primarily as an upper bound 
on the maximum size of the message. 

The basic Class I heading control characters include 
only the acknowledgment, identification, inquiry 
(not USASCII control characters) and a means to 
interrupt and quit. Messages containing identification 
may be acknowledged with that identification. Also, 
a limitation on the maximum size of the message can 
be indicated. Such a bound may be necessary, as some 
machines may have limited buffers. 

Class II heading control characters are intended 
primarily for unbuffered transmission between ma
chines (i.e., machine A can send data to machine B 
directly into its proper location in B). This is partic
ularly important when a large time-sharing computer 
communicates with a sma!! satellite computer. In 



Bit 
Potitions 

b4 b3 b2 

! ! ! 
0 0 0 

0 0 0 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Procedures and Standards for Inter-Computer Communications 99 

0 0 
0 0 

0 

First category (standard 
USASCII definitions) 

Control characters 

0 
I 
0 

0 I I 
I 0 

0 

@ 

A 

B 

C 

0 

E 

F 

G 

H 

J 

K 

L 

M 

N 

0 

D 

I I 
0 I I 

I 0 I 

P \ P 
Q a q 

R b r 

S c s 

T d t 

U e u 

V f v 

W g w 

X h x 
y y 

Z j z 

C k { 

\ I 
J m } 

" n -, 

0 

} Communication control characters 

-
Third category designated as 
argument characters (includes 
the USASCII control character 
DEL) 

Control character DEL 
in~luded in the argument set 

Second category designated as 
Key characters for additional controls 

Figure 5 - Proposed designation of USASCII characters for 
message control in inter-computer communication 



100 Spring Joint Computer Conference, 1968 

general, satellite computers will have a limited amount 
of memory, and it is desirable not to have to provide a 
large message buffer in this machine. On the other 
hand, if a small message buffer is provided, it will 
take multiple calls on the time-shared computer to get 
a large message across, which is also undesirable. 
Direct transmission is very attractive in this case. 
Note that the "where to" and "number of characters 
in this message" information must come before the 
text, i.e., in the heading. 

a complete overhaul when a change has to be intro
duced. 

In the long run, the key character scheme may 
even turn out to be more efficient than fixed bit cod
ing for some applications, since it would not be neces
sary to code all of the information all the time. For ex
ample, the acknowledgments would not have a mes
sage id, priority may be assumed normal unless other
wise indicated and acknowledgments, repeat acknowl-

T ABLE I - Assignment of key characters 

Key 
Class character Interpretation 

# arg argument is message identification 
+ arg acknowledge message #arg (message O. K.) 

arg negative acknowledge message #arg (message in error) 
? arg repeat acknowledgment of message #arg 

n send transmissions no longer than size n 
interrupt (get processor's attention) 
quit (stop transmission of messages) 

II arg sender's status 
arg sender's interpretation of receiver's status 

I arg number of characters in text of message 
& arg argument is core memory address of incoming text 

III n make standard buffer size n 
< n "=0" request rejected 
> n "=n" request accepted 

n size n blocks of text only 
arg routing information (sender) 
arg routing information (receiver) 
arg escape sequence to obtain additional key characters 

Class III heading control characters are intended 
primarily. to provide buffer allocation and message 
routing information in a network environment. Thus 
information such as standard buffer size, message 
block size and identification of source and destina
tion computers may be included in the heading by 
using the appropriate key characters. 

Alternative schemes suggested for coding heading 
information have been on a bit-by-bit basis. We feel 
that even though bit-coding the information may be 
slightly more efficient (in that there is no overhead for 
key characters and some information may be less than 
6 bits), it will not have the flexibility of coding that 
the key character scheme provides. As the size and 
capacity of a computer network increases, or if addi
tional functions are called for, the key character 
scheme can easily accommodate these by use of long
er arguments and/or additional key characters. A 
rigid bit-coding scheme on the other hand, will need 

edgments, etc., mayor may not be included within the 
heading of the message. 

Text information 

The manner of transmitting text information recom
mended herein conforms with USASCII and the pro
posed USASI standards. USASCII however is prin
cipally geared towards the transmission of alphanu
meric symbols, not binary data which is required in 
general inter-computer communication. Also, it is of
ten desirable to be able to mix binary data and ASCII 
alphanumeric data within a single message. 

The mechanism we have chosen to transmit binary 
data is to preface it in the text stream with a Group 
Separator (GS) character (ASCII octal 035), and to 
escape (back to alphanumeric text) with a File Separa
tor (FS) character (ASCII octal 034). The binary data 
is encoded as the six least significant bits of ASC I I 
characters with bit 7 always a 'ONE.' The binary mes-



Procedures and Standards for Inter-Computer Communications 101 

sage is then treated simply as a stream of ASCII char
acters. It should be noted that the 64 permissible ~'bi
nary" characters are identical with the argument set 
and none of them fall in the category of key or control 
characters. 

The positioning of GS and FS characters in a text 
stream is completely independent of the message it
self. Thus a single message may contain both binary 
and USASCII information, or any combination of the 
two as shown in Fig. 6. The start of text is always as
sumed alphanumeric unless indicated otherwise by 
aGS. 

Figure 6 - Transmission of binary and alphanumeric text within a 
message 

Characters with 'ZERO' in their most significant 
bit may occur within binary mode of transmission and 
be interpreted usefully. These may be control char
acters or key characters. The USASCII control char
acters are to be used in accordance with USASI rec
omendations. The key characters occurring within bi
nary mode may be used to further define the binary 
information that follows it and indicate what it is 
about. The meaning assigned to the key characters in 
text may be different from that assigned in the head
ing. Thus the text may be preceded by its own leader 
information set by user conventions. Another example 
of the possible use of key characters within binary text 
may be to indicate the end of binary string if it is not 
an even multiple of 6 bits. An ASCII numeral 'n' 
(1 through 5) may follow the last binary characterof 
the string to indicate the number of meaningful infor
mation bits in that character (see Fig. 6). 

Transparent text 

Many people have expressed a need for a "Trans
parent Text" mode of operation which would disable 
communications system sensitivity to control codes 
and permit an unrestricted coding of data. If unre
stricted transmission of full 7 -bit binary information 
(e.g., all 128 ASCII characters, "pure" 7-bit binary 
data or encrypted information) is allowed, messages 
containing the ASCII codes EOT, ETX, ETB, ACK, 
N AK and similar control characters could be trans
mitted intact without affecting the transmission sys
tem. Similarly, if the parity bit is also ignored in the 

transparent mode, it would be possible to send full 8-
bit binary data. As mentioned previously, the ability to 
transmit binary data is extremely important in compu
ter communications, and many computers use 8-bit 
bytes. 

The main difficulty with transparent text transmis
sion is that there is no standard way to indicate the 
end of this mode. If all 128 (256 if the parity bit is 
also used for information) codes are allowed for data, 
there can be no reserved "end transparent mode" 
code. For transmitting 7-bit transparent text, USASI 
has proposed a technique that makes use of the com
munication control character OLE (Data Link Es
cape)}7 The proposal is that the sequence OLE STX 
initiates the transparent text mode and OLE ETX 
terminates it. If a bit pattern equivalent to 0 LE ap
pears within the transparent data, it is replaced by the 
sequence OLE OLE to permit the transmission of 
OLE as data. In addition, other control sequences us
ing OLE (such as OLE ETB and OLE SYN) are 
available to provide active control characters within 
transparent text as required (see Fig. 7). 

t start of block check 

~ end of block check 

* used only when messages constitute 
separate transmission blocks 

Figure 7 - Proposed USASI technique for transparent text trans
mission 

We see several difficulties with this technique pro
posed by USASI. First, the detection (and generation) 
of the special OLE control sequences must be done in 
hardware to be practical. This implies that the chan
nel hardware of all the computers in a network must be 

- built to conform to these rather complex rules for 
transparent text. Further, the technique will be inef
fective (or disastrous!) if any of the equipment· along 
the communication line is ignorant of these rules and 
is sensitive to ASCII communication control codes. 
Also, this method makes error recovery a more diffi
cult task. For example, if the character that indicates 
the "end transparent mode" is in error there will be 
no simple means for escapi~g from the transparent 
mode. This is because standard ASCII communica
tion control characters are ignored once in transparent 
mode. Finally there is the price that has to be paid for 
inserting extra OLE's and extracting them (each char
acter in the transmitted and received messages has to 
be examined as to whether or not it is a OLE). 



102 Spring Joint Computer Conference, 1968 

Our approach for transmitting transparent or 
binary text is to provide a 6-bit binary mode within 
ordinary text by using the Group and File Separator 
characters, as suggested earlier. This has the advan
tage that it is uniform, USASCII conforming, easy to 
implement, allows mixing l~·1SCII symbols with binary 
in a single message, and keeps aside the standard con
trol character set for error control and recovery proto
col. Further, it is independent of code-sensitive equip
ment, and does not require insertion and deletion of 
OLE's in the transmitted and received texts. The 
price paid is the reduced effective bandwidth, since 
only 6 bits out of each 8-bit character carry informa
tion. 

Computer companies with machines based on 
8-bit characters, have a compelling motivation for 
providing an 8-bit binary "transparent" mode. 
To accomplish this IBM, for example, has extended 
the USASI approach by using the character parity 
bit for information and thus allowing all possible 
256 codes.21 ,22 The longitudinal block parity check 
recommended by USASI is inadequate for error 
control in the absence of character parity, thus IBM 
has resorted to the use of the more powerful cyclic 
redundancy check23 CRC-16. This permits the check
ing of any code set using the checking polynomial 
X16 + Xl.5 + X2 + 1. Although we recommend our 6-bit 
transmission for sending binary data, we feel the 
USASI standards should allow the cyclic redundancy 
check as an alternative for adequate error control 
in those cases where 8-bit transparent transmission 
is necessary. 

Since we feel that it is desirable to always avoid any 
problems of transmission system sensitivity to com
munication control codes, such as exist in the above 
two approaches, we have devised an alternative 
scheme for 7- or 8-bit transparent text. In this scheme, 
the ten ASCII communication control characters 
(with correct parity) always retain their fixed meaning 
and are set aside for error control and recovery 
protocol. The transparent mode is initiated by 
OLE STX. Whenever a communication control 
character code appears within the binary stream, 
the OLE character is inserted to precede it as in the 
previous schemes, but bit 7 of the control character 
is inverted (changed from 0 to 1) to change it to a 
non-control (and non-key) character code. Normal 
communication control characters retain their 
ASCII meaning, thus ETB and ETX signify the end 
of text and SYN is interpreted as synchronous idle. 
The price paid in this scheme is the slightly less than 
four-per cent overhead necessary in transmitting 
the DLE's (assuming a random distribution of binary 
numbers) and the hardwareisoftware required to 
implement it. 

There are several advantages to this scheme for 
8-bit transparent text transmission. First, it retains 
a single meaning for the ASCII communication con
trol characters, which simplifies error-recovery 
procedures, Secondly; the communications hard
ware does not get involved at all in the rules for 
OLE's, since the control codes retain their meaning. 
The only place that this has to be done is at the 
transmitting and receiving computers, and it can be 
done either in software or in hardware. In a computer 
network (of the store-and-forward type), each node in 
the network can be oblivious of the fact that the 
message it is handling is in transparent mode. 

Communications protocol 

Communications protocol here refers to the uniform 
agreed-upon manner of exchanging messages between 
computing machines. This includes data link con
trol,24 acknowledgments and error recovery pro
cedures. It may also include message buffering and 
routing techniques required for communication of 
messages. As pointed out earlier a single standard 
protocol procedure may not be practical because of 
varying needs of different systems and discrepancies 
in their hardware/software characteristics. Operation 
could be synchronous or asynchronous, full duplex 
or half duplex, point-to-point or mUlti-point, central
ized or decentralized, and over private line, switched 
network, or a general network environment employing 
store-and-forward routing techniques. In many of 
the above cases, the protocol needs would differ, 
and hence the procedures adapted would vary. 

Even thougb the ASCII communication control 
characters (such as ACK, NAK and ENQ) and 
other communication control character sequences 
starting with DLE (such as DLE ?, meaning wait 
before transmit, and OLE EOT, meaning mandatory 
disconnect) may be sufficient for communications 
protocol needs, our recommendation for general 
inter-computer communications is to provide these 
functions in heading type messages by use of key 
characters, as described earlier. There are several 
important reasons for doing this. First of all much 
greater error protection is provided since each of the 
heading messages is followed by a BCC and is error 
checked (undetected errors in control character se
quences can have disastrous effects). Secondly, 
multiple messages and message blocks can now be 
reliably acknowledged with their particular identifica
tion number, and enquiries can be sent asking for 
particular messages. (This feature when implemented 
with control character sequences is limited and 
clumsy.) A third reason is that key characters in 
general will not cause any hardware action along 
the communications line (communication control 



Procedures and Standards for Inter-Computer Communications 103 

characters on the other hand may cause line turn 
around etc.). This should result in a great improvement 
in operation, since it is easier and more efficient to 
have error recovery in software rather than hardware 
for the more sophisticated computers. Finally, in a 
general network environment all the messages 
(including acknowledgments and enquiries) will need 
routing information. It will be difficult to provide 
this routing information without the use of heading 
messages. 

To start transmission, a number of SYN characters 
are first sent to establish the bit and character syn
chronization. The originating station may then send 
an enquiry to request a response from the remote 
station. This is a heading message included within 
an SOH and ETB followed by block check character 
and an EOT. The message may include (besides an 
enquiry), station identification, station status and 
other desirable information. The receiving station 
will respond with its own heading message to establish 
the link. Messages can now be exchanged between the 
computing machines. 

Full-duplex operation allows simultaneous com
munication of messages in both directions and thus 
obviates the need for transmission reversals. It 
also completely avoids the issue of line control, and 
the possible confusion arising thereof (i.e., both 
communicators trying to transmit simultaneously 
over a single line). In half-duplex operation, however, 
suitable protocol procedures must be adopted to 
assign line priority to the stations and avoid such con
fusion. To avoid "hung" conditions (confusion in 
half-duplex operation), and accidental loss of mes
sages or acknowledgments, the transmitter is always 
responsible for getting the message through and 
acknowledged. If the expected acknowledgment is 
not received within a specified time (exact time 
may be fixed by each communicator depending on 
the requirements), an enquiry is sent by the originat
ing station to repeat last acknowledgment. 

Error recovery procedures 

'Error recovery procedures refer to correction of 
conditions such as "hung" (in half-duplex lines), 
incorrect receipt of messages or acknowledgments 
and loss of messages. These procedures are rela
tively simple if operation is in a message-by-message 
manner. In the general network environment, it is 
desirable to allow multiple message transmission. 
This causes a few problems to arise. If a message is 
received in error, we cannot assume anything about it. 
It may have been an acknowledgment, a retrans
mission or a regular message. Our recommendation 
is to transmit multiple messages continuously (for 

reasons of greater efficiency) until an error occurs. 
When an error condition (loss of message indicated 
by irregularity in id numbering, acknowledgments 
not received in specified time, or erroneous message 
indicated by error checks) is detected, the continuous 
multiple message process is to be interrupted and 
error recovery procedures should go into effect. 
These error recovery procedures will be more effi
cient and simple on a message-by-message basis. 
On detection of an error condition, the receiving 
station can ask for retransmission of messages and 
outstanding acknowledgments by suitable heading 
messages. The transmitting station will send the 
retransmissions desired with the highest priority. 
When the error condition is corrected, the normal 
multiple message transmission process may be 
resumed. 

If for some reason the communicators are unable to 
get through arter repeated attempts, they should be 
able to resort to additional error recovery mech
anisms. One such back-up procedure may be a re
quest to exchange line and station status information. 
The status message may point out the future course 
of action to the communicators, and thus make error 
recovery simpler in exceptional circumstances. 

CONCLUSION 

In this paper we have attempted to define the message 
format and protocol procedures required for inter
computer communications. A great emphasis has been 
laid on flexibility, compatibility, efficiency and 
convenience throughout. We have suggested the use 
of the framework provided .by USASI standards and 
USASCII. Our scheme for coding heading infor
mation by use of Key characters appears reasonably 
efficient and provides flexibility and convenience. 
Transmission of 6-bit binary within USASCII text 
is recommended for binary messages (ideal for 
machines whose word lengths are based on 6-bit 
characters). Alternative schemes for transparent 
text have been discussed and their relative merits 
pointed out. For 8-bit transparent text, without 
character parity, the longitudinal block parity check 
seems inadequate for error control and the use of 
the more powerful cyclic redundancy check is 
recommended. Finally, we have discussed the 
acknowledgment and error recovery procedures 
required for a general network environment. Use 
of heading messages rather than communication 
control character sequences is recommended for 
communications protocol. An approach we recom
mend is to operate on a message-by-message basis 
for error recovery (the normal operation being 
multiple message transmission). This would simplify 



104 Spring Joint Computer Conference, 1968 

error recovery and make it more efficient. Further 
experimentation in form of real-time or simulation 
studies is required to define the error recovery 
procedure more completely. 

We hope that the communications and the computer 
industries, and various groups attempting inter
computer communications, would devote attention 
to the problem of compatibility and standards. 
Recognition and acceptance of such standards and 
guidelines would be an important step forward in 
the direction of compatible computer networks 
and information utilities of the future. 

ACKNOWLEDGMENTS 

The authors are grateful to the Messrs. J. E. Ward 
and R. G. Mills for the many discussions that led 
to the current paper. Appreciation is aiso due to 
Mr. J. E. Ward for his editorial and technical sug
gestions. 

Work reported herein was supported in part by 
Project MAC, an M.I.T. research program sponsored 
by the Advanced Research Projects Agency, Depart
ment of Defense, under Office of Naval Research 
Contract Number Nonr-4102(0l). Reproduction in 
whole or in part is permitted for any purpose of the 
United States Government. 

REFERENCES 

L G ROBERTS 
Multiple computer networks and inter computer communica
tions 
Conference of ACM on Operating Principles 
Gatlinburg October 1967 

2 A K BHUSHAN R H STOTZ J E WARD 
Recommendations for an inter-computer communication 
networkfor MIT 
Projeci. MAC Memoranuum MAC M 355 juiy i 967 

3 DAVIES BARTLETT et al 
A digital communication network for computers giving 
rapid response at remote terminals 
Conference of ACM on Operating Principles 
Gatlinburg October 1967 

4 J B DENNIS 
A position paper on computing and communications 
ibid 

5 R G MILLS 
Communications implications of the project MAC multiple
access computer system 
1965 I EEE International Convention Record 

6 D F PARKHILL 
The challenge of computer utility 
Addisson Wesley 1966 

7 E E DAVID R M FANO 
Some thoughts about the social implications of accessible 
computinR 

AFIPS Conference Proceedings Vol 27 Part I Spartan 
Books 1965 pp 243-247 

8 D T ROSS R H STOTZ et al 
The design and programming of a display interface system 
integrating multi-access and satellite computers 
ACM/SHARE 4th Annual Design Automation Workshop 
Los Angeles California June 1967 

9 P BARAN 
On distributed communications 
Rand Corporation Memoranda August 1964 RM 3420 PR 

10 R J BEN ICE A H FREY JR 
A n analysis of retransmission systems 
I EEE Transactions on Communication Technology 
December 1964 pp 135-146 

II F E FROEHLICH R R ANDERSON 
Data transmission over a self contained error detection 
and retransmission channel 
BSTJ January 1964 

12 R A KELLY 
An experimental high speed digital transmission system 
Bell Labs Record pp 65 February 1967 

13 D F HOTCH 
Digital communications 
Bell Labs Record February 1967 

14 R T JAMES 
High speed information channels 
I EEE Spectrum April 1966 

15 W E SIMONSON 
Data communications the boiling pot 
Datamation April 1967 

16 Proposed revised A merican standard code for information 
interchange 
Communications of the ACM Vol 8 No 4 April 1965 pp 
207-214 

17 Code extension in A SC II (an A SA ll.'orial) 
Communications of the ACM Vol 9 No 10 October 1966 
pp 758-762 

18 Control procedures for data communications-an ASA 
progress report 
Communications of the ACM Vol 9 No 2 February 1966 
pp 100-107 

19 Ninth Draft proposed USA Standard Communication 
Control Procedures for the USASC!! 
July 1967 

20 Character structure and character parity sense for serial
by-bit data communication in the A merican standard code 
for information interchange 
Communications of the ACM Vol 8 No 9 September 1965 
pp 553-556 

21 I BM Systems Reference Library Form A27 3004 0 General 
I nformation Binary Synchronous Communication 

22 IBM Technical Newsletter No N27 3011 Re Form 
A22 6468 1 on SDA II 

23 W W PETERSON D T BROWN 
Cyclic codes for error detection 
Proceedings IRE Vol 49 pp 228235 January 1961 

24 H FICKES 
Data link control procedures: what they are and what they 
mean to the user 
Proceedings ACM National Meeting 
August 1967 pp 521-525 



An error-correcting data link between 
small and large computers 

by SYPKO W" ANDREAE and ROBERT W. LAFORE, JR. 
Lawrence Radiation Laboratory 
University of California 
Berkeley, California 

Operating environment 

The need for a data-link connecting small data
acquisition computers to a central computer with 
great analysis power arose in a particular context at 
the Lawrence Radiation Laboratory in Berkeley. 
Both the type of high-energy physics experiments be
ing performed and the operation of the available large 
computer, a CDC 6600, posed unusual design p~ob
lems. 

Experimental requirements 

A comparison of two important approaches to the 
recording of data from high-energy physics experi
ments is instructive in providing a background for the 
operation of the data link. 

The bubble chamber approach uses a photographic 
process to record tracks made by particles in a nuclear 
event. Afterwards the photographs are examined by 
elaborate man-machine scanning systems to yield 
data in the appropriate digitized form. This data may 
then be analyzed by computer. Bubble chamber pic
tures in general contain much more information than 
can be abstracted from them during the first such 
analysis. I t is thus possible to scan the same pictures 
many times to digitize the data relating to different 
phenomena. 

By contrast, the counting approach uses a technique 
in which the data from the experiment is digitized 
directly. In the past, electronic counters were the 
principle devices used to record the data; today there 
is a variety of such direct-digitizing devices, including 
spark chambers and photomultiplier tubes. The suc
cess of a counting experiment depends largely on how 
correct the physicist is initially in assuming which 
phenomena are to be expected. The experiment is 
specifically aimed at one or perhaps a few phenomena, 
and if well-aimed, will provide the required data. But 
If the physicist's assumptions were not accurate, there 
is then no opportunity to re-examine the data for other 

phenomena, as with bubble-chamber photographs. 
The entire experiment must be rerun with the equip
ment set up to record a different phenomenon. 

Computer availability 

The physicist therefore requires rapid feedback in 
the form of completely analyzed data to permit him 
to alter his experiment's configuration during a run if 
required. The capability of the small computers, such 
as the PDP-8, commonly used for on-line data acqui
sition at the experiment are too limited to allow this 
type of analysis, although they can perform simple 
checks to determine whether the experimental equip
ment is working normally and whether the data looks 
reasonable in a general sense. The only way the 
experimenter can use the large computer is to hand
carry magnetic tapes from the small to the large com
puter, a process resulting in a turnaround time of hours 
or even days. 

To provide feedback within a useful time the experi
menter thus requires sufficient computing power to 
provide him,' on-line, with a detailed analysis of his 
data in terms of physics. A suitable computer is 
available at the Radiation Laboratory, a CDC 6600 
located several thousand feet from the Bevatron and 
184-inch cyclotron where high-energy physics experi
ments are conducted. Private telephone lines are also 
available, running more or less along the desired 
routes. The data link was conceived to provide a 
reliable high-speed transfer medium between the small 
and large computers. 

The CDC 6600 provided several unusual problems 
in the design of the data link because of its construc
tion and the way it is normally used at the Radiation 
Laboratory. The 6600 is designed to protect the cen
tral proce~sing unit (CPU) as much as possible from 
the interference of input/output (I/O) devices. The 
CPU .may be thought of as being surrounded by a 
protective layer of central memory (see Fig. 1), which 

105 



106 Spring Joint Computer Conference, 1968 

Figure I-CDC 6600 organization 

is in turn surrounded by 10 peripheral processors (PP) 
which communicate with I/O devices via 12 delta 
channels. The only way the CPU can communicate 
with the outside world is via the 13 1 K core memory. 
Nearly all the PP's are involved in I/O communica
tions. Their tasks are assigned by a controlling PP 
on the basis of availability, which makes for very 
efficient use of the PP's. In this sense there is a kind 
of "time sharing" within the system, an approach used 
in many areas of 6600 design. This kind of time shar
ing resuiis in a very fast computer, but not one which 
is easily used for time sharing in the more usual sense 
of devices out~ide the computer. For example, there 
is no facility for interrupts, so that a PP is forced to 
continually check a flag from a particular device to de
termine when service is required. This is satisfactory 
for such devices as tape units. However, dedicating a 
PP to watch a flag from the data link would result in a 
prohibitively heavy demand on the pool of available 
PP's, since many minutes might elapse between calls 
for service from the experiment. The data link can
not therefore be treated as a normai i/O device. 

Another possibility is to alter the operating system 
to assign a PP to check at infrequent intervals if the 
link is requesting service. However, any such modifi
cations are difficult to make on the 6600 operating 
systems and would result in degradation of the batch 
processing throughput. it is therefore necessary to 
include the 6600 operator in the interrupt chain: he is 

in fact the only part of the 6600 system which can be 
interrupted. 

Design Objectives 

From the situation described above, the following 
design objectives evolved for the data link: 

1. No hardware modifications were to be made to 
the 6600. Modifications to the software operat
ing system were to be minimized to avoid deg
radation of the normal batch processing. 

2. A reasonably high data rate was required, prefer
ably exceeding that of the high-speed tape units 
already used by the 6600. 

3. Error-correction faciiities were to be kept as 
much as possible within the data link itself, to 
avoid complicated software checking by both the 
small computer and the 6600. Also, since the 
data were to be carried by twisted-pair phone 
lines, error-detection capability needed to be 
quite powerful. 

4. The link would need to be used only occasional
ly, no more often than every half hour or so, for 
the transmission of 20 to 30,000 words of data. 

5. Rapid response by the 6600 to the link was un
necessary: a lapse of several minutes from the 
time the link requested service from the 6600 
until the 6600 was able to respond was accept
able. 

6. The link was to be kept as general-purpose as 
possible to enable it to be used with other types 
of computers if the need arose. 

Design philosophy and evolution 

The approach to the design of the data link was 
governed by one important consideration: since a 
relatively small amount of data handling would re
quire use of the link, cost was to be minimized, and 
existing equipment was to be used as much as pos
sible. This eliminated immediately such alternate 
approaches as using a medium-sized computer on-line 
or substituting coaxial cable for the already existing 
phone lines. 

Synchronization 

The use of twisted-pair lines, however, raises fairly 
serious noise problems, since the route through which 
they run contains many powerful noise-producing de
vices, such as spark chambers, magnets, and the rf 
field of the cyclotron. Associated with the noise prob
lem is one of synchronization: how to provide com
munication between two synchronous devices each 
running independently on its own clock. 

The simplest solution to the synchronization prob
lem is to transmit an echo, or "received your last 



Error-Correcting Data Link Between Small and Large Computers 107 

word" signal from the receiver to the transmitter, and 
send the next word only when the echo is received. In 
this way either the receiver or the transmitter can halt 
the flow of data when the words cannot be obtained 
from, or accepted by, the respective computer. The 
alternative approach, that of sending all words with
out interruption at a rate slow enough for the slowest 
computer to handle even during the worst case, would 
actually have required a slower transmission rate. 

Error correction 

In order to match the format of both the PDP-8 and 
the PP, data are transmitted in words of 12 parallel 
bits, with a 13th bit indicating whether the word is 
data or function/status (see below). Various error
detection schemes were considered. The most com
mon, the addition of a parity bit in parallel with the 
data word, has decreasing utility as the number of 
bits of the transmitted word increases. In this case, 
with 13 parallel bits and the possibility of powerful 
noise wiping out entire words, parity was considered 
too weak a system. Another common error-detection 
method, the checksum, suffers from a similar difficulty 
in that if the average error rate is high enough for 
several errors to occur in each block of data, many 
retransmissions of each block may be required before 
the record is received with the correct checksum. 
Also, either storage devices capable of holding an 
entire data block must be provided at each end, which 
is prohibitively expensive, or software in the two 
computers must intervene in the case of an error to 
cause the data block to be retransmitted. 

A method which both solves the synchronization 
problem and provides a powerful error-detection tech
nique is to echo each word in its entirety back to the 
transmitter for a complete bit-by-bit comparison be
fore the next word is sent. This of course increases the 
time to transmit each word, but the increase is not as 
large as the propagation delay, since reading and 
writing data between the computers and the link may 
be overlapped with transmission. However, for the 
line lengths in use, the propagation delay is the limit
ing factor: one typical line of 4000 ft has a round-trip 
delay of about 12.5 J.Lsec. 

Line transmission and reception 

Each individual bit of a word is transmitted over 
its own line. Each line is a twisted pair, transformer
isolated from its associated transmitter and receiver. 
A full duplex approach is used, and therefore 26 
twisted pairs are dedicated to word transfer. An ad
ditional 8 lines are used for the control signals, making 
for a total systems requirement of 34 twisted pairs. 
These are privately owned telephone lines. 

In order to keep the cost low, it was desirable to 
design' transmitters and receivers using simple cir
cuitry but still capable of rejecting a significant amount 
of noise. Each transmitter consists of two power-nand 
integrated circuit gates which drive two transistors 
connected in a push-pull configuration. This produces 
a bipolar pulse approximating a square wave in the 
secondary of the output transformer. Two mono
stable vibrators control the width of the positive and 
negative areas . of the bipolar pulse for all 13 data 
transmitters in one synchronizer. 

Both areas of the bipolar pulse are, in general, equal 
in width. For reasons of convenience, the width is 
chosen in this design to maintain an amplitude at
tenuation of a factor of 4; for instance, 1.3 J.Lsec for a 
4000-ft line. 

Our initial receiver design actually proved unnec
essarily complex. It required the positive portion of 
the incoming pulse (now resembling a sine wave due 
to the filtering effect of the lines) to pass through 
a height window much like a single-channel analyzer. 
In tests over the actual phone lines, however, we 
found that, even with the window set quite wide, many 
more errors were caused by failure to detect an exist
ing bit than by triggering on unwanted noise. The final 
receiver design therefore requires only that the posi
tive portion of the incoming signal exceeds a certain 
threshold. 

The maximum word-transfer repetitive rate of the 
link is 80,000 words per sec for a 40oo-ft line (12.5-
J.Lsec round-trip delay). Obviously the lines of the link 
are operating with a bandwidth far in excess of the 
bandwidth of normal telephone lines. In contrast to 
the latter, the link lines are limited to a length of a few 
miles and do not run through switch circuits, line 
amplifiers, etc. 

I mplementation and operation 

Levels of communication 

Communication over the link system actually takes 
place on. several different levels, as indicated some
what idealistically in Fig. 2. In a general sense the 
link may be thought of as a medium of communication 
between the experiment and the mathematical analy
sis of the experimental data. This data, and the results 
of the analysis, are transformed into 12-bit data words 
by the small-computer program and the FORTRAN 
program in the CPU of the 6600. 

The programs however are not restricted to sending 
data. They can also communicate instructions to each 
other. For example, the experimenter, via the small 
computer, can request different analysis approaches or 
output format, while the FORTRAN program may 



108 
Spring Joint Computer Conference, 1968 

instruct the small computer to modify a display pro
gram depending on the results of analysis. Thus the 
experimenter has available to him in a limited wayan 
extended on-line processing capability that includes 
some control over the analyzing process. 

-- r---
Experimental results 

Mathematical interpretation 

I--- ~ 

Data 
12 bit words 

E 
0 

E ~ =----- 0. 
~ 

Function a status words 
e en 

CIt Q. .c;; 
en e ~ u en .c;; Q. ·iii 0 
>. CD >. C 

,S; ... .~ CD '0 0 
Q. = ~ 

C :; C "'0 ~ ~ 'S 0 '0 Q. e ~ 'E E .Q ~ -Control e z 0 ~ N N 0 CD U CI) c sionals ·c <l E .~ CDO -0 0 a:: 
u'" CD ... ...... I-

CD 
C.J: - :: CD 0 0 .:;"5 cu a:: Q. E ...... CDC oc a.. 0 0 )( 0>' .J: >-

ILl (f) ..... CI) UCl) a.. u. :IE 

Experiment Laroe computer 

Figure 2 - Levels of communication 

At a lower level, it is necessary for the I/O routine in 
the PDP-8 and the PP's I/O program to communicate 
certain information involving the timing and format of 
the data records to be sent. This is accomplished by 
the use of words distinguished from data by their 
13th bit being set to 0, instead of 1, as with data. Bor
rowing from CDC terminology, these words are called 
function words if they originate at the 6600 end and 
travel toward the experiment, and status words if 
they originate at the PDP-8 end and travel toward the 
6600. The 13th bit also permits detection of an all
zero data word, which would otherwise cause no 
transmission. 

On a still lower level, the device synchronizer (OS), 
which is the portion of the data link at the experiment 

. end of the lines, and the channel synchronizer (CS) at 
the 6600 end, must communicate information con
cerning the words being sent. The control signals 
which transmit this information are critical to the 
operation of the system, in that any error occurring 
in their transmission will result in irretrievable failure 
of the system. This is true because these control sig
nals are responsible not only for initializing and termi
nating each record sent, but also because they convey 
information concerning any errors that may occur in 
the data record. 

It is always possible to increase reliability at the 
expense of increased time, and this was the technique 
applied to the control signals. Instead of consisting 
of a single bipolar puise, as the 13 paraHei bits of the 

data words do, they consist of a train of 16 bipolar 
pulses. The receivers require that at least half of these 
pulses arrive: the remaining half may drop out any
where along the pulse train. 

Error rates 

In practice it was found that the error rate was 
lower than expected. On the 4000-ft line tested, errors 
(either the dropping of data bits or the addition of 
noise bits) occurred once in 107 transmitted words. 
However, this rate may well prove to be significantly 
worse in longer lines. Also, it is difficult to extrapolate 
the results of error rates from one location or time to 
another, since the addition of new equipment may 
result in unexpected large-scale increases in. noise. 

Tests were run in which the number of times the 
control signals were transferred was several orders 
of magnitude larger than would be transferred during 
the probable lifetime of the link. Not a single error 
was found during these tests. 

The link "conversation" 
Before an actual transfer of data can take place via 

the link, the I/O routines in the computers at each end 
of the telephone lines must exchange information re
garding the format of the data to be transmitted, and 
also specify the timing. This is done using function and 
status words as defined above. 

An initial status word from the small computer is 
used to signal the operator of a service request, via the 
console light, and a function word carries back his 
push-button response (see Fig. 3). Later, when the 
operator has loaded the Analysis program, the pro
gram itself initiates the sending of a function word to 
the small computer to inform it that the data may now 
be transmitted. 

Since the Fortran analysis program in the 6600 re
quests only logical records of a certain length, the 
PP I/O routine must obtain the physical record length 
from the small computer: This is sent as a single data 
word. To read in this word (as to read in any status or 
data words) the PP first sends a function word, in 
this case "GO-WORDCOUNT," whose only pur
pose is to cause the status word to be transmitted from 
the channel synchronizer to the PP. 

Following the transfer to each physical record, the 
small computer informs the PP that either (a) more 
physical records must follow to complete the logical 
record, in which case an "end of physical record" 
status word is transmitted; or (b) the logical record has 
been completed, in which case an "end of logical rec
ord" is sent. 

Data output (from the 6600) is analogous to data 
input, except that at the beginning of each record the 
PP must inform the small computer whether the rec
ord win be composed of data or oniy an end of fiie. 



Error-Correcting Data Link Between Small and Large Computers 109 

READY 
PHASE 

INPUT 
PHASE 

OUTPUT 
PHASE 

LINK CONVERSATION' 

DEVICE SYNCH a PDP-8 CHANNEL SYNCH a 6600 

STATUS WORD. ·SERVICE REQUEST" Q 
--.;.;.; .... ..;;.;.----.... ----+LI.ItTW 

e 
8UTTOM 

FUNCTION WORD • ·~600 UP" . 

FUNCTION WORD • ~ AWAKE '" 

F.W." "GO-WRotNT' 

WORD COUNT OR EOF 

F.W •• "GO INPUT" 

_O~§§~~ -A 
-T 
-A 

S.W.- "EOPR~ Oft "tOLR" 

·H;.~~ ~ .·~r.~T~S R~.Q" , . 
F.W .... BOR" OR "EOF" 

~~W:~"·GOWR·O~N!:, .' 

WORD COUNT 

F.W •• "GO OUTPUT" 

Figure 3 - Conversation procedure 

Since the status and function words are to a large 
extent initiated and interpreted by software, the "ele
ments of the conversation" described above can be 
altered to meet future changes in the 6600 operating 
system or even to provide the interface for entirely 
different computers at either end of the link. 

The carrousel 

The four registers connected directly to the long
line receivers and transmitters are called the "car
rousel" and constitute the heart of the error checking 
and correcting system. (See Fig. 4. The register names 
are arbitrary). 

During normal data transmission (for example, dur
ing input to the 6600) a word flows out of the small 
computer memory buffer into the BR in the device 
synchronizer, then into the CR, and finally the DR, 
where it is both stored and transmitted to the channel 
synchronizer. In the CS it is received in the CR and 
then shifted to the DR, where it is stored and re
transmitted to the DS. Arriving in the CR of the de
vice synchronizer, this echo is compared with the 
original word still in the DR. If the comparison suc
ceeds, both CR and DR are cleared. During the round 
trip of this first word from DS to CS and back, a 
second word will have shifted from the small computer 

PDP-a DEViCE SYNCH 

i 
! 
-1 

~.~J 

IAcouij··~ 
I 
····GKJ 

TELEPHONE 
LINES CHANNEL SYNCH 6600 

Figure 4 - Register arrangement. 

memory to the BR, where it awaits a successful com
parison of the previous word. Once both CR and DR 
are cleared, it will be free to shift into the CR, and the 
sequerice will be repeated again. A similar process 
takes place for data output from the 6600. 

Since I/O operations between the computers and 
the link are concurrent with the transmission and 
echoing of the previous word, the cycle times of the 
computers cease to effect the data rate of the system 
(assuming line length is the limiting factor). Also, if 
the computer on the receiving end is not able to ac
cept the data fast enough, the process will simply 
pause until the received word is finally read in, thus 
preventing loss of data or the necessity for complex 
synchronization and timing devices. 

Error correction 

If in the transmitting synchronizer the comparison 
check on the echoed word should fail, only the CR is 
cleared, and a control signal is ~ent to the receiving 
synchronizer to warn that the previously received 
word was in error. This clears the DR in the receiving 
system and permits the same word to be retransmitted 
as before. The same word may be sent many times un
til a correct echo is finally received. However, if it 
should cycle for too long a time the link assumes that 
a serious fault has occurred and sends function and 
status words to this effect to the two I/O programs. 

While the link is waiting for the computers or the 
6600 operator to give it further instructiop~, it ar
ranges that both the synchronizers are in transmit 
mode. This ensures that any noise word received at 
either end will be compared with the zeros in the emp
ty DR and erased, as with an ordinary error. (If the 
synchronizers were left in receive mode they would 
retransmit any noise word arriving in them and even
tually fill up all registers with replicas of the noise 
word.) 



110 Spring Joint Computer Conference, 1968 

CONCLUSION 

In the special situation for which it was designed, the 
data link provides an effective technique for communi
cation of data between computers. Its strong points 
are: 

1. It is relativeiy inexpensive. 
2. It provides a very strong error-correction capa

bility, necessary in its noisy environment. 
3. It requires very little modification to the exist

ing large computer, either hardware or software. 
On the .other hand, the techniques used in the data

link system are not immediately applicable to data 

transmission over more than a few miles, because the 
round-trip propagation delay then becomes ex
cessively large, or over commercial phone lines where 
the bandwidth is restricted to about 1kHz. 

ACKNOWLEDGMENT 

The authors wish to acknowledge the contribution of 
Alan Oakes to the design and development of the 
receivers and transmitters. 

This work was done under the auspices of the U. S. 
Atomic Energy Commission. 



Graphical data processing 

by E. J. SMURA 
x erox Corporation 
Rochester, N ew York 

There is a need for faster and more efficient produc
tion of high quality graphic images. Since the infor
mation in graphic images can be coded into data bits, 
we should be able to adapt the techniques of high 
speed electronic data processing to graphic image 
processing. Accordingly, we have constructed an ex
perimental graphic data processor. Its design is based 
on the same logical design principles as an electronic 
data processor, but we have modified the system to 
accommodate the special features needed for process
ing graphical data. We will describe here our approach 
to the design, present some details of the system, and 
show some of the processed images . We will begin 
with a short discussion of how graphic data is repro
duced today, outline some of the advantages of auto
mating the process, and then talk about our own ex
perience. 

Most of you are familiar with the techniques now 
used to process and present graphic data. We are 
talking, of course, about such things as typing, draw
ing, photography, printing, copying, duplicating, and 
CRT presentations. We at Xerox believe the present 
techniques (which we will describe briefly) fall some
what short of satisfying the present needs of graphic 
communications and will certainly be absolutely inade
quate in the very near future. The graphic data pro
cessor described in this paper is a step toward faster 
and more efficient, thus more economical, graphic 
image generation, processing, and display. 

Consider, for example, the printed pages making up 
a book or a technical journal. The pages may utilize 
several different fonts including even special fonts of 
Greek or Roman alphabets, italics, boldface, or special 
mathematical symbols. The page may also include 
illustrations such as circuit schematics, drawings, or 
photographs. There are, in fact, an almost infinite 
number of variations and combinations of alphabets, 
special symbols, drawings, and photographs which 
could appear - consider only the possibilities made 
available through varying type sizes. 

Our general approach to better graphical data pro
cessing and presentation was to take a detailed look 

at each step of the usual practice followed in produc
ing graphic images. We then studied existing elec
tronic data processing equipment to see if it could be 
adapted for graphic data processing. Finally, we 
looked at the fundamental descriptors of graphic im
ages to see if they could be used in developing a new 
system which would make optimum use of this exist
ing equipment. We began with a look at how a manu
script is processed into a page in a typical technical 
journal. 

Let us assume that the text has been written and 
edited, that rough sketches have been made of line 
drawings and schematics, and the necessary photo
graphs have been taken. We also assume that the 
finished page will require the use of several fonts and 
that the sizes and positions of the illustrations will 
be different on each page. 

The first step is to give the text (the alphanumerics) 
to a typist (or type~etter) and the drawings (the line 
art) to an artist or illustrator. The photographs are 
given to another specialist who converts the continu
ous tones of the photographs into dot patterns for 
halftone reproduction. 

The typist can type only those alphanumerics pro
vided by her machine. Most typewriters have only 
a few of the hundreds of possible fonts; and even if 
all fonts were available, there would be a time delay 
either in switching fonts or switching machines. The 
artists, illustrators, and photographers also face prob
lems. For example, they must know the sizes of the 
finished illustrations, the locations of the illustrations 
on the page, and the type of system to be used in re
producing the page, because each of these factors will 
influence the artist's technique in preparing the il
lustrations. For complicated publications, a coordi
nator must be used to resolve these many questions 
on format, layout, and style. Note how often the "hu
man factor" is required in this normal publication 
process. 

We can mention only briefly some of the many other 
factors involved in setting up a page for printing. Some 
examples are: are the paragraphs indented?; are the 

111 



112 Spring Joint Computer Conference, 1968 

right-hand margins "justified" (i.e., no ragged edges 
on the right-hand margin)?; how are the pages num
bered? 

The job of pasting up the page - that is, making 
a dummy - takes a long time even when done by ex
perts in publications. The printer must then assemble 
the various components (type, photoengravings, etc.) 
and then provide a p~oof for editorial revision. Even 
when modern phototypesetting techniques are used, 
preparation of a finished made-up page is a laborious 
process involving the stripping of film and/or paste-up 
of velox prints. 

Th inefficiencies involved in processing the draft 
through to the finished copy indicated to us some 
benefits of automating the graphical data processing 
and recording system. 

For example, with automated graphical data pro
cessing, a typist would simply type the book, report, 
or paper. No special attention would be needed for 
character font, size of the page to be produced, hy
phenation and justification, and the insertion of line 
graphics and halftones; these functions would be pro
vided by the graphical data processor. In addition, an 
editing function could be made available to provide for 
easy additions, changes, or rearrangement of the 
material within the book or paper. 

Graphical data processing could allow a draftsman 
to produce all his line drawings in one standard size. 
In addition, he might only be required to indicate the 
beginning and end-points of any line with a computer 
check for fit and tolerance into the assembly drawing. 
Finally, by pressing a button, the draftsman could pro
duce multiple copies of the finished drawing at any 
magnification. Conceivably, graphical data process
ing could allow an industrial photographer to produce 
aesthetically pleasing results with a printing press by 
providing the ability to vary tonal range within a half
tone picture, considering at the same time the type of 
paper and ink being used on the press. In addition, the 
photographer could vary hues and tonal range in a 
printed composite color photograph. 

We have already mentioned the wide variety of 
information which we might need to insert on a page. 
Obviously, there would be advantages if we could re
duce the variety of "kinds" of information which our 
equipment had to process. This led to an investiga
tion of what we call the fundamental descriptors of 
graphic data. 

An analysis of typical publications shows the pages 
usually contain one of three basic types of graphic in
formation or a combination of the three. We call these 
three basic data presentation methods, 1) the al
phanumeric mode, 2) the line copy mode, and 3) the 
haiftone mode. 

By the alphanumeric mode, we mean using sets of 
standard type such as alphabets, mathematical sym
bols, and chemical symbols. Characteristically, these 
graphic symbols have special meanings (in context) 
regardless of the variation of form (font) employed. 

By the line copy mode, we mean drawing images 
using lines only, for example, outline drawings and 
circuit schematics. The images are considered to be 
generated by a set of vectors in the image plane, and 
we usually refer to the line copy mode as the vector 
generation mode. Note that the alphanumeric mode 
is actually a special case of the vector generation 
and (later) we will show how we used this fact in an 
interesting variation of our experimental graphical 
data processor. 

By the halftone mode, we mean creating images by 
arranging black dots on a white background Of, more 
rigorously, forming an image by combining black and 
white dots to reproduce various gray levels. 

We can, of course, logically define other modes, for 
example, continuous tone and color. For the system 
which we will describe in this paper, however, such 
other modes can be considered as extensions, varia
tions, refinements, or combinations of one of the three 
modes described above. Thus, the problem of de
signing a graphical data processing system reduces 
to the problem of designing a system to generate, 
process, and reproduce in these three modes. 

We at Xerox have been looking at the three funda
mental steps required to reproduce a graphical image 
in the three modes: 1) generating the input, 2) pro
cessing the input data, and 3) presenting and repro
ducing the output. Specifically, we have placed our 
major emphasis, to date, on processing, display, and 
reproduction with some preliminary work on the fun
damental requirements of input data and format. Later, 
we will show you some samples of the graphical data 
produced with our equipment. 

In developing our graphical data processor, we 
started with the state-of-the-art digital computer and 
its peripheral devices. We analyzed present-day equip
ment to determine how best to adapt them to graphi
cal data processing. Some very serious deficiencies 
were found in the present input/output devices availa
ble. 

Each form of graphic output usually requires a 
separate output device; in other words, fOf alpha
numerics, we may use an impact printer; for line draw
ing, a mechanical plotter; and for viewing the two 
modes, a vector display. A vector display from which 
hard copy may be generated presently requires signif
icant manual intervention. The principal limitation 
of this type of equipment is a lack of control over a 
document which contains the three basic forms of 



graphical data; i.e., alphanumerics, line drawings, and 
halftone pictures. The limited style and quality and 
the need for different forms of output-i.e., fan-fold 
sheets, cards - prevent generation of a graphical 
record in material, style, and format compatible with 
today's manual methods. Even with some of the new 
phototypesetting equipment, generation of halftones 
and graphics is not practical because of the burden 
placed upon the processor and the need for complex 
software programs. Another serious limitation of 
electronic typesetters, even in generating alphanu
merics only, is the extreme difficulty of accomplish
ing multi-column work. The line-at-a-time printing 
mode usually employed necessitates full-page storage 
of the alphanumerics and a software routine to do the 
necessary sorting. Finally, the signals which operate 
output devices in a standard ED P operation cannot 
be edited - that is, do not have the monitoring capa
bility which includes ability to format, change format, 
and edit. While light pens and CRT's permit this con
trol, they require large software packages in order to 
use them. To require them to accomplish the functions 
of a GDP would place such massive demands on the 
software that the GDP would be limited in its applica
tion to only those with very large computer installa
tions. 

For graphical data processing, we need the special
ized storage and manipulating capabilites shown in 
Fig. 1. We need the latter means to handle in one ma
chine the three basic graphic modes and also to handle 
format - that is, margins, justification, hyphenation, 
editing, and change of mode. Finally, storage is neces
sary to hold the fonts - the alphanumeric character 
signatures. 

MEMORY 
INPUT r---+ STORED r-. OUTPUT 

PROGRAMS 
4~ 

T 
~~ 

CONTROL 
UNIT 

(ALGORITHM) 

! ! 
CHARACTER GRAPHIC 

STORE STORE 

Figure 1 - Functions needed for graphical data processing 

Significant advantages could accrue if the two ba
sic storage capabilities normally provided could be 
increased to four self-contained storage areas, i.e., 
character signature storage, format instruction storage, 

Graphical Data Processing 113 

program storage, and graphic data storage. With this 
arrangement, parallel communication is possible, edit
ing can be done efficiently, and the requirements of the 
system monitoring program are reduced. In addition, 
improved communication liks between these storage 
areas and the output peripheral devices could reduce, 
significantly, the need for computation. For example, 
it might be possible, using the format storage and its 
associated communication registers, to communicate 
easily to the output device, the left-hand margin of a 
particular column of text. If it were desired to change 
this margin, an alteration could be made to the stored 
data in the format memory and the corrected data re
layed to the output device to update the margin regis
ter. This, in effect, would move the column to be writ
ten to the desired physical location. We are familiar 
with the same operation that could be performed if a 
margin register did not exist, i.e., adding a fixed dis
tance to the incoming alphanumeric data prior to relay
ing to the output device. The disadvantages of the lat
ter method are that it requires a program, it must be 
stored, time is wasted in computing, and the processor 
might be required to alternate between numerical and 
graphical programs for a more difficult topology 
change; i.e., image rotation. 

Thus, the status of present equipment and the func
tions desired indicated that special equipment should 
be designed to secure speed, automation, and con
venience in converting ideas to an understandable 
graphic form. This equipment must be capable of 
1) transforming the three forms of data into electri
cal signals defined as input, 2) manipulating, storing, 
and processing the electrical signal, and 3) trans
forming the electrical signals into the desired image - . 
that is, it should have an output capability. This equip
ment would be a Graphical Data Processor (GDP) 
because it produces true graphics. 

We decided to begin our G D P experiments by con
structing an adequate output device. We then se
lected a modern, general~purpose digital computer 
as part of our experimental processor basing our 
choice on the need for sufficient interrupt capabili
ties and rapid communication with any equipment we 
might develop. We realized that speed, efficiency, 
and communications would be limited, but we felt 
confident that we could achieve our aim of optimizing 
software and hardware to perform the basic experi
ments. As we were concentrating on output for this 
first phase, we accepted the standard equipment found 
in an ED P installation for input and later supple
mented it with a simple, opaque gray-level scanner. 
We then began our construction and experiments on 
this equipment and developed processing capability 
to generate the three basic forms of graphical data. 
Our principal initial objective was to meet the needs 



114 Spring Joint Computer Conference, 1968 

for image generators producing a natural and familiar 
style and format, with compatibility between image 
generators and duplicators. 

Our experimental graphical data processor consists 
of, 1) an SDS 930 digital computer into which graphi
cal data are entered and stored in digital form, 2) a 
graphical recorder which uses several cathode-ray 
tubes to present the graphical data for recording or 
direct view, and 3) an interface between the computer 
and recorder for interpreting data from the computer 
and converting it to analog form suitable for presen
tation to the output device. 

Figure 2 shows our experimental equipment; we 
used this equipment to generate the graphic images 
in all of the samples included in this paper. The 930 
computer is in the background, the digital input de
vices are on the left, and the interface is to the right 
of the magnetic tape unit; two display devices can also 
be seen. 

Figure 2 - The 930 computer and display equipment used in the 
experiments 

The equipment can be operated in anyone of the 
several graphical data modes described previously. An 
alphanumeric mode may be used for justified and hy
phenated generation of text, a vector mode for the 
generation of line-type drawings, and the dot mode for 
the creation of halftone pictures. Combining these 
modes of operation with computer programs, we can 
edit, and, in general, regulate the output format. For 
example, a line drawing can be inserted into a page of 
hyphenated-justified; multi-font text in a multi-column 
format. 

Graphical data can be inserted into the experimental 
GDP system through such standard EDP equipment 
as a computer keyboard, punched card, paper tape, 
or magnetic tape. More recently, we have added a 
capability to introduce line and continuous tone im
ages through a full-page opaque, gray-level scanner. 

Sometimes this is very inefficient; however, it has 
allowed us to attain the goals we sought with this ex
perimental system. The command and control pro
grams are permanently stored on a drum for con
venient and rapid access. Storage of graphical data 
within the system can be in core for random access, 
magnetic drum for high volume semi-random access, 
or magnetic tape for serial access. 

Digital data are directed from the computer to the 
interface under both interface and computer program 
control. The interface decodes and converts the data 
to analog form for presentation to the output device. 
There are three principal output devices, each of 
which is a cathode-ray tube. The first is a high-speed, 
real time, closed circuit television display. The second 
is a real time, high-speed storage tube which retains 
data until operator erased. The third real-time, high
speed, high resolution cathode-ray tube is used for 
generating hard copy by either a xerographic or a 
photographic process. 

We can given you some idea of how this graphical 
data processing equipment operates by considering 
in greater detail the three modes - alphanumeric com
position, dot composition, and vector generation. We 
also have examples of the end product of each mode 
and examples of operations where we combined sev
eral modes. 

First, let us describe how an alphanumeric charac
ter is placed in the G D P memory and then follow the 
character from an instruction to print in the input stage 
through its final generation in hard copy. First, the 
character is hand typeset, scaled in size and located 
i~ a srid for easy reduction to digital form. As we digit-. 
ize the character, we remove redundancy by coding 
or digitizing only the black portions of the character 
leaving the white surrounding portions uncoded. The 
black portions are further coded in an optimal form. 
The digitized character is then stored in the computer 
as part of a full font of some 80-90 other characters 
and special symbols. A typical font consists of capital 
and miniscule letters, digits, ligatures, periods, com
mas, brackets, and other special symbols. A wide 
variety of such fonts may be stored on the drum. Also 
stored on the drum are composition programs which 
furnish instructions on format and page make-up 
(for examp-Ie, hyphenation aIidjustification). 

To generate a page of alphanumeric characters, an 
alphanumeric composition program is called from the 
drum and set up in a section of the core in the com
puter set aside for use by the interface. Suppose we 
want to print an A. Upon command, the computer 
sends the digital information describing the position 
of the A in storage to the interface. The interface re
trieves the A from storage and converts the digital 



information into analog form for presentation to the 
output device. At the same time, the sallie alphanu
meric composition program determines several other 
variables and constants of the composition process 
and sends the necessary data to the interface. These 
other instructions may include: 

(1) digital address of the position of the A on the 
cathode-ray tube 

(2) the velocity at which the A should be written 
(3) the number of times it should be ovenvritten 
(4) the character zoom or size in horizontal or verti-

cal direction or both 
(5) the intensity at which it should be written 
(6) spot resolution at which it should be written 

Repeating the same process, we can generate a page 
using any or all letters, numerals, or special symbols 
contained in the stored font, and we can program the 
GOP to change fonts and mode of operation. Figure 3 

THEORETICAL DISTRIBUTIONS 

of rectangle ABCD is approximately equal' to the shaded area under 
the continuous curve. Since the area of rectangle ABCD represents (is 
proportional to) the probahility of getting 3 heads in 10 flips of a bal-

o 1 2 3 4 5 6 7 8 4) 10 HEADS 

FIGURE 7.4 

anced coin, we can say that this probability is also represented by the 
shaded area under the continuous curve which approximates the hist
ogram. More generally, if a histogram is approximated by means of 
a smooth curve, the frequency, percentage, or probability, of any 
given class is represented by (proportional to) the corresponding area 
under the curve. 

If we approximated the distribution 
of 1953 family incomes in the United 

,States with a smootb curve, we could 
determine the proportion of incomes fall
ing into any given class by look.ing at tbe 
corresponding area under tIM: curve. By 
comparing the shaded area of Figure 7.6 
with the total area under tbe curve we 
find tbat in 1953 roughly 17 per cent of 
the families bad incomes of 17,500 or 
more. It can, similarly, be seen from 
Figure 7.6 that 30 per cent of the fam
ilies bad incomes of $4,000 or more. W' e 
obtained these percentages by (mentally) 
dividing the corresponding areas under 
the curve by the total area under the 
curve. wbicb. after all. represents 100 per 
cent of the families. 

3 
FIGURE 7.5 

Had we drawn tbe curve of Figure 7.6 80 that the total area under 
the curve is equal to 1. tbe proportion of tbe families belon~n, to 
any (income) day ,,·ould have bef.n ~ven diret'tly by the 

Figure 3 -Justified and hyphenated page of mixed graphics and 
alphanumerics produced by the graphical data processor 

Graphical Data Processing 115 

shows a full page where two fonts have been used
that is, several words have been italicized. The fonts 
are Bodoni 12 point Roman and Italic, and the text 
has been hyphenated and justified. We used the Bodo
ni font because it illustrates the very fine lines and 
serifs that can be obtained in full-page recording using 
CRT technology and the photographic process. 

The characteristics of zooming are shown in Fig. 4. 
(Zooming is a change in size on the output document 
over what was initially used for character digitizing.) 
Along anyone of the rows, only horizontal zoom has 
been used. Down anyone of the columns, only verti
cal zoom has been used. Thus, the diagonal of this 
page represents both horizontal and vertical zooming 
and, therefore, a change in point size. All of the char
acters on this page have been produced by various 
zooms of an original 12 point character set. (A point 
is approximately 1/72"; most office typewriter char
acters are 1 0 or 12 point.) The smallest possible in
crement of zoom upward or downward in the system 
(in this case) is 1/4 point. This is only an illustration 
of the versatility of the zoom feature in producing 
letters or special symbols of various point sizes and 
aspect ratios. 

,\ A A A 

A A A A 

A A A A 

A A A A 

A A A A A 
Figure 4 - Changing character size by zooming 

The vector mode of the experimental G DP system 
is equally versatile. There are two basic ways to draw 
a vector between any two points, A and B. The first 
is to draw the vector between A and B at constant 
velocity. The second is to draw the vector between A 
and B in constant time, regardless of the distance from 
A to B. A constant velocity vector is used to control 
exposure in the xerographic process or in the photo-



116 Spring Joint Computer Conference, 1968 

graphic process because this constant velocity in
sures uniform exposure of every point along the vec
tor. While our equipment can operate at either con
stant velocity or constant time, we will describe here 
only constant velocity v~ctor operation. 

Data f.or vector-mode operation are entered into the 
system and stored in much the same manner as for 
alphanumeric mode operation. In the vector mode, 
however, only beginning and end points of the vari
ous vectors are entered and stored. From the variable 
data-:- that is, the beginning and end points of each vec
tor - the computer automatically computes the veloc
ity for each direction (x and y), and the information 
is transmitted to the interface for generation of signais 
which direct the recorder to physically' generate the 
vector. Through the use of a special program, certain 
constants are inserted into the computer for use in 
generating any vector. These constants include the 
size of the page, the velocity at which the vector 
should be drawn, the intensity at which the vector 
should be drawn, and the resolution of the vector. 
Once these constants are entered, they remain fixed 
throughout the composition of a line image unless an 
alteration is required. 

The velocity of writing may vary from 3 inches! 
second to as high as 10,000 inches/second. On a 
10" x 10" page, vector line thickness may be as small 
as 2 mils with vector position being specified by a 13 
bit word. 

Figure 5 illustrates the versatility of the vector gen
eration program. The slide shows a series of ellipses 

Figure 5 - Eiiipses generated by the graphical data processor 
operating in the vector generation mode 

generated about one another. It is interesting to note 
that our equipment does not have curve generation 
capabilities at the present time; the ellipses you see 
here were generated by a large number of short vec-
tors. 

The dot mode of the graphicai data processing 
equipment may be used to generate halftone pictures. 
The machine can generate any desired dot density 
and practically any resolution up to a maximum of 666 
dots per inch in either field direction .. The dot mode of 
the recorder is controlled by a dot mode program 
which controls such variables and constants as page 
size, resolution of the dot, intensity of the dot and 
screen density. 

f 

j 
Figure 6 - Halftone picture generated by the graphical data 

processor 

A "picture" consisting solely of t million dots 
may not be very interesting because it may be simply a 
black wall. However, if those t million dots are 
intensity modulated, the picture might become very 
interesting, as in this picture (Fig. 6) of a pretty girl. 
To reproduce this picture, the screen size was set at 
200 x 200 dots per inch and 16 levels of intensity 
modulation were used. 

To illustrate some of the power of this combina
tion graphical recorder and digital processor, let us 
consider what would happen if we were to ask the 
computer to separate out one intensity level in the 
picture of the girl; for example, the 16th intensity lev
el (Fig. 7). Note that only the hair and eyes are princi
pal 'contributors to this level. Our graphical data pro
cessor can print out any other (given) intensity level 



.I 

Figure 7 - Reproduction of only the 16th intensity level in Figure 6 

from the original picture, and, in addition, can combine 
any ordering of intensity to produce different types of 
output. Another example is sho~n in Fig. 8. Here we 
see a picture generated by ·calling out the least signif
icant bit of a 4 bit intensity level code. This picture 
looks something like a numbered pmnting. Note also 
that it is a very "busy" picture compared to the orig
inal. 

Figure 8 - Reproduction of the least significant bit of a 4-bit 
intensity level (of Figure 6) 

Graphical Data Processing 117 

We are continuing our study of the structure of 
halftone images, aiming at reducing the redundancy 
of data in an effort to speed up processing time and 
to minimize storage requirements. 

These samples indicate that generating the three 
basic types of graphical data is technically feasible. 
I t is also feasible to mix the operating modes and com
puter programs to create some interesting graphical 
images. For example, the sample page of justified 
and hyphenated text shown in Fig. 3 also contains 
graphics. All of the alphanumerics in the text, title, 
and labels on the graph, together with the line draw
ings, were totally composed by the graphical recorder 
in a moment's time. This picture illustrates that it is 
possible to generate the types of pages usually found 
in reports, periodicals, and technicaljournals. 

To further illustrate flexibility, Fig. 9 shows a com
plete printed board master made by a graphical re
corder with a stored font containing geometrical 
shapes instead of alphanumeric characters. This fig
ure shows that engineering drawings of high quality 
and precision can be created, thus relieving the 
draftsman of many tedious and tiresome tasks. 

DE[ODER/DRIVER 

Figure 9 - Engineering drawing produced by the graphical data 
processor using both alphanumeric and vector generation modes 



118 Spring Joint Computer Conference, 1968 

Finally, we decided to see if our graphical data 
processor could do the job normally performed by an 
impact printer tied on-line to a computer. In this 
application, speed is more of an asset than quality, 
so we tailored a font of alphanumerics to minimize 
digital character description, interface processing 
time, and recorder writing time. A typical print-out 
is shown in Fig. 10. The equipment which generated 
this page is the. same, unaltered equipment that gen
erated the previous examples. The recorder, using 
the same basic programs, assumed the role of a com-
puter printer. 

00355 lSI 4b ~2 51 [LB 
0035b lSI b7 ~13 52 L9-i 11 
00357 lSI 35 1SI1E1 53 STA LHAR 
OO~ lSI 7b lS1Sl2b 54 LOA =5 
003;1 lSI 75 1~1 55 LCB =MSGY 
003;2 lSI 43 00525 5b :t ~Tf"BJ 
003;3 lSI 43 Wi35 57 [KSIGN 
ISIISI3;4 lSI 4b 00SISI2 58 CLB 
003;5 lSI b7 ~13 59 Ls-i 11 
003;b lSI 16 lS1Sl32 bISl I"'RG ==ISl4 
003;7 lSI 35 1S11232 b1 STA LVAR 
·OO~ lSI 7b 15riJ35 b2 LOA =b 
00371 lSI 75 1~2 b3 LDB =MSGG 
00372 lSI 43 ISIISI525 b4 BRM ~TMSG 
00373 lSI 4b ISIISIISIISI2 bS CLB 
00374 lSI 71 1~3 b6 LOX =-4 
00375 lSI b7 ISISfifE b7 L9-l 3 
0037b lSI 43 00544 be BRM REAOCH 
00377 ~ 16 00Sb1 b9 I"'RG [1 
~ lSI 41 0037S 7tiI BRX =-3 
tSlSI4&l lSI 35 J3Sl24 71 STA PMT[ 
WtlSl2 lSI 7b 159-J4 72 LOA =881 
WtISl3 lSI 35.00200 73 STA B21S11S1 
WtISl4 lSI ISl2 2(5Bg2 74 EIR 
WtISlS lSI 71 lS1Sl~ 75 LOX =3 
Wtr:i6 lSI 1S12 :3(SISOg 7b E01 ~ 
1SIISI4ISl7 2 13 1SI1233 77 POT LPOR+3.2 
Wt11S1 lSI 1SI1 Wi11S1 78 BRU $ 
Wt11 lSI 41 ISIISI4ISlb 79 881 BRX $-3 
Wt12 lSI 7b 1~5 8ISl LOA =BKPT 
Wi13 lSI 35 1SI1214 81 STA IADO 
Wt14 lSI :2ISl riXSI'm 82 f'.lP 
Wt 15 lSI :2ISl 00SISIISl 83 f'.lP 

Figure 10- Alphanumeric "print-out;' from the graphical data 
processor operating i-n the alphanumeric generation mode 

We generated the full page of text shown here at 
a speed comparable to presently available standard 
computer impact printers. In addition, we have the 
option of choosirig -our page slze~For example, we 
can elect to print the same data on a tabulating card 
s-imply by inserting the proper information into the 
G D P. As a matter of fact, we can print the full page 

. of text on a tabulating card much faster than we can 
print it on the 8 i x 11" format because the total ex-

posed black area is much smaller in the card format 
(remember that the GDP is using a photographic or 
xerographic print-out process), 

In conclusion, the experimental system we have 
described takes digitally coded input data and, through 
optics, electronics, cathode-ray tubes, and photosen
sitive materials, creates in some cases very high quali
ty images. This particular graphical system is com
pri~ed partially of standard electronic data process
ing equipment to allow us to do experimental graphi
cal data processing related to recording. We call this 
equipment arrangement a graphical data processor. 

We have illustrated that some day it will be techni
cally feasible for the secretary, the draftsman, the in
dustrial photographer, and others to use such equip
ment to generate their graphical images with greater 
flexibility, speed, efficiency, and quality. The graphi
cal data processor, which sees all graphical data as 
combinations of alphanumerics, vectors, or dot pat
terns, can create and 'manipulate pages of graphical 
data and reproduce the data in a wide variety of for
mats, sizes,· styles, and on many different kinds of 
materials. To date, our studies and experimental data 
show that the system, at least, through trade-offs, say 
speed vs quality, could replace, in some cases, pres
ent-day computer peripheral devices. 

We are working at improving hardware and soft
ware designs to provide rapid and convenient data
input devices. We are studying how to optimize pro
cessing steps and storage requirements related to 
graphical data manipulation, so that equipment size 
might be reduced and speed of the operations in
creased. In short, we hope to fulfill all the processing 
needs of those concerned with the manipulation of 
graphical data. The ability to thus create, manipulate, 
and reproduce graphical images will enable faster, 
more efficient document creation, distribution, com
munication, alteration, and storage and retrieval. 

ACKNOWLEDGMENTS 

The author is deeply indebted to the project leaders, 
L. Blumberg, L. Mailloux, J. Rosenthal, and C. Smoy
er and their staffs for their response and encourage
ment in reducing an idea to hardware and also for 
their signific~nt contIi1?U:tions. to graphical data pro
cessing. A special note of recognition goes to Arlene 
Bencin and the programming staff for software de
velopment and to Al Lawson, our consultant from 
Rochester Institute of.Technology, Rochester, New 
York, for typographic guidance and helpful judgment 
of graphic arts quality. 



The advancing communication technology 
and computer communication systems 

by SIDNEY J. KAPLAN 
Western Union 
Mahwah, New Jersey 

The time factor, involved in the transportation of 
information is assuining more importance in data pro
cessing. Examples of systems that illustrate the grow
ing dependence of the computer industry on communi-

'·cations are: computer complexes, interactive ter
minals, computer utility, real time processing and man
agement information systems. In these applications 
the computer hardware and software costs, as well 
as computer throughput, have been found to be criti
cally dependent on the data communication operation. 

The established communications services are re
garded by some as inefficient for computer system 
application. ~t is notable that the only systems origi
nally designed for data communications are the tele
graph systems which have evolved over· five genera
tions. These systems have experienced considerable 
growth in recent years. However, to satisfy the new 
data processing communication requirements, the 
telegraph and new data communication systems can be 
expected to evolve more rapidly in the future. 

The more recent advances in communications tech
nology are discussed in this paper, along with the 
probable new and improved communication services 
that the new technological advances will allow. A 
broad discussion of aspects of the rapidly changing 
computer system communication requirements will 
also be given. The evolution of data communications 
is dependent on more than just technology. Factors 
such as regulation and pricing policies ar~· important 
in stimulating systems to· grow to their most efficient 
form. These factors are not discussed in this paper. 

Data communication requirements 

Much has already been said about the need for low 
cost data systems, particularly in such industries 
as securities, banking and airlines. "Management 
Information Systems" for these industries requires 
data communication connecting diversely located 
divisions of a corporation with a computer system 
where services are provided for manufacturing, sales 

and planning, and other support departments such as 
accounting, purchasing and inventory control. The 
telegraph industry that represented data communica
tions until ten years ago fulfills important requirements 
for message traffic in computer systems. However, 
large volume high speed transfers of data and the man
machine dialogue over interactive· terminals repre
sents new require~ents 

The representation in Figure 1 is designed to char-
acterize data. communication types as'- a function of 
transmission rate and data volume. Four specific 
groupings of data communication can be seen and 
they include the telegraph message group in addition to 
three others that are required in comp.uter applica
tions. 

Data Communication Category I is shown to repre
sent the telegraph applications. The average tele
graph message is approximately 50 words or 300 
characters in length, including about 25 address 
words. At a 75 baud telegraph speed the message 
transmission time is approximately one half minute. 
Telegraph systems have been designed so that the 
rate of transmission is approximately equal to the 
rate of manual message generation. Terminal speeds 
of 50, 75 and 110 baud are the most popular. Higher 
speeds, up to 180 baud, are expected ·to·be more com
mon in the near future. The 180 baud operation is the 
highest speed that can be carried on a class D-TIY 
circuit. It is well above typing spee~ and will require 
data storage for operation at its highest rate. 

Category II of data communications in Figure 1 
represents the interactive terminal applications. Short 
messages .are generated by' humans and computers and 
there is a relatively long waiting period between mes
sages. At times the computer message might be 
lengthy. In general, long messages to ·or from the com
puter ~n at the maximum terminal speed since they 
are read from a tape reader to cQmputer memory. Ex
perience in existing time sharing services indicates 
that data is only transferred between 2% and 4% of the 
time that the terminal is operating with the computer. 

119 



120 Spring Joint Computer Conference, 1968 

I 
I 

I 
lOOP! 1 

I 
10" .of 

1M 3 "' 138 "IN 

lOOK 

10K I 'r 
20 SEC 

lK ~ I III 
10 sEc.2.0 SEC 

100 

10 
SUPER _TTY _ _ VI=_ BASE 

~(lUP-+ "r.POU~ 

10 100 1 10K lOOK 1'" 
BAUD PHE 

II I I I I 
<D o..---t..n a a a ::.,,: 

............ - a .::r- ev LrI 
<D ~ ...... N .::r-

CHARACTEPS PEP SEC. 

Figure I - Categories of data communications 

Message headings or endings are not included with 
each transmission since in present systems there is 
generally a dedicated line or circuit switch connection 
set up between the terminal and the computer. 

Two other classes of data communications are also 
shown in Figure 1 which represents the large volume 
data messages that are transferred between high 
speed terminals and computer memory. Each cate
gory is characterized by the transmission facilities 
over which it is used. Category I I I is associated with 
voice line transmission and makes use of high speed 
paper tape and card readers operating in the region of 
100 character/sec. Newer terminal equip.ment is de
signed to operate at higher speeds, e.g., low cost mag
netic tape terminals now operate at 2400 baud. 
Modems operating at 4800 baud are. also coming into 
common use. One million characters of data trasmis
sion would take approximately 3 hours at 1000 baud. 
At 4800 baud, however, it would take approximately 
38 minutes. . 

Category IV in Figure 1 represents the much larger 
volume of data sent on base group.transmission facili
ties. The data transmission speed of operation is in 
the area of 50 K baud, depending on the modem used. 

It takes approximately 3.6 minutes to transport one 
million characters at these speeds, neglecting the time 
for terminal interaction and acknowledgements. 

While Categories III and IV represent data trans
fer between computers and terminals, another cate
gory of data communications might enable real time 
operation of remote computers in parallel. The trans
mission over super group facilities at 200 Kb/s can be 
utilized for this purpose. 

An important application for high volume data 
communications are remote computing, load sharing, 
financial reporting, order entry and inventory control. 
Based on user surveys among those performing re
mote computing, the average trans~ission to a center 
or from a center is 160,000 characters. Twenty such 
jobs may be processed daily for a total of 3 hours of 
on-line time where the speed limitations are card 
read and print speed operation. These surveys also 
indicated a wide spread in opinions that potential 
users have on the amount of usage the typical decen
tralized terminal would receive on a daily basis. The 
opinions thought to be conservative indicated that 
half of the users expected over 2 hours of use a day. 

Communication technology 

A brief review of the growth of communications 
can add perspective needed to help understand the 
impact of the more recent advances in communica
tion technology. 
I t was one hundred and thirty years ago that Morse 
perfected his telegraph system which led to what is 
regarded as the first digital communication system. 
Later advances in terminal equipment led to the 
development of teletypewriters which automated the 
functions of coding, decoding and printing. About 
ninety years ago, a voice system was born when 
Alexander Bell perfected the telephone. The tele
phone system used larger bandwidth channels and 
more expensive transmission, but because of the 
phone terminal simplicity and automatic dialing the 
labor costs to provide phone service were minimized. 
The modernization of the telegraph system also 
allowed economies, i.e., automatic cross office, store 
and forward reperforator systems, automated and 
improved service. However, in the public telegraphic 
systems the manual effort still required in the accep
tance, transcription, record keeping, and delivery of 
messages precluded any lowering of costs with the 
growing labor expense over the years. While there 
were no competing systems for the telephone traffic, 
the mail offered competition to the telegraph services 
because of the increasing speed of delivery made 
possible by the advances in aircraft technology. Only 
in recent years have public automatic dial circuit 



switching telegraph systems such as Telex and TWX 
been introduced. Like the voice system, much of the 
common carrier manual labor has been eliminated and 
the burden of responsibility for the message content 
has been left with the subscriber. 

The high speed solid state electronics that made 
possible the accelerated growth of the computer in
dustry has placed new expanded requirements on the 
communications industry. It is this same high speed 
solid state electronics that will allow the communica
tion industry to meet these requirements. The existing 
communication technology is shown in relation to the 
new emerging technology in Table I. These new tech
nology areas and improvements are discussed in the 
following sections in light of their impact on the data 
communications systems to be. 

Transmission technology 

The transmission technology has developed over 
the years in areas associated with the categories of 
distance over which it is applied. Local loop trans
mission connects subscribers to the common carrier 
wire and repeater centers and local exchanges up' to 
15 miles in distance. Tributary transmission spans up 
to 150 miles to larger centers or tributary exchanges. 
Medium haul transmission extends over distances 
spanning continents. Long haul covers up to 5,000 
miles of transmission between continents. 

The advancing transmission technology has made 
improvements possible in all areas of short and long 
distance transmission. Reliable transistor technology 
has made possible more than one alternative to in
creasing wire line capacity. The T-l system uses 
digital repeaters located along the length of a twisted 
pai~ and. permits up to 1.544 megabits for 24 digital 
voice channels on the wire. This T-l system is planned 
to be one of a class of cable T -systems that will 
allow in its largest configuration the capability to pass 
281, megabits. These systems are expected to enable 
a significant reduction of the digital t~affic error rate. 
They also have the, capability to carry analog traffic 
as efficiently as analog facilities. 

The microwave technology for tributary and 
medium haul transmission has permitted increases in 
data carrying capacity through the use of extended' 
radio spectrum and digital modulation methods. 
Digital baseband microwave systems are capable 
of transmitting data time division modulated at a 
rate more than an order of magnitude greater than 
conventional microwave frequency division modu
lated. As an example, a modern type microwave 
system operating within a 30 MHz channel band
width in the 6 G Hz carrier band has the approxi-

Advancing Communication Technology 121 

mate capability as shown in Table II. The micro
wave analog transmission system has a greater 
capacity for analog signals. 

The transmission technology in the past was in
volved with frequency stability and linearity. The 
transmission technology today is concerned with 
exploiting the wideband transmission methods. it is 
involved with time and phase linearity using digital 
equipment and is ideally suited for digital communi
cations. Associated with this trend toward hil!h canac
lty is a lowering in the c'ost of, facilities. Over" the 
past twenty years the capital costs of terrestrial trans
mission have come down by almost two orders of 
magnitude. 

The digital transmission facilities available for use in 
the data communication systems are listed in Table 
III. The digital systems have a decided advantage 
because pulses are regenerated in the transmission and 
multiplex equipment, minimizing the possibility of 
noise and distortion accumulating to cause data errors. 
In the past there were not enough users to justify a 
complete digital facility. However, since T-system 
application studies have shown, that analog signals 
can be sent over digital plant as' efficiently as on an 
analog facility, the new data applications, as well as 
the conventional digitized analog communicatio~s 
applications, can act as the spur for the rapid growth 
of this technology. ' 

While long distance transmission costs are an im
portant factor in data communications, if they were 
reduced to zero one would still be left with a signif
icant cost for the service. Local loops, multilexing, 
switching facilities and operatiomil functions cost 
would make up the remaining cost for the service. 
Advances in these technologies are discussed next. 

Multiplexing iechnology 

While the FDM subdivision may not be optimum 
for the data communication plant in the future, at the 
present time the data communications systems are 
bound to use these channels. It has therefore been 
necessary to establish a spectrum of data channels 
that correspond to the capacities of the present FD~ 
plant. The favored high quality channels have always 
been reserved for data over the analog frequency 
divis~on multiplex equipment. It was convenient in the 
past to fav.or data in this way because data was a small 
percentage of the total. However, with the growing de
mand for data and the attendant shortage of high 
quality channels it will be necessary for a transition 
tq time division mUltiplexing. 

Only in rare cases in the past - and these were with 
special electromechanical equipment - was -time divi-



122 Spring Joint Computer Conference, 1968 

sion multiplexing ever implemented. In recent years, 
however, with the introduction of high speed, low cost, 
solid state elements time domain technology has ap
peared promising. There are a number of time divi
sion techniques used to concentrate data signals onto 
a high speed data line. Important differences among 
the various mUltiplex method are involved with the 
manner of clocking the data out of the terminal and 
the number of transmission bits per data bit. It is es
sential at TTY speeds and it is desirable at high data 
speeds to use the multiplex method that allows the in
put data to run at its own clock speed rather than be 
dependent on the multiplexer. ThIs form of multi
plexing allows data signals to be mUltiplexed through 
tandem stages of multiplexing in a common carrier 
plant. The interleaving of data streams is, however, 
complicated by allowing the data terminal clocks to 
be independent. 

The Dalcode is a mUltiplex system in operation for 
over a year. It is a Western Union acronym that stems 
from the equipment use as a data line combiner and 
demultiplexer. Similar types of equipment have been 
produced by other manufacturers. Basically the sys
tem accepts asynchronous characters from TTY 
units and higher speed terminals and mUltiplexes them 
onto one syn'chronous data stream. It may be regarded 
as a wired program type store and forward system that 
operates on a single character per input line rather 
than on a message basis. 

Another class of multiplex equipment that is not 
code sensitive is termed a Transparent MUltiplex Sys
tem. It involves less efficient transmission since sever
al transmission bits are required for every data bit. 
The period of the data bit is quantized and coded. 
Faithful reproduction of the relative crossover point 
positions are important in transparent mux systems 
since this allows the data stream to operate at any 
code and speed. The multiplex method is not economi
cal in the use of transmission bits and therefore might 
be only considered for use on T -systems where the 
large transmission bit rate capacity is available at low 
cost. 

Synchronous Time Division Multiplex Systems are 
those' that provide clock for the individual input 
terminals. The system is efficient for data transmis
sion as well as multiplexing; however, signals cannot 
be routed through tandem multiplexers unless a com
mon clock system is used universally in the carrier's 
facility. The technique of a common clock has proven 
awkward in the past. Also it is inconvenient to syn
chronize the TTY electromechanical distributor 
from a clock different than the TTY unit local power 
source. 

Other multiplex methods, such as Pulse Stuffing, 

are designed to overcome the problem of independent 
data clock operation of synchronous very high speed 
data signals. This form of multiplex operation has 
several variations and some require several trans
mission bits for each data bit. 

Because of the phenomenal growth of data and the 
trend to use data processors as message switch con
trollers, the number of circuits in a network terminated 
in a single center has increased. This means that there 
are a large number of low speed circuits transmitting 
over long di'Stances. To minimize this proliferation of 
low speed Circuits, Western Union. ha's employed the 
Dalcode. The Dalcode was designed for two applica
tions, . as a back-to-back time division carrier system 
and as a computer subsystem. It is used to combine 
traffic from asynchronous communication lines hav-
ing the same or different speeds and variable charac
ter lengths which it transmits on a time division basis 
to a remote location over a voice grade channel syn
chronously at 2400 baud. For a back-to-back config
uration, as shown in Figure 2, another Dalcode w'ill 
dechannelize the signal at the receiving end at the 
same speed and character length at which it was sent. 
Operation in the reverse direction is identical. 

The Dalcode, as a computer subsystem, is capable 
of operating directly into a computer without the need 

of a back-to-back configuration. The computer re
quires a 2400 baud interface and software necessary 
to decommutate the Dalcode signals. Private wire 
systems and such Western Union computer communi
cations systems as SICOM are using Dalcode time 
division networks. 

Tile Dalcode system is only a forerunner of the 
time division technology of the future. Time division 
technology is flexible enough to be used for the same 
purpose as existing older systems and in most present 
applications it is simply used as a substitute. In itself, 
however, it has advantages that have yet to be ex
ploited. A major advantage is its capacity to handle 
large numbers of channels. With 2400 baud modems, 
21 TTY 110 baud channels can be handled on a single 
voice line. With the use of mod~ms at 4800 baud 
operation, 45 TTY 110 baud channels are possible on 
a single voice line. Modems with even higher baud 
rates are promised, making the comparison with the 
F.D.M. equipment capacity even more favorable. A 
comparison of the characteristics of the two technolo
gies are shown in Table IV. Notable in the comparison 
is that the Dalcode ~ystem will allow error control. 
Also, with some mOdification that involves alloca
tion of time slots (discussed later) the system can be 
used as a combination of switch concentrator and 
multiplexer with J?;reat economies possible. 



A,.I •• ~ __ = __ " " 
£"\.UVdU~lIIg Lommumcatlon Technology 123 

~'=B --(~ ____________ ~~~~~Ta.u~~L ______________ ~~~O._AU_D __________ ~.~~~~T~IR=~~~ ____________ __ 

'\ 

,--~:::,::",""'IYIOC_ 
OATA 
sn 

S'I~~t--__ ~....J 

SIT 

Figure 2 - Back-to-back configuration of two dalcodes 

Switching systems 

Achieving a cost effective data communication 
system requires making efficient use of transmission 
facilities which insures that the cost per unit of data 
transmitted will be a minimum. Data switching sys
tems are designed to make efficient use of the relative
ly expensive long distance transmission facilities. 
Two standard classes of switching systems, message 
and circuit switching, are designed to share the use of 
long distance transmission facilities and enable con
nections to be made between these users. 

The circuit switching systems enable direct con
nection to be made between subscriber terminals, al
lowing real time communication. The circuit switch 
system is generally designed so that there is a high 
probability that a circuit is available at the tIme the 
service is required. To make efficient use' of these 
transmission trunks and also provide a good grade of 
service .. , it is necessary to have a system with a large 
number of users and large trunk bundles. The circuit 
switch systems are designed to provide a high pro
bability of connection during a busy hour. During 
other periods the trunk utilization is low. Thus, un
less circuit swithch systems employ special load level
ing techniques, the overall transmissio~ efficiency will 
be lower than that in message switch systems. In 
general, circuit switch service is economic~l for the 
subscriber who has a light data communication load 
since he is billed oniy for his usage time. If a cus
tomer uses his data system over two hours each 
day he is often better off obtaining dedicated transmis
sion facilities. 

Message switching systems operate by accepting a 
message without delay in storage directly from a 
subscriber terminal. Since stored messages may be 
queued, the message switch system makes excellent 
use of transmission facilities; however, the storage 

control and accounting functions needed to keep track 
of the message involve equipment that is relatively 
expe.~sive. The message switching system can be 
used efficiently in large scale applications such as 
Public Message system or Autodin or small dedicated 
systems where storage is in the terminal in multipoint 
way system operation. It is also evident that if high 
volume data messages were to be sent over a classi
cal message switch system, large expensive memory 
would be necessary. 

Current message and circuit switching systems are 
shown in Table V and they are grouped according to 
categories of priv.ate dedicated system or public 
shared system. It is noteworthy that there are no ex
amples of dedicated data circuit switch systems and 
this is explained by the fact that they only make ef
ficient use of trunk facilities if there is a very large 
number of users. 

Subscribers on switching systems generally have 
very specialized communication needs which have 
been adapted to the services offered. The format, 
quantity and timeliness of the data is determined by 
the particular subscriber operation. How the new 
technologies will influence the classes of communica
tions systems are considered below in terms of the 
fundamental parts: transmission, switching and ter
minal systems. 

Shared store andforward systems 

The technology of transmission, switching and 
terminals for the Telegraph Public Message system is 
represented in Figure 3. The electromechanical auto
matic paper tape reperforator switching system has 
been in operation for 20 years. One of the charac
teristics of the Telegraph Public Message System is 
the relatively large amount of manual work involved 
in the acceptance, transcription and delivery of mes-



124 Spring Joint Computer Conference, 1968 

sages. To reduce t~ese costs the new C.R.T. editing 
terminals might possibly be used as a means to elimi
nate much of the manual handling before the messages 
enter the switching and transmission system. The 
electromechanical switching equipment which had 
advantages over the tom tape centers might" be re
placed by electronic computer systems with advan
tages of speed, reliability, and flexibility. Accounting 
functions can be performed as well as specialized real 
time services for dedicated users. 

TO OTHEP 
'E PEPFORATOP 

CENTERS 

DEDICATED 
S18SCRIBU 

TTY 
KSR, ASR 

PHONE ""', 
OPERATOR 
POSITION 

TTY 

P18LIC 
PHONE 

SYSTEMS 

TTY TIE LlltE 

DISTRIBUTION 
~FICES 

TTY'S 

-.-
LON!': 

DISTANCE 
TPANSP!ISSION 

--t-
SWiicnini=: 

-+-
LOCAL 

TRANSMISSION 

--+-

TEflMlNAL 

EOUIPMENT 

• 
Figure 3 - Block diagram - shared store and forward system, 

public message 

Since the store and forward switching" centers are 
relatively complicated, it is more cost effective to have 
relatively few processing centers and many multi
plexing concentration points that funnel the traffic 
to the processing centers. These smaller centers can 
use the more efficient time division methods "for fun
nelling the lower speed traffic into higher speed trunk 
bundles. As already discussed, it is less expensive to 
transmit each element of data on a large trunk bundle 
than a smaller one. Figure 4 is a representation of the 
existing and new time division concepts being con
sidered for implementing store and forward systems. 
The newer approach shows fewer centers and em
ploys high capacity trunks. The routing of traffic may 
be less direct extending over longer distances, but the 
economies achievable because of the use of the larger 
trunk bundles might make up for it. Forward error 
correction methods can be employed economically on 
the high speed T.n. lines rather than retransmission 
methods that· consume processing and transmission 
capacity. 

PEPERFOPATOP -0 O~TEP 

I~r-/I 
I/U, I 

--~. ~~ TE~IN~l CITY 
/f\ /ff'\. OFFICES 

4A - EXISTING SYSTEM CONCEPT 

'*)r 
\----------1 PPOCESSIN~ CENTER 

CONCENTRATOP 

4B - NEW CONCEPT 

Figure 4 - Old and new concepts - shared store and forward system 

Private wire store and/orward systems 

Private Wire Systems are communication systems 
designed for corporations with a communication re
quirement between two or more terminals. Generally 
the terminal usage is very high and the economies 
are such that the organization employs dedicat
ed communication facilities rather than shared facili
ties. The facilities might be Full Duplex or Half 
Duplex so that data can be sent in both directions 
simultaneously or in only one direction at a time. 
When more than two terminals exist on one facility 
it becomes necessary to coordinate or control the 
flow of traffic to obtain fuli" efficiency from the de
dicated lines. Private wire systems are generally high 
volume and the limit for the maximum number of ter
minals on one circuit is generally between five and 
twen~y, depen~ing on the volume o{traffic~ To co
ordinate the traffic, selectors and controllers are 
used in a polling and answer back operation. These op
erating procedures allow all the terminals to make ef
ficient use o.f transmission. Each terminal is generally 
a ASR type of TTY unit where messages on paper 
tape are leaded in to a tape reader. The terminal unit 
may be polled or contend for the line before the 
waiting message is sent. 



The selector systems, in effect, are a store and for
ward sy,stem governed by a control unit. When a large 
number of mUltipoint way circuits, each with many 
drops, are to be governed from one point, a computer 
system is generally programmed to act as a controller 
for all circuits. The complexity of the computer system 
real time control program depends on the number of 
drops and the control functions to be performed. 
Figure ? is a block diagram representation of a 
Priv::atp Wirp .~pl""£'tnr ~"QtA", 
.- ......... - .. - '1''' A& - """"""""""''''.1. ..., J ..:t""".I..I.I.. 

TO CIRCUIT 
~WITCH SYSTEMS 

CONTROWR 

COMPUTER 

WAY CIRCUIT 

LON!': DISTANCE 
TRANSMISSION 
-T-

LOCAl 
TRANSMISSION 

-+-

SWITCHIN!': 

-+-
TERMINAL 

EClUI PtI!IfT 

t 
Figure 5 - Block diagram - dedicated private wire systems 

The advancing new technology has already had con
siderable effect on private wire systems. Computer 
systems used extensively in industry have been en
listed to' perform real time communication control 
functions. Selector systems have also been imple
mented with solid state electronics and further ad
vances in reduced size and system flexibility are being 
made with the new microcircuit technology. In the 
new high speed selector systems presently being 
installed more complex selector functions are required 
with the use of the new high speed tape terminals 
operating at 1200 and 2400 baud. These more com
plex operations involve the use of error checking 
functions on data block transfers. 

Figure 6 illustrates the point to point, tariffed mil~
age between terminals in a Private Wire multipoint 
way system. In actuality, the lines connect wire and 
repeater room locations where transmission facilities 
are interconnected. Hubbing repeaters are used at 
these locations to connect the individual subscribers. 
Centralizing the selector equipment in W & R rooms 
will allow placing selector functions on a single W & R 

A ..l. ____ ! __ ,... _ _ ....- - - - - -

n.U vC1m,;mg \....ommumcatton lechnology 125 

room computer that operates on a time shared real 
time basis for all selectors in the area. This centraliza
tion arrangement will also facilitate trouble diagnosis. 

(c) 

SUBSCRIBER 
LOCATION 

TARIFFED HILEA~E = a + b + C + d + e 

TARIFFED MILEAGE IN WAY SYSTE~ 

(c) 

WIRE & REPEATEP POOH 

ACTUAL TPANSMISSION ROUTES IN WAY SYSTEMS 

Figure 6 - Way system connectivity 

SUBSCRIBER 
LOCATION 

A service called Infocom is presently planned for 
use in Private Wire Systems. The service involves 
the use of a message store and forward system under 
control of the processing center computers in the con
tiguration shown in Figure 4-8. The processing center 
stores the private wire family of addresses for each 
subscriber and only allows communication between 
users in the family. While transmission is more in
direct, the low cost of shared trunk bundles more 
than makes up for the additional mileage. In addition, 
the ~enter can perform message processing functions 
for the family of terminals. 

Circuit switch system 

Circuit Switching Systems for data communication 
users, such as Telex, TWX, Broadband and Data 
Phone, enable connection between any two of a large 
number of generally low usage lines. Figure 7 shows 
the basic block diagrain for the generalized circuit 
switching system. Low usage generally . involves 
6 to 12 minutes during busy hours with a half hour 
per day total service requirement. The number of 
trunks between switches is in the range of 25% of the 
number of data subscribers to provide a high pro
bability of connection when request.~d during the busy 



126 
Spring Joint Computer Conference, 1968 

period. Dial signals preceding the data flow are used to 
set up a connection. The diai information is decoded in 
registers and matrices are switched with appropriate 
signalling between calling and called party for the con
nection to be made. 

• MODEM 

• DATA LINE 
TR#.MSCEIVEP. 

• 
LONe:: DISTANCE 
TPANSMISSION 

--t-

SWITCHINC:: 

-+-
LOCAL 

TRANSMISSION 

-t-
TEPfilINAL 
E~UIPMENT 

• 

Figure 7 - Block diagram - circuit switching systems 

The service is billed on distance and timed usage. 
It is relatively expensive for high usage long hold
ing time traffic. Technology can offer improvements 
in circuit switching services by reducing cost of 
switching equipment, making the services more reli
able and" allowing the introduction of special bill
ing and load leveling s'ervices. Table VI is a list of 
the n~w services that programmable common con
trol systems will aliow. All of these services are 
designed to facilitate the setting up of connections, 
provide reliable service in the case of unusual traffic 
or transmission conditions, and allow special classes 
of services for special subscriber requirements. One 
capability thought to be desirable is one which will 
allow subscribers the capability to operate at differ
ent speeds interchangeably. ,This is thought to be 
feasible by the integration of the various circuit TrY, 
V.F. and Base Group trunks into common exchanges, 
and this will allow one subscriber to initiate, as the 
need arises, low bit rate TTY traffic as well as data 
rates' up to 50 K baud. Arrangements to switch 40.8 
kb, 50 kb and 200 kb traffic are presently under con
sideration. 

Time division switching systems 

Time division mUltiplexing has been described 
as having great promise for configuring cost effective 
communication systems. However, there are many 
other tim~ division opportunities that can be taken 
advantage of to improve the communication system 
operation. The subsys~em building blocks employing 
time division technology from which a data commun
ication system may be c'onfigured, a're first'defined be
low. These blocks are then configured to make up 
systems for carrying the Jour categories of data com
munications discussed earlier. 

Digital transmission facilities (DTF) 

The transmission facilities available for digital 
communication discussed previously are tabulated in 
Table III. A more cost effective data communica
tion system will result if the higher capacity facilities 
are employed and' efficiently utilized. In system con
figurations this often requires concentrating traffic 
in trunks directed to a relatively few switching or pro
cessing centers. 

Time division multiplexing (TDM) 

Time Division MUltiplex sy.stems like the Dalcode 
efficiently channelize asynchronous signals into V.F. 
facilities. They have the potential of an order of magni
tude more channel capacity than an FDM system. 
TDM systems are also employed to channelize high 
data rate synchronous signals. 

Time division concentrator (TDC) 

The digital multiplexer TDM ~ystems always allow 
a time slot channel of transmission for every terminal. 
A TDC system would be' one which has more data 
lines than time slot positions on t~e high speed trans
mission link. The concentrator therefore functions to 
allocate a time slot position as the data users require it. 
A particularly ~seful mod~ of operation for the TDC 
enables the concentrator equipment to remember the 
request for service and ri~g back or establish the con
nection as soon as the time slot becomes available. 
This operation' affords both improvement in trunk 
effiCiency and is a convenience for the user. 

Time division exchanges (TDX) 

The TDC and TDM systems described are en
visaged as routing traffic' over a single V.F. data 
facility. Several of these V.F. lines would terminate 
in a higher level TDX system that will further multi
plex or concentrate the traffic on higher speed trunk 
bundles. This higher level equipment will have the 
capability to identify routing requests on the individual 



time slot channels. The equipment, by redistributing 
data from one time slot to another in response to the 
routing service request, provides the functions of 
a switching exchange. Other functions, such as alter
nate routing and priority requests, might also be pro
vided 

The TDX, as has been defined here, is different 
than any other exchange previously built, or to the 
writer's knowledge, planned.' Conventional systems 
require that each individual signal be de channelized 
to a specific line and then the switching equipment 
services each line independently. The conventional 
switching operation may involve either space division 
or time division sampling switching techniques. The 
TDX will not require independent demultiplexing 
equipment for the switching operation. Switching 
would take place by the reallocation' of a time slot 
for a given user in response to a routing requirement. 
In fact, the operation might approximate that of a 
computer store and forward system with the capability 
to store no more than one or two characters at one 
time. The TDX system therefore functionally approxi
mates both a circuit switch and a message switch. The 
system is expected to be low cost and reliable since 
mUltiplex equipment terminations are not needed and 
since the switching operation does not involve any 
electro-mechanical equipment. Since the signals are 
transmitted and switched at the high data rat~s and 
regenerated through logic in the system, there will 
not be any signal distortion or noise interfel ence in 
the switching operation. 

Time division way systems (TDW) 

The TDC previously described involved line termi
nations located at one point. Some systems involve 
a distribution of terminals at varying distances along 
a circuit. A system called a TDW would have charac
teristics of a TDC with distributed terminations as 
in a multipoint way wire system. A voice line, rather 
than a single teletype channel, would connect the 
users. The time division signal on the voice line would 
be made up of the individual user data inserted in the 
appropriate time slot at the point of connection to 
the line. One central point would control the synchro
nization. The system may also be put into a high speed 
mode of operation with the terminals operating as high 
as 2400 baud. In this case, since only one subscriber 
can send at a time, polling and answer back operation 
would convert the system to function as a high speed 
way wire system. 

Processing center (PC) 

A processing center performs aii those message 
processing functions not connected with the direct 

Advancing Communication Technology 127 

transmission of messages. The center will store the 
messages and initiate their transmission at the appro
priate time. -Services such as code translation, mes
sage editing, multiple message control, billing and 
other on line and off line functions are performed in 
the processing center. 

The building blocks of data communications sys-
tems defined above may be used to implement the 
four categories of data communications shown in 
Figure 1. Category I involves the telegraph message. 
The configuration of the building blocks to perform 
this data communication service corresponds to the 
message store and forward operation in its modern 
form as described in Figure 4-B. In general, it would 
involve the use of a TD M funnelling traffic into a 
processing center. For a large system and to increase 
efficiency of line utilization, TDC's and TDM's would 
direct traffic into TDX's and from these to PC's. The 
main function of the TDX's would be to concentrate 
or multiplex traffic onto a high capacity trunk bundle. 
The switching operation would involve rerouting of 
traffic over different transmission paths for pur
poses of load leveling or fallback. 

Category II involves the interactive terminal type 
of traffic. As described previously, it consists· of a 
small number of characters in the form of a short 
message between an individual and a computer. In 
both cases, when the messages are either originated 
by the human or the computer, it is desirable that the 
communication system does not block the operation. 
Dedicated lines or direct circuit switch connections 
commonly in use for this application are .~ significant 
cost factor for the service, particularly over long dis
tances. Since the central processor unit is addressed 
on the average only 2% to 4% of the ti-';l1e in the period 
of interactive terminal connection, most of the time the 
communications are in an idle condition. The most 
economical system would be one which establishes 
the connection every time the interactive terminal me
sage is sent. However, the operation of setting up the 
connection with conventional circuit switches is a 
relatively long manual dialing' effort. The TDC and 
TDX can be designed with the capability of instan
taneously setting up the connection every thne the ter
minal is addressed, since they do not contain· ele
ctromechanical equipment. Thus,. using this equip
ment, the transmission economies of circuit switch 
operation can be attained at no loss in operating 
convenience. 

At present blockage might develop in the system 
because of the limitations of the central processor 
unit to handle simultaneous user queries. When sys
tems get larger· and the communications systems 
become. more efficient the communications system 



128 Spring Joint Computer Conference, 1968 

blockage might be integrated with the computer 
limitations of handling traffic. It may prove efficient 
to enable the time division equipment to buffer a block 
of characters, if an interactive terminal message can
not be accepted for transmission immediately. The 
time division system wouid then operate as a store 
and forward system, allowing greater economies in 
transmission as well as greater computer processor 
throughput. 

Data communication Category I II represents the 
volume data transfer now sent on voice lines and 
Category IV represents that sent on base group facili
ties. In each case the traffic is sent on either circuit 
switches or over a dedicated connection. The switch
ing system configuration that will allow reduced costs 
will be one which makes more efficient use of trans
mission. One way of performing this wouid be to en
able the data to be sent in a simplex mode where 
data are sent" in one direction 'only. The return trans~· 
mission normally associated with a duplex operation 
can be assigned another function. In present systems 
the return loop is sometimes used in retransmission 
type of error control. However, time division high 
speed circuits can efficiently employ forward error 
correction equipment, eliminating the need for a re
turn loop. Another method for improving trans
mission efficiency involves the use of scheduled call
ing or ring back mode of operation for load leveling 
purposes. This, in effect, takes advantage of the stor
age facilities of the computer subscriber and allows 
the time division communication system to operate 
with the computer terminal hardware, achieving store 
and forward operation and its attendant economies. 

At present the major categories of data transmission 
are segregated on groups of channels according to 
their unique transmission speed requirements, and 
never mixed. There is no reason to continue this form 
of separation on the high speed digital transmission 
trunks. It should be possible to utilize the same trunk 
bundle for different mixes of data channels. Thus the 
high speed data channel during evening hours might 
use the TTY time division slots. The rearrangement 
of channels can be accomplished automatically in a 
TD X under program controls in a modernized trans
mission control center that replaces the wire and re
peater rooms. 

Inter-computer communication system 

One concept being discussed which will allow more 
efficient use of computer is to tie computer systems 
together even across the country via a communication 
network. This would allow all computer users in 
the enlarged family to have access to the diversity 
of programs, make use of unique computer charac-

teristics in particular places and distribute loads. Aside 
from the computer system planning needed to define 
the services made possible by this inter-connection, 
there are unique communication system problems to 
solve as well. 

The characteristics of the communication for inter
connected computer systems are such that the infor
mation will be transmitted in real time with a mini
mum of delay and it shall have characteristics of store 
and forward systems since it deals with message flow. 
Ideally, the system should have the best features of 
both message and circuit switching systems: negli
gible waiting time that favors the high priced human, 
and an efficient message interface to favor the high 
priced computer. 

Figure 8 represents a possible geographic arrange
ment of computer systems. Note that these computer 
systems might appear in ~lusters around city locations. 
The most efficient communication plan for these 
computer systems might involve all combinations of 
the" "different types of communication services - dial 
circuit switch systems or dedicated line systems or 
even shared message systems. Messages might go 
directly to the computer from an I/O device or via a 
way circuit system. The general purpose computer 
systems might be programmed to control the input 
lines or a special communication interface designed 
for this purpose might be used, as is shown in Fig
ure 9. Long distance routing of traffic between com
puter systems might also be done in the computer or a 
specialized communication interface. This inter
computer communications function might take on 
many automatic operations which involve decisions 
regarding which computers in the system would more 
efficiently perform the service for operational or 
load leveling reasons. In addition, the communications 
function might be made up of a mix of transmission 
services and, for reasons of cost effectiveness, the 
system could have the capability to choose the cor
rect transmission facility at the moment. For example, 
if all dedicated lines are in use, it might delay trans
mission or make use of the automatic dial system or 
use the public shared store and forward system. The 
design of this system can become very complex, in
volving software, hardware, transmission and through
put trade-()ffs. 

CONCLUSIONS 

Four categories of data communication have been 
defined and they include: the TTY message, the 
interactive terminal message, and the high volume 
data messages. The high volume messages are cate
gorized according to their transmission on either 
voice lines or on base group facilities. The established 



EAST COAST ....--------l 
I 
I 
I 
I 

I I 
I T I 
L----~ 

COfI'UTEP. PROCESSINf; CENTER 

INTER COf'IPUTER CCM4UNICATIOHS CONTROLLER 

COfI'UTER CCM4UNICATIONS INTERFACE 

TDC OR TOM 

DEDICATED LINES 

CKT, SWITCH & SHARED PUBLIC I£SSAGE LINES 

Figure 8 - Block diagram - inter computer communication system 

DEDICATED DATE 
C~, FACILITIES 

TO 
OTHER INTER COMPUTER 

COMHtJU CAT! ONS 
CONTROlLER 

MUlTIPLEX 
EQUIP, 

COfoIOUTEII 

I NTER COMPUTER 
COIftIN I CATI ONS 

CONTIIOLlER 

TIIANSMISSION 

SWITCHINE: 

TEPMINAL 

Figure 9- Block diagram-inter,computer communication system 

Advancing Communication Technology 1"n 
Jk7 

communication systems of today are expected to go 
through an evolutionary process to meet the data 
communication requirements in the above categories. 
The changes in communication services should come 
about as a result of more efficient transmission 
systems and time division mUltiplex equipment, and 
the use of lower cost flexible switching equipment 
that will allow high transmission efficiency on trunks. 

The advancing technology in transmission has been 
in th~ directiOll of large capacity digital baseband 
systems. Digital baseband microwave and T -systems 
are important advances, allowing greater than an 
order 'of magnitude iJ;lcreased data transmission capac
ity over conventional frequency division subdivided 
channels. The high data rate systems should contrib
ute significantly to reduced transmission error rate 
and costs. The application: of these wideband data 
systems ought to be accelerated because' analog 
transmission can be included as economic. users on 
some of these high data rate facilities. 

The advancing digital mUltiplexer and modem 
technologies are making it possible to more efficiently 
use the existing standard voice, base group, and super 
group carrier channels for data communications. The 
data communication switching systems of the future 
are expected to be a hybrid combination of a com
puter controlled circuit switch and a message store 
and forward system. Efficient time division multi
plexing systems can be extended to perform con
centration and switching, obviating the need for com
plex, relatively unreliable electromechanical hardware 
in' the data communication exchanges. The store and 
forward operation, depending on the speed and length 
of message, might involve storage for one bit or one 
or two characters, in which case the system will 
function as a circuit switch, or it might store a block 
of characters or the entire message itself. Program
mable common control equipment can be used to 
flexibly provide the convenience and load leveling 
services. 

Considering the advancing technology the computer 
industry can look forward to the time when long dis
tance data communication will be low cost and flexible 
enough to suit their spectrum of application. The 
system advances reported here are presently within 
the state of the art of technology and yet the system 
advances will take many years to implement. The 
problems to be tackled will involve aspects of com
patibility, investment, regulation and standardization. 
At present both computer applications and commu
nications industries are learning and adapting to each 
other. Only with proper coordination, planning and 
leadership in these industries will the data communi
cation services of the future be effective. 



130 Spring Joint Computer Conference, 1968 

TABLE I - Data Communication Technology Factors 

Transmission Technology 

Multiplex System 

Terminals 

Switching - Ckt. Switching 

- Message 
Switching 

Existing 

• Wire & Cable 

• Radio - H.F. 

• Microwave 

• W & R Repeater 
Rm. Operations 

• FDM 

= TTY KSR 

• TTY ASR 

• Paper tape 
terminals 

• Electromechanical 
Matrices 

• Electromechanical 
Common Control 

• Reperforator 
Cross Office 

• Electromechanical 
Way System 

New 

• Satellite 

• Digital Microwave 

• T-System 

• Computer controlled 
Transmission Centers 

• TDM -Synchronous 
Asynchronous 
Code Sensitive 

• High Speed Modems 

• CRT's 

• High Speed Ter-
minals: Card, 
Magnetic Tape 

• Time Division 
Space Switching 

• Time Division 
MUltiplex Line 

Control 

• ESS 
7 Computer Message 

Switch 

• Micro circuit 
Way Systems 



Advancing Communication Technoiogy 131 

TABLE II - Micro Wave System Capacity 

Digital System Options 

1 - 46 megabit channel 

7 - 6 megabit channels 
28 - 1.5 megabit channels 

672 - 50 kilobit channels 
(digital voice capability) 

Analog System Options 

3 master groups 

30 super groups 

150 base groups 

1800 voice channels 

T ABLE I I I - Data Communication System Data Transmission 
Channels 

FDM 
Transmission 

Digital Base
band Microwave 

Tsystems 

Satellite 
Systems 

TTY 
V.F. 
Base Group 
SuperGroup 

6 MHz Carrier 

T-1 V.F. Channel 
T-1 system 
T-2 system 
T-4 system 

Master Group 

50,57,75, 180 bits/sec. 
1200,2400,4800,7200 bits/sec. 
40.8 or 50.0 K bits7sec. 
200 K bits/sec. 

46 M bits/sec. 

64 K bits/sec. 
1.544 M bits/sec. 
6 M bits/sec. 
281 M bits/sec. 

46 to 92 M bits/sec. 



132 Spring Joint Computer Conference, 1968 

TABLE IV - Comparison ofTD & FD Multiplexer System 
Characteristics 

Channel Capacity 

Error Control 
Potential 

Codes 

Speed 

Delay 

Regeneration 

Switching System 
Compatibility 

Computer Interface 

FDM System 

10 - 110 baud TTY 
Channels 

none 

Transparent 

Variable up to a maximum 
baud rate 

none 

None without special 
regenerators 

TDM System 

21 to 45 - i iO baud TTY 
channels 

Error Detection 
Error Correction 

Fixed - but can be 
changed by change of 
a card 

Variable up to a maxi
mum baud rate 

One chaiacter 

Regenerated automatically 

Suitable for Space and 
Suitable for Space Division Time Division switching, 

No extra multiplex 
equipment necessary for 
high speed time slot 
switching. 

Requires per line equipment Can be terminated 
directly. 
Demultiplex function 
performed by Computer. 

T ABLE V - Data Communications Switching System Categories 

Circuit Switching 

Message Switching 

Public or Shared 

Telephone System 

Broadband System 

W.D.S. 

Telex 

TWX 

GSA-ARS 

Telegraph Public 
Message 

Info-com 

GSA-ARS 

Autodin 

SICOM 

Private Dedicated 
System 

Corporation Dedicated 
Systems 

Reservations Systems 

Multipoint Way Systems 



Advancing Communication Technology 1'1'1 
"JJ 

T ABLEVI - Services Possible with Programmable Common 
Control 

REFERENCES 

1 J E CALDWELL 

Computer controlled subsystems 
Western Union Technical Review January 1967 

2 E H MUELLER et al. 

• Camp-on - Ring back 

• Answer Back 

• Traffic Measurement 

• Priority 

• Distinguish Classes of 
Services 

= Quick Line and Abbreviated 
Dialing 

• Restricted Access 

• Network Rerouting 

• Interface with Other 
Services 

• Conferencing 

Analog and digital transmission capability of microwave 
systems 
Western Union Technical Review August 1967 

3 D F HaTH 
Digital communication 
Bell Laboratories Record February 1968 





Analog computer simulation of semiconductor circuits 

by PHILIP BALABAN and JOHN LOGAN 
Bell Telephone Laboratories, Incorporated 
Holmdel, New Jersey 

INTRODUCTION 

This paper describes new simulation techniques which 
are being used in the analysis and design of integrated 
circuits. They have also proved advantageous in the 
characterization of semiconductor devices. Two ap
proaches are available; the breadboard method, a 
method based on retaining circuit topology, and the 
analog method which is based on traditional analog 
computer programing techniques. 

The techniques are based on a proposal by Gummel 
and Murphy! in which they suggest using the low 
frequency component of the actual junction current 
as a measure of the charge stored in a semiconductor 
junction. This idea has subsequent1~ been named the 
Separation Principle since it allows the nonlinear dc 
characteristic to be separated from the transient be
havior of the device. 

The breadboard method uses the transistors them
selves as computing elements in the simulation much 
as in the real circuit, thereby maintaining topological 
similarity. The analog method relies on a simple rep
resentation of a semiconductor junction, using a 
diode to provide the junction nonlinearity. Transis
tors are then programmed as two interacting semicon
ductor junctions allowing access to internal device 
parameters which are not available in the breadboard 
method. Topological identity, however, is generally 
lost. 

The need for these methods arises from the fact 
that other computer aids to the design of complex 
circuits' are not entirely satisfactory, particUlarly if 
realistic models of the active devices are required. 
In analog simulation, circuit size has previously been 
limited by the available number of computing ele
ments. In digital computation storage capacity and ex
cessive solution times have imposed the limitation. 
These solution times rule out optimization routines 
when many runs have to be made. 

The present approach provides adequate models in 
an efficient manner, the programming is relatively 
simple, and parameters can be readily varied. Many 
designs of reasonably sized circuits can be explored 

quickly, sensitivity investigated and the design opti
mized. Thus it is felt that a significant step has been 
made in reducing circuit design turnaround time. 

The separation principle for diodes 

Theory 
Charge control theory for diode operation shows2 

that the diode current can be written as 

(1) 

where id is the instantaneous diode current 
q is the minority carrier excess charge stored 

in the device 
Tf is the minority carrier lifetime 
C j is the junction transition-region capacitance 
V d is the voltage across the junction. 

It is convenient to define 

•. - q 
R- -

Tf 
(2) 

At low frequencies, as used on the analog computer, 
only the current iR is observed since the derivative 
terms are many orders of magnitude faster. Equation 
(2) shows that the low frequency current iR is a mea
sure of the charge stored in the device. Thus Equation 
(1) can be rewritten as 

Time scaling may be applied such that 

(4) 

where at is the time scaling factor. Equation (3) then 
becomes 

(5) 

The effective life time is atTf and the time scaled 
transition region capacitance is atCjo 

135 



136 Sring Joint Computer Conference, 1968 

The breadboard method for diodes 

If a small sensing resistor r is placed in series with 
the diode as shown in Figure 1, then the low frequency 
current iR flows through this resistor developing a volt
age riR• 

A differential amplifier having gain A is connected 
across the sensing resistor r to give an output vo~tage 

(6) 

This voltage is applied to capacitor C connected as 
shown in Figure 1. If the voltage across the diode and 
sensing resistor is small compared with V, then the 
. current through the capacitor is 

ikf 

--+ 
icJ is! 

C 

QtCj 

------III-( -----, 

iR 
---+ 

• 
It 

Figure I - Breadboard method for applying separation principle 
to diodes 

(7) 

If CAr = atTr, then is gives the second term on the 
right hand side of Equation (5) and the time scale fac
tor is given by 

CAr 
at=-

Tr 
(8) 

A capacitance of magnitude atCj is then connected 
as shown in Figure 1 and assuming that 

the voltage across this capacitor may be taken to be 

Yd· 
Typical values of r = IOn 

iR = 1 rna and 
Vd = .7V 

gives riR = .01 V which is much less than V d as re
quired. The current through the capacitor is 

(9) 

This gives the third term in Equation (5) and the sit
uation in Figure 1 therefore represents a time scaled 
simulation of the diode, satisfying Equation (4). 
Typical values for the parameters are 

r = IOn 
A= 103 

C = If.LF 
Tr = 10-8sec 

.. h· f: CAr gIVIng t e tIme scale actor, at = -- = 106 

Tf 

The simulation speeds are one million times slower 
than the response of the diode itself indicating that any 
(real time) transient effects in the diode are compieteiy 
swamped by the external elements C and atCj. The 
current iR is therefore the low frequen~y current as 
required by Equation (2) and the transient currents 
flow through the external elements showing that the 
low frequency and transient effects have been sepa
rated. An excellent dc representation is provided 
since the diode acts as its own dc model. 

The analog method for diodes 

This method is also based on the assumption that 
the diodes used as models are so fast compared with 
scaled computer time that only the nonderivative 
terms of Equation (3) are measured by the analog 
computer. Therefore, if a voltage V d is applied to the 
input of the circuit in Figure 2, the output voltage 
Vo=- iRRd is proportional to the low frequency or con
duction current iR. U sing this relationship, Equation 
(3) can be implemented using standard analog com
puter techniques. Taking the Laplace transform of 
Equation (3) 

R .... 
u 

Figure 2 - Low frequency diode simulation 

or 

(12) 

The diagram in Figure 3a represents the simula
tion of the diode Equation (12) and Figure 3b the sim
ulation of Equation (11). 



Analog Computer Simulation of Semiconductors Circuits 137 

tal 

( b) 

Figure 3 - Simulated diodes 

The scale factors for those simulations are 
Voltage Vd=Vd 
Current Id = Rdid 

Transition region 

capacity 
Lifetime 

C j = K2 Rd atCJ 
TF = Kl at Tr 

Control of DC parameters 

(13) 

The dc current-voltage relationship of an idealized 
diode is given by 

where Is = saturation current (a constant) 
q = magnitude of electronic charge 
k = Boltzmann constant 
e = absolute temperature 

(14) 

M = a constant which depends on the type of 
diode used. 

The output voltage IR in Figure 3b is then 

qKaVd 

IR = iRRd~ = (ls~) Rd [ e Mk8 - 1 ] 

= I: [ eAvd 
- 1 ] (15) 

therefore any diode at any temperature can be simu
lated simply by changing the parameters I~ -and A' 
which are easily adjustable by varying the potenti
ometers K3 and ~. 

Experimental results (diode analog method) 

A diode circuit as in Figure 4a was simulated by 
the analog method in Figure 4b. The transient param
eters of the circuit were C t = 2pF; Tf = 6xl0-9 sec; 
r = 1 k!1; E = 10 sin (21T x 107t). The chosen scale 
factors were at = 107; a v = 1; aI = 1000; where ab 

a v , aI were the time, voltage and current scales re
spectively. 

e 

-E 

r 

(0 ) 

(b) 

\ 

SIMULATED Vd 
DIODE 

Figure 4 - Diode circuit and simulation 



138 Spring Joint Computer Conference, 1968 

The waveforms V d and Id in response to a sine wave 
are shown in Figure 5. The negative spike "A" in the 
current waveform is caused by the stored charge in 
the diode and is controlled by variation of the recom
bination time 7f. The slope "B" is influenced by the 
depletion layer capacity C j • 

The simulation provided very close agreement with 
experimental diode behavior. 

~ lV/line' , L-+-_+ ~ _-+ ~ V in +---if-/-P-t-I'\,-+-+-t--+--+--+-t-_ -+-/17", --.t:-~ ~~L_t, 1

t

' 

t- \ / 1\ / 1\;-- t ! 

-- --+-+--+-+~~\!=!~=t:II~~~t~=t=~~\~t~=~ll~~=~+-_t-_t'l~,-t_ --t 
t~-+~+-~V-+~+-r+~-+-r'~TV-r+-~-r~jT:--I~ 

'~t----t--+-.l*["o..---jl-+-Vf-l/+-t-:I --++-+~+.1-1!'-..Ir+~j -+.r-/tr, --t-+-r---t--r1L-'t~-r ~ 
f~:- r~ Ii l.vj ~ 

Y1 I : ~' :: I t -L ~'"1 r--t-- "I!,! , 111 ,-+--l~ L+> t 
L 1 i ~ --t-t-~~ --~ j L,~.; ; 

1 1 I -A, 1. t--+- t + t ; 
i 1 1. 11 ' 

Figure 5 - Simulated diode response 

The separation principle for transistors 

Theory 

The charge control equations for a transistor are3 

Base 
Current, 

. =_[qf + qr ,~( +q) , C- dVej . C. dVCj ] (16) 
Ib Tbf Tbr -r dt qr r + Je dt + JC dt 1 

Emitter 
Current, 

. ( 1 1) qr d C dVej 'Ie = q, - + - -- +-.qf + je--
• Tf 7bf 7r dt dt 

(17) 

Collector 
Current, 

ic = -~ + ql ~ + d-) + :t qd- C jC d;t 
If \ I r I hr / 

(18) 

where 
qf is the forward component of charge stored 

in the base. 
is the reverse component of charge stored 
in the base. 
is the forward injection charge control 
parameter. 
is the reverse injection charge control 
parameter. 

Tbf is the effective base recombination life
time f()r reverse injection. 

7hr is the effective base recombination life-
time for forward injection. 

Vej is the emitter junction voltage. 
v cj is the collector junction voltage. 
Cje is the emitter junction transition region 

capacitance. 
CjC is th collector junction transition region 

capacitance. 
af is the forward current gain parameter. 
a r is the reverse current gain parameter. 

Consider the base current ib and assume that 

(19) 
Then the low frequency current is 

. 1 ( + ) _ qb Ij=- - qf qr --
7 7 

(20) 

where the total charge in the base is qb = qr + qr. 
The instantaneous base current becomes 

. -' ~j C dVje C dVjc 
Ib - Ij + 7 dtY- je dt + jc dt (21) 

which is of the same form as Equation (5). Again, if 

Equation (20) becomes 

. _. ' dij C dVje dvjc 
Ib - Ij + at7 dt + at je dt + at CjC Yt(22) 

where the effective lifetime is now at7 and the transi
tion region capacitances are at Cje and at C jC. 

The breadboard method for transistors 

Figure 6 shows the arrangement for time scaling 
transistors in a similar manner to that used for diodes. 
The operational amplifiers provide the effect of a 
differential amplifier and apply a voltage proportional 
to the low frequency current ij across the capacitance 
C. 

The current through capacitance C is 

. = C d(v-vh) = CA di j 

Is ..:1+ r d+ 
UL L 

(23) 



Analog Computer Simulation of Semiconductor Circuits 139 

~-v 

Figure 6- Breadboard method of transistor simulation 

assuming that the voltage drop across the sensing re
sistor r is small compared with Vje and Vjc the current 
into the two capacitors at Cje and at CjC is 

. - C dVjee C dVjc 
lk - at je dt ~ at jc dt (24) 

(25) 

If CAr = atT, Equation (24) is identical to Equation 
(21) and Figure 6 is the simulation for a transistor 
time scaled by the factor 

CAr 
at'=-T-

I t is important to note the assumption that Tbf = Tbr 
= T. This restriction becomes important only when the 
collector junction becomes forward biased and it ap
pears that the best solution then is to use the analog 
method described next. 

The capacitances in the simulated model are deter
mined by the measured values6 and the desired time 
scale. The magnitude of the sensing resistor r depends 
on the base current level to be detected. Generally 
100 fl resistor is adequate. In cases where this value 
affects the transistor behavior, feedback can be used 
to compensate completely for the voltage drop across 
the sensing resistor. 

The advantage of the breadboard approach is that 
the real transistor is used as its own dc model. All dc 
nonlinearities and parameter interdependencies with
in the transistor are therefore available without 
the need for complicated function generators. The 
programming and debugging are similar to breadboard 
circuit building and checking. This generally results 

in much shorter setup times than In conventional 
analog programming. 

The analog method for transistors 

To simulate the transistor the extended Ebers-Moll 
model of Figure 7 was used. This model is equivalent 
to those used in digital analysis programs such as 
CIRCUS4 or NET P, etc. 

e 

a, i" ..... 

b 

c 

+-
Ie 

Figure 7 - Modified Ebers-Moll transistor model 

The emitter and collector currents ie and ic are given 
in Equations (17) and (18). 

Designating the values: 

....9L = ifr which is the forward conduction current 
arTf 

qr . h' h' h d . -- = Irr W IC IS t e reverse con uctIon current 
arTr 

and using the relations.3 

(26) 

The Equations (17) and (18) can be rewritten as 

where 

. _. difr C dVej 
If - Ifr + arTf dt + je dt (28) 

These equations can be implemented on the analog 
computer using the simulated diodes in Figure 3a or 
Figure 3b. Either of those diode configurations can be 
used at the discretion of the designer. One is probably 
more useful in a loop analysis solution and the other 



140 Spring Joint Computer Conference, 1968 

in a nodal analysis. Mixed methods can also be used. 
As an example, the N PN transistor amplifier shown in 
Figure 8 was simulated using the layout of Figure 9. 
The simulation uses one diode of Figure 3a and one of 
Figure 3b. 

Figure 8 - Grounded emitter amplifier 

One of the important advantages of this type of a 
simulation (compared with the breadboard method) is 
that the lifetime for the emitter diode, Thh and the 
collector diode, Thn can be varied independently which 
avoids the assumptions in Equation (19). 

Figure 9 - Simulation of grounded emitter amplifier 

Experimental results 

To illustrate the analog .method the simulated 
grounded emitter amplifier of Figure 8 was driven by 
a squarewave. 

The transistor and circuit paramenters used in the 
simulation were: r'b = lOll; af = 0.985; a r = 0.2; 
Tf = 1.13 X 10-9 sec; Tr = 20 X 10-9 sec; Cje = IpF; 

Cjc = 0.3pF; Eo = 6V; re = 50011; Vin = 107 Hz square
wave 5v peak. 

The scale factors were chosen to be: at = 107
; 

£Xv = I; U'1 = 1000, where U'b U'v, al are the time, volt
age and current scaies respectively. 

The resulting waveforms of the base, emitter, and 
collector currents are shown in Figure 10. Qualitative 
rather than quantitative tests were performed to ob
serve the influence of the various transient terms on 
the waveforms. Those waveforms show very close 
correspondence to those observed in real transistors. 
The delay time (D), rise time (R), storage time (S) 
and fall time (F) are clearly seen in the Ie waveform 
of Figure 10. The spike (8) in the Ie waveform is de
termined by the charging of the base-collector capac
ity Cje, the small pulse (C) in the Ie curve is con
trolled by the charging of the base-emitter capacity 
Cje. The spike (A) in the base current Ib is caused by 
the charging of Cje and CjC and the large negative pulse 
SC is due to the removal of the stored charge from 
the junction. 

~f---, V in lV/line ;t-. -+-if---+-f-t-+-t-+-+-+-+-+-+-+-t--+---f-,-l. - ~==$~=-!.-~::""-.'*,,,.c;-+--i= 
~~=- - I 

'-f- ~ lmA/line f--,-+--+-+--+-+-+-+-+-+--+-+-+-i-.-A 

..... 
SC_ 

"'" I 
I 

1 I 
- I I 1 

-- ... __ : 1· 1; 
_ - Ie lmA/line ;t-: +---l-++-+-+-+-

~.1 
. R .... 

-J I .... 
py II 

!-. 

I Tl 

.. 

......--

~ --.. ::: .,",-c. ~:~ ~-=.:;. ._.-

~ 1\ 
~ \ - \-

'-1.-.i.....-J--.-L-'-"--'-~~L· C TO. 05800 /dl v • ,-' ...L...J---L..J......,L-L.J.-.Li 
I I I I ~I +I'~I~I~I-+-I +I~I~I 

Figure 10-Simulated amplifier response 

. Application of the breadboard method to logic cir
cuit simulation has been described in the literature6 

where very close agreement is shown to exist between 
the simulated logic gate and the actual circuit. 



Analog Computer Simulation of Semiconductor Circuits 141 

CONCLUSION 

A description has been given of methods for simu
lating diodes and transistors using semiconductor 
devices as computing elements to generate the non
linear dc characteristics. Two distinct approaches 
exist: one, called the breadboard method, uses the 
actual device and requires sensing resistors for cut
rent detection; the other, known as the analog method, 
simulates the devices using traditional analog comput
ing methods such that currents and voltages appear as 
analog variables. A comparison of the breadboard and 
analog methods is summarized below. 

Validity of models 

Both methods rely on the separation of the low
frequency behavior of the device from its high-fre
quency response. The analog method replaces voltage 
sensing resistors by operational amplifiers. This re
duces the possibility of swamping any small bulk ef
fect resistances with comparable sensing resistors. 
For this reason, the simulation of diodes tends to be 
more accurate in the analog method. In the simulation 
of transistors, however, the breadboard method ap
pears to have an advantage. It accounts correctly for 
all effects simulated in the analog method except col
lector lifetime. In addition it also provides an accurate 
representation of low-frequency effects such as base 
widening and nonlinear current gain. 

The model in the analog method corresponds exact
ly to charge control and Ebers-Moll models used in 
digital programs such as CIRCUS and NET-I. Non
linear functions, such as current gains af and an or 
transition region capacitances Cje and CjC can be readi
ly modeled in the digital programs. These features can 
also be incorporated in the analog method at the ex
pense of additional function generators. The analog 
method by its modular nature does allow for a simple 
simulation of the collector lifetime - a parameter of 
significance in applications where the transistor satu
rates. Finally, it allows for the simulation of arbitrary 
base resistances and changes in the parameters of the 
dc model. This control enables a designer to do specu
lative design with devices that are not yet fabricated 
as well as characterize a device with arbitrary param
eters .. 

Computing flexibility 

The question of flexibility can be resolved into two 
parts. The first question deals with the ease of pro
gramming - a measure of the difficulty encountered in 
translating a circuit sketch to a working computer sim
ulation. 

For simulating diodes, the analog method is as 
simple to use as the breadboard method. A 10-diode 

logic gate was simulated and debugged in a few hours 
of analog computing time. 

In transistor simulations, the breadboard method 
which retains the topology of an experimental bread~ 
board, has a distinct advantage in ease of programming 
over the analog method. The analog method involves 
traditional analog programing with little or no simi-· 
larity to the experimental breadboard. 

The second question of flexibility concerns the abili
ty of adapting the circuit simulation to a form suitable 
for optimization procedures and parameter tolerance 
analysis. The analog method has a clear advantage for 
these purposes. There are no external capacitors or 
sensing resistors used in the method. The traditional 
analog computer components that comprise the simu
lation are easily controlled by digital computer soft
ware in a hybrid computer arrangement. Optimization 
procedures and sensitivity analysis become feasible 
and it becomes possible to envision the circuit simu
lation as a digital subroutine. 

Typical solution times for both methods are 10 to 
100 msec per solution. This means a favorable factor 
of approximately 104 in comparing solution times 
of digital programs such as NET-l,5 CIRCUS,4 etc. 
The implication of this speedup is the ability to do 
sensitivity studies and apply optimization procedures 
to the design of integrated circuits. 

The separation method has most significant value 
in problems where time scaling the experimental cir
cuits is useful. Such ap·plications include the analysis 
and design of high-speed logic gates, microwave cir
cuits, and high-frequency amplifiers. 

ACKNOWLEDGMENT 

The authors are indebted to C. F. Simone and J. 
Chernak for active encouragement and contributions 
in the course of this work; to H. Gummel, B. T. Mur
phy and E. J. Angelo, Jr. for invaluable discussions 
on theoretical aspects of the charge control represen
tation; to K. W. Sussman and H. C. Rorden for as
sistance in developing the analog programs; to J. V. 
Wait of University of Arizona for many stimulating 
discussions. 

REFERENCES 

1 H K GUMMEL B T MURPHY 
Circuit analysis by quasi-analog computation 
Proc IEEE (letters) vol 55 p 1758 October 1967 

2 A W LO 
I ntroduction to digital electronics 
Addison-Wesley 1967 p 43 

3 PEG RA Y et al. 
Physical electronics and circuits models oJtransistors 
SEEC vol 2 J Wiley and Sons 1964 p 206 

4 L D MILLIMAN W A MASSENA R L DICKHAUT 



142 Spring Joint Computer Conference, 1968 

CIRCUS, A digital computer program for transient analysis of 
electronic circuits 
Harry Diamond Laboratories 346-1 January 1967 

5 H F MALMBERG F L CORNWALL F N HOFER 
NET-l network analysis program 
Los Alamos Scientific Laboratory Report LA-3 I 19 September 

1964 
6 E J ANGELO JR J LOGAN K W SUSSMAN 

The separation technique - a method for simulating transistors 
to aid integrated circuit design 
IEEE Trans Electronic Computers vol EC-17 no 2 February 
1968 



A new stable computing method for 
the serial hybrid computer integration 
of partial differential equations 

by ROBERT VICHNEVETSKY 
Electronic Associates, Inc. 
Princeton, New Jersey 

INTRODUCTION 

Partial differential equations involving one space 
dimension and time can be solved by hybrid comput
ers using the serial (or continuous space-discrete time) 
method. In so doing, the continuous integration ca
pability of the analog computer is used along the space 
axis while integration along the time axis is performed 
in a discrete fashion by making use of finite differ
ences. 

The continuous integration problem in the space di
rection is in many practical cases of a mixed boundary 
nature, and is furthermore often unstable from the 
error propagation standpoint. 

The purpose of the present paper is to. introduce a 
decomposition method which, under quite broad ap
plicability conditions, allows the spatial integration 
problem to· be separated in a finite number of sub
problems, each of them computationally stable and 
free of the iteration requirement present in the mixed 
boundary original equations: 

This decomposition method applied to the spatial 
integration problem is to be contrasted with tht! 
Green~s function~ method.1,4,5 In the latter method, 
Green's functions of the spatial differential op~rator 
are pre-computed, and the solution to the· 'differ
ential problem is replaced by an integral relation 
to the non-homogeneous terms. This method how
ever, cumbersome in its computer implementation 
in terms of computing time or hardware requirements. 
Furthermore, the integral expression of the solution 
presents unfavorable error propagation properties 
which are not present in the decomposition method 
presented here. 

The method is first illustrated by the example of the 
heat diffusion equation and then. generalized to more 
extended problems into a formal way. 

Serial hybrid integration o/the diffusion equation 

We consider the problem of integration of the dif
fusion equation in one spatial dimension (the slab 
problem - Fig. 1). 

ax aex 
~= k---..r· 
at iJu2 

(2.1) 

U E (0,1) 

x.(O,t) = XO(t)} 
x(1,t) = X 1(t) = given boundary conditions 
x(u,o)~ Xu(o) 

2.2 

x 

X(LL, t) 

X,(t) 

o 
Figure 1 - The function x(u,t) 

The serial method of integration by hybrid computa
tion consists in discretizing time and integrating con
tinuously in space. If we denote by Xl(U) the value of 
x(u,t) at time t1 = i6t, then (2.1) can be approximated 
by 

143 



144 5pring Joint Computer Conference, 1968 

or 

which can be rewritten: 

where (2.4) 

Equation (2.3) is an ordinary differential equation in 
the independent variable u; the expression (2.4) rep
resents stored past information at time t1+1 when (2.3) 
is integrated to produce Xi+l. The new value 51+1 to be 
stored is computed by a recursive expression, which 
can be derived from (2.4) 

d2 1+1 
Si+1 = X1+1 + (I - 9) k~t __ x~. 

du2 

or, taking (2.3) into account. 

51+1 = XHl + ( 1-
9
9) (Xi+l - 51) 

\ (2.5) 

An alternative expression is:, 

" " 1 " " 
51

+1 = 51 + 9 (x1
+1 - 51) (2.6) 

5ince 

k d2x.i:= dx I 
-- du2 . at I t = ti 

we can see that 5 i , as defined by relation (2.4), is in fact 
the approximated value of x(u) at the time 

Thus the serial method of integration described 
above consists in integrating at time t = ti+l the or
dinary differential equation (2.3) which produces the 
solution Xi+t(U) at that time, and storing 5i+l (given by 
(2.5» which represents both the solution at time 
ti+2-9 and the right hand side of equation (2.3) at the 
next integration time (Fig. 2). A block diagram rep
resenting this sequence of computer operations is 
shown in Fig. 3. 

The spatial integration 

We are left with the problem of finding a computing 
algorithm permitting the integration" of Equation 

:1 r---------r---r---r-----w--I I 
I 

I 
I 

I I 
I I 

~I I 

~ ",I 
It: ~I 
~ It: I ... ~I ! 
IL ILl 
0 0 1 

'" ~I z 
~ oJ 

~ 
~ : CD 

I 1 

O------~\------~~~~~t:~+-,~~tt~+2------------

Figure 2 - Lines of integration and function storage in the space
timepiane 

DIGITAL 
TO 

ANAlDG 

-Sl(u) 

INTEGRATION Of . 

d2Xi+1 . . X'+l(U) 
k8t.t - -x l+1_-s, 

du2 

STORE 
-5(11) 

_Si+1 (u) 

+ 

ANALOG 
TO 

DIGITAL 

ANALOG 

DIGITAL 

Figure 3 - Simplified block diagram for the serial-hybrid computer 
solution of the heat diffusion equation 

(2.3) taking the appropriate boundary conditions into 
account. 
Let us rewrite (2.3) in the form: 

(2.7) 



The boundary conditions (2.2) yield the boundary 
conditions of(2.7): 

and 
Xi+l(O) = XO(ti+l) } 
Xi+l(1) = X 1(ti+l) 

(2.8) 

If we try to perform the integration of (2.7) in either 
the forward or the backward direction, 

u € (0 ~ 1) 

or u € (i ~ 0) 

we find that this equation is computationally unstable 
in both directions. It is true that, due to the fact that 
the integration interval (0,1) is finite, a solution with an 
acceptable acc1l:racy may be expected; but, in addition, 
this problem is of a mixed-boundary values nature, 
requiring an iterative type solution. Since (2.7) is a 
differential equation of the second order, both x and 

~~ have to be known in u = 0 to allow the integration to 

be started. An iterative solution might consist in as~ 

. I c dx I -c. h· . summg a va ue lor d~ u = 0 pellormmg t e mtegratlon 

from u = 0 to u = 1, and using the final error 

Xi+l(l) - X 1(ti+l) 

to correct the initial assumption of dx I until 
du u=O 

convergence of the solution to the satisfaction of the 
final boundary value is achieved. -

In view of the unstable nature of the integration, 
the convergence may prove to be somewhat slow, and 
the presence of random computing errors, as found in 
analog computers, may prevent absolute convergence 
to be practically reached. The method of solution by 
decomposition described in the following section al
leviates these problems. 

I ntegration by decomposition 

The differential operator 
d2 1 

L=(lu2- ke~t (3.1) 

appearing in (2.7) is inherently unstable. Its charac
teristic equation 

A2 _ 1 
ke~t 

has two real roots 

1 
Al = - (ke~t)~ 

} (3.2) 
1 

and A2 = + (ke~t)~ 

As was previously remarked, changing u into -u by 
inverting the direction of integration would simply 
invert Al and A2, leaving the same instability proper
ties. However, we can write 

L(x) = (! - Al )( 1u - A2 ) • x (3.3) 

In view of this, any function x1(u) solution of 

du (3.4) 

is also a solution of L(x1) = 0, since we have 

L(x1) = ( d~ - A2 ) ( :u - Al ) . x (3.5) 

= (tu - A2 ) . 0 = 0 

The integration of (3.4) is stable in the forward di
rection, and requires one boundary value only (in 
u=O) 
Similarly, any solution of 

dX2 
du - A2X2 = 0 

du 
(3.6) 

is also a solution of 

(3.7) 

The integration of (3.6) is stable in the backward 
direction, and requires one boundary value only (in 
u= 1). 
Finally, if yi6t\ is a solution of: 

dyHI . Si(U) 
<ill - Al yl+1 = - ke~t (3.8) 

and X~+I(U) is a solution of: 

dXi+1 
_LA Xi+I=y 
du 2 3 

(3.9) 

then we have 

L(Xi+l) = ( ~ - A )( ~ - A t. HI 
3 du 1 du 2 r--3 

Thus 

d2xHI 1 HI Si(U) 
----- X3 =---
du3 ke~t ke~t 

(3.10) 



146 Spring Joint Computer Conference, 1968 

(3.10) holds for any boundary conditions chosen to 
integrate (3.8) and (3.9). For simplicity, these can be 
chosen to be 

and 
yi+l(O) = 0 

X~+1(i)=O 

N ow we can observe that any combination 

(3.10A) 

(3.10 

satisfies equation' (2.7). (This results merely from 
equations (3.5), (3.7) and (3.10». 
. If x1(u), X2(U) and X~+l(U) are .known, then two con
stants at+! and ~+1 can always be found so that (3.11) 
satisfies the boundary conditions (2.8). These two 
constants are the solutions of the two simultaneous 
equations: 

3.12 

~urthermore, xt(u) and x2(u) are time-independent. 
Therefore, equations (3.4) and (3.6) need being inte
grat~d only once, which can be done prior to the in
tegration of (3.8) and (3.9). 

Therefore only (3.8) and (3.9) need to be integrated 
at computation time for each step of the sequence 
i = 1, 2, .... Both of these equations are· of first order, 
and are c~mputationally stable. 

The application of (3.12) and (3.10 then produces 
the solution Xi+I(U) by a simple addition process. 

We can sti~l simplifY this procedure further by de
fining two ne'w function xt(u) and x;(u) which satisfy 
the relations 

xt(u) = Cll: x.+ C12X 

x;(u) = C21 Xl + C22X2 

xt(O) = 1 

x;(O) = 0 

xt(1)=O 

xt(1)= 1 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(The constants Cij are computed by the conditions 
(3.15) and (3.16).) 

It is obvious, that, in view of (3.5) and (3.7), x:(u) 
and x;(u) both satisfy the homogeneous ,equation 

L(xj) = L(x:J = 0 (3.17) 

If we now seek a solution of the form 

which automatically satisfies the equation (2.7). 

the boundary condition equations equivaienf to (3.12) 
become in this case . 

or 

b\+1 + x:~+o = XO(ti+l) 
b~+1 = Xt(ti+l) 

(3.20) 

These' equations are more simple than their equiva
lent (3.12). 

The overall integration procedure can thus be sum
marized '~s follo~s (fig. 4). 

1. Obtain, by integration of (3.4), (3.6) and by the 
application of (3.] 3) thru (3.16) the two elemen
tary solutions xt(u) and x;(u). The solutions are 
stored for their use at computation time. 

2. At computation time, integrate the two stable 
differential equations (3.8) and (3.9), with bound
ary conditions (3. lOA). 

3. Compute b~+1 and b~+l by application of (3.20), 
and compute the solution Xi+I(U) by application 
of(3.18). 

4. Compute Si+l(U) by the application of (2.6). 
5. Return to 2. 

Starting procedure 

At the first integration step (t = tl), no value SO(u) is 
avaiiabie. Starting the integration can be achieved by 
making use of the fact that SO(u) is the approximated 
value ofX(u) at time t= (1- o)dt 

We can write, using an implicit formulation, 

SO(u) :- XO(u) _ d2So 
--'--'--"""""":''''''; - k --

(1 - 8) ~t du2 (3.21) 

or 

d2SO So 
du2 k( 1 - e)~t = 'XiO) (3.22) 

with boundary conditions: 

and (3.23) 

SO(u) can be computed by the same procedure as that 
defined in paragraph (3.1) by the integration of (3.22). 



Stabie Computing Method for Seriai Hybrid Computer 147 

-. 
I 

I NTEGATE AND STORE 
dyifl . Si 
-- -~ yl+I= __ -

du I k86t 

I NTEGRATE AND STORE 
dX3i+1 if I if I 
---~2X3 =y 
d(-u) 

COMPUTE 

b,i+l= 'Xo (ti+'I)_X3i+I(O) 

b2
i+JX. (t i+l) 

COMPUTE AND STORE 
Sif'-b iflX* +b if IX * -, , 2 2 

+X3 i+ 1 

Figure 4 - Computer block diagram describing the sequence of 

which may contain time dependent coeffi
cients. 

T() is a linear partial differential operator with re
spect to time t 

O(u,t) is a time-space dependent forcing function. 

By application of" the discrete-time-continuous
space (DTCS) or serial method of hybrid computer 
so.lution, (4.1 ~ ,can be transformed into a sequential 
set of ordinary differential equations. 

This is obtained by writing the approximation: 

T(x(u,t»)t i-I +8 = ~ dj Xi+J(U)} 

ti = i6t ; 0 < 8 ~ 1 
i = 1,2, ... 

(4.2) 

The dj are fixed coeffICients, which can, for instance, 
be obtained by equating the (m + 1) first coefficients 
of the Taylor set:ies expansio~ of the'left-hand side 
and right hand side of (4.2). 
Substitution of(4.2) into (4.1) yields: 

m 
~ djxi

- i = 8[U(Xi) + Oi] + (1 - 8) [U(Xi - 1) + Oi-l] 
j=O 

(4.3) 

This can be rewritten as: 

(8U - do)x i = 80i + (1 - 8)01- 1 + (1 - 8)U(X1- 1) 

(4.4) 

Let: 

L=8U-do (4.5) 

operations for the serial hybrid computer integration of the heat dif- and 
fusion equation 

Generalization 

We now address ourselves to the more general 
initial values problem of solving a partial differential 
equation of the form: 

where 

U(x) = T(x) + O(u,t) 
u E (0,1) ; t ~ 0 

(4.1) 

x(u,t) is the desired solution, function of one space 
dimension and time 

U () is a linear partial differential operator with 
respect to the space independent variable u, 

m 
+ U(Xi - 1» + ~"djxi-i 

j=1 

We can now rewrite (4.4) as: 

(4.6) 

(4.7) 

At time ti = i6t, (4.7) appears as an ordinary differ
ential equation in" u, whert? Xi(U) is the unknown. At 
that time, all the elements of H1(U) are known, and 
Hi(U) is thus strictly a forcing function to the differ
ential equation (4.7). 

The central problem in applying the serial method of 
integration of (4.1) in hybrid computation hinges on 



148 Spring Joint Computer Conference, 1968 

the capability to integrate (4.7) on the analog computer 
in a stable and practical fashion. When boundary 
values for x(u,t) are given along one space boundary 
only, and when (4.7) is computationally stable in the 
direction originating from that boundary; this is re1a
tively easy. However, in most practical cases, space
boundary values are mixed, and furthermore, L( ) is 
often an unstable operator. 

We shall devote Section 5 to the development of 
a general computational algorithm which generalizes 
the method described in Section 3. This' algorithm 
permits in almost every case to obtain a stable, itera
tion free, solution. 

Starting procedure 
We note that for i = 1,2, ... m - 1, not enough past 

history points are available to allow an explicit expres-
sion of (4.2). 

However, for the problem to be defined as an ini
tial-value problem, boundary conditions are available 
along the line t = 0; U E {0,1). The boundary conditions 
are, in general, the values of 

~xl £1 ax
r
-

1 I x, , , .... __ 
at t = 0 at2 "t = 0" atr- 1 t = 0 

where r is the order ot T( ) 
The exnlicit use of these values, plus the develop

ment of special approximation, forms to be used in the 
(m - r + 1) first steps of the integration, permits the 
development of starting algorithms, very much in the 
same fashion as starting algorIthms used in the nu
merical integration of ordinary differential equations. 

The general problem of the spatial integration 

We have seen in the above section that, after the 
suitable approximation process expressed by (4.2), 
the int~gration of the partial differential equation (4.1) 
resolves. itself to th'e integ~ation of ordinary differen
tial equations of the form (we have deleted the super
script i): 

L(x) = H(u) (5.1) 

where 

x(u) is the unknown dependent variable 
u is the independent variable 
L( ) is a linear differential operator, of order n 

H(u) is the forcing function. 

In addition to satisfying (5.1), the solution must also 
satisfy . given boundary values of the' problem, s of 
which"are given in u = 0 and n - s are given in u = 1. 

These boundary conditions are of the form 

fPl(X(O) ) = Bl 
fP2(X(0) ) = B2 
fPs(x(O) ) = Bs 

fPS+l(X( I) ) = BS+l 

(5.2) 

In general, cp are linear differential operators in u. 

Decomposition 

Let us assume that the operator L(u) can be decom
posed into two operators LF and LB of order k and 
(n - k), respectively: 

L(x) = LB . LF(x) (6.1) 

where LF is stable when integrated in the forward 
direction and LB is stable when integrated in the back
ward direction. (It may be observed that, :in many 
physical problems, k. ~s equal to s, the· number of 
boundary conditions given in u = 0.)· 

We now define y(u) as being a solution of 

LB(y) = H(u) (6.2) 

and we define Xn+1(u) as being a solution of 

(boundary values are unspecified). 
By virtue of (6.1) and (6.2), we have obviously: 

or 

L(xn+1) = H(u) (6.4) 

If we know, independently of Xn+h n linearly in
dependent elementary solution of the homogeneous 
equation 

. L(xi) = 0 
1= 1,2, .. n 

with boundary conditions: 

and 

fPl (Xno = 1; I ~ s 
cpj 6d")1 = 0; j =F I 
fPk (x:i)l = 0; k = 1,2,. ... n 

(6.5) 

(6.6) 



Stable Computing ~fethod for Serial Hybrid Computer 149 

then, a linear combination of the form 

n 
x(u) = ~*(u) + L b 1xi"(u) (6.7) 
1=1 

will satisfy both the differential equation (5.1), and the 
prescribed boundary conditions (5.2), provided the co
efficients bl satisfy the relations: 

CPI(xn+l)ci + b l = Bl l 
CPe(Xn+l)o + b2 = B2 

CPs(Xn+l)O A bs = Bs 
CPS+l(Xn+I)1 + bS+l = BS+l 

(6.8) 

o~ (6.9) 
bl = BI - CPI(Xn+l)O ; I ==::; S} 
~ = BI - CP.(Xn+l)1 ; I > s 

Thus, assuming that n linearly independent solutions 
of the homogeneous equation (6.5) are known, the 
problem of finding a solution to the unhomogeneous, 
mixed boundary problem expressed by (5.1) and (5.2) 
can be reduced to the integration of the two differ
ential equations (6.2) with any set of convenient 
boundary conditions, plus the straightforward calcu
lation of the n coefficients bl by the application of 
(6.9). (Fig. 5). 

INTEGRATE 
~------~ ~---------, 

LF(Xn .. la1 

INTEGRATE , 
LB(JlaH(U) 1-----, 

STORE 

H(ul 

STORE 

1(U) 

STORE n 

ANALOG 

DIGITAL 

ELEMENTARY SATISFY 
SOLUTIONS )------4I-----t BOUNDARY 

X*.(U) CONDITIONS 
EONS. 6.9 

Figure 5 - Hybrid computer block diagram for the integration 
of L(x) = H(u) by the method of decomposition 

It is not actually necessary to specify the n elemen
oary solution of the homogeneous equation by bounda
ry conditions as strictly defined as (6.6). 

The method of decomposition can be applied on the 
basis of any set of n independent elementary solu
tions of (6.5). 

Suppose we have such a set of n elementary so
lutions: 

L(x,(u» = 0 
1= 1,2, ... n 

with boundary conditions: 

CPl(X,)O = f31' I 
CP2(XI)O = f32, I 

CPs(XI)O = f3s, I 
CPs+ 1 (XI)O =. f3 s+ I, I 

CPx(XI) = f3 fi' I 
1= 1, 2, ... n 

A linear combination of the form 

n 
x(u) = Xn+l(u) + L alX,(u) 

1=1 

(6. iu) 

(6.11) 

(6.12) 

will satisfy the boundary conditions (5.2) of the prob
lem provided the al satisfy the relations: 

n 

CPl(Xn+l) + L a,f31,1 = Bl 
1=1 

n 

CP2(Xn+l)O + L a,/32,1 = B2 
1=1 

n 

CPs(Xn+l)O +. L al/3s,1 = Bs 
1=1 

n 

CPS+l(Xn+l) ± L aJ,8s+.,1 = BS+l 
1=1 

n 

CPn(Xn+l)1 + L all3n,1 = Bn 

(6.13) 

;(6.12) also satisfies (5.1) by virtue of (6.4) and (6.10). 
However, the coefficients al will have to be com

puted by the solution of the linear set of algebraic 
equat!o!ls (6. 13) for each value of ti. 



150 Spring Joint Computer Conference, 1968 

The computation ofn elementary solutions 

The method by which n elementary solutions 
Xl(U); I = 1, 2, ... n are obtained is not necessarily of 
geat importance to the method described in the pre
vious section; unles~ L() i~" time- (or i) dependent. We 
have seen in the case of the "diffusion equation I ntegra
tion by Decomposition that the elementary solutions 
could themselves be obtained previously to the space
time hybrid integration process by the use of the de
composed operators LB and LF themselves. This will 
still be true in the general case if: 

1. LB and LF are permutable operators, i.e., 

LsLF= LFLS 

2. k (the order of LF) is equal to s (the number of 
specified boundary conditions in u = 0) and thus 
n - k (the order of L B) is equal to n - s (the nun'tber of 
boundary conditions in u = 1) 

3. L( ) is not dependent of time 
If condition :# 1 above is not fulfilled, i.e., 

(7.1) 

then the k independent elementary solutions which 
can be obtained by the (stable) forward integration of 

(7.2) 

are still independent elementary solutions of L(XI) ~ 0, 
since 

But the remaining (n-k) needed elementary solu
tions of (6.10) cannot be obtained by the integration 
of LB in the backward direction, since the relation 

LB(x) = 0 (7.3) 

does not imply that L(x) = O. Indeed, this would imply 
that L(x) = LBLF(x) = 0, which is only tru"e if x is an 
elementary solution of LF(x) = O. Thus, one may need 
to use some other means to obtain the additional 

(n-k) elementary solutions. This may be done by the 
(forwar~ or backward) integration of L(xt) = 0, with 
any set of boundary conditions, provided they are 
linearly independent of those already used. 

There is a variety of ways in which these elemen
tary solutions can be obtained, which actually depend 
on the peculiarities of the problem at hand. However, 
it is of importance to note that the algorithm described 
in Sections 6.1 and 6.2 permit this general method to 
be applied with any set of n elementary solutions, and 
that therefore iteration is never needed to obtain such 
a set. 

The set of elementary solutions (6.6) can be de
rived from the set (6.10) by an algebraic process per
formed prior to the time-space integration similar to 
(3.13) - (3.16). This results in relations (6.9) which 
are somewhat simpler than (6.13), but can only be 
done if L( ) is not time dependent. 

In problems where L( ) is time (or i) dependent, a 
complete set of elementary solutions will have to be 
obtained at each computation step. 

REFERENCES 

1 R M TERASAKI 
Analog computation of Green's function for integrating two 
point boundary value problems 
IRE Transactions EC-ll 57 1962 

2 R VICHNEVETSKY 
Error analysis in the computer simulation of dynamic systems: 
variational aspects of the problem 
I EEE Transactions on Electronic Computers vol EC-16 no 4 
August 1967 pp 403-411 

3 EEL MITCHELL 
Hybrid techniquesfor solution of partial differential equations 
Electronic Associates Inc SAG Report #19 October 1963 

4 H S WITSENHAUSEN 
On the hybrid solution of partial differential equations 
Proceedings of IFIP Congress 1965 vol 2 pp 425-43! Spartan 
Books 

5 T SCHRODER 
Neue fehlerabschatzungen for verschiedene iterations - ver
fahren 
2 Augev Math und Mech 361681956 

6 W T REID 
Generalized green matrices for two point boundary value orob-
kms - " 

SIAM J Appl Math vol 15 no 4 July 1967 



BASP-A biomedical analog signal processor* 

by WILIAM J. MUELLER, PAUL E. BUCKTAL, PHILIPPOS 
LAMBRINIDIS, KARL E. SCHULTZ and LEO F. WALSH 
State University of New York, Upstate Medical Center 
Syracuse, New York 

INTRODUCTION 

With the advent of low-cost digital logic modules, 
discussions on hardware-software trade-off have 
become popular.! Suggestions have· been made to 
construct an analog computer of digital modules and 
the availability of digital differential analyzer modules 
is a step in this direction. Further it has been suggested 
that a re-evaluation of hardware and software organ
ization be made,2 considering that there has not been 
any great systems variation in the implementation of 
computers. 

In the past several years, a number of special pur
pose digital devices have become available for the 
processing, generally in real time, of analog signals 
obtained from patients in a medical center or from 
animals in an investigator's laboratory. These devices 
have a limited accuracy· and data rate capability and, 
although they may be faster than a general-purpose 
digital computer, are too slow for real time analysis 
of some of the more complex biological systems. If 
more than one full channel is required or if several 
types of analyses are necessary, the cost is prohibitive. 
Three years ago we wired a large array of printed 
circuit logic modules to programmable patch panels 
and a system similar to the more recent macromodules 
of Ornstein et al. 3 was connected to an analog com
puter (TR48) to carry out some real time analysis of 
biomedical data. The system operated properly but, 
because of the large number of connections, program
ming was horrendous. At the same time investigators 
at our Medical Center began asking for faster and 
more sophisticated data processing of biomedical ana
log signals. Several special-purpose high-speed real 
time processors were constructed using the newly 
available Motorola "MECL" microcircuit modules. 

It became apparent· that a ~edium priced but pro
grammable processor of analog data at a sample rate of 

*The development of this processor was supported by the General 
Medical Sciences branch of the National Institutes of Health 
through Grant GM 11413. 

one megahertz was needed. General purpose com
puters currently available cannot perform the neces
sary data manipulations in real time and an "uncon
ventional system"2 was required. This paper concerns 
itself with the philosophy and investigation of such 
a system specifically designed for the real time pro
cessing of biomedical analog signals. 

Processor requirements 

Some of the slower biomedical signals such as from 
EEG, (brain waves) ECG, (heart waves) and breath
ing or blood pressure transducers are easily analyzed 
on a general purpose computer alth<?ugh the program
ming is sometimes extensive. Weare more concerned 
with the analysis of heart sounds, (l000 Hz-range) 
pulse trains on a nerve, (2000 pulses per second) and 
responses, obtained from single cells in a body, that 
have a risetime of less than one hundred micro
seconds. 

151 

These analog signals require various types of statis
tical analyses. The most general procedures are his
tograms of pulse intervals or pulse height, averaging 
of signals buried in noise, where "noise" may be 
non time related phenomena, variance analysis, and 
various other time series analyses such as auto and 
cross-correlation, spectral density, convolution and 
others related through a Fourier transformation. 
Some signals can be sampled and stored for process
ing a few seconds later, but if'the number of sampl~s 
required is large, excessive high-speed memory IS 

required. To reasonably define signals that have 
peculiar, and as yet, unexplained points of inflection 
in their rising phase, an analog sampling rate of one 
megahertz is required. This data rate would overload 
any ordinary memory size. Therefore, the data must 
be processed continuously with one sample coming 
into the processor each microsecond and one sample 
leaving the processor each microsecond. This requires 
developing an analog-to-digital converter, an adder
subtractor module, a multiplier module, a divider 
module and a memory module that has a fixed point 



152 Spring Joint Computer Conference, 1968 

and floating point operating time of less than one 
microsecond. 

Several calculations involve small ratios of relative
ly large analog signals and a resolution of at least 
0.1 % ·is necessary for .the analog-to-digital converter, 
which must operate. at a one megahertz sampling rate. 
For slower biomedical signals we would use a 14 bit 
converter to reduce quantization error. Fortunately 
in many cases where the highest digitization rate is 
required, such as for auto and cross correlation and 
related statistical analyses, the resolution of the 
Analog-Digital converter can be 10 bits and still pro
duce 14· bit accuracy4 because quantization errors 
tend to average out. However, this assumes that the 
calculations made on the quantized data do not intro
duce additional round off or truncation error during 
the multiplication, addition and normalization pro
cedures. For correlation we would have fixed point 
numbers from 0 to ±999, in steps of ±1, multiplied 
against their lagged values producing a range from 0 
to 998,001 as a product which when summed for 
1000 correlation points produces a thirty bit fixed 
point number. Similarly taking the average of a 
thousand responses evoked from a brain, by, for ex
ample a flashing light or a tone, we would have a sum 
of one thousand 14 bit numbers for each sample point 
on the response and require a 24 bit fixed point word. 
At times we may require 10,000 samples for adequate 
signal to noise enhancement which improves as the 
square root of the number of samples. As we require 
a 32 bit floating point arithmetic unit and a 32 bit 
memory, outlined below, we could use a 30 bit fixed 
point system if desired. A higher operating speed 
would be possible in fixed point. 

As about one third of our data processing is the gen
eration of Iiiodels of electricai transmission of infor
mation along nerves or conductive tissue such as 
heart muscle, we prefer using values that are real 
instead of having to scale the true values of resistance 
and capacitance used in the model. A solution of an 
equation, such as one described below for the mem
brance resistance of a cell, Rm, requires the represen
tation of resistance over a range of 105 to 108 ohms 
while the values of membrane voltages V 17 V 2 may 
only vary, when digitized, from 0 to ±999 in fixed 
point format. However when fixed point arithmetic 

is used on a fraction such as V2-VI, where V 1 and V2 
V2 

are nearly equal, the result would have to be expressed 
in decimal format, with at least two decimal places, or 
in floating point format to be meaningful. 

Floating point operation. is the only way to repre
sent the decimal range of 10-12 to 1012

, which we re
quire for our simulation studies. To obtain this range 
we would use a 24 bit word with a sign bit and, a six 

bit exponential to the base two with a sign bit. The 
memories when storing arithmetic results would 
function as 32 bit words but when storing digitized 
input data would operate as two sixteen bit words 
having 14 bits for data and two bits for sign and parity. 

A floating point arithmetic sysem is being con
structed and if we find that adequate speed can be ob
tained in floating point operation the fixed point hard
ware will probably not be constructed. 

We recognize that in several particular instances, of 
processing biomedical analog signals, smaller word 
lengths and preprocessing by analog methods could be 
used. However, we have several problems that are 
not immediateiy apparent. 

Requests for data processing vary widely in size and 
complexity and any system we develop must have 
sufficient capabiiities that a minimum of programming 
effort is required and that an overall accuracy of 0.1 % 
is maintained without paying strict attention to trun
cation or round off errors. 

The pick up point of our biomedical analog signals, 
from an operating room or an investigator's labora
tory, may be a mile away from the processor. Al
though we have developed carrier type systems with a 
1000: 1 signal to noise ratio we prefer sending the 
analog data in digitized form, especially when mul
tichannel time shared operation is being used. 
A decision to modify the analysis may be made by the 
surgeon or investigator during the operation or ex
periment. As the program is not remotely control
lable the operator of the processor would have to 
make the required changes. In instances such as 
these a digital integrator may be used at the proces
sor instead of an analog inegrator, which would be 
difficult to control a mile away, at the site of the sur
gical operation or animal experiment! There are also 
some equations, relating to the breathing capacity of 
an individual, that require integration after some pre
vious addition and division of digitized data. Be
cause of this an adder-subtactor module will be in
ternally prog~ammed to petform integration and be 
under cOl!troi of appropriate start and stop signals. 

A programmable clock would be required to permit 
the sampling of data at a fast rate when the data is 
moving fast and at a slower rate when the data slows 
down. This is a common feature of cells in a heart 
where the activity changes at a rate of 1000 volts per 
second for 100 microseconds and then slows down to 
1 volt per second for the next several hundred milli
seconds. This curve would be sampled and stored for 
comparison with the one to follow which is obtained 
under slightly different conditions, By this procedure 
memory requirements couid be reduced from about 
35,000 words to about 1,200 words. 

A number of registers would be used depending on 



the data being processed. Various counters and com
parators are also required. All these devices would 
operate up to a 50 megahertz rate. 

Display systems will vary depending on the data 
rate and may be either in digital or analog form. The 
display would have to be available in an investigat
ors laboratory as well as at the processing unit. 

Even though the sampling rate may be high the act
ual soution rate and therefore display rate, may be 
slow. For example a single cell response has a 
100 micro-second rise time with a crucial notch in the 
signal. This data must be sampled and stored with at 
least a one megahertz rate but the total response may 
only reoccur twice a second. Therefore the output 
point plot on a digitally driven oscilloscope would only 
have 2000 data points per second. Most displays 
will be photographed to record them but in some cases 
a storage oscilloscope will be used for immediate 
readout. 

A character generator and large screen analog and 
digital display system has been developed. At this 
time we will photograph the screen for digital and 
analog data storage at a rate of 20,000 characters per 
second or 10,000 data points. Analog and digital data 
may be interleaved. An investigation is presently be
ing made on a combination of a small high speed, 8 
millisecond access time, disk to be used with a buffer 
memory to provide a static display of digital and ana
log data using a P7 phosphor screen because of the 
5000 digits that are repeated four times a second. 

On slower data the results will be plotted on a stan
dard X-Y recorder for analog plots. Digital data that 
can be held in the disk-core memory system will be 
printed on a recently available strip printer at 20 char
acters a second. 

Machine organization 

The machine organization depends on the data rate 
requirement of a particular biomedical data processing 
problem. At the maximum data rate of 1 mega
hertz for operation on one analog signal (or two signals 
if for example a cross-correlation is desired) the input 
signal flows through the A-D converter and the vari
ous arithmetic and memory modules in the sequence 
of the required program steps. For example, if an av
erage of many evoked responses from an animal is 
required and the signal requires a sampling rate of 1 
megahertz, the signal would flow as in Figure I. As
suming each unit takes less than one microsecond to 
complete its function, the procedure is as follows: 

I. At T= 0 usec, sample and hold input signal 1-
Start read of MEM 1 

2. At T= 1 usec, dump A-D OUTPUT to A/S 
INPUT with MEM 1 data 

BASP 153 

2a. At T= 1 sample and hold input signal 2- Start 
readofMEM 2 

3. At T= 2 usec, A/S dumps to MEM 1 and to 
divider with counter data, MEM 1 changes 
address 

3a. At T= 2 usec, A-D OUTPUT goes to A/S 
INPUT with MEM 2 data 

4. At T= 3 usec, 1st data point is displayed at loca
tion zero on the display unit 

4a. At T=3 usec, sample and hold input signal 3-
Start read of MEM 1- MEM 2 changes address 

4b. At T= 3 usec, etc. 

Figure 1- Module signal flow for HIGH speed averager 

Two completely independent memories are used. 
A single memory with a read-write cycle of 1 micro
second would, because the data is delayed by the 
A/S module, be asked to read and write simulta
neously. Partitioning a memory would be of no value 
in this case. 

Various control signals switch the memories and 
counter but the flow of data through the modules is 
obtained by the use of multiconductor cables from 
the A-D unit to the A/S unit to the MEMORIES and 
to the DIVIDER. The first result arrives at the dis
play device in three microseconds. A longer delay 
would occur if the signal passed through more modules 
for further analysis. However, once the first signal 
appears at the display unit the next solution follows in 
one microsecond and there is a data point in and out of 
the processor each microsecond. If some data have to 
be retained for later calculations, it is delayed the 
appropriate amount by a shift register. 

Under these circumstances a module, the divider 
for instance, could take five microseconds to divide 
but as long as a new piece of data enters the divider 
each microsecond and a piece of data leaves the 
divider each microsecond we only suffer a delay of five 
microseconds but maintain the one megahertz data 
rate. The number of arithmetic operations could be at 
a ten to twenty megahertz rate. 

All modules, regardless of their delay time are de
signed to accept a new set of data each microsecond 
and deliver an output each microsecond. 



154 Spring Joint Computer Conference, 1968 

However, if more than one particular operation is 
required, a second addition for instance, then a second 
adder-subtractor module is required. Fortunately, 
when the fastest possible operation is required, we 
usually do not require extremely complex arithmetic 
operation and two modules of each type would be 
sufficient. As the modules cost less than $1000 each, 
this is a feasible procedure. A trade-off between speed 
and the number of arithmetic operations is possible. 

Time-shared operation 

As only 20% of biomedical analog signals require 
the full 1 megahertz conversion rate, we decided to 
share the operation of the processor among various 
analog signals. To maintain accuracy and hold aliasing 
problems to a minimum, a system of five channels with 
a 200 kHz data rate per channel was decided upon. 
This permits filtering of the input signal by an analog 
filter operating at a cut-off frequency of 50 kHz, 
thereby keeping the time delay error of the analog 
signal at a minimum over a bandwidth of 5 kHz which 
is adequate for signals other than single-cell responses. 
Any of the 200 kHz channels could be subdivided into 
more, say 20, slower channels operating at 10kHz. 

If we were to continue on with the procedure of 
Figure 1 for connecting the modules to perform a cer
tain function we would require five cables for every 
one we used previously so that the five pieces of input 
data could proceed through the five time-shared inputs 
and outputs of each module in a different sequence of 
modules for each piece. This procedure of plugging 
modules together by multiconductor cables and chang
ing the cables when a different operation is to be per
formed has been advocated by several authors be
cause, perhaps, of the similarity to an analog com
puter. However, we seemed to be going back to our 
original system with its unwieldy programming pro
cedure. As this does not fit our more recent concepts 
and requirements for an easily programmable real 
time processor, an improved system has been de
signed. 

System implementation 

Our major concern was the removal of the patching 
from one module to another with a sixty-six' wire 
connector each time we wanted to change the pro
gram. A large matrix with control line switching to tie 
the output of one module to the input of another was 
considered but a quick check of the permutations pos
sible showed that a massive array of "and" gates 
would be required. A data bus system, similar to that 
used for peripheral control by a digital computer, was 
adopted. 

All modules have their inputs and outputs con
nected to a common 32-bit data bus. When an adder
subtractor module has some data ready for a multi
plier module, the A/S unit dumps its output on the 
common data bus and sends a gate signal through a 
patchable twisted pair line to the muitipiier input 
causing the multiplier to connect to the data bus and 
accept the data from the A/S unit. 

With this system we could operate similar to an 
analog computer and only need to patch a simple 2-pin 
connector to provide a data path from one module to 
another. However, a system was needed that guaran
teed the integrity of each data transfer so that no two 
sets of modules were on the common data bus at 
the same time. 

Each module is being constructed so that it can 
receive data on its input while delivering a result on 
its output. Further, a time position is assigned to each 
module so that only that particular module can place 
data on the common data bus at the assigned time. A 
partial chart, set up for five time-shared channels 
at a 200 kHz data rate, (one megahertz total data rate) 
is shown in Figure 2. All devices have outputs 
spaced 100 nanoseconds apart in time but can only 
place data on the common data bus for fifty nano
seconds thus providing a guard band of 50 nano
seconds. This of course limits the data bus transfer 
rate to 10 megahertz using 10 modules. To improve 
the rate at which data can be maneuvered, and also 
permit the simultaneous dumping of data to the x and 
y inputs of a module, two data buses will be used. 
Figure 3 is the block diagram of a system to average 
five analog input signals. with a sampling rate of 200 
kHz each. This is equivalent to having five separate 
on-line averagers such as those commercially avail
able but in this case the sampling rate on each channel 
and the resolution per channel has been improved by 
an order of magnitude. The output display, a digitally 
driven oscilloscope, would not show a gradual build
up in size but rather, because the output is continu
ously normalized, the output signal would maintain 
a constant height while the noise just faded away. In 
some averaging procedures one may find a small aver
age but a large variance. As variance and average 
could be found for the same set of data in real time, we 
may obtain more meaningful information from future 
studies of biomedical analog signals. 

We still had to provide some simple means of con
necting control signals from module to module to 
implement a program. Consideration was given to 
punching a program on an IBM card and then insert
ing the card in a simple reader to connect the ap
propriate control paths. However, we found that we 
have more combinations available for signai flow than 



BASP 155 

ALL TIME IN MICROSECONDS AFTER TIME ZERO 

CHANNEL ANALOG 'DIGITAL 

NUMBER DATA IN DATA OUT 

ADD / SUBTRACT DIVIDER MULTIPI,.IER MEMORIES 

DATA IN DATA OUT DATA IN DATA OUT DATA IN DATA OUT DATA IN DATA OUT 

1 0 1 .1 lei .2 1.2 .3 1.3 ANY .7 

2 1 2 1.1 2.1 1.2 2.2 1.3 2.3 TIME 1.7 

3 2 3 2=1 3.1 2.2 .... .... 3.3 2.7 ~ .... .... ~ 

4 3 4 3.1 4.1 3.2 4.2 3.3 4.3 3.7 

5 4 5 4.1 5.1 4.2 5.2 4.3 5.3 4.7 

1 5 6 5.1 6.1 5.2 6.2 5.3 6.3 5.7 

2 6 7 6.1 7.1 6.2 7.2 6.3 7.3 6.7 

3 7 8 7.1 8.1 7.2 8.2 7.3 8.3 7.7 

4 8 9 8.1 9.1 8.2 9.2 8.3 9.3 8.7 

5 9 10 9.1 10el 9.2 l0e2 9.3 10.3 9.7 

1 10 11 lOel ll.l 10e2 11.2 10.3 ll.3 10.7 

Figure 2 - Module timing chart for five channels 

there are holes in a card. A 12"X 12" patch panel with 
a 100 X 1 00 matrix was decided upon. Diode pins 
placed at appropriate locations provided the required 
signal paths. Plastic overlay sheets, with holes 
punched for a given program, will be used to allow 
rapid changing of the desired data analysis. 

Several other features to expand programming capa-
bilities are incorporated into the system. Memories 
will be partitioned into two sixteen-bit words. Read
and-write operations are under external and internal 
control so that various options such as read-write or 
~ead-modify-write are available. The address registers 
can be modified by external signals or operated in
ternally, up or down, on command. Sequential step
ping of the memories allows 1 microsecond operation 
even though the memory· cycle time is five micro
seconds. All modules will be able to input data from or 
send data to either data bus. The display unit, an 
alphanumeric generator and analog point plotter CRT 
system, will, by a timing system, rapidly display data 
occurring at any point in the system. Thus debugging, 
even under time-shared operation, can be very simple. 

Figure 3 - Module signal flow for five chan.nel averager 

A drawing of a portion of the programming panel is 
.shown in Figure 4. Diode pin locations to implement 
the multiple averager described above are indicated 
by small dots. 

We find that medical people do not like binary, octal 
or other such representation of data. In particular 
when an investigator is interacting with the processor 



156 Spring Joint Computer Conference, 1968 

1111111111 II II1III111111111111111111111111111111111111 

I II 
I i I 

II Ii I I I 

SAMPlE /HOLD 1 
2 
3 
4 
5 

A/DOUTl 
2 
3 
4 
5 

S~lACiOOil 
2 
3 
4 
5 

MULTIPlY OUT 1 
2 
3 
4 
5 

DIVIDE OUT 1 
2 
3 
4 
5 

MEMORY OUTI 
2 
3 
4 
5 

~ --

I 
I 
I 
I I 

I 

~ 

I I 
I 

, • I I I I 

I I I I! I I I 
I I I I I I I I I I I 

.. 

I 

. i 

I, I I I I I I I 
I . 

I 

1 2 34 5 1 23 45 1 234 5 1 2345 1 2 34 5 1 234 5 1 2 34 5 0 C c 
A/S A/S MEMORY MEMORY' ANALOG DIVIDE DIVIDE I 0 0 

S U U 
X INPUT Y INPUT READ WRITE INPUT X INPUT Y INPUT P N N 

CHANNEL L l T 
A I y R 

IN OUT 

Figure 4 - Programming board pin positions for five channel 
averager 

through a keyboard while watching an analog display 
. of some modeJ, for example the propagation of elec
, trical activity in a heart, he will want to display the 
. decimal values along with the analog plot. New con-

stants of propagation would be entered and the change 
in the display noted. When the analog plot is as desired 
the data points would be displayed in decimal form for 
observation and photography. 

All of the input-output display systems and key
boards would operate in ASCII or BCD code and 

therefore, because the processor is a binary system, 
the results of arithmetic operations and core storage 
will have to be code converted before being entered 
or displayed in decimal form. In many cases scientific 
notation will be used instead of decimal format. 

Hardware implementation 

The Biomedical Analog Signal Processor described 
here is not at full capability at this time. A twelve
bit version 'was implemented to gain experience with 



the new high-speed logic modules we are using. A 32-
bit version is being constructed at the time of writing 
this paper. 

Modules are being constructed using 2 ns and 5 ns 
MECL II logic devices in a plastic dual inline case. 
Printed circuit boards, on which the logic devices are 
mounted, are bolted to a ground plane inside a narrow 
case which provides shielding and a front panel for 
indicator lights and test switches. These modules 
which are a complete unit such as a memory, adder
subtractor, multiplier and others, are being mounted 
in a cabinet and by twisted pair lines from the rear 
panel connected to the data bus system and the pro
gram panel. 

Some of the units, because of the internal clock
speed of 50 megahertz, would not tolerate wire lengths 
of three inches. These boards were arranged in sec
tions and placed back to back with a ground plane 
between them. Then connecting pins were inserted 
from the first board through the ground plane to the 
second board. The operation of shift registers and 
clock lines was improved by this procedure. We have 
our own printed circuit facility but cannot make multi
layer boards. 

Each module has a decoupling 5-volt zener diode 
operating from a partially regulated seven-volt line. 
As the logic modules require about an ampere for 
thirty devices each arithmetic unit uses two to three 
amperes of current. Clamping of the power supply to a 
maximum of eight volts protects the logic modules 
from destruction. 

Control signals are run to the programming panel by 
130 ohm twisted pair lines terminated at the panel. 
The control signal, a 30-nanosecond pulse which 
comes from the output of a module, is badly degraded 
in passing through the twelve = to twenty-four inch 
path length from input to output of the programming 
panel. At the output terminal of the panel (bottom in 
Figure 4) a one-shot multivibrator rejuvenates the 
control signal and sends it, by twisted pair lines, to 
the specified input of another module. 

A master clock at 1 megahertz controls the timing 
of the modules. The outputs from the modules are 
dumped on the data bus at the correct (specified) 
time by delaying the clock the required amount inter
nal to the module. Thus the clock is delayed 0.1 micro
second in the adder-substractor, 0.2 microsecond in 
the divider, 0.3 microsecond in the multiplier,. etc. 
The memories because of their peaking time of 0.58 
microsecond are dumped on the data bus at 0.7 micro
second after a read command which is synchronized 
with the clock. Write commands to the memory are 
started immediately unless a read command has not 
been completed. I n this case the data is stored in the 
input register until it can be stored in core. 

BASP 157 

I t has been difficult to obtain an analog to digital 
converter than can do a conversion of one million 10-
bit words per second. The major difficulty was that 
ten trials had to be made with each trial having a cer
tain settling time before the next digital approximation 
to the analog signal could be made. A decade system 
was used, instead of binary, and only three approxima
tions, one per decade, had to be made. Of course, one 
now has to know between which numbers in a decade 
the true analog value lies. By using nine microcircuit 
comparators, Fairchild 7 IO's, per decade the level in 
a decade can be found in about 50 nanoseconds. The 
major portion of the conversion time is now used 
waiting for the subtraction of the required amount 
from the input analog signal so a trial for the next 
decade can be made. This takes about 150 nanosec
onds with the microcircuit operational amplifiers, 
Fairchild 702A, that we used. Thus a conversion, 
analog to BCD, can be done in, 800 nanoseconds. We 
have found that our resolution could be 12-bits but 
settling time of the analog amplifiers prohibited our 
taking advantage of it. We have obtained some 
amplifiers with faster slewing rate and settling time 
and will attempt to improve the converter to a 12-bit 
system. A good sample and hold circuit is yet to be 
developed. 

Because we require that this processor appear in 
digital form to the operator we needed a fast code con
verter from BCD to binary and from binary to BCD. 
A hardware system with a conversion time of about a 
microsecond for 30 bits has been developed. A ten-bit 
code converter worked in 120 nanoseconds and thus 
provided the interface of the above A-D converter to 
the binary system of the processor. 

Floating point add and subtract or multiply modules 
take a microsecond. We have had difficulty designing 
a divider to operate below five microseconds for a 
24-bit dividend. We are investigating some of the 
classical iteration formulae for division to reduce the 
number of approximations. 

A square root module using a Newton-Raphson 
iteration is being developed. 

CONCLUSION 

We require high speed arithmetic devices in this 
processor so that we may do on-line many time re
lated analyses presently being done off-line. In some 
cases, a correlation for example, we would do a thou
sand points on a correlation curve in the time between 
two events, which may be on the order of one mil
lisecond. This requires one thousand time shifts, one 
thousand multiplications, one thousand additions, for 
summation, and two thousand read-write operations 
per second. This is a rate of five million operations on 
data per second not including of course such opera-



158 Spring Joint Computer Conference, 1968 

tions as shifts which go on at a 50 megahertz rate. For 
the case of correlation of pulse il1tervals the "multi
plication" becomes a Boolean "and" function. 

Further we require that the processor be easily pro
grammable and be able to do all the different types of 
analyses now being done on Biomedical data in an 
on-line manner by the several special purpose devices 
commercially available. 

The processor described here could be operated by 
a stored program other than the patch panel we pro
pose. 

All that would be required is a memory that indexed 
to the next address each time a completion signal was 
obtained from an output of one of the modules. A 
compiled instruction signal obtained from memory 
would be decoded to turn on the next module that is 
to operate on the data. 

The major problem is the obtaining of a memory 
with a cycle time of 20 nanoseconds so that the de
coded statement would start the required operation. 
We do seriously consider using a shift register in 
lieu of a core memory to investigate this type of opera
tion. One of the new LSI scratch pad memories may 
be useful in this respect. The advantage of a stored 
program is that the same arithmetic unit could be 
used over and over but the price to be paid is a slow
ing of data throughout. 

It is probably obvious that the time-shared mode can 
be turned off and channel 1 used at full computational 
speed or the time-shared mode can be turned on and 
the processor divided into two channels of 500 kHz 
each or various other combinations. When an ex
panded timing chart is drawn, it can be seen that one 
of the five major time-shared channels can be subdi
vided, as noted before, into, say twenty subchannels. 
A set of working registers is necessary for each sub
channel and these subchannels can be programmed by 
a shift register or, if operated slow enough, by a core 
memory. 

A recent review of this processor indicated the 
probability that by the addition of an instruction set 
and a decoder, the processor could be turned into a 
standard general-purpose computer when desired. 
We, however, doubt the wisdom of doing that at this 
time. 

We are fortunate in having severa! physiologists and 
M. D.s at our Medical Center who have requested as
sistance in applying data analysis to biological signals 
more complex than the usual EEG, ECG type. Based 
on the increasing number of requests for data pro
cessing of the type we envisage we anticiapte an al
most continuous usage of this processor when com
pleted. 

Because most of the types of analyses listed so far 

have been time-related phenomena, one may assume 
that this is the limiting area of activity. We do, how
ever, have flow charts drawn (to see if we missed 
something in the design of the processor) of several 
modeling problems. One problem we simulated ten 
years ago in a limited manner with analog devices 
was the spread of electrical activity from cell to cell 
in a heart under various conditions of drugs and injury. 
Work in this area has been carried out on several 
large-scale computer systems, but with difficulty be
cause of the usual batch processing environment and 
the relatively slow speed of general-purpose comput
ers. Sufficient repeats of large amounts of arithmetic 
calculations to permit display on a CRT, were un
obtainable. It is important to have easy man-machine 
interface for varying parameters from a keyboard to 
immediately obtain the new pattern of wave propaga
tion. We estimate that the cost of the processor we 
are constructing will be less than half the cost of the 
programming and computer time spent on just one 
simulation study such as described. 

A different analysis to be done is the solution of an 

equation Rm V 2 ~ "v 1 
Rl - R2 where the parameters 

vary continuously with time. The author has a major 
interest in the dynamic solution of this equation as it 
is related to a physiological study, being carried out 
by him and others of our faculty, on the resistance 
changes in a heart cell during electrical excitation. The 
full capability of BASP will be required because of the 
100-microsecond rise-time of the cell's electrical 
analog signal. 

The processor as it has evolved thus far was con
ceived because of the need of such a device by the 
author and others of the faculty. I ts present form has 
been molded by specific requests for data processing 
assistance and by an almost continuous series of dis
cussions between the author and the co-authors. Mr. 
Buckthal was responsible for design innovations that 
permitted the speed of the code converters and the 
adder-subtractor modules. Mr. Schultz did much of 
the work on the character generator and display sys
tem as well as establishing our printed circuit facility 
without which we could not produce the modules. The 
development of the core memory system was done by 
Mr. Lambrinidis. Mr. Walsh was the major antagonist 
and did much to clarify the goal and verify the logical 
concept. 

Thanks are due to Mrs. Kathryn Vellrath who made 
the drawings and typed the manuscript under the 
duress of getting several other reports completed by 
the deadline for submittal of this paper. We owe much 
to Al Buettgens who constructed most of what has 
been completed on this project. 



REFERENCES 

1 L C HOBBS 
Effects of large arrays on machine organization and hardware/ 
software trade-offs 
Proceedings of the 1966 Spring Joint Computer Conference 

2 D L SLOTNICK 
Unconventional systems 

BASP 

Proceedings ofthe 1967 Spring Joint Computer Conference 
3 S M ORNSTEIN 

A functional description of macromodules 
Proceedings of the 1967 Spring Joint Computer Conference 

4 G A KORN 
Statistical measurements with quantized data 
Random-Process Simulation and Measurements (McGraw-Hili 
1966) 





Electrically alterable digital differential analyzer 

by GILBERT P. HYATT and GENE OHLBERG 
Teledyne Systems Company 
Northridge, California 

INTRODUCTION 
Computer simulations are performed for scientific 
problems using analog computer techniques for speed 
and functional similarity to the actual problem. The' 
analog computers are severely limited in accuracy. 
This inherent accuracy limitation on high speed simu
lation requirements can be overcome by the applica
tion of the Teledyne Electrically Alterable Digital 
Differential Analyzer (TEADDA), which is a high 
speed completely parallel "digital analog" of an analog 
computer. 

The TEADDA is a parallel word, parallel compu
tation Digital Differential Analyzer (DDA) with 
a speed of one million iterations (complete incre
mental solutions) per second and a resolution of one 
part per million. The TEAD DAis programmed by 
interconnecting the computational elements like an 
analog computer with the exception that the "patch
board" is electronic in nature; controlled from a gen
eral purpose digital computer, tape reader, or other 
peripheral equipment. 

The baseline TEADDA resolution is one part per 
million (20 bits). This resolution is not an inherent 
limitation, but can be increased virtually without 
limit. Problem scaling is accomplished under program 
control, permitting increment scaling to vary over a 
range of approximately 65,000; which is almost five 
orders of magnitude. 

The TEADDA is implemented with Teledyne's 
hybrid LSI* Micro-Electronic Modular Assembly 
(MEMA) technique to achieve the high speed opera
tion. The MEMAis a hybrid multi-chip flatpack with 
up to 32 integrated circuits interconnected and sealed 
in a 1/20 cubic inch volumn. The high speed computer 
performance is achieved because of the small com
putersize and short interconnections resultant from 
the MEMA packaging. 

The significant features of the TEADDA are: 

a. One megahertz iteration rate 
b. Twenty bit resolution (one part per million) 

*1967 International Electron Devices Meeting (IEEE). 

c. "Electronic Patchboard" for completely auto
matic programming 

d. 100% interconnectivity between 64 integrators 
(256 programmable connections for each incre: 
ment) 

e. Extrapolative trapezoidal integration 
f. Automatic register length selection to vary the 

incremental weighting over a range of 216 (ap
proximately 65,000). 

g. Multiple incremental inputs to each integrator 
h. Ternary incremental communication 
1. Twos complement negative number representa-

tion. 
j. MEMA packaging 
k. High reliability 
l. Low cost 

The baseline system is mechanized to take advan
tage of what is considered to be the most important 
tradeoffs. These tradeoffs in order of significance are: 

a. A high degree of versatility, permitting the pro
grammer and operator to make maxi~um use 
of the computer. 

b. Achieving a one megahertz iteration rate. 
c. Minimizing the number of integrated circuits. 

These considerations were weighted toward pro
gramming convenience, flexibility, and cost-of-own
ership considerations. A lower cost computer could 
be achieved by reduction of the versatility and/or 
speed. It is considered that the system contains a near
optimized weighting of all three considerations in 
order of their significance. 

Functional description1.2 

The functional diagram of the programmable D D A 
system is illustrated in Figure 1., In the base~ine sys
tem, a G P digital computer is used to set up the prob
lem to be solved by the DDA integrators. The GP 
computer addresses and loads data into the program 
registers, which set up the electrically alterable pro
gram for the D D A. This program can also be entered 
by a tape reader or other types of peripheral equip-

161 



162 Spring Joint Computer Conference, 1968 

l 
! 51, 52, S3 

v 

I 
157 
! S8 

SPACE 
SELECTION 

" 

FANOUT 8US 

±ely 

:. INPUT 
lOGIC 

~ INPUT/OUTPUT 
"I LOG!C 

Vi 
~r 

TIME/SPACE I i ENCOOER 
I 

i I 
fl±dZ ~l 

'" 
II 

'I 
::lOA 
INTEGRATORS 

±elx I, 
-" 

II " 
PROGRAM 11=' 5::,:4, :::55::, S6====~"')I TIME 

~G'''B> I c~ l;c::;;O" !i 

,I

i 
PICK-UP 
CYCLE 

II i~ 

I 
I 

I I I SEOUENCER I l 
i 

59, 510, 511, 512 '" 
REGISTER 
LENGTH 

V ~~~~~~g~ 
I 

f 
J:I 
L:J T19982 

Figure 1-System functional diagram 

ment. The program registers will be used to hold the 
interconnection and scaling program for a particular 
DDA function. In addition, these program registers 
are time shared to load initial conditions into the 
integrators and to transfer the readout data to the 
GP computer. 

The interconnection control for the DDA is accom
plished in a two dimensional array through a space 
domain and time domain selection. Programmable 
digital bits S 1 thm S3 and S4 thm S6 set up the space 
domain selection and time domain selection, respec
tively. Each integrator contains four of these regis
ters and associated selection logic to implement the 
four incremental inputs, defined as the three dy inputs 
and the dx input to each integrator. In addition, the 
S7 programmable bit reverses the polarity of the incre
,mental input to implement a sign change function. 
The S8 programmable bit is used to disable the input, 
to prevent incremental signals to that input from 
affecting the integrator computation. 

The pickup cycle sequencer is actually the bit 
timer, which is used both to encode and to decode the 
time domain multiplexed signals. The space domain 
selection logic will select the appropriate intercon
nection bus. The time selection logic will generate 

a pulse, the time position of which corresponds to the 
time multiplexed position of the programmed input 
increment. In addition, the !::,. input logic will per
form the polarity reversal and input disable functions 
under program control. The incremental inputs to the 
DDA integrators will be received from the!::" input 
logic, under program control, to update the integrators. 

Programmable mtegrator scaling is accomplished 
by program register bits S9 through S12. These bits 
will select the register length for the particular inte
grator, thereby scaling the parameter over a range of 
approximately 65,000. 

The four incremental inputs to each integrator 
are programmed with bits S 1 thm S8, repeated for 
each of the four incremental inputs. The register 
length selection is accomplished with bits S9 thm S 12 
for each integrator. Therefore, a 36 bit program regis
ter is required to completely define the input and scal
ing for each DDA integrator. The incremental output 
of the integrator is multiplexed onto the dz bus under 
t,he control of the pickup cycle sequencer. This time 
multiplexed position, a pulse position identification, is 
characteristic of each integrator and is not program
mable. The time and space multiplexed incremental 
outputs of the integrators are recirculated to the selec-



Electrically Alterable Digital 'Differential Analyzer 163 

tion logic for fanout to four inputs for each of 64 inte
grators, yielding a total fanout of 256 incremental 
inputs. 

The input/output logic controls the loading of 
initial conditions during the, Initialize Mode and the 
transfer of computational parameters during the Read
out Mode. There is provision for direct G P computer 
control for the initializing and readout of the DDA 
computer parameters. 

Certain types of overhead equipment are required 
for computer operation, induding the dock puise gen
erator and power supplies. This overhead equipment 
permits the DDA computer to be completely self
contained, thereby minimizing the interface require
ments with the G P computer and peripheral equip
ment. ThisDDA computer can operate asynchron
ously relative to the G P computer and other control 
equipment. Interface synchronization is obtained 
with buffer logic and registers, thereby permitting 
the DDA computer to operate independent of limita
tions that are characteristic of the external equip
ment. 

The dynamic operation of the computer is con
trolled by the modes, cycles, bit times, and clock 
pulses. The modes of operation are commanded by 
the G P computer or other peripheral control equip
ment. The cycles and timing pulses are generated 
within the DDA computer. 

The modes of operation of the DD A computer are 
defined as the Compute Mode, Initialize Mode, and 
Readout Mode; described in Table I. 

TABLE I -Operating Modes 

MODE CYCLE liT nMfS nMf 
NOlfS {jaSECl 

I PICKUP 0,51'0 pS 

COMIUlf 2 INCIEMEN; O,21~ pS tenT, nve <_~CH 
I~ 

3 INlfGlAlf 0.214 pS 

LOAD INITIAL M WOlDS INmAlfD INITIALIZE 
CONDITIONS 20 BITS/WORD ASSUME IMC CLOCK AT THE ST .... T OF 1280 liT TIMES 

l_pS THE COMPUTATION 

M WORDS {lION COMPUTa 
II!ADOUT tECllCULAlf 20 lin--WORD A5SUMI' IMC 0 nt'I< 

COMMAND 
I_liT nMfS 1280;.s----', \QiiniiiiVi 

I AS REGlUIIfD 

Tl9995 

During the Compute Mode, the DDA integrators 
automatically sequen~e' through the computation 
and generate solutions to the equations that they 
mechanize. This mode of operation is composed of 
repetitive DDA iterations. Each of these iterations 
is composed of three cycles that require a total of 
14 clock pulses to complete. These 14 clock pulses 
constitute a full DDA compute iteration, illustrated 
in Figure 2. The duration of each cycle is deter
mined primarily by the propagation time require
ments through the longest logical chain to perform 
the required function. Cycles 2 and 3 are imple
mented as sequential computations to simplify the 
logic required for the integrator arithmetic opera
tions. 

Cycle 1 is defined as the Pickup Cycle, performing 
the encoding and decoding functions' that interconnect 
the incremental outputs, obtained during the previous 

BIT TIME 
CLOCK 
PULSES 

2 3 4 5 6 7 8 9 10 11 12 13 14 2 3 4 5 6 7 8 9 10 1 I 12 13 14 
I I I I I I I I I I I I I I I I I I I I 

CYCLES 

PICKUP CYCLE (8 CP} 
8 x 71.4 = 5700s 
(1) ~dy, dx 

INCREMENT 
CYCLE (3 cpo INTEGRATE 
3 x 71.4 = 21~ ~YCLE (3 CP) 
(1' y + ~dy ~ x 71.4 = 2J4 
(2) R - rd:, 2 (J) Y - R 

-, CYCLE 1 ----_+_ CYCLE 2 CYCLE 3 --+0---- CYCLE 1 -----I'- CYCLE 2 CYCLE 3 

ITERATIONS I-I---------ITERATION k + l-------i--+I---------ITERATION k + 2 ------.~~. 

CLOCK FREQUENCY. 16 Me 
CLOCK PERIOD. 71.4 os PERIOD 

Figure 2 - Compute mode sequencing 

T19996 



164 Spring Joint Computer Conference, 1968 

iteration~ to the incremental inputs of the appropriate 
integrators for use during the next iteration. These 
incremental quantities are encoded both in space and 
in time. The space encoding merely selects the appro
priate incremental bus line. The time encoding re
quires a pulse position type of incremental encoding. 
The Pickup Cycle is composed of 8 bit times that 
are coincident with the sequential multiplexing of 8 
integrator outputs on each interconnection bus. A 
particular bit time in the Pickup Cycle will be selected, 
unde~ program control; resulting in one of 8 sequential 
increments on each bus selected as the input to the 
integrator. In this manner, the Pickup Cycle will per
mit the decoding of the increment for use during Cycle 
2, the Increment Cycle. Three dy and one dx inputs 
are permitted for each integrator, where the Pickup 
Cycle will permit four input increments to be received. 

The Increment Cycle, Cycle 2, permits the integra
tor to accept the incremental dy inputs, received 
during the pickup cycle, and simultaneously add 
these increments to the Y and R registers. The alge
braic sum of the input dy increments are accumulated 
in a two bit counter, to be algebraically added to the 
Y register to update the Y parameter. This dy incre
ment sum is also added to the R register, where the 
relative weighting is one half of the dy increment 
weighting. This R register arithmetic operation imple
ments a trapezoidal type integration algorithm. The 
incremental sum is added to the Rand Y registers 
simultaneously in parallel arithmetic fashion. There
fore, at the completion of the Increment CyCle the 
value in the Y register is the updated Y value and the 
value in the R register has the new trapezoidal cor
rection. 

The Integrate Cycle, Cycle 3, permits the new Y 
parameter to be algebraically added to the R register 
under control of the dx incremental input. At the 
completion of the Integrate Cycle, the R register 
will contain the new remainder and the dz output 
will be available from the integrator to be picked up 
during Cycle 1, the Pickup Cycle, of the next iteration. 

It should be noted that the Y and R registers will be 
updated with the dy increment input only for the 
increments accumulated for the Pickup Cycle pertain
ing to that iteration. In addition, the Y register will 
be added to the R register during the Integrate Cycle 
only if a dx increment had been received during the 
Pickup Cycle pertaining to that iteration. Therefore, 
the operation in the Increment Cycle depends upon 
the dy increments and the operation during the Inte
grate Cycle depends upon the dy and dx increments 
received during the Pickup Cycle of the corresponding 
iteration. 

The sequencing logic will permit the entrance into 
the Compute Mode to be accomplished only at the 

start of the Pickup Cycle. Similarly, eXItmg from 
the Compute Mode can only be accomplished at the 
completion of the Integrate Cycle. This will assure 
the proper sequential operation of the DDA computer, 
independent of mode changes and interruptions. 
Therefore, the G P computer that interfaces with 
the DDA can command readouts at any time without 
the loss of DDA information or synchronism. A read
out command will, effectively, stop time for the DDA; 
readout the required information; then permit the 
DDA to resume proper operation. 

The Initialize Mode is intiated by the external G P 
computer or other equipment that will load initial 
conditions. This Mode will clear the R register and 
other selected flip-flops in the system. In addition, 
it will switch the Y register in each integrator into 
a serial shift mode of operation. This will permit initial 
conditions to be loade~ into a selected register in 
serial form from the GP computer, the external tape 
reader, or various other types of peripheral equip
ment. The loading of the Y register is accomplished 
in serial to significantly reduce interconnections and 
logic. The time required to load 64 integrators with 
initial conditions will only take several milliseconds 
of time. This is not considered a significant duration 
of time to warrant the extra hardware to load the 
registers in parallel fashion. 

The Readout Mode of operation will discontinue 
the computation, but preserve the parameters con
tained in the DDA computer. The readout will be 
accomplished by placing the Y register of each inte
grator into a shift register mode of operation with 
a recirculation loop. These registers will continually 
recirculate, thereby permitting the contents to be 
available in serial word form to the external equip
ment, while preserving the Y register information 
through the recirculation loop. A bit timer will keep 
track of the word, permitting the shifting operation 
to be concluded when the serial word is properly 
assembled in the shift register. All of the Y register 
outputs will be multiplexed into the input of the 
G P computer. The particular register can be selected 
with an address from the GP computer. 

The program registers are used to hold the pro
grammed interconnections and scaling information 
during the Compute Mode of operation. During the In
itialize and Readout Modes, the program registers are 
time shared as interface buffer registers for the serial 
transfer of information. 

A bit timer is used to sequence through the three 
cycles of the Compute Mode and synchronize the 
shifting of the Y register in the Initialize and Readout 
Modes. In addition, it will synchronize all basic timing 
operations in the computer. A clock pulse generator 
is used to generate the precision timing required for 



Electrically Alterable Digital 'Differential Analyzer 165 . 

synchronous operation of the complete DDA com
puter. 

Software approach to DDA programming 

The versatile concept of the TEADDA will permit 
the implementation of associated software, resulting 
in a significant increase in the utility of the system. 
With t~e advent of the Electrically Alterable DDA, it 
becomes feasible to describe a DDA compiler and 
associated software aids, The comniler· is a software --- -----c---- -- - ----._-,-

package that is run on a G P computer to generate' a 
functional program for the D D A. This program is then 
organized into the machine language format with th~ 
DDA assembler program and printed out with the· map 
printer program. 

the DDA compiler accepts inputs from the pro
grammer in a programmer oriented form; The inputs 
are the equations to be mechanized, the initial con
dition parameters, and a definition of the auxiliary 
functions such as the map printout. The compiler will 

. automatically generate a detailed program for assem
bly into machine language. 

The input format for the compiler is defined with 
distinction made between the various parameters and 
operators, as listed in Table II. The general symbol 
is defined as a capital letter, while the specific param
eter or operator is defined with numbers and lower 
case letters associated with the general symbol. The 
programmer will generate an equation in analytic 
form, shown in equation (1), then convert it to the 
compiler input form, shown in equation (2), with refer
ence to Ta\?le ~1. 

TABLE II-Compiler Input Symbology 

Input Symbol Example 

Variable V Vex 

Constant K Kel 

Differentials D D Vex 

Integrals S S Kel 

Whole Numbe rs H H Vex 
_ ... _-

(1) 

HVz = S(KI *Vx*Vy*DVt) (2) 

. Independent initial conditions would be entered by 
the programmer, but initial conditions that are implicit 
in the other parameters would be derived by the com-

piler. The required accuracy of the solution would be 
entered as a scaling aid and to define the accuracy
speed tradeoff for the solution. 

The compiler output is a scaled program ready for 
assembly, a list of input programmer errors for diag
nosis, and a DDA interconnection map program for 
documentation. The map program can be generated 
in punched tape form to be used on an off-line map 
printer. 

The compiler will generate aDD A oriented pro
gram by using special algorithms that are presently 
used by DDA programmers to formulate the prob
lems. The D D A programs are implemented with 
implicit servos, which are used to generate complex 
functions and solutions from basic operations. 
These basic operations include multiplication, addi
tion, subtraction and sine/cosine generation. The 
DDA compiler will program relatively complex opera
tions such as arctan, division, and exponential func
tions that are derived from the basic operations. These 
derivations are illustrated in equations (3), (4), and (5) 
respectively. 

The arctan operation is derived as follows: 

,x 
z=arctan

y 
x 

tanz=-
y 

sinz x 
--=-
cosz y 

x cos z - y sin z = 0 

d(x cos z) - d(y sin z)=O 

(input form) 

x d cos z + cos z dx - ,y d sin z - sin z dy = 0 
(implemented form) 

The division operation is derived as follows: 

x 
(input form) z=-

y 

yz-z=O 

d(yz) - d(x) = 0 

ydz+zdy-dx=O (implemented form) 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

Of) 

(4a) 

(4b) 

(4c) 

(4d) 

The exponential functions for most numbers are 
derived as follows: 

z=x·b (input form) (5a) 

log z - b log x = 0 (5b) 

dz -b dx=O (5c) 
z x 

xdz-bzdx=O (implemented form) (5d) 



166 Spring Joint Computer Conference, 1968 

The development of subprograms for the DDA 
compiler is presently being conducted at Teledyne. 
A sample compiler flow chart is illustrated in Figure 3. 

The DDA assembler program will accept inputs 
from a DDA compiler or programmer and assemble a 
detailed DDA program in machine language. The 
assembler inputs will consist of each computational 
element identification number, incremental inputs, 
word length, and element type. The assembler will 
assign the DDA elements to the computational func
tions. The coding will be defined for interconnections 
between elements to implement the computation and 
for word length to implement scaling. 

REFOfIMULA T£ 
(QUA lIONS FOfI OOA 

GENERATING 
NEW VARIABLES 

WHERE APPLICABlE 

Figure 3 - DDA compiler flow chart 

The output of the assembler for a hard wired DDA 
is a wire list from which the production personnel can 
wire the elements together. For a patch programmable 
DDA such as the TRICE; the output is a wire list for 
the patchboard, a market bit or other selection cri
terion of the word length, and initial condition param
eters. For the TEADDA, the output of the assem
bler is the program register loading which defines and 
code's the routing, register length, and polarity for 

the computation. An ancillary output is the initial 
condition loading of the Y registers and the start/stop 
criteria of the program, along with intermediate print
outs that may be required by the programmer. 

The input format for the assembler is in symbolic 
form, illustrated in Table III. The DDA elements 
may be switches, integrators, servos or other types of 
computational elements. The first letter 'of the sym;. 
bol in Table III indicates the element type, while 
the following three numbers form the identification 
of that type of element. 

Table m. Assembler Input Format 

ELEMENT I I NUMBER 
!dY I I '!dyZ AND TYPE :dy 3 !dx !Y :j !Y Scale Length 

HZ5 _c::on ! C::Oll; 1035 -dt I tn8,51 .;) i4 

SOlZ I :z-~-I ;;:: -SOI2 +0 +0 10 

PRINT -ITE 1500 YIZ5 SOl2 

STOP -ITE 30000 

TABLE III-Assembler Input Format 

The nomenclature for the first row in Table III 
defines that integrator I 125 shall accept dependent 
variable incremental inputs from servo S 012, servo 
SOlS, and integrator I 035; with an independent vari
able incremental input (dt) from the computer clock. 
The initial conditions, scaling, and register length 
parameters are also defined. 

Figure 4 - Assembler flow chart 



Electrically Alterable Digital Differential Analyzer 167 

A typical assembler program flow chart is illustrated 
in Figure 4. This program is similar to DDA assembler 
that is presently used at Teledyne to program a hard 
wired avionic DDA that is in production. 

The map printer program is primarily used as a 
checkout aid and for documentation of. reports and 
programs. The inputs are identical to those generated 
for the assembler, with the added feature of assigning 
an acronym to name the variables. Because of lack of 
industrial standards for DDA symbology and the 
difficulty of interconnecting loops by a shortest lead 
concept, the map printer output nomen,.clature shall 
be as defined in Figure 5 and illustrated in Figure 6. 

dX __ "" 

Y 
Y 

5 

8 _..:::..:_. -,-__ "",r":l:-dZ 

dd~Y L-----..:

X r ~ .... : __ y_-~_t~.... dZ. 

dZ 

o 2 

INTEGRATOR 

Y NAME 
L LENGTH 
Y Y SCALE 

5 

dX NAME AND SOURCE 
dY

1 NAME AND SOURCE 

dY
2 NAME AND SOURCE 

dY
3 NAMf AND SOURCE 

dZ NAME 

;,ERVO 

dY
1 NAME AND SOURCE 

dY
2 

NAME AND SOURCE 

dY
3 

NAME AND SOURCE 

dZ NAME 
L LENGTH 

VARIABLE MUl ilPLIER 

dX NAME AND SOURCE 
dY NAME AND SOURCE 
X 
lX 
Y 
lY 

SWITCH 

NAME 
lENG TH OF X REGISTER 
NAME 
lENGTH OF Y REGISTER 

dY 1 NAME AND SOURCE 

dY
2 

dZ 
1 
2 
o 

NAME AND SOURCE 

NAME 
CONDITION 
CONDITION 
CONDITION 

Figure 5 - Key to DDA map printer 

Hardware description 

The electronics industry has made tremendous pro
gress in the development of advanced electronic com
ponents and techniques. In particular, the advent of 
integrated circuits has virtually revolutionized the 
electronics industry, especially the digital computer 
area. The trend has been toward components that are 
very small, fast, low in power consumption, and highly 
reliable. In order to take advantage of the advanced 

BLOCK 2 

dCEE 
1102 

-dARR 
1201 
dBAR 
1202 

dGRR~_,", 
S201 

dARR 

-dARR 
-1201 

dGRR 
S201 
dMUP 
M201 

Figure 6 - Map printer output 

BlEP 

19 dMUP 
IS 

T20006 

hardware, new and sophisticated handling and pack
aging techniques have been required. In order to 
handle and package the miniature components, much 
of the advantage of the small size has been lost. Tele
dyne has developed packaging techniques that make 
maximum use of the characteristics of the advanced 
components. In particular, the Micro-Electronic 
Modular Assembly (MEMA) takes maximum advan
tage of the characteristics of integrated circuits. 
These are: 

a. Preserving the small size characteristic of the 
integrated circuit chip by placing many chips in 
a single package. 

b. Preserving the high speed characteristics of the 
integrated circuit chip by placing many chips in 
very close proximity with extremely short inter
connections. 

c. Preserving the inherent reliability of the inte
grated circuit chip by eliminating multiple pack
aging levels. 

In addition, greatly improved manufacturing and 
maintenance concepts are achieved and manufactur
ing costs are significantly reduced. The basic MEMAs 
a~e hermetically sealed. flat packs with 24 or 36 leads 
and dimensions of 1.0 x 0.75 x 0.06 inches. Each 
MEMA can contain up to 32 digital integrated circuit 
"bare chips" or 25 analog chips (integrated circuit: 
resistor, capacitor, etc.). The digital MEMA is illus
trated in Figure 7 ana the analog MEMA is illustrated 
in Figure 8. The "bare chips," 1 mil wire leads, and 
substrate interconnections are clearly visible in the 
photographs on the MEMAs with the covers removed. 
The interconnection pattern is photoetched onto the 
ceramic substrate, the chips are die-bonded to the sub
strate, then leads are bonded to connect the chip 
signal pads to the substrate interconnection pattern. 



168 Spring Joint Computer Conference, 1968 

The leads are composed of 1 mil (1/1000 inch) 
aluminum wire that is ultrasonically bonded to the 
chip and substrate. 

Figure 7 -Digital circuit MEMA 

Figure 8 - Analog circuit MEMA 

SUBSTRATE 
INTERCONNECTIONS 

INTEGRATED 
CIRCUIT CHIP 

CAPACITOR 
CHIP 

RESISTOR 
CHIP 

TRANSISTOR 
CHIP 

The MEMA contains the functional complexity 
of a large printed circuit board, but in a highly mini
aturized package; yielding enhanced pertormance, 
reliability, cost, size, and weight. 

Several levels of modularity are provided in the 
computer design, as ill~strated in Figure 9. Mono
lithic integrated circuits are assembled to form 
MEMAs, MEMAs are assembled to form functional 

Figure 9 - Computer build-up 

submodules, submodules are assembled to form func
tional modules, and the modules are then assembled 
to form the computer unit. 

Due to the high frequency of the clock pulse gener-
ator, considerable design effort has been expended to 
assure that propagation delays and the clock pulse 
skew effect are minimized.3 Propagation delays 

through logic' and interconnections are made nearly 
constant to all parts of the computer. The clock pulse 
generator is located at the physical center of the com
puter, with the pulses fanned out to all modules in 
a radial manner. It should be noted that the dimensions 
of the computers are in inches rather than feet, reduc
ing the propagation delay problem. The small dimen
sions are primarily the result of the MEMA packag
ing technique. 

The TEAD D A packaging technique implements 
each integrator and the associated programmable 
interconnections and scaling in tweive MEMAs. 
Each integrator and its associated logic will have a 
Mean Time Between Failure (MTBF) of almost one 
million hours, based on the ten million hour MTBF of 
a MEMA. Therefore, the MTBF for the TEADDA 
containing 64 integrators is over 12 thousand hours 
or 500 days. Using a degradation factor of two for 
higher levels of packaging and interconnectIOn, the 
MTBF would be greater than 250 days of continu
ous operation. The low failt.Ire rate and the ease of 
malfunction isolation and correction yields an ex
tremely low down time for the TEADDA. This is a 
significant factor in the low "cost of ownership" that 
is an important part of the TEADDA concept. 

CONCLUSION 

The electrically aiterable DDA should prove to be an 
extremely useful simulation and computing "tool" 



Electrically Alterable Digital Differential Analyzer 169 

to be used in conjunction with analog, digital, and 
hybrid computers. The TEADDA fills a technological 
gap associated with computer systems, where the 
TEADDA will complement the other computing 
"tools" to more efficiently cover the spectrum of 
computer applications. 

REFERENCES 

1 E L BRAUN 

Digital computer design 
Academic Press New York 1963 Chapter 8 P 448 

2 G A KORN T M KORN 
Electronic analog computers 
McGraw Hill New York 1956 

3 G P HYATT 
High speed digital computer implementation techniques 
1967 International Electron Devices Meeting 





DATA FILE TWO-A data storage and retrieval system 

by REUBEN S. JONES* 
General Electric Company 
Phoenix, Arizona 

INTRODUCTION 
The Data File Two* was conceived to meet the 
needs of a corporate headquarters in the $500 million 
sales category. The file would contain monthly sales 
data for the past two years and the customer master 
file, current month orders and sales, railcar locations, 
current year profit plans, personnel records, ledgers, 
one-year profit plan data, and five-year profit plan 
data. This f!le is assumed to be about 400,000 items. 

The stimulus for trying to put "all" corporate data 
in one file came (rom dealing with these data handling 
problems: 

• Coding and coding structure_ is difficult to disci
pline and change. Yet, the acquisition of new 
companies and the launching of new products 
require fast change and severe discipline. 

• Relating profit planning data for the next one
and five-year periods to current performance, 
corporate goals, and the capital plan is done 
manually. The planning process is severely lim
ited by the slow turn-around on analyses of these 
relationships. 

• Inquiry into sales history, personnel files and 
planning files, and current order and sales files is 
available only through large periodic reports. 

• New data structures (such as proposed organiza
tion changes) cannot be easily proposed and 
analyzed without creating new files and programs 
or doing the analysis manually. 

• Data external to the corporate operations cannot 
be easily put into the current corporate data struc
ture for comparisons and analysis. 

The reader should find the following ideas accept
able after reading this paper: 

I. A data file with 100% indexing is feasible. 

* This paper was written while Mr. Jones was employed at Inter
national Minerals and Chemical Corporation where he held posi
tions as Operations Manager - Accent I nternational Division, 
Manager - Systems Engineering, and Operations Research Engi
neer. 
* A name only. No relation to other file design names. 

171 

2. A file like DF-2 can be used for large data 
banks (400,000 items). 

3. Synonyms and dictionary word hierarchies 
can be had with little extra use of disc space or 
processing time. 

4. List processing (as used here) is the best tech
nique for indexing large data files. 

5. The notational system used in the Integrated 
Date Store l literature is powerful and makes 
file descriptions easily understood. 

6. The IDS/COBOL verbs are useful in describ
ing data file procedures. 

File description 

A. The directory-dictionary approach to communica
tion with a data storage tile 

A directory-dictionary is used to classify data in 
the file, for storing that data, and for retrieving the 
data from the file. 

The directory contains a list of all of the attributes 
under which a data item may be classified. The 
directory might also be considered a list of field
names. In DF-2, the directory would contain the 
following kinds of entries: 

PRODUCT 
CUSTOMER SOLD TO 
DATESHIPPED 

EMPLOYEE NAME 
RAILROAD CAR NUMBER 

There is a dictionary for each directory entry. This 
dictionary contains the specific attribute values for 
the directory item under which the dictionary is 
found. A dictionary under the directory entry PRO
DUCT might contain: 

DIAMMONIUM PHOSPHATE FELDSPAR 
MONOSODIUM GLUTAMATE BENTONITE 

When storing and retrieving data, the directory item 
and the dictionary item are used in pairs: 

PRODUCT DIAMMONIUM PHOSPHATE 
CUSTOMER SOLD-TO WESTINGHOUSE 
DATE INVOICED 01/02/67 
CAR NUMBER ACL 40781 



172 Spring Joint Computer Conference, 1968 

Synonyms may be declared for both directory 
entries and dictionary words so that short spellings, 
common abbreviations and presently used coding 
may be used to store and retrieve data in the file. 
Data retrieval is accomplished by issuing to the 
system lines of data description. Each line of data 
description consists first of the directory entry 
and, second, the dictionary value. Any number of 
des_criptive lines can be used to describe a data item. 

DF-2 is to be implemented using Integrated Data 
Store. 1 Integrated Data Store notation and terminol
ogy will be used throughout this file description. 
the reader may wish to familiarize himself with IDS 
notation and language by referring to the publication 
titled "Integrated Data Store," published by the 
Information Systems Division of the General Electric 
Company. Some IDS diagram conventions and other 
notation conventions are given in the Appendix. 

B. The elementary file structure 

The records and description which follow pertain 
to the elementary file. "Elementary" here means 
the minimum file necessary to implement the direc
tory and dictionary and the storage of data items. 
In the actual implementation, the data storage file 
will be somewhat more elaborate in order that 
additional features such as synonyms, storage of 
character strings, cartesian intersections such as 
month, day and year, and hieI:archical relationships 
such as Belgium and Luxembourg being part of the 
Benelux group. These elaborations, however, can, 
at this point in the description, serve only to confuse 
the basic file structure description. 

The elementary file contains the following records: 
File Entry - one record only in the file. The point 

at which the file is entered. 
Directory 
Records - contain the names of the classes into 

which the dictionary is divided. 
These records may contain words 
such as PRODUCT, CUSTOMER, 
SHIP FROM, SHIP TO, NAME, 
DATE, or EMPLOYEE NAME. 
They are spaced out across the file. 

Dictionary 
Records - contain the particular descriptors 

such as DIAMMONIUM PHOS
PHATE, WESTINGHOUSE, 
NAHX 94872, a Duns Number, or 
JANUARY. They are placed near 
the directory records. 

Value 
Records - These records contain only numeric 

quantities in the elementary file. 

Coupler 

They are placed at regular intervals 
across the file. 

Records - contain nothing but chain links. 
They are placed near the Value 
records. 

File Entry 

record 

Dictionary Value 

chain record 

Dictionary Value There is one 

There is one 

Coupler record in 

this chain for each to describe the value 

value that this in the Value record. 
Coupler 

record 
dictionary word is 

used to describe. 

Figure I - The elementary file structure diagram 

The Elementary File Structure Diagram is shown in 
Figure 1. There is one Value record for each data 
item. The Value record contains the one numeric 
piece of data. There is one Coupler record in the Value 
Coupler chain for each dictionary word needed to 
classify the "value." The Directory chain connects 
all of the directory entry records. The Dictionary 
chain connects all of the dictionary words to a dir
ectory entry. The Value chain connects all of the value 
records. The Where-used chain connects, via the 
Coupler records, all of the places that a particular 
dictionary word is used to describe a data item. 

An illustration of how a data item would be stored in 
the Elementary File is shown in Figure 2. The data 
item is the numeric value 407 classified under PRO
DUCT POTASH, and UNITS TONS. The blank 
rectangle at (2) is the Coupler record linking the 
number 407 to the word TONS under the directory 
entry UNITS. The blank rectangle at (3) is a Coupler 
record linking the number 407 to the dictionary word 
POT ASH under the directory entry PRODUCT. 

The dictionary is to contain all the words necessary 
to describe the data items. Computational numeric 
values are stored in the value record. In the elemen
tary file, the value record contains only a numeric 
value and two fiie chain links. " 

In the full-blown file, the value records are allowed 



Records 

PliODUCT UNITS 

tONS 

Dictionary 

Record. 

POTASH 

Data It_: VALUE!!91. at (l) 

PRODUCT POTASH via (J) 

UNITS tONS via (2) 

Value 

Record 

407 

M 
I 

Coupler 

Records 

(J) 

IDS DIAGRAH CONVENTIONS NOT USED 

Figure 2 - An illustration of how a data item would be stored in 
the elementary file 

to contain character strings such as address, terms 
phases, or shipping instructions. 

c. A more elaborate file structure 

l. Synonyms 
A means of declaring synonyms in the dic

tionary is provided. Synonyms are used to name 
coding or short words which could be used to 
store data and to make inquiries. The synonym 
for AC'CENT 24.;4(1/2) OZ might be: 51307, 
24-4 1/2 OZ, 4 1/2 OZ AC'CENT, and AC'
CENT 4 1/2 OZ. The principal descriptor used 
as file output is called the prime dictionary 
word, and the other synonyms are called 
dictionary synonyms. 

Synonym declaration is also provided for the 
directory entries. Synonyms for the directory 
entry PRODUCT could be PROD., PROD, 
PRO and PROD CODE. 

Figure 3 shows the elementary file diagram 
with synonym records added. The discussion 
on synonyms applies to directory synonyms as 
well as dictionary synonyms. 

The synonyms lise lip fHe space only to the 
extent of adding one dictionary record for 
each synonym. 

The dictionary chain is in alphanumeric se
quence. The synonym records are in the same 
dictionary chain so that prime words and 
synonyms are intermingled in the' list. Each 
synonym record is also a detail record of a 

chain of which the prime word is master. The 

• 

DATA FILE TWO 173 

synonym records have a pointer to master 
so that when a search hits on a synonym, 
the prime word may be retrieved directly. 

Figure 3 - The elementary file diagram with synonym records 

2. Character String 
Long credit terms, phrases, shipping instruc

tions spelled out company names and street 
addresses would probably not be dictionary 
words. It is, therefore, necessary to provide a 
means of storing longer character strings. 

To provide storage and retrieval of character 
strings, three new record types are provided. 
The character string record is comparable to 
the value record in the elementary file. The 
first 40 characters of a string are stored in the 
character string record, CHAR-STRING. 
The remaining characters in the string are 
stored in records named STRING-LINES. 
These records holq 40 characters each and 
are chained to the CHAR-STRING record as 
master thus enabling the file to hold character 
strings of any length. 

Another type of Coupler record is needed 
which is named STRING-COUPLER. The 
elementary file with character string records 
added is shown in Figure 4. 
The Character-String records could be thought 
of as a second file which uses the same dic
tionary as the first file. 



174 Spring Joint Computer Conference, 1968 

EXTEND
STRING 

chain 

Figure 4 - The elementary file with character· string records 

3. The Cartesian Directory Record 

When storing data, the question arises as to 
whether to put the date, "01/02/67", in the dic
tionary or to store the date as three parts: Month 
1, day 2, and year 1967. Usually, the decision 
would be to store month, day, and year sepa
rately in order to make it easier to summarize 
data into monthly and yearly periods. 

The casual system user who is retrieving data 
on, for example, shipments for May 2, 1968, is 
not likely to remember that date is stored as 
month, day, and year. A solution would be to 
Store the date under DATE 01/02/67, and 
MONTH 1, DAY 2, and YEAR 67. This would, 
however, increase the number of Coupler 
records needed in the file and thus would 
increase the use of physical file space. 

The splitting of date into month, day and year 
is provided for in the directory without redun
dant data classification. This is done by using the 
CARTESIAN directory record. The Elementary 
file with the CARTESIAN record is shown in 
Figure 5. 

The CARTESIAN record is a detail record in 
the Directory chain just as are other Directory 
records. 

L-___ ---l CART-

CHAIN chain 

Figure 5 - The elementary file with the Cartesian record 

The CARTESIAN record is master of the 
chain CART-CHAIN. The detail records in the 
CART-CHAIN chain are the Directory records 
which make up the CARTESIAN directory 
entry. U sing the date example, the directory 
word DATE would be stored in the CARTE
SIAN record and the directory entries DAY, 
MONTH and YEAR would be stored in 
Directory records. The DAY, MONTH 
and YEAR records would be detail records 
of the CART-CHAIN chain which had the 
DATE record as master. The CARTESIAN 
record has no dictionary since the elements of 
date are stored in the MONTH, DA Y and 
YEAR dictionaries. Synonyms for the CAR T E
SIAN directory record are contained in the 
CART-SYN record. 

When retrieving data using DATE 1/2/67, the 
retrieval program would, upon finding that 
date was in a CARTESIAN record, fracture 
the inquiry into 1, 2, and 67, assigning "1" 
to the first directory item in the CART-CHAIN 
chain, which would be MONTH, assigning 
"2" to the next CART-CHAIN chain record, 
DA Y, and assigning "67" to the next record 
item YEAR. An inquiry which used 

DATE 1/2/67 
for a retrieval criteria would be translated into: 

MONTH 1 
DAY 2 
YEAR 67 

The same would occur when storing a data item. 



4. The Benelux Hierarchy 
Dictionary words have hierarchical relation
ships. to other words that need to be defined in 
the data file. An example might be sales to 
Belgium, the Netherlands, and Luxembourg 
which make up the Benelux group. It is desir
able to have data for these three countries 
summed when a call for sales to Benelux is given. 
All data stored under Belgium, Netherlands, and 
Luxembourg could also be connected to the 
word Benelux. As in the consideration of 
synonyms, this would require an additional 
Coupler record for each data item. By use of 
the BENELUX record and the LUXEM
BOURG record in the Where-used chain, the 
number of extra records to define the Benelux 
problem described above is reduced to four 
regardless of the number of data items. The 
diagram of the Elementary file with BEN ELV X 
and LUXEMBOURG records added is shown 
in Figure 6. 

File Entry 

record 

chain 

Directory Value 

record 

Dictionary 

chain 

Dictionary 

record 

Coupler 

Where-used record 

chain 

record 

LUX-CHAIN 

chafn 

LUXEMBOURG 

record 

Figure 6-The elementary file with Benelux and Luxembourg 
records 

DATA FILE TWO 175 

The BENELUX and LUXEMBOURG records 
are detail records in the Where-used chain, and 
the LUXEMBOURG record is also a detail 
record in the chain LUX-CHAIN. 

The BENELUX record is master of the LUX
CHAIN. The BENELUX record is found in 
the Where-used chain of the dictionary word 
higher in the hierarchy (the word BENELUX 
in our example) and the LUXEMBOURG 
record is found in the Where-used chain of the 
dictionary word lower in the hierarchy (Belgium, 
Luxembourg, and the Netherlands, in our 
example). The depth of the hierarchy is un
limited, and the number of different hierarchies 
in which a word may be defined is unlimited 
since there is no limit to the number of BENE- . 
LUX and LUXEMBOURG records which 
may be placed in the Where-used chain. The 
linking together of these records for the Scan
dinavian countries is illustrated in Figure 7. 

Dictionary Records 
SCANDINAVIA 

DENMARK 

SWEDEN NORWAY 

Benelux 

Record 

IDS DIAGRAM CONVFJiTIONS ARE NOT USED 

Figure 7 - How Benelux records are used to tie the Scandinavian 
countries together 

Data extraction scheme 

A. Data extraction scheme for the elementary file 
In order to explain the data extraction scheme, 

the elementary file will be used along with a simplified 
retrieval routine and inquiry. In the next section on 
retrieval timing, other I DS features and record 
fields not mentioned before will be added to improve 
the retrieval times. 



176 Spring Joint Computer Conference, 1968 

The user wishes to see a totai of all potash sales. 
The inquiry would be: 

FOR 
PRODUCT POTASH 
TRA.NSACTION SALE 
DiSPLAY TOTAL 

Figure 8 shows a data extraction procedure for the 
elementary file which would serve the above inquiry. 

GO TO: 

GO TO ---f} 
is left Y 

ELSE is 

down 

'Loop A 

Y Start 

$ Retrieve File Entry record. 

2 Retrieve Directory record for 

PRODUCT. 

Retrieve Dictionary record 

for POTASH. 

Retrieve next record of the 

Where-used chain. 

_----I 5 If record is chain master. 

6 Save REFERENCE-CODE in 

WORK-AREA_B. 

7 Retrieve next record on the 

Value-Coupler chain. 

8 If record is chain master. 

9 If REFEl!.ENCE-CODE equal 

WORK-AREA_B. 

10 Head the Where-used chain. 

11 If Dictionary record is not 

SALE. 

12 Head the Value Coupler chain. 

13 Add "value" to TOTAL bucket. 

Print ~ bucket. 

The Inquiry: 

FOR 

PJl.ODUCT POTASH 

Tl!.ANSACTION SALE 

DISPLAY TOTAL 

Figure 8 - A data extraction procedure for the elementary file 

B. Modifications to the elementary data extraction 
scheme for faster operations and a more elaborate 
inquiry. 

The following discussion concerns data extraction 
speed a~d the file and procedure modifications 
necessary for speed-up. 

The following timing, assumptions and definitions 
will be made so as to simplify this discussion. 

• Magnetic disc with movable arms will be the 
file device 

• A large number of IDS pages will remain in core 
memory (10 or more). 

• The file device will have one data channel and 
will allow no simultaneous arm seeks. 

• In-core processing time will be either over
lapped or otherwise insignificant. 

• For retrievals of records along a chain which 
uses the "Place-Near" IDS statement, there 
will be one disc read for each five (5) retrieve 
commands and one arm seek for each ten (i 0) 
retrieve commands. 

• For retrievals of records not along a "Place
N ear" chain, there will be one seek and one read 
for each retrieve command. 

• An average of two synonyms will be assumed 
for each prime dictionary word and directory 
entry. 

• Y = the number of value records (data items). 
• C = the average number of dictionary words 

needed to describe one value. Also, the average 
number of Coupier records in the Vaiue-coupier 
chains. 

• D = the number of dictionary prime words. 
• E = the number of directory prime entries. 
• YC= the average number of Coupler records in 
o the 
Where-used chains. 

• t = average disc rotational delay. 
• T = average arm seek time. 
• N = number of search (item selection) con4itions 

given per inquiry. 

The chart in Table I gives a brief statement on 
how the file or procedure was changed for speed-up, 
the resulting timing formula for each block in Figure 8, 
and the file search time computed for a specific 
example., 

The example data base used in the timing and file 
size illustrations is as follows: 

Prime dictionary words 
Synonyms per word 
Prime directory entries 
Synonyms per entry 
Data items 
Classifications per data item 
Numbe'r of item selection criteria 

100,000 
2 

100 
2 

400,000 
20 

per inquiry 2 
The largest time loss in the Elementary procedure 

is in Step 10. This can be reduced to in-core time by 
defining a link to master of the- Where-used chain in 
the Coupler-record and by using the -reference code* 
of SALE to compare to this link (reference code). 
This change would cause the repitition of the proc-
essing in Steps 1 through 3 "N" times since the 
reference code of SALE must be found for com-
parison. 

*Reference code is an IDS term for the records relative address on 
the file. 



The next largest time loss is in Step 7. This will 
stay except for a small reduction. The number of 
executions of Loop B will be reduced by putting a 
count of Coupler-records on the Where-used chain in 
the prime Dictionary record. This will allow us to 
select the search path (in the search example, the word 
POTASH or the word SALE) which is the shortest. 
This would reduce the number of Loop B executions 
by a factor of about r~r. 

N 

Steps 2 and 3 will be reduced by breaking the Dic
tionary __ fl:~dPirectory chains with' range master* 
records. These range master records will be spaced 
across the file allowing room for Dictionary records 
to be clustered around them. 

The conditional branch at Step 11 would be elab
orated to include a check against all search conditions 
with each condition being marked for hit or no-hit. 
The "add Value to bucket" step at 13 would be re
placed by whatever report or computational require
ments are called for. 
Step 12 time will probably be zero since the Value 
coupler chain is a "Place-Near" chain, and the 
record is likely to be in core. 
Table I gives the arithmetic expressions for the search 
time consumed by each procedure step. 
The average search time into the example data base 
after making the modifications noted above is: 

1425 T+t +64 (T+t) 
10 5 

For disc units with the seek and rotational delay times 
of 

T 
200 

90 
o 

and t 
25 
10 
25 

The average search time is: 
50 seconds 
22 seconds 

9 seconds 

File size for full blownfile with allfeatures discussed 

The full blown file structure is shown in Figure 9. 

The size of an Integrated Data Store record 

where: R = Record size in characters 
L = Number of chain links, counting 

links to master 
is: R= 5 +4L+(NumberofData Char.) 

The sizes of the DF-2 records are shown in Table 
II. Also in Table II, the expressions for computing 

*Range masters break up a long detail chain. Where S = number of 
records in the chain, search speed improvement is about 2v8. 

S 

DATA FILE TWO' 177 

Figure 9 - The full blown file structure diagram 

the disc space used by each record type is shown. A 
file size is computed for the example data base. 

The data storage and retrieval language 

A. Function 
The function of the Data Storage and Retrieval 

Language is to provide a means of storing data in the 
file from common sources and making changes to that 
data, to make changes to the descriptive words used 
in the directory and dictionary, and to retrieve and 
report data from the file. 

More specifically, it is assumed that the following 
operations with the file will be desirable: 

1. To define dictionary words and their synonyms. 
2. To define directory entries and their synonyms. 
3. To load data into DF-2 from magnetic tape and 

card files used as part of existing systems. 
4. To make changes to dictionary words, directory 

entries and their synonyms already stored in 
the file. 

5. To change data previously loaded into the file. 
6. To select and display data from the file "on

line". 
7. To extract and print data in more elaborate 

report fonDs "off-line". 



178 Spring Joint Computer Conference, 1968 

Search Procedure 

Step No. in 

Figure 8 

1 

2 

3 

4 

5 & 6 

7 

8 & 9 

10 & 11 

12 

13 

TABLE I 

AVERAGE SEARCH TIME EXPRESSIONS 

Explanation of 

FUe Changes 

For SpeecL-Up 

File master is usually core 

resident. 

Direction chain is a "place near" 

chain subdivided by range master 

records. Two synonyms per prime 

directory entry. 

Dictionary chain is a iiplace near ii 

chain subdivided by range master 

records. Two synonyms per prime 

dictionary word. 

Always a random retrieval VC 
o 

times. 

In core operations. 

Value Coupler chain is a "place near" 

chain. Step is executed C times for 

each Loop A execution. 

In core operations. 

A link to master is placed in the 

Coupler record for the Where-used 

chain. The referenee code in this 

link i, used to compare to the refer-

enee code of the dictionary word 

SALE. In this way, the retrieval 

of the dictionary word is avoided at 

this procedure step. 

Since Step 7 accessed all couplers for 

the Value record, and sinee the Value 

Coupler chain is a "place near" chain, 

the page containing the Value record is 

almost certain to be in core. 

In core operation. 

Expressions 

For Average 

Search Time 

0 

NG(! +!) 
10 5 

VC (T + t) fN 
o N 

o 

C (VC)(! + !)fN 
D 10 5 N 

o 

o 

o 

o 

Average Search Time 

Por the Example 

Given in the Text 

0 

35 (! +!) 
10 5 

64 (T + t) 

o 

1280 (! +!) 
10 5 

o 

o 

o 

o 



DATAFILETWO 179 

TABLE II 

DISC SPACE USAGE 

Estimated 

File Size 

Expression For Example 

Links Characters For Number Number Of In Millions of 

Record TXEe ..i!!L Per Record Of Records Records Characters 

DIR-RANGE 2 13 G 18 

DIRECTORY 4 39 E 100 

CARTESIAN 3 35 

DIR-SYN 2 31 2E 200 

CART-SYN 2 31 

DICT-RANGE 2 31 ~ 3D/E 55 

DICTIONARY 4* 44 D 100,000 4.40 

SYNONYMX 2 31 2D 200,000 6.20 

LUXEMBOURG 3* 25 1,000** 1,000 .03 

BENELUX 3* 35 300** 300 .01 

STD-COUPLER 3* 17 CV 8,000,000 136.00 

STRING-COUPLER 3* 17 

VALUE 2 21 V 400,000 8.40 

CHAR-STRING 3 57 V/10** 40,000 2.28 

STRING;..LINES 1 49 V/10** 40,000 1.96 

TOTAL 159.28 

* Links to master included 

** An estimating basis assumption. 



180 Spring Joint Computer Conference, 1968 

All of these functions are to be defined by simple 
statements which can be typed in at remote terminals 
and which will be executed by interpretive programs 
written in IDS/COBOL. 

The data retrieval capability is to be used by persons 
with iittle data processing experience and probably no 
formal typing training. Except for logic of two or more 
levels and "greater than" "less than" conditionals, no 
special characters will be needed. Descriptions with 
imbedded single blanks may be used since two or 
more blanks are used to separate words instead of 
single blanks or commas. 

B. Examples of language uses 
A formal language description is not given because 

it has not been completed. Some illustrations of the 
use of the DF-2 ianguage for retuievai ofraiicar tracing 
data, planning data, and personnel data are shown be
low. 

Example 1 
Railcar locations might be stored and updated in 
Data File Two. The first example is a request 
for all railcars passing St. Louis carrying Triple. 
Super Phosphate which are loaded but unassigned 
(Roller) or destined for the company's own plant 
(Plant Food). The system responded, as shown, 
with four hits. 

FOR 
STATUS ROLLER 
OR 
SOLDTO PLANT FOOD 

I CAR LOCATION ST.LOUIS 
PRODUCT TRIPLE SUPER 
SIGHTING NOT DESTINATION 
UNITS TONS 

DISPLAY 
CARNUMBER 
PRODUCT TYPE 

REPORTING RR 
VALUE 
END 

CAR NUMBER PRODUCT TYPE REPORTING RR VALUE 
ACL 086541 ROP MONON 76.3 
SAL 030655 GRANULAR MOPAC 54.4 
ACL 761453 COARSE KCS 74.6 
SAL 088304 ROP MONON 79.3 

END 

Example 2 
Company controlled leased cars would be 
maintained on the file whether loaded or return
ing. Another type of inquiry would tie to count 
the hopper cars returning to three shipping 
location.s (Noralyn, Bonnie, Port Sutton). 

END 

END 

FOR 
STATUS 
CAR TYPE 

RETURNING 
HOPPER 

COUNT RETURN TO PORT SUTTON 
NORALYN 
BONNIE 

RETURN TO 
RETURN TO 
RETURN TO 

Example 3 

END 

NORALYN 
BONNIE 
PORT SUTTON 

5 
10 
16 

The profit planning data for the company might 
also be maintained on the file. The next exam
ple of the language use shows the TOT A L verb 
and the system response. 

END 
TRANSACTION SHIPMENT 
UNITS TONS 
FISCAL YEAR 
GENERATION 
PRODUCT GROUP 

68/69 
FORECAST 1 

POTASH 

TOTAL 

END 

JULY 
AUGUST 
SEPTEMBER 
OCTOBER 
NOVEMBER 
DECEMBER 
JANUARY 
FEBRUARY 
MARCH 
APRIL 
MAY 
JUNE 

END 

Example 4 

MONTH ALL 

45260 
43565 
42536 
32564 
50632 
86734 
361271 
201000 
107271 
50000 
501761 
250302 

The next example is an internal personnel 
search for an engineer with business systems 
experience. 

FOR 
DEGREE 
MAJOR 

MASTER 
ENGINEERING 



FIELD MECHANICAL CHEMI-
CAL MINING 

AGE LESS THAN 35 
EXPERIENCE BUSINESS SYSTEMS 
DISPLAY NAME LOCATION 

END 

(System response not shown) 

APPENDIX 

CONVENTIONS USED IN THE TEXT AND 
IN EXHIBITS IN THIS PAPER WITH REqARD 

TO RECORD NAMES, CHAIN NAMES, 
WORDS APPEARING LITERALLY IN A 

RECORD, AND SCHEMATIC DIAGRAMS OF 
LIST STRUCTURES 

Record, field and chain names are in italics and 
are in all capital letters. 

Examples: 
FILE-ENTRY a record name 
WHERE-USED a chain name 
WORK-AREA-B afield name 

Words which are contents of record fields such as 
dictionary words in the data file are in all capital 
letters. Numeric values which are contents of Value 
records are in italics. 

Examples: 
MONTH 
YEAR 
VALUE 

JANUARY 
67 

245.678 
Discriptive names of records are used in describing 

the elementary file to avoid having the reader memo
rize shortened COBOL names. These names are ·in 
beginning capitals only. 

DATAFILETWO 181 

Each box represents 

one record type. 

Each record type 

has a name. 

Each chain has one The record type which is 

master of the chain is at and only one master 

~
• the tail of the arrow. 

record type. 

A chain is represented by an 

arrow. Chains have names. 

Record types at the head of 

arrows are detail records of 

I the chain. 

A record may be master 

of one chain and 

detail of another. 

Any number of record types may 

be detail records of the same chain. 

A record type may be detail of more 

than one chain. 

Figure 10- IDS diagram conventions 

Integrated Data Store schematic diagram conven
tions are used in figures except where noted. A brief 
review of IDS Diagram Conventions is given in Fig
ure 10. 

REFERENCES 

INFORMATION SYSTEMS DIVISION GENERAL 
ELECTRIC COMPANY 
Integrated Data Store AS-CPB-483A Rev 7-67 





GIPSY -A generalized information processing system 

by GIAMPAOLO DEL BIGIO 
International Atomic Energy Agency 
Vienna, Austria 

INTRODUCTION 
The problem of mechanized documentation at the 
International Atomic Energy Agency was first ap
proached by using the IBM KWIC system, which 
proved, however, to be insufficient for most of the 
applications which were envisaged. 

Consequently, it was decided that a new system, 
GIPSY, should be developed which had the follow
ing basic characteristics: 

- the input material must be entered in such a way 
that it can be unambiguously recognized, i.e., 
retrieved, by the computer; 

- the system must be able to store and retrieve 
the information, and display it in a form which 
is not fixed a priori, but which can vary accord
ing to the user's needs; 

- the system must provide for such additional func
tions as sorting, duplication check and file main
tenance. 

From the consideration of these points it became 
clear that the system had to comprehend two sub
systems: 

1) the input subsystem which permits consistent 
cataloging and encoding of the material to be 
processed; and 

2) the machine subsystem which processes the 
material by means of the computer. 

The input subsystem has been discussed in detail 
elsewhere, l while the description of the machine sub
system is the purpose of this paper. However, since 
the two subsystems cannot be described completely 
independently, a short description of the first is given 
in the next section. 

I nput organization 

The input to the system consists of the bibliographic 
descriptions of ~ocuments, or input "units." An input 
"unit" consists of a set of bibliographical data, or 
"data elements," e.g., author, title, publisher, etc. 

Some data elements are composed of several sub
elements, e.g. multiple authors. These are identified 

by special marks in the body of the data element. 
Where needed a fixed structure, according to normal 
documentation practice, has been defined, using 
key-words such as YOL., NO., P., etc. and/or punc
tuation signs. 

This permits the program to check the formal cor
rectness of input and give specific error messages 
where the defined input rules are not followed. It 
also permits the enforcement of consistency in input 
preparation, which ultimately means consistency in 
the output products. 

Each "data element" is given a 4-position code, the 
B-code, as follows: 

First position: 
Second position: 
Third position: 
Fourth position: 

Class and subclass code 
Data type code 
Data subtype code 
Language code. 

The concepts of class, subclass, type and subtype 
are described below. We have identified, in GIPSY, 
three types or "classes" of documents: 

1) Original: the publication whose bibiiographic 
description is being entered into the system; 

2) Source: the publication in which the "original" 
document was documented, e.g. an abstract 
journal; 

3) Citation: a document cited by the "original" 
document. 

In addition, a document of any of the three classes 
above may be independent, e.g., a technical report, or 
it may be part of some larger work, e.g., a journal ar
ticle, a book in a series, etc. We have therefore in
troduced subclasses to indicate a dependency rela
tionship: the first subclass pertains to the main docu
ment, the others to the related document. 

Consequently a bibliographic description of a docu
ment is the description of the document itself and 
the description of any other related document which 
may exist. 

For example, the bibliographic description of a 
journal article found in an abstract journal requires 

183 



184 Spring Joint Computer C'onference, 1968 

the description of the following three documents: 
1) the article itself (class original, subclass main 

document); 
2) the journal (class original, subclass related 

document); and 
3) the abstract journal (class source, subclass 

main document). 
A document of any class is described by giving 

the pertinent bibliographical data in a predetermined 
sequence. 

The code for a data element is' a two-level code, the 
first level representing the general type of data (e.g., 
author" title, etc.), the second level a specific type 
(e.g., personal author, corporate author, main title, 
subtitle, etc.). 

F,or some data elements an additional identifier 
may be needed: the language in which the information 
is entered. . 

A typical example of a B-code is the following: 
A 2 0 E 
J, J, J, J, 
class: original 
subclass: main 
document 

type: 
title 

subtype: 
main title 

language: 
English 

Since data type and subtype apply to any class of 
document, assuming the above code represents a title 
of a journal article, the title of the parent journal 
could have the following B-code: 
C 2 0 
J, J,! 

class: original type: 
subclass: .related title 
document (journal) 

subtype: 
main title 

F 
J, 

language: 
French 

The actual B-codes used in the GIPSY system are 
given in Appendix 1. 

Overall system description 

System organization 

The machine subsystem consists of a set of nine 
special purpose programs, a monitor, a generalized 
sort program, and a system maintenance program. 

The approach taken in the design was to construct 
a modular system in such a way that those features 
which were important but might not be needed to 
produce a given output may vary according to the 
particular job. 

The execution time of individual programs may also 
vary greatly according to the features selected. 

Special purpose programs 
The nine special purpose programs may be sub

divided into four groups as described below. (The 
information flow throughout the system is shown 
in Figures 1,2,3,4, and 5.) 

Figure 1- Major programs: input checking, printing of bibliography, 
generation of index files 

Figure 2-Major programs: printing of indexes 



Figure 3- Utility programs 

GIPSY5 
... ----.... Delete cards 

Figure 4 - File maintenance programs 

Major programs 

These permit the production of: 
a) A check-list of the input material for proof

reading, which includes program-generated 
error messages, concerning formal input errors 
such as sequence, punctuation, coding, missing 
data elements, etc. 

b) A printed bibliography, which may be classified 
according to a user-supplied subject classifica
tion scheme. Provision for cross references is 
also made. 

c) Two types of indexes: 

GIPSY 185 

1) Index 1: composed of the index entry and 
the document numbers of the relevant cita
tion in the printed bibliography. 

2) Index 2: composed of the index entry, a 
portion of the input unit and the document 
number of the relevant citation in the printed 
bibliography. A special case of Index 2 is a 
KWIC (Key-Word-/n-Context)' index. 

d) Catalog cards. 

GIPSY2 

SORT7 

Figure 5 - Duplication check programs 

Utility programs 

These allow the user to change the order of the 
units within a file', and/or of data elements within 2 

unit. 
Since, for checking purposes, data elements within 

an input unit must be entered in ascending order by 
the respective B-code, a utility program is provided 
to change the printing sequence of these data ele
ments. This feature is particularly useful when pro
ducing catalog cards, where the first data element 
is normally the one by which the cards are filed (e.g. 
title, author, etc.). 



186 Spring Joint Computer Conference, 1968 

Duplication check 

These programs permit the automatic generation 
of a duplication check code, for each input docu
ment, and the construction and updating of a dic
tionary file containing duplication check codes of all 
documents processed by the system. 

They provide for checking the duplication check 
codes of the new material against the duplication 
check dictionary to ensure that there are no duplicated 
documents. 

File maintenance 
A generalized file maintenance program permits the 

user to change the contents of a GiPSY fiie either by 
replacement, deletion or insertion of items. The 
possibility of extracting selective items from anyone 
file is also provided. 

Monitor and system maintenance 
The GIPSY system is tape-resident and therefore 

a monitor is provided to call the desired program for 
execution. Since each program returns control to the 
monitor after completion of its functions it is possible 
to "stack" several jobs in a single run. To reduce 
operator intervention to a minimum the system per
mits the user to allocate tape units dynamically by 
means of control cards. 

The system maintenance program provides for up
dating the GIPSY system tape, by adding new pro
grams, replacing entire programs or parts, or deleting 
obsolete programs. 

Generalized sort 
The sort program utilized by GIPSY is the stan

dard IBM SORT 7 for the 1401. Whenever needed 
the relevant GIPSY program automatically gener
ates SORT 7 control cards. 

System control 
Because of the large number of features provided 

by the system, the operation of every GIPSY pro
gram is controlled by one or more control cards, 
as explained below. 

System control cards 

These permit the selection of the desired program 
from the system tape, allocate tape units and print 
messages for the machine operator. 

Standard GIPSY control card 

This card" is present for every program, has a fixed 
format, and indicates items such as page size, record 
iength, presence or absence of an optional file, 
spacing, etc. 

Control statements 
These cards specify options applicable to individ

ual data elements, e.g., indentation, sorting, etc. 
Control statements have a free format. 

Description of individual programs 

Major programs 
GIPSYI 

GIPSY 1 is the input and editing program. It accepts 
as input either a punched card or a tape file (CIT). 
B-codes within a bibliographical unit are checked 
for ascending sequence and validity. The ascending 
sequence of document numbers can also be checked. 
For those data types for which a structure is defined, 
this is also checked. 

Outputs from GIPSYI are a check-list of the input 
data with diagnostic messages, a statistical report 
and a tape file called Standard Bibliographic File 
(SBF), containing the material to be processed by the 
system. GIPSY 1 also provides for on-line error 
recovery. 

GIPSY3 

The functions performed by GIPSY3 are the 
following: 
a) Produce a "ready-to-publish listing of the in

formation stored on the SBF; 
b) Add this information to a Master Bibliographic 

File (MBF); 
c) Generate an index file (FILEl) 
The powerful report generator included in G IPSY3 

provides for several features, the most important 
of which are: 

-variable page size; 
- variable spacing between units; 
- suppression of the printing of selected data 
elements (by using this feature one can print, 
for example, a title list); 
- indentation of selected data elements; 
-overprint (bold-face) of selected data elements; 
- spacing before printing selected data elements. 
In addition, provided that the bibliographic units 

have been assigned a subject identification code, sub
ject headings, subh'eadings and cross references can 
be printed by using a special. card file (header cards). 

During or independently of the printing of the SBF 
it is possible to generate another file containing se
lected data elements (FILEt). The purpose of 
FILE 1 is to obtain printed indexes such as author, 
corporate author and report number indexes. 

The ability to generate several indexes at one time 
permits considerable saving of machine time and 
set-up tIme; only one sort and one printing pass are 
necessary. 



When a report number index is requested, this is 
generated in such a way that the report numbers will 
be sorted in the correct alphanumeric sequence, e.g., 
TID-47 before TID-I 00. This is done automatically 
by the program and does not require manual editing 
of the report number when punching. 

The information processed can be stored on a mas
ter file (MBF) which can be subsequently used to pro
duce, for example, cumulative indexes. 

GIPSY4 

GIPSY 4 prints the contents of a sorted index file 
(FILEt) generated by GIPSY3. The main features 
are the ability to print directly on two columns and 
to print several indexes in different formats. The re
port generator includes, where applicable, the same 
features as in GIPSY3. By using header cards a fixe~ 
title can be printed at the top of every page. 

Since for every index a new set of control cards is 
required, this makes it possible to change the printing 
format for every index. 

GIPSY8 

G IPSY8 accepts as input an SBF and generates 
an index file (FILE2). Any data elements may be 
selected as the index entry (author, corporate author, 
keywords, etc.), and any data element may be se
lected as additional information (e.g., an author index 
showing the title as additional information). G IPSY8 
can also generate a subject index by extracting key
words from selected data elements, e.g., title, abstract. 
In this case either KWIC (Key Word In Context) 
or KWOC (KeyWord Out of Context) indexes can 
be generated. When generating such a subject index 
there are certain words which should not be selected, 
e.g., prepositions or articles. These are referred to as 
stopwords. There are 15 stopwords which, according 
to our own and others' experience constitute about 
25% of the total number of words in a given file. These 
are the following: 

a, of, in, on, by, to, as, at, an, the, and, for, with, 
from, some. There are certainly other words which 
appear quite frequently and which could be included 
in the list. It was felt, however, that the user should 
decide on these words rather than the system designer, 
since in fact most of them depend on the specific 
application. The approach taken in GIPSY8 is to 
provide a built-in stopword table containing the 
words given above, but let the user be free to provide 
his own list, which can contain about 300 words maxi
mum. This also permits the use of stopwords in dif
ferent languages. The stopword lists currently used 
at the International Atomic Energy Agency show that 
about 50% of the words in a given file can be elim
inated. 

GIPSY 187 

It should be noted, at this point, that the stopword 
list of G IPSY8 does not attempt to produce the final 
version of the index (this function is accomplished 
by the external stopwords in GIPSY9) but rather to 
reduce the sorting time of the index file as much as 
possible. Another important feature of GIPSY8 is 
to let the user decide which characters are to be taken 
as part of the selected word. 

GIPSY9 

GIPSY9 prints the contents of a sorted FILE2 
generated by GIPSY8. The report generator in 
G IPSY9 provides for a large number of printing 
features. 

In addition to the index file itself, G IPSY9 accepts 
a stopword file, referred to as the external stopword 
file. This is the counterpart of the stopword list of 
GIPSY8. . 

GIPSY9 can be conditioned to print only those 
words which are on the external stopword file; in this 
case the file acts as a dictionary of meaningful words. 

To improve the consis~ency and lls,efulness of the 
index, the external stopword file provides for the print
ing of cross references and for the possibility of print
ing certain words only for selected docu.ments. This 
feature is particularly useful for handling those words 
which have the same spelling but different meanings. 

Utility programs 

GIPSY2 

The main feature of G IPSY2 is the automatic 
generation of sort fields. The SBF is a variable-length 
record file, and the length of different data elements 
is variable within the record itself. The existing sort 
programs, on the other hand, require that the sorting 
keys are always in a fixed position of the record. The 
automatic generation of sort fields permits sorting 
of the SBF by any desired data elements: this is done, 
by extracting information from the selected data 
elements and inse~ing it ina fixed position of the out
put SBF. 

When the contents of the SBF are written on the 
master file (MBF) by GIPSY3 the generated sort 
fields are deleted. 

In the case of periodic announcement lists, the 
bibliographic citations are normally assigned a se
quential ascending document number, which, if the 
bibliography is sorted by the computer, is not known 
at the time of input preparation. A feature of G IPSY2 
allows the user to assign such a document number 
after the file has been ·sorted. (Other 'features' of 
GIPSY2 are described in a later section. 



188 
Spring Joint Computer Conference, 1968 

GIPSY7 

This program permits the arrangement of data 
elements within a printed bibliographical unit in an 
order other than the ascending sequence of the 
B-codes; as required by GIPSYL GIPSY7 is nor
mally uSed before GIPSY3. 

Duplication check 

GIPSY2 

Besides the features described earlier, G IPSY2 may 
also be used to generate a I3-character duplication 
check code as follows: 

NNNNIIYYTTTTT 
where: NNNN are the first 4 characters of the name 

of the first personal author (or editor); 
II are the initials of the above; if neither 

an author nor an editor was given 
then NNNNII are the first 6 char
acters of the corporate author; 

YY is the year of publication; 
TfTTT are the first characters of the first 

5 words of the title. 
If any item, or part of it, is missing the corre

sponding positions of the dupcheck code contain 
full-stops (.). The duplication check code, the corre
sponding document number, and some additional 
information are written on the dupcheck file. The 
additional information is selected automatically by 
the program according to the particular type of docu
ment, e.g., report number(s) for technical reports, 
subtitles for books, journal citation for journal articles, 
etc. This need was felt after some experience with a 
previous version of the system, in which the additional 
information was not present. 

I n fact, in some cases (in particular for progress 
reports), the dupcheck code generated by the pro
gram was the same for different documents. This re
quired visual scanning of the full citation in order to 
be sure that two documents with the same duplica
tion check code were actually the same document. 
Since the additional information was put on the dupli
cation check file this scanning is practically no longer 
required. 

GIPSY6 

G I PSY6 accepts as input a dupcheck file generated 
by GIPSY2 and a dupcheck dictionary which con
tains the dupcheck codes of all documents pre
viously processed by the system. 

G I PSY6 may be used in either of two modes: 
the check mode, in which the codes on the dupcheck 
fiie are compared with the codes in the dictionary 
and each time they match a message is printed show-

ing the information on the file for those documents; 
or the update mode, in which the codes on the dup
check file are added to the dictionary file. When 
operating in the update mode the program does not 
check for duplication, thus assuming that possible 
duplicate codes represent different documents. 

A print-out of the updated dictionary can also be 
requested by the user. 

J mplementation 

The GIPSY system has been implemented for an 
IBM-1401 with 12000 storage positions, high-Iow
equal compare and advanced programming features 
(the space suppression feature, 4000 additional core 
positions and the 1407 console typewriter may be used 
if installed), 5 magnetic tape units, card reader and 
punch unit. 

I t has been used since 1965 for the preparation of 
several nonperiodical and two periodical publica
tions of the IAEA, the "List of References on Nu
clear Energy," an announcement list with annual 
personal, corporate author and report number indexes, 
and "Nuclear Medicine, A Guide to Recent Litera
ture," also an announcement list, each issue of which 
includes author index, an isotope index and a KWIC 
index. The total number of documents processed and 
sorted to date is about 50,000. 

In addition to the above, GIPSY has been used with 
success to produce other types of publications which 
were not strictly documentation-oriented. 

SUMMARY 

GIPSY is a generalized system to process biblio
graphic information. 

The input to the system describes the material 
which is being documented. The bibliographic com
ponents are identified by means of a code (B-code), 
permitting access to any of those components which 
may have an independent documentary value (e.g., 
authors for author index, report numbers for report 
number index, etc.). 

The information can then be processed to obtain 
printed reports: bibliographies, classified if desired, 
with or without abstracts; and various indexes, in
cluding subject indexes (KWIC). A duplication check 
procedure is also included in the system. 

The aim of the system is to produce ready-to
publish copy, and therefore various editing and for
mat features are provided. The information processed 
can be stored for subsequent use, e.g. production 
of cumulative indexes or retrieval. 

CONCLUSION 

After two years of practical experience with the 
GIPSY system it can be said that the objectives out-



lined in the introduction of this paper have been fully 
met ~nd that in fact the system has proved to be gener
al enough to handle applications which were not en
visaged at the time it was designed. 

Another important factor has been that through the 
use of the system we have been forced to be much 
more consistent in the application of descriptive cata
loguing rules than we were during manual operation. 

We also feel that the approach taken is a valid con
tribution to the creation of a generalized information 
processing system in which the system adapts itself 
to the user's needs, rather than the user to the system. 
The need for this characteristic becomes more and 
more evident with the information explosion of recent 
years and with the increasing number of organizations 
faced with the problem of mechanized documentation. 

ACKNOWLEDGMENT 

The author is indebted to the staff of the INIS Sec
tion of the IAEA and in particular to Mrs. J. Robinson 
and Mr. T. W. Scott for their suggestions during the 
development of the system. He is also grateful to 
Dr. F. Lang, IBM Austria, for the assistance given 
during the inception of the GIPSY system. 

REFERENCES 

1 T W SCOTT F LANG 
Coding and structuring input data for the GIPSY system 
Proceedings of the American Documentation Institute 1967 

2 G DEL BIGIO 
GIPSYprogram manual 
International Atomic Energy Agency 1967 

APPENDIX 1 

GIPSY Coding Matrix 

The matrix given in Figure 6 shows data types and 
subtypes, with their appropriate codes, running from 
~op to bottom along the left side of the figure. All of 
the respective subclass codes form a sequential row 
running from left to right across the top of the figure. 

The sequence of data elements is that normally fol
lowed in documenting an entry for bibliographic use. 
In the GIPSY system, this sequence must be adhered 
to in entering data, but may be subsequently changed if 
desired. Similarly, the sequencing of classes and sub
classes follows normal bibliographic practice in de
scribing an entry. 

Within the matrix, an x is shown where a given data 
element is normally entered"for the particular subclass 
column. An (x) is shown for data elements which may 
be present or which are optional. In the fourth posi
tion of the B-code column, language code, the word 
"yes" appears for those data elements which logically 
can have and normally will have a distinction accord
ing to the language in which they appear. 

189 
GIPSY 

APPENDIX 2 

An example of some features of GIPSY 

Figures 7-15 show some printed outputs of the sys
tem. We have taken a sample bibliographic description 
and followed it throughout most of the GIPSY pro
grams. 

GIPSY1: Figure 7 shows how the input unit is print
ed on the check list. 
Soacine is inserted hv th~ nroO'r!=lTTl tn iTTl_ 

... - - -- -- -,J ---- r--O' .... - ........... - ........ 

prove legibility. 
The sample unit contains the following data 
elements: 

AOO: document identification. This 
card gives information such as 
subject category code, type of 
document code (R = report) 

AI0: personal authors 
A16: corporate author 
A20E: English title 
A30: report number 
A41: collation 
960E: English keywords 

Since the> sign, which is used in GIPSY 
to separate subelements within a data ele
ment and to terminate a data element, is 
a non-print character on the 1403 printer, 
it is replaced by the program by a record 
mark (t) to simplify proofreading. 

The input unit in Figure 7 contains some 
mistakes indicated by GIPSY 1 as follows: 

PUN CTN: a full-stop, not a comma, 
must separate initials of 
names. 

LAST UN FLAGGED SUBTYPE IS 
INCOMPLETE: the title 
(A20E) does not end with 
a> sign. 

MISSNG: the report number (A30) 
is missing. Since the docu
ment is a report, the report 
number is a required data 
element. 

DA T A: B is not a valid element of 
the collation (A41). This 
should have been P. 

Figure 8 shows the same input unit after 
the indicated errors have been corrected. 

GIPSY7: Figure 9 is an example of a catalog card. 
The filing entry in this case is the keyword 
(960E), which appears first. The order of 
data elements has been changed by GIPSY 
7. The card was printed by GIPSY3. 



I 
I 

190 Spring Joint Computer Conference, 1968 

i 
B· CODE CLASS· ORIGINAL CLASS z SOURCE CLASS z CITATION 

GIPSY 
L DOCUMENT OR PART ENTERED INDEPENDENT PUBLICATION OR PART INDEPENDENT PUIlLICATION OR PART ---

CODING MATRIX A ! "IN" AN IND. PUBL'N "IN" AN IND. PUIlL'N sri 
, A I 

~ I S~B I 
: I ; I N 

I 
I . ! "IN" A JOURNAL I I ! "IN A SEHU;S 

r "IN" AN IND. PUBL'N 

r "IN" A JOURNAL I I I "IN" A SERIES I ! "IN" A JOUHNAL I I I"IN"AS~ I s 
' S 

G 
DEFIlI[ED ITEM ! I I I I I I I ~I I I I~ I I I PHCC. I 

A B C D I J K L M R I 2 3 " 9 

o IDENTIFICATION/SYSTEM UTILITY 0 i 
Identification (categories, species, etc. I 0 YES X ,X X 

Utility (oortfield) 

'" 
1.9 (X) 

1 AUTHORS 1 

Personal authors(s) 0 (X) (X) (X) 

Editor(s) I (X) (X) (X) (X) (X) (X) (X) (X) 

Translator(.) 2 (X) (X) 

Common affiliation 3 (X) (X) (X) (X) (X) 

Corporate author(B) 6 (X) (X) (X) 

Notes 7 (X) (X) (X) (X) (X) (X) (X) (X) 

Secondary corporate author(s) 8 (X) (X) 

2 TITLES 2 

journal or document. tilie 0 YES X X X X X X X X (X) (X) (X) (X) 

Subtitle 1 YES (X) (X) (X) (X) 

Addenda to title + 2 YES (X) (X) (X) (X) I 
3 IDENTIFYING NUMBERS 3 

Report number(s), primary 0 (X) (X) (X) (X) (X) I 
Patent number(a) 1 (X) (X) 

Specification number(a) 2 (X) (X) (X) 

Report number(s). secondary If 9 (X) (X) 

" DESCRIPTION 4 

Place of publ'n. publisher. date 0 (X) X X X X X (X) (X) (X) 

Physical deacription 1 (X) X X X (X) (X) 

Journal description 2 X X (X) 

"Inclusive" pagination (book) 3 X X (X) 

Notes 9 (X) (X) (X) (X) (X) (X) (X) (X) 

~ NOTES OR AVAILABILITY ~ 0 (X) (X) (X) 

6 KEYWORDS OR KEY TERMS 6 0 (X) (X) (X) 

7 ABSTRACT I ABSTRACTOR(s) 

Abstract 7 0 YES (X) (X) (X) 

Abstractor(a) 

'" 
9 (X) (X) (X) 

Figure 6-GIPSY coding matrix 

A DO l DOl 0205 0 
I 10 001 PETlUkHIH V,J •• tI'ONOMMEY l.I .... H.OKOSI«I. YU.D •• 

I. ~ ~~~,!~S!. fOIl NUClUII OlSOIlCH. DUeNA IUSS ... LAI. OF HIGH 

LAST Ulll'LAGGlD _~~.: IS ~~DIIf'~T: POSSlII.l APPLICATION OF A MlClUa OUCTION IN CHEMICAL 
5l~Z A :to 

00 DOl 1966 •• 

: ~ ~ :! ~~~:s~:~~::~~~SlS . .cHEmAl AHAlYSlS • ....,OIIOGEN •• PIONS. 

Figure 7 - GIPSY I printout with error messages 

ADO 
10 

AU 

001 
001 

20 E 001 
! COZ 

'0 001 
00 001 
H 001 

• 60 E 001 
l 002 

0205 0 
PETRUKH1N. y.J.,.PONQ .... R.EV L.I .. +PItQllOSHllN. YU.D. t-

ON • POSSIBLE APPUCAHON OF .l NUCLEAR lEAtHCM :~ CttE"lClL 
IItESEA!Cto! .. '!' 
JIlIA·p·u,e •• 
1966.' 
, P •• 
NUCLEAR ItEACTlONS"USES.KHE"ICU l~Al YStS.tHYOAOGEN,.'IOHS, 
.,ROTONS,n,ESEAI\CN •• 

Figure 8-GIPSY I printout, corrected 

PUllCTII 

MISSNG 

CHEMICAL ANALYSIS, HYD~OGEN, PIONS, PROTONS, 
RESEARCH, NUCLEAR REACTIONS, USES. 

PETRUKHIN V.J., PONOMAREV L.I., P~OKCSHKIN 
YU.D. 

ON A POSSIBLE APPLICATION 8F A NUCLEhR 
REACTION IN CHEMIC4L RESEARCH. 

JINR-P-2558. 1966. 5 P. 

Figure 9-GIPSY3: catalog cards 

GIPSY2: . Figure 10 shows the document number re
assignment and the dupcheck code genera
tion features of G I PSY2. The input unit 
51542 is assigned the document number 
00044 and the dupcheck code PETRYJ-
660APAO. 

, 



C0041 
00042 
00043 
00044 
00045 
00046 
00047 

51512 
51760 
51447 
51542 
51514 
51445 
51543 

OGIEVI66EFISA 
OSHEVI6ItBSAHE 
PETKI.650TAOI 
PETRVJ660APAO 
PONOLI 660TTOT 
ROTTI .65FPCFA 
SHIRDV64PIUTl 

OGIEVI66EFISA 
OSHEVI64BSAHE 
PETKI.650TAOI 
PETRVJ660APAO 
PONOLI 660TTOT 
ROTTI.65FPCFA 
SHIRDV64PIUTl 

02 05 
02 05 
02 05 
02 05 
02 05 
02 05 
02 05 

Figure 1O-GIPSY2: assignment of sequential reference numbers 

GIPSY3: Figure 11 shows the unit as it could be 
printed by GIPSY3 in a bibliography. 
Spacing, indentation and overprinting are 
controlled by the use of control cards. 
Note that the AOO data element has' been 
prevented from printing by means of a con
trol card. 

43 PETKOV I. 
JOINT I'IST. F~R "IUCLEAil. RESEARCH, DUSNA (USSR). LAB. OF HIGH 
ENERGY. 

ON THE AMPLITUDE OF INELASTIC SCATTERING OF FAST PAltTlCLES ON 
NUCLEI. 
JI"IR-P-2037. 1965. 8 P. 

SCATTERING. PARTICLES, ~mCLEI, ENEqGY, EXCITATIO'l, 
ELECT~O"S, CRess S"CTIC'JS. 

44 PfTl\UKHIN V.J., PONCMAREV L.I., PROKOSHKIN YU.O. 
JOINT I'IST. FOR NUCLEAR I\ESEARCH, DUSNA (USSR). LAB. OF HISH 
E:NERGv. 

ON A POSSIBLE APPLICATION OF A NUCLEAR REACTION IN CHEMICAL 
RESEARCH. 
JINR-P-2558. 1966. 5 P. 

NUCLEAR REACTIONS, USES, CHEMICAL ANALYSIS, HYDROGEN, PIONS, 
PROTONS, RESEARCH. 

45 PONOMAREV L.I. 
JOINT INST. FOR NUCLEAR RESEARCH, DUSNA (USSR). LAS. OF HIGH 
-ENERGY. 

ON THE THEORY OF THE ASYMPTOTIC REPRESENTATION OF SPHEROIDAl 
FUNCTIONS. 
JI'lR-P-2564. 1966. 6P. 

FQUATIONS, "IATHEMATICS, METHOCS. 

Figure II-GIPSY3: printing a reference, with indentation and 
overprinting 

GIPSY 4: Figures 12 and 13 show the author and 
the keyword indexes, generated by 
GIPSY3 and printed by GIPSY4. Both 
indexes are generated and printed in one 
pass. 

BARASHENKOV V.S. 
BElYAEV V.B. 6 
BILEN'KII S.M. 
BIlENIKAYA 5.1. 
BIRYUKOV V.A. 
BLANK I. 12 

9 
10 

11 

OANILOV V.I. 13 
DAD WONG Due 14 
CESIMIROV G. 15 
CEUTSCH M. 16 

32 PERELYGIN V.P. 
PETKOV I. 43 
PETRUKHIN V.J. 44 
PISAREV A.F. 11 
PODGORETSKII M.I. 
POLUBARINOV I.V. 
PONOMAREV L.I. 
POPOVA A.B. 25 
PROKOSHKIN YU.D. 
PYATOV N.I. 19 

36 
40,41 

44,45 

44 

Figure 12-GIPSY4: author index 

CHANNELS 
13 

CHARGED PARTICLES 
28 

CHEMICAL ANALYSIS 
44 

CLOUD CHAMBERS 
1 

COINCIDENCE METHOD 
21 

ELEMENTARY PARTICLES 
B,56 

EMISSICN 
6 

ENERGY 
3,21,43,47,50,55 

ENERGY LEVelS 
3,4,5,7,8,10,16,18,21,25,26,35, 
42,47,51,56,57 

EQUATIONS 

Figure J3-GIPSY4: keyword index 

GIPSY 
191 

GIPSY9: Figure 14 shows the same index as figure 
13 but with titles. Figure 15 is an example 

. of a KWI C index from titles. Both these 
indexes were generated by G IPSY8 and 
printed by GIPSY9. 

CHARGED PARTICLES 
THE ISOTOPIC DISCHARGE CHAMBER WITH HYDROGEN JiND HELIUM FILLING. 

CHEMICAL ANALYSIS 
ON A POSSIBLE APPLICATION OF A NUCLEAR REACTION IN CHEMICAL 
RESEARCH. 

CLOUD CHAMBERS 
SEARCH Fun. NEii DECAY ~QuES 0;:: I nl: iC.-ZERO-iiiO ~ESONS. 

Figure I4-GIPSY9: KWOC index 

ING.s THE ISOTOPIC DISCHARGE CHAMBER WITH HYDROGEN AND HELIUM FIll 
TRACK COORDINATES IN A SPARK CHAMBER.s +FOR EVALUATING PARTICLE 

OTRON BEAM." MAGNETIC CHANNEL FOR FOCUSING A DEFLECTED CYCL 
nON OF A NUCLEAR REACTION IN CHEMICAL RESEARCH." +P'OSSIBLE APPLICA 

SHEll MODEL EXCITATIONS AND CLUSTER EXCITATIONS IN LIGHT NUCLEI.,. 
FRACTIONAL PARENTAGE COEFFICIENTS FROM ALPHA-PARTICLES.-

ED+ WAVE FUNCTIONS OF THE COLLECTIVE STATES OF EVEN-EVEN DEFORM 

Figure 15 -GIPSY9: KWIC index 

2B 

2B 
11 
13 
44 

7 
46 
57 

Figure 16 is a listing of the control cards 
used to produce the sample cases. This 
listing has been included so that the 
reader can get a "feeling" of how a job is 
described to GIPSY. 

*CALL GIPSYl 
*1* ID2JlNA. 130367 JINR DEMO RERUN 

toCAll GIPSY? 
*7*tOOO 
,",eVE 960E TO Al 

.t ... Ll GIPSY) 
*3* PJINR 2101tO 
*EDIT .(,. (5,91 .). 
-OELETE AD, A16 
.INDENT L 960E .. AID. T AZOE 
.SKIP 1 .'10, .1.20, A30 

*CALL GIP$Y2 
.ASSIGN S8FtNP TO 3 
-'SSIGN SBFOUT TO 0\ 
*2* $00001 05000011060 1 1 
.SORT-FIELDS AIo-V (30), A~Y (6) 

*CALL SORT7 
1t5 62 010559OO1001PI11 11 5020210062015 
0071006 
L 

G[PSY) 
:tASS ItM SBF INP TO It 

Ol~OOlO.8P12001 

*3* PJINR 2 001 3 ... 300103706500806121061 0504- 132 
-eDIT 15,9,SI 
~ELETE AD 
~VERP1\JNT AZOE 
-INDENT 0 AID, AU. S .1.20. 0 A30. 6 960£ 
_SKIP 1 960E 
-.FILEl AlO"l30.960E 

*CALL MONITOR 
OPERATOR PLEASE REPLACE TAPES ON UNITS 2. 3 AND It WITH THE FOLLOWING TAPES -
FILEl ON UNIT3 
FILE2 - tUlle ON UNIT'" 
FJlEZ - KNOt ON UNITS 
SCRATCH ON UN]T6 
""USE 

.-c ... LL GIPSY'" 

...... 1.10 20001106503503111001 03531 3 01 
H3 Ala AUTHOR INDEX 
*EDIT (5.9,P) 
."'.'30 2 106503503111001 0352 012 
H3 130 REPORT NO. INDEX 
H .130 REPORT NO. REF. NO. REPORT NO. 
H"'30 NO. 
H2 A30 ----- ---
HZ 130 
."'*960E2 106503503110000 03521 13 01 
H3 960E KEYWORD INDEX 

GIP$Y8 
.a.l oao 019&OE120E 
.. *5 11. +, -,- 03'(-03')-
*CAlL SORT7 
52 34 010500001OO1PI11 11 50203".0080021 
0017013 
L 

*CAlL GIP$Y9 
*ASSIGN FIlE2 TO '" 
*9.1 1 ... 300 1 0380650 15 01000 1 
*'EDIT 15.9,'1 

*till GIPSY8 
... 110110031061 OU20E 
~.5 11. +$ -,- 03"-03 1 t-

*CAlL SORT1 
50l 3 ... 010238001001Pl11 11 5021170080080 
02010)7 
L 

GIPSY9 
."SSlGN FUE2 
*9. 1001 
.EDIT 15,9,PI 

.l3001031t06507506600lt2 

100040170 

REF.l 

Figure J6-GIPSY control cards used to prepare 
Figures 7 through 15 





The ISCO"R real-time industrial data 
processing system 

by W. M. LAMBERT 
Control Data Corporation 
VanderbijJpark. South Africa 

and 
W. R. RUFFELS 
South African Iron an~ Steel Corporation (ISCOR) 
VanderbijJpark,. South Africa 

A real-time industrial data processing system 
collects information, processes it, and responds to 
the user in sufficient time to influence or control 
the production processes, material distribution and 
accounting records. 

At ISCOR (South African Iron and Steel Cor
portation) a comprehensive real-time industrial data 
processing system is being installed. This system 
will utilize 'in:-plant' communications terminals and 
automatic data logging units to gather and display 
data. It will respond to remote terminals and the 
Mills process control computers to initiate and 
control production flow through the manufacturing 
process. Batch processing jobs Will also be initiated 
through the real-time ·system to provide production 
reports and accounting records. 

In view of the number of production centres 
involved it was decided to divide the system into 
two major application areas, namely customer order 
control and production control. It was also decided 
that the customer order control application would 
be installed on a corporate wide basis, while the 
production control application would be further 
subdivided into works and mills areas. 

This paper will discuss the approach to the devel
opment" of the system and its installation at the 
ISCOR Works, Vanderbijlpark, South Africa. 

The computer system to be employed consists of 
two large Control Data 3300 Central Processors 
located at the Vanderbijlpark Works. Each processor 
will have its own operating system. One system will 
be primarily dedicated to the real-time programs 
while the other handles batch processing programs and 

193 

also serves as a standby system for real-time programs 
in the event of failure of the real-time system. Further
more process control computers will also be installed 
to control the actual processing of material on the 
mills~ 

The real-time system will capture and process 
data at the actual time the steel is passing through 
the different phases of production while the batch 
processing will be carried out according to a preset 
schedule. All commercial applications and reports 
emanating from the data processed by the real-time 
system will be processed into reports periodically in 
the batch processing system. The real-time processor 
is also capable of processing batch jobs whenever its 
real time load permits. 

Since the real-time operations require a high 
degree of processor, peripheral, and terminal reli
ability, each system will monitor the condition of 
the other. Should the real-time processor not be 
functioning properly the batch processor will abort 
all its jobs and assume the real-time load. In order 
to accomplish this' interchangeability of work load, 
the system is configurated so that each processor may 
access all peripherals and terminals via alternate 
data input/output routes. 

The failure recovery procedures to be employed, 
in the event of the 'in-plant' terminals or real-time 
system peripherals not being in operation, have been 
carefully laid out in order that the highest degree of 
back up possible is obtained with a minimum of 
manual operation or recording. For example, when a 
message is transmitted to the central processor from 
a mill process control computer or data logger, the 



194 Spring Joint Computer Conference, 1968 

central processor must acknowledge the receipt of the 
message withIn five seconds. If the acknowledgment 
is not received by the sending unit, the message is 
transmitted again. Should the second message not be 
acknowledged, the transmitting unit assumes there 
has been a failure within the communications network 
and will automatically dump the data into punched 
paper tape for later entry via a tape reader in the 
computer centre. 

Remote 'in-plant' terminals are being designed 
and located in such a way that a terminal situated 
in close proximity, can be used. should a unit be 
out of operation. Maintenance' of the 'in-plant' 
terminals units will generally follow the policy of 
replacing a unit with a spare rather than to repair 
it on site. 

In order to ~reate a smooth running system, 
essential 'on-line' files, which cannot be re-estab
lished quickly and efficiently, are maintained in 
duplicate on separate disc units each of which is 
accessed through different channels and controllers. 
'On-line' files are available to the real-time system 
at all times, usually without requiring computer 
operator action. 

Overall the dual system approach is the one 
followed, with at least two routes provided from the 
processor for each type of input or output. 

The order control system provides for the direct 
entry of orders into the computer system from the 
various sales offices via papertape transmission and 
teleprinter units. The system receives the order and 
accepts it commercially and industrially and confirms 
the order status with the initiating sales office. 

Acceptance of the order includes validating it 
from the standpoint that all of the data required to 
process the order are present and correct. Such items 
as customer data and product specifications are also 
vetted by the system. The order is then priced and 
the customer credit arrangements are checked. 
Assuming that the order is correct and complete and 
that the product specifications are acceptable, the 
order is forward loaded on a mathematical model of 
the works and a forecast delivery period for the 
material is computed. If the delivery period arrived 
at is not within the limits 'specified by the customer, 
the sales organisation is notified and may adjust 
priorities if it so desires. Should the sales organi
sation change the priority, the order will be re
loaded on the mathematical model. In the event of the 
order failing a sp~cific test, a query is generated 
and the appropriate section is notified automatically. 
For example, if order data is missing or invalid, 
the originating sales office is advised. When product 
specifications are new or unusual, the works metal-

lurgist is notified. Should credit arrangements be 
inadequate, the credit department is called. In order 
that all computer-generated queries receive prompt 
attention, and that no information is lost, each query 
is followed up with a reminder if the response has not 
been received within a set time limit. 

Once the order has been accepted, and forward 
loaded on the plant, it remains in the system until 
its entire life cycle is complete. An order's life 
begins with its entry by sales, matures when it has 
been dispatched by the works, and dies when it has 
been paid by the customer. After that, it becomes 
another statistic for use in the operations research 
or sales forecast system. 

Periodically, blocks of forward loaded orders 
are passed from the order control system to the 
production control system. The production control 
system then schedules these forward loaded orders 
on the works production units, and reports their 
progress through the units until the order is complete 
and ready for dispatch. 

Blocks of orders are transferred from the order 
control system at intervals which will maintain a 
sufficient pool of orders to provide an adequate 
product mix for scheduling. The system schedules 
the orders based on existing conditions within the 
mill, and issues recommended schedules in advance 
for approval by the production planner. 

Preliminary schedules are prepared several days 
in advance of their actual production data, but 
the final scheduling is 'on-line' in the case where 
the mill is controlled by a process control computer. 
For example, an ingot to be rolled at the slab mill 
is on a preliminary schedule several days in advance. 
The actual detailed rolling instructions, however, 
are issued only \vhen the ingot is charged into a 
soaking pit to be heated to rolling temperature, 
approximately six hours in advance of the actual 
rolling. The rolling instruction is in the form of 
a punched card which is read by the mill control 
computer when the mill operator is ready to roll the 
ingot. The card is produced by the real-time system on 
a remotely located card punch at the mill production 
office. 

The major real-time function of the computer 
system is the collection and display of data from a 
large number of 'in-plant' terminals. This enabies 
the system to do accurate production and management 
reporting, and the scheduling of production. 

To illustrate how the production control system 
functions, let us consider the steel melting plant 
and slab mill complexes. The steel melting plant 
produces casts of steel. A cast is a ladle of about 
two hundred tons of molten steel tapped from a 



The ISCOR Real-Time Industrial Data Processing System 195 

furnace. The molten steel is teemed from the ladle 
into molds which form ingots. The molds are stripped 
from the ingots after they have hardened, and the 
ingots are rolled and sheared into slabs at the slab 
mill. An ingot is a block of steel weighing between 
ten and twenty five tons, depending upon the mold 
size. A slab is a smaller flat block of steel, usually 
weighing around five tons. Its size and weight depend 
upon the requirements of the rolling mill which will 
use it. 

Starting with the forward ioaded orders taken 
from the order control system, the production control 
system computes the number and specifications of the 
slabs required to satisfy the orders over a production 
cycle. Once it has determined the slab requirement, 
it computes the number and specifications of the 
ingots from which the slabs .will be rolled. It then 
computes the number and specifications of the cast 
of steel that must be made at the steel melting plant 
to produce the required ingots. As each computation 
is done an 'on-line' file of slab, ingot and cast require
ments is built up. When these computations are 
complete, the computer prints preliminary schedules 
for the slab mill and a steel order for the steel melt
ing plant. Once approved, the schedules and steel 
order are issued to the production units by the 
production planner. 

The steel order specifies the cast and ingots to 
be produced, but does not stipulate the sequence 
in which they are to be manufactured. Thus, the 
actual slab mill schedule and rolling instruction 
cannot be prepared until the ingots have actually 
arrived at the mill. 

The progress and specifications of the cast and 
ingots are reported to the computer system by 
personnel using 'in-plant' terminals at the steel 
melting plant, the ingot weigh bridges and the soak
ing pits. The terminals are also used to dIsplay 
information and instructions regarding the steel 
flowing through the production facility. 

Once the ingots reach the soaking pit, where they 
are heated to proper rolling terperature, their arrival 
is reported through an 'in~plant' terminal. The system 
then· refers to its 'on-line' files to provide the nec
essary rolling instructions. The specifications of 
each ingot are checked, and instHrctions are generated 
which will use the ingot for the highest priority order 
having the same specifications. 

When the ingot is drawn from the soaking pit 
and enters the mill, the rolling instruction card, 
which was prepared on an 'in-plant' terminal card 
punch, is read into the mill control computer by 
the mill operator. The mill control computer then 
controls the process of rolling the ingot into a slab, 
and the shearing of the rolled slab into smaller 

slabs. At the same time, the mill control computer 
logs the particulars about each slab rolled, and 
automatically transmits the data to the real-time 
computer system. After each slab has been rolled, 
sheared, and moved to the slab stocking yard; informa
tion about its condition, treatment, and location is 
reported to the real-time computer through 'in
plant' terminals. The system updates'on-line' disc 
files so that up-to-date records of material stocks, 
production status, and order progress are available 
at all times. 

These 'on-line' disc files are used t~ satisfy inquires 
for remote terminals, and as the basis for scheduling 
and production reporting. 

Periodically, the 'on-line' disc files in the real
time computer are dumped onto magnetic tape. The 
magnetic tape is transferred to the batch processor, 
and production and management reports and account
ing records are prepared daily, weekly, monthly, 
or as required. The periodic dumping of the data 
from disc to tape also provides an added measure 
of back-up, should it become necessary to reconstruct 
an 'on-line' file. 

The design of the data collection and display net
work is an area which involves a tremendous amount 
of preplanning. Since the average 'in-planC terminal 
operator will not be highly trained or educated, it 
was necessary to develop techniques and methodS 
which would enable the system to capture the data 
with a minimum of operator action. 

To do this, communication methods are employed 
that involve basically three types of remote terminals: 
standard keyboard send-receive teleprinters; numer
ical data entry devices, which are standard keyboard 
send-receive teleprinters with the addition of a modi
fied push button keyboard; and cathode ray tube 

. display units. 
To use the standard keyboard send-recieve tele

printers, the operator contacts the computer by trans
mitting a call code. This action steps-up the communi
cations and program linkages, and starts a 'computer 
to operator' conversation that is controlled by the 
computer. The computer asks a series of questions, 
and the operator answers each question sequentially. 
The first question must be answered before the second 
is asked. Each response to a computer generated 
question is validated by the system to make certain the 
data received are reasonable before the conversation 
is continued. Normally, an 'in-plant' terminal will be 
utilizing only one communications program. However, 
the ability to conduct several simultaneous conversa
tions with a terminal has been incorporated into the 
system. 

When using the numerical data entry devices, the 
terminal operator is provided with a preset message 



196 Spring Joint Computer Conference, 1968 

format. He sets up his entire transmission on the push 
button keyboard. The· terminal operator then sends 
the message to the computer by depressing a 'tn~ns
mit' button. This ty~ of unit reduces the number of 
messages required to collect the data, and makes 
it possible for the terminal operator to check the data 
before he sends them. 

The cathode ray tube display units are used for 
both data collection and as display terminals. To col
lect data, the technique of displaying a form on the 
unit for the operator to fill in, is most commonly used. 
To obtain a display of data, the operator calls for a 
specific display by sending a call code. The computer 
automatically presents the latest data on the files 
regarding the request. 

N orm8.J.ly, all conversations between the computer 
and the 'in-piant; terminais are on an immediate 
response basis. On the other hand, provision has been 
made for terminal operators to request information 
which they will collect at a later time on the same 
terminal, or on a different 'in-plant' terminal. Pro
vision has also been made for the computer to advise 
the terminal operator that there will" be a delay in dis
playing the data requested. At ali of the 'in-plant' 
terminals, the programs have been deSigned so that 

the operator can converse with the computer in either 
Afrikaans or English. 

When an order has been produced and is ready to 
be dispatched, the real-time processor is advised 
through the data coiiection terminais, and the order 
control system is brought back into action. 

The order control system will produce, on remotely 
located 'in-plant' terminals at the dispatch area, the 
necessary documents for shipping the product to the 
customer. Such items as consignment notes, gate 
release note, loading particulars, and special han
dling instructions are printed on remote units. 

The oidei contiol system also piepaies the invoices 
and customer accounts on a batch processing basis. 

In order to provide an adequate pool of data so 
that queries about orders can be answered promptiy, 
all of the data relative to an order are retained in the 
'on-line' files for thirty days after the orde"r has been 
dispatched. Accounting and statistical data are re
tained in off-line files indefinitely. 

The system outlined has been installed and tested. 
All of the necessary software has been developed. 
The order control system and the first portions of 
production control system are now operational. 



Martin Orlando reporting environment 

by MICHAELJ. McLAURIN and WALTER A. TRAISTER 
Martin Marietta Corporation 
Orlando, F!orida 

Design objectives 

The system was designed "to alleviate the problem 
of "one time" or special request reports. A method 
was needed to quickly produce reports on request 
without having to write, compile and debug programs 
in order to produce the reports. The original design 
objectives were to permit any individual who under
stood how to prepare the input parameters the cap
ability of producing any report within thirty minutes 
preparation time. MORE eliminates the necessity 
of havi~g to write' and maintain great numbers of 
special purpose report programs. It eliminates the 
necessity for special passes of master, sort parameter 
and activity files in order to produce the desired 
report. This is possible since the MORE system is 
a series of external subroutines which may be called 
by any existing program which is already accessing 
or passing a specific file. Thjs system affords the 
user the advantage of using the built-in general 
print program or providing his own format program 
to the system. It has been determined that thi\;! 
system satisfied 85 to 90 percent of Martin Orlando 
business report requirements. 

System modules 

The following system modules can be followed on 
Figure I. The system consists of the following pro
grams. A detailed explanation of the function of each 
can be found under MECHANICS. 

1. Input Parameter A udit Program - This pro
gram's primary function is to sort the input para
meter cards and audit every field of the parameter 
cards. 

2. Communication Program-This may be any 
program which calls the data selection program, 
hereafter referred to as the "PICKER." The 
communication program may" be any existing 
file maintenance, audit, or any program which 
passes files containing potential report data. 

3. Data Selection or Picker Program-This is 
the program which does the actual data selection 

of the information to compose the report. Data 
is selected, based upon satisfying the require
ments of the input parameter cards. 

4. Executive Monitor Program- This program sorts " 
the selected or picked report data into report 
sequence and controls the programs required 
to format the report data. 

5. General Print Program- This program formats 
the picked data records based on the print 
parameter cards which were input to the system. 
This program may be substituted for by any user 
written program if desired. 

6. Systems Interface Program - This program will 
take any COBOL source program and add to it 
all linkages and coding necessary to utilize the 
MORE system. The output from this program 
is an updated COBOL program. The user also 
has the option of simultaneously compiling the 
program and placing the executable load module 
on program library. 

Mechanics 

All references to programs in this section may be 
followed on Figure I. 

Parameter card audit program 

This program is run before the communications 
program which "calls" the Picker program. The 
audit program sorts the parameter cards on request 
number (report number) and sequence number within 
the report. All fields of the parameter cards are edited 
and all appropriate error messages are issued (see 
Exhibit E for detailed error messages). The exception 
report is produced on line so that the parameter cards 
may be corrected and the job can be rerun immedi
ately. The edited parameter cards are written onto a 
temporary disk file along with a good or bad indicator. 
During the pick phase, only those requests which are 
error-free will be honored by the Picker. The Audit 
program currently restricts the system to a maximum 

197 



198 Spring Joint Computer Conference, 1968 

(PiCK-N-PRINT I I PARAMETER 
I CARns I 

___ 1 __ 
I EXCEPl'IONS I I INPUT I 

~ 
_I PARAMETER 

I '"t~ AUDIT CARns 
PROGRAM 

i '----J 

Only to 
Recover 
Lost 
Reports 

USER'S FIM 
OR J PICKER COMMUNICATION 

PROGRAM 

~- Only to 

/ 

Reco-.er 
UNSORTE Lost 

REPORT \ -riiE- ) (_--L----.
1 

Reports 

~ SEARCH I 
IEX»;L~''-_C_AR_OO_---', 

i MONITOR 1« EJe=> I - -1 SORT ----, "PROGRAM '---__ ----'a:PRINT I LIBRARY 

FORMAT 

/\_--
! UTILITY 

PRINT I 
I 
1- _____ -----' 

Figure t - Systems flow 

of thirty-six reports and 600 pick and print parameter 
cards. 

Picker program 

When the picker is called the first time, it reads 
the temporary disk file created by the audit program 
and builds entries into the picker table. (See Figure 2 
to follow processing). Only those requests which were 
error-free will be built into the table. Only pick 
parameter information is built into the table. If print 
parameter cards are encountered, the picker. imme
diately builds a format record and releases it to the 
unsorted stacked report tape. Once the table is built, 
the picker examines the first updated master record 
(if the calling program is a file maintenance program) 
sitting in the user's output area. The picker compares 
every record passed through the user's output area 
against each report request in the pick table. Any 
records which get a hit against a report request is 
built according to build field specifications on the pick 
parameter cards. The following Figure 2 shows how 
the communication program and the picker interface, 

Represents 
1 pick 
parameter 
card 

I----~ Cant. 

PICKER 
PROO1WI 

if ~t.!rl.!!. limite fer the request. 

\ 
-) 

Compared 
Against 
from and 
to Limits 

when not wi thin liJIi til next request 
in table is checked against user' .. 
record. 

Figure 2 - Communication program and picker interface 

The foHowing coding is generated in -the user's 
program by the SYSTEM's Interface Program. 
This coding accomplishes all linkage between the 
user'~ progr~m and the picker. 

READ-MASTER 
READ or MO VE master to be picked into PICK

AREA and when updating is completed G(l} T0 
CALL-I. 

CALL-I. 

M0VE 0223 T0 ENTRY-C0UNT e>F PICK
ER-REC0RD. 
ENTER LINKAGE. 
CALL "PICKERPK" USING REQUEST
C0NTR0L,REQUEST-N0-ST0RE,ELE- - -
MENT,NUMBER,ARGUMENT,ENTER-N
WA Y,PICK-AREA-LENGTH,PICK-AREA, 
F0RMA T-REC0RD,PICKER-REC0RD. 
F0RMAT-HF-REC0RD,F0RMAT-SW. -
ENTER C0B0L. 
IF ENTER-N-WAY IS EQUAL T0 4WRITE 
PICKER-REC0RD THEN G0 T0 CALL-I. 
IF ENTER-N-WAY IS EQUAL T0 5 AND 
F0RMAT-SW IS EQUAL T0 1 WRITE 
F0RMAT-REC0RD THEN G0 T0 CALL-1. 
IF ENTER-N-WA Y IS EQUAL T0 5 WRITE 
F0RMAT-HF-REC0RD THEN G0 T¢ 
CALL-I, 



IF ENTER-N-WAY IS GREATER THAN 
ZER0 PERF0RM FIND-ELEMENT THRU 
ANY-EXIT THEN G0 T0 CALL-I, ELSE 
G0 T~ READ-MASTER. 

FIND-ELEMENT 

G0 T0 Al ,A2,A3, etc. 
DEPENDING 0N ELEMENT-NUMBER, 

ELSE G0 T0 ANY-EXIT. 
Al.M0VE Fl T0 ARGUMENT THEN G0 

T0 ANY-EXIT. 
A2.M0VE F2 T0 ARGUMENT THEN G0 

T0 ANY-EXIT. 
A3.M0VE F3 T<P ARGUMENT THEN G0 

T0 ANY-EXIT. 
ANY-EXIT. 

EXIT. 

WORKING-STORAGE SECTION 

** 77 F0RMAT-SW PICTURE 9. 
77 REQUEST-C0NTR0L PICTURE X(2). 
77 REQUEST-N0-STQJRE PICTURE"X(2). 

77 ELEMENT-NUMBER 
77 ARGUMENT 

** 77 ENTER-N-WA Y 
** 77 PICK AREA-LENGTH 

01 PICK-AREA. 

PICTURE 9(3). 
PICTURE X(l5). 
PICTURE 9. 
PICTURE S9999. 

02 USERS--REC0RD. 
02 PICK-R0W REDEFINES 

REC0RD. 
USERS--

03 CHAR-P0S PICTURE 
0CCURS 

X 

(user's record 
size) TIMES. 

REDEFINITION OF USER'S MASTER FILE 

FD USER-MASTER-FILE-EXAMPLE 
BLOCK CONTAINS XXX CHARACTERS 
RECORD CONTAINS XX CHARACTERS 
RECORDING MODE IS F 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS MASTER-RECORD. 

01 MASTER-RECORD 
02 GREGORIAN-DATE. 

03 MONTH PICTURE 99. 
03 DAY PICTURE 99. 
03 YEAR PICTURE 99. 

** In HSEKPG of user program move zero to FORMAT-SW, 
ENTER-N-WAY, and move 0223 to ENTRY-COUNT of 
picker record, move (user's Pick-Area size) to PICK-AREA
LENGTH. 

Martin Oriando Reporting Environment 199 

02 FI REDEFINES GREG0RIAN
DATE. 

USER'S E0J 

03 F2 
03 F3 
03 F4 

PICTURE 99. 
PICTURE 99. 
PICTURE 99. 

When the user reaches EN D-0F-J08, G0 T0 
CL0SE-ALL. 
CL0SE-ALL. 
CL0SE USER'S FILES. 
ST0PRUN. 
END PR0GRAM. 

Every entry in the picker table is compared against 
each record on the User's Master File. When the table 
has been traversed for a given master record, the 
communication program is signaled to read the next 
record. If the communication program is a File Main
tenance program the new record should be updated 
and written on the new master file before the PICKER 
is called again. This cycle is continued until an end
of-file condition is encountered. 

The following isa list of PICKER capabilities, 
all of which are explained in detail in Exhibit C: 

1. PICK RANGE LIMITS 
2. EXCLUSIVE FIELD RANGE LIMITS 
3. AND LOGIC 
4. OR LOGIC 
5. RANGE 
6. PACKED BUILT RECORDS 

Executive monitor program 

This program sorts all records on the stacked 
report file into monitor tag and sort tag sequence. 
I t also creates the report header and report trailer 
records on the formatted print file. The Executive 
Monitor dynamically "calls-in" the respective format 
program from the program library when the monitor 
tag changes. Each previous program is deleted from 
core when the change occurs. The program which 
is "called-in" is based on the program number 
specified in the monitor tag of the stacked report 
records. After loading the appropriate format program, 
the Executive Monitor passes to the format program 
each record to be formatted. The format program 
creates the print line image and releases it to the 
formatted print tape. The format program has the 
responsibility of writing the formatted records due 
to the possible necessity of condensing or exploding 
records. 

Each format program is contained on the produc
tion library and the control cards necessary to 



200 Spring Joint Computer Conference, 1968 

execute the Executive Monitor and all Format pro
grams reside on the Procedure Library. It is essential 
that a program exist on the production library for 
every data set passed to the Executive Monitor or 
else an abnormal termination will occur and the 
entire "job stream" win be interrupted. 

In order to recover lost or damaged reports more 
efficiently, the Executive Monitor contains a search 
capability. Any or all reports can be recovered from 
the Sorted Report File by supplying the appropriate 
MONITOR TAG CARD used when the report was 
picked, or by punching a MONITOR TAG CARD 
if the source of the report was other than the Picker. 
A user's format program may require other data in 
addition to the data contained on the stacked report 
file. In this event, additional peripherals may be 
assigned and controiied by the format program. 

The purpose of the HEADER RECORDS which 
precede each report is that they initiate a pause on 
the printer after having been printed. This record 
provides information to the operator (i.e., form num
ber to be mounted, paper ply, etc.). The purpose of the 
trailer records is that they provide a record count 
from which machine utilization accounting and charge 
reports are prepared. 

H T DR 

" BE 
C 

SCIlTED STACKED REPORT FILE 

examines program no. 
of lIOn! tor tag 

'\ 
I ~~E 

PROORAK 

General Print 
or 

-k Calls 
Matching 
Forraat 
Program 

User's Format Prog I 

from 
Program 
Library 

FOIDIATTED PRINT TAPE 

~ 
(1) 

T T T H T 
M R R M D R M REPORT 

(2) L E R E 
R C C 

~ 
PERIPHERAL COMPUTER 

(360/30) 
General Utility 
Print Program 

t 

~ 
~ 

T T 
M R R 

L E 
R C 

Figure 3 - Executive monitoi data flow 

etc. 

ErC. 

~ 
I~I 
Library 

GENPRI 
& 

User 

i 

General print program 

The user has two modes under which he may use 
the MORE system. He can effect a pick only, in which 
case he must provide his own format program to print 
the picked records, or he can effect a pick and print, 
in ~hich case the GENERAL PRINT PROGRAM 
(GENPRINT) will be used to do the formatting of 
the picked records. The mode is determined by the 
presence or absence of print parameter cards. (A 
detailed description of all parameter cards is con
tained in Exhibit D). 

When print parameter cards are submitted, they are 
intercented bv the nicker and reformatted with appro
priate ~monit~r and sort tags and released to the 
unsorted report file, while the pick parameter cards. 
are being tabularized by the PICKER. The print 
parameter records are built such that they wiH sort 
immediately preceding the picked records for a 
given report request. 

When GENPRINT receives these print parameter 
format records, it builds a series of meaningful 
tables against which all picked records are page image 
formatted. 

GENPRINT capabilities 

All of the following capabilities and how to initiate 
them are explained in detail in Exhibit D. 

CONTROL BREAKS: GENPRINT has the capa
bility of recognizing six levels of control breaks from 
minor to major as specified in the print parameter 
cards. 

CONTROL HEADINGS & FOOTINGS: When 
a control break occurs it is possible to get from one to 
six control footings and/or control headings, depend-
• 1.. 1 1 I: "h~ 1.._~.-.J, The U"'C" "'Is .... ;0;;: ing upon tne leVel 01 l I~ UI ~a...... 1 11 .:I 1 a. v l~ 

provided the capability of specifying any v~rti~al 

line spacing before, between and after the prmtmg 
of the control headings and footings. 

OVERFLOW HEADINGS & FOOTINGS: When 
an overflow condition occurs (page limits exceeded) 
the user has the capability of specifying from one to 
six overflow footings and/or headings. The same 
vertical line spacing capabilities are available as 
stated for control headings and footings. 

MASK lvIANIPULATION: GENPRINT has all 
the mask manipulation afforded by the PICTURE 
CLAUSE of most current COBOL COMPILERS. 
This mask manipulation uses the same symbols and 
follows the same rules as are applied to the PICTURE 
CLAUSE. 

PAGE IMAGE FORMATTING: This program 
wiH handle any vertical line spacing between DE
TAIL lines and any of the above mentioned HEAD
ING and FOOTING lines. It will also permit any 



horizontal field or character prositioning up to and 
including a maximum of 132 characters. 

GROUP INDICATE: This feature was imple
mented the same as in most current C0B0L comp
ilers. 

VARIABLE DATA AND HEADINGS AND 
FOOTINGS: GENPRINT has the capability of 
"floating" into any heading or footing line any 
information which was built into the picked data 
record or the detail print line. Thus~ the user is 
afforded the flexibility of creating headings and 
footings which consist of both literal information 
and "live" data. 

TOTALING: This system provides any totaling 
capability required by most normal business reports. 
This includes control break, level totaling. 

SYSTEMS INTERFACE PROGRAM: This pro
gram was written to relieve the problem programmer 

wiariin Orlando Reporting Environment 

from having to include any additional coding in his 
program in order to use the M0RE system. It also 
permits easy incorporation into already existing 
programs. The PICKER requires all fields of the re
cord to be picked to be redefined by "F" numbers, 
(i.e., FO 1- - - - - F99, GO 1- - etc.). The interface pro
gram redefines all the user specified fields with the 
proper "F" numbers. This program also provides 
all linkage working-storage fields required by the 
picker. It also inserts the procedure division code at 
the proper point in the Communication program. 

The input to the interface program is the user's 
C0 B0 L source program. The interface program 
produces a new source deck with all the necessary 
coding required by the M 0 RE system. The user has 
the option of simultaneously compiling the new 
C0B0L program and placing it on the program lib
rary. 



202 Spring Joint Computer Conference, 1968 

EXHIBIT A 

PICKED RECORD LAYOUT 

lCllM 745 TEMP. 

B~ 
a"TtI PI.DaAI." Traister 5-22 . ____ MT't_PRGM IG. ____ MIIO _____ fIMI_-_ 

SORT 
~ FIELD Ell"I'RY 
f LENGTH COONI' VARIABLE 

5 

(/ 919. 9 

1 



Martin Orlando Reporting Environment 203 

EXHIBITB 

STACKMASTER FD ENTRY PRODUCED BY PICKER 

FD 0UTPUT-FILE 
BL0CKC0NTAINS 1 REC0RDS 
REC0RDING M0DE IS V 
LABELREC0RDSARESTANDARD 
DATA RECfZ)RDS ARE STKMSTR-

REC0RD,P!CKER-REC(?jRD,F0RMAT- REC0RD,F0RMAT-HF-REC0RD. 

01 STKMSTR-REC0RD 
02 M0NIT0R-TAG 

03 F0RM-NUMBER 
03 PR0GRAM-NUMBER 
03 REQUEST-NUMBER 
03 ARD-NUMBER 
03 CARRIAGE-TAPE-N0 
03 BL0CK-FACT0R 
03 DEC0LLATE-C0DE 
03 UPPER-L0wER 
03 FILLER 

02 F0RM-QUANTITY 
02 S0RT-TAG-LENGTH 
02 ENTRY-C0UNT 
02 B0DY. 

PICTURE 999. 
PICTURE X(8). 
PICTURE 99. 
PICTURE X(1 0). 
PICTURE 99. 
PICTURE 99. 
PICTURE 9. 
PICTURE 9. 
PICTURE XX. 
PICTURE 99. 
PICTURE 9(3). 
PICTURE 9(4). 

02BJZ>DY-SERIAL-M0VE PICTURE X0CCURS 960 TIMES DEPENDING 
0N ENTRY-C0UNT 0F STKMSTR-REC0RD. 

01 PICKER-REC0RD. 
02 FILLER 
02 ENTRY-C0UNT 
02 B0DY 

01 F0RMAT-REC<)RD 
02 FILLER 

01 F0RMAT-HF-REC0RD 
02 FILLER 

PICTURE X(36). 
PICTURE S9999. 
PICTURE X OCCURS 960 TIMES DEPENDING 
ON ENTRY-COUNT OF PICKER-RECORD~ 

PICTURE X(403). 

PICTURE X(493). 



204 Spring Joint Computer Conference, 1968 

EXHIBITC 

360/50 PICK-N-PRINT PARAMETERS 

AWO IDENTIFICATION. 

ANALYIT PHONE EXT. CA"D NO~ DATI! SHEET 

NDANKS 

I 
i 

C I PICI: FIELDS LIIIlITI 
!i;~" I S!Q~ 1-1 -(O-,-a-p-!!-L-"--"'" ~"T.":J..!!A"'!!"'III'-G-C-II---'il-~-ri-i..G-+:i!;1'". -i'ii-i;.-·i ..... :-'t--::~-r:-------r.=.!!IlJ.j'--------....... D-I1 C A 
!&IQ 0 "0. NAMe / TOTALING IIAII: MO. 8: ,os. : L P ! PttOM· LIIIIT TO· LIIiIT HE: ~ a 

!lUILD PIUDS 1$ 
.UI~:"~ILD / .UI~S:IIILD P~~D '/otT t 

l I! i 1 'i I I I Ii' , ii' . i . i i 
. I I : I i 

I I I 

II I 
11 ! ! ! I: ! ! I I ! 1 ' ' i i i I j 
12 ! ! ! ! I I : l: i i 
II \ \ ! ! I I I ,L l! 11 1 ! II! II. i ! r ! ! ! ! ,! ! ! ! 

14 I I 
11 

16 

17 

11 

" • II 
21 

22 

D 

r C ~ " SI:;I-"T"" __________________ .;,;;"1I::;;4:;:-=G..;;;&.:..POO=T,;:.�HG:;:.::L:..;,IT.::;ER:;:;4:;:LS=--_-------------------If 
J T R D. L c' ~ 
II L. ~ t ~ c! 'RNIT IllAGI ~. 

SEQ. 
MO. 

NOT!!: ADIII"IITNATIVE WONK ON DEN 10ENTIP1CATION IIUST AP.!"W ~ EACH SHEET. .. - K. J. IIcLurila 



EXHIBIT D 

TRANSMITTAL DEFINITIONS 

A. GENERAL 

1. eel. CARD-IDENTIFICATION. 
< Denotes monitor-tag-card; * de

notes pick parameter card, $ denotes 
print parameter card, and > denotes 
heading or footing print parameter 
card. 

2. cc2-3. REQUEST NUMBER. A two digit 
sequential number for each request 
submitted. 

3. cc4-6. SEQUENCE NUMBER. A three 
digit sequential number which is 
continuous throughout all requests. 

B. MONITOR TAG CARD 

1. cc7-9. FORM-NUMBER. A three digit 
number assigned to the form for 
printing purposes. 

2. cc I 0-17. PROGRAM NUMBER. An eight 
digit PROGRAM-ID that will 
process or. format this data after 
sorting. 

3. ccIS-19. REQUEST NUMBER. A two digit 
sequential number for each request 
submitted. 

4. cc20-29. ARD NUMBER. A six digit number 
which identifies the A WO identi
fication and a three digit number 
which identifies the report. The 
ARD field has the following format: 

~X~X)-a 
AWO report 
ID id 

5. cc30-31. CARRIAGE TAPE NO. A two digit 
number which identifies the carriage 
tape to be used to print the formatted 
data which was output by the format 
program. 

6. cc32-33. BLOCKING FACTOR. A two digit 
number indicating the number of 
logical records contained within 
each physical tape record written out 
on the formatted tape. 

7. cc34. DECOLLATING CODE. A one 
digit code which indicates the de
collating procedure and bursting 
pro,?edure. 

~iartin Oriando Reporting Environmeni 205 

S. cc35. PRINT TRAIN DESIGNATOR. A 
one digit code which indicates the 
type of print train to be used. 

9. cc3S-39. FORM QUANTITY. A two digit 
number which indicates the number 
of boxes of cards or paper required 
by the punch or print program. 
(May be blank.) 

10. cc40-42. SORT TAG LENGTH. The number 

II. cc43. 

of rh~r~rtpr4i: in thp hon\l of thp ouL _ ... _ .... _. __ ... _ .................. - ---J _.&.. ...... - ""... .. 

put record which will constitute the 
sort field. This field must be 223 
which means that the minimum record 
length of all records passed to the 
executive monitor sort will be 263 
bytes. 
HALT CODE. A non-blank charac
ter in this field indicates to the pick 
program that if all requests of a pick 
were bad, the picker should 'ABEND' 
the user's program. It is only neces
sary to include this code in the first 
Monitor Tag card of a pick. This code 
must be included for non-file main
tenance programs. 

1. ccl. CARD IDENTIFICATION. < De
notes that this is a monitor-tag card; 
* denotes that this is a pick parameter 
card; $ denotes that this is a print 
parameter card; > denotes that this is 
a heading or footing print parameter 
card. 

2. cc2-3. REQUEST NUMBER. A two digit 
sequential number for each request 
submitted. 

3. cc4-6. SEQUENCE-NUMBER. A three 
digit sequential number for each 
parameter card within a request. 

4. cc7-21. PICK FIELD NAME. A fifteen 
digit field which is used by the 
customer to fill in the name of the 
field upon which he wants to pick. 

5. cc22-24. PICK FIELD NO. A three digit 
field which is used by Management 
Information Systems to fill in the 
'F· number (corresponding field 
number in the program) which 
corresponds to the field name sup
plied by the customer. 

6. cc25-39. FROM LIMIT. Indicates the lower 
limit against which the argument 
will be compared (left justified). 

7. cc40-54. TO LIMIT. Indicates the upper 
limit against which argument will be 
compared (left justified). 



206 Spring Joint Computer Conference, 1968 

8. ccSS. EXCLUSIVE PICK CODE. If 
ccS 5 contains a non-blank character 
everything will be picked except the 
range represented in the FROM 
and TO LiMiTS fieids. 

9. cc56. RANGE CONTROL. If the pick field 
number of the parameter' card rep
resents a range, the first parameter 
card of the range describes the upper 
limit and cc56 contains an X. The 
second parameter card of the range 
describes the lower limit and cc56 
contains an X. 

10. cc57-58. LOGIC CODE. If "AND" logic is 
to be applied, column 57 will contain 
an X or any non-blank character tor 
this specific parameter card. 

If "OR" logic is to be applied, column 
58 will contain an "X" or any non
blank character for this specific 
parameter card. 

Card columns 57 and 58 are mutually 
exclusive. For any specific' pick 
parameter card only one of these 
columns may contain a non-blank 
character. 

11. cc59-73. BUILD FIELD NAME. The name 
of the field which the customer 
specifies indicating that this field 
is to be represented in the output 
record. 

12. cc74-76. BUILD FIELD NUMBER. A 
three digit number representing the 
relative location of an element in the 
pick-area from which the body of the 
output record is to be built. The 
absence of any build fields indicates 
that the entire record is to be picked. 

13. cc77-80. Not used. 

D. PRINT PARAMETER FORMAT CARD 
a. DETAIL PRINT DATA: 

The following columns will be used to describe 
the individual fields of a detail print line: 
1. cc53-54. DETAIL SLEW VALUE. A two 

digit numeric field which indicates 
the number of lines to be slewed 
before printing. This field must be 
specified for each field of the line. 
If group indicating - $-'CH' type 
control must show positive slew and 
$-'CF' type control must show 00 
slew. 

2. cc59-73. DETAIL FIELD EDIT MASK. A 
maximum of a fifteen position edit 
mask which will describe the print 
format for the preceding detailed 
fieid to be picked. This mask is right 
justified. 

3. cc77-79. DETAIL FIELD PRINT POSI
TION. A three digit field which 
reflects the right most horizontal 
print position where the data are 
to be printed. If group indicating -
$-'CF' type control lowest level 
must contain '999' and higher levels 
must contain '000'. 

4. cc80. LEVEL INDICATOR. A one posi
tion field which indicates that the 
build field number is to be used for 
control purposes. Levels 1 thru 5 
indicate minor thru major respec
tively with FINAL level being the 
highest level specified. The maxi
mum number of levels is six. This 
column will be blank if not applic
able. 

b. HEADING AND FOOTING LITERALS: 

The following columns will be used to describe 
literal information of the user's heading and foot

ing lines. These fields are shown at the bottom 
of the input transmittal (Exhibit B). 

1. cc7-8. TYPE CONTROL FIELD. A two 
digit field which may contain any 
one of the following types: 

2. cc9. 

CH Control Heading 
OH Overliow Heading 
OF Overflow Footing 
CF Control Footing 
(a) Control Heading and Control 

Footing literals are associated 
with their respective control 
level indicator (cc80) of the 
detail format card. 

(b) Overflow Heading and Over
flow Footing literals are 
associated with their respec
tive 'HDR-NO' (cc9) indicat
ing at overflow time the rela
tive sequence in which they are 
to be printed. There is a maxi
mum of six Overflow Hei;ldings 
'Headings and Footings for • each report. 

HEADER NUMBER INDICA
TO R. A one digii numeric fieid 



which is used to associate fields to 
to be 'floated' into the Overflow 
Heading and Footing lines from 
the detail format cards. This field 
is used only with types 0 Hand 
OF. A maximum of six Overflow 
Headings and Overflow Footings 
may be specified. A 1 represents 
the first and a 6 represents the last. 

3. cc10-11. HEADING OR FOOTING 

4. cc12. 
5. cc13. 

SLEW. A two digit numenc· field 
which indicates the number of 
vertical lines to be slewed before 
this heading or footing line is print
ed. This value should be specified 
only in the first of each set of two 
cards. 
Not used. 
CARRIAGE CONTROL. A one 
digit field which indicates whether 
or not this heading or footing line 
is to be slewed to the top of the 
next page. The only acceptable 
values for this field are 1 or A 
1 indicates slew to top of page 
before printing. This field should 
be used only in the first of each 
set of two cards. 

6. cc14-79. HEADING OR FOOTING 

7. cc80. 

PRINT IMAGE. A total of 132 
characters which contain the head
ing or footing literal information 
to be printed. If group indicating 
and final totals are required, a 
literal line with 00 in the slew field 
must be specified. 
CONTROL LEVEL INDICA
TOR. A one position field which 
associates a specific control Head
ing or Footing with the respective 
control level. A maximum of six 
Control Headings and six Control 
Footings may be specified. A 1 
represents the first and a 6 rep
resents the last. 

c. FLOATED DATA FOR HEADINGS AND 
FOOTINGS: 

1. cc7-21. HEADING OR FOOTING 
MASK. A maximum of 15 digits 
which represents the edit mask 
for the data to be floated into 
the heading or footing literal line. 
This mask must be right justified. 
justified. 

Martin Orlando Reporting Environment 207 

2. cc22-24. FIELD NUMBER. A three digit 
field which serves one of the follow
ing functions: 
(a) Specifies the field number to be 

totaled for Control Footings or 
inserted for Control Headings. 

(b) *** indicates that this is the mask 
for the page counter. 

(c) NN$ indicates that this is the 
mask for the date. NN is the 
number of the date to be ob
tained from the GETDATE 
subroutine. Anyone of the 
eleven dates of GETDATE 
may be specified. 

(d) 'N' specifies the literal to be 
floated into a heading or the 
increment to be added to a 
counter for every record to be 
printed. 

3. cc25. HEADER NUMBER. A one digit 
field which associates fields to be 
floated into heading and footing 
with their respective Overflow 
Heading. or Overflow Footing 
line. This field may contain a 
number from 1 to 6. A 1 repre
sents the highest level 0 H or OF 
and a 6 represents the lowest. 

4. cc26-28. HEADING OR ·FOOTING 
PRINT POSITIONS. A three 
digit field which indicates the 
right justified print positions of 
the heading or footing line where 
the floated data are to be printed. 

5. cc29-30. TYPE CONTROL. A two digit 
field which indicates to which 
Heading or Footing type (i.e., 
OH or OF, CH or CF) the floated 
information applies. 

EXHIBITE 

PARAMETER CARD DIAGNOSTICS 

A. GENERAL 

MORE THAN 600 PARAMETER CARDS 
REMAINDER DELETED 

PARAMETER CARDS ARE OUT OF SE
QUENCE 



208 Spring Joint Computer Conference, 1968 

MORE THAN 36 REQUEST -REMAINDER 
DELETED 

B. MONITOR TAG CARD 

MONITOR TAG CARD MUST BE ist OF 
REQUEST 

FORM NUMBER IS BLANK 
PROGRAM NUMBER IS BLANK 
INVALID REQUEST NUMBER 
ARD NUMBER IS BLANK 
BLOCKING FACTOR IS INVALID 
SORT LENGTH FIELD IS BLANK 
WARNING HALT CODE IS BLANK 
DECOLLATING-BURST CODE IS BLANK 
CARRiAGE TAPE NUMBER is BLANK 
UPPER-LOWER CASE PRINT CODE IS 
BLANK 

C. PICK PARAMETER CARD 

FROM LIMIT IS BLANK 
TO LIMIT IS BLANK 
LOGIC CODES ARE IN ERROR 

FROM LIMIT OF FIRST RANGE CARD IS 
BLANK 

TO LIMIT OF SECOND RANGE CARD IS 
BLANK 

MUST HAVE 2 RANGE CARDS FOR EACH 
RANGE 

FROM LIMIT IS GREATER THAN TO 
LIMIT 

D. DETAIL PRINT PARAMETER CARD 

WHEN PRINTING ALTERNATE PICK AND 
PRINT PARAMETER CARDS 

WARNING-BOTH PRINT POS OF FORMAT 
CARD ARE BLANK 

WARNING-BOTH MASKS OF FORMAT 
CARD ARE BLANK 

MUST SPECIFY DE CC IN 1st FORMAT 
CARD OF REQUEST 

SUPPRESSION ILLEGAL AFTER P 
PARENS ILLEGAL FOLLOWING V 

ILLEGAL SUPPRESSION 
ZERO SUPPRESSION CANNOT BE SPLIT 
ZERO SUPPRESSION ILLEGAL FOLLOW
ING DECIMAL POINT 

V, g, S, $, *, Z, ), ( ILLEGAL FOLLOWING 
DECIMAL POINT 

B FOLLOWING P IS ILLEGAL 

CAN HAVE ONLY 1 DECIMAL POINT 
INDICATOR PER PICTURE 

P's CANNOT BE SPLIT 

ONLY ONE SIGN INDICATOR LEGAL PER 
PICTURE 

(MAY NOT FOLLOW A SIGN 
$ CANNOT FOLLOW DECIMAL POINT 
$ CANNOT BE SPLIT 
P CANNOT IMMEDIATELY FOLLOW A $ 
* ILLEGAL FOLLOWING DECIMAL POINT 
*(s CANNOT BE SPLIT 
(ILLEGAL AFTER X OR A 

SUPPRESSION ILLEGAL FOLLOWING 
XORA 

ILLEGAL CHARACTER IN PICTURE 
BLANKS WITHIN PARENS IS ILLEGAL 
ONLY NUMERIC IS LEGAL WITHIN 
PARENS 

NOTHING VALID SPECIFIED FOR 
PICTURE 

E. HEADING AND FOOTING PRINT 
PARAMETER CARD 

BOTH HEADER NUMBER AND CTL LVL 
CANNOT BE BLANK 

NO SLEW VALUE SPECIFIED FOR THIS 
OH,OF,CH,CF 

NO TYPE CONTROL SPECIFIED FOR THIS 
OH,OF,CH,CF 

OH OR OF MUST HAVE HEADER 
NUMBER 

WARNING PRINT IMAGE IS BLANK 



Simulatio"n applications in computer 
center management 

by THOMAS F. McHUGH jR. 
International Business Machines Corporation 
Waltnam, Massachusetts 

and 

DR. ELLIS L. SCOTf 
University of Georgia 
Athens,Georgia 

Significant developments occurred during the 
1960's in the use of computer-based simulation 
models for management analysis. Data processing 
personnel contributed extensively to these develop
ments. However, the role characteristically attrib
uted to them emphasized programming and machine 
operations. Relatively few models have been con
cerned with managePlent aspects of computer center 
operations. * 

A simulation study recently completed at the U ni
versity of Georgia (U Ga) Computer Center suggests 
that models for computer center management pur
poses are feasible and will have extensive applica
tions. The UGa model was constructed in the inter
est of simplifying the complex decision making tasks 
involved in managing the operations of the computer 
center. The major processing configuration includes 
four IBM CPU's-a 7094 operated in a mag tape I/O 
mode, two 1401's used for both I/O support to the 
7094 and for central processing, and a recently in
stalled 360/65. The diversity of input and the elaborate 
operating system necessary to support the hardware 
complement combine to present the management with 
many examples of hardware interface, routing, sched
uling, and queue management problems typical of 
most large- and medium-scale facilities. This suggests 
that the approach taken in the UGa study may have 
value for the many D P managers faced with similar 
decision making and evaluation tasks. 

The objective of the U Ga study was to develop a 
simulation model which could be applied on an on
going basis by computer center management in deci-

*For a recent example see "SCERT: A Computer Evaluation 
Tool," by Donald J. Herman in Datamation, February, 1967. 

sions involving machine allocation, machine capa
bility projections, system optimization and similar 
classes of management problems. In brief, the method
ology involved the performance of a system analysis, 
and the construction of a simulation model to reflect 
the essential behavioral characteristics of the system. 
Once the model was completed and its validity deter
mined, the model could then be utilized to compare 
alternative configurations and operating procedures 
without direct experimentation. 

The UGa operating system 

At present, input is batched for all three types of 
machines. * The user may have access to the computer 
he desires by simply submitting his input through a 
formalized data collection procedure. 

7094 mode 

7094 input in punch card form must be routed to 
one of the 1401's for card-to-tape processing. Input 
tapes are then introduced into the 7094 job queue to 
be processed on the basis of a priority system. Pri
orities in this and all other sub-systems are based on 
two criteria- user convenience and production effi
ciency. That is, jobs are rated according to the need of 
the user and the effect of job execution on system 
performance at that point in time. Output tapes gen
erated by the 7094 are routed back to one of the 
1401's for tape-to-list processing. 

1401 CPU mode 

In addition to serving as I/O support devices for 
the 7094, the 1401 's are used to a limited extent for 

*The 360/65 is scheduled to be upgraded to a model 67 to provide 
time-sharing capability. 

209 



210 Spring Joint Computer Conference, 1968 

central processing and utility jobs. One of the ma
chines has a 16k character memory with four tape 
drives; the other has an 8k memory with two tape 
drives. Most central processing tasks are performed 
by the 16k machine, with the residual (i.e .. taoe-to
card, data-tape building, etc.) going to the 8k.' ~ 

360/65 mode 
All processing functions, including I/O, are per

formed on-line in the 360 system. Therefore, all input 
is routed directly to the computer upon entry into 
the system. 

Development of the simulation model 

Development of the simulation model occurred in 
three steps: collection of the data on the operations of 
the UGa system; construction of the model; and, 
execution of the model using data from step one as 
input. A sample period of one week was selected from 
operations during the first six months of 1967 and 
designated for both data collection and simulation 
purposes. Utilization records indicated that the week 
of May 7-13 met the selection criteria of freedom 
from excessive amounts of unusual kinds of inputs, 
and that input figures for the sample period be com
parable with current operations. Data collection 
involved identification of the major variables of inter
est in the study and compilation of data on these vari
ables. 

Major variables 

For the purposes of the study, average turnaround 
time was determined to be the most suitable measure 
of system performance. A verage turnaround time 
was measured in minutes between entry of input 
Gob-entry time) into the machine room and exit of 
the completed job from' the machine room. The 
secondary variable, processing time, was defined in 
minutes' for the execution of the job on the CPU, 
including I/O processing for the 7094 sub-system. 

Data acquisition 

The accounting routine records which are main
tained' on-line on both 7094 and 360 CPU's were 
the source of process time data for those two ma
chines. 1401 process time was computed from infor
mation contained in a utilization log which is main
tained for accounting purposes. Data on other opera
tions, such as card-to-tape and tape-to-list, were com
piled by stop-watch observations over a sub-sample 
during the sample period. 

Model Construction 
The model was conceptualized as the set of mathe

matical, functional and logical relationships which 

express the essential behavioral characteristics of 
the UGa computer system. Following the definitIon of 
these parameters the model was constructed using 
General Purpose Simulation System/360 as the pro
gramming vehicle. G PSS is well suited for simulation 
applications of this type. * Its block coding format 
is akin to the standard flow-charting techniques fa
miliar to most all system analysts and data process
ing personnel. Hence, the utilization of G PSS does 
not necessitate extensive machine programming 
knowledge. In addition, G PSS also features several 
approximation devices, such as the random number 
generator, and user defined mathematical functions, 
which simplify simulation of complex systems. 

In the U Ga model, a mathematical function was 
employed to enter the simulated jobs (transactions) 
into the model at the same rate and time as the real 
jobs entered the machine room during the sample 
period. The dependent variable in this function was 
the number of jobs which entered the system during 
each of 168 hours in the sample week. The indepen
dent variable was the number of simulated hours 
which had elapsed since the start of the simulation 
run. Evaluation of the function at the close of each 
simulated hour caused the same number of trans
actions to be introduced into the model as were jobs 
into the real system at that hour during the sample 
period. 

Process time for each of the major system opera
tions was also defined by means of a mathematical 
function. The independent variable in this function 
was based on a graph showing the cumulative per
centage of jobs requiring various amounts of process
i?g time. A cumulative time distribution of processing 
time was constructed for each of the CPU's. Depen
dent variable values were determined by the random 
number generator. Values thus generated were inter
preted to be percentages. The distribution of trans
actions among the simulated CPU's followed the same 
pattern as the distribution of the inputs in the real 
system. 

Model validation 

The simulation model was executed ten times 
(8330 simulated jobs) and the results of each execution 
were averaged. This procedure was considered neces
sary to reduce the probability of random effects bias
ing the results. Results from simulation runs were 
then compared with empirically derived data for the 
sample period of operations. Two methods of compari
son were employed. The first method was comparison 

*See "General Purpose Simulation System/360: Introductory 
Users Manual." White Plains: International Business Machines 
Corporation, i 967. 



Simulation Applications in Computer Center Management 211 

of overall average turnaround time data generated 
by simulation runs with real system data obtained 
from accounting program outputs and from utilization 
records maintained by the operations staff in the 
machine room. Mean turnaround time for the sample 
period was 283 minutes; for the model it was 275 
minutes, a difference of 8 minutes or 3%. The second 
method of comparison was a Chi-squared test of the 
individual process-time observations for both the 
model CPU's and the real system processors. No 
significant difference was established. 

Model applications 

Following validation, the model was then applied 
to three classes of management problems: (1) machine 
capability projections; (2) machine allocation; and, 
(3) operating system optimization. Questions were 
formulated with the immediate interests of the U Ga 
Computer Center management in mind. 

Question One: 

At what level of 7094 utilization do the 1401 I/O 
facilities become saturated and incapable of meeting 
the support demands of the 7094? 

Transaction (simulated job) inputs into the 1401 's 
were increased until the 7094 throughput stabilized 
and additional 1401 entries went into queue. Manage
ment had heretofore assumed that the 1401 's would 
saturate before the 7094, requiring upgrading of sup
port equipment. In the simulation runs, however, the 
7094 showed an average utilization of 96%, while 
the average utilization for the 140 I-16k was only 79%, 
and 77% for the 8k machine. An additional 150 7094 
transactions were entered, and although 1401 utiliza
tion rose to 81 % and 79%, the 7094 utilization average 
remained stable. In effect, this information eliminated 
the necessity for short term planning for the upgrade 
of 7094 support facilities. 

Question Two: 

At the saturation level of operations, how much 
improvement in turnaround time for the average user 
could be expected if all job types currently classified 
high priority were run on the 360 rather than the 
7094? 

Management assumed that as 7094 utilization in
creased to the saturation point it would be forced 
to reprogram and reallocate certain kinds of input. 
In the interest of establishing a priority hierarchy 
for reprogramming and obtaining maximum 7094 
operating efficiency both during and after conversion, 
management wished to ascertain the effect of trans
ferring 7094 jobs currently rated high priority to the 
360 system. Given the saturation data in the previous 

run, the model was modified to re-route specially 
classified jobs. With the simulation of the 7094 sub
system in saturation, the re-routing to the 360 of that 
7% of jobs classified as high priority resulted in a 
reduction of the mean turnaround time of the 7094 
of 20%. Further manipulation of the job generation 
data showed that approximately 30% more trans
actions could be added before the 7094 returned to a 
state of saturation. In the new mode with special 
jobs excluded, turnaround time under saturation for 
the 7094 was 12% below that of the original model. 
Therefore, it was concluded that the proposed change 
in machine allocation would increase throughput on 
the 7094 and reduce turnaround time. 

Question Three: 

What would be the effect of eliminating third shift 
operations at the current level of job input? 

Although anticipating increased utilization in the 
future, management was nevertheless interested in 
determining the effect on turnaround time of elimi
nating the third shift at the current level of utilization. 
The model was modified to simulate an inactive third 
shift. Turnaround time on the basis of a 16-hr. pro
cessing day increased from 275 to 523 minutes. This 
was not surprising since the elimination of the third 
shift at the current level pushed utilization to near 
saturation. Furthermore, in the three shift operation 
the third shift has a low input rate and provided slack 
time for backlog processing. On the basis of both ser
vice time and production efficiency criteria, elimina
tion of the third shift would be detrimental to system 
performance. Turnaround time would increase by 
nearly 100% and relatively minor system perturba
tions, such as unscheduled downtime, would almost 
certainly result in serious backlogging. 

CONCLUSIONS 

The simulation approach represented by the U Ga 
study manifests the general applicability of the con
cept of computer simulation in DP installations. Each 
facility has its own singular operating characteristics 
and hardware configuration, and must tailor the idea 
to its own requirements. Nevertheless, DP installa
tions generally are in a favorable position to profit 
from simulation applications. The technology to 
facilitate these applications is at hand. Further, recent 
advances in simulation programming systems, such 
as G PSS, make the employment of simulation tech
niques available without elaborate machine pro-
gramming efforts. In this evolving technological 
environment the expanded use of simulation for com
puter center management seems worthwhile. 





Multiprogramming system performance 
measurement and analysis 

Why 

by H. N. CANTRELL and A. L. ELLISON 
Generai Eiectric Company 
Phoenix, Arizona 

" ... design without evaluation usually is inade
quate."1 

"Simulation ... is applicable wherever we have a 
certain degree of understanding of the process 
to be simulated. "1 

"The key to performance evaluation as well as to 
systems design is an understanding of what systems 
are and how they work."1 

"The purpose of measurment is insight, not num
bers. "3 

Why should we spend time and money analyzing 
the performance of computer systems or computer 
programs? These systems or programs have been de
bugged. They work. They were designed for optimum 
performance by competent people who are just as con
vinced that their performance is optimum as they 
are that the program or system is logically correct. 
Why then should we analyze performance? There are 
three main reasons: 

1. There may be performance bugs in a program. 
Performance bugs are the result of errors in 
evaluation or judgment on performance optimi
zation. We have no reason to suspect that per
formance bugs are any less frequent or iess 
serious than logical bugs. Thus, if the perform
ance of a program or a system is important then 
it should be performance debugged by measure
ment and analysis. 

2. If a new or better system or program is to be 
designed, then a good, quantitative understand
ing of the performance of previous systems is 
necessary to avoid performance bugs in the new 
design. 

3. If an important program or system is intolerably 
slow, then the real reasons for its poor perfor
mance must be found by measurement and analy
sis. Otherwise time and money may be spent 
correcting many obvious but minor inefficiencies 
with no great effect on overall performance. 

Worse yet, the whole thing may be reimple
mented with all key bugs preserved! 

In all three of these reasons the objective of per
formance analysis is to understand the unknown. 
We're looking for performance bugs. If we knew what 
these bugs were and what they cost in performance, 
then we wouldn't have to look for them. But because 
we are looking for unknown performance limiters, 
we don't know in advance what performance gains 
can be made by finding and fixing these bugs. We don't 
even know how hard or how easy it. will be to fix 
these bugs after we find them. 

Thus, there is no way of predicting the performance 
payoff from the time and money spent in performance 
analysis. This time and money must be spent at risk, 
essentially on the basis of faith that the payoffs from 
performance analysis will exceed the value of any 
alternative way of spending this time and money. 
This is nothing new. This "faith" concept is well 
understood and accepted in the scientific and engineer
ing communities. One of the purposes of this paper is 
to demonstrate that analysis pays off in programming 
to at least the same degree as in engineering and sci
ence. 

How 

All good analysis consists of a combination of 
theoretical an~lysis and empirical measurement. This 
is the classical "scientific method." The theoretical 
analysis may be done through a mathematical or simu
lation model (2) or it may simply consist of an under
standing of how the system or program is supposed to 
work. The empirical measurement is designed to test 
the theory. 

Neither theory nor measurement alone is suffi
cient. Theoretical analysis alone may solve a non
existent or unimportant problem. Measurement alone 
often misses a few critical parameters needed to test 
the theory.' Since neither can stand alone, analysis 
usually consists of successive applications of the clas-

213 



214 Spring Joint Computer Conference, 1968 

sical theory/measurement/revised theory/revised mea
surement/etc., cycle. 

I t is important to recognize the iterative nature of 
analysis, the theory/measurement cycle. Successive 
cycles revise or obsolete previous concepts. There
fore, time spent in polishing the first theory or the 
first measurement method will almost certainly be 
wasted. 

In analyzing a computer system or program the 
quantity to be measured is time - the time required to 
perform different functions or the time spent waiting 
to perform those functions. Performance analysis 
consists simply of trying to answer the questi0t:\, 
"Where does the time go?" and given an answer, ap- . 
plying a sUbjective judgment as to whether the 
amount of time spent on a given function is reasonable. 

The application of these concepts to an analysis 
of the performance of a multi programmed computer 
system and to the programs which operate in this sys
tem will now be considered with examples and il
lustrations taken from such an analysis of the General 
Electric-625/635 G ECOS I I operating system (5) 
and the system software and user programs which 
operate in that system. Only software measurement 
techniques are discussed. Schulman,4 for example, 
discusses hardware measurement techniques. 

A. System analysis 
For accounting purposes a mUltiprogramming op

erating system usually has to keep track of how much 
processor time is applied to each program and how 
much I/O channel time, by channel and device, is 
used by each program during its execution. Thus, the 
G ECOS I I system keeps a running total by program 
of all processor, channel and device time used. These 
totals are updated for each period of processor use and 
for each I/O transaction. When a program terminates, 
all of its accumulated times are transmitted to an ac
counting file and the totals are zeroed for the next 
program. 

All of the major functions of the G ECOS I I operat
ing system itself are executed in 64 different, function
al, operating system "programs." The time spent on 
each of these programs is accounted for in substan
tially the same way as for user programs. Operating 
system times are not used or reported. They are ac
cumulated by the system because it is faster to do 
it than to decide not to do it. 

Thus, in its normal operating mode the G ECOS I I 
system is very highly and very accurately instru
mented. In addition, the system has a TRACE mode 
of operation, usually used to debug changes to the 
operating system. In TRACE mode a trace entry is 
made in a circular list for every major operating sys-

tem event, such as dispatching the processor to a 
program or servicing an I/O channel terminate inter
rupt. 

Given that a great deal of data is available, how do 
we go about analyzing the performance of this system? 
A few chronological steps in the actual analysis of this 
system will illustrate the theory/measurement cycle. 

1. User Program Accounting Analysis 
Given an understanding of how the multipro
grammed system was supposed to operate (the 
theory), normal user program accounting data 
was analyzed. This data showed the starting and 
terminating time-of-day for each program and 
the processor and I/O channel time used by 
that program. The question, "Where does the 
time go?" was asked but could not be answered 
from this data. Our understanding of how the 
system was supposed to operate could not fully 
explain how it was operating. A tentative theory, 
"The extra time goes into overhead," was ad
vanced. 

2. Overhead Analysis 
A complete and accurate breakdown of all 
G ECOS overhead processor time was available 
in core and could have been printed in a report. 
However, following the rule that initial polished 
reports are a waste of time, several octal memory 
dumps of this core area were analyzed. These 
dumps showed that overhead processor time was 
significant but not excessive. They also showed a 
significantly high percentage of processor idle 
time in a system that was supposed to be heavily 
loaded. The theory, "The extra time goes into· 
overhead," was dropped and replaced by the 
question, "Why is the processor idle time per
centage so highT' A polished overhead sum
mary report was never implemented. The octal 
dump analysis had demonstrated that over
head was not the problem and that, whatever 
the problem was, it could not be exposed by 
analysis of overhead time summaries. 

3. Trace Analysis 
Since summary data were not adeguate to test 
the theory of system operation, a more detailed 
approach was taken. The internal logical trace 
entries generated by the operating system in 
TRACE mode were captured by a trace col
lector program and written on magnetic tape with 
a high resolution time-of-day value for each 
trace entry. In the first successful 5 minute run 
of this program 350,000 trace entries were cap
tured on tape. This represented a complete timed 
record of literally everything significant that had 
occurred in 5 minutes of full speed operation. 



Multiprogramming System Performance Measurement and Analysis 215 

(The trace collector program itself was one of 
the user programs in core and accounted for 
about 1 % of the lead on the system.) 

350,000 trace entries, if printed at one entry per 
line, would produce an essentially indigestible 
pile of paper 2Y2 feet high. So only the first 
10,000 trace entries were printed to provide an 
understanding of the data so that a data reduc
tion method could be devised. A succession of 
data reduction and reporting methods was then 
tried. At each stage the results were anaiyzeu, 
comparing the th~n current theory. of operation to 
the actual measurements. At each step both the 
theory of operation and the method of reporting 
the data were usually revised and the cycle re
peated. This was very hard, detailed analysis 
work but it produced a steadily improving under
standing of how the system really worked and 
steadily improving methods for measuring and 
displaying critical performance phenomena. 
Ultimately two complementary measurement 
methods and two reports evolved. These are 
described in a later section of this paper. 

At the same time this analysis also yielded a 
succession of well defined, understood, and eval
uated system performance bugs. Like logic bugs, 
some of these performance bugs were very ob
scure, involving many levels of complicated 
inter-relationships, but many were very obvious 
once they had been found and pinpointed in the 
light of the improved understanding of system 
operation. Again, like logic bugs, some of the 
performance bugs were hard to fix but many 
were corrected with only a few minutes work 
(after the required change had been defined). 
As performance bugs were found they were 
corrected in the prototype version of the next 
system software distribution. Thus, the theory/ 
measurement/improved theory/improved mea
surement/improved theory/improved measure
ment/improved system. A typical time to go 
through this cycle was one week although for 
each of the two examples described below, a 
significant performance bug was found,. evalu
ated, corrected in the system, and the improved 
system performance measured confirming the 
correction, all in one eight hour day. 

During the operating system improvement cycle, 
fourteen performance bugs were found and fixed, 
resulting in an average throughput improvement 
on customer sites of 30% with a range of from 
10% to 50% depending on the load mix. Two ex
amples of the performance bugs found are: 

1. Operating System Core Space 
The G ECOS I I Operating System was designed 
to operate within 16K of core but would use 
more core if it was available. This is quite ade
quate for small systems but for large systems 
with several system printers running the operat
ing system actually used an average of about 30K 
of core. But only 16K was reserved for the op
erating system. Measurements of large systems 
in operation showed that when too many slave 
programs were packed into core, the operating 
system was squeezed down and performance was 
degraded by about 25% due to the operating sys
tem fighting to get needed overlays into core. 
Over a day's operation this degradation averaged 
about 5%. To correct this problem the core 
space reserved for the operating system was 
made dependent upon system size (about 25% 
of the total core space). The previously measured 
performance degradation immediately disap
peared. 

2. Dispatcher Interval 
The G ECOS I I dispatcher assigned the pro
cessor to user programs on a round-robin 
basis, allowing 62.5 milliseconds of processing 
for each program. Many programs would become 
roadblocked, waiting fot I/O, in much less 
than this 62.5 milliseconds. The next program 
would then be dispatched. During processing 
on one user program, I/O terminate interrupts 
would be serviced and any I/O activities waiting 
in the queue would be started, but only the 
program processing at that time could ini~iate 
new I/O activities. The I/O time to read or 
write a system standard block to drum or 
high speed tape is about 25 milliseconds. 
The dispatcher overhead time to switch· from 
one program to another was measured at about 
0.5 milliseconds. 

This appears to be a fairly reasonable strategy 
but actually it is very bad. If I/O bound programs 
are multiprogrammed with a compute bound pro
gram, the ideal situation, then the compute bound 
program will retain control of the processor for 
62.5 milliseconds every time it is dispatched. The 
1/0 activities started by the other programs 
would have terminated within the first 25 milli
seconds and those programs and their I/O re
sources would remain idle for the remaining 
37.5 milliseconds. Thus, with one compute 
bound program in core all operating system and 
user program drum and tape I/O operated at 
about 40% of normal speed. 



216 Spring Joint Computer Conference, 1968 

To correct this problem the dispatcher interval 
was changed from 62.5 milliseconds to 15 milli
seconds. The results were immediately apparent. 
In one benchmark of two tape sort programs mul
tiprogrammed with a compute bound program~ 
the sorts ran twice as fast. 

B. Program analysis 

An operating system and an installation's operating 
procedures provide the environment in which users' 
programs and manufacturer-supplied compilers, as
semblers, sort programs, etc., operate. The overall 
performance of a computer system obviously depends 
upon both the efficiency of the environment and on the 
efficiency of the programs which operate in that en
vironment, or at least on the subset (usually small) of 
all programs which account for most of the load on 
the system. In an earlier section, System analysis, the 
performance analysis of the environment was dis
cussed. This section is concerned with analyzing the 
perfor"mance of individual programs. Again the start
ing point is the question, "Where does the time go?" 

1. Input/Output and Compute Time Profiles 
I/O transactions and their degree of concur
rency with each other and with computation are 
important characteristics of system performance. 
Thus, they must be accurately measured as a 
part of system performance analysis. By measur
ing system performance, as described above, 
with only one program operating in core a com
plete I/O and compute time profile of that pro
gram is obtained. 

From this profile the programmer can apply 
vaiue judgments and tradeoffs as to whether 
the time spent is appropriate to the function being 
performed and whether the optimum degree of 
concurrency has been attained. Such an analysis 
is normally a part of the initial design of any pro
gram, but surprises (performance bugs) are not 
unusual. Optimal blocking, buffering, and other 
I/O strategies are not always achieved. An ex
ample is a CO BO L program which repeatedly 
wrote a very small transient file on a tape and 
then read it back again a few moments later. The 
total amount of data written and read was very 
small so this I/O time hardly entered the initial 
performance calculations. But the measured I/O 
compute profile for this program s~owed that 
most of its total time in the machine was spent 
in repeatedly opening, closing, and label check
ing this small transient tape file. The time spent 
on providing transient storage was outrageous 
compared to any of several alternative ways of 
performing the same function. This is an exam
ple of functional value analysis. 

2. Compute Time Analysis 
System analysis methods and measurements pro
vide adequate measures of the I/O-compute pro
rile for an individual program. But system ori
ented measures do not cast any light on where the 
compute time goes within a program. This is a 
classical problem whose solution is an essential 
part of performance analysis. It had been under 
attack throughout the G E-625/635 performance 
study described above but its solution was ac
cidental. Actually, the data measuring the in
ternal compute profile of a program had been 
taken and existed on a magnetic tape before it 
was recognized that this data represented a com
plete, accurate, and general solution to the prob
lem. This is an example of one of the extremely 
valuable but completely unexpected discoveries 
which occasionally occur in the course of a 
serious effort made to understand the unknown. 

The solution is quite simple and can be applied 
on any computer which has a program interrupt 
capability. It is particularly easy to do in a multi
programmed system. 

The method used is a high density sampling 
method. If an executing program is frequently 
interrupted according to some random or period
ic time schedule which is known to be statistical
ly independent of any natural execution pattern 
in the program, then the frequency with which 
the interrupt location falls within a particular 
instruction sequence is proportional to the total 
time spent by the program in executing that 
instruction sequence. 

To obtain a compute time profile of a program, 
that program is loaded and run in its normal fash
ion without any modifications and without any 
need for prior knowledge of any of its character
istics. By using the typical "timer run-out" 
feature of the multiprogramming operating sys
tem, the program is interrupted frequently during 
execution. (A one millisecond execution incre
ment gives about 25 sample points per typical 
I/O transaction on a GE-635.) The address of 
the next instruction to be executed in the program 
at the time of the interrupt is recorded for each 
interrupt and written on magnetic tape. At the 
completion of the run this tape is sorted by inter
rupt location address and the resulting frequency 
distribution is printed. The relative amounts of 
compute time spent in various parts of the pro
gram are determined by comparing the distribu
tion of interrupt locations to the program listing. 

An analysis run with this method takes about 
one-third more GE-635 computer time than a 



Multiprogramming System Performance Measurement and Analysis 217 

normal run of the program being analyzed. At 
1,000 sample points per second of compute time, 
the distribution of compute time within a pro
gram is resolved down to the individual instruc
tion execution frequency for all but very in
frequently executed routines, which are by 
nature uninteresting for this kind of analysis. 
All compute time concentrations within the pro
gram are very clearly defined and measured with
out any need for prior knowledge of where they 
are. 

The "accidental" application of this method oc
curred because G ECOS I I normally set the in
terval timer to interrupt a program after 62.5 
milliseconds of compute time. The location of the 
interrupt was a part of the trace entry which was 
collected in the Trace Analysis method described 
in A-3 above. Thus, this data had already been 
taken in crude, 62.5 millisecond interrupt 
period, form before the value of the data was 
recognized. 

To be statistically rigorous the fixed, one milli
second sampling interval should be replaced 
with a random sampling interval with a one milli
second mean, but a fixed interval appears to be 
satisfactory. Some programs might conceivably 
have an execution pattern which repeats in 
synchronism with the one millisecond interval. 
Such synchronization has never happened in 
practice but if it did it would immediately be 
evident from indications of very high execution 
frequencies at the synchronization points and 
very low frequencies at nearby points in the 
same instruction sequences. The sampling inter
val could then be changed to some non-synchro
nous value for that program. 

This method has been applied to a wide variety 
of programs and has been found to be a very 
valuable tool for tuning long running or frequent-
1y used programs. The method finds many types 
of compute time performance bugs if they are 
present and pinpoints the areas in which tuning 
will be of greatest value. For example, the first 
application of this method to the FORTRAN 
compiler led to fixes which increased the speed 
of the compiler by 27%. 

What 

In tht? current implementation both the system and 
the individual program performance measurements are 
taken by a small (4K or 6K) program, called MAP
PER, loaded as one of the user programs in the G E-
625/635 multiprogrammed system. This program 

originally ties itself into the standard operating system 
using a special privileged interface and later unties 
itself upon termination, leaving the operating system 
in its original form. (Only one instruction in the opera
ting system is chang~d while MAPPER is operating.) 
The program is tied into the trace facilities of the 
operating system and scans all trace entries. Other
wise it uses no processor time unless it is called upon 
to print a line or write a block of data on tape. 

A. MAP 
Every two seconds MAPPER samples most of the 

various accounting time cells in the operating system, 
subtracts the value from two seconds ago, and prints 
out a single line showing the percentage of processor 
and channel time that has been applied to various pro,;· 
grams and operating system functions over that two 
second period. Percentages are rounded to the nearest 
percent. Values less than .5% are printed as a period. 
If a user program is present in core but has not used 
any processor time over a two second interval, then an 
asterisk is printed for that program. An example of 
MAPPER output is shown in Figure 1. 

Whenever a user program (slave program) is started 
or terminated the identification of that program is 
printed and a core map showing the locations of all 
user programs is· printed. Each print position cor
responds to 1 K of core. 

Page averages and run averages are shown at the 
bottom of the page. The report can be printed in real 
time on an on-line printer, or sent to the standard sys
tem output facility (SYSOUT), or stored on tape for 
later printing. Normally it is printed on an on-line 
printer. 

This is an analysis report. It is not intended to be a 
display of all of the interesting data that are available 
and could be printed. Its objective is to display only 
that data which are essential to an understanding of 
what is going on in the system and to display the 
data on one -line so that the vitally important inter
actions between parallel functions can be seen and 
understood. 

Briefly, a line on the report shows the percentage of 
processor or channel time applied to various functions 
over a two second period. Idle processor time is in
cluded in dispatcher (DISP) time. The actual dis
patcher time ranges from 2% to 5%. Tape channel 
time can exceed 100% because there are several tape 
channels available. The only columns which do not 
show time percentages are: 

1. Time-of-day 
The left most column shows time-of-day in 
hours. 



218 Spring Joint Computer Conference, 1968 

PG 97 ~P"OC><--DRUM-> <--DISC-> TAPE F' W(----SLAyE PROGRAMS----> 1 1 2 2 ! 2 2 2 3 4 4 4 455 5 5 6 6 , 6 6 7 M 
R T 260 234 5 6 4 2 3 4 7 0 1 2 J 0 2 4 5 , 0 I 

062767 S M T S M T 5 E G S 
10 <UP) L ... 0 L 0 L E S S S S S S S D G G M G L , H D C B T q C C C C D T G M G S G C 
9341 1 A S T A T ... Q L L L L L L L r G B 0 E , L TUM 0 E E ~ H H M S Y , 0 E 8 P 
MAPCDl V T A V T A V 4 H U Y v v Y v v v S E T R I !l 0 I H N R R L P P P P Y P L N P E 0 H 

T E • , 7 II M R SEN !l COP 1 T M S 4 321 TEL N R " P S 

10'.0692 75 25 43 24 19 17 17 21 24 21'1 5 '5 :; • • ., 
10'.0697 80 20 26 25 1 24 24 28 24 27 4 '5 5 1 •• 
14.07n3 A1 19 24 21 3 54 9 46 30 30 20 4 4 5 1 1 
14.07t3 F'!N C'292.1-3 F'ORTR. !.4413.11 CORLEY 

- - --;-•• " - -- - - -. -. --- - - •• - -- - - -.- - - 4 4 44 4 44 4 4 444 4 4 4 4 4 4 4 4 4 4 4 4555555555555555<;5555555555555555- -- -11- --- - .-. - - -- - - -. -- - ___ e. -_ --7 777 
14.0713 40 60 47 7 41 26 100 4 95 1 8 27 12 • 26 5 1 • 1 1 • 2 5 5 J.11 • CMP, 
14.1)714 . SJlT S3473.1-6 RUIS 14422 ..... M.SCHUC 

- - - -;: -_ .. ;;; --- - - -. - ------. - ---- - - .---4 4 4 44 4 44 4 44 4 4 4 4 4 4 4 4 4 4 4 4 455555555555555555555555555555555-66666 66666 666"6666666666666666667777 
14.n719 45554019::>17573 732'" 1 7 359 169 1813 155 3.4 
14.n7?4 0;347332672569 69131'117 4012. 49 21 156 1 
14. 07 ~n 36 64 57 22 30 25 27 22 12'5 1 7 35 • 7 10 21 3 1 1 4 8 1 9 
14.nn5 3'" 64 63 23 40 24 17 17 911 8 36. 12 9 14 5. 1 5 4 .11 
14.0741 47 53 f>l 34::>7 13 9 9 11'5 8 44 1 2 11 9 12 3 1 5 5 1 4 
14.0746 45 55 48 :?2::>6 13 16 16 121'1 8 26 11 7 6 11 15 5 2 .. 5 7 
14.0752 42 58 55 16 4a 1<' 31 31 39 8 17 9 1" • 10 14 • 5 • 1 5 .. 1 7 
14.n758 58 4<' 35 24 11 11 15 15 4::> 8 22 15 20 , 9 16 • 5 6 1 
14. r,763 59 ~c 25 H, I) 1. 6 4 64 31 8 25 9 24 4 8 17 5 4 2 
14.0769 57 44 39 17::>3 10 31 31 2~ 8 17 16 23 '8 13 2 5 4 1 3 
14.n774 '57432" 4?? 1049 4931 8 181325' 8 162 55 1 2 
14.07"0 60 40 36 19 17 9 43 43 27 8 23 13 24 !J 8 14 • 1 5 4 1 1 1 
14.n7'15 EJB A3781.1-5 RLMS 15221.WHSC"'UCK 

- - - - = -_. ~ - - - - - -. - - - - - - - .. - - - -- - -.-- - 4 4 44 44 4 4 4444444444444444 ----.- - --- - -. ------ - .-------.----66666666666666666666666666666666 7 77 7 
14.078542 '585512431.358 58 2~ 2 8 15 25169 12111 12155 2. l' .CMP5 
14.07~6 ••• SRT C32~til1·5 RLHS 15253.0 ~OR!(~AN 

- - - -,; _8.;; - - - - - -. - - - - - - -. - - - - - - -.- - - 4 4 44 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 -55555'5555555'555'55555555555555555 6666666666 6666t-66666666666666666 77 7 7 
14.n791 43 "ill 40 3:57 1<' 96 96 111 2 1 "38 1 11 7 12 1 3 1 4 3 4 12 
14.n7Q6 53 4'" 50; 10 45 17 25 1!l 10; 63 8 12 • 41 5 6 " • 6 5 4 .H 1 ENe .. 
14.01\02 Sl 1Q 3::> 28 4 12 4G 6 34 1311 II 39 4~ 3 5 52! 1 
14.(1110" 72 28 31 20 11 t? 50 13 37 91 8 31 1 40 4 5 0; '5 • " 
14.~A':.'I 77 <'~ 36 27 9 1::> 34 0;;>8 8 50 • 27 , 5 5 4 1 2 

i::~:;~ ;~ ~~;~~~1~~; ~~1!;~2~~: ~~32 9. 1;: 2 ;::3 
14. nA~O 78 2~ 5 5,? 34 5 29 87 8 18 60. :I 4 1 • 5 6 1. 2 
14.0111< F'IN C'!I291.1-4 F'ORTRA 14426.G,RRETSON 

_ - - -~ __ .. ;. - _ - ___ .. ______ - + ____ - __ ._ - - - - - _ +- - - - -. -. - - - - __ -.- - __ 55555555555555555555555555555555 6 666 6666 66666 "666 666666666666666 7777 
14 .n!,\.~5 ••• SRT . C5292.2-4 GELO'O 14413,R CORLEY 

- - - -;; - ~.;; - - - - - -. - -- - - - -. - - - - - - -11- - - - - -- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4445555555555555555'5555555555555555 6 666 66666666 6666 6666666666666666 777 7 
14.nR10; tlO 4P 41 4:57 39 62 62 54 8 40 19 1 '5 1 2 • 2. 5 5 1 14 • CMP5 
14.nA41 68 32 40 6 34 39 69 69 8 2 42 24 1 '5 4 4 5 2. '!I 
14.ne47 76 24 23 15 8 39 28 17 10 8 11 2' 38 "5 2 1 0; 5 1 2 
14. o,,0;2 !l1 19 26 28 39 53 0;:.'1 8 16 24 4D 3 0; 5 6 1 
14.flR5e 10303717203937 37 8 142828.5 .65 1 
14.nM3 46546 63986 86 8 41229 334 i 5'5 3.! 
14. na73 _-_ EJB C'!I292.2-4 GELO'O 14413." COIILE'f' ----;;--. ;,--- __ e. -_ .. ____ • ______ -11-- - ----. - ------. ---_-__ • ----55555'55555555555555555555555555566666666666666666666666666666666 7777 

PG TOTL '59 41 3A 17;>0 18 47 3 44 41'1 • 8 
RUN TOT .5 55 5 2 3 19 39 9 30 20 8 2 • 1 • 

155 
•• 1 3 

.... , , ENSM 
2 2 • 1. •• SAVE 

Figure 1 -Internal performance MAP of about one· minute of 
GE-635 operation during a customer's normal work day. RUN 

TOT ALS apply to about 2.3 hours of operation 

2. FREELK 
This is the number of free iinks of space avaH
able on the drum. 

3. FREEMT 
This is the number of magnetic tapes which 
available and have not been allocated to user 
programs. 

4. WTGQUE 
This is the number of user jobs waiting in the 
external queue. 

The column headed SL V 7 shows the time spent 
on the MAPPER program itself. The column headed 
IOTM shows the time spent in handling I/O terminate 
interrupts. This value is inflated by about two-to-one 
because of extra overhead from MAPPER. The col
umns headed CMPI-4 are the operating system func
tions driving on-line printers while DSYT is the sys
tem output collector· function. G EIN is the on-line 

card reader· input function, which also builds the 
job queue. 

The overall operation of a. computer system is as 
dependent upon what goes on outside the machine in 
the machine room as it is upon what goes on inside 
the machine. Thus, the MAP report is normally 
printed out· on-line in real time with the system 
analyst present and observing the operation of 
both the internal and external systems. 

MAP runs are usually made over periods of several 
hours of normal system operation at a cost of one on
line printer, 4 K of core, and about a 10% reduction in 
machine performance due to the increased overhead 
of operation in trace mode. From observation during 
such runs and later studying the data, the following 
types of system performance factors can be found 
and evaluated. 

i. Hardware configuration bottlenecks-I/O chan
nels, tapes, drum, disc, core, etc. 



Multiprogramming System Performance Measurement and Analvsis 219 

2. Indications of inefficient I/O strategy - block
ing, buffering, etc., in individual user pro
grams. 

3. The effectiveness or ineffectiveness of the actual 
multiprogramming mix. 

4. The effects of machine room procedures upon 
system performance. 

5. The relative efficiencies of various optional 
strategies of machine operation with enough 
information to define why this way is better 
than that one. 

6. Possible operating system performance bugs. 

B. Major event report 

In addition to producing the MAP as described 
earlier, the MAPPER program will optionally collect 
all operating system trace entries and write these 
on a tape. This is a very detailed mode of measure
ment and is normally done only over short periods, 
10 to 15 minutes, of operation. The tape of trace 
data collected. by such a run is then processed to 
produce a major event report. This report displays 
events such as dispatching the processor to a program 
or taking the processor from a program. It also dis
plays all I/O initiate and terminate events and a few 
other trace events of special significance. 

The major event' report provides a microscopic 
view of what is going on in the system. One line on 
the MAP report expands to about 300 lines on the 
major event report. This microscopic view is used 
to measure and understand the detailed operation 
of the operating system. 

c. Slave profIle analysis 

Another option in the MAPPER program is used 
to measure the distribution of compute time within 
user programs. With this option the MAPPER 
produces the MAP report and also sets the dispatcher 
interval to one millisecond and collects timer run
out trace events for the grogram being analyzed. 
These are subsequently processed and used. The 
MAP for this run provides the I/O-compute profile 
data for the program being analyzed. 

Results 

The results of system performance analysis work 
are both tangible and intangible. The tangible results 
are those which lead to significant improvements in 
system and program performance. These have been 
and are being achieved. The intangible results are 
the better understanding of the technology which is 

attained. Ultimately, these may be of the greatest 
value. This section is, therefore, devoted to some of 
these significant intangible results. 

I. The critical path in a multiprogrammed system 
The second by second performance of a multi

programmed system is always limited by the speed 
of the processor or an I/O channel or by a path 
through several of these resources used in series, as 
with an unbuffered program which reads a tape, then 
computes, and then writes a tape. Thus, for every iine 
on a MAP report, if some single limiting resource is 
not saturated, there must be a performance limiting 
critical path through some series of resources whose 
total utilization adds up to 100%. Such a critical path 
is the only mechanism by which each of all the re
sources in the system can be partially idle over some 
short period of time during which there is a load on 
the system. 

2. Resource Utilization Strategy 

For all practical purposes it is never advantageous 
to arbitrarily defer processor or I/O channel use to 
some future time if that resource can be used now. 
The idle resource time generated by such an action 
can never be recovered. An example might be a 
program which could overlap processor and I/O 
time with double buffering but does not, assuming 
that some other program will use the free processor 
and channel time. This is like betting a dollar that 
you already have, on a chance that you may win only 
that dollar back. You can only lose or at best break 
even. 

3. Resource-Seconds Analysis 
In a multiprogrammed system all programs share 

the same set of resources. Each program imposes a 
load of some number of resource-seconds upon each 
resource. Critical resource tradeoff decisions can be 
made on the basis of which approach uses the least 
critical resource-seconds. Two tradeoff examples 
follow. 

(a) How many tapes should be used for a tape sort 
given that the sort time is dependent upon the 
number of tapes used? The critical resource is 
the number of tape drive-seconds available on 
the system. A plot of number of tapes used times 
the sort time for that number of tapes should 
be made. The sort that uses the fewest tape 
drive-seconds is the optimum in a shared 
resource system. 

(b) How much core should be used for a program 
given that the total running time for that program 
is dependent upon the amount of core used? The 
critical resource is the total number of core 



220 Spring Joint Computer Conference, 1968 

word~seconds available. The running time for 
each of various core size alternatives should be 
determined. The alternative which uses the least 
total core word-seconds is the optimum in a 
shared resource system. 

Extreme cases, such as the program whose optimum 
core size is all of the available core, should be studied 
a little more carefplly. In extreme cases several critical 
resources, core, tapes, etc., may be involved in the 
problem. When this occurs a resource-second weight
ing factor, such as the cost of the resource, should be 
assigned to each resource. Then the optimum is the 
combination which uses the least total weighted 
resource-seconds. 

For even more rigorous analysis, unused resources 
may be weighted with the probability that they will 
be used by some other program. Usually the tradeoff 
values are sufficiently well separated that this degree 
of accuracy is not needed. 

4. Core utilization 

In the GE-625/635 system each program must be 
allocated to a block of contiguous core. Core is com
pacted as required by moving programs in core to 
make space for new programs. The significant point 
here is that this is not a problem. Measured core uti
lization is quite high and core compaction (program 
moving) time is insignificant, well under 0.5%. 

s. Operating system overhead 

A multiprogramming operating system must per
form many functions which are. not required in a uni
programming operating system. But as measurements 
of the GE-625/635 GECOS II operating system 
demonstrate, all of these functions can be achieved 
in a low overhead operating system. Totai overhead 
averages about 15% of processor time. . 

6. Measurements by customers 

U sing normal accounting or billing statistics, the 
customer can measure the gross performance of a 
mUltiprogrammed computer system in substantially 
the same way as he would measure the performance 
of a uniprogrammed system. In a uniprogrammed 
system these individual job statistics measure the per
formance of the total system and the efficiency of each 
prograO,l as each individual job is executed. The gross 
measures are simply the sum of a number of indepen
dently valid individualjob measures. 

But in a multiprogrammed system several programs 
are operating concurrently in core. The total time 
spent by anyone program in core is dependent upon 
not only the work done by that program but also upon 
the degree of its competition for resources with the 
other programs in core. Thus, the individual job mea-

surements usually measure neither system perfor
mance at a given time nor the efficiency of individual 
programs while they were in core. The customer can 
measure gross performance but he cannot measure 
detailed system or program performance with these 
statistics. For example, the amounts of compute and 
I/O channel time used by a program may be mea
sured but there is no indication as to whether or not 
these resources were used concurrently .. As another 
example, set-up time usually disappears as a measure 
but not as a problem. 

Overall we find that when conventional, unipro
grammed type measures are applied to a multipro
grammed system the customer has lost many of his 
previous measures of system, operator, and program 
performance. But he is actually operating a consider
ably more complex system and needs better, not fewer 
measures. Thus, system and program performance 
measurement methods of the type discussed in this 
paper appear to be essential to the customer's effec
tive operation of his multi programmed computer 
system. 

7. Load mix - the top ten 
If the total time per month used by each program 

in an installation were computed and the results sorted 
by the amount of time used, how much of the total 
load would be accounted for by the top ten programs? 
Typically, the top ten programs appear to account for 
from 50% to 80% of the load. (Actually the "top ten" 
may turn out to be the top five or the top twenty at any 
given installation, but the same principle applies.) 

The "top ten" concept implies that the efficiency or 
throughput of an installation is from 50% to 80% de
termined by the efficiency of a very few programs. 
These programs are worth tuning, particularly when 
it is recognized that performance .tuning can and has 
reduced program running times by two or three to one. 

The top ten programs are worth the application of 
some expert talent and the use of program analysis 
methods such as those described in this paper. This 
is the easiest, fastest, and least expensive way to 
increase the capacity of a computer installation. 

8. Turn around time 

When a program arrives inthe machine room it is al
most sure to find that one of the top ten is there ahead 
of it. After all, one or another of the top ten is on the 
machine most of the time. In a uniprogrammed system 
almost everybody has to wait, almost every time, for 
one or more of the top ten programs to be finished. 

But in a multiprogrammed system, many short jobs 
can be loaded and finished in parallel with the execu
tion of one of the top ten. They no longer have to wait, 
as long as all the available core is not filled with 



Multiprogramming System Performance Measurement and Analysis :- 221 

several of the top ten, all competing for the same re
sources. 

This suggests a good operating procedure for a 
multiprogrammed system. The long jobs should not 
be saved for the second or third shifts. The top ten 
jobs should be identified. All processor saturating 
combinations of one or two of these top ten programs 
should be determined. Then the operators should 
load the machine so that one of these combinations, 
no more, no less, is in the machine at all times. The 
short jobs will still receive excellent turn around time 
and there will normally be a new top ten combination 
waiting to' replace the one that has just finished. 

CONCLUSION 

Methods have been developed for analyzing the 
performance of a multiprogrammed computer system 
and the programs which operate within that system. 
Some of these methods, and many of the specific mea
sures and reports developed do not apply directly to 

other systems but the general approach used does ap
ply. The tangible and intangible results produced from 
the study reported here demonstrate the value of per
formance arialysis. The methods and philosophy may 
be helpful as an example of how to do it. 

REFERENCES 

1 P CALINGAERT 
System performance evaluation: survey and appraisal 
Co~m ACM 101 Jan 1967 pgs 12-18 

2 N R NIELSEN 
The simulation of time sharing systems 
COMM ACM 107 July 1967 

3 R WHAMMING 
(Paraphrased by the author) 

4 F D SCHULMAN 
Hardware measurement device for IBM system/360 time 
sharing evaluation ' 
Proc 22nd ACM Conference 1967 pgs 103-109 

5 GE-625/635 COMPREHENSIVE OPERATING SUPER
VISOR (GECOS) REFERENCE MANUAL 
General Electric Information Systems Division CPB-1195 





Multiprogramming, swapping and program 
residence priority in the FACOM 230-60 

by ~1AKOTO TSUJIGADO 
Fujitsu Limited 
Tokyo, Japan 

INTRODUCTION 

Fr\COM 230-60 is a large size electronic digital 
computer developed by Fujitsu Limited. The system 
consists of 

1) up to 2 processing units, 

2) a 256k word (maximum) high speed core mem
ory that operates at a 0.92 /L sec. cycle time, or 
at an effective cycle time of 0.15 /L sec. with 16 
memory banks and 

3) a 768k word (maximum) low speed core memory 
that operates at a 6.0 /L sec. cycle time, or at an 
effective cycle time of 1.0 /L sec. with 6 memory 
banks. 

The average duration for execution of one instruc
tion by the Gibson-Mix method is 1.6/L sec. t for each 
processing unit. Because each processing unit has. 6 
base-registers, it is easy to write a location-indepen
dent program which makes dynamic relocation of a 
program possible. The ~ost commonly used larg~ ran-
dom-access storage devices are: magnetic drum with 
544k words, a mean access time of 17 m sec., and 
transmission rate of 135k bytes/sec.; magnetic disk 
with 20,000k words, a mean access time of 1}0 m sec., 
transmission rate of 125 kilo bytes/sec.; and disk 
pack with 1 ,8ook words, a mean access time of 87 m· 
sec., and transmission rate of 156k bytes/sec. For 
the F ACOM 230-60 Operating System, system re
quirements include real-time job processing and con
versational job processing, in addition to the conven
tional batch job processing. To control these three 
processing modes together under a single control 
program, two concepts have been adopted in the sys
tem design. They are the multi-tasking operation as 
well as three priorities, i.e., job priority, execution 
priority and program residence priority. 

This paper introduces the program residence priori
ty concept. 

FA COM 230-60 multiprogramming requirement 

To show why the system requires the multiprogram
ming property, consider the abstract computer indi
cated in Fig. 1. Assume that this model is required to 
handle u programs simultaneously, and that each pro
gram is processing quantity Di input and output data 
The following symbols are used: 

u: total number of jobs being executed in a system 
D j : quantity of input and output data to be pro

cessed by ea~hjob (unit is 1 character) 
D: average value of Di above, i.e., 

1 ; 
D =- (D t +D2 + ... +Du) 

u 

P: data quantity to be processed by the processing 
unit (characters) 

H: system overhead 
g: average time for execution of one instruction by 

the Gibson-Mix method (seconds) 
For one processing unit, g = 1.6 /L sec. 
For two processing units, g = 0.9 /L sec. 

s: number of instruction steps needed to process 
one character of input or output data. 

p 

An abstract model of .-, svstem simultaneously 
executing u jobs, each processing Di (i ~ 1, 2, •.. ,u) 
quantity of input and output data. 

Figure I - System model 

The relation between Di and P with overhead H is 
given in the following expression. 

u L Djr= (1 - H) . P 
i=t 

223 



224 Spring Joint Computer Conference, 1968 

u 

When L Di > (1 - H) . P, the processing unit causes 
i=l 

the, input and output devices to slow down, or loses a 
part of the input data, since the processor can not com
plete the processing of all the input and output data 
given. 

u 

When L Di < (1 - H) . P, idling occurs in the process-
i=l 

ing unit. 
u 

Since uD = L Db differentiating the equation with re
i=l 

spect to t, 

dO dP 
u dt- = (1 - H) dt (1) 

h dD. h . f h . d were F IS t e average quantIty 0 t e mput an out-

d ' db' b' .. d dP . put ata processe y one JO m a umt tIme, an -d IS . t 
the data quantity processed by processing unit P iri a 
unit time. 

On the other hand, from the dimension equatIon, 
P [ch] . s [step/ch] . g [sec/step] = t [sec] 

The following equation can be obtaine~ by differenti
ating with respect to t. 

dP 1 
-=-
dt 

From Equations (1) and (2) 

1- H 
u=dO--

-'S'g 
dt _ 

(2) 

(3) 

in Equation (3), u, the number of jobs simuitaneous
ly executed by the system, is given as a function of 

dd~ (average quantity of input and output data pro

cessed by each job in a unit time), s (number of steps 
needed to process one character of input or output) 
and H (overhead). 

Further consequences of Equation (3): 

1) In batch mode jobs 
1 " 1) When card reader and line printer are used, 

Card reader speed = 800 [cards/min] 

800 [cards/min] X 80 [bytes/card] 
60 [sec/min] 

= 1064 [bytes/sec] 

Line printer speed = 1500 [lines/min] 

= 1500 [lines/min] X 136 [bytes/line] 
60 [sec/min] . . 

= 3450 [bytes/sec] 

dD . 
Tt= 1064 + 3450 ~ ~ 5000 [bytes/sec] 

therefore 

u = (1 - H) 1.25 x 10
2 

S 

1.2) When a magnetic tape handler with an effec
tive speed of 45k (bytes/sec) is added to the 
above case, 

dO, 
-d = 45,000 + 5,000 = 5 X 104 [bytes/sec] 

u 

t ' 

= (1 - H) 12.5 
s 

1.3) When ten magnetic tape handlers with an ef
fective speed each of 62.5k (bytes/sec) are 
used in eachjob, 

~~ ='62.5 X 103 x 10' 

u 

= 6.25 X 105 [bytes/sec] 

1- H 
s 

2) In real time processing 
When 1,000 transmission lines with a speed of 
1,200 baud are processed by one job, 

dO <.it = 120 (bytes/sec) x 1000, 

u 

.' = 1.2 X 1 05 [bytes/sec] 

=5.2 (1- H) 
s 

3) In conversational modejob 
I · ~ . h dD . t IS sale to estImate t at qt- would be 2(bytes/ 

sec) since it would take about one second per 
character to type-in the data and also to read the 
printed data. 

u 
= 3.1 x ] 05 X (1 - H) 

s 



~lultiprogramming, Swapping and Program Residence Priority 225 

Note: Program swapping affects H and is in
dependent of 

dO 
dt 

The above relations are shown in Fig. 2, where H 
is assumed to be zero. 

On the other hand, from the experience with the 
FORTRAN compiler of FACOM 230-50, which is 
smaller than F ACOM 230-60, the value of s is pre
sumed in the range from 32 to 128. So, in batch pro
cessing, even when only a few jobs are simultaneously 
executed while read-to-random access storage and 
print-from-them multiple operations are concurrently 
performed, the idle time will no longer be available to 
the processing unit. I n the conversational mode, how
ever, more. than 256 jobs can simultaneously be ~xe-

. cuted, even if each job needs such a large quantity of 
. information processing that, with the overhead, 
s=512. 

• • 

/ (/ /6 64 ~ /024 dQ% 16K 64K 2S(.K S 

1-B 
doD 
,"' e'l 

InetrucUOIl e1iepe , _ere B • 0, 1 • 1.6 % 10-6 MO. 

!he nlat1_ .-.en • (DlUlber of e1-.ltan.ou ... re) U4l e (IlUIIber 

of 1netrucUOIl e1iepe n.Heel to proc ... 011. character of aPl't or 

oatput data) at each t1:acl wlae of the pal'aMter : (aPl't ad 

oatput quaU 107 proc.... a the wa1 t tt.) 

Figure 2-Job multiplicity 

A nalysis of swapping time 

From the preceding section, it is concluded that the 
FACOM 230-60 System could simultaneously pro
cess 256 jobs in the conversational mode. In this case, 

simply assuming that each job requires an area of 32k 
words, the core memory of 8192k words would be 
necessary to execute 256 jobs. It is impractical to 
make such a large core memory, so the situation natu
rally cails for program swapping techniques. In this 
section, we will discuss the idle time of the process
ing unit (and of the system) caused by swapping. The 
symbols below are used in the following discussion. 

u: number of on-line users who utilize the process-
ing unit once in each response cycle. 

tr: response cycle, a period of time wherein each 
user utilizes the computer at least once (sec
onds) 

f: average period of time assigned to a user's pro
gram in each response cycle, including the over
head. 

e: average period of time excluding the overhead 
assigned to a user's program in each response 
cycle, that is 

e = f· (l - H) 

ts: average period of time for a swapping (one way) 
tj: average period of time for a roll-in (= ts) 
to: average period of time for a roll-o~t (= ts) 
H: overhead; the ratio of the number of program 

steps, in a control program, either for services 
or for idling, to the total number of program 
steps. 

d: number of data channels available for the pro
gram swap. 

da : number of data channels actually provided for 
the program swap. 

n: number of jobs in the main memory at a certain 
time. 

L: average length of users' programs which corre
spond to jobs (K words) 

V: transmission rate of one random access-storage 
(K Bytes/Sec) 

A: average access time of one random access stor
age (seconds) 

As pointed out by J. I. Schwartz,2 

u = tr . (1- H) in worst case 
. 2ts+e 

If, however, a sufficiently large number of data 
channels and enough random access storages to swap 
programs smoothly are provided, and the system can 
handle the dynami~ relocation of a program, u can be 
written as 

(4) 



226 Spring Joint Computer Conference, 1968 

In order to obtain the relation between the swapping 
time and the execution time of the processing unit, the 
time chart in Fig. 3 is used, since the channels trans
fer data one way at a time. From the Fig. 3, 

IAJ1't4"!1/{£'lLi ! ire "1F/ 
I I : I I I 1 1-4-, , I \ 

, I I I I I I I' 1'1 Par1;otMiD...o17:: 

I I I I, 'I I 

I I I I I I I I: I I I; , ! 

I, I' I~II I 
! I ,I I, I i I I I I ~I...L' !~t"1 1 i-4Ll...a.i I ~ 
i-tLI-iL1 : I to I 11; I i I~I+I Part ot MiD ___ ..... I I LL...,......I~! j I " I -~ 
I ' I l ! I I I I I n-I- :JJI : t • 1;_, 4 • " D.' 
! , K2-Ud i l4-i-4Y ,! I 

Lit! ! i '+I' ~ Iii ,j, jJ 
rl ·11 I .1 I Itl ~ I 
II, ~ I kl DIT : I! I t ' 

.uUpl1c1V ot Jo~ 1D 1;be MiD MII017. 

t1: period ot 1;1DI tor roll-1J: ( .. 1;. ) 

to: period ot 1;1DI tor roll-out ( • to ) 

u .. 1!bared bJ II1lUple 

job_ 

t • t 1;_, •• 5, D • 5 

ta period ot u .. tor eacruUOIl, 1Dclud1DC cmtrlwad. 

Figure 3 - Main memory operating diagrams 

Equation (5) is valid when the capacity or power of 
the ·dat~ cha.nnels is equal to that of the processing 
unit, and, if the former is greater than the latter, 

ti +f+to < n·f 
and, no idle time will be available in the processing 
unit. When the capacity of the data channels is less 
than that of the proc~ssing unit, 

t~+f+to > n·f 
and, 'idling will occur in the processing unit. In order 
to use the processing unit without idling, conditions 
d ~ 2 and n ~ 2 are necessary when f < 2ts' In the 
F ACOM 230.-60. Operating System operating in the 
conversational mode, the condition f < 2ts will always 
hold even if a high speed drum (V = 10.0.0. (KB/S), 
A = 0..0. 17 (S) is attached. Therefore we assume d ~ 2 
and n ~ 2 in the following. 

From Equation (5) 

2ts = (n - 1).f = (n - l)·e 
1. - H (6) 

Further, the next relation is provided between the 
average size of programs each constituting one job, 
the data transfer rate and the average access time of a 
random access storage, and the program swapping 
time 

L [KW] . 4[Bytes/Word] = V[KB/s] (ts[s] - A[s]) 

or 

t = A+ 4·L 
s V (7) 

From Equations (4), (6) and (7) and since n = d 

2·A·u 8·u n=d= 1 + --+-_. L (8) 
tr V ·tr 

If A = 0..0.17 [S], V = 135 [KB/S], tr = 16' [S] 
'(since an on-line user carrying out a FORTRAN com-. 
pilation with a typewriter normally takes 16 seconds 
on the average to type-in one statement; the value 16 
or so is' ~ufficie~t for tr), the following exp~essions are 
obtained according to u, or the number of on-line 
users. 

1) In the case of 64 on-line users, 
n=d= 1.14+0..24 XL- -

2) In the case of 128 on-line users, 
n=d= 1.3+0..5 x L-

3) In the case of 256 on-line users, 
n=d= 1.5 +0..9 xL 

The three cases are illustrated in Fig. 4. In addi
tion, when A, V and u are assigned 0..0. 17, 10.0.0. and 
256, respectively 

n=d= 1.5 +0..128 x L 

The relation is illustrated in Fig. 4. 
It was concluded from the above analysis that pro

viding a sufficiently large number of data channels 
and of random access storages for the program swap 
should be abandoned and that the remaining time 
should be applied to batch mode jobs to eliminate idle 
time caused by reduction in the number of data chan
nels used. 

The idle time rate increases ina processing unit as 
the number of data 'channels actually used decreases. 
From Fig. 3, 

the rate of idle time = d ;~a X 100 [%] 



l\iultiprogramming, Swapping and Program Residence Priority 227 

L·d.·~ I 
I 

18~-----+--~-+/~~~~~~---r------+-

" ~-----+--~~+-----~-------r------+-
.= 
·'4 ~-----+--r-~+---r-~--~--~------+-

1,2 ~-----+~----~~--~-------r------+-
I 
~/O ~----~----~+-~~~----~-r------t-

" Ol?; V-I3$" 

J~ ~. 
10 20 .30 40 so [K'If] L.. 

~Id._ 

Figure 4 - Relation between data channels and program size 

From the relation in Equation (8) 

L=~(n;I'~_A) 

Fortr= 16 [S], u= 128, A=0.017 [S], 
V = 135 [KB/S] 

( 
n - 1 ) L=34 }6-0.017 

Figure 5 shows the rate of idle time considering 
L . da = 256[KW]. In addition, the number of on-line 
users simultaneously accessing the system will be ob
tained from Equation (8). (d must always be greater 
than 1 as discussed between Equations (5) and (6), 
and, from the Fig. 3, d= 3,5,7, ... ) 

d - 1 t u='--. r 

2 A+ 4L 
V 

Therefore, for any number of data channels actually 
provided, 

dat d - 1 tr 
u=·--·--· 

d 2 A + 4L 
V 

(9) 

where d must be 2m + 1 when da = 2m or 2m + I for 
m=1,2,3, ... 

In case of A = 0.017, V = 135 

da d - 1 tr 
u = d' -2-' 0.017 + 0.03L 

and ill case of A =0.017, V = 1000 

0/0 
100 I----I----I----+-----+----f---+---+--+--+----t--_+_ 

/234567 /0 II d.a. 
Data channela actually provided 

1'he relat1011 bet ... the nuaber ot data channels actually prov:l.ded 

tor program nappiDt; (da) and the rate ot the idle tiM pnerated 

in the processing unit. 

L: average length of progr&118 

d: desired llUIIber ot data channels tor proaram napping 

Figure 5 - Idle time ratio 

_ da d - I tr 
U - d . -2 - . -0.-0-17-+--'--0.-00-4L 

The relation is shown i; Fig. 6. 

u. 
~Z~----~------~----~----~------~--

2S6r------r--~~~----~-----4------~
II 
I-< 

!128~----~--~~f------~~---4------4-
., 
~64~----~~--4---~~-----P~~-+--
~ 

~ 
°3Z~----~------~~~~--~~~----~~ 
'd 
.! 16 

!8 
4 ~----~-----~f------~-----4------~-

4 8 16 

.berage program size 

V: data transfer rate 

A: average aece88 t1ae 

64[KWJ 

da: number of data channels actually ProVided tor program 

tr: respoo .. cycle 

Figure 6- Relation between number of on-line users and program 
size 



228 SprIng Joint Computer C"onference, 1968 

The division of main memory space between batch 
jobs and conversational jobs is prese"nted as" follows. 
The size. of main memory space' for conversational 
jobs· is qetermined by da • L, and that for batch" jobs is 
determined by (the total main memory size -da ' L- the 
size of the area for the control programs). Tije batch 

job control program requires the joh-step initiator to 
allocate Jobs until the ~ain memory area reserved for 
batch jobs fills up, while" the conversational job con
trol program requires the' job-step initiator to allocate 
jobs until the number :of active users reaches ~, which 
is calculated by Equations (9). 

introduction of program residence priority 

Figure 5 indicates that over 60 percent idle time is 
generated in the processing unit with 4 data channels . 
for program swap when the average size of programs 
in the conversational mode is 20k worqs. Thus, the 
system should not be operated in the conversational 
mode alone, but ~ogether with the batch mode. Fur
thermore, program swapping, i.e., swapping of jobs,_ 
should not be used for batch mode processing. These 
are the reasons "why program residence priority has 
been considered in the design of the FACOM 230-60 
operating system. 

In the system, one load module consists of up to 127 
program blocks. This is the unit of swapping, to which 
the. program residence priority is attached. The pro
gram residence priority determines the priority for 
staying in the main storage between program blocks 
when competition occurs. For example, in conversa
tional mode jobs, a higher execution priority and a 
lower program residence priority than for the batch 
. mode jobs are to be set respectivelv. With this pri
ority system, the conversational mode task is executed 
before execution of the batch mode task, and the for
mer jobs are rolled out before the latter jobs are rolled 
out. Generally, the priorities will be determined at 

. each installation, as in Table I. 
Before introduCing the' concept of program resi

"dence priority into the system design, the following 
method was applied. The total main memory capacity 
for conversational jobs is prescribed by the adminis-

'I 

Real Time Job I 
. - -. ! Conversat:lona.1. oJ OD i 

i 

»atch Job I
I 

Execution Priority 

H1gb 

medium 

Low 

Program Residence 
Priority 

High 

Medium 

T ABLE 1-Normal Usage of Priorities 

trator, or at the syste~ generati?n time, and the rest 
of the memory is allocated to batch jobs. Con.versa
tional jobs are. always rolled out immediately" aftei 
they are put into the waiting status. However, for 
control program logic simplicity and in order to exe
cute . batch jobs. and conversational jobs under a 
single control program, the program residence priority 
concept was chosen. Arbitrarily, about 10 percent of 
the" control program would be a special control pro
gram for batch jobs and about 15 percent would be 
for conversational jobs. 

ACKNOWLEDGMENT 
. - , 

Dr. Toshio Ikeda of Fujitsu Limited pointed out that 
resources should first be allocated to both real time 
mode jobs and batch mode jobs, with the remaining 
resources allocated to the conversational mode jobs. 
Mr. Takeshi Maruyama of Fujitsu Limited introduced 
the program residence priority concept. Thanks are 
due -to them and to Mr. Isao Saoda, Mr. Takuma Yam
amoto, Mr. Akira Okamoto and Mr. Haruo Kunizawa 
for their encouragement and assistance. 

REFERENCES 

1 N UKAI 
Operation analysis of FA COM 230-60 by system simulator SOL 
Proceedings of the 1967 Conference of the Four Electncal 
Associations in Japan 

2 J I SCHWARTZ E G COFFMAN C WEISSMAN 
A general-purpose time-sharing system 
Proceedings of the 1964 Afips Spring Joint Computer" 
Conference 



A storage-hierarchy system for 
batch processing 

by DAViD N. FREEMAN 
Triangle Universities Computation ·Ce~ter 
Research Triangle Park, North Carolina 

Fundamental performance problems 

Operating System/360 was designed to meet a 
sever~ core-memory constraint: a 14K-bytes resident 
supervisor plus a repertoire of compilers, utility pro- • 
grams, sort programs, and application packages fitting 
into 18K bytes (approximately 4500 data words and 
executable instructions). Many supervisory functions 
included in the nucleus of pre-360 systems were re- . 
packaged into 1000-byte overlays for OS/360 (e.g. 
logic to OPEN and CLOSE files-hereafter called 
data sets, following OS/360 nomenclature).5 Speci
fication of device type, buffering technique, and data 
set identification - which was assembled, compiled, t 

or li~k-edited into many pre-360 application programs 
-is deferrable in OS/360 until the data set is actually 
opened for processing, essentially "latest-possible 
binding of data-set attributes and processing mode" 
(cf. Part 3 of Reference 5 for a complete discussion). 

Likewise, the assemblers, compilers, and utility pro
grams offer a wide range of language facilities for 
relatively small machines. In particular, the E-level 
compilers require approximately 18K bytes to match 
a 14K resident supervisor in a 32K machine; the 
F-level compilers require approximately 44K bytes, 
to match a 20K. supervisor in a 64K machine; the 
G-level Fortran compiler requires approximately 
80K bytes in a 128K machine; and the H-level Fortran 
compiler requires approximately 210K bytes in a 
256K machine. . 

The gross effects of this packaging of the supervisor 
compilers, and other programs has produced thr~ 
major performance problems in large-memory, fast
CPU systems: reliability, operator-intervention loss-

. es, and system I/O inefficiencies. 

Reliability 

Many core-resident subroutines of pre-360 systems 
were divided into multi-overlay structures in OS/360, 

229 

initially riddled with logical errors and interface incon
sistencies. Although these errors are continually being 
identified and corrected by IBM - with the co-opera
tion of its customers - the aggregate reliability is 
barely satisfactory today. Our experience is similar to 
that of many OS/360 users: the system frequently 
encounters an uncorrectable software error and stops 
dead, whence it must be reloaded. 

On small systems, job losses from these dead stops 
are typically of less consequence; the operator reloads 
the system and restarts the job that failed. 

On a large communications-oriented system, dead 
stops are intolerable; the TUCC system is continually 
sending/receiving jobs from 5-25 satellites simulta
neously, and re-transmission of jobs is rarely com
pletely successful, e.g., jobs are lost, partially pro
cessed, processed twice, etc. In an early versio~ of 
the TU CC communications package - comprising 
both IBM- and locally-written subroutines - ~e found 

: that 30% of all jobs were reruns, incurred by some 
failure of the collection/processing/distribution net
work (sh~wn in Figure 1, "The TUCC Computer Net-

!!£ - CHAPEL HILL 

~FROM

ASHEVILLE, 

GREENS8ORO, 

;:f?0::~=~ 

5KB BROAaIA/lD f':::\ 
V 

d~ztt ~ ~ 
{W'tt~ ,~}2 ~ 

TYPEWRITERS, 

PAPER TAPE READERS. 

AND CARD READ£RS 

ftGUBE I" TbeIllCC_utertlet.,,:fc 

and One Tvpical CMrn'S 

NCSU - RALEIGH 

. Figure 1-The TUCC computer network and one typical campus 



230 Spring Joint Computer C"onference, 1968 

work and One Typical Campus" and Figure 2, "Disk 
Queuing for Job Flow between TUCC and a Typical 
Satellite Computer"). 

LAJ«lE J(I!S 

SlPERYISOR 
'-, 

Figure 2 - Disk queuing for job flow between TUCC and a typical 
satellite computer 

Although this loss rate has dropped considerably 
during 1966-67, further improvements in system reli
ability are mandatory for better user throughput, i.e., 
as experienced by the remote customer rather than 
as measured only by gross efficiency of the central 
computer. 

In many cases, job losses are attributable to unusual 
hardware-relat-ed event-g, e.g., "unforeseen status ~ig
nals from communications lines. 

For our collection/processing/distributIon" pro
grams, we have therefore developed three guidelines: 

• Make minimal changes to IBM programs, rely
ing on IBM's gradual rehabilitation of their pro
gramming support into error-free status; 

• 'Restrict modifications to those subroutines whose 
alteration can produce important performance 
improvements; 

• Evolve from each current system into the next 
production system (rather than install sweeping 
changes), to minimize dead stops and lost jobs 
in the network. 

Operator-intervention losses 

OS/360 requires significant operator intervention 
for the following situations: 

1. The system must be re-Ioaded after a dead stop. 
2. A tape reel or disk pack must be mounted, pos

sibly displacing another reel or pack. 
3. A job has reached some logical dilemma which 

can only be resolved by the operator (e.g. no tape 
drives remain for a reel-mounting need). 

4. A job requests' information/acknowledgment 
. from the operator, (e.g., authorization to over-

write an unexpired data set - one normally re
tained until a pre-specified date). 

F or situation (1), TU CC has added significantly 
to IBM-supplied software, to furnish a faster, more 
re1iable checkpoint/restart facility based on a check
point hierarchy. 1\1ultiple checkpoints is a well-estab
lished concept, offered by several operating systems 
to permit flexible roll-back and restart operations. 
The TUCC hierarchy offers the following facility: 
large capacity core storage (LCS)* contains at all 
times the essential job-status data. Restart procedures 
incur no worse than the following inefficiencies: 

.' Jobsl currently being transmitted to TUCC must 
be re-transmitted, but only the last job from each 
terminal; 

• Job output being transmitted from TU CC must 
be re-transmitted, but only the last block of print 
images per terminal; 

• Jobs currently in process at TUCC can be re
started or skipped. 

The advantage of LCS for checkpoints is obvious; 
they can be taken more frequently than with disks, 
drums, or tapes with far less processing overhead. 
Furthermore, LSC is '·'safe." During a three-month 
evaluation of dead stops (10 to 15 per day), LCS 
checkpoints were always intact. This peculiar "safety" 
is attributable to the TUCC modifications to OS/360; 
most of LCS is "concealed" from the OS/360 main
storage supervisor, which furnishes core blocks to the 
supervisor, compilers, and application programs. Only 
certain TUCC-written routines can access the upper 
1700K-bytes of LCS, wherein are stored checkpoint 
data (and other functions described below). Alto
gether, reloading from dead stops has been made 
faster and less cumbersome for human operators. 

Time losses from intervention situations (2) - (4) 
above can be alleviated only by ample advance notice; 
mounting/dismounting tapes or disks is necessary, 
but painfully slow on a high-performance system. No 
job tickets accompany source decks submitted from 
remote terminals - tickets usually essential for rapid 
set up of private reels and disk packs in a non-satellite 
job-shop facility. 6 

Recognizing this problem, TUCC has written "job
hold" logic into its job-manager subroutine, such that 
volume~setup messages are issued 100-200 seconds 
before each setup job is due for processing. Only 

* The IBM LCS is available in one- or two-million byte modules, 
either, uninterleaved or two-way interleaved. The TUCC system 
has two million bytes uninterleaved. Access time is 3/Ls, full cycle 
time is 8/Ls, the rental cost is 0.6¢/byte/month. By contrast, the 
fast core storage on a Model 75 is normally four-way interleaved, 
with an access time of O.4l-'s. full cycle time of 0.7 5 J,LS , and a rental 
cost of 3. 7./byte/month. 



A Storage-Hierarchy System for Batch Processing 231 

when the operator has performed this setup to the sys
tem's satisfaction - correct volumes in correct status 
(e.g., a private data reel with ring out) on correct 
drives - will the job be dispatched. 
. No core storage or other resources are committed 
to "held" jobs other than their source-program image 
area on disk. The TUCC system allocates 28 million 
bytes of disk space to queue jobs awaiting processing; 
with the text-compression algorithm of Reference 7, 
this becomes effectively 80 million bytes, i.e .. , 1,000,-
000 card images. Based on our measurements of aver
age source-deck size - approximately 300 cards - this 
suffices for 2500 jobs at point IN Q7 5 in Figure 2, 
assuming 25% aggregate track wastage. (Each job is 
allocated an integral number of tracks to improve 
scheduling flexibility and reduce job losses.) Approxi
mately two days' work can be queued on a single 
disk pack, which has proved to be a more-than
adequate reservoir. 

System I/O inefficiencies 

We noted above that OS/360 performance suffers 
from heavy I/O activity supporting: 

a. Supervisory services. OPEN, CLOSE, and vari
ous interruption handlers have been divided into 
1000-byte overlays which flow through a small 
number of core buffers. Typically 70K bytes of 
overlays flow through 5K-I0K bytes of core, 
each subroutine being overlaid when its core is 
reclaimed by another subroutine. 

b. System data sets, such as macros for the job-con
trol function (PROCLIB) and disk workspace 
for the control program (SYSJOBQE); 

c. Multiple overlays of the job scheduler, linkage 
editor, and compilers. The demand rate for these 
overlays is extremely high in a multiple job
stream environment, and typical OS/360 systems 
spend a significant fraction of clock time await
ing their retrieval from secondary storage. 

In References 8-11, TUCC described this system
I/O problem and presented its three-element strategy 
for alleviating the problem: 

(i) Pseudo-readers, pseudo-punches, and pseudo
printers, which simulate real I/O devices using 
a combination of program logic, LCS, and disk 
queue space: 

(ii) Pseudo-disk, which simulates a single-drive 
2314 using a different combination of logic, LCS, 
and real disk storage; 

(iii) A monitor for small nonsetup jobs, which repre
sent an especially significant load on a multi
university system. 

Two fundamental guidelines - based on the per-· 
formance of our system and other large 360s - are as 
follows: 

1. Only LCS is a sufficiently fast source and sink 
for system I/O on a 360/75 system. The fastest 
conventional rotating device (for S/360, the 2301 
drum) interlocks processing too long for satis
factory CPU utilization, under normal TUCC 
operating conditions. 

2. Aftei ie-assigning most system I/O from diskl 
drum to pseudo-devices (in LCS), sufficient I/O 
activity has remained to permit additional job 
processing using conventional mUltiprogram
ming. At TUCC, multiple job streams use 
distinct pseudo-devices concurrently, each yield
ing CPU control when it must await an I/O com
pletion (for a real device, of course). Multi
programming concepts are required in most 
third-generation operating systems, where a large 
CPU performs concurrent peripheral operations 

. as well as mUltiple, unrelated jobs. TUCC modi
fications to OS/360 focus first on improving the 
speed of system I/O to improve aggregate 
throughout; by contrast, IBM's Multiprogram
ming with Variable number of Tasks (MVT) 
option in OS/360 focuses first on multiprogram
ming. 

Our justification may be peculiar to our job mix 
and operating characteristics, although we sus
pect they resemble those of other universities and 
scientific establishments. U nmodifi~d, our disk-orien
ted OS/360 system spent 85%-90% of clock. time in . 
CPU-Wait state (i.e., awaiting the completion of one 
or more I/O events. This figure was obtained by nu
merous readIngs of a home-made CPU meter, which
integrates the--CPU-waiting signal over a ~me-minute 
interval). Clearly, running two job streams of similar 
characteristics could not reduce CPU-Wait below' 
70%. * Considering channel contention and unit con
tention for one-of-a-kind data sets like the processor 
library (LINKLIB), it seems improbable that CPU
Wait could be reduced below 80%. Although our job 
mix and equipment are significantly different from 
TSS running on the 360/67, CPU-Wait under OS/360 
resembles the "page-wait" problem analyzed by 
Neilson,12 Lauer,13 and Smith.14 In particular, Neilson 
discovered by simulation that a zero-latency disk - es
sentially a specification of TU CC hyperdisk - would 
significantly raise the aggregate throughput of TSS 
on the 360/67. Lauer used LCS as a paging device 
after demonstrating that a conventional drum could 

* Twice the iilefficiency (15%) of a single job stream. 



232 Spring Joint Computer Conference, 1968 

not deliver pages at a rate to keep the CPU satisfac
torily utilized. 

If CPU-Wait could be reduced to 60% and if chan
nel and device contention could be averied, two job 
streams should reduce CPU-Wait nearly to 20%. 
Three job streams could reduce CPU-V/ait still fur
ther, although IBM claims to have demonstrated- by 
analyses and simulations not yet publicly available
that more than 3-4 job streams cannot raise the gross 
throughput of an average 360/75-class system running 
a conventional job-shop mix. We are currently mea
suring CPU-Wait against core requirements for each 
job stream. If CPU-Wait remains high, we will con
sider adding fast core siorage so that additional job 
streams can utilize otherwise-idle CPU time. In this 
respect, the storage-hierarchy system and MVT con
cur on how to convert CPU-V/ait to pioductive opera
tion. 

Early-1968 readings of CPU-Wait range between 
30-35% with a single job stream, less than half the 
figure with unmodified OS/360. * More important is 
the complementary figure: CPU activity has been 
raised fivefold. Some of this activity supports local
ly-written code and adds to the CPU overhead 
of the total system. Indeed, 95% of the I/O operations 
in the system are now simulated by locally-written 
code: the pseudo-devices cited above and described in 
the following section. Nonetheless, the gross number 
of jobs per hour has been raised significantly: this is 
the true measure of system throughput. The addition 
of minor CPU overhead has acted as a catalyst to 
relieve CPU-Wait due to system I/O; this overhead 
is evaluated in Appendix C. 

Elements of the TUCC storage-hierarchy system 

Environment 

As, enumerated in above section, the principal ele
ments of the TUCC storage-hierarchy are the check-

'point system, pseudo-devices, and small-job monitor. 
The remainder of this paper ad.dresses the last two 
elements. The discussion will focus on system 
I/O, then discuss the relative suitability ~f fast core, 
LCS, disk, and drum storage for (a) ,supervisory 
code, (b) supervisory tables, (c) I/O 'buffers, (d) 
application-program code, and' (e) application-pro
gram work-space. 

The 360/75 CPU has a mean instruction time of 
IlLS; the TUCC machine has a fast core of 524K 
bytes and a large, slower core of 2097K byte~ 

The two 2860 selector channels each are rated at 
1300KB. Each is attached to a 2314 disk system, 
*The double-job-stream system shown in Figure 2 keeps CPU
Wait under 10%. 

contammg eight drives mounted with removable 
disk packs. The packs contain over 28M bytes apiece, 
aggregating a total on-line disk storage of 466M bytes. 
Each disk system can perform one 312KB data-trans
fer operation from one drive at a given, instant. 

Five magnetic tapes, the card/printer system, and 
communications control units all interface to a third 
(multiplexor) channel. Since they can all operate 
simultaneously with less that 5% utilization of fast 
memory, they will not be further discussed here (cf. 
References 8-11 for details). 

This study is therefore restricted to core and disk 
storage, since effective CPU utilization under OS/360 
depends piincipally on judicious allocation of func
tions to these media. Basic postulates of this paper 
are as follows: 

• I BM-supplied compilers, sorts, utilities, and 
application packages for OS/360 will not soon 
reduce/modify their usage of system I/O. 

• For reasons of compatibility, documentation 
and maintenance, the TU CC community insists 
on using IBM-supplied compilers and other soft
ware-excepting only the WATFOR compiler15 

and TSAR*-and makes little use of other 
customer-written, high-performance, reduced
function software. Thus, facilities like PU FFT16 
or CORC/CUPL17 would have to offer significant 
functional advantages to displace IBM-supplied 
compilers in the TU CC community even if their 
compile-execute performance were markedly 
superior. W A TFO R meets this test: it is function
ally equivalent to FORTRAN G and offers 
approximately a 30: 1 throughput advantage (mean 
job times of 0.5 seconds and 15 seconds respec
tively, for small student jobs). 

• IBM wiH not soon change the relative price or 
relative performance of its fast-core, LCS, drum, 
or disk products. 

Pseudo-readers, pseudo-punches, and 
pseudo-printers 

Application programs, compilers, and the control 
program itself are each allocated one pseudo-card 
reader, one pseudo-punch, and one pseudo-printer, 
furnishing the standard SYSIN, SYSPUNCH, and 
SYSOUT functions. These are simulated by the 
TUCC system using a combination of locally
written subroutines in the OS/360 nucleus, two disk 
packs (one accepting input fran several dozen remote 

*TSAR is a statistical data-retrieval package developed at Duke 
University. It furnishes simplicities not currently available in 
IBM's Scientific Subroutine Package, as well as significant per
formance superiority. 



job entry (RJE) sources, one accumulating output for 
the terminals), and ·buffer storag~ in LCS. Pseudo
reade·rs furnish images to the two TU CC job streams 
at over 1200 card images per second, and pseudo
printers at over 1000 print images per second. SYSIN/ 
SY.SPUNCH/SYSOUT are entirely CPU-limited, 
even for program loops which "drive" the pseudo
devices as fast as .possible. Details· of the TUCC 
implementation can be found in Appendix B. 

Hyperdisk 

The I/O supervisor CALLs the disk simulator for 
all service to a single-drive disk addressed over 
(non-existent) channel 4 of the TUCC system. This 
hyperdisk is "transparent" to its users; it services 
all legal channel programs using a combination of LCS 
and real disk storage. The flow of track images be
tween LCS and disk is totally controlled by the disk 
simulator and is decoupled from processing activities 
of partitions using the hyperdisk. In other words, 
many partitions can simultaneously have I/O requests 
queued on hyperdisk, although the simulator is ac
tively servicing only one at a time. 

In addition to completing legal channel programs, 
the disk simulator appropriately terminates illegal 
channel programs, e.g., for an invalid SEEK address, 
illegal sequence, incorrect length, etc. The only sta
tuses which it never returns are, of course, "data 
check" or "channel check," indicating hardware 
failure. 

The current allocation of LCS to the hyperdisk is 
1650K, equivalent to 220 tracks. Ari arbitrary number 
of real tracks - currently 2400 - comprise its other 
storage area. The hyperdisk is thus represented to the 
user as a 40%-unavailable pack; in OS/360 nomen
clature, the aggregate number of allocated and un
allocated tracks in the "volume table of contents" 
is exactly 2400, divided into two major areas by the 
simulator, as shown in Figures 3 ("Core Map of a 
Hyperdisk Simulation U sing Only LCS"), 4 ("Hyper
disk Structure"), and 5 ("Sample Track Control Table 
and Chained Lists"): 

1. The read-only area comprises frequently-used 
compiler and subroutine libraries. The simulator 
knows exactly where the read-only area ends and 
the write-read area begins. As each track is 
addressed by the user, the simulator consults its 
track control table: if the track is in LCS, the 
simulation is performed at once; if the track is 
not in LCS, the simulator must first retrieve the 
track from its (fixed) position within the 2400-
track extent on real disk. The retrieved track has 
the sa~e information content as the original track 

A Storage-Hierarchy System for Batch Processing 233 

1/0 

Slf'ER'v'ISOO 

10CC 
/oDD! FI CATI ONS 

N'PLi CATia. 

PIOOWI 

lCS 

j 
TAACK 

STORAGE 

N9. 

--t:I~-- -- -71 

1 
I ttJ\IJ TRACK fil INTO @/ I 

@ II1lZlZZlZIIl7711ll1ll1ll ~ I 
....... 

Ii BuFFERS FOO PSEtJOO-REArERS I ETC, 

On£R SYSTEM Fll'lCTIONS 

HvPERDISK TRACK-CCNTRQ TMlLE F- J 
I 

.. l) .. 
.... . 

1111111111111111111111111/1/11111111111/1/1111111111 ~_ -.J 

-------------------------

Figure 3 - Core map of a hyperdisk simulation using only LCS 

Track Nos. -
.11 .... 1,... 18 20 240 

v 
o 
L 
u. 

-~~~!~--
C08UB 

-FOmrS--

M VTOC :mm::: 

2316 DISK PACK 

1060 

L1NKLl8: 

- --
SYSUTI S 

Y 
SYSUT2 5 

J 
o 
8 E wasted 

L~~~~!~ __ 
_~~I~!~ __ 

Job scheduler, 
Fortran compilers, 
PL/I compfl er. 
Assemlers. 
Linkage editor, 
Util ities. etc. 

----------------------------- Q 
Remaining scratch E 

_~~I~!~ __ _ ~~;:v~c:~ron~~s 

/ <-- -~Read-only data sets--=--""' ______ ~> ~Wrlte/read data sets---;). 

/ -/ YTOC for hyperdlsk - -~ DATA SET /WE ATTRIBUTES TRACK NOS. 

VTOC Pack type, size, etc. 18 - 19 

~ ALGLlB BLKSIZE-3625,RECfMoU 20· - 39 

! 1! COBUB BLKSIZE=3625,RECFH=U 40 - S9 

-: I';: FORTLI8 BLKSlZE-3625.RECfJ4=U 60-99 
-' 
--.. - -g-- ~ ~ 

\;'- L1NklIB 

------r-----------------+----------

(i~oO,--SY-S~--E----r-------------------------------------+---__ 2_~ __ -2_4O_0~ 
SYSUTI (As determi ned by each user) aa • bb 

SYSUT2 bb + I - cc 

BlKSIZE-3625,RECF ... U 359 - 1059 

Figure 4 - H yperdisk structure 



234 Spring Joint Computer Conference, 1968 

TRACK CONTROL TABLE 

f-8 CONTROL BITS---41 ~24-BIT LCS ADDRESS OR 16-BIT TRACK ADDRESS~ 

rOO 0 0 0 0 0 0 I (LCS ADDRESS OF TRACK 1) I 
11 0 0 0 0 0 0 0 I (REAL-DISK ADDRESS OF TRACK 2) I 

00 00 00 00 I (LCSA""'" OF TRACK 3) I 
o 0 0 0 0 0 0 0 0 (=~~_~~~ ____ ._ --,. _. ___ ._.y'- _ '- I 

LUFO CHAIN 

TRACK STORAGE AREA AND 

THE LUFO CHAIN 

FORWARD BACKWARD DATA STORAGE 

4 4 <; 7312 - BYTES 
.... ---.-- -~J 

\ ,0 ; f 

---~~-I 1° \ I 0" II 

I r °t. ~ t\ T - N----\ttl 
T:~ ___ ~ ___ / I 

C(HoIENTS 

(1) T1 WAS ACCESSED MORE RECENTLY THAN T4 

(2) T4 WAS ACCESSED MORE RECENTLY THAN T3 

(3) T2 IS ON THE CHAIN OF AVAILABLE TRACKS, I.E. ALL TRACKS NOT ON THE 

LUFO CHAIN 

Figure 5 - Sample track control table and chained lists 
- -

of the disk dataset; however, it has been re-for-
matted - during a once-only run of the simulator 
- to match the internal representation used by 
the simulator, i.e., inter-~ecord gaps of real tracks 
are represented by control fields in LCS. 

A longest-unused-first-out algorithm (LV FO) con
trols retention/overlaying of track areas in LCS. 
When all areas have been' allocated and a new track 
must be created (or retrieved from real disk), an ex
isting track must be spilled or overlaid. For read-only 
data sets, the choice is obviously the. latter. The 
LUFO algorithm is as follows: as each in-LCS track 
image is referenced, it is promoted to the "head" of 
the LUFO chain, as shown in Figure 5. Inactive 
tracks logically "drift" to the bottom of the LUFO 
chain. When a new track ar,ea is required, the bottom 
track is released, i.e., overlaId if read-only. 

2. Write-read tracks are those above track-address 
1060 in Figure 4; they are always written at least 
once before they are read. Except for the disk 
workspace of the control program (SYSJOBQE), 
they are released at the end of each job. If a 
write-read track must be spilled - because it has 
drifted to the bottom of the LUFO chain-it is 
written to an arbitrary track within the write-read 
area of the real disk. The relative address of the 
real track is retained in the track control table 
(Figure 5, "Sample Track Control Table and 
Chained Lists"), just as for pseudo-readers 

and pseudo-printers, a seek-minimizing algorithm 
selects the nearest available track in the write
read area on real disk. 

Expart, the small-job monitor 

In OS/360, core memory may be divided into two or 
more contiguous blocks (partitions) which process 
independent streams of work. To reduce the over
head for initiating/terminating small jobs - typically 
FORTRAN and PL/I debugging jobs - TUCC has 
written a monitor which: 

• Operates in a lOOK "express" partition inde
pendent of the full-function batch-processing par
tition: 

• Processes non setup jobs with small-memory 
needs; and 

• Receives control only when the batch-processing 
partition is in CPU-Wait. 

The express partition absorbs CPU-Wait from all 
higher-priority partitions, since its input/output is 
exclusively to pseudo-devices. 

Experimental results and conclusions 

Benchmark Jobs 

Since June, 1966, TUCC has run benchmark jobs 
against each major new system (i.e., when new hard
ware or a new release of OS/360 or a major TUCC 
project is installed). 1bese benchmark jobs, the "Golden 
Deck" described in Appendix A, fairly represent our 
job mix. We evaluate our instantaneous throughput 
rate based on this deck, although the substantial im
provements seen in Appendix A are not directly re
flected in jobs/day statistics. We process only 1200-
1500 jobs/day for the foHo\ving reasons: 

• A large daily investment in preventive mainte
nance and systems development is necessary for a 
communications-oriented system with ~ 105 tran
sistors; 

• !he system runs out of work during the midnight 
shift; 

• An increasing number of jobs have entered "pro
duction" status, whereas most jobs in 1966-67 
were debug runs. 

Evaluation of the performance improvements may be 
found in Section I I I of Appendix A. 

The core map 

Early in this paper, OS/360 was characterized - for 
the TUCC environment-as having unsatisfactory 
design points for the supervisor, compilers, etc. By 
adding our storage-hierarchy system to OS/360, 



A Storage-Hierarchy System for Batch Processing 235 

CPU-Wait due to system I/O has been substantially 
reduced. 

TABLE I-Core MapofTUCC System 

DECIMAL ADDRESS ELEMENT 

0-80K I/O supervisor, other necessarily-
resident interrupt handlers, and 
device simulators. 

80-330K Batch-processing partition. 

330-440K EXP ART partition. 

,440-524K Executable code for job collection/ 
dissemination partition. 

(Beginning of LCS) -----------------------------------------------

524-830K Buffers and control blocks for job 
collection/dissemination partition. 

830-865K Supervisory tables accessed by 
binary-lookup subroutines. 

865-935K Low-usage supervisor subroutines: 
OPEN, ABEND, WTO, etc. 

935-2585K Hyperdisk 

2585-2621K Checkpoint and accounting data 

The system elements in fast core seem justifiable, 
on the whole; they include all executable code except 
low-usage supervisor subroutines. Executing instruc
tions out of LCS is possible but generally undesirahle; 
I -cycle timings are inflated from an average of O.4p,s 
to 4.5p,s. 

Low-usage supervisor subroutines are an exception 
to this general guideline; by their nature, they have 
few instruction loops (which are particularly undesir
able in LCS). Each 1000-byte subroutine executes a 
few instructions (probably no more than 200), then 
yields control to the next subroutine or returns con
trol to the caller. We contend that such subroutines 
are appropriately executed out of LCS, that I -cycle 
overhead is less than the overhead to retrieve them 
from LCS (or disk or drum) in'to fast core. To retrieve 
each supervi~or subroutine from hyperdisk would re
quire 3000p,s (cf. Appendix C), which equals the over
head of executing 750 instructions from LCS instead 
of fast core. If each subroutine call indeed requires 
only 200 instruction executions, the advantage is 
c1early·to execution-fro.m-LCS. 

Of course, these supervisor subroutines could be 
included in fast core. as part of the system nucleus. 

I 

This strategy would obviate either LCS-execution 
overhead or retrieval-from-LCS overhead. However, 
the 70K core requirement would have to either (a) 
be subtracted from the 250K batch partition or (b) dis
place the EXPART partition. In case (a), many user 
programs would require re-programming (e.g., FOR
TRAN programs with large matrices) into overlay 
struct1!res. Possibly, an optimizing option of FOR
TRAN H would have to be constrained (or deck sizes 
constrained, equivalently). In case (b), TUCC would 
lose the important price/performance advantage of 
mUltiprogramming in a 524K-byte system. We note 
that IBM prices are approximately in the following 
ratio (lease price per byte per month): 

2314:2301 :LCS:fast-core=I:40:250: 1600 
Most executable code in the job-collection partition 

has higher aggregate activity than the low-usage super
visor subroutines. Thus, the TUCC system actually 
takes advantage of the multiple-overlay structure 
of the supervisor to segregate high-usage from low
usage code. 

U sing the L UFO algorithm described in an earlier 
section, the hyperdisk retains high-usage tracks for 
most non-supervisory code in LCS, whereas low-usage 
tracks drift back to disk storage - and remain there 
until they again become active. OS/360 compilers con
strained fo small design points have already segregated 
high-usage code and tables into resident segments 
of their overlays, whereas lightly-used compilation 
elements - both instructions and data - are diverted 
to disk. The TUCC system capitalizes on this a priori 
structuring. 

Preliminary comparisons with standard, drum
oriented versions of OS/360 have confirmed the 
performance superiority - and price-performance 
superiority'::"'of the TUCC system for a remote
job-entry university environment with a broad mix 
of student jobs, major compute-limited jobs, and 
I/O-limited file processing. 

ACKNOWLEDGMENTS 

The storage-hierarchy system is the work of 15 
systems programmers at TUCC, of whom a number 
ar~ employed by the Raleigh branch-office of IBM. 
Helpful suggestions have bee~" offered by numerous 
IBM development groups and OS/360 customers. 
The HASP project of IBM-Houston includes approx
imately the same pseudo-readers and pseudo-printers 
as the TUCC system; it was developed at the same 
time as ours and implemented several months earlier. 

REFERENCES 

1 T KILBURN D J HOWARTH R B PAYNE 
F H SUMNER 



236 Spring Joint Computer Conference, 1968 

The Manchester University atlas operating system parts /-l/ 
The Computer Journal October 196 I 

2 T KILBURN D B G EDWARDS M J LANIGAN 
F H SUMNER 
One-:level storage system 
IRE Transactions on Electronic Computers Vol II No 2 
April 1962-

3 F H SUMNER E C Y CHEN G HALEY 
. The central control unit of the atlas computer 

Proceedings IFIP Congress 1962 
4 D MORRIS F H SUMNER M TWYLD 

An appraisal of the atlas supervisor 
Proceedings of the 22nd Annual ACM National Conference 
1967 

5 G H MEALY B I WITT W A CLARK 
Thefunctional structure ofOS/360 
IBM System Journal Vol 5 No 1 1966 

6 W C LYNCH 
Description of a high capacity, fast turnaround, university 
computing center 
Communications of the Association for Computing Ma
chinery Vol 9 No 2 February 1966 

7 G BENDER D N FREEMAN J D SMITH 
Function and design of DOS/360 and TOS/360 
IBM SystansJournal Vol 6 No 1 Page 191967 

8 D N FREEMAN (editor) 
Systems developmefu at TUCC: 1966-1967 
Paper distributed at SHARE XXVIII San Francisco 
February 1967 

9 D N FREEMAN 
Structure of TUCC linkage to three campuses: Hardware 
and software 
Reprints of the 6th Annual Southeastern Regional Meeting 
of ACM, June, 1967 

10 J F WALKER 
OS/360 throughput problems 
Reprints ofthe 6th Annual Southeastern Regional Meeting 
of ACM June 1967 

11 J W STEPHENSON JR 
Use of bulk core to improve system performance 
Reprints of the 6th Annual Southeastern Regional Meeting 
of ACM June 1967 

12 N J NEILSON 
The simulation of time sharing systems 
Communications of the Association for Computing Ma
chinery Vol 10 No 7 July 1967 

13 H F LAUER 
Bulk core in a 360/67 time-sharing system 
FJCC Proceedings 1967 

14 J L SMITH 
Multiprogramming under a page on demand strategy 
Communications of the Association for Computing Ma
chinery Vol 10 No 10 October 1967 

15 P W SCHANTZ et al 
Watfor- The University of Waterloo Fortran IV compiler 
Communications· of the Association for Computing Ma
chinery Vol 10 No I January 1967 

16 S ROSEN R A SPURGEON J K DONNALLY 
PUFFT - The Purdue University fast Fortran translator 
Communications of the Association for Computing Ma
chinery Vol 8 No 11 November 1965 

17 R W CONWAY W L MAXWELL 
. CORC - The Cor.nell computing languages 

Communications of the Association for Computing Ma
chinery Vol 6 No 6 June 1963 

18 G A BLAAUW F P BROOKS JR 
The structure of System/360 Part I: Outline of the logical 
structure 
IBM Systems Journal Vol 3 No 2 1964 

APPENDIX A 
GOLDEN DECK THviINGS 

I. DESCRIPTION OF RUNS 

A. RUNCO (130 source cards) 
Procedure: COBOL (COBOL-E: com

pile, link, go) 
Compile: source listing 

data division map 
procedure division map 
diagnostics 

Link-Edit: cross reference map 
Go: 500 lines of print output 

B. CTEST (2600 source cards) 
Procedure: COBOLLNK (COBOL-E: 

compile,_li~k) 

Compile: source listing 
data division map 
hex code listing 
diagnostics 

Link-Edit: cross reference map 
C. TIME (500 source cards) 

Procedure: ASIvtLNKGO (ASS EM
BLER-F: assemble, link, go) 

Compile: 

Link-Edit: 
Go: 

source listing 
relocation dictionary 
cross reference table 
cross reference table 
50 lines output 
120 cards input 

D. PLI T 1 (200 source cards) 

Procedure: 

Compile: 

Link-Edit: 
Go: 

PLI (PL/I-F: compile, link, 
go) 
source listing 
diagnostics 
diagnostics only 
no output 
8 cards input 

E. PLICP (1100 source cards) 

Procedure: 
Compile: 

PLICMP (PL/I-F: compile) 
diagnostics 

F. AFORT (1200 source cards) 
Procedure: FORTCMP (FORTRAN-E: 

compile) 
Compile: diagnostics oniy 



A Storage-Hierarchy System for Batch Processing 237 

G. BFORT (775 source cards) 

Procedure: FTLNKGO (FORTRAN-E: 
compile, link, go) 

Compile: 

Link-Edit: 
Go: 

source listing 
storage map 
diagnostics 
cross reference table 
220 lines of print output 
130 cards of input 

H. TSAR (no source) 

Procedure: PGM = EXEC using JOB LIB 
(Statistical Prod. program) 

Compile: 
Link-Edit: 
Go: 

none 
none 
175 cards input 
525 lines output 

I. SPU (null PL/I, 4 source statements) 

Procedure: PL1 '(PL/I-F: compile, link, 

Compile: 

Link-Edit: 
Go: 

go) 
source listing 
diagnostics 
diagnostics only 
noinpnt 

J. SAMB (null assembly, 3 source statements) 

Procedure: ASMLNKGO (ASSEMBLER
F: assanble, link, go) 

Compile: source listing 
reloc~tion dictionary 

Link-Edit: 
cros~, reference table 
cross reference table 

Go: no input 

K. SFORT (null FORTRAN, 2 source statements) 
Procedure: FORTRAN (FORTRA.N-E: 

compile, }ink, go) 
Compile: source listing 

storage map 
external references 
diagnostics 
diagnostics Link-Edit: 

Go: no input 

II. TIMINGS 

The test environment is indicated below and 
coded as follows: 

1st position - S/36Omodel number 
2nd position - OS/360 release number 
3rd position - SYSIN device 
4th position - SYSOUT device 
5th position - Locally written systems soft

ware 
The following abbreviations are used: 

C - card reader (2540) 
P - 1430 printer (Model N 1, universal 

character set) 
T-60KBtape 

D14 - 2314 disk 
D14M - 2314 disk with SYSIN 

disk-to-disk 
data movement 

H - HYPERDISK (pseudo disk in LCS) 
D - Directories in LCS 
F-LCSFETCH 

Times are given in seconds. 



238 Spring Joint Computer Conference, 1968 

COMPILE .LINK L 

*}OB 

COMPILE LINK GO TIME 

RUNCO 

40,2,C,P 
40,3,C,P 102 50 84 236 
75,6,C~P 73 29 
75,6,T,P 74 29 60 163 
75,6,T,P (print train) 70 25 
75,6~T,T 60 24 12 96 
75,6,T,T,D 83 21 II 115 
75,6,T,T,DF 30 14 08 52 
75,9,T,T,DF 19 1 1 08 38 11 

75,II,DI4M,DI4,DH (2303 LINKLIB) 10 04 05 19 
75,II,DI4M,DI4,DH (HDSK LINKLIB) 09 04 05 18 

CTEST 

40,2,C,P 694 157 851 
40,3,C,P 697 152 849 
74,6,C,P 556 74 630 
75,6,T,P 558 74 632 
75,6,T,P (print train) 463 66 529 
75,6,T,T 166 
75,6,T,T,D 140 61 201 
75,6,T,T,DF 126 52 178 
75,9,T,T,DF 
75,11,D14M,D14,DH (2303 LINKLIB) 97 07 104 
75,11,DI4M,DI4,DH (CHDSK LINKLIB) 96 06 102 

TIME 

40,2,C,P 1080 40 567 1680 
40,3,C,P 403 43 690 1136 
75,6,C,P 256 26 479 761 
75,6,T,P 240 27 471 739 

75,6,T,P (print train) 211 23 383 617 
75,6,T,T 
75,6,T,T,D 121 19 325 465 
75,6,T,T,DF 
75,9,T,T,DF 
75,ll,DI4M,DI4,DH (2303 LINKLIB) 39 04 
75,II,DI4M,DI4,DH (HDSK LINKLIB) 33 03 152 188 

PLITI 

40,2,C,P 170 117 1540 1827 
40,3,C~P 168 96 1549 1813 
75,6,C,P 79 45 92 216 
75,6,T,P 79 45 92 216 
75,6,T,P (print train) 69 41 90 200 
75,6,T,T 49 41 
75,6,T,T,D 43 36 89 168 
75,6,T,T,DF 32 30 
75,9,T,T,DF 24 -'A 

~'"t 88 136 



A Storage-Hierarchy System for Batch Processing 239 

75,II,DI4M,DI4,DH (2303 LINKLIB) 16 08 89 115 
75,11,DI4M,DI4,DH (HDSK LINKLIB) 15 08 89 114 

PLICP 

40,2,C,P 933 933 
40,3"C,P 353 353 
75,6,C,P 71 71 
75,6,T,P 59 59 
75,6,T,P (print train) 53 53 
75,6,T,T 45 45 
75,6,T,T,D 40 40 
75,6,T,T,DF 25 25 
75,9,T,T,DF 27 27 
75,II,DI4M,DI4,DH (2303 LINKLIB) 16 . 16 
75,II,DI4M,DI4,DH (HDSK LINKLIB) 13 13 

AFORT 

40,2,C,P 303 303 
40,3,C,P 185 185 
75,6,C,P 172 172 
75,6,T,P 72 72 
75,6,T,P (print train) 69 69 
75,6,T,T 78 78 
75,6,T,T,D 65 65 
75,6,T,T,DF 34 34 
75,9,T,T,DF 28 28 
75,11,DI4M,DI4,DH (2303 LINKLIB) 12 12 
75,11,DI4M,DI4,DH (HDSK LINKLIB) 09 09 

*JOB 
COMPILE LINK GO TIME 

BFORT 

40,2,C,P 355 64 539 958 
40,3,C,P 181 75 542 798 
75,6,C,P 116 37 52 205 
75,6,T,P 116 37 52 205 
75,6,T,P (print train) 109 31 48 188 
75,6,T,T 61 
75,6,T,T,D 50 27 26 108 
75,6,T,T,DF 26 20 22 68 
75,9,T,T,DF 21 18 22 61 
75,II,DI4M,D14,DH (2303 LINKLIB) 10 05 19 34 
75,II,DI4M,D14,DH (HDSK LINKLIB) 08 05 19 32 

TSAR 

75,6,C,P 86 86 
75,6,T,P 78 78 
75,6,T,P (print train) 86 86 
75,6,T,T 29 29 
75,6,T,T,D 27 27 
75,6,T,T,DF 21 21 
75,9,T,T,DF 16 16 
75,11,DI4M,DI4,DH (2303 LINKLIB) 11 II 
75,II,DI4M,D14,DH (HDSK LINKLIB) II II 



240 Spring Joint Computer Conference, 1968 

SPLI 

75,6,C,P 
75,6,T,P 
75,6,T,P (print train) 
75,6,T,T 
75,6,T,T,D 
75,6,T,T,DF 
75,9,T,T,DF 
75,II,DI4M,DI4,DH (2303 LINKLIB) 
75,II,DI4M,DI4,DH (HDSK LINKLIB) 

SAMB 

75,6,C,P 
75,6,T,P 
75,6,T,P (print train) 
75,6,T,T 
75,6,T,T,D 
75,6,T,T,DF 
75,9,T,T,DF 
75,ll,D14M,DI4,DH (2303 LINKLIB) 
75,II,DI4M,DI4,DH (HDSK LINKLIB) 

SFORT 

75,6,C,P 
75,6,T,P 
75,6,T,P 
75,6,T,T (print train) 
75,6,T,T,D 
75,6,T,T,DF 
75,9,T,T,DF 
75,II,DI4M,DI4,DH (2303 LINKLIB) 
75,11,D!4M,D!4,DH (HDSK LINKLIB) 

35 
35 
31 
...,p 
~; 

24 
13 
08 
05 
03 

35 
35 
32 

26 

II 
07 
06 

COMPILE 

26 
26 
23 
22 
18 
12 
07 
03 

1-0 ... 

28 07 70 
28 07 70 
24 06 61 
"\.-1 05 58 k"'t 

21 05 50 
14 02 29 
12 02 22 
05 01 11 
05 01 09 

25 04 64 
25 04 64 
21 03 56 

17 03 46 

08 01 20 
04 01 12 
03 01 10 

*JOB 
LINK GO TIME 

j 

I 
26 07 59 I 

26 07 59 
22 06 51 
22 06 50 
19 05 42 
11 05 28 
10 03 20 
04 01 08 

01 04 Vi 08 I 

*Does not include termination time for each job. Prior to the installation of HYPERDISK this time was approxi
mately 02 seconds/job. Termination time with HYPERDISK has been reduced to approximately 'Ol-to 01.5 
seconds/job. 

III. DISCUSSION OF THE TIMI.NGS 

RUN C 0 initially compiled only slightly faster on 
360/75 than on our original 360/40; assigning SYSIN/ 
SYSOUT to tape reduced compilation from 73 to 60 
seconds. Moving SVCLIB and LINKLIB into LCS 
halved this time; this move was our first attempt 
at a hierarchical system and has been documented 
elsewhere. ii The improved Release-9 compiler and 
control program halved the time again, and the 
pseudo-printer/hyperdisk additions reduced compile 
time to 8.4 seconds. 

Similarly, link-edit time has been reduced 5: 1 from 
the tape-in-tape-out (T ITO) time of 24 seconds for the 

(non-hierarchical) Release-6 system. Since the linkage 
editor requires no card/tape input and writes few 
SYSOUT lines, the gains are attributable primarily 
to the hyperdisk (and its precursor, which serviced 
only SVCLIB and LINKLIB). 

Aggregate job time has been reduced by 6: 1 from 
a TITO system. 

CTEST - This COBOL job requires voluminous 
SYSIN/SYSOUT during the compilation step; the 
link-edit step has been reduced by approximately 
10: lover the TITO system. 

T J M E - This job evaluates supervisory services 
offered by OS/360 such as OPEN, CLOSE, GET, 



PUT, etc. Assembly time was reduced 4: lover a 
TITO system. (TI M E was not operable for several 
months due to a time-dependency in OS/360. This 
error was first exposed by our early storage-hierarchy 
system and was corrected by IBM when their im
provement program also exposed it.) 

PLI T I - This job has a prolonged, no-I/O execu
tion phase - hence the dramatic reduction when 
TUCC replaced the 360/40 with the 360/75. The com
pilation time has been reduced 3: lover the TITO 
system. 

PLICP- This non-trivial PL/I compilation has 
been reduced 3: 1 from the TITO system; the com
pilation rate is over 5000 statements per minute. 

AFORT - This non-trivial, multiple-compilation 
FORTRAN-Ejob"has been reduced over 8: I from the 
TITO system; the compilation rate is 8000 statements 
per minute. 

BFORT, TSAR, etc. - The remaining benchmark 
jobs show comparable improvements. 

The Release-II runs were performed during con
current job-collection/dissemination, whereas all pre
vious timing runs were performed with communications 
equipment (and other I/O irrelevant to the experi
ments) turned off. Thus, the Release-II figures are 
somewhat inflated due to interrupt-servicing and buf
fer manipulations unrelated to the timing tests. 

APPENDIX B 
-IMPLEMENTATION DETAILS FOR THE 
PSEUDO-READERS, PSEUDO-PUNCHES, 

AND PSEUDO-PRINTERS 

Within the I/O supervisor of OS/360 (in resident 
nucleus), there are approximately ten incidences of 
the following privileged-instructions: 18 Start I/O, 
Test I/O, Halt I/O, and Test Channel. TUCC has 
replaced each instruction with a CALL to an I/O 
filter subroutine, which determines if the operation 
is to be attempted on a real device or a pseudo
device. In the former case, the I/O instruction is 
issued by the subroutine, which then returns control 
to the I/O supervisor. In the latter case, the channel 
command words (CCWs) are interpreted by a card
reader simulator, print simulator, or punch simulator, 
as distinguished by the device address (a parameter of 
the I/O filter subroutine). Each card-reader interpre
tation comprises the following events: 

1. An input buffer pool in LCS is tested for availa
bility of the next card image from this pseudo
reader. 

A Storage-Hierarchy System for Batch Processing 24! 

2. If the next image is available, it is decompressed 
and moved from LCS to the target area in fast 
core specified by the READ CCW. "Decom
pression" is "restoration of blanks" as in Ref
erence 7; when the card image was originally cap
tured by the TU CC computer network - possi
bly at the central computer, possibly at an "in
telligent" satellite - it was scanned for string~ of 
at least 2 blanks, each of which being replaced by 
a one-byte control field. The card image is re
tained in this compressed representation untii 
the instant it is "read" by the reader simulator. 
This technique conserves LCS and disk storage 
throughout the queuing network depicted in 
Figure 2. 

3. After the next card image has been moved out 
of LCS, control information for the buffer pool 
is appropriately updated. If the current buffer* 
is emptied, the track-manager subroutine is no
tified to refill the buffer. 

4. The reader-simulator returns control to the I/O 
supervisor, indicating that the READ was in
stantly and perfectly performed. 

5. At step (2), if no card images are available - be
cause the track manager has fallen behind the 
pseudo-reader or because the system is out of 
work - the job-processing partition requesting 
the card image is idled until a fresh buffer is re
trieved. 

Anticipatory buffering keeps two or three tracks of 
card images in LCS, so that the pseudo-reader rarely 
goes idle; statistics are not yet available on this phe
nomenon. Pseudo-printers and pseudo-punches oper
ate in an analogous fashion: 

1. As each job-processing partition requests print
ing/punching of an image, the I/O supervisor is
sues a CALL to the I/O filter subroutine. 

2. The image is compressed and inserted into an 
LCS buffer. 

3. Buffer-pool control information is updated; if 
an output buffer is filled, the track manager is 
notified to write the track image to disk. 

On the current TUCC system, one pack is used to 
queue SYSIN and one pack to queue SYSOUT. The 
track manager totally controls the status of these 
8,000 tracks, using occupancy tables in LCS to re
cord the tracks for each job and the queue of jobs ar
riving from each satellite. To conserve access-mecha
nism motion, a simple seek-minimizing algorithm is 
used to allocate tracks, viz., WRITE into that availa
ble track nearest the current mechanism position. 
Visual observation of the SYSIN/SYSOUT packs 
shows low mechanism activity, even when several 

*One disk track can hold 7294 bytes" 



242 Spring Joint Computer Conference, 1968 

5KB communications lines and two job-processing 
partitions are contending for a single mechanism. 
This activity is kept low primarily (a) by the high in
formation density per track, averaging 240 card 
images or 180 print lines, and (b) by the seek-minimiz
ing algorithm. 

After processing, jobs can wait indefinitely in the 
output queue for each satellite; sizeable tables are 
required to service terminals which submit, say, 100 
jobs on Friday and do not again establish contact with 
TUCC until Monday. However, this resulting con
venience of operation is much esteemed by the satel
lite installations, and TU CC will remain the principal 
queue point of the complex for the foreseeable future. 

APPENDIX C 
DETAILED TIMINGS OF THE HYPERDISK 

A. SIMULATOR OVERHEAD 
To measure the overhead due to the I/O-filter and 

disk-simulator subroutines, the following experiments 
were performed: 

1. 1000 "no-operation" (NOP) CCWs were issued 
to a real disk to determine EXCP/WAIT/in
terrupt overhead. Repeated measurements fur
nished a low-variance average of 1180p.s for an 
EXCP/WAIT sequence on a 360/75. This is 
used hereafter as a base figure. 

2. 1000 NOP CCWs to the hyperdisk averaged 
1550p.s, i.e., £!. simulator overhead of 370p.s per 
EXCP/WAIT sequence. 

3. Three 1000-event experiments were performed 
to time READ and SEARCH overheads for the 
disk simulator. 
a. To read the first one-byte block on each 

track required an additionaI210p.s. To read a 
block of .TV bytes required ~n additional IV;;-s, 
since LCS operates at 1MB for block trans
fers. (If the disk-simulator were used with 
two-way-interleaved LCS - an extra-cost op
tion - this incremental time would be reduced 
to O.5Np.s.) Note that the average time to read 
a block of 1\1 byt~s from real disk is (12500 
+ 3 . 12N)p.s ; the average time from a 2301 
drum is (8600 + 0.8N)p.s. Representative 
values are as follows: * 

b. To read the lQth one-byte record on each 
track required 280p.s more than to read the 
first record. Thus, the time to search the 
identification of one record unsuccessfully
III OS/360 nomenclature, "SRCHID=" 

*The EXCP/WAIT overhead for servicing a drum in OS/360 is 
t 80J.ts Jess (on a 360/75) than for disk, since the "stand-alone 
SEEK" is unnecessary. The hyperdisk behaves like a drum in this 
respect. 

TABLE II-Average EXCP/WAITTime (ILX) on a 360/75 
with 2314 Disk, 2301 Drum, and Hyperdisk 

80 

1000 

3000 

2301 DRUM HYPERDIS~ 

I 
~, .... 

13,930 9,344 1,840 

16,800 10,080 2,760 

23,040 11,680 4,760 

followed by "TIC" - is approximately 30p.s. 
This is a negiigibie effect for hyperdisk per
formance, since there are rarely more than 40 
blocks per disk track. 

The hyperdisk (arbitrariiy) begins each 
search with the first record on a track. The 
figures cited for the disk and drum in the 
above table assume half-track latency, 
on the average. The hyperdisk figures should 
therefore be somewhat increased to reflect 
simulated half-track searches: 

{ 
2440 } { 1840 } 
2850 instead of 2760 
4790 4760 

B. REAL DISK I/O WITHIN THE HYPERDISK 
To determine the average level of LCS activity 

vs. real-disk activity within the hyperdisk, we in
serted counters at over 50 points within the simulator. 
The gross overhead due to counter activity is less than 
0.01% of clock time. 

Four recent readings of the counters are essentially 
in agreement: with 220 track images in LCS, less than 
0.8% of the channel programs directed to the hyper
disk necessitated reading of a real track. For example, 
during one 50-minute period, 162,000 SIOs were is
sued to the hyperdisk (of which half were for data
transfer operations); this produced only 612 full- track 
READs and 38 WRITEs within the hyperdisk. These 
WRITEs were, ,In fact, for the 40-track SYSJOBQE 
data set, * which'is formatted in LCS when the system 
is initially loaded. The READs were, of course, direct
ed to the read-only data sets depicted in Figure 4. 
Included in the jobs were assemblies, compilations 
in all languages, and link-edits. 

C. CPU OVERHEAD DUE TO THE HYPERDISK 

During the 50-minute experiment cited just above 
approximately 81,000 non-trivial channel pro-

*Since the original measurements were made, SYSDBQE has 
been increased from 40 to 100 tracks. 



During the 50-minute_ experiment cited in Section 
III.C, approximately 81,000 non-trivial channel pro
grams were directed to the hyperdi'sk. The aggregate 
number of interpreted CCW's was 940,000, and 
69,000,000 bytes were moved by the simulator to/ 
from LCS. 

Assuming 1760JLs per non-trivial channel program 
and 50JLs per interpreted CCW, plus 1 JLS per byte 

A Storage-Hierarchy System for Batch Processing 

moved from/to LCS, the aggregate overhead was 
as follows: 

143 seconds for EXCP + WAIT + lio filter 
47 seconds for CCW interpretation 
69 seconds for data movement 

259 seconds of 3000 seconds clock time 
Thus, 8.5% of clock time was spent servicing the 
hyperdisk, including all I/O-supervisor overhead 
(cf. Neilson's results12

). 





Burroughs'B6500/ B7 500 stack mechanism 

by E. A. HAUCK and B. A. DENT 
Burroughs Corporati~n, 
Pasadena, California 

INTRODUCTION 

Burroughs' B6500/B7500 system structure and 
philosop~y are an extension of the concepts employed 
in the development of the B5500 system. The unique 
features, common to both hardware systems, are 
that they have been designed to operate under the 
control of an executive program (MCP) and are to 
be programmed in only higher level languages (e.g., 
ALGOL, COBOL, and FORTRAN). Through a 
close integration of the software and hardware dis
ciplines, a machine organization has been developed 
which permits the compilation of efficient machine 
code and which is addressed to the solution of prob
l~m.s associated with multiprogramming, multiprocess
ing and time sharing. 

Some· of the important features provided by the 
B6500/B7500 system are dynamic storage allocation, 
re-entrant programming, recursive procedure facili
ties, a tree structured stack organization, memory pro
tection and an efficient interrupt system. A compre
hensive stack mechanism is the basic ingredient of the 

. B6500/B7500 system for providing these features. 

B6500/B7500 processor 

The command structure of the B6500/B7500 Pro
cessor is Polish string, which allows for the separa-

. tion of program code and data addresses. The basic 
machine instruction is called an operator syllable. 
This operator syllable is variable in length, from a 
minimum of 8 bits to a maximum of 96 bits. In the 

. interest of code compactness, more frequently used ' 

. operator syllables are encoded in the 8 bit form. 
The Processor is provided with a hardware imple

mented stack in which to manipulate data and store 
dynamic program history. Also, data may be located 
in arrays outside the stack and may be brought to the 
stack temporarily for processing. Program parameters, 
local variables, references to program procedures and 
data arrays are normally stored within the stack. 

The data ·word of the B6500/B7500 Processor is 
51 bits long. Data are transferred between. memory 

I 245 

and within the Processor in' 51 bit words. The first 3 
?its of the word are used as tag bits, which serve to 
Identify the various word types as illustrated in Fig. 1. 
The remaining 48 bits are data. Tag bits, in addition 
to identifying word type, provide the B6500/B7500 
Processor with two unique features: (1) data may be' 
referenced as an operand, with the processor worrying 
about whether the operand consists of one or two 
wor~s, and (2) system integrity and memory pro
tectIon are extended to the level of the basic machine 
data words. If a job attempts to execute data as pro
~ram code, or to modify program code, the system is 
mterrupted. 

DATA WORDS 

, 000 I 'EXPONENT' MANTISSA , ~~~~rECISION 

I I I 
I 010 I 'EXPONENT' MANTISSA (MSI I ~~~D~fl~ 

I I I 
, 010 I EXPONENTIMSII MANTISSA (LS) I go~~~~D~~~~S~ 

1-6 BITS; ..... +oII.f----- 39 BITS---.I 

DESCRIPTOR WORDS 

I 101 I P , C , I I RID I LENGTH ADDRESS I P~b1 DESCRIPTOR 

I I I 
I 101 I P' C I I LENGTH I ADDRESS I frgfRAM DESCRIPTOR 

1--20 BITS----.l..--20 BITS--J 

SPECIAL CONTROL WORDS 

I 011 I E I STACK NO I OISPLACEMENT' L LI 

I I I I 
I III I I PROGRAM SYLLABLE INDEX I 

OF I MARK STACK CONTROL 
WORD (MSCWI 

I 
ADDRESS CCA.PLE I PROGRAM CONTROL 

WORO(PCWI RETURN 
CONTROL WORO(RCW) I 

I I I 
I I I 

! 001 IE! STACK NO. !DISPLACEMENT I ! ADDRESS COUPLE! INDIRECT REFERENCE 
L...::...::..:...r. =+=-:.::::::..:.:..:.::....F:..::::::=~.---4.t-~~~~. I WORD IlRW/IRWS) 

1-10 BITS-I..-16 BITS--l 14 BITS----l 

5BIT~ 

Figure 1 - 86500/87500 word formats 



246 Spring Joint Computer Conference, 1968 

The stack 

The stack consists of an area of memory assigned to 
a job. This stack area serves to provide storage for 
basic program and data references associated with 
the job. In addition, it provides a facility for the tem
porary storage of data and job history. When the 
job is activated, four high speed registers (A, X, B 
and Y) are linked to the job's stack area (Fig. 2). This 
linkage' is established by the stack poi~ter register 
(S), which contains the memory address of the last 
word placed in the stack memory area. The four top
of-stack registers (A, X, Band Y) function to extend 
the job's stack into a quick access environment for 
data manipulation. 

. I TOP OFSTACK REGiSTER - - - -1 
IN/OUTPUT I I 
PATH OF OAur'------...-..... 
TO STACK I 

I I 
I I L_ ______ __---.1 

STACK AREA 
ASSIGNED 
TO PROGRAM I ~--t--::: t;:::::-==:; 

I 
STACK AREA 
CURRENTLY 
IN USE 

STACK 
MEMORY 

AREA 

Figure 2 - Top of stack and stack bounds registers 

Data are brought into the.stack through the top-of
stack registers. The stack's operating characteristic 
. is such that the last operand placed into the stack is the 
first to be extr~cted. The top-of-stack registers be
come saturated after having been filled with two oper
ands. Loading a third operand into the top-of-stack 
registers causes an operand to be pushed from the 
top-of-stack registers into the stack memory area. 
The stack pointer register (S) is incremented by one as 
each additional word is placed into the stack memory 
area; and is, of course, decremented by one as a word 
is withdrawn from the stack memory area and placed 
in the top-of-stack registers. As a result, the S register 
continu~ly .points to the last wQrd placed into the 
job's stack memory area. 

A job's stack memory area is bound, for memory 
protection, by two registers, the Base of Stack (BOS) 

register, and the Stack Limit (SL) register. The con
tents (If the BOS register defines the base of the stack 
area, and the SL register defines the upper limit of the 
stack area. The job is interrupted if the S register is 
set to the value contained in either SL or BOS. 

The contents of the top-of-stack registers are main
tained automatically by the processor hardware in 
accordance with the environmental demands of the 
current operator syllable. If the current operator 
syllable demands that data be brought into the stack, 
then the top-of-stack registers are adjusted to accom
modate the incoming data, and the surplus contents 
of the top-of-stack registers, if any, are pushed into 
the job's stack memory area. Words are brought out 
of the job's stack memory area and pushed into the 
top-of-stack register for operator syllables which 
require the presence of data in the top-of-stack regis
ters, but do not explicitly move data into the stack. 

Top-of-stack registers operate in an operand ori
ented fashion as opposed to being word oriented. Call
ing a double precision operand into the top-of-stack 
registers implies the loading of two memory words into 
the top-of-stack registers. The first word is always 
loaded into the A register where its tag bits are 
checked. If the word has a double precision tag, a 
second word is loaded into X. The A and X registers 
are then concatenated to form a double precision 
operand image. The Band Y registers concatenate 
when a double precision operand is moved to the B 
register. The double precision operand splits back to 
single words as it is pushed from the Band Y registers 
into the stack memory area. The reverse process is 
repeated when the double precision operand is eventu
ally popped up from the stack memory area back 
into the top-of-stack registers. 

Data addressing 

Three mechanisms exist within the B6500/87500 
Processor for addressing data or program code: (1) 
Data Descriptor (DD)/Segment Descriptor (SO), 
(2) Indirect Reference Word (lRW), and (3) Stuffed 
Indirect Reference Word (lRWS). The Data Descrip
tor (DO) and Segment Descriptor (SO) are 85500 
carryovers and provide the basic mechanism for 
addressing data: Or program segments· which are lo
cated outside of the job's stack area. The basic 
addressing component of the descriptor is an absolute 
machine address. The Indirect Reference Word (lRW) 
and the Stuffed Indirect Reference Word (IRWS) are 
B6500/B7500 mechanisms for addressing data located 
within the job's stack memory area. The addressing 
component of both the IRW and IRWS is a relative 
address. The IRW is used to address within the im-



mediate environment of the job's stack, and addresses 
relative to a display register (described later in Non
local Addressing). The IRWS is used to address be
yond the immediate environment of the current pro
cedure, and addresses relative to the base of the job's 
stack. Addressing across stacks is accomplished 
with an IRWS. 

The descriptor 

In general, the descriptor functions' to describe .and 
locate data or program code associated with a given 
job. The Data Descriptor (DD) is used to fetch data 
to the stack or store data from the stack int~ an array 
which resides outside the job's stack area. The format 
of Data and Segment Descriptors are illustrated in 
Fig. 1. The ADDRESS field of both descriptors is 
20 bits in length and contains the absolute address of 
an array in either main system memory or in the back
up disk store. The Presence bit (P) indicates whether 
the" referenced data are present in main system mem
ory or in the back-up disk store, and is set equal to 
ONE when the" referenced data are present in main 
system memory. 

A Presence Bit Interrupt is incurred when the job 
makes reference to data via a descriptor which has a P 
bit equal to ZERO. The Presence Bit Interrupt stimu
lates the operating system (called the Master Control 
Program, or MCP) to move the data from disk to main 
memory. The data location on disk is contained in the 
AD DRESS field of the D D when the P bit is equal to 
ZERO. After transferring the data array into the 
main memory, the operating system (MCP) marks the 
descriptor present by setting the P bit equal to ONE, 
and places the current memory address into the AD
DRESS field of the descriptor. The interrupted job 
is then reactivated. 

A Data Descriptor may describe either an entire 
array of data words, or a particular element within an 
array of data words. If the descriptor describes an 
entire array, the Indexed bit (I-bit) in the descriptor 
is ZERO, indicating that the descriptor has not yet 
been indexed. The LENGTH field of the descriptor 
defines the length of the data array. 

A particular element of an array may be described 
by indexing an array descriptor. Memory protection 
is insured during indexing operations by performing a 
comparIson between the LENGTH field of the de
scriptor and the index be~ng applied to it. An Invalid 
Index Interrupt is incurre"d if the index value exceeds 
the length" of the memory area 'defined by the de
scriptor. 

If the value being used to index the descriptor is 
valid, the LENGTH field of the descriptor is replaced 
by the index value. At this time the I -bit in the de-

Burroughs' B6500/B7500 Stack tvfechanism _ 247 

scriptor is set to ONE to indicate that indexin.¥ has 

taken place. The ADDRESS and LENGTH fields 
are added together to generate an absolute machine 
address whenever a present, indexed Data Descriptor 
is used to fetch or store data. 

The Double Precision bit (D) is used to identify the 
referenced data as being either single or double 
precision and, as a result, is also associated with the 
indexing operation. The D bit being equal to ONE 
signifies double precision" and implies that the index 
value be mUltiplied by two"before indexing. 

The Read-Only bit (R) specifies that the memory 
area described by the Data Descriptor is a read-only 
~rea. An interrupt is incurred UDon referencinf! an 
area through "a descriptor with the intention to write 
if the R bit is equal to ONE. 

The Copy bit (C) identifies a descriptor as being a 
copy of a master descriptor and is related to the pres
ent bit action. The intent of the copy action is to keep 
multiple copies of an absent descriptor linked back to 
one master descriptor. Copy action is incurred when 
a job attempts to pass by name an absent Da~a De
scriptor. When this occurs, the hardware manufac
tures a copy of the master descriptor, forces the C bit 
equal to O~E and inserts into the-- ADDRESS field 
the address of the master descriptor. Thus, multiple 
copies of absent descriptors are all linked back to the 
master descriptor. 

Non-local addressing 

The most important single aspect of the B6500/ 
B7500 stack is its facility for storing the dynamic 
history of a program under execution. Two lists of 
program information are saved in the 86500/B7500 
stack, the stack history list and the addressing environ
ment list. The stack history list is dynamic in nature, 
varying as the job is driven through different program 
paths with changing sets of data. Both lists are gen
erated and maintained by the B6500/B7500 hardware 
system. 

The stack history list is formed from a list of Mark 
Stack Control Words (MSCW) which are linked to
gether by their DF fields (Fig. 3). A MSCW is inserted 
into the stack as a procedure is entered, and is ex
tracted as that procedure is exited. Therefore, the 
stack history list grows and contracts in accordance 
with the procedural depth of the program. Mark Stack 
Control Words serve to identify the portion of the 
stack related to each procedure. When the procedure 
is entered, its parameters and local variables are en
tered in the stack following the MSCW. When ex
ecuting the procedure, its parameters and local vari
ables are referenced by addressing relative to the loca
tion of the related MSCW. 



248 Spring Joint Computer Conference, 1968 

STACK 
HISTORY 

LIST 

Figure 3 - Stack history and addressing environment list 

Each MSCW is linkeo back to the prior MSCW 
through the contents of its DF field to ide'ntify the
point in the stack where the prior procedure began. 
When a procedure is exited, its related portion of 
the stack is discarded. This action is achieved by 

. setting the stack pointer register (S) to point to the 
memory cell preceding the most recent MSCW (Fig. 
4). This top-most MSCW, pointed to by another 
register (F), is in effect deleted from the stack history 
list by causing F to point back at the prior MSCW, 

I thereby placing it at the head of the stack history 
list. 

,.. ,.. 

r-~-"~++~r'-+-.t:T;:;:O~S~WOR=ftiO DISCARDED 
PORTION 
OF STACK 

,.. ,.. PROCEDURE~" 

STACK 
HISTORY 

LIST 

PROCEDURE "0" 

1 ~ f~ ~~O~F ____ __ 

,.. ,.. ,.. 

Figure 4-Stack cut-back operation on procedure exit 

This concept is implemented in the Burroughs' 
B5500 system, and it provides a convenient means to 
handle subroutine entry and exit. But this mechanism 
alone also gives rise to one of the most serious limita
tions of the ALGOL implementation on the B5500. 
In the B5500 stack, local variables are addressed rela
tive to the first Mark Stack Control Word (which 
corresponds to the outer-most block), or relative to 
the most recent Mark Stack Control Word (which 
corresponds to the current procedure). All intervening 
Mark Stack Control Words, however, are invisible to 
the current procedure. This means that the variables 
declared global to the current procedure, but local to 
some other pr~cedure, cannot be addiessed at all r 
This inability to reference variables declared non-local 
to the current procedure but local to some other pro-
cedUie is termed the non=local addressing problem. 

The manner in which these variables are addressed 
in the B6500/B7500 stack can best be understood by. 

, analyzing the structure of an ALGOL program. The 
addressing enyironment of an ALGOL procedure is 
established when the program is structured by the 
programmer, and is referred to as the lexicographical ' 
ordering of the procedural blocks (Fig. 6A). At com
pile time, this lexicographical ordering is used to form 
address couples. An address couple consists of two 
-items: I)-the lexicographi~allevel v/) of the variable, 
and 2) an index value (0) used to locate the specific 
variable within a given lexicographical level. The lexi
cographical ordering of the program remains static as 
the program is executed, thereby allowing variables to 
be referenced via address couples as the program is 
executed. 

STACK ADDRESS 
MEMORY ENVIRONMENT 

... AREA... LIST 

C=Is~-----·{t~os~~~1 t---~------~= 
: = __ ~+.r 

DISPLAY 
REGISTERS 

P9 ... ... 

05 
04 
03 
02 
01 
DO 

I PROCEDURE ""," 

- - ~1P 1 
~ I PROCEDURE ·0". 

~=--==---+--+ ==4-
1:!L -~~. 

OUTER PROG. BLOCk 

I 

~----=± 
Figure 5 - Di~play registers indicating current addressing environ

ment 



BEGIN------------ Lexicographical Level"2" 

REAL VI i LL-2,8=2 
REAL V2j LL-2,8-3 
PROCEDURE Ai LL-2,8-4 

BEGIN--------- LexicoQraphical Level"3" 

RtAL V3 i LL - 3, 8-2 
PROCEDURE Bi LL"3,8-3 

l B. 
END ~ 

[

BEGIN------ LexiCOQraphical Level"4" 

V3-3j 
VI-V3, 

END; 

PROCEDURE C i 

Ci 
ENDi 

BEGIN--------- LexicOQraphical Level"3" 

REAL V4~ LL-3, 8· 2 
PROCEDURE DiLL -3, 8- 3 

[

BEGIN------LexicoQraphical Level "4" 

REAL V5 i LL -4,8- 2 
V4- 4 i 
V5-5j 
A· 
Vi-V4j 

ENDi 

Figure 6a-ALGOL program with lexicographical structur~ 

indicated 

PROCEDURE "a" 
- - Lexic09raphlcal Level"4" 

- - - -- Lexicographical LeveI"3" 

- - - - - - - - LexicOQraphical leY .. "2" 

Figure 6b - Addressing environment tree of A LGO L program in 
Figure 6a 

The B6500/B7500 contains a network of Display 
Registers (DO through D31) which are caused to 
point at the appropriate MSCW (Fig. 5). The local 
variables of all procedures global to the current pro
cedure are addressed in the B6500/B7500 relative 
to the Display Registers. 

The address couple is converted into an absolute 
memory address when the variable is referenced. The 
lexicographical level portion of the address couple 
functions to select the Display Register which con
tains an absolute memory address pointing at the 
MSCW related to the procedural block (environment) 
where the referenced variable is located. The index 

Burroughs' 86500/B7500 Stack Mechanism 249 

value of the address couple is then added to the con
tents of the Display Register to generate an absolute 
memory address to locate the variable. 

I t should be recognized that the address couples 
assigned to the variables in a program are not unique. 
This is true because of the ALGO L scope of definition 
rules, which imply that two variables may have iden
tical address couples only if there is no procedure 
within which both of the variables can be addressed. 
So this addressing scheme works because, whereas' 
two variables may have the same address couples, 
there is never any doubt as to which variable is being 
referenced within any particular procedure. 

What this does imply, however, is that there is a: 
unique place (a MSCW) to which each Display Regis
ter must point during the execution of any particu
lar procedure, and that the settings of the Display 
Registers might have to be changed, upon procedure 
entry or exit, to point to the correct MSCW. This 
list of MSCWs to which the Display Registers must 
point is called the addressing environment of the 
procedure. 

The addressing environment of the program is 
maintained by the hardware. It is formed by linking 
the MSCW's together in accordance with the lexico
graphical.structure of the program. This linkage infor
mation is contained with the Stack Number (Stack 
No.) and Displacement (DISP) fields of the MSCW, 
and is inserted into the MSCW whenever a procedure 
is entered. The contents of the DISP field indicate 
the environment in which the entered procedure was 
declared. Thus the addressing environment list is 
formed by linking each procedure entry Mark Stack 
Control Word back to the MSCW appearing immedi
ately below the declaration for that procedure. This 
forms a tree structured list which indicates the legiti
mate addressing environment of each procedure under 
dynamic conditions (Figs. 5 and 6B). This list is 
searched by the hardware to update the Display 
Registers' contents whenever a procedure entry or 
exit occurs. 

The entry and exit mechanism of the Processor 
hardware automatically maintains both stack lists to 
reflect the current status of the program. Therefore, 
the system is able to respond to, and return from, 
interrupts conveniently. Interrupt response is handled 
as a procedure entry. Upon recognition of an interrupt 
condition, the hardware causes the stack to be 
marked, inserts into the stack an indirect reference 
word (address couple) pointing to the interrupt han
dling procedure, inserts a literal constant to identify 
the interrupt condition, and then causes an entry into 
the operating system interrupt-handling procedure. 
The Display Registers will track with the entry into 
toe interrupt-handling procedure to make all legitimate 



250 Spring Joint Computer Conference, 1968 

variables visible. Also upon return! the Display 
Registers track back to the environment of the former 
procedure, making all of its variables visible again. 

lJ' ultiple stacks and ie-entiant code 

The 86500/87500 stack mechanism provides a 
facility to handle several active stacks. These stacks 
are organized into a single tree structure. The trunk 
of this tree structure is a stack which contains certain 
operating system global variables, and contains all of 
the Segment Descriptors describing the various pro
cedures within the operating system. 

Let us make a distinction between a program, which 
is a set of executable instructions, and a job, which 
is single execution of a program for a particular set of 
data. As the operating system is requested to run a 
job, a level-l branch of the basic stack is created. 
This level-l branch is a stack which contains only the 
Segment Descriptors describing the executable code 
for the named program. Emerging from this level-l 
branch is a level-2 branch, a stack to contain the vari
ables and data for this job. Thus, starting from the 
job's stack and tracing downward through the tree
structure, one would find first the stack containing the 
variables and data for the job (at level 2), the program 
code to be executed (at level 1), and finally the operat
ing system's stack at the trunk (level 0). 

A subsequent request to run another execution of 
an already-running program would require that only a 
level-2 branch be established. This level-2 stack 
branch would sprout from the level-l stack that de
scribes the already running program. Thus two jobs 
which are different executions of the same program 
will have a common node, at levell, which describes 
the executable code. It is in this way that program 
code, which is not modifiable, is re-entrant and shared. 
It comes about simply from the proper tree-structured 
organization of the various stacks within the machine. 
Thus all programs within the system are re-entrant, 
including all user prograJl?s as well as the compilers 
and the operating system it·self. ' 

The B6500/87500 stac~ mechanism also provides 
the facility for a single job to split itself into two inde
pet:ldent jobs. It is anticipated that the most common 
lise of this facility will occur when t~ere is a point in 
a job where two relatively large .independent processes 
must be performed. This kind of splittjng could be 
used to make full use of a multiprocessor c'onfigura
tion, or simply to- reduce elapsed time by mUltipro
gramming the independent processes. 

This kind of program splitting becomes almost 
literally "reproduction by budding" in the B6500/ 
87500 system. A split of this type is handled by estab
listing a new limb of the tree structured stack, with 

the two independent' jobs sharing that part of the 
stack which was created before the budding was 
requested. The process is recursively defined, and 
can happen repeatedly at any level. An implementa
tion restriction limits the total number of separate 
stacks to 1024. 

This tree-structured organization for handling 
multiple stacks is referred to as the Saguaro Stack 
System. 

Linkage of stack branches is achieved through a sin
gle array of data descriptors, the stack vector array 
(Fig. 7). A data descriptor is entered into the array 
for every stack branch as it is set up by the operating 
system. This data descriptor, the stack descnptor, 
serves to describe the length of the memory area 
assigned to a stack branch, and its location in either 
main memory or on disk, 

JOB 
STACK 
NO.n 

I + ~ 

JOB 
STACK 
NO.3 

JOB 
STACK 
NO.2 

STACK VECTOR 
DESCRiPTOR 

JOB 
STACK 
NO.1 

MSCW 

~~ .. --------~ 

Figure 7 - Multiple linked stacks 

DISPLAY 
REGISTERS 

A stack number is assigned to each stack branch 
to indicate the position of its stack descriptor within 
the stack vector array. The stack 'number is used as an 
index value to locate the related stack descriptor 
from the stack vector array for subsequent reference. 

The stack vector array's size and location in 
memory is described by the stack vector descriptor. 
This descriptor is located in a reserved position of 
the stack's trunk (Fig. 7). All references to stack 
branches are made through the stack vector descriptor 
which is indexed by the value of the st~ck number 



to select the stack descriptor for the referenced 
stack. 

A Presence 8it Interrupt is incurred upon making 
reference to a stack which is not present in memory. 
This Presence 8it Interrupt facility provides the 
means to permit stack overlays and recalls under 
dynamic conditions. Idle or inactive stacks may be 
moved from main memory to disk as the need arises, 
and when subsequently referenced will cause a 

ing system to recall the non-present stack from disk. 
Referencing· a . variable within the current address

ing environment· of an active procedure is accom
plished through the use of the address. couples con
tained in the IRW and the address couple field of the 
Program Control Word (PCW) as shown in Fig. I. 
80th· references are made relative to the Display 
Registers specified by the address couple. The ad
dress couple and Display Registers are usable only 
for addressing variables within the scope of the cur
rent addressing environment. Reference to variables 
beyond the scope. of the current environment is ac
complished by a stuffed I R WS. This causes the ad
dressing to be accomplished by addressing relative 
to the base of the stack (BOS) in which the variable 
is located. 

The IRWS contains information specifying the 
stack number (Stack No.), the location (DISP) 
of the related MSCW, and the displacement (8) of 
the parameter relative to the MSCW. The absolute 
memory location of the sought parameter is formed by 

8urroughs' 86500/87500 Stack Mechanism 25 I 

adding the contents of DISP and 8 to the base address 
of the referenced stack. The base address of the stack 
is determined by accessing the stack descriptor as 
described previously. The information contents of 
the stuffed IRWS with the exception of 8, is dynamic 
in nature and must therefore be accumulated as the 
program is executed. The contents of the stack num
ber (Stack No.) and DISP fields are entered into the 
IRWS by a special hardware operator which is in-

to pass a parameter by name. 

ACKNOWLEDGMENTS 

Recognition for the stack concepts and operating 
philosophy of 8urroughs' 86500/87500 system must 
be extended to many system designers engaged in 
both the 85500 and 86500/87500 programs. Among 
the contributors, special mention should be made 
for B. A. Creech, 8urroughs Corporation, and R. S. 
8arton, W. M. McKeeman, consultants. 

REFERENCES 

1 Burroughs' B5500 information processing system reference 
manual 
Burroughs Corporation 1964 

2 A narrative description of the Burroughs' B5500 disk file 
master control program 
Burroughs Corporation 1965 

3 B RANDALL L J RUSSELL 
ALGOL 60 implementation 
Academic Press III 5th Avenue New York 1964 





A compact, economical core memory with 
all-monolithic electronics 

by ROBERT W. REICHARD and WILLIAM F, JORDAN, JR. 
Honeywell Computer Control Division 
Framingham, Massachusetts 

INTRODUCTION 

The computer memory business. has been plagued at 
various times during the past 8 years with a cliche 
that the art of core memories would be exhausted 
within 5 years. This paper describes the attainment 
of new standards of size and cost and new design 
features intended to further postpone this elusive 
demise. . 

The new standards include greater reductions in 
cycle time, volume, and selling price than had been 
hoped for. These significant improvements involved 
the following factors: 

Use of monolithic integrated circuits for all major 
electronic functions related to the core stack; 

Integration of a core driver transjstor with decod
ing/timing logic circuitry; 

A novel packaging concept without wired back
board; 

A high-performance power supply subsystem. 

Over the past decade, the cost per bit and cycle 
time of state-of-the-art core memories have simul
taneously been halved every 2 t years. In large 
measure, this is due to the continuing competitive 
market and to the appearance of new suppliers, some 
of whom have yet to become significant factors in 
the market. Some short-lived competitors grasp an 
occasional opportunity and depart, affecting the 
market by their having appeared. 

The core memory business may not have attained 
a semblance of maturity and stability. Opportunism 
has been amply demonstrated as an unsatisfactory 
business approach in the long run. A classic approach 
to design, product development, and release to 
manufactur,e has been recognized as desirable. 
There is a paradox here in that, as the market grows 
and larger production runs become necessary and 
possible, tooling requirements increase in scope and 
duration and the conception-to-production cycle 
tends to increase. Perhaps this . is the reason that 

253 

several of the major suppliers in the core memory 
business have been able to continue in business des~ 
pite the fact that they are essentially specialty-houses 
with platoons of project engineers. However, there 
seems not to be general tacit admission that the 
economy will no longer support such frivolity; or more 
properly, that such approaches can no longer compete 
against that of a disciplined organization. 

The logical conclusion from this set of constraints 
is that design capabilities and requirements must be 
projected far' into the future, and an organization 
must be willing to back long, expensive programs 
which generally admit to rather high risk. The success 
of ~ne or more suppliers in doing this can mean 
only jeopardy to those attempting to operate in the 
old "job-shop" manner. 

Product requirements 

A planned, disciplined approach with stated ob
jectives of main-frame capacities, fast cycle time, 
economy, fast delivery, modularity, and small size 
will be discussed in this presentation. 

An obvious, evolutionary tendency has been for 
memory capacities to become larger in order to meet 
the needs of ever more powerful hardware and soft
ware products. The system· described provides a 
maximum capacity of approximately 300 kilobits
as 8192 words of 36 bits, or ~ 6,3 84 words of 18 bits. 
The limiting capacities are a result of cost-speed
capacity trade-offs as well as the limit of signall 
noise ratio affected by sense-winding geometry and 
length. This system, with its power supply unit, is 
shown in Figure 1. 

Detailed studies of the maximizing the performance/ 
cost index of core memory systems dictated that the 
mode of operation of this memory be that known 
currently as 2t D. The technique dates back more 
than a decade, but only recently has become econ
omically attractive, due to the advent of integrated 
circuits. 



254 Spring Joint Computer Conference, 1968 

Figure 1 - 300-Kilobit memory system and power supply 

The technique is an elemental implementation of a 
coincident-current memory in which one axis of_ 
read-write circuitry is replicated for each bit; the 
result is repetitive assemblies, but of drive lines 
which are short, since they need not be continuous 
through the stack. This permits a new degree of 
freedom in optimizing the aspect ratio of bit areas 
for one or another parameter. A further gain is the 
obvious dispensing with inhibit windings, enabling 
smaller cores for a given size wire, and the saving 
of time formerly allocated to insuring time overlap 
on inhibit and write currents, plus time required for 
recovery of sensing circuitry from the inhibit tran
sients. 

Another goal stated at the initiation of this product 
development was the requirement for reasonably 
fast delivery, to order, of a variety of capacities, 
which is at odds with the concept of a hard-wired 
custom core stack. This last item can be expedited 
by the act of inventorying tested planes and stacking 
to order or inventorying an array of stacks; but 
clearly -a preferable route is to avoid stacking in its 
traditional sense. In the subject memory no hard
wired stacking ever is done; the implementation of an 
assembly of planes is achieved by pressure-contact 
connectors making a one-to-one connection between 
facing surfaces of adjacent boards. Sixty-four such 
one-to-one connections are made by each proprietary 
connector. The resultant connections not only achieve 
the linking of the long drive axis but also serve to 
distribute dc power and logic signals through the 
resultant assembly. 

The results of using stackable planes include not 
only the obvious ones of less restrictive inventory 
capability and/or less dependence upon the supplier 
but also lower cost, since stack test and tedious stack 

- repair are eliminated. Maintenance _ and repair are 
, also simplified since plane replacement is practical, 

and a true capability for incremental field expansion 
is made possible. 

Modularity of capacity was also a prestated 
goal at the initiation of this design. As with any 
manufactured product, a considerable degree of 
standardization is necessary to achieve economical 
manufacture. The modularity of the present equipment 
is fixed by the design at 32,768 bits, or the content 
of one plane. Thus, increments of capacity are 4 
bits in 8K memories or 2 bits in 16K memories. 
Inasmuch as the 4K memory uses half-density planes, 
the modularity is also 4 bits at that capacity. Only 
five other major electrical circuit modules are re
quired, with a total diversity of eight assemblies, to 
implement systems of 33K through 300K bits of 
storage. Standardization is further attested by the 
fact that only seven IC flat packs are used throughout. 
These factors result in a system which requires 
minimal inventory vis-a-vis a broad range of capacities 
that can be assembled in short periods of time. 

Electrical design 

In present-day state-of-the-art electronic equipment 
it is becoming more and more difficult to dissociate 
mechanical design from electrical design. In this 
design it was found possible to avoid artificial delin
eations and in fact to capitalize upon -the interde
pendence of spatial and electrical characteristics 
both in a miscroscopic (e.g., etched conductors) 
and macroscopic (e.g., organizational) sense. Thus, 
the following discussion treats those areas in which 
the electrical requirements predominate. 

Packaging organization of this memory system was 
conceived to emphasize an intimate, orderly relation
ship' between data logic and storage. All of the 
circuitry associated with the regeneration of data 
from a core plane is located on peripheral plug-in 
cards. The cards and cores are mounted in -a co~ 
planar relationship permitting an orderly stackup 'of 
complete regeneration channels. 

A 4-bit, 8192-word data plane is illustrated in 
Figure 2. The core plane contains conventional 
20 mil o-d cores requiring nominally 800-mA full
drive current, in a conventional 2 t D three-wire 
rectilinear array. The long lines are re-entrant such 
that when current linking coincidence occurs in a 
selected core, anti-coincidence occurs in that core 
corresponding to the - second intersection. Further
more, the two positions of each re-entrant line link 
separate sense windings, two of which are inter
leaved within each bit area. This results in sense
line noise of 64 delta-pairs on the long lines and 
only 8 pairs on the short lines. Printed-circuit sense 
wiring pairs connect to monolithic sense amplifiers 
mounted on the data cards. In addition to optimal 
differential terminators, a resistor is provided on 



Compact, Economical Core Memory with All-Monolithic Electronics 255 

each data card to optimize the common mode term
ination. High-level TTL gates are also mounted on 
the data cards for storing, gating, and output trans
mission line driving functions. 

AIR FLOwl CORE PLANE 

SELECTION CARD DATA CARD 

}

SIGNAL 
INPUT/ 
OUTPUT 

Figure 2 - Organization and cQnstruction of data plane 

Adjacent to the data card is the selection card, 
which contains all of the decode-drive circuitry 
required for the short drive selection axis. An 8192-
word selection. card contains circuitry for "four 
4X 4 matrices; a 16,384-word selection card contains 

_ two 4,x 8 matrices. Storage for the associated address 
bits is provided by R -S TTL flip-flops mounted on 
each selection card~ Although these address flip
flops are repeated on tach plane their ulilization is 
not extravagant. The redundant storage actually 

,serves as local modular buffering~· for the double 
rail address signals. The organization of address 
storage is unique in this unit. Address registers 
respond to their inputs at all times except when the 
memory is busy., This is the so-called open-ended 
address register configuration. "Look ahead" gating 
is 'also used to shorten the address delays by a tech
nique similar to that of feed-forward in servo systems. 

,The long-axis drive and control circuitry is pack
aged on the top and bottom planes to sandwich the 
core stack. The top plane contains integrated selection 
diodes for the long-axis 16 x 16 matrix. A control 
card and a long~axis selection card are both mounted 
on each end plane. The control card contains logical 
gates and an electrical delay line for the generation 
of memory timing signals. Each long-axis selection 

card contains 16 switch-sink pairs for one coordinate 
of the 16 x 16 matrix. 

The 'key to this packing desity is the very compact 
decode-drive circuitry which is constructed of mono
lithic chips. One chip contains two 400-mA switch 
pairs with decoding for eight or fewer address bits. 
Since logical ground and the sink emitters are com
mon, this function has exactly 14 pins for use in a 
standard flat pack. The smaller matrices required 
on the short axis of the 21 D memory organization 
also efficiently employ this function; unused address 

, inputs are used for the lUodulation and zoning of data. 
A line selection matrix organization has been 

conceived which relieves some of the integrated
circuit liabilities: voltage breakdown, pin limitation, 
and accidental destruction. This arrangement of 
decode-drive chips with a memory current-limiting 
resistor prevents catastrophic damage from inad
vertent simultandous activation of read and write. 
I t avoids the requirement of saturating a switch to 
a memory drive voltage and therefore avoids the 
need of a higher-voltage supply. Any output may 
be shorted to ground without damage. The drive 
current resistor is time-shared for the read and 
write halves of the memory cycle. The single resistor 
(having full duty cycle dissipation capability) is 
clamped to limit the I C voltage requirement. A 
technique is employed with the long-axis address 
selection matrix for reducing the loading effect of 
drive line bus capacity; integrated diodes are used 
to segment the 16-line busses into four groups of 
four drive lines. 

Circuit layouts were judiciously considered to 
satisfy the problems of signal transmission, noise, 
and termal management. On the selection board, 
driver flat packs are mounted on a wide copper lamina 
with a thermal compound. The row of flat packs is 
perpendicular to the cooling air stream to avoid 
cumulative heating effects, since, in the worst case, 
each flat pack can dissipate some 600 milliwatts. 
The lamina is expanded, filling the unused area on the 
selection board to enlarge the cooling area. The 
complete regeneration path is organized with the 
cooling air stream passing over the heat-sensitive 
cores and sense amplifiers first, then the diode 
matrices and- selection circuit, and finally the very
high-dissipation drive resistors. 

Care was taken to -employ as few types of materials 
and assemblies as possible. As part of this theme, 
a scheme for replacing odd and even core planes 
with just one assembly was conceived. Three types 
of card layouts and three types of board layouts 
satisfy all layouts and no logical hook-up wiring, 
the optional system characteristics - signal inversion, 



256 Spring Joint Computer C'onference, 1968 

data levels, and partitioning zones - are accomplished 
by the proper placement of jumpers on the circuit 
cards. 

From an electrical point of view, it would have 
been tempting to use multilayered cards with ground 
pianes. This expensive approach was avoided, how
ever, by carefully laying out minimum signal lines 
and filling any unused area with ground or supply 

. bus pattern·s. The data card has been especially 
considered to insure balanced sense lines and the 
absence' of electromagnetic or electrostatic coupling. 
On the core planes the sense lines are surrounded 
with ground peninsulars for current-free electro-

. static shielding. The sense boundary connector 
pins on the data card are connected on one end for 
the same reason. 

The creation of ground noise is minimized on the 
selection board by an alternate ac circuit return 
which is laid out for close coupling to the input 
drive current paths. The mutually cancelling effects 
of flux linkage from opposing fields leaves only 
magnetic leakage inductance to impede the flow of 
current. 

The degree to which a system is implemented by 
repeated subassemblies is an important diagnostic 
characteristic. High repeatability decreases the 
needed spare parts inventory. Repeatability of dis
connectable subassemblies permits transp.osition 
of parts for localizing faults, and comparison for 
tracing. In this system, all of the signal paths (in
cluding drive currents) associated with a data bit are 
limited to a specific plane level for orderly modularity. 
All of the active circuitry is located on plug-in cards. 
Many of the selection diode flat packs (36) are on 
exposed surfaces of the assembly. The remaining 
(52 in an 8K x 24) can be reached by disassembling 
the stack. All of the flat packs. and all of the plug-in t 

cards are repeated. 

Mechanical implementation 

As was indicated previously, the memory module 
described herein provides 300 kilobits of storage 
in substantially less than 1 cubit foot in a package 
which includes cooling fans and filters. In actuality 
the package contains some 20% unused volume, so 
that the equipment represents" very' high' functional 
packaging density for a high-performance commercial 
memory. One fact in the space economy is the relative 
lack of discrete components. Another very important 
one is the lack of a' conventional backboard. Two 
proprietary connectors are instrumental in achieving 
this. One is the stacking connector mentioned pre
viously, which provides 64 connections on 0.050-
inch centers, and incorporates precise aligning pins. 

The contacts are precious metal, as are the pads on 
the mating PC boards. The other connector is an 
88-pin edge connector with a double rank of precious 
metal-tipped contacts on 0.100-inch centers, and 
provision on the affixing end fer mechanical and 
soider retention to a PC board. The appiication of 
this connector is to effect an edge-to-edge con
nection of numerous close-spaced contacts with a 
minimum of hardware. These contacts also mate 
with precious metal-plated pads on another PC 
board. This edge connector is in practice affixed to 
each plug-in board, and is therefore replaceable if 
ever necessary. Thus, there is no backboard in the 
conventional sense and most interboard connections 
have essentially a short, straight run with minimal 
connector capacity and minimal length, hence minimal 
inductance. 

Figure 3 indicates the internal construction of the 
system. 

Figure 3 - View of internal construction of memory system 

There is some conventional wiring present in this 
system, and that is, in addition to the obvious power 

. wiring, the input and output signal wiring from 
the I/O connector to each board in the "core stack." 
These wires are all twisted pairs, affixed to a crimp-on, 
poke-home contact at the I/O connector end and at 
the other end to a crimp-on contact which slides onto a 
20 X 30.;.mil rectangular pin affixedto the stack boards. 
There are no hand-soldered wires in the unit except in 
the ac fan power wiring. Note that the' signal leads 
enter and exit via the stack boards even though all 
electronic functions are performed on the plug-in 
boards. This is done so that insertion and extraction 
of boards is kept simple and that the number of con
nectors is kept to a minimum. That signal paths are 
lengthened by this procedure may be questioned, but 



Compact, Economical Core Memory with All-Monolithic Electronics 257 

any added length is over well-controlled and absolute- . 
ly repeatable signal paths. 

A single, dense I/O connector containing 200 pins 
is utilized. A central jackscrew and positive alignment 
pins Insure against damage to pin or shell by mismat
ing. The mating shell and loose pins furnished to a cus
tomer with each unit may be crimped or soldered, and 
no tools are necessary to insert the wired contacts. 

High-performance card extenders were developed 
to permit operation of any plug-in board in position 
for maintenance checks without compromising system 

-performance. This is achieved through a simplified 
multilayer board technique. The added ground planes 
reduce coupling effects between lines, and lower the 
lime impedance to avoid discontinuities which have 
previously restricted the use of extenders. 

Results achieved 

The memory system described here is the Honey
well Computer Control Division ICM-500 jL-Store, a 
product first delivered in January, 1968 and now being 
produced in quantity. This system, with' capacities 
as great as 8192 words of 36 bits, provides 600-ns 
cycle time and 300-ns access time. It is packaged in 
a sturdy but simple ~nclosure about 0.6 cubic foot 
in volume and 25 pounds in weight. This enclosure 
includes flushing fans and filters and may be mounted 
via either of two surfaces in any of several orienta
tions. 
, Power consumption of the largest module is approx

imately 350 watts. More than half of the system power 
is dissipated in the set of drive resistors, all of which 
are located at the exhaust end of the cooling air 
stream. Four supply voltages are req1Jired, all refer
enced to ground. A proprietary power supply furnish-

es all of these voltages, with appropriate regulation, 
for one maximal module. It also provides the usual 
features of line-voltage sensing and low-line-voltage 
indication, with provision for enabling orderly and 
non-destructive shutdown as well as startup, over
voltage and overcurrent protection, remote-sensing 
for termperature compensation of drive voltage, and 
thermal overload protection. This supply is operable 
from a nominal lIS-volt line, 50 through 400 Hz. It 
weighs only 45 pounds and occupies about one-half 
cubic foot. 

By the application of reliability forecasting tech
niques refined via similar predecessor products, an 
MTBF of some 25,000 hours is forecast for this sys
tem and a unit is presently on life test to commence 
accumulation of supporting data. All logical and driv.e 
circuits are immune to failure due to accidental 
groundins, and the selection matrix design is such 
that excessive read and write currents cannot flow 
simultaneously and cause destruction to components 
or to stored data. In addition, the fault-localizing time 
is short since functional subunits are interchangeable. 
The availability of high-performance extender boards 
also enables functional boards to be extended for 
signal tracing without compromising operational 
speed. Test points, accessible without any disassem
bly or unplugging of cards, also facilitate the localizing 
of signal interface problems. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge contributions to the 
development of this product by personnel of the 
Memory Products Department at Honeywell, Com
puter Control Division, particularly Mr. Dana 
W. Moore, and by members of related areas. 





A progress report on large capacity magnetic 
film memory development 

by JACK I. RAFFEL, ALLAN H. ANDERSON, THOMAS S. CROWTHER, 
TERRY O. HERNDON and CHARLES E. WOODWARD 
Massachusetts Institute of Technology 
Lincoln Laboratory* 
Lexington, Massachusetts 

INTRODUCTION 

In 1964 we proposed an approach to magnetic film 
memory devel,opment aimed at providing large; high
speed, low-cost random-access memories. 1 Almost 
withQut exception, all early attempts at film memory 
design emphasized speed with little consideration for 
the potential of batch-fabrication to reduce costs. 
Based on our earlier work in building the first film 
memory in 1959,2 and a 1,000 word, 400 nsec model 
for the TX-2 computer in 1962,3,4 we had reached 
some fundamental conclusions about the compati
bility of high speed and low cost for destructive
readout film memories. 

It seemed clear to us that in order to provide sig
nificantly more storage capacity per dollar it was 
necessary to achieve very high bit densities, to 
eliminate as far as possible internal connections, 
to fabricate access wiring integrally with the storage 
medium if possible., and to provide very wide magnetic 
operating tolerances in order to achieve adequate 
yields for arrays of 105 bits or more. It was also clear 
that for small memories the cost of storage elements 
is essentially irrelevant and that the area of significant 
impact for batch-fabricated films should be in large 
memories, i.e., greater than one million bits. 

There were at least five areas of major uncertainty 
when this proposal was made: 

(1) The signal to be detected in the presence of both 
random noise and parasitic transients was lower 
than in any previous magnetic store. 

(2) Techniques did not exist for forming precise, 
dense (2 mil width, 2 mil space) lines over large 
areas (l0" X 1.5") cheaply and reliably. 

(3) Routine evaporation of uniform magnetic films 
over large areas with elimination of defects 

·Operated with support from the U.S. Air Force. 

259 

greater than 0.5 mil in any dimension remained 
to be achieved. 

(4) Connection to many lines, even at the periphery, 
at these densities appeared difficult. 

(5) Finally, processing and testing of such large 
arrays had to be sufficiently automated to justify 
the pains taken to achieve high density. 

N one of the questions raised here has been an
swereddefinitively ,but the completion ofa one million 
bit prototype memory (show!1 in Fig. 1), which 
is to be installed in the TX-2 computer, has pro
viqed us with enough encouragement on each of 
these points to justify a high degree of confidence 
and to open up exciting possibilities for extending 
these techniques further than had originally been 
anticipated. 

The most interesting feature of the memory for 
system applications is the. parallel-access to 352 bits. 
This multiword access should be useful for a number 
of applications such as parallel processing of the 
Illiac IV variety, list processing, searching, and 
display buffering. Although for the present TX-2 will 
handle a single subword of 44 bits on each memory 
access, the memory bussing arrangement is such 
that access may be made to each of the eight sub
words during the memory cycle of less than one 
microsecond. 

M emory design 

A. Structure and organization 
The basic structure of the memory is shown in 

Fig. 2. A single layer composite magnetic film is 
operated in a rotational destructive-read-out mode 
with two access wires.2 Each bit is composed of two 
2 x 6 mil intersections of the word and digit lines with 
a density of 12,500 bits/in2. Magnetic film structures 
which provide flux closure in the hard, easy, or both 



260 Spring Joint Computer Conference, 1968 

Figure I - One million bit magnetic film memory. The memory 
stack is in the center, under the dark plate, with the word line 
connections and diode matrix at the top and bottom. Word access 
circuitry is in the two card files. One digit card is plugged into 
digit lines at the upper right-hand corner. A fully populated memory 
will have digit cards in the sockets on all four corners, top and 
bottom. The digit lines shown have not yet been connected to 

sockets-

...--r --.... ____________ ...r-"-"'""L._ FIBERGlASS - O.OO4-INCH THICK 

DIGIT LINE - 0.0001)( 0.006 INCH 
O.Olo-INCH CENTERS 

~ MAGNETIC LAYER - 11001)( 0.002 INCH 

/ -GLASS SUBSTRATE - 1/4iNCH THICK 

WORD LINE INSULATION 
0.0002 )( 0.002 INCH 

ON 0.004-INCH CENTERS 

WORD LINES 

Figure 2 - Detail of memory structure and arrangement of access 
lines. Two 2 x 6 mil intersections form one memory bit 

directions were considered but rejected when ade
quate margins were obtained with the single layer. 
Although the open structure has fabrication ad
vantages, the closed structures remain of interest 
for future work. 

The organization of the one mi1lion bit memory 
is shown in Fig. 3. The ten inch long glass substrates 
each have 360 lines of 2 mil width which have been 
formed by etching vacuum evaporated magnetic 
and copper layers. Storage is in the magnetic layer 
while the copper forms the word line. Forty lines on 
each substrate are redundant and can replace other 

rJ 

I 

I I 
352/ fI 

DIGITS I 
II I I I II II I I 

i UUUUU iJ 

I I 
I: I II II II II I: I 

II UUUUU--L-! 
~--------------~v~---------------J 

3200 WORDS 
(PLUS 400 SPARES) 

352 SENSE AMPLIFIERS 

352 DIGIT .DRIVERS 

100 WORD SWITCHES 

64 WORD DRIVERS 

PROTOTYPE LARGE CAPACITY MEMORY 

1. 1 x 10
6 

BITS 

Figure 3 - Memory organization. Five substrates and four digit 
pieces comprise each half of the memory 

defective lines through simple wiring on the edge 
connectors. Advantage has been taken of the low 
back voltage of the storage element to minimize 
stack interconnections by addressing many bits, 
up to 384, on each word line. The digit-lines are 
formed from pairs of 6 mil wide copper lines on 10 
mil centers which have been etched from copper
clad fiberglass in a hairpin configuration as shown 
in Fig. 2. Two digit pairs are connected in a bridge 
connection to the digit driver and sense amplifier 
as shown in Fig. 4. Stack assembly is accomplished 
by pressing the glass substrates against the digit 
lines with no critical registration. The TX-2 memory, 
as shown in Fig. 3, uses ten substrates and 352 digit 
lines to form a 3200 x 352 stack, although to the 
computer it appears as a 25,600 x 44 memory. 
Since read-out is destructive, each digit-line requires 
a, sense amplifier and digit driver. It was recognized 
at the outset that the overall costs for the prototype 
would be dominated by the digit circuitry and that an 
economical module size would use longer digit lines 
and more substrates. 

DIGIT 
DRIVER 

Figure 4 - Digit coupling circuit 



Progress Report on Large Capacity Magnetic Film Memory Development 261 

B. Digit circuitry 

If one accepts the premise that low cost depends 
crucially on batch-fabrication whose effectiveness 
in tum depends on high density, the ultimate lower 
limit on bit size and signal energy becomes a deter
mining factor in memory design. This limit is set 
by random noise considerations. It has been shown5 

that the mean time between failures for an M digit 
memory with a cycle time T and peak-signal to 
rtn<1_nni<1p r~tin A Irr i<1 ni"pn h,,· 
... ..I..& .. UJ .1.1."' .. ..., ....... .I.1LA.II,..I.'-' .L 1/ v .I.~ 0.1. 'Y ""'.1..1 V J • 

2T 
MTBF= (I-erf A/V2a-) M 

This relationship gives a required signal-to-noise 
ratio of 8.3: 1 for a MTBF of one year for a 1 /Lsec, 
400 bit memory. In this design the bit size was 
reduced to the limits of our then existing fabrication 
technology with a resultant bit signal amplitude 9f 
130 /Lvolts, 35 nsec wide, at the sense line terminals. 
This small signal in the presence of rather large drive 
currents imposed stringent requirements on the sense 
amplifier and the coupling circuitry between it and 
the digit lines. The essential features of the coupler 
are shown in Fig. 4. The two halves of the digit line 
pair are connected in series to the sense transformer 
after passing through common mode filters. The digit 
current is transformer coupled to the two digit 
halves so as to feed them in parallel, thus providing 
a cancellation of the two digit currents at the sense 
transformer. A small potentiometer compensates for 
mismatch in digit line resistances. The sense system 
bandwidth is 14 MHz, the noise figure is 6 dB, and the 
peak-signal to rms-noise ratio is 27:1. A synchronous 
clamp samples the sense amplifier output just before 
strobe time and establishes a relative base-line 
reference from which to measure signal excursion, 
thus eliminating the effects of low frequency compo
nents in the digit transient. However, this introduces 
a random noise component in the baseline which 
leads to a total augmentation of the noise by V2, 
reducing the signal-to-rms-noise ratio to 19:1. 

Two synchronous clamps are used as a' SPDT 
switch to direct the sense -amplifier output to the 
appropriate side of the strobe flip-flop, dependent 
on which half of the memory is being addressed. 
These strobe flip-flops are also the buffer storage and 
are arranged in a rectangular array of 44 bits by eight 
subwords. Anyone of the subwords can be selected 
for writing into or reading out of the memory by 
external access circuitry. 

The polarity switch for the digit pulse is a flip-flop 
which is transformer-coupled to the digit lines. 

Power is applied from a pulser shared by four digit 
circuits. The flip-flop state, and so the output polarity, 
is determined by the strobe-buffer flip-flop. Transition 
times are 25 nsec for the operating digit current of 
190 rna ± 40 mao Four complete digit channels are 
packaged on one card which plugs directly into 
sockets on the digit lines as shown in Fig. 1. 

C. Word circuitry 
Word-lines are connected in groups of eighteen 

lines (two of which are spares) on the substrate . 
The common end of a group is selected by a transis
tor switch and the lines driven through a diode 
matrix. Because of packaging considerations, the 
3200 lines are driven by two 32 x 50 matrices. Word 
current amplitude is 500 ma with rise and fall times 
of approximately 35 nsec. 

D. Nonrandom noise 
Great care is necessary in the stack design and 

fabrication to minimize all digit-line difference mode 
voltages other than the signal. 6 At signal time, noise· 
may be generated by either inductive or differential 
capacitive coupling between word and digit-lines, 
both of which may be caused by line defects and spac
ing nonuniformities. Maximum allowable noise of 
about one half signal amplitude is determined by 
random noise and strobe threshold uncertainty. 
Noise due to group-switch selection voltages and 
the digit transient largely determine the memory 
timing. 

E. Timing 
The access time of the memory from change of 

address to information output from the buffer flip
flops is about 450 nsec. The largest contribution to 
this delay is the transient on the sense-line due to 
group-switch voltage transitions. The circuit-limited 
cycle time for read-rewrite or clear-write is 600 nsec. 
Recovery from the digit-pulse transient limits the 
total cycle time to l/Lsec with the digit transient over
lapping the group-switch transient. 

Production techniques 

A. Film preparation 
In order to provide the very high single-bit margins 

necessary to obtain good yields on 100,000 bit arrays, 
a wall coercive force specification was chosen which 
was well above the maximum digit writing field. The 
film specifications are He ;::: 15 Oe, intrinsic Hki ::::; 20 
Oe, a90 < 5°, skew f3 < 2°, and thickness d = 1200 
± 150A. The best method found to obtain these 
characteristics was to deposit a two-layer film,1 
having typical characteristics shown in Table I. 



262 Spring Joint Computer Conference, 1968 

T ABLE I - Characteristics of Composite Magnetic Film 

doH k He a90 {3 
First layer 800A 250e' 250e ±3° ±O.5 ° 
50% Co 47% Ni 3% Fe 

Second layer 
83% Ni 17% Fe 

Composite 

° 400A 30e 20e 

° 1200A 150e 150e ±3° ±1.0° 

The large skew of the second layer is due to the 
off-center position of its melt. The skew of the com
posite film, being largely determined by the thicker, 
higher Hk first layer, is within specification. The 
substrate is wI! soft glass, i 0.76" X 1.6", opticaiiy 
polished on one surface. It is cleaned in detergents, 
spray-rinsed, then dip-rinsed in distilled water before 
air-drying in a filtered-air bench. No ultrasonic 
cleaning is used as this may cause pitting of the sur
face. A drum holds fourteen substrates, and evapora
tion takes place from rf induction heated melts. A 
24" source-to-substrate distance reduces film thick
ness variation to ± 2.5% over the center 8" of the 
substrate occupied by memory elements. A layer 
of Cr about 100A thick is first deposited on the sub
strate to improve adhesion. The magnetic layers are 
deposited at a substrate temperature of 335°C and 
then 5 /L of copper at 150°C. The rate of copper evap
oration must be kept beiow i 6 /L per hour to eiiminate 
spattering tiny balls of molten copper onto the 
substrate. 

B. Fabrication 
Each substrate has 360 word lines in twenty groups 

of eighteen lines. Each group is terminated in a com
mon pad at one end and each line in a separate pad 
at the opposite end. Groups are interleaved so that 
180 lines are connected to diodes at each end. The 
arrangement of connection pads is shown in Fig. 2. 

Either holes in the line or bumps on the edge of a 
line may cause word noise. A good word line must 
have no defect larger than 0.5 mil in its largest 
dimension. After experiencing considerable diffi
culty in obtaining the desired line quality with photo
exposure of a resist through a mask, a mechanical 
scribing technique was developed for line definition. 
The substrate with its magnetic alloy and copper 
coating is coated with a thin layer of photoresist. 
The connection pads at the ends are photoexposed 
from a master pattern and the resist developed and 
cured. The word-line pattern of two mil lines on four 
mil centers is then scribed in the photoresist, without 
penetrating the copper, using a diamond tool. The. 
automated scribing machine which controls the tool 
has been built on a coordinatograph (Fig. 5). After 
a setup time of ten minutes, the machine operates 

unattended for the 2~ hours required to scribe one 
substrate. The metal layers are etched using standard 
procedures. The line edge smoothness is excellent. 
A typical substrate has perhaps three unacceptable 
nicks or opens and 25 unacceptable bumps or shorts. 
Scribing defects are nearly always attributable to 
defects in the copper layers which may cause the tool 
to jump or slide over some resist, thus accounting 
for the preponderance of bumps. These are easily 
repaired after etching by direct removal with a special 
scribing tool. The ends of the substrates are gold 
plated and the active area coated with a 0.4 mil 
layer of photoresist which insulates the word from 
the digit lines. 

Figure 5 - Scribing machine with a substrate being scribed. The 
photo-exposed word-line pads can be :o.'een . 

Connection to the word and group pads is by a 
pressure connection so that connections to a sub
strate in a tester or the memory can be made very 
easily. The connector assembly uses spring-loaded 
pin connectors to which the diodes of the selection 
matrix are wired. Substitution of spare for 'defective 
lines is done on this connector. 

The digit line patterns are eighteen inches long, 
two inches wide, and consist of 192 lines, six mils 
wide on ten mil centers (96 pairs). Half this length 
is active digit line, the other half being required for 
fan out lor direct connection to the dIgit cards as is 
shown in Fig. I. The memory uses eight such patterns. 
Digit conductors must be entirely free of shorts and 
opens and can have no holes in a line greater than one 
mil in diameter. The digit line is made by etching 
half-ounce (0.7 mil) copper laminated to five mil 
glass-epoxy. Exposure of the resist is by a pro
jection printing technique in which the photo master 
is spaced 25 mils away from the resist layer. A 



Progress Report on Large Capacity Magnetic Film Memory Development 263 

traveling front-sUIface mirror is used to paint the 
master and substrate with collimated light.s This 
eliminates all degradation of thephotomaster, and 
by projecting the light, left and right a few degrees 
off the normal any remaining dust particles are under
cut by the light and prevented from causing flaws in 
the resist coating. The photomasters are generated 
actual size by s~ribing emulsion-coated glass plates 
on the automatic scribing machine: 

Co Assembly 
The two halves of the memory shown in Fig. 3 

are assembled on two sides of a ground plane as can 
be seen in Fig. 1. A resilient material spaces the 
digit lines from the ground plane while the substrates 
are pressed against the digit lines by a cover plate 
with air bags. The resilient backing and air bags are 
necessary to achieve close spacing between word 
and digit lines .with loose tolerances on digit-line 
material and substrate thicknesses. The stack is 
assembled under clean conditions to eliminate dust 
particles which can cause spacing irregularities. 
Word connections are made on two sides of the stack 
and digit cards plug into digit-line sockets on the 
oiher two sides. 

D. Testing procedure 
The testing procedure is designed to eliminate as 

many defective substrates as possible before the more 
expensive processing steps of complete inspection, 
repair, and electrical testing. The composite film 
substrates have wide operating margins with uniform 
large-scale characteristics. Furthermore, the causes 
of errors at individual bit positions are well known 
and easily detected. These two factors make simple 
preliminary screening effective. After the substrate 
has been coated, it is tested in a B-H looper which 
measures average total flux, Hk , He, dispersion and 
skew. The pinholes greater than one mil in diameter 
are counted and adhesion checked. After scribing and 
etching the. film is again looped, line resist~nce 

checked, and line edge quality evaluated. The sub
strate transparency and regularity of the word lines 
make it possible to see small defects with the unaided 
eye. At this time curves of signal vs digit current of 
several bits may also be made as a check on the 
B-H loop data. 

All individual bit errors are attributable to physical 
defects such as scratches, pits, or dirt on the glass 
or holes in the layer of magnetic material all of which 
may decrease both signal amplitude and operating 
margins. Defects in the copper line edge larger than 
0.5 mil may cause undesired inductive coupling of 
word current into the digit line. The effect of a defect 
is often quite critically dependent on its position 
with respect to the digit line; a translation of two 

mils may be the difference between a good and bad 
bit. Word lines are continuous and to simplify memory 
assembly no attempt is made to maintain any word 
to digit line registration. In final testing, therefore, 
it is assumed that any defect may occur at the worst 
position. 

Fig. 6 is a photograph of the automatic pulse 
tester mechanism. The 360 lines of a substrate are 
accessed with a diode matrix. Only eight digit channels 
are provided and these digit lines are mechanically 
indexed automatically along the substrate to test 
the 384 possible digit positions. Several different 
worst-case tests are apI'lied in sequence to each 
word at each digit position. The signal' is sampled 
and tested at one threshold level, and on a failure the 
address and test number are pdnted. A test including 
1,000 adjacent word disturbs at a ~ MHz rate, 
each test repeated sixteen times, requires about 
45 minutes per substrate. To obtain worst position 
testing of. all possible defects it is necessary to do 
this test several times at increments of several 
thousandths of an inch. Although the number of 
disturbs is lower than desirable, the test is made 
at a digit current level for disturbing which is 150% 
of the digit write current. It would be relatively 
straightforward to use higher clock speeds to de
crease the total test time. 

Figure 6 - Substrate holding and positioning mechanism of tr.e 
electrical tester. Connection is made to the substrate with spring-
. loaded pin connectors 

The defect registration problem and difficulties 
with word noise in the tester have caused us to sup
plement the electrical test with optical inspection 
although improvements to the tester are possible 
which would make it alone sufficient. Using vertical 
illumination and looking through the glass substrate 
the operator views the magnetic layer at 100 power 
in a comparator as the substrate is moved along its 



264 Spring Joint Computer Conference, 1968 

length on a motor-driven table. All defects except 
copper holes can be seen and are recorded. Although 
it is fatiguing, the substrate can be completely scanned 
in two hours. With presently planned electro-optical 
detection· this time will be reduced to about· one hour 
with better· accuracy and minimal operator interven
tion. Acceptance of a substrate could be done after 
optical inspection alone, however, at present margins 
are examined in the tester at each defect position and 
a complete scan is performed as a double check. 
Optical inspection would clearly be difficult with 
multilayer closed structures and impossible with 
nontransparent substrates. 

E. Yields 
In interpreting yield data it is important to recognize 

that processing parameters and specifications for the 
runs induded have been barely stabilized. However, 
the yield question is so fundamental to the overall 
objective of reduced costs that it is essential to 
provide some hard data no matter how provisional or 
unrepresentative of ultimate possibilities. 

The yield data is taken from ten successive produc
tion runs of the evaporator starting with the first 
one in which composite films were evaporated to 
memory specifications. Of the total 131 substrates, 
22 were rejected for thin copper and copper surface 
imperfections, 16 did not meet magnetic specifica
tions, and one was damaged. These 39 were rejected 
before any processing; during processing 50 were 
rejected before final test for the following reasons: 

(1) spatter bumps on copper surface - too 
high an evaporation rate 16 

(2) poor adhesion 7 
(3) damaged in processing 9 
~ 4) poor Hne edges due to a bad scribing tooi 16 
(5) other 2 

Of the remaining 42, 23 were rejected in final testing, 
21 for excessive defects and 2 for poor magnetic 
characteristics. The 19 acceptable represent 15% of 
the total and 45% or those reaching final test. It is . 
quite certain that the large attrition due to poor cop
per, poor line edges, and damage can be significantly 
reduced. In one run in which there was no loss due to 
evaporation or processing defects, fourteen substrates 
were processed and nine were acceptable. 

The importance of providing redundancy should be 
emphasized. In the acceptable substrates two to 
eight lines were defective. Some of the 21 substrates 
rejected for excessive defects would have been 
acceptable if line substitutions were permitted on a 
32 instead of a 16 line-group basis since spare lines 
are committed to a group by the bussing on the sub-
strate. 

Costs 

Extrapolating costs from a prototype built using 
experimental techniques is always difficult. In 
particular, little effort has gone into minimizing the 
costs of associated electronics. On the other hand, 
it is possibie to make some reasonabie projections 
of material and direct labor costs for completely 
tested memory arrays based on present processing 
techniques. A single substrate cost under $100 
appears to be a reasonable estimate «0.1 ¢ per bit) 
assuming a potential yield of 50%. Present digit 
circuit costs are approximately $30 for parts and 
four man-hours/channel (3200 bits). Word circuit 
costs per word line are approximately $1.00 for 
parts and 0.1 man-hour (352 bits), It should be pos
sible to make substantial reductions in the labor' in
volved in ali phases of the fabrication process; parts 
costs would also be substantially reduced for quantity 
purchases. The use of integrated semiconductors 
could radically reduce circuit costs. 

Work has already begun on a memory which will 
use the techniques described above with digit lines 
extended by a factor of five in length to provide a 
better economic balance between digit circuit and 
other stack and circuit costs 

Future developments 

The processing machinery to accomplish the 
extended stack is sufficiently well developed that 
the main development effort can be applied to ex
ploring possibilities for achieving perhaps another 
order of magnitude increase in word-line density. 
Preliminary scribing and etching have produced lines 
as narrow as 0.1 mil with good edge definition over 
large areas. At line widths corresponding to some 
five waveiengths of iight the potential for batch
fabrication of multimillion bit arrays is accompanied 
by formidable problems in signal detection and 
interconnection. The technology of merging integrated 
semiconductor access circuitry and high-density film 
arrays presents considerable challenge with enormous 
dividends. It becomes reasonable, for the first 
time, to seriously consider the possibility of providing 
random-access static storage which is economically 
competitive with rotating mass memories. 

ACKNOWLEDGMENT 

Acknowledgment is made of significant contribu
tions to this program by Robert Berger, Gilbert Gag
non, Elis A. Guditz, Charles Hoover, and Mark Nai
man. 
REFERENCES 

1 J I RAFFEL 
Future developments in large magnetic film memories 
J App! Phys 35 No 3 part 2 p 748-753 March 1964 



Progress Report on Large Capacity Magnetic Film Memory Development 265 

2 J I RAFFEL 
Operating characteristics of a thin film memory 
J Appl Phys Supplement 30 No 4 P 60S-6\ S April 1959 

3 J W FORGIE 
A time- and memory-sharing executive program for quick
response on-line applications 
Proceedings of the 1965 Fall Joint Computer Conference 

4 J I RAFFEL A H ANDERSON H BLATT 
T S CROWTHER and T 0 HERNDON 
The FX-/ magneticfilm memory 
MIT Lincoln Laboratory Technical Report No 278 August 
1962 

5 H BLATT 
Random noise considerations -in the design of magnetic film 
sense smplijiers 

MIT Lincoln Laboratory Group Report 1964-6 August 1964 
6 J I RAFFEL A H ANDERSON T S CROWTHER 

T 0 HERNDON and C E WOODWARD 
A million bit memory module using high-density batch-Jabricated 
magnetic film arrays 
To be published Proceedings of the 1968 Intermag Conference 

7 T S CROWTHER 
Specijications and yields of composite magnetic films for a high 
density memory 
To be published Proceedings of the 1968 Intermag Conference 

8 E A GUDITZ T 0 HERNDON W J LANDOCH and 
G P GAGNON 
Large area high density precision etched wiring 
To be published Proceedings of th~ 19(j8 Electronic Com
ponents Conference Washington DeMay 1968 





A fast 2 Yz D mass memory 

by C. C. M. SCHUUR 
Philips' GloeilampenJabrieken N.V. 
Eindhoven, the Netherlands 

INTRODUCTION 

The mass memory described in this paper is a random
ly addressable magnetic core memory having a storage 
capacity of 0.5 Megabytes. 

Because of the many inherent advantages to be 
gained, such as low core-stringing, costs, high s~eed 
and negligible heat dissipation within the core st'ack, 
a 2Y2 D selection organization is used. Since the prin
ciple of this organizational structure has been ade
quately covered in recent literature 1,2,4,5 , jt is as
sumed known and will not be discussed further herein. 

In order to obtain maximum flexibility, the memory 
has been designed for five modes of operation as fol
lows: 

(1) Read cycle time 1.3 / pB 

access time 1.2 /ILS 

(2) Write cycle time 1.2 /JLS 

(3) Read-Restore cycle time 2.5 IlLS 
access time 1.2 /ILS 

(4) Read-Modify-Write cycle time 2.5 IlLS 
access time 1.2 IlLS 

(5) Clear-Write cycle time 2.5 /ILS 

The values listed above are very conservative. Witl l, 

the prototype, which is a completely populated memo 
ory, it cycle time of 2 usec and an access time of 1 
usec can be obtained under adverse conditions. These 
conditions are: 

a) Tamb = 5 °C - 45°C. b) worst case voltage 
tolerances of ± 10%. c) full worst pattern along word 
lines and bit lines. There are no limitations imposed on 
the sequence in which addresses are selected, or the 
number of times each individual address is selected se
quentially in any of these five operating modes. 

The design of the input and output circuits is such 
that the corresponding inputs or outputs of several 
memories can be linked by means of a single cable. 
By linking corresponding address bit inputs it is possi-

267 

ble to increase the number of bytes per memory word. 
By linking corresponding data inputs and outputs 
the number of storage locations can be increased. 

All the memory inputs and outputs are provided 
with gates. The gates can be controlled by the comput
er so that it is possible to use several memories or. 
banks of memories interleaved, which greatly' in
creases 'the effective byte transfer rate. Alternate 
memories or banks can be addressed every 100 ns. 

As is evident from the foregoing although the stor
age capacity is limited, the memory has ~een de
veloped for use with larger mass memory systems 
Small mass memories whose design is such that sev- ' 
eral of them can be combined to form a larger entity 
offer some significant advantages. They are relative
ly easy to mass produce, particularly the core' siacks~ 
and enable large mass memory systems to be tailored 
to the needs of the customer. When the memoiy m()d
ules in such a system are self-contained it is possible 
to effect repairs on a particular unit without having 
to switch off the whole system. One drawback of 
small 2Y2 D mass memories is that they require more 
electronic components per bit, however measures can 
be taken to overcome this. Because of their organiza
tional structure', 2Y2 D memories of a given size 
and speed are cheapest when the w~rd lengths are 
kept as short as possible. By choosing a word length 
of one byte (nine bits) a small mass 'memory can be 
made, without sacrificing the inherently low cost per 
bit of a larger 2Y2 D mass memory having longer 
words. 

Should a mass memory of only limited storage capac
ity be required it will not be possible to combine 
several standard mass memories to obtain more prac
tical word lengths. H~wever, it will be shown later 
that by making the most of the separate sense wires 
and the arrangement of ,word-line selection switches, 
words of up to 144 bits ( 16 bytes) in length, can be 
made with the standard core stack. Under these operat
ing conditions the byte transfer rate per, memor~_il!~ 
creases from 0.4 Megabytes/s to 2.6 Megabytes/s. It 
will be realized that a corresponding increase in the 



268 Spring Joint Computer Conference, 1968 

necessary electronics is thus required, an increase in 
power consumption also occurring. A new intercon
nection technique has made it possible to keep the 
core stacks very compact. I n the event of failure, 
which is very unlikely, the defective part of the stack 
can be repiaced in a short time. 

The word-line selection diodes (8704) can also be 
replaced quickly and easily. They are mounted on 
small printed-circuit cards which can be plugged into 
sockets mounted at the rear of the stack container, 
rather than on the stack itself or on the matrix planes. 

The dimensions of the core stack and its associated 
electronics are 98 cm (39 in) height by 45 cm (18 in) 
width by 50 cm (20 in) depth. If power supplies are 
added these dimensions become 147 cm (59 in) 
height by 45 cm (18 in) width by 50 cm (20 in) depth. 
Since the heat dissipation within the core stack is 
low, ambient temperatures of up to 40°C can be tolera
ted; the lower temperature limit is 10°C. 

The standard memory (520,000 words of 9 bits) 
will be sold for well under 2 ct (U .S.)/bit. 

Core stack 

The nth bits of all words are arrayed schematically 
in a rectangle of256 bit-lines by 2048 word-lines. Nine 
of these rectangles make up the co!,"plete matrix of 
2304 bit X 2048 word lines as shown in Fig. 1. Because 
a matrix of this size with 30 mil cores at 30 mil centers 
would be unwieldy it has been divided into 36 sub
matrices. The nine sub-matrices in each column are 
arranged so as to make four sub-stacks. Each sub
stack contains 130,000 words each of nine bits. The 
word-lines, split into nine sections by the division into 
sub-matrices, can easily be reconnected by dip
soldering. A number of sockets mounted on each sub
stack locate the cards carrying the word-line selection 
diodes. Conventional wiring is used between the sock
et pins and the word-line terminals on the sub-stack. 

Reconnecting the bit-lines separated by the sub
division is more complicated. Both ends of each bit
line in each sub-matrix are connected to conduc
tors printed on polyimide foils. The correlated bit
lines of corresponding matrices in two adjacent sub
stacks can be interconnected by simply pressing the 
foils together, as shown schematically in Fig. 2. 

The two outermost sub-stacks are connected by 
pressing their f()ils against glass epoxy strips, on which 
are printed the same patterns of conductors as on 
the polyimide foils. These conductors are then joined 
by conventional wiring to the pins of the sockets for 
the cards carrying the bit-line selection diodes, which 
are mounted on the main stack frame. The frame also 
carries the clamping devices for pressing the polyimide 
foils together and the rails along which the sub-stacks 

!:)E~;:;E 

'';IEE 

St!:BMA TP. IX '"="T'T'7"n--f:-::-;;y---l.---+----1 
WITH TWO 
~~~~~;WIR~ F-'L'~:a.q.-.L-~--~---1 

I ' 2048 WORn LINES .1
Figure I - Schematic representation of the core array

I IT
INES

Figure 2 - Arrangement and interconnection of submatrices

slide into position. A main stack frame containing
four sub-stacks is shown in Figs. 3a and 3b, a sub
stack in Fig. 4.

Typical drive conditions for the cores used in this
memory are:

Full current 700 rnA (at 25°C)
Rise time 0.1 IlLS
Pulse width 0.4 Ip.,s

Under these conditons, the typical response values
are:

rV1

wVz

Peaking time
Switching time

53 mV
6 mV (disturb ratio = 0.5)

0.2 IlLS
0.4 Ip.,s

Selection of bit lines and word lines.

As mentioned earlier diode-matrix selection is used
in this memory. For the selection of nine bit-lines, one
out of each of the nine groups of 256 bit-lines, nine
diode matrices of 16 by 16 diodes are required. The
rise time of the drive current through a bit-line is

Figure 3a- Front view or core stack

Figure 3b - Rear view of core stack

approximately 250 ns. To prevent deterioration of the
"one" signal owing to slowly increasing word-line
drive currents, the rise time of these currents should
be less than 300 ns. The word lines are thus divided
into eight groups of 256 lines, each having its own
diode matrix consisting of 16 x 16 diodes.

A Fast 2Y2 D mass Memory' 269

Figure 4 - Subs tack

A complete circuit for the selection of one line from
a group of four is shown in Fig. 5. The circuit is quite
conventional and straightforward. To reduce the pos
sibility of amplitude differences occurring in the read
and write currents, a single voltage source and one set
of resistors are employed. The voltage source is float
ing and' balanced with respect to earth by means of
a voltage divider, so that the voltage variation on the
selection lines is only 6 V thus minimizing the noise
picked up by the sense wire. Capacitors shunted
across the current determining resistors improve the
current.waveform. Auxiliary switches are employed to
ensure short capacitor discharge times.

CURREft
DETERMUIIG
RESISTOR

\
COMKOB WIfE
SELEC'l'IOlI SWI'rCB

BLEEDERS

+ -

Figure 5 - Selection switches and diode matrix

270 Spring Joint Computer Conference, 1968

The most suitable coupling devices between
switches of this type and their drives are transformers
since they are particularly useful as a base curr~nt
supply source; moreover they permit the use of very
simple drive circuits.

For selecting one line from a total of 256 lines, 64
selection switches are required. These form a self
contained unit mounted on a single card. Nine such
units are required for the bit-line, and eight for the
word-line selection.

Drive circuits and address decoding

Fig. 6 shows a combination of selection switches,
drive switches and address decoders in simplified
form. Two such combinations are employed in the
memory, one selects the bit-lines, the other the word
lines.

'I'IlHlIG

- •• ___ ••• !1l:;RF.ss i:EG.(.2.I.l:S). .

Figure 6 - Drive circuits of selection switches

I n each 4 x 4 matrix of address drive switches,
each switch is responsive to two sets of address de
coders, thus two sets of read- and write-selection
switches are pre-selected. This occurs in each line
selection unit connected to one of these driver ma
trices. The final decision whether or not the read
or write-selection switches are to be driven, is left
to the read- and/or write-drive switch in each selec
tion unit. Three functions can thus be assigned to the
read and write-drive switches:

(1) selecting either the read- or write-selection
switches in all selections units, governed by the
command pulses from the timing unit. .

(2) selecting one unit from eight word-line selec
tion units on the basis of three address bit levels;

(3) digit switching in the bit-line selection units.

Current phasing as a ~eans of core selection though
not used here, could also be controlled by the read
and write-drive switches.

Saturation of a selection-switch drive transformer
which may occur after several successive switching
operations, is prevented by diodes Ds and Dm which
ensure rapid demagnetization of the particular trans
former after the termination of a read- or write-drive
pulse.

With both the address-drive and read- or write-drive
switches broken, the primary winding of the trans
former previously selected is isolated. Point A tends
to become negative and is clamped to earth by D
whilst point B swings positively and is damped to
+ 12 V by D, resulting in a constant voltage of some
15 V being applied to the primary. This accelerates
the decay of the magnetizing current through the
winding.

Sense wires and amplifiers

Unlike other 2Y.! D mass memories described in the
literature, the memory under discussion employs a
separate wire for sensing the interrogated bits. The
path followed by the two pairs of sense wires is shown
in Fig. 7a. For the sake of simplicity a 2x (128 x 512)
sub-matrix is reduced in the figure to 2 x (8 x 32). By
arranging the cores so that their axes are mutually
parallel, good balancing and easy threading of the
sense winding are obtained. The manner in which sev
eral sense wires are combined to form one sense wind
ing is shown in Figs. 7b and 7c. Because of the method
used to terminate the sense wires in this memory, per
fect balancing of the sense winding is required. The
type of termination employed eliminates distortion of
the output signal owing to phase differences at the in
puts of the differential preamplifiers.

:~=::::-:==~
:!?

...-101

'--------'=::::::: :~

:: /»"''''''''''''''''''~ ..

.. W"""""""""",,«o:::
~!

Figure 7a-Sense wire through core array

_-$-12---__

t t f l}!'

t t f ~

Figure 7b - Combination of sense wires and preamplifiers

16384 cor .. 16384 coree
Zoo Zoo

Zoo 16384 ooree 00

Figure 7c-Connection of sense wires to one preamplifier

One pre-amplifier is capable of handling as many as
65,000 bits, thus only eight pre-amplifiers are required
per word-bit. Despite the large number of cores per
sensing circuit, only 128 core pairs on each selected
bit-line and 32 core pairs on every selected word-line
contribute to the noise level. In order to limit the level
of noise, only those preamplifiers coupled to the se
lected cores at a given instant are operational. The
signal-to-noise ratio is improved by initiating the bit
line currents during a given operation some 250 ns be
fore the word-line current.

In order to compensate for delay and attenuation of
the signal on the sense wire, the threshold level and
strobing time of the sense amplifier are required to
vary as a function of the address.

to preampl.
output ..

thermistor

t---- output

L..-.. ___ strobi~

Figure 8 - Circuit to vary sense amplifier threshold as a function
to the address

Variation of the threshold level is accomplished by a
circuit (Fig. 8) which is actually a digital-to-analogue
converter. The variation constitutes a correction of the

A Fast 2% D Mess Memory "''''71
kl1

main adjustment which is determined by the setting of
the manually variable voltage V thrcs. With a threshold
circuit of this type it is relatively simple to feed back
a fraction of the core driving voltage to the threshold
circuit, so that a considerable improvement in operat
ing tolerances is obtained. This could be done by a re
sistor network which includes a thermistor to render
the threshold level insensitive to variations of the core
driving voltage, arising from temperature changes in
the core stack.

The sense amplifier strobe time can be vai"icd as a
function of the address by means of the circuit shown
in Fig. 9a. In the circuit, V A is the output voltage of a
digital-to-analogue converter, whilst a sawtooth volt
age VB is applied to the other input of the long-tailed
pair.

O+-----T-~r-----~-----------

Figure 9a,b - Circuit to vary sense amplifier strobing as a function
of the address

The resulting output voltage is a positive-going
pulse (Fig. 9b) of which ton varies with the address of
the selected word, and tofr is constant.

Reference to the oscillograms of Fig. 10 shows the
output voltages from the various addresses, together
with the bit and word currents and strobing and data
register outputs. Experience gained during manufac
ture of the sub-matrices has completely vindicated the
choice of an extra wire for sensing. The cost of the
extra wire has proved to be less than the cost of the
transformers that would otherwise be required (3).
The external core-stack wiring is much simpler and
much less critical with regard to noise pick -up.

272 Spring Joint Computer Conference, 1968

Figure 10- Read command

Fig 10c

Fig 10 e

Fig lOr

Fig 109

Fig 10h

Longer words

Two methods can be adopted in the memory to in
crease the number of bits per word. The length of the
words is limited by the number of sense wire pairs
(1 II 11\
" l'"t'"t).

Bit-line selection
unit~

. ~:rd-~ln~ .~~:~;~l n
ur:l ~ ...

Figure II-Combination of bit-line and word-line selection units
to interrogate 36 bits at a time in an essentially 9-bit organization

One technique is illustrated in Fig. 11. Here, use is
made of the fact that eight separate word-line selection
units are employed. When nine bit-lines are driven
concurrently with four word-lines rather than one,
36 bits can be interrogated at 3: ,time. This is possible
if the bits are situated on 36' 'different sense wires
and the output voltages of the sense wires are stati
cized by 36 different registers. A word of 36 bits has to
be stored in four shifts of nine bits, each shift occurring
in 1.2 J.ts; this operation is done independently by the
memory. The memory is thus rearranged to produce
130,000 words each of 36 bits with an access time of
1.2 J.ts and a cycle time of 1.3 J.tS + 4.8 J.ts = 6.1 J.ts.
The bit transfer rate increases from 3.6 X 106 bits/s to
5.9 X 106 bits/so When for instance two word-lines are
driven concurrently with nine bit-lines, 18 bits can be
interrogated at once the storage time being 2.4 J.ts. It
is thus possible with this technique to multiply the
number of bits per word without a proportional in
crease in heat dissipation occurring. A drawback is the
mUltiplication of the cycle time, however the short
access time is maintained.

It is also possible to increase the number of bits per
word by increasing the number of bit-line selection

. units. Referring t<? Fig. 1, it can be seen that 18 bit se
lection units each of which handle 128 bit-lines, can
be connected to 2304 bit-lines. The nine diode ma
trices of 16 X 16 diodes have to be altered to 18 diode
matrices of 8 x 16 diodes. This is however, a relative
ly simple matter and involves merely changing the wir-

ing in the main stack frame, the wiring or construction
of the sub-stacks being unaffected. The conversion is
completed by effecting the necessary modifications
to the electronic circuitry. A memory of 260,000
words each of 18 bits, having an access time of 1.3 ILS
and a cycle time of 2.5 ILS is thus obtained. Fig. 12
shows how 36 bit-line selection units each handling
64 bit-lines, can be connected to 2304 bit-lines. In

r!VOrd-line
•• l.atlou. 1ID.1t •

lit-lia. Vord line

= ""J'4I11'.
::.~:::=. ""rd 1IU S

•• lection ani t P S.a pl. ku tapat ""rd 1>U •
,-----

, / ,',/'

.-----+-D .. u tapat vord
,',' 111\ I

Sene. _pl. D.'. rea_

S.l"tloD diod •• have .liot decoder
Dot Mea draw tor the
eat. of .1aplioi V

Ii, .witolt.

Figure 12 - Combination of bit-line selection units and sense wires
in a 36-bit organization

the figure part of a sense wire array of 128 x 512 ad
dresses is shown. P and Q are selection units for the
64 bit-line} and N is a word-line selection unit. A
combination of two corresponding bit-lines for ex ..
ample Pl and ql with any word-line, selects a pair of
cores located on two different sense wires. The bit
line selection units P and Q are not however, corre
lated solely to a particular word-bit R or S. By suita
ble addressing, P can select a core of either word
bit S or R, Q then selects a core of either word-bit
R or S. The address has thus to be decoded, the out
put of the decoder being fed to the digit switch whose
function is to direct the digit information into the cor
rect channels. One item in the stack which has to be
changed is the wiring between the bit selection diodes
and the bit-lines, however, the standard sub-stacks
can be used without any wiring or constructional
changes. A memory is thus realized which has a capac
ityof 130,000 36-bit words, an access time of 1.2 ILS
and a cycle. time o(2.5 ILS. The two methods de
scribed in the foregoing can be combined to make a
mass memory of 32,000 words each of 144 bits, with
an access time of 1.2 ILS and a cycle time of 6.1 ILS. In
such a system the bit transfer rate is 23.6 X 106 bits/so

Power supplies and protections

The power supplies are designed to operate from a
three-phase a.c. mains supply. All the d.c. outputs

A Fast 2% D Mess Memory 273

are protected against excess voltage and currents and
falls in voltage, whilst thyristors are included to re
duce energy losses. The memory can be switched on
and off withQut destroying information stored in the
cores. When a memory is switched off owing to fail
ure of one of the d.c. outputs, an aid to locating the
fault is provided by pilot lamps which indicate the
particular d.c. output that has failed. When several
memories are combined to form a single bank and one
breaks down, the inputs of the other memories are
immobilized, however their power supplies remain
switched on.

. Tolerances

Operating tolerances of a memory system can be
represented by means of an n-dimensional Schmoo
diagram, where n is almost limitless. Only a few of
these variables are of practical interest. For this
memo~y a two-dimensional Schmoo diagram has been
made, having the sense amplifier threshold plotted
along one axis and the voltages corresponding to the
core drive currents along the other (Fig. 13). In
plotting the graph all other voltages were set to their
nominal· values (-6 V, + 12 V and 30V). During the
measur~m~ntsthe ambient temperature of the lllemory.
was kept at the upper limit of 45°C, at which level
the noise is at a maximum.

SEIISE AIIPL.
!DESBOLD

(v)

~

20

10 t
L.---:1)at:-------4 2-+-.... 46--50--+--5+-4--DR-l-VE-C--~R~:;T

DE~~~.~~

Figure 13 - Schmoo diagram. No feed-back from core drive voltage
to sense amplifier threshold

Mechanical design

All electronic components are mounted on double
faced, epoxy-glass printed circuit cards. The cards
carrying the selection and drive switches, read am
plifiers and timing circuits, measure 32 x 25 cm. (l2~
x lOin). The cards slide into a compartment which can
be mounted in a standard (19 in) rack.

274 Spring Joint Computer C'onference, 1968

Cable terminating resistors and cable amplifiers are
mounted on cards of 32 x 13 em (12~ x. 5 in) which
are housed in a second compartment also contain
ing the cable connectors.

To take full advantage of the low heat dissipation
within the stack container-4.5 W in a volume of 84
litres (22 U.S. galls)-the container is situated at the
base of the cabinet.'

The compartments housing the memory electronics
are located immediately above the stack container.

The power supplies are accommodated in two such
compartments which occupy the upper part of the
cabinet together with another unit housing the trans
formers and certain control circuits, Disposition of the
various sub-assemblies in this manner renders forced
cooling unnecessary. The space occupied by a com
plete memory (less cabinet) measures 147 em (59 in)
height by 45 em (18 in) width by 50 em (20 in) depth. •

CONCLUSIONS

Well-designed and properly terminated sense wires en
able the manufacture of a fast and relatively inexpen
sive mass memory to be realized.

Although the application of sense wires usually
implies a limitation to one particular word length for a
given storage capacity, it transpires that by purely
electronic means, a large range of word lengths can be
covered using standard sub-stacks. This is a very im-

portant factor in mass memory design since the· core
stack is invariably the most difficult and most expen
sive part to develop and manufacture. Provided there
fore that sufficient attention is given to the interface
circuitry, small economic mass memories can be man
ufactured on a mass production basis to form· part of
larger memory systems.

ACKNOWLEDGMENT

Thanks are expressed to Mr. P. J. Baker of our Tech
nical Publication Dept. who edited the manuscript.

REFERENCES

1 R J PETSCHAUER G A ANDERSEN
W J NEUMANN
A large capacity low cost core memory
Presented at the IFIP Congress in New York N Y May 1965

2 T J GILLIGAN P B PERSONS
High Speed Ferrite 21;2 D Memory
Proceedings - Fall Joint Computer Conference 1965.

3 A M PATEL J W SUMILAS
A 21;2 F ferrite memory sense amplifier
IEEE JOURNAL of Solid State CirCUits, Vol. SC-l No. 1
September 1966 .

4 J REESE BROWN
First- and second-order ferrite memory core characteristics
and their relationship to system performance
IEEE Transactions on Electronic Computers vol EG-15 no 4

5 2361 Core storage original equipment manufacturers informa
tion
IBM Publication SRL - 28 - 822 - 6869 - I

A magnetic associative memory: *

by TSE-YUN FENG**
Syracuse University
Syracuse, New York

INTRODUCTION

Hundreds of technical papers and reports on associa
tive systems have been published since 1956 when the
first electronic associative memory was reported. So
far the use of such a system is still very limited be
cause of its cost. But the tremendous technological
advances made in the batch fabrication of thin films
and integrated circuits for the last few. years would
evidently reduce the absolute cost of an associative
system and enhance its usefulness.
. Much work has been done in the area of magnetic

associative memories. 1-19 However, mo~t of the mem
ory schemes proposed have a low "per-bit mismatch
to-match signal ratio"*** which is one of the prin
cipal factors in determining the ultimate size (or speed)
of the memory. In these systems the delta noise due
to the reversible switching of the magnetic material is
compensatable, thus with appropriate compensation
techniques, it is possible to make the per-bit mis
match-to-match signal ratio independent of the signal
to-noise ratio of the magnetic device. As a result, the
per-bit mismatch-to-match signal ratio is greatly in
creased. It can also be shown that an associative
memory may have the ability of detecting the neigh
boring codes of a given code if a similar signal com
pensation technique is employed.

In the following scheme the implementation can be
achieved by many kinds of devices. However, a
4 X 4 memory model using multiaperture cores was
constructed and tested. Experiments performed on
the memory model confirmed the effectiveness of the
compensation techniques.

*The work reported here was supported by the United States Air
Force Contract AF 30(602)-3546.

**Formerly with the University of Michigan, Ann Arbor, Michigan.
***The "per-bit mismatch signal" is the signal produced at a word

sense wire when only one bit of the word is interrogated and the
information stored in the bit is different from that of interrogated
bit. Similarly, the "per-bit match signal" may be defined as the
word signal produced when the information stored in the bit
matches that of the interrogation bit. I n most cases it is the signal
to-noise ratio of the associative cell.

275

Memory scheme

For a magnetic core if the ·maximum induced volt
age due to the irreversible switching of flux is normal
ized to 1 and that due to the reversible switching
(delta noise) is 8, the maximum possible signal to
noise ratio is

1+~8
--8- >p, (1)

where p is the largest integer to satisfy this rel~tion. If
parallel-by-bit interrogation is assumed, p is also the
maximum possible number of bits per word that an
associative memory may have ··before the noise masks
the information-bearing signal. Equation 1 indicates
that in order to increase p, 8 must be small. Since 8 is
an inherent property of the magnetic material and can
not be eliminated, it must be compensated externally.
Suppose that there is a noise generator that would pro
duce a noise of 8 when interrogated. Its sense wire is
connected in series with a memory bit but opposite in
polarity. The output during interrogation would then
be (1 + 8) - 8 = 1 when the memory bit changes state,
and is 8 - 8 = 0 when the memory bit does not· switch.
The per-bit mismatch-to-match signal ratio would for
this case be infinite. In reality, the total compensa
tion of delta noise is very difficult (if not impossible).
This is mainly due to the nonhomogeneity of the ma
terial and other factors involved in the fabrication of
the memory devices. Suppose that the maximum noise
that cannot be compensated by the noise generator is
e(e < 8). Then the per-bit mismatch-to-match signal
ratio would be in the worst cas,e:

l-e
->p (2)

e

Experimental result shows that the per-bit mis
match-to-match signal ratio is greatly increased to

~~1 = 520 by the noise compensation technique (Fig. 1)

52
as compared to 4 = 13 for the uncompensated case

(Fig. 2).

276 Spring Joint Computer Conference, 1968

Figure 1 - The per-bit mismatch and match signal voltages

Figure 3 shows the circuit configuration of the as
sociative memory with noise compensation. The two
states of an associative cell are defined by Fig. 4.
Thus, each cell may consist of a flip-flop and a few
gates or two multiaperture cores (or their equivalent).
The vertical lines of the 4 x 4 memory are the inter
rogation wires and the horizontal lines are the row
sense wires. The memory interrogation pulses have
three states as given by Table I. There is no 11 state
since both interrogation wires are never energized
simultaneously during the searches. The symbol 0 is
used here for the masked bits. The relations between
input, store, and output may be expressed by Table 2.
The choice of 0 output for a matched condition simpli
fies the detection structure of the associative memory.

In Fig. 3 the memory has four 4-bit words with Cll

C l2 C l3 C l4 = 1100, C21 C22 C23 C24 = 0110, C31 C32 C33

C34 = 1110, C41 C42 C43 C44 = 0100, as defined by Fig.

1 fl see/div

(0) Noise Voltage

Figure 2 - The signal and noise voltages of a multiaperture core

4. The row noise generator uses the same types of
cells as those in the memory but for each cell only
the portion that would generate delta noise is inter
rogated and sensed.' Of course, this is not always
necessary. For example, when tntnsfluxors are used
in the scheme, each memory cell requires two trans
fluxors, but each noise cell requires only one trans
fluxor which is in the blocked state.

Equality search

As an illustration for equality search, suppose that
a pattern of 1110 is stored in the asso\..-:.1tion regir.,ter
(Fig. 3). Then, during the interrogation period th~ in
terrogation wires 111, 12b 13b 140 will be energized. The
normalized induced voltages at the row sense wires are
NI = 1 + 48, N2 = 1 + 48, N3 = 48, N4 = 2 + 48. But
these voltages are balanced by a voltage of (-48)

~ FROM MANU~ CONTROL

~i{
<cr

11 AM> GATES r-

0 t-+---+-~--+--+--:---:-+-+"'":'"'\
Bl:llRECTIONAL

GATES

>-;
"" 2
or
)(
or

Figure 3 - Circuit and configuration of a noise-compensating and
error checking associative memory

"0" bit "1" bit

M: Signal output when interrogated (1 + 0)

m: Noise output when interrogated (0)

Figure 4-Two states of an associative cell

induced at the sense wire N r • Therefore, the net
voltages relative to ground appearing at the N wires
are: 1 ± 4E, I ± 4E, ° ± 4E, 2 ± 4E and E represents the
maximum noise that cannot be compensated by the
noise generator. Hence, for an exact match there will
be no (or little) voltage at a sense wire and there will
be varying degrees of voltage differences in all other
cases. If these voltages 'are normalized by a threshold
device, then we have Nt = 1, N2 = 1, N3 = 0, N4 = I. ° indicates equality match.

Experimental results on equality search are shown
in Fig. 5. Figure 5(a) is the 4-bit match signal without
noise compensation. After noise compensation the
4-bit match signal IS reduced to that shown
in Fig. 5(b).

£~ l'a .. 1agnetic Associative ~v1emory 277

TABLE I - Interrogation pulse states
Input ofi-th

Bit

o
1
~

I nterrogation Pulses

o
1 0
o 0

T ABLE II - Relations between memory input,
store, and output

Input Store Output

0 0 0
0

0 1
1 1 0
~ 0 0
~ 0

1 "

(b) i... - ~.~:.~::. :::a ~~(!~n s ig.:--~al. wi : t rloi S~.:, ~~)~:~·!.~~:.;t.:.SB·;:':

Figure 5 - Match signals from a 4-bit word

278 Spring Joint Computer C'onference, 1968

I nequality search

Suppose that 1110 is still stored in the association
register and we search for inequality responses. The
function of the memory is the same as before. In order
to detect inequality condition by the same circuit
used fOi equality seaich AND gates are added. Figure
6 shows one possible arrangement. For equality
searches the upper AND gate of each word is acti
vated so that both the Nand N I wires have the same
state. But during the inequality search period the nega
tion line is activated so that the states of the N I wires
are inverted from that of the N wires. Thus, we have
N~=O, N~=O, N~= 1, N~=O instead of 1101 for the
previous case. Here we have mUltiple responses for
inequality match.

Figure 7 shows the I-bit mismatch signals from a
4-bit wOid.

N• 14--4

N2

N' 3

NEGATION

N2

N3

Figure 6 - And gates for simple searches

Similarity search

From
Memory

Suppose that the same pattern 1110 is stored in the
association register as before but the third bit of the
search word is masked off, i.e., the word to be searched
is 1100. (Such a search when applied to one field is
known as the similarity search.) Then during the inter-

rogation period the interrogation wires 111, 121 , 140

will be energized. The new output voltages from the
sense wires will be now 0 ± 3€, 1 ± 3€, 0 ± 3€, 1 ± 3€,
and the states of the N[wires are Ni= 0, N; = 1, N~-=
0, N4 = 1. Again we have mUltiple responses to our
search.

The output voltages from the word sense wires are
similarto those shown in Fig. 5(b) and Fig. 7(b).

1 fl sec/dlv

(a) I-b~t llli.sma;~,ch -w-ithou.t noise compensation

.~
'0
~

§
0
~,\J

1!J. sec/div

(b) l-bit misrnatch with no:Lse cOlnpensation

Figure 7 - I-bit mismatch signals from a 4-bit word

Proximity search

The proximity search is defined here as the match
such that the interrogated field of the memory word
is different from that of the search word by a pre
determined distance. * Such a match is very useful,
particularly when redundancy techniques are applied

*The distance between two code points in an m-dimensional space
is given by the number of coordinates (or bits) by which they differ.

to the associative memory to increase its reliability.
Thus, the proximity match for distance 1 would detect
single errors in the system. The proximity match for
higher distances would detect higher-order errors
provided that it is permitted by the per-bit mismatch
to-match signal ratio and the redundant codes used.
The proximity search is also useful in some pattern
recognition schemes.

Referring to Fig. 3 and the illustration on equality
search we may summarize the results in Table III.
Table III indicates that the memory words No.1 and
No. 2 differ from the search word by a distance of 1,
thus their signal outputs are 1 ± 4E. Similarly, signal
outputs from words No.3 and No.4 indicate a match
(distance 0) and a distance of 2 respectively. Thus,
if we introduce a cell which would generate a signal of
(-1) in the row noise generator to balance the signal
outputs, the same detection circuit would be able to
detect the proximity match for distance 1. This is done
by connecting a cell Cp to the row noise generator
shown in the lower right corner of Fig. 3. The prox
imity - match switch Sp will be closed to the Cp sense
wire which has an induced voltage of (-1)* during the
interrogation period. The result of proximity match
for distance 1 is shown in Table IV. The' term in the
signal output comes from the switching signal compen
sation. The compensated signal voltage , was mea
sured to be about 2 mv (Fig. 8) in our experiments.

TABLE III - Output of equality search

Search Word Signal Output

#1 I 100 I ±4E
Memory #2 o I 10 I ±4E

Word #3 I 1 10 0±4E
#4 o 100 2±4E

TABLE IV - Output of proximity search

Search Word I I 10 \! Signal Outpu

I!

I:
#1 1 100 I' 0±4E±~ 'I Memory #2 o I 10 II 0±4E±~

Word #3 I 1 10 I -I ±4E±~
#4 0100

It
I ±4E±~

Figure 9 shows the experimental results on prox
imity match for distances I and 4 from a 4-bit word.

*Strictly speaking the induced voltage is (-I ± E).

L~ i'.,1agnetic Associative rv1emoiY 279

1 Il sec/div

Fig. 8 Compensated signal vo~tage

- 1 Il sec/div

(a) Proximity match for distance 1

1;.;. sec/div

(b) Proximity match for distance 4

Fig. 9 Proximity match signals for distances 1 and 4.

280 Spring Joint Computer Confere~ce, 1968

Word Block :# I U

Row Noise Generator # I

Word Block # I L

••.••...•.•••.••••..•.•.• I

Word Block #2U

Row Noise Generator #2 -::t a. -Word Block :# 2 L
::t
o

! . ""' . ., ~ -..... ~ .

Word Block:#wU

Row Noise Generator :# w

Word Block #wL

Figure 10 - A noise-compensating and error-checking associative
memory

The complete associative memory scheme

In the previous sections an associative memory with
noise and signal compensations have been described.
The experimental results as shpwn by the oscillo
grams were· exceptionally good. However ,- due to the
'small number of words involved, the propagation de
lay and attenuation effects in this model were negli
gible. A complete associative memory scheme
taking the propagation and attenuation effects into
consideration is shown in Fig. 10. The configura
tion of Fig. ~ is only a portion of Fig. 10 which con
sists of an association register, a mask, the word biock
No.1 U and the row noise generator No.1.

CONCLUSION

This paper demonstrates the effectiveness of the com
pensation scheme. Evidently the memory scheme can
be used in large systems with high reliability.

REFERENCES

1 A APICELLA J FRANK
BILOC - A high speec NDRO one core per bit associative
element
Intermag 1965

2 J R BROWN JR
A semipermanent magnetic associative memory
Proceedings of the Confereqce on Nonlinear Magnetics 1961

3 W F CHOW L M SPANDORFER
Plated wire bit steering for logic and storage
Proceedings of the 1967 Spring Joint Computer Conference

4 W F CHOW
Plated wire content-addressable memories with bit-steering
technique
IEEE Trans on Electronic Computers October 1967

5 R H FULLER J C TU R M BIRD
A woven pl~ted-wire associative memory
National Aerospace Electronics Conference 1965

6 J GOLDBERG M W GREEN
Large files for information retrieval based on simultaneous
interrogation of all items
Proceedings of the Symposium on Large-Capacity Memory
Techniques for Computing Systems 1961

7 R T HUNT D L SNIDER J SUPRISE H N BOYD
Study of elastic switching for associative memory systems
Contract AF 30(602)-3103 Report 1964

8 J R KISEDA H E PETERSEN W C SEELBACK
M TEIG
A magnetic associative memory
IBM Journal April 1961

9 R R LUSSIER R P SCHNEIDER
All magnetic content addressed memory
Electronic Industries March 196~

10 J E MCATEER J A CAPOBIANCO R L KOPPEL
Associative memory system inmplementation and
characteristics
Proceedings of the 1964 Fall Joint Computer C'onference

11 W L MCDERMID H E PETERSEN
A magnetic associative memory system
IBM Journal January 1961

12 R C MINNICK
Magnetic comparators and code converters
Symposium on the Application of Switching Theory in Space
Technology 1962

13 M NAIMAN
Content-addressed memory using magnetoresistive readout of
magnetic thin films

• Intermag 1965
14 J I RAFFEL T S CROWTHER

A proposalfor an associative memory using magnetic films
IEEE Trans on Electronic Computers October 1964

15 A D ROBBI R RICCI
Transfluxor content-addressable memory
Intermag 1964

16 C A ROWLAND W 0 BERGE
A 300 nanosecond search memory
Proceedings of the 1963 Fall Joint Computer Conference

17 D 0 SMITH K J HARTE
Content-addressed memory using magneto- or electro-optical
interrogation
IEEE Trans on Electronic Computers February 1966 and June
1967

18 G T TUTTLE

A Niagnetic Associative Niemory

How to quiz a whole memory at once
Electronics November 15 1963

'"'01
",01

19 E L YOUNKER C H HECKLER JR D P MASHER
J M JARBOROUGH
Design of an experimental instantaneous response file
Proceedings of the 1964 Fall Joint Computer Conference

Selection and implementation of a ternary switching algebra*

by ROBERT L. HERRMANN
Aerospace Division; Honeywell Incorporated
Minneapolis, Minnesota

INTRODUCTION

During the last few years there .has been a growing
interest in non-binary switching algebras. A number
of such algebras have been proposed,t-6 but so far
they have had little practical application. Require
ments for a practical switching algebra include eco
nomical circuits for the basic operations, the ability to
implement an arbitrary function with a resonable num
ber of basic circuits, and a suitable set of rules to al
low the logic designer to form and manipulate ex
pressions without undue mathematical gymnastics.
These are rather vague criteria for a "practical"
switching algebra, but they do serve as guidelines for
attempts to establish suitable algebras.

Among non-binary switching algebras, ternary
switching algebras have created the most active in
terest. The possibility of using positive, zero, and
negative voltages or currents for representing three
logic values appears appealing. The information trans
mitted by each wire in a system may be increased
without employing complication level detectors and
without sacrificing noise rejection. Complementary
transistor configurations can be used to perform the
logic functions.

Any single valued function in an algebra with a
finite number of discrete truth values, including the
basic operations of the algebra, may be expressed in
tabular form by a truth table. Hence, all possible ba
sic operations for a ternary switching algebra may be
expressed in this way. Furthermore, such a table com
pletely defines the function. To establish a practical
ternary switching algebra, a suitable set of operations
must be selected from the set of all possible opera
tions. Methods employed· by the author to select a
suitable set are discussed in this paper.

In the following discussion, the integers 0, 1, and
2 denote the three truth values [constants), capitallet-·
ters A, B , ... denote variables that assume the values

*This paper is based on a thesis for the degree of Master of Science
in Electrical Engineering submitted by the author to the faculty of
Purdue University, West Lafayette, Indiana, in August 1964 ..

283

0, 1, or 2, and,!he symbols a, 8, fn' m, " and super
scripted variables denote functions of one or more
variables. The symbol = is used in its usual sense to
denote equality of two expressions. An n-ary opera
tion is a function of n variables that is one of the basic
functions defining an algebra.

Manipulating functions within an algebra is gov
erned by a set of theorems that apply to the particular.
albegra. As stated above, one of the desirable fea
tures of a practical switching algebra is the ability to
manipulate expressions to reduce the amount of hard
ware required to implement a given function. Theo
rems that aid manipulation of expressions should
therefore play an important role in the selection of a
suitable ternary switching algebra.

Algebraic rules

Before embarking on a discussion of algebraic rules,
it is necessary to define the constituents of such an
algebra. They are:

1) The set of constants {O, 1, 2}
2) A set of symbols {A, B, ... , N} to represent var

iables.
3) A set of basic operations on one or more var

iables with appropriate symbols denoting map
pings into the set of constants.

4) A set of rules governing the format of expres
sions in the algebra.

The approach taken in this paper to determine a
suitable ternary switching algebra is to first establish
a desirable set of manipulation rules, and then to
search for a set of basic operations that best satisfies
these rules.

The truth table is most straightforward and easi
ly understood method' of representing a function.
Many algebraic rules may be introduced as constraints
on the truth tables repr~senting the basic operations.

The associative law for a single binary operation a

Aa(BaC) = (AaB)aC = AaBaC (1)

284 Spring Joint Computer Conference, 1968

means that the order of evaluation of several consec
utive applications of the operation is immaterial.
As a direct result, the binary operation a can become
a generalized n-ary operation a(xb x2 , ••• ,xn). The
commutative law

AaB=BaA (2)

states that the order of the operands to which all
operation a is applied is immaterial. A binary opera
tion for which these two laws hold may be general
ized to a single level n-ary operation. If these two
laws an~ adopted as necessary criteria for the opera
tions to be selected, only unary and binary operations
n~ed be considered. The binary operations AND and
OR of conventional switching algebra are generalized
in this way, as evidenced by the existence of multi
input AND and OR gates. These two laws also play an
important role in manipulation of algebraic expres
sions.

The idempotent law
AaA=A (3)

can also be expected to aid simplification of algebraic
expressions by sometimes reducing a mUltiplicity of a
variable to a single occurrence. With these three laws
as constraints, the number of possible operations is re
duced to a reasonable number.

The effect of these laws on the truth table of a gen
eral binary operation a will tirst be considered. The
idempotent law req1:lires that the diagomil of the truth
table matrix consist of the constants 0, 1, and 2, in
that order. The commutative law requires that the
matrix by symmetric. Table I illustrates these con
straints on the truth table.

a 0 1 2

0 0 a b

A 1 a 1 c

2 b c 2

TABLE I. Generalized Commutative and Idempotent
Binary Operation

The effect of the associative law on the truth table is
not as obvious and can best be determined by trial
and-error testing of the associative law on the 27
possible truth fables of the form shown in Table I.
This was done by t~e author with the aid of a comput
er pr9gram.7 Nine of the remaining 27 operations

were found to be associative. The truth tables for these
nine are shown in Table II.

One or more of these nine binary operations, along
with one or more suitable urary operations, must be
selected to form a suitable set of basic operations.

Laws involving pairs of binary operations are con
sidered next. This will determine which combinations
of binary operations will work well together in terms
of expression manipulation and simplification. The
distributive and anti-distributive laws for a pair of bi
nary operations a and 8

(AaB) 8 (AaC) = (A8A) a (B8C) = A a (B8C) (4)
(A8B) a (A8C) = (AaA) 8 (BaC) = A 8 (BaC) (5)
(AaB) 8 (AaC) = (AaA) 8 (BaC) = A 8 (BaC) (6)
(A8B) a (A8C) = (A8A) a (B8C) = A a (B8C) (7)

occur frequentiy in usefui aigebras, and may be use
ful in a switching algebra. They aid in manipulating.
and simplifying expressIons by reducing the number
of occurrences of a variable or subexpression. Idem
potency is assumed in writing Equations (4) through
(7). Equations (4) and (5) are the distnoufive- raws;
Equations (6) and (7) are the anti-distributive laws.

As with the associative law, Equations (4) through
(7) may belested for validity on each of the 36 distinct
pairs of binary operations from the set of nine in Table
II. Twelve of the 36 distinct pairs were found by the
author7 to satisfy both Equations (4) and (5). Six addi
tional pairs were found to obey either Equations (4)
or (5), but not both, and none were found to satisfy
Equations (6) or (7). Referring to Table II, the pairs
that satisfy both Equations (4) and (5) are:

P l = {lIb, IIc}
P2 = {lId, IIhj
P3 = {He, IIg}
P4 = {lIb, Hh}
P5 = {IIc, IIg}
Ps = {lId, lIe}

P7 = {IIa, lId}
Ps = {IIa, lIe}
P9 = {Hf, lih}
P lO= {lIb, IIf}
Pu = {IIc, IIi}
Pl2 = {IIg, IIi}

(8)

These 12 pairs are not truly distinct; among the 12
pairs, isomorphisms exist. Two pair are isomorphic if
one pair can be converted into the other simply by in
terchanging the constants 0, 1, and 2 along with the
appropriate permutation of rows and columns in the
truth table. The validity of an algebraic rule does not
depend upon the choice of symbols to denote the con
stants as long as the appropriate symbols are used in
the rule, so all pairs in an isomorphic set must obey the
same total set of rules.

The 12 pairs of binary operations found to obey
both distributive laws may be partitioned into four
isomorphic sets of pairs.7 Referring to Equation (8),
these isomorphic sets are:

Selection and Implementation of Ternary Switching Algebra 285

0 1 2 0 1 2 0 1 2 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

1 0 1 0 1 0 1 1 1 0 1 2 1 0 1 2

2 0 0 2 2 0 1 2 2 0 2 2 2 2 2 2

(a) (b) (c) (d)

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 0 1 0 0 0 1 1 0 0 1 2 0 0 1 2 0 0 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2

2 0 1 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2

(e) (f) (g) (h) 0)

TABLE I I. Set of Associative, Commutative,
and Idempotent Binary

Operations

0 1 = {PI' P2 , P3 }

O 2 = {P4, P5, P6 }

0 3 = {P7, PS' P9 }

0 4 = {PIO, PH' PI2 }

(9)

One pair in an isomorphic set may be preferable
from an implementation standpoint if the symbols 2, 1,
and ° are assumed a priori to be represented by posi
tive, zero, and negative voltages respectively.

So far only binary operations have been considered.
Equally important is the selection of suitable unary
operations. U sing the truth table approach, there are
33 = 27 possible unary operations. The identity map
ping and the mappings into a single constant are ob
viously of no value in a switching algebra. Eighteen
of the possible unary operations map into two of the
three truth values, and five map into the full set {a,
1,2}.

U nary operations in the "truncating" class that map
into two truth values have been proposed by several
other authors.3,5,6 However, when one attempts to
form a _"sum-of-products" or "product-of-sums"
form of expression for a function in an algebra using
this class of unary operations, three unary operations
are required and the "terms" in the expression are
two-valued. As an example, consider the three unary
operations Jo, J 1, and J 2 defined in Table II I.

These three unary operations may be used in de
fining an expansion theorem, to be discussed later,
that results in a sum-of-products form of expression
for all possible functions (see Equation 16). Each term

A

o

1

2

1 2 2 1

2 o 1 o

o 1 o 2

TABLE III. Truncating Unary Operations

o

2

1

in such an expression is a logical product of a constant
and unary functions "J" of each of the independent
variables. With the exception of the constant, the con
stituents of each term can assume only the values
{a, 2}. Ternary information is regained by the teniary
logical sum of some terms which can assume the values
{O, I} and some which can assume the. values {O, 2},
as dictated by the constants in each elementary prod
uct. It should be noted in passing that DeMorgan
type laws exist for Jo and J 2, but not for J h using- the
Post binary operations. (P 4 in Equation (8».

By using nontruncating unary operations, a simi
lar approach to expressing functions may be taken us
ing single applications of only two unary operations
and retaining three valued terms in a sum-of-products
expression.

The five remaining unary operations that map into
the full set (0, 1, 2) are shown in Table I V.

286 Spring Joint Computer Conference, 1968

A JO(A) J 1 (1\) J
2
(A)

0 2 0 0

1 0 2 0

2 0 0 2

TABLE IV. Nontruncating Unary Operations

The superscripts denote application of the unary
operation to the variable A. Adopting for the moment
the symbol ' to denote a general unary operation, the
operations Al and A2 in Table IV obey the law

«A')')' = A (10)

and the operations A 3 , A 4 , and A 5 obey the law

(A')'=A (11).

Assuming that one or more unary operations are
necessary, their position within an expression should
be able to be manipulated in conjunction with the se
lected set of binary operations. The laws that allow
manipulation of unary operations in conventional
switching algebra are the DeMorgan Laws:

(A+B) = A·B
(A·B) = A+B

(12)

A set oflaws of this general type should besought in
the selection of unary operations for a ternary switch
ing algebra. A set of possible "DeMorgan-type Laws"
for the unary operation ! is shown in Equation (i 3).

(AaB), = A' a B' (a)
(AaB), = A' 8 B' (b)
(AaB), = A" a B" (c)
(AaB)' = A" 8 B" (d)
(AaB), = A' a B" (e)

(13)
(AaB)' = A' 8 B' (0
(AaB)' = A a B (g)
(AaB)' = A 8 B' (h)
(AaB), = A a B" (i)
(AaB), = A j) B" 0)

Each of the above rules, as they are stated and with
a and 8 interchanged, were tested on each of the 12
pairs of binary operations in Equation (8) for each .
unary operation in Table IV. It was found that iso
morphic sets G 1 and G2 in Equation (9) satisfied Equa
tion (l3b) and its inverse (with a and 8 interchanged)
for one of the unary operations in Table IV~ G 3 and

G 4 satisfied only Equation (13b) or its inverse, but
not both, for only one of the unary operations in Table
IV. This would indicate that one of the pairs of binary
operations in G 1 or G2 should be selected for the bi
nary operations.

Functional completeness

As yet, the required number of unary and binary op
erations has not been determined. Since each basic
operation requires a fundamental circuit for implemen
tation of the algebra, the total number should be kept
small. An absolute minimum number may be undesir
able if unnecessary complexity of expressions result.
A compromise may be made if one or two additional
operations significantly reduce expression complexity.

Functional completeness, the ability of an algebra to
express an possible function~ of k variables for. all k,
dictates a minimal set of 0Pt:rations. A direct proof of
functional completeness of a given set of operations is
mathematically involved, I but it may be proven in-

. directly by showing that every operation of a known
functionally complete algebra, such as ternary Post
Algebra,S may be produced by a finite expression in
the algebra in question. The basic operations EB, . ,and
A' of Post Algebra are shown in Table V.

!! I

AeB 0 1 '2
H _ I

A Ai A··B 0 1 2

0 0 1 2 0 0 0 0 o 1

1 1 1 2 1 0 1 1 1 2

2 2 2 2 2 0 1 2 2 0

TABLE V. Ternary Post Algebra

They are identical to the operations shown in Ta
bles II(b), II(h), and the operation Al in Table IV.
The two binary operations are also identical to one
pair found to be idempotent, associative, commutative,
and distributive, and belong to isomorphic set G2

Two binary operations seem to be a good choice
based on algebras that have already been proposed.l-6

From the results of the distributive test listed in Equa
tion (8), it is easily shown that no three of the opera
tions in Table II are all distributive with each other.
An algebra with a single binary operation such as con
ventional NAND logic could be established, but ex
pression complexity would be increased. Based on
the results of the DeMorgan law tests, the choice is
between the pairs in isomorphic groups G 1 and G2. It
is not obvious from algebraic considerations which
group contains the best pair of operations. Pair PI
in group G 1 obeys the following additional rules:

Selection and Implementation of Ternary Switching Algebra 287

OaA=O
2aA=A
18 A=A
08 A=O

(14)

Pair P 4 in group O2 obeys a somewhat similar set of
rules:

OaA=O
2aA=A
08A=A
28A=2

(15)

The Post binary operations, pair P 4, are by far the
easiest to implement, and thus are preferable. These
may be considered the functions min(A, B) and max
(A, B) in the usual arithmetic sense,5 and can be im
plemented with simple diode gates similar to those
used in conventional logic. Post Algebra and varia
tions based on its binary operations has been suggested
by several other authors3-6 for ternary switching alge
bras, so the idea certainly i3 not new. The essence of
the author's approach is that an algebra is chosen a
priori, but rather by a suitable examination of all possi
ble algebras.

Selection of a suitable set of unary operations re
mains. Of the five unary operations in Table IV, A 3

obeys the DeMorgan Laws Equation (13b) and its in
verse with a and 8 interchanged. A 3 and the two Post
binary operations do not form a functionally complete
algebra, so one additional operation must be included.
Either A 4 or A 5 may be used.

Before further consideration is given unary opera
tions, the subjects of how to form and manipulate ex
pressions must be introduced.

Expansion theorems

A general method of generating expressions in a
given switching algebra is an expansion theorem1::l
A logic designer uses the Boolean expansion theo
rem,9 perhaps without realizing it, to generate expres
sions in conventional switching algebra. One com
used ternary expansion theorem3 is:

f(A, B, ... , N)

2 2

L ... L f(x A , XB, ... ,XN)· JX
A
(A)·JXB(B) ... JxN(N)

XA=O XN=O

(16)

where

n L Fx = logical sum of all the Fx = Fo ffi Flffi ... Fn
x=o

and

J XN (N) = unary operations that satisfy the expansion

theorem

This theorem is a generalization of the Boolean ex
pansion theorem that results in a "sum-of-products"
expression in conventional switching algebra. The
terms f(xA , xB, ... , xn) are the constants 0, 1, or 2 ob
tained from the truth table representing f(A, B, ... ,N).
Lee and Chena have proposed an algebra consisting
of the Post binary operations ill and ., and the unary
operations Jo, J hand J2 defined in Table III. The re
quired "J" operations are, unfortunately, of the "trun
cating" type that map into the set {O, 2}.

Another possible expansion theorem is:

f(A, B, ... , N)

where
n

IT Fx = Fo·F I Fn = logical product of all Fx_(19) !

x;,,:o

This theorem corresponds to the "product-of-sums"
form of conventional switching algebra. Expansion
theorem (16) only will be considered in the following
discussion; a discussion of both would be too lengthy.

Expansion theorem (16), when applied to a given
truth table, results in an equation of the form

f(A, B) = (O)(Jj(A) Jj(B) (1) Jk(A)J(B) El) ••.)

ffi(l)(Jm(A)Jn(B)ffi ...)ffi(2)(Jr(A)Js(B)EB .. ~)(20)
From Equations (15), which apply toEB and ., (20)
reduces to

Denoting the subexpressions in Equation (21) by
"U" and "V,'·'

f = (1. U) EB (V)

If the "J" functions in Equation (2) are simple
variables with or without a single application of a basic
unary operation, a sum-of-products expression of
the form commonly encountered in binary switching
algebra results; otherwise, it does not. This form is
preferable since currently known methods of simplifi
cation, such as the Karnaugh Map and Quine's
method, are applicable only to this form of expression.

From Equation (22) some general requirements of
the subexpressions U and V may be inferred. Both U

. and V are basic sums-of-products with no constants.

288 Spring Joint Computer Conference, 1968

For f = 0, both U and V must equal "0". For f = 1,
either (1 . U) or V or both must equal "1" and neither
equal "2". Either U = 1 or U = 2 will satisfy (1. U)
= 1. For f = 2, V must equal "2" since (1. U) can
never equal "2". These requirements can be met by
sum-of-products forms of U and V oniy if U and V
are allowed to assume only the values {O, 2}. This is
true with the operations chosen because a basic pro
duct assumes the value 2 for one and only one condi
tion but can be either "0" or "1" under other condi
tions over which there is no control. This problem
may be avoided by truncating U and V at the individ
ual variable level, such as is done when using the
unary operations Jo, J b and J2 detined in Table III,
or by handling Equation (22) in such a manner that
the problem does not occur.

An equivaient form of Equation (22) may be wriuen

(23)

where

U = J 2(X) and V = J 2(Y)

The sUbexpressions X and Y now may be three
valued with truncation performed at the expression
level in a prescribed manner independent of the func
tion rather than at the individual variable level. Since
Equation (23) is independent of the function, a new
operation T(X, Y) may be defined by Equation (23).

The truth table for T(X, Y) is shown below.

y

T (X,y) 0 1 2

0 0 0 2

x 1 0 0 2

2 1 1 2

TABLE VI. Definition ofT(X, Y)

T(X, Y) may be electronically implemented as one of
the basic "building blocks" for constructing a working
digital system using ternary logic. It will occur once
for each unique combinational function of any num
ber of variables. It is not necessary at all in the few
cases where the base algebra can express the func
tien directly. T(X, Y) might by symbolically repre
sented py Figure 1.

If A 3, which obeys the DeMorgan Laws, is chosen
felr one of the unary operations, the addition of A5 al
l<~IWS writing simple Hsum-of-products" expressions

XCA, B, • •• ,N) ~
__ ... , re)(,V)

VCA, B, ••• : N) _
i--.f(A, B, ••• ,Nl

I

Figure 1- Illustration ofT(X,Y) function

that satisfy the requirements of X and Y. A 3 and A 4

would be the proper choice for expansion theorem
(18). The op~rations Efj, " A3 and either A4 or A5

form a functionally complete algebra since

(24)

but cannot in itself produce simple sums-of-products
for all possible functions. By appending T(X, Y) as de
fined above to the set of operations, the variable ex
pressions may be written in sum-of-products form.

Simplification of expressions

Simplification of the subexpressions X and Y in
Equation (23) may be accomplished by modifications
of techniques already established for conventional
switching algebra. The term minterm may be adopted
form conventional switching algebra to denote a ba
sic product in a ternary sum-of-products expression.
The appropriate minterms are included in X to make
X = 2 when f = 1, and in Y to make Y = 2 when f = 2.
The minterms corresponding to f = 2 may be included
in X as "don't care" conditions.

One method of forming and simplifying X and Y is a
ternary version of the Karnaugh l\lap. This method
directly applies the laws

(25a)
and

(A, B) $ (A ·C) = A ·(B E9 C) (25b)

and indirectly depends on the associative, commuta
tive, and idempotent properties of $ and '. As an ex
ample, consider the simple function f(A, B) defined by
the truth table in Figure 2(a).

The subexpressions X and Y may be defined mathe
maticallyas:

Selection and Implementation of Ternary Switching Algebra 289

feA, B)

0
B 1

2

A

0 1 2
0 1 2
1 1 2

2 1 2

Ca)

(b)

"X" = DON'T CARE
2" = 0 OR 1

0
1

2

0
1
2

0 1 2
2 2 X
2 2 X
X 2 X

0 1 2
2 "2 2
2 2 2
2 2 2

(c)

Figure 2 - Example of Karnaugh simplification

where J1 and J2 are as defined in Table III and

Po(A) = A
P1(A) = AS
P2(A) = A

X(A, B)

"Y(A, B)

(27)

In words, Equations (26) simply state that all basic
products or minterms are included in X that equal 2
when f = 1 and all minterms are included in Y that
equal 2 when f = 2. In un simplified form, X and Y
for the example in Figure 2(a) are

Y(A,B) = A3BE9AB3E9AB5E9AB
X(A,B) = A3B5E9A5BE9A5B3E9A5B5 (28)

For simplification purposes, any or all terms in
Y(A, B) may be included in X(A, B) as don't care con
ditions since if Y(A, B) = 2 the value of X(A, B) is im
material (see Table VI).

In this example, if the term AB5 in Y(A, B) is in
cluded in X(A, B), X and Y may be simplified to

X(A, B) = A5 ffi B5
Y(A, B) = A EB A3B

f(A,B) = T(X,Y)
(29)

A Karnaugh map method may be applied to obtain
the same result as shown in Figure 2(b) and 2(c).
These reflect X(A, B) = 2 for f(A, B) = 1 and Y(A, B)
= 2 for X(A, B) = 2. All "2" entries in the truth table
for Y(A, B) are entered in the table for X(A, B) as
"don't care" conditions. Simplification is done by
groupings of 3n terms.

The conditions for grouping terms differs slightly
from conventional Karnaugh Maps. Groupings of 3n

terms instead of 2n terms are used, and the condi
tions for "adjaCency" are slightly more complex. For
two variables, the groupings are obvious as shown in
Figures 2(b) and 2(c).

For three or more variables, two minterms are "ad
jacent" if they differ in only one element of the basic
product just as in the conventional case; these are not
nec~ssarily physically adjacent in the table as in the
conventional case with more than four variables. Fur
thermore, all three terms that differ by one element

must be present to effect a grouping, as dictated by
Equation (25a).

Other simplification methods can be developed,
based on methods used in conventional switching alge
bra, but are beyond the scope of this presentation. The
Karnaugh Map method presented is one way to create
suitable expressions to direct construction of a work
ing digital system using ternary logic "building
blocks."

Implementation

Before a useful digital system can be created, se
quential techniques and suitable storage elements
must be developed. The author cannot hope to more
than merely scratch the surface of these areas. The
discussion will be limited to consideration of a suita
ble storage element.

The obvious choice for a storage element is a ter
nary version of the flip-flop, if such a thing exists.
First, the characteristics of such an element must be
defined. It obviously must have three stable states
and be capable of switching from one to another upon
application of external stimuli. To be compatible with
the algebra discussed above, it should have at lease
one tri-Ievel output Q, and preferably three outputs
Q, Q3, and Q5. The required input stimuli must be ob
tained from the tri-Ievel voltage signals provided by
the other basic circuits.

The law

«A')')' = A (30)

for the first unary operation in Table IV indicates
that a tri-stable configuration can indeed be produced
by cascading three circuits that implement the opera
tion A I

, and connectingJhe last back to the first. This
is analogous to. cross-coupling t\yo inverters in con
ventional logic to form a basic flip-flop. A basic ter
nary flip-flop is shown symbolically in Figure 3.

Figure 3 - Representation of a ternary flip-flop

Still needed is a method of controlling the state of
the basic ternary flip-flop by external stimuli. There
can be as many, if not more, variations as there are
currently with binary flip-flops. Ternary diode gates
inserted between each of the A l circuits in Figure 3 is

290 Spring Joint Computer Conference, 1968

a method of control. Consolidation of the basic idea
shown in Figure 3 into a single flip-flop package with
appropriate inputs and outputs is left to the circuit
designer.

An interesting variety of "clocked" flip-flops could
result from the tn-level nature of the input signals.
Positive and negative pulses about the center voltage
level could perhaps be used to stimulate two entirely
different actions within a ternary flip-flop, such as to
load it and to preset it to a given state.

A set of basic circuits has been devised by the au
thor to implement the operations A I , A 3 , A 4, A 5, and
T(X, Y) using complementary-symmetry transistor
techniques.

CONCLUSION

In the preceding sections, a suitable ternary switch
ing algebra was determined by applying a reasonable
set of constraints to the class of all possible ternary
algebras. Based on the ability to manipulate, simplify,
and implement algebraic expressions, the Post binary
operations EB and " the unary operations A 3 and A 4 or
A 5, and the auxiliary binary operation T(X, Y) seem
to be the best choice for a set of basic operations. The
similarity between the theorems of this algebra and
those of conventional switching algebra allow varia
tions of conventional simplification techniques to be
employed.

Sequential techniques, a necessary addition to the
theory to be able to develop useful digital systems,
were considered only briefly. Variations of conven
tional sequential techniques could perhaps be used to
form the basis of a theory for ternary sequential sys
tems. Primary emphasis was placed on the ground
work for development of a suitable storage element,
'n ternary version of the flip-flop. :Much work remains
to be done concerning sequential topics, including a
comprehensive sequential theory, further develop
ment and implementation of ternary flip-flops, and
suitable ternary memory systems.

Although the basic "inverter" circuits discussed
are more complex than their binary predecessor, cir
cuit complexity is becoming less and less a primary
considedltion as integrated circuit technology ex-

pands. Most current dig~tal integrated circuits are
limited not by circuit complexity, but by the number of
terminals available on the physical package. A given
number of signal terminals could convey more infor
mation in and out of a package if ternary circuits were
used. This could possibly effect a savings in intercon
nection, especially where parallel transmission of
large data words is used.

ACKNOWLEDGMENTS

The author is indebted to Professors R. R. Korfhage
and S. Freeman of Purdue University for their guid
ance and suggestions while the author was perform
ing the research leading to this paper.

REFERENCES

1 0 LOWENSCHUSS
Nonbinary switching theory
1958"IRE National Convention Record part 4 pp 305-317

2 R D BERLIN
Synthesis of N-valued switching circuits
IRE Transactions on Electronic Computers vol EC-7 pp 52-56
March 1958

3 C Y LEE W H CHEN
Several-valued combinational switching circuits
Transactions of the AlEE (Communication and Electronics)
vol 75 pt I pp 278-283 July 1956

4 E MUEHLDORF
Ternaere schaltalgebra
Archiv der Elektrischen Uebertragung vol XII pp 138-148
March 1958

5 M YO ELI G ROSENFELD
Logical design of ternary switching circuits
IEEE Transactions on Electronic Computers vol EC-14 pp 19-29
February 1965

6 A MUKHOPADHYAY
Symmetric ternary switching functions
IEEE Transactions on Electronic" Computers vol EC-15 pp
731-739 October 1966

7 R L HERRMANN
Development of a three-valued switching algebra
Master's thesis Purdue University Department of Electrical En
gineering August 1964

8 E L POST
Introduction to a general theory of elementary propositions
American Journal of Mathematics vol 43 pp 163-185 1921

9 P C ROSENBLOOM
The elements of mathematical logic
New York Dover 1950

Application of Karnaugh maps to Maitra cascades

by GIUSEPPE FANTAUZZI
F ondazione U. Bordoni
Rome, italy
and

Montana State University
Bozeman, Montana

INTRODUCTION

Statement of the problem

A Maitra cascade, as shown in Fig. 8, is a one dimen
sional cellular array whose cells have only one out
put and two inputs. At the output of the last cell the
function is performed whose independent variables
are introduced at the free inputs of the cascade cells.
There are two different kinds of Maitra cascades
according to whether a different binary variable is
introduced or not at each independent input. l' In
the first case the cascade is an irredundant one, in
the second it is said to be redundant. The most impor
tant results about the synthesis of Maitra cascade are
given in Refs. 1-5. In Ref. 6 it is proved that a suffi
cient condition for a cellular cascade to reach its opti
mal synthesis possibility is that every cell can per
form the set of five functions shown in Fig. la, Ib, lc.

G~X·tY~F
XI

.0

~F \)Tx
i

.b .C

~---~F
lj~ ~ t

.d

subset 6f t~
variables

Figure 1 - Functions to be performed by the cells in a Maitra cas
cade

Four different algorithms have been published for
the synthesis of Boolean functions by means of Maitra
cascades. Three of them concern the irredundant
Maitra cascades2

-
4 while the fourth5 can be used for

the redundant ones, too (see also Ref. 6). The meth-

291

ods proposed by the authors of the above papers are
different but the properties of the Boolean functions
from which they are derived are quite similar. These
properties can be summarized by the following two
Propositions:

Proposition 1:

A completely specified binary function F(x1 ••• xn)
is realizable by a Maitra cascade if both of the fol
lowing hold:
I - There exists a variable Xi such that one of the
following conditions is satisfied:

a: F(x1 •• • xn) =xt + G(XI' .. Xi-lXi+l' .. xn)
b: F(x1 ••• xn) = xt G(x1 ••• Xi-lXi+l' .. Xn)

c: F(Xl'" xn) = xt:EB,G(xl ... Xi-lXi+l' .. xn)
d: F(xt = 1) is a parity function

II - In the cases a,b,c, function G(XI' .. Xi-lXi+l' .. xn)
is Maitra realizable; in case d, G = F*(Xi = 1) E9
F(Xi = 0) is Maitra realizable

Proof: See Refs. 5 or 6.(*)

Proposition 2:

When Xi satisfies conditions a,b,c of Proposition 1,
F can be obtained at the output of a cell whose inputs
are Xi and G, as it is respectively shown in Fig. 1 a, 1 b,
or 1 c. When Xi satisfies condition d, F is obtained at
the output of the cascade shown in Fig. 1 d. In this cas
cade, the function produced by the cell whose input is
Xj, is selected as shown in Fig. 2. The exclusive-or cas
cade following the Xi cell must realize the odd parity
function F*(xt= 1)(*)

(*) f* stands either for f or for its negative, f.

(*) Methods given in Refs. 3-5 are derived directly from the state
ments of Propositions I and I I. Maitra's method2 is developed in a
different way, but can be stated from the above propositions
(see Section 6).

292 Spring Joint Computer Conference, 1968

If the parity
function is :

I - \ I IF(x=I}

F(x= I)

F(x = I). ~,

F(x = I)

The function performed
by the cell of Xi is:

xy

iy

x+y

and G is
so defined:

IF{oi. F (i~

F(o) • F(n

F(o) • F(n

F(o) • F(n

Figure 2 - Statement of properties of the cascade in the case d of
Propl

Proof: See Refs. 3-5.

In order to test if a given function can be synthesized
by a Maitra cascade,3-5 it is necessary to look for a
variable Xi satisfying one of the conditions a, b, c, d;
then a function G with only n-l variables' is obtained.
The same considerations used for F must be repeated
for G. So, by applying the statement of Propositions
1 and 2 at most n-2 times, it is possible either to ob
tain the cascade realizing F, or to establish that there
is no cascade realizing F. If, in the application of
of the algroithm condition d is never used, the result
ing cascade is irredundant; in the other case it is a
redundant one.

From the above considerations it is clear that, for
testing the Maitra realizability of a given function F,
it is necessary to be able: (i) to look for a variable Xi

and then (ii) to derive the new function G with one
variable less than F. By using the Karnaugh map it
is possible to solve both above prob1ems in a simple
way, both for redundant and for irredundant cascades.
To show this, in the following sections some rules are
given for testing on the Karnaugh maps for the Xi

variable requested by Proposition 1 (Rules AI BI CI
o I). Then four other rules are given for deriving the
mapping of G from the one of F (All BII ell 011).
These rules are given in four different section ac
cording lV the condition a, b, c, d of Proposition 1
to be satisfied by Xi'

There are· additional problems in the statement of
an algorithm for Maitra cascades. These problems are
concerned with the need of selecting variables where
there is more than one Xi satisfying Proposition 1.
They are not considered here because they are com
pletely solved4

•
5 and do not involve Karnaugh maps.

Rules A {B}

If a variable Xi satisfies condition a {b} of Proposi
tion 1:

I - The Karnaugh mapping of F(x1 ••• xn) has the
(n -I)-cube [xt] {[xt]) completely labeled {unla
beled}
II - The mapping of G is given in the subcube (*)

r v*l I fv*l \.
LAiJ lLJ>o.lJJ

Proof: Obvious
Example:

.1

1000

G

1001

Figure 3 - An example of application for rules A

Consider the example shown in Fig. 3.1 {4.1} whose
Karnaugh mapping is given in Fig. 3.2 {4.2}. The 3-
cube [x2] {[x2]} is completely full {empty} and the
mapping of the residual function G is given in 3-
cube Ix~l CX2.1l. For the sake of clarity, in Fig. 3,3
{ 4.3} the mapping of F over a picture of 4-cube is
given.

(*) In the remainder of this paper the (n-l)-cubc is indicated by
[x*] iff Xi is equai in all ihe coordimoes of its veltices; if xt = Xl

{xt . .. Xi} the coordinate Xi is 1 {O}

. I

.2 Ol~~m~
II

.3

1000 1001

Figure 4 - An example of appiication for rules B

RuLes C

If variable Xi satisfies condition c of Propositions I:
1-The 2 (n - I)-cubes [xJ and [xJ are complemen
tary, i.e., for any pair of vertexes (gf) such that

gE[Xi] f E[XJ and the Hamming distance between g
and f is 1, one and only one of its elements is labeled. *

II - G is mapped on the (n-I)-cube [Xi]
Proof:
If condition c of Proposition 1 holds, F satisfies the

following identity
f=xiG+xli

Therefore, the function mapped on [xJ is the inver-
sion of the function mapped on [xJ and a minterm
belonging {not belonging} to G cannot belong- {must
belong} to G. This implies that for every vertex of
[xJ labeled, its adjacent vertex in [xJ cannot be
labeled and vice versa. End of proof.

Example:
An example is shown in fig. 5.

(*) This is the same as to state g and fare adjacents but belonging
to opposite (n-l)-cubes.

Application of Karnaugh Maps to Maitra Cascades 293

RuLes D

The all pairs (e (')
lying in opposite
3- cubes and
adjacent are
labeled in opposite
way.

Figure 5 - An example of application for rules C

If variable Xi satisfies condition d of Proposition 1,
either an odd parity function or its inverse is mapped
in the (n-I)-cube [Xi*]' To test if this happens, the fol
lowing properties can be used:
a - Both if an odd or an even parity function is mapped
on [xt], there are 2n- 2 vertexes labeled on it.

{3 - If the function mapped on [xi] is either a nonde
generate (i.e., depen~ing on all the variables Xh ... Xi-l
Xi+l' .. xn) odd parity function or its inverse, no la
beled {unlabeled} vertex in [xt] has any of its adja
cent vertexes belonging to [xt] labeled {unlabeled}
(see Fig. 6).
'Y - If an odd parity function is map'ped on [xt] , vertex
00 ... Ox* 00 ... 0 is unlabeled. If an even pclrity func
tion is mapped 00 ... Ox! 0 ... 0 is labeled~

By making use of the above conditions, the follow
ing rule can be derived'
I - For testin-g if a parity function is mapped on [x:J
first count the number of labeled vertexes in [xt] If
they are 2n- 2

, reduce the function mapped on lxt]
until it depends on all the coordinates of the map,
then test condition {3. If this condition is fulfilled, by
using condition 'Y, test whether the function mapped on
[xfJ is an odd or an even parity function. There are
two different rules for determining the mappin~ of G
according to whether F(xt = 1) or F(xt = 1) IS an odd
parity function.

IICi - If F(x·~ = I) is an odd parity function, G =
F(Xi = 0) EB F(Xi = 1) is obtained by performing the

294 Spring Joint Computer Conference, 1968

* * * *
I * * *
1* I .v.. I 1* 1* -A-

* * *
* * * *

* * *
* * * *

* * *
No labeled cell
adjacent labe led
and vice versa.

*
*

*

*
has an

cell

Figure 6 - Map of a parity function

exclusive-or of all the pairs (~f) of vertexes the ele
ments of which are both adjacent and belonging to~
opposite (n-l)-cubes [Xi] and [Xi].
I IiI - If • F(xt = 1) . is even parity function, the coinci
dence operation must be performed instead of the
exclusive-or. '
Example:

II~
IO~

.2 .3 .4 .5

Figure 7 - An example of application for rules 0

Rules DI DII are applied in the example shown in
Fig. 7. The function F is mapped in Fig. 7.2. The func
tion mapped on [x4] is X2 (odd parity function of one
variable) as it is easy to see after reduction to irredun
dant form (Fig. 7.3). Cascade realizing F is shown in
Fig. 7.5 whose function G is mapped in Fig. 7.4 ob
tained from Fig. 7.2 by applying rule L> 110:

I
I

I
I I I I

Xa Xs v
5TH't 'j4:TH·~..I3R8 I er. 'ICLI

I 'I'
V V
"a "s

iteration

I T 'I I I v I v v
I wC' I a 4 "e
i2 Iter.1 I iteration

Figure 8 - A general example

An example

The function to be synthesized is mapped in Fig. 9.
Variable X4 satisfies condition d of Proposition 1 be
cause the function mapped in 5-cube [x4] is equal to X5
and so it is the even parity function of one variable.
The dependent input G of cell X4 goes into is mapped
in Fig. 10. This mapping has been obtained by apply
ing rule D 1 If3. Variable X6 satisfies on the map of Fig.
10 condition c of Proposition 1. The new function G is
mapped on the 4-cube [X6] of Fig. 10 and is given in
Fig. 11. Variable X5 satisfies condition d of Proposi
tion 1. In fact, the 4 = 23-

1 vertexes of the 3-cube
[x5], after reduction (see Fig. 14), give the function
X3 E9 X2' The new function G is given in Fig. 12 that
is obtained by applying Rule D 1 If3. Variable X3

satisfies condition b of Proposition 1 on the mapping
of Fig. 12. On the 2-cube [X3] of Fig. 12 is mapped the
function Xl + X2 that can be realized by a cell. Byap
plying Proposition 1 five times and using Propositions
2 at each step, a Maitra cascade has been obtained
realizing F at its output (see Fig. 8).

001

011 * * 010 * 110 * * III * * 101 * * 100 * *
Figure 9- Map of the function to be synthesized

.[x;J.
-00 -01 -II -10

000 * * 001 * 011 * 010 * 100

I II * 101 * 1'00 * *
Figure 10- First residual function

XS
J~

-0- -1-

000 * --4t'f'P,..,.

001 *
011

010 *
110

III ~~,.".
101 *
100 * -.j

Figure t 1 - Second residual function

Application of Karnaugh Maps to Maitra Cascades 295

000 * 001

011

010

110 * I II

101

100 *
Figure 12 - Third residual function

00- *
01-

11- *
10- *

Figure 13 - Fourth residual function

-1-

·00 *
-01

...-.-

-II * -
-10

Figure 14-Simplification of the function mapped in the 3-cube
[X6] offig 11

296 Spring Joint Computer Conference, 1968

SUMMARY

In the studies on Cellular Logic, much work has been
done with Maitra cascades. This is due to the fact
that these cascades are useful as "elementary" mod
ule in more sophisticated cellular arrays. R. C. r-v1in
nick l has suggested the introduction of Karnaugh
maps in the study of maitra cascades; he has given a
casuistry for determining the Maitra realizability of
a Boolean function with four variables by using its
Karnaugh mapping. In this paper the application of
Karnaugh maps to test for the Maitra realizability
of any function with any number of variables is
studied. A set of necessary and sufficient conditions
is given to test the Maitra realizability by using only
Karnaugh maps. The practical usefulness of the rules
given here is limited only by the difficulty to study
Karnaugh maps with more than 6-7 variables. Further
more, the results given in this paper can be advan
tageously applied to the study of Rectangular Arrays.

CONCLUSION

The "realizability _test" [2 p. 1401 given by Maitra
makes use of a geometrical representation of Boolean
function that is a slight modification of the Karnaugh
map. The algorithm introduced by Maitra is given
without any mention of the Karnaugh maps and its it il
ity is limiied by the prior need to establish an order
ing of the variables. Furthermore, it can be applied
only for the irredundant cascades. By making explicit
reference to the Karnaugh maps, some rules are ob
tained in this paper that can be applied for both redun
dant and the irredundant cascades. They do not re
quire any ordering of the variables. These rules, in the
particular case of the irredundant cascades, are similar

to those of Maitra but they are derived in a different
way and, when they are used for applying the al
gorithm given in Refs. 3 and 4, the cascade synthesiz
ing F can be obtained. The results obtained in this
paper can be applied to more general cellular arrays
both rectangular and one dimensional as is shown in
Ref.7.

ACKNOWLEDGMENT

The author wishes to thank Prof. Robert C. Minnick
for his help in improving this paper and Kathleen
Wright who typed the manuscript.

REFERENCES
R C MINNiCK etai
Cellular arrays for logic and storage
Final Report AFCRL-66-613 AD 643178 Stanford Research
Institute Menlo Park California April 1966

2 K MAITRA
Cascade switching networks of two input flexible cells
IRE Transactions EC Vol EC-l 1 No 2 pp 136-143 April 1962

3 J SKLANSKY
General synthesis of tributary switching networks
IEEE Transactions on EC Vol EC-12 No 5 pp 464-469 October
1963

4 S LEVY R WINDER T MOTT JR
A note on tributary switching networks
IEEE Transactions EC Vol EC-13 No 2 pp 148-151 April 1964

5 H STONE A KORENJAK
Canonical form and synthesis of cellular cascades

IEEE Transactions on EC Vol EC-14 No 6 pp 852-862 Decem
ber 1965

6 G FANTAUZZI
Catene di Maitra
Internal Report Fondazione Ugo Bordoni Rome Italy December
1966

7 G FANTAUZZI
Catene di Short
Internal Report Fondazione Ugo Bordoni Rome Italy December
1967

Universal logic circuits and their modular realizations

by s. s. YAU andC. K. TANG
Northwestern University
Evanston, Illinois

INTRODUCTION

In order to achieve the great economic advantage of
utilizing integrated circuits in computer circuitry, it
is desirable to design a circuit which can realize any
logic function of a fixed number of variables by simply
varying its input terminal connections. Such a circuit
is called a universal logic circuit (U LC). When the
number of variables becomes large, a ULC may be
too complex to be built in a single package economi
cally. Hence, it is preferred to use ULC's of a small
number of variables as the modules to build a ULC of
a large number of variables. Such modules are called
universal logic modules (ULM's). In this paper, we
shall first present a three-variable ULC, which has a
fan-in for each logic gate not exceeding four, and con
sists of only 7 I/O pins. Then, we shall extend" the
ULC's to four or more variables. There are 12 I/O
pins in a ULC of four variables, and several models
with different fan-in limitations will be given. The
logic gates in the ULC's may be all NAND or all
NOR gates. Then, a simple technique for designing a
ULC of any large number of variables using the
ULC'sof a small number of variables, say three vari
ables, as the ULM's will be established. It will be
seen that the ULC obtained by this technique will
require a small number of ULM's. Moreover, the
fault'-detection tests for ULM's and a diagnostic .pro
cedure for locating all the faulty ULM's in the modu
lar realization of a ULC realizing a given logic func
tion will be presented. Finally, a method for improving
the reliability of a ULC using an error-correcting
code will be demonstrated.

U niversallogic circuits of three variables

The problem of designing a ULC was first treated
by Forslund and Waxman,! and later by Ellison, et al.2

and Elspas, et al. 3 They employed the concept of
equivalenc.e classes to reduce the number of all
possible logic functions· of a given number of variables
to the number of the equivalence classes. An equiva
lence class is a set of logic functions that may be ob-

297

tained from a particular network by only manipulating
the application of variables· to the input terminals of
the network. One of the most common constraints on
these manipulations is that only true variables are
available with the permutation of the variables at, the
input terminals permitted. With this restriction, Hel
lerman4 partitioned the 223 = 256 three-variable logic
functions into 80 equivalence classes. In order" to
reduce the number of equivalence classes, Forslund
and Waxmanl assumed that both true and complement
variables are available at the input, and true and com
plement logic functions are both available at the output
(two output terminals). In addition, biasing (to a logi
cal 1 or 0) and duplication of input variables to the
input terminals are also permitted. The equivalence
classes defined this way reduces its number from 80
to 10 for three-variable logic functions. In this paper,
the same constraints are to be placed on the manip
ulations of input terminals, except that only one
output terminal will be required and that the biasing
"0" and "1" are not necessary. We shall employ a
different approach to obtain the ULC.

It is noted that a logic function f(x, y, z) of three
variables x, y, z can always be expanded with respect
to any two of the three variables x, y, z as follows:

f(x, y, z)=x)7f(O, 0, z)+ x y f(O, 1, z)
+ x y f(1, 0, z) + x y f(1, 1, z), (1)

where the functions f(O, 0, z), f(O, 1, z), f(1, 0, z) and
f(1, 1, z) are functions of z only, and each of these
functions assumes one of the four values: z, z, ° or 1.
Hence, a circuit shown in Fig. 1 can realize any ar
bitrary three-variable logic function f(x, y, z) if the
side terminals C l and C2 are connected to x and y
respectively and the four front terminals A A"": L"1(), h

A2, and A3 are connected to the appropriate values
z, z, 0, and 1. Based on (1) we obtain a ULC of three
variables consisting of AND, OR and INVERTER
gates shown in Fig. 1. It is noted that the biasing "0"
and "1" are not necessary. In Fig. 1, for example,
if f(O, 0, z) = 0, connecting terminal Ao to biasing
"0" is the same as connecting Ao to input variable y;

298 Spring Joint Computer Conference, 1968

and if f(O, 0, z) = 1, connecting terminal Ao to biasing
"1" is the same as connecting Ao to input variable y.
Similar arguments apply to terminals A}, A2, and A3•

:: :: ::~::: II ~

:f)-AND gate

$-OR gate

-+-INVERTER

Figure I-A ULC of three variables consisting of AND, OR and
NOT gates

It is well-known5 that a two-level AND and OR cir
. cuit can be replaced by a NAN D-gate circuit of the
same configuration. Thus, the circuit shown in Fig. 2
is also a ULC of three variables employing NAND
gates only.

y X
C,

Ao
f(o,o,z)

AI f{o.I,z)

A2 f{ l.o,Z)

A3 f(I,I,Z)

Figure 2-A ULC of three variables consisting of NAND gates
only

A ULC of three variables consisting of NOR gates
can be obtained by using the dual relationship between
NAND's and NOR's, and is given in Fig. 3. It is
noted that the configurations of the ULC with NAND
gates and the ULC with NOR gates are identical,
and the only difference between these two circuits
is the permutation of the input values for the front
terminals. Another reaiization is shown in Fig. 4

using NAND, OR and INVERTER gates. This
circuit is more desirable than those shown in Figs. 2
and 3, since it requires only 16 diodes and 3 transis
tors, while the circuits shown in Figs. 2 and 3 need
16 diodes and 7 transistors_ Furthermore; the cir
cuit shown in Fig. 4 is more reliable because fewer
transistors are used. A similar circuit can be obtained
using AND, NOR and INVERTER gates. In each
of the above circuits, a total of 7 I/O pins is required.

~NORgate

A3 f{ I. I,i)

A2 f{ I ,O/Z) +--+--+--+---i~...., f ()
~~~x:.!.:!,y~, Z:.!. 

AI f(O,I,Z) 

Ao f O.O.Z) 

Figure 3-A ULC of three variables consisting of NOR gates only 

y X 
I 

l(oo,z) 

Figure 4-A ULC of three variables consisting of OR, NAND and 
INVERTER gates 

To evaluate the ULC given above, a comparison 
with the results given by Forslund and Waxman} 
is made as follows: Consider the circuit shown in 
Fig. 2 as a minimum-pin ULC. Since gates 0 6 and 
0 7 are included in the ULe, the circuit has 7 pins, 
7 gates, and 3 levels. The minimum-pin U~C of three 
variables given by Forslund and Waxman also has 
7 pins, but it requires 10 gates and has 5 ievels. The 
ULC given in Fig. 2 also has the advantage that only . 
one complement input is required, whereas the mini
mum-pin ULC given by Forslund and Waxman re
quires two complement inputs. If the circuit shown in 
Fig. 2 is considered as a minimum-gate ULC, gates 



Universal Logic Circuits and Their rv10dular Realizations 

G 6 and G 7 should be excluded from the ULC at the 
expense of adding two more pins. Consequently, it 
ends up with a minimum-gate ULC of 5 gates, 9 pins 
and 2 levels. The minimum-gate ULC of Forslund 
and Waxman has 6 gates, 9 pins and 4 levels, and can 
realize only the logic functions in nine out of the ten 
equivalence classes. It is seen that 5 is the absolute 
minimum number of gates required for any ULC of 3 
variables, since the realization of the exclusive-or 
function of 3 variables alone requires a minimum of 5 
NAN D gates.6 

Universal logic circuits offour and more variables 

The problem of designing a U LC of four or more 
variables was also treated by Forslund and Waxman l , 

using the same idea of equivalence classes as in the 
case of three-variable ULC. Due to the large amount 
of computations required, it is prohibitive to obtain 
such a ULC by that method. However, the approach 
used in the last section for obtaining the ULC of three 
variables can readily be extended to four or more 
variables. Since a logic function f(x, y, z, w) of four 
variables can be written in the form 

f(x, y, z, w) = x y z f(O, 0, 0, w) + X Y z f(O, 0, 1, w) 
+ X Y z f(O, 1, 0, w) + X Y z f(O, 1, I, w) 
+ x y z f(l, 0, 0, w) + x Y z f(l, 0, I, w) 
+ x Y z f(l, 1, 0, w) + x Y z f( 1, I, I, w), 

(2) 

the ULC of four variables shown in Fig. 5 is obtained. 
It is noted that there is a NAN D gate with a fan-in 
of 8 in this realization. Two other NAND realiza
tions with smaller fan-in limitations and more gates 
are given in Figs. 6 and 7. Similar to the case of 
three-variable ULC's, the corresponding NOR reali
zations of Figs. 5-7 can easily be shown that they have 
the same configurations of the original NAND real-

Z 

~ 

A f(o.o.o.w) 
·0 

AI f(o.o,I,W) 
A2 f(o,l.o.w) 
A3 f(o.I.I,W) 

A4 f( I.O.O.W) 
As f( 1,0,1 ,W) 

A6 f( I, I,O,W 

A7 f(1 1.1 W 

.X 

f(x.y,z,W) 

Figure 5 - A U LC of four variables with 3 levels and a fan-in 8 

izations with their input' terminal connections per
muted. The rule of permutation on the residue func
tions of one variable for the NOR realization is to 
replace 1 by ° and ° by 1 in the residue functions for 
a NAND realization. For instance, f(O, I, 0, w) in 
Fig. 5 should be replaced by f(l, 0, 1, w) for the 
corresponding NOR realization. 

The ULC's of five or more variables can be derived 
in a similar way. It can be shown that a ULC of n 
variables obtained by this method has p input pins, 
where 

(3) 

With a fan-in limitation of four, this approach will 
yield a ULC of n variables, n ;;::: 2, which has q gates 
and [ levels, where 

Figure 6-A ULC of four variables with 5 levels and a fan-in 4 

z y x 

f(x.y. z ,W) 

Figure 7 -A ULC of four variables with 4 levels and a fan-in 5 



300 Spring Joint Computer Conference, 1968 

{
i (2n-l - 1) + (n - 1) when n is odd 

q= 10· 
-"3(2n- 2 - 1) + (n + 2) when n is even 

r n when n is odd 
( = t n + 1 when n is even. 

(4) 

(5) 

For example, a ULC of five variables with a fan-in 
limitation of four is shown in Fig. 8. The numbers 
given by (4) and (5) can certainly be reduced if a 
larger fan-in is permitted. It is noted that for any n 
only one complementary input variable is required 
and all others can be true input variables in a ULC 
obtained by this method. 

u z y x 

ivRr I I 

foo 10,V 
f O,I,I,V 

f(o I,O,O,v 
f(o 1,0 I,V) 

f(o,1 ,I ,o,v) 
f(o,I,I,I,V) f(x,y,z,u,V) 
f( I,O,O,O,v} 

f( I,O,O,I,V) 

f(I,O,I.O,V) 

f(I,O.I,I,V) 

f(I,I,O,O,V) 
f(I,I,O,I,V) 

f(I.I,I,O,V) 

f(I,I,I,I,V) 

Figure 8-A ULC of five variables 

A comparison of the number of input pins required 
here and the upper bound of the number of input pins 
required for a ULC given by King7 is shown in Table 
I. The upper bound given by King is for the ULC de
fined in a slightly different way, namely only true in
puts are used, while in this paper one complementary 
input is allowed. It is seen that the values of pare 
considerably lower than King's upper bound. A lower 
bound on the number of required input pins is derived 
here with the restriction that only one complementary 
input is allowed. First we calculate the number of 
possible distinct connections of p input pins to the set 
of values {a, 1, Xh X2," 0 • ,Xn,Xn} such that every 
Xj, 1 ::::; i ::::; n, is connected to at least one pin. It can 
be shown that this number is given by 

The number p of input pins of a ULC and King's upper bound on p. 

I n 
2 3 4 5 6 I 

I I 
I p 3 6 11 20 37 I 

I King's upper bound 6 11 20 37 70 I 
T ABLE I - The number p of input pins of a ULC and King's upper 

boundonp. 

(n + 3)P- (~) (n + 2)P+ (~) (n + I)P- (~)nP 

+ ... + (-1)~ (~)3P. 
The number of possible distinct connections must 
not be smaller than the number of logic functions of 
n variables. Hence, the following inequality is ob
tained. 

(n + 3)P - (V (n + 2)P + (~) (n + l)P - O~)nP 
n 

+ ... + (-1)n(~)3P ~ 22 . 

The minimum p satisfying the inequality (6) is a lower 
bound on p, which is listed in Table II. It is _ noted 
that Elspas. et al. 3 have derived a ULC of 4 variables 
with a total of 9 I/O pins, and by decomposition a 
ULC of 5 variables with a total of 19 I/O pins was ob
tained. For n ~ 6, their result requires exactly the 
same number of input pins given by (3). They have 
also derived a lower bound for p, which is smaller 
than that listed in Table II, because all complemen
tary inputs are allowed in their derivation. 

TABLE I I - The lower bound on p calculated according to (6). 

I · 

2 3 4 5 

I Lower bound 3 5 7 12 

Realization of a universal logic circuit using 
universal logic modules 

6 
! 

21 

We have shown in the last section that a ULC of 
any large number of variables can be found. However, 
it follows from (3)-(5) that the complexity of the 
ULC increases rapidly as the number of variables 
increases. From either economical point of view or 
maintenance point of view, it becomes prohibitive 
to build ULC's of various large numbers of variables 
in individual integrated circuit packages. Hence, we 
would like to present a technique for realizing a ULC 
of a large number of variables using identical ULC's 
of a small number of variables as modules, which 
are called universal logic modules (ULM's). Ob
viously, there are two great advantages of this tech
nique. First. we only need a large quantity of identical 



Universal Logic Circuits and Their Modular Realizations 301 

ULM's to build ULC's of various numbers of vari
ables. Secondly, when there are faults in a U LC, we 
only need replace the faulty U LM's instead of the 
whole ULC. 

To derive the modular realization of a ULC of n 
variables using U LC's of 3 variables as the U LM's 
(denoted -by ULM-3's), let us first consider the 
case when n is odd. Since any logic function f(xh 
X2,' .. ,xn) of n variables, n ~ 3, can be expanded to 
the form 

f(x h X2 , ... , xn) = xlx2f(0, 0, X3 , ... , xn) 
+ xlx2f(0, I, X3 , ... , xn) 
+ xlx2f(l, 0, X3, ... ,xn) 
+ x2xl(l, 1, X3 , ... , xn), (7) 

it can be realized by a ULM-3, provided that the side 
terminals CI and C2 and the front terminals Ao, Ah 
A2 and A3 shown in Fig. I, 2, or 3 are connected to 
the input variables Xl and X2 and the residue func
tions f(0,0,x3,' .. ,xn), f(O, I ,X3, ... ,xn), f( 1 ,0,X3, ... , xn) 
and f(l,l, X3, ... , xn) respectively. This ULM-3 
forms the first level of the modular realization of the 
U LC. Since we can repeat this process to each of the 
residue functions, the second level of the modular 
realization consists of four ULM-3's whose side 
terminals are connected to the input variables X3 
and X4 and front terminals connected to appropriate 
residue functions of n - 4 variables. Continue this 
process until the. residue functions become functions 
of the variable Xn. Because n is odd, and because each 
expansion reduces the number of variables. of the 
residue functions by exactly 2, it requires a total of 
(n - 1 )/2 expansions. This implies that f(x l, ... , xn) 
can be realized by using ULM-3's in a tree structure 
consisting of (n - 0/2 levels as shown in Fig. 9. It is 
seen that there are 4j

-
t ULM-3's in thej-th level of the 

tree structure. Each of the front terminals of the 
ULM-3's in the last level is connected to one of the 
four values 0, 1, Xn and'xn defined by the correspond
ing residue function of variable Xn, which can be 
found as follows: Trace the path from the output ter
minal F to the front terminal in the last level in ques
tion in the tree structure, and use two bits to write 
the binary representation of the subscript h for the 
front terminal AQ of the ULM-3 in each level. Then, 
the concentration of the ~(n-l) 2-tuples in the order 
of the path forms the argument of the residue function 
for the front terminal. For instance, if the path from 
the output terminal to a front terminal in the last 
level in a modular U LC of 5 levels passes through 
the front terminals AI, A2, Ao, A3, Al of the ULM-3's 
in the 1 st, 2nd, ... ,5th levels respectively, the residue 
function for this terminal is f(O, 1 , 1 ,0,0,0, I ,1,0, I ,Xn). 
For convenience, we shall call the front terminal 

of a ULM-3 in the last level Pi if it is connected to 
the residue function with the binary argument whose 
decimal representation is i. It is obvious that there 
are 2n- 1 front terminals of the ULM-3's in the last 
level for a modular ULC of n variables. Fig. 10 shows 
the modular realization of a ULC of 7 variables using 
ULM-3's. 

F 

Figure 9 - The modular realization of a U LC of n variables when n 
is odd 

When n is even and when only ULM-3's can be 
used in the modular realization, only slight modifica
tion in the first level is required. Instead of expanding 
the logic function according to (7) for the first level, 
we only expand the logic function as follows: 

f(x l, X2, ... , xn) = Xl f(O, X2, ... , Xn) + Xl f( 1, X2, ... ,xn)· 
(8) 

It is easily seen that (8) can be realized by a ULM-3, 
provided that the side terminals C I and C2 are both 
connected to the input variable Xl, the front terminals 
Ao and A3 connected to the residue functions f(O, X2, 
... , xn) and f( 1, X2,"" xn) respectively, and the 
connections for Al and A2 are don't-care. Then, each 
of the residue functions in (8) is a function of an 
odd number of variables and hence can be realized 
by the previous method. The residue functions for 
the front terminals of the ULM-3's in the last level 
can be found in the same way as before except that 
only the first bit in the binary argument of the residue 
function corresponds to the subscript of the front 
terminal of the ULM-3 in the first level. The first 
bit is ° or I depending upon whether the front terminal 



302 Spring Joi.nt Computer Conference, 1968 

3RO 
LEVEL 

Figure to-The modular realization of a ULC of 7 variables 

of the ULM-3 in the first level in the path is Ao 
or A3 respectively. Fig. 11 shows such a modular 
realization of a ULC of 6 variables. It is noted that 
in this case we have not used the full capacity of the 
ULM-3 in the first level. In fact, if we are not restrict
ed to use ULM-3's only in the modular realization, 
the three ULM-3's in the first and second levels can 
be substituted by a ULM-4 as shown in Fig. 12. 
The terminal connections and the residue functions 
for the front terminals of the ULM-4 in the last 
level can be found by considering the ULM-4 shown 
in Fig. 5 or 6 and the expansion of f(x., xu ... , xl1l) 

with respect to the variables Xl, X2, and x3. 

The above modular realization technique can 
easily be extended to using ULM's of any variables. 
If only ULM's of a fixed number of variables can be 
used, it is often necessary to have some don't-care 
terminal connections to some of the ULM's and hence 
some of the ULM's are not utilized to their full 
capacity. It can be shown that if only ULM-4's 
are used in the modular realization, there will be 
no don't-care terminal connections to any ULM-4 

x.. Xs ~ X3 . XI XI 
! I I I 
I~i II . ~LM-3h I I 
, , I I I 

II 
I I 

UUJ.-3J-
l
1 I Ir--t I I I 

"}f ~§ ULM-3 ~ 
ULM-3 

ULM-31-
~~=====:l ULM-3..J f<x •• x2•••• .Xc> 

ULM-3 

ULIoI-3~' 
ULM'"3} 

ULM-3 I 
I ULM-3i-J 

Figure 11 - A modular realization of a ULC of six variables using 
ULM-3's only 

---,1 
ULM-3J--

---, 

ULM-31--
---, 

ULM-3 
!----"Ll 

ULM-3 L.....::::::f ULM-41 f (XI. X. •...• x.) 
r------ti 

-::::::f J ULM-3 
~ 

ULM-3 
~l 

ULM-3~ 
""'--:::1.L 

ULM-3J--

Figure 12-A m~dular realization of a ULC of six variables using 
ULM-3's and a ULM-4 

for a ULC of n variables, where n = 3a + 4 and a 
is a nonnegative integer. However, if both ULM-3 
and ULM -4 are used in the modular realization, 
the don't-care terminal connections can always be 
avoided. Furthermore, it is noted t~at the tree struc
ture of the modular realization of a ULC of n variables 
using ULM-k's always has 2n- 1 front terminals in the 
last level for any k. 

Fault-detection testfor ULM's and afault
diagnostic procedure for modular U LC' s 

The problem of developing a practical fault-diagnos
tic procedure for a logic circuit of a large number of 
variables is still far from being solved.s-12 When 
integrated circuit packages are used for logical design, 



Universal Logic Circuits and Their Modular Realizations 303 

so far there is no practical method of deriving a set 
of minimal fault diagnostic tests which can locate the 
faulty packages. At present, it is possible to find a 
set of tests to detect all faults and to locate most of 
the faults to within a reasonable number of packages. 1:1 

In this section, we shall present the fault-detection 
tests for ULM's and a diagnostic procedure locating 
all the faulty ULM's in the modular realization of 
a ULC realizing a given logic function. 

Fault-detection tests for ULM's 
For a ULM built in an integrated circuit package, 

a defective unit usually means that a set of gates and 
possibly several connecting wires are burnt or 
broken. If we make no assumptions about the types 
of the faults in ULM's - whether they are due to 
single- or multiple-component failures, open- or 
short-circuit wires or gates, etc. - it is obvious that 
the fault-detection tests for ULM's must exhaust 
all possible combinations of the input terminals. 
Hence, for a ULM with p input terminals, where p 
is given by (3), it requires 2P tests to detect all possible 
faults in a ULM. It is seen that a ULM-3" requires 
64 tests* and a ULM-4 requires 2048 tests. 

A diagnostic procedure to locate all the 
faulty ULM's in a ULC 

Consider a ULC of nvariables made of ULM-k's. 
Because a set of tests corresponding to all possible 
combinations of the n input variables will definitely 
detect all the faults in a logic circuit realizing a specific 
function, we need at most 2n tests for detecting faults 
in the U LC realizing a given logic function. t If there 
are no restrictions on the type of possible faults in 
the ULM-k's, the 2n tests also form the minimum 
test set. 

Let a test applied to a ULC of n variables be 
represented by the n-tuple (bb b2, ... ,bn) of binary 
components, where bl is the value of the inp·ut 
variable XI, I = I, 2, ... , n, employed in the test. 
Let T j and T/ be the tests (bh b2, ... , bn-b 0) and (bh 
b2, ... ,bn- h 1) respectively, where (bh b2, ... , bn- 1) 

*If the faults are restricted to "stuck-at-l" and "stuck-at-O" types, 
and if we assume that only a single fault can occur at a time in a 
U LM9,1l, it can be shown that the set of minimum tests for a 
ULM-3 consists of only 8 tests. 

tit is noted that passing the 2R tests only guarantees that the ULC 
will realize the logic function under consideration, but does not 
guarantee that the ULC will realize any logic function of n var
iables correctly. Similar to the fault-detection tests for a ULM, 
the set of tests required to ensure a U LC realizing any logic func
tion of n variables correctly will have 2Q tests, where q is the num
ber of input terminals of the ULC. However, if we assume that 
there is only a single faulty module in a U LC at a time, then the 
minimum number of tests required to ensure the U LC realizing 
any logic function ofn variables correctly is 2n+3 • 

has the decimal representation i. It follows from th~ 
tree structure of the modular realization of a U LC 
that if there are no faults in the U LC, the tests T j and 
T j will make the output terminal F logically connected 
to the front terminal· Pi in the last level of the tree 
structure, where Pi is connected to the residue 
function f(b l , b2, ... ,bn- 1, xn). Hence, the output ter
minal F and the terminal Pi should have the same val
ue under the tests Ti and T[. When F and Pi have dif
ferent values under test T j or T[ or both, the terminal 
Pi is said to have a faulty test. Furthermore, when 
we say that apply tests to terminal Pj, it implies 
that apply tests Ti and Ti to the U LC. Because of the 
tree structure of the U LC, it is obvious that there is 
one and only one path from ohe output terminal 
F to each terminal Pj, and the path contains one 
and only one ULM-k in each level of the U LC. 
If a ULM-k Mr (of any level) is the paths terminat
ing at the terminals Pj, PHh ... , PHd, we shall say 
that Mr covers the terminals Ph Pi+l, ... , PHd' 

Now, the diagnostic procedure to locate all the 
faulty ULM-k's in a ULC of n variables can be 
summarized as follows: 

I) Apply tests to terminals Pi' i = 0, 1, ... , 2n-l_l. 
If there exists no terminals with faulty tests, go to 
Step 4);otherwise, go to the next step. 

2) Start from j) = 1. Let La be the set of all the 
ULM-k's in the ath level in which each ULM-k 
covers at least one faulty terminal. Apply the fault
detection tests to each of the ULM-k's in La. If 
all the ULM-k's in La are good, go to the next step. 
Otherwise, replace each faulty ULM-k in La and 
apply test to all terminals Pi'S covered by each 
replaced ULM-k. Record the terminals Pi'S with 
the new faulty tests and those terminals with previous 
faulty tests not covered by lhe replaced ULM-k's, 
and go to the next step. 

3) Increase a by I, and go to Step 2) when a is small
er than the number of levels of the tree structure. 
Otherwise, the ULM-k's (in the last level) covering 
at least one ~erminal with a faulty test are faulty 
and should be replaced, and go to Step 4). 

4) All the ULM-k's in the ULC are good for realiz
ing the logic function under consideration. 

To demonstrate this diagnostic procedure, let us 
consider the ULC shown in Fig. 10. We first apply 
tests to all Pi'S. Assume that terminals ipo, P4, Ps, P6, 

P7, P31 , PS6' and PS7, be the terminals with faulty te"sts 
after replacing M17• Hence, we know that Ph Pg, 

and assume that we find M21 is good. Then, we have 
to apply fault-detection tests to M17, MIS and M20 
since each of these ULM-3's covers at least one 
terminal with a faulty test. Suppose we find that M17 
is faulty and that M 18 and M20 are good. Then, replace 



304 Sprir:tgJoint Computer Conference, 1968 

Ml7 and apply tests to terminals PO,PI, ... ,PI5. Let 
PI, Pg, P IO and Pll be the terminals with faulty tests 
after replacing M17• Hence,. we know that Ph Pg, 

PIO,Pll,P3bP56,P57 and P63 are all the terminals with 
faulty tests. Since we reach the iast leve1, we know 
~Y11,r-.13,r-.1gJA:15 and M:16 are faulty and should be re
placed. This terminates the procedure. 

I mproving the reliability of the modular realization 
of a U LC by an error-correcting code 

The reliability of the modular realization of a ULC 
can be improved by adding redundant ULM's using 
an error-correcting code. In this section, we shall 
demonstrate how to apply Hamming single-error
correcting code to increase the reliability of the modu
lar realization of a ULC of n variables. The circuit is 
shown in Fig. 13 and the following notations are em
ployed. 

f = f(x 1,x2,xa, ... ,xn) 
fo=f(O, 0, xa, ... ,xn) 
fl = f(O, 1, xa, ... ,xn) 
f2 = f(1, 0, Xa,··· ;xn) 
fa = f(1, 1, xa,···,xn) 

(9) 

The four blocks Bo,B1,B2 and B3 are the modular 
realizations of the ULC's of n-2 variables and have 
the outputs fo,fl,f2 and fa respectively. The Hamming 
single-error-correcting code with 4 information 
sYl!1bols is used, and its parity-check matrix H 
and generator matrix G are given by 

x... x.. XI 

1'''lB. 

Figure 13-A modular realization of a ULC of n variables using 
Hamming single-error-correcting code 

H=r: 
0 0 

: 1 0 0 (10) 

I I 

l 1 0 0 0 1) 

Pl P2 fo P3 f1 f2 f3 

[1 
1 1 0 0 0 

n G= 0 0 1 1 0 (11) 
1 0 0 1 

0 0 0 

The 4 information symbols to be encoded are fo,fl,f2 
and f3' which are placed in the 3rd, 5th, 6th and 7th 
positions of the 7 -bit code word respectively, while 
the remaining three positions are the parity check 
symbols Pl,P2,P3 as shown in (lO. It follows from 
(l0) and (11) that the parity-check symbols PhP2 
and P3 can be expressed in terms of fo,fl,f2 and f3 
as follows: 

Since fo,fl,f2 and f3 are functions of the n-2 variables 
X3""'Xm PhP2 and P3 are __ als<? Junctions of the same 
n-2 variables X3"",Xn' Thus, each of Pl,P2,P3 can be 
realized by using the modular realization of an U LC 
of n-2 variables. The three ULC's of n-2 variables 
for PhP2 and P3 are represented by the blocks B4,B5 
and B6 as shown in Fig. 13. The 7 signals fo,fl,f2,f3, 
Pl,P2,P3 are then fed to a decoder foHowed by a 
ULM-3 which produces the final output f(xI. ... ,xn). 

The decoder and the ULM-3 connected to th-e output 
terminal· have to be of high reliability. I t is found 
that the decoder will have 7 exclusive-O R gates, 
3 INVERTER's and 4 AND gates. The decoder can 
be implemented together with the ULM-3 in a 
single reliable package. Let a block containing faulty 
ULM's be called a faulty block. It is seen that such 
a ULC of n variables will give correct output if 
there is only one faulty block. It is also noted that the 
ULC will still give correct output for the case that 
there are more than one faulty block, provided 
that only one erroneous block signal will show up 
at a time (under any input combination). If there 
exists a faulty block in the ULC, the easiest way to 
detect this faulty block is to add three output terminals 
to the decoder showing the syndrome of the code 
words. The faulty block can be located automatically 



Universal Logic Circuits and Their tv10dular Realizations 

by simply reading the syndrome when the first fault 
occurs during the use of the ULC, and no separate 
test is required. The increase of cost for implementing 
this -scheme is that for any n > 3, we have to· add 
75% redundant ULC's of n-2 variables and one highly 
reliable decoder-ULM-3 package. It is notes that the 
method illustrated above can easily be extended to 
the use of Hamming code with more than four 
information bits. Furthermore, the error-correcting 
code that can be used for increasing the reliability 
of the ULC is not restricted to the Hamming code, 
and the number of errors that can be corrected is 
not restricted to a single one. 

DISCUSSION 

In this paper, we have presented simple design tech
niques for ULC's, which are especially suitable to the 
use of integrated circuit packages for implementation. 
Various effects, such as the number of pins, the num
ber of logic gates and the number of logic levels in 
a package, on the design of ULC's have been con
sidered. For the ULC's obtained by the modular 
realization method, a diagnostic procedure for locat
ing all the faulty ULM~s in a faulty ULC has been 
established. Furthermore, a method for improving 
the reliability of a ULC using error-correcting codes 
·has been demonstrated. 

It is noted that an important practical advantage of 
using a ULC to realize a given logic function is that 
we need not find the minimal sum or minimal prod
uct of the logic function, which, however, is required 
for conventional realization methods. The onlysimpli
fication process necessary to be applied to the logic 
function is to detect whether it can be written in a form 
which involves fewer variables. This result is used 
to determine a ULC of the smallest number of vari
ables for realizing the given logic function. 

It should be pointed out that the ULC's considered 
in this paper are restricted to realizing any single 
logic function. A natural extension of this study is to 
consider the design of a multiple-output ULC for 
realizing any set of m logic function. One way to ob
tain such a multiple-output U LC is simply to connect 
the m ULC's, each of which realizes one of the m logic 
functions, in the form of sharing the common input
variable terminal'\. It is quite unlikely that a multiple
output ULC with fewer I/O terminals can be obtained, 
because in general there are no fixed relations among 
the m logic functions to be realized. 

ACKNOWLEDGMENT 

The work reported here was supported in part by the 
U. S. Office of Scientific Research under Grant No. 
AF-AFOSR-1292-67. 

REFERENCES 

1 D C FORSLUND R WAXMAN 
The universal logic block (U LB) and its application to logic 
design 
Conference Record of 1966 Seventh Annual Symposium on 
Switching and Automata Theory I EEE Publication 16C40 
pp 236-250 

2 J T ELLISON B KOLMAN A P SCHIAVO 
Unlversalfunction modules 
UNIVAC Tech Rept Contract No AFI9(628)-6012 
(DDC AD-655395) April 1967 

3 B ELSPAS etal 
Properties of cellular arrays for logic and storage 
Stanford Research Institute Scientific Report 3 Contract No 
AF-19-628~5828· (DDC AD-658832) pp 59-83 June 1967 

4 L HELLERMAN 
A catalogue of three-variables OR-INVERT and AND
INVERT logical circuit 
IEEE Transaction on Electronic Computers vol 12 pp 198-
223 1963 

5 R B HURLEY 
Transistor logic circuits 
New York Wiley 1961 

6 R A SMITH 
Minimal three-variable NOR lwd NAND logic circuits 
IEEE Transactions on Electronic Computers Vol EC-14 
No 1 pp 79-81 February 1965 

7 W FRANK KING III 
The synthesis of multipurpose logic devices 
Conference Record of 1966 Seventh Annual Symposium on 
Switching and Automata Theory I EEE Publication 1640 
pp 227-235 

8 J D BRULE R A JOHNSON E KLETSKY 
Diagnosis of equipment failures 
IRE Transactions on Reliability and Quality Control vol 01 
RQC-9 pp 23-34 1960 

9 J M GALEY R E .NORBY J P ROTH 
Techniquesfor the diagnosis of switching circuitfailures 
IEEE Transactions on Comm and Elect Vol 83 No 74 pp 
509-514 1964 

10 H Y CHANG 
An algorithm for selecting an optimum set of diagnostic tests 
IEEE Transactions on Electronic Computers Vol EC-14 
N05pp705-7111965 

11 D B ARMSTRONG 
On finding a nearly minimal set of fault detection tests for 
combinationalloRic nets 
I EEE Transactions ooElectrooic Computers vol EC-14 no 1 
pp 66~ 73 1966 

12 W H KAUTZ 
Fault diagnosis in combinational digital circuit 
First Annual IEEE Computer Conference Digest IEEE 
Publication 16C51 pp 2-5 1967 

13 Logic partitioning in LSI 
Panel Discussion L M Spandorfer (moderator) IEEE Com
puterGroup News vol no 6 p 16 May 1967 





Sorting networks and their applications 

by K. E. BATCHER 
Goodyear Aerospace Corporation 
Akron,Ohio 

INTRODUCTION 

To achieve high throughput rates today's computers 
perform several operations simultaneously. Not only 
are I/O operations performed concurrently with com
puting, but also, in multiprocessors, several computing 
operations are done concurrently. A major problem in 
the design of such a computing system is the con
necting together of the various parts of the system (the 
I/O devices, memories, processing units, etc.) in such 
it way that all the required data transfers can be ac
commodated. One common scheme is a high-speed 
bus which is time-shared by the various parts; speed 
of available hardware limits this scheme. Another 
scheme is a cross-bar switch or matrix; limiting factors 
here are the amount of hardware (an in X n matrix 
requires m X n cross-points) and the fan-in and fan-out 
of the hardware. 

This paper describes networks that have a fast 
sorting or ordering capability (sorting networks or 
sorting memories). In (~)p(p + 1) steps 2P words can 
be ordered. A sorting network can be used as a mul
tiple-input, multiple-output switching network. It has 
the advantages over a normal crossbar of requiring 
less hardware (an n-input n-output switching network 
can be built with approximately (~) n(log2 n)2 ele
ments versus n2 in a normal crossbar) and of having a 
constant fan-in and fan-out requirement on its ele
ments. Thus, a sorting network should be useful as a 
flexible means of tieing together the various parts of a 
large-sc~e computing system. Thousands of input and 
-. -f- l -

output lines -can be accommodated with a reasonable 
amount of hardware. 

Other applications of sorting memories are as a 
switching network with buffering, a multiaccess 
memory, a multiaccess content-addressable memory 
and as a multiprocessor. Of course, the networks also 
may-be used just for sorting and merging. 

Comparison elements 

The basic element of sorting networks is the com
parison element (Figure 1). It receives two numbers 

307 

over its inputs, A and B, and presents their minimum 
on its L output and their maximum on its H output. 

A L MIN (A,B) 

A' oooC--- ~---L' 

B H MAX (A,B) 

B' ... --- fo-I--- H' 

Figure 1 - Symbol for a comparison element 

If the numbers in and out of the element are trans
mitted serially most-significant bit first the element 
has the state diagram of Figure 2. A reset input places 
the element in the A = B state and as long as the A and 
B bits agree it remains in this state with its outputs 
equal to its inputs. When the A and B bits disagree the 
element goes to the A < B or the" A > B state and re
mains there until the next reset input. In the A > B 
state the output H equals the input A and the output L 
equals the input B. In the A < B -state the opposite 
situation occurs. 

0-,,\ 
~::O, u-

A:8 

A - 1 - ,B:: 0 

Figure 2-State diagram for a serial comparison element (most
significant-bit first) 



308 Spring Joint Computer Conference, 1968 

A serial comparison element can be implemented 
with 13 NO RS and can be put on one integrated
circuit chip. When used in sorting networks each 
Hand L output will feed an A or B input of another 
element so the fan-out is constant regardless of net
work size; this fact could be used to simplify the de
sign of the chip. With several of the currently avail
able logic families speeds of 100 nanoseconds/bit 
with a propagation delay from inputs to outputs of 
40 nanoseconds are easily achieved. 

Faster operation can be attained by treating several 
bits in parallel in each step with more complex com
parison elements. 

Some of the appiications described beiow wili re
quire "bi-directional" comparison elements. Besides 
the A and B inputs and the Hand L outputs there are 
H' and L' inputs and A' and B' outputs (see Figure 1). 
If A > B then B' = L' and A' = H', if A < B then 
B' = H' and A' = L', otherwise A' and B' are left 
undefined. Information flows from left-to-right over 
the solid lines and from right-to-Ieft over the dotted 
lines. 

Odd-even merging networks 

Merging is the process of arranging two ascendingly
ordered list of numbers into one ascendingly-ordered 
list. Figure 3 shows a symbol for an "s by t" merging 
network in which the s numbers of one ascendingly
ordered list, aI, ~, ... ,as are presented over s inputs 
simultaneously with the t numbers of another ascend
ingly-ordered list, bl , b2, ••• , bt over another t inputs. 
The s + t outputs of the merging network present the 
s+t numbers of the merged lists in ascending order, 
cl , C2, ••• , CS+1 ' 

A "1 by i" merging network is simply one compari
son element. Larger networks can be built by using the 
iterative rule shown in Figure 4. An "s by t" merging 
network can be built by presenting the odd-indexed 
numbers of the two input lists to one small merging 
network (the odd merge), presenting the even-in
dexed numbers to another small merging network (the 
even merge) .and then comparing the outputs of these 
small merges .with a row of comparison elements. I 
The lowest output of the odd merge is left alone and 
becomes the lowest number of the final list. The ith 

output of the even merge is compared with the i + 1 th 

output of the odd merge to form the 2ith and 2i + 1 th 

numbers of the final list for all applicable i's. This 
mayor may not exhaust all the outputs of the odd and 
even merges; if an output remains in the odd or even 
merge it is left alone and becomes the highest number 
in the final list. 

c11..--~~ 
I 

- I l.i ...----~ 

2 

• 

• 

c 
s + t 

a
1 

< a
2 

< . • • < a 
s 

b
1 

< b
2 

< . • • < b
t 

C
1 

< C2 
< . • • < C 

s + t 

Figure 3 - Symbol for an "s by t" merging network 

Appendix A sketches the proof of this iterative 
rule. Figure 5 shows a "2 by 2" and a "4 by 4" merg
ing network constructed by this rule. 

A H2P by 2P " merging network constructed by this 
rule uses p.2P+ 1 comparison elements. The longest 
path goes through p+ 1 comparison elements and the 
shortest path through one element. Doubling the size 
of a merge only increases the longest path by unity so 
the merging time increases slowly with the size of the 
network. 



a1-_

a 2 
a3------~----~~ 

a 4 
a

5 

a s---

Cl" 
o 

___ C t 
s+ 

Figure 4 -Iterative rule for odd-even merging networks 

a
1 A L C

1 a
2 C

2 a 3 C
3 a

4 C
4 

b1 
C5 

b
2 

Cs 
b

3 
C

7 
b

4 Ca 

Figure 5 -Construction of"2 by 2" and "4 by 4" odd-evell" merging 
networks 

Sorting Networks and Their Applications 309 

Bitonic sorters 

Another way of constructing merging networks 
from comparison elements is presented here. While 
requiring somewhat more elements than the odd-even 
merging networks, they have the advantage of flexi
bility (one network can accommodate input lists of 
various lengths) and of modularity (a large network 
can be split up into several identical modules).2 

We will call a sequence of numbers bitonic if it is 
the juxtaposition of two monotonic sequences, one 
ascending, the other descending. We also say it re
mains bitonic if it is split anywhere and the two parts 
interchanged. Since any two monotonic sequences 
can be put together to form a bitonic sequence a 
network which rearranges a bitonic sequence into 
monotonic order (a bitonic sorter) can be used as a 
merging network. 

Appendix B shows that if a sequence of 2n numbers, 
aI, a2, ... , a2n is bitonic and if we form the two n
number sequences: 

min (ab an+1), min (a2, an+2), ... , min (am a2n) (1) 

and 

max (aI, an+1), max (a2, an+2), ... , max (am a2n), (2) 

that each of these sequences is bitonic and no number 
of (1) is greater than any number of (2). 

This fact gives us the iterative rule illustrated in 
Figure 6. A bitonic sorter for 2n numbers can be con
structed from n comparison elements and two bitonic 
sorters for n numbers. The comparison elements form 
the sequences (1) and (2) and since each is bitonic they 
are sorted by the two n-number bitonic sorters. Since 
no number of (1) is greater than any number of (2) the 
output of one bitonic sorter is the lower half of the sort 
and the output of the other is the upper half. 

A bitonic sorter for 2 numbers is simply a compari
son element and using the iterative rule bitonic sorters 
for 2P numbers can be constructed for any p. Figure 
7 shows bitonic sorters for 4 numbers and 8 numbers. * 
A 2P-number bitonic sorter requires p levels of 2P -

1 

elements each for a total of p. 2p
-

1 elements. It can act 
as a merging network for any two input lists whose 
total length equals 2p

• 

Large bitonic sorters can' be constructed from a 
number of smaller bitonic sorters; for instance, a 16-
number bitonic sorter can be constructed from eight 
4-number bitonic sorters, as shown in Fig. 8. This 
allows large networks to be built of standard modules 
of convenient size. 

*-Readers may recognize the similarity between the topologies of 
the bitonic sorter and the fast-fourier-transform. 



310 Spring Joint Computer Conference, 1968 

::=v.a:v3. 
- .------. I 
0. 3 / 'I A L V In - ! T EM 

BITONIC 
SORTER 

Cn - 2 
C 

n-1 
C 

n 

~
Cn+1 
C 

n+2 

n-ITEM C_*~ 
BITONIC " .J 

• SORTER 

a1 , a2 , • • ., a
2n 

IS B I TON I C 

C
1 

:s; C
2

:S; • • • :s; C
2n 

Figure 6 -Iterative rule for bitonic sorters 

S orting networks 

A sorter for arbitrary sequences can be constructed 
from odd-even merges or bitonic sorters using the 
well-known sorting-by-merging scheme: The numbers 
are combined two at a time to form ordered lists of 
length two; these lists are merged two at a time to 
form ordered lists of length four, etc. until all numbers 
are merged into one ordered list. 

To sort 2P numbers using odd-even merges requires 
2P- 1 comparison elements followed by 2P-2 "2-by-2" 
merging networks followed by 2P-~ "4-by-4" merging 
networks, etc., etc. The longest path will go through 
(~)p (p + 1) elements and the shortest path through 
p elements. The network requires (p2 - P + 4)2P-2 - 1 
comparison elements. 

To sort 2P numbers using bitonic sorters requires 
(~)p(p + 1) levels each with 2P-

1 elements for (p2 + p) 
2P-2 elements. Each path goes through (~)p(p + 1) 
levels. 

A sorter for 1024 numbers will have 55 levels and 
24,063 elements with odd-even merges or 28,160 ele
ments with bitonic sorters. With a 40 nanosecond 

a1 
C1 

a2 
C2 

a
3 

C3 
C4 

as Cs a
6 Cs a7 C7 

as Ce 

Figure 7 - Construction of bitonic sorters for 4 numbers and for 
8 numbers 

a
1 

as----l 
a 9-

a
13 

4-NUMBER 
B I TOrJ I C SORTER 

Figure 8 - A 16-number bitonic sorter constructed from eight 
4-number bitonic sorters 

propagation delay per level the total delay is 2.2 
microseconds. Serial transmission of the bits would 
require about this much time between successive bits 
of the numbers unless fe-clocking occurs within the 



network. Parallel-input-parallel-output registers of 
1024 bits each can be placed between certain levels to 
perform this task or the re-clocking may be incorpo
rated within each canparison elGTlent with a pair of 
flip-flops on the outputs. The latter scheme does not 
add to the terminal comit of the comparison element so 
the cost of the added flip-flops on the comparison 
element chip is small. One can use any of the familiar 
techniques for driving shift registers such as the "A-B" 
technique where successive levels are clocked out-of
phase with each other. With present circuit and wiring 
techniques a bit rate of 10 megahertz may be possible 
with 50 nanosecond delay per level (2.75 microsecond 
delay from input to output of a 1024-word sorter). 

With re-clocking in the elements and odd-even 
merges extra elements are needed to balance the un
equal-length paths. Bitonic sorters do not have this 
problem. 

Applications 

The fast sorting capability of these networks al
lows their use in solving other problems where large 
sets of data must be manipulated. Some of these appli
cations are sketched below. 

Switching network 

A sorting network can connect its input lines to its 
output lines with any permutation. The connection is 
made by numbering the output lines in order and pre
senting the desired output address for each input line 
at the input. The sorting network sorts the addresses 
and in the process makes a connection from each in
put line to its desired output line for the transmission 
of data. Bi-directional paths will be obtained if bi
directional comparison elements are used. 

An alternative permuting network has been shown 
in the recent literature:! which has less elements 
[(p - l)2P + 1 versus (p2 - P + 4)2P- 2 - 1 for permuting 
2P items] but a more complex set-up algorithm. 

Switching network with conflict resolution 

The aforementioned switching network assumes 
each input wants a unique output line. In many ap
plications conflicts between inputs occur and must be 
resolved by inhibiting conflicting inputs. Figure 9 
sketches an m-input, n~outpttt network that performs 
this task. Each input line inserts a word containing the 
output address desired (or zeroes if the line is inac
tive), a control bit equal to I and a priority number into 
an m-item sorting network with bi-directional ele
ments. This orders the items so input items with the 
same output address are grouped together and ordered 
by theIr priority number. The ordered set of m-input 
items is merged with a set of n items. each containing 

Sorting Networks and Their Applications 311 

a fixed output address and a control bit equal to O. 
At the right side of the m by n merge the m + n items 

are in one ordered list; each address-inserter item will 
be directly below any input items with the same ad
dress. The adjacent word transfer network, looking at 
the control bits, connects each address-inserter item 
to the input item directly above it if one exists (the 
input item with lowest priority number is picked in 
each case). The elements in the sort and the merge 
are bi-directional so two-way paths are formed from 
input to output. The adjacent word transfer sends 
back signals over each path to signal each input and 
output line whether or not a connection has been 
established. Data can then be transmitted over each 
of the connected input lines. 

M INPUT LINES M-I TEM et:: 
LLI 

SORTING ...... 
en 

I NPUT ITEM NETWORK M ~ Z 
et:: < 

1 DES I REO OUTPUT 11 1 
0 et:: 

PRIORITY ~ I-
et:: l-

I 
LLI LLI 0 
I- Z et:: 
et:: Z~ 

0 

CONTROL BIT LLI ~ 

N OUTPUT II NES en z z 

\ ~ >- - + I-
m ~ ::E z 

et:: LLI en :==LLI u 

IOUTPUT ADDRESS 1 0 I 0 -- 0 I 
en N : :== < LLI -, 
et:: 0 
0 < 

ADDRESS-INSERTER ITEM 
0 
< 

Figure 9 - An m-input, n-output switching network with conflict 
resolution 

Multi-access memory 

Re-clocking delays in the comparison elements 
give a sorting network some storage capability which 
can be augmented if needed with shift registers on the 
outputs. When the output lines are fed back to the in
put lines a recirculating self-sorting store is created 
(Figure 10). In each recirculation cycle word posi
tions are changed to keep the memory in order. 

I nputs to the memory can be made by breaking the 
recirculation paths of some words and inserting new 
words. To prevent destroying old information during 
input we use the convention that words with all bits 
equal to "one" are "empty" and contain- no informa
tion; these will automatically collect at the "high
end" of memory where input lines can use them to 
insert new words. 

Outputs from the memory can be accommodated by 
reserving the most-significant-bit (MSB) of each 
word; "I" for normal words and "0" for words to be 
outputted. Words for output will automatically collect 
at the "low end" of memory where output lines can 
read them. Selection of which words to output is ac
commodated by reserving the least-significant-bit 
(LSB) of each word; ""1" for normal words and "0" 



312 Spring Joint Computer Conference, 1968 

RECIRCULATION 

~HiGHEND~ 
( "i EMP TY WORDS' 

OUTPUTS 

MSB 

NORMAL WORDS 
AND 

OUTPUT REQUESTS 

OUTPUT WORDS 

LOW END 
LSB 

1\1----1 \1 

11ADDREssi DATA 111~g~~AL 

O/ADDRESSI DATA 11 I ~3~~J~R 
1IADDRESSlo--------------O 10 10UTPUT 

. REQUEST 

Figure 10- A multi-access memory 

for "output requests". Logic between adjacent words 
causes an output request to affect the word directly 
above it. 

During one recirculation cycle new words and out
put requests are entered into memory. During the 
next recirculation cycle all words are recirculated with 
no new entries. At the end of the cycle the LSB of 
each word will precede the MSB of the same word (no 
reordering occurs in the second cycle). Output re
quests are identified by a HO" in the LSB and for each 
request logic performs the following action: if the 
word above the request is a n9rmal word (" 1" in the 
LSB) change its MSB to a "0" and empty the request 
(change all its bits to "1" as they fly by), if the word 
above the request is another request change the MSB 
of the first request to "0". During the following re
circulation cycle the selected words and unfulfilled 
requests flow to the low end of memory and are read 
by output lines. Because the request itself is outputted 
if no word is found, as many outputs as original re
quests occur. If the original requests were in order 
the outputs directly correspond to them (a second 
sorting network can put the original output requests 
in order). 

In use the more-significant part of each word is used 
as an address and the rest as data. To request a cer
tain address an output request is sent in with that ad
dress and zeros fot data. The word returned will be 

at that address or a higher address if the requested 
address is empty. 

While a complete cycle may be long in this memory 
(50-bit words at 100 nanoseconds/bit = 5 micro
secondsirecirculation = 10 microseconds/complete 
cycle) many inputs and outputs can be accommodated 
in each cycle. An effective rate of 100 nanoseconds/ 
word is achieved with 100 inputs and outputs. 

Such a memory could be useful as the "common 
memory" of multiprocessors. The self-sorting capa
bility could be useful for keeping "task lists" up to 
date and performing other housekeeping tasks. 

Other uses may be as a message "store-and-for
ward" system and as a switching network with buf
fering capability. In these uses each output device is 
given a unique address which it continually interro
gates; input devices send their data to these addresses. 

Multi-access content addressable memory 

By adding facilities for shifting the bits within the 
words in the aforementioned memory different fields 
of the words can be brought into the more-significant 
portions which govern the ordering of the words. 
Addressing can then take place on any part of the 
words. As long as the same field positions are being 
searched more than one search can be accommodated 
simultaneously. 

Multi-processor 

By adding processing logic to perform additions, 
subtractions, etc., on groups of adjacent words of a 
sorting memory one can implement a multi-processor. 
The sorting capability is used to transmit operands 
between processors. Merely by changing address 
fields the multiprocessor can be reconfigured quickly. 
Such a multi-processor can keep up with the "dy-
namic topology" of certain real-time problems. 

To simplify the processing logic one might use the 
same network or another network to perform table 
look-up arithmetic. It is possible to have all the pro
cessors search the same tables simultaneously. 

SUMMARY 
Sorting networks capable of sorting thousands of items 
in the order of microseconds can be constructed with 
present-day hardware. Such fast sorting capability 
can be used to manipulate large sets of data quickly 
and solve some of the communications problems as
sociated with large-scale computing systems. 

Standard modules of convenient sizes can be picked 
and used in any size network to lower the cost. Large
scale integration can be applied if the problem of 
laying out the rather complex topology of the network 
can be solved. Studies of this problem are being con
ducted at Goodyear Aerospace. 



APPENDIX A-SKETCH OF PROOF OF 
ITERATIVE RULE FOR ODD-EVEN 

MERGING 

Let aI, a2, a3,' .. and bb b2, b3, ... be the two ordered 
input sequences. Let Cb c2, C3,'" be their ordered 
merge, db d2, d3, ... be the ordered merge of their 
odd-indexed terms and eb e2, e3,'" be the ordered 
merge of their even-indexed terms. 

For a given i let k of the i + 1 terms in dt, d2 , d:l,' .. , 
fl. I"'Amp frAm 'JI 'JI_ 'JI 'JInfl i -I- 1 _ lr ("'Amp frn.-n 
"""1+1 ""'-'.I.,,"''''' ..LA '-'.1..1..1. ...... 1' 1.A.3, """5, ••• 1.A..l.l'\..l..l 1.1. .no. ..... V.l..I..I"" ..1.1. VI.J..I. 

bb b3, bs, . .. The term di+1 is greater than or equal to 
k terms of at, a3, as, ... and therefore is greater than or 
equal to 2k - 1 terms of at, a2, a3, ... Similarly it is 
greater than or equal to 2i + 1 - 2k terms of bI, b2 
b3, ... and hence 2i terms of Cb c2, C3, . .. Therefore 

(AI) 

Similarly from consideration of the i terms of eb e2 
e3, ... , ei the inequality 

(A2) 

is obtained. 
Now consider the 2i + 1 terms of ct, C2, C3,' .. ,C2HI 

and let k come from ab a2, a3, ... and 2i + 1 - k come 
from bI, b2, b3, ... If k is even we have that C2Hl is 
greater than or equal to: 

k terms of ab a2, a3, ... 
(!t2)k terms of ab a3, as, ... 

2i + 1- k terms ofbt, b2, b3, ••• 

i + 1 - (!t2)k terms of b t ,b3,bs, ... 
i + 1 terms of db d2, d3, ••• 

and similarly C2HI is greater than or equal to i terms of 
e l, e2, e3, ... 
so 

(A3) 
and 

(A4) 

Ifk is odd, (A3) and (A4) still hold. 
Since every item of db d2, d3, ... and e l, e2, e3,' .. 

must appear somewhere in c l, C2, C3, . ~. and C1 ~ C2 
~ C3 ~ ... inequalities (A 1), (A2), (A3) and (A4) imply 
that 

(AS) 

and 

(A6) 

APPENDIX B-SKETCH OF PROOF OF 
ITERATIVE RULE FOR BITONIC SORTERS 

Let a b a2, a3,' .. ,a2n be bitonic. Let d i = min (aj 
an+i) and ej = max (aj, an+J for I ~ i ~ n. We want tQ 
prove that d l, d2, ... , dn and eb e2,' .. ,en are each 
bitonic and 

Sorting Networks and Their Applications 313 

max (dl, d2, ... ,dn) ~ min (el, e2, ... , en). (A 7) 

If aI, a2, a3, ... ,a2n is split into two parts and the 
parts interchanged d l, d2, ... , dn and e t, e2, ... , en 
undergo a similar interchange. This does not affect the 
bitonic property nor affect (A 7) so it is sufficient to 
prove the proposition for the case where 

a l ~ a2 ~ a3 ~ ... ~ aj-I ~ aj ~ aj+l ~ ... ~ a2n (AS) 

is true for some j (1 ~j~2n). 
"Qp"pr"'JI1 Af thp tprm" Af "pnllPnI"'P" flAP" nAt 'JIffpl"'t 
A."\o.. ..... T "" .. >.3 ........ '-'.I.. 11,.1..1. ........ ""' ... .I..I..I.U' ,-,.a. '--"""''1."""""",.",,,,,,,",,v '-&" ...... U' .1..1.'-'11... &,..&..1....1.."""",,,, 

the bitonic property nor maximums and minimums so 
it is sufficient to assume n<j~2n. 

If an~a2n then ai~an+j so di = ai and ei = an+i for 
1 ~i~n and the proposition holds. 

* If an>a2n then from aj-n ~ aj we can find a k such 
that j~k< 1 n, ak-n~ak and ak-n+1>ak+1 (the sequence 
ah aj+l, aj+2, ... ,a2n is decreasing while the sequence 
aj-m aj+l-n, aj+2-m' .. ,an is increasing). Then 

di = ail 
for l~i~k-n 

ei = aHn 

and 

di = aHn } 
for k-n<i~n. 

ei = aj 

The inequalities 

and 

d j ~ dHI for 1 ~i<k-n, 

di ~ di+1 for k-n<i<n, 

ei ~ ei+l for k-n<i<n, 

ei ~ ei-t-l for 1 ~i<j-n, 

(A9) 

(AIO) 

(All) 

(AI2) 

(AI3) 

(AI4) 

(A IS) 

(A16) 

can be shown which prove that db d2, ... , dn and e l, 
e2, ... ,en are bitonic and max (d l, d2, ... , dn) = max 
(ak-n,ak+l) ~ min(ak,ak-n+l) = min(ef,e2, ... , en). 

ACKNOWLEDGMENTS 

The help of D. L. Rohrbacher, P. A. Gilmore and 
others at Goodyear Aerospace is gratefully acknowl
edged. 

Part of this work was supported by Rome Air De
velopment Center under Contract AF30(602)-3SS0, 
F. Dion, Administrator. 



314 Spring Joint Computer Conference, 1968 

REFERENCES 

1 K E BATCHER 
A new internal sorting method 
Goodyear Aerospace Report GER-11759 1964 

2 K· E BATCHER 

Bitonic sorting 
Goodyear Aerospace Report G ER -11869 1964 

3 L J GOLDSTEIN S W LEIBHOLZ 
On the synthesis of signal switching networks with transient 
blocking 
IEEE Transactions EC-16 5 637-641 1967 



The Sylvania data tablet: A new approach to graphic 
data input 

by JAMES F. TEIXEIRA and ROY P. SALLEN 
Sylvania Electronic Systems 
Waltham, Massachusetts 

INTRODUCTION 

Advances in the computer field have been spec
tacular and profuse. Sophisticated software l,an lead 
multiple users through a time-sharing maze while 
hardware developments offer increasing speed and 
flexibility. Research into the man-machine interface, 
however, uncovered serious deficiencies in equip
ment available to input graphical data into a computer. 
This fact prompted work by H. Teager at MIT and 
others, and by the Rand Corporation which resulted 
in an ingenious device known as the Rand Tablet.1 

This equipment allows the user to enter two-dimen
sional information with a free moving electronic pen 
and flat, pad-like tablet. One simply prints alpha
numeric data or sketches circuit diagrams, structural 
diagrams, or waveforms on the tablet. The computer is 
continuously supplied with X-Y pen coordinates and 
can therefore "see" what the operator has drawn. 

The Rand Tablet is inherently a digital device. Co
ordinate information is supplied by a 1024 by 1024 
gridwork of fine conductive lines which are digitally 
excited by time coded pulses. A high input impedance 
pen and associated circuitry sense the polarity and 
timing of the pulses immediately beneath the pen tip 
and generate the corresponding 10 binary bits of co
ordinate position for each axis. 

Several years ago Sylvania looked into the possibili
ty of applying analog techniques in this area in the 
hopes that high resolution might be attained along with 
certain other advantages. It was realized that accuracy 
would probably suffer in this approach but it could still 
be commensurate with that of most computer driven 
displays. Therefore, we set an initial goal of 12-bit 
resolution and one per cent accuracy in each axis. In 
additio~, a coarse measure of pen height above the 
tablet surface was desired, to give the operator some 
Z axis capability. Other intended features included: 1) 
transparency, so that the tablet could be placed over 
a cathode ray tube and the unit used as a 'light pen'; 2) 

an ink capability in the pen to generate hard copy by 
placing a sheet of paper over the tablet; and 3) simul
taneous analog voltages representing the coordinate 
positions to allow additional flexibility in interfacing 
with display systems. 

The result of Sylvania's- work in this field was the 
introduction in early 1966 of the Sylvania Data 
Tablet Model DT -1 (Fig. 1), a device which has the 
above-mentioned features. An electronic pen using a 
conventional ball-point pen cartridge, a writing panel 
measuring approximately 16" x 20" x *", with an 11" 
square writing aperture, and a 17" x 18" x 7" elec
tronic package comprise the complete Data Tablet 
unit. Ten-foot cables connect the writing panel and 
pen to the electronic package. 

Figure 1 - The Sylvania data tablet 

General method of operation 

The writing panel consists of a thin, transparent con
ductive film bonded to a heavy glass base plate and 
overlayed by a thin glass protective sheet. An electric 
field is established on the film and the high input 

315 



316 Spring Joint Computer Conference, 1968 

impedance pen capacitively couples to it. Two-dimen
sional position information is obtained from the 
writing panel by phase measurements performed on 
the signals picked up by the pen. 

A drive network excited by the electronics package 
drives the film at discrete points along its circum
ference in such a manner that a traveling wave (in a 
mathematical sense) is established parallel to each or
thogonal axis. This wave has the property that its 
phase is a linear function of position as in the rela
tionship: 

v = K sin (wt - aX) (1) 

were a, ware constants and X is the position co
ordinate. (It should be mentioned that a true propa
gating wave does not exist on the writing panel since 
a frequency in the hundreds of megahertz would be 
required to give a significant phase shift along an 
eleven inch path. Actually, only one kilohertz is used 
as the phase shifted frequency.) 

The relationship in Eq. (1) applies only to the X 
axis, but a similar function exists for the Y axis. Con
fusion between the two in the electronics package is 
prevented by frequency mUltiplexing. Each axis is 
excited by a one kilohertz sinusoid presented as a 
suppressed carrier modulation on a higher frequency. 
The carrier frequencies are approximately 100 kHz 
and of course are different for the X and Y axes. Cir
cuitry within the electronics package separates the 
pen signals into X and Y channels and extracts the 
phase information. The desired phase is observed in 
the envelope waveform of the signals while the axis 
information is contained in the carrier frequencies. 

Z axis position is sensed by an amplitude sensitive 
circuit which compares the peak-to-peak signal from 
the pen with fixed threshold voltages. Since the pen 
signals fall off rapidly with height, this technique is 
very effective. In fact, the threshold setting cor
responding to contact with the writing panel surface 
can easily be set within 5 or 10 thousandths of an inch, 
thereby eliminating the need for a mechanical contact 
switch in the pen. 

I deal excitation of the surface 

Use of phase measurements to obtain position as in 
the Sylvania Data Tablet is apparently a fairly new 
concept or at least one which was not developed 
fully in the past. Its greatest advantage in this applica
tion (over other conductive film techniques dependent 
upon voltage gradient) is that capacitive coupling to 
the conductive film by the pen can be used even 
through dielectric layers such as a protective glass 
covering or sheets of paper. The latter item and the 
fact that the pen used in the Data Tablet contains a 

standard ball-point pen stylus offers the ability to 
produce a hard copy simultaneously with the data 
entry. 

The underlying principles in the phase shift concept 
are best illustrated mathematically using an idealized 
model at first. Fig. 2 shows a square conductive 
sheet of finite, uniform resistivity. In the ideal case, 
the sheet is excited by distributed current sources as 
shown in the figure. Although X and Y axes are la
beled, only phase variations along the X axis will be 
considered for the moment. 

Ideally, the voltage on the sheet (for X axis phase 
shift) would have the form: 

V(X,Y,t) = cos (wt - aX) (2) 

giving a linear phase shift along the X axis with no 
contribution from the Y axis. Since the sheet is a 
source-free region, however, this realtionship cannot 
be established as it does not satisfy Laplace's equa
tion: 

'\J2V=O (3) 

throughout the sheet. However, the expression: 
V(X,Y,t) = (cosh aY) cos (wt - aX) (4) 

does satisfy Laplace's equation yet contains the de
sired phase component. The amplitude coefficient, 
cosh a Y, is symmetrical about a horizontal line 
through the center of the sheet. It does not affect the 
phase shift and allows the use of identical current 
sources at the top and bottom edges of the sheet. 

DISTRIBUTED EDGE CURRENTS 

:L 
x 

~-------------2D--------------~ 

Figure 2 - Idealized model of edge driven conductive film 



ClJIRENT PER UNIT LENGTH '= (s;n~xXs;n wI) + (cos~xXcos wI) 

ClJ!RENT PER UN IT ! 
l~' ; ';J=J f f f f 

LENGTH = 

-(cosh i yXcos wI) 

, 

CURRENT PER UNIT 
LENGTH = 

-(cosh i yXcos wI) 

ClJIRENT PER UNIT LENGTH = (sin i xXsin wI) + (cosi xXcos wI) 

Figure 3 - Drive current distribution 

A field of this type is established as illustrated in • 
Fig. 3 for the case where a = 2~. Edge currents are in-

jected as shown to satisfy boundary conditions. A 
vertical line through the center of the sheet has the 
value X = 0 and only cos wt components of voltage 
exist along this line. The left and right edges have the 
values X = ±D and only sin (wt) components of volt
age are present. The currents applied to the left and 
right edges of the sheet are needed to satisfy boundary 
conditions imposed by the lack of surface continuity. 

The (sin 2~ X) sin (wt) current sources require no left 

and right boundary correction since the sheet is ter
minated at points where the derivative of the sine 
(the amplitude function) is zero and no current at
tempts to flow across the boundary. This is not true 
for the cos (wt) sources, since only "positive" cos(wt) 
current is injected along the top and bottom edges 
and must be balanced by "negative" sources at left 
and right edges. Boundary correction currents are 
shown in Fig. 3 along the left and right edges. 

Phase shift along the Y axis is produced by simply 
roJating the structure 90° and applying similar drive 
signals. As mentioned previously, frequency multi
plexing is used to prevent interaction between the X 
and Y drives. 

Practical excitation of the surface 

In practice it is difficult to supply continuously 
distributed current along the circumference of a con
ductive film; instead discrete drive spots, evenly 
spaced around the film, are used to approximate this 
condition. The number of these has been selected to 
cause less than a one per cent error contribution with
in the usable portion of the tablet. Each spot is sup-

The Sylvania Data Tablet 317 

plied current, through summing resistors, from up to 
four voltage sources - two for the X axis (sin wxt and 
cos wxt) and two for the Y axis (sin wyt and cos wyt). 
Spot A (Fig. 4), for example, has a current contribu
tion from the X axis sine and cosine generators to set 
up the X field and a contribution from the Y axis 
cosine generator to satisfy the boundary conditions 
for that dimension. The corner spots require current 
from all four generators. 
I 

,"'''' 

A. 

~ J<AA. 

'~A' :/ '" 
t-~ 

',L 
~ 

'" 
~ ~ 

II 

t-~ ~ ~ 

~ ~ .",,:..-' ..... 

u,,'" 
"/ 

"' r-.. Ir-,. I~ I ... ~ I' ~ 
~~ ~:~ ~ ~; ~ - t-' 

+COS(foIxt)-
-COS("'xt)_ 
+sin(foIxt)_ 
-sin (foIXt) 
+c:ot{"'yt) 
-cos (foIyt) 
+s;n("'yt) 
-sin (wyt) 

Figure 4 - Practical generation of edge currents 

A film of high uniformity is difficult to realize and 
for this reason we have found it necessary to tailor 
the drive networks to the individual glass pan~ls. 

Ideal current values are obtained only through indi
vidually computed combinations of resistors and gen
erators. Much work has been done at Sylvania to de
termine the resistor network required for a particular 
writing panel. The first step is the selection of a suf
ficiently uniform sample of coated glass. It has been 
empirically determined that a film must be uniform 
within about ±5% to realize the desired ±1% phase 
linearity. A special in-house measuring instrument is 
employed in film evaluation. 

In the second step the drive spots are attached and a 
technician temporarily hooks up a set of current 
sources to the spots. The currents are adjusted to the 
theoretical values. Voltages induced at each spot by 
the currents are measured and recorded on punched 
cards. Finally, the network is designed by our labora-



318 Spring Joint Computer Conference, 1968 

tory computer, which is programmed to calculate 
the value of each resistor required in the network and 
to select the closest standard unit from a table of 1 % 
values. 

A printed circuit board which surrounds the writing 
panei (Fig. 5) hoids the resistors and provides the con
nections to the drive voltage generators and to the 
spot terminals. Since each generator has a positive 
and negative terminal, eight generator busses are 
needed, and to maintain required flexibility in the 
summing network desigI), seven resistor values are 
required for each spot. Twenty-four spots are placed 
around the circumference of the writing panel making 
the resistor total·168. 

Figure 5 - Exposedtablet drive network 

Choice of parameters 

During the initial development work on the tablet, 
it was felt that the frequency of the phase varying 
signal should be low to ease the electronic circuitry 

requirements. Since the tablet signal varies from - ; 

to ~ radians across the writing panel, a low operating 
2 

frequency would exhibit a large time displacement, 
and since the digital conversion would be made on 
the basis of time measurements, lower clock fre
quencies and small fixed time errors could be ac
cepted. Too low a frequency, on the other hand, 
would introduce filter problems and produce a low 
data rate. Therefore, a frequency of one kilohertz was 
chosen as a reasonable compromise. 

It was also discovered during the initial develop
ment that appreciable phase errors at low operating 
frequencies could be introduced by surface con
tamination due to fingerprints on the writing panel 
or by touching paper to the pen tip. Calculation of the 

time constant of a sheet of paper when interposed be
tween the conductive film and the very high input im
pedance of the pen showed a significant phase error 
at frequencies below 50 kilohertz. Fortunately, the 
high frequency carriers introduced for axis separation 
also preserve the phase integrity of the low frequency 
modulation under these conditions. By using sup
pressed-carrier modulation, the one kilohertz tablet 
signal for each axis is converted to two sidebands 
spaced one kilohertz on either side of the imaginary 
carrier frequency. Any extraneous phase shift which 
affects both sidebands equally (which· is true of that 
caused by surface contamination and paper) will not 
affect the moduiation phase. Normal operation of the 
tablet is not impeded and the amplitude envelopes of 
the suppressed-carrier signals contain the expected 
phase information. 

Drive electronics 

Fig. 6 is a block diagram of the drive electronics for 
the X direction. The Y axis circuits are similar except 
for a different (110kHz) carrier oscillator frequency. 
The sinusoidal output of the I kHz oscillator can be 
phase shifted between 0° and 10° by the X-axis center
ing control to allow a precise alignment of the physi
cal and electrical centers of the writing panel. This 
signal is then divided into two channels, one (sine) 
containing a gain control to equalize the output ampli
tudes, and the other (cosine) containing a 90° phase 
shifter to produce the quadrature component. Shunt 
modulators operating at 90 kHz produce the double 
sideband suppressed-carrier signals. The two double 
sideband signals are each split into two components, 
180° out of phase, by the driver stage and are amplified 
in power and voltage by the four X-axis tablet drive 
amplifiers. 

Figure 6 - Drive electronics block diagram 

Pickoff electronics 

A high input impedance electronic pen capacitively 
senses the tablet signals and transmits them via a 



coaxial cable to a low noise amplifier. A unity gain 
amplifier (a field effect and bipolar transistor combina
tion) in the pen buffers the input from the cable and 
supplies a guard voltage to capacitance reducing 
elements in the pen. Power to the amplifier is supplied 
through the cable signal path. 

Fig. 7 is a block diagram of the X -axis pickoff 
electronics. The output of the low noise amplifier 
divides into two channels, one with a 90 kHz bandpass 
filter for the X-axis and the other with a 110kHz filter 
for the Y-axis. These filters offer 25 db suppression of 
the orthogonal axis components and represent a 
starting point for axis separation. The output of the 
90 kHz filter, composed primarily of two sidebands at 
89 and 91 kHz, is demodulated by a detector operating 
synchronously with the 90 kHz oscillator used in the 
drive portion. A low pass filter following the de
modulator contains wave traps at 20 kHz and 90 kHz 
to provide over 70 dB attenuation of the orthogonal 
axis demodulation components and the X-axis carrier. 
This filter has a relatively high cut-off frequency 
(7 kHz) in order to minimize its phase shift at 1 kHz. 
The filter output is a nearly pure I kHz sinusoid that 
is phase shifted by an amount proportional to the pen's 
position along the X axis. It is 90° out of phase with 
the reference signal at the center of the writing panel 
and varies from + I 0° to + 170° between the left and 
right edges of the writing aperture. A limiter following 
the filter produces a square wave with transitions oc
curring at each I kHz zero crossing. 

TO DIGITAL 
LOGIC 

'---____ ~~lOG 

Figure 7 - Pickoff electronics block diagram 

The upper portion of Fig. 7 shows a 1 kHz sinewave 
oscillator whose output is limited to provide a square 
wave as the phase reference for the digital and analog 
processing. For each half cycle of the reference square 
wave, a ramp generator is triggered producing a 2 
kHz sawtooth waveform. This becomes the analog in-

The Sylvania Data Tablet 319 

put to a sample and hold circuit which is energized 
at each zero crossing of the X axis limiter. It is pos
sible to sample twice per I kHz period since the signal 
phase is always within 10° to 170°. The output of the 
sample and hold circuit is a DC voltage proportional 
to position. Since the information bandwidth required 
for hand generated graphics is typk;ally less than 20 
Hz, a low pass filter is placed after the sample and hold 
circuit and its output becomes the external analog out
nllt r---

Digital electronics 

Digital signals could be obtained directly from the 
analog output through the use of conventional analog 
to digital conversion techniques. However, the cost of 
performing a monotonic 12 bit conversion is high, and 
the resulting accuracy would be limited to that of the 
sawtooth voltage used in the generation of the analog 
output. A simpler, less expensive, and more accurate 
method of digital generation utilizes the time displace
ment inherent in a phase shifted signal. In particular, 
the output from the pickoff electronics is displaced in 
time from the reference sinusoid by an amount: 

(5) 
(d 

where () is phase shift in radl~ms and w is (27T) (1000) 
radians per second. 

The displacement Td (in the X or Y channel) is di
rectly proportional in principle to the coordinate posi
tion of the pen along the X or Y axis. However, Td in 
practice contains noise components as well, generated 
in the pen and pickoff electronics and limited only by 
the 7 kHz bandwidth of the channel demodulators. In 
order to reduce the noise bandwidth, or i~" effect, to 
filter the values of T d, a special circuit was developed. 
This circuit has the virtue that it does not introduce 
phase errors in the demodulated outputs while it does 
provide an arbitrarily narrow bandwidth. In addition, 
the circuit produces T d directly from the reference 1 
kHz square wave and the demodulator square wave 
output. 

Operation of this circuit is as follows' (see Figs. 7 
and 8): The DC output from the low pass filter used to 
provide the analog output is supplied as the slice level 
in a differehtia.1 input comparator. The second input to 
the comparator is the 2 kHz ramp generated by the 
reference oscillator. As the ramp retraces to its start
ing voltage (corresponding to a zero crossing of the 
referenc~ oscillator) the comparator output jumps to 
the "one" state. When the ramp voltage exceeds the 
DC voltage at the other comparator input, the output 
from the comparator drops to the "zero" state. The 
DC voltage represents a filtered version of the zero 



320 Spring Joint Computer Conference, 1968 

I 

REF. I kHz OUTPUT 

• 

REF. 2 kHz RAMP 

DEMOOULA TOR 
OUTPUT 

FILTERED SAMPLE AND HOLD VOLTAGE (ANALOG OUTPUT) 

Figure 8-Waveform of bandwidth limiting circuit 

crossing information in the demodulator output. 
Therefore the comparator output remains in the "one" 
state for a period equal to T d and the noise components 
of this output are reduced in amplitude to the same 
value as those of the analog output. 

" AXIS 
DETECTOR 

v AXIS 
DETECTOR 

~ ____ .. } 12 BITS 
~ ___ ... "AXIS 

r----............... __ 

L--____ } 12 BITS 
'--_____ + yAXIS 

Figure 9 - Digital electronics block diagram 

Fig. 9 is a block diagram of the digital logic. The 
pulses from the threshold detector have zero width 
with the pen at the left edge of the writing panel and 
maximum width with the pen at the right edge. More
over, the pulses occur at a 2 kHz rate. This output is 
converted to digital form by gating a 9.2 mHz crystal
controlled clock into a I5-bit ripple counter binary 
register. Eight consecutive pulses are averaged in the 
counter and only the upper 12 bits are utilized as out
puts. These are transferred to a buffer storage register 

at the end of the 5 millisecond measurement interval 
(4 milliseconds are used for the eight readings and one 
millisecond is used for bookkeeping). A "data ready" 
signal indicates the end of a measurement period. Y 
axis measurements are performed simultaneously in 
simiiar circuits. 

Z axis electronics 

A measure of pen height above the tablet is ob
tained by determination of the amplitude of the X 
channel signal received from the pen. The amplitude is 
compensated approximately for the cosh a Y variation 
described in Eq. (4). The result is applied to three 
independently adjustable threshold circuits. Typically, 
one comparator is set to trigger at the point of pen 
contact with the writing panel surface, the other two 
may be, perhaps, at one-half inch and two inches, 
respectively. 

Experience with the Sylvania data tablet 

The Sylvania Data Tablet fulfills the goals set forth 
at the beginning of the program. The basic accuracy of 
the Data Tablet is ± 1 per cent, determined by measur
ing the maximum departure from an ideal grid placed 
over the working aperture. Deviations from the ideal 
grid tend to be smooth and are largest near the bound
aries of the wor.king surface. The resolution of the 
Data Tablet is a function of the information bandwidth 
utilized since noise components in the pen and pickoff 
electronics impose the main limitation to resolution. 
With an information bandwidth of 20 Hz, ten or 
eleven bits can be realized; the full twelve bits are 
obtained with a somewhat decreased bandwidth. 

A Data Tablet has been in use at Sylvania for some 
time as the major input device for our computer-CRT 
graphics system. An operat.or enters graphical data 
by moving a dim spot on the display (with the pen 
above the surface of the writing panel) until the de-' 
sired position is reached. He then touches the pen to 
the tablet surface and the brightened spot or track 
indicates entered data. In this application high ac
curacy is not needed since the visual feedback from 
the display negates any tablet nonlinearities. 

Studies were made into the usefulness of various 
recognition schemes for handprinted alphanumeric 
characters and ease to which subjects adapted to 
program-forced constraints. The Sylvania Data Tablet 
proved extremely useful in this application for sev
eral reasons: First, the inking capability allowed the 
subjects to write on a sheet of blocked paper in a very 
natural manner. Second, the multiple threshold Z 
axis feature allowed the programmer to use one level 
(contact with the surface) to indicate stroke and a sec
ond level (about ~ inch above the surface) to indicate 



completion of a character. In other words, mUltiple 
stroke characters are formed with the tip of the. pe·n 
always below the Y8 inch level, and once the pen is 
raised above that level the completion of a character 
is indicated to the computer. Third, the high resolution 
provided minute details needed for recognition of 
small characters. The 1 per cent accuracy of the tablet 

"the Sylvania Data Tablet 321 

proved more than adequate for accommodating letter 
sizes of ~ inch or more. 

REFERENCES 

1 T 0 ELLIS M R DAVIS 
The Rand tablet: A man-machine communication device 
Proceeding of the 1964 Fall Joint Computer Conference 





Computer input of forms 

by ALFRED FELDMAN 
Walter Reed Army Institute of Research 
Washington, D.C. 

INTRODUCTION 

The original impetus behind the work reported here 
was a conviction that the storage and retrieval of 
information, granted computer support, did not really 
have to be as complex as it now is. The ordinary user, 
the non-programmer, could and should be provided 
with the kind of support that would enable him to 
create his own input, manage his own files, and formu
late his own queries. In many cases, the user might 
willingly exchange efficiency of processing, and per
haps some of the machine's capabilities, for the con
venience of obtaining simplicity of input, latitude for 
a variety of information, a degree of generality in the 
organization of the stored data, absence of coding 
incompatibilities, and some facility for unpremeditated 
retrieval. 

To substantiate this conviction, a system was 
elaborated, which is described following this intro
duction. It has these characteristics : 

1. The decision was made to use forms, such as 
business forms, questionnaires and data sheets, 
as the fundamental vehicle for the input of infor
mation. Between the extremes of free text, with 
unconstrained format but problematic organiza
tion, and punched cards, with a high degree of 
organization achieved through constraints, 
such forms might provide just the right medium 
having a maximum qf organization with a mini
mum of constraints. 

2. These forms are encoded directly, without the 
user having to consult code books or worry 
about record formats. The user, furthermore, is 
free to create his own forms, anytime. The ma
chine will not raise incompatibilities to the intro
duction of new forms. 

3. The internal coding of the input is free form; 
each item of information, corresponding to an 
entry in a specific box on a form, is provided 
by the program with a distinctive label. This 
arrangement is possibly more readily convertible 
and flexible than a dependence on fixed fields. 

4. The data collected are filed essentially in their 
source form. The user can gain a good idea of 
what information is available for retrieval by 
examining the blank forms used for input. 

5. Forms also are used for retrieval specification 
and for instructions to the computer for display
ing, modifying or purging specific entries on file. 
These query-forms (Q-forms) differ from the in
put forms in that each Q-form must have its 
own supporting program. Each of these Q-forms 
serves a special purpose, and as long as one is 
av~ilable for the intended purpose, it allows 
qUIck and ready access to the data base. Addi
tional Q-forms with additional capabilities can 
be created but must be provided with supporting 
programs. 

6. Starting an information system based on the 
present technique entails no preliminary pro
gramming. (However, special programs are 
needed to deal with such special subject areas 
as Organic Chemistry.) If started independently, 
such a system is compatible with other systems 
to the extent that they may be merged, tempo
rarily or permanently. 

Admittedly, the system described here depends on 
an intensified use of computers. As a result, process
ing times increase, as well as storage requirements. 
This may be a fair price to pay for the alleviation of 
human effort. More critical are possible shortcomings 
in the areas of more sophisticated retrieval and data 
manipulation. An evaluation on this score will have 
to await experience with larger files, which are not as 
ye! available. However this may turn out, the fact that 
a user, not versed in programming, could be able to 
go in and out of a fairly versatile system, and without 
delay, has advantages even in the face of other limita
tions. 

Whyforms? 

The system described here hinges on the use of 
forms. Forms, at present, are widely used for gather-

323 



324 Spring Joint Computer Conference, 1968 

ing and storing information. Bureau of the Census 
figures indicate an annual volume of around $200 
million worth of forms in use in this country. 1 Forms 
are easy to fill in, and easy to check. This convenience 
aiiows the forms to be fined-in directly by oneself or 
one's secretary, placing the recording of the informa
tion close to its source. Forms have been perfected 
over centuries of use; they function effectively and 
simply, by means of clearly legible captions, explana
tions and instructions which are placed directly where 
needed. 

A form is a checklist to prevent omissions, and a 
screen to eliminate the superfluous. An author has 
remarked: 

"Ordinary people ... do not set up to be experts; 
they write neither novels nor treaties; they pub
lish no autobiographies; they seldom write to the 
press ... ; they keep their opinions and experi
ences to themselves. Inarticulate, they are un
heard; unheard, they are forgotten. " 

But with form questionnaires, "this vast unvocal 
mass" can be sounded out.2 

Forms, if not altered in .design for accommodation 
to some machine requirement, are a considerable 
improvement over many other means of computer in
put. In particular, forms can accommodate a wide 
variety of information. For instance, because they 
make available the use of two-dimensional space, 
chemical structures can be entered on them as nor
mally represented. This, incidentally, promotes com
patibility. If such structures must be linearized in 
order to enter the computer, a choice must be made 
among different methods of linearization, resulting 
in an incompatibility whenever different lineariza
tion methods were used on different files. The encod
ing of chemical structures in their normal representa
tions avoids this problem.3 Although seemingly in
significant, the same problem arises with the manner 
in which ordinary SUbscripts or superscripts are linear
ly coded on punched cards. 

The organization impressed on the input by the 
forms is carried over to the data base itself. Being 
able to control the organization of the form, the user 
is in a position to direct the organization of the files 
created, and to determine their access points. The 
technique has a potential of generality, inasmuch as 
there is no theoretical limit to either the number or the 
diversity of the forms which may be included. 

The encoding of forms. 

The work described here was performed with spe
cial two-dimensional encoding typewriters.4 With 
the variety of input devices available, such as consoles 
with light-pens, optical scanners, etc., the encoding 

of forms would seemingly not present much of a prob
lem. No doubt, given a few technical improvements, 
this will be the case. As it is, however, the special 
encoding equipment was used because the available 
methods all have Certain deficiencies. 

Of the methods currently in use for coding forms, 
the most prevalent consists in transferring the contents 
of the forms to punched cards. To facilitate this trans
fer, the form itself is changed, requiring entry charac
ter by character. On such forms, keypunch assign
ments are indicated on the form itself; abbreviations 
must be used, even code books. Such a form has lost 
much of the convenience and versatility of ordinary 
forms. 

In another method for coding forms, tape type
writers are used.5 To distinguish one entry on the 
form from another, use is made of externai, paper
tape programs - one for each different form. The 
paper-tape program causes the typewriter to position 
itself for access, in succession, to all the boxes on the 
form to which the program applies. At each stop, the 
typist has the option of filling-in the box, or of by
passing it. The positioning codes, transferred to the 
tape created in this process, serve to identify the 
entries. This method is wasteful of the operator's 
time, especially if a number of stops are by-passed. 
Dependence on external programs makes it clumsy 
to code different forms. Finally, making corrections is 
even more difficult than with ordinary tape type
writers. 

A time-sharing system is another alternative for the 
input of forms. The console displays, originating from 
the computer, correspond substantially to a dismem
bered form, each successive display being equiva
lent to one box of a form. This method has the capa
bility of immediately updating a file with the input 
furnished. In such an arrangement, furthermore, 
there is virtually no possibility of a discrepancy 
occurring between the information, as entered by the 
user and as received by the machine; and error
correction is simple. 

The disadvantage of on-line consoles for the present 
application is that the user cannot create his own in
put forms. Each display flashed onto the console is 
contingent on the user's preceding answer; other
wise, there might be too many irrelevant displays. De
vising the proper concatenation of the displays and 
providing for all the possible answers in return, is a 
task of the programmer's domain. But on a printed 
form, the irrelevant boxes, although present, are 
readily disregarded. 

Nor do optical.scanners, in the present state of the 
art, prove suitable for the encoding of forms. Their 
error-correcting technique, consisting of identifying 



an erroneous line and in replacing,it at the bottom of 
the page, becomes complicated when applied to 
entries inside boxes on a forni. 

The'modified tape-typewriters used for the present 
work, were developed for the' encoding. of chemical 
structures. These machines have been described else
where.6 Briefly, they avoid the problem of discrepan
cies between typescript andpunc~ed tape, byavoid
ing altogether the need to correCt the tape. These 
machines do code not oflIy the identity of the charac
ier iyped but aiso ihe ioeation where. each character 
appears on the type~cript. An error, corrected on 
the typescript, is. caught when processing the tape, 
when, by virtue of the encoded locations, the com
puter will become aware of an overlap. In actual 
operation, this error-correction technique is very 
convenient. 

Because locations are encoded, these typewriters 
can be operated· virtually as if they were ordinary 
typewriters. The tabulator key, for instance, can be 
set at will, and the platen can be twirled manually. 
Filling-in a form, the typist can skip' entries, or go 
back to correct one. Whatever the sequence of input, 
the entries on the form retain the distinctions attrib
utable to the locations they occupy. Therefore the 
typist does not· have to identify the entries. The 
positional information, automatically generated by 
placing an entry within the confines of the appro
priate box on the form, enables the computer subse
quently to assign a predetermined label to each entry. 

The above . typewriters operating. off-line, the re
liability of the coding operation is of great concern. 
Should the coded input become garbled unbeknownst 
to the typist, vast amounts of it can accumulate before 
-this circumstance is discovered at processing time. 
Reliability, however, is considerably promoted by the 
absence of restrictions in the use of the typewriters, 
and by the suppression of paper-tape corrections. 
Practically speaking, the typist cannot spoil the coded 
record of a visibly correct typescript. Machine failure, 
in turn, is detected by means of parity checks and the 
like, and interlocks prevent the coding of data past the 
point of failure. Lacking these safeguards, some com
parable machines 7 are not as attractive for the purpose 
at hand. 

Creating a new form 

To create a new form, the user, first of all, assigns it 
a specific number. Then the form is laid out on the 
typewriter (Fig. 1). Subsequently computer processing 
will generate a master form (Fig. 2), suitable for dupli
cation, from which a supply of blank forms can be pre
pared. In the course of the processing, a number is 
assigned to each box on the form (but an override 

Computer Input of Forms 325 

<>1 

~----------M-~-.S-~-"T-F-~-c-~-~-a-1W-'----------j 

I WE NR. I SuQu!tter I Ke;,r 1]:'.- ._._._1 
j~t-i-r:-i~i-i-i-iAclcnowledged I I I I 
1 Name or C~unc1- . ---.-.-- -'---f 

Structure 

::itab1l1ty i Soll.:bll!t;,r . 
;;table Unstable I Sol Ir.sol 

AC1d 

Base 

&at '='==1 ::r i I I ,=i==i I I I • Methanol j-j--j 
i-Hv-· gl-.0-SC-OP1-C-------! .-.--. 

Equat10ns 1nci1cat!ng synthet1c route 

i_D1_B_cree_t ___ I S;,rnthaS1zed !,_Q1_rt __ iPurchaaed 

Figure 1-New form, as laid out on a typewriter 

Figure 2 - High-speed printer output. This form corresponds to 
the one in Fig. I, but the program has added a reference box (top) 

and a validation box .(bottom) 



326 Spring Joint Computer Conference, 1968 

Figure 3 -The diagrams show, from top to bottom, the creation 
of a new form, the updating of a file, and the querying of a file 

option is available). These numbers will be used to 
code the entries these boxes are destined to hold 
The diagram in Fig. 3 shows these operations. 

Such a form differentiates itself from other forms by 
always providing boxes, not just spaces, for all the 
information to be entered.· Being contained in a par
ticular box defines an entry; and obviously, the con
tents of a box is not allowed to spill over. Each new 
form is provided by the program with two additional 
boxes (compare Fig. 1 with Fig. 2). In the first of these 
boxes, the typist repeats the form's identification 
number. During subsequent machine processing, thi~ 
number will identify the particular form, and its loca
tion will serve as a reference point to the location of 
all the other information on the form. The second of 
these boxes, placed at the bottom of the form, is to 
contain a validation check. By not filling it in, the typ
Ist can discard an erroneously 'filled-in form. (It is not 
possible to otherwise discard the coded counterpart 
on tape.) By filling it in, the computer is enabled to 
compensate for any misalignment of the form in the 
typewriter. 

New forms can be created at will, without restric
tions except perhaps as to their size, and without 
requirements for programming. As soon as a form has 
been created, the system is ready to accept it, and 
its input will be compatible, in the sense discussed 
below, \vith the prior input, or with independently 
created files. Thus, the user is provided with a flexi
ble input system, accommodating a variety 'of input, 
which he himself can tailor to suit his own needs. 

Nevertheless, it will be obvious to the user that the 
design of a new form takes much thought. For 
instance, a box captioned "temperature" may collect 
numbers representing either degrees Fahrenheit or 
Centigrade. He must therefore make the caption spe
cific. Similarly, if the system is to be asked subse
quently to alphabetize names, separate boxes ought to 
be provided for the different parts of a name, so that 
the last name can be selected unequivocally. The 
means by which he controls the information to be 
stored, as well as its organization, are relatively simple 
- by furnishing adequate space to avoid constricting 
entries, by being liberal in providing boxes for separat
ing different types of data, and by being explicit with 
his captions. But although this requires thought on 
his part, the thought here is directed properly to the 
prospective data and to its retrieval, and not to the 
machine and to its requirements. 

Should it be necessary to alter the design of a form, 
care must be taken that the same information is 
assigned the same box number as before (the number
override option is then exerted); but the shape or 
the relative location of the boxes on the redesigned 
form do not affect the retrieval. If the new form is 
to accept additional data, the boxes destined to re
ceive this data must be assigned numbers not used on 
the replaced form. If the changes are more drastic 
than that, it is better to create a 'new form, having a 
different form number. 

Accessibility of the stored data 

Highly constrained information, such as input on 
fixed-field coded cards, results in highly consistent 
files. It might therefore be expected that forms, en
coded under relatively lax rules, would result in files 
of commensurately low consistency. But this is not 
altogether the case. 

If the purpose of the constraints was solely to insure 
consistency, then one might expect such an analogy 
to hold. But although consistency may profit from the 
standardizations, abbreviations, etc., which constrain 
the input, the constraints are there, in good measure, 
not to insure consistency, but to maximize the utili
zation of scarce space. The IB~1 card has solely 80 
columns, and ever since the days of the first card 



collators, processing has been easier if only one card 
is used per item of input. So, in order to conform to 
this processing precept, the input information is 
chopped up and squeezed to the very limits of recog
nizability. 

In this game, each file fends for itself. Input rules, 
not to speak of additional space-saving tactics such 
as superimposed coding, are developed according to 
a strategy which takes account of the different con
tents of particular files. Consequently, the same infor
mation may be coded differently on different files. 
This lack of compatibility among files of this kind 
precludes their being merged into a combined data 
base, desirable as this may seem. For that matter, 
how often has not a file become obsolete because a 
change to a new card format, with the corollary need 
for updating the backlog, would have proved too 
costly ? The very constraints work thus often to the 
detriment of compatibility. 

This is not to say that an improved compatibility 
among files, obtained by reducing input constraints, 
will be without detriment to the consistency within 
each file involved. But in this case, a certain shift of 
the burden for data correlation from input to output, 
a shift from rigid rules developed a priori to an intelli
gent examination of virtually original input, is not 
without merits. This is especially so because it would 
appear that problems due to inconsistencies are ex
perienced not so much in searching a single file, as 
in attempting to correlate two independ~nt files. 

Different kinds of data are affected differently by 
reducing input constraints. Assessing the potential 
precision of retrieval of data entered on forms, the 
highest score will go to entries entered by means of a 
check mark. Numerical entries are next, absolute 
precision in their retrieval being affected only by 
outright input errors. (A referee wondered whether, 
using unconstrained input on forms, the similarity be
tween the numbers 

1,234.5 
1.2345 xl ()3 

1234.5 
1.2345E3 

01234.5 
1234 1/2 

wo~ld b~ perceived. In the current state of the pro
gram, the first three are accepted at their true value; 
the last three are rejected, with a message stating 
that they are not acceptable numbers.) 

Next down the line of diminishing precision of 
retrieval, are entries consisting of single words. Here, 
synonymy can arise. If only a single file is searched, 
this problem can be solved at retrieval time, without 
too much difficulty. If the searcher is looking for the 
color "red" in a particular box on a form, he must 
also, in this case, look for "scarlet", "crimson", 
and for any other words his dictionary might suggest. 
But suppose that the investigator is attempting to cor-

Computer Input of Forms 327 

relate two files. Suppose, for instance that he wishes 
to determine whether the color of an insecticide de
tracts from its effectiveness. He has obtained two 
files; on one are recorded the sensitivities of various 
insects to various colors, and on the other the actual 
colors of various pesticides. He intends to match any 
color given on one file with the same color on the 
other. Because of synonymy, he will not obtain all 
the legitimate matches. 

Possibly, the problem may be solved by making 
two passes. In the first, the different terms, used on 
each file to denote color, are listed. The investigator 
can then declare which terms he considers synony
mous. In the second pass, the desired correlation is 
then obtained. From the investigator's point of view, 
this procedure has the advantage that it deals in 
English, and not in perhaps difficulty reconcilable 
coding conventions. This area is presently being in
vestigated, but experience is still lacking. 

Precision of retrieval diminishes further where 
entries consist of texts. The program presently used 
has no text-searching capabilities. But even if these 
were available, precision of retrieval would regress to 
the vanishing point, where sundry texts are lumped 
under captions such as "remarks", never to be re
trieved except as adjunct to a response to an inde
pendently specified search. Not that they are without 
value. A referee pointed out that the most useful 
information in a patient's record is usually the hand
-scribbled notation that doesn't fit the confines of the 
prescribed box. Here, indeed, we arrive at· the 
limits of the system. But then, there are those who 
maintain that the degradation of information begins 
the very moment one's thoughts are couched into 
words! 

I nterrogation of the data base 

For the sake of the present discussion, the accumu
lated contents of identical forms, stored on tape, 
represent a file; and a combination of these files, 
originating from different forms, constitutes a data 
base. 

To query such a data base, the prospective user 
must ascertain what information it may contain, and 
devise a strategy for extracting the information of 
interest to him. 

To this end, he may consult the blank input forms. 
These forms convey a considerable amount of infor
mation about the data originally entered. Forms "talk" 
about the information they contain, and the printed 
captions, directives and explanations that are present 
on a form are as pertinent for retrieval as they are for 
input. Thus, although the system does not code con
cepts such as temperature, an examination of the 



328 Spring Joint Computer Conference, 1968 

blank forms used will reveal where, and in what con
texts, temperatures are recorded. Original entries are 
retrieved by citing the corresponding form and box 
numbers. 

Blank forms perform this service even after they 
have become obsolete, and are no longer used for 
input. The information a form carries about the infor
mation it contains remains valid. 

Should there be too many blank forms to make 
such an examination convenient, the captions can 
be listed in an index. A sample of such a caption
index is shown in Fig. 4. Such an index is different 
from the conventional indexes accessing text. Because 
of the nature of the generation of index terms used 
with the latter, the presence of a given index term can 
be almost accidental. With the described caption
index, each single term will obviously produce ali 
the material contained in the specified box. 

Index to Forms 

(in a reference such as 3/17, 1:..'1e first number is the 
fonn number, the second is the box number) 

Accession numbers --
see Reference numbers 

Acids, solubility of compds, in 
--, stability of compds, in 
Bases, solubility of compds, in 
--, stability of compds, in 
Boiling point 
Carbon, calc' d., in elemental 

analysis 
--, found in elemental analysis 
Chemical compounds, analysis of, 
--, boiling point of 
--, chromatographic data on 
--, crystallographic data on -

see Crystallography 
--, dangerous 
--, density, exptl. 
--. elements contained in 
--, explosive 
--, hygroscopic 
--, i. r. spectrum of 
--, lit. on (syntheses, tests) 
--, melting point of 
--, mol. fonnula of 
--, mol. wht. of 
--, received at WRA1R, date of, 

day 
month 
year 

--, received at WRAIR, date of 
acknowledgment of, 

day 
month 
year 

--, refr. index of 
--, shipped by WRAIR, date of, 

day 
month 
year 

--, solubility in acids 
--, solubility in bases 
--, solubility in methanol 
--, solubility in water 
--, stability of 
--, stability in acids 
--, stability in bases 
--, stability to heat 

--, structure of, 
--, toxic 
--, u. v. spectrum of 
--, X-ray data on 
Chemical elements, calculated 

for elemental analysis 

--, found in elemental analysis 

3/68,3/69 
3/62, 3/63 
3/72,3/73 
3/66,3/67 
3/43,4/19,4/20 

3/28 
3/29 
3/20 
3/43,4/19,4/20 
3/57 

3/59 
4/18 
3/23 
3/59 
3/76 
3/49 
3/58 
3/44,4/23,4/24 
3/18,4/3 
3/19,4/4 

3/9 
3/10 
3/11 

3/13 
3/14 
3/15 
3/45 

3/5 
3/6 
3/7 
3/68,3/69 
3/72,3/73 
3/74,3/75 
3/64,3/65 
3/60 
3/62,3/63 
3/66,3/67 
3/70,3/71 
4/20,4/24 
3/17;4/5 
3/59 

4/22 
3/28,3/33,3/37 
3/41,3/47,3/51 
3/55 
3/29,3/34,3/38 
3/42,3/48,3/52 
3/56 

Figure 4 - Sample of index referencing to boxes on forms 

Although the terms of a caption index can be used 
in combination, there is a point beyond which these 
terms are unable to achieve further discrimination. 
This point is reached when it becomes necessary to 
discriminate within the confmes of a single box. 
As was discussed earlier, the methods and the pre
cision of retrieval vary from this point on. Even so, 
however, the preliminary sequestration achieved by 
means of accessing boxes on forms, is valuable in its 
own right, and is obtained with comparative ease. 

We come now to the actual techniques for querying 
the files or the data base. This might be done by cod
ing parameters on cards, by devising a special lan
guage, etc. In the following, however, the use offorms 
for querying forms is described. 

Forms for querying and altering the data base 

Describing the use of forms for accessing files 
(albeit punched-card files), Postley8 reported that 
"operators and management can use these ... directly, 
without submitting their problems to programmers 
and without becoming programmers themselves"; 
furthermore, he mentioned that problem definition 
time is decreased. 

In Postley's system, a few standard forms describe 
all retrieval operations. Varying the parameters en
tered on these forms allows one to vary the format 
and type of output to be obtained. The system 
described here, however, allows for the use of any 
number of query forms (or Q-forms); there are some 
for querying the file, for specifying output formats, 
even for correcting items on file, or for applying plausi
bility checks at input time. These forms can be used 
in combinations, and new forms, with additional capa
bilities, can be added. Perusal of existing forms, 
or of an index thereto~ indicates thus not only what 
data is available, but also what procedures are avail
able to reach it. 

The Q-form shown in Fig. 5 is used to obtain list
ings. Initially, a rough layout of the expected output is 
sketched on quadrillated paper. The form is then filled
in : the desired items of data are specified by their 
input-box numbers, and the desired locations by their 
coordinates. To left-adjust data, the beginning x-co
ordinate is specified; to right-adjust data, the terminal 
x-coordinate is specified. Centering is obtained by 
specifying both. A capability exists for entering head
ings, and the like. The form can be used in conjunc
tion with other forms, such as the Q-form specifying 
a search (cf. Fig. 8), in which case it will control the 
format of the result of the search. 

In Fig. 6, the output shown corresponds to the 
specifications given in Fig. 5. In Fig. 6, 3X5 cards 
are produced from the same file, by entering different 
parameters on the same Q-form. 



INSTRUCTl~NS ,~~ TH[ S[LECT10N AND DISPLAY e, 

•• 13n _____________ _ 

CI6NTAINS 
B~X Ne •• RAPHICS TRANSFER T0 LeCATI~N 

YES N" BEIOIN END 
X Y Y 

CAPTI"N 
I l) 

LiOCATlliIN ., 
CAftTUN 

I,) 

!2J []I] I2I2J I=I=I 1-_1 I=I 
I~ [JI] I~~ I=I~ I I [J 
12] []I] I~~ I~~ I I I~ 
lEI I~~ 13~ I~~ I smUC1URE I I~ 
!~ I~I] I~~ I~~ I NAME I I~ 
I~ [JI] [J!J I~~ I M.WT I I~ 
I~ I~~ I-I~ I~~ I -r I~ 
I~ I~~ I~~ I~~ I I I~ 

SPAClh. BET~E[N C0NSECUTIYE ITEMS IJL:l ~AL' LINES. 

e,1 CAPT10N S~0ULD N0T EXCEED 10 CHARACTERS 

1., I' CAPTI0N ;0[S AT HEAD i' A C0LUMN. ENT[R H. 
I' CAPTI~N ;3£S AT LE,T ~F AN ENTRY. ENTER L. 
I' CAPTIIIN ;~ES AT Rl.HT 0F AN ENTRY. ENTER R. 

'''RM 'Iii. I 

Figure 5 - Form for the sp~cification of printout format. The spec
ifications entered here produced the output shown in Fig. 6 

""-GUO;.! 
L: 1UI'1J,J"'c,.tl: 

JlR-{JUCI .. 

1,.10"1.".,°2 

lIIit-oQ04 

'10"'21,1"' .. °2 

"R-li,1U 
t;1tIM2J~1j 

ciC-:igJ 

C20J'lOlJ~ufl 

sTlitUCTUIitE. 

CH
30, ,,', ,,', "CON"Z 

,",o,i,.,i ... i"i'CHZOH 
,', 

,...!, ,i, 
HD • OCH,) 

2-NA'HTH.IoMI Df,. 1_2.3."'-T( 'RAMJOIil:Q-6-to1YDIIQX't-..-
1'-f'!YDIIIOlY-J-ftETI'IQJlTP'HENYL.I-

Figure 6 - Output format generated by using the form shown in 
Fig. 5 

By means of the Q-form shown in Fig. 8, retrieval 
may be specified. If a single file is searched, the criter
ion for retrieval (or one of its criteria) is specified in 
the first box of part B on the form. If a correlation is 

Computer Input of Forms 329 

desired, the last two boxes in part B are filled-in in
stead. This form, although working only with nu
merical data at present, illustrates the wide scope to 
which such forms are adaptable. 

ETHY~AMINE. l-METHY~-2-PHfNOXY-

0916 

0189 

0234 

Figure 7 - Another output format generated by using the form in 
Fig. 5, differently filled-in, however 

Fig. 9 shows a Q-form by means of which entries 
that are on file can be replaced or purged. This form is 
designed to use either a single or a double criterion 
for making a change. The double criterion is needed if, 
for instance, an accession number was mistakenly 
repeated on another input form. 

Fig. 10 shows a Q-form capable of making plausi
bility checks. This form is normally processed with the 



330 Spring Joint Computer Conference, 1968 

• , .. 13 

I:I::I I:I=t 
~~-------------------------------

4. IF lillil( '''''. 1·_-1 
THAT IS 

8. THIS V41.,WE IS 1----------} o/l~ T'1IS \I~I..UE 

THC:r-. Co),1P~E. E 'L.S" T'i:' FC,LL.JI ... I;"G 

10 1"'15 IS F,I\" 1=1 ~F A CV'Md'llATI(';" tF i~I FiD!(I'1S ,~~. ,. 

I. THt: SPE::IFICAT1P':. Gl~=':"1 r1"-~t C.oI'''STn",TE 

Figure 8 - Form for retrieval specification 

I' _.IX N"'. 1=1 ~" Fit"'" r-.wI. 1=1 Ct .... 141N& T"IE F"':'I...,,,I .. iO 

IIATA. ~~ ~E~I"S ~ITH THE F~I.L~ftlN~ CHAR.CTE~S. 

.---~ 
"Nil IF. FJ~TP'lER"ZRE. 9"'X :II~. 1=--1 
"'N THIs SAME F~RM C~NTAINS TH~ F0LLZ~IN~ 

OATA. ~~ 8E~I~S ~ITP'I THE F~I.Lo/lwINiO CH4RACTE~S. 

--_J 
TP'lEN DEI.ETE THIS F~RI'1 ENII~E.LY 1:=:1 IMAW~ x F~R YES) 

.oR -tEPL.4CE TP'lE C~NTENl S o/JF illllX ,~IIl. I-I 
~lfH THE F~I..I."'''IN~ 

I 

I:! ','c' To """TE F"" 
Figure 9 - Form for specifying correction of file 

PA~E I~ ~F I~ 

Ci~OiiiiNi ~Hie" 80X I~ ~N FiRM 1-----1 

A. I~ IT MUST C0NTAIN A TRU! NUMBER. 

B. IT MUST C~NTAIN AT LEAST I~ DJ~JTS 

IIlR CHARACTERS. 

C. IT l~ CAN HAVE A FRACTI0hAI. VALU!. 
~ CANNraT 

~. ITS VAL.UE MUST 9! lt~ _REATER 
THAN 

SMALL.Eft 

T~E VALUE ~, THE C0NTENTS 0' SIX I~ 

E. MULTIPL.IED BY I~. ITS VALUE MUST 

EQUAL. T~AT 0' B0X I~. PLUS 0R MINUS I~ X 

. ,t:1 CHECI( Ti! VAL.l OA TE 'IIiR14 

Figure 10- Form for specifying plausibility checks 

input. The checks performed by this form might per
haps be more thorough9 ; it is shown here chiefly 
to illustrate the variety of tasks that may be performed 
simply by filling-in a form. 

Prospects 
A new generation of computers is emerging, which 

provicles greater computing capabilities and vastly 
expanded memories; these computers are therefore 
much less in need of limitations on the input. Conse
quently, there is increasing talk of generalized data 
bases, with capabilities that go beyond the processing 
of bank accounts or of airline reservations - data 
bases which could provide answers to requests both 
varied and unforeseen . 

For many t):'pes of input,' the old, tried and proven 
methods will, no doubt, continue to persist. But other 
types of input, or other modes of use, will virtually 
insist upon new approaches. Through the use of two
dimensional encoding typewriters, which are now 
becoming available, the power of organization which 
forms can provide can be fully exploited. The versa
tility of this combination, the modified typewriters 
and the forms, will bring cioser the day of processing 
systems that are truly machine independent. 10 



REFERENCES 

1 J J BARTOSIEWICZ 
The manifold business forms mdustry-un economic review 
BDS A Quarterly Industry Report 5: 11 1964 

2 A C PATTERSON 
The questionnaire as a means of educational research I The 
extent and reliability of questionnaire investigation 
Scott Educ J 25 :683 1942 

3 A FELDMAN 0 B HOLLAND D P JACOBUS 
The automatic encoding of chemical structures 
J Chern Document 3: 187 1963 

4 The encoding process, as described here, is covered by 
U S Patent 3,358,804 Other patent(s) are pending 

5 0 HEARNE 
Tape operated writing machines 
Automatic Data Proc Feb 1962 pp 32-37 

Computer Input of Forms 331 

6 0 B HOLLAND 
B R MOBERLY 

o P JACOBUS A FELDMAN 

The coordinate concept-an approach to tape punching 
Control Eng II :60 1964 

7 M KLERER J MAY 
Two-dimensional programming 
Proc FJCC 27:63 1965 

8 J A POSTLEY 
File management application programs 
DPMA Quarterly 2:20 1966 

9 R J FREUND H 0 HARTLEY 
A procedure for automatic data editing 
J Amer Statist Assoc 62:341 1967 

10 I am indebted to Dr David P Jacobus and to Daniel J 
Minnick, of this Institute, and to Robert R Puttcamp, of the 
Harry Diamond Laboratory, for helpful discussions and sug
gestions. 





Machine-to-man communication by speech 
Part 1: Generation of segmental phonemes 
from text 

by FRANCIS F. LEE 
Research Laboratory of Electronics, Massachusetts Institute of Technology 
Cambridge, Massachusetts 

For many years man has been receiving messages 
from machines in printed form. Teletypes, computer 
console typewriters, high-speed printers and, more 
recently, character display oscilloscopes have 
become familiar in the role that they play in machine
to-man communication. Since most computers are 
now capable of receiving instructions from remote 
locations through ordinary telephone lines, it is 
natural that we ask whether with all of the sophisti
cation that we have acquired in computer usage, we 
can communicate with the computer in normal 
speech. On the input of the computer, there is the 
automatic speech recognition problem, and at the 
output, the problem of speech synthesis from mes
sages in text form. The problem of automatic speech 
recognition is substantially more difficult than the 
speech synthesis problem. While an automatic speech 
recognizer capable of recognizing connected speech 
from many individual speakers with essentially no 
restriction on the vocabulary is many years away, the 
generation of connected speech from text with simi
lar restrictions on vocabulary is now well within our 
reach. 

With touch-tone telephone, people can call a com
puter and, after the initial connection has been made, 
use the calling buttons as an input keyboard to com
municate unambiguously to the computer, thereby 
temporarily bypassing the very difficult problem of 
speech recognition. 1 With computer-generated speech, 
we can foresee the use of touch-tone telephone sets 
as the only remote terminal device for large and 
complex information retrieval systems. In this paper 
and in the companion one by Jonathan Allen, we shall 
discuss the problems encountered in the computer 
generation of connected speech from.text source, and 
our solutions. 

333 

I t should be clear that with the addition of a printed 
character-reco~nition unit, the system is useful as a 
reading machine for the blind. It was originally with 
this purpose that our research into computer genera
tion of connected speech from text source began.2 

We should like to point out that while it may be 
acceptable to call out stored audio signals correspond
ing to words or phrases in order to form short mes
sages, such as with the automatic time information 
service over telephone or the currently available com
puter audio response systems, it is not possible to 
extend the method to handle even a vocabulary that 
might be encountered in reading a second-grade level 
book. A generative scheme, in which a reasonably 
small amount of stored data are used, is both desir
able and necessary. 

The elements of speech sound 

We use only twenty-six letters of the Roman alpha
bet and a few additional symbols to express our 
language in text form. These letters and additional 
symbols are called "graphemes." A grapheme is the 
smallest unit of construction of this written language. 
The smallest segment of speech sound on the level 
of production and preception is called a. "phoneme." 
The common element between the written words 
[cat] and [pack] is the grapheme [a], and in sound 
the common element between the spoken words 
[great] and [raise] in the phoneme /e/.* 

Speech synthesis by rule 
In recent years, several workers3.4.5.6 have demon

strated that it is possible to synthesize continuous 
speech from phoneme specification. I n order to regu-

*Phonemes are shown between slashes, and graphemes are shown 
between square brackets. 



334 Spring Joint Computer Conference, 1968 

late the intonation and rhythm,· it is necessary to 
provide additional specifications beyond the seg
mental phoneme level. The generation of the seg
mental phonemes and the suprasegmental or prosodic 
features from printed text has been the main concern 
of researchers in the speech synthesis field. 

Figure I - A text-to-speech conversion system 

A text-to-speech conversion system 

The approach which was taken here in converting 
text information to speech is shown in Fig. 1. The 
entire process is divided into 5 modules. The first 
module accepts graphemes as input, and translates 
each written word into its phonemic representation 
with the proper stress markers. As a result of the 
translation process, the obtained parts-of-speech 
information is further condehsed, with some ambigu
ities removed, by the parts-of-speech pre-processor 
module. The resultant parts-of-speech information 
and the phoneme strings of the sentence are then 
used as input to the phrase-analyzer module. For 
multiple phonemic representations of the same w.ord, 
this analyzer module makes a selection based on 
syntactical considerations. The phrase-analyzer 
module places phrase boundary markers and in the 
sentence environment re-evaluates the stresses ob
tained in the grapheme-to-phoneme translator module. 
The speech-synthesizer control signal generator 
module converts the phonemic specifications, stress 
information, and phrase markers into the speech
synthesizer control signals. The speech-synthesizer 
module is a hardware unit generating the actual speech 
output. Since our speech synthesizer and its control 
signal generation is similar to that reported by Holmes, 
Mattingly, and Shearme,5 we shall restrict our present 
report to the first three modules in Fig. 1, namely, 
the grapheme-to-phoneme translator, the parts-of
speech preprocessor, and the phrase-analyzer. 

The rest of this paper deals with the problem of 
grapheme-to-phoneme translation. 

The phonic method 

The phonic approach to the grapheme-to-phoneme 
translation problem was taken first by Higginbottom, 7 

in 1962, and later by Bhivani, Dolby, and Resnikoff,8 

Weir and Venesky,9 Monroe. tO They maintained that 
it is possible to derive a letter-to-phoneme translation 
through the use of letter context. This phonic method 
has been used by First and Second Grade teachers in 
the United States in the teaching of English pronuncia
tion. After a detailed and exhaustive study of the 
phonic method, it became clear to us that while the 
method works reasonably well with children, it is 
totally unacceptable for processing by machine. This 
should not be surprising because a child, six or seven 
years old, can obtain cues from many sources, such 
as illustrations in a book or knowledge of the subject 
before his first encounter with the written words. 

In analyzing words for phonic rules, the paradigm 
form~ of the basic words, i.e., the regularly' inflected 
forms, are not usually considered, since it is thought 
that they can be readily derived. To a machine, how
ever, we must be more precise. For example, for the 
two words [invited] and [profited], we inust prevent 
the machine from mistaking them as /invitid/ and 
/ profaitidl. If we consider [ed] as the paradigm' ~uffix, 
it is possible to look up in a list to see whether [invit] 
is present or not. If it is not, the mute [e] may be 
appended. Clearly, such a list would be very long. We 
must also have an exception list for words ending 
in [ed] which must not be separated, such as with 
the word [quadruped] which must not be rendered 
[quadrupe] + [ed]. Similar problems arise with other 
suffixes beginning with a vocalic sound. 

The second problem with the phonic method is the 
difficulty in handling compound words. Compound 
words abound in English. When a mute [e] occurs in 
a nonfinal position, there is no simple way of ascer
taining that it should be mute other than having a list 
of all words ending in mute [e] and each time per
forming an exhaustive matching operation. We would 
also need an exception list to handle those words 
ending in a nonmute [e], for example, words like 
[apostrophe, catastrophe, acme, recipe], etc. 

With the phonic method there would be no simple 
way of determining the location of word stresses. 
While parts-of-speech information can be used to 
assist in the determination of stress location, the 
determination of parts-of-speech from spelling and 
context, as done by Klein and Simmons,l1 involves 
the use of more exception iists. 

To resolve ambiguities such as [refuse], (verb) 
and [refuse] (noun), a syntactic analysis must be 
performed by using a larger context. Again, the parts
of-speech information is needed. 

Translation through the use of a morph dictionary 

While the smallest segment of speech on the level of 
production and perception is a phoneme, the smallest 



Machine-to-l\1an Communication by Speech-Part I 335 

unit of speech that has meaning in a given language 
is called a "morpheme." A morpheme is composed 
of one or more phonemes. For example, the spoken 
word for "cat," represented phonemically as Ikaet/, 
is a morpheme consisting of three phonemes Ik/, 
lae/, and It/. Clearly, by themselves, the phonemes 
Ik/, I ae/, or It I have no meaning, but Ikaetl does. 

While the morpheme Ikaetl can exist alone or be 
combined as in Ikaets/, [cats], some morphemes can 
exist only as adjuncts to other morphemes. They are 
called "bound morphemes." Bound morphemes serve 
to impart some quality to the combined form, as the 
lsI in Ikaets/, which has the meaning of the plural 
form of the noun. When a morpheme is not a bound 
morpheme we call it a free morpheme. The Ikaetl in 
[ cats] , for example, is a free morpheme. 

Since a word can exist in both printed and spoken 
form to differentiate between the two forms of a given 
word, we shall call the spoken form the "p-word" 
and the written form, the "g-word."* We see that a 
p-word is either a free morpheme or a free morpheme 
combined with a bound morpheme. We are all familiar 
with a rather free occurrence of the compound 
formation of English p-words such as those corre
sponding to the g-words [greenhouse, whitestone] 
etc. There are those p-words with a collection of 
prefixes and suffixes such as those p-words for [pre
historically, loveliest], etc. A more general and re
cursive definition of a p-word is 

"A p-word is either a free morpheme, or a 
free morpheme canbined with a bound mor
pheme, or a free morpheme combined with a 
p-word, or a bound morpheme combined with 
a p-word." 

While this definition has to be supported by addi
tional rules of combination in order to be useful as a 
generative rule, it is quite suitable for the purpose 
of identifying a p-word in terms of its constituent 
morphemes. 

In a majority of cases, the formatio"n of a p-word 
that contains more than one morpheme amounts to 
little more than a mere concatenation of the constit
uents, such as those p-words corresponding to 
[whitestone, greenhouse] etc. There are, however, 
interesting cases in which- the p-words involve a trans
formation in the combined form. For example, 
IspEsafai/+ likl gives Ispisifikl, [specific], and 
IgaElaksil + likl gives Igala'ektikl [galactic]. The 
rules governing these changes are morphophonemic 
rules. 

*p-standsJor phonemic and g-stands for graphemic. 

Morphophonemic rules may depend upon the parts
of-speech classification of the resultant p-word. They 
may also depend upon phonological considerations. 
The three representations of the bound morpheme 
lsI corresponding to the plural forms of nouns is an 
example of phonological dependence. We have IkJetl 
+/sl ~ Ikdets/, Id-:JgI + lsI ~ Id-!JgzI and IbbII + lsI 
~ IboIiz/. The morphophonemic rule in this case may 
be described as lsI is changed to lizl if the last pho
neme in the preceding morpheme is among the set 
lsI, I I I, Idz/, Iz/, It I I, and it is changed into Izl if the 
preceding morpheme ends in a voiced phoneme, and 
remains as lsI otherwise. 

If we now turn our attention to the written form of 
words, we can find a parallelism in that a g-word, 
except when it is a root word, can be broken down 
into smaller elements. Let us call the smallest mean
ingful units in written form morphs. We can define 
free morph and bound morph similarly as we did for 
free and bound morphemes. A general and recursive 
definition of a g-word may be stated: 

"A g-word is either a free morph, or a free 
morph combined with a bound morph, or a 
free morph combined with a g-word, or a 
bound morph combined with a g-word." 

In English, the formation of a g-word containing 
more than one morph is often the simple concatena
tion of the individual morphs. There are several very 
commonly encountered variations requiring adjust
ment at the junctions. These adjustments can be 
stated in the form of general rules which we shall 
call morphographemic rules. We are all familiar with 
the morphographemic rule which doubles the final 
consonant letter after a stressed vowel in situations 
like [capping, equipped], etc. 

The problem of grapheme-to-phoneme translation 
is the problem of g-word to p-word mapping. Since 
a direct individual grapheme-phoneme relationship 
cannot be established except in very simple cases, 
a general treatment requires us to seek the correspon
dence at a deeper level. 

While the relationship between a g-word and a 
p-word is very complex, the relationship between a 
morph and a morpheme is almost one-to-one, barring 
homographs and homophones. To map a g-word 
into a p-word, it is only necessary to decompose 
the g-word into its constituent morphs by using the 
morphographemic rules in reverse, mapping the 
morphs into the corresponding morphemes, and apply-
ing the proper morphophonemic rules to obtain the p
word. The procedure is illustrated in Fig. 2. 

We shall now proceed to identify the morpho
graphemic rules of English, discuss the morph-to-



336 Spring Joint Computer Conference, 1968 

morpheme dictionary, and the method for decompos
ing a g-word into its constituent morphs. 

morphographem ic ru les 
(in reverse) 

G-word .. mQ!'ph + moroh nrn h- • • 
P-:'~d-~- - - - - - - -i- - - ~f~~-- - - ... -"~::' ~~ :.c:o~ 

morpheme + morpheme phonem ic do • 
morpho- ma In 

phonemic 
rules 

Figure 2 - G-word to P-word mapping 

Identification of morpho graphemic rules of English 

In order to describe the morphographemic rules of 
English, it is necessary to recognize certain properties 
of the morphs. We shall use the following subscripts 
to denote classes which nossess certain nronprtipo;: c .&.1. y.A. ""' Y_& ... A_ ...... 

a: A free morph that never combines with others 
but always stands alone such as [me]. ' 

r: A free morph that may combine with others 
such as [house]. 

v: A bound vocalic suffix morph that has a vocalic 
beginning such as [able] in [readable]I' 

c: A bound consonantal suffix morph that does not 
have a vocalic beginning such as [ness] in 
[kindness] . 

t: A bound terminal suffix morph that does not 
permit any other suffix morphs to be added to 
its right. 

The bound morph [s] is both terminal, as well as 
consonantal, and the bound morph [ es] is both 
terminal, as well as vocalic. 

p: A prefix bound morph such as [un] in [un
known]. 

d: A morph that must have its final letter doubled 
when followed by a morph in class "v" such as 
[hit] . 

0: A morph that may optionally have its final 
letter doubled when followed by a morph in 
class "v" such as [model]. 

Let a,{3 denote sequences of letters, a{3 denote the 
concatenation of a and /3, C denote a single con
sonantal letter that is preceded by a vowel letter, 
and T denote the final representation of the g-word. 
We can list the most often used morphographemic 
rules of English: 

1. (a)x~ T; xe{a, r, d, o} (free-morph rule) 

2. (a)x(f3)y~(a{3)y; (compound word rule) 

x, y, e{r, d, o} 

(prefix rule) 

xe{r, d, o} 

4. (a)r,o(f3)v,c~ (af3)r (general suffix rule) 

5. (aC)d,O({3)v~(aCC{3)r (doubling final conspnant 
letter rule) 

6. (a)x(f3)t~(af3)a (terminal-suffix rule) 

7. (a'e')r(f3)v~(a{3)r (mute final-e rule) 

8. (a'y')r(f3)x~(a'i' (3); (final-y rule). 

xe{r, d, 0, v, c} 

These rules are to be interpreted in the following 
manner: 

1. Free Morph Rule: Any letter sequence in class 
"a," or "r," or "d," or "0" may appear as a final 
form in a text. Since subscript "a" occurs on the 
the left-hand s~de of oniy this ruie, a ieiter 
sequence in class"a" can only appear unchanged. 

2. Compound Wor~ Rule: This is the general rule 
for the forma~ion of nonhyphenated compounds. 
For example, [snow ]+[flake]~[snowflake]. 
The compound belongs to the same class as the 
second element, so [over]+[bid]d~[overbid]d; 
thus, rule 5 can be applied to give [overbid]d 
+ [ing] v ~ [ overbidding] r. 

3. Prefix Rule: This rule constrains the prefix 
to be attached only to the left, but it permits 
mUltiple prefixes. For example, 

[un]+[do]~[undo],and 

[re ]+[ undo]~ [reundo] 
4. General Suffix Rule: This is the general case 

of adding a suffix to the right of a letter se
quence. For example, 

L reason] r+ [able] v ~ [reasonable] r 
[kind] r+ [ness] c ~ [kindness J r 

5. Doubling Final Consonant Letter Rule: This 
rule gives us 

[bid]d+[ing]v~[bidding]n as well as 
[model]o+[ing]v~[modeIling]r' Rule 4 per

permits alternative construction in the second 
case as 

[model]o+[ing]v~[modeling]r' 

6. Terminal Suffix Rule: This rule forbids the 
further appendage of suffixes after a terminal 
suffix has been used. 

7. Mute Final-e Rule: This rule drops the final 
mute e of a morph when a vocalic suffix is 
appended. For example, 

[move]r+[ing]v~[moving]r' The con-
struction 

[mile]r+[ageJv~[mileage]r is permitted 
under rule 4. 

8. Final-y Rule: This rule changes the final letter 
y of the leading constituent into "i" when a 



Machine-to-Man Communication by Speech-Part I 337 

compound is formed or a suffix is appended. 
For example, 

[hand]r+[Y ]--~[handY]r according to rule 4, 
[handy ]r+[ work]r~[handiwork]r accord

ing to rule 8 and 
[drY]r+[er]v~[drier]r according to rule 8. 

The alternative construction for [ dryer] r is 
permitted under rule 4. 

It must be emphasized here that while these rules 
• r-P. .. L'-_._ ..... 1 __ . _____ ~ _____ ~ _______ .... ~ ____ 1 __ 

are msuIIlclenl lor me purpose 01 generaung umy 

legitimate g-words, well-formed English g-words en
counter no difficulty in being decomposed into their 
constituent morphs. The decomposition of g-words 
into their constituent morphs is parsing on the word 
level. 

There are many more morphographemic rules in 
English, but their utilization factors are very low. In 
the interest of efficiency in processing, only those 
listed here are actually implemented. As we shall see 
by restricting the implementation to only these listed 
rules, there is no sacrifice in the quality of tran~la
tion if we can be somewhat liberal in the choosing of 
morphs for the dictionary. 

The morph-to-morpheme dictionary 

Webster's New Collegiate Dictionary (7th Edition) 
contains approximately 100,000 entry words. The 
inclusion of all paradigmatic forms not listed in the 
dictionary would probably double the count. Further
more, with the freedom existing in the English lan
guage in forming compound words, it is difficult to 
put a theoretical upper bound on the total number of 
all possible words. By choosing to construct a dic
tionary on the basis of morph entries instead of g
word entries, the dictionary size can be brought down 
to a more manageable level. Our estimate is that with 
a dictionary containing 32,000 morphs, all entry g
words in Webster's Dictionary, plus all their para
digms and all reasonable compounds can be ade
quately decomposed. The storage for this dictionary is 
read-only, and is estimated to be on the order of 
4,000,000 bits. For the reading machine project, we 
have been operating with a 3000-morph dictioriary 
corresponding roughly to a Fourth Grade level. 

An entry in the dictionary consists. of four parts, 
the morph, which acts as the search and compare key 
in the decomposition process, the subscript marker, 
which directs the decomposition process, the morph
eme, which is the target translation, and the parts
of-speech information. For those cases in which a 
morph leads to mUltiple morphemes, such as Lrefuse J, 
(verb) and [refuse], (noun), the morpheme field and 
parts-of-speech field are repeated for each different 
morpheme. 

Since the morphographemic rules indicate that when 
two morphs combine, the changes in the spelling oc
cur only to the left morph, we have decided to scan a 
printed word from right to left during the decomposi
tion process. The morphs in the dictionary, for this 
reason, are listed in reverse spelling order. The actual 
search is performed with an indexed sequential tech
nique. The decomposition procedure is coded as a 
call to a recursive subroutine, which repeatedly calls 
upon itse1f until the g-word is successfully decom
posed or when it has been determined that no de
composition is possible. Figure 3 illustrates the vari
ous stages of decomposition of the g-word [grasshop
per]. It should be pointed out that the collating se
q ience of the letters and morph terminating symbols 
is such that morph [dshop ] is encountered 'before 
[dhop]. 

Given G-word: grasshoppers 

First level match: cs 

Second level match ver 

Third level match: ~ shop 

Remainder: grasshopper 

Remainder: grasshopp 

Modified to: grasshop 

Remainder: gras 

Fourth level match: ~ as, rejected on basis of subscript ~. 

No further fourth level match possible, return to third level: grasshop 

Third level match: ~ hop Rema inder: grass 

Fourth level match: !:,..grass Remainder: (null) 

Complete decomposition: ( grass)r + (hoP)d + (er)v + (s)c 

Note: subscripts are underl ined, e.g. ~, '!.-er 

Figure 3 - Example of a G-word decomposition 

S election of morphs for the dictionary 

We have not established the criteria for the selection 
of morphs for storing in the dictionary. Let us start 
by proposing a set of simple criteria and examine them 
in some detail. 

1. All base words are morphs. A base word is not 
a compound word, and contains no prefix or suf
fix of any kind. For example, [bake] is a morpho 

2. All prefixes and suffixes that do not reflect 
changes in the pronunciation of the base words to 
which they may be attached are morphs. For 
example, [un, ing] are morphs. 

From a linguistic point of view, all suffixes, re
gardless whether they meet the second criterion,· 
ought to be treated as morphs. From an engineering 
point of view, the given restriction makes it unneces
sary to process complex morphophonemic rules. 

Between those suffixes that always change the pro
nunciation of the g-word remainder such as the suffix 



338 Spring Joint Computer Conference, 1968 

[ity] and those that never do such as suffix [ing], 
there are many that affect it to intermediate degrees. 
For example, the suffix [able] does not usually af
fect the pronunciation of the base word, as in [at
tainable, removable, changeable J, etc., but it does af
fect some base words, as in [inflammabie, appiicabie], 
etc. In other cases the spelling of the base word 
itself is changed as in [tolerable, navigable], etc. 
In our approach, we choose to include as morphs 
such partially mutating suffixes, as well as those 
changed g-words. For example, we list [able] as 
a morph to achieve economy and list words like 
[inflammable, applicable, tolerable, navigable] as 
morphs, too. Briefly, whenever exceptions to a generai 
rule have to be made, we can avoid rule complication 
by the creation of new morph entries. 

Performance of the translator and the resultant 
synthetic speech without phrase analysis 

Although the morph dictionary currently in use is 
derived from the cumulative word list of a fourth 
grade reader,* the eight morphographemic rules have 
been tested with representative samples from the 
Webster's 7th New Collegiate Dictionary. The vo
cabulary our system is capable of accepting is con
siderably larger than the reader from which the dic
tionary was derived. We have not yet made any pro
vision to provide an approximate translation when the 
decomposition process fails. It seems that with a 
32,000 morph dictionary, such occurrences should be 
very rare, except for proper names and misspellings, 
which may be handled in terms of letter-by-Ietter 
spelling. 

After the grapheme-to-phoneme translator was 
implemented, we connected the output directly to the 
speech synthesizer control signal generator module, 
bypassing the phrase-analyzer. The parameters trans
mitted to the speech synthesizer control signal 
generator included only the segmental phonemes, 
primary and secondary stress markings on the morph
emes and an indication of whether the sentence ends 
in a period or a question mark. We were quite en
couraged by what we heard at the speech synthesizer 
output. We realized that for improved comprehension 
over longer utterances~ additional processing of the 
data is essentia1. This additional processing is rep
resented by the work on the phrase-analyzer which is 
presented in part 2 of this paper. 

*Roads to Everywhere, published by Ginn and Company, 1964. 

As an added remark, it should be pointed out that 
the morph decomposition idea can be used to greatly 
reduce the size of the dictionary needed by mechani
cal translation of natural languages. 

ACKNOWLEDGMENT 

This work was supported principally by the National 
Institutes of Health (Grant 1 POI GM-14940-0l), 
and in part by the Joint Services Electronics Program 
[Contract DA 28-043-AMC-02536 (E)]. 

REFERENCES 

1 G C PATION 
Touch-tone input and audio reply for on-line calculation 
Bell Telephone Laboratories Internal Memorandum March 29 
1967 

2 D E TROXEL F FLEE S J MASON 
A reading machine for the blind 
Digest of the 7th International Conference on Medical and 
Biological Engineering 1967 Stockholm 

3 J L KELLY C LOCKBAUM 
Speech synthesis 
Proceedings of the Speech Communication Seminar 1962 
Stockholm 

4 L J GERSTMAN J L KELLY 
A n artificial talker driven from a phonetic input 
Journal of Acoustical Society of American vol 33 1961 p 835 V\) 

5 J N HOLMES I G MATIINGL Y J N SHEARME 
Speech synthesis by rule 
Language and Speech vol 7 part 3 July-September 1964 pp 
127-143 

6 I G MATIINGLY 
Synthesis by rule of prosodic features 
Language and Speech vol 9 Part 1 January-March 1966 pp 1-13 

7 E M HIGGINBOTIOM 
A study of the representation of English vowel phonemes in the 
orthography 
Language and Speech April-June 1962 pp 67-117 

8 B V BHIV ANI J L COLBY H L RESNIKOFF 
Acoustic phonetic transcription of written English 
Paper delivered at the 68th meeting of the Acoustic Society of 
American October 21 1964 

9 R H WEIR and VENEZKY 
Formulation of grapheme-phoneme correspondence rules to 
aid in the reaching of reading 
Cooperative Research Project No S-139 Report Stanford Univ 
1964 

10 G MONROE 
Phonemic transcription of graphic post-base suffixes in English 
A computer problem 
PhD Thesis Brown Univ June 1965 

11 S KLEIN R F SIMMONS 
A computational approach to grammatical coding of English 
words 
Journal of the Association for Computing Machinery vol 10 
No 3 July !963 pp 334-347 



Machine-to-man communication by speech 
Part II: Synthesis of prosodic features of 
speech by rule 

by JONATHAN ALLEN 
Research Laboratory of Electronics, Massachusetts Institute of Technology 
Cambridg~, Massachusetts 

For several years, research has gone on in an at
tempt to develop a reading machine for the blind. 
Such a machine must be able to scan letters on a nor~ 
mal printed page, then recognize the scanned letters 
and punctuation, and finally convert the resultant 
character strings into an encoded form that may be 
perceived by some nonvisual sensory modality. With
in recent years, at the Massachusetts Institute of 
Technology, an opaque scanner has been developed, l 

and an algorithm for recognizing scanned letters· has 
been devised.2 The output display can take many 
forms, but the form that we feel is best suited for ac
ceptably high reading speeds and intelligibility is 
synthesized speech. Effort has recently been focused 
on the conversion of orthographic letter strings to 
synthesized speech. 

An algorithm for grapheme-to-phoneme conversion 
(letter representation to sound representation) has 
been invented by Lee,a which is capable of specifying 
sufficient phonemic information to a terminal analog 
speech synthesizer for translation to synthesizer com
mands. The algorithm uses a dictionary to store the 
constituent morphs of English words, together with 
their phonemic representation. Hence each scanned 
wQrd is transformed into a concatenated string of 
phonemic symbols that are then interpreted by the 
synthesizer. 

The resulting speech is usually intelligible, but not 
suitable for long-term use. Several problems remain, 
apart from those concerned directly with speech 
synthesis by rule from phonemic specifications. First, 
many words can be nouns or verbs, depending on con
text [refuse, incline, survey], and proper stress cannot 
be specified until the intended syntactic form class is 
known. Second, punctuation and phrase boundaries 
may be used to specify pauses that help to make the 
complete senten~e understandable. Third, more 

complicated stress· contours over phrases can be 
specified which facilitate sentence perception. Finally, 
intonation contours, or "tunes" are important for 
designating statements, questions, exclamations, and 
continuing or terminal juncture. These features (stress, 
intonation, and pauses) comprise the main prosodic 
or suprasegmental features of speech. 

Several experiments4,5,6 have shown that we tend 
to perceive sentences in chunks or phrasal units, and 
that the grammatical structure of these phrases is 
important for the correct perception of the sentence. 
In order to display this required structure to a listener, 
a speaker makes use of many redundant devices, 
among them the prosodic features, to convey the syn
tactic surface structure. When speech is being syn
thesized in an imperfect way at the phonemic level, the 
addition of these additional features can be used by 
listeners to compensate for the lack of other informa
tion. The listener may then use these cues to hypothe
size the syntactic structure,. and hence generate his 
own phonetic "shape" of the perceived sentence. 
There is little reason to believe that the perceived 
stress contour, for example, must represent some 
continuitlg physical property of the utterance, since 
the listener uses some form of internalized rules to. 
"hear" the stress contour, whether or not it is physical
ly present in a clear way. Hence, once the syntactic 
surface structure can be determined, the "stress" can 
be heard. Alternatively, prosodic features can be 
used in a limited fashion to help point out the surface 
structure, which is then used in the perception of the 
phonetic shape of the sentence. . 

The present paper describes a procedure for parsing 
sentences composed of words that are in turn derived 
from the morphs provided by the grapheme-to
phoneme d.ecomposition, as well as a phonological 
procedure for specifying prosodic features over the 

339 



340 Spring Joint Computer Conference, 1968 

revealed phrases. As we have indicated, only a limited 
amount of the sentence is parsed and provided with 
prosodics, since the listener will "hear" the entire 
sentence once the structure is clear. We consider 
first the required parts-of-speech preprocessor, then 
the parser, and finally the phonological algorithm. 

Parts-oj-speech preprocessor 

After the grapheme-to-phoneme conversion is 
complete, many words will have been decomposed 
into their constituent morphs. For example, [grass
hopper] ~ [grass] + [hop] + [er], and [brow
beat] ~ [brow] + [beat]. Each of these morphs cor
responds to a dictionary entry that contains, in addi
tion to phonemic specifications, parts-of-speech infor
mation. I n the case of morphs that can exist alone 
([grass, hop, brow,] etc.) this information consists in 
a set of parts of speech for that word, called the gram
matical homographs of the word, and this set often 
has more than one homograph. For prefixes and 
suffixes ([re-, -s, -er, -ness,] etc.), information is 
given indicating the resultant part of speech when 

, the prefix or suffix is concatenated with a root morpho 
Thus [-ness] always forms a noun, as in [goodness] 
and [madness]. 

Other researchers7•8 have used a computational 
dictionary to compute parts of speech, relying on the 
prevalence of function words (determiners, preposi
tions, conjuctions, and auxiliaries), together with 
suffix rules of the type just described and their ac
companying exception lists. This procedure, of course, 
keeps the lexicon small, but results in arbitrary parts
of-speech classification when the word is not a func
tion word, and does not have a recognizable suffix. 
Furthermore, ambiguous suffixes such as [-s] (im
plying pluml noun or singular verb) carryover their 
ambiguity to the entire word, whereas if the root 
word has a unique part of speech like [cat], our 
procedure gives a unique result; [catsJ (plural noun). 
Hence the presence of the morph lexicon can often 
be used to advantage, especially in the prevalent 
noun/verb ambiguities. 

The parts-of-speech algorithm considers each morph 
of the word and its relation with its left neighbor, start
ing from the right end of the word. If there are two or 
more suffixes [commendables, topicality] the suf
fixes are entered into a last-In first-out push-down 
stack. Then the top suffix is joined to the root morph, 
and the additional suffixes are concatenated until 
the stack is empty. Compounding is done next, and 
finally any prefixes are attached. Prefixes generally 
do not affect the part of speech of the root morph, but 
[em-, en-,] and [be-] all change the part of speech to 
verb. Compounds can occur in English in any of three 

ways, and there appears to be no reliable method for 
distinguishing these classes. There can, of course, be 
two separate words, as in [bus stop], or two words 
hyphenated, as in [hand-cuff], or finally, two root 
words concatenated directly, as in [sandpaper] . 
The parts-of-speech algorithm treats the last two 
cases, leaving the two-word case for the parser to 
handle. The algorithm ignores the presence of a 
hyphen, except that it "remembers" that the hyphen 
occurred, and then processes hyphenated and one
word compounds as though they were both single 
words. The parts of speech of the two elements ,of the 
compound are considered as row and column entries 
to a matrix whose cells yield the resulting part of 
speech. Thus Adverb·Noun ~ Noun ([under
world]). In general, since each element. may have 

, several parts of speech, the matrix is entered for e~ch 
possible combination, but the maximum number of 
resulting parts of speech is three. Combinations of 
suffixes with compounds ( [handwriting] ) can be 
accommodated, as well as one-word compounds 
containing more than two morphs. 

The algorithm has a special routine to handle 
troublesome suffixes such as [-er, -es, -s], in an at
tempt to reduce the reSUlting number of parts of 
speech to a minimum. 

In this way, the algorithm makes use of the parts of 
speech information of the individual morphs to com
pute the parts of speech set for the word formed by 
these morphs. These sets then serve as input to the 
parser, after having first been ordered to suit the prin
ciples of the parser. 

Parsing 

As we have remarked, if a listener is aware of the 
surface syntactic structure of a spoken sentence, then 
he may generate internally the accompanying prosodic 
features to the extent that they are determinable by 
linguistic rules forming part of his language compe
tence. Hence we desire to make this structure evident 
to the listener by providing cues to the syntax in the 
prosodics of the synthesized speech. To do this, we 
must first determine the structure, and tlien implement 
prosodics corresponding to the structure. Since we 
are trying to provide only a limited number of such 
cues (enough to· allow the structure to be deduced), we 
have designed a limited parser that reveals the syntax 
of only a portion of the sentence. We have tried to 
find th~ simplest parser consistent with the'-:? phono
logical goals that would also use minimum core stor 
age and run fast enough (in the context of the over-all 
reading machine) to allow for a realistic speaking rate, 
say, 150-180 words per minute. Because the absence, 
or incorrect implementation of prosodies in a small 



lViachine-to-lVian Communication by Speech-Part H 341 

percentage of the output sentences, is not likely to be 
catastrophic, we can tolerate occ~sional mistakes by 
the parser, but we have tried to achieve 90 per cent 
accuracy. These requirements, for a limited, phrase
level parser operating in real-time at comfortable 
speaking rates within restricted core storage, are in
deed severe, and many features found in other parsers 
are absent here. We do not use a large number of 
parts of speech classifications, nor do we exhaustively 
cycle through all the homographs of the words of a 
sentence to find all possible parsings. Inherent syn
tactic ambiguity ([They are washing machines]) is 
ignored, the resulting phrase structures being biased 
toward noun phrases and prepositional phrases. No 
deep-structure "trees" are obtained, since these are 
not needed in the phonological algorithm, and only 
noun phrases and prepositional phrases are detected, 
so that no sentencehood or clause-level tests are made. 
We do, however, compute a bracketed structure 
within each detected phrase, such as [the [old house]] 
and [in [[brightly lighted] windows]], since this 
structure is required by the phonological algorithm. 
The result is a context-sensitive parser that avoids 
time-consuming enumerative procedures, and con
sults alternative homographs only when some con
dition is detected (such as [to] used to introduce 
either an infinitive or a prepositional phrase) which 
requires such a search. 

The parser makes two passes (left -to-right) over a 
given input sentence. The first pass computes a tenta
tive bracketing of noun phrases all:d prepositional 
phrases. Inasmuch as this initial bracketing makes no 
clause-level checks and does not directly examine the 
frequently occurring noun/verb ambiguities, it is 
followed by a special routine designed to resolve these 
ambiguities by means of local context and grammatical 
number agreement tests. These last tests are also de
signed to resolve noun/verb ambiguities that do not 
occur in bracketed phrases, as [refuse] in [They 
refuse to leave.]. As a result of these two passes, a 
limited phrase bracketing of the sentence is obtained, 
and some ambiguous words have been assigned a 
unique part of speech, yet several words remain as 
unbracketed constituents. 

The first pass is designed to quickly set up tentative 
noun phrase and prepositional phrase boundaries. This 
process may be thought of as operating in three parts. 
The program scans the sentence from left to right 
looking for potential phrase openers. For example, 
determiners, adjectives, participles, and nouns may 
introduce noun phrases, and prepositional phrases 
always start with a preposition. In the case of some 
introducers, such as present participles, words further 
along in the sentence are examined, as well as pre vi-

ous words, to determine the grammatical function of 
the participle, as in [Wiring circuits is fun.] Once a 
phrase opener has been found, very quick relational 
tests between neighboring words are made to deter
mine whether the right phrase boundary has been 
reached. These checks are possible because English 
relies heavily on word order in its structure. Having 
found a tentative right phrase boundary, right context 
checks are made to determine whether or not this 
boundarv should he accented. After comnletion of 

- - - - - • _ •. - _. - - - - - - - - - 6.,.- - - -- - - -- - - - - - ---c - - -- - -- --

these checks, the phrase is closed and a new phrase 
introducer is looked for. This procedure continues 
until the end of the sentence is reached. 

When the bracketing is complete, further tests are 
made to check for errors in bracketing caused by fre
quent noun/verb ambiguities. For example, the sen
tence [That old man lives in the gray house.] would be 
initially bracketed. 

[That old man lives]NP [in the gray house)PREP p. 

Notice that sentence hood tests (although not per
formed by the parser) would immediately reveal that 
the sentence lacks a verb, and further routines could 
deduce that [lives], which can be a noun (plural) or 
verb (third person singular), "is functioning as a verb, 
although the bracketing routine, since it is biased to
ward noun homographs, made [lives] part of the noun 
phrase. We also note the importance of this error 
for the phonetic shape of the sentence, since [lives] 
changes its phonemic structure according to its 
grammatical function in the sentence. An agree
ment test, however, compares the rightmost "noun" 
with any determiners that may reflect grammatical 
number. In this case, [that] is a singular demonstra
tive pronoun, so we know that [lives] does not agree 
with it, and hence must be a verb. After the agree
ment test has been made for each noun phrase, local 
context checks are used in an attempt to remove 
noun/verb ambiguities that are important for the 
phonological implementation, and yet have not 
been bracketed into phrases containing more than 
one word. Thus in the sentence [They produce 
and develop many different machines.] , the al
gorithm would note that [produce] is immediately 
preceded by a personal pn:moun in the nominative 
case, and hence the word is functioning as a verb. 
Soch knowledge can then be used to put stress on the 
second syllable of the word in accordance with its 
function. 

At the conclusion of the parsing process described 
above, phrase boundaries for noun phrases and prepo
sitional phrases have been marked, but the structure 
within the phrase is not known. In order to apply the 
rules that are used for computing stress patterns with
in the phrase, however, internal bracketing must be 



342 Spring Joint Computer Conference, 1968 

provided. For this reason, determiner-adjective-noun 
sequences are given a "progressive" bracketing, as 
[the [long [red barn]]], whereas noun phrases begin
ning with adverbials are given "regressive" brack
etings, as [[ [very brightly] projected] pictures], A 
preposition beginning a prepositional phrase always 
has a progressive relation to the remaining noun 
phrase, so that we have [in [the [long [red barn]]]] 
and [of [ [[ very brightly] projected] pictures] ] 
Furthermore, two nouns together, as in [the local 
bus stop], are marked as a compound for use by the 
phonological algorithm. 

The procedure described above is thus able to de
tect noun phrases and prepositional phrases and to 
compute the internal structure of these phrases. The 
grammar and parsing logic are intertwined in this 
procedure, .so that an explicit statement of the gram
mar is impossible. Nevertheless, the rules are easily 
modified, and additions can readily be made. If, for 
example, we decide to detect verbal constructions, 
this could easily be done. At present, however, we 
feel that recognition of noun phrases and preposi,tional 
phrases and the provision of prosodics for these 
phrases is sufficient to allow the listener to deduce the 
correct syntactic structure for large samples of 
representative text. 

Phonological algorithm 

The method for detecting and bracketing noun 
phrases and prepositional phrases has now been 
described. We assume that this surface structure is 
sufficient to allow the specification of stress and in
tonation within these phrasal units. The basis for this 
assumption is given in the work of Chomsky and 
Halle. 9 The phonological algorithm then uses the 
surface syntactic bracketing, plus punctuation and 
clause-marker words, to deduce the pattern for stress, 
pauses, and intonation related to the detected phrases. 

In the present implementation, only three acoustic 
parameters are varied to implement the prosodic 
features. These are fundamental frequency (fo)' vowel 
duration, and pauses. It is well known that juncture 
pauses have acoustic effects on the neighboring pho
nemes other than vowel lengthening and fo changes" 
but these effects are ignored in the present synthesis. 
We thus consider fo, vowel duration, and pauses to 
constitute an interacting parameter system that serves 
as a group of acoustic features used to implement the 
prosodics. The "sharing" of fo for use in marking 
both stress and intonation contours is another exam
ple of the interactive nature of these acoustic param
eters. 

Stress is implemented within the detected phrases 
by iterative use of the stress cycle rules, described by 

Chomsky and Halle.9 These rules operate on the two 
constituents within the innermost brackets to specify 
where main stress should be placed. All other stresses 
are then "pushed down" by one. (Here, "one" is the 
highest stress.) The innermost brackets are then 
"erased," and the nIles applied to the next pair of 
constituents. This cycle is then continued until the 
phrase boundaries are reached. For compounds, the 
rules specify main stress on the leftmost element 
(compound rule), whereas for all other syntactic 
units (e.g., phrases) main stress goes on the right
most unit (nuclear stress rule). For example, we have 

[the [long [red barn]]] 
2 

4 2 3 
where initially stress is I on all units except the ar
ticle the, and two cycleS of the phrase rule are used. 
The parser ,has, or course, provided the bracketing of 
the phrase. Also, 

[in [[[very brightly] lighted] rooms]] 

2 1 
321 

443 2 

requires three applications of the rules, and 
[the [new [bus stop] ] ] 

I 2 
4 2 3 

which contains a compound, requires two iterations. 
I t is clear that for long phrases requiring several 
iterations, say n, there will be n + I stress levels. 
Most linguists, however, recognize no more than four 
levels, so the algorithm clips off the lower levels. At 
present, three levels are being used, but this limit can 
be easily changed in the program. 

In the examples it has been implicitly assumed that 
each content word started with main stress before the 
rules were applied. Each word does have a main 
stress initially, but in general each word has its own 
stress contour, as, for example, in the triple [nation, 
national, nationality]. (As Lee:J has pointed out, pairs 
such as [nation/national] can be handled by placing 
the two words directly in the morph dictionary, but 
we have tried to extend the stress algorithm to cover 
many of these cases. Clearly, there is a compromise 
between processing time and dictionary size to be 
determined by experience.) Thus the algorithm must 
compute the stress for individual words by applying 
rules for compounds and suffixes. The compound rule 
is the same as for two separate words that com
prise a compound (e.g., [bus stop, browbeat]). Each 
morph in the lexicon is given lexical stress, so that 
an initial stress contour is provided, Each suffix is 
also provided with· information about its effect on 



r-,,1achine-to-l\.1an Communication by Speech- Part II 343 

stress. Hence [-s, -ed] and [-ing] all leave the root 
morph stress unaltered, and have the lowest level 
stre~s for themselves. Another example is the'~uffix 
[-ion], which always places main stress on the 
immediately preceeding vowel (e.g., [nationaliza
tion, distribution]). At present, such changes in stress 
of the root word are not computed by rule. I n this way, 
stress contours for individual words are first com
puted, and then these are "placed" in the bracketed 
phrase structure and the stress cycl~ is applied until 
the over-all stress pattern is obtained for the whole 
phrase. Note that function words receive no stress, so 
that stress is controlled for these words, even though 
they do not appear in bracketed phrases. 

Pauses are provided in a definite hierarchy through
out each sentence. The following disposition of pauses 
has been arrived at empirically, and represents a 
compromise between naturalness and intelligibility. 
At present, no pauses are used within the word at the 
juncture between any two morphs. Within a bracketed 
phrase or between two adjacent unbracketed cons tit -
uents no pauses are used between words. At phrase 
boundaries, pauses of 200 to 400 msec have been 
used to set off the detected phrase. Short pauses of 
100 msec are used where commas and semicolons 
appear, and pauses of 200 msec are inserted before 
clause-marker words such as [that, since, which] 
etc., which serve to break up the sentence into clausal 
units. Finally, terminal pauses of SOO msec are 
provided for colon, period, question mark, and excla
mation point. Thus a hierarchy of pauses is used to 
help make the grammatical structure of the sentence 
clear. 

The provision of intonational fo contours by rule 
has been described by Mattingly,t° and our technique 
is similar to his. The slope of the fo contour is con
trolled by the specific phonemes encountered in the 
sentence, and by the nature of the pause at the end 
of the phrasal unit. Rising terminal contours are 
specified at the end of int~rrogative clauses just 
preceding the question mark, except when the clause 
starts with a [~h-] word, as [where is the station?]. 
In the absence of a question mark, the intonati~n fo 
contour'is falling with a slope determined by rule as is 
done by Mattingly. 

The starting point for fo at the beginning of a sen
tence is fixed at 110Hz. The jumps in fo for the vari
ous stress levels vary with the initial value of fo, but 
nominally they are 12, IS, and 30 Hz corresponding to 
the stress levels 3, 2, and 1 respectively. As noted be
fore, 1 'corresponds to the highest stress in our system. 

Subjective experience 

The method of implementing prosodic features on 

the limited basis described above has been used in 
connection with the TX-O computer at M.I.T., 
driving a terminal analog synthesizer. While the 
resulting speech is still unnatural in many respects, a 
substantial improvement in speech quality has been 
attained. It appears that by using limited phrase level 
parsing and implementation of prosodics mainly with
in these phrases, sufficient cues can be provided to the 
listener to enable him to detect the grammatical 
structure of the sentence and hence provide his own 
internal phonetic shape for the sentence. Since this 
system will become part of a complete computer
controlled reading machine operating in real time, it 
is encouraging to find that such a limited approach is 
able to improve the speech quality markedly. We an
ticipate that further work on both phonemic and 
prosodic synthesis rules will yield even greater intel
ligibility and naturalness in the output speech, with 
little additional computing load placed on the system. 

DISCUSSION 

The speech synthesis system described here has been 
developed for research purposes. Hence the imple
mentation of our speech synthesis system has re
mained very flexible so that further improvements 
can be easily accommodated. Better rules for phone
mic synthesis are being developed, and will be incor
porated into the system., Much work remains to be 
done on the determination of the physiological mech
anisms underlying stress, and the resultant observable 
phonetic patterns which arise from these articula
tions. Particular attention is being focused on the na
ture and interaction of fo and vowel duration as cor
relates of stress. There will also undoubtedly be fur
ther improvements in the parsing procedure as 
experience dictates. From the linguistic point of 
view, the lexicon for a language should contain only 
the idiosynchrasie's of a language, everything derivable 
by rule being computed as part of the language user's 
performance. Engineering considerations, however, 
clearly dictate a compromise with this view, and the 
cost of memory versus the cost of computing with an 
extensive set of rules must be examined further. It 
may, for example, become feasible to compute lexical 
stress by rule, but any advantages of this procedure 
must outweigh the cost in time and program storage 
for these rules. 

ACKNOWLEDGMENTS 

This work was supported principally by the National 
Institutes of Health (Grant 1 POI GM-1490-0l) and 
in part by the Joint Services Electronics Program 
(Contract DA2S-043-AMC-02536(E»; additional 



344 Spring Joint Computer Conference, 1968 

support was received through a fellowship from Bell 
Telephone Laboratories, Inc. 

REFERENCES 

1 C L SEITZ 
An opaque scanner for reading machine research 
SM Thesis MIT 1967 

2 J K CLEMENS 

Optical character recognition for reading machine applications 
Doctoral Thesis MIT 1965 

3 F FLEE 
A study of grapheme to phoneme translation of English 
PhD Thesis MIT 1965 

4 G A MILLER 
Decision units in the perception of speech 
IRE Transactions on Information Theory VoIIT-8 No 2 P 81 
February 1962 

5 G A MILLER G A HEISE W LICHTEN 

The intelligibility of speech as a function of the contest of the 
test materials 
J Exptl Psychol41 p 329 1951 

6 G A MILLER S ISARD 
Some perceptual consequences of linguistic rules 
J Verb Learn Verb Behav 2 p 2! 7 ! 963 

7 S KLEIN R F SIMMONS 
A computation approach to the grammical coding of English 
words 
J Assoc Computing Machinery 10 334 1963 

8 D C CLARKE R E WALL 
An economical program for the limited parsing of English 
AFIPS Conference Proceedings p 307 Fall Joint Comp Conf 
1965 

9 N CHOMSKY M HALLE 
Sound patterns of English 
(in press) 

lO I G MATTINGLY 
Synthesis by rule of prosodic features 
T llnOllllOP llnrl .~npprh Q I I Qf:.f:. --"·.0--0- _.01;_ -t"'--_&;&" • o..".....,....., 



An on-line multiprocessing interactive 
computer system for neurophysiological 
investigations 

hy FREDERICK D. ABRAHAM 
Brain Research Institute, Neuropsychiatric Institute and Psychiatry, UCLA 
Los Angeles, California 

and 
LASZLO BETY AR and RICHARD JOHNSTON 
Data Processing Laboratory, Brain Research Institute, UCLA 
Los Angeles, California 

INTRODUCTION 

The principal dependencies of neurophysiologists 
UDon the computer are for data collection and analysis, 
experimental control, and the development of theo
retical models. One possible system providing these 
functions is one that allows several investigators to 
on-line time-share a moderate sized digital computer 
capable of performing input, output, and computa
tional functions in a simple interpretive language that 
is easy to understand and use in a fast decision experi
mental environment. A community of neurophysiolo
gists in the UCLA Brain Research Institute share 
such a computer in its data processing laboratory 
(DPL) by means of remote console stations in the 
investigators' laboratories connected to the DPL by 
a direct cabling system.5,15 A larger computer facility, 
available to a larger community of health scientists, 
is used for batch processing where problems do not 
need continuous interaction with the investigator for 
on-line control or analysis, or do need greater compu
tational capability.9 The two facilities possess com
patible I/O formats, thus making some problems solu
able 'by the combination of both computers, and giving 
other problems the flexibility of either approach. 
Essentially the DPL is a mUltiprocessing system12,18,21 

·wIth an emphasis on I/O functions and an interpre
tive system appropriate for neurophysiological in
vestigation and with some unique solutions to re
source allocation and system integrity in its temporal
spatial (core) algorithm. The economic advantage of 
such a system is not argued, nor is CPU economy 
necessarily maximized with present use, though from 
the standpoint of I/O devices which are so important 
for such research, a central facility may possess some 

345 

advantages. Reliability and demands of time-critical 
users must be realistically estimated for neuro
physiological users for whom the on-line aspect may 
be with reference to the integrity of their experiments. 

Computer facilities andfunctions 

A. The basic DPL hardware system 

The central processor unit (CPU) is a Scientific 
Data Systems 9300 general purpose digital computer, 
with a 32K, 24 bit word memory, three time-multi
plexed communication channels (TMCC), and two 
direct access communication channels (DACC) (Fig. 
1). Seven magnetic tape units are on one TMCC. 
Character devices including printer, card reader, 
plotters, typewriter, paper tape reader, and paper 
tape punch are on another TMCC. A 30-channel ana
log-to-digital (A/D) converter and a 16-channel A/D 
converter are available on another TMCC. The A/D's 
have a common multiplexer with a 100 Khz conver
sion rate and a precision of 10 bits plus sign. An 8 M 
character disc storage is on a DACC. A digital-to
analog converter (D/ A) is on the other DACC. There 
is also a 24 bit parallel input of sense lines capable 
of detecting 24 channels of discrete laboratory events, 
and a 24 bit parallel output of relay drivers capable of 
operating 24 channels of discrete events in the in
vestigators' laboratories. The system interface unit 
contains the A/D multiplexer, the D/A connector, the 
24 relay drivers and their connections, the 24 sense 
line connections, and a 6 bit character buffer for input 
from the consoles in the investigators' laboratories. 
The remote consoles (Fig. 2 & 3) located in the in
vestigators' laboratories include a 64 key lighted key
board and a storage oscilloscope. The console also 



346 Spring Joint Computer Conference, 1968 

Dashed line indicates planned system expansion 

SDS 9300 

32K MEMORY 

1 

LINE 
PRINTER 

CARO 
READER 

2OOC/MIN 

H~pH 
I I 
1 POT (24 BITS) I 

PIN (24 BITS) 

PAPER 
TAPE 

READER 

PAPER 
TAPE 

PUNCH 

SYSTEM 
INTERFACE 

UNIT 

~ ~. 30 ANALOG INPUTS 

I . 
~ ~ 16 ANALOG INPUTS 

1-1 ----- ~~/~i~AhuTPUT 

CONSOLE 
SYSTEM OUTPUT 
MEMORY SCa£ 

NUMBER I 

I NUMBS,? 2 

G 
NUMBER 3 

o 

Figure 1 - DPL hardware configuration 

contains a few lights to indicate the status of a few 
computer functions. The console (differing from 
others7,8,13,16) represents two most important features 
of the system; the on-line time-sharing feature, and the 
function of a simple communication between com
puter and researcher. The consoles allow on-line 
multiprogramming and multiprocessing of programs 
already entered via the console or other routes. Its 
keys are mnemonically labelled and lighted. The 
mnemonic labels indicate the most basic functions 
available to the user in terms of events and computa
tions familiar to his research. The lights indicate 
whether the keyboard is in an upper or lower case 
mode of operation. The storage oscilloscope is capable 
of both graphic and alphanumeric display. 

B. The basic DPL software system 
The executive system and the interpreter (Shared 

Laboratory Interpretive Processor, SLIP) for the 
users' multiprocessing are resident in core. This sys
tem performs the reading, interpreting, and process
ing of console keypresses, and the generation of scope 
displays. In addition, the computer operator may exe-

cute various background activities which take advan
tage of idle CPU time. These background activities 
represent the normal production activity of the DPL 
and include AID conversion, "off-line" plotting on 
two Ca1comp digital plotters, "off-Hne" printing of ass
embler output, card-to-tape conversion, and routine 
tests of digital tapes. At present, there is no capability 
to time-share routine compilations and assemblies. 
These operations are performed at scheduled times 
under the standard SDS supplied monitor system. 

Console activities may be controlled through a con
tinuous sequence of keypresses, performed in a direct 
execution mode of available public users' programs. 
Additional private users' programs may also be writ
ten in this mode, and then used in a program execu
tion mode. Any key press may have two types of 
meanings according to whether the keyboard is in 
upper or lower case. In upper case the keys have an 
operator (function) meaning; in lower case they usu
ally have an operand (data) meaning. Each key may 
have up to 60 operator meanings, the first ten of which 
are written as machine language subroutines as part 
of the interpreter, representing a compiler in provid-



On-line Multiprocessing Interactive Computer System for Neurophysiological Investigations 347 

Figure 2 - Console 

Figure 3 - Console keyboard 

ing a language to the user in terms of I/O and computa
tional functions required in this research (differing 
from other interactive interpretive languages7•8•11 

and medical systems16). The remaining 50 operator 
definitions per key are optional sequences of other 
operator and operand meanings. The first ten mean
ings per button are public routines likely to be used 
by many investigators but modifiable by none (cur
rently, only the first of the ten exists for each key, see 
Table I). The remaining 50 meanings are available 
for private mUltiprogramming usage. That is, each 

investigator, by his reference identification, may de
fine 50 more programs per key that are usable and 
modifiable only by himself (resident on disc or mag
netic tape). Similarly, the operand (data) meanings, 
locatable by a special indexing procedure, are private, 
with up to 217,088 pieces of data storable on each of 
53 keys. All operations are performed in the console 
"accumulator" (the principal working register of the 
computer) which may hold a vector of up to 250 real 
or 125 complex numbers. Operators may be unary, 
that is operate on the contents of the accumulator 
leaving the keyboard in operator (upper case) mode. 
Plotting (graphic scope display of accumlator con
tents), and Sine (replacing the contents of the register 
with their sine) are examples of unary operators. Other 
operators are binary, requiring additional data which 
must be obtained in the operand mode after execution 
of the binary operator. A terminator key press in oper
and mode returns the keyboard to operator mode after 
the data operand is defined by appropriate key 
presses. For example, a vector may be added to an
other, replacmg the register with the vector sum. 
The data may be generated as needed by key presses 
representing numbers, or may be called from storage 
by key presses representing its location indexing. 
Programs and data are placed on disc as they are 
defined and may remain there safely for short term 
needs such as a week or so. If they are desired to 
be kept longer, they may be dumped into magnetic 
tape or 'punched cards and reloaded at a later time. 
Data may be collected from experiments in either a 
continuous or triggered fashion for spectral transient 
response, or spike analysis. The data are disc stored 
with appropriate indexing for further console opera
tions, or stored on magnetic tape in IBM/360 format 
for subsequent analysis at the other computer facility. 

c. Uniqueness and 1/0 capabilities 
An important difference between SLIP and other 

similar time-sharing remote console systems7•
g is the 

availability to the console user of specialized hardware 
for data collection and experimental control. These 
capabilities are supplied in addition to a comprehensive 
set of mathematical and I/O operations. Other major 
differences between SLIP and other time-sharing 
systems is in the space (core memory) and time algo
rithm. Space is' allocated dynamically on an as-requir
ed basis for each user. Programs and data are saved on 
disc, and are automatically read in when referenced. 
More frequently used data and programs remain in 
core for longer periods of time. With respect to time 
allocation, each user may execute one function, and 
then the computer will automatically service others 
on a cyclic commutator basis. Time consuming opera
tions such as convolution relinquish the CPU several 



348 Spring Joint Computer Conference, 1968 

times before completion. Time-critical (synchronous) 
activities such as AID conversion are interrupt driven 
and are given the highest system priority. I/O channel 
access is on a first come, first served basis. 

D. The Health Science Computer Facility (HSCF).9 

While the DPL is a moderately sized facility, it 
is specifically geared for the treatment of analog 
neurophysiological data as well as the on-line time
shared macro language used by the neurophysiological 
investigator. For many problems, data analysis need 
not necessarily be performed on-line or with the in
vestigator's continual badgering. A larger, batch pro
cessing 360 system available to a larger community 
of scientists is used for such problems, taking input 
prepared by the D PL facility and returning output 
that is given its final form, e.g., plotted DI A data 
analysis displays, at the DPL. Separate programs are 
used at each facility on their respective disc storages. 
No direct link yet exists between the two facilities, 
and principal· data communication between them is 
via I/O IBM/360 format compatible magnetic tapes, 
with additional program control and parameter entry 
to the HSCF computer with punched cards. Examples 
showing the various options available with these 
computers for use with the principal types of neu
rophysiological research follow. Other medkal sys
tems have been reviewed elsewhere.10,16,17 

Exemplary neurophysiological control and analysis 

A., EEG spectral analysis in behavioral 
experimentsl ,3,4,6,14,20 

Experimental control with data collection, analy
sis, and display for cats in chronic learning situations 
while measuring EEG activity from several brain 
sites provides an excellent example of the inter
action between the investigator's laborator.y and both 
computer facilities (Fig. 4). The DPL console system 
is used to control the experimental situation with a 
relay-driving program, while simultaneously AID 
converting several channels of amplified EEG activ
ity and time and stimulus codes with another pro
gram that places the data on a digital magnetic tape 
in IBM/360 Fortran compatible format. The in
vestigator uses prepared programs and uses the con
sole to call them into use, to enter parameters con
cerning relay driving conditions and digitizing param
eters, to enter labels, and to initiate and terminate 
the relay driving and AID routines. Spectral analysis 
of the data is preformed at the HSCF by submitting 
the data tape together with control cards for both their 
monitor system and a user's spectral analysis program 
resident on disc.4•9 Both listed and magnetic tape or 
disc outputs are obtained, and subsequent programs 

at the HSCF further prepare the data, with or with
out averaging, for various types of data display. The 
data displays are obtained at the D PL facility with 
background programs that can read the IBM tapes 
and controi either Cal-comp plotters or osciiloscopic 
data displays. Computer operators at DPL usually 
perform this task, as the investigator often does not 
wish to view the data until it is complete. This mode 
of data treatment is quite fine where a predetermined 
exhaustive data analysis is required from a com
pulsively well designed experiment. In pilot experi
ments, one may wish to perform partial analyses in 
an attempt to determine which features are of greatest 
interest. Spectral analysis programs written for the 
DPL console system are in progress to do this. Es
sentially the trade off is initially increased investigator 
time for savings of subsequent HSCF time by elimi
nating analysis of unnecessary aspects of the data. 
Development of new analyses and displays can be 
quite efficient with such a system as well. Some of 
the types of data displays from spectral and rdated 
time-series analysis include three dimensional maps 
of spectral power, co-spectral power, coherence, 
and phase as a function of time (successive, selected 
samples) (Fig. 5A). Also, coherence and phase as a 
functio~ of frequency for a given sample; and maps 
of brain locations _ depicting phase and coherence for 
a given EEG frequency band are very useful dis
plays (Fig. 5B). Phase is usually converted to a time 
measure rather than an angular measure. 

B. Evoked potentials in sensory experiments2,6 

An experiment on auditory electrophysiology pro
vides another example of the various options available 
with such a computer system in efficiently yielding 
statistical parameters and sequential analysis when 
averaging transient neural responses. In this case, 
experimental control is usually laboratory rather than 
computer based, while data collection is via the con
sole system, differing only from the EEG in detecting 
pulse events and digitizing only a brief (usually 50 -
1000 msec) stretch of data after each pulse which in
cludes the transient neural response to auditory stim
uli. The data may be stored in disc with the console 
system indexing and analyzed as it is collected, as 
such data analyses may be performed much more 
rapidly than spectral analysis. Thus o.ne could have 
such an average evoked response with several addi
tional statistical properties displayed on the oscil
loscope and photographed (with the computer relay 
drivers controlling photography if one wishes) within 
milliseconds after the presentation of the last stim
ulus in a series to an animal. This could be of use in 
making consequent experimentai decisions, or in 



On-line Multiprocessing Interactive Computer System for Neurophysiological Investigations 349 

EXPERIMENTAL CONTROLANO OATA ANALYSIS SYSTEM 

OPl 

HSCF ----c:::::::::::J 
~ 

Figure 4 - Experimental control and analysis flow 

further data analysis decisions, or simply be con
venient in eliminating additional turnover steps that 
use of the other computer facility would require. 
However, if the analysis needs were sufficiently 
predetermined, or required many brain locations to 
be analyzed, or if the efficiency of immediate solu
tion were not required, then the data analysis could be 
treated as in the EEG example. That is, data is AID 
converted in the triggered fashion onto a magnetic 
tape, analyzed at the HSCF, and analyses graphically 
displayed via tape return to the OPL with console 
control. 

Some typical displays include averages of evoked 
potentials selected from a series with confidence 
intervals for the entire average evoked potential 
(Fig. 5C), or histograms for particular temporal parts 
of the evoked potential. If one were igterested in se
quential changes during the course of time during 

which averaging occurred, amplitudes and latencies 
of various components of the evoked potentials may 
be displayed graphically as well (Fig. 50.) An ex
ample of the flexibility provided by having both com
puters available would be say in determining the dura
tions of averaged evoked potentials of interest for 
each location measured in auditory nervous systems, 
or in the number of responses or samples over which 
interesting changes were occurring, and then sending 
the data from the whole experiment to the other com
puter for complete analysis based on such deter
minations. 

C. Behavioral experiments with relay-driv
ing contingent upon behavior 

Some learning experiments require food delivery 
or some other events to occur in an animal's environ
ment as a function of statistical characteristics of some 



350 Spring Joint Computer Conference, 1968 

I 

6-UN-Z-3-1f-S, APRIL 66. STFtORJ SITUATION. CMRENCE TOPO I"WS. 

C 
fU !t55Z1 aJIIIIII. _ WIllS 

WT l.-tl 18..1 

6-UN 
OA/HLl COH 

I 

~tLI"'" 
INIJIIi IUL 5 
Dl5llII.lUL_ 
12SII.DsaMI'UIE 
1Z5. s:IHI POI I'llII'IIe: • ... .".., 
~ 

4'5 .1111 

IDH 
:.alii ms :D!D 4'5 .1111 

~ :tc: ~ C' 

UIIH ~IIII 

lIII5-O -I 

.II 

IIJS-P' -I 

• CAT 12. III lUG. 1'IW..aM. 1_ 
TIllS 15 Itt IIWIAC[ OWl 10 CAS[S 

flUWC'IlS'IIUIO 
WHL-______ ~ ______ ~ 

• 

~l¢ :: 
~ ~III 

~ 
ms :D!D 4'5 .1111 

....... • ~~i-IvJl 

:000 ms :D!D :a75 .1111 

Figure 5 - Exemplary data analysis displays 

repeated response it may perform. The sense line and 
interrupt features of the console DPL system along 
with its relay driving capability allow great flexibility 
in such control with parameter entry for such statisti
cal decision making. The D PL computer can simul
taneously digitize and analyze physiological data, 
and compute and display analyses of the behavioral 
data constantly throughout the experiment. 

D. Neurophysiology as an independent variable 

Relay driving could also be contigent upon on-line 
analysis of electrophysiological data as an independent 
variable, with either behavioral or other neurophys
iological data collected as the dependent variable. 
This is a unique type of experimental design made 
possible by such on-line neurophysiological com
puter system. Such experiments are currently planned 
but not yet operative. 

Evaluation 

It is, of course, platidudinous to point out the im
portance of availability and reliability to the investi
gator. 7

,19 With respect to the integrity of his investi
gations, time-criticality may exist in the microsecond 
domain for very critical tasks such as AiD conver
sion, relay driving, sense line reading, and data analy
sis when used as independent variables. Time-impor
tant problems may also exist for I/O and system avail
ability on an hourly basis, for his "on-line" processing 
of his experiments, or minutes in terms of waiting for 
his "off-line" data analyses. 

The necessity of insulating the system from novice 
users prompted the decision to develop an interpretive 
processor. The success of 'similar systems gave sup
port to this decision. The large amount of system over
head required for SLIP increases considerably the 
amount of execution time required for a given prob-



On-line Multiprocessing Interactive Computer System for Neurophysiological Investigations 351 

TABLE 1 

INTERPRETATION OF CONSOLE KEYS IN THE BASIC SYSTEM LEVEL (1). 

UC LC KEY FUNCTION OF THE OPERATOR 

RETN 0 
WAIT 1 
CONT 2 
BUG 3 
LIST 4 
TYPE 5 
RUN 6 

00 Program terminator 
01 Wait requested 
02 Continue operation 
03 Debug routine 
04 Alphanumerical display of AC 
05 Print on scope 
06 Starts or stops a previously defined 

background activity 
07 Parameter set-up 

UC LC KEY FUNCTION OF THE OPERATOR 

LOG V 41 
EXP B 42 
ABS N 43 
HIST M 44 
CONJ 45 
X 46 
/ / 47 
< < 50 

51 

Compute the logarithm of AC 
Each element of AC acts as an· exponent of e 
Replace AC with absolute values 
Distribute values in AC with present bIn width 
Set the signs of values in AC 
Multiply 
Divide 
Inn;r~l nn~r~~nr l~cc ~h~n 

L~~i~~j ~~;~~t~~ ~~~;l ... _ .. SET 7 
BlNK 8 
PLOT 9 
FIND Q 
EXT W 
PRGL E 
PRG'" R 
TRNC T 
HEDL Y 
TMOD U 
MODE I 
CURS 0 
INC P 

10 Scope erase ~ ~ 52 logical operator greater than or equal 
Sum the AC SUM ( 53 11 Vector display of AC·on scope 

12 Search a value in the AC !J. !J. 54 Compute the delta between successive elements 
of AC 13 Extract eiement(s) from AC 

PROD 55 .14 load program to AC for correction 
15 Store program from AC * * 56 

t t 57 

Compute the product of elements of AC 
Filter the AC 

16 Truncate the values in AC 
17 Examine the header of AC + + 60 

Raise AC to an exponential 
Add 

SHFT A 
ROT S 
FLIP 0 
MOD F 
MIN G 

20 Modify the type of data in AC 
21. Select scope at plot mode 
22 Extract and extend a part of AC 
23 Increment or decrement continuation 

index 0 r I eve I 
24 Change the initial index of AC 
25 Rotate AC to the left or right 
26 Invert ·the order of values in AC 
27 Execute module n 
30 Find the-smallest element of AC 
31 Generate a random vector in ·AC 
32 Count zero-crossings in AC 
33 Linear interpolater 

61 
SPACE SPACE 62 
LOAD CR 63 
PROG ~ 64 

END ~ 65 
DATA 0 66 

RSET RSET 67 

ALTR a 70 
.. .. 71 
SKIP $ 72 
REP 73 

Subtract 
No ope·rator 
Load data into AC 
Signify subsequent key-presses as a user 
generated program 
Program or repeat loop end IndIcator 
Defines indirect data (UC) Terminator of a 
binary operand (LC) 
Reset the console to wait input status (error· 
correction) 
Editing operator 
Comments mode definition 
Unconditional branch 

RAND H 
ZERO J 
INTP K 
AVG L 
SGMA 

34 Compute the average of AC 
35 Compute the standard deviation of AC 
36 Compute the sine of AC-

.j. 1- 74 
00 loop generator (repeat) 
label sign 

SIN Z 1 1 75 Conditional' branch 
COS X 37 Compute the cosine of AC 76 Store data from AC 
ATAN C 40 Compute the arctangent of AC LEV k 77 Operator or data level change request 

Note: UC = Operator (upper case) 
LC = Operand (lower case) 

KEY = Character representation of KEY 
AC ~ Accumulator 

lem (sometimes by as much as a factor of 30 when 
compared to a Fortran version). This increased time 
may be unacceptable to users requiring large amounts 
of computation (e.g., matrix inversion, sorting, etc.). 
The current answer to this problem is writing an effi
cient machine language program off-line and then 
merging it with the SLIP system. The pro..gram is then 
accessed by the SET function (Table I), using a four 
character name. 

Current daily limitation on system availability is 
being remedied by an assembly program development 
which will enable time-sharing by SLIP and assem
blies. The elimination of this limitation will enable 
acute neurophysiological experiments, running con
tinuously for 24 or more hours, to have constant 
access to control and data processing of the system. 

From the user's viewpoint, system reliability has 
been quite good. Most interruptions aremomentary 
and have an adverse effect on the investigator only 
for time-critical on-line experimental processes such 

as AID data collection, sense line reading, and relay 
driving. These seldom occur, but, of course, can be 
very frustrating (costly) to the investigator when 
they do. 

ACKNOWLEDGMENTS 

Much of the credit for the initial planning of the DPL 
system must be given to Mr. Dan Brown. I ,15 Lionel 
RovnerI5 was principally responsible for hardware 
developments, while Mrs. Howard, Mr. McGill, 
and Mr. Wyman assisted in software development. 
USPHS Grant NB 02511, NASA Grant NS 6505, 
ON R Grant ON R 233(91), assisted DPL develop
ment, while Calif. DMH Grant 2-36 and USPHS 
Grant 13268 assisted the neurophysiological research. 
Mr. Brown and Dr. Walterl9 ,20 largely developed 
the HSCF data programs with the assitance of Mr. 
Parmallee and Mrs. Free. The HSCF is heavily sup
ported by USPHS Grant FR 3. 



352 Spring Joint Computer Conference, 1968 

REFERENCES 

1 F ABRAHAM D BROWN M GARDINER 
Calibrations of EEO power spectra 
Communications in Behavioral Biology vol 1 1968 

2 F DABRAHAM JTMARSH 
Ampiitude of evoked potentials as a function of slow pre
senting rates of repetitive auditory stimulation 
Experimental Neurology vol 14 ,1966 

3 F D ABRAHAM N M WEINBERGER 
Possible mammilothalamic tract involvement in feeding 
behavior 
The Physiologist vol 10 1967 

4 WRADEY 
Speciral. analysis and. pattern recognition methods for elec
troencephalographic data 
Data Processing Conference Copenhagen 1966 

5 LBETYAR . 
A user-oriented time-shared on-line system 
CACMvol 10 1967 

6 MBBRAZIER 
The application of computers to electroencephalography 
Loc. Cit. Ref. 17 

7 GEBRYAN 
Joss: 20,000 hours at the console: A statistical summary 
AFIPS FJCC vol 32 1967 

8 GJCULLER 
A start in conversational programming for elementary math
matical problems 
IFJ_PS Conference Proceedings vol 2 1965 

9 WJDIXON 
Use oj displays with packaged statistical programs 
AFIPS FJCC Proceedings vol 32 1967 

10 ! ETTER 
Requirements for a data processing systemfor hospital 
laboratories 
AFIPS FJCC Proceedings vol 32 1967 

11 S L FEINGOLD 
PLAINT - A flexible language designed for computer-human 

interaction 
AFIPS FJCC Proceedings vol 32 1967 

12 M S FINEBERG 0 SERLIN 
Multiprogramming for hybrid computation 
AFIPS FJCC Proceedings vol 32 1967 

13 C MACH OVER 
Graphic CRT terminals - characteristics of commercially 
available equipment 
AFIPS FJCC Proceedings vol 32 1967 

14 W A ROSENBLITH 
Processing neuroelectric data 
MIT Press Cambridge 1962 

15 L D ROVNER D BROWN R T KADO 
A time-shared computing system for on-line processing of 
physiological data 
Proceedings Symposium on Biomedical Engineering Milwaukee 
vol 1 1966 

16 W J SANDERS G BREITBARD D CUMMINS 
R FLEXER K HOLTS J MILLER G WIEDERHOLD 
An advanced computer system for medical research 
AFiPS pjCC Proceedings voi 32 i96i 

17 R W STACEY B WAXMAN 
Computers in biomedical research 
Academic Press New York 1965 

18 ATONIK 
Development of executive routines, both hardware and software 
AFIPS FJCC Proceedings vol 32 1967 

19 D 0 WALTER 
Rapid interaction with a digital computer-plusses and minuses 
The Physiologist vol 9 1966 

20D 0 WALTER R T KADO J M RHODES 
W R ADEY 
Electroencephalographic baselines in astronaut candidates 
estimated by computation and pattern recognition techniques 
Aerospace Medicine vol 38 1967 

21 HWYLE GJBURNETT 
Management of periodic operations in a real-time 
computation system 
AFIPS FJCC Proceedings vol 32 1967 



Graphical data management in a time-shared environment 

by SALLY BOWMAN and RICHARD A. LICKHAL TER 
System Development Corporation 
Santa Monica, California 

INTRODUCTION 

At System Development Corporation there is a con
viction that one of the most plausible ways to make the 
cost of software decline is to build general-purpose 
software that is capable of solving a variety of prob
lems. SDC's most successful effort in this field 
has been in the area of general-purpose data manage
ment. Our initial large-scale, time-shared data manage
ment system, TSS-LUCID, enabled the nonpro
grammer to describe, load, query, and maintain 
a data base. In use for over two years, this system 
provided enough generality to solve such diverse 
problems as comparison of salary data in different 
segments of the aerospace industry, analysis of 
statistical data for a customer in the oil industry, 
and monitoring of public-supported cancer research 
projects. Currently 'being implemented on the IBM 
360 family of computers is an improved, more power
ful version called TDMS (Time-Shared Data Manage
ment System). 

The role of cathode ray tube displays as applied to 
data management systems is the basic concern of this 
paper. Traditionally, CRT displays have been used 
for tabular data display, geographical displays 
associated with command and control systems, and 
for engineering applications. Little use has been made 
in the area of graphical display of structured data files 
as an adjunct to an information retrieval system. In 
addition, little attempt has been made to use the scope 
to assist the user in forming his data retrieval request. 
With the widespread availability of time-sharing and 
data management systems, the need for an easy-to
use, yet powerful, graphical display system has be
come more critical. This paper describes the graphi
cal display system currently available on SDC's 
time-shared Q-32 computer in Santa Monica. The 
system described (called DISPLAY) is the fore
runner of the display component ofTDMS. 

Design goals 

In January 1967 we began work on DISPLAY by 
limiting the design to that set of display problems 

which relate to analyzing data from a large data base. 
Thus, DISPLAY was to be concerned with scatter 
plots and with regression curves but not with rotating 
three-dimensional figures. 

Our first design goal was to provide satisfactory 
response within a time-shared computer. We knew 
from experience that the nonprogrammer user will 
tolerate long delays while the teletype clatters along 
reassuringly, but that he will panic very quickly whe~ 
confronted with an unchanging CRT. 

Constructing a display system that will deliver even 
tolerable response within a general-purpose time-shar
ing environment, however, requires careful break
down of the input/output requirements to maintain 
an interactiveness between system and user and 
thus avoid lengthy delays waiting for ~service when 
placed in a lower priority queue. 

Our second goal was to produce a system easy for 
the nonprogrammer to use. Communication had to be 
so natural as to appear inevitable. Still, the system 
had to have enough power to accomplish useful work. 

Achieving these first two goals - we hoped - would 
help us achieve the third: that of gaining users for the 
system in order to obtain feedback to improve the. 
system. Our ultimate goal was to use this experience 
in designing the display portion of the Time-Shared 
Data Management System, a general-purpose data 
management system being developed at SDC. 

Design environment of display 

The DISPLAY system was designed and built 
for the IBM Q-32 computer. This is a powerful ma
chine with 64,000 words of core memory, a 2-JLsec 
cycle time, drum storage, and 4 million words of auxil
iary disc storage. The Q-32 is operated in a time
sharing mode at all times. During "prime time-," the 
number of users averages between 25 and 30. SDC's 
general-purpose time-sharing algorithm provides 
equal service to all users; thus DISPLAY receives 
no special advantage over any other program. To the 
best of the authors' knowledge, there are no other 
display systems that operate in a time-shared environ-

353 



354 Spring Joint Computer Conference, 1968 

ment without receiving some special consideration 
from the executive. 

Auxiliary to this computer are 6 CDC DD19 
cathode-ray-tube scopes which are drum-refreshed 
automatically every 22 milliseconds. The 1024 x i 024 
scope grid provides good resolution, and the refresh 
rate provides excellent insurance against flicker. 
Normal usage of the CRT provides 680 characters 
and/or vectors to each user, but DISPLAY can oper
ate with up to 1,360 characters. Associated with each 
CRT is a light pen with a two-position switch, pro
viding an aiming circle and a flicker when fired. 
Additionally, a teletype is provided for normal com
munication with the Time-Sharing System and (in 
some instances) with the DISPLAY system. In 
previous experiments we had learned that a welter 
of input equipment is distracting and awkward, if not 
downright frightening to the user, so we deliberately 
kept to the minimum of scope, light pen, and teletype. 

In addition to the hardware available, the designers 
had a startling richness of software at their disposal. 
This included an on-line, interactive JOVIAL com
piler; elaborate debugging, editing, and other on-line 
programming tools; and TSS-LUCID, which pro
vided all the machinery necessary to describe, load, 
maintain, and interrogate large data bases. Addition
ally, an on-line interpreter, TINT, with full ALGOL 
capabilities was available. 

The importance of these software assets cannot be 
overemphasized. In fact, in building DISPLAY, the 
TSS-LUCID query program and the TINT inter
preter were used almost "as is." In order to do this, 
of course, a sequencer program had to be built, which 
effectively time-shares core within the time-sharing 
system. 

System description 

DISPLA Y provides an automatically generated 
graphical presentation of data stored in a TSS-LUCID 
data base. The user's entire attention is focused on 
the scope. All parameters which he may require are 
listed and he supplies values only by means of his 
light pen. To make this possible, the program follows 
the user's light-pen selection and dynamically updates 
the scope to supply all the choices legal as a result 
of his last action. If the user changes his mind or 
makes a mistake, he erases by lightpenning what he 
wants to delete. His previous selection is erased up 
to the point that he has indicated, and the scope re
turns to the set of legal inputs· that are appropriate, 
after considering his erasure. Dynamic scope updat
ing achieves three purposes: it makes it easier for the 
user; it guarantees error-free inputting; and it allows 
the program to deliver rapid response within the 
time-sharing system. 

Once the necessary parameters for a graphical 
display are defined, the user executes the request 
and receives a standard graphic presentation of his 
data. The standard presentation implies two things: 
First, the user receives a data plot rapidly without 
being troubled with the minute detail associated with 
laying out a plot; second, extensive capability to over
ride the standard presentation must be available. 

Data base X-ray 

At any time during parameter specification, the 
user may "browse" through his data base under 
light-pen control. A list of the data base elements 
are presented 26 to a display page with up to five pages 
possible. Included with the element list is the element 
number, element type, and the number of distinct 
values which each e1ement has in the data base. The 
user may then access the value list associated with 
each element through light-pen control. Because the 
number of data values can be quite large for each ele
ment, a random-access scheme is applied to make 
possible rapid display of any value. When the user 
requests a value list display for a selected element, 
a sample of values is presented including the first 
value, the last value, and up to 24 equally spaced 
values. To obtain additional data values for the se
lected element, the user has light buttons to expand 
the displayed value list about any value. 

This is an iterative process providing the capability 
to pinpoint a specific value·out of a list of up to 17,576 
values by only three light-pen choices. This has partic
ular value in providing the user a rapid listing of the 
range of data values and their stored coding in both 
coarse and fine scale. 

Another feature of the value list display is the 
inclusion of a frequency of occurrence count for each 
value. This is very useful in analyzing the data base 
contents and in error detection within the data base. 

Data retrieval 
The structure of the TSS-LUCID data base that is 

used with DISPLAY provides rapid data retrieval 
and broad user selectivity in determining the partic
ular data subset of interest. The user pays no penalty 
for the retrieval of one data element over another, 
since all elements of a given data base are equally 
retrievable. 

Stored with every data base is a cross-indexed in
verted file directory into the actual data. When a data 
retrieval request is defined, the directories are 
searched to determine the qualifying data records. 
These directories are then further used to determine 
disc addresses of the qualifying records; these are 
the only records that are examined for retrieving the 
required data. 



· Graphical Data Management in Time-Shared Environment 355 

To select a new data base while using DISPLAY, 
the user names the desired data base to be loaded using 
the teletype. The new data base is found and made 
part of the DISPLAY environment. There is cur
rently no ability to retrieve from more than one data 
base simultaneously; that is, one may not retrieve 
data for the X-axis from data base 1, and data for the 
Y -axis from data base 2. 

Standard graphic presentation 

DISPLA Y is designed to provide an automatically 
determined, standard graphic presentation in re
sponse to the user's light-pen inputs. Axis scaling, 
axis labeling, data scaling, and data plotting are all 
performed by the program. The data d~termines the 
X- and Y-axis scales. For numeric information, the 
scale consists of 10 graduation marks with a gradua
tion increment based upon the most appropriate 
selection of 1, 2 or 5 times a power of 10, which en
closes the range of data values and gives the la~gest 
graphic display available. An algorithm determines 
whether the data values should be plotted from zero, 
or whether it is more appropriate to display a mini
mum scale value which is somewhat below the mini
mum data value displayed. 

Hollerith data are displayed evenly spaced on the 
axis with a spacing determined by the number of dis
tinct values for the variable. On the X-axis, to ac
commodate a larger number of distinct labels, two 
lines are used (when necessary) to minimize label 
overlay. 

Titles for the X- andY-axis are the data base ele
ment names specified in the display request. The 
overall title of the graph is the user's original data 
subsetting statement or, if there is none, the data base 
name. Where the user has specified a succession of 
curves to appear on the scope, each curve is numbered 
and a legend supplied to distinguish the multiple 
curves. 

User picture interface 

When the requested graphic display appears on the 
scope, the user has at his disposal a set of "touch-up" 
overrides for further analyzing the data and modifying 
the display. Accurate point readout values are avail
able through light-pen selection. The DISPLAY 
program interprets the light-pen position and displays 
the numeric or Hollerith X and Y meaning for that 
point. 

The user may change the axis scale either to better 
analyze a given display area or to place the data in 
clearer perspective. In many cases, much of the data 
are bunched in a small area of the scope because of 
a few extremely large values. Changing the range of 
the display allows for an expansion of the bunched 

data for clearer insight into the data relationships. 
For appearance sake, all titling can be altered; 

commentary may be added; data points or data sets 
may be deleted; Hollerith axis labeling can be changed. 
Columns or rows may be repositioned or eliminated. 
At any time during this process, if the user destroys 
the original display, he may by light-pen action re
turn the scope to the standard graphic display. 

Back-up hard copy or auxiliary information from the 
data base is available through the teletype, While 
his picture remains on the scope, the user may re
quest the TSS-LUCID query program to retrieve, 
format, and sort output to explain some quirk of the 
data revealed on the scope. 

In addition, the user may save a particular graphic 
presentation and recall it at a later time. Veryim
portantly, the user may use any of the touch-up op
tions on any picture he recalls. The save and recall 
capability provides the flexibility to store on 'a single 
file graphical displays generated from several dif
ferent data bases. 

Application programming 

Users who wish to manipulate data mathematically 
and logically using more sophisticated operators than 
those provided by the standard D ISPLA Y program 
can use TINT ( a higher-order ALGOL-type inter
preter) within DISPLAY. Although TINT requires 
that the user have some programming abil~ty, it is 
designed to facilitate user interaction and incorporates 
many user-oriented features. 

The capabilities of TINT include full iteration con
trol, arithmetic control, conditionals, indexing, param
eter specifications, teletype print routines, code 
insertions, debugging aids, etc. TINT programs can 
be saved and recalled at a.later time. 

To use TINT within DISPLAY, the user first 
specifies the data to be retrieved, and then indicates 
that he wants to operate TINT. DISPLAY initiates 
the data retrieval. When it is complete, DISPLAY 
turns over control to TINT. Then the user either 
specifies an already written TINT program, or writes 
a new TINT program on-line. The TINT program 
operates on the retrieved da.ta and outputs a graphic 
data array, which in turn is fed into DISPLAY for 
scope presentation. 

Use of display 

Several examples of use of DISPLAY are pre
sented in this section, including actual scope photo
graphs. The first example describes in some detail 
the interaction between the user and the system 
in the formulation of a display request. The remainder 
of the examples illustrate the different capabilities 



356 Spring Joint Computer Conference, 1968 

provided within DISPLAY and indicate the variety 
of applications to which the system has been applied. 

Example 1 

The user requests a scatter plot showing the 
amount of taxes paid versus the assessed valuation 
of property for cities in the State of California with 
a population of 50,000 or less. In Figure 1, the user 
has light-penned the parameter X-variable and is pre
paring to complete the specification. The right side 
of the scope contains the data base element names 
from which the user may select to define the X-vari
able. Shown with the element names are: (l) the ele
ment number, (2) the element type, and (3) the 
number of distinct values for each element in the data 
base. Hence for COUNTY, the element number is 
E2, the element type is H for Hollerith, and the num
ber of different counties is 53. On the lower left hand 
side of the scope, available statistical operators are 
displayed which may be selected and applied to a 
numeric type data base element. 

Figure I-Initial display showing the data base elements and the 
available parameters for the graphical display request 

The user light-pens. the element name TAXES, and 
the scope changes to that of Figure 2. The element 
name list has disappeared since it no longer represents 
a legal input' at this point in the input specification. 
Legal inputs shown are the parameter list and the 
relational EQ (equal) which appears in the lower 
left. Selection of EQ allows the user to specify partic
ular data values for the selected variable. In this ex
ample, however, the user has satisfied the X-variable 

Figure 2 - X-variable specification 

specification and is ready to select a different param
eter. The user selects Y -variable and light-pens 
ASSESSED VALUATION OF PROPERTY. 
In Figure 3, the user has completed specifying the 
Y -variable and is supplying the data sub setting ciause 
using the WHERE parameter. Having light-penned 
ESTIMATED POPULATION, the user is pre-

Figure 3 - X-variable, Y -variable specification and start of 
data subsetting ciause 



Graphical Data Management in Time-Shared Environment 357 

sented the set of legal relational~ in the lower left 
side of the scope. The user light-pens the relational 
LQ (less than or equal), and in Figure 4 receives a 
list of values associated with ESTIMATED POPU
LA TION. This list gives him the first value, the last 

Figure 4 - Display of value list for use in data subsetting clause 

value, and a selected sample of intermediate values. 
The user selects the value of 50,200 (closest value to 
50,000) for use in the data sub setting clause. The 
user could have used the FINE light button to ob
tain additional data values to select from. After data 
value selection, the scope changes to Figure 5, where 
the user may continue specification of the data subset 
using the Booleans AND and OR, or, as in the ex
ample, light-pen the light button EXECUTE to begin 
generation of the display request. 

When the execute action is sensed, user inputs 
are converted into a data retrieval request, the search 
of the data base is performed, and an automatic dis
play of selected data occurs (Figure 6). Each axis is 
automatically scaled and graduated to best reflect the 
data. Each axis is labeled with the appropriate data 
element plotted, and the title of the graph is the data 
sub setting clause provided in the WHERE parameter. 
To aid the user in data analysis, a set of touch-up 
options are displayed. In this example, AXIS SCALE 
is used to expand the area near the origin (Figure 7) 
to separate the bunching of data points. Light-penning 
the EXECUTE button results in a rescaling of the 
plot as shown in Figure 8. Also illustrated in Figure 8 
is the use of READOUT. Any data point on the scope 
may be light-penned, and the actual data values stored 

Figure 5 - Complete parameter specification for display request 
of example I 

in the data base for that point are displayed on the 
scope, together with a bright plus (+) superimposed 
on the selected data point. 

Figure 6 - Standard graphic presentation for example I 



358 Spring Joint Computer Conference, 1968 

Figure 7 - Use of axis scale 

Figure 8 - Rescaled graphic presentation showing point 
READOUT option 

Example 2 

The user requests a scatter plot, showing the dis
tribution of the total bonded indebtedness per county 
of cities with a populatio!1 of 20,000 people or less. 
Figure 9 shows the complete input specification for 
this display, and Figure 10 illustrates the resulting 
scatter plot. Scope capacity considerations occur 
when the Y-axis contains a large number of distinct 

Figure 9 - Parameter specification for example 2 

Figure 10- Distribution by county of total bonded 
indebtedness for selected cities 

Hollerith values. The user is informed of the condi
tion by the counter in the lower right hand corner of 
the display. In this example the counter reads 0032, 
meaning 32 possible data points are not shown. The 

. user can get access to these missin~ points by adroit 
handling of the DELETE option. For example, the 
user may delete the X-axis label and the title to cause 
the counter to go to zero, at which time the missing 
data points would be displayed. 



Graphical Data Management in Time-Shared Environment 359 

Example 3 

A military data base on status of forces is illustrated 
next. The display request is for a line plot showing 
the total amount of troops in training for each assigned 
readiness level comparing the Army to the Air Force. 
Parameter specification for this is shown in Figure 11 
resulting in the display shown in Figure 12. This dis
play illustrates the use of mUltiple curve generation 
which is provided by the use of the ITERATE BY 
parameter. Each curve is numbered and a legend is 
provided to distinguish the several curves. READ
OUT also distinguishes the particular curve that a 
data point is on. 

Figure 11 - Parameter specification for example 3 showing 
the use of the ITERATE BY parameter for mUltiple 

curve generation 

Example 4 

The use of DISPLAY with scientific data is pre
sented. Oceanographic data measurements have been 
compiled into a data base containing the elements 
appearing in Figure 13. The illustrated scatter plot 
(Figure 14) shows a plot of salinity versus depth fOJ" 
a specific data subset. In this example, the automatic 
scaling algorithm is shown off to good advantage in 
that the X -axis is not plotted from zero but instead 
from a meaningful minimum value. 

ExampleS 

The use of a statistical analysis program is repre
sented in this example. A representative sample of 
oil credit card purchases was loaded in a data base, 
and DISPLAY was used to plot a frequency dis-

Figure 12 - Line plot display showing total troop strength by 
readiness level 

Figure 13 - Parameter specification for example 4 using the 
oceanographic data base 

tribution of the individual invoice charges. The ele
ments in the data base and the user's specification to 
achieve the display are shown in Figure 15. The re
sulting frequency plot (Figure 16) shows some in
teresting insights into customer buying with large 
frequency peaks at the $2, $3, and $5 invoice charge. 



360 Spring Joint Computer Conference, 1968 

Figure 14 - Scatter plot showing the distribution of salinity 
by depth from the oceanographic data base 

Figure 15 - Parameter specification for example 5 showing 
the use of TINT 

ExampJe6 

The final example illustrates the use of DISPLAY 
with medical data received from the University of 
Southern California shock ward and the effects of 
the drug digitalis on the patients. Some of the elements 
in the data base are illustrated in Figure 17, together 

Figure 16 - Frequency distribution of invoice charges for an oil 
company's charge accounts 

Figure 17 - Parameter specification for example 6 showing partial 
list of data elements Within the digitalis drug data base 

with the input request. In Figure 18 the resulting 
display shows a regression plot of pulse pressure be
fore the drug was used versus pulse pressure after 
the drug was administered. The discontinuity on the 
curve is a pictorial representation of the standard 
deviation of the data. 



Graphical Data Management in Time-Shared Environment 361 

Figure 18 - Data plot and regression curve analysis showing the 
effects of the use of digitalis on pulse pressure 

CONCLUSION 

In evaluating the success of this project, the designers 
find that the major goals have been met. One of these 
was rapid response. In most respects, response is 
well within the limits of user patience. The inputting 
of the initial parameters; the scope examination of 
the structure and content of the data base; the re
generation of the display in response to the users' 
most complex "touch-up" request-all appear near
ly instantaneously. Time for retrieval, however, is 
long. It varies from 15 seconds to five or six minutes 
elapsed time as a -complex function of the size of the 
data base, the complexity of retrieval statement, and 
the number and kind of other time-sharing users. 
The effect of the lengthy retrieval time, however, is 
much less disastrous than we had feared, for a user 
very quickly learns that retrieval takes time and re
signs hi!11self to this one wait much more tolerantly 
than ·we had anticipated. 

Our second goal, that of easing the user's communi
cation with the system, has been fully achieved. With 
the scope guiding the user at every step, users quickly 
arrive at the point of data analysis. Originally, we had 
hoped that a new user could learn to use DISPLAY 
on at least a basic level with no more than 30 minutes 
training. Experience has shown this to be true. The 
ability to specify a complete graphic display through 
the use of the light-pen and to have the data base ele
ments and data values automatically displayed when 
needed facilitates user interaction and overcomes the 

normal anxieties experienced by new users not 
familiar with display systems. We feel that the com
munication channel which we have opened with DIS
PLA Y may. well be the most appropriate way for a 
nonprogrammer to communicate with many of the 
sophisticated computer programs presently being 
installed on third-generation machines. 

Our third goal- that of attracting real live users 
from whose experience we could learn - has also been 
achieved. Since July, when it became usable, DIS
PLA Y has proved to be sufficiently general-purpose 
in nature to solve a variety of problems. A large oil 
company used DISPLAY to study their distribution 
of credit card purchases with respect to dollar volume, 
gallons bought, and number of invoices per custom
er to better understand the customer population 
and buying habits. A research project within SDC 
used DISPLAY to analyze the results of treating 
shock patients with the drug digitalis. Another 
application in the medical field involved analysis of 
cancer research projects by state, by area, by univer
sity, and by topic. Still another example was the analy
sis of the type of sensing equipment used in satellite 
surveillance. It is important to note that these appli
cations were conducted with only minimal training 
periods with DISPLAY and in the main by nonpro
grammers. These applications were accomplished by 
the people who had the data problem rather than by 
data processing personnel. 

Currently, DISPLAY is available only for use with 
the SDC Q-32 Time-Sharing System in Santa Moni
ca. Further research is planned using the man-machine 
interface techniques evolved from this project in a 
broader range of data management functions, includ
ing data base description, maintenance, report gen
eration, and fact retrieval. Applying the work to the 
small, tabular scopes without light-pens is also being 
studied. The most immediate goal, however, is to 
redesign DISPLAY to operate under the SDC 360 
Time-Sharing System in association with SDC's 
Time-Shared Data Management System. 

REFERENCES 

I E BENNETT E HARRIS J SUMMERS 
AESOP: A prototype for on-line user control of organizational 
data storage, retrieval and processing 
Proceedings of the Fall Joint Computer Conference vol 27 pp 
435-455 

2 E L JACKS 
A laboratory for the study of f,;raphical man-machine communi
cation 
Proceedings of the Fall Joint Computer Conference vol 26 pp 
343-350 

3 D T ROSS R H STOTZ D E THORNHILL C A 
LANG 
The desif,;n and prof,;ramminf,; of a display interface system inte-



362 Spring Joint Computer Conference, 1968 

grating multi-access and satellite computers 
ESt Memorandum 170429-M-190/MAC-M-353 MIT Elec
tronic System Laboratory 

4 S H CAMERON DEWING M L1VERIGHT 
DIA LOG: A conversational programming system with a graphi
cal orientation 
Communications ofthe ACM June 1967 

5 R KAPLOW J BRACHETT S STRONG 
Man-machine communication in on-line mathematical analysis 
Proceedings of the Fall Joint Computer Conference vol 29 pp 
465-477 

6 Digigraphic System 270; system information manual 
Control Data Corporation Digigraphic Laboratories Burlington 
Massachusetts 1965 

7 T R ALLEN J E FOOTE 
Input/output software capability for a man-machine communi
cation and image processing system 
Proceedings of the Fall Joint Computer Conference vol 26 pp 
387-396 

8 J MC CARTHY D BRIAN G FELDMAN J ALLEN 
THOR -A display based time-sharing system 
Proceedings of the Spring Joint Computer Conference vol 30 

pp 623-633 
9 J I SCHWARTZ E G COFFMAN JR C WEISSMAN 

A general-purpose time-sharing system 
Proceedings of the Spring Joint Computer Conference vol 25 
pp 397-411 

IO i E SUTHERLAND 
Sketchpad, a man-machine graphical communication system 
Proceedings of the Spring Joint Computer Conference, vol 23 
pp 329-345 

11 B D FRIED 
The STL on-line computer 
Vol 1 

12 G J CULLER 
Function oriented on-line analysis 
Workshop of computer organization 1962 pp 191-213 

13 G BURCK and the editors of Fortune 
The computer age and its potentia/for management 
New York, Evanston and London: Harper and Row 1965 

14 J C R LICKLIDER W F CLARK 
On-line man-machine computer communication 
Proceedings of the Spring Joint Computer Conference vol 21 
p 113 1962 



On the formal definition of PL/ I 

byK.BANDAT 
I BM Laboratory Vienna 
Vienna, Austria 

INTRODUCTION 

This paper describes a formal definition of PL/I which 
has been produced by a group in the IBM Vienna 
Laboratory. The paper contains the outlines of the 
method rather than details of PL/1. The definition 
currently exists as a Technical Report "Formal Defini
tion of PL/I"l which contains the abstract syntax 
and the semantics for PL/I program text. A second 
version of this Technical Report is under preparation 
and will complete the description of PL/I in these 
areas where the first version omitted language fea
tures, or showed major deviations from the current 
language. The language described in the Report is 
PL/I as specified in the PL/I Language Specifications 
of the IBM Systems Reference Library2, supple
mented by additional information. 

Needs for language descriptions 

The new potential user of a programming lan
guage - somebody who is assumed to be familiar 
with high level programming languages in general
needs information on the language on several levels of 
precision and completeness. 

At the first contact with the language he would like 
to know the salient features of the language, the parts 
of the language which are similar to languages he is 
familiar with, and the new concepts in the language 
which mark the step forward in programming language 
development. The user would like to see the potential 
areas of application for the new language. He should 
find all this information in an introductory document 
to the language like a primer. This primer in an intui
tive way explains the concrete representation of pro
grams and data, the various data types and data struc
tures of the language, the structuring of programs by 
blocks and procedures, the operations which can be 
used in expressions, etc. A primer need neither be a 
complete description of the language nor need it be 
precise in all details. For tutorial purposes simplifica
tions and omissions can be appropriate. 

A description of the language with an increased 
level of completeness and precision is required for 

363 

the actual user who starts to write programs in the lan
guage. He needs to have the full information on the 
concepts of the language and a complete set of rules for 
writing programs which will be accepted by a compil
er. He would also want to know what result the execu
tion of his program will give. Traditionally these needs 
for most programming languages were served by lan
guage manuals which state fairly precisely how a pro
gram has to be written. For the meaning of a program 
manuals frequently supply a natural language de
scription which explains semantics of the language 
in an informal way, leaving a certain amount of ques
tions open to the intuition of the reader who has to 
generalize from examples in the manuals and from the 
interpretation of programs on existing compilers. 

These means will not satisfy the more advanced pro
grammer who wants to know properties of the lan
guage or of a program in all details, say, e.g., in order to 
clarify whether two programs written to solve the 
same problem are in fact equivalent. 

The highest level of precision in language descrip
tion is needed for the implementer of a language. He 
requires a reference to the language which for every 
conceivable question can deliver a complete and 
correct answer. The implementer should neither be 
forced nor be allowed to answer questions on the lan
guage by his personal interpretation of a manual. 
The reference tool can also serve as the communica
tion tool by which the language designer conveys the 
complete information on the language to the imple
menter. This makes it necessary that the method used 
in producing the reference document allows easy mod
ifications of the description for the incorporation of 
language changes and language extensions. 

We are convinced that the methods developed 
establish a tool for describing programming languages 
and PL/I specifically with a degree of precision which . 
could not be achieved up to now by using informal 
methods. 

Formal methods for language definition 

If we accept the need for a rigorous, complete and 



364 Spring Joint Computer Conference, 1968 

unambiguous definition of a high level programming 
language we have to find which methods and meta
languages can be used for the purpose. 

It is frequently claimed that it is appropriate and 
more convenient for the user to describe a program~ 

• 1 ___ : .. L .. L e ~:d of a natl1rallangl1!:loP !:l~ the mlng language W lUI LIl a.1 H u..u ~. .. ........ O- .... ~ ~&& • 

describing metalanguage. This may be tolerable for 
a language manual which has to serve a tutorial pur
pose as well as to give a description of a language. 
However, for achieving a precise and unambiguous 
definition the use of natural language is inappropriate. 
Natural languages are not well defined languages, they 
are lacking an exact syntax which allows the unambig
uous parsing of sentences and clauses, and they em
ploy words with multiple or vaguely defined meaning. 
Thus it can never be guaranteed that rules formulated 
in a natural language, unless applying rigorous restric
tions, will have a well defined and unambiguous mean
ing. Current experience with language manuals written 
in English has shown up this fact very extensively. 
Only a formal method used in defining a program
ming language will yield the required precision and 
unambiguity. Although formalization is a well estab
lished method in the foundation of mathematics and 
logic, it was only recently that attempts have been 
made to apply similar methods to programming lan
guages. 

In defining a language we have to distinguish be
tween the syntax of the language, i.e., the set of forma
tion rules defining all strings which are well-formed 
programs, and the semantics of a program, i.e., the 
meaning of a well-formed program. 

For the definition of the syntax of programming 
languages Backus Normal Form or some of its equiva
lents are commonly accepted tools. 

For the definition of the semantics of a programming 
language two groups of methods are known, transla
tion and interpretation. 

The translational approach requires the existence 
of a completely defined language L. If a translator can 
be designed, which translates any well-formed pro
gram, written in the language L' to be defined, into 
a program in the language L, then the definition of the 
language L together with the translator L' to L com
pletely define the semantics of L'. In order to be pre
cise and unambiguous, the rules translating the pro
gram have to be written in a metalanguage which itself 
is completely defined. 

The methods of semantic definition by interpreta
tion have in common that they specify a function or a 
process which for any given set of input data and any 
given program text yields the output data. This can be 
achieved by designing an abstract mechanism which 
serves the purpose of a machine for which the lan-

guage to be defined is the machine language. The com
plete logical description of the programming language 
contains the description of the possible states of the 
abstract machine and the way these states are changed 
by interpreting pieces of program text. 

Language definition by a compiler 

Occasionally it is claimed that an implementation 
of a language is sufficient as the definition of the lan
guage and that all questions about the language which 
cannot be answered by the manual, can be answered 
by processing sample programs with the compiler. 
This of course can be claimed only for the time when 
a language has already been implemented and not for 
the development phase of the language. 

A compiler designed as a tool for converting a pro
gram written in a high ievei ianguage into an object 
program in machine or ;assembly language which can 
be executed on a machine, has several drawbacks 
when used as the definition of the language. A compil
er is defined and operable only in connection with its 
environment, i.e., the machine or assembly level tar
get language and the actual machine. If a compiler 
should be used as the reference for a language, it has to 
be ensured that for the period of time while the compil
er is used as the reference both this environment and 
the compiler itself remain unchanged. Currently this 
can hardly be guaranteed to its full extent for any im
plementation. Furthermore an implementation of a lan
guage defines many details in the semantics of a pro
gram which are not defined by the semantics of the 
programming language. Thus for PL/I the compiler 
contains a specific choice for the order of evaluation 
of operands of an expression, whereas the language 
leaves this order explicitly undefined. When a ques
tion concerning a ianguage is soived by processing a 
characteristic program it cannot be distinguished how 
far the result reflects the situation of the language 
and how far the result reflects specific implementation 
or hardware properties. 

It seems feasible to design a compiler which avoids 
these problems, for reference purposes only. This 
compiler - besides requiring a fixed environment
would need information on all points where informa
tion in addition to the semantics of the language is 
needed for interpreting a program. In fact this would 
be an implementation of an interpretive formal 
definition. 

The system constituting the formal definition of PL/I 

In designing the system for defining PL/I the re
quired precision of definition, the presumptive user 
and the impact on the language itself had to be con-



sidered. It was desirable to isolate the concepts and 
properties of PL/I from one another avoiding unneces
sary interrelations and cross references and allowing 
separate consideration and evaluation of the concepts. 
Specifically a clear separation of all problems of pro
gram representation and notational conventions from 
the functional concepts of the language had to be 
achieved. Furthermore, it had to be shown in which 
areas the language requires a specific choice and addi
tional definitions for a specific implementation. 

The system designed for the definition of PL/I 
consists of several stages of processing and interpre
ting program text. The block diagram of Fig. 1 shows 
the elements of this system. The compile time facilities 
of PL/I are considered as a separate sublanguage, de
fining PL/I program text as the result of processing 
PL/I source text in a compile time preprocessor. A 
compile time concrete syntax defines well-formed 
source text. The concrete syntax of PL/I program text 
defines well-formed programs for semantic interpreta
tion. Before the interpretation of program text all 
semantically irrelevant representation properties are 
removed by converting concrete program text to ab
stract text, a tree representation for a program. The 
PL/I machine interpreting abstract text is so designed 
as to reflect the concepts of PL/I by the various con
stituents of its state. 

any string of Pl/I characten 

set af rules separating well-farmed 
PL/I source text fram nat well
formed character strings 

well-farmed PL/ I source text 

string processar generating PL/I 
program text tl by processing to 

PL/I program text, nat checked for 
syntactic correctness 

set of rules separating well-farmed PL/I 
program text from not well-farmed text 

well-formed PL/I program text 

convem well-formed PL/I program text 
to a derivation tree according to syntax 
rules 

derivation tree of t2 

transforms the derivation tree t3 to a 
derivation tree t4 which conforms with 
the abstract syntax, rejects non transformable 

t3 

abstract text, a derivation tree 

set of rules, defines selectors for pam of 
abstract text and properties of selected pam 

abstract text 

Figure I a - System for the formal definition of PL/I- definition 
of program representation 

On the Formal Definition of PL/I 365 

~I 

Semantic 
Interpretation 

abstract text, a notation-independent form of 
PL/ I program text 

description of the system-defined program envirorvnent 

information on input data 

generation of initial state from system envirorvnent, 
program text, and input data 

initial state d the PL/I mochine 

pn!pa!! e!robli!hi!'!S SJob!!I ~!'t!~ of t~ pms!'O!!!, 

i.e. allocation of static variables, linkage of external 
identifien, updating d program with denotation of 
static and controlled variables and extemal entry names 

state of Pl/I machine containing abstract text after 
prepass 

interpretation af modified abstract text 

terminal state defining the meG'\ing af a well-formed 
pL/ I program t2; valid program if abstract text could 
be interpreted up to the logical end, state contains 
output data, invalid program if interpretation of obstract 
text became undefined and terminated before reaching 
the logical end of the program 

Figure I b - System for the formal definition of PL/I- definition 
of program semantics 

Trees and operations on trees 

F or the definition and handling of pieces of abstract 
text and parts of the state of the PL/I machine a nota-
tion has been developed which, free from redundancy, 
only reflects relevant properties of the considered ob
jects. 

A class of abstract objects has been defined which 
can be represented by trees. For this class of objects 
functions are given which enable the generation of 
trees from elementary objects and the modification of 
trees by deleting or changing subtrees. Properties of 
classes of abstract objects can be defined by an ab
stract syntax. 

The basic functions will be explained with the help 
of examples. In these examples the characters enclosed 
in < > are meta-names used for discussion only and 
denote an elementary or a composite object. Capital 
characters denote elementary objects. The abstract 
objects <x> and <x'> used as examples are shown 
in their tree representation in Fig. 2 and Fig. 3. 

Selectors on trees 
I n trees - or, more precisely, in the abstract ob

jects they represent - a subtree attached to a node is 
selected by a selector function. 

Thus in the example of Fig. 2 the sub-objects of the 
composite object <x> are selected as follows: 

< r > = sel-l « x » 
< s > = sel-2 « x » 
< t > = sel-3 « x » 



366 Spring Joint Computer Conference, 1968 

(x) 

A 
se I - 1 I se I - 3 

seb2 '\, 

(s) (t) 

sel-l sel- 2 

I \, 
(U) (v) 

Figure 2 - Composite object <x> represented as a tree 

R sel- 1 

d 
sel- 2 

'b 
<u) <v) 

Figure 3 - Composite object <x' > represented as a tree 

As <r> again is a composite object, its parts are 
selected by: 

< u > = sel-l « r » 
< v > = sel-2 « r » 

The object <u> can be obtained as a sub-object 
of <x> by a composite selector, where the dot 
serves for the functional composition: 

< u > = sel-l . sel-l « x » 

The application of a selector to an object which has 
has not been specified as selecting a proper object, 
yields the null object 11. 

sel-4 « x » = 11 

The function 'is-11' allows checking whether a 
selector on an object yields a proper or a null object: 

is-11 (sel-3 « x») = FALSE and 
is-il (sei-4 « x») = TRUE 

I t is to be noted that selectors are functions that are 
local to the object for which they are defined, the 
same selector name sel-l is used for the object <x> 
and for its sub-object <r>. 

Selectors on the same level do not imply an order
ing. Thus a question "which is the first branch at
tached to the node" has no defined answer. 

Nodes of a tree do not according to the definition 
possess names. The meta-names in < > used here 
serve only for the explanation. If a node requires to be 
named, that name has to be attached as a separate 
branch. In the example of Fig. 3 the object <r> pos
sesses the name R, accessible by the selector s-name. 

Generation of a tree 

F or the generation of an abstract object from its 
elementary objects, a generation function JLo has been 
designed which establishes the arrangement of selec
tors and selected objects to form a new composite 
object. For the object of Fig. 2 the generating func
tion is written as: 

< x > = JLo «sel-l: JLo « sel-l: < u », 
< sel-2: <v»), 

< sel-2: < s », 
< sel-3: < t ») 

The pair selector: selected objected is enclosed in 
pointed brackets, where the selected object may it
self be a composite object, generated by a JLo-function, 
as is the case in the example given for the object 
selected by sel-l on the first level. 

Modification of a tree 

F or the modification of objects the modification 
function JL has been introduced. It contains as the 
first argument the object to be modified, while the 
other arguments are pairs of selectors and objects as 
in the generation function JLo. The function JL can be 
applied in several ways. If a selector of an argument 
has already been defined for the object to be modified, 
the object paired with the selector replaces the old 
selected sub-object. If the selector has not yet been 
defined for the object, the JL-function establishes a 
new branch for the object with the object from the 
pair <selector:object> as a new sub-object. 

The modification of the tree in Fig. 2 to form the 
tree in Fig. 3 would be written as: 

< x' > = JL« x >; <s-name . sel-l:R » 



Another possible modification of a tree is the re
placement of a proper sub-object by the null object 
!l. Selector functions yielding !l are not represented in 
the tree representation of objects. Thus replacing a 
sub-object by !l means the deletion of the respective 
selector from the tree. The modification of the tree 
<x'> from Fig. 3 into the tree <x> from Fig. 2 
would be written as: 

< x > = JL «x'>; <s-name . sel-I:!l» 

Predicates of objects 

For the definition of the structure and properties of 
all objects belonging to a specific class, a notation has 
been introduced which allows giving an abstract syn
tax for a class of objects. This notation in the defini- ' 
tion of PL/I has been applied for the definition of 
states of the PL/I machine and for the syntax of PL/I 
programs in a generalized form. An abstract syntax 
for a class of objects again can be represented as a 
tree. 

pred-l: /\ 

~I-l sel-~ 

pred - 2 pred-3 

Figure 4 - Abstract syntax of a class of objects 

A tree of the form shown in Fig. 4 would define the 
class of objects for which the predicate pred-I is 
true, as the class of all those composite objects for 
which the application of the selectors sel-l and sel-2 
yield sub-objects for which pred-2 and pred-3, 
respectively, are TRUE. The application of a se
lector other than sel~ 1 or sel-2 on an obje'ct for which 
pred-I = TRUE, yields !l 

The formula representation of the predicate tree 
of Fig. 4 in the notation used in the definition of PL/I 
is written as: 
is-pred-I = «sel-I: is-pred-2>, <sel-2: is-pred-3» 

Special objects 
Several places in the abstract syntax of program text 

as explained in the next section, required the repre
sentation of lists. As the sub-objects of an object are 
unordered, specific selectors elem (i) where i is integer, 
have been introduced to achieve an ordering of ele
ments. This is shown as an example in Fig. 5 for an ob
ject of type pred-l, being a list of three elements. 

On the Formal Definitio~ of PL/I 367 

pred-I: 

elem (1) 

/ 
pred -1 

elem (2) 

\ 
elem(~ 

pred -1 pred -1 

Figure 5 - Abstract syntax of a list of three elements 

A specific notation is used for the formula represen
tation of a list, the example given would be repre
sented by: 

pred-l=({ <elem (i): pred-l>ll ~ i ~ 3}) 
For objects whose sub-objects are attached by se

lectors of the type elem(i) normal functions on lists 
as length, head and tail have been defined. 

The structure of the PL/I machine involves major 
parts belonging to a class of objects called directories. 
A directory is an object whose sub-objects are se
lected by unique names. A directory of type pred con
taining sub-objects of type pred.,.l would be· defined 
as: 

is-pred = ({ < n: pred-I > II 
is-unique-name (n) }) 

While in the definition of a list the condition fol
lowing the vertical stroke defines the number of ele
ments of the list, the condition following the two verti
cal strokes in the definition of a directory leaves the 
number of elements open but specifies the type of 
selectors. 

Abstract PL/I program text and syntax 

For the definition of the meaning of a PL/I program 
an abstract form of this program is interpreted. 

The idea of representing a program in an abstract 
form has been shown by 1. McCarthy. A well-formed 
concrete program has only one corresponding ab
stract form, whereas the abstract form of a program 
may have a mUltiplicity of concrete representations. 

The abstract form for a PL/I program - its abstract 
text - is the result of processing the derivation of 
PL/I program text-a PL{I program not containing 
compile time statements - on the translator as shown 
in Fig. 1. Bya set of rewriting rules the translator elim
inates all semantically irrelevant notations like de
limiters, and explicitly establishes those declarations 
which in the concrete text are defined by default 
rules, factored attributes, and implicit and contextual 
declarations. The rewriting rules also establish ex
pansions as defined for the LI KE attribute and for not 



368 Spring Joint Computer Conference, 1968 

fully qualified structure references and insert system
defined initial condition enabling prefixes. The re
writing rules eliminate the information on the ordering 
of branches of the derivation tree of concrete text 
where the order is semantically irrelevant. The ab
stract text can be represeJ)ted as a tree. 

For the abstract text a set of rules - the abstract 
syntax of PL/I - is given which define properties 
and structure of the tree representing the text. The 
rules define the branches which build the tree and the 
selectors which give access to these branches._ 

As an example the normal form of an assignment 
statement could be defined by the abstract syntax as: 

is-assign-stmt = «s-st:is-assign>, 
<s-lab-list:is-name-list> , 
< s-pref: is-cond-name-set> , 
< s-left -part: is-reference-iist>, 
<s-right-part:is-expression> , 
<s-name-opt:is-option» , 

As explained for the tree notation used in the formal 
definition, selectors on the same level of an object have 
no implied ordering. Thus the selectors s-left-part 
and s-right-part in the definition of the assignment 
statement no longer reflect any ordering in a string. 
The mnemonic names only hint at the origin of the 
branches in the program text. In places where or
dering is relevant it is reflected in the abstract text, 
thus, e.g., the ordering of statement labels is kept in the 
label list selected by s-lab-list, while the semantically 
irrelevant ordering of condition prefixes is no longer 
shown, the prefixes being in a set of names, i.e., in an 
unordered collection of elements. 

The PL/I machine 
The semantics ofa PL/I program are defined by 

interpreting the preprocessed version of this pro
gram - its abstract text - on a PL/I machine. The 
PL/I machine is an abstract sequential machine not 
defined by hardware but asa set of possible states, 
together with the functions defining the transition from 
any state to its successor states. 

The set I of possible states g which the PL/I ma
chine can adopt is defined using the notation of ab
stract syntax in the same way as for abstract text. 

Fig. 6 shows a simplified structure of a state of the 
PL/I machine. 

The initial state go of the PL/I machine includes 
the abstract text of the program as an argument of the 
first instruction in the control part. 

A general language function A applied to a given 
state yields a set of successor states. The fact that a 
given state may have more than one successor state 
reflects the property of PL/I, that in several cases 
the order of evaluation of parts of program text is 
undefined. 

.-~~ 

!-cl-':!-~~I .-\ '-d~ 
I envi!:,.ent c~~~on- : c;~ ~ 
I ."' .... I 

I BlockLocaIP...., i L ________ ...l 

Figure 6 - Structure of a state of the PL/I machine 

The iterated application of the language function A 
on the initial state yields a computation: 

comp (go): go, ~l , ••• '~n 

provided that one successor state ~i+l is selected from 
the set of states defined by A(~i)' Making all possible 
selections the application of A to an initial state yields 
a set of computations. The terminal state ~n is ele
ment of a set Ie of states for which A(~n) is undefined, 
i.e., no successor state exists. 

A computation is successful if it terminates on inter
preting the logical end of the program. If due to a 
semantical error in the program the interpretation does 
not continue until the logical end is reached, the com
putation terminates unsuccessfully. On the success
ful termination of a program the control part of the 
state becomes empty. The set of computations de
fined for a given initial state may contain both suc
cessful and unsuccessful computations. 

Unique name source N 

One of the parts of the PL/I machine is a source 
for unique names. These names are used to denote 
specific elements of the abstract storage and to serve 
as selectors -in the directories of the machine. Unique 
names are also used to distinguish multiple uses of the 
same identifier for different declarations in a program. 
Within the scope of one declaration in the environ
ment part E of the PL/I machine one unique name is 
associated with the declared identifier. 



The storage part S 
The storage part ~ of the PL/I machine has been 

created to reflect the properties of storage as they are 
relevant in PL/I. The language requires the definition 
of conttguity in storage and the definition of pointers 
which permit reference to parts of storage not using 
the name for which the storage had originally been 
allocated. The storage part as described here is a 
simplified model- which does not provide means for 
describing· PL/I cells, areas and offsets and the no-
tion of' pont';on';t" 
",.1,,-,,.1..1. '-'.L ""''-'.I..I. ... .I.0U-.I.I.J. 

The storage part ~ is a directory of the form: 
is-abstract-storage = 

({ <a: «s-value: is-value-representation> »11 
is-unique-name (a)}) 

The unique name a is an elementary address of 
storage. The value of a storage element is not directly 
accessible by the address, but via a second level se
lector s-value. This property serves the purpose of 
separating for a variable the cases of non-allocated 
storage from allocated but not initialized storage. For 
allocated but not initialized storage it holds that: 

is-value-representation (s-value . a (S)) = FALSE. 

Block activation and block local state parts 
One of the salient features of PL/I is the possibility 

of controlling the scope of names, the scope of condi
tion enabling prefixes, and storage allocation by the 
procedure and begin-block structure of a program. 

The control part ~, the dump Q, and the block local 
state parts E, C,S, and EI are those parts of the PL/I 
machine which serve specifically the purpose of inter
preting the effects of block activation. 

An identifier is declared in a block by linking the 
identifier with a set of attributes in a declaration. The 
same identifier can be redeclared with a new set of 
attributes denoting a new entity in an inner block and 
denotes the new entity in the scope of this block. Thus 
an identifier may have various uses throughout a pro
gram. 

For resolving the problem of multiple use of an iden
tifier the environment part E is used. In the interpre
tation of a program on the PL/I machine each identi
fier in its scope of declaration is associated with a 
unique name n from the unique name source. The 
pairs <identifier:n> for each block activation are col
lected in the environment part E. 

On establishing a block activation, ~ is generated 
from the environment part of a second block, updating 
it with the identifiers declared in the block being ac
tivated. If the activated block is a begin block, the 
second block is the dynamically preceding block acti
vation. If the activated block is a procedure block, 
the second block is that block in which the procedure 

On the Formal Definition of PL/I 369 

has been declared. In the united set for a redeclared 
identifier the association with the new unique name 
replaces the old one. 

On termination of a block all identifiers declared as 
variables of storage class A UTO MATI C loose their 
meaning. Storage which has been allocated for these 
variables has to be freed on block termination. A set 
of identifiers in EI serves the purpose of preserving, 
for use in the freeing of storage, all locally declared 
identifiers until block termination. 

The condition status CS for a block activation con
tains all information on the condition enabling status 
as established by condition prefixes, and on the action 
to be performed when a condition is raised as defined 
by the system action or by executed ON-statements. 

The control ~ in any state of the machine contains 
the instructions to be executed next. Each block acti
vation has its own level of control, which is established 
on block activation and deleted on block termination, 
and is transferred to the corresponding part of the 
dump if a new block is activated. The last instruction 
executed before the control for the current block 
becomes empty, is the instruction performing the 
block termination. 

The dump 0 of a state of the PL/I machine reflects 
the nested structure of block activations of the pro
gram being interpreted. Whenever a new block is ac
tivated, a new dump!? is established, where the con
tents of the local dIrectories, the dump and the control 
of the activating block, are stacked on top of the old 
dump D. On normal termination of this block the old 
contents as stored in the dump D. are re-established in 
the local directories and in the control, and the top 
level of the dump D is deleted. 

Parallel task and event part P A 

I n the interpretation of a program containing parallel 
tasks and I/O events these parallel actions are sequen
tialized. All active tasks and events have entries in 
one of the global directories, the parallel task and 
event part P A, containing all information necessary 
for their interpretation. At appropriate points in the 
program interpretation a priority evaluation decides 
which task will execute the next instruction or in
structions. Several directories of the PL/I machine 
shown in Fig. 6 are global for all tasks and I/O events. 
Others are local to a specific task of I/O event. Thus, 
e.g., the control part has to contain only instructions 
belonging to one task. These task-local state parts are 
established for the selected after the priority evalua
tion using the information kept for this task in P A. 
When the task looses control, the contents of the task
local directories are saved by transferring them back 
toPA. 



370 Spring Joint Computer Conference, 1968 

Meaning of names and global directories 

An identifier which has been declared as the name 
of an entity is associated with a complete set of attri
butes. 

In the abstract text- the normal form of the pro
gram to be interpreted in the PL/I machine - all dec-
larations of one block are collected in the declaration 
part of this block. These declarations are interpreted 
in the prologue action for each activation of a given 
block. It is necessary to ensure that declarations can 
be retrieved during the execution of the program for 
various purposes like matching of attributes in param
eter passing, evaluation of attributes on allocation 
of controlled storage or finding the block denoted by 
an entry name. This can be achieved either by search
ing through the abstract text whenever information 
on the text has to be retrieved or by transferring in-
formation on the text to a specific part of the PL/I 
machine where it can be accessed without employing 
a text searching mechanism. 

The definition system for PL/I applies the second 
method. Global directories contain the meaning of 
names, i.e., what a name denotes, which attributes are 
associated with it and, if relevant, which storage has 
been allocated to it. 

As already shown in the environment for a block 
activation each identifier which can be used in a refer
ence is associated with a unique name n. This unique 
name serves as a selector in the attribute directory 
AT and in the denotation directory DN, both of which 
are global directories of the PL/I machine. 

The Attribute Directory AT associates the unique 
name of an identifier with the attributes declared with 
the identifier. The entry in AT is part of the prologue 
action which has to be performed in the interpretation 
of a block activation. The attributes declared with an 
identifier are transferred to the respective element 
in AT denoted by the unique name, without perform
ing any transformation or evaluation of the declara
tion. The declaraction may contain expressions which 
for their later evaluation need the meaning of all names 
appearing in the expression. For this purpose the ele
ments in AT contain an environment part in addition 
to an attribute part. 

The abstract syntax of AT is formally defined "as: 
is-at = ({ <n: «s-attr:is-attr>, <s-e:is-e> »11 
is-unique-name (n)} ) 

The attribute part with the predicate is-attr, identical 
to an attribute part in abstract text, has the abstract 
~yntax: 

is-attr = (is-prop-variable V is-data-param V 
is-entry V is-file V is-based V ... ) 

A scalar proper variable of type arithmetic would 
have the following sub-structure of attributes: 

is-prop-scal-variable = 

«s-stg-cl: (is-static V is-automatic V is-ctrl)> , 
<s-da : «s-mode: (is-reai V is-compI», 

<s-base: (is-bin Vis-dec», 
<s-scale: (is-fix V is-float», 
<s-prec: (is-integer V 

is-integer-pair» », 
< s-init: is-initial-value > ) 

The Denotation Directory DN associates the 
unique name of an identifier with the entity it denotes. 
An entry name denotes the body of a procedure and 
the environment of the declaration, a label denotes a 
statement list and a block activation identification, 
variable names denote generations which basically 
are collections of storage addresses. 
The abstract syntax of DN is: 

is-dn = ( { <n: 
« <s-body:is-body>, <s-e:is-environment» 

«s-st-list:is-statement-list> , 
< s-bl-idf: is-block-identification> ) V 

is-unique-name) > II is-unique-name (n)} ) 

The Aggregate Directory AG has the form: 
is-ag = ( { <n:is-generation-list>llis-unique-name (n)} ) 

An element of a generation-list, i.e., one generation 
has the form: 

is-gen=( < s-da: is-da> , 
<s-addr:is-a> ) 

Aggregates are denoted by unique names which 
are s~lectors to the aggregates in the aggregate direc
tory. 

The generation serves the purpose of collecting the 
storage element allocated for a variable and infor
mation on the data attributes. The respective parts 
of the generation are selected by s-addr, and s-da. The 
notion of generation reflects a basic concept derived 
for the current formal definition of PL/I. In PL/I var
iables do not always possess private storage but may 
be based on already existent and allocated variables. 
This sharing pattern is reflected by the way in which 
two generations comprise the same elementary stor
age items a @. 

Example for the interpretation of a PL/I variable 
A simple example will show how the various direc

tories are involved in the interpretation of a PL/I 
variable. 

Let us assume a block B as 
BEGIN; ... DECLARE X FLOAT (8) AUTO
tvIATIC, Y, Z; ... X = expression; ... END; 



The example of Fig. 7 shows the same block trans
formed into abstract text, where all declarations are 
collected and completed in a declaration part. 

Block B: 

'''<''>nd~t-n .. 
or A '0 

z y x 

/\,1( ~ 
/ , , \ s-scope s-attr 

'NTiA' ~ 
s -stg- cI 5 - do s-initial 

AUT~~~ 
~ s-mode ;base S-SCO\; s-prec~ 

REAL DEC FLOAT 8 

Figure 7 - Example for abstract text of a block B, containing the 
declaration of variable X 

When the block B is activated during the interpre
tation of the abstract text, its declaration part in the 
prologue action is evaluated and parts are transferred 
to the local and global directories. 

All locally declared identifiers are linked to unique 
names. The new environment is made up by selecting 
the unique name of an identifier using the identifier 
itself as selector. 

E : , , , , , 
z y x 

j ! \ 
n z n 

y 

, , , , , , 

Figure 8 - Structure of an environment part containing unique 
names selected by identifiers 

Continuing in the prologue action an entry is made 
for each newly declared identifier in the attribute di
rectory AT. 

On the Formal Definition ofPL!I 371 

Figure 9 - Attributes and environment associated with nx in AT 

U sing the same unique names nx, ny, nz as selectors, 
the prologue action establishes entries in the denota
tion directory D N, taking unique names b from the 
set of aggregate names. 

Figure lO-Denotations for variables X, Y, Z in DN 

When the denotation for the variable X has been es
tablisheda generation is created. The later is estab
lished as element of AG selected by bx • 

The generation-list of bx contains only one element, 
the variable X having been declared AUTOMATIC. 
Only in the case of CONTROLLED storage class 
the aggregate would contain a list of generations. The 
generation contained in the aggregate for X denotes 
one storage itme a (~) and the data attributes for a val
ue which can be assigned to a (S). 

In interpreting the statement-list of the block B 
there occurs a reference to X in an assignment state
ment. The value of the expression has to be assigned 



372 Spring Joint Computer Conference, 1968 

to the proper location in storage, which is found by 
the access chain. 

X-- nx-- bx--' a 
E DN AG .§ 

/ \ 
s-mode s - base s - scale 

cf 6 b 
REAL DEC FLOAT 

s-~c 

'0 
8 

Figure 11 - Generation for a variable X 

Control part and state transitions 
The control part C of the PL/I machine is signifi

cant for the changes of the state of the machine in the 
precess of interpreting abstract text. Changes of any 
subpart of the PL/I machine - as in the example in 
previous section - can only be performed by executing 
instructions which are elements of the control part. 

instr-l; 

--P;str - 2, instr - 3; 

finstr-4, instr-5 n 

Figure 12 - Control tree and formula representation 

The control part has the form of a tree where the 
nodes contain instructions. The formula representa
tion equivalent to the control tree in Fig. 12 is used for 
representing a control tree in the formal definition. 

The PL/I machine is a sequential machine, i.e., no 
two actions can be performed in parallel. Thus only 
language properties can be described which in their 
logical significance can be sequentialized. 

All terminals of the control tree designate instruc
tions which are candidates for execution, but only one 
instruction at a time is executed. This choice of one of 
several instructions for execution reflects those situa
tions in PL/I where the order of execution for some 
program parts is undefined, as, e.g., in operand evalua
tion. Each instruction in the control tree can have ar-

gument~ and a set of successor control trees. Only 
those instructions for which the set of successor con
trol trees is empty, are the proper instructions on the 
terminal nodes of the control tree which are candi
dates for execution. Thus instr-3 in Fig. 12 is no can
didate for immediate execution. Each instruction is 
deleted from the control after it has been executed. 

A form of the control tree using specific selectors is 
used to allow the evaluation of arguments of an in
struction. 

In the control tree of Fig. 13 the arguments fl 
and f2 are evaluated by the execution of instructions 
instr-2 and instr-3. 

instr- i (f), f2 r; 
[fl: instr-2, f2: instr-3J 

Figure 13 - Control tree, passing of argument values 

A proper instruction in the Formal Definition of 
PL/I is defined in the following format: 

instr-name (xh ••• , x2)= RETURNS:eo 
s-partl:el 

s-partn:en 
Such an instruction on execution returns the value 

obtained in evaluating the expression eo, e.g. to an ar
gument place if used as in Fig. 12, and changes parts of 
the state of the PL/I machine selected by s-partn. 

The arguments Xl, ... , Xn may contain pieces of 
the abstract text to be interpreted. The expressions 
eo , ... ,en are expressions in the metalanguage of the 
formal definition, i.e. functions on abstract objects 
involving It-functions and selectors. The arguments 
Xl , ... , Xn can appear in these expressions. 

As an example the process of updating DN with a 
new denotation for a declared variable with the unique 
name nx as shown in the example in the previous sec
tion would require a control tree for execution: 

update-dn (nx, bx), 
bx:un-n 

The instruction would be defined as 
Def.:!!!!:!}= RETURNS:head (N) 

s.:n: tail (1S) -
Def.: update-dn (th t2) = 

s-dn: It (DN;<tl:t2» 



The instruction update-dn (nx, bx) can be executed, 
if the execution of un-n has brought the unique name 
from the list N to the argument bx. In taking off the 
head element of N, un-n changes the part N of the 
PL/I machine to the tail of its previous state. Finally 
the execution of update-dn with the arguments (nx, bx) 

adds a new element b to DN, selected by nx• 

The control tree is initialized in the initial state 
go of the PL/I machine with initial-insrructioQ (to) 
where to is the abstract text of the program. If the pro
gram is interpreted successfully the interpretation pro
cess stops if the control C becomes empty. For an un
successful computation the interpretation terminates 
before the text is completely interpreted by arriving at 
a state of the machine for which no successor state 
is defined by the language function A. 

ACKNOWLEDGMENT 

The methods for the formal definition of PL/I as 
presented in this paper have been developed by 
P. LUCAS and K. WALK in the IBM Vienna Labora-

On the Formai Definition of PLii 373 

tory. Vital sources of information for the methods 
involved were J. MCCARTHY,3 C. C. ELGOT,4 and 
P.J. LANDIN.5 

REFERENCES 

I PL/I definition group of the Vienna laboratory: Formal defini
tion ofPL/1 

IBM Laboratory Vienna Technical Report TR 25.071 1966 
2 iBM Systems Reference Library: 

Operating system/360 - PL/llanguage specWcations 
Form-No. C.2R-Il"71-4 Iq(\l, IRM n~t~ Prn ...... ""ino ni" UlJ..: ... 

• - -- --- -_. - • -- ........... -_ .... --... - & ---_uU'llb &..011'"1'1' 'l'T'I.lL'" 

Plains NY 
3 J McCARTHY 

A formal description of a subset of ALGOL-in: Formallan
guage description languages for computer programming 
T B Steel ed 1966 pp 1-12 North Holland Publ Company 
Amsterdam 

4 C C ELGOT A ROBINSON 
Random-access stored-program machines. An approach to 
programming languages 
JACM II 1964 no 4 pp 365-399 

5 P J LANDIN 
A correspondence between ALGOL 60 and Church's lambda
notation 
Comm ACM 8 1965 no 2 pp 89-101 and no 3 pp 158-165 





LISP A: A lisp-like system for incremental computing 

by ERIKJ. SANDEWALL 
UppsaJa University 
U ppsala, Sweden 

BACKGROUND: THE LISP LANGUAGE 
The work reported here is based on the LISP 1.5 pro
gramming language. Let us therefore begin with a 
short review of LISP 1.5. Those who have used LISP 
would be able to proceed directly to the section OUT
LINE OF THE SYSTEM. 
All data in LISP are in the form of S-expressions, 
i.e., correctly parenthesized expressions, whose ulti
mate components (atoms) are similar to FORTRAN 
variables or constants. Thus 

«A 3.14 BETA) «GAMMA) (T345») 

is an example of an S-expression. Its sub-expressions, 
e.g., 

(A 3.14 BETA) 

(GAMMA) 

etc., down to and including the atoms A, 3.14, etc. are 
also S-expressions. 

Inside the computer, each S-expression is represen
ted as a list structure, i.e., as a system of address 
references between cells in core. This need not worry 
us here. 

For each atom, there is a property list, on which 
characteristic facts about the atom may be stored. One 
atom may have several properties, a~d they are there
fore distinguished through the use of attributes. A 
property-list is essentially a collection of attribute
property pairs. Any atom may be used as an attribute, 
and any S~expression as property. 

So much for data. The program in a LISP job is 
also written as an S-expression. This makes it possible 
for a program to modify itself. The program is usually 
interpreted at run time, rather than compiled. 

The format for writing expressions in the program is 
exemplified through 

(PLUS A 3.14 (MINUS C) (TIMES F (PLUS G H») 

which would mean the same as the FORTRAN ex
pression 

375 

A + 3.14+(-C)+ F * (G+ H) 

Thus functions in LISP are always prefixed to 
their arguments, and always stand immediately after 
a left parenthesis. Usually, functio~s for manipula
tion of S-expressions dominate in a LISP program, 
and arithmetic functions like the ones in the example 
are only sporadically used. 

There are two ways to write the program, either 
as a FORTRAN-like, step by step program, or as 
one single expression. In the former case, we may use 
atoms like statement numbers, and write GOTO 
statements in the format of (GO POSITION). In 
the latter case (which is considered more "pure"), 
conditional expressions and recursivity are used, 
and virtually eliminate the need for assignment state
ments, goto statements, etc. The statement structure 
collapses, and the "program" degenerates into one 
single expression, that is to be evaluated. 

The present work is based on the latter type of 
"program" . 

As a subroutine-like feature, it is possible to define 
in LISP new functions in terms of elementary or 
previously defined ones. Suppose F 1, F2, and F3 
are defined as functions, and we want to define G·as a 
function in such a way that the value of 

(G X Y) 

is identical to the value of 

(Fl (F2 X) (F3 Y» 

for any X and Y. Through the use of a certain elemen
tary function, we put the S-expression 

(LAMBDA (X Y) (F 1 (F2 X)(F3 Y» ) 

on the property-list of the atom G and (usually) under 
the attribute EXPR. The atom LAMBDA plays a 
special role in the system, and must always be there. 



376 Spring Joint Computer Conference, 1968 

It is important to distinguish between the S
expression 

(F 1 (F2 X)(F3 V»~ 

on one hand, and the value of this expression, when it 
is used in a (or as a) program, on the other hand. In 
the former case, we are· referring to a piece of data, 
which is' passive,· and wQich is o~ly potentially a pro
gr~m. In the latter case, we are· referring to the out
p~t ~fa program. In this paper, we shall always let e.g., 

(F 1 (F2 X)(F3 V»~ 

refer to the S-expression itself, not to its value. If we 
want to refer to the value, we shall write either 

"the value of the S-expression (F 1 (F2 X)(F3 Y»" 

or, conforming with mathematical notation, 

f1 ( f2(x), f3(y) ). 

Note that the function symbols are now outside the 
parentheses that enclose the argument(s). 

For further information about LISP 1.5, the reader 
is referred to John McCarthy's original article ,1 

to the LISP 1.5 manual,2 or to a recent textbook.3 

It may also be worthwhile to study some programs 
that have been written in LISP, as reported~n e.g.4•S•6 

What has been ~aid here should however be· sufficient 
to get some grasp of the present paper. 

Outline of the system 

LISP A is an extended and modified version of 
LiSP i .5. lis main characteristics are: 

1. Atoms for sets of objects 
If an atom has certain properties on its property

list, the system recognizes it as a symbol for a set of 
objects. Such an atom is called an ambject. For ex
ample, we might have an ambject BOY for "the set 
of all boys". 

As ambjects stand for sets, their property-lists may 
e.g., contain references to other ambjects that stand 
for subsets or supersets of the given set. 

2. New: symbolic functions 
Besides the types of functions used in LISP 1.5 

(i.e., machine-coded SUBR's and FSUBR's, and 
LAMBDA-expression EXPR's and FEXPR's), 
LISP A recognizes symbolic functions, which are 
evaluated in a special way. Let FATHER'be a sym
bolic function. When LISP A evaluates the form 

(FATHER JOHN) 

it assumes the atom JOHN to have an ambject as 
value,(*) and returns as value a new ambject which 
has the "meaning" list (FATHER JOHN) on its 
property-list under the attribute MEANING. 

Symbolic function are used fC?f building up data 
structuies. They can be combined fieely with other 
types of functions. Thus it could be sensible to eval
uate the expression 

(DESCRIBE (FATHER JOHN». 

The symbolic function FATHER creates an amb
ject for "the father of John" (unless such an ambject 
is already there, in which case it is retrieved, rather 
than re-created), The ordinary function DESCRIBE 
is ·defined through € LAMBDA-expression, and it 
digs into the data structure to create a description 
of its argument. 

Likewise, it might be sensible to evaluate the S
expression 

(SETTRUE (lSFATHER DICK JOHN». 

Here, ISFATHER is a symbolic predicate, which 
is a kind of symbolic function. An ambject generated 
by a symbolic predicate can have an indication about 
truth or falsehood on its property-list. The ordinary 
function SETTRUE sets an indication that its argu
ment is. true, and it may also be defined to perform 
some inference from this fact. 

3. New:RHO-expressions 
There is still another type of functions, namely 

RHO-expressions. They have in principle the same 
form as LAMBDA-expressions, but they work quite 
differently. If 

fn = p«x,y) g(x,y» 

and (FN A B) is evaluated with A and B ambjects, 
then the system will essentially apply the function 
o to each combination of members of A and members 
of B. In other words, (FN A B) performs: Hfor each 
X in A and each Y in B, evaluate (0 X Y)". The 
facts "X is in A" etc. must of course be retrieved 
from the property-lists of the ambjects A and B. 

* It is convenient to make the convention that all ambjects have 
themselves as values. Thus when the system evaluates 

(FATHER JOHN) 
it first evaluates the atom JOHN, which is an ambject and has 
itself as value. This means that 

father(john) 
and 

father(JOHN) 
are identical. 



4. RHO-expressions are triggered automatically. 

The system takes two actions when evaluating an 
expression like (FN A B)above: 

41. It evaluates (G X Y) for each X that is presently 
known to be in A, and each· Y that is presently 
known to be in B. 

4.2 It stores away the expression (FN A B) in the 
data base. Subsequently, each time a new Xi is 
added to the cases of A, the expression (G Xi Y) 
is evaluated for each Y in B. The symmetric 
action is taken when a new Yj is added to the 
cases of the B. 

For example, we might evaluate 

p«x) print(describe(x» ) (cousin(Peter» 

where DESCRIBE has been defined before; 
COUSIN is a symboiic function. cousin (Peter) is 

an ambject that stands for the set of 
all Peter's cousins; 

and the RHO-operator will cause a description to be 
printed for each one of Peter's cousins that the system 
has recognized, and each cousin that it later recog
nizes. 
Another example is 

p«x) settrue(admire(x,father(x») ) 
(boy n discussed-obj) 

where FATHER and BOY have been defined before; 
ADMIRE is a symbolic predicate; 
SETTRUE has been defined before; 
DISCUSSED-OBJ is the set of all objects that 
are currently interesting to the system. This is 
a kind of heuristic information. 

For each boy who is also a discussed object, this 
operator will assert that the boy admires his father. 
The situation might be that every boy admires his 
father, but that we only want to execute the inference 
for those boys that attract our interest in particular. 

In these examples, the RHO-expressions were 
used for their side-effects. After we have given an 
interpretation of rho-expressions in terms of the sets 
they take as arguments, we shall be able to evaluate 
them for their value as well. This is discussed in sec
tion SEMANTICS OF RHO-EXPRESSIONS. 

5. Expressions can be treated as objects 
The symbolic function SYMQUOTE makes it 

possible to form sets of expressions, and to manipulate 
those sets. SYMQUOTE creates an ambject, that 
stands for another ambject. (Does this sound confus
ing?) Remember that the value of e.g. the S-expression 

(FATHERJOHN) 

is an ambject that stands for John's father. The value 
of the expression 

LISP A 377 

(SYMQUOTE (FATHER JOHN» 

is an ambject, that stands for the ambject, that stands 
for John's father. Iterated quoting is permitted (but 
probably rarely useful). 

The function SYMQUOTE should be distinguish
ed from the function QUOTE in ordinary LISP. 
(QUOTE is also defined in LISP A). To take an 
example, the value of the expression 

(QlOTE(F ATHER JOHN» 

is the S-expression 

(FATHER JOHN). 

This S-expression then has not been evaluated: 
The purpose of QUOTE is to prevent its argument 
from being evaluated, and to return it as it is. On the 
other hand, if we evaluate 

(SYMQUOTE(FATHER JOHN» 

we do first evaluate 

(FATHER JOHN) 

and obtain an ambject as value. After that, SYM
QUOTE takes the argument and creates a new amb
jectjust like any other symbolic function. 

There is one important dif(erence between SYM
QUOTE and other symbolic functions, however. 
This has a philosophical parallel. If we know that 
Dick and John's father are identical persons, we can 
conclude that the wife of Dick and the wife of John's 
father are also identical. However, we can not claim 
that the linguistic expression "Dick" and "John's 
father" are identical. One consists of four letters, 
the other of eleven. 

The function SYMQUOTE performs exactly that 
kind of quoting. Thus for any symbolic function fn 
except symquote, we would have 

a = b :,) fn(a) = fn(b) 

In conclusion, the value of the expression 

(SYMQUOTE DICK) 

is an ambject that stands for the ambject Dick; the 
value of the expression 

{SYMQUOTE (FATHER JOHN» 

is another ambject and stands for the ambject 
father (John). 



378 Spring Joint Computer Conference, 1968 

SYMQUOTE can be used to speak about expres
sions that are already in the data base. For example, 
it makes sense to form the set of all ambjects obtained 
from the evaluation of 

(FATHER JOHN) 
(FATHER LUCIA) 
(F ATHER PETER) 

etc. If this set is called FATHEREXPRESSION, it 
would be correct to evaluate e.g. 

(SETMEMBER (SYMQUOTE (FATHER JOHN)} 
FATHEREXPRESSION ). 

Here, SETMEMBER is an ordinary function that 
declares its first argument to be a member of its 
second argument. It can be compared to SETTRUE 
which was used above. 

6. Thanks to SYMQUOTE, LISP A "knows what it is 
doing" , each time it uses a symbolic function. 

If F ATHER is a symbolic function like before, 
and the system evaluates the form 

(FATHER JOHN), 

it will create (or retrieve) two ambjects: 
6.1 An ambject fj with the meaning "John's father", 
6.2 An ambject qfj with the meaning "the ambject 

fj" . 
The ambject qfj is identical to what would have 

been obtained as the value of 

(SYMQUOTE(FATHERJOHN». 

The LISP A system returns fj as the value of 

(FATHERJOHN), 

but before that, it has automatically performed the 
operation 

(SETMEMBER (SYMQUOTE (FATHER JOHN}) 
F ATHEREXPRESSION). 

In this way, each RHO-expression that has pre
viously been evaluated with F ATHEREXPRES
SION as one of its arguments, will now be given 
a chance to operate on qfj. In other words, the system 
is able to take care of operators that say "whenever 
you see an expression where FATHER occurs as 
the leading function symbol, do the (ollowing: -". 
The action done may be some logicaf inferences, or 
some external action like a printout. 

7. LISP A is an incremental computer 
In ordinary use, the behavior of the LISP A system 

is governed by the RH 0 operators. The evaluation of 
one operator may trigger another, which in its turn 
triggers several other operators. (The question wheth
er the resulting trees shall be handled on a depth
first or a parallel basis, is discussed in section IMPLE
MENT A TI 0 N). All operators are given to the 
LISP A system independently, and they communi
cate through the changes they make in the data base 
(= the system of ambjects). There is no single, deter
ministic program. For these reasons, we characterize 
the LISP A system as an incremental computer. 
(This term was introduced in a~ article by Lombardi 
and Raphae1.7 For a discussion of their system, see 
section OTHER INCREMENTAL COMPUTERS, 
(towards the end of the paper). 

8. LISP 1.5 is (almost) a subset of LISP A 
Some small and unimportant changes have been 

made to LISP 1.5, but in general, everything that 
can be done in LISP 1.5 can be done on almost 
identically the same form in LISP A. The differences 
are described in section DIFFERENCES FROM 
LISP 1.5. 

Examples of ambjects and symbolic functions 

Before we proceed, let us specify the interpretation 
of ambjects and symbolic functions more in detail. 

Rule I. All ambjects in the LISP A system stand 
for sets that consist immediately of objects. There 
is no obvious way to represent the objects them
selves as ambjects, nor to represent sets of sets. 

Example. The ambject ESKIMOO would stand for 
the set of all individual eskimoos. 

Example. The ambject JOHN would stand for the 
set whose only member the person John is. 

Rule 2. All symbolic functions take sets as argu
ments and yield new sets as values. 

Example. The ambject 

father(J 0 H N ) 

stands for the set whose only member John's father is. 
Example. The ambject 

father(JOHN U NILS} 

stands for the set that has John's father and Nils' 
father as members. If John and Nils happen to be 
brothers, the set has of course only one member. 

Example. Let the symbolic function DRIVERS be 
defined in such way that, if CAR4 stands for the set 
of one particular car, then 



drivers(CAR4) 

is the set of all persons that ever drove this car. If 
X-CO-CAR is the set of all cars owned by X Co., then 

drivers(X -CO-CAR) 

is the set of all persons that ever drove some of their 
cars. 

Example. Let the symbolic function BELONG
INGS be defined such that e.g. 

belongings (JOHN) 

stands for the set of all objects that belong to John. 
If CAR stands for the set of all cars in the world, and 
X-CO for the set whose only member X Co. is, then 
we have 

X-CO-CAR = CAR n belongings(X-CO) 

and therefore of course 

drivers (X-CO-CAR) = 
driv~rs(CAR n belongings(X-CO» 

Remark. The functions FATHER, DRIVERS, and 
BELONGINGS all satisfy 

fn(a U b)=fn(a) U fn(b); 

this rule is characteristic of symbolic functions. 
One predicate<*) is important. It takes one argument 

and says that its argument is a set of exactly one mem
ber. Clearly, we have 

*a :J *father(a) 

but not 

*a :J *drivers(a) 

nor either 

*a :J *belongings(a). 

Remark: The fact that the LISP A system only 
"thinks about" sets of objects, never objects them
selves, means that we have to reinterpret some state
ments made in section OUTLINE OF THE SYS-
TEM. Thus the function SETMEMBER must be 
defined in such a way that evaluation of 

(SETMEMBER A B) 

asserts that *a A a k b. 

I l'-'n A ~..,o 
L.l.:JC n J/7 

Semantics of RHO-expressions 

Like before, let 

f= p«x,y) g(x,y». 

We shall interpret 

f(a,b)as UrEa UsEbg({r},{s}) 

In plain words: Let a and b be sets. Select an arbi
trary -r that is a member of a, and an arbitrary s that is 
a member of b. Form x = the set whose only member r 
is; y = the set whose only member s it. Construct the 
object g(x,y). This is a new set. Form the union of 
all such sets. The result is f(a,b). 
From this, it immediately follows: 

*a A *b:J p«x,y)g(x,y»(a,b)= g(a,b) (Rl) 

(R2) 

if f is a RH O-expression, and similarly 
for the second argument. 

Consequently, 

iffa RHO-expression 
This interpretation immediately generalizes to oth

er rho-expressions with an arbitrary number of argu
ments. With this background, it is clear that the follow
ing ways of handling set-inclusion, RHO-expressions, 
etc., are sound: 

1. Each ambject A has properties on its property
list under the following attributes: 

SUBSET 

SUPERSET 

STAR 

OPERS 

The corresponding property is 
a list of all subsets of A(*). This 
includes A itself. 
The corresponding property is a 
list of all sets that have A as a 
subset. This includes A itself. 
A flag which, if present, indi
cates that A has exactly one 
member. 
The corresponding property is 
essentially (see below) a list of 
all expressions on the form 

(FN ... A ... ) 
where the leading function, FN, 
is a RHO-expression, and A 
occurs as one argument. 



380 Spring Joint Computer C'onference, 1968 

2. To evaluate a form whose leading function is a 
RHO-expression, we do as follows: 
2.1 Evaluate the arguments. They should all 

yield ambjects AI, A2, ... Ak. 
2.2 Create an ambject that is later to be returned 

as the vaiue of the whoie form. Give it a 
suitable MEANING property. (2.1-2.2 is 
the sa~e treatment as is given forms with 
symboiic functions). 

2.3 Add the ambject created in (2.1) to the 
OPERS property of each argument AI, 
A2, ... Ak. (To be precise, the OPERS 
property of an ambject A is therefore a list 
of ambjects, each of which has a MEAN
ING property which is a form with a RHO
expression as leading function and A as 
one of the arguments.) 

2.4 Consider each argument Ai. Its SUBSET 
property is a list of ambjects Ai I, Ai2~ ... 
Aiki. Each such Aij stands for a subset of 
Ai. By checking for the occurrence of a 
STAR flag, select those Aij which have 
exactly one member, i.e., which satisfy 
STAR flag, select those Aij which have 
exactly one member, i.e., which satisfy * Aij. 

By forming various combinations of such Aij, 
we now notice that from law A I above, i. e~ 

*a A *b ::> p«x,y)g(x,y» (a,b) = g(a,b) 

follows 
*a A *b ::> p«x,y)g(x,y» (a,b) = 

A«X,y)g(X,y»(a,b) 

We generalize this from two arguments a,b, to 
k arguments A I, A2 ... Ak, and decide on the 
following method: 
2.5 Evaluate all expressions 

(FL A I mt A2m2 ••• Akmk) 
where FL is the original RHO-expression, 
except that the RH 0 has been changed into 
a LAMBDA, and each Aimi is a one
member subset of the argument Ai. 

2.6 In step 2.5, we obtain one ambject as value 
for each possible combination of one
member subset. By virtue of rule R2 above, 
each such ambject is a subset of the ambject 
created in (2.2). Mutual references are there
fore put on the SUPERSET viz. SUBSET 
properties. 

3.1 Checks whether the fact a k b is already 
known (Le., whether the ambject be is al-

.. .. 
* More precisely, is a list of all ambjects, that stand for subsets 

of the set that A stands for. 

ready on the SUPERSET property of a). 
If so, it returns; otherwise, it continues. 

3.2 Adds each member b i of the SUPERSET 
property of b (including b itself) to the 
SUPERSET property of a. If we know 

*a (Le. if a has the flag STAR), we also apply 
the operators ofb' to a; see step 3.4. 

3.3 Adds each member a' of the SUBSET 
property of a to the SUBSET property ofb. 
If we know *a', we also apply the operators 
ofb to a', see step 3.4. Then return. 

3.4 To apply the operators of b" to a", first 
retrieve the OPERS property of b". It is a 
list of ambjects whose MEANING proper
ties are forms 

(Fl ...... B" ... ) 
F 1 is a RHO-expression. it would be pos
sible and legal to re-evaluate these RHO
expressions as described in step 2.4-2.6.* 
In step 2.5, where we form all combinations 
of one-member subsets, we would then 
obtain combinations where a' " the one
member subset of b", is included, which is 
what we desire. However, we would also 
obtain combinations where other subsets 
than a" are used, and these combinations 
have already been considered. To avoid 
this inefficiency, we first put the SUBSET 
property of b" on the push-down-list, and 
replace it with another property that only 
contains a". After that, all forms on the 
OPERS property of b" are evaluated, and 
finally the old SUBSET property is restored 
from the push-down-list. 

4. There is a functIOn SETST AR, which is similar 
to SETSUBSET. it puts the flag STAR on its 
sole argument, and triggers the necessary 
operators. The details are analogous to those for 
SETSUBSET. 

The above algorithm can be considered as an en
codement of the rules RI -R3 for RHO-expressions 
and the * predicate, as given at the begin~ing of this 
section. As each occurrence of a symbolic function 
is reported via SYMQUOTE and may trigger opera
tors, . axioms for symbolic functions and predicates 
may be encoded as RHO operators. 

Logic with/our truth-values 

We agree that a symbolic predicate should be a 
special kind of symbolic function. It is desirable that 

(*)Step 26 must be sli~htly modified; the ambject created in step 25 
is now to be a subset of the ambject that carries the RHO.expres
sion i.e. the ambject on b":s OPERS property. 



the difference between predicates and other functions 
should be kept as small as possible. In particular, 
to make it possible to use predicates inside RHO
expressions, we should let the value of a symbolic 
predicate be a set of truth-values. 

Let t and f be the original truth-values, defined on 
relations between objects. Introduce the sets 

T={t} 
F={f} 
S = {t,J1 (stands for "sometimes") 

={ } 

It easily follows 

*p A P k T ::J P = T 

This rule is important and will be used below. 

(R4) 

We now extend the ordinary logical connectives 
to this four-valued logic. The connectives shall 
satisfy the general axiom fn(a U b) = fn(a) U fn(b) , 
so we have e.g. 

TV T={t} V {t}={t}=T. 
T V S = {t} V {tJ} = 

{t} V ({t} U {f})= 
({t} V {t}) U ({t} V {f}) = ... 

TUT=T 

Let us not here delve further into this logic. One of 
our early examples of the use of RH O-expression was 

p«x) settrue(admire(x,father(x»)) ) 

(boy n discussed-obj). 

If we assume the very reasonable axioms 

*a ::J *father(a) 

and 

*b A *c ::J *admire(b,c), 

we can re-write the operator on the equivalent form 

settrue( p«x) admire(x,father(x») 

(boy n discussed-obj) ). 

If we evaluate the operator in this latter version, 
the following will happen (although not necessarily 
in this order); 

1. The ambject boy n discussed-obj is evaluated 
and assigned some properties by operators that 
are triggered by the use of the function n. 

2. The RH O-expression is applied to its argument. 
A new ambject, af, is introduced. 

3. The function SETTRUE is applied to af, which 
is then set equal to the set T through a property. 

LISP A 381 

4. Let r be an ambject which has obtained the flag 
STAR, and which has the ambjects BOY and 
DISCUSSED-OBJ on its SUPERSET prop
erty. When the last of these three conditions 
becomes satisfied, the above RHO-expression 
will be triggered. The system evaluates father(r) 
and admire(r,father(r». These will of course be 
new ambjects. If the above axioms are properly 
encoded, the system will put the flag STAR on 
them. Moreover, by the specification of how to 
handle RH O-expressions, the system will eval
uate 

setsubset( admire(r,father(r», af), 
where af is the ambject introduced in step (2). 
By rule (R4) above, the ambject admire(r,father 
(r» will be set EQUAL to af and therefore to T. 

This was one example of how RHO-expressions can 
sometimes be evaluated for their value, rather than 
for their side-effect. 

Differencesfrom LISP 1.5 

Through the introduction of new types of func
tions, the traditional means of handling functions 
in LISP become inconvenient. We found an alter
native system of conventions, which may have some 
interest in itself. 

The association-list in ordinary LISP assigns values 
to atoms. The value may be a FUNARG - expression 
(in which case the atom can be used as a function 
symbol) or an arbitrary S-expression (in which case 
the atom can only be used as the argument of some 
function). 

On the association-list, it does not matter whether 
an atom stands for a function or something else, but 
in otherparts of the LISP system it does. On property
lists, functions are defined as EXPR-properties or 
FEXPR-properties; other values as APV AL-proper
ties. If the atom G has the EXPR-property gg, then 
the two expressions 

(FUNCTION G) and 
(FUNCTION gg) 

are equivalent, but if the atom A has the APV AL
property (aa), the two expressions 

(QUOTE A) and 
(QUOTEaa) 

are not at all equivalent. 
In LISP A, the distinction between functional and 
other values is abolished~ This leads to the following 
consequences: 

1. The pseudo-function FUNCTION is super
flous. We use QUOTE instead. 

2. When LAMBDA-expressions are used directly 
in forms, they must be quoted. To avoid con-



382 Spring Joint Computer Conference, 1968 

fusion, we introduce the symbol ETA to be used 
instead of LAMBDA. Thus the following would 
be a correct form: 

«QUOTE (ETA (X Y) ( ........ ») 

( ) " .......... / 

( ............ ) ) 
3. When function definitions (e.g. LAMBDA-ex

pressions) are named by atoms, t'hey are put as 
APVAL-properties (viz. as VALUE-properties 
in PDP-6-LISP-type implementations). 

4. Different kinds of functions, which were pre
viously distinguished through their attributes 
(EXPR, FEXPR, SUBR, etc.) must now be 
distinguished some other way. We use the follow
ing transformations: 
4.1 A previous EXPR on the form 

(IAMBDAab) 
is re-written on the form 

(ETAab) 
4.2 A previous FEXPR on the form 

(LAMBDA (al a2) b) 
is re-written on the form 

(PHI al b), 
4.3 A previous SUBR is re-written on the form 

(ECODE.a) 
where a is the starting address for the ma
chine code routine. 

4.4 A previous FSUBR is re-written on the form 
(FCODE.a) 

with a as for ECO D E. 
5. The general evaluation function for LISP A, 

evala, evaluates the leading function of a form 
just like any of the arguments. It therefore be
comes possible to evaluate the expression for 
a function immediately before it is used. For 
example, we can write 

«DERIVATIVE SINE) X) 

where (DERIVATIVE SINE) evaluates into 
the value of COSINE(*) which is then applied to 
the value of X. 

The above changes have the obvious advantages 
of preparing the ground for the two types of functions 
in LISP A: symbolic functions and RHO-expressions. 

(*) The value of the atom SINE is most likely an expression 
(ECODE . a). The function DERIVATIVE takes this as argu
ment and uses it in an expression of the type 

derivative (t) = 
if ...... else 
if f= sine then cosine else 

The value of (DERIV ATIVE SINE) is therefore (in expression 
(ECODE . b). which also happens to the value of the atom 
COSINE. 

To increase compatibility with LISP 1.5, it is pos
sible to define functions LAMBDA and LABEL as 
PHI-expressions. If we let the value of the atom 
LAMBDA be 

(PHI R (CONS (QUOTE ETA) R)) 

we can use LAMBDA-expressions as leading func
tions in forms, just like in LISP 1.5 (LAMBDA
expressions that were EXPR's or FEXPR's must of 
course still be transformed into ETA- or PHI
expressions). A similar definition of LABEL becomes 
a little bit more involved. 

Implementation 

A preliminary version of evala, the evaluation 
function in LISP A, was coded in ordinary LISP 
for the PDP-6 computer. That version lacked some 
facilities that have been described here. Most impor
tant, it only permitted RHO-expressions to be evalu
ated for their side-effects, not for their value. On the 
other hand, there were some additional facilities in 
that system. 

A modernized version of evala according to the 
specifications in this r~port is currently (March, 
1968) available in LISP for the CD 3600 com
puter. 

The crucial feature in these implementations was 
the use of a queue for expressions-to-be-evaluated. 
The need for this arises e.g. when we handle RHO
expressions that contain one or more occurrences 
of symboliC functions. Such a RHO-expression is 
triggered by the evaluation of an expression 

(SETSUBSET ...... ); 

it itself triggers evaluation of similar expressions (e.g., 
when SYMQUOTEd expressions are set as subsets 
of larger sets). Obviously this process may continue 
in a chain or tree. At each step, several new RHO
expressions may be triggered. 

The order of evaluation of such expressions can be 
chosen in several ways: 

1. Depth-first. If evaluation of expression e trig
gers expressions f1, f2, ... , fk, we first evaluate 
f1 and all its consequences to the end of the tree; 
and only then start to evaluate f2. 

2. Queueing. We keep a queue of expressions that 
are to be evaluated. If e triggers f1, f2, ... , fk, 
these operations are put at the end of the queue, 
and the evaluation of all is postponed until the 
expressions before them in the queue have been 
handled. When we reach f1, we put the expres
sions that it triggers at the end of the queue; 
proceed to f2, etc. 

3. Queueing with priority. This is like (2), except 
that expressions which are deemed particularly 



significant, are permitted to step into the queue 
at some point other than its end. 

Other alternatives, and more sophisticated ones, 
are also possible. In our implementation, we have pre
ferred the "queueing with priority" scheme. 

Other incremental computers 

The System by Lombardi and Raphael. 
The idea to use LISP as the basis for an incremental 

computer is not new; it was originally put forward by 
L. A. Lombardi and B. RaphaeL 7 They describe a 
modified LISP system which can (in some sense) 
evaluate expressions, even when the values of some 
variables have not been specified. 

Lombardi and Raphael specify three key require
ments for an incremental computer. We shall relate 
the present work to theirs by discussing whether 
LISP A satisfies those requirements. The first of them 
is: 

"The extent to which an expression is evaluated is 
controlled by the currently-available information 
context. The result of the evaluation is a ne~ expres
sion,. open to accommodate new increments of perti
nent information by simply evaluating again with a 
new information". 

In LISP A, we can write expressions which satisfy 
this by using RHO-expressions. (We can also avoid 
paying the cost for it by using LAMB.DA-expres
sions.) The "current information context" for forms 
with a RH O-expression as their leading function is 
information about subsets of the arguments in this 
form. We would say that the form has been completely 
evaluated when all one-member subsets of all argu
ments are explicitly known, and all combinations of 
them have been considered by the system. Usually, 
this is not the case, and evaluation is performed to an 
extent "controlled by the currently-available informa
tion context". 

As we have seen, forms with RHO-expressions are 
stored away in such a way that they are "open to 
accommodate new increments of pertinent informa
tion" about subsets. 

The LISP A system does not satisfy Lombardi ~nd 
Raphael's second requirement ("algorithms, data, and 
the operation of the computer (!) should be specified 
by a common language") or their third condition 
(this language should be understandable by untrained 
humans). But neither does their incremental LISP, 
nor any other system we have heard of. 

Our system is extremely inefficient in terms of 
computer time, and it can be assumed that theirs is 
less wasteful. On the other hand, LISP A seems to 
have the following two advantages over their system: 

(I) When an expression is evaluated incompletely 
for lack of information, the system remembers 

LISP A 383 

this and resumes evaluation when further, 
pertinent information increments become avail
able. 

(2) Through the introduction of ambjects and sym
bolic functions, our system comes closer to 
having "a large, continuous, on-going, evolu
tinary data base", which should be the char
acteristic environment of an incremental com
puter. The data base of Raphael's program is 
identical to that of LISP 1.5, i.e. it is restricted 
to property-lists of atoms. 

Lom.bardi has later published a more extensive 
treatise of incremental computers.8 He there concen
trates on the basic representation of data in core, 
and introduces his own system with three references 
in each cell. These seem to be quite different prob
lems from the ones tackled in this paper, and a com
parison is therefore not attempted. 

Future Developments of LISP A. 

The following developments seem natural: 
A. Write a machine-coded version of evala. 
B. Introduce a notation through which pseudo

parallell execution of several expressions can 
be performed. This is very natural, since e.g., 
the order of evaluation of the specializations of 
a RHO-expression is immaterial. 

C. Attack storage problems by making use of back
ing storage, drum or disk. Facilities for parallel 
execution of expressions then become very 
important, because they help us to use the time 
when we are waiting for information from back
ing storage. 

SUMMARY 

LISP A is a modification and extension of LISP 1.5. 
Besides minor modifications, two new types of func
tions have been added to the language. One type 
(symbolic functions) is used to create and extend 
the data base. If ISF ATHER is a symbolic function, 
evaluation of (lSFATHER JOHN DICK) will create 
a representation for the relation in the data base, 
without asserting its truth. This representation can 
then be used with conventional LISP functions, which 
set it true, ask whether it is true, etc. The other type 
(RHO-expressions) can be used to write a kind of 
rules of inference, which are automatically triggered 
in desired situations. The LISP A system is governed 
by such RHO-expression operators, which trigger 
each other. There is no coherent program, just a set 
of operators which communicate through the changes 
they cause in the data base. The paper gives a general 
description of the LISP A system. 



384 Spring Joint Computer Conference, 1968 

ACKNOWLEDGMENTS 

The author is indebted to professor John McCarthy 
at Stanford University for his kind guidance during the 
year 1966/67, when the work reported here was 
started. He would also like to thank fil.lic. Jacob 
Palme of the Research institute of Nationai Defense, 
Stockholm, Sweden, for many valuable discussions 
during the last year. 

REFERENCES 

1 J McCARTHY 
Recursive functions of symbolic expressions and their 
evaluation by machine, part I 
Communications of the ACM 3 (April 1960) p 184 

2 J McCARTHY et al 
Lisp 1.5 programmer's manual 
The M.I.T. Press 1962 

3 CWEISSMAN 
LISP 1.5 primer 
Dickenson Publ Co Belmont Cal 1967 

4 E C BERKELEY et al 
The programming language LISP: Its operation and 
applications 
The M.I.T. Press 1966 

5 DGBOBROW 
N aturallanguage input for a computer problem solving system 
Doctoral Thesis M.I.T. 

6 BRAPHAEL 
SIR: A computer program for semantic information retrieval 
Doctoral Thesis, M.I.T. 

7 L A LOMBARDI B RAPHAEL 
LISP as the language for an incremental computer in Ref. 4 

8 L A LOMBARDI 
Incremental computation 
In Frank L Alt ed 
Advances in Computers Vol 8 
Academic Press New York 1967 



TGT: Transformational grammar tester 

by DAVE L. LONDE and WILLIAM J. SCHOENE 
System Development Corporation 
Santa Monica, California 

INTRODUCTION 

Chomsky defines a generative grammar as one that 
"attempts to characterize in the most neutral possible 
terms the knowledge of the language that provides the 
basis for actual use of language by a speaker-hearer." 1 

It is "a system of rules that in some explicit and well
defined way assigns structural descriptions to sen
tences."1 The syntactic component of such a grammar 
specifies the well-formed strings of formatives (mini
mal syntactically functioning elements) in the language 
and assigns structures to them. 

Transformational grammars are built on the concepf 
of the logical separation of two types of structure, th, 
deep and the surface structure. Accordingly, there are 
two systems of rules in the syntactic component of a 
transformational grammar: phrase structure rules 
generate deep structure, taking the form of a labeled 

'bracketing or tree; transformational rules map trees 
to other trees and determine the ultimate surface 
structure of a sentence. The deep structure is operated 
on by the semantic canponent of the gran mar to 
determine meaning; the surface structure is interpreted 
by the phonological component. 

The emphasis on explicitness is a distinct advantage 
of generative grammars. However, it imposes a great 
burden on the linguist. Given a deep structure, the 
determination of the applicable rules in the derivation 
of the surface structure of a particular sentence is an 
extremely tedious and time-consuming task, difficult 
to perform with accuracy. For example, verifying by 
hand the correctness of the derivation of typical sen
tences in the IBM Core Grammar2 took us on the 
average two hours per sentence. And, as the grammar 
becomes large (as the linguist attempts to account for 
more phenomena in the language he is describing) it 
becomes more difficult to provide for all of the pos
sible interrelations of the rules. 

*The work reported herein was supported in part by contract 
F I 962867COOO4, Information Processing Techniques, with the 
Electronic Systems Division, Air Force Systems Command, for 
the Advanced Research Projects Agency I nformation Processing 
Techniques Office. 

385 

TGT is a system of computer programs that can 
provide assistance to linguists in building and validat
ing transformational grammars. The name TGT 
'"Transformational Grammar Tester," connotes ~ 
more ambi~ious project than was intended or under
taken. Not enough is known about some of the com
ponents (e.g., the semantic component)3 to warrant 
testing. And although there has been a considerable 
amount of work done on phonological rules, TGT has 
been addressed almost exclusively to the debugging 
and maintenance of the syntactic component. 

For more than a decade, computers have been used 
experimentally to process segments of natural lan
guage text according to syntactic rules. The experi
ments have included both synthetic syntactic process
ing (generating sentences, together with their struc
tural descriptions according to some previously 
specified grammar) and analytic syntactic processing 
(recognizing for a given sequence of formatives con
sidered to be a sentence, each structural description, 
if any, that the grammar can assign to the sequence). 4.5 

Unlike TGT, projects engaged in syntactic process
ing of natural language have seldom had as their sole 
objective the refining and extending of the grammar 
initially specified; often this has not been the pri
mary objective. 

Nevertheless, important contributions to grammar 
validation have been made by Petrick,6 although the 
technique used, that of recognition, is appropriate 
only for grammars that are relatively complete. 

The system for syntactic analysis at The MITRE 
Corporation, described in Zwicky, et al. [1965],1 
and modified as described in Gross [1967],8 is cur
rently being used to perform some of the same func
tions included in TGT. 

An off-line system for compiling, updating and test
ing the IBM Core Grammar was written in LISP 1.5 
by Blair [1966]9 and is currently in use at the IBM 
Thomas J. Watson Research Center, Yorktown 
Heights, New York. 

Further work on an off-line computer system for 
grammar testing by synthesis and by constrained 



386 Spring Joint Computer Conference, 1968 

"random" generation is being currently performed 
by Dr. Joyce Friedman at the Department of Com
puter Sciences, Stanford University, with whom we 
have probitably exchanged information. 

TOT was designed with the.goai of being as generai 
as possible while still accommodating its im~ediate 
and primary user, the Air Force UCLA English Syn
tax Project (AFESP)* which is currently reviewing 
and attempting to integrate the· work that has been 
done on transformational analyses of English. While 
it was impossible for AFESP at the outset to make 
definite decisions regarding its needs, since prin
cipled decisions on matters such as rule conventions 
eouid oniy be made after the data were gathered and 
analyzed, it seemed apparent to us that its needs 
could better be served by a new system, that (among 
other things) would be user-oriented and interactive, 
would handle subcategorization and selectional fea
tures, and would facilitate extension and modifica
tion. (However, -for comments on factors limiting 
these goals, see the Discussion section at the end of 
this paper.) 

System overview 

In constructing a grammar with TGT, the linguist 
will be asking the same questions and employing many 
of the same procedures that he would have used were 
the tester not available. With the tester, many of those 
amenable to programming can now be done by the 
computeL The current version ofTGT is programmed 
in the JTS version of the JOVIAL language and oc
cupies 38,800 words of 48 bit memory, operating un
der the time-sharing system for the AN/FS Q-32 
computer. An ITT model 33 teletype is used as the 
standard input/output device. A CRT with a capabili
ty of displaying 680 characters on a 1024 x 1024 
matrix is an optional device for output. CRT output is 
faster and more readable; but its use, because of hard
ware requirements, dictates proximity to the Q-32. 
Teletype output is not subject to such distance limita
tions and is frequently used, even by those who have 
a CRT, as a means of obtaining hard copy output. 

The most important tasks to be performed by TGT 
center around its ability to execute transformations. 
Usin~ TGT the linguist can determine the applica
bility of transformations, execute them -and -display 
their results. Many ancillary functions are provided 
for specification and manipulation of rules and test 
structures. Combinations of these functions are em
ployed to aid the user in determining the implications 
of changes in the rule set. For example, the linguist 

* The official title of the project is, Integration of Transformational 
Studies on English Syntax, Principal Investagator- Robert P. 
Stockwell. Co-Principal Investigators - Paul M. Schachter and 
Barbara Hall Partee. 

can save entire derivations of sentences that he con
siders correct. He may then insert a new rule, or 
change or delete an existing one, and then have the 
computer apply the rule set to the base phrase markers 
of the saved sentences. Changes in the derivations can 
then be immediately determined. 

C apabil~tie s* 

A. Displaying and saving trees 

Most TGT operations apply to the most recent or 
"current" tree in memory. Trees may be created by 
the primitive DISPLAY (abbreviated as D). The tree 
in Figure 1 could have been initially input by typing: 

,.0 (S(# PRE(Q) NP(DET(ART(WH DEF») 

N [THING <+N> <+PR0> <-HUMAN> <-SG>]) 
AUX(T(PAST»'VP(V[DISAPPEAR <+V>] (#») (0 

The components of the tree (categories, features, 
and complex symbols) are autom'atically numbered. 

The "current" tree may be named and saved if de
sired by typing SAVE or S followed by an alpha
numeric string. If there is already a tree in the system 
with that name, TGT informs the user, who is then 
given the option of changing the name of the new tree 
or replacing the old tree. The most recently used 
trees are saved in core memory. The others are 
stored on disc. Saved trees may be restored at any 
time by using the DISPLAY primitive with the name 
of the saved tree. This then qualifies as the most 
recently displayed or "current" tree. 

Trees are initially left-justified on the scope. If the 
entire tree cannot be displayed, a message is output 
indicating the numbers of the top-most nodes of the 
major subtrees that are not displayed. Normally a 
right-justify command (RJ) is sufficient to display the 
missing subtree(s). However, an additional command, 
CENTER, is also useful in these cases. Accompanied 
by a number, it causes the subtree with that number to 
be displayed exclusively. CENTER also enables the 
user to position the current tree anywhere on the 
scope by specifying the direction in which the tree is 
to be moved (left, right, up, or down) and the number 
of units it is to be moved. 

The tree in Figure 1 may be listed on the teletype by 
typing the command LIST, reSUlting in the TTY 
printout shown in Figure 2. 

It is seldom necessary to input an entire tree paren
thetically as in (1) above. Most desired trees can be 
produced by altering a few basic trees with the fol
lowing primitives: 

* A more detailed account of system capabilities can be found in 
"TGT User's Manual," by W. J. Schoene, System Development 
Corporation document (in press),lO 



(2) 

(3) 
(4) 
(5) 
(6) 
(7) 

(8) 
(9) 

(10) 

Transformational Grammar Tester 387 

Input* Explanation 
ERASE Nl Erases subtree whose number is N 1 
E 
AD 
ALS 
ARS 
SUB 
EAD 

EALS 
EARS 
ESUB 

Nl (that is, N 1 and all that it dominates). 
A Nl Add A as a daughter to N 1. 
A Nl Add A as a left sister to N 1. 
A Nl Add A as a right sister to N 1. 
A Nl Substitute A for N 1. 
Nl N2 Erase N 1 from its original position and add it as a 

daughter to N2. 
Nl N2 Erase N 1 and add it as a left sister to N2. 
Nl N2 Erase N 1 and add it as a right sister to N2. 
Nl N2 Erase N 1 and substitute it for N2. 

*Where N 1 and N2 r!!present the numl?ers. of nodes of the current 
tree and A may be one of the following: the number of a node in 
the current tree, the name of a saved tree, or a structure (subtree, 
feature or complex symbol) input in the parenthetic notation of (1) 
above. 

B.Phrase structure rules 

Phrase structure rules are not essential to the opera
tion of TG T, but their presence permits a legality 
check on the trees. The command VERIFY, input 
from the teletype, will return the message YES or 
NO indicating that the current tree could or could not 
have been produced by the phrase structure fules. In 
the present system, the complex symbols (e.g., those 
symbols enclosed in straight line brackets in Figure 1 
and numbered 11 and 22), are ignored by the VERI
Fy subroutine. 

As in Chomsky [1965)1 phrase structure rules are 
expected to be context free. They may be entered into 
the system by typing the identifier PS followed by the 
symbol to be expanded, an arrow (minus sign and 
greater-than sign) and the string indicating the legal 

. expansion. 

PS VP- > AUX (MV (NP, NIL), 

Figure 1-CRT displ~y of a tree input from teletype and represent
ing the structure of the sentence, "What things disappeared?" 

COP (NP, ADJ, NIL» . (11) 

(S 1) 
(if 2) 
(FnE 3) 

(Q 4) 
(lIP 5) 
(D~ 6) 

(ART 1) 
(WH 8) 
(DEF 9) 

(N 10) 
(*cs* 11) [ (THING 12) «+N> 13) «+PRO> 14) «-HmWl> 15) 

«-00> 16)J 
(AUX 17) 

(T 18) 
(PAST 19) 

(vp 20) 
(v 21) 

(*cs* 22) [ ( DISAPPEAR 23) «+v> 24)] 
(iJ 25) 

Figure 2 - Teletype representation ofthe tree in Figure I 

Exainple (11) above indicated that VP may be ex
panded as anyone of the following strings: 

AUX 
AUX 
AUX 
AUX 
AUX 

MV 
MV 
COP 
COP 
COP 

NP 

NP 
ADJ 

Parentheses indicate that of the strings within that are 
. separated by commas, just one is to be chosen. A 
NIL within the parentheses indicates that none need 
be chosen. 
PS S- > (S CONJ S (CONJ S, NIL)*, NP VP) ,(12) 



388 Spring Joint Computer Conference, 1968 

Example (12) indicates that S may be rewritten as 

NP VP 
S CONJ S 
C' CONJ S CONJ C" 
.:) .:) 

S CONJ S CONJ S CONJ S 
etc. 

Thus, an asterisk following parentheses indicates 
reapplicability of the set within. 

The expansion of a symbol can be changed merely 
be reinputting the symbol and its new expansion. 
TGT saves only the most recent. 

c. Transformations* 

Transformations are input via the teletype using the 
operator RULE. The canonicai form is: 

RULE rule-name structural-description => struc
ture-change . conditions 

'---v----/ 
optional 

RULE HYPOTHETI X A *IB *2(C,D E, *3F) 
X G*4B X=> 

1 = 2 + 1; 2 = 0; 3 = 0. 4 EQ 1. (13) 
In our format, only structures to which a structure 

change or a condition applies need be numbered. Any 
structure, including features and dominating and domi
nated symbols, may be numbered. (However~ the var
iable X is subject to certain limitations.) A number 
immediately preceding a choice set applies to each of 
the left-most members of the set that are not already 
numbered. Thus, if a certain proper analysis** of the 
"current" tree is found, the change 1 = 2 + 1 will add 
the structure headed by C or D as a left sister to the 
structure headed by B and then erase the original 
C - or D-dominated structure. If, however. the proper 
analysis was found with *3 F following * 1 B, the struc
ture headed by F is erased. This rule applied to the 
tree in Figure 3 yields the tree in Figure 4. 

A special condition on this transformation, which 
must be satisfied before any structural changes can 
be performed, is that the structure headed by *4B be 
the same as the structure of * 1 B. TGT is designed to 
facilitate the addition of conditions on transforma
tions. There is no limit to the number of conditions 
that may be imposed on a structure. 

Rule H2 in (14) below introduces a notation for 
expressing proper analyses of subtrees within the 

* A detailed description of the algorithm used to determine proper 
analyses and to perform structure changes can be found in "An 
Algorithm for Pattern Matching and Manipulation with Strings 
and Trees" by D. Londe and W. Schoene, System Development 
Corporation document (in press).!! 

** A formal description of proper analysis can be found in Petrick 
[1965]'6 

Figure 3 - Sample tree to which transformational rule 
HYPOTHETI is applied 

Figure 4 - Results of applying rule HYPOTHETI to the tree 
in Figure 3 

current tree, and for specifying fixed length varia
bles and features. 
RULE H2 X rB *lC D1A 1< + F >< +0> IE *2N 

*3P [X / <+H-I> /Z X]J X=> 1 =1 
+ *4M; 4 < L 2; 4 < L3 (14) 



Square brackets indicate that the first symbol fol
lowing the right bracket (]) must dominate the se
quence of symbols inside the brackets and, further
more, that this sequence must constitute a proper 
analysis of the dominating symbol. 

TG T permits bracket nesting to any level. If the 
linguist is concerned only that a symbol A dominate 
a symbol B regardless of whatever else it may domi
nate, he can surround the B with general variables, 
[X B X] A, thus preserving the convention for inter
pretation requiring a proper analysis. Immediate domi
nance can be expressed as a special condition on the 
dominated symbol, i.e., 
X[X *IB X] A X => structure changes. 1 COND5. 
Where condition 5 requires that the node to which it 
applies (in this case * 1 B) be immediately dominated 
by the symbol immediately following the right bracket 
(A). 

Because of the comparatively recent acceptance of 
features in transformational grammars and the variety 
of their function in different writings, TGT handles 
them internally as if they were special conditions on 
the symbols immediately dominating them, thus facil
itating modification. Rule H2 specifies that the E 
following [B C D] A must immediately dominate the 
features < + F > and < + G >. Where the linguist is 
concerned that a symbol dominate a particular fea
ture at some unspecified distance, he may make use 
of the notation indicated by [XI <+H - I> /Z X]J in 
rule H2, where Z is a variable of fixed length, one 
node. We thus preserve our .convention of specifying 
the immediate dominator of features. 

A very convenient innovation is illustrated in the 
structure change portion of this rule. Generally 
structure changes manipUlate structures that are 
present in the tree before execution of the rule. Thus, 
when we specify that some structure numbered 2 is 
to be added as a daughter to some structure 1, and 
that 1 is to be adjoined as a right sister to 3, we intend 
to adjoin 1 in its original state, i.e., before 2 was added. 

In TGT we have provided a notation that allows 
numbers to be assigned to structures that are created 
by the structural change portion of the transformation, 
whether these be newly introduced constants or struc
tures that were already in the tree and moved to new 
positions. These new structures may subsequently be 
moved or have structures adjoined to them. In H2 we 
are adding a new symbol M as a right sister to * 1 C, 
and to this new symbol we are adding *3P and *2N as 
left daughters. Rule H2 applied to the tree in Figure 
5 yields the tree in Figure 6. 

RULE is used only to define transformations and 
assign them names. (As with trees, TGT informs the 
user when the name is not unique.) Transformations 

Transformationai Grammar Tester 389 

are normally assigned a position, an order of opera
tion, * in a cycle or post-cycle. TGT readily allows 
the user to define and redefine the order of operation 
(see discussion of INSERT, Section D). 

Figure 5 - Sample tree to which transformational rule H2 is applied 

Figure 6 - Results of applying rule H2 to the tree in Figure 5 

*Chomsky [1965] 1 mentions the possibility of intrinsically ordered 
rules. Although we could have accommodated this concept in 
TG T by arbitrarily assigning numbers to rules and using a random 
number generator, we deferred this until someone attempts to 
write a grammar where the rules are not extrinsically ordered. 



390 Spring JointComputer Conference, 1968 

TEST, EXECUTE and DERIVE actually apply. 
the t~anformations to the current tree. In general, 
TEST is used to determine whether the structural 
description of a transformation successfully applies 
to the current tree. 

The TEST command is accompanied by the name 
of a rule or the names of the first and last rule of a 
rule sequence, or the word ALL, in which last case 
every transformation in the cycle and post-cycle is 
matched against the current tree. The name of the 
rule and the message YES or NIL are output for 
each rule as it is tested. For each transformation that 
successfully applies, the user is given the option to 
execute the structural changes of the transformation 
and continue testing, to execute and wait for another 
command, to continue testing without changing the 
current tree, or to wait for a new command. 

EXECUTE may specify one rule or the first and 
last of a sequence of rules. No message, other than 
the rule names and YES or NIL is output. This com
mand is used in preference to TEST when the user 
knows that he wants the structural changes of each 
successful transformation to be performed. 

Traditionally, transformations are applied to struc
tures headed by the symbol S. * Where the "current" 
tree has more than one S, the user may wish to speci
fy the number of the particular subtree to which he 
intends TEST or EXECUTE to apply. 

DERIVE applies each transformation in the cycle 
to the "lowest" S in the tree. It recomputes "low
est'" S after each cycle until all subtrees have been 
processed. It then applies all of the postcyclic rules. 
DERIVE records the S node number associated with 
each cycle and the transformations that were executed 
during the cycle. 

I t is not meaningful to talk of the execution times of 
transformations because they will vary with the tree, 
the rule, the conventions of interpretation, and, of 
course, the computer. However, to give some rough 
idea of the speed of TGT on the Q-32, we input rules 
1-13 of IBM Core Grammar I (except rule 4, which 
has complex special conditions on its application) 
and applied them to test trees 28 and 29 of that gram
mar. The average execution time per rule was .04 sec
onds. 

D. Other capacilities 

The command MATCH enables the linguist to 
determine easily how a successful transformation ap
plies to a tree, by printing on the TTY those symbols 
of the structural description that were successfully 

·Suggestions have been made recently, however, (e.g., UCLA Con
ference on English Syntax, summer 1967) that each recursive 
symbol in the phrase structure rules be so treated. 

matched by a node in the tree and by printing that 
node number. After HYPOTHETI has applied to the 
tree in Figure 3, the command MATCH would out
put:* , X oJ 

7 A 
8 B (15) 

18 C 
21 G 
24 B 

Any successful transformation may be reapplied to 
determine whether it could have applied to the current 
tree in more than one way. The command AGAIN 
causes the search for a proper analysis to continue by 
successively backing up from the last node matched 
as if there had been no match. Thus, in (15) above, 
the rule interpreter would look below node 24 for 
another B; finding none it retreats to G 21, ignores 

. the original match and eventually finds the analysis 
below:** 

5 
7 
8 

18 
23 
24 

X 
A 
B 
C 
G 
B 

(16) 

Applied once more, AGAIN would eventually look 
below 18 for a C, a D followed by an E, or an F, and 
it would find the analysis indicated by (17) below: 

5 X 
7 A 
8 B 

33 F (17) 
20 X 
21 G 
24 B 

The analysis that includes 33F and 23G can be at
tained by invoking a special condition, condition 6. 
This suspends the A over A convention* allowing the 
interpreter to go below a symbol, A, to find another 
A. This condition is symbol specific in TGT and thus 
may be selectively applied among the symbols of a 
structure description. 

Where a successful match is made on an optional 
symbol immediately preceded or immediately fol
lowed by an X, there is always at least one alternate 
analysis, that where the NIL is chosen. 

*Variables are not printed when they encompass no nodes. 

**The reference to the A over A convention under (17) is pertinent 
to this analysis. 

* A discussion of this convention and exceptions can be found In 
Chomsky [1962]12 and Chomsky L 1964]!:l 



For each transformation, the command INSERT 
allows the user to specify information concerning its 
operation in the rule set: its order of operation; wheth
er it is cyclic or postcyclic; whether it is obligatory or 
optional; whether (if successful) it may be reapplied 
to the tree before the next sequential transformation; 
and whether the interpreter may look below an S in 
trying to find a proper analysis. 

The command ED IT facilitates the correction of 
faulty transformation input by removing the necessity 
to retype the entire rule. This command is accom
panied by two strings of symbols, X' and Y. EDIT 
searches the erroneous rule for string X and replaces 
it with string Y. 

A printout of the names of all the trees in the sys
tem at any time can be obtained with the command 
TREES. Similarly, all rule names are printed in re
sponse to the command RULES. The primitive DIS
PLA Y and LIST also accept rule names as input and 
will either print on the TTY or display on the CRT 
scope the appropriate transformation. 

Trees and 'rules are erased from the system's mem
ory by means of the DELETE command accompanied 
by the rule or tree name. 

Upon termination of a run, TG T presents the user 
with the opportunity of saving on magnetic tape the 
trees and rules he may have created during the run. 
Each initiation of TGT allows the user to input a 
file of trees and rules from tape, or to start up with 
neither rules nor trees in the system. Thus, many ver
sions of a grammar may be extant and may be under
going modification and testing simultaneously. Files 
of trees, rules, and derivations may thus be accumu
lated from run to run and may be subsequently used 
by others and merged with the files created by other 
linguists. 

The program 

The organization of the TGT program is straight
forward, consisting of an executive routine and an in
definitely extensible set of service routines, which 
perform the basic system tasks such as tree creation 
and manipulation, rule testing, and generation of dis
plays and teletype output. In TGT's basic interactive 
cycle, the executive routine interprets each teletype 
request to determine which service rOutine is needed, 
reads and legality checks the parameters associated 
with the request, and transfers control to the appro
riate service routine. At the completion of its task, 
the service routine returns control to the executive 
routine and the cycle is ready to begin again. 

Of more particular interest are the functions as
sociated with the interpretation of transformations. 
When the transformation is input each symbol name 

is looked up in" the dictionary and is replaced by its 
dictionary number. If the symbol is not present it is 
added to the dictionary. 

The rule is then converted to a form convenient for 
interpretation and resides in a table whose capacity 
is, at present, 1100 entries. 'Each symbol in the trans
formation occupies an entry. 

Each entry contains the following information: 
dictionary entry number of this symbol; location in 
this table of the next sequential symbol; location 
of previous sequential symbol; location of next op
tional symbol (in the case of a symbol within choice 
parentheses); location of the first special condition 
on this symbol. 

X *IA ([C D] * 2Z, F G) T=> 1 =0. Z NQ 1. (18) 

The transformation (18) above would be repre
sented in the rule table as indicated below. 

Dictionary 
Entry of 

Number Symbol* 

1 X 
2 A 
3 Z 
4 F 
5 G 
6 
7 
8 C 
9 D 

10 T 

Next Previous 
Sequential Sequential 

2 0 
3 I 

10 2 
5 2 

10 4 
7 
8 
9 0 
0 8 
0 3 

S~ecial 
Condition 

Optional Pointer/ 
Next Type 

0 0 
0 0 
4 6 
0 0 
0 0 
2 4 

I 
0 0 
0 0 
0 0 

Entry 6 above represents the special conditon im
posed on the symbol Z. The number 4 indicates which 
condition is imposed (nonequality), and the number 2 
under column "Optional Next" of entry 6 is a param
eter pointing to the structure headed by the symbol A 
in entry 2. 

We handle recursion as a special condition. Thus 
the symbol Z has two conditions 4 and 1. Condition 
1 is always the last condition to operate since it es
sentially effects a re-entry of the procedure, at which 
point a proper analysis consisting of the symbols C 
and D is attempted· for the substructure headed by 
this Z. 

The numbers of the tree nodes corresponding to rule 
symbols are saved in this table so that the tree can be 
changed in case the pattern match is successful, and 
so that the pattern matching algorithm can try all 
possibilities. 

*For convenience the actual symbol is used here. 



392 Spring Joint Computer Conference, 1968 

If, for example, the node to the right of A in the tree 
does not dominate a C and D and is not the symbol F, 
the pattern matching algorithm will back up to the 
tree node recorded in entry 2 as matching rule sym
bol A. The variable X is extended to encompass this 
A and the aigorithm attempts to find another A. 

A flow diagram and more details of the program can 
be found elsewhere.lo,li 

DISCUSSION 

We feel that TGT is a tool that is flexible in its capac
ity to perform operations and is convenient with re
gard to the manner in which commands may be ex
pressed. We found that within the present framework 
we couid often handie conditions attached to the 
structure change portion of a transformation, although 
we had not intentionally designed the system to do 
this. Other difficulties have been resolved by break
ing complex rules into several simpler rules. We an
ticipate that many future problems will be solved by 
expanding the existing set of conditions, which can be 
expressed directly in the rule. Some other linguistic 
capabilities that the user may need are less tractable. 

The advisability of using an entirely different rule 
schema for handling conjunction has been demon
stratedin Schane [1966]14 and Schachter [1967].15 
Plans to program the Schachter schema and integrate 
it into the current model ofTGT are under way. 

Several different conventions regarding the move
ment of tree branches by structure changes have been 
provided internally, but have not yet been made easily 
accessible to the user. More programming would be 
necessary, however, were a set of tree-pruning con
ventions, such as suggested in Ross [i 965],16 to be 
adopted. 

A computer system such as TGT can make signif
icant contributions in testing a lexicon and integrat
ing it into a transformational grammar. We are at 
present familiarizing ourselves with various proposals 
regarding the form of the lexicon and conventions for 
lexical insertion. 

The authors have no illusions regarding the com
prehensiveness or generality of TGT. Transforma
tional grammar is in a dynamic state of development. 
By the time a system of programs is written and 
checked out, it is in danger of being obsolete. How
ever, a linguist who sets out to write a grammar faces 
the same problems. Once he has written a number of 
rules, he may not readily change rule conv.entions un
less he is willing to play the Red Queen, who must 
run as fast as she can just to keep from falling be
hind. 

ACKNOWLEDGMENTS 

We are indebted to Dr. Barbara Hall Partee of AFESP 
for her criticisms and suggestions regarding the de
sign and use of TGT, to John Olney of System De
velopment Corporation for his contributions to the 
initial specifications, and to Dr. Joyce Friedman of 
Stanford University for suggesting the utility of a 
single node variable. 

REFERENCES 

I N CHOMSKY 
A spects of the theory of syntax 
THE MIT Press Cambridge Massachusetts 1965 

2 P S ROSENBAUM D LOCHAK 
The IBM core grammar of English 
In Specification and Utilization of Transformational Grammar 
Scientific Report no I IBM Corporation Yorktown Heights 
New York 1966 

3 N CHOMSKY 
The formal nature of language 
Appendix A 
In E H Lenneberg Biological Foundations of Language John 
Wiley & Sons N ew York 1967 

4 D BOBROW 
Syntactic theories in computer implementations 
In H Borko Automated Language Processing: The State of the 
Art John Wiley & Sons New York 

5 BUN KER RAMO CORPORATION 
A syntactic analyzer study 
Final Report under Contract AF 30(602)-3506 Canoga Park 
California 1965 

6 S R PETRICK 
A recognition procedure for transformational grammars 
Unpublished Doctoral Dissertation MIT Cambridge 
Massachusetts 1965 

7 A M ZWICKY J FRIEDMAN B C HALL 
D E WALKER 
The MITRE syntactic analysis procedure for transformational 
grammars 
MTP-9 The MITRE Corporation Bedford Massachusetts 
August 1965 

8 L N GROSS 
On-line programming system IIser's manual 
MTP-59 The MITRE Corporation Bedford Massachusetts 
March 1967 

9 F BLAIR 
Programming afthe grammar tester in specification and 
utilization of a transformational grammar 
Scientific Report no I IBM Corporation Yorktown Heights 
New York 1966 

10 W J SCHOENE 
TGT user's martual 
System Development Corpor?tion document in press 

11 D L LONDE W J SCHOENE 
An algorithm for pattern matching and manipulation with 
strings and trees 
System Development Corporation document in press 

12 N CHOMSKY 
The logical basis of linguistic theory 
Ninth International Congress of Linguistics 
Cambridge Massachusetts 1962 



13 N CHOMSKY 
Current issues in linguistic theory 
In Fodor and Katz The Structure of Language Prentice-Hall 
Englewood Cliffs New York 1964 

14 S A SCHANE 
A schema/or sentence coordination 
MTP-IO The MITRE Corporation Bedford Massachusetts 
April 1966 

Transformational Grammar Tester 393 

15 P SCHACHTER 
A schema for derived constituent conjuncilOn 
Unpublished Working Paper UCLA Air Force 
English Syntax Conference September 1967 

16 J R ROSS 
A proposed rule o/tree pruning 
Unpublished paper presented to the Linguistic Society of 
American December 1965 





DATAPLUS-A language for real time information retrieval 

from hierarchical data bases 

by NORMAN R. SINOWITZ 
Bell Telephone Laboratories 
Holmdel, New Jersey 

INTRODUCTION 

To the average person, a computer user is synony
mous to a programmer. In fact, to the average pro
grammer, a user is synonymous to a programmer. 
Information retrieval is an area in which the computer 
user is not - or, at least, should not be - required 
to be a programmer. This paper describes a real time 
information retrieval system which is at once highly 
accessible, relatively inexpensive, and simple enough 
to be used by nooprogra_mmers. 

The system was implemented early in 1967 on a 
GE-265 computer operating under the time-sharing 
monitor developed by the Missile and Space Division 
of the General Electric Company (Valley Forge, 
Pennsylvania). Access by users is thus from remote 
teletypewriters communicating over standard tele
phone lines. 

By implementing a system on a commercially 
available time-shared computer service, the effort 
of developing the time-sharing software is eliminated, 
and the cost of the development is spread over the 
many users of the service. The retrieval system was 
field tested without any investment in expensive 
hardware. By providing the system with a powerful 
information processing ability, highly efficient use 
can be made of the potential information content of 
the data, with a consequent high performance/cost 
ratio of the system. 

What makes the system easy to use is its query 
language. Called DATAPLUS, the name derives 
from the system's ability to access data, plus the 
ability to process data. The DAT APLUS "compiler," 
which can be more accurately described as an in
cremental interpreter, was implemented in FOR
TRAN, and was designed for real time information 
retrieval from a hierarchical data base. 

At his remote terminal, the DAT APLUS user types 
his information request in the form of a message 
consisting <;>f a continuous flow of statements resem-

395 

bling English. Erroneous or unintended statements 
can be altered by merely retyping them. Providing 
the user with these faciliti~s has in most instances 
overcome the inertia people have against learning 
to "program." Furthermore, these facilities enable 
the user to spend more time thinking about his 
problem, because he is, to a large extent, thinking 
in the way he is accustomed. 

Since a data item is often meaningful at a level 
of the hierarchical structure other than that at which 
it appears in the data base, flexibility is provided 
for addressing and manipulating the data at various 
levels. The language is also "open-ended" in the 
sense that the user is given the ability to create 
functions of items appearing in the data base, and to 
instruct the computer to operate on these functions 
in tije same way that it operates on items already 
in the data base. 

DATAPLUS was implemented in order to re
trieve information useful to engineers at Bell Tele
phone Laboratories. So as not to burden the reader 
with telephone jargon, we shall exemplify our dis
cussion by referring to a familiar (but hypothetical) 
data base. In addition to being intelligible to a wide 
audience, the hypothetical data base was chosen 
because it is structurally isomorphic to the data 
base for which the system was implemented. 

The data base 

Consider a department store chain which has 
branches in a number of the larger cities in the 
conterminous United States. The company operates 
throughout most of the country, with a corporate 
headquarters, and separate divisions in the various 
states. The state organizations are further broken 
down by cities. Figure 1 shows the hierarchical 
structure for this data base. 

At the top is the corporate level. The second and 
third levels represent, respectively, the state and 



396 Spring Joint Computer Conference, 1968 

city divisions. The focal level is the fourth level, 
that is, the STORE level. Each store has one or more 
departments, and each DEPARTMENT sells at 
least one ITEM. 

Figure 1- Hierarchy in the department store data base 

Data are collected and stored at the STO RE, 
DEPARTMENT, and ITEM levels. Each datum
which we henceforth can variable - has a name and 
a value. A partial list of representative variable names 
and their levels is shown in Table 1. 

TABLE I - Partial list of representative variable names 
and their levels 

Variable Name Level 
STORES Store 
STORE NAME Store 
ADDRESS Store 
COUNTY Store 
EARNINGS Store 
DEPRECIATION Store 

DEPARTMENTS Dept 
DEP ARTMENT NAME Dept 
SALES FORCE Dept 
DOLLAR SALES Dept 

ITEMS Item 
ITEM NAME Item 
INVENTORY NUMBER Item 
IN STOCK Item 
ON ORDER Item 
PURCHASE PRICE Item 
SELLING PRICE Item 

A variable whose value is intrinsically numeric 
will be called a range variable; a variable whose 
value is intrinsically alphameric will be called a 
nonrange variable. Thus EARNINGS and IN 
STOCK are range variables, while STORE NAME 
and INVENTORY NUMBER are nonrange varia
bles. 

General description of the syntax 

Like any language, natural or artificial, DAT A
PLUS has syntax, semantics, and vocabulary. Syn
tactically and semantically, DATAPLUS resembles 
English. The basic vocabulary consists of a few key 
words, . such as "total," "distribute," "and," "or," 
"when," and a set of nouns representing items appear
ing in the data base. This section gives an overall 
picture of the syntax, Vocabulary and semantics are 
considered only when necessary to the discussion. 

We begin by citing three examples of messages 
written in the DAT APLUS language. 

Example . 1 - Suppose we wish to find the total 
number of stores in Michigan and New Jersey which 
have any HI FI departments. The message could be ... 
TOTAL STORES: IN MICHIGAN; NEW JER
SEY: WHEN ANY DEPARTMENT NAME 
=HIFI:GO: 

Example 2 - Suppose we wish to obtain a frequency 
distribution of stores versus dollar sales per store 
in Miami and Tampa. The message could be ... 
DISTRIBUTE STORES: BY DOLLAR SALES 
PER STORE: BETWEEN 0 AND 2000000 IN 
STEPS OF 20000: IN FLORIDA, MIAMI, T AM
PA:GO: 

Example 3 - Suppose we want to extract the store 
name, the names of the departments, and the earn
ings/sales ratio for stores in Cook County, Illinois. 
The message could be ... 
LET RATIO = EARNINGS/DOLLAR SALES 
PER STORE: EXTRACT STORE NAME, RATIO, 
DEPARTMENT NAME: FROM STORES: IN 
ILLINOIS: WHEN COUNTY = COOK: GO: 

A message in DATAPLUS thus consists of a 
continuous flow of statements, * each beginning 
with a key word, such as "TOTAL," "WHEN," 
"IN," "LET," and ending with a colon. The final 
statement in the message must contain the single 
word "GO." 

Every message must have an "IN statement" 
i.e., a statement beginning with "IN." This informs 
the program in which states and cities the user is 
interested. 

*A statement in DATAPLUS is either a complete sentence, a 
prepositional phrase, or an adverbial clause. 



There are three basic operations in DAT APLUS as 
implemented to date: TOTAL, DISTRIBUTE, 
and EXTRACT. Every message must contain a 
statement that begins with one of the basic operation 
words TOTAL, DISTRIBUTE, or EXTRACT. 

Any range variable may be summed by using the 
TOTAL statement. DAT APLUS automatically 
supplies an average along with the total. Thus, 
"TOTAL EARNINGS:" will cause the system to 
furnish the average earnings/store. 

If there is a DISTRIBUTE statement in the mes
sage, there must also be a BY statement and a BE
TWEEN statement. If we visualize a typical histo
gram, the DISTRIBUTE statement contains informa
tion pertaining to the Y axis variable; the BY state
ment contains information pertaining to the X axis 
variable; the BETWEEN statement contains informa
tion pertaining to the limits of the X axis and the 
class interval size. 

A WHEN statement is optional in every message. 
Its purpose is to specify the search. In Example 2, 
the search is implicitly specified as being over every 
store in Miami and Tampa; in Example 3, the search 
is explicitly specified for stores in Cook County. 

The LET statement can be used to define a created 
function of variables in the data base. A LET state
ment may appear anywhere in the message, provided 
that the variable that it creates has not been referred 
to earlier in the message. 

Blanks are allowed as they are in English: A blank 
may not be placed in the middle of a word, but as 
many blanks as the user wishes may be placed be
tween words. Any special symbol, such as 

;+-*/,=:() 

may be surrounded by as' many blanks as desired. 
The order of the statements - other than the LET 

and GO statements-is arbitrary. For example, the 
user may type the IN statement before the TOTAL 
statement, or vice versa. 

Any statement may be overrid~n by merely re
typing it. Thus, the user can change his mind about 
the content of any portion of the message, provided 
he has not typed GO. 

lf he has typed GO and there are errors in his 
message, appropriate diagnostic comments are 
printed. He need then only retype the erroneous 
statements in the message, followed by the GO 
statement. 

Running the program 

Once the program is loaded, it communicates its 
sole signal for user lnformation requests by typing 
"?:=" after which the user starts typing. The user 

DATAPLUS 397 

must be careful not to end a line in the middle of a 
word or number: Unlike English, DATAPLUS does 
not allow hyphenation. (However, we have allowed 
the typesetters to hyphenate DAT APLUS messages 
in the printing of this paper.) 

If a message has syntactic or semantic errors, or 
if not enough user information is supplied, appro
priate diagnostics are typed, and the system again 
returns with its perennial ?:= symbol. 

Once a valid message is given, the syst~m searches 
the data, types out the processed results, again types 
?:= and the cycle begins anew. Thus, a request for 
a distribution may be followed with a request for 
extracting data- without reloading the program. 

When the. cycle begins anew, the program assumes 
that a new message will follow. Thi~ assumption can 
be suppressed by typing "ED IT": followed by 
those portions of the message (hat the user wishes 
to edit. Thus, after the computer had printed its results 
for the message in Example 3, the user could continue 
with ... 

EDIT: WHEN COUNTY=DU PAGE: GO: 
and have the computer supply the same results for 
Du Page County. 

The ability to shift from one operation to another 
combines with the ED IT feature to provide an 
extremely useful capability of DATAPLUS-the 
capability for browsing and "hunch pursuit." Upon 
examining the computer's reply to one message. the 
user is often stimulated to formulate another mes
sage. Experience with the system has demonstrated 
that a user frequently finds himself as part of this 
"feedback loop" - coming away from the system 
with information much more valuable to him than 
the information he originally intended to seek. 

The vocabulary 

The basic vocabulary has two portions - the key 
words, and the nouns. We have already been intro
duced to most of the key words. This section is con
cerned with nouns, which include the state and city 
names and the names of variables such as those 
given in Table I. 

Although a variable appears on a given level in 
the data base, it can be used on a higher level in a 
message. An example of this "raising the level" 
of a variable is the noun DOLLAR SALES which 
appears as a DEPARTMENT level variable in 
Table 1, and was used as a STORE level variable 
in Example 2. In that example the variable of inter
est was the DOLLAR SALES PER STORE, viz, 
the dollar sales summed over all departments in the 
store. 



398 Spring Joint Computer Conference, 1968 

In DAT APLUS, the level of any range variable 
may be raised. This is accomplished by following 
the variable name (as it appears in Table I) by the 
word PER and then by the word DEPARTMENT or 
STORE. 

The variable DEPARTr-YiENTS is a range variable 
which has the value unity for every department, and 
the variable ITEMS is a unity-valued range variable 
for every item in the data base. Since these are both 
range variables, their levels may be raised. Thus, to 
obtain a picture of the number of different types of 
items sold in stores in Dallas, one might say ... 
DISTRIBUTE STORES: BY J=fEMS PER STORE: 
BETWEEN 0 and 700 IN STEPS OF 7: IN TEXAS, 
DALLAS: GO: 

This will produce a distribution with stores as 
the Y axis variable, items per store on the X axis, 
with 100 class intervals each of size 7 items. In this 
example, the level was raised from item level to 
store level- i.e~, two levels. 

If the user tries to "lower the level" of a variable, 
he will get a diagnostic message. Clearly, the level 
cannot be lowered since this is a piece of information 
uriobtainable from the data base. It is perfectly valid 
to follow the word PER by the name of the level on 
which the variable was collected. In fact, if the user 
is unsure about the level, he can always play safe by 
foilowing the variable name with PER and then the 
level. 

The vocabulary can be obtained from the system at. 
run time. If the user types an invalid state name, the 
computer will type out a list of valid state names. 
If the user types a valid state name but an invalid 
city name, the computer will type a list of valid city 
names for that state. A listing of valid variable names 
may be obtained by putting the statement "CAT A
LOG": anywhere in the message. Furthermore, the 
user can obtain definitions of any of the variables by 
using the DEFINE statement. For example, the state
ment 

DEFINE IN STOCK, ON ORDER: 

may be placed anywhere in the message, and the 
computer will furnish concise definitions of the 
variables IN STOCK and ON ORDER. 

Creating variables 

DAT APLUS has prOVISIon for extending its 
vocabulary, that is, for adding to its nouns. This is 
accomplished by the LET statement, which we 
mentioned briefly in Section Ill. 

A created variable in DAT APLUS is always a 
range variable. In the previous section we saw how to 
create certain variables that are not in the data base. 

Those "raised level" variables (since they had to be 
summed) were range variables. In Part A of the 
present section we describe how to create algebraic 
functions of variables. Since we are performing alge
braic operations, the operands, as well as the function, 
must be range variables. Part B of the present section 
shows how to create special variables, called qualified 
variables. 

A. Algebraic functions 
An algebraic function is formed by algebraic 
manipulations on range variables appearing in 
the data base, on raised level variables, or on 
variables created in earlier LET statements. 

Some examples are ... 
(a) LET PERCENT = (SELLING PRICE

PURCHASE PRICE)/SELLINq PRICE: 
(b) LET RATIO = EARNINGS/DOLLAR 

SALES PER STORE: 
(c) LET CASHFLOW = EARNINGS + DE

PRECIATION: 

The algebraic operators are +, - ,* ,I. Exponentiation 
is not allowed. The hierarchy of operations is the 
same as in FORTRAN. Redundant parentheses 
are ignored. (Unary operations are not allowed; 
thus it is not valid to say LET X = - EARNINGS:) 

The level of all variables appearing on the right 
hand side of the equal sign must be the same. (The 
construction would be semantic nonsense otherwise.) 
The created variable is assigned this level. Once a 
variable is defined in a LET statement, it may be used 
in any subsequent statement where a range variable 
of that level is permitted, including another LET 
statement. 

Suppose we wish to obtain a distribution, for stores 
throughout the United States, of cash flow versus 
earnings. The message could be ... 
LET CASHFLOW = EARNINGS + DEPRECIA· 
TION: DISTRIBUTE CASHFLOW: BY EARN
INGS: BETWEEN 0 AND 500000 IN STEPS OF 
50000: IN COMPANY: GO: 

B. Qualified variables 
Qualification is accomp~ished 'in DAT APLUS 
by enclosure in parentheses. (This construction 
is afamiliar One in English.) Some examples are: 
(a) LET X = IN STOCK(lNVENTORY 

NUMBER = A0578): 

(b) LET Y = DOLLAR SALES (DEPART
MENT NAME= HABERDASHERY): 

(c) LET Z = ON ORDER (INVENTORY 
NUMBER= B6724): 
LET T = Z PER STORE: 



The variable X is an item level variable. Its value 
is the number of units in stock that have an inventory 
number of A0578. The variable Y is a department 
level variable. Its value is the dollar sales for the 
department if the department is a haberdashery 
department and zero otherwise. The variable Z is an 
item level variable. The variable T is a store level 
variable, and represents the number of units on order 
in the store which have inventory number B6724. 

In general, the value of the created variable is 
the vaiue of the quaiified variable· if the equality 
enclosed in parentheses is true, and zero otherwise. 
The level of the created variable is assigned the level 
of the qualified variable. Once a variable is created 
by qualification, it may be used in any subsequent 
statement where a variable of that level is permitted, 
including another LET statement. 

Suppose we wish to determine, for Chicago, all 
stores which have more than 30 TV sets in stock. 
The message could be ... 

LET TVSUPPL Y = IN STOCK(lTEM NAME = 
TV SET): EXTRACT STORE NAME, ADDRESS: 
FROM STORES: IN ILLINOIS, CHICAGO: 
WHEN TVSUPPL Y PER STORE=30 to 9999: 
GO: 

Boolean operations 

Most information retrieval systems allow for 
Boolean operations on index terms. DAT APLUS 
allows for Boolean conjunction and (inclusive) dis
junction by use of the words "AND" and "OR'; 
in the WHEN statement. 

For example, suppose we wish to find the total 
number of furniture departments in stores in Denver 
that have a sales force of at most 14 people and 
dollar sales of more than $100,000. The message 

TOTAL DEPARTMENTS: IN COLORADO, 
DENVER: WHEN DEPARTMENT NAME= 
FURNITURE, AND SALES FORCE=1 TO 14, 
AND DOLLAR SALES=100000 TO 9999999: 
GO: 

If we are interested in finding the number of de
partments whose name is either "furniture" or 
"childrens furniture," the message could be ... 

TOTAL DEPARTMENTS: IN COLORADO, 
DENVER: WHEN DEPARTMENT NAME 
FURNITURE, OR DEPARTMENT NAME = 
CHILDRENS FURNITURE: GO: 

Intersection and union may be used in the same 
WHEN statement, with the AN D taking precedence 
over the 0 R. Thus the message ... 

DATAPLUS 399 

TOTAL DEPARTMENTS: IN COLORADO, 
DENVER: WHEN DEPARTMENT NAME = 
FURNITURE AND SALES FORCE = 1 TO 14, 
OR DEPARTMENT NAME = CHILDRENS 
FURNITURE, AND SALES FORCE = 1 TO 14: 
GO: 

will total those departments whose name is furniture 
and which have a sales force of at most 14 people, 
or whose name is childrens furniture and which have 
a sales force of at most 14 people. 

It is also possible to use the qualified variable as a 
means for specifying conjunction. Thus, the mes
sages ... 

TOTAL STORES: IN TENNESSEE: WHEN 
COUNTY=KNOX, AND EARNINGS=O TO 
70000: GO: 

and 

LET X=STORES (COUNTY=KNOX): TOTAL X: 
IN TENNESSEE: WHEN EARNINGS=O TO 
70000: GO: 

are equivalent. Both will determine the number of 
stores in Knox county, Tennessee, which earn less 
than $70,000. . 

Two operations that prove extremely useful in 
retrieving from hierarchical data bases are the ANY 
and ALL operations. These can be used for variables 
mentioned in the WHEN statement which are on a 
lower level than the level specified by the TOTAL, 
DISTRIBUTE, or EXTRACT functions. (The level 
specified in the EXTRACT function is given in the 
FROM statement.) We have already seen a use of 
the ANY operation in the example ... 

TOTAL STORES: IN MICHIGAN; NEW JER
SEY: WHEN ANY DEPARTMENT NAME= 
HI FI: GO: 

where the variable DEPARTMENT NAME is on a 
lower level than the variable STORES specified by 
the TOTAL statement. As an example of· the ALL 
operation, suppose we wish to find those departments 
in New Jersey, all of whose -items sell for $8.00 or 
more. The message could be ... 

EXTRACT STORE NAME, ADDRESS, DE
PARTMENT NAME: FROM DEPARTMENTS: 
IN NEW JERSEY: WHEN ALL SELLING 
PRICE PER ITEM=8.00 TO 999999: GO: 

In this case, the variable SELLING PRICE is on a 
lower level than the variable DEPARTMENTS. 



400 Spring Joint Computer Conference, 1968 

Although OAT APLUS does not presently support 
the Boolean negation operation - due primarily to 
core size limitations - it is often possible to perform 
negations by appropriate use of qualified variables. 
Suppose we wish to find the number of stores in 
Illinois that are not in Cook County, we could say ... 

LET X = STORES (COUNTY = COOK): LET 
Y = STORES (X = 0): TOTAL Y: IN ILLINOIS: 
GO: 

The variable X will have the value 1 if the store is 
in Cook County, and 0 otherwise. The variable Y 
will have the value 1 if and only if X=O, that is, if 
the store is not in Cook County. 

Application to other data bases 

i\lthough Dl1,.TAPLUS was designed specifically 
to process data files useful to telephone engineers, 
the language is capable of wider application. The 
data file described in this paper can use a simple 
cognate of the language. Specifically, this means 
that only the nouns need to be changed and this can 
be accomplished by a trivial modification of a few 
program tables. 

Furthermore, the hierarchical structure of the 
department. store chain is representative of a tree 
structure common to many data bases. Suitably 
extended, the techniques employed in DA T APLUS 
can be applied to other tree-structured data bases, 
with the complexity of the extension depending on 
the number of levels in the hierarchy. 

Although this paper has been primarily concerned 
with the OAT APLUS language, it should be clearly 
understood that the language is the "front end" of 
an information processing system, the "back end" 
of which performs such actions as fetching the data 
from disk to core, calculating distributions, and 
printing results. Therefore, if one were to use OAT A
PLUS as the interrogation language for an information 
system built upon another data file, it would be profit
able to borrow as much of the back end of the present 
system as possible. A large measure of borrowing 
can in fact be accomplished because of the system's 
modular design. 

There is one subroutine (the Read routine) whose 
sole function is to fetch data from d-isk. The other 
programs are independent of the actual physical 
layout of data on the disk. Hence, application to 
other data bases could be performed by appropriately 
changing the Read routine with minor revisions of 
the other subroutines. 

The fact that the data layout is not an inherent 
part of the total system suggests three immediate 
advantages: The data in any application can be 

structured on disk to take advantage of any idio
syncrasies of the particular data base. The data can 
be structured to take advantage of the particular 
computer system's executive program and scheduling 
policy. The relative efficiencies of different layouts 
can be experimentally tested by inserting different 
Read routines. 

CONCLUSION 

In the literature on query languages comparatively 
little consideration has been given to the manipula
tion of data at the various levels of the multilevel 
file. 1

-
8 The necessity of such hierarchical operations 

as the ANY, ALL, and PER operations in DA T A
PLUS has been recog~ized in a recent paper9 de
scribing a proposed general purpose data manage-
ment system. Such operations, combined \-vith the 
OAT APLUS capabilities of totalling, distributing, 
and creating algebraic functions, make it possible to 
more fully utilize the information potential of the 
data file, and consequently increase the performance/ 
cost ratio of the information system. 

OAT APLUS was implemented on the GE-265 
computer operating under the G E time-sharing 
monitor, which allows only 5000 words of user core 
available for compiled FORTRAN code. (A number 
of program overlays were obviously required.) The 
system described in this paper has thus demonstrated 
the feasibility of implementing - on a small machine
a highly accessible, relatively inexpensive, and easy 
to use information retrieval system with substantial 
processing capability. 

REFERENCES 

C W BACHMAN S B WILLIAMS 
The integrated data store-A general purpose programming 
systemfor random access memories 
AFIPS Conf Proc 1964 pp 411-422 

2 Introduction to integrated data store 
General Electric Computer Department CPB 1048 April 
1965 

3 J H BRYANT P SEMPLE JR 
GIS and file management 
Proc of ACM September 1966 pp 97-107 

4 G enerlilized information system 
IBM Manual E20-0179 Reference No A 018773 

5 W D CUMENSON 
A nnual review of information science and technology 
John Wiley & Sons 
New York 1966 Volume I Chapter 5 
File organization and search techniques 

6 J MINKER J SABLE 
Annual review of information science and technology 
John Wiley & Sons 
N ew York 1967 Volume II Ch.:pter 5 
File organization, maintenance and search of machine .files 



7 C T MEADOW 
The analysis of information systems 
John Wiley & Sons 
New York 1967 Chapter 2 
The languages ofinformation retrieval 

8 N S PRYWES 

DATAPLUS 401 

Man-computer probLem soLving lYith multilist 
Proc of IEEE Volume 54 No 12 December 1966 

9 R E BLEIER 
Treating hierarchical data structures in the SDC time-shared 
data management system (TDMS) 
Proc of ACM August 1967 pp 41-49 





A language design for concurrent processes 

by L. G. TESLER 
Computer Consultant 
Palo Alto, California 

and 
H. J. ENEA 
Stanford University 
Stanford, California 

INTRODUCTION 

In conventional programming languages, the sequence 
of execution is specified by rules such as: 

(1) The statement "GO TO L" is followed by the 
statement labelled "L" (Branching rule). 

(2) The last statement in the range of an iteration 
is followed, under certain conditions, by the first 
statement in the range (Looping rule). 

(3) The last statement of a subroutine is followed 
by the statement immediately after its CALL 
(Out-of-line code rule). 

.. , (Other rules) 
(n) In other cases, each statement is followed by 

the statement immediately after it (Order rule). 
This paper will define a class of general-purpose 
languages which does not need these rules. The power 
of these languages is equivalent to that of Algol, PL-l , 
or LISP. Other languages which do not need these 
rules appear in the literature.1,2,3 

Concurrent processing 

The advent of multi-processing systems makes it 
possible for a computer to execute more than one in
struction at a time from the same program without re
sorting to complicated look-ahead logic. There are 
many ways in which this capability can be utilized; one 
way is to find several statements that could be exe
cuted simultaneously without conflict, and to delegate 
their execution to different available processors. This 
technique is sometimes called "concurrent process
ing". To employ it there must be a means for deter
mining, during compilation, which statements can be 
processed concurrently. 

Many proposals for programming languages have 
suggested that more rules like I, 2, 3, ... ,n should 
be added for explicit indication of concurrence.4,5,6,7 

Examples of such rules are: 

403 

(n + 1) The statement "FORK M, N, ... " is 
followed simultaneously by the several 
statements labeled "M", "N", ... ; the 
statement "JOIN M, N, ... " terminates 
the fork. 

(n + 2) The range of statements following "DO 
SIMULTANEOUSLY" can be executed 
for all values of the iterated variable at 
once. 

The programmer using these facilities must take care 
that the statements performed simultaneously do not 
conflict, e.g., do not assign different values to the same 
variables.s 

Other proposals have suggested an analysis of po
tential conflicts, during compilation, to isolate aU 
concurrence that does not depend on run-time data 
values ("program concurrence").8,9,lO,1l,12 This ap
proach is adopted here because its automatic elimina
tion of all possible conflicts guarantees determinacy. 

Once it is possible to isolate all program concur
rence using implicit information, it is tempting to ex
amine the possibility of determining all program se
quence (i.e., non-concurrence) using implicit infor
mation. If that were possible, then not only rules 
n + J and n + 2 but also rules 1,2,3, ... , n could be 
eliminated. In the following section, the class of "sin
gle assignment" languages will be defined such that 
all program sequence and program concurrence are 
determinable during compilation without explicit 
indication. 

Single assignment languages 

A program written in a single assignment language 
has the following essential characteristic: 

No variable is assigned values by more than one 
statement. 

The only effect of executing any statement is to as-



404 Spring Joint Computer Conference, 1968 

sign values to certain variables named in that state
ment (no -side- effects). 

Every statement is an assignment statement. The 
variables names in each statement belong to two ex
clusive groups: 

(1) Outputs: Those which are assigned values by 
the statement. 

(2) Inputs: Those whose values are used by the 
statement. 

The output variables are said to be dependent on 
the input variables. The abbreviation "AdB" stands 
for" A is dependent on B". Dependence is: 

(a) Transitive: AdBABdC ~ AdC. 
(b) Antisymmetric: AdB~ 'iBdA. 
(c) Irreflexive: -'AdA. 

Circular dependence is not allowed; for example, A 
can't be dependent on B if BdC and CdA. If neither 
AdB nor BdA, then A and B are independent. 

All required program sequence can be determined 
during compilation by a straighforward tracing of 
dependence. As the symbol table is built, two-way 
pointers are constructed between the input and the 
output variables of each statement. The final symbol 
table, which is both a data-flow and a program-flow 
diagram, elucidates the required sequence in the pro
gram. Statements that are not found to require sequen
tial execution can be performed concurrently. The 
rules I, ... , n + 2 are replaced by the single rule: 

The statement that outputs variable A must be exe
cuted before every statement that either inputs A or 
inputs some B such that BdA. 

The order of appearance of statements is immaterial 
to this analysis; consequently, an incremental com
piler can be employed which accepts statements typed 
in any order. This property is especially useful when 
adding a statement toa previously written program 
because neither unforeseen side effects nor misloca
tion of the statement can occur. 

Optimization 

One way of optimizing a program is to reduce the 
amount of redundant computation by combining "com
mon expressions". In a single assignment program 
there are no side effects; therefore, common expres
sions throughout the program can be combined dur
ing compilation. Another way of optimizing a pro
gram is to allocate storage efficiently. For example, in 
the program: 

var: x+y; 
a: var-w; 
b: 2 x var; 
c:x-y; 
d:-var;. 

storage for the variable "var" need not be reserved 
until just before any of the statements "a", "b", or 
"d" demand the value of "var", and may be released as 
soon as all of "a", "b", and "d" no longer require the 
value of "var". These requirements can be detected 
easily during compilation. As a r~sult, storage is never 
allocated for a variable except when necessary to 
guarantee the availability of its value for further com
putation. 

Compel 

Compel (Compute Parallel), a single assignment 
language, will be partially defined so that examples of 
single assignment programs can be given. This lan
guage has not been implemented. 

Compel programs process three types of quanti-
ties: numbers, lists, and functions. A number is a 
floating-point approximation to a complex number, 
e.g., 

2+i4.6 
-17.3 
5 

A list is an ordered set of zero or more quantities, e.g., 
[factorial, [6.2,7], [ ] ] 

[ 1 ,5,9] = f [1 by 4 to 9 ] 
[1 by 4 for 3] 
[ 1 , while preceding < 9 use preceding + 4 ] 

l [ while index < 3 use 4 X index - 3 ] 
A function has one argument which may be of any 
type and is frequently a list ("parameter list"), e.g., 

cpx (x i 2) 
cp[a,b] (axx+bxy) 

Blocks may be created for local naming-they have 
nothing to do with storage allocation or with program 
sequence. The statements within a block may appear 
in any order, and the blocks within a program may nest 
and appear in any order. Each block begins with the 
line: 

input vi, v2, ... , vn; 

where vi, ... , vn (n ;::: 0) are the names of those 
variables defined outside the block and used inside 
the block. Similarly, each block ends with the line: 

output wI, w2, ... , wm; 

where wi, ... , wm (m ;::: 1) are the names of those 
variables defined inside the block and used outside. 
Every statement is of the form: 

VARIABLES :EXPRESSION; 
For example, the statement: 

a: [1,2,4]; 

assigns to "a" the single quantity" [ 1 ,2,4] ". 
The statement: 



a:each [1,2,4] 

is analogous to the Algol statement: 

for a: = 1,2,4 do ... 

where the range of the do includes all statements 
which are dependent on "a". On a parallel computer, 
all values of "a" can be produced concurrently; thus, 
a variable (in this case "a") can have several values 
at the same time. The function each splits a list of 
values so that its elements can be operated on indi
vidually. 

After a list is split and its elements have been oper
ated on individually the results- of the operations are 
collected back into a list. For example: 

a:each [1,2,4]; 
b:a i 2; 
c:list ofb; 

Statement "a" splits the list "[ 1 ,2,4]" into three 
quantities; statement "b" squares each quantity; state
ment "c" collects the results into a single list, i.e., 
"[ 1 ,4, 16]". Splitting and collecting are analogous to 
forking and joining, except that splitting operates on 
the data flow, but forking operates on the program 
flow. 

Every statement that does not assign values to the 
output variables of its block can be eliminated from 
that block by systematic substitution. For example, the 
three statements in the last example can be reduced to: 

c:listof(each[I,2,4]) i 2; 

This property is the converse of common expression 
combination. 

The two statements: 

a:each [1,2,4]; 
b:a i 2+a i 3; 

where "a" is used in no statement but "b", can be 
reduced to one statement in another way by use of the 
following construction: 

b:a i 2 + a i 3 with a each [1,2,4]; 

Its advantage over the two statements it replaces is 
that, by omission of the colon after "a", "a" becomes a 
name local to the statement. A local variable is distinct 
from all other variables of the same name throughout 
the program. 

In the examples that follow, subscripting is specified 
by a downward arrow, e.g., ai,j is written: 

a ~ [i,j] 

Examples 

Two simple Compel examples are given below. For 
each are given: 

A Language Design for Concurrent Process 405 

(a) a program/data flow diagram displaying con
currence and storage release; 

(b) an Algol program using fork, join, and do si
multaneously; 

(c) aCompelprogram. 
Figure 1 illustrates concurrent execution of state

ment and optimization of storage. 

I START I 
I 

a,d,e 

Figure I - Concurrent execution of statements and 
optimization of storage 

Algol (extended): 
begin 
real a,b,c,d,e; 
comment storage for these variables is reserved 

immediately upon block entry, and is not 
released until block exit; 

fork rl, r2, r3 ; 
rl: a:=6 ; fork r4, r5 ; 
r2: b:=7 ; fork r4, r5; 
r3: c:=8 ; go to r5 ; 
r4: join rl, r2 ; d :=a-b; go to r6; 
r5: join rl, r2, r3 ; e:=axb-c; 
r6: join r4, r5; out:= (a-e)/d; 
end 



406 Spring Joint Computer Conference, 1968 

Compel: 
input; 
out:(a-e)/d; 
a:6; 
e:axb-c; 
d:a-b; 
b:7; 
c:8; 
output out; 

Figure 2 demonstrates simultaneous assignment of 
all the elements of a list. 

I START I 

· -.--~---- I Ym:~ t! I 
"--___ --.;L-__ ~_- ______ _ 

Figure 2 - Simultaneous assignment of all the elements of a list 

Algol (extended): 
begin 
array t[ 1 :mJ; 
integer i; 
inarray (t); 
for i := I step 1 until m do simultaneously 

y[i]:= t[i] i 2; 
outarray (y); 
end 

Compel: 
input t; 
y: list of (each t) j.2; 
output y; 

Programming methods 

When programming in Compel, som'e traditional 
techniques cannot be employed and new methods 
must be substituted. Some of these methods will 
be discussed below. 

To avoid circular dependence, the input variables 
of a statement must be different from the output vari
ables; therefore, it is impossible to write the equiva
lent of Algol's: 

i:=i + 1; 

However, the incrementation of "i" is never a major 
step in a program, but merely one small step in a larger 
process. In Compel, notation is provided to incorpo
rate such a step into an algorithm. 

Example 1: to compute the sum of the elements of 
list "m" one can write: 

sum:+m; 
where "+" is a function which returns the sum of the 
elements of its argument. 

Example 2: in an Algol program, a variable may be 
assigned values in several statements, some of which 
increment the variable: 

r:=rO; 
for i:= 1 step 1 until n do 

begin 
a [i] :=bxr; 
r:=r+2; 
end; 

rl:=r; 

In Compel each variable is assigned values by only 
one statement: 

r:each [rO by 2 for n]; 
a: list of (bX r); 
rl:last (list ofr); 

Conditional statements are not available in Compel; 
therefore, conditional expressions must be employed 
to achieve the effect of the Algol statements: 

y:=yO; 
b:=bO; 
t: =to; 
ifa < 0 then 

begin 
b:=c+ 1; 
y:=a; 
end 

else 
begin 
t:=r-a; 
y:=v; 
end; 

A corresponding Compel program: 

b: LbO, if a < 0 then c+ 1 else preceding] t [2]; 
t: [to,. if a > 0 then r-a else preceding] t [2]; 
y: [yO, if a < ;0 then a else v] t [2]; 

The word preceding in the generation of a list de
notes the immediately preceding element in the list. 
If it is necessary to refer to several preceding ele
ments, this can be achieved as in the following ex
ample, which generate the first 1000 Fibonacci num
bers: 



fibonacci:listof(pair ! [2]); 
pair:each [[O,IJ 

while index < 1000 use 
[preceding! [21, 
preceding ! [ 1 J + preceding ! [2 J J 
J; 

Problems which are solved in Fortran or in Algol 
by repeatedly changing the values of various matrix 
elements might seem to be difficult to solve in Com
pel. Therefore, a matrix reduction by Gaussian elim
ination will be given as an example of an iterative 
algorithm. The matrix is stored as a list of rows, and 
the rows are each lists of elements. 

The following block defines "gauss", a function of 
three parameters: "a", "b", and "eps", where "a" and 
"b" are matrices: 

a= [;::" " ":.J b= ~~l.'""" ~l~"J 
[bnl bnm ] 

nXn nXm 

Gauss returns: 

'

[I a'12 ... a'ln b'll ... b'lm]. 

[0 a'22 ... a'2n b'21 ... b'2m] 

............... 
L [0 o ... a' nn b' nl ... b' nm] 

In other words "a" and "b" are placed side-by-side, 
and row operations are performed which reduce the 
"a" -part to an upper triangular matrix. 

If "a" is singular, Gauss returns undefined. The 
criterion for singularity is that the pivot in some step 
of the Gaussian elimination becomes 0 ± eps. 

The following ten-statement block defines Gauss. 
Each iteration generates one row, "pivr" of the result 
matrix. These rows are collected, unless the matrix 
was singular: 

input; 
gauss: <,0 [a, b, eps]: 

if Length (a) < 1 then [ J 
else if Last (list of abs pivot» eps then 

list ofpivr 
else undefined; 

Before iteration begins, scaling is performed. First, 
"b" is put next to "a" to form the n by n+m matrix 
"ab". Every row of "ab" is divided by the largest 
element ("maxv") of its "a" -part: 

A Language Design for Concurrent Process 407 

ab: list of (each a) concatenate (each b) ; 
scale: list of 

list of (each abrow)/maxv (arow) 
with abrow in ab and arow in a; 

The program generates n iterations. In the first, "iter" 
is the n by n+m matrix "scale"; in the i'th, "iter" 
is collected into a list of rows from the n - i + 1 rows 
"reduce" generated by the (i - 1)st iteration. If singu
larity is discovered, iteration ceases. 

iter: each [scale, 
while abs(pivot» eps /\ index <n use 

list of reduce J ; 
i: each [1 to nJ; . 
n:Length(a) ; 

In the i'th iteration, column i is searched for one of 
its largest elements, "pivot", located at iterpivi,i. We 
use "max(x)" which produces a list of positions in "x" 
where "maxv(x)" occurs. 

pivi: max(i coLumn iter) ! [1 J ; 
pivr: iter ! [pivi]; 
pivot: pivr ! [iJ ; 

Every "row" in the matrix, excluding "pivr", is re
duced to "reduce" by subtracting from it that multiple 
of "pivr" which makes reduce = 0: 

row: iter ! [each [1 to pivi-l, pivi+ 1 to 
n-i+l]]i; 

reduce: list of (each row) - (row! [I]1pivot) 
x (each pivr) ; 

output gauss ; 

On a sufficiently parallel machine, the execution 
time for this function is proportional to n; on a se
quential machine, Gaussian elimination time is rough
ly proportional to n3

• 

Programmer education 

The language Compel has been taught to several 
members of Midpeninsula Free University (Menlo 
Park, California) as part of a course in "Background 
for Computer Programming". Practically the entire 
language was covered in two hours, and the members 
were able to solve simple problems like those in this 
paper. Among the reasons that it is easy to learn 
Compel are: 

(l) There is no i = i + 1" paradox to excuse. 
(2) There is no need to explain "side effects". 
(3) Substitution is completely uI!restricted. 
(4) The data types are few, simple, and non

overlapping. 
(5) Each variable is defined exactly once. 
(6) Input and output files, considered lists of m,lm

bers, are in the same format as internal quanti
ties,' and are accessed in the same manner as 



408 Spring Joint Computer Conference, 1968 

global variables .. Therefore, there are no read, 
write, or format statements to confuse learning. 

(7) There is only one kind of statement. 
The following concepts, new to a non-programmer, 

needed to be taught: 
(!) Church's lambda notation ("!p" in Compel); 
(2) input and output to statements and to blocks; 
(3) the need to rewrite equations so that the un-

knowns are on the left side; 
(4) split and collect. 

I n order to teach Fortran, it is necessary to discuss 
many machine-oriented restrictions, to introduce more 
new notations, and to concern the student with much 
detail which is of little relevance to the problems being 
solved. 

SUMMARY 

In single assignment languages, no variable is assigned 
values in more than one statement, and no statement 
has side effects. 

Explicit indication of program sequence and con
currence is not required; these are determined im
p1icitly by tracing dependence during compilation. 
Among the advantages of this class of languages are: 
no side effects; immaterial order of statements; com
mon expression combination; compiler detection of 
all program concurrence; efficient compiler-deter
mined release and management of storage. 

The simple examples provide evidence that lan
guages in this class are useful for general-purpose pro
gramming. A complete description of Compel and 
more practical examples are available from the 
authors. 

ACKNOWLEDGMENTS 

This research was supported (in part) by Grant MH 
06645-07 from the National Institute of Mental 
Health. We are indebted to Kenneth Mark Colby for 
his encouragement during the course of this work, to 
James Lyon for drawing the figures, to William 

. McKeeman for suggesting the Gaussian elimination 

algorithm, and to the referees for many valuable 
suggestions. 

REFERENCES 

I J MCCARTHY 
D J EDWARDS 

P W ABRAHAMS 
T P HART M I LEVIN 

Lisp 1.5 programmers manual 
MIT Press Cambridge Massachusetts 1962 

2 E D HOMER 
An algorithm for selecting and sequencing statements as a 
basis for a problem-oriented programming system 
Proceedings of the 21st National ACM Conference 1964 

3 S SCHLESINGER L SASH KIN 
POSE: A language for posing problems to a computer 
CACM, vol 10 May 1967 pp 279-285 

4 M E CONWAY 
A multi-processor system design 

Proceedings of the i 963 Faii joint Computer Conference. 
5 J A GOSDEN 

Explicit parallel processing description and control in pro
grams for mlilti- and un i-processor computers 
Proceedings of the 1966 Fall Joint Computer Conference. 

6 J P ANDERSON 
Program structures for parallel processing 
CACM Vol 8 Dec 1965 pp 786-788 

7 N WIRTH 
Letter, A note on program structures for parallel processing 
CACM, Vol 9 May /966p320 

8 J P ANDERSON 
Better processing through better architecture 
Datamation Vol 13 (August 1967) pp 37-41 

9 A J BERNSTEIN 
A nalysis of programs for parallel processing 
I EEE Transactions on Electronic Computers Vol EC-15 
Oct 1966 pp 757-763 

10 H W BINGHAM D A FISHER W L SEMON 
Detection of implicit computational parallelism from input
output sets 
Burroughs Corporation TR-66-4 23 pages December 1966 

II D A FISHER 
Program analysis for multiprocessing 
Burroughs Corporation TR-67-2 71 pages May 1967 

12 H HELLERMAN 
Parallel processing of algebraic expressions 
I EEE Transactions on Electronic Computers Vol EC-15 
Feb 1966 pp 82-91 



Control of sequence and parallelism in 
modular programs 
by LARRY L. CONSTANTINE 
Information & Systems Institute, Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

A variety of schemes for the specification and. opera
tion of parallel computation have been described 
recently 1.2.3,4 (see also references in Gosden3). For 
the most part, the proposed systems are concerned 
with parallelism on a detailed or statement level. 
Furthermore, as argued by Wirth,5 the proposals are 
not at a truly procedure- or problem-oriented language 
level but represent transliterations of machine or 
process-oriented operations. Notable exceptions to 
this are the and and shared statements of Wirth,5 

and the parallel for Gosden3 (similarly the DO 
TOGETHER in Oplert). 

The purpose of this paper is not to add merely 
another minor personal variation or extension to 
the now hackneyed fork and join statements. Both 
the raison d' etre and the form of the language exten
sions to follow are found in basic modular program
ming and program design concepts.6•7 The proposed 
features are intended to provide a macro-level ca
pability for the natural expression of inter-module 
sequence relationships requiring' a minimum of 
added analysis by the user. Without a concern for 
simplicity of expression and minimal analysis in the 
use of parallel features, there is a considerable 
danger of escalating already spiralling programming 
costs. 

Technical considerations 

A number of issues are very central to the problem 
of parallel program control. One much confused in 
the . literature is the question of distinguishing neces
sary, sufficient, and desirable features. The answers 
vary considerably depending on the language level 
at which the question "is formulated. It appears that 
a small number of well chosen high level features 
are sufficient and desirable but that these probably 
must be supported by a larger number of necessary 
primitives for completeness on the low levelS. 

Moreover, it is not merely sufficient to provide 
facilities that permit or declare parallelism. Some 

409 

vital technical constraints must be addressed. Among 
these are: the "critical section" problem, the queuing 
problem, and the determinacy or reproducibility 
problem. The critical section problem is that of 
assuring that simultaneously executed programs which 
share sections of code (or other system resources) do 
not simultaneously execute their "critical sections," 
that is the sections relating to the shared resources. 
This problem has at least one guaranteed solution.8•9 

The queuing problem is related to (and found to be 
tied up with) the critical section problem. Having 
solved the critical section problem as given above, 
it is' desirable to assure that no program can be 
indefinitely delayed in attempting to make use of 
some system resource and that some reasonable 
service discipline is followed. The former is at least 
assured in the critical section solution of Knuth.9 

The determinacy question is broader and may even 
involve, in certain forms, the two problems above. 
We want the output of a program to be a deterministic 
function of only its input and initial state, and not 
depend upon external factors such as the timing of 
other programs or subprocesses sharing the same 
facilities. Such a program will give the same output 
each time it is started from the same initial state 
and given identical input streams. Consequently, 
deterministic programs are also called asynchronously 
reproducible and output -functional. A program model 
which illuminates sufficient conditions for determina
cy has been developed10 and a detailed mechanism for 
guaranteeing reproducibility has been designed. 11 

It is proven by Luconj12 that the schemes are, in a 
certain sense, equivalent. Both of these schemes 
address the problem of parallel process description 
at the machine or machine language level and in detail 
are very complex. 

Programming considerations 

One problem with most of the schemes for specify
ing and controlling parallelism is that they are either 
inherently complex, impose considerable additional 



410 Spring Joint Computer Conference, 1968 

constraints on the programmer, or require additional 
analysis from him. Some require additional analysis 
merely to reap any benefits of parallelism; others 
require it to avoid erroneous parallelism, that is, 
ambiguous or non-deterministic programs. 

Unfortunately, programming is sufficiently compli
cated and error prone without the problems of parallel 
processing. We would like to extend the power of 
our languages and processors while not adding to 
this burden. Moreover, errors in asynchronously 
communicating programs are likely to be the most 

serious and difficult to discover and correct. II There
fore, in addition to guarantees of determinacy, we 
want a mechanism for specifying parallelism which 
requires a minimum of additional analysis, is' simple 

and easy to use, logically transparent, and which, 
where it permits program-level errors, permits them 
in ways which are more amenable to discovery and 
correction. 

Control, sequence, and hierarchy 

It is very evident that, in terms of process descrip
tion, sequence is largely artificial in programs. The 
separation of the flows in a program into control and 
data streams is, for the most part, an artifact of the 
machines we use and the attendant algorithmic view 
of programs. The real statements of our problems are 
only partially ordered systems, and the sequential
ness which becomes the "execution stream" is either 
inherent in the problem description or must be rather 
arbitrarily introduced in coding. For some cases, 
the inherent sequencing can be analyzed automatically 
and an unordered problem description used to produce 
a sequential one. Some languagesl3•14 have incor
porated this concept. 

The program graphs used in attacking the deter
minacy problem in RodriguezlO and a somewhat 
more elegant model of the same name in Martin and 
Estrin15 provide a method for specifying sequence 
constraints, including parallelism, on the basis of 
the data streams. The constituents of the latter model 
are summarized in Figure 1; a full description is 
found in Martin and Estrin. I5 

From the standpoint of our problem, the important 
aspect of a program graph is that there is no separate 
"flow of control" or execution stream. A node (sub
process) becomes active when the required input or 
inputs are present. Now it may be that one item of 
data that passes through the system is a "unique 
baton of control," but this needs no separate or 
independent feature to handle it. 

A program may be modeled by a program graph 
to many different degrees of detail. One degree is 
of particular interest, that is, where each node of 

.. PUTSQ\O 00/ 

, A NODE: repr~ents .subprocess operatin& 
on Inputs to produce outputs. 

• 0 0 " 

OUTPUTS 

o ~ 

4">\$ 00 

,"W "/ 

O DISJUNCTIVE INPUT: process becomes active 
when anyone of inputs is present 

CONJUNCTIVE INPIJT: process becomes active 
when aI inputs are present. 

Q ilISNNCnVE GUinii: one and oniy one 
output is produced on completion 
of the process. 

$ ~ •• ' 

CONAKTM OUTPUT: aI outputs are 
praced on completiol of 
the process. 

Figure I - The program graph, a model of computational processes, 
including parallel processes 

a program graph corresponds to a whole program 
module (e.g., a subroutine). Parallelism at this macro
level is likely to be fairly easy for the programmer 
to deal with conceptually. Furthermore, the gains 
from parallelism relative to the cost of task switch
ing, that is, the system overhead required to initiate 
and complete each task, are likely to be quite high. 
Forks and joins at the statement level are very likely 
to cost more in executive overhead than the savings 
possible from parallel operation. 

Program hierarchy, that is, the control hierarchy 
of modules in a system, is an important issue in 
program design. 7 Essentially, this is the hierarchy 
determined by normal subroutine calls. As an exam
ple, consider the problem of generating lists of 
','key words" from sentences in some input text. 
The basis for choice will not be discussed here, 
but at least three fundamentally different hierarchies 
are possible, all performing the same overall process. 



Control of Sequence and Parallelism in Modular Programs 411 

These are given in Figure 2. The hierarchy of control 
is, in this case, an artifact, like control sequence, 
and in concept could be eliminated. The co-routines 
of Conway16 are addressed precisely to this matter. 
In co-routines, the input-output relationships in 
fact determine control, avoiding some messy program
ming details that arise soiely from the artifact of 
control hierarchy. 

COffiROI. IlERARCHY GEIlRAI. FORM OF PROCESSIfG 

--

--

--

MDt: 

CAU. II'IIT 

CAll LIST 

CAll KEY 

Elm 
KEY: 

CAll LIST 

00 
LIST: 

:CAl.l1I'IIT 

EJII 

II'IIT: 

READ 

IF EIII If SENTEIU, CALI. LIST 

Elm 
LIST: 

:f AU LISTED, CALI. !lEY 

EJII 

Figure 2 - Alternate hierarchies for identical processing. KEY is a 
rourine to generate key words from a list of words, LIST generates a 
list of words from a sentence as a text string, and INPUT inputs a 
sentence, that is, the three modules contain the processing for the 

functions as given 

The idea has been extended in the program strings 
of Morenoff and McClean.17.18 The development of 
program strings was directly motivated by the desire 
to enable the simple, natural structuring of whole 
programs into larger units. A program string is 
illustrated in Figure 3. Each block in the program 
string is a generalization of the conjunctive node in 
a program graph. Some part of the block becomes 
active when some . combination of inputs becomes 
available. Outputs are produced not all in one event, 
but at various times. Obviously, a block could be 
decomposed into an equivalent program graph, but 
to require this of the programmer in the design pro
cess is undesirable. It should be pointed out that the 
buffer files between blocks cause the determinacy 
problem, in an sense, to disappear. The buffer files 
completely isolate units in the system. Data, once 
outputted to a buffer, cannot be accessed or changed 
by the generating module. Thus the possibility of 
attempted simultaneous access to the same cell is 

eliminated. It is still possible to create indeterminate 
string structures if the behavior of a program is 
controlled by the sequence of· appearance of data 
from different streams. However, a restriction to 
one active control stream per module in the string 
structure prevents this provided that an attempted 
access on an input stream either inhibits the control 
stream from continuing if the buffer is empty or 
results in transmission of the data and continuation. *' 

i 
PROGRAM AlPHA 

PROGRAM BETA PROGRAM GAMMA 

OOTPUT 

Figure 3 - A program string stucture. Each output stream is 
buffer 

It is inconvenient to restrict the control of sequence 
to those determined by simple input-output inter
relationships alone. The fact is that some parts of 
processes are more naturally expressed in terms of 
statemental succession, others in a control hierarchy, 
and still others as co-routine or program string struc
tures. What we now do is to present a set of language 
features which imbed the concept of program strings 
into the language and extend its applicability down-

*The proof of determinacy depends on the inability of a module in 
the structure to make a decision on the presence or non-presence of 
data on any input stream. With complete isolation and a single 
control stream, each module is in itself determinate except for 
possible effects due to its inputs. Consider the first input attempt 
by a module. Execution of the next s~quentjal instruction guaran
tees that the data are available and have been accessed independent 
of the timing of other modules. The control sequence is thus 
independent of the order of appearance of inputs from different 
streams. All modules must then be output-functional with respect 
to inputs from the outside, hence the order of appearance of data 
on any purely internal stream is fixed by outside input and initial 
state. Since each internal input stream is identified with one and 
only one internal output stream, that is, no merges are permitted, 
the order of appearance of data on these streams cannot depend 
on timing. Therefore the structure is output-functional with respect 
to inputs from within the structure as well. 



412 Spring Joint Computer Conference, 1968 

ward to the subroutine level. The structures so defined 
are also analogous to the computation graphs of Karp 
and Miller19 by virtue of imposing a strict pairing of 
an output set with an input set through the use of the 
explicit to - explicitfrom pair. t 

The data control mechanism 

What we would like to do is separate the trans
mission of information to a module from the trans
mission from a module. We would also like to make 
the passing of control an optional matter which is 
governed solely by input-output constraints, 

Four language constructs are required for this. 
BET A must be able to transmit data explicitly to 

The "normal" subroutine call is the prototypical ALPHA and to receive it explicitly from ALPHA. 
point of departure since it is the sole structuring and ALPHA must be able to accept data from any module 
sequencing mechanism for modules in most languages. calling it, for example, implicitly from BETA, and 
Consider the call in routine BETA to subroutine return data implicitly to BETA as its caller. This 
ALPHA with four parameters separation of the input linkage function from the 

ALPHA (A,B,X, Y) output linkage for subroutine calls is somewhat 
It is impossible to tell whether the parameters inimical to current languages. Some violence to 

are merely arguments being transmitted to the module syntax is thus required. 
ALPHA or whether some are specifying return loca- The four proposed statements are shown in Table I. 
tions for the output of ALPHA. Let us assume the A "normal" call, that is, one which imposes full 
general case where some, say X and Y, are output subordination, is the simple combination of the 
parameters. Then conceptually the effect of such a call explicit to and the explicit from. The explicit from 
is to pass the input parameters A and B to ALPHA, to is useable in the evaluation stream (as an expression) 
hand control to ALPHA, which retains it until the out- since the value of a procedure is an output. The 
put values for X and Yare developed, and then to re- execution of an explicit to statement assumes only 
turn the output values and control to the calling mo- that the parameters are transmitted to the called 
dule. Control must leave BETA and not return until module, and following the explicit from statement 
~he output has been completely generated because, in it can be assumed that the corresponding parameters 
the subroutine to have been completed. have been set by the called module. Control, either 

T ABLE I - Proposed Language Extensions for Data Control of 
Sequence and Parallelism Among Program Modules. 

NAME ALGOL FORM 

Explicit to tof(x, ... ,z) 

Explicit from from f(x, ... ,z)* 

Implicit to return val,(x, ... ,z) 

Implicit from receive (x, ... z) 

Full call f(a, ... d)* 

DATA SOURCE 

calling (this) 
module 

return queue of 
calling (this) 
module. 
called (this) 
module. 

entry queue of 
called (this) 
module. 

calling (this) 
module. 

* Alternatively to permit the natural use of explicit from in expres
sions, f(x, ... , z) could be used for that purpose and call f(a, ... , d) 
for the full call. 

t In review it was noted that the structures defined by the pro
posed mechanism appear to be isomorphic to the computation 
graphs of Karp and MiIler.19 A proof of this would provide an inde
pendent proof of determinacy, as computation graphs are deter
minate. 

DATA TARGET 

entry queue of 
called module. 

calling (this) 
module. 

return queue of 
calling module. 

called (this) 
module. 

calling (this) 
module. 

SEMANTICS 

transmit the parameters to 
the called module. 

get the value of the called 
procedure and output parameters. 

return value of procedure and 
output parameters as specified 
by an explicit from. 

set values for dummy parameters 
as obtained from an explicit to. 

transmit parameters to called 
procedure, activate, return 
outputs to calling procedure, 
and restore control in calling 
procedure. 

the same stream as the calling module or from an 
independent (parallel) stream, is given to the called 
module some time between the execution of the 
explicit to and the explicit from. The decision of 
when and how to give control to the called module, 



Control of Sequence and Parallelism in Modular Programs 413 

within the bracketing mentioned, is that of a super
visory system. Within a called module, the implicit 
from indicates when a module expects its input 
parameters, and an implicit to returns output to 
the module which generated the inputs of a partic
ular activation. 

N ow it is only necessary for a programmer to get 
into the habit of making to-calls at the earliest possible 
point, that is, as soon as all the parameters are avail
able, and from-calls at the latest point, only when the 
output values are immediately needed. Thus the use 
of data control of module activation does not require 
added analysis for possibilities for parallel processing, 
only different habits. It should be observed that the 
use of fully parameterized calls, independence of 
modules except for explicit task relationships, and 
the control of intermodule sequencing by programmer 
specified data constraints permit fairly large and com
plex systems to be structured as the secondary effect 
of simply fully analyzing and specifying each sub
part of the system. 

Asynchronism is permitted by association buffer 
files in each data stream. A FIFO queue is associated 
with the entry interface (by which a module is called) 
and with each linkage return interface (to which a 
module returns). Note that the latter are required 
dynamically and will only need to exceed length 
one when more than one to-call on the same module 
from the same (or other) module are allowed to 
queue up. 

The modules specified according to the features 
as described so far are analogous to conjunctive 
input/conjunctive output nodes of a program graph. 
This mechanism can be generalized by permitting 
some parameters to be omitted in any of the state
ments. Thus, a program might include 

to F ("p,q) 

to F (r) 

to F (,s) 
which in total would behave like 

to F (r,s,p,q,) 
but would permit additional overlap if F were properly 
written to take advantage of this. For example, p 
and q may be setup parameters to F, and F would 
include 

receive ("a,b) 

receive (c,d) 

The generalized mechanism is more complicated to 
implement and involves potentially more processing 
on each to or from statement. Input values trans
mitted by an explicit to must be identified by source 
(i.e., return linkage) to associate portions of the param
eter sequence transmitted at various times and 
prevent mixing of parameters originating from 
different modules. Each addition to an entry queue 
must be checked to see if it satisfies a waiting implicit 
from. Once an implicit from becomes associated with 
part of one particular parameter string, all further 
implicit from calls must be satisfied from the same 
string until this activation is complete. The additional 
cost may be offset by increased possibilities for paral
lelism. However, it should be noted that a sophisti
cated algorithm may be required to select partial 
parameter strings in satisfaction of an initial implicit 
from. An implicit from may be satisfied by several 
entries in the queue, some of which may hang the 
module for some time in waiting for other needed 
parts of the string. 

Several interesting possibilities for parallelism are 
nevertheless opened up by the generalized form. By 
never requesting parameters which are not used on a 
particular activation, it is possible that execution 
could begin earlier. In addition, parameters are 
frequently used merely to be passed on down in the 
task hierarchy. Accepting these parameters can be 
delayed until just prior to transmitting them down
ward. 

Implementation 

It should be re-emphasized that the proposed 
statements are at a very high level and hence the pro
grammer need not be concerned with . their imple
mentation. Each statement can be associated with 
a fairly complex sequence of processing. The whole 
is assumed to be superimposed on a micro-level 
system with "conventional" parallel processing 
instructions. It is at the micro-level that the problems 
of implementation discussed earlier are to be attacked. 
They can be solved using present solutions or po
tentially, in new ways which depend upon the con
strained forms of parallelism possible under the 
data control mechanism. 

CONCLUSIONS 
What has been presented is a generalization of the 
normal task subordination mechanism to isolate 
the input and output portions of the call operation. 
This permits the simple and natural specification 
of data-presence constraints in such a way that se
quence and parallelism are the by-product of a rather 
straightforward discipline. It is proposed that this 
generalization be used as a source language level 



414 Spring Joint Computer Conference, 1968 

method of specifying process parallelism. The data 
control method proposed is limited to intermodule 
parallelism. From the standpoint of overhead and 
supervisor functions, this is probably beneficial. 
However, nothing prevents data controi from being 
combined effectively with source language specifiers 
at the statement level such as the and and parallel 
for. 

ACKNOWLEDGMENTS 

Appreciation is expressed to Professor David Martin, 
now at U eLA, for early criticism and suggestions 
and for encouraging the pUblication of this proposal. 

REFERENCES 

1 J P AN DERSON 
Program structures for parallel processing 
Communications of the ACM 
Volume 8 Number 12 December 1965 p 786 

2 J B DENNIS E C VAN HORN 
Programming semantics for multi programmed computations 
Communications of the ACM 
Volume9 Number3 March 1966 p 143 

3 J A GOSDEN 
Explicit parallel processing description and control in 
programs for multi- and uni-processor computers 
AFIPS Proceedings of the 1966 Fall Joint Computer Con
ference 
Volume 29 p 651 

4 A OPLER 
Procedure oriented language statements to facilitate parallel 
processing 
Communications of the ACM 
Volume 8 Number 12 December 1965 p 786 

5 N WIRTH 
A note on program structures for parallel processing 
Communications of the ACM 
Volume 9 Number 5 May 1966 p 320 

6 L L CONSTANTINE 
Toward a theory of program design 
Data Processing Magazine 
Volume 7 Number 12 December 1965 p 18 

7 L L CONSTANTINE 
Concepts in program design 
Information & Systems Press Cambridge Massachusetts 
Second Edition 1967 

8 E W DlJKSTRA 
Solution of a problem in concurrent programming 
C~mmunications of the ACM 
Volume 8 Number 9 September 1965 p 569 

9 D E KNUTH 
Additional comments on a probiem in concurrent program-
ming control 
Communications of the ACM 
Volume 9 Number 5 May 1966 p 321 

10 J E RODRIGUEZ 
Analysis and transformation of computational processes 
Massachusetts Institute of Technology Project MAC 
Memorandum MAC M 301 March 7 1966 

11 E C VAN HORN 
Computer design for asynchronously reproducible multi
processing 
Massachusetts Institute of Technology Project MAC 
Technical Report MAC TR 34 November 1966 
November 1966 

12 F'L LUCONI 
On the equivalence of two asynchronous computation 
description schemes 
Massachusetts Institute of Technology Project MAC 
Computation Structures Group Memorandum Number 25 

13 A L PUGH III 
Dynamo users manual 
MIT Press Cambridge Massachusetts 1961 

14 S SCHLESINGER L SASHKIN 
POSE: A languagefor posing problems to a computer 
Communications ofthe ACM 
Volume 10 Number 5 May 1967 p 279 

15 D MARTIN G ESTRIN 
Models of computations and systems - Evaluations of vertex 
probabilities in graphical models of computations 
Journal of the ACM 
Volume 14 Number2 April 1967 p 281 

16 M E CONWAY 
Design of a separable transition diagram compiler 
Communications of the ACM 
Volume 6 Number 7 July 1963 p 396 

17 E MOREN OFF J B MCLEAN 
Job linkages and program strings 
Rome Air Development Center 
Technical Report RADC TR 66 71 

18 E MORENOFF J E MCLEAN 
Interprogram communications program string structures 
and buffer files 
AFIPS Conference Proceedings 1967 Spring Joint Computer 
Conference Volume 30 1967 p 175 

19 R M KARP R E MILLER 
Properties of a model for parallel computations Determinacy 
termination queueing 
IBM Research Paper RC 1285 September 1964 



Anatomy of a real-time trial-Bell Telephone's 
centralized records business office 

by ALAN B. KAMMAN and DONALD R. SAXTON 
Bell Telephone Company of Pennsylvania 
Philadelphia, Pennsylvania 

INTRODUCTION 
In the spring of 1965, The Bell Telephone Company 
of Pennsylvania undertook a trial designed to elim
inate most of the paper records used for negotiations 
in a business office. The objectives were to computer
ize these files, recall the records in real-time with 
video display devices and direct the customers' 
incoming calls with an Automatic Call Distributor. 
August 28, 1967, a Service Representative success
fully handled the first customer contact. Currently 
an average of 3,000 contacts weekly are handled 
at twenty display terminal positions. 

This experiment encompasses the 88,000 accounts 
of residence customers in Upper Darby, Pennsyl
vania. All business accounts are excluded at this 
time. Prior to the Centralized Records Business 
Office (CRBO) trial, 24 girls handled the residence 
subscribers. They sat in pairs with a tub file con
necting their desks. Each file contained bills, toll 
statements, pending orders, credit information 
and contact memoranda for approximately 10,000 
subscribers. Figure 1 depicts a typical installation. 

Figure 1 - Service representative using the paper records system 

415 

Customer calls to the Business Office were directed 
through an operator who had access to each Service 
Representative. During slack periods, calls could 
be directed to the proper file position after the 
operator asked the subscriber for his telephone 
number. During busy hours, calls rarely could be 
placed to the file location, and Service Representa
tives excused themselves to leave their position and 
search for the records in other tub files. 

CRBO system overview 

Under the CRBO concept, each Service Repre
sentative has a cathode-ray tube (CRT) device as 
illustrated in Figure 2, calls are directed to "open" 
positions by an Automatic Call Distributor, and 
the Service Representative types in the customer's 
telephone number to receive the account informatfon 
on her screen. Today, the Service Representative is no 
longer limited by her paper file of 10,000 accounts. 
N ow she can retrieve any record from the computer 
file. The computer file is located at the Conshohocken, 
Pennsylvania Accounting Center approximately fif
teen miles from the Business Office in Upper Darby. 

Figure 2- Service representative at CRBO position 



416 Spring Joint Computer Conference, 1968 

To serve Upper Darby alone, hardware consists of 
28 Raytheon 401 Display Terminals divided between 
two Raytheon 425 control units. Attached to each 
unit is a printer-adapter and Bell Telephone's Model 
35 teletype for reproducing CRT displays. Each unit 
is equipped to handie ali terminais on either of two 
four-wire fully duplexed voice-grade circuits, trans
mitting data at a speed of 2400 bps. Twenty of the 
CRT's are used by Service Representatives, four by 
their Supervisors, one by the Public Office Unit and 
three are located in a training room. 

At Conshohocken, IBM's 360/40 computer with 
262,144 bytes of core storage handles the messages, 
using a 270 i high-speed adapter for each circuit. Pro
grams and a specialized customer file are stored on 
four IBM 2311 Disc Drives, while the majority of 
the customer files are piaced on the 400,000,000 byte
capacity IBM 2321 Data Cell. A 425 Control Unit 
and two 401 CRT's complete the installation at the 
Computer Center. Figure 3 illustrates the CRBO 
hardware configuration. 

In case of a system failure, four defensive strategies 
have been devised; (a) transfer to a single resource 
such as one communication line or control unit; (b) 
substitution of a resource such as a Dataphone Sub
set or terminal device; (c) utilization of paper backup 
records as long as they are retained and (d) handling 
customer contacts without records, thus usually 
necessitating call-backs after the system is restored. 

The selection of backup alternatives is dependent 
upon a fault isolation and recovery procedure exe
cuted via a combination of machine and man diagnos
tics. This procedure assigns to IBM, Raytheon, Bell's 
Plant, Business Office and Accounting Departments 
specific responsibilities, tests and controls. 

The taskforce organization 

After Bell of Pennsylvania decided to investigate 
the possibility of real-time retrieval, a feasibility study 
was conducted by eight managers representing various 
Headquarters Staff departments. When the study and 
its projected costs were approved by the President, a 
Project Director was appointed. 

The Project Director then selected four direct sub
ordinates, as indicated in Figure 4. One was in charge 
o(SystemDesign, the second in charge of Applica
tions Programming, another in charge of Business 
Office Methods, Practices and Training, and the 
fourth in charge of Area Coordination. These, in 
turn, added the necessary personnel so the Task 
Force consisted of 45 people at its greatest point. 

In addition, approximately 17 people in the Ac
counting Department's Standards group were dedi
cated to the trial although they continued to report 

within their own organization. These programmers 
developed the machine-oriented software necessary to 
mesh the 360/40 with its peripherals and its applica
tion programs. The Task Force also received direction 
from the Planning Department \vhich had spearheaded 
the triai and was concerned with its integration into 
the overall mechanization plans of the Company. 

System capabilities 

The file organization of each account supports the 
majority of tasks performed by a Service Representa
tive. A request for a billing display will furnish mes
sage unit usage, payment arrangements, balance due, 
local service and any special bill negotiations. To 
sati~fy toll inquiries, the computer system is designed 
to provide a list of those calls, current negotiations 
on disputed tolls and, on request, a toll investigation 
status. The latter display will show, after searching 
three months' records, identical tolls and calls to 
numbers similar to the one in question. Additional dis
plays are arranged to provide families of related infor
mation on the screen at one time, formatted consistent 
with different transaction codes. 

A capability is provided for each Service Repre
sentative to "treat" customers delinquent in paying 
their bills. The Company lists a series of dates for 
each account, stating when treatment steps should be 
taken ranging from an educational call to an inter
ruption of service for non-payment. Upon entering the 
proper transaction code with a range of telephone 
numbers, a Service Representative will receive, for 
the accounts for which she is responsible, a summary 
of all pending treatment (collection) work for the day. 
From that point on, she need only press a function 
key labeled "NEXT" to bring up account after ac
count in decreasing order of collection importance. 
Once she contacts the subscriber and makes payment 
arrangements, she has the ability to type notations 
into the file. This data automatically reschedules the 
account for display at a subsequent date if the out
standing balance is not reduced below the treatable 
limits. 

"Page Ahead" and "Page Back" function keys are 
available to access displays with. a great deal of data. 
The large 1040-character Raytheon CRT was selected 
to reduce the need . for page:'f1ipping. At present, the 
function need be used only ten percent of the time. 

The Service Representative can also type in the 
telephone number and function code "SRB" to access 
the master file for each subscriber. This display pro
vides the listed name and address, billing name and 
address, record of all equipment, additional directory 
listings, cross-reference notations and permanent 
remarks notations as of the last bill date. 



(BSAM) 
(QSAM) 

(QSAM) 
(BSAM) 

FigUN 3 

CRBO HARDWARE ANALYSIS 

Conshohocken, po. 

Partition One 

IBM 
.60 B.II 

Operating OlMrating Application Fil. Misc. 
System Partition System Programs Interface BuH.,. 

41,472 Z .. o 34,696 ]2,768 
Program Acces. 

BYTES Bell BYTES 
Total Methods 

Camm. 
44,203 Program 
BYTES Wo'" 

30,720 Areas 
S.lector CH 1 BYTES Com_ 

31.160 78,285 
BYTES BYTES 

Reod Write 

7,289 13,043 

S.lector CH 2 
BYTES BYTES 

Figure 3 - CRBO hardware analysis 

Anatomy of a Real-time Trial 417 

B.II Telephone Co. 

of pa. Upp.' Darby, po. 

12/8/67 



418 Spring Joint Computer Conference, 1968 

PROJECT 

r-----r- DIRECTOR 
I 
I 

\V 

Coordinator; 

I 

.it ! I 

I
' I General jll 

Planning 
___ A_. _T ._a_nd_T '--..11 Supervisor-B. I. S 

- - - - --- - ., 

I '" , 

~
nll Accot.mting I 

upv - COIDP.uter 
plicat10ns 

Number of subordinates varying over the development period. 

KEY 

Coordination 

Direction 

Figure 4-Centralized records business office 
task force organization 

File design 

Customer records, with the exception of treatment 
and notational information, are stored in the Data 
Cell. The Data Cell Drive contains ten cells with 
twenty subcells each, and ten magnetic strips for every 
subcell. The strips have one hundred 2000-character 

. capacity tracks. Three basic customer records are 
stored on each track, with the capability of over
flowing to other tracks addressable from the main 
record. 

When the system calls for data, the basic customer 
record is read into the CPU and the strip returned to 
its subcell. Likewise, if information from overflow 
records and history is required, it is read from the 
Data Cell into core. The data requested by the Service 
Representative (i.e., Toil) is formatted page by page 
to completion. The application program is temporarily 
interrupted at the end of the third page to transmit 
the first page. When the application program relin
quishes control at the conclusion of formatting, core 
storage areas are released. If another function is sub
sequently introduced, the Data Cell is reaccessed. 

The Centralized Records Business Office Master 
File is a distinct entity, separated from the tape files 
used for the Company's billing application. Ultimately 
the Company is striving for a single file hierarchy 1 but 
for purposes of the trial, new CRBO files were 
created. 

The Centralized Records Business Office Master 
File is updated daily for cash payments, treatment 
referrals, number changes, permanent disconnections, 
final bills and credits. It is updated monthly for ser
vice and equipment changes. The updating process 
consists of three phases; interface, merge and update. 
An interface program is necessary because the data 
produced from the five output runs used daily from 
the Billing operation are not compatible with the 
CRBO Computer. The tapes must be read through a 
data conversion program so that each record is re
formatted to conform with the CRBO configuration. 
Five daily billing outputs are regrouped into two 
"Change Files," then introduced respectively to 
master and billing update runs. 

The billing updates occur several days prior to the 
date the ne'.v bill is received by the subscriber. Dur
ing the time from the beginning of update to the actual 
release to the Post Office of the new customer bills, 
the computer manages the interim period. The Service 
Representative desiring information from the latest 
bill the customer has received, will access the file 
for current records. She does not need to know that 
a new billing update has taken place. Through internal 
controls, her request for current data will be routed 
to the previous month's data. After the mailing of 
the new customer bill, any requests from the Service 
Representative for current data will be routed to the 
latest file. The files are designed to store three 
months' data; current and the previous two billing 
periods. 

Programming 

All real-time application programs used by the Ser
vice Representatives, were planned by the System 
Design group using the SAPTAD process. SAPTAD 
organizes design logic into six levels of detail, start
ing with System and proceeding through Application, 
Project, Transaction, A ction and Detail. "System" 
represents the total universe; in this case, a Business 
Information System. "Application" is the functional, 
major subdivision such as CRBO. "Project" repre
sents a breakdown of the application into logical com
ponents, e.g., "Account treatment." "Transaction" is 
a further breakdown of the component, such as "pay
ment entry," while "Action" represent the action to 
be performed as a result of the transaction, e.g., 
"place data for display." Finally, "Detail" is logical 
entity of work necessary to perform an action: in this 
case, "place 'deny-non-payment.' " 

All logic conditions, actions and sequences were 
then placed on Decision Tables. This is a technique 
of portraying details required in large computer pro
cesses. The Tables eliminated machine logic flow dia-



gramming, improved understanding of mUltiple deci
sions and provided the ability to prove the table 
through a simple "Yes - No" process. The tables 
were turned over to the Application Programming 
Group who coded them in COBOL E. Subsequently, 
these were translated into COBOL F to be compatible 
with certain features in IBM's full Operating System
release eleven. 

In CRBO's real-time system, application programs 
form one of two programming categories. The second 
is concerned with computer functions and consists of 
machine-oriented programs. These Utility Programs 
include the Supervisor, Communications Interface 
Program (CIP), Transaction Analyzer (T A), File 
Interface Program (FIP), and IBM's Operating Sys
tem. 

The Supervisor is the control center of the real
time system. This program receives communications 
from the various parts, controls and coordinates 
actions, and is responsible for general computer func
tioning. 

The Communication Interface Program (CIP) 
controls the visual display stations and teletype
writers. It is subordinate to, and under the control of 
the Supervisor program element. Its major function 
is to receive and transmit information in the form of 
coded characters to and from the communication 
devices. 

The Transaction Analyzer (T A) is an application 
based, machine-oriented program, which takes the 
incoming message and interrogates the function code 
associated with it. Then it develops the routing and 
selection of the application programs necessary for 
its processing. 

The File Interface Program (FIP) is a common 
interface for linking the CRBO system files to applica
tion programs for reading and writing purposes. It 
insulates the CRBO programs from machine-oriented 
programs required for controlling the various direct 
access hardware devices containing the files. It pro
cures the requested information from the peripheral 
files on a segment basis, expands the data and makes 
it available to the CRBO application programs. Since 
all information from a particular record is seldom 
required, only those portions or segments of the 
record which are needed are passed to the CRBO pro
gram. If other segments are found to be necessary, 
another call is made to the File Interface Program. 

The Operating System for the 360 Computer is a 
highly complex series of modules and options assem
bled from a library of routines which can be tailored 
to the particular needs of the user. One major ele
ment of the Operating System contains the process
ing programs consisting of language translators, ser-

Anatomy of a Real-time Trial 419 

vice programs and user-written processing programs. 
The second element, or control program, supervises 
the execution of the processing programs, controls 
the location, storage and retrieval of data and sched
ules jobs for continuous processing. 

These Utility Programs were written in the 360 Ba
sic Assembly Language for maximum flexibility and 
core conservation. Still, however, they occupy so 
much residency that only 32,768 bytes of core are al
located for the application programs. The Model H40 
with its 262, i 44 byte CPU is, therefore, the minimal 
size machine in the 360 catalogue which could be 
used for CRBO. 

Testing 

Application prograIIJ unit tests were accomplished 
in several stages. First, each program was tested in a 
controlled environment at the Transaction, Action 
and Detail level of the SAPT AD process. As each De
tail coding passed its testing requ,irements, it was com
bined with an Action program and retested. This was 
then repeated at the higher Transaction level and then 
the pJogram was released for single-thread testing. 

Since the application programs were designed to be 
independent of files or communication devices, and 
since the CIP, FIP' and other utility programs were 
not completed until late in the development period, 
simulator programs were designed. These delivered 
and received data and, in general, issued the charac
teristics expected of the system when all terminals 
and files were operative. In addition,. the simulators 
replaced unavailable hardware, and gave absolute 
control over all conditions so that only one applica
tion program was under test. 

For example, there was a simulator program to 
read card test data, simulate an incoming contact and 
hence call up the proper application programs. The 
application program under test then called for data 
from the files. The data was supplied by another sim
ulator reading from card inputs. Following that, the 
application program transmitted a display which was 
intercepted by a third simulator, which transferred 
this "display" to a teletype printer for review. 

Single-thread testing took place when the applica
tion programs were brought together with the utility 
programs and most of the hardware. (An exception; 
Model 35 teletypewriters were substituted for the 
video terminals.) The tests were conducted using 
low-volume, controlled input consisting of one trans
action at a time. 

The same transactions used in the unit test stage 
were supplied via teletype tape to the single-thread 
stage, then the resulting output was returned to a tele
type printer for verification. When a program failed, 



420 Spring Joint Computer C'onference, 1968 

it was returned to unit test for further development. 
Then a program was designed to place a load test 

on the system giving the effect of multiple lines, ran
dom transactions and maximum arrival rates. This 
multi-thread program was written so transactions were 
fed to the system as fast as the C.P.V. and application 
programs could handle them. Incoming data was iden
tical to that used in the previous test stages so control 
of output could be maintained. The data was stacked 
directly into the communication input queue, and the 
resultant transaction received directly from the com
munications . output queue, thus eliminating line trans
mission delay. 

Finally, on-line live operation provided the overall 
systems test. Service Representatives and accounts 
were added using a controlled schedule, starting with 
one girl having access to 10;000 accounts for on1y 
two hours per day. Within ten weeks this increased to 
the intended objective of 20 girls accessing 88,000 
accounts for the standard working day. 

In the interim, debugging took place using dual soft
ware packages. One package supported the system for 
a week, while all changes were made to the off-line 
software. Each Monday the packages were switched, 
and hence the system was improved weekly. This 
technique permitted an accelerated pace in identify
ing failures which occurred primarily during busy 
periods, and focused attention on critical areas re
quiring immediate work. 

In concluding th~ descriptions of software and test
ing, it should be noted that the Project Implementa
tion Schedule was underestimated. This was caused 
primarily by incomplete definitions in some cases and 
pioneering programming techniques in others. It be
came apparent, however, that the number of activi
ties which could be performed concurrently was also 
underestimated. The balancing effect caused a total 
on-line date slippage of only twenty-five per cent of 
the original estimated elapse-time set two years earli
er. A CRBO Event Chronology is listed in Table I. 

Consultants advice 

Early in the design stage of the trial, the human 
element was considered. The American Institutes for 
Research (AIR), based in Pittsburgh, Pennsylvania, 
made valuable contributions in three fields while 
working closely with Task Force members. 

First, they helped to design the floor plan. The new 
Garrett Road Business Office was given partitioned 
sections for each of six groups. Each area contains 
desks for six Service Representatives and their Super
visor. The partitions give the effect of a small office 
whiie taking advantage of large-office team-size ef
ficiency. To combat claustrophobia and permit free 

TABLE I - Centralized records business office - event chronology 

Item Start Date Complete Date 

F~asibility Study 6-65 7-65 

Management meetings, 7-65 8-65 
culminating in project 
approval 

Task Force appointments 9-65 10-65 

General specifications 9-65 11-65 
discussions 

Data collection; existing 11-65 2-66 
operation 

Design documentation 11-65 2-66 
techniques investigated 

Data analysis 12-65 3-66 

Completion of design 12-65 10-66 
activities 

Program activities 1-66 11-67 

Equipment selection 4-66 7-66 

Preparation of Business 11-66 12-66 
Office practices 

Training package development 1-67 10-67 

Testing of software 1-67 11-67 

Computerization of paper 8-67 10-67 
records 

On-line August 28, ! 967 

Entire office converted November 20, 1967 

circulation of air and light, the upper portion consists 
of open, pastel-colored lattice work. The lower three 
feet are enclosed, and contain the wiring necessary 
for the telephone equipment and Raytheon CRT's. 
A view of the office is shown in Figure 5. 

The floor tile is white with dark green striping to 
give a solid stability in contrast to the pastels, while 
the brown paneled columns in the office have gold
colored inserts to eliminate any massive effect. The 
ceiling is a complete series of white. light panels, each 
with internal polarized sheets to reduce glare on the 
display devices. It is a tribute to the Raytheon CRT's 
that the green characters on the dark screen are clearly 
visible under the excellent lighting conditions. 

Second, the American Institutes for Research 
helped to design the desks for Service Representa-



Figure 5 - Centralized records business office 

tives. By performing numerous simulation tests on the 
Representatives who would actually use the positions, 
a desk with a 45-degree offset for the CRT was de
signed. The offset was lowered four inches so that the 
keyboard would be on the same level as the writing 
surface. The top is a non-glare, brown formica resting 
on a cream base with silvered legs. 

Third, AIR helped the Task Force build training 
packages for the new applications based on a process 
designed for the Air Force. The technique, using a 
flow-chart approach, clarifies material, stresses in
teraction of the various tasks and clearly defines in
dividual accountability. 

Thejuture ojCRBO 

A major evaluation effort is now under way. Its 
purpose is to glean information to enable the BeJi 
System to produce an optimal design for the retrieval 
stage of its contemplated Business Information Sys
tem. Twenty-four representatives, divided among 
personnel from the American Telephone and Tele
graph Company, the Bell Telephone Laboratories 
and the Bell Telephone Company of Pennsylvania, 
have prepared an evaluation program consisting of 
eleven major areas. 

These areas range from testing the effect on sub
scriber service, to determining the effect on the Ser
vice Representative who must deal with a CRT screen 
all day; from the cost of incorporating CRBO's best 
features into a major system, to the cost of main
taining it on a stand-alone basis. Outside consul
tants will be used whenever the expertise is not readily 
available in the Bell System, and the entire evaluation 
should take approximately nine months to complete. 

Anatomy of a Real-time Trial 421 

Part of the team's functions will be to isolate items 
which can help the manual Business Office operation. 
For example, after the first residence groups moved 
to their new location, they operated with an Automatic 
Call Distributor and centralized paper record· files. 
Although they had to leave their position every time 
they needed a record, delays decreased. Citing another 
case, detailed flow charts and task definitions were 
prepared for the use of the Task Force System group 
to design a training package for the mechanized opera-

. tion. One District now desires to use that preliminary 
information to review procedures with new super
visors, and to serve as a guide when analyzing con
tacts during informal training sessions with Service 
Representatives. 

Several-advantages are apparent in the mechanized 
operation. The "Records out of file" condition occa
sionally encountered in a manual office is non-existent 
in CRBO. The Service Representatives no longer 
need to leave their positions to check the centrally lo
cated computer printouts which list the latest pay
ments received from subscribers. On-position filing 
is eliminated. The need to leave the desk to get rec-· 
ords in other locations is greatly reduced, and with an 
average access time of approximately ten seconds, 
superior service is rendered to the customer. 

The treatment functions permitting the Service Rep
resentative to receive a summary of her daily collec
tion obligations, followed by the accounts being dis
played in descending order of importance, is of value 
to the Service Representative. Her typed notations 
concerning payment arrangements automatically re
schedule the account for treatment, eliminating the 
need for written memos, or calendar jottings. The 
system incorporates a combined training and live file, 
thus permitting maximum hands-on training for Ser
vice Representatives. It has substantially reduced 
training time by eliminating the need for blackboard 
and chart work, since test cases available for experi
mentation can be displayed on the screen by the stu
dents. 

Since CRBO is specifically a retrieval trial, much 
paperwork still exists. Communications with the Ser
vice Order Typing Room, and treatment or credit no
tifications to be posted to the billing operation are still 
done manually. Since the CRBO file parallels the bill
ing file, it has all the problems associated with duplica
tion and reconciliation. In addition, evening update 
runs take a considerable amount of time and core, thus 
precluding the use of the computer for other applica
tions. 

After the evaluation, the recommendations of the 
team will strongly influence the future of the Pennsyl
vania experiment. The true justification of the trial 



422 Spring Joint Computer Conference, 1968 

will come with the use of the evaluation group's data 
and results to design the optimum system to handle 

with accuracy and individuality Bell Telephone sub
scribers throughout the United States of America. 



Fourth generation computer systems 

by CLOY J. WALTER* and ARLINE BOHL WALTER! 
Autonetics Division 
North .4merican Roc/rn.'ell Corporation 
Anaheim, California 

and 

MARILYN JEAN BOHL 
H oneywelll nc. 
Waltham, Massachusetts 

INTRODUCTION 

This paper is presented as a discussion of fourth 
generation computer systems. To predict future 
developments in the computer industry is to speculate 
- to theorize on the basis of observable trends and 
anticipated needs. Numerous questions arise. We 
do not know the answers to all questions nor do we 
know how to obtain all the answers. The intent of 
this paper is to suggest reasonable approaches to 
developments and tp offer a solution to a fundamental 
EDP problem. How can computers and applications 
be integrated within a communication and control 
system? 

Computers of prior generations emphasized com
putation. Fourth generation computers, as envisioned 
in this paper, will emphasize a communication and 
control system. The characteristics of fourth genera
tion systems are outlined in the first part of this paper 
and discussed in detail later. Prior to this discussion, 
the computer evolution, the software situation, the 
effects of large scale integration, and fourth genera
tion programmipg systems are considered. 

While one cannot predict characteristics of fourth 
generation systems with certainty, one can con
fidently assume that many changes in computing will 
occur. This paper contains speculation concerning 
the possible changes. Opinions and suggestions 
within the paper represent a consensus among 
the authors but are not representative of the company 
by which the authors are employed. 

Characteristics 

We believe that a computer system which possesses 

*Formerly with Honeywell Inc. 

the following characteristics will be a fourth genera
tion computer system. 

423 

1. The major design criteria will be optimal use 
of available communication interfaces. The 
system will be classified as a communicat.ion 
and control system and will be capable of 
widely diversified processor applications. 

2. The system will be controlled primarily by 
data rather than by programs as were previous 
machines. 

3. Use of hardware to govern communication 
and control procedures will be emphasized; 
extensive use of control programs will be 
substantially reduced or eliminated. 

4. Most processing will be executed in real time; 
operations will be performed on input at a 
rate that permits output to be available within 
the response time required by recipients. 

5. The system will be readily expandable. Hard
ware and "software will be modular in design. 
Computing power will be modified without 
redesign of the system. Hardware malfunctions 
will be corrected by immediate replacement of 
disabled modules. 

6. The hardware design will permit component 
parts to be updated; systems need not become 
obsolete. 

7. The system will be designed to operate effi
ciently, and this efficiency will not be signif
icantly affected by distances between con
nected elements. 

8. Most data will be collected at its source. 
Cards and attendant keypunching operations 
will be a secondary source of input. 

9. Repetitive entry of input will be reduced or 
eliminated, and the generation of reports will 
be on an exception basis. 



424 Spring Joint Computer Conference, 1968 

10. The . system will have an efficient, low-cost 
program generator. 

11. The design will emphasize reduction of total 
system cost. 

1.., New' . soff'wa"e ul~l1 b· A s;rnplAr sirnnler ,1" •• i k. 1 . L 1 l'Y 1.1.1 """ 11!..1 1.,"".1""'- .1..1..1. ... ., .I. 

terms· of user convenience, rather than in 
term·s of function. 

13. The system will be designed to function without 
device-specific software routines. 

14. Hardware diagnostic routines will be com
patible with I/O routines so that on-line 
diagnostics can be performed simultaneously· 
with normal system operations. 

Computer evolution 

First generation computer systems were deveioped 
primarily for computational purposes. The concept of 
storing a program to control the operations of a 
computer and the ability of a computer to cycle 
repetitively through a sequence of instructions on 
different data pointed toward use of the computer 
for computational purposes. Later, the fact was 
recognized that machines which could be programmed 
to perform electrical accounting machine (EAM) 
operations could be marketed. Thus, EDP was born. 

Overemphasis on programmed control of system 
elements led to development of and preoccupation 
with general purpose computers and a concomitant 
failure to understand the nature of the applications. 
How many of us learned to program with little under
standing of the computer or of the applications to 
which computers can be applied? How many of us, 
after learning to program the 650 machine, really 
thought we understood data processing? 

To provide modularity and fiexibiiity in generai 
purpose machines, computer designers delegated 
obvious hardware functions to· software. A primary 
design objective was to provide a means by which the 
user could readily specialize the computer for his par
ticular application. Sorts and other· software routines 
were developed to perform common functions but 
these elements were designed to make the general 
purpose computer fit the area or application. The 
same application had to be modified or reprogrammed 
as details within the area or application changed. 

The development of large data management systems 
and/or operating systems has resulted primarily from 
a lack of understanding of the nature of the applica
tions to which computers can be applied. ·Operating 
systems have tried to blend hardware, applications, 
and software. It is the application area which is 
exploding and which will become dominant. 

What has the user seen with regard to hardware? 

First generation hardware was characterized by 
vacuum tubes, second generation by transistors, and 
third generation by integrated circuits. Of much 
more importance to the user, however, was the re
duction in cost of main memory (from approximately 
one dollar per bit to approximately five cents per 
bit) and the increase in reliability of the machine. 
Major advances were made in the reliability of both 
logic and memory when the change from tubes to 
transistors occurred. More memory available at 
reduced cost led to the development of more and 
better software and an attendant increase in the 
complexity of applications to which computers 
could be applied. As main memories became larger, 
more programs could be resident in memory. Through
put was increased by reducing time loss due to 
execution of program load and unload routines and 
relocation functions. 

Today's user is interested in total system per
formance and in the total cost of the system rather 
than in only the cost of the central processing (CP) 
unit (currently 15-20% of the hardware cost). He is 
not as impressed by advanced hardware as he is by 
efficient operation and ease of programming. The 
user desires a variety of complex applications, but 
he wants to tell a computer what to do - not how to 
do it. 

The software situation 

Past and present programming can be reviewed 
briefly as follows. 

First generation software was characterized by 
machine language, subroutines, and assembiers. 

Second generation . software added higher-level 
languages, monitors, and macro assemblers. 

Third generation software includes operating 
systems, on-line real-time systems, multiprogramming, _ 
and data management systems. 

Today's computer user sees: 
Sophisticated hardware, 
Complex applications, 
Increases in application programming costs, and 
User defensive programming, i.e., programming 

around instead of with the operating system. 
No new debugging tools have been developed to 

complement the increased complexity of applications. 
The percentage of users who know how their operat
ing systems function is decreasing. Processor time 
IS consumed by the operating system for internal 
scheduling, accounting, and job handling rather 
than for job execution. 

The following questions arise. 
Why have we neglected to·define'software in terms 

of interfaces, functions, and modules? 



Why have we failed to develop more helpful de
bugging features, more acceptable programming 
standards, and more useable documentation? 

Is the development of operating systems a bril
liant solution to the wrong problem? 

. Do we in the computing field really understand 
computing? 

Today, programming has no theoretical basis and 
no theories. Why? Programming need not remain a 
handicraft industry. The designers of fourth genera
tion computers must regard programming as a science 
rather than as an art. Optimally, scientific theories 
for programming can be developed. Most assuredly, 
software systems can be designed and utilized to 
satisfy clearly defined systems requirements. The 
problems of programming are not inextricable. 
Solutions to many programming problems are inter
mingled with and inseparable from the design of hard
ware. Engineering personnel must cooperate with 
software artists to develop a theory of programming 
based upon an understanding of hardware operations, 
an understanding of data handling and data control 
(communication), and an appreciation of software 
techniques. Only in this manner can redundant 
programming (repetitive development of programming 
techniques) be significantly reduced. Parallel develop
ments must be replaced by sequential advancements 
so that achievements of one individual or group 
can provide a basis for extended or subsequent 
advancements by others. 

Effects of LSI 

The effects of large scale integration (LSI) on 
fourth generation computer systems can be examined 
from the viewpoints of both the manufacturer and the 
user. Major effects of LSI are (1) computer manu
facturers will be forced to fabricate LSI chips, and 
(2) integrated circuit (I C) manufacturers will enter 
the computer manufacturing field. Competition will 
increase. Hardware rentals will be reduced, and soft
ware will be easier to use. 

Effects on the manufacturer 

Computer manufacturers wW be forced "to fabricate 
LSI chips. Some of the reasons for this action follow. 

1. Intimate knowledge of fabrication techniques 
and corresponding characteristics is essential 
to circuit, cell and/or chip design. 

2. Purchase of LSI chips reveals significant 
proprietary information about new develop
ments, particularly in the area of LSI design. 
Vendors who supply LSI chips to computer 
manufacturers will have access to complete 
computer designs. Present legal safeguards 

Fourth Generation Computer Systems 425 

of designs appear inadequate. Minor changes to 
chip fabrication without modification of the 
function of the chip can be introduced to cir
cumvent legal restrictions. A manufacturer 
will be dependent upon a selected vendor's 
ability or willingness to continue to supply re
quired components. Second sourcing will be 
difficult if determination of the internal manu
facturing processes is primarily a function 
of the original supplier. 

3. In-house facilities may be required to provide 
chips which are not available from external 
suppliers accordip.g to a schedule which con
forms to the manufacturer's needs and prior
ities. 

4. Computer manufacturers who desire to sell 
to the military will be expected to demonstrate 
LSI fabrication capability. Today, military 
customers demand that systems companies 
possess microelectronic capabilities even if 
circuit designs compatible with application 
requirements can be secured from component 
vendors. 

5. Computer manufacturers commonly desire to 
lead the development of some aspect of hard
ware. Such leadership will be difficult if research 
and development of microelectronic circuitry 
is relinquished to suppliers of components. 
Manufacturing operations may be reduced to 
fabrication of interconnection boards and to 
simple assembly operations. 

All computer manufacturers must develop design 
automation capabilities to optimize tradeoffs of 
performance, function, reliability, cost, and size for 
integrated semiconductor circuits, thick/thin film 
circuits, LSI circuits. or..~ny combination of these. 

Capabilities will be developed-in "order to meet the 
following general objectives: 

1. To develop and utilize optimum circuit fabrica
tion techniques in order to meet requirements 
for the ma!lufacturer's computer family. 

2. To build microelectronic - LSI circuits on a 
pilot basis and coordinate"" efforts" of circuit 
designers and fabricators during the shift to 
the use of LSI designs. 

3. to fabricate LSI chiPs for which vendors can
not meet delivery, performance, reliability, or 
price criteria. 

4. To develop techniques leading to computer 
control of design," deposition, m_~sk generation, 
and testing, and to computer-generated docu
mentation of specifications. 

To formulate exact plans for LSI activities is 
impossible. Materials and fabrication techniques for 
LSI designs are in various phases of exploratory 



426 Spring Joint Computer Conference, 1968 

research, development, or pilot production. Plans 
must be flexible and selected equipment must be 
adaptable to new techniques. 

We suggest that LSI activities of computer manu-
facturers will include at least the following groups: 

I. Cost Relationship 
2; Liaison 
3. Component Test and Evaluation 
4. Circuit Test and Analysis 

-5. Test Equipment and Instrumentation 
6. System Organization 
The responsibilities within each group are de

scribed in the following paragraphs. 

Cost relationship 

This group will perform cost analyses and determine 
cost ratios. The cost of fabricating individual LSI 
cells will be minor when compared to the cost of 
allocating, partitioning, simulation, routing, and 
testing. The manufacturer who delegates allocation, 
partitioning, simulation, and routing functions to a 
vendor may be forced to forego much of the profit 
that otherwise might accrue from a computer sale. 
The number of basic chips to be used and the cost 
per pattern must be examined. Cost formulas and cost 
ratios must be developed. 

Absolute cost figures are not as important as cost 
comparisons or cost ratios. Fundamentals must be 
separated from details. If fundamental costs are 
identified and organized, details can be viewed in 
proper perspective. Relationships must be under
stood. What costs should be compared? Costs which 
should be calculated are: 

I. Silicon costs, 
2. Design aid costs. 
3. Engineering development costs, 
4. Factory production costs, and 
5. Actual cost per computer. 

. A general approach to cost calculation follows: 
Let: 

X = the cost in dollars to develop a generalized 
allocation program. 

Y = the cost in dollars for allocation runs. 
a = the number of different types of chips per 

computer. 
b = the average number of chips of each, type 

per computer. 
Z = the average cost in dollars for chip fabri

cation. 
n = the number of computers to be produced. 

To = cost of setting up to test a particular chip 
type. 

The following statements can be made. 
The costs for allocation aids (C) is equal to the cost 

to develop a basic allocation system program (Xo) plus 
the numbe~ ot' 'different types of chips (a) times the 
product obtained by multiplying the estimated cost 
of specializing the allocation for a particular type of 
chip (.6X) by the probability (p) that specialization of 
the aiiocation for a new chip type is necessary. 

p should be as small as possible. That is, 

C=Xo+~X' p' a 

represents the costs for allocation aids, where 
X::<'sC::<'sX·a. 

Engineering costs can be considered as 

Testing costs can be represented as 

T bTo + ~ T·a·b·n 

or 
T=a [To+ ~T·b·n] 

Factory production cost'is a·b·Z·m·T. 
Actual cost per computer is 

Xo+~X·p·a+ Y'a 
a·b·Z·T+------

n 

(I) 

(2) 

(3) 

(4) 

(5) 

(6) 

X will probably be large and Z will probably be 
small, but their values are significant only when used 
in comparisons; that is, the ratio between 

a.b.Zand Xo+~X·p·a+Y·a is very important. The 
n 

cost ratios' must be optimized. 
Additional formulas can be generated easily. 
If a·b·Z (which represents the silicon cost) is small 

when compared to Xo+ ~X'p'a+ Y'a major infer-
n 

ences can be drawn. Cost mentioned here can then 
be compared to total computer system cost (which 
includes programming, support, training, main
tenance, and peripheral equipment). 

Liaison 

LSI liaison will be very similar to collateral effort 



between engineering and manufacturing. Liaison 
personnel will: 

1. Assist the logic design engineer with the applica
tion of LSI. 

2. Assist in optimizing gate per chip ratios. 
3. Provide information regarding scheduling 

within the pilot line. 
4. Assist in expediting miniature components or 

information needed for the fabrication process. 

Component test and evaluation 

Component test and evaluation will determine the 
characteristics of all fabricated component parts 
and assist with process control and evaluation. 
Life tests and environmental and mechanical evalua
tions of elements can be performed. Failure studies 
and process evaltIations can be conducted to detect 
process variations affecting component part reliability 
and quality. To provide a well-organized program, the 
test functions should be coordinated with component 
applications and reliability engineering. 

Circuit test and analysis 

Circuit test and analysis will determine wheth~r 
circuits can be fabricated in LSI form. Activities 
include const~uction" of breadboards, preparation 
of specifications, selection of component parts and 
processes, and design of circuits and chips. Evalua
tion tests must be performed to determine if chips 
meet required performance and quality specifications. 
Other chips considered to be proprietary and ex
tensively used in company equipment should be 
designed and fabricated on a speculative basis. 

This group can prepare an LSI design manual 
describing available components and fabrication 
techniques. Guidelines and rules for the preparation 
of chip layouts according to the various processes 
can be indicated. New designs can be evaluated and 
the design manual revised accordingly. The manual 
should contain a glossary of technical terms and' a 
brief description of the design procedures followed 
in the development of each type of chip. 

Test equipment and instrumentation 

This group will conduct electrical inspections and 
performance evaluation of in-process circuits. They t 
will monitor test equipment requirements and assist 
as necessary to provide in-process instrumentation. 

For test of completed circuits, a test console can be 
constructed which supports standard test equipment 
in a convenient manner. This test consQle should 
utilize a standard test breadboard adapter which 
contains any special test circui~s unique to partic
ular LSI chips. LSI chips should be l!l0unted on 

Fourth Generation Computer Systems 427 

some type of a standard test board so that the com
plete assembly can be inserted into the test bread
board adapter without damaging the leads. 

Computer-assisted testing is currently limited. 
Efforts to perform automatic testing should be applied 
to the design and construction of test probes and 
fixtures which will be initially operated manually 
and later integrated with computer-controlled adapt
ers. 

System organization 

This goup will be responsible for interface speci
fications, tradeoff and utilization analyses, resource 
allocation, user-oriented systems analysis, ~nd deter
mination of required numbers and varieties of basic 
chips. 

Interfaces arising during the application of new 
technology must be understood, characterized, and 
implemented. Creative developments should be 
stimulated and utilized. Leadership and coordination 
for defining the interfaces among various design 
groups implementing LS I should come from a group 
responsible for system organization. 

Tradeoffs can be analyzed in the following areas: 
1. Performance, function, and reliability; , 
2. Sizes of chip production runs; 
3. LSI application in functions such as emulation, 

interpretation, compilation, and control; 
4. LSI application in logic-in-memory arrays such 

as sorting, searching, and signal switching 
arrays for parallel processing; 

5. LSI determination of paging, table lookups, 
and other processes in the operating system; and 

6. The utilization of each type of chip per family 
member. 

Utilization' analy~is also includes developing 
methods of partitioning large areas of logic and 
designing logic structures which can be readily 
partitioned and interconnected. 

Resource allocation includes development of 
methods to provide L'SI techniques to replace 
resource allocation algorithms. The two major 
resources to be allocated are subsystems' (CP, 
memory, programs" buses, communication lines, 
and peripherals) and functional capabilities (logic, 
arithmetic, and control): User-oriented systems 
analysis must be conducted to evaluate tradeoffs 
resulting from maximum or optimum use of LSI 
from the manufacturer's point of view and from the 
user's point of view, to insure maximum benefits 
to the user. Many hardware and software concepts 
can be viewed simultaneously in an LSI analysis. 

Determining the number and variety of basic chips 
to be used will be an important consideration of sys-



428 Spring Joint Computer Conference, 1968 

tems designers. Only fifteen or twenty different chips, 
and a total of only a few hundred chips, may be" re
quired for a computer. Repetitive use of chip de
signs is mandatory. 

Determining the optimum attrihutes and sizes of 
various LSI memories, logic, and functional arrays 
wiJI be another responsibility of this group. 

We expect IC manufacturers to examine functions 
cur~ently Pt?Tformed by software and develop LSI 
designs to perform many of these functions. In 
fact, major advancements in computer software 
development may come from I C manufacturers 
who do not currently market computers. 

Effects on the user 

The effect of LSI on cost, size, and speed of 
fourth generation computer systems has been dis
cussed in other articles and consequently is not 
emphasized in this paper. We can confidently pre
dict that CP cost and size win decrease while speed 
will increase. 

The major advantage available to the user through 
LSI will be that many of the operating system func
tions which are currently performed by software can 
be performed by hardware. Operating systems cannot 
be eliminated, but operating efficiency can be signif
icantly improved. For example, one task of a current 
operating system is to allocate resources in the com
puter system. The task of resource allocation can be 
simplified if some resources allocate themselves. 
Hardware advancements which can be achieved 
through LSI include self-allocating input/output 
channels and auxiliary memories which do not require 
main memory for control. 

Additional advantages which can be obtained 
through LSI include: 

1. Microprogramming through use of LSI chips 
(thus allowing a computer to be reorganized 
according to its work and its workload), 

2. Control memory structures which vary in the 
course of the operation of the machine, 

3. Improved fault isolation and self-reconfiguration 
techniques, 

4. Increased use of logic to maintain data integrity, 
5. Reduced maintenance costs, 
6. Less downtime, and 
7. Graceful performance degradation through use 

of majority voting logic. 

LSI will allow a single logical element to be re
placed by several logical elements in a manner such 
that the several elements will be used to determine 
the state or condition of a situation. The state or 
condition of the situation indicated by a majority 

of the elements will be accepted as valid - hence, 
majority voting logic. 

In any event, it appears that, to the computer 
user, LSI means lower hardware costs and simpler 
programming languages. 

Fourth generation programming systems 

To predict languages, degrees of complexity, 
common techniques, primary considerations, etc., 
of fourth generation programming systems is both 
venturesome and difficult. Indeed, to predict in detail 
or with a high detree of accuracy may be impossible. 
The"" effects" of LSI on "software were discussed in 
the preceding sections of this paper. This section 
comprises discussions ?f design approach, the signif
icance of programming, famiiy pianning, user com
munication with the computer system, a suggested 
organization for development" of fourth generation 
programming systems, program generation, and 
charts which depict data and control flow. 

First, second, and third generation hardware 
systems have been designed. Independently, in 
unrelated efforts, first, second, and third generation 
software systems have been developed. However, 
the significance of the total system concept has been 
disregarded; little~ if any, consideration has been 
given to the formation of first, second, and third 
generation computing theories. The nature of com
puting -must be re-evaluated, and" efforts must be 
modified accordingly. Cannot creative ideas be 
applied to integrate software and hardware within 
effective, useable systems? 

Through past generations, computer designers 
attempted to maximize hardware capabilities (primar
iiy speed). Insufficient thought was given to the user's 
point of view. For example, he needed a machine 
which was easy to program, but, in fact, designers 
seldom, if ever, checked to determine whether their 
machines would be easy to program or whether 
programs could be written to maximize utilization 
of capabilities of system hardware. Major design 
objectives were to minimize hardware costs, to in
crease speed, and to plan for batch processing in 
order to maximize machine throughput. Clearly, 
insufficient consideration was given to maximizing 
effectiveness of programming effort. Today, central 
processor costs are insignificant if compared to 
total system costs. Programming costs are often 
several times greater than hardware rental costs. 
Designing total systems which not only are based 
upon reliable, efficient hardware but also can be 
easily programmed is a practicai manufacturing 
objective. 



Designers of fourth generation computers should 
be familiar with hardware, software, and system 
constructs. Both software and system theories must 
be developed in cognizance of hardware practicalities. 
Indeed, fourth generation computing theories must 
be developed. Design disciplines, which have been 
significantly lacking (particularly in software efforts), 
must be established and followed. Hardware per
sonnel must learn software techniques and contribute 
to total system design. 

Before developing a new computer family, a manu
facturer must answer the question, "What funda
mental EDP problems do I wish to solve?" Efforts 
and resources can then be channeled accordingly. 

Certainly, one fundamental ED P problem is the 
difficulty of programming. The typical user has 
neither the desire nor the resources to secure knowl
edgeable personnel primarily to program his comput
erized applications. This fact can be a significant 
deterrent to initial installation or to subsequent 
upgrading of a computing facility. Fourth generation 
computer manufacturers must design systems with 
users in mind. 

Proper family (system) planning by the manu
facturer is extremely important, to the us(!r. To 
design a family of computers requires discipline; 
effort must be preceded by forethought. If family 
members differ only in execution speed and storage 
capacity, all members present the same logical 
appearance to the programmer. One instruction 
set is useable with all models. One specification 
describes the logical functions of all members of 
the family. Upward compatibility is easily achieved. 
Thus, processing under" 'different family members 
is possible without reprogramming. The user can 
readily modify his system ifhe desires. 

The difficulty of programming is alleviated in 
part by the current trend to provide application 
packages. This trend will continue because small 
users cannot afford to employ experienced systems 
analysts. Manufacturers of fourth generation systems 
will say to the small user, "Submit your data and 
leave the driving to us." 

To the medium-scale user, the manufacturer of 
fourth generation systems can offer application 
packages and/or a program generator. If the latter 
option is selected, the user (conmonly, someone not 
trained in programming or knowledgeable of com
puters - for example, an accountant) will specialize 
the system to produce the reports or' information 
that he, desires in a form which he specifies. The 
information flow is shown in Figure I. 

To initiate this information flow, the user operates 
a desk top input/output device (CRT, TTY, ETY, 

Fourth Generation Computer Systems 429 

or other small terminal device) and selects a general 
program available through the ind~stry-oriented 

non-resident program generator. He specifies or 
selects parameter values. Generalized subroutines 
are fetched from the library by the program generator, 
and program formation and specialization is completed 
in the language processor. Special test data supplied 
by the manufacturer are introduced to test the appli
cation program. Processing of the test data produces 
'a representative sample ot output which can be 
expected. If the user is not satisfied, he can enter 
different parameters and execute another test run 
or return to the language processor to modify the 
program which has been created. 

.--__ ---L..-___ •• -,"., .... TEST DATA LIBRARY 

PROGRAM 

-----, CONTROL FLOW 
----------~ LIBRARY FETCHING a LOADING 

AND 
GENERALIZED 
SUBROUTINES 

Figure 1- Program generation (lnf~rmation flow) 

A non-resident program generator that is designed 
to serve a particular industry will control major con
structs of system organization for that industry. 
Specific requirements of each industry will be rec
ognized; for example, a filing technique will be 
designed for each major industry. . 

Program execution with user-supplied data is 
depicted in Figure 2. Inputs and outputs are effected 
by means of communication lines. The number of 
lines is not restrictive. The reader is referred to the 
latt~r part of this paper for a more complete discus
sion of the execution. 
--The large-scale user will commonly design at 
least a portion of the programs which must b~, ~~eate~ 
to perform specialized functions. The language which 
he is required to use must be readily understood and 
easi~y a,pplied. This language should be used not only 



430 Spring Joint Computer Conference, 1968 

to configure the system to perform selected applica
tions but also for inputs and outputs. It must be con
versational, thus permitting the user to interface and 
communicate readily with the system at his disposal. 
Furthermore, this one language should suffice for all 
applications - irrespective of the 
of the task to be performed. 

j-----------------------------, 
I (SEE FIGURE I) : 

! I~H.:::.H:~ I i 
..... -----------------i---;::------ -~ _. _______ J 

(gJ
1 I I: 

PROGRAM/Joe' SYSTEM -- _____ l I { 

fI.H~ J------------- MONITOR -----------1-+ ~/~ 
. I 

[)VA 
IfFUTS 

---""J OOA FI..DtV 

I I r---------J 

-------~ CONTROL FI..DtV INRlAMAT10N 

Figure 2 - Data and control flow 

Software within the system must be comprehensive. 
A suggested organization for software development 
and specific responsibilities of each area are shown 
in Figure 3. 

METHODS AND PROCEDURES 
SYSTEM INTEGRATION 
~EDURES 

SYSTEM TEST PROCEDURES 
SYSTEM DOCUMENTATION 
PROCEDURES 

FUNCTION-ORIENTED 
APPLICATION SYSTEM 

SIMULATION 

LINEAR PROGRAMMING 
MATHEMATICAL SUBROUTINE 
LIBRARY 
PERT 
NUMERICAL CONTROL 
DATA REDUCTION 

SOFTWARE 

DESIGN 
GROUP 

OPERATING SYSTEM 

JOB MANAGEMENT 
TASK MANAGEMENT 
DATA MANAGEMENT 
PROGRAM MANAGEMENT 
UTILITY SERVICES 

INDUSTRY -ORIENTED 
APPLICATION SYSTEMS 

MANUFACTURING 

BANKING 
INSURANCE 

DISTRIBUTION 
RETAILING 
TRANSPORTATION 
OTHER USER REQUIREMENTS 

Figure 3 - Software design responsibilities 

The input to the software design group by the 
operating system design group is shown in the 

upper right portion of Figure 3. A suggested organ
ization to provide input to the operating system 
design group is shown in Figure 4. 

LSI DESIGNERS 
'\.. 

USER REQUIREMENTS 
OPEIWING 

SYSTEM DESIGN 
GROUP 

lDCS AND EXECUTIVE 
DESIGNERS 

SYSTEM INTEGRATION 
AND OONTROL GRgP 
DESIGN MANAGEMENT 
SQ£Dll.E /1N) CONTRa.. 
SPECIFICATIONS 

COMMI.NCImJNS /1N) 
UTL!TES GROW 
c:oMMI.MlCATIONS 
0II43N0STIC ROUTNS 
TTY /1N) ETY 

TESTtG VIDEO DISPLAY 
AUDIO 
PRWTERS Nfl MICROFLM 

Figure 4 - Operating system design responsibilities 

Fourth generation computer designers should 
consider memory levels and interfaces when plan
ning a computer family. The major levels of memory 
and interfaces are shown in Figure 5. The memory 
levels depicted in this illustration differ to some 
extent from the memory levels common in previous 
generations. 

USER 
LEVEL ------------------------------------ l 

8 
BUFFERS 

~T COUNTERS 
OUTPUT INPUT CONTROL OF COUNTERS 
LEVEL OUTPUT CONTROl.. DECISIONS (BASED 

--- ----- ----- -- --------~-~!~~- ------
~~·'T~~' __ 

MAr. 
MEMORY 

I , , 

COMPILERS : : : 
, ' I 

LEVEL ASSEMBLERS: :8' ~----~~ : : 
~ ---------~~;~--r A=:E~ 1- L~C ARRAYS i 

MEMORY l : : PRIMARY 

aEM6NTS READ PROCESSING : : : 
ELEMENTS I , , 

MEMORY ...----------, l
OHLY 

LEVEL CONTROL 
PERMANENT 
SOFTWARE 

---- ------ ---- ------ ------ --_ ...... - - -- -_ ... 

TO 
SECONDII.RY 

STORAGE 

REGISTER 
LEVEL 

I PROCESSOR I 
I ELEMENTS I 

REGISTER 
LEVEL 

STORAGE 

MICRO OPERATIONS 

---- ----- --·--t- --- ------ ------------ J 
MEANS OF CONSUlTING 
AND INTERACTING WITH 1/0 

Figure 5 - Major memory level interfaces 



The disconnected lines in Figure 5 indicate ma
jor interfaces which shift a~ required for partic
ular family members. The roles of associative memo
ries and of LSI programmable logic arrays also vary. 

Read only memories and associative memories 
can be used extensively in medium and large family 
members - particularly in establishment of program 
generators. 

Programmable logic arrays can perform many of 
the executive processes currently performed by 
software and can be used to tailor the system to 
meet particular user needs. 

Progammable logic arrays and associative mem
ories can replace operating system programs and be 
used to establish logical system organization. 

AssociatIve memories can be used for compiling, 
job . assignment, parallel processing, search opera
tions, handling of priorities and interrupts, and 
-recognition of I/O commands. Concurrent operation 
of high-speed peripheral devices will be facilitated. 

Interfaces between software segments and equip
ment with regard to facility assignment, protection, 
release, accounting, relative priority, scheduling, 
and interrupt procedures should be consistent 
throughout a computer family. 

Register-level designers can correlate software 
modular designs and physical modular designs 
(functions, translations, data fonnats, instruction 
formats, etc.). One group .of system/LSI/software 
designers working at the register level can establish 
characteristics of the total - system - register size, 
instruction set, multiprogramming, multiprocessing, 
. etc. This group must also answer questions such 
as whether register logic, counters, comparisons, 
and control logic can be optimally handled by LSI 
orby IC's. 

Commendable system design utilizes common 
majorboards, common memory features, common 
read only memory units, and common software, 
thereby reducing the cost of design effort. One 
set of circuits operating at a uniform clock speed 
can be designed for the entire family. Systems can 
be carefully designed to maximize cost effectiveness 
for the manufacturer and, concomitantly, to max
imize potential benefits for the user. 

Discussion of the characteristics 

It is appropriate to suggest methods or approaches 
by which the characteristics of fourth generation 
computer systems can be implemented. Some methods 
have been suggested in preceding sections of this 
paper. The implementation of other characteristics 
is discussed in this section. Implementation of the 

Fourth Generation Computer Systems 431 

remaining characteristics and integration of char
acteristics to form a system are discussed in the 
next section of this paper. 

We have stated that the major design criteria will 
be optimal use of available communication inter
faces. Intrasystem and intersystem communication 
interfaces are required for both hardware and soft
ware. Computer professionals are acutely aware 
that communication capabilities are an important 
requirement of the next generation of computers. 

Fourth generation sy'stems will be controlled 
primarily by data rather than by programs as were 
previous machines; i.e., overall system control 
will be established primarily by input rather than 
by stored information. Development of this char
acteristic is dependent upon submission of informa
tion il1 real time. Feedback is a key consideration. 
Proper interaction between intersystem and intra
system interfaces is vital. The interrelationships 
between data (communication bits) and programs 
(information bits) must be carefully defined. 

Use of hardware to govern communication and 
control procedures will be emphasized; extensive 
use of control programs will be. substantially re
duced or eliminated. This characteristic is closely 
related to the preceding one. Focalizing system 
design by application of communication networks 
eliminates much of the need for software and facil
itates system control. Again, consideratio,n of both 
intersystem and intrasystem elements is important. 
System allocation of its resources and use of LSI for 
control have bee~ discussed in previous sections . 
When such techniques are applied, control program 
requirements will be minimized. 

To write that most processing will be executed 
in real time is to express an opinion. However, a 
definite trend within ED P toward more processing 
of data in real time is readily observable. Real time, 
as discussed in this paper, does not imply the inter
leaving of programs or the man-machine interaction 
of time sharing. It does imply that the system will 
accept inputs as they are made available and process 
those inputs within the constraints imposed by 
desired response times. 

The system will be readily expandable in terms 
of both hardware and software. 'A variable instruc-

· tion set is not implied. However, nested subsets 
of software will be available to complement nested 
subsets of hardware. In fact, this nesting of software 
is currently practiced. The user's software commonly 
includes both action macros and system macros. 
System macros commonly contain nested macros 
which perform communication functions for specific 
terminal devices. Such macros can be removed or 



432 Spring Joint Computer Conference, 1968 

specialized. Thus, system modularity results and 
impetus is given to applying the family concept 
in terminal design. 

An example of functional modularity is a multi
plex control device which consists of front-remov
able elements such as a channel unit, speed/code 
format decoder, data control unit, and power unit. 
Desired speed/code combinations in the format 
decoder can be implemented by replaceable major
boards. Character-rate regulation features for a 
variety of remote terminals can be established 
by means ~f plug-in majorboards. 

To construct spedal purpose computers by spe
cialization or combination of generalized hardware 
and software modules should be possible. Tailoring 
hardware to the user's particular needs and/or 
applications appears straightforward. 

Hardware modularity can also be applied to inter
connected elements. Interconnect designs will 
include inter-junction, inter-flat pack, inter-major
board, inter-unit, inter-shelf, and inter-backboard. 
Disciplined interfaces can be established between 
the unit interconnect system, the structural system, ' 
and the cooling system, each of which will be con
structed as a separate and virtually independent 
element. A complete enclosure of the unit inter
connect system can be designed. All modules can 
be constructed as entities which are front-remov
able. A significant objective will be to design systems 
such that all installation and normal service activities 
can be performed by means of front access. Hard· 
ware malfunctions will be corrected by immediate 
replacement of disabled modules. Malfunctions 
in real time systems will be corrected by replacemen 
of disabled modules within a time span of less than 
one minute. 

Functional modularity will not only help to alleviate 
interconnection problems \yithin the ~odule but 
also permit the interconnection of modules such 
as processors, I/O channel handlers, memory ele
ments, and peripheral devices. Dynamic system 
reconfiguration will be possible. 

Modular design of system hardware is a basic 
determinant of the degree to which a system can 
be updated and of the ease with which such updating 
can be performed. Functional plug-in elements 
permit the system' to ~e updated. Advancements 
resulti~g from technical developments can be readily 
incorporated in systems currently in operation. How
ever, modular design should not be regarded as a 
permanent deterrent to' obsolescence of fourth genera
tion equipment. 

The design of fourth generation systems to permit 
efficient operation regardless of distances between 

connected elements is discussed ih the last section 
of this paper 

Collection of data at its source is a trend in the 
computer industry. On-line collection of data will 
be the standard rather than the exception in fourth 
generation systems. Translation of data from a 
medium understandable by the user to a medium 
understandable by the computer will be an accepted 
function of the computer. 

Most of the data flowing into and out of computers 
today is unnecessary. Low-cost mass memory will 
provide a common data base and reduce or eliminate 
repetitive entry of data. The generation of reports 
on an exception basis is a technique of system design 
rather than a problem of hardware or software. The 
user must recognize that voluminous report~ in 
themselves do not provide answers and that identi
fication of key factors and organization of pertinent 
reports accordingly is a preferable approach. On
line ,submission of data or interrogation of the system 
from remote terminals will be another technique by 
which desired information can be entered or secured. 
An overall system approach is needed to determine 
answers to questions of storage media, I/O devices, 
types of input and output, frequency of output, etc. 

The development of an efficient low-cost program 
generator has been previously discussed. 

Increased emphasis on reduction of total system 
cost is an obvious trend and needs no explanation. 

Software must be designed to facilitate user appli
cation. Several methods to ease programming dif
ficulties have been discussed in earlier sections. 

Device-specific software routines will be eliminated 
because the required functions can be performed by 
a general software routine and interchangeable func
tional hardware modlues. (See discussion of fith char
acteristic.) 

Hardware diagnostic routines will be performed 
during normal system operation. Indication of mal
function will be detected so that corrective procedures 
can be initiated, thus avoiding costly delays that would 
otherwise occur. For example, suppose that a diag
nostic routine to check multiplex operation is run 
periodically. If the speed/code format decoder in 
multiplex unit #3 begins to fail, the operating system 
is instructed to power up multiplex unit #4 and to 
switch operations being performed by multiplex unit 
#3 to multiplex unit #4. A message is typed o~ the 
typewriter console that the speed/code format decoder 
on multiplex unit # 3 has failed. Maintenance person
nel can remove the defective speed/code format de
coder and insert a new functional unit. 

Compatability of diagnostic routines and I/O rou
tines produces several beneficial results. 



1. Minimizes system downtime due to malfunction 
of hardware elements. 

2. Permits graceful degradation. 
3. Eliminates the necessity to interrupt normal 

processing in order to detect and correct minor 
hardware malfunctions. 

Fourth generation computer systems 

What is the fundamental nature of computing? We 
believe that the basis for computing is data handling 
(data communication) and data control. Data must be 
communicated to the system, among system elements, 
and to external recipients. Data are accepted by the 
system,· 'stored, and processed. Since the system 
requires I/O, storage, and processing capabilities, why 
not develop separate processors to perform these 
functions in an optimal manner? We suggest that 
multiprocessing systems similar to the configuration 
shown in Figure 6 will be widely used. 

. 
TO EXTERNAL DEVICES 

Figure 6 - Fourth generation computer systems 

The three functional processors can be contained 
within the same hardware unit. The dots indicate that 
additional processors can be added to the system. 
The communication architecture of this system will 
enhance and encourage modularity by assigning to 
hardware many of the functions currently performed 
by software. If several of these small processors are 
in the system, the failure of one of them will decrease 
system performance only to the extent that the re
maining processors of the same type cannot handle 
the workload. 

The operand manipulator processor will perform the 
application programming function. All logical pro
cesses outside of the system control functions will 
be executed by this processor. A single communica
tion control system program will reside in this pro
cessor. 

Fourth Generation Computer Sysiems 43"3 

The data storage processor will handle the require
ments for associative memory, secondary storage, 
mass memory, and communications between pro
cessors. The logical structure of the system will be 
centered around this processor. The' data storage 
element will be divided into z~nes based upon reten
tion times of stored data. All logical communications 
between processors or processes will be handled by 
this processor. This arrangement will permit asyn
chronous communications. 

The multiplex processor will include high-speed 
record channels with interrupt capability and a multi
plex channel designed to service a large number of 
low-speed devices on a time division multiplex basis. 
These low-speed devices will include badge readers, 
teletypewriters, process control stations, bank teller 
window devices, on-line factory test devices, touch 
tones, keyboards, and CRT's. A f~ll duplex multiplex 
channel which can send and receive serial data in 
either a time division multiplex mode or a record 
mode will be available in the mUltiplex processor. 
Automatic poll and call functions for devices requir
ing such services will be generated by hardware. In
put lines will be scanned automatically by the multi
plex channel unit, and data will be brought into main 
core storage where they can be easily accessed by the 
data storage processor. The multiplex processor will 
be capable of continuous operation. Its functions will 
include accepting data into the system, making queue 
entries to provide the proper data processing func
tions, receiving the results of processing, and dis
tributing these results to the external system. 

Significant modifications to current mass storage 
units are needed. These modifications should be intro
duced to develop mass storage units which will be 
capable of storing up to a billion characters, have no 
moving parts, and operate at electronic switching 
speeds. 

Current multiprocessing systems are frequently 
characterized by identical processors used sym
metrically. Such an arrangement reduces a multi
processor system to a multiprogramming system if 
interlocks and inter-processor communications are 
ignored. Techniques of multiprogramming are known 
and give some insight into multiprocessor systems. 
If processors are allotted for specific functions as 
proposed in this paper, hardware can control multi
plexing, switching between programs, channel alloca
tions, and several of the storage functions. Operating 
systems will be easier to design and simpler to under
stand. Multiprocessing offers potential benefits of 
speed, because execution is in parallel instead of 
serial; flexibility, because processing modules can be 
added without redesign of the system; and increased 
reliability, because redundant processors allow the 



434 Spring Joint Computer Conference, 1968 

system to "degrade gracefully." Such systems are 
highly adaptable to potential processor applications. 

Fourth generation multiprocessor systems will 
be characterized by record channel units for communi
cating among processors and a multiplex processor 
for communicating to external elements. Record 
channel units will be used to terminate devices which 
operate on a record-by-record basis and communicate 
asynchronously with the processor, e.g., drums, disks, 
and magnetic tapes. The multiplex channel unit will 
terminate character-oriented devices, i.e., a large 
number of independent low-speed devices, each 
operating on a character-by-character basis. The 
channel will be a serial time division multiplex loop 
divided into a number of time division slots. The time 
slots will be detected by adapters. Each adapter will 
be connected to at least one control unit which pro
vides hardware interface logic between the loop and 
an addressed device. The multiplex channel will ob
tain data for the loop from tables in core and return 
data from devices to these tables on a data replace
ment basis. Direct digital control loops can be 
attached to the multiplex channel. 

Fourth generation computer designers will be cogni
zant of the importance of tradeoffs and of design inter
faces and critical paths between physical modules, 
physical and software modules, and software modules. 
Designers of current software are more concerned 
with software-human interfaces than with intra
software interfaces structured to maximize applica
bility. Tradeoff and interface analyses must answer 
the questions "How will each change affect the user?" 
and "How much will each change affect the user?" 
System tradeoffs in fourth generation computers with
in communication and control systems will be ex
pressed in terms of response times, communication 
channel bandwidths, equipment complexities, and 
numbers of channels. 

Facets of interface design that are being estab
lished include the following elements: 

1. Procedures and standards, 
2. Combinations of procedures and standards 

which function as control elements, 
3. Interfaces suitable for use with memory (associ

ative, data only, control only, multiple segment 
read only, and multiple segment write only), 

4. Interfaces between I/O devices, and 
5. Interrupt, identification, and other real time 

and quick time intermodular control functions. 

The address structure of a communication-oriented 
system will permit comprehensive element identifi
cation. In addition, use of truncated addresses within 
any given environment will assure efficient address
ing capability. Proper design of communication modes 
of operation win remove the responsibiiity for timing 
considerations from the application program. 

In the multiprocessing system discussed in this 
paper, standardization of interfaces and specifications 
of standard response times and bandwidths will permit 
the relocation of application devices in the system. 

When the basic nature of applications is considered 
from a communication and control point of view, the 
following functions can be identified: data acquisi
tion and reduction, algorithm computation, monitor
ing, and process optimization, and control. These func
tions can be structured as a horizontal unification of 
computing elements, I/O and communication ele
ments, and user devices, or data-generating elements. 
Within all applications, there is also a vertical struc
turing determined by the specific assignment which 
the system is initialized to perform. Fourth genera
tion systems must be flexible to permit easy and 
constant reconfiguration and reoptimization. 

SUMMARY 

The authors of this paper have attempted to show how 
computers and applications can be integrated to form 
a communication and control system. Computer 
capabilities, tradeoffs, role of LSI, new software 
systems, examples of design based on interfaces, and 
overall system configuration have been discussed. 
Since the primary element that users have in common 
is data, the development of techniques to achieve 
data communication and data control is, at the same 
time, the development of a sound basis for data pro
cessing. 

One way to stimulate the development of tech
nology is to identify situations in which the results 
of such development can or must be applied, i.e., to 
identify and present current or portending needs. 
The authors have attempted to point out such needs 
in the computing field. Suggestions and comments in 
this paper can be considered, studied, and discussed. 
This discussion can lead to the development of new 
technology before designs of fourth generation com
puter systems are finalized. Fourth generation com
puter systems will be characterized by many of the 
features advocated herein. 



A fourth-generation computer organization 

by STAN LEY E. LASS 
Scientific Data Systems, Inc. 
Santa Monica, California 

INTRODUCTION 

A single processor's performance is limited by its 
organizational efficiency and the technology avail
able. Paralleling of processors and/or improving the 
organizational efficiency are the ways of obtaining 
greater performance with a given technology. Much 
research has been done on multiple processors and 
single processors which perform operations on vectors 
in parallel. 

Howerer, significant portions of problems are 
sequential, and performance in the sequential por
tions is limited to that of a single processor. This paper 
describes a proposed new medium- to large-scale com
puter organization designed to improve single-proces
sor organizational efficiency. The basis of this 
approach is the separation of memory operations 
(fetching, storing) control from the arithmetic unit 
control. Each control unit executes its own programs. 
Memory operations programs fetch instructions, 
fetch operands, and store results for the arithmetic 
unit. Buffering allows a maximum of asynchronism 
between the arithmetic operations and the memory 
operations. To perform a given computation, each 
control unit executes fewer and less complex instruc
tions than a third-generation computer control unit. 
The less complex instructions require less time to exe
cute and, since fewer instructions per control unit 
are required, the computer can operate much faster. 

Cost -performance of logic 

A logic circuit delay of approximately 0.2 nsec 
has been achieved on an integrated circuit chip. H igh
speed logic circuit delay of 1.8 nsec has been achieved 
in the third generation. Low-cost bipolar logic with 
250 gates on a chip at 5 cents/gate has been predicted 
for 1970. Per-gate costs are presently about 50 cents. 
Cost-performance of logic will thus be about two 
orders of magnitude better than in the third genera
tion. 
Arithmetic operation times 

As a result of this cheaper and faster logic, it will 
be reasonable to minimize operation times by exten-

sive use of combinational logic and separate func
tional units (e.g., an add/subtract/logical unit and a 
multiply/divide unit). The. implications of this proce
dure can be emphasized by estimating the arithmetic 
operation speeds that will result. 

These estimates are based on extrapolations from 
published papers1•2•3 and include an allowance for 
the additional logic levels required. Also, the esti
mates assume a I-nsec delay in the environment for 
one level of AND/OR logic along the critical path. 
The critical-path distance will be minimized by a com
bination of staying on the integrated circuit chip and 
keeping the path distance between chips short. 

Estimated arithmetic operation speeds are: 
Pipelined Time! 

Operation Elapsed Time Operation 

32-bit fixed-point add/subtract 8 nsec 
32-bit fixed-point mUltiply 16 nsec 
32-bit fixed-point divide 56 nsec 
32-bit logic functions 8 nsec 
32-64 bit floating-point add/subtract 16 nsec 
32-64 bit floating-point multiply 20 nsec 
32-64 bit floating-point divide 70 nsec 

4nsec 
8 nsec 

4 nsec 
8 nsec 

10 nsec 

With separate functional units, time can also be 
saved by using functional unit outputs directly as 
inputs without intervening storage. Pipelining can 
also be used to increase the throughput. For pipelined 
operation, the execution of a function is divided into 
two or more stages, and a set of inputs can be in exe
cution in each stage. The time between successive 
inputs can be much less than the elapsed time for 
the execution of a function. 

Cost-performance of memory 

Memory costs will be roughly halved by batch
processed fabrication. Access times on the order of 
100 nsec and cycle times on the order of 200 nsec will 
be achieved. This represents nearly an order of magni
tude improvement in cost-performance over third
generation memories. 

435 



436 Spring Joint Computer C"onference, 1968 

I mplications of memory technology 

Logic speed is increasing relatively faster than 
memory speed. Cheaper logic makes it reasonable to 
perform the arithmetic operations in fewer logic levels. 
As a result, the disparity between arithmetic opera
tion tim.es and memory access times will increase by 
a factor of roughly two to three. This implies greater 
instruction lookahead to efficiently utilize the arith-
metic unit's capacity - and increased instruction look
ahead is difficult to achieve.4 

However, a partial solution to this disparity exists 
and is described in the sections that follow. 

Associative bufler and block-organized main memory 

A scratchpad memory buffers the processor and 
main memory. Blocks of words are transferred be
tween the scratchpad memory and main memory. The 
scratchpad memory and the associative memory 
together comprise the associative buffer. The opera
tion proceeds as follows: 

The virtual address of a requested word is associ
atively checked with the virtual addresses of the 
blocks in the scratchpad. If the word is in a block in 
the scratchpad memory, it is output to the processor. 
If not, the block containing the word is obtained from 
main memory and stored in the scratchpad memory, 
and the word is output to the processor. Similarly, 
when storing a word, the block must be in the scratch
pad memory. 

This is similar to paging in third-generation tIme
sharing systems and it involves the same problems 
(e.g., which block to delete or store when room is 
needed for a new block). The net result is a substantial 
reduction in access time when the word is in the 
scratchpad memory. 5,6 

To provide a basis for comparison, assume a block
organized main memory with each block consisting 
of 16 consecutive 32-bit words. Eight interleaved 
block-organized memories of 100-nsec access time 
and 200-nsec cycle time provide a combined memory 
bandwidth of over 2 X 1010 bits/second. 

Access times from processor to memory are approx
imately 30 nsec for words in the scratchpad, and 
150 nsec for words in main memory. Pipelining 
through the associative memory and parallel scratch
pads is used to achieve a high associative buffer band
width. 

Assume a fetch or store every 10 nsec, where six 
percent of these require accessing main memory. The 
six percent is based on data5 modified to reflect the 
differences in computer organization. This corre
sponds to an instruction rate of approximately 80 
million per second. This also corresponds to six 
blocks per microsecond from main memory or 15 per-

cent of bandwidth. With" bandwidth usage this low, 
another processor could be added without severe 
degradation in performance due to interference. 
It also allows high input-output transfer rates with 
modest interference. 

It is desirable, with this design, to group operands 
and sequence the addressing to minimize the number 
of block transfers. This lowers the average access 
time and lowers the main memory bandwidth usage. 

Programming implications 

Most programming will be in higher-level languages. 
The computer cost will be a smaller and smaller por
tion of the total costs of solving a given problem. 
The main goal of the designer is to maximize the 
system throughput with programs written in higher
level languages. The user sees a system that executes 
programs written in higher-level languages. 

The average job execution time does not decrease 
significantly when the computer speed is increased 
significantly. The explanation for this seems to be 
that the number of programmers and the number of 
jobs they submit each day do not change appreciably, 
but the jobs they do submit are longer in terms of 
number of instructions executed; e.g., they try more 
cases or parameterize in finer increments. The num
ber of instructions executed per job by the operating 
system (including. compilers) will probably not in
crease by more than a factor of five, even if increased 
optimization of compiled code and decreased effi
ciency due to use of table-driven compiler techniques 
(for lower software cost) are"factored in. 

Operating systems, compiling, and input conver
sions (e.g., decimal-binary) are essentially input
output functions and their volume is proportional to 
the number of programmers and people preparing in
put and reading output. If the computer speed is in
creased by a factor of twenty-five, then the operating 
system (including compilers) time will decrease by a 
factor of more than five; and the computer will be exe
cuting jobs more of the time. Similarly, the proportion 
of time devoted to byte manipulation, binary-to
decimal conversions, etc., will decrease. 

Byte, halfword, and shifting operations may not be 
included in the hardware for the above reasons. Shift
ing would be accomplished by multiplying by a power 
of two. . 

The equivalence of logic design and programming 

Both the logic designer and the programmer imple
ment algorithms. Each has to choose a representa
tion of the data involved. Whereas the programmer 
uses instructions to implement algorithms, the logic 
designer uses combinations of logic elements (AND, 



OR, NOT, and storage). In addition to verifying that 
the logic is correct, the designer must observe the 
electrical limitations of the logic elements and their 
connections (i.e., circuit delay, fan-in, fan-out, and 
wire propagation delay) in order to execute the logic 
function correctly within the time allotted. 

Hardware instruction lookahead is, in effect, a 
recoding of several instructions to obtain the instan
taneous control actions. The hardware recoding and 
the resulting asynchronism depend on conditions 
within the computer (e.g., variations in instantane
ous memory access time due to interrerence). Hard
ware recoding operates in real time at execution time 
and is strictly limited in complexity by time and eco
nomic considerations. 

The recoding can also be performed by software 
at compile time if execution-time asynchronism is 
sacrificed. All concurrency is planned at compile 
time. If an instruction or operand were not available 
when needed (due to memory interference), the con
trol would halt until it became available. The recoded 
program, containing control timing and sequencing 
information, would require several times as many bits 
as the unrecoded program. It would resemble a 
microprogram with groups of microinstructions to be 
executed in parallel. The- computer time required 
for recoding at compile time is proportional to the 
length of the program, not the number of instruction 
executions required to complete the program. Also, 
software recoding is not limited by the real-time con
straint. As a result, the software recoding can econom
ically be much more complex and more effective. In 
the recoded form, operand fetches are initiated several 
instruction cycles before they are used. 

For example, the recoded form of the inner loop of 
a matrix multiply would be several operand fetches, 
followed by concurrent operand fetches and arithmetic 
operations and finally by the last arithmetic opera
tions. The same result could be obtained by an inde
pendent operand fetch loop which starts several in
struction cycles before the arithmetic operation loop 
is started. Two separate centers of control are im
plied. Fewer bits are required to represent the program 
by specifying the two loops separately, but the number 
of bits is still more than third-generation instructions 
require. 

The proposed computer organization has a separate 
control unit for fetching and storing (the data channel 
control unit) and an arithmetic control unit. 

F or comparison, note that the CDC 6600 and the 
LIMAC7 have separate instructions (but not separate 
program&) for arithmetic operations and memory 
operations. 

A Fourth-Generation Computer Organization A'l1 
-rJ I 

Data channels and their control 

Figure 1 shows the data channels which are the 
information-flow paths in the computer. 

DAT.A CHANNEL CONTROL UN!T 

ASSOCIATIVE BUFFER 

MAIN MEMORY 

Figure 1- Information flow diagni.m. Arrows indicate data paths in 
the computer. I nstructions are transmitted to the arithmetic units 
over paths indicated by dashed arrows. Double arrows are the data 
paths for each set of eight data channels. Two data paths suffice for 
eight data channels, since two data items at most are transferred at 

a time 

Channel commands for multiple-word transfers 
consist of a virtual memory address, the channel 
number, a flag indicating load or store pushdown 
stack, address increment, and count. 

For loop control during arithmetic operations, an 
end-of-record marker follows the last operand. An 
attempt to read the end-of-record marker as data will 
terminate the loop. 

A channel can be cleared of previous contents by 
flagging the first command of a new channel program. 
All store commands of the old channel program for 
which data was stored in the channel are properly 
executed. A channel must be cleared or sufficient 
time must elapse to store the data before subsequent 
commands reference that data. 

Another channel capability is the capability to load 
a variable number of words (limited by the buffer size) 
in a circular register. Its use is primarily for storing 
instructions and constants within loops. It can be 
entered by flagging the channel command which speci
fies the last word in the loop. The first word will then 
follow the last word until the channel is cleared. This 
usage of the channel will be later referred to as cir
cular mode. 

The input-output register of the channel has a data
presence bit to indicate data availability. The register 
functions in four ways: 



438 Spring Joint Computer Conference, 1968 

1. Nondestructive read: 
The presence bit is left on and the register con
teilts remain t.he same. 

2. Destructive read: 
The presence bit· is turned off, the register is 
fined with the next data word in the .channel~ and 

. . 

the presence bit turned back on. 
3. Nondestructive store: 

The current contents of the register are pushed 
down one and the presence bit is left on. 

4. Destructive store: 
The current contents of the register are replaced. 

Provision is made for saving channel status, using 
the channel for another purpose, and later restoring 
the channel to its original status. 

The master control unit, fixed-point arithmetic unit, 
and. input-output unit each have a data channel 
reserved for commands. Any data stored in these 
data channels are transmitted to the data channel con
trol unit for immediate execution as a command. 

The second source of commands is the input -output 
registers of specified data channels. Commands pres
ent in the specified data channels (as indicated by the 
presence bit) are read destructively from the input
output register and executed. The commands are 
executed by small, fast, special-purpose computers in 
the data channel control unit. 

As a~ example, the execution of a single command 
(received from the master control unit) loads a data 
channel with commands, -the first command loads 
another data channel with commands for fetching 
instructions, the second command loads still another 
data channel with commands for storing data, and 
the remaining commands fetch operands. 

Channel command programs loading data can fetch 
ahead of arithmetic execution a number of words 
limited by the size of the data channel buffer. Channel 
command programs end by running out of commands. 

Data channel buffering 

Channel buffers would be implemented as circular 
buffers using integrated scratchpad memories. 
Channel action when used for loading operands is as 
follows: 

Initially, both input and output pointers are set ~o 0 
(see Figure 2). The first input requested goes into 
word 0, and a data-presence bit is set when the input 
arrives .. Each successive input requested goes to the 
next higher word (modulo 7). The fetch-ahead depth 
of our example is limited to 8. Output can only occur 
if the data-presence bit is set. If the instruction turns 
off the presence bit, the next output comes from the 
next higher word. While inputs are requested in the 
command order, they may arrive at the buffer out of 

sequence, but they will go to the correct word in the 
scratchpad. 

CHANNEL SI DE POINTER 

10\ 
rI1\ 
~\ 

INPUT-OUTPUT 
REGISTER POINTER 

Figure 2 - Data channel buffer 

The mast~r control unit. 

Eight double-word data channels supply the master 
control unit with instructions. The control is selected 
to one of the eight data channels. Instructions present 
in the sel~cted data channel (indicated by the presence 
bit) are read destructively from the input-output regis
ter of the data channel and executed. There are five 
types of instructions: 
. 1. Arithmetic instructions are transmitted to the 

appropriate arithmetic unit. 
2. Channel commands appearing in the instruction 

stream are transmitted to the channel control unit 
through a data channel. 

3. An all-zero instruction is a no-operation. 
4. An instruction is provided to conditionally 

switch between the instruction unit data chan
nels. 

5. An instruction is .provided to conditionally skip 
a specified number of instructions. 

Arithmetic unit control 

An arithmetic instruction specifies the two inputs, 
destructive or nondestructive read, and the operation 
to be performed. The inputs are from data channels 
and functional unit outputs (see Figure 3). 

A store instruction transmits the data on an out
put bus or a data channel to a data channel. One 
data channel leads to the channel control unit for 
computed channel commands. 

The first stage of instruction execution is testing 
whether the specified inputs are present. If they are 
not, the control hangs up until they arrive. During the 
last stage, the inputs are latched in the functional 
unit while the operation proceeds. The output-pres
ence bit is set when the operation is completed. The 
presence bit is turned off by a destructive read of the 
functional unit output (by an instruction), or by test-



ADDER, 
SUBTRACTOR. 
AND LOGIC UNIT 

MULTIPLY-DIVIDE UNIT 

INPUT-OUTPUT 
BUS 

INPUT BUS 

EIGHT DATA CHANNEL BUFFERS 

Figure 3 - Arithmetic unit organization. Arrows indicate data paths 
and direction. 

ing the condition code generated by the operation. 
For example, a compare is accomplished by testing 
the condition code of a subtract operation. 

To pipeline, two pairs of inputs must be latched in 
before the result of the first pair is read. Trying to read 
anend-of-record marker results in switching control 
to the next data channel in the control unit. This is 
used mainly for terminating loops. 

To facilitate data exchange between the separate 
fixed- and floating-point arithmetic units, two data 
channels are common to both. 

Channel commandsfor instruction and data 
sequencing 

The channel commands for a set of instructions 
and their data are normally located together in 
memory. 

Sequential instructions are executed by transmit
ting a channel command to the data channel control 
unit specifying the instructions and their data. 

SmaUloops are the same as sequential instructions, 
except that circular mode is specified in the channel 
command. Arithmetic data may also use circular 

A Fourth~Generation ComputerOrganization 439 

modes. Leaving the loop is accomplished by switching 
to another data channel (by conditional branches) 
or by trying to read data and getting an end-of-record 
marker. If this data channel is itself in circular mode, 

. we have a loop within a loop. 
Conditional branches are handled by anticipatory 

loading of a channel with the successful branch 
instruction stream and switching to the channel if 
the branch is successful. 

Unconditional branches are handled at the channel 
command level by loading the channel with the 
branched instruction stream. 

Subroutines are ha'ndled by loading a channel with 
the subroutine (or at least with the beginning of it) 
and then switching control to that channel. Returning 
is accomplished by switching back to the original 
channel. Some subroutining can be specified at the 
channel command level by channel commands for an 
unconditional branch to the subroutine and an uncon
ditional branch back. 

However, sooner or later all channels will be in use, 
in which case a channel status is saved, the channel 
is used, and later the channel status is restored. This 
is analogous to saving a program location counter, 
executing a subroutine, and then restoring the loca
tion counter. 

Hardware design and packaging 

The computer is naturally partitioned into nearly 
autonomous units. Repetition of parts is found in 
the mUltiple uses of data channels (which are mostly 
memory), the special-purpose computers in the data 
channel control unit, and the associative buffer (which 
is mostly associative and addressable memory). 

The hardware complexity of control needed to 
achieve a high level of concurrency is minimized by 
separate contro! of memory operations and of the 
arithmetic unit. Complex instruction-Iookahead hard
ware is not required. 

Input-output 

Input-output would be controlled by a small com
puter with a scratchpad memory for input-output 
comlLands and buffering. 

The small computer is the interface between the 
peripherals and the data channels. It also generates 
commands to control input-output data transfers III 

the data channels, 

Time-sharing and multiprogramming 

Paging from a rotating memory is the currently 
popular solution to managing main memory in a time
sharing environment. If, in a typical third-generation 
system, a 50 x 106 instructions/sec processor is sub-



440 Spring Joint Computer Conference, 1968 

stituted and the page access time plus transfer time 
not changed significantly, the processor will be waiting 
on pages most of the time. Access time from rotating 
memories cannot be improved significantly, but trans
fer rates with head-per-track systems can be very 
high. 

This suggests an approach based on the ability to 
read complete programs from the disc into main mem
ory quickly, process them rapidly, and return them to 
the disc quickly. This minimizes the prorated mem
ory usage by a program and allows high through
put without an excessively large memory. 

The scheduler maximizes processor utilization with
in the constraint of system response times. Programs 
normally reside on the disc. The scheduler selects the 
next program to be transferred to memory. One factor 
in the selection is the amount of time before program 
transfer would begin (instantaneous access time). 
The program is transferred at 109 bits/second (e.g., 
a 106 bit program is transferred in 1 msec). The pro
gram is put on a queue of programs to be processed. 
Having the complete program in memory allows pro
cessing without paging to the next input or output by 
the program, and then writing the processed program 
into available disc space (generally the first available 
disc space) without regard to its previous disc location. 
The previous disc location is added to the available 
disc space. 

Scheduler considerations include the distribution 
of available space around the disc, distribution of 
ready-to-be processed programs around the disc, and 
nearness of ready-to-be-processed programs to their 
response-time limit. Programs whose processing 
time exceeds a specified limit are not allowed to de
grade the system response time of the other programs. 
Programs larger than the memory require partition
ing into files or pages. 

Main memory (or optionally a slower, lower-cost 
random-access memory) and the disc buffer the input
output activity of the programs. 

The system could be organized to place FOR
TRAN users in one group, JOSS users in another 
group, etc. Each user group would have its own com
piler and supporting operating system. A portion of the 
operating system would be common to all of the 
groups. The computer would be a "dedicated" 
FORTRAN system for a fraction of a second, then 
a "dedicated" JOSS system for another fraction of 
a second, etc. As a result, operating systems would 
be simpler and a change could be made in on"e system 
without affecting the other systems. 

CONCLUSIONS AND OBSERVATIONS 

The system described here achieves concurrency of 
fetching, arithmetic operations, and storing without 

the need for complex instruction lookahead hardware. 
The complexity of control is in software. 

The bandwidth of the processor is over 100 million 
equivalent third-generation instructions per second. 
This rate will be achieved for some problems. How-
ever, delays due to \vaiting for operands or instruc-
tions in the data channels will lower the processing 
rate in many cases. Some types of probelms seem to 
inherently have a great deal of delay - for example, 
table-lookup using computed addresses. 

Problems in which the flow of control and address
ing are not data-dependent could run near the band
width of the system. (An additional requirement for 
this is that the addressing be such that the block trans
fer rate between main memory and the associative 
buffer is reasonable.) Optimizing the code consists 
of (!) minimizing the delays caused by instructions 
and operands not being available when needed, 
and (2) pipelining and overlapping the arthmetic 
operations. 

To program for this processor in its machine lan
guage, a master control program (instructions) and 
channel programs (commands) are prepared. There 
are many chances to make an error and lose syn
chronism between instructions and commands. As a 
result of the difficulty in machine-language program
ming with this organization, even more programming 
would be in higher-level languages. 

Initially, the compiler for this computer could be 
relatively crude and unsophisticated. As time passes 
the subtleties and characteristics of the design would 
be assimilated and experience gained by the compiler 
writers. As a result, midway through the fourth gen
eration the computer should average 50-80 million 
equivalent third-generation instructions per second. 

A more powerful data channel command set than 
is described here may be desirable for non-numeric 
applications.8 

The only significant way to reduce software cost by 
hardware is to build a faster computer (with a lower 
cost per computation), which will then allow the pro
grammer to reduce total costs by using algorithms 
that are simpler to program but require more computer 
processing. 

REFERENCES 

1 C S WALLACE 
A suggestion for afast multiplier 
IEEE Transactions on Electronic Computers Vol EC-13 
February 1964 

2 M LEHMAN N BURLA 
Skip techniques for high-speed carry propagation in binary 
arithmetic units 
iRE Transactions on Electronic Computers Vol EC-IO 
December 1961 



3 S F ANDERSON 1 G EARLE 
R E GOLDSCHMIDT D M POWER 
The IBM system/360 model 91: Floating-point execution unit 
IBM Journal of Research and Development Vol 11 No 1 
January 1967 

4 D W ANDERSON F 1 SPARACIO 
R M TOMASULO 
The IBM system/360 model 91: Machine philosophy and in
struction handling 
IBM lournal of Research and Development Vol 11 No 1 
lanuary 1967 

5 D H GIBSON 
Considerations in block-oriented system design 

l\ Fourth-Generation Co~puter Organization AA1 
"T"T.l 

Proceedings of the 1967 Spring loint Computer Conference 
6 G G SCARROT 

The efficient use of multilevel storage 
Proceedings of the IFlPS Congress Spartan Books 1965 

7 H R BEELITZ S Y LEVY R 1 LINHARDT 
.H S MILLER 
System architecture for large-scale integration 
Proceedings of the 1967 Fall loint Computer Conference 

8 B CHEYDLEUR 
Summary session, proceedings of the ACM programming lan
guages and pragmatics conference 
Communications of the ACM Vol 9 No 3 Marcj 1966 





Optimal control of satellite attitude 
acquisition by a random search algorithm 
on a hybrid computer 

by WILLIAM P. KAVANAUGH, ELWOODC. STEWART and 
DAVID H. BROCKER 
Ames Research Center, NASA 
Moffett Field, California 

INTRODUCTION 

Computer implemented parameter search techniques 
for optimization problems have become useful engi
neering design tools over the past few years. Many, 
if not most of the techniques, are based on deter
ministic schemes which have inherent limitations 
when the system is nonlinear. Random search tech
niques have been suggested which propose to over
come some of the difficulties. References 1-3 give 
good general discussions of the merits of random 
techniques. Reference 4 develops an algorithm, based 
on random methods, to solve the difficult mixed two
point boundary value problem that results from an 
application of the Maximum Principle. The method 
was shown to be remarkably effective in solving a 
fairly complex fifth-order, nonlinear orbital-transfer 
problem. The purpose of this paper is to discuss the 
application of the random search algorithm to a still 
more complex problem to demonstrate its feasibility. 
The example chosen was the three-dimensional, 
large-angle, single-axis attitude acquisition control 
problem in which it is desired to minimize fuel expen
diture to accomplish the acquisition. The equations 
are highly nonlinear since small angle assumptions 
cannot be made; the control torques are assumed to 
be limited. This problem is more complex than the 
orbit-transfer problem in that the dimension of the 
state vectors is greater by t and the number of de
grees of freedom allowed the control action is greater. 
The same acquisition problem was dicussed in 
Reference 5 but a proportional control law was 
assumed. A random parameter search was used in 
that paper to find the optimal set of feedback con
stants for the given control system structure so as 
to minimize system performance (fuel). Systems per
formances will be compared to indicate the striking 

443 

improvement in performance with optimal nonlinear 
control. 

I n the following sections we will state the control 
problem for notational purposes, review the random 
search algorithm developed in detail in Reference 4, 
discuss the hardware and software necessary for 
implementing the algorithm, and last, present the 
results of applying the method to the satellite acqui
sition problem. 

Problem formulation 

The problems considered are restricted to those for 
which the Maximum Principle is applicable. Although 
familiarity with the principle is assumed, a few re
marks are necessary to properly pose the problems 
we will be concerned with in this paper. The system 
to be controlled is defined by the vector equation 

x = f(x,u,t) (1) 
where x = (xh X2, ••• ,xn), u = (Ub .•. , ur ) and u E U 
where U is the allowable control region. Interest will 
center an fixed-time problems because of their con
venience in computer operations. It will be desired to 
take the system from a given state x(o) to a final target 
set S so as to minimize the generalized .cost function 

n 
C=Laixi(T) (2) 

i=O 

where xo(t) is the auxiliary state associated with the 
quantity to be minimized. The target set S, for the 
example chosen here, will be defined as S = Xc E Rm 
that is, a fixed point in n-dimensional space. 

It is well known that application of the Maximum 
Principle to the stated problem invariably requires 
the solution to the following set of equations: 

u = u(x,p,t) } 
x=f(x,u,t) 
p = p(p,x,u,t) 

(3) 



444 Spring Joint Computer Conference, 196~ 

where p = (Ph ... ,Pn)' We can see that the Maximum 
Principle yields a good deal of information about the 
nature of the control, that is, we know the function 
u(x,p,t), and we know the equations for x and p. How
ever, at no time do We know the specific values of 
both x and p. For example, at the initial time, x(o) 
is generally known from the problem specifications, 
whereas p(o) is not known. The remaining boundary 
conditions required will be known at the final time by 
some combination of components from the x and p 
vectors. Thus, there is difficulty in solving these equa
tions even numerically because the known boundary 
conditions are split between initial and final times. 

Random search algorithm 

In this paper we will use the algorithm developed in 
Reference 4 for soiving the mixed boundary-value 
problem. Consequently, we will give only an intui
tive account of this approach necessary for the later 
example application. 

A direct way of solving the mixed boundary-value 
problem is to convert it into an initial-value problem. 
From Equations (3) it is clear that for any arbitrary 
value of p(o), there will be 'sufficient' information to 
determine a final state x(T). Since this state will gen
erally be different from the desired state xr(T) , we 
intro~uce a vector metric J (see Ref. 4 for the signifi
cance of using a vector metric rather than a scalar 
metric) to measure the distance between x(T) and 
xr(T). It is convenient conceptually to think of the 
components of the vector quantity J as hypersurfaces 
in an n-dimensional space of the components of the p 
vector. Then the boundary-value problem is equiva
lent to finding the simultaneous minima of all the 
hypersurfaces. I t is important to note that in this 
case the minimum values are known, i.e., zero. 

Deterministic approaches for finding the minima 
of the hypersurfaces have a number of difficulties. 
For example, the gradient technique requires the 
calculation, or possible experimental measurement, 
of the partial derivatives of the surfaces at each step 
of an iteration process. If the surfaces are discon
tinuous, have many relatively rapid slope changes, or 
regions of zero slope, gradient approaches will fail. 
The random search techniques overcome these diffi
culties. References 1 through 4 discuss the virtues 
of these methods in greater detail. In particular, it 
is demonstrated in Reference 4 that many of the hyper
surface abnormalities mentioned above actually occur 
in even a moderately complex problem. 

The random search approach to be used here was 
described in considerable detail in Reference 4. The 
approach is based on a direct search of the hypersur
faces by selecting the initial condition vector p(o) 

from a gaussian noise source, followed by an evalua
tion of the corresponding values of the hypersurfaces. 
I t was shown that the pure random search is not 
practical for moderately high-order systems because 
of the siow convergence to the minimum. However, by 
making the search aigoriihm adaptive, the conver
gence properties were shown to be greatly improved. 
This was accomplished by: (a) varying the mean 
value of the gaussian distribution on any iteration so 
as to equal the initial condition of the adjoint vector 
on the last successful iteration, and (b) varying the 
variance of the distribution so that the search is 
localized when the iterations are successful but gradu
any expanded in a geometric progression when not 
successful. Thus, the mean provides a creeping and 
direction-seeking character to the search while the 
variance provides an expanding and contracting char
acter. 

ADJOINT VARIABLE P (0) 

Figure 1 - Typical boundary cost function surface 

The behavior of the algorithm is illustrated in Figure 
1 by the typical boundary function surface given in 
only two dimensions. Starting at point 1, the mean of 
the distribution is made equal to the corresponding 
value of p(o); the search starts with the small variance 
indicated and gradually expands in geometrical steps 
until a lower point on the surface is detected, such as 
at point 2. Then the mean of the distribution is made 
equal to the corresponding value of p( 0) and the search 
repeats. The search continues as indicated by the 
typical numbered points until a value of zero or some 
small value, E, near zero is reached. 

The type algorithm has some desirable properties 
that enable it to find the minimum. For example, it 
has a local minimum-seeking property that is due to 
the small variance used on those iterations which 
are successful. The algorithm also has a global search
ing property that enables it to jump over peaks, which 
is due to the expansion of the variance when the itera
tions are not successful. Further, it will not matter 



whether the surface is discontinuous, or has many 
peaks, valleys or flat regions. 

Implementation 

The hybrid computer proved to be the most feasible 
way to implement the random search algorithm. A pri
mary reason for this is that a relatively large number of 
iterations are required to find a solution. Reference 4 
showed that approximately 8000 iterations were re-
quired on the average for a typical solution. Each itera
tion can be, from a computational point of view, divid
ed into two steps: (I) integration of the equations of 
motion on the interval [O,T], and (2) execution of 
algorithm logic. The analog computer is by far the 
faster machine in performing step one. Although the 
second step might be accomplished in approximately 
the same time with either machine it is best done 
digitally. Thus the conclusion is reached that a hybrid 
approach requires a great deal less computer time 
than a completely digital simulation. It is worth not
ing that an alternative approach with pseudo hybrid 
techniques was investigated using an analog computer 
and something less than a digital computer. However, 
our experience shows that inaccuracies, limited stor
age and limited flexibilities in logical operations 
seriously limit the feasibility of this approach. 

In the hybrid implementation, the analog computer 
was delegated the task of solving the state, adjoint, 
and control equations as given in Equation (3). It 
also served as the point at which the operator exer
cised manual control over the hybrid system. The 
digital computer was required to calculate the metric, 
provide storage, implement the algorithm logic, ran
domly generate the initial conditions for the adjoint 
equations and, finally, oversee the sequencing of 
events of the iterate cycle. This division of compu
tational effort is shown schematically in Figure 2 which 

1(0) 

ANALOG ___ ....... 1 ____ ---DIGITAl COMPUTATIOI 
COIIPIJTATIOII (ALGORITHM) -----

j. f(x,u,t) 

p.g (p,I,U,t) 

U·U (x,p,tl 

J.r~JVp~l 
METRIC ~ ~ 

COMPUTATIOII 

NOISE SOORCE 
STMOAID 
IlEYIATIOI,a' 

IlEAl .-0 

AlGOIUnll LoetC 

I 
I 
1 

I 
I 
I 
1 

----------" 

Figure 2 - Hybrid system block diagram for random search method 

is a block diagram of the search algorithm. The super
skript k shown in this figure designates the generic 
kth iteration of a long sequence of iterations. For 
convenience the flow of information through the block 
diagram may be thought to start at p(o) which repre
sents the adjoint initial conditions in analog form. 
They are applied to their respective initial condition 
circuits on the analog machine, and then that machine 
is commanded into an operate mode. The set of Equa
tions (3) are solved on the time interval [O,Tl, and 
at time T those analog components we are inte~ested 
in reading are commanded into a hold mode and the 
executive sequencing program instructs the AID 
converters to read these variables. On the basis of 
this information the boundary cost function metric 
is computed digitally, and then tested by comparing 
it to the last smallest value discussed above. On the 
basis of this test information, the algorithm logic 
operates to control the mean value mk and variance 
(Tk. A new random vector pk = mk + gk is then gen
erated, converted to an analog signal, and applied to 
the p( 0) initial condition circuits. The whole process 
is repeated for the next iteration. 

Figure 3 is a hardware diagram of the hybrid system 
used. Shown are the two basic elements of the simu
lation, the analog and digital computers along with 
their coupling system, and peripherals. The coupling 
system is comprised of two distinct parts: (a) the 
Linkage Syst.ems and (b) the Control Interface System. 
A discussion of the hardware used in these subsys
tems is given in the four sections to follow. The next 
(fifth) section discusses the sequencing of events 
through the subsystems during one iteration cycle in 
order to better describe the functioning of the hybrid 
system as a whole. Discussed in the final section is 
the flow graph for the algorithm. 

DIGITAL COMPUTER 

DATA CONTROL 

LINKAGE SYSTEM ,------, 
CONTROl.. : OPERATE I 

INTERFACE I TIME : 
SYSTEM : COUNTER : 

&.._------

ITERATlOH 
CONTROL 

ANALOG COMPUTER 

Figure 3 - Hybrid system hardware 



446 Spring Joint Computer Conference, 1968 

Digital Computer 

The digital computer used in the optimization pro
gram was an Electronic Associates, Inc. (EAI) model 
8400. The particular machine used has 16,000 words 
of core memory with 32 bits per word. rv1emory cycle 
time is 2 microseconds. The machine uses paranel 
operation for maximum speed. Floating point opera
tions are hardware implemented. The optimization 
program was coded in MACRO ASSEMBLY in order 
to keep the execution time to a minimum. The instruc
tion repertoire includes special commands by which 
discrete signals can be sent to or received from the 
external world. External interrupts are provided which 
can trap the computer to a specific cell in memory. 
In an example to be discussed later, the optimiza
tion program utilized about 8,000 words of storage. 
Of these about 1,000 comprised the actuai optimiza
tion executive program, the remaining 7,000 being 
used for subroutines, monitor and on-line debugging 
and program modification routines. 

Analog Computer 

The analog hardware consisted of an Electronic 
Associates 231 R-V analog computer. Since the state 
equations, adjoint equations, and the control logic 
were programmed in standard fashion, analog sche
matics were not included. 

The analog computer serves as the point at which 
mode control of the hybrid computer is accomplished. 
By manual selection of switches either of two modes 
can be commanded: (1) In the "search" mode the 
analog computer operates in a high-speed repetitive 
manner. Such operation is accomplished by control
ling the mode of the individual integrators with an 
appropriate discrete signal. This signal is a two-level 
signal which is generated on the control interface in 
conjunction with the digital computer and, depending 
on the level, holds an integrator in either "operate" 
or "initial condition" mode. (2) In the "reset" mode, 
the integrators are placed in their initial-condition 
mode and held there. 

For continuous type output, a display console was 
connected to the analog computer to provide visual 
readout of variables. The display contained a cathode 
ray tube (CRT) which c01jld simultaneously display 
up to four channels, and enabled photographic records 
to be taken of the display quantities. The display was 
extremely helpful in determining if the algorithm 
was fUQ.ctioning properly. 

Control Interface 

The control interface between the analog and digital 
system is an Electronic Associates, Inc. DOS 350 

(see Fig. 3). It is through this unit that the iteration 
process is controlled. An important task allocated to 
this subsystem is the operate-time control. This func
tion is implemented through the use of a counter and 
is the key element in the control of all timing in the 
hybrid simulation. The counter is driven from a high
frequency source in the interface system allowing 
for a very high degree of resolution in the simulated 
operate-time. Also, the interface allows the digital 
computer to use any conditions in the analog computer 
which can be represented by discrete variables (binary 
levels) and to send discrete signals to the analog sys
tem to be .used as control elvles. or indicators. An ex
ample of the former would be the hybrid system mode 
control which merely amounted to the operator de
pressing the "reset" or "search" switch on the ana
log computer. This action sets a binary level which is 
then sensed by the digital computer. An example of 
the latter situation is when the digital sends the operate 
command to the operate-time counter. The interface 
system allows patching of Boolean functions. Hence, 
some of the logic operations required for timing pulses, 
event signals, and other like operations were very 
effectively programmed on it. 

Linkage System 

The linkage system shown in Figure 3 houses the 
conversion equipment, the AID and 01 A converters. 
I t is through here that ail of the data pass between the 
analog and digital portions of the simulation. The link
age system is controlled by command from the digital 
computer. 

Input to the digital computer is through the AID 
converter via a channel selection device or multiplexer 
that selects the analog channel to be converted. Con
versions were sequential through the analog channels 
at a maximum rate of 80,000 samples per second from 
channel to channel. 

Output to the analog used the 01 A converters, 
with each data channel having its own conversion 
unit. The maximum conversion rate of the 0/ A's 
used is 250,000 conversions per second. 

Sequencing of events during one iteration 

The sequencing of events during one iteration cycle 
are depicted in Figure 4. The instants of time t1, t2 , 

... , t5 shown in this figure are considered fixed rela
tive to eac~ other, and tl is conveniently regarded to 
be the start of the iteration cycle. We will consider 
the cycle to begin at tl with the analog integrators in 
an operate mode. As discussed previously, the elapsed 
time (t2-t1) is controned by a counter on the interface 
system. At t2 an interrupt pulse is generated on the 
control interface which is sent to the digital computer 



J----------OIE ITERATIOII------------l 

AIALOG 

CALCULATIOI_-+-___ OIGITAL OPERATIOI PERIOD PERIOD -----i 

m 

READ STATES OUTPUT DATA 
FROII AULOG EXECUTIOI OF mORITHIL TO ANALOG 

t4 t5 
AULOG IITEGRATORS 
PLACED II OPERATE 

lODE 

Figure 4 - Sequencing of events during one iteration 

signaling it to commence its operations. Simultane
ously, the pulse is sent to the analog to instruct the 
track-store units to hold their respective values which 
they had at time t2• During the interval (t3-t2)· the 
digital computer reads these analog variables with the 
AID converter. At t3 the digital sends a pulse via the 
interface to the analog console which commands 
the integrators to an initial conditon mode. At t4 , 

when the data required by the algorithm have been 
generated, the D/ A converters send these values to 
the appropriate points in the analog portion of the 
simulation. The digital machine allows enough tiine 
for the transients to settle in the initial condition cir
cuits of the analog before sending a command at t5 
that places the integrators in an operate mode and 
starts the counter. Since t5 and tl are the same event, 
we merely repeat the above sequence for repetitive 
operation. 
. Some specific numerical values might be of inter

est. The total iterate time (t5-t1) is primarily composed 
of two parts: (1) (t2-t1) which in a later example prob
lem was scaled in the simulation to 7.5 milliseconds, 
and (2) (t5-t2), which was primarily determined by 
the speed of the digital machine in computing, convert
ing, and generating random numbers; this latter period 
was on the order of 7.5 milliseconds. Thus, the total 
iterate time for the above situation is on the order 
of 15 milliseconds (or 66 iterations per second). This 
figure is dependent on the control problem chosen 
and the exact form of the algorithm implemented. 

Algorithm flow graph 

Figure 5 is a program flow graph showing the soft
ware requirements on the iteration process. This 
basically constitutes a majority of the steps involved 
in the algorithm and the iteration control sequences 
utilized by the hybrid system. Note the inclusion of 
the event times t1, t2, ••• discussed earlier in con
nection with Figure 4. The program is continuously 
recycling in a high-speed repetitive fashion. 

Optimal Control of Satellite Attitude Acquisition 447 

START 

Figure 5 - Algorithm flow graph 

There are three basic loops in Figure 5 correspond
ing to the three system modes in the optimization 
program: a reset loop, a search loop, and an end-state 
loop. The reset loop initializes the program. The 
search loop uses the algorithm to search for a solution 
to the problem. The end-state loop is entered by the 
digital program when a solution is found, and is used 
for generating graphic displays. The operator manually 
selects the search or reset mode as discussed in the 
section dealing with the analog computer. A more 
detailed description of these loops is given in Refer
ence 4. 

Application 

In this section we will discuss the application of 
the random search algorithm to the single-axis attitude 
acquisition control problem. In the following we will 
first formulate the problem by giving a physical de
scription of the problem and writing out the exact 
equations of motion. Second, we will outline the equa
tions necessary for determining optimal nonlinear 
control as derived by means of the Maximum Princi-



448 Spring Joint Computer Conference, 1968 
~ - - -

pIe; for comparative purposes we will al~o outline the 
optimal proportional control derived in Reference 5. 
N ext, we will discuss the boundary conditions and 
the vector metric. In the final two subsections we will 
illustrate the computer results: in one we win give 
a variety of time history solution and fuel perform
ances, and in t~e other, some cr~ss sections through 
the boundary cost -function hypersurfaces. 

Formulation 

Consider a freely rotating vehicle V about a point 
bo in inertial space defined by the set of axes (Sl' S2 
S3) shown in the sketch. 

5, 

I vrib

, 

~ bz b5 

J-------- 55 

A fixed set of body axes, bh b2, b3, is ascribed to the 
vehicle in the principle axes of inertia with origin at 
boo The orientation of any body axis with respect to 
inertial space will be specified by direction cosines, 
e.g., a13, a23, a33 where a13 is the cosine of the plane 
angle between Sl and b3, and' similarly for a23 and a33. 
The orientatio~ of the vehicle is specified by a (3 x 3) 
direction cosine matrix. Since we are interested in 
single-axis orientation, we will only require knowing 
three direction cosines instead of nine. In the study 
we will orient b3 in inertial space. The control torques 
required' to orient the vehicle are produced by mass 
expulsi~n devices alined with each of the three axes. 
It is assumed the mass flow rates are used to vary the 
torques, and that they are bounded (except when ex
amining proportional control). The vehicle is inertially 
unsymmetrical and is considered to be in a general 
tumbling motion at the initial time. The objective of 
control is to apply torques for a fixed period of time 
in a manner that will reduce tot~ll momentum to zero 
and orient the b3 axjs of the vehicle from any initial 
orientation to any other prescribed orientation in 
inertial space. Furthermore, we must accomplish 
this task with the control program that uses the least 
amount of fuel. This verbal statement of the problem 
will now be formulated more explicitly. 

The dynamical equations of motion of a body of 
fixed inertia rotating about a point in inertial space 
and acted upon by external torques are given by the 
following set of equations: 

• _ r(_ R) I' .' v . 
c.:-'l -) t 1 - ~ I ex J W2'Ya t 1. 1/ ex 'II 

r f no \. ') J "J" 

~2rHP-a)J J3Wlr 12 " J 
W3T {(a-I) /,B} Wl~2+ Y3/,B 

) ) ) , 

where 
a= 11/12 

,B = 13/12 

Roll to pitch inertia ratio 
Yaw to pitch inertia ratio 

YI = MI/l2 

1 ' Controll accelerations, rad/sec2 

Y2 = M2iI2 t" nor~aiized to 12 
J 

Y3=M3/I 
, 2 

Wi T body rates, fad/sec 

l\fi = torque, lb/ft 
i= 1,2,3 

(4} 

The three kinematical variables (direction cosines) 
required to specify the orientation of b~ are designated 
a13, ~3' a33' These variables are related to the dynam
ical variables by the following se"t of 'differential equa
tions (see Ref: 5 for a discussion on this): 

~13 = W3(;\23 - w2133 

~3 = WI ~33 - W3~13 
a33 = W2~13 - WI+3 

(5) 

For this study the specific values of the roll and 
pitch inertia ratios were taken to be a = 1.15,,B = 0.48. 
Also, the maximum control torque acceleration per
mitted in the nonlinear controller situation was limited 
to approximately one-sixth the peak-acceleration 
required for proportionai controh or Y lmax = Y 2max = 
2Y3max=.1.5 rad/sec2. 

To transfer (4) and (5) into state variabie form, 
the following substitutions are made: 

al3 =Xl; WI rX4; u l =Yl/a 
a23 = x2 ; W2 T Xs ; U2 = Y 2 
a33 = X~~W3=r X6; U3=Y3//3 

This gives us the following set of state variable 
equations: 

?,l = X6X2- ~X3 
?,2 = X4X3 - XSXl 

X3 = XSXl - X4X2 
X4 = {(l- (3)/a} XsXs + Ul 
Xs = {(,B - a)} X6X4 + U2 
X6 = {(a - 1)/,B} X4Xs + U3 

(6) 

The objective of the control is to take the state vec
tor from an arbitrary initial value x(o) to an arbitrary 
final value x..(T) in' a fixed interval of time [O,T], 



and use the least amount of fuel in so doing. A new 
coordinate, proportional to the total fuel used in all 
three axes, can be defined as follows: 

t 

xo(t) = J ~ IUi(T)ldT 
o 

(7) 

and we can then interpret the objective· as the mini
mization of the terminal value xo(T). 

Control Laws 

The nonlinear optimal control can be derived by an 
application of the Maximum Principle. This deriva
tion will not be given here but a summary of the equa
tions necessary for computer implementation will be 
given. First are the adjoint equations which can be 
shown to be: 

I?I = P2X6 - P3XS 
I?2 = P3X4 - PI X6 
I?3 = PIXS - P2X4 (8) 
I?4 = P3X2 - P2X3 - psx6(f3-a)- P6XS(a-l)//3 
I?s = PIX3 - P3XI - P4x6(1-/3)/a - P6x4(a-1)//3 
P6 = P2XI - PIX2 - P4xs(l-/3)/a - Psxi/3-a) 

Second are the equations defining the optimal control 
vector at each instant of time: 

Ui(t) = Nisgn Pi+3(t) if Ipi+3(t)I > 1 
Ui(t) = 0 if Ipi+3(t)I < 1 

(9) 

where i = 1,2,3 and Ni is the maximum torque accel
eration allowed in the ith control axis. It is seen that 
the control torque is of the on-off character and that 
torque direction is obtained by assigning the correct 
sign to the "on" signal according to Equation (9). 

An optimal proportional control law used in this 
paper for comparative purposes wastaken from Refer
ence 5 and is discussed briefly here for the sake of 
completeness. In Reference 5 the structure of the opti
mal control law was assumed to be of the form: 

The parameters D, E, F, G and H were left free, 
and by means of a random parameter search suitable 
values were found for which the stated objective of 
the problem (zero momentum and alinement of b3 to 
S3) was achieved. The search was repeated a number 
of times, each time observing system performance 
given by equation (7). An optimum parameter vector 

Optimal Control of Satellite Attitude Acquisition 449 

was selected from the set of parameter vectors which 
satisfied the problem objective and minimized the per
formance criteria. This parameter vector, in conjunc
tion with equation (l0), defines optimal proportional 
control. This control may be difficult to achieve in 
practice, however, since no bounds have been im
posed on the thrust. When there are bounds, the con
trol law is then referred to as optimal saturating pro
portional control. 

The vector metric 

The desired boundary condition at the terminal 
time was chosen to be zero momentum and alinement 
of the body axis b3 with the inertial axis S3; this is 
expressed by xr(T) = (0, 0, 1, 0, 0, 0). To satisfy these 
boundary conditions, it is necessary in the random 
search approach to introduce the vector metric J as 
discussed previously. Its general form was specified 
in Reference 4 to be' = (Jo,Jv,Jp) where the subs~ripts 
on the components refer to displacement, velocity, 
and adjoint variables, respectively. However, in this 
application, since all terminal states x,,(T) are fixed, 
p(T) is completely free so that we may ignore the Jp 
component in the vector metric. For the present exam
ple JoandJv are taken to be 

Jo = V xi + x~ + (X3-1)2 
Jv = V x~ + x~ + x~ 

It is clear that Jv = 0 implies X4, Xs, X6 = 0 which rep
resents zero momentum as desired. Also, Jo = 0 im
plies the desired final orientation Xl = X2 = 0 and X3 = 1. 
In actual practice we will only require 

where the E values are chosen to meet the problem re
quirements. For the specific problem discussed below, 
the value of Ev chosen reduced a 10o/sec initial velocity 
error in each axis to approximately 0.75°/sec in each 
axis at time T. The Eo chosen required that the b3 body 
axis be oriented to within a few degrees of the S3 in
ertial axis, from any initial orientation. 

Time history -solutions 

In this section we will give some computer solu
tions for the satellite attitude acquisition problem. 
Our interest will center on results for the optimal 
nonlinear control obtained by implementing the ran
dom search algorithm discussed in the preceding sec
tions. For comparison, we will also give results for no 



450 Spring Joint Computer Conference, 1968 

control and the proportional control studied in Refer
ence 5. 

Table I summarizes the controllers to be studied, 
the initial conditions of the vehicle, and the resulting 
fuel requirements. It is worth emphasizing again that 
in the initial condition vector the first three compo
nents are the initial angular positions given in terms 
of direction cosines varying between -1 and + 1. The 

gular position variations would persist over a sub
stantial portion of the interval. In this event, the equa
tions of motion are distinctly nonlinear and i~ is in
appropriate to linearize them. The Maximum Princi
ple allows these nonlinearities to be dealt with di
rectly, 

B. Optimal Proportional Control- The time his
tory solutions for the optimal proportional control 

TABLE I - Comparison of Control Systems 

No Control 
Optimal Proportional Control (no saturation) 
Optimal Impulse Control 
Optimal Nonlinear Control (with saturation) 

a. Initial alinement 
b. Initial nonalinement 

latter three components are the initial angular veloci
ties in degrees/second, and were chosen somewhat 
arbitrarily. The desired final condition vector is taken 
to be xc(T) = (0, 0, 1, 0, 0, 0); thus, the initial momen
tum is reduced to zero and the body axis b3 is to be 
kept ali ned with the inertial axis S3' Also, a solution 
is given for the more general case where initial mis
alinement exists. . 

A. No Control- In Figures 6(a) and (b) are shown 
the time histories of the state variables describing the 
motion of the system when no control is used and the 
vehicle starts with the initial condition x(o) = (0, 0, 1, 
-) 0, 10, 10) This corresponds to initial alinement of 
axes but with the initial angular velocities indicated. 
I t can be noted that the angular positions vary over 
their entire range (-I, 1) during the time interval 
[O,T]. From these results it might be anticipated 
that with limited torque control, the wide range of an-

(a) AIGULAR POSITIOIS 

4 DIMENSIONLESS UIITS 

(b) ANGULAR VELOCITIES 

80 m rod/sec 

Hssec 

Figure 6 - Time history of state vector; no control; initiai alinemeni 
of axes 

Initial Condition Fuel 

(0,0,1,-10,10,10) 
(0,0,1,-10,10,10) 
(0,0,1,-10,10,10) 

(0,0,1,-10,10,10) 
i 1 

(0, \12'\12,-1 0, 1 0, 1 0) 

° .65 
.28 

.31 

.43 

derived in Reference 5 (as discussed above) are given 
in Figure 7 for the same initial condition as with no 
control (see Table I). As is well known, optimizing 
system performance under the assumption of propor
tional control often leads to impulsive-type control. 

0-

" . --
~!i~ -- -- -. -~-~ ~~. 
.............. 
't ------- ---- • -- • __ • 

-nt;~~.~·· . 
~y,,-. -- -. ----
t. -I-~-'" . ....... 

-1 f- 2.5see 

(a) ANCULAR POSITl0.5 

.1 
• 2 DllimlONlESS UIIIT 
T 

0-

:~ .. ~ .. : 
.. ~~ . t' _ ". ____ _ 

~l~L><m .. 
I . 
,. . .. 
~ . . . . 

-II-- 2.5 sec 

4 m rod/sec2 

(c)COITROl VARIABlES 

(b) AIGtl.AII VELOCITIES * 20 18 rod/sec 

Figure 7 - Time histories of state and control vectors; optimal 
proportional control; initial alinement of axes 

This tendency can be seen in Figure 7(c) where the ini
tial torque acceleration rises to 44 mrad/sec2 and then 
decreases relatively quickly' to zero. A normalized 
fuel consumption as measured by the computer was 

xo(T) = 0.65. This is nearly two and one half times the 
minimum theoretical value of 0.28 obtained by allow
ing an ideal impulse of torque. 

In practice, the fuel requirements of 0.65 could only 
be attained with proportional control, i.e., without 
saturation of the torque. It was demonstrated in Refer
ence 5 that the effect of saturation on the propor
tional controller is to increase both the consumed fuel 



and the time required to accomplish the mission. How
ever, the results given there were for initial velocities 
of the vehicle of only 4°/sec rather than the 10o/sec 
used herein. 

C. Optimal Nonlinear Control- The solutions for 
the optimal nonlinear control obtained by implement
ing the random search algorithm are given in Figures 
8 and 9. These figures correspond, respectively, to 
the cases indicated in Table I: initial alinement and no 
initial alinement. 

The results given in Figure 8 are for initial alinement 
of axes in which the initial condition vector is x(o) 
= (0, 0, 1, -10, 10, 10), the same as for the other con
trollers discussed above. The solutions obtained are 
quire different from the previous cases as can be seen 
by comparing Figure 8 to Figures 6 and 7. It is noted 
that the maximum torque for optimal nonlinear con
trol is approximately one-sixth the peak value for pro
portional control (note the -different origins for the 

0-

0-

Hssec 

. _.-.- -l1li. -
. -·'·-11--' 

.. _ .. ______ .... _ ~---I,. 

I 

~' 

~i 5 sec 

) ANGIlAR POSITIOIS 

.4 DIMENSIONLESS \JIIITS 

Hssec 

8 m rod/sec2 

CONTROl VARIABLES 

b) AIlGULARVELOCITlES 

80m rod/sec 

Figure 8 - Time histories of state and control vectors; optimal 
nonlinear control; initial alinement of axes 

4 DIMEISIONlESS UNITS 

b) AIlGULAR VElOCITIES 

so m rod/sec 

Hssec 

8 m rod/sec2 

Figure 9 - Time histories of state and control vectors; optimal 
nonlinear control; initial nonalinement of axes 

three control functions). From careful examination of 
the time histories, it appears that the optimal control 
law is anticipatory, that is, it appears to act at the most 
advantageous moment in order to reduce the large ex
cursions of the states to the desired end values. Fuel 
consumption was found to be xo(T) = 0.31 which is 
only 1.1 times larger than for the optimal ideal im
pulse case. By comparison, the optimal proportional 
control is very inefficient. Proportional control uses 
2.1 times the fuel for optimal nonlinear control. This 
factor would be even larger if the comparison were 
made to the more practical saturating proportional 
control system. Note also in Figure 8 that the operate 
times are nearly the same as for the proportional con
trol syste~. Thus, we need not necessarily expect a 
time penalty for the practical constraint imposed by 
control saturation. 

In the results given in Figure 9, the initial condition 
vector x( 0) is not ali ned. The initial value is x( 0)= 

( 0., ~, ~,-1 0, 10, 10) and corresponds to an initial 

rotation of ba of 45° in the S2, S3 plane. The time his
tories and optimal control thrust are seen to be similar 
to those with initial alinement. As for the fuel, we 
might expect that angular position error at the initial 
time would require a higher fuel consumption to ob
tain the same objectives. Indeed, experimental data 
show that fuel required is 0.43 which is 40 percent 
more than when the axes are initially alined . 

Boundary cost function surfaces 

It was pointed out previously that irregularity in the 
boundary cost function hypersurfaces reflects the 
need for a search algorithm that incorporates global as 
well as local-seeking properties. The highly irregular 
nature of these hypersurfaces for the attitude control 
problem is demonstrated in Figure 10. Here are shown 
typical two-dimensional cross sections through the 
hypersurfaces at a solution point. The curves were ob
tained by slowly varying one of the adjoint variables 
from -100 volts to + 100 volts while all others were 
fixed at their respective solution values. Note in par
ticular the irregular multi peak nature of the surfaces 
and the occasional noisy appearance. It is also worth 
noting the rather narrow valleys surrounding the op
timum point. These surfaces clearly indicate the diffi
culties a deterministic method might encounter. For 
example, the gradient method would have ample op
portunity of "hanging up" in the wrong valley. Fur
thermore, the two-dimensional curves give only a 
hint of the difficulties to be expected in the actual six
dimensional space. 



452 Spring Joint Computer Conference, 1968 

Jo ff11jittNttfH11 t~ ; t; I: l' ~I:-!: jt ;jm 
0- : : : P1 ) . ~ ~ ! : : : I : ! ! ! 

.:.: I j' it' i, Ii,; I lUll 
O_~_:i,! Ii 

(b) 11 YARYIK 

~ OPTI_ fI3 
"""'" . 
•• _I", t·,· 
. , I ~ . j l , , . 
.".t I.". 

SCALES 
Jo·O.1 

DIMEISIOIlESS 
Jy • 20 m rod/sec 

O-~~~~~~~ 

-IGOY 
(f) p. YARYIK 

+IOOV 

Figure 10- Example two-dimensional cross sections of boundary 
hypersurfaces 

CONCLUSION 

It was demonstrated in Reference 4 that the random 
search technique gave a practical approach to generat
ing explicit optimal solutions for a moderately com
plex example problem under a wide range of condi
tions. An objective of the present study was to demon
strate the feasibility of using the random search tech
nique in a different and more complex situation. The 

results presented in this paper gave a positive indi
cation of that feasibility and together with Reference 
4 suggest that possibly many high-order nonlinear 
problems will have complicated mappings and that 
the random search methods would be highly success
ful in coping with them. Furthermore, the resuits of 
this paper show quite explicitly what gains in system 
performance can be made in a given situation by using 
rigorously derived optimal control compared to a more 
conventional "optimal" control procedure. Such 
knowledge gives greater impetus to seek efficient ways 
of implementing the optimal nonlinear control. The 
open-loop aspect of the controls generated in this 
manner still limits anyon-line capability. However, it 
is believed that off-line' preliminary design capability 
for studying moderately complex nonlinear dynamical 
systems couid be enhanced by this approach. 

REFERENCES 

IDe KARNOPP 
Random search techniquesfor optimization problems 
Automatica vol 1 Pergamon Press 1963 pp 111-] 2 J 

2 I N BOCHAROV A A FELDBAUM 
Automatic optimizer for the search for the smallest of several 
minima 
Avtomatika i Telemekhanika vol 23 no 3 March 1962 

3 R R FAVREAU R G FRANKS 
Statistical optimization 
Proceedings 2nd International Analog Computer Conference 
1958 

4 E C STEWART W P KAVANAUGH 
D H BROCKER 
Study of a global search algorithmfor optimal control 
Fifth Congress of International Association for Analog Compu
tation Lausanne Switzerland August J 967 

5 A SABROFF R FARRENHOPF A FREW M GRAN 
Investigation of the acquisition problem in satellite attitude 
conirol 
Wright-Patterson Technical Report AFFDL-TR-65-J 15 De
cember 1965 



Evaluation and development techniques 
for eomputer assisted instruction programs* 

by M. TARTER, T. S. HAUSER, and R. L. HOLCOMB 
Department of Biostatistics 
The University of Michigan 
Ann Arbor, Michigan 

INTRODUCTION 

Lomputer-Assisted Instruction presents the individual 
conducting educational research with the potential for 
more controlled and reliable experimental design and 
data collection. Certain features of programmed in
struction also present new challenges to the research
er. Chief among these is a problem related to the indi
vidualization of programmed instruction. The authors 
have developed automated experimental design rou
tines which are used to partially overcome these prob
lems. This procedure will be referred to as "Computer
Assisted Pairing" or CAP. 

An individual student's response to instruction is 
greatly affected by his background. Although it is 
possible to use such sophisticated statistical tech
niques as Analysis of Covariance to adjust for back
ground differences, most educational studies rely on 
the simple statistical device of "paired-comparisons." 

To accomplish this pairing, a pretest is usually ad
ministered to a group of students and, on the basis of 
the pretest results, the students are allocated to pairs. 
After N/2 pairs are formed a student within each pair 
is randomly assigned to the experimental group and his 
counterpart is assigned to the control group. At this 
stage the treatment, e.g., instruction, is administered 
to the proper group of students and the "placebo" to 
the counterpart group. A post -test is then administered 
to all students, and the differences {di } between the 
ith pair of treated and untreated students' scores are 
recorded. The results can be analyzed by means of a 
simple Student -t test or a more sophisticated analysis 
can be conducted. (For example, if two separate post
tests are administered, a Hotelling T -test can be used 
to handle the reSUlting multivariate data.) 

*Research sponsored by the Public Health Services Biostatistics 
Training Grant NIH 5 TOI GM 00045-11, NIH GRS 67 SPH 
Project 78, and Hill RhosIes No.9. 

453 

The above requires a rather idealized experimental 
environment. Such standard obstacles to straightfor
ward analysis as missing or incorrectly recorded ob
~ervations are more than likely to occur, especially 
III classroom teaching situations. However, aside 
from problems of data-collection, there is one major 
obstacle to the experimental design that is likely to 
interfere with the progress of the paired-comparison 
experiments in CAl research. It may not be possible 
to assemble and pretest all N students before adminis
tering the instruction sequence to the treatment pair 
members. 

This problem is much more likely to occur in CAl 
studies than in research involving conventional class
room instruction. Since one of the primary advantages 
of programmed instruction is that the student can 
choose his own time of instruction, it would be arti
ficial to require all N students to have completed a 
pretest before any student is allowed to proceed to 
the treatment, i.e., instructional sequence. In fact, an 
ideal experimental situation would keep information 
about the separation of pretest and treatment instruc
tion from the student. In this way a single-blind, or 
even double-blind experiment could be conducted 
where the student need not know whether he is being 
given "treatment" or "placebo" instruction and the 
researcher need know only after the experiment has 
been completed. 

Naturally the branching feature available in any of 
today's CAl languages could be used to administer 
such a double-blind study. However, the problem re
mains: How can at least a part of the desirable fea
tures of pairiJ)g be retained in the process of conduct
ing a double-blind experiment, with treatment or place
bo administered immediately after pretest completion. 
In other words, how can the pretest score of the Hh 
student be used immediately (before the remaining 
N -I students are tested) to branch the student to a 
treatment or placebo sequence. 



454 Spring Joint Computer C'onference, 1968 

Of course any technique which pairs in "real time" 
rather than after the entire sample has been examined 
will be less efficient than the conventional method. In 
a sense, the convenience and advantage of using a 
doubie-bUnd experiment will be purchased at the cost 
of greater variance of the differences {dJ. The best 
method of real time pairing, therefore, will increase 
the variance of the {dJ least. A considerable amount 
of theoretical research has yet to be done on the meth
od proposed in this paper, in terms of variance reduc
tion. However, CAP seems to be a reasonable ap
proach and there is evidence to show that it is far 
superior to the one alternative method which has been 
applied. 

The alternative pairing method 

The alternative method is implemented as follows: 
The pretest is administered to each of the first N /2 
(N even) students and each of these students is as
signed at random to either the treatment or placebo 
group. The [(N/2) + 1]st student is then given the 
pretest and paired with the previously tested stu
dent whose pretest score is most similar; say the I th 
student. If the Ith student was assigned to the treat
ment group, the [(N /2) + 1] st student is assigned to 
. the control group and vice versa. The pretest is then 
administered to the [(N/2) + 2]nd student. The scores 
of all previously tested students, with the exception of 
students [(N/2) + 1] and I, are compared to the 
[(N/2) + 2]nd student's score. The student whose 
score is most similar to that of the [(N/2) + 2]nd 
student is then paired and assigned to the opposite 
group. 

The disadvantage of this simple procedure is that 
the decision to pair is left to the last possible point, 
i.e., when half of the group is already allocated to the 
experimental or control group. Thus, there is no op
portunity for two students among the first (N/2) to be 
paired with each other. It ~ight also be noted that this 
design is particularly sensitive to non-random order
ing of the students. For example, consider the case 
wbere students who present themselves for instruc
tion early in the semester tend to be better students 
~han those who use the teaching technique later (after 
conventional course exam grades are returned). In 
this situation, the simple sequential pairing method 
will tend to allocate a good and a poor student to the 
same pair which defeats the very purpose of pairing. 

In the remainder of this paper, the group of students 
who have been tested and allocated to the treatment 
or control group (but not paired) will be referred to as 
the "pool." In the previous example, the "pool" is 
filled to the largest possible extent before being emp
tied, i.e., its members paired. The sequential pairing 

method proposed in this paper allows students to be 
removed from the pool at each stage rather than wait
ing until the pool is filled to capacity and then empty
ing it. 

The CA P aigorithm 

The new pairing method will be referred to as the 
CAP algorithm because the implementation almost 
certainly requires high speed digital computation. 
Since in CAl investigations the pretest will probably 
be administered by console presentation, the same 
program which administers the pretest can be used to 
store previous students' pretest scores and implement 
the CAP algorithm. 

The CAP algorithm can be divided into two parts. 
First, the main routine uses the Ith student's trans
formed score and decides whether he should be paired 
or entered into the pool. Second, a sub-program deter
mines the appropriate transformation and applies it to 
the Ith student's score and the score of all other stu
dents within the pool. 

The reason why "transformed scores" are neces
sary will become clear when the statistics underlying 
the CAP algorithm are discussed. Temporarily, the as
sumption will be made that the distribution of pretest 
scores is uniform on the interval [0,1]. This can be 
represented mathematically by the statement that the 
distribution f(x) of the pretest scores equals: 

f(x) = l[o,tJ{x) 

where I[O,l](X) is the indicator function 

l[a.b](X) = 1 if a !S x !S b 

= 0 otherwise 
(If i(a) is to be I and I(b) zero this function is written 
l[a.b)(X).) 

The CAP main program performs the following 
operations: At the Ith insertion, i.e., immediately after 
the Ith student's prestest score Y [I], is available, a 
pairing criterion DEL is computed. The score within 
the pool that is closest to Y [I] is determined. Let the 
score closest to Y [I] be denoted by Y [M IN]. The 
expression Z = IY[MIN] - Y[I] I is calculated and 
if Z ~ DEL, then the MIN th and I th students are 
paired. If the MINth student had been assigned to the 
treatment group, the I th student is assigned to place
bo group and vice versa. If Z > DEL, then the Ith 
student is randomly assigned to either the treatment 
or control group and added to the pool. Naturally, if 
the pool size equals the number of students still un
tested at the I th insertion then the [I + 1] st through 
Nth students are all paired. This is equivalent to set
ting DEL= 1 whenever the pool size equals N-1. 



Eva!~ation and Development for Computer Assisted instruction Programs 455 

The most important part of the main program is 
naturally the computation of DEL. When only early 
scores are available, DEL should be small since there 
are at this stage many possible future scores;'Y[J], 
which might satisfy .the inequality IY[MIN] - Y[I] I 
~. IY[J] - Y[I] I· Conversely when almost all stu
dents have been pretested, DEL should be large since 
there are fewer scores that can occur between 
Y[MIN and Y[I].. . 

The "probability of· mis-pairing," which will be 
symboiized by A, was used as a criterion for the deter
mination of DEL. Two scores can be said to be mis
paired at Stage 1 if one of the N-I "future" scores oc
curs' between Y[I] and the MINth pool member 
paired with Y[I]. Now after the Ith insertion, what 
is the probability that one of the N -I remaining scores 
will occur in the interval beginning with Y[I] and end
ing with Y[MIN] (or beginning with Y[MIN] and 
ending with VEl])? If the remaining N-I scores can 
be assumed to be independent and uniformly distrib
uted on the interval [0,1] then the probability of 
mis-paring is exactly 

A= 1-(1-1 Y(I)- Y(MIN) I )N-I. 

By solving the above for IY(I) - Y(MIN)I one can de
termine that DEL is related to A by the function 

DEL = 1 - (1 - A)l/(N-I). 

If an allowance is made for a high probability of mis
pairing, large A, then DEL will be close to one. On the 
other hand, if one chooses a small probability A then 
DEL will be small. However, if A and consequently 
DEL are assigned small values then most students 
will remain unpaired until the pool size equals N -I, at 
which point DEL must suddenly become equal to 
- one. Therefore, the efficient implementation of the 
CAP main program depends upon some reasonable 
determination of A and hence DEL. To accomplish 
this the probability A is considered as a parameter, 
related only to the sample size N and constant 
throughout the pairing process. Under this assump
tion, the pairing criterion DEL is related to I through 
the formula 

DEL = 1 - (l - A)l/(N-I) 

where now both N and A are considered as param
eters. 

By use of the function given in the preceding para
graph the problem of finding an efficient pairing cri
terion has been reduced to the problem of estimating 
the parameter A. An overall criterion of efficient pair
ing therefore, must be introduced and the parameter 
A estimated on the basis of this criterion. The total 
pair separation was chosen as this criterion. Separa-

'" . . 

tion in the case of the score Y[I] and its eventual 
mate Y[MIN] is defined as simply the distance 

IY[I] - Y[MIN] I· 

Clearly the best sequential pairing method is the one 
which yields the total pair separation closest to the 
pair separation possible for the ordinary pairing situa
tion. In the ordinary pairing situation, complete infor
mation - in the form of knowledge of all N scores, is 
available· before any student is to be paired. The most 
efficient sequential pairing algorithm would be the one 
which best used the limited information available at 
the Ith stage, i.e., that obtained from the I previously 
measured scores. 

The estimation of the parameter A is made in the fol
lowing way. For a given sample size N, the estimate 
A is chosen which minimizes the total pair separation. 
Estimates of A have been obtained for various sample 
sizes and used in the CAP program. 

A program was constructed which simulated the 
above pairing process, and, therefore, could be used 
to estimate A. The total pair separation was mea
sured for repeated samples of size 50, 100, 200 ,and 
250 where A was chosen as .95* K,K = 0, ... 18. For 
all samples the optimal value of A was found to be 
surprisingly large. Since the alternative method of 
sequential pairing, which was described earlier, is a 
special case of the CAP procedure where DEL = ° 
for all I from 1 to N/2 and DEL = 1 for all I from N/2 
+ 1 to N, the observation that A and hence DEL 
should be large for small value~ of I tends to show that 
the CAP procedure greatly improves upon the alter
native sequential pairing method. In fact for all sample 
sizes, the CAP procedure tends to reduce the total 
pair separation by a factor of at least two. In Table I 
the estimated optimal values for A are given, as well as 
two other estimates which are of interest. These are: 
First, the size of the pool. NI, when NI = N - I, i.e., at . 
the time when DEL is set equal to one and all subse
quent scores are paired. Second, the number of times 
NI = 0, i.e., the pool is depleted during the pairing 
pr?cess. Obviously, if the pool is depleted immediate
ly before any stage I other than N then the I th score 
must be entered into the pool. 

Theoretical and simulation work has shown that the 
CAP main program provides a substantial improve
ment over the alternative simple sequential pairing 
method. Actual trials with real data are currently be
ing conducted to check the implementation of the 
CAP technique. 

One of the reasons trials with actual data are needed 
to test the efficiency of CAP is that the CAP main 
program requires the assumption that the pretest 
scores are uniformly distributed. Since this is obvious-



456 Spring Joint Computer Conference, 1968 

T ABLE I - Pairing with and without optimal A 

Sample Optimal Expected Pool Size Expected No. of Total Separation Total Separation Using 
Size When Pool Must Times Pool is Using CAP with Alternative Pairing Method 

N A be Emptied Emptied Optimal A (A = 0) 

~n. ~~ A cc .200 JV .JJ ..... .}.} 
100 .60 3.80 .250 
150 .65 2.95 .550 
200 .75 1.55 1.00 

ly a very restrictive assumption, a CAP subroutine is 
used to preprocess the Ith and all scores within the 
pool as soon as the Ith pretest score is available. The 
remainder of this section will deal with the theory and 
implementation of this transform subroutine. 

The transform subroutine 

Let the sequence of N random variates, identically 
distributed with density function f(x), be represented 
by X[I], ... , X[N]. Let the function F(x) represent 
the cumulative distribution function associated with 
denSity f(x). The ra~dom variables, F(X[ 1]), F(X[2]) 
, ... , F(X[N]) are uniformly distribute~ on the inter
val [0,1]. Therefore, the problem of transforming the 
pretest scores to suit the requirements of the CAP 
main program is related to the problem of cumulative 
distribution function estimation. 

The sample cumul8;tive or step function F*(x) would 
in ordinary circumstances be considered a good esti
mate of F(x). However, for the purposes of CAP pre
processing, it is a poor estimate. The step function 
F*(x) equals 

n 
F*(x) = O/n) 2: [I(x. )(x) + (/2) I[xj.xi](x)] 

i=1 l,b 

where Xi represents an arbitrary sample point. F*(x) 
is not a smooth or differentiable function. Also, since 
2nF*(x) must be an integer for every value of x, 
F*(x) would distort the "local spacing" of the trans
formed values. Since in the CAP main program the 
spacing of consecutive points is particularly important, 
it "is obvious that F*(x) is not a suitable transforma-
tion to uniformity. " 

What is required is a smoother estimate of F(x) 
which can be updated easily as new pretest scores are 
obtained. An estimate of F(x) which not only fulfills 
the above two requirements, but also is more efficient 
than ~*(x) has been investigated by two of the au
thors1

•
2 and" a ~e~ o~ its pro~erties will be reviewid in 

this paper. ThIS estimate wIll be represented as t'm(x) 
where 

/\ X - a ~ (b - a) Ck • k II x - a) 
Fm(x)=-b-+ kJ k sm Tr -b a ... " . - a k=l Tr \ -

1.35 2.64 
1.54 4.02 
1.68 5.01 
1.92 5.01 

_ 2 n kTr(X j - a) 
Ck = (b - a)n ~. cos (b - a) ICa,b](Xi) 

and n represents the number of data points Xh ... ,X i 

, ... ,Xn , and "a" and "b" are two predetermined con
stants, preferably such that for most Xi the inequality 
a ~ Xi ~ b will be satisfied. It is shown2 that as 
m approaches" infinity ~m(X) ~ ~*(x). Also for all 
densities with bounded variation, e.g., all continuous 
distributions commonly e~countered in statistical 
research (~he Normal, Cauchy, Laplace, Gamma. and 
Logistic) Fm(x) is a more efficient estimate than ~*(x). 
Here efficiency is measured in terms of Mean In
tegrated Square error J(~m) where 

J(t) = Ef. iF(x) - f:m(xl!' dx. 

In Ref. 2 it is also shown that the constant m as
~ociated with the most efficient estimator of the form 
:f!'m(x) is usually less than 10. Consequently f;m(x) 
provides both an xasily computed and a smooth esti
mate of ~(x) and f'm(x) is actually more efficient than 
P*(x). In Ref. 1 and 2, a ~le for determining the opti
mal value of m is given. This stopping rule is based on 
an unbiased estimator of Mean Integrated Square Er
ror J(~m)' Aisol a computati0R- scheme is given 
which allows the constants Ck of Fm(x) to be computed 
recursively. Since the estimator of ~(x) should be re
vised after each new pretest score becomes available, 
the recursive computation of the Ck and hence ~m(X) 
represents a considerable saving in terms of computer 
time. 

Implementation of CAP 

The following is a brief outline of the implementa
tionofCAP: 

A. Since it is likely that no a priori information 
about the form of ~(x) will be available, the first 
20 students are added to the pool and assigned 
at random to the treatment or placebo group. 

B. U sing the previous 20 as well a"s the 21 st pre
test score the transformation Fm(x) is deter
mined. The procedures used to compute Ck and 
the stopping rule for determination of mare 
given in Ref. 1. 



Evaluation and Development for Computer Assisted Instruction Programs 457 

C. The original 21 pretest scores 
X[I], X[2], ... ,X[21] 

are transformed by means of ~m(X) to 
Y[l], Y[2], ... ,Y[21]. 

D. The score Y[MIN] is determined where 
IY[MIN] - Y[21] I ~ 
IY[J] - Y[21]1 

for all J from 1 to 20. 
E. An estimate of A has been read into the program 

to suit the eventual sample size N of this particu
lar CAl experiment. The pairing criterion DEL 
is computed 

DEL = 1 - (1 - A) 1/(N - 21). 

F. If 
IY[MIN] - Y[21] I ~ DEL, 

the 21st and the MINth students are paired and 
the 21 st student is assigned to the treatment 
group if the MINth student is assigned to the 
placebo group or vice versa. 

G. If 
IY[MIN] - Y[21]1 > DEL 

the pool size is increased to 21 and the 21 st stu
dent is randomly assigned to either the treatment 
or placebo group. . 

H. This process is repeated as the 22nd through 
Nth student's pretest scores become available. 
However, 

1. For each new score, the constants Ck are 
updated and a new value of the transform 
Y [I] calculated for each student in the 
pool. 

2. If at any time before the last pair is formed, 
the pool is emptied, the next student .is en
tered into the pool. (Equivalently, DEL is 
set equal to 0.) 

3. When the pool size equals the number of 
students still to be tested all subsequent 
student are paired with their closest count
erparts within the pool. (Equivalently 
DEL is set equal to 1.) 

By following steps A through H, each student with
in every pair has been randomly assigned to the treat
ment or placebo group. Also each student, i.e., the 
Ith, is available for the treatment even though the pre
test has yet to be administered to N-I students. 

The construction olCAI programs 

Up to this point a method for conducting a ~AI ex
periment has been described, but no comment has 
been made concerning the source of data for such an 
experiment. In this section a brief description will 
be given of a particular CAl project and the process 
of program dpvelopment rather than evaluation will 
be em{.lhasized. 

For the past two years the School of Public Health 
at The University of Michigan has been conducting 
an extensive experiment on the effect of Computer
Assisted Instruction within a section of a large univer
sity. This project has already generated ten programs 
of more than intermediate size, although much data 
has yet to be gathered before any final conclusions 
can be announced. Programs have been written in 
such diverse areas as Biostatistics, Epidemiology, 
Environmental Health~ Public Health Dentistry, 
Public Health Education, and Industrial Toxicology. 
Several different procedures have been used to con
struct CAl programs and, therefore, our observations 
about these procedures may be of value to other work
ers in this field. The construction of CAl programs is 
an expensive process at this early stage of hardware 
development and our observations may suggest short
cuts and point out pitfalls. 

The best place to start when discussing CAl pro
gram construction procedures is with the personnel 
who actually participate in the construction process. 
Four categories can be listed. 

A. The person who will actually be responsible for 
the implementation of the completed programs 
and who initiates the construction process. At 
the University this will usually be the professor 
who wishes to use the material in one of his 
classes. 

B. Subject matter oriented staff working under the 
supervision of the person in category A. Here 
the term "subject matter oriented" is used to 
distinguish this type of person from CAl pro
grammers. 

C. CAl programmers - with experience and train
ing in education or psychology, but with little 
background in the specific subject matter areas 
to be programmed. 

D. Teaching assistants, research fellows, trainees, 
and others, who might be called the transient 
workforce. 

A brief description of the process itself follows. The 
list given below is, of cou~se, a highly idealized one. 
However, like any other form of computer program
ming there are definite clear-cut stages, e.g., flow
charting, coding, debugging, which must be carried 
out before a satisfactory working program is obtained. 

1. An initial decision about the subject matter to 
be taught must be made. 

2. The level of sophistication of the students who 
will take this program should be determined. 

3. Should remedial sections be provided? 
4. If yes to No.3, how' elementary should the 

material in the remedial sections be? 
5. Should advanced sections be provided for the 

brighter students? 



458 Spring Joint Computer Conference, 1968 

rENTER H 
, ) I 

1=1 
FLOWCHART FOR CAP ALGORITHM 

I = I + 1 

Randomly 
assign to 
group and 
add 10 pool 

Administer 
Applicable 
Sequence 

Update F(X) 
and 
recompute 

loll YU);S I 

T 

Find mate 
in pool 

Place I In Administer 
post-test 
and record 
score 

Remove mate opposite 
from pool f----------~~-~-__1 group 

6. If yes to No.5, how advanced should these sec
tions be? 

7. A list of the specific concepts that must be pre
sented in a teaching program on this subject 
should be constructed. 

8. The sequential order in which these concepts 
, should be presented must be determined. 

9. At least one question for each concept or fact 
that tests the understanding of the students 
must be written. 

10. Information that must be presented to the stu
dent along with each concept that is presented 
must be determined. 

11. A list of typical misconceptions by students 
should be made. 

12. Constructive responses that would correct 
these misconceptions should be listed. 

13. At least two general constructive comments to 
be presented to the students who respond with 

from mate 

an answer that was not anticipated should be 
written. 

14. Pictures or graphs that may be helpful to the 
students in the understanding of the concepts or 
facts presented should be obtained. 

15. Appropriate use of slides, tapes and typeouts 
should be determined. 

16. The general flow the program is going to follow 
should be decided upon. 

17. The prepared materials in the computer lan
guage used must be programmed, i.e., coded. 

18. The program must be entered into the comput
er. 

19. The coding should be debugged. 
20. The program should be tested (using students) 

to determine if it actually teaches. 
2 i. Appropriate content revisions indicated by 

early student testing should be made. 
22. Observations should be made of the perfor-



mance of at least ten students as they take the 
program and their comments and questions 
should be noted. 

23. Further changes as indicated from students' re
actions to the program should be made. 

A number of methods have been used in writing 
programs in the School of Public Health. All of the 
methods involved the 23 steps described above. 

The most successful of the alternatives we have 
tried involves the professor (A), a graduate student 
or staff member (8 or D), and the programmer (C). 
The professor and his assistant (A and 8, or D) com
pletes steps 1-8 (the general outline of content materi
als to be used with a specification of the desired upper 
and lower limits of the materials). The student carries 
through steps 9- I 5 and discusses step 16 (general flow 
of the program with the possibilities of branching) 
with the programmer (C). The programmer handles 
steps 17- I 9. Then the responsibility is again assumed 
by the student and the professor for steps 20-23. 
Throughout this period, channels of communication 
have been established between the three people in
volved. When the work is distributed in this manner, 
all concerned seem to find the time and maintain in
terest in the program. The programmer is available 
for consultation in regard to possible uses of the com
puter, and the graduate student can solve the majority 
of the content problems on his own. 

One problem we have found in implementing this 
method has been a lack of interest on the part of some 
graduate students. They have felt the typical pressures 
for research as opposed to teaching as a prerequisite 
for advancement within their own fields. The attitude 
of graduate students in general toward teaching was 
often a negative one. However, we have found that 
certain students who plan to teach in the future take 
this opportunity to develop teaching materials very 
seriously. This is also noted in Reference 3. They 
learn how important it is to break topics into small 
sections and sequence them in a logical order. They 
are often more strongly motivated after they observe 
students taking their progrmllS. Frequently advanced 
graduate students (D) or professional staff (8) do 
not realize how a misplaced fact or lack of information 
can lead to miscomceptions on the part of the learner 
who is not familiar with a subject. 

Our experiences lead us to believe that CA I pro
grams must be written with full cooperation and com
munication between the professor (who devotes' as 
much time as possible) and the programmer. To save 
the professor's time a student or staff assistant who is 
familiar with the subject matter and the programmer, 
carries through several of the 23 steps. Very few of the 
professors at the University of Michigan, School of 

Public Health have had the time needed for optimal 
participation in a project of this type. Therefore, the 
professor-student or staff assistant-programmer com
bination is usually the most feasible. This method also 
enables him to participate with a number of professor
student pairs. The quantity and quality of programs 
written is this way in our opinion represents a great 
improvement over other methods attempted. This 
statement, of course, is now being rigorously veri
fied using CAP in conjunction with other evaluation 
procedures. 

CONCLUSIONS 

Computer-Assisted Pairing is a dynamic design for 
paired comparison evaluation of Computer-Assisted
Instruction sequences. It appears to be of considera
ble practical value since the pretest-treatment-post
test sequence can be made invisible to the subject. 
Simulation studies have shown CAP to be substantial
ly superior to previously considered alternatives. 

The application of the technique is certainly not 
limited to Computer-Assisted-Instruction. CAP can 
be applied fruitfully to almost any experimental sit
uation where paired comparisons are needed. It is 
especially useful when task initiation and evaluation 
can be done by the computer. 

ACKNOWLEDGMENT 

The authors gratefully acknowledge the advice and 
support of Drs. Karl Zinn and Stanford Ericksen of 
the Center for Research on Learning and Teaching, 
University of Michigan and Associate Dean John 
Romani of the University of Michigan School of 
Public Health. Also we would like to thank Miss 
Wendy Hiller for help in checking the final manu
script of this paper. 

REFERENCES 

1 M TARTER R) HOLCOMB R KRONMAL 
A description of new computer methods for estimating of the 
density of stored data . 
-Pr~eedings 1967 ACM National Conference 511:9 1967 

2 R KRONMAL M TARTER 
The estimation of probability densities and cumulatives by 
Fourier series methods 
Accepted for publication Jour Am Stat Assoc 

3 M TARTER 
Programmed instruction in statistics from the professor's 
point of view 
The American Statistician 21 :28-31 1967 

4"V CLARK M TARTER 
Preparationfor basic statistics automated text 
McGraw Hill 1967 

5 J E COULSON 
Programmed learning and computer-based instruction 
Wiley 1962 



460 Spring Joint Computer Conference, 1968 

6 W FEURZEIG 
A conversational teaching machine 
Datamation 10:6 1964 

7 K L ZINN 

Survey of materials prepared for instruction or research 
on instruction in on-line computer systems 
Automated Education Handbook E Goodman (Ed) Detroit 
Automated Education Center 1965 



Computer capacity trends and order-delivery 
lags, 1961-1967 

by MICHAEL H. BALLOT and KENNETH E. KNIGHT 
Stanford University 
Stanford, California 

INTRODUCTION 

This paper examines the growth of computational 
facilities in the U.S. from the end of 1961 to Sep
tember of 1967, exploring the dynamics of the growth 
process and attempting to link it to specific market 
events. The dynamics of supply and demand for 
general purpose computational capability points to 
many problems for both producer and user. This paper 
considers one of these pertinent to the ordering policy 
and planning of the firm seeking to acquire EDP 
equipment for, say, systems conversion; the delivery 
lag, or average time between equipment orders and 
delivery. This lag is studied and estifllated using two 
separate empirical models. 

Growth in computers 

The tremendous growth of computers in this coun
try, and abroad, is a well-known and accepted fact of 
our times, often referred to as the "Computer Age." 
A measure of this growth in recent years, based on the 
Monthly Computer Census reported in. Computers 
and A utomation, shows a definite exponential trend. 
The curves, fitted to data compiled for the cumulative 
number of machines installed and on order, are shown 
for three grouping: IBM, the "Big 8"* (Burroughs, 
CDC, G. E., Honeywell, IBM, NCR, RCA, and Uni
vac), and All companies as reported in the Computers 
and Automation Monthly Census (The "Big 8," 
Autonetics, Bunker-Ramo, Data Machines, DEC, 
Electronic Associates, EMR Computer Division, 
Philco, Raytheon, sec, SDS, and Systems Engineer
ing Labs). [See Figures 1,2, and 3.] 

For cumulative machines installed, the following 
equations, in logarithmic form, were estimated: 

(1) for the number of machines installed, IBM, 

*Inclusion in this group was determined by the number of machines 
installed and on order and the average value of these. 

461 

InN~n=3.362+ .076lt* ,R2=.959; 
(.00351)** 

(2) for the number of machines installed, the "Big 
8," 

InNin=3.597+ .078lt ,R2=.989;and 
(.00188) 

(3) for the number of machines installed, "All," 

InNln=4.233+ .0717t ,R2=.996. 
(.00107) 

60~--~1-----'1-----'1-----'1r----'1------r-1--' 

50-

10-

o I 
3162 
(70) 

3163 
(74) 

3/64 
(78) 

3165 
(82) 

QUARTER,I 

3166 
(86) 

Figure I-Time series, machines, IBM 

3167 
(90) 

-

-

*t, the time in quarters, is measured from 9/44 (t = 0), the date of 
introduction of the first general purpose digital computer, the 
Harvard Mark I. 

**This is the standard error of the regression coefficients, Sh" 



462 Spring Joint Computer Conference, 1968 

The curves fitted to cumulative machines on order, 
in logarithmic form, are as follows: 

(1) for the number of machines on order, IBM, 

1 n Nolo == 1 1£17-1-- 070A.t U 2 = 770· 
.&. .. .&...I.."'It '/_..,,-1' 1."''-' .... , ... , .,1,"" 

(.00861) 

(2) for the number of machines on order, the "Big 
8," 

InNrlo =4.264+ .06311 ,R2=.843;and 
(.00609) 

(:3) for the number of machines on order, "All," 

In Ny/o=4.365 -+- .0626t , R2= .874. 
(.00532) 

60'~--~--~----~----.-----.----.---. 

INSTALLED Je 

00~ ~ 

~~"I o J 3162 3/63 3/64 ~ 3166 3167 

10 

rro) (74) (78) (82) (86) (90) 

QUARTER,! 

Figure 2 - Time series, machines, "Big 8" 

60'~--~--~----~----.-----'----'---' 

- INSTALLED i 50 

~ 

~ 4°1 ~ / .. 
~ 

IT ./ 00'"'" 

i+ .~/I 
+~~o I 
OL~I--~L!----~31=3--~3/64~I~. ---3~k~5--~3166~1~~3~~~7---1 

(70) (74) (78) (82) (86) (91) 

QUARTER, , 

Figure 3 - Time series, machines, "ALL" 

The results are gratifying, with high statistical signif
icance and high correlation. The three groups show 
quarterly growth in facilities of better than 7%, with 
the growth of those of the "Big 8" manufacturers as 
high as 7.8%. These general results apply also to the 
curves fitted to the number of Ii1achines on order; 
with quarterly growth percentages about a point lower. 

Tests were applied to t~e differences in these 
trends,* and only those of "All" vs the "Big 8," for 
machines installed, showell a statistically significant 
difference (at better than the 1% level). Tests were 
also applied to each group, comparing the trends for 
machines installed vs machines on order; again, only 
one comparison was statistically significant (at 5% or 
better), this time the installed and on order trends for 
the "Big 8." 

Thus, most conclusions that are drawn from in
spection of the results, intergroup and between in
stallations and orders, can be only looked on as indica
tive. These indicate that new installations are growing 
faster than orders. This implies, given a constant 
machine mix in production, a small decrease in de
livery lag. Further inspection of the statistics show 
that the "Big 8" (1.5% difference) and all companies 
reported (.9% difference) seem to be working apprecia
bly on their backlogs, while IBM lags in this sense. 
These results can be interpreted as indicating that 
order backlogs are growing faster for IBM than for 
the other groups. This interpretation would be com
patible with the success of the System/360 in the mar
ket coupled with the lag of IBM's production scbed
ules for this system. * One factor needing amplifica
tion is the seemingly lower growth of installations of 
"All" compared with the "Big 8"; this may be ex
plained by the decreasing percentage of the market for 
machines manufactured by the· small-volume pro
ducers. The preceding observations, as a basis for 
analysis of computer growth and production lags 
seem, in general, valid but incomplete. 

To further explore the growth in computational 
capability, quarterly time series for cumulative ma
chine power** were constructed fqr IBM and the 
"Big 8" ~ and exponential curves were fitted to these 
[see Figures 4 and 5]: 

(1) for cumulative power installed, IBM, 

1nPtn =-6.88+ .140t ,R2=.934; 
(.0084R) 

(2) for cumulative power installerl, "Big 8," 

*See1
, p. IV - l~. 

*See 2, pp. 138 et. passim. 

**See 3 pp. 40-54, and See 4, pp. 31-35. 



Computer Capacity Trends and Order~ Delivery Lags 463 

In Pin =- 8.95 + .172t ,R2= .991; 
(.00375) 

(3) for cumulative power on order, IBM, 

In pr/o =-14.7 .249t ,R2= .835; and 
(.0254) 

(4) for cumulative power on order, "Big 8," 

1_ nolo _ 1'1 '1 _L 'l'J C:4- n2 _ 0""7'1 
111rr---1J.J---'--.""J.J1. ,1'- -OfJ. 

(.0206) 

2400,-----,---,------,-----,-----,,---,---..., 

2000 

1600 

1200 

800 

400 

3162 
(70) 

3163 
(74) 

QUARTER, \. 

ON ORDER 

J 

Fi~urf'; 4-Time series, computational power, IBM 
2400.-----r-----,---,__--.----"y---~----, 

ON ORDER 

2000 

~ 1600 
::1 J ! 
Go 

§ 1200 

II! 

~ 
g 
: eoor 
~J 

.l~3Jt;2 ~3163 ~~ 
(70) (74) 

QUARTER,' 

Figure 5 - Time series, computational power, "Big 8" 

Tests on trend differences were carried out on 
these results, and the difference between groups for 
the cumulative power installed, 3.2%, was statistically 
significant at better than the 1 % level. We compared 
the power time series results for IBM and the "Big 8" 
with the machine time series for these two. The simi
larity between groups is evidenced in both, but the 
comparison of installations and orders shows opposite 

differences; that is, power orders seem to be advancing 
at a greater quarterly rate than installed power while 
the opposite is true for the machine series. The back~ 
log of computational power is growing at about an 11 % 
differential per quarter for IBM and about 6% for the 
"Big 8" (probably mostly due to IBM .inclusion in 
this group). This trend can be credited to the large 
and powerful third generation computers, being or
dered at an accelerating rate and being supplied with a 
considerable production lag. The results seem to 
further accentuate the premise that IBrvf is (or was)'" 
having production difficulties with its new series. The 
growing orders for IBM computational power (at a 
quarterly rate of nearly 25%, almost 11 % ahead of 
deliveries) is a testimony to the advanced selling of 
System/360, and, as previously asserted, is a pro
duction headache on a _ grand scale. The differential 
growth of computational power demanded for now and 
the future vs power supplied now is also evident in the 
statistics for the "Big 8." It should be remembered, 
however, that there is a damping effect due to the 
inclusive nature of this group. Further breakdown of 
the data may yield interesting inter-company results, 
but this is not the main purpose of this paper. Rather 
the preceding analysis is meant to lay the foundation 
for the study of the problem of delivery lags, as they 
effect the 'planning of the firm engaged in expansion 
replacement of its ED P facilities. 

.6,----,-----r--,__---.---~--,_____, 

_4 

.2 

-.2 

-.4 

A • PUBLIC ANNOUNCEMENT OF SYSTEM 360 
B • PROJECTED FIRST DELIVERY 
C • PROECTED DELIVERY OF FIRST 1000 OF SYSTEM 360 

/ 
I 

V 
-.6'---::+.:;;--~:;-----;-~-~----;-7.:;:------;-31t=;67:-----' 

Footnote figure 
Analysis of Residuals 

In pin = a + 13 
for IBM t 

(90) 

QUARTER,' 

*Residuals (I n Puhs - 1 n Peale) of the regression (in logarithmic 
form) of pin = ceal for I BM show steady increase at higher values 
of t. Observed values steadily diverge upward from the regression 
line for 12/66, 3/67 and 6/67, about one year after the first 1000 
new System/360 computers were scheduled to be delivered_ Graph
ically: (see footnote figure above). 



464 Spring Joint Computer Conference, 1968 

Delivery lags 

It has been conjectured that there exists a substan
tial lag between the ordering and installation of new 
and expanded computational equipment. * This sec
tion explores this problem and tries to estimate the Jag 
for machines and for computational power. Two 
models are used: one assumes lags of 2, 3, 4, 5, 6, 7, 
and 8 periods (quarters) and tries to determine the 
best set of cumulative orders placed up to points in 
time within these periods to explain the growth of 
installations at the end of the period; the second as
sumes lags of 1 to 8 periods and tries to determine the 
best set of orders placed in single time periods during 

these over-all periods to explain the growth in instal
lations at the end of the period under study. 

A. Modell 

The first model used is of the form AXtn = f ( i A 
\ i=i 

\ 

X?.Lq ) where a is the postulated delivery lag (2 to 8 quar-

ters) and X is used to denote cumulative number of 
machine installations (N) or the sum of computa
tional power (P), installed (in) and on order (0/0). 
Table below gives the best resuits for this linear formu
lation, for N & P with the various postulated lags, and 
with the constant suppressed as well as included. 

TABLE I-Results, model I 

Group Bestfit* F-ratio (or FoJ** R2 (or R~)** 

IBM .1.N~n=- 1210+ .394 N9/0 
• t-5 112.1 .911 

(.0372) 

.1.N~n= .202 \ Nr.!..°4 (286.8) (.960) 
(.0119) 

Big 8 .1.Nln=-241 + .211 Nolo t-3 97.5 
(.0213) 

.1.Nln= .193 Nolo t-3 610.3 
(.00781) 

All aNin=- 255 + .205 Nolo 
t-3 

78.4 
(.0231) 

.1.Nin= .187 Nolo t-3 (533.1) 
(.00810) 

IBM .1.Pin =- 5.78 + .0894 P?i.~ 29.5 
(.0164) 

.1.Pln = .0826 Pfi.°4 ( 56.9) 
(.0190) 

Big 8 .1.p~n = - 1.69 + .117 Pri.~ 56.5 
(.0156) 

.1.Pin = .1]6 Pri.°4 (132.3) 
(.0101) 

*Best fit is determined by a combination of highest F-ratio, high R2 
and highly significant regression coefficients. Also note that tht; 
sample size drops from 17 for a = 2 to II for a = 8, for all regres
sions of the models. 
*With the constant suppressed, all variances and correlations are 
computed about the origin rather than the mean in the BMD 
stepwise regression routine (BMD-02R). See 6. 

*See 5; January 1966, p. 17; May, 1966, p. 17; June, 1966, p. 135; 
and January, 1967, p. 125. 

.890 

(.979) 

.867 

(.976) 

.695 

(.803) 

.813 

(.904) 



Computer Capacity Trends and Order-Delivery Lags 465 

The regression results for machinery suggest that 
the best explanatory order variable for installations 
in period t is the machine orders accumulated up to 
and including period t-3, for All and the Big 8. For 
IBM, though, the lagged order variables are in the 
area of t-4 and t-5. This result thus is in line with 
earlier observations in Section I concerning IBM's 
faster growing order backlog. With a set at 3, 4, 5, 6, 
7, and 8 periods, almost identical results were obtained 
for the regressions involving machines; this was also 
true for the power regressions with a at 4, 5, 6, 7 and 
8 periods. The best fits for machines, as defined in 
Table I, were selected from seven sets of regression 
runs, and these were further narrowed down to the one 
representative equation for each group, as appears 
in the above tabulation. This selection was repeated 
for computational power, and these further results 
suggest that orders accumulated up to and including 
period t-4 are the best explanatory order variables 
for power installations in period 1. This may well be 
due to the growing backlog of machine power for 
the groups under study. The production lag here, 
greater than that for machinery, is in line with prior 
thoughts and the time series data and discussion in 
the previous section. 

The obvious problems in this regression model are 
auto-correlation and multi-collinearity. The first of 
these is most likely present in the model because of the 
influence of omitted variables going beyond the in
cluded periods and which are very probably serially 
correlated, affecting the assumed random disturbance 
term. The second problem is known to exist in the 
model from the correlation matrix given by the the 

program for all variables. * But both autocrrelation, by 
biasing and rendering less efficient ~ and ~j, and multi
collinearity, by rendering the Pi nearly useless as a 
measure of relative effect, are not serious problems in 
this analysis. The model is not used structurally, but 
rather as an indicator of a single variable's explana
tory power. 

B. Model2 a 

The second model used is of the form dXip = f ~ , 
dxo/o with a again being the postulated delivery lag, 
varying from 1 to 8 quarters. The use of absolute first 
differences helps somewhat with the problems of auto
correlation and multicollinearity, drastically reducing 
the latter. Also, results can be more directly applied 
to the testing of the lag length, with support being 
derived from the lower limits suggested by the first 
model. The regressions were run for the three groups 
with machine numbers, and then two of these with 
computational power. The first set of results are 
shown in Table I I. 

These results, for number of machines, suggest 
that the lag may be in the neighborhood of 3 to 4 quar
ters, perhaps higher. (This is suggested by the occa
sional appearance in the regressions not shown here, 
of orders placed in period t-6, and the t-5 term in 
the second equation shown, as a third explanatory 
variable of some significance, plus the results of 
Modell.) And, as was noted for the previous regres
sions, similar results were obtained for a = 4 to 8. 
Next is presented the results of the computational 
power relationship for IBM and the "Big 8," in 
Table III. 

TABLE II - Results, model 2, machines 

Group Bestfit* F-ratio R2 

IBM aN:
n = 779 + .289 aNOlo + .476 t-3 

aNOlo 

(-4 
34.9 .853 

(.0601) (.0621) 

Big 8 aN
in = 1610+ .182 
t aN:~3+ .422 aNOlo 

t-4 

(.0406) (.0466) 

+ .192 aNOlo 35.0 .913 t-5 
(.0588) 

All aN
1n = 1670+ 264 aNOlo + .444 aNOlo 27.8 
t • t-3 (-4 

(.0652) (.0658)' 
.835 

*See footnotes, Table I 

*The small coefficient standard errors, though, might lead one 
to believe there is not high correlations amongst the explanatory 
variables, especially in the light of the not very large sample size. 
But the bane of time series is here too present. 



466 Spring Joint Computer Conference, 1968 

TABLE III - Results, model 2, power 

Group Bestfit* F-ratio R2 

IBM ~plnt= 24.2 + .0940 lip% + .0866 lip
% 

I 53 t-4 t-6' .234 
(.06! 2) (.0625) 

Big 8 lipiu'=44.7+ .111 lip% + .0614 lip% 
t t-4 t-5 

(.0883) (.0850) 

+ .0913 lip% 
t-6 

1.15 .278 
(.0896) 

*See footnote, Table I. 

These results, showing extremely low correlation 
and not statistically significant, must be considered 
in the light of recent relatively heavy queue switch
ing, with orders moved from the backlog of one com
puter manufacturer to another having smaller delivery 
lags in anyone time period. Given the discontinuous 
nature of the power mix between the manufacturers 
included in the analysis, large power on order dis
crepancies from one period to the next would be quite 
common. The power on order series lacks any 
semblance of uniformity or direction. Thus, the re
results, though barely suggestive, do indicate that 
the delivery lags for power are 4 to 6 quarters. 
These longer lags, weighted by the larger machines, 
appear consistent with the .results suggested in 
Modell and the time series for power (see Section I). 

CONCLUSION 

Exponential curves were fitted to time series data 
~hich ·depicted the growth of computational capa
bility, as measured by number of machines and com
puting power installed and on order. For the first of 
Jhese series, the growth of machines installed ex
ceeded 7% per quarter, and orders, 6% per quarter. 
The second series for power showed trends in the 
area of 15% and 25% for installations and orders, 
respectively. 

These lags present a vexing problem for the firm 
planning for future computer capability. For one plan 
to be brought to culmination, with the computer going 
on line, requires a 9 to 18 month delivery lag as well 

as a several month installation - on line lag. Then the 
new facility becomes obsolete economically due to 
the tremendous technological change in the computer 
manufacturing industry. * Clearly further research 
on this problem, involving the trade-off between 
economic costs and conversion expenses, is needed. 

*See 3, p. 54. Knight find average advances in computing power, 
given the equivalent captial cost, greater than 80% per year, 1950-
62. See 4, p. 34. Knight's updating, 1963-66, reveals an average 
advance of about 140%. 

REFERENCES 

E A McCRACKEN J M CARR JR 
Statistical methods 
ESSO Research Laboratories Humble Oil and Refining Com
any undated 

2 T A WISE 
The rocky road to the marketplace 
Fortune October 1966 

3 K E KNIGHT 
Changes in computer performance 
Datamation September 1966 

4 K E KNIGHT 
Evolving computer performance 
Datamation January 1968 

5 Look ahead 
Datamation various issues 

6 W J DIXON (editor) 
Biomedical computer programs 
Health Sciences Computing Facility UCLA 1965 

7 J JOHNSTON 
Econometric methods 
McGraw-Hill Book Company Inc 1963 



Error estimate of a fourth-order Runge-Kutta 
method with only one initial derivative 
evaluation 

byA.S.CHAI 
Hybrid Computer Laboratory 
University o/Wisconsin 
Madison, Wisconsin 

INTRODUCTION 

In the numerical solution of 'differential equations it is 
desirable to have estimates' of the local discretiza
tio~ (or truncation) e~o'rs of solutions at each step. 
The estimate may be used not only to provide some 
idea of the errors, but also to indicate when to adjust 
the step size. If the magnitude of the estimate is greater 
than the preassigned upper bound, the step size is 
reduced to achieve smaller local errors. If the magni
tude of the estimate is less than the preassigned lower 
bound, the step size is increased to save the computing 
time. 

The 4th-order Runge-Kutta method has the ad
vantage that it provides an easy way to change the 
·step size, but it' does not provide as simple a way to I 

get error estimates as does Milne's J?redicto~-c?~
rector method. I Several. methods2.3,4.s for a~hlevmg 
error estimates have been derived and are briefly as 
follows: 
1) One-step method' 

The one-step method provides all the information 
for the error estimate in one step. The important one
step method is Sarafyan's ps~udo-iterative formul~2 
which is a 5th-order Runge-Kutta formula imbedded m 
a 4th-order Runge-Kutta formula as follows: 

ko = hf(xmYn) 
kl = ht~xn + h/2,y n + ko/2 
k2 ~ hf(xn + h/2,yn + (ko + k l )/4) 
k3 ~ hf(xn + h,yn - kl -t 2k2) 
k4 ~ hf(xn + 2h/3,yn + (7~o+ lOkI + ~3)/27) 
ks = hf(xn + 2h/ 1 O,y n + (28ko - 125k1 + 546k2 

+ 54k3- 378k4)/625) 

The 4th-order formula is 

Yn+1 = Yn + (ko + 4k2 + k3)/6 

and the 5th-order formula is 

467 

Yn+1 = Yn + (l4ko + 35k3 + 162k.4 + 125ks)/336 

The estimate is 

En+1 = Yn+1- Yn+1 

The work of Luther and Konen6 (Legendre
Gauss) and" of Luther7 (Newton-Cotes, the 2nd 
formula, and Lobatto) also yield suitable pseudo
iterative formulas. 

Really, pseudo-iterative formulas are 5th-order 
Runge-Kutta integration schemes used to estimate 
the error of the 4th-order Runge-Kutta integration. 

The pseudo-iterative formula can be used to esti
mate the error at the first step, which can be done by 
no other method. But it requires about 50% more com
'puting time for the additional derivative evaluations. 

Merson's and Scraton's methods with five deriva
tive evaluations belong to one-step pseudo-iterative 
method. but they are only applicable in particular 
cases.4.8 

2) Two-step method4.s 

This method requires the computation of y n+1 and 
Yn+2 with a step size h, and then the recomputation ~f 
y* n+2 with a doubling of the step size. The error esh-
mate is 

En+2 = (y* n+2 - Yn+2)/30. 

Since the error is of the order hS
, we can let 

Yn+2 = Yn+2 + En+1 + En+2 

1 (LP 

where the two error terms relate to the two steps, and 

y* n+2 = Y n+2 + 32En+1 + O(h6) 

Hence, Formula (1.1) really provides an estimate of 
the error, 

En+29/30 = (31 En+1 - En+2)/30 + O(h6) 

which is close to the error, En+1, in Yn+1' If the estimal~ 
is for the error, En+2, in Yn+2, it requires that the errors, 



468 Spring Joint Computer Conference, 1968 

En+1 and En+2' in Yn+l and Yn+2 be approximately equal. 
This method can be used to estimate the error at 

each two steps starting at Y2 and requires about 37.5% 
more computing time than fourth-order Runge-Kutta 
integration without estimates. 
3) Multi-step method3.4 

, 

Ceschino and Kuntzmann (Ref. 3, pp. 305-310) col
lected several multi-step formul~s for the error esti
mate which was based on Refs. 9, 10. On~ of them is 
(also in Ref. 4); 

Strictly speaking, (1.2) estimates the error 

En+7/10 = (1 OEn + 19En+1 + En+2)/30. 

(1.2) 

This method can estimate the error at each step. 
But this method cannot be used until the completion 
of the third step (i.e., Y3)' The estimate is close to the 
error at the last step, because 

En+7/10 == En+l' 

If the estimate is for the error, En+l, at the last step, and 
if the estimate causes the step size to change, four ad
ditional derivative evaluations are needed. If the esti
mate is for the error, En+2' at the present step, it re
quires that the errors at three successive steps,' 
Em En+l, and En+2, be approximately equal. This re
quirement may not be satisfied if the errors change 
rapidly. 

In general, the derivative evaluations need most of 
the computing time. The 4th-order Runge-Kutta meth
od already requires more derivative evaluations than 
~he other methods, e.g., Milne's method;1 hence the 
extra time for the additional derivative evaluations for 
the error estimate is too expensive, and should be 
avoided as much as possible. 

The suggested method 

Ceschino and Kuntzmann (Ref. 3, p. 308) showed 
the following formula 

En+2 = 11~Yn+1 + 1.2.~Yn - h (,!fn+2 + 1.2.fn+1 
30 30 9 30 

+ __ ~Jn -_1 fn--1 ) n > 0 (2.1) 
30 90 

for estimating the local discretization error in Yn+2 in 
each step in a fourth-order Runge-Kutta integration. 
The author has found that (2.1) has advantages over 
the other methods in Section 1 and shows this below. 
Also, (2.1) can be extended to n = 0, because we can 
form 

1 which has an error of O(h6), and then evaluate 

LI = f(x_ l , Y --I) (2.3) 

Then, using (2.1) for computing the estimate ~, 
Equations (2.2) and (2.3) can be employed when 
(2.1) is just started or when the step size changes. 

Equation (2.1) requires fn+2' which has to be comput
ed for ko in the next step if the step size does not 
change; hence, no additional derivative evaluations 
in each step are needed except for E2 where one addi
tional evaluation for LI by (2.3) is needed. This meth
od requires about 12.5% more computing time for 
evaluating L 1, when Ll is not available, but no ad
ditional time if n > O. Hence, this method has an ad
vantage in computing time over the one-step and two
step methods. 

Equations (2.1-3) can estimate the error at each 
step after the first. Equation (2.1) estimates the error 

En+41/30=(11En+2+ 19En+1)/30 
which is closer to the error, En+2' than the estimates in 
the two-step and multi-step methods. Hence, this 
method has another advantage over the two-step and 
multi-step methods. The departure of the estimate 
from the local discretization error in Y n+2 will be shown 
in the next section. 

The derivation of (2,,1) was shown in Ref. 3 and, as 
well as the derivation of (2.2), is briefly shown in 
Appendix 1. 

Equation (2.1) can be employed to be a corrector 
to get errors in Y of the order h6. The convergence 
theorem and the experiment result are shown in 
Appendix 2. 

The departure of the estimate 

The departure of the estimate from the local dis
cretization error is (Ref3, pp. 306-308): 

En+2 - En+2 =-1. hfyn+IEn+l - .!,2.h, ~.~.n.+1 
2 30 

- _1_1_h6t'ri+l + O(h 7) 
5400 

(3.1) 

To give the reader some picture of the departure, 
let us consider a differential equation: 

Y' = ay, Yo= y(xo) 

Where a is a constant and is not equal to zero. 
The formula of the local discretization error of the 

order h5 in Vn+? bv several known 4th-order Runge
Kutta formulas can be found in (Ref. 3, p. 81). In this 
example, the local discretization error of the order 
h5 is 



Error Estimate of Fourth-Order Runge-Kutta ~1ethod AJ::O 
"TV7 

Since y = yoeaX , 
this gives 

frf+1 = yoa6eaXn+1 , 
and 

fy=a. 
Hence the departure of the estimate is 

_ 1 h6a6Yoeaxn+l. 
En+2 - En+2 - 135 

The relative error is 

En+2-En+2 8ha= .889ha 
En+2 9 

of which the magnitude is less than 10% if I hal ~ 0 .. 1. 
To verify the theory an experiment was run to 

solve 

y'=y, Yo= 1, h=O.1 and x=Oto 10. 

The local discretization error at Xn+2 is Yn+2 - yn+1eh. 
The experimental results for the relative errors of the 
estimates for x = .2 to 10, were between .08211 and 
.08225. Then the equation was changed to 

y'=-y 

with the same parameters. The local discretization 
error at Xn+2 is Yn+2 - Yn+1e-h. The experimental 
results for the relative errors were between -.09620 
and -.09637, or slightly less than 10%. Hence the 
experimental result agrees with the theory. 

If Equations (2.2) and (2.3) are employed for com
puting L 1, the departure, which is derived in Appendix 
3, is 

E2-E2=-~hfy El- ~~hE'~'- 54~~h6f}'+O(h7) 
1 

As before, the relative error for E2 in 
y' =ay, a =1= 0 

is approximately equal to 
5 
9'h a= .556 h a 

which is about 5% if I hal == 0.1. 
The experimental results for E2 in 

y' =y and in y' =- y, 

are .0518 and -.0593 respectively, where h = 0.1. 
Another experiment is to solve a system of non

linear differential equations 

y'(x)= z(x) 
z'(x) = (2 y(x) - 1) z(x) (3.2) 
y(o) = 0.5, z(o) = y'(o) =- 0.25 

The step size, h, was 0.1 and x ran from 0 to 5. 
The local discretization error at y n+1 is 

_ a(Yn+1 - f3) - f3(Yn+1 - a)e(a-13)h 
En+2- Yn+2- y _ a- ( . _ ) (a-13)h n+1 tJ Yn+1 a e 

where 

; } = 1 ± v' 1 +4(Y~;l - Y»+I - Zn+l) 

The local discretization error En+2 and the relative 
error of the estimate are shown in Table 3.1. The 
v;::t1nes. of the re1;::ttive errors. ;::tre ;::thont Olin O'pnpr~1 ------ -- ---- --------- ------ --- ----- --- --- o~·-~-_& 

except when the curve of En+2 approaches zero rapidly. 
Hence the estimate is in general suitable for practical 
purpose. 

TABLE3.1 

x Local error ReI. error 

.2 .755SE-QS -.6 1 93E-Q2 

.3 .7047E-QS -.4302E-Q2 

.4 .6.301E-QS -.1157E-Ql 

.5 .537 1 E-QS -.2127E-Ql 

.6 .4320E-QS -.3440E-Ql 

.7 .3223E-QS -.5614E-Ql 

.S .2 1 45E-QS -.9597E-Ql 

.9 .1 1 44E-QS -.1944E 00 
1.0 .2710E-Q9 -.S569E 00 
1.1 -.4447E-Q9 .5242E 00 
1.2 -.9S77E-Q9 .225SE 00 
1.3 -.1352E-QS .1517E 00 
1.4 -.1544E-QS .11S9E 00 
1.5 -.15S6E-QS .97S2E-Ql 
1.6 -.1502E-QS .S015E-Ql 
1.7 -.1317E-QS .6420E-Ql 
I.S -.1059E-QS .4473E-Ql 
1.9 -.7522E-Q9 . 1 596E-Ql 
2.0 -.4229E-Q9 -.5341E-Ql 
2.1 -.9004E-1O -.6064E 00 
2.2 .2301E-Q9 .3657E 00 
2.3 .5275E-Q9 .2065E 00 
2.4 .793 1 E-Q9 .1637E 00 
2.5 .1021E-QS .144SE 00 
2.6 .1211E-QS .1329E 00 
2.7 . 1 362E-QS .1254E 00 
2.S . 1 477E-QS .1l95E 00 
2.9 . 1 556E-QS .1157E 00 
3.0 .1605E-QS .1126E 00 
3.1 . 1 626E-QS .1103E 00 
3.2 . 1 624E-QS .lOS3E 00 
3.3 .1603E-QS .106SE 00 
3.4 . I 565E-QS .1054E 00 
3.5 .1516E-QS .1043E 00 
3.6 . I 457E-QS .1031E 00 
3.7 .139IE-QS .1025E 00 
3.8 . 1 320E-QS .1018E 00 
3.9 . I 247E-QS .1012E 00 
4.0 .1 I 72E-QS .1005E 00 
4.1 .1087E-QS .1005E 00 
4.2 .1024E-QS .9993E-Q1 
4.3 .9525E-Q9 .9958E-Ql 
4.4 .S836E-Q9 .992IE-Ql 



470 Spring Joint Computer Conference, 1968 

4.5 .8 I 76E-09 .9892E-ot 
4.6 .7548E-09 .9876E-ol 
4.7 .6954E-09 .9867E-ol 
4.8 .6395E-09 .9861E-ol 
4.9 .5872E-09 .9860E-ol 
5.0 .5385E-09 .9827E-D! 

Local discretization error and relative error of 
estimate at y in y' = z and z' = (2y - l)z 

ACKNOWLEDGMENTS 

The author is indebted to Professors C.A. Ranous and 
V. C. Rideout for aid in expression in writing this 
paper and Professor C. W. Cryer for discussion of 
convergence theory. The author particularly thanks 
hIs former advisor Professor H. J. Wertz who sug
gested this problem -and has often given encourage-'" 
ment. 

The author is also indebted to the referees for their 
constructive comments. 

All the experimental results were obtained on an 
SDS 930 computer (38 bit = 11.4 digits in mantissa) 
in the Hybrid Computer Laboratory at the University 
of Wisconsin, Madison, Wisconsin. 

Appendix 1 

Derivation of(2.1) [3, pp 305-308] and (2.2) 
It is easy to derive 

8 1 9 -.I (h. 1 9-
y(xn+2) =-TlY(xn+1) + TlY(xn) + h( 3}fn+2 )+Tlfn+1 

8 -f 1 -r ) 1 h~ + O(h 7) 
+Tl n -3} n-l - 180 -In+l (A 1. 1 ) 

Substitute 

and 
y(Xn+2) = y(xn+1) + dY(Xn+1) €n+2 

then, after simplification, we get 

_ 11€n+2+ 1 9€n+l...LO(h7) 
€n+41/30 - 30 I 

1 1 1 9 '( 1- 1 9-
= 30dy(xn+t) + 30dy(xn) - h 9fn+2 + 30fn+1 

+ 3
8
0{n - 9

1
0'(n-l) - 5!~O,h6t;;+1 + O(h7

) 

Now, therefore, the estimate is (2.1). 
Equation (2.2) is easy to be derived by 
y -1 = 1 OY2 + 9Yl - 18yo - 3h(f2 + 6f1 + 3fo) + O(hfi) 

Appendix 2 
A convergence Theorem of (2. j ) 
Equation (A I. I) can be rewritten to 

Then 

The following statement of a covergence theorem is 
similar to Byrne and Lambertll . . 

Assume that (i) f(x,y) is continuous for x € I and 
II y II < 00, (2) f satisfies a Lipschitz condition and (3) 
O(xm Yn) is defined for' all h such that x + hand 
x - 2h € I. 

(A2.1) is consistent because 

lim (x,y)/h=f(x,y),x€I, II y II < 00. 

h~O 

A convergence theorem is 
Let Yo be the initial value and 

II Yl - y(x1) II + II Y2 - y(X2) II ~ hL 

where L is a non-negative constant and let there 
exist three non-negative numbers Ll, L2, and L3 such 
that 

II O(xn'w~) - O(xn,wn) II ~ h(Llll w~ - Wn II + L2I1w~-1 

- Wn-l II + L3\\ W~-2 - wn- 211 ) . 

hold for the vectors wri and wn. Under these conditions, 
the hypotheses (1-3), and the consistence property, 
(A2.1) is convergent. 

The proof can be similarly employed as in Byrne 
and LambertH except that one more term, 

h L 3zn- 2 = h L311 y(Xn-2) - Yn-211 

is added in the right-hand side of the inequality 

Zn+1 ~ zn( 1 + hLt) + hzn- lL2 + hg(h) 

and thereafter. This proof does not include the point 
X-t, so we have to assume that X-I € I if (2.2) is em
ployed. 

Hence (A2.1) can be used as a corrector to get 
errors to O(h6

) except at Yto However Y2 should be 
corrected by twice the estimate at x2. 

Table A2. 1 shows the accumulative errors of non
corrected and corrected solutions in the experiment to 
solve the system of non-linear equations (3.2). The 
theoretical solution is 

I 
Y(x)=-
,. !-l-X ,e 



Error Estimate of Fourth-Order Runge-Kutta Method 471 

The accumulative error was obtained by subtracting 
y(xn) from Yn (non-corrected) or Yn (corrected by 
(2.1)). 

In Table A2.1 the errors of the non-corrected solu
tions are greater than those of the corrected. 

x Non-corrected Corrected 

.2 1.531 x 10-8 2.929 x 10-10 

.3 2.228 X 10-8 5.402X 10-10 

.5 3.364 x iQ-3 1.759'x W-:; 
1.0 4.327x 10-8 6.483!X 10-9 

2.0 2.837 X 10-8 6.314X 10-9 

3.0 2.555 X 10-8 -5.898:X 10-10 

4.0 2.104 X 10-8 -2.966 x 10-9 

5.0 1.352 X 10-8 -2.749 x 10-9 

TABLE A2.1 
Errors in non-corrected and corrected 

solutions of y in Equation (3.2). 

Appendix 3 

The departure of (2.1) when (2.3) is employea 
If (2.2) is employed for Y-b since Yo is the initial 

value, we can assume that Yo has no error, then 
YI = y(xI) + €l 

and 
Y2 = y(x2) + EI + E2 

Hence 
fi =f~ +fYi (EI + ... + Ei), i= 1,2 

Now 
. AYQ = Ay(xo) 

and . 

AYI = Ay(xl) + hfylE1 

with 
Y-l = Y(X-I) + 19EI + 10~2 

and 

Ll = LI + fY- 1 (19EI + 10E2) 

then 
_11 19 1 11 6 

E2 = 30E2 + 30EI -"6hfYIEI - 5400h ~t 

Hence the departure of the estimate E2 from E2 is 
19 1 11 

E2- E2 == - 30hE ' I -"6hfYIEI - 5400h6fl 

NOMENCLATURE 

Y' = f(x,y) - a system of differential equations where 
x is the independent variable and Y 
represents the dependent variables. 
y, Y' and fare vectors. 

h - step size. 

Yn 

Yn 

- solution of Y at Xn = Xo + nh with an 
error of O(h5) obtained by a fourth
order Runge-Kutta formula. 

- solution of Y at Xn with an error of O(h6). 
f =f(xmYn) 
fn =f(xmYn) 
y(xn) - theoretical solution of Y at Xn' 
Ay n - increment function which is defined by 

YnH-Yn' 
- similar to AYm but replacing Yn in AYn 
~y~J. ' 

- local d}scretization (or truncation) error 
in Yn which is defined by the difference 
of y(xn) from Yn with considering Yn-l to 
be the initial value, e.g. 
En = y(xn- t ) + Ay(xn- 1) - Y(xn) 

- estimate of En. 

REFERENCES 

1 W E MILNE 
Numerical solution of differential equations 
Wiley New York p 66 (1953) 

2 D SARAFYAN 
Error estimation for Runge-Kutta methods through pseudo
iterative formulas 
Technical Report No 14 Louisiana State University New 
Orleans (May 1966) 

3 F CESCHINO J KUNTZMANN 
Problemes differentiels de conditions initiales 
Dunod Paris France pp 81 305-310 (1963) English translation 
by D Boyanovitch Prentic-Hall Englewood Cliffs N J pp 67 
247-251 (1966) 

4 R E SCRATON 
Estimation of the truncation error in Rung-Kutta and allied 
processes 
ro~p J vol 7 pp 246-248 April 1964 

5 L COLLATZ 
The numerical treatment of differential equations 
Third edition second printing English translation by P G 
Williams Springer-Verlag New York pp 51-52 1966 

6 H A LUTHER H P KONEN 
Some fifth-order classical Runge-Kuttaformulas 
SIAM Review vol 7 pp 551-558 1965 

7 H A LUTHER 
Further explicit fifth-order Runge-Kuttaformlilas 
SIAM Review vol 8 pp 374-380 1966 

8 A R CURTIS 
Correspondence to Estimation of the truncation error in 

Runge-Kutta and allied processes 
CompJ vol 8 p 52 1965 

9 H MOREL 
Evaluation de r erreur sur un pas dans fa methode de Runge
Kutta 
Comptes rendus de l' Academie des Sciences Paris vol 243 
pp 1999-2002 1965 

10 J KUNTZMANN 
Evaluation de l' erreur sur un pas dans fes methodes a pas 
separes 
Chiffres vol 2 pp 97 -102 1959 

II G D BYRNE R J LAMBERT 
Pselldo-Runge-Kutta methods involving two points 
JACM vol 13 pp 114-123 1966 





lmproved techniques for digital modeling and 
simulation of nonlinear systems 

by JOSEPH s. ROSKO 
U nlled A inTaft Research Laboratories 
East Hartford, Connecticut 

INTRODUCTION locus procedures and Sage and Burt10,11 have extended 
the quasilinearization technique to design more exact 
discrete system models. 

This paper will first review three digital simulation 
techniques previously mentioned whose usage is 
widespread. Emphasis will be on nonlinear systems 
whose form is shown in Figure 1. Then 11 new real
time simulation method which is based upon purely 

cllf) c,lt) c(t) 

The engineer or s~ientist concerned with the mathe
matical description of physical systems is continually 
faced with nonlinear formulations. The nonlinearity 
may be represented in the form of a differential equa
tion representing process or system dynamics. On the 
other hand, nonlinear control element characteristics 
such as hysteresis, saturation, backlash, or nonlinear 
damping, whose mathematical description is alge
braic, may appear. In many instances the mathemati
cal formulation for system description may become so 
unwieldy that an analytical solution is either impracti
calor impossible. It is particularly in situations like 
these that digital simulation has become an invaluable 
tool. 

+ I ~ "',' I---
NCIIILINEAII 

EL£IIENT r-- 'lis) r--~ 

Historically, Euler integration, Newton-Coates 
quadrature formulas, predictor-corrector techniques, 
Runge-Kutta methods, and the techniques belonging 
to the realm of numerical analysis were first used to 
obtain approximate solutions to differential equa
tions.l.2 After it beca':11e commonplace to represent the 
linear components of feedback control systems by 
transfer functions, the Tustin3 and other substitutional 
techniques4,5,6,7 evolved. These methods represent 
each transfer function as an equivalent approximate 
discrete form. This permits the response of each block 
to be formulated as a single difference equation. Re
cently, space vehicle simulation and man-in-the-Ioop 
studies have necessitated the procurement of high 
precision and real-time simulations. The term real
time is used in this instance to denote the occurrence 
of events in a physical system and its simulation with 
the same time base. Although the simplicity of the 
algebraic response equations developed by the Tustin 
method make it attractive, the solution interval nec
essary for accurate closed loop simulations is prohibi
tive. A number of significant contributions have been 
made within the past four years toward the alleviation 
of these problems. HurtS and Fowler9 employ root 

473 

HIlI 

Figure I - A general nonlinear feedback system 

algebraic procedures and does not require the use of 
ancillary computation during the design stage is pre
sented in detail. An adaptive filtering technique is 
also described in which a time-varying compensatory 
device is employed in conjunction with the discrete 
system model to increase simulation accuracy. Final
ly selected examples are used to provide a basis of 
comparison and substantiate the results obtainable 
with the new methods. 

Current simulation techniques 

Tustin method 

Tustin's mathematical formulation as applied to sys
tem simulation consists of making a discrete approxi
mation to the operational integrating operator (l/s)n 
and obtaining a digitized representation or eacn rrans
fer function. Once the various bloeks have been dis
cretized, algebraic difference equations representing 
the response of each block may be formed. 



474 Spring Joint Computer Conference, 1968 

The linear components of a system are represented 
as transfer functions 

G( ) 
~ ansn + an_1sn- 1 + ... + a1s + ao k >-

s b k + b k 1 + b· b'::- n. kS k-IS - .. '+IS+ 0 

(1) 

Begin by dividing the numerator and denominator 
Equation 1 by Sk; 

G( )il ~(1/s)k+al(1/s)k-I+ ... 
.. s bo(1/s)k + b1(1/S)k-l 

+ au_l(1/s)k-n+1 + an(1/s)k-n 
-t ... + bk~iiTs) -+- b~ (2) 

Now a pulse transfer function may be formulated by 
substituting the Tustin discrete approximations for 
(l/s), ... , (1/S)k in Equation 2. This operation results 
in 

G(z) 

where {}i represents the discrete approximation to the 
ith order integrating operator (1/S}i as a ratio of poly
nomials in z. 

Simplification yields 

! Aozk + A1Zk-l + ... + Ak-1z + Ak 
k (4) Bozk + BIz -I + ... + Bk-1z + Bk , 

where the coefficients Ao, AI>' .. ,Ak consist of com
binations of T, the independent variable increment, 
and the transfer funCtion coefficients ao, ... , an and 
the Bo, Bh •.. ,Bk consist of combinations of T and 
the transfer function coefficients bo, ... , bk. 

Applying this procedure to the system shown in 
Figure 1 results in the discrete transfer function 
G1(z), G 2(z), and H(z). In addition, it is necessary to 
insert a single period deiay in the feedback ioop to 
render a realizable simulation. The results of these 
digital modeling operations are shown in Figure 2. To 

~ ~ ~1 .. ' ~i
.- ~ '1 ~ I~: -----JI 

Figure 2 - Digital model of a general nonlinear system using the 
Tustin method 

·simulate a system such as this, all that remains is 
to obtain a set of recursion formulas using conven
tional tec·hniques. 

IBM method 

HurtS and Fowler,9 'the developers of the IBM 
Method, specifically propose to achieve a more exact 

simulation for a given sample period by matching the 
closed-loop eigenvalues and the static gains of the 
analog and digital systems. 

Their procedure is now presented in an abridged 
form. 

I, The initial discrete system shown in Figure 3 is 
obtained from the continuous system by forming the 
z-transform of each block and then inserting an incre
mental delay in the feedback loop to insure realizabil-
ity. -

.. ~ ~ ~CNll 
I ~L. t--" I ,,'ell t--" T 

'----'1 .- .~ '1' WI.' 'I ' I 

Figure 3 - Initial configuration; IBM digital model of a nonlinear 
system 

2. Next each block is assumed to have a step input 
and the static gains are matched between the analog 
and digital block transfer functions. This is accom
plished by multiplying the discrete transfer function 
by a constant parameter, applying the final value 
theorems to both transfer functions with the assumed 
step input and equating the results to determine the 
constant parameter. As an example, the first block in 
the forward path is selected. 

For integrators, the approach is to multiply its z
transform by the sampling interval, T. 

3. After replacing the nonlinearity by some nomi
nal gain; G 3; the root locus of each system is matched 
by inserting a gain element (G4) in the forward path of 
the discrete system. The results of these operations 
are illustrated in Figure 4. 

figure 4- Intermediate configuration; IBM digital model of a non
linear system 

4. The last step involves matching the discrete 
system to the excitation. This is achieved by attaching 
an "input transfer function" to the discrete system. 
The matching is accomplished by forming the re
sponse, in operational form, of both the continuous 



and discrete systems, then obtaining the z-transform 
of the linearized continuous system response and 
equating it to the discrete response to evaluate I(z). 
For the system under consideration 

Z [R(S).G1(S)G3G2(S) ] = 
1 + H(s)G1(S)G3G2(S) 

[ 
R( )I( ) G4GIGll(Z)G3G2G21(Z) ] 

. z z·1 + z IHHl(Z)G4GlGll(Z)G3G2G21(Z) .(~) 

The final form of the di!!ital mode) which is ealliv~lent 
to the general nonlinea; system ~t s~~~li~~ -i~~~;~;i~ 
is presented in Figure 5. 

Figure 5 - Final configuration; IBM digital model of a nonlinear 
system 

Sage-Burt method, 

The Sage-Burt approach10,11 is the first attempt at 
discrete system modeling which considers the full 
impact of nonlinearities. However, this technique for 
modeli~g and simulation requires a considerable 
amount of tailoring and preliminary design computa
tion. 

Their procedure is now presented in summarized 
form by considering the system in Figure 1. 

1. Individual blocks are discretized by extracting 
the transfer function from the aggregate system and 
formulating an optimization problem. The first block 
in the forward loop of Figure 1 is selected to illustrate 
the procedure. 

If Figure 6, A(s) is the ideal transfer function, A(z) 
is the desired transfer function, and F(z) is the fixed 

r(t) 

Figure 6 - System for optimization problem 

portion of the system. The fixed portion of the sys
tem is selected to be unity except where a pure delay 
must be utilized to render a realizable simulation. 
Error and total squared error for this· situation are 
given as 

E(z) = C(z) - R(z)A(z)F(z), (7) 

and 

Improved Techniques for Digital Modeling 475 

00 1 J ~ e2(NT) =.- E(z)E(z-l)z-ldz, 
N=O 2rrj r 

(8) 

where C(z) is the z-transform of the product R(s)A(s) 
and the contour of integration is the unit circle. A(z) 
is determined by applying the calculus of variations 
to Equation 8 such that it is minimized. The results are 

{ 
R(Z-l)F(z-l)C(Z) } 

A (z)= [R(z)R(z-l)F(z)F(z-l)]-, P.R., (9) 
o [R(z)R(z-l)F(z)F(z-l)]+ 

where P.R. refers to the realizable portion of the 
term within {} and the + and - subscripts refer to the 
spectrum factorization operator' denoting extraction 
of mUltiplicative terms containing poles and zeros 
inside (+) or outside (-) the unit circle. Generally ei
ther a step or ramp is selected as a convenient excita
tion for this procedure. 

2. The nature of the nonlinearity is considered 
by~the inclusion and determination of a multiplicative 
constant parameter Pi associated with each block. The 
desired result is attained when the discrete system out
put XA(t) approaches the analog output Yi(t) , where 
XA(t) and Xi(t) are m vectors describing-the system 
output state for a given input. 

The continuous state vector output, Ylt), and the 
excitation, X(t), are assumed to be completely known. 
The constant parameters P, interpreted as a p vector 
are then adjusted to minimize the performance index. 

(l0) 

subject to the constraint 

XA [(N + l)T] = f[[A(NT),P] (lla) 
YA (0)= Yi (0) (lIb) 
P [(N + l)T] + .E(NT). (llc) 

By application of standard variational calculus 
procedures, it is found that the optimum parameter 
vector ~ is determined by solution of Equations 10 
and 11 together with the adjoint difference equations, 

Ay(NT)='Vy{'[YA(NT),P]Ay[(N + l)T] (I2a) 
+R[Xi(NT)- YA(NT)]-
Ap(NT)='Vpf[YA(NT),P]Ay[(N + l)T] (l2b) 
+-~p[(N ~ l)T] ~ 
Ay(KT) = ~p(KT) = ~p(O) = O. (12c) 

Sage and Burt consider the computational problems 
inherent in this discrete two-point nonlinear boundary 
value problem and suggest quasi linearization methods 
for its solution. The interested reader is' referred to 
Sage and Burt10,11 or Bellman12:13 for particulars con
cerning this method. 



476 Spring Joint Computer Conference, 1968 

New simulation method 

Tustin's method provides excellent simulations of 
open-loop systems and has attained widespread 
acceptance and usage. However, when this technique 
is appiied to the discretization of closed-loop sys
tems, the necessity of inserting a delay in the feedback 
path to obtain a realizable simulation shifts the nor
mal location of the closed-loop poles appreciably in 
many instances and results in the consequent per
formance degradation. Real-time simulation is general
ly ruled out since a smaller than tolerable time 
increment must be utilized to achieve adequate re
sponse representations. The IBM method and the 
Sage-Burt method rectify this situation by more per
fect modeling of the dosed-loop system. The new 
simulation method to be presented in this section com
bines the simpiicity of Tustin's design procedure 
with the more exact modeling philosophy of these 
more recent approaches to yield a comparable real
time simulation capability. 

One initiates the design process by employing the 
Tustin method to discretize each transfer function. 
After the necessary unit delay is inserted in the feed
back path, the resultant digital system model of a 
general nonlinear system is that illustrated in Figure 
2. Next a discrete· filter with pulse transfer function 
D(z) is placed at the normal input to the digital model. 
Figure 7 depicts this situation where the transfer func
tion of the digital compensator has the form 

o+alz+ ..... +amzm 

bo + blz + ..... + bnzn 
D(z) (13) 

with all coefficients being real. The first step in the 
determination of the coefficients in D(z) is to form 
a stable discrete overall tr~nsfe'r function of the 
continuous system with the nonlinearity represented 
as a nominal gain, G 3 

Kd(z) =G(s) I ( 1 ) n 
S = ( )n, n = 0, 1, 2, ... , k, 

(14) 

where 
G(s)= G 1(S)G3G 2(S) / [1 + H(s)Gls)G3G 2(S)]: * 

Figure 7 - New discrete general nonlinear system model 

*( )n represents the Tustin discrete approximation to the nth 
order operational integrator (I ;s)n. 

N ext the overall pulse transfer function of the simu
lated system is formed by applying the Tustin element 
to each block in Figure 1 resulting in 

KA(z) = D(z)G1(z)GaG 2(z) 
1 + Z-l H(z)Gl (Z)G3G 2(Z), 

(i5) 

where: 
1. D(z) has the form of Equation 13. 
2. G1(z), G 2(z), H(z) denote the approximate/dis

crete transfer functions for Gl(s), G 2(s), and H(s) 
respectively; each obtained utilizing Tustin's method. 

3. G 3 represents a nominal gain of the nonlinear 
element.** 

All that remains is the determination of the coef
ficients of the polynominals in D(z). This may be ac
complished by equating Equations 14 and 15, ex
panding the pulse transfer function, and then equating 
the coefficients of like powers in z. 
KA(z) = Kct(z) 

D(z)Gl(Z)G3G 2(Z) =G(s) 
1 + z-lH(z)Gl(Z)G3G 2(Z) 

= ( )m n = 0, 1, 2, ... , k. * (16) 

With all pulse transfer functions determined for 
the linear portion of the system, the corresponding 
recursive relationships for digital simulation can be 
obtained. 

Adaptive filtering 

Application of the new design technique results in 
a discrete system model consisting of numerous pulse 
transfer functions, system nonlinearities, and a digital 
compensator. Since the design procedure considers 
nonlinearities as fixed nominal amplification factors, 
the coefficients in D(z) are time invariant. 

For simulatio~s where greater accuracy is a req
uisite, an adaptive filtering scheme is proposed.Fig
ure 8 is a suggested digital model where iG1(Z), G 2(z), 
and H(z) retain their definitions from Figure 7. In 
this case, the form of the filter given as Equation 17 
has time-varying coefficients. 

D( ) _ ac(t) + al(t)z + ... + am(t)zm (17) 
z bo(t) + b1(t)z + ... + bn(t)zn 

The coefficients may be obtained in a manner anal
ogous to Equation i 6 for the fixed filter case. 

**This assumption is exactly the same made by Hurt.s 

*See previous footnote. 



Figure 8 - Discrete general nonlinear system model with adaptive 
filtering 

The filter coefficients will, in general, be explicit 
mathematical functions of the quantity A(t) represent
ing the pseudo-gain of the nonlinear element. As 
shown in Figure 8, the Coefficient Estimator plays 
the dual role of identifying the gain of the nonlinearity 
and calculating the time-varying coefficients of D(z). 
The simplest determination of gain identification by 
direct measurement procedures is 

A [(N + l)T] = C1(t)·I' (8) 
C2(t) t=NT 

where it is noted from Figure 8 that the best possible 
measurement with this compensatory device is de
layed by one sample period. * More refined identifica
tion procedures utilizing both direct measurement and 
extrapolation would introduce further accuracy im
provements. 

A n example for methods comparison 

To illustrate the design procedure and to present 
a basis for comparison, the second order nonlinear 
system shown in Figure 9 will be used. This system 
was originally employed by Sage and Smith. ll 

CaCti c,ltl ,--__ ..., 

_I .. J.~~LCa 
S.I ~ 

• Cl.OI I 

Z5 
"""'is 

Figure 9 - Nonlinear system employed as an example 

By applying the Tustin approximation for O/s)n to 
Gt(s) and G2(s) discrete transfer functions Gt(z) and 
G2(z) may be obtained. Then by utilizing Equations 
13-16 in succession with H(s) = H(z) = 1, one obtains 
an explicit form for the digital compensator D(z). With 
these preliminaties complete, a set of difference equa-

*In cases where the nonlinearity may be expressed as a simple 
explicit mathematical function, "direct measurement" may be con
veniently replaced by "direct formulation." 

Improved Techniques for Digital Modeling 477 

tions may be written and subsequently implemented 
on a digital computer. 

d[NT] = {(8 - 50AT2)d[(N -l)T] 

+02T-4-25AT2)d[(N -2)T] 

+ (I 2T + 4)r[NT] 

+(25AT2-8)r[(N -1)T] 

+ (50AT2-12T+4)r[(N -2)T] 

+{25AT2)r[(N -3)T]} 

4+ 12T+25AT2 

1-3T 
c2[NT] = 1 + 3T c2[(N - l)T] 

3T 
+ 1 + 3T {d[NT] -c[(N -l)T] 

+d[(N -l)T] -c[(N -2)T]} 

C1 [NT] = C2 [NT] + 0.01 C23 (NT] 

25T 
c[NT] =c[(N -l)T] +12 {cl[NT] 

(9) 

Figure 10 illustrates the result of applying a positive 
step input of magnitude 10 to the discretized models 
employing the Tustin, IBM, Sage-Burt, and new simu
lation methods. A similar comparison of the responses 
produced for a sinusoidal excitation applied to the 
IBM, Sage-Burt, and new simulation models is made 
in Figure I I. These results clearly indicate that the 
new method for discrete system modeling and real
time simulation is justified since a marked improve
ment over the Tustin simulation has been achieved 
through a minimal amount of design effort. 

Three schemes for the identification of the system 
nonlinearity were chosen to form the basis of compar
ing the enhancement afforded to simulation accuracy 
through the utilization of adaptive filtering. The 
direct measurement method was first selected to indi
cate that even "stale" or delayed parameter identifi
cation provides better results than a fixed coefficient 
filter. One-half penod and full period linear extra
polation of the measured pseudo-gain were employed 
to illustrate further improvements. These identifi
cation procedures may be easily implemented as a 
component of the system simulation with the recur
sive formulas in Equation 20. Figures 12 and 13 com
pare the step and 

DIRECT MEASUREMENT 

A[(N + l)T] = 1.0 + 0.0IC22[NT] (20a) 



478 Spring Joint Computer Conference, 1968 

(,) 

G G 

10 

a 

- EXACT 
o TUSTIN 
o IBM 
A SAGE-BURT 
o NEW METHOD 

r( t) = 10 U=I (t) 
f = 0.1 SEC 

a 
a 

or 
a a 

6 

4 

2 

oo---------o~.-5--------1.~0--------1~.5--------~,0 

t - SEC 

Figure 10- Response of the example system to a step excitation 

ONE-HALF PERIOD EXTRAPOLATION 

A[(N + l)T] = 1.0 

+ 0.01 {1.5c2[NT] - 0.5c2[(N "- l)T] P{20b) 

FULL PERIOD EXTRAPOLATtON 

A[(N + l)T] = 1.0 

+ 0.01 {2c2[NT] .- c2[(N - 1)T] P (20c) 

sinusoidal responses' of the example syste~ dis
cretized utilizing the new modeling procedure for 
various adaptive filteri~g measurement schemes. 

In order to compare the various discrete modeling 
aJ;ld simulation techniques, simulations of the example 
system were performed for numerous sampling incre
ments utilizing step and sinusoidal excitations. Then 
the mean-square error was calculated for each simula
tion technique for each sampling interval over the 
observation period 0-5 seconds. The error analysis 
of· systems simulated with an applied step excitation 

(,) 

:r 
I 

I 
6 

4 

2 

a 
9 

(\ 
- EXACT 
9 IBM 
A SAGE - BURT 
a NEW METHOD 

r{t) = 10 sin 2 t 

T = 0.2 SEC 

or ~; ~~----~----~-------3~!~~~4 t-SEC 

-2 

-4 

. -6 

-a 

Fgure 11 - Response of the example system to a sinusoidal excitation 
tion 

of magnitude 10 shown in Figure 14 indicates that the 
new technique provides considerable improvement 
over the Tustin method and has accuracy comparable 
to the IBM method and the Sage-Burt quasilineariza
tion method .. Also, note the accuracy improvement 
and increased region of stability when Sage and Burt 
utilize quasilinearization. The IBM, Sage-Burt with 
quasilinearization, and new simulation techniques 
provide comparable low sensitivity to error as the 

. simulation time increment is altered. 

The resulting error analysis of systems simulated 
, with an applied sinusoidal excitation is shown in Fig
ure 15. A marked improvement over the Tustin meth
od is exhibited by the system simulated using the new 
technique along with error sensitivity characteristics 
comparable to the IBM method. 

Figures 16 an" 17 illustrate the effects of adaptive 
filtering when applied to the example system for step 
and sinusoidal excitations respectively. Clearly, in 
all cases reduced error and reduced error sensitivity 
to the sampling interval is shown for simulation time 
intervals less than 0.25 second. As would be expected, 



u 

16 

14 

12 

!O 

8 

6 

4 

2 

t NEW METHOD 
ADAPTIVE FILTERING BY: 

e DIRECT MEASUREMENT 
• C»4E -HALF PERIOD EXTRAPOLATION 
a ONE PERIOD EXTRAPOLATIC»4 

1.0 

t - SEC 

r(t) .. 10 U_1 (t) 

T = 0.1 SEC 

Figure 12 - Step response of the example system for variations of 
the new simulation technique 

for small sampling intervals, the error decreases as 
transitions are made from a fixed filter, to an adaptive 
filter with direct (but delayed) process identification, 
to an adaptive filter with. one-half period predictien, 
all"d finally to an adaptive filter with a one period 
prediction. 

To adequately evaluate various digital simulation 
techniques, it is imperative to consider actual compu
tation time in addition to simulation accuracy and de
sign effort.' For the selected example the number of 
additions, multiplications, and computation time for a 
single simulation interval is summarized in Table 1* 

T ABLE I - Computation Time of a Single Simulation Cycle 
for the Selecte~. Example 

Addi- Muttipti- Computation 
METHOD tions cations Time 

TUSTIN 7 6 I 87.2JLsec 
IBM 6 10 257.6JLsec 
SAGE-BURT 8 9 256.8JLsec 
NEW 

non-adaptive 12 13 375.2JLsec 
~ period extrapolation 18 18 532.8JLsec 

*In obtaining this tabulation, no recursion formulas are reduced; 
i.e., it is assumed the response of each block in Figure 9 is desired. 

u 

Improved Techniques for Digital Modeling 479 

10 

8 

6 

4 

2 

0 

-2 

-4 

-6 

-10 

o NEW METHOD 
ADAPTIVE FILTERING BY: 

e DIRECT MEASUREMENT 
A ONE-HALF PERIOD EXTRAPOLATION 
~ ONE PERIOD EXTRAPOLATION 

2 

rtf) = 10 sin 2T 

T = 0.2 SEC 

t - SEC 

Figure 13 - Sinusoidal response of the example system for varia
tions of the new simulation technique 

These results are based upon an average of 9.6p. 
seconds for the floating point and instruction and 20p. 
seconds for the floating point multiply instruction on 
the PDP-6 digital computer.14 One may note from this 
table that for this specific example the New Simulation 
Method requires twice the computation time of the 
classical Tustin method. It is also possible to deduce 
from Figures 14 and 15 that for all simulation time 
intervals greater than 0.02 second, the New Simula
tion Method exhibits less error than the Tustin method 
with one-half the simulation interval. 

A common failing of both the adaptive filtering 
method and the Sage-Burt method is their inability 
to cope with large sampling intervals and their 
possible consequent introduction of instabilities under 
such conditions. It should be evident that in the former 
case the difficulty is attributed to parameter identifi
cation error, while in the latter, the quasilineariza
tion procedure fails to converge. 

CONCLUSIONS 

A new method for digital modeling and system simula-



480 Spring Joint Computer Conference, 1968 

10° 

a: 
0 
a: 
a: 

'" 
'" a: 

10-1 '" :;) 

0 
I/) 

z 

'" '" :I 

IO-S 

I 
/ / 

<:I TUSTIN 
to. IBM 
OSAGE-BURT. P" Pz = I 
l> SAGE· BURT. QUASILINEARIZATION 
¢ NEW METHOD 

r It) = 10 U.I (t) 
OBSERVATION PERIOD 0-5 SEC 

10.4L-______ ~ ______ ~ ______ _L ______ ~ ______ ~ ______ ~ 

o 0.1 0.2 0.3 ' 0.4 0.5 0.6 

a: 
0 
a: 
a: 
'" 
'" ~ 
5 
I/) 

z 
'" 1&1 
:I 

TIME INCREMENT. T 

Figure 14 - Error analysis of the example system with a step 
excitation 

10' 

10° 

10'2 . 

0.1 

<:I TUSTIN 
~ IBII 
OSAGE - BURT; P,. 1\ = I 
¢ NEW IIETHOD 

r(t). 10SIN 2tU_I(t) 
OBSERVATION PERIOO 0-5 SEC 

I 

/ 

0.2 0.3 0.4 

TIME INCREMENT. T 

0.5 

Figure 15 - Error analysis of the example system with a sinusoidal 
excitation 

0.6 

,0' r 
I 

10' L 

IcP 

¢ NEW METHOD 
ADAPTIVE FILTERING BY: 
v DIRECT MEASUREMENT I 

.011 ONE- HALF PERIOD EXTRAPOLATION I 
8 ONE PERIOD EXTRAPOLATION I 

rW = 10 lJ'l (tl 
OBSERVATION PERIOi> ()-5 SEC 

10-4 "-______ ..L-______ ~ ______ _L _____ __L ________ L..... ____ ~ 

o 0.1 0.2 0.3 
TIME INCREMENT. T 

Figure 16 - Error analysis of the example system with a step exci
tation showing the results of adaptive filtering 

101 

o 

~ NEW METHOD 
ADAPTIVE FILTERING BY: 
• DIRECT MEASUREMENT 
.011 ONE· HALF PERIOD EXTRAPOLATION 
• ONE PERIOD ExTRAPOLATION 

0.1 

r(t) • 10 SIN 2t U-,(t) 

OBSERVATION PERIOO 0 -5 SEC 

0.2 0.3 0.4 
TIME INCREMENT. T 

0.6 

Figure 17 - Error analysis of the example system with a sinusoidal 
excitation showing the results of adaptive filtering 



tion has been introduced. The simulations performed 
utilizing this technique characteristically exhibit a 
high degree of accuracy improvement over the Tustin 
method and in many cases accuracy comparable to 
the IBM or Sage-Burt techniques. The modeling 
procedure encompasses the simplicity of the Tustin 
method, involves a minimal amount of tailoring, and 
does not necessitate the usage of ancillary computer 
programs for design purposes. 

Error analysis indicates that the IBM method pos
sesses the desirable characteristics of low simulation 
error and reduced sensitivity to simulation error. The 
Sage-Burt method and the newly developed method 
also offer low sensitivity to error for low sampling 
intervals which correspond to those generally used 
for adequate information representation. However, 
only the new technique offers an easily utilized model
ing procedure. Although it must be emphasized that 
these results are for a selected example, the results 
of other work appear to be in complete concurrence. 

For increased simulation accuracy utilizing the 
basic philosophy of the new simulation method, an 
adaptive filter whose characteristics are time varying 
is suggested. An example system simulated using an 
adaptive filter provides both reduced error and error 
sensitivity to the simulation time interval. However, 
as may be inferred from the presented results, in cer
tain cases the utilization of an adaptive filter may limit 
the real-time simulation capability. 

ACKNOWLEDGMENTS 

The author wishes to thank Mr. R. Belluardo for the 
encouragement he provided. 

REFERENCES 

1 J B SCARBOROUGH 
Numerical mathematical analysis 

The Johns Hopkins Press Baltimore Md 1958 
2 R WHAMMING 

Numerical methods for scientists and engineers 
McGraw-Hili Book Co Inc New York 1962 

Improved Techniques for Digital Modeling 481 

3 A TUSTIN 
A method of analyzing the behavior of linear systems in terms 
of time series 
Journal lEE vol 94 pt II-A 
May 1947pp 130-142 

4 A MADWED 
Number series method of solving linear and non-linear dif
ferential equations 
Rept No 6445-T-26 Instrumentation Laboratory Massachusetts 

Institute of Technology Cambridge Mass April 1950 
5 R BOXER S THALER 

A simplified method of solving linear and non-linear sysiems 
Proc of IRE vol 44 Jan 1956 pp 89-101 

6 C A HALIJAK 
Digital approximation of the solutions of differential equations 
using trapezoidal convolution 

Rept No ITM-64 Bendix Systems Div Ann Arbor Mich August 
1960 

7 J T TOU 
Digital and sampled-data control systems 
McGraw-Hili Book Co Inc New York 1959 

8 J HURT 
New difference equation technique for solving nonlinear dif
ferential equations 
Proceedings of the 1964 Spring Joint Computer Conference 
pp 169-179 

9 M FOWLER 
A new numerical methodfor simulation 
Simulation vol4 May 1965 pp 324-330 

IO A P SAGE R W BURT 
Uptimum design and error analysis of digital integrators for 
discrete system simulation 
Proceedings of the 1965 Fall Joint Computer Conference pp 
903-914 

II A P SAGE S L SMITH 
Real-time digital simulation for systems control 
Proc I EEE vol 54 Dec 1966 pp 1802-1812 

12 R E BELLMAN R E KALABA and R SRIDHAR 
Adaptive control via quasilinearization and differential approxi
mation 
Rand Corporation Research Memorandum RM-3928PR Nov 
1963 

I3 R E BELLMAN R E KALABA 
Quasilinearization and nonlinear boundary-value problems 
Rand Corporation Research Report R-438-PR June 1965 

14 Programmed data processor-6 handbook F-65 
Digital Equipment Corporation Maynard Mass 1965 





Extremal statistics in computer simulation 
of digital communication systems* 

by MISCHA SCHWARTZ and STEVEN H. RICHMAN 
Polytechnic Institute of Brooklyn 
Brooklyn, New York 

INTRODUCTION 

With the advent of the digital computer it is becomin~ 
more and more common to simulate the operation of 
rather sophisticated communication systems on the 
computer. The performance of systems under various 
types of operating conditions may be evaluated quite 
readily and economically prior to actual field usage. 

The average error rate serves as a very common 
measure of performance for digital communication 
systems with a probability of error of less than 10-5 

a desirable goal in most system design. Such extreme
ly low error rates pose a real measurement problem, 
however. Generally with Monte Carlo simulation 
techniques used one would require data samples of 
the order of at least 10 times the reciprocal of the error 
probability to make valid performance estimates, 
leading to costly and time-consuming simulation runs. 

The question of more efficient estimation of low er
ror probabilities in communication system simulation 
is thus an extremely important one. We report here on 
encouraging results indicating that the methods of Ex
tremal Statistics may reduce the data requirements in 
many simulation experiments by at least an order of 
magnitude. 

Major applic~tions of the field of Extremal Statis
ticsl have heretofore been made primarily to such 
areas as Flood Control, Structural design, meteorol
ogy, etc. It is only relatively recently that applica
tions to communications have begun to be made, with 
primary emphasis thus far on .the analysis of data ob
tained from existing system~.2.3 Thus, use has been 
made, in analyzing these data, of special plotti~g paper 
developed by Gumbel. lOur approach has· ·differed 
in assuming from the beginning that all calculations 
were to be made by a high speed computer, that time 
was of" the essence, and that we were interested in 

*The work reported in this paper was supported under NSF Grant 
OK-527. 

applying the theory to the simulation of broad classes 
of systems. 

Extremal statistics is, as the name implies, con
cerned \."ith the statistics of the extrema - maxima or 
minima - of random variables. As such it deals with 
the occurrence of rare events, exactly the problem en
countered in. simulating low error rate communication 
systems. It IS found l

. that· asymptotically (i.e., very 
larg~ saIllPle m.lmbers of the. random variable under 
study) many of the most common probability distri
butions follow a simple exponential law when ex
panded about an arbitrary point on their tails. Thus, 
the probability of exceeding a specified value or 
threshold Xo assumes asymptotically the form 

(1) 

The number n represents the number of samples used 
with an and Un constants, depending on n, and the ac
tual distribution of the random variable. In particular, 

the probability of exceeding u is' ~,providing anotht 

definition of u. Figure 1, for an arbitrary probability 
density function f(x), shows equation (1) graphically. 

The gaussian (normal), Rayleigh, exponential, and 
Laplacian distributions are among the examples of the 
asymptotically exponential distributions. All of these 
distributions. may be ~pp.roximated by Equation (1) 
in the vicinity of u. How far from the vicinity of u one 
may move depends of course on the actual underlying 
distribution and the particular point (u) one expands 

. about. As an example Figure 2 compares the ex
ponential approximation to the actual probability of 
exceedance of x, P e, for a gaussian density function. 
Here n has been arbitrarily chosen as 100. The actual 
probability P e and its exponential approximation are 
then matched at P e = 10-2. It is readily shown that the 
point Un about which one expands, is 2.32, "and an 
=2.68. 

483 



484 Spring Joint Computer Conference, 1968 

JLn Xo x 

Fig-lire 1 - Exponential approximation to probability of error 

Comparing the probability of exceedance P e for the 
actual gaussIan and its exponential approximation, as 
plotted in Figure 2, it is apparent that the two are 
within 25% of one another at P e = 10-3 and differ 
by 50% at Pe= 10-4 • 

This then points up the significance of the extremal 
statistics approach: if one is interested in estimating 
small probabilities of error, say of the order of 10-3 

or 10-4 , it may be possible instead to first estimate 
much higher probabilities, say 10-2 in the example of 
Figure 2~ If the exponential approximation is valid 
one should then be able to extrapolate down to the 
desired probability. Instead of the usual number of 
samples required to estimate P e, say 1 O/P e, one can 
then work with a much smaller number n. 

10-4 

1.=10-2 
n 

GAUSSIAN APPROX: 

an= 2.68 

POn= 2.32 

10-5L----L----........L.----~4-...,. 
2 :3 

Figure 2 - Exponential approximation to gaussian statistics 

There is of course one major problem, however. 
Since the underlying density function f(x) is in general 
unknown, or difficult to evaluate in the complex sys
tems of interest to us, the two parameters an and Un 

are unknown as well, and must be estimated, In the 
next section we discuss various ways of estimating 
an and Un, and results of computer runs for two simple 
density functions, the gaussian and the exponential. 
The results are quite encouraging: even with additional 
samples needed to estimate an and Un, one can still 
save at least an order of magnitude in the total num
ber of samples required to estimate a given probabili
ty of error the traditional way. 

I.n the finai ~ec~ion, we discuss the computer simula
tion of two specific feedback communications systems 
for which probabilities of error have been estimated 
quite successfully using extremal statistics. (One of 
these systems is an example of one for which actual 
calculations or probabilities of error are quite difficult 
to make. In the example shown only bounds .on the er
ror have been obtained and the simulation results 
check these quite closely.) 

Extimation of extremal parameters 

We discuss in this section the use of extremal sta
tistics to estimate small probabilities of error in the 
case of two known distributions, the exponential and 
the gaussian. The problem here is twofold: to first es
timate the extremal parameters an and Um then to de
termine, using these estimates, how well the actual 
probabilities at the tails are estimated. 

The exponential density function normalized to unit 
variance is given by 

f(x) = e-Xu(x) (2) 

u(x) the unit step function, while the gaussian density 
function, again normalized to unit variance, is of 
course given by 

f(x) = _1_ e-x2/2 

V2.'TT 
(3) 

One would expect rather good estimates of the 
probability at the tail for the exponential density func
tion since it is already in the asymptotic form of equa
tion (1). In the gaussian case, as pointed out in the 
previous section and as illustrated for one case in Fig
ure 2, it is theoretically possible to extrapolate as 
much as two orders of magnitude away from the start
ing point 1 In before the quadratic exponential be
havior of the gaussian function takes over and pro
duces significant deviations away from the linear ex
ponential behavior of extremal statistics. 



The actuaJ experimental behavior of the exponential 
approximation depends critically on the estimation of 
the two parameters an and Un- To determine these we 

~ . 

use the fact, as demonstrated by Gumbel, l that they 
are intimately connected to the asymptotic statistics 
of the extrema (maxima) of the random variable x. 
Specifically, if one generates n independent samples 
of x the probability density function of the largest 
(maximum), xrn, of the n samples is asymptotically 
(n~oo) given by 

P n = an exp [-y-e-v ] 

y == an[xrn-un] 
(4) 

Equation (4) is found to be valid for a wide class of 
density possessing exponential behavior at the 
density functions posse~sing exponential behavior at 
the tails, with the exponential, gaussian, and Rayleigh 
functions typical examples. 

From Equation (4) it is readily shown that un(n~oo) 

is a measure of the mode of Pn(xm> , while a.!.(n~oo) is a 
n 

measure of the dispersion. Specifically, one finds, 
using Equation (4), that 

1 V6 
-=-(J"rn 
a 1T 

(5) 

and 

(6) 

Here (J"rn is the standard deviation of the maximum (ex
tremal) values, xrn, of x, E(xrn) the expected value of 
these maxima, and 'Y = 0.5772 is just Euler's constant. 

~t is thus apparent. that to estimate an and Un one 
must first ensure n > > 1 (This is why Equation (1) is 
applicable to the tails of density functions, where P e 

< < 1), and then generate sufficient samples of the ran
dom variable x under test to measure their statistical 
properties. If N samples of the largest value of x in a 
group of n are to be made available this implies re
peating the experiment nN times in all. It is the total 
number nN that is to be compared to the usual number 
10/Pe• 

From !he form of Equations (5) and (6) one would 
expect that for n and N large enough, good approxima
tions to an and Un would be obtained by averaging ap
propriately over the N samples of the maxima avail
able. As noted later this was in fact found to be the 
simplest and most accurate procedure in actual ex
perimentation with the computer. This estimation 
procedure is portrayed in Figure 3. There, as an ex
ample, n = 103 and N = 10 are chosen. ~he total num
ber of independent samples or repeats of the com-

Extremai Statistics in Computer Simuiation 485 

puter simulation involved would thus be nN = 104. 
The resultant output samples would be grouped into 
N = 10 groups of n = 103 samples each. The largest 
sample, Xh in each group would then provide N = 10 
samples with wh~~h to estimate an and Un' 

nN=10 4 SAMPLESOFX 111111111···111···111···111 
XI xnN 

n n. n n 

REGROUP iNTO N=iO GROUpS ,'Oii7iiiI "1iii"iiI ,'mm" '" "'imiI" n=103 IN EACH 
I 2 3 10 

LET X i BE LARGEST SAMPLE IN EACH GROUP 

Figure 3 - Estimation of a and Un 

There is a tradeoff possible between nand N, given 
the fixed number of repetitions nN. Thus decreasing n 
decreases the range over which one would theoreti
cally expect the asymptotic exponential approxima
tion to hold (assuming perfect knowledge of an and 
un), but allows better estimation of an and Un as N in
creases. Some analysis of the optimum choice of n 
and N has been carried in a recently completed doc
torial thesis.4 

In the actual computer simulations carried out n 
was taken as 500, N = 20, so that a total of 10,000 
actual repetitions of the different experiments tried 
were performed. Normally this would provide rela
tively accurate estimation of probabilities of error as 
low as 10-3 • We were interested in extending the es
timation to 10-4 and 10-5 • 

As noted previously, an obvious initial estimate for 
a is to replace (J" rn in Equation (5) by the sample stan
dard deviation s, using the N = 20 samples available 
of the extrema. Similarly a first estimate for u is to 
replace E(xrn) in Equation (6) by the sample mean 
·'Xrn (again using the 20 extremum samples). (These are 
the procedures suggested in Figure 3.) Although 
the sample standard deviation is in general a rather 
poor estimator of the statistical stand~rd deviation 
[var (S2) = 2(J"~JN· for gaussian statistics] the experi
mental results obtained were surprising~y _go<><J. for 
both· the exponential and gaussian distributions: 
the estimates of a came within 10% of the true values 
in both cases. Similarly the estimates of u came within 
3% of the true values, well within the confidence limits 
set by using the sample mean estimates. 



486 Spring Joint Computer Conference, 1968 

These initial estimates were compared experimen
tally with several other approaches: 

1. Initial estimates obtained using approximate 
solutions of the maximum likelihood estimates 
of a and u (these involve fourth sample mo
ments). 

2.. Initial estimates obtained by an approximation 
procedure attributable to Kimball. 1 

3. Initial estimates obtained by using the first and 
second extremal values. (One might expect that 
the second extremal vaJues should provide some 
i~ormation on a or u, and are available in a sim
ulation run anyway.) 

Using Equation (4) the maximum likelihooa esti-' 
mate~ of a and u are found to be given in terms of the 
N extr~me (maximum sample values Xj, j = 1 ... N, by 
solution of the following two equations: 1 

N N . ' 
- = L xJl-e-Y

]] 

a j=1 . 

(7) 

(8) 

Here Yj == a(xj - u). 
These equations cannot be solved specifically for a 

and U, but may be either iterated or approximated in 
various ways. 

The two equations may be combined to eliminate u, 
resulting in the following equation in a alone. 

- .t [Xj-xm] e -a<Xj-xm) 

j=1 

a !II 
Le-a<xrxm) 

(9) 

1 '" j=1 

Here Xm = N t. Xj is the sample average of the N ex-
. J=1 

trema (maxima). Equation (9) lends itself readily to 

both approximation and iteration. (Note that since! 
, a 

is positive this equati~n indicates that values of Xj less 
than xm wiH occur more frequently than those greater 
than xm• This is of course due to the asymptotically 
exponential character of the distribution of the extre
ma.) 

An approximation of ~ ~uitable for simple calcula

tion is obtained by expan~ing Equation (9) in an infi
nite series, retaining the first few terms, and reordering 
the resultant equation. This provides the following ap
proximate estimate of a : 

Here S2 ,= ~ f(Xj - xm)2 is the sample variance of the 
j=1 

N extremal values, and U4 = L (Xj - X)4 is the sample 

fourth moment. (It is assumed, in deriv'ing Equation 
,\10), that the third sampie moment ,2; (Xj - X)3 is 

zero. Although true for symmetrical distributions 
such ~s the gaussian, this moment is, on the average, 
neg,ative for the extremal statistics. The assumption 
simplifies the equation considerably, however.) 

The maximum likelihood Equations (7) and (8) for 
a and u, were iterated severa" times using as first 
estimates the different approximations noted earlier: 

1. The asymptotic Equations (5) and (6.) for ex and 
u, with the standard deviation Urn replaced by the 
sample ~eviation s and the expected value E(xm) 

replaced by' the sample mean Xm, 

2. Equation (t'0) for a, 
3 .. A technique at~ributable to KinbalP. 
Interestingly it was found by computer ~xperimeri-

tation that Gumbel's asymptotic estimates of Equa
tions (5) and (6) were both the simplest and fastest to . 
implement on the computer, and in all cases tested al
so came closest to the true values on the initial try. 
(All four methods produced very nearly the same re
sults after iteration.) . 

The first estimate using EQ1:lation (1 0) was also fair
ly close to the expected value of a on all experiments 
performed. The Kimball method noted was, however, . 
quite inaccurate. 

U sing ~he best ~stimates of a and u obtained, ex
tremal statistics were in tum used to estimate error 
probabilities for both the gaussian and exponential 
distributions. Results obtained compared favorably 
with those predicted theoretically using extremal sta
tistics: with the total number of samples used, nN 
= 10,000, probabilities in the vicinity of 10-4 were es
timated within 20%, while for probabilities as low as 
3 x 10-5 the estimates were within 60%. (For low 
probabilities such as these, 100% variations still pro
vide significant information. These compare with the 
more common statistical procedure of using 1 O~OOO 
samples to estimate probabilities of the order of 
10-3, or ,at best pe,rhaps 5 x 10-4

.) 

,The usefulness of the extremal statistics approach 
for estimating small probabilities is further seen in 
comparing confidence intervals with these obtained 
for the more common procedures. Si!lce in the ex
tremal statistics case it is the estimation of the param
eter a that is more subject to large variations for 
N = 20 samples one may assume the parameter u 
fairly well estimated on the basis of the same 20 sam
ples. Confidence intervals on the probability of error 



curves may then be set using the standard deviation 
of the estimate of a. For the gaussian distribution and 
n = 500 samples it is then found that the ± 1 (J" c'onfi
dence intervil for a corresponds to the following 
bounds on the measured probability: 

Theoretical probability Upper bound Lower bound 
10-3 1.1 xI0-3 O.7xl0-3 

10-4 2xI0-4 0.5xl0-4 

10-5 5x 10-5 0.4x 10-5 

Although the usual Tschebychef inequality confi
dence intervals (base-d on estimating probabilities by 
relative frequencies of occurrence) give roughly the 
same bounds at 10-3 , the lower bound deteriorates 
rapidly, below this pro~ability, going to 0 at 10-4 sam
ples available. One can of course say nothing, except 
possibly be extrapolation, of probabiI~ties in the vicin
ity of 10-5 using the relative frequency approach. 

Application to feedback communication systems 

In the previous section we have discussed methods 
of estimation of the two extremal parameters an and 
Un, using the known gaussian and exponential density 
functions to determine the most efficient ways of ac
curately estimating these parameters. 

We now discuss the application of the method of ex
tremal statistics to the simulation of digital feedback 
communication systems. Two systems of considerable 
interest currently have been investigated. One is a 
binary signalling system, the other an M-ary PAM 
type system, with the information transmitted as one 
of M possible amplitude levels. In both cases white 
gaussian noise is assumed added during forward trans
mission (this could be thermal noise introduced at the 
receiving antenna, front end receiver noise, or a com
bination of the two in general). The feedbac~ path is 
assumed error free. Errors in signal detection due to 
the noise may occur and it is desired to estimate the 
probability of error in both systems. 

Both systems may have potential usefulness in 
space-ground communications. In both cases the in
formation is to be transmitted from space to earth. 
The forward transmission path is thus limited in pow
er. It is assumed a feedback path from ground to 
vehicle with much larger power capability is available, 
so that the effects of noise may be neglected over this 
path. (Further computer simulation is planned to in
vestigate the' effect of noise on the feedback .path. 
as well as other signal disturbances such as fading for 
example.) Such feedback systems hold great interest 
in the statistical communications field currently be
cause of their expected high performance (low proba
bility of error) in noise with a minimum of coding ef
fort required. 

Extremal Statistics in Compuier Simuiaiion 487 

The: binary system investigated represents the appli
cation of sequential decision theory of statistics5 to 
statistical communications. The operation at the re
ceiver may be visualized by' refel!ing to Figure 4. 
Here v represents a received sample of the composite 
signal plus noise. As an example if one binary signal 
has a received amplitude of +A volts, while the other 
is -A volts (this is the example of bipolar signalling), 
the resultant probability density functions ft(v) and 
f2(v), respectively, appear in Figure 4. 

• -A -0 0 +0 +A V 

+ SIGNAL 2 REGION ~ ~~ ~SIGNAL I REGION ~ 

Figure 4- Received signal space, binary feedback 

In normal binary signalling one would declare signal 
received if the received signal plus noise sample 

were to exceed 0, and signal 2 received if the re
ceived signal plus noise fell below zero. For small 
signal-to-noise ratios (SNR), as normally encountered 
in deep space-ground communication, the resultant 
probability of error would be intol~rably high. To im
prove the performance a null zone of width ± a about 
o is set up. If the composite received signal falls in 
this region a decision is deferred and the transmitter 
as~ed, via the feedback path, to repeat the signal. 
The first composite signal sample is then stored and 
added to the second received sample after transmit
ter repetition. The two combined received samples 
are then tested and a decision made only if the sum 
exceeds +a or falls below -a. A third repeat is re
quested if the sum again falls in the null zone. 

This procedure is repeated until the combined re
ceived samples fall outside the null zone. (To prevent 
the system from cycling indefinitely or for too long a 
time, the number of transmissions may be truncated 
after a s~cified interval and a'definite decision made.) 
Such a sequential procedure with a statistically varia
ble number of transmissions may be shown to asymp
totically provide 50% decrease in average transmis
sion time over an equivalent system without feedback 
with' . a fixed number of repeats5 thiS for the same 
SN R and probability of error. 

Although the scheme outlined is relatively simple 
to describe the analysis is quite complex, since the 
received signals summed are these falling in the null 
zone only. The statistical behavior of the composite 
random variable representing the sum of such received 
signals is. 'difficult to deter.mine and the resultant 



488 Spring Joint Computer Conference, 1968 

probability ·of error not easily fou~d. In fact asymp
totic results only for the probability of error are avail
able; those for small SNR and a large average number 
of transmissions, or those for high SNR and very 
small numbers of transmissions. The region in be~ 
tween can only be estimated by extrapolation or by 
bounding techniques. Computer simulation of such a 
system is, however, simple to perform. For small prob
abilities of error , however, the computer time involved 
can become quite large so that extremal statistics is an 
obvious answer. 

The methods of extremal statistics were therefore 
used, in a computer simulation of this system, to es
timate the probability of error. nN = 10,000 total 
repeats were used in each simulation, N = 20 for es
tim~ting a and U, n·= 500 for the actual determina
tim} of the probabilities. Results are shown in ~igure 
S. Note that the experimental (simulation) points fol
low quite closely an approximate performance line 
obtained by extrapolating from Wald's asymptotic 
results, valid for large numbers of transm~ssions and 
small probabilities· of error.'? The curv~s of Figure 
5· are for a SNR of Y2. A'reference curve, that show
ing the performance of a one-way system with no feed
back and a fixed number of repeats, is included. Note 
that the two curves differ approximately by a factor of 
two in the transmission time, as would be expected 
from Wald's asymptotIc results. 

10-1 

10-2 

o 
SIMULA1JON POINTS 

GAUSSIAN NOISE 
( SNR-II2) 

~ c_ter 51wlotion of binary "quofttu.l clecbion 
feedback Byst .. 

!0-41 2 3 4 
AVE~AGE NUMBER OF TRANSMISSIONS 

Figure 5 - Computer simulation of binary sequential decision 
feedback system 

The second feedback communications system simu
lated, for which extremal statistics were used in es
timating system performance (probability of error), 
was one first suggested and analyzed by J. P. Schalk
wiik.7•8 A simolified block diagram appears in Figure 
WI..... - - ." 

6. The· information to be transmitted consists of one 

M amplitudes, 8 =l..,j = 1,2, ... M (the amplitudes . M . 
are normalized to a ~ange of 0 ~ 1 for convenience). T 
seconds are availabie for transmission and it is as-

sumed that N signal transmissions, each lasting ~ sec

onds, are made. (Note that this fixed transmission 
time scheme contrasts with the sequential binary 
scheme, requiring· a variable transmission time, just 
discussed.) . 

On the kth transmission the signal transmitted is of 
the form 

1\ 
Sk = gk(8 - 8 k- 1). (11) 

1\ 
with gk a variable but known gain factor, and 8 k- 1 the 
receiver's maximum likelihood estimate of e, based on 
the first (k-l) transmissions. The receiver transmits 
fJk- 1 to the transmitter via a noiseless feedback path. 
This system is of the information feedback type, since 
actual information as to the received signal plus noise 
is fed back to the transmitter. 

j=I...M 
l=I. ... N 

Figure 6 - M -ary information feedback system, N respects 

On each successive transmission the receiver's es-
1\ 

timate of the correct signal, 8, improves so that 8 k ap-
p'roaches 8 more closely. After N repeats the nearest 
f} to eN is chosen as the correct signal. It may then 
be shown(7.8)· that the probability of error goes essen-
tiallyas 

P e ~ exp -[ ~e2(C-R)T ] (12) 

for large T, and R<C. Here the gain gk of the kth trans
mission has been optimized to provide minimum prob
ability of error. The parameter R is the rate, in bit/sec
ond, of signal transmission: 



R = 10~Mbits/sec. (13) 

and C is the so-called channel capacity in bits/sec. for 
this gaussian channel: 

C -WI [ 1+ pav] - ogi --
noW 

(14) 

Here W = ~ is the channel bandwidth, P av is the 

average power availabie from the transmitter, and 
nJ2 is the white noise spectral density. 

(Equation (14) is exactly the channel capacity of 
the gaussian channel first obtained, using a random 
coding argument, by Claude Shannon. It represents 
the maximum rate of transmission, in bits/sec., availa
ble for error-free transmission over such a channel. 
Schalkwijk's scheme is the first specific signalling 
scheme known to obey Shannon's previously ideal 
signalling law, and this accounts for the interest stirred 
up in it.) 

A computer simulation of this system was carried 
out, with the probability of error found using extremal 
statistics. Here, because of the relative complexity of 
the system, only a limited amount of simulation could 
be carried out. Specifically, for N = 25 repeated sig
nal transmissions and R/C = 0.5, the probability of 
error was found to be 0.037, while for 50 signal trans
missions, the probability of error was reduced to 
2.3 X 10-3

• Both of these numbers compare favorably 
with results of an exact analysis, possible here, the 
complexity of the system notwithstanding, because of 
the additive white gaussian noise assumed and linear 
operations at both transmitter and receiver. (Had the 
noise been non\yhite or nongaussian, or had some sim-

Extremal Statistics in Computer Simulation Aon 
..,.07 

pIe nonlinear operations been included exact analy
sis would have been out of the question. Yet· the 
simulation complexity would not have been substan
tially different, pointing out the utility of simulation 
here.) For the estimation of the probabilities here, 
20 extremal values were again used to estimate a and 
u, while n = 50 samples were used in the estimation 
of probability. The total number of samples per sim
ulation was thus 1,000. 

REFERENCES 

1 E J GUMBEL 
Statistics of extremes 
C.olumbia University Press New Y.ork 1958 

2 E C POSNER 
The application of extreme-value theory to error-free 
communications 
Techn.ometrics V.ol7 n.o 4 N.ovember 1965 pp 517-529 

3 J C ASHLOCK E C POSNER 
The application of the statistical theory of extreme values to 
spacecraft receivers 
Nati.onal Telemetering C·.onference May 1966 

4 M MUNTNER 
Error control on real channels 
Doct.oral Dissertati.on Department .of Electrical Engineering 
P.olytechnic Institute .of Bro.oklyn June 1968 

5 A WALD 
S equentialanalysis 
J.ohn Wiley New Y.ork 1947 

6 M HECHT 
Non-optimum sequential detection techniques 
D.oct.oral Dissertation Department .of Electrical Engineering 
P.olytechnic Institute .of Brooklyn June 1968 

7 J P M SCHALKWIJK T KAlLA TH 
A coding scheme for additive noise channels with feedback
part I - no bandwidth constraint 
IEEEE Transacti.ons .on ·Inf.ormati.on The.ory V.oI IT-12 n.o 2 
April 1966 pp 172-182 

8 J P M SCHALKWIJK 
A coding scheme for additive noise channels with feedback
part II - bandlimited signals 
IEEE Transacti.ons .on . Inf.ormati.on The.ory V.oI IT-12 n.o 2 
April 1966 pp 183-189 





MUSE: A tool for testing and debugging a 
multi-terminal programming system 

by E. W. PULLEN and D. F. SHUTTEE 
Control Data Corporation 
Palo Alto, California 

INTRODUCTION 

Current literature on multi-terminal time sharing sys
tems has a great deal to say about the macroscopic 
relationship of their parts and the statistics of their 
performance. However, very little is written about 
the efforts expended in putting them together or mak
ing them work efficiently and reliably, in the hands 
of the users. Traditionally checkout and testing of 
multi-terminal systems have assumed a method of an 
on-site marathon. Testing of the product outside the 
customer's shop has been virtually non-existent. 

A major problem facing the system engineer in the 
checkout of suc!1 systems is just getting all the pieces 
together. In a large system with 64 terminals, for 
instance, it is not economically practical to assemble 
this equipment and make it available for several 
months, even when floor space and other logistic 
problems have been solved. To man this number of 
terminals, coordinate the activity at each one, and 
reproduce the system problem in such an environ
ment is a virtual impossibility. Added to this is the 
problem of subjecting a multi-terminal system to vari
ous job environments and various types of users. 

The system engineer could stand like the conductor 
of some great symphony orchestra. With baton poised, 
he would strike the note for a worst case loading of 
the system by his Teletype operators. But this would 
be unrealistic and uneconomical as the problem of 
checking a number of potential worst case conditions 
would still remain, as would the problem of repeating 
the results in case of system malfunction. Astfbtle, 
but nonetheless serious problem is determining the 
margiilal performance of a system when one more 
terminal is added or a significantly different work 
load is imposed through one terminal. Effects of 
changes in background computing activities must also 
be superimposed on the multi-terminal environment. 

The traditional approach is to do a best job with a 
few terminals. The system is then installed in the 

491 

customer's environment with a larger - but probably 
not the maximum - number of terminals. Debugging 
and testing proceeds on-site until the customer is 
satisfied with the quality of system performance. 
The trauma associated with this approach is similar 
to bringing up ten or twenty little batch systems all 
at once, all interconnected, only worse. 

The .. customer bears the burnt of equipment costs. 
He pays for terminals and lines he cannot put to use 
and concurrently he pays for computing time and 
machine hours which could be put to other uses. 
When the system programmers eventually leave - all 
too soon as far as the customer is concerned - there 
is little information on the effects of adding one, five, 
or ten more terminals to the system. When major 
design flaws are encountered during on-site debugging, 
the emphasis is on a quick fix. Often, the result is a 
very complicated product which cannot be readily 
updated or improved. 

Unfortunately the end product may not be readily 
usable for another customer even when hardware 
configurations are similar. 

The obvious solution is to do the job right in the 
first place. Time sharing systems must be balanced 
in their resource requirements (memory, disk space, 
data channel access, ets.) just as c~refully as any 
power plant fly-wheel. Simulation of an entire system 
is an effective tool for testing and debugging in the 
early stages of planning and design. This type of simu
lation is most useful in defining the problems. Simu
lation, however, of interaction between user and parts 
of the system has been overlooked. Designs have been 
frozen before critical resource conflicts become appar
ent. Time-critical and resource-critical conditions 
fall by the way only to resurface in the customer's 
shop. At this point, a hasty fix can change a well 
designed system into a poorly. constructed one. 

Another submerged problem is associated with 
making large amounts of terminal and mUltiplexing 



492 Spring Joint Computer Conference, 1968 

hardware available in the early development stages 
even when such equipment can be manned efficiently. 
This is the problem of hardware-software lag. Com
munications and terminal hardware designs must be 
fairly well defined before even a few prototypes can 
be made avaiiabie for software development. \Vhen 
many terminals are required, flexibility in the hard
ware design is many times diminished. The software 
designer is once again confronted with unilateral 
hardware d~sign decisions and an integrated system 
design is again frustrated. 

Considerations such as the foregoing resulted in 
an attempt to simulate the user and communications 

. environment' in a program caned MUSE (Muiti-User 
Environment Simulator). This program allows the 
multi-terminal system to be extensively exercised in
dependent of multiplexing and terminal hardware. As 
many as 64 users may be simulated at one time. This 
program, and to some extent the time-sharing system 
it tested, are the subjects of this paper. 

The tested system 

The MUSE program represents a joint effort of the 
RESPOND (Remote Sharing and Processing of 
Data) development project and the Quality Assurance 
Department. The purpose of this effort was to develop 
a tool for debugging and testing the CONTROL 
DATA 6000 Series TIY RESPOND time sharing 
system. The RESPOND system was designed to per
form the following tasks: 

• Define, store and retrieve files with respect to 
disk storage devices at the computer site 

• Create programs in the form of executable files 
• Submit these files for processing in the batch 

environment controlled by the SCOPE operating 
system 

• Allow output results from the SCOPE processing 
to be placed on permanent disk files accessible to 
the user through his remote terminal 

rhese capabilities co-exist with the full range of batch 
?rocessing operations provided by the SCOPE operat
ing system. 

TIY RESPOND is a standard Control Data Cor
poration product, based on a special system developed 
by Control Data Corp. for the University of Texas 
and Aachen University in West Germany. The system 
operates within a hardware configuration which in
cludes CONTROL DATA 6400, 6500 or 6600 com
puters with a minimum of 65 thousand words of cen
tral core storage (60 bits per word). A Control Data 
Corp 6676 Communications Terminal Controller 
acts as the mUltiplexer between the computer data 
channel and up to 64 Teletype terminals. These ter
minals may be connected to the multiplexer over 

DATAPHONE Service or directly through a stan
dard signal and data set coupler interface. 

A resident program includes the command process
ing code and housekeeping tables for the terminals. 
Scratch storage is requested and released dynamically 
from the SeQ PE system as buffers are required for 
implementing the commands. The amount of core 
used is dependent upon the number of active termi
nals in the system, the type of activity at each termi
nal, and the amount of core available to the 'System. 
A request for core is placed in a queue if it cannot be 
satisfied. Queues are also maintained for disk re
quests, SCOPE processing operations, and output 
operations. Operation of these queues under a many
terminal environment was of primary interest dur
ing program debugging and testing. 

Figures 1 through 4 illustrate the basic phases of 
RESPOND's operation. The Circular-Stack acts as 
an input delay-line buffer. 

The Termstak is the basic element in coordinating 
the terminal's activity. The Jungle provides dynam
ically allocated scratch storage for terminal activity. 
The Job Table acts as the coordinating mechanism 
between the user and his disk files. Buffers for file 
management and output operations reside in the area 
labeled use file information. 

Simulator design factors 

Many factors could be considered in this develop
ment, since the application was rather new, effort 
was concentrated on the following six items: 

Duplication of real-time characteristics of Teletype 
terminal, telephone and mUltiplexer system 

Minimization of effect of simulator on the rest of the 
system, including the SCQ PE processing en
vironment 

Flexibility in defining number of terminals and 
relationships between terminal activities 

Flexibility in definIng command strings and input 
data sent from the simulator to RESPOND 
system 

Control of terminating or overriding simulator 
performance from the computer console 

Capability to move from a simulated environment 
to actual Teletype operations without disrupting 
continuity of activity at each terminal 

These capabilities provided the potential for emulat
ing a variety of job environments and user types as 
well as worst-case conditions. The override and simu
lator exit features were of particular importance in 
the debugging of both the simulator and RESPOND 
system. 

Emulation of worst-case conditions was particularly 
important in testing and debugging the RESPON D 



product. Worst-case conditions are defined as those 
which place the heaviest simultaneous load on the 
RESPOND queueing structure for resources. Two 
general sets of problems appear under these circum
stances: 

lOP Program 

Periodically samples multiplexer 
Receives 12-blt character Into terminal I/O buffer 
Sel>arates and packs Input cbaracters into right-character buffers 
Attaches input identification code and·transfers buffer to circular stack 

RXP Program 

Detects and marks termination of input in TERIIISTAK 

Service Program 

Analyzes Input word In circular stack and parcels input Into jungle unit assigned to terminal 
Determines wh .. ther Input is a command or incoming data 
Updates job ·Iablefor terminal 
If a comn,and, seta flags In TERMSTAK for required processing routine 
If Incoming data, assembles data in buffer (or transfer to the disk and Issues disk write request 

Figure 1- Input 

Service Procram 

Examines TERMSTAK to determine ..:tionl'eqllired 
Transfel'll Information for referencing user's flies Into central memory from the disk 
Cbups, adds, or deletes luformMlanln .. er's til ... required 
Updates user's file catalog mel jGb table 
Places command-accepted response In jungle units 

lOP Program 

SeadII I'8llponse to remote terminal 

Figure 2 - File maintenace 

lvfUSE 493 

EXECUTIV£ 
pp (UP) 

INPUT/OUTPUT 
PP (lOP) 

Service Program 

Locates required m. 
Stores flIe Information and TERMSTAK entry in wait stack in jungle 
Transfers information from walt stack to pseudo-TERMSTAK entry wben pseudo-terminal 

becomes idle 
Generatea a set m control cards and places tbem on the disk 
Requests EXP to enter job in tbe FNT /FST table 

IXPProgram 

Makes initial entry In FNT /FST table 
Intervenes at critical points to update FNT /FST and save output flies 

8I!tem Monitor 

Multip1'OCellHll ,. 

Figure 3 - Scope processing 

CENTRAL MEMORY EXECUTIVE ~ 
pp (lXP) .-

~ • - USERS SERVICE 

INPUT/OUTPUT J JUNGLEI,....L-'-" FILE PROGRAM .--- ~j'l.; 
pp (lOP) CIRCULAR TERM .---

STACK STACK JOB 

~J~ 
TABLE 

FOR 
TER-
MINA~ 

L-- t-... 
L---- "---

h 
~ ~ 
-::.~ 

Service Program 

Sets up output message or monitors terminal job tables for output messages 
Calla up a8 much of output messages as lOP can handle during one output period 
Plaoea tbia outpat In juDcle units 
Sets output flag In TERMSTAK 

lOP Program 

I 
SCOPE 

SYSTEM 
MONITOR 

(MTR) 

TrlllUlfers output (Olle central processor wprd at a time) of five peripheral processor words 
to output buffer 

Places output (one peripl>eral processor word at a time) Into terminal I/O buffer 
TraD8mits contents of terminal I/O buffer to terminals 

Figure 4 - Output 



494 Spring Joint Computer Conference, 1968 

TIMING PROBLEMS: Many users require 
execution of the same section of code, use of the 
same buffer areas, and entry into the same queues 
simultaneously. 
SATURATION PROBLEMS: Queues be
come very long or full, causing rejection of a re
quest for a resource. Buffers are filled, requiring 
the system to allocate and link to additional buf
fers. 

For example, when an INPUT or a FILE command 
terminates, sorting buffers are in demand and, the disk 
request queue grows. Another example is the LOG
OUT-LOGIN operation by which each user's file 
catalog must be transferred to from the disk. 

Four general classes of users can be simulated by 
the MUSE program: 

A polite general purpose user who accepts the 
rhythm of the system and is interested in exer
cising its capabilities. 

A stereotype user from a particular job environ
ment who represents a specific set of needs such 
as file management, short FORTRAN compila
tions or heavy execution requirements. 

The impatient user who will run at his speed, 
rather than the system's speed, and continues re
lentlessly to enter commands into the system. 
'{'he hostife user who is intent on breaking the 
system. 

Single terminal operations often suffice for the polite 
user and for the initial encounter with the hostile 
user. Multi-terminal simulation is the only way to 
adequately gauge system performance for stereotype 
users, impatient users or a gang of hositle users. 
Simulator design was oriented toward emulating the 
impatient, hostile and stereotype users. Since, how
ever, data decks define both the number and type of 
user a change from anyone group to another is easily 
accomplished. 

The polite user certainly cannot be overlooked. 
Here is the capability to quickly and thoroughly exer
cise all variations of a command. For example, the 
RESPOND user may define a format to organize his 
data input stream. There are 512 variations on the 
FORMAT command's structure alone. The checkout 
of these variations is trivial when run through the 
simulator but extremely tedious when entered by 
hand more than once. Problems are easily repeat
able when simulator testing is done. 

Not all problems can be solved or even isolated by 
using the simulator alone. System malfunctions associ
ated with misplaced files or records require some 
searching and guessing after an error is detected. This 
class of problems is accommodated by the design of 
the interface between MUSE and RESPOND which 

allows simulator operation to be terminated and 
activity to be transferred to a Teletype terminal. This 
mode of operation was also vital in resolving simulator 
and RESPOND communication problems. 

Sirnuiator designfeatures 

The MUSE simulator consists of two basic parts. 
The major part is essentially a FORTRAN program 
with several small assembly language (COMPASS) 
routines incorporated for .... efficient use" of central 
memory after loading. A second part consists of ex
tensions to the RESPOND executive program which 
allow communication with the simulator as though 
it were the system multiplexer. This interface program 
provides automatic switching of activity between 
simulator and Teletype terminals. 

The FORTRAN program resides at one of the 
control points in the multi programming environment 
of t~e SCOPE system. This program requires a maxi
mum of 9600 words of core memory for the 16-termi
nal version and 18000 words for the 64-terminal ver
sion. A character conversion table relates Teletype 
codes to internal codes in the same manner as in the 
RESPOND system. 

The commands and data input submitted from 
the simulator to RESPON D are loaded by the simu
lator as data strings separated by control cards. The 
command and input strings reside on disk as separate 
files for each terminal. A simulator input buffer is 
filled with characters for each terminal from these 
files. When the buffer is filled, RESPOND performs 
a parallel read operation bringing in all characters for 
all terminals as though the simulator were a multi
plexer. Output is transferred by a similar fashion from 
RESPOND to a simulator output-buffer then to a 
disk file for each specific terminal. Each data card 
record in a data string represents one discrete com
mand or one data input line. Data strings may be 
entered by cards or from magnetic tape. Commands 
can be up to 77 characters per card and data records 
up to 80 characters per card with as many cards per 
input record as desired. The last two columns on a 
command card are used by the simulator to designate 
the number of times the command should be repeated 
under certain conditions. 

Up to 36 diagnostics and other replies generated by 
RESPOND are entered into the simulator program's 
diagnostic table from data cards. When the simulator 
receives a message from RESPON D, it scans the 
diagnostic data cards loaded with the program. If a 
match is not found, the next line of input to RE
SPON D is issued. if a match is found, coded infor
mation entered with each command triggers a variety 
of actions. This allows a certain degree of recovery 



wIthin the simulator from conditions within RE
SPOND when that system is heavily loaded. 

The simulator data control cards provide the follow
ing capabilities: 

• the TERMINAL ID card identifies a particular 
part of the data string with one or more terminals. 
All possible or 'up to 35 terminals may be speci

, fied, individually' or . inclusively, to use the same 
<i~ta string. 

• The TERMI,N AL NUMBER card specifies the 
number of the hi~i.est terminal to be serviced 
by the' simulator during a particular run. This 
card is used in allocating fixed buffer space in 
the FORTRAN' program among the terminals. 
This facilitates the printing of results files and 
examining flags when only a small number of 
terminals are simulated. 

• . The WAIT card is used to inhibit the issuing of a . 
command at any terminal until a LOGOUT has 
been issued at one or more other specified termi
nals. This facilitates testing RESPOND super
visory control functions and sharing of files 
among several users. -

• The CONTINUE control card is used in con
junction with coded information on the input 
data cards. It allows the movement of a selected 
group of simulator data from the terminal's cur
rent input data string to a re-entry file. The data 
will be issued at a later time to RESPOND. 

The TERMINAL ID control card can be used to 
establish worst-case and balanced-load conditions 
with a minimum number of data cards. The WAIT 
control card can simulate supervisor-user interaction. 
Users may be held in a wait condition until public 
files .have been created. The supervisor may be held 
in a wait condition for password list changes until 
several users have logged out. Users may wait for the 
exit of other users during tests of password and file 
sharing operations. 

The capability provided by the CONTINUE con-
, trol card is of particular importance. It accommodates 

the condition where a portion of the command string 
requires results from SCOPE processing. When these 
results are not immediately available, this portion of 

"the string (that which end~ with the CONTINUE 
card) can be placed on a reject file and re-issued later. 
When a diagnostic message received from RESPOND 
is included in the simulator's diagnostic table, a check 
is made t<1 determine if the command is to be reissued. 
Any input statement may be reissued up to 99 times. 
Command sequences which do not elicit the correct 
response after a specified number of repeats are pulled 
from the string and placed in a reject file. When all 
entries in the command string for a terminal have been 

MUSE 495 

passed over once, the contents of the reject file are 
sent to RESPOND. 

The following string of commands is an example of 
an application of this feature. Assume the user has a 
FORTRAN program P. 

COMPILE P LIST PL BIN PB 
STATUS 00 02 
OPENPL 
DISPLAY FILE PL 
EXECUTEPBINPUT OUTPUT=RESULT 
OPEN RESULT 0002 
DISPLAY FILE RESULT 
COpy RESULT TO PRINTER 
ooCONTINUE 00 
INPUT 

The COMPILE operation is requested from the 
SCOPE processor, as are the EXECUTE and COpy 
operations,. If the total system is heavily loaded, com
pilation may not be complete even after two STATUS 
requests have been issued and replies received. In 
such a case, the whole string from the first ST ATUS 
through the ooCONTINUE card is moved to the re
ject file and the INPUT command will be sent to RE
SPOND. By the time all the other commands in the 
data string have been processed the compilation 
should "be completed. The binary file can be passed 
to SCOPE for execution. If two attempts to OPEN 
the file resulting from execution are unsuccessful be
cause the execution job has ,not completed, the string 
from OPEN RESULT through the ooCONTINUE 
card will again be placed on the reject file to be ser
viced at a later time. This feature gives the simulator 

'extensive recovery power from the time lags in the 
RESPOND-SCOPE processing cycle. When 40 or 
60 terminals are being simulated this recovery be
comes very important. This feature .also lays the 
foundation for gathering some statistics on turnaround 
of terminal jobs in a particular computing en vironment 
and with different types of central processors. 

A number of features are controllable by the user 
through sense switch settings while· the simulator is 
running. These features include the ability to: 

• Force the next entry in the command string on 
the RESPOND system after a pre programmed 
time-out period 

• Stop output of file contents from RESPOND 
to the simulator and proceed to the next com
mand 

• Call for an intermediate printout of the simula
tor's results file at any point in time without 
disrupting operations 

• Display on the console screen the activities 
occurring at each terminal (for instance, the 
LOG IN command issued by the simulator and 



496 Spring Joint Computer Confer~nce, 1968 

the reply from RESPOND). This option may be 
exercised at any point in time for an arbitrary 
period of time and then rescinded 

• Terminate the simulator run, print the results 
to that point, and exit the simulator from the 
computer system at any time 

The ability to force commands is used to check 
input saturation problems and to overcome any break
down in communications between RESPOND and 
the simulator. An impatient or hostile user may not 
wait for a reply from RESPOND to his last command. 
He may enter another, then another command, stack
ing up requests within the system. The forcing feature 
allows simulation of this action. Both the number of 
times a specific command is repeated and the time-out 
period required before another command is forced 
upon RESPOND are readiiy changeable parameters. 
Each occurrence of this action is recorded in the termi
nal's results file. 

The ability to arbitrarily stop the output of file con
tents from the RESPOND system duplicates a real 
user's capability. This was not the reason, however, 
for including the feature in the simulator. In test
ing the commands which access SCOPE processing 
capabilities and recover files from SCOPE only the 
first several records are needed to identify a success
ful operation; however, it is often inconvenient to 
guess the number required. The STOP switch allows 
the tester to terminate output when he has enough 
data to answer his questions and before the full con
tents of the file is displayed. Quality Assurance test
ing activities make use of the simulator's ability to 
print intermediate results printout as well as the final 
results, and the visual display of terminal activity dur
ing the actual simulator run. 

Results from the simuiator are routed to two de
vices. All input and output strings for all terminals 
are displayed on the screen of the computer control 
console together with the terminal number, and com
puter clock time when entry was made or response 
received. 

Figure 5 illustrates this type of display when 16 
terminals LOG IN and perform a series of balanced 
COMPILE, INPUT and FILE operations. Through 
this display the simulator operator is aware of the pro
gress of testing at all· times just as if he were viewing 
the operations of 16 or 20 or even 60 terminals simul
taneously. This display forms the basis for the de
signers' override actions. The contents of the log 
generated from this display indicate the relative per
formance' of SCOPE and RESPOND in handling 
remote user's requests. 

Another type of output is a listing produced by 
the simulato~ at the line printer. This listing includes: 

11.26.27.G" 
11.26.33.0 O/l.lGIN GLE~ 47154R619 
11.26.33.0 l/LOG!N PASSOI 4624261' 
11.26.33.0 2/1.0GIN P1SSC2 46242619 
11e26~33eO 3/LOGIN PASS03 4624261' 
11.26.34.0 4/LOGIN P4SS~4 46~42619 
11.26.34.0 5/1.0GIN PASS~5 46242619 
11,26.34.0 6/LOGIN PASS06 4624261' 
11.26.35.0 7/L"QIN P4SS01 4624261' 
11.26.35.0 8/LOGIN PASSOA 46242619 
"-i.26,35.0' 9/LOGIN PASCSQ9 46.2t2.6Jt 
11.26.35.010JI.OrwtN PAS~10 46242619 
'1.26.35.011/1.0G'" PASS11 46242619 
11,26.3'.012/LOGIN PlSS12 46242619 
11.26.35.013/LOGIN PlSS13 46242619 
11.26.35.014/LOGrN PlSS1. 46242619 

. 11 .. 26.35.015/LOGIN PlSS15 462.4261..1 
11.26.41.0 01 TIM~ 11 26 3~ 
11.26.42.0 51 TIME 1f 26 3~ 
11.2~.42.0 61 T!H~ lt 26 35 
11.26.42.0 71 TtM~ 11 26 35 
11.26.42.0 81 TIME 11 26 35 
11=26~42.0 91 TIM~ ii 26 3, 
11.26,42.0101 Tr~E 11 26 3, 
11.26.42.0111 TIM~ 11 263! 
11.26.43.0121 Tt~E 11 26 3~ 
11.2~.43.0131 TIHF. 11 26 35 
11.26.43.0141 TIHF. 11 26 35 
11.26.43.0151 TIM~ 11 26 3, 
11.26,43.0 11 TIM~ it 26 3, 
11.26.43.0 21 TI"~ 11 26 3' 
11.26.43.0 31 TtrlF 11 ~6 35 
11.26.43.0 41 TIMF 11 ~6 3, 
11.26 •• 5.0 01 DATF. 01/13/68 
11.26.46.0 51 DATE ~1/13/68 
11.26.46.0 61 DATE 01/13/68 
11.26 •• 6.0 71 nATF 01/13/6. 
11.26 •• 6.0 81 DATF. ~1/13/68 
11.26.46.0 ~I DATE 01/t3/68 
11.26.46.010/0Ar~ ~1/13/68 
11.26.46.0111 DATF. 01/13/68 
11.26.47.0121 OATF. 01/13/68 
11.26 •• 7.0131 OATF. 01/13/6. 
11.26.47.0141 OAfF. Q1/13/68 
11.26 •• 7.0151 OATF. 01/13/68 
1\.26.47.0 11 OATF. 01/t3/68 
11.26.47~0 21 DArF ~1/13/68 
11.26.47.0 31 DATE 01/13/68 
11.26,47.0 41 ~ATE 01/13/68 
11.2~.51.0 01 •••• COMPILE HUDAR 
11.26.'2.0 51 •••• r.O~P'LF. ~UDAA 
l1i26.~2.C 6/ •••• ~O~PtLE HijDAA 
11.26.52.0 7/ •••• COMPILE HUDAA 
11.26.'2.0 8/ •••• COMPILE ~UDAA 
11.26~2.0 9/ •••• COH~rLE HUDAQ 
11.26.'3.010/ •••• COMPII.E HUDAR 

. 11.26.53.011/ .... r.O,",PILE HUDAA 
11.26.'3.012/ •••• ~OMP'LF. ~UnAA 
11.26.53.0t3/ •••• COMPILE HUDAR 
11.26.".014/ •••• COMPILE HUDAA 
11,26.53.015/ •••• ~OMP!Le HUDAR 
11.26.54.0 1/ •••• ~OHP'LF. HU~AR 
11.26.5 •• 0 2/ •••• ~OHPILE ~UDAR 
11.26.154.0 3/ •••• r.O~P'Lr: HUDAR 
11.26.54.0 4/~ ••• r.OHP1LF HUDlR 
11.26.58.0 0/ •••• INPUT FTN 
11.26.58.0 51 •••• INPUT FT~ 
11.26.58.0 6-' •• ., r~"'UT F'TN 
1t.26.~9.0 7/ •••• fNPUT FT~ 
11,26.59.0 8/ •••• 'NPUT FTN 
11.26.'9.0 91 •••• INPUT FTN 
11.26.~9.010/ •••• tNPUT FTN 
ll.26.'9.011/ ••• , INPUT FTN 
11,26.59.012/ •••• rNPUT FTN 
11.26.'9~013/ •••• P"PUT FT'" 
11.26.'9.014/ •••• INPUT FT~ 
11.26.59.015/ •••• INPUT FTN 
ll,21.00.0 1/ •••• INPUT F'TN 



11.21.00.0 2/ •••• INPUT.FTN 
11.21.00.0 3/ •••• r~PUT PTN 
11.27.00.0 4/ •••• INPUT PTN 
1,,27.04.0 O/OOOOOQ1Q a 0001 
11.27.0'.0 5/aOO'Q010 a OQ01 
11.27.0'.0 6/00000i10 8 0001 
\1.21.0'.0 7/00000ij~O.OOOi 
11.21.05.0 8/00000~10.0001 
11.27.05.0 9100~o0610a~001 
11,27.0'.010/000ao510 a 0001 
11,21.06,011/00000010-0001 
11.27.06.012/0Q000010·~OOl 
11.21.0 •• 01~/D~~O~ri1~~OD~1 
11.21.06.014/00000110 a 0001 
11;21=06=01~!OOQjOQ10.0001 
11.27.06.~ 1/00000310-0~~1 

Figure 5 - Operating results from console display 

• Input commands and results by terminal for each 
terminal declared in the control card 

• The input string for each terminal as it appears 
in the data deck 

• All rejected (unsert or unprocessed) entries 
in the input string for each terminal 

• A matrix of operating statistics for each terminal 
which includes flags for abnormal terminations, 
the number of commands repeated and rejected, 
character counts of latest input and output 
strings, activity codes, and many more items use
ful in isolating _ problems within RESPOND, 
SCOPE or MUSE 

Figure 6 is an example of the Results File kept for 
each terminal. This file is usually the main item of 
interest. It is identical to the results achieved from 
a Teletype terminal with the exception that the time 
between command entry and system response is 
included. This provides a means for collecting addi
tional performance data and comparing different 
hardware configurations. 

Statistical information is gathered during a simulator 
run and formatted as a matrix. This matrix provides a 
quick index to trouble areas. With a little experience 
it is possible to quickly pinpoint the terminal and com
mand which has a malfunction. The items in this 
statistical file include command codes, character 
counts of most recent input-output strings, number of 
commands processed, and repeated, terminal status 
(active, waiting output, etc.) and latest contents of 
the character input-output buffers. 

Console capabilities of the Control Data Corpora
tion 6000 Series computer, operated through the 
SCOPE system, provide additional flexibility in 
RESPOND-MUSE operation. Simulator activity 
can be suspended by rolling the simulator out of exe
cution. RESPOND can be returned to Teletype ser
vice by dropping the simulator from its control point 
or by changing the first character of the program name 
at the control point. Relative priorities and field 

497 

lengths 9an be adjusted to give the simulator the 
aspects of a large compute-bound job. 

The complete continuity between simulator and 
Teletype operations provides a mechanism for check
ing performance of the -MUSE system or isolating 
RESPOND and the simulator communications prob
lems. 

Results of operation 

By this point the reader is primed for a series of 
graphs and tables which illustrate the value of the 
system described. Our goal, however, was to design a 
tool for building and testing multi-terminal time shar
ing systems. The measurement of performance is 
actually a by-product of our efforts. With respect to 
the primary goals, we believe we have achieved the 
following results 

• A better product than could have been built 
with more traditional testing and debugging 
methods 

• A better understanding of the product's internal 
operations and the compromises made to achieve 
a specific level of performance 

• The ability to adjust product performance given 
a specific job environment and service require
ment to most efficient operating point 

• A thoroughly tested and formally evaluated 
product; a product which will satisfy specific 
performance criteria with many more terminals 
than can be reasonably assembled or coordinated 
in a development environment 

• Confidence that the system tested will continue 
to function under the worst-case stress condi
tions that can be imposed by a large number of 
remote users. 

A valid question at this point: "Were we really 
able to find problems with the MUSE system which 
would have eluded us until a customer found them?" 
The answer is definitely· affirmative. The following 
proble~s may not have come to light until several 
month·s after product releas,e. 

• When. nine (or multiple thereof) users all request -
a sort of their input records at the same time 
there was a problem in handling that ninth re
quest. This is understandable in our octal world, 
and not difficult to fix once isolated. 

• When the thirteenth unsatisfied disk request 
entered the disk I/O queue, it created a problem. 

• When the disk request queue became saturated, 
a path through one command requiring disk 
access did not handle rejects properly. This 
happened only when more than ten FILE com
mands occurred within a 30-millisecond period. 



498 Spring Joint Computer Conference, 1968 

••••••••••••••••••••••••••••••••• ~**+ •• *.~~ .... * •• * ••• *.*q ••••••• ~ •••••••• * ••••••••• * •••• ** •• * ••••••••••• *. 
-.~--- .. -- -_. --- . - RF.SUL TS AT Tl:HM I '~A"L~·-i5 --

~~ ••• ~ ••••••••• * ••••••••••• * ••• * ••••••••• +.* ••• *.***.** •••• * ••• * •••••• ~+++.+.+~ •••• ** •••••• * •• **.* •••• ***. 

TEWMIIMI. 
ACTtVpv 

QQINPAS!';15 46242619+ 
A j) t<. -----------. ------- .--.-------

TIM~ 00 03 ~? 

.~-LtJA.:...:l'_=_l:~ ()t/iS/flo. 
"~" qOHPfi.-e-HUOA'R. ' 

....... n. ,l~PUr ,TNt 
w;"",(:;.;;;O;,.:O;.,;. n;-:o~0-i-\l.:.i-=-I'l ='-'o~o:-:=o~i~. ______ .. ________ . __ ._. _____ _ 

OOOOQ20= .. J:Or. 
f'ii.E I"fPi.10. 
• • •• OPE'4 I "IP1' 
~fP' APet PTU~"I1.E I NP1iIo"; .. 
f~.~ STATUS HUDARt 
~O.NO' tN SYSTE". 

--'- .. --- _ .. __ .. _-----

3 

'5 
5 
5 

5 ---- -. -

4 
1 

XECIITE ;;Uni\~ TTi·i;.oUh I fjPi. T~jiE- fiUTI';-;T:i)IHf,-f ~PF., ... -
"" :iTATIIS ~uO!\R fh 
JQ9 rN EX~CUTION. 

"~';--SUTITs ;;'(jOi\R q. -
, ,JOB NOT IN SYSTE~' 

.. p STATllS HUOAR fH ________ .. 
JClA NOT IN SYS'fr;"1";---
• • •• OPE~J TAPE?' • 
•••• nISPLAY sup rTLE TAPE~' 

s'" T .. IS IS HUN 1 --;- "---.--- --
TNlS tS lERMtNAL 0 

: . Of( .. 
~~-ij6pv'OUT1 TO "RliHF;R. 

• • •• IlE!LFTF F' I LE T APE2 .. 
, ••• DELFTE £l!.:.E.....l;!~_~ ___ _ 
i.t. UELE1E rILE OUT~' 

~ .. n!l-p.'I'E rJLF. HI/DAR R. 
, ••• L. !s·(. 
FRIVAiE ~IlES .. 

____ .M..Y..:1A ~ _.!: _ _ ? ~ In S IJL 
T'~el 1 DIS dO 

. CX'4 3 ors 
~l~? .. __ .202 ~lN 

'It. 
21l 

DISK ~P.~~ ASSll~~', 
PRJVAfe rORHAT$ 
•••• 1.,1)11'11". .. T--me-Q!f: is ~-?7 
~. ---

lJ'J 

In.sI6t1 3 
1I1o;/6~ J 
1I1~/6tj 3 
1/15/6D 2 
lJ;i~u 11 

... 

.. 

.._-------_._--_._-----_.----_._._. __ .. _-.. 

1 
2 

3 

,,--
3 

1 
1 
2 
1 
? 
1 

1 

FLYSHOUT_ 

Figure 6 - Results at terminal 15 from a test with 16 terminals 

• When many jobs were dumped into the SCOPE 
processing queue within a 90-millisecond 
period there were problems associated with jobs 
which had to wait for central memory storage . 

•. Timing problems occurred between the activities 
. of the system supervisor in changing the contents 
seconds, the reject mechanism broke down. 

• Timing problems occurred between the activities 
of the system supervisor inchanging the contents 
of public files and users trying to use these files. 

• The simulator revealed a basic design flaw that 
resulted in a major internal change to ·the pro
gram which now insures one-to-one mapping of 
the active user's file catalog in core and on disk. 

• A problem which plagued single terminal opera
tions disappeared during multi-terminal simula
tion. This was traced to expansion of RE
SPON D's field length under multi-terminal 
activity. This bit of intelligence led us to the 
problem's solution. 

To this list can be added the ability to check, with 
minimum trauma, all 512 variations of the FORMAT 
command or all xxx variations of the ~~~ command. 
M.any single terminal problems associated with long 
strings of commands were also solved far less pain
fll;lly through the consistency, repeatability, and rapid
ity of the simulator's operations. 



The by-product of performance statistics on RE
SPOND has proven particularly interesting and en
couraging. Data has been collected for a total of six
teen simultaneous users operating in the following 
two environments: 

• File Management activity with a small amount of 
program compilation and execution (approxi
mately 6%) 

• General programming activity with equal 

and execution operations. 
All of the data, thus far, has been collected on a 

Control Data Corporation ·6400 Series Computer 
having 65,000 words of central .memory, and utiliz
ing a dual chan~el 6638 disk unit for mass storage. 
The simulator itself acted as a backbrou~d program 
requiring between 1700 and 2709 seconds of central 
processor time and 9600 words of central memory 
during the testing period. 

The distribution of 'wait' times for the file manage
ment environment is shown in Figure 7. The wait time 

. is defined as the interval between the entry of the 
last character of a command (the RETURN key of 
the Teletype) and the arrival of the first character of 
the reply from the RESPOND system. The mean 
'waiting' time is 1.88 sec. The maximum waiting time 
recorded was 29 sec on the compilation of a FOR
TRAN program having 1321 statements. In this 
case the user chose to wait for the compilation to 
be completed. Commands used heavily in this environ
ment included the FILE. INPUT, and DISPLAY. 
Table I contains a summary of the. test results for this 
environment and details on its composition. .. 

The resuits for a general programming environment 
are shown in Figure 8. The simulated user was placed 
in a position of waiting until a compilation or exe
cution was complete, and this has been considered 
as a single waiting time. The programs compiled con
tained from 21 FORTRAN statements to 1321 state
ments. 

The mean writing time for this environment was 
2.6 seconds, reflecting the 17% of commands request
ing SCOPE processing. The maximum waiting time 
recorded was 33 seconds, and was associated with a 
wait for a large compilation to be completed. Input 
and output operations, however, still make up a large 
portion of the user's activity, as can be seen from the 
command mix statistics in Table I. 

These two environments are compared in Figure 9 
and Table I. In Figure 9 the waiting probability is 
plotted against waiting time. Note that a waiting time 
of longer than 3 seconds would occur only 7% of the 
time in a file management environment, and 17% of 

MUSE 499 

the time in the programming environment even when 
the average user chose to wait for his compilation 
or execution to be completed before the next com
mand. In both environments, a wait of 4 seconds 
would occur less than 10% of the time. Table 1 in
cludes central processor operating statistics for TIY 
RESPOND under each environment. For file manage
ment activity, an average of 13.7 commands are pro
cessed per each central processor second used by 
RESPOND. For programming activity the average 
raises to 15.4 commands per central processor second 
used by RESPOND. In the latter case, fewer input 
'and file operations are issued to RESPOND and the 
computing load is shifted to SCOPE. 

1~r-----------------------------------------------------------------~ 

900 

800 

700 

NOTE SCALE CHANGE 

10 

RESPONSE TIllE, SeccJIIda 

Figure 7 -lTY RESPOND response time distribution for a file 
management environment 

Guidance for the selection of LOG IN times, 
average number of commands per terminal and 
LOG IN time spread (Table I) were obtained from 
a number of unpublished sources and from Allan 
Sherr's MIT monograph on analysis of time shared 

systems. l 

Additional study is planned to determine vari
ation in RESPOND's performance with the hardware 
configuration consisting of 



500 

300 

NUMBER OF 

COMMANDS 

200 

10 

Spring Joint Computer Conference, 1968 

\ 
\ NOTE SCALE CHANGE 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

RESPONSE TIME, 8econda 

Figure 8-TrY RESPOND response time distribution for a pro
gramming environment 

1.0 

.9 

.7 

. 6 

PROBABILITY 
OFWArrlNG 

.5 

.4 

.3 

!olEAN 

MAX 

SCOPE CMIl 

INPUTCMD 

OUTPUTCMD 

FlLECMD 

A. FILE !olGMT APPLICATIONS 

B. PROGRAMMING APPLICATIONS 

A B 

1.88..,., 2.6...., 

29 """ 
33 aec 

6% 17% 

49% 28% 
17% 27% 

11% u% 

~f ~~I] ~.I 
2 3 4 5 9 

WArrING TillE, SecoDda 

Figure 9- User waiting time probability distribution 

• The 6500 dual central processor computer 
• The 6600 computer (with its dual arithmetic unit) 
• Single channel disk and mUltiple dual channel 

disk configurations 
• Central processors with 131,000 words of mem-

ory 
• Sixty-four simultaneous remote users 
Variation of performance as a function of different 

background program activity will also be investigated. 
Currently, the background activity is provided by 
the computational needs of the MUSE program itself 
which uses 20 to 30 times as much central processor 
time as the entire RES paN 0 system. 

Like any tool, the MUSE program is only as good as 
its user and the data which this user provides. It has, 
however, proven to be an excellent approach for 
solving many multi-user time sharing problems in a de-
velopment center environment with a minimum cost 
for terminal equipment. 

Simulator limitations 

The MUSE program is designed to simulate activi
ties of a remote terminal user, the remote terminal, the 
communications line, the systems mUltiplexer and the 
data channel to RES paN D's I/O buffers. The simula
tion of the user is only as good as the data entered to 
represent his terminal operations. 

The ~,,1USE program does not simulate the com
puter system itself. Changes in central processor 
memory size, the number of mass storage devices, the 
number of data channels, or other changes in com
puter site hardware can be checked through the simu
lator's performance, but they are not adjustable from 
the simulator end. Some aspects of the SCOPE pro
cessing environment, such as core and central process
ing time, can be changed by giving more of these 
resources to the MUSE program. This, however, 
does not represent a satisfactory method of varying 
the SCO PE environment or resource requirements . 

An additional control card is required to simulate 
a user's think-time defined as the time between the end 
of a RES paN 0 output operation and the beginning of 
the next input string from the simulator. Currently 
commands such as HOLD and STATUS are used for 
this purpose but the control is poor and not straight
forward. A THINK Control card would allow a speci
fied time to pass before the next command was issued 
from the simulator. 

More operator override features are desirable. The 
ability to assign the computer console keyboard to any 
terminal in place of the simulator would greatly in
crease the debugging potentials of the program. Better 
control over the balance of the SCOPE processing 
environment should be developed. This could be a 



MUSE 501 

T ~BLE I - SummarY of results and test specifications 

Application File Management Programming 

Mean waiting time 1.88 sec 2.6 sec 
Maximum waiting time 29 sec 33 sec 
Total RESIDND overhead 116.4 CPU sec 58.1 CPU sec 
Background Program (MUSE) 2681.7 CPU sec 1729.8 CPU sec 
Usage of CPU time 
A verage LOG IN time 34 min 26 min 
Range of LOG IN times 26 min to 44 min 24 min to 29 min 
Total Nr. of commands processed 1592 896 
Average Nr. of Commands per 100 56 

terminal 
Range of commands per terminal 52 to 151 'all 56 
Command Mix (over all terminals) 

SCOPE Processing 6% 17% 
Input Operations 49% '28% 
Output Operations 17% 27% 
File Operations 11% 12% 
Delete Operation 10% 12% 
System Access 7% A% 

SCOPE Processing Mix (to service RESPOND users) 

Range of Processing under SCOPE .166 CPU sec to 19.2 CPU sec per job 

Range of program size 21 FORTRAN statements to 1321 FORTRAN 
statements per program 

companion program to simulate the system card 
reader. 

The task of gathering data, and using this data to 
build up command strings is a major problem to be 
attacked. The big question is where to look for this 
data, given the myriad of command languages and pro
cessing features available to the user, and the rela
tively small, limited, and specialized applications of 
current time sharing systems. 

CONCLUSION 

In a system which provides time shared service to 
remote users there are a number of questions which 
must be resolved if a concept of service is to be main
tained. 

The question is not "How many terminals can be 
serviced?" but rather, "What is the marginal' effect 
on existing users when one more terminal is added to 
the system?" This is repeated again and again with 
the job environment as a parameter, to determine 
the average responsiveness as a function of users 
andjob mix. 

The question is not "What features can be added to 
the system?" but rather, "How does the additi.()n of a 

feature or a change in the processing method affect 
existing users?" The economic concept of 'Pareto
optimality'2 must be considered to insure that some 
users are not much worse' off because a new feature 
has been added for other users. 

What is the effect of higher speed terminals on the 
system's performance? Which part of the system 
saturates first, and what effect does this saturation 
have on the rest of the system? 

How does a system designer know that his creation 
really works for 64 Teletypes, or 32 display terminals? 
How does a quality assurance group certify that a 
product meets multi:·terminal performance require
ments? How is the product tested in a multi-terminal 
environment? One of the biggest questions is "What 
are the significant elements of exchange?~' 

Emphasis in developing the MUSE program has 
been to build a tool which could be used to answer 
some of these questions. Emphasis has been on con
cepts of multi-terminal system development and 
testing rather than performance measuring or predict
ing. We needed a tool that looked like a user. The 
MUSE program is doing a good job providing this 
capability. 



502 Spring Joint Computer Conference, 1968 

The fact that RESPON 0 and MUSE can operate 
together independently of any mUltiplexer or terminal 
equipment also provides a means of evaluating the 
performance of new and different computer hardware 
configurations as well as collecting statistics on exist
ing ones. This paper is a report on a different approach 
and a new tool in checking, testing, and even develop
ing better time sharing systems. Hopefully, the idea 
will ca~ch on. Not the use of a specific program but 
the idea of tes.ting to see 'what happens when,' rather 
than installing·to find these answers. 

APPENDiX 

RESPOND COMMAND LANGUAGE 
MESSAG E (message contents, 70ch max) 
LIST FILES or FORMATS 
PEN File Id 
FORMAT (r~cord number, length, step size, tab and 

skip functions) 
IN PUT File Id, Format Id 
#EOF 
FILE File Id, FILE File Id(item select options) 
HOLD 
DELETE File Id (item select options) or Format Id 
DISPLAY File Id (item select options) 
#STOP 
ASSEMBLE File Id LIST Result Id BIN Binary Id 
COMPILE File Id LIST Result Id BIN Binary Id 
EXECUTE Binary File Id INPUT= Input File Ids 

OUTPUT = Output File Ids BIN 
Binary File Ids 

COPY File Id To Peripheral Device 

COPY Peripheral Device TO File Id 
SUBMIT Control Card File Id INPUT=lnput 

File Ids, OUTPUT-Output File Ids 
BIN =Binary File Id's 

ST ATUS File Id sent to SCOPE 
&PASSWORD* LIST or CHANGE (Items) or 

ADD (Items) or DELETE 
(Items) 

*TRANSFER FILE or FORMAT, User File 
Id or Format Id TO Public File 
Format Id 

*DUMP (Creates archive type) 
*SYSEXIT (RESPOND system exit) 
LOGOUT 

The reader is· referred to the TIY RESPOND 
Reference Manmil3 for detailed descriptions· of the 
systems command structure and capabilities 

REFERENCES 

1 A L SCHERR 
An analysis of time-shared computer systems 
MIT Research Monograph No 36 1967 

2 T A MARSCHAK 
Economic theories of organization 
Handbook of Organization Theory j G March editor 
McGraw Hill 1966 

3 TTY RESPOND reference manual 
Control Data Corp Publication N r 60189300 1967 

~ vailable to system supervisor only 



Diagnostic engineering requirements 

by JOHN J. DENT 
International Business Machines Corporation 
Kingston, New York 

INTRODUCTION 

There is a maze of diagnostic techniques in use today: 
Diagnostic Programs, Micro Programs, Test Panels, 
On-Line Diagnostics, Error Recording Techniques, 
Automatic Recovery Procedures; and the list goes on. 
The purpose of this paper is to take a look at the basic 
concepts applicable to Error Detection and diagnosis, 
in order to put into perspective the value of the various 
techniques for satisfying future requirements. 

The terms malfunction, failure, and error are used 
rather loosely to refer to any deviation from the ex-. 
pected operation of the system, caused by a design 
error, fabrication error, equipment malfunction or 
program error. The most common method of automat
ed diagnostic testing uses computer programs written 
in machine language. However, the same concepts 
apply whether these are implemented by software, 
hardware, or firmware. 

Uses of diagnostic tests 

The design of a diagnostic test is influenced by its 
intended use or test environments. Perhaps one of 
the most unique test environments is Engineering 
Test; that is, testing the very first model of a newly
designed system. Engineering Test is characterized 
by mUltiple design and fabrication errors, multiple 
component malfunctions, and mUltiple errors (bugs) 
in the diagnostic test itself. The purpose of Engineer
ing Test is to verify the design. "Functional Tests" 
are written to determine whether the system operates 
in precisely the same manner described in its function
al description or specifications. A test generated 
automatically from design automation tapes would be 
of no use in verifying the design itself. Functional 
tests are generally not sensitive to engineering 
changes. This is of particular value in the Engineering 
Test p~ase when there are a number of engineering 
changes. In addition to functional tests, random tests 
and worst case patterns must be developed to "shake 
down" the design. 

The Manufacturing Test requirements are similar 
to the Engineering Test requirements. These tests 

must be designed to cope with multiple errors re
SUlting from faulty components and fabrication 
errors. Field Maintenance, on the other hand, is slight
ly different. The assumption is that the system is in 
good operating condition and that failures are repaired 
as they occur. The diagnostic designed for this use can 
take advantage of the single error assumption. 

There are several situations which require a quick 
and thorough checkout of the system: Ship Test, 
Installation Test, Acceptance, Early Morning Check
out, etc. In all such cases, the assumption is that the 
system is working. The requirement is for a rapid test 
to verify the fact. This is a GO/NO-GO type of deci
sion requiring a fast and thorough test without re
gard for isolation. 

Basic approaches to testing and diagnosing 

The Start-Small approach is a building block ap
. proach where the first test starts with the smallest 
. amount of circuitry possible. Each additional test adds 
a small increment to the circuitry tested. When a 
given test fails, the assumption is that the failing 
circuit is within the group of circuits added by that 
test. Figure 1 illustrates the general flow of the Start
Small approach. Notice that the flow is sequential. 
The sophistication of this approach is found in the 
design and sequencing of the individual tests. The 
assumption is that the first failure found in the test 
sequence is repaired before proceeding past that point. 
This approach is effective for multiple errors. 

The Multiple Clue approach bases its diagnosis on 
the analysis of a series of individual test results. 
Figure 2 illw::trates how the test flow is similar to the 
Start-Small approach. The difference is that a failure 
does not terminate the test. All tests are run, failure 
information is· stored, and the diagnosis is determined 
by analysis of this failure data. Assuming a single 
error, this analysis can be quite sophisticated. Assum
ing more than one error; the analysis is extremely 
complex, ifnot impossible. 

The Start-Big test approach has a more complex 
flow, as illustrated by Figure 3. Testing starts with a 

503 



504 Spring Joint Computer Conference, 1968 

TEST 1 

FAILURE 
TERMINATION 

FAILURE 
TERMINA TION 

SUCCESS 

TERMI NATION 

Figure I-General flow diagram of start-small (building block) test 
approach 

large portion of logic and, if successful, proceeds to 
another large portion of logic. A failure changes the 
test sequence by branching to a test designed to fur
ther pinpoint the trouble. The test results of each 
test determine which test is executed next. This 
approach appears to be the optimum strategy; under 
successful conditions, it provides a rapid checkout; 
under a single-failure condition, it provides rapid 
isolation. However, it is extremely complex in design 
and presents some hazards. One incorrect branch can 
lead the maintenance engineer astray. Furthermore, 
this approach is not applicable for multiple errors. 

Figure 4 shows how the three test approaches are 
rated against the three test environments. The Start- . 
Small test is extremely useful for Manufacturing 

FAILURE 

fAILURE 

TEST N 

ANALYSIS OF 
YES MULTIPLE 

FAILURE 
DATA 

Figure 2-Ceneral flow diagram of multiple-clue test approach 

Test, since the initial tests are simple and·particublrly 
suited for multiple failures. The Start-Small approach 
is also useful· for field maintenance, along with the 
mUltiple clue approach to give better diagnosis in . 
certain areas. The Start-Big approach satisfies the 
need for a quick checkout. 

A mixed strategy can be developed to satisfy the 
different test environments with one series of tests. 

. The Start-Small approach satisfies two of the three 
test conditions and can form the foundation of the 
mixed st~tegy. The multiple clue approach can be 



Figure 3 - General flow diagram of start-big test approach 
(process of elimination) 

used where further isolation is required. The Start
Big approach can be used, sparingly and cautiously, 
to speed up the test process. 

All of the techniques mentioned so far depend on 
the results of more than one test for proper diagnosis. 
They are susceptible to incorrect diagnosis of the 
intermittent error, and the diagnosis of a failure 
depends on the ability to recreate the failure under test 
conditions. The test '~environment is an artificial one ' 
and, while operating conditions may be simulated, 
they cannot. be duplicated. Therefore, there is no 
guarantee that a failure which occurs during normal 
operation' can be detected and isolated under test 
conditions. Error-detection circuitry, along with 
error-environment recording tech niqes , has been 
used to detect errors during normal operation (on
line) for analysis at a later time (off-line). The ultimate 
diagnostic seems to be error-check circuitry with 
enough diagnostic resolution to isolate to the replace
able parts. This creates another diagnostic problem. 
Verifying the design and functioning of all the error
check circuitry is, in itself, a formidable task. 

Field engineering 

If Diagnostic Engineering is looked at from the 
Field Engineer's point of view, a very interesting 
perspective is obtained. Here is a man who is sent to 
company schools for extensive training in circuits, 
logic, theory of operation, programming, operating 

Diagnostic Engineering Requirements 50S 

ENG/MFG TEST 

FIELD MAl NTENANCE 

QUICK CHECKOUT 

START 
SMALL 

x 

x 

APPLICABLE STRATEGY 

MULTIPLE 
CLUE 

x 

Figure 4-Test use vs. strategy 

START 
BIG 

x 

systems, diagnostics, etc. He is furnished with a com
plete set of manuals describing in detail the operation 

"of the system and its subassemblies: hundreds of 
pages of logic diagrams; documentation for the operat
ing programs; diagnostic program writeups, flow 
charts and listings. He is furnished with many main
tenance aides such as test panels, failure indicators, 
oscilloscope, tool kit and spare parts. 

The problem the Field Engineer faces is that, when 
a failure occurs, it is not always obvious where to 
begin looking. The problem could be a program 
error or a hardware malfunction. Should he spend 
more time investigating the customer's error symp
toms or should he try to recreate the error under test 
conditions? Should he go to the test panel or run 
diagno~tic programs? Should he run all the available 
test programs in sequence, or should he select the 
test program for the suspected malfunctioning area? 
Can the user still operate a portion of the system 
while he isolates and repairs the malfunction? 

There are no simple answers to these kinds of ques
tions. The field engineer is exposed to a wide variety 
of problems and operational environments. He has at 
his disposal a wide variety of testing tools and tech
niques. He applies his judgment to each unique set 
of circumstances as he proceeds in the isolation and 
repair process. All the diagnostic tools, with their 
options and variations, should be ready and available 

. as he needs them. 
This interplay between Field Engineer and diagnos

tic tools is, in itself, a Human Factors problem. The 
Field Engineer must control or manage the mainte
nance system. He must continually select a procedure, 
execute the procedure, and interpret test results. 
While he has be~n furnished with sophisticated 
systems for automatic testing and diagnosis, the 
toughest problems have been left for his own ingenu-



506 Spring Joint Computer Conference, 1968 

ity. The tendency is to compensate for this by provid
ing him with flexibility in the maintenance system. 
The Field Engineer must communicate with the main
tenance system to. select the option he wants. The 
diagnostic programs must communicate test results 
in meaningful terms. 

The Diagnostic Control Program has evolved as a 
method of standardizing the interface between the 
Field Engineer and the numerous diagnostic programs. 

. It provides a framework within which all of the 
, individual diagnostics are developed. It provides a 

standard communication medium between the test 
engineer and the individual diagnostics. The control 
program automatically initiates and terminates tests 
as instructed by the test engineer. 

Maintenance systems continue to get more complex 
with the increased complexity of the systems being 
installed. Techniques must be. developed in the future 
to. simplify maintenance from a· Human Factors 
point of view. 

Other factors affecting diagnostic techniques 

Up to this point, the basic techniques for testing, 
.detecting and isolating equipment malfunctions have 
been described. The continuous trend toward more 
sophisticated data processing systems has placed 
restrictions on the use of some of these techniques 
and has created requirements for new techniques. 

The technological advance from the tube to the 
transistor, and now integrated circuits, has given us a 
significant increase in reliability. The failure rate per 
logical decision has decreased significantly. The same 
technological advance is providing us with higher 
logical density and more logical function per dollar. 

In parallel with advances in equipment development 
is the development of new and more sophisticated 
applications for this equipment. The result is a 
continuous. trend toward larger and more complex 
system configurations. As a result of this increased 
use of equipment per system complex, the typical 
large complex of today is susceptible to a higher 
failure rate, in spite of reliability improvements at 
the logic level. 

System error management 

Systems must be designed which are fault tolerant; 
that is, capable of continuing with their primary 
function in spite of individual equipment malfunctions. 
This implies the implementation of a total error 
management concept throughout t~e system. This 

. concept involves program design, as well as system 
design. Basically, it includes the following: 

1. The ability to detect system maifunctions while 
the system is operating. 

2. The ability to recover by redoing the operation, 
or going back to some checkpoint in the system. 

3. The ability to recognize and isolate a solid mal
function to a unit. 

4. The ability to adjust the system (reconfigure) 
to continue operation without the failing unit. 

5. The ability to repair the failing unit without 
impairing system operation. 

6. The ability to return the failing unit to the system 
without impairing system operation~ 

All of the above have been implemented to some 
degree or another for various applications. In some 
cases, the solution to the problem is applications 
dependent. For example, in some tracking applications 
occasional pieces of tracking input can be lost without 
significant effect on the operation. However, the loss 
of one· business order or stock transaction can be 
very serious. On the other hand, the tracking appli
c;ation must respond in real time - including the error
recovery procedures - while many business applica
tions can tolerate an occasional lag in response. 

System Error Management has been implemented 
successfully for specific applications. Many defense 
systems serve as good examples. In many cases the 
additional programming costs run high. More general
ized solutions to the error management problem are 
required in the future. 

SUMMARY 

In conclusion, a few general observations can be 
made. Error detection and diagnosis through the use 
of automated testing and programmed analysis has 
several drawbacks: 

1. The use of testing for diagnosis assumes the 
ability to recreate the error under a test en
vironment. 

2. Diagnosis to replaceable parts requires sophisti
cated programs. 

3. The effectiveness of diagnosis for intermittent 
errors is questionable. 

4. Automated testing for error detection provides 
no error detection during normal system opera
tion. 

5. Implementation of this technique on-line, con
current with the operating program, adds more 
complexity to the maintenance system. 

In spite of these drawbacks, the automatic testing 
approach will still be required in the foreseeable 
future for design verification and initial system shake
down. 

After installation, the best test of the system is the 
actual operating Pfggrams. It is possible to design 
detection logic which approaches 100% detection of 
equipment failures during system operation. The same 



error detection logic can be designed to provide 
diagnosis or isolation to replaceable parts for inter
mittent as well as solid failures. Error detection logic 
plays a vital role in error management or automatic 

Diagnostic Engineering Requirements 507 

recovery techniques. As the complexity and cost of ' 
programming increases, the economic tradeoff is 
swinging to-ward more error detection logic for the 
detection and isolation of errors. 





Self-repair techniques in digital systems* 

by FRANK B. COLE 
Westinghouse Electric C orporat;on 
Baltimore, Maryland 

and 
WILLIAM V. BELL 
u. S. Army Electronics Command 
Fort Monmouth, New Jersey 

INTRODUCTION 

The Army's use of sophisticated digital equipment 
at the lower orga~izational levels has led to an in
creased requirement for equipment availability with
out extensive downtime, maintenance, or logistics 
support. Self-repair by means of automatic spares 
switching was considered in an Army funded study 
as a possible solution to this requirement. This paper 
is based on that study. 

There are two basic problems inherent in the self
repair of equipment by the use of spares switching .. 
One is the detection of the failure and the location 
of the failed element, while the second is the switch
ing out of the failed element and the switching in of 
a spare. The study upon which this paper is based 
considered these aspects of self-repair. Modular 
redundancy! was not studied, and is mentioned in 
this paper only for, purposes of comparison. 
• Three common methods of fault detection and 
location are coding, software diagnostics, and du
plication: 

(1) Coding is one technique for the detection and 
location of faults. Ordinary Hamming and similar 
codes can be used for detection (and perhaps even 
correction) of faults in memory and similar transfer 
type operations. In the arithmetic unit where infor
mation is altered during operation residue type codes 
must be used. The main disadvantage to coding is 
the extra time required to generate the codes. This 
is especially true of the arithmetic unit where a new 
code word must be generated after each operation. 

(2) If the digital device in question is a program
mable computer, then software can be used for the 
detection and location of faults. The discussion of 
diagnostic routines and reasonableness tests is beyond 

*This work was sponsored in part by the U. S. Army Electronics 
Command under Contract DA28-043-02343 (E). 

S09 

the scope of this paper, except to point out that they 
form a valuable adjunct to techniques such as du
plication. The disadvantag.e ,to the use of diagnostics 
for the primary detection of faults is that there is 
usually considerable delay between the occurrence of 
the fault and the detection of it by the diagnostic. 

(3) Duplication is applicable to all parts of a digital 
system, including control. It"does not present the tim
ing problems that the first two techniques do, and 
there exists the possibility of using the duplicate both 
as a fault detector and as a spare. For these reasons 
duplication, in conjunction with the other techniques, 
was selected for the fault detection and location func
tion. Several recent papers2.3 suggest other approaches 
to self-repair. 

Repair switching with duplication 

A. Organization 
Figure 1 illustrates one straightforward method of 

performing repair switching when duplication is used 
for fault detection and location. The module to be 
replaced consists of a main unit, an identical auxiliary 
unit, and a comparator which compares all significant 
outputs of the main and auxiliary units. When the 
comparator detects a difference, it is assumed that 
one of the three parts of the module has failed and 
the whole module is replaced. 

In looking at Figure 1, the question comes to mind, 
"Why not simply switch out the failed unit (main or 
auxiliary) and use the working unit as the spare?" 
The problem is, of course, determining which unit has 
failed and which is working, However, if the problem 
can be solved, the hardware saving is considerable. 
One possible solution is the use of diagnostic programs 
to find the failed unit. The hardware implementation 
is shown in Figure 2, and the system would work as 
follows. 



510 Spring Joint Computer Conference, 1968 

~ SPARE 

1 
I I ~OUTPUT'SI 

INPUT (S) • ·1 MAIN 
I 

, 

Figure 1 - Repair switching - external spare 

INPtJTISI-~~ 

Figure 2 - Repair switching - no external spare 

The main and auxiliary units operate in parallel, 
with identical inputs. All of the significant outputs 
are compared. As long as no failures occur, the out
puts of the main and auxiliary units will be identical, 
but upon a failure in either unit (or the comparator) 
the outputs will be different and a program interrupt 
can be generated. A diagnostic program is then run. 
If the diagnosis detects no faults, then the main unit 
which is connected must be working and the failure 
must be either the auxiliary unit or the comparator. 
In addition, if the comparator output is observed 
during the diagnosis, and the difference does not 
occur again, the first difference must have been an 
error (noise) and not a h~rd failure. This approach 
can . thus prevent errors from causing working units 
to be switched out and "thrown away". However, if 
the comparator does indicate a difference during a 
diagnostic, and the diagnostic indicates no faults, 
then the switch must be "locked" in position so that 
the main unit remains connected and the comparator 
output disabled so no further interrupts occur from the 
"repaired" module. If the diagnosis does detect a 
fault, then the main unit must have failed and the 
auxiliary unit's output must be switched into place 
permanently, and the comparator output disabled to 
preve"nt further interrupts from this module. 

Thus, if the duplicated units themselves are used as 
spares: 

(1) A means must be available to detect faults 
independently of duplication. Although diag-

nos tic programs are the most promising method 
of fault detection, coding or any other accept
able scheme could be used. 

(2) As long as the fault detector serves more than 
one module, permanent (non-power dependent) 
switch storage is required. 

(3) Where applicable, this technique has some 
definite advantages over triple modular redun
dancy. First there is a hardware saving since 
duplication, rather than triplication, is required. 
Secondly, the reliability could be greater since 
only one out of two units need be working, 
rather than two out of three. On the other side 
of the coin, there are two disadvantages to this 
technique over triple modular redundancy. The 
first is that it is only applicable where a means 
of external (to the module) fault detection is 
possible, and the overhead (hardware, storage, 
time) of the external fault detection must be 
added to the system cost. Secondly, information 
is lost in the case of a failure and the program 
must be "restarted" in some manner each time 
a failure occurs. 

One possible hardware implementation for the 
switching using internal spares is shown by Figure 3. 
It is assumed that the three control pulses, Reset 
Fault, Set Main Failed, and Set Auxiliary Failed, 
are generated by the diagnostic program or other 
fault detector. When the comparator gates detect a 
difference between a main and an auxiliary output, 
the J input of the Fault Flip-Flop is enabled and the 
flip-flop is set by the clock. The flip-flop is clocked 
to avoid its being set by spikes caused by temporary 

OUTPUT 

Figure 3 - Switch logic hardware implementation 



differences between the main and auxiliary outputs 
during transition times. The setting of the Fault 
Flip-Flop puts the system in a fault detector mode. 
For example, it might cause an interrupt which causes 
the diagnostic program to take control. 

Assuming that a diagnostic program is used for 
fault detection, the program would then reset the 
Fault Flip-Flop with the Reset Fault pulse and run a 
diagnostic of the area in question. If the diagnostic 
shows a failure, then the Set Main Failed pulse is 
generated. If the Fault Flip-Flop has been set during 
the diagnosis, as it would be in case of a hard fault, 
then the Main Failed pulse causes the Main Failed 
Permanent Store to be set. If the diagnostic does 
not show a failure, then the Set Auxiliary Failed pulse 
is generated and the Auxiliary Failed Permanent 
Store is set if the Fault Flip-Flop has been set during 
the diagnostic. In any case, the Reset Fault pulse is 
then applied to reset the Fault Flip-Flop. 

Setting of the Main Failed Permanent Store dis
connects the Main Unit from the module outputs and 
connects the Auxiliary Unit to the module output(s). 
It also prevents the Fault Flip-Flop from being set 
by any future difference between main and auxiliary 
output(s). Setting of the Auxiliary Failed Permanent 
Store simply prevents the Fault Flip-Flop from being 
set, thus assuring that the fault detector is never called 
on again by that module and the Main Failed Perman
ent Store cannot be subsequently set. 

As a matter of practice the overall reliability of the 
system can usually be increased by including the 
switch gates as part of the following module. Of 
course, this also increases the system price since the 
number of switch gates is at least doubled (the num
ber of switch gates would be equal to twice the number 
of places the output goes). For the remainder of this 
paper, the configuration with one set of switch gates 
will be assumed, and if the gates fail, the system fails. 

Because of its size and relative importance, the 
memory module can be handled somewhat differently 
than a typical logic module. A memory configuration 
using duplication is shown in Figure 4. Each memory 
module contains a complete memory with parity. 
The permanent stores are completely under program 
control and no hardware comparator is provided as 
with the other modules. The memory operation is 
described below. 

As each word is read from the memory the parity 
is ~hecked. If no parity errors occur, the information 
is taken from the memory designated as main. How
ever, if a parity error does occur, the information is 
taken from the memory not having the parity error. As 
each parity error occurs, a program (software) 
counter is incremented. If this counter (which is reset 

Self-Repair Techniques in Digital Systems 511 

periodically) reaches a threshold, then it is likely 
that the memory causing so many parity errors has 
a failure. A diagnostic program is then used to check 
out this memory. If the memory fails the diagnostic, 
it is permanently switched out and the other memory 

. is used alone. If a parity errors occurs in both mem
.. ories simultaneously, the program is interrupted and a 
software decision is made depending upon the cir
cumstances. 

Figure 4 - Dual memory organization 

B. Module size 
The size of the self-repairing module is a very im

portant consideration. The exact size of the optimum 
module is a function of the system being implemented, 
but some general comments can be made: 

( 1) The module must be large enough so that the 
number of internal components is significantly 
greater than the number of components required 
for switching. 

(2) The division between modules must be made in 
such a way as to minimize the number of inter
module connections. 

(3) If duplication without external spares is to be 
employed, the module should be selected for 
easy diagnosis or other external testing. 

(4) The modules should be approximately equal 
in reliability. 

c. ?ermanent store implementation 
The permanent switch store must be independent of 

power as discussed previously. Of the approaches 
that could be used with presently available com
ponents, the tw~ most promising are: 

( I) Fuses - Fuses can be used in conjunction with 
solid state devices as shown in Figure 5. They 
have the advantage of being inexpensive and re
liable and the disadvantages of being slow and 
non-resetable. 



512 Spring Joint Computer Conference, 1968 

+6V ----------, 

Stl!!TC~ 
INPUT 

3.6K 

Figure 5 - Permanent store implementation 

I 
I 

(2) MNOS Storage Devices4
- The Westinghouse 

Research Laboratories have recently an
nounced the development or" Metal-Nitride
Oxide-Semiconductor field-effect transistor 
with a voltage variable threshold. Once the 
threshold has been set it will remain indefi
nitely, even though power is removed from the 
device. TI:te threshold can also be reset by 
application of a voltage of suitable magnitude 
and polarity. 

Prior to the advent of the MN OS device the fuse 
appeared to be the most practical implementation of 
a permanent store. Therefore the reliability cal
culations in the following section are based on the 
use of fuses. However, now that the MNOS storage 
device has become available with its advantages of 
resetability and high operating speed, it would prob
ably be used in any self-repair implementation. 

Reliability calculations 

There are seven parts to the self-repairing module. 
These parts are: 

1. Main Unit 
2. Auxiliary Unit 
3. Comparator 
4. Main Failed Permanent Store 
5. Auxiliary Failed Permanent Store 
6. Output Switches 
7. Fault Flip-Flop 
The module will continue to operate successfully 

with certain combinations of failures, and fail with 
other combinations. In order to determine the module 
reliability, certain simplifying assumptions must be 
made in determining which combinations of part 
failure cause module failure. The assumptions which 
have been made are: 

(1) The most destructive sequence of failures is 
always assumed. For example, if the Compar
ator fails after a failed Main Unit has been 
removed from the module, its failure will not 
fail the module. However, if the Comparator 

fails first, then the failed Main Unit will not 
be removed and the module will fail. 

(2) A failure in the Output Switches will fail the 
module (and hence the system). 

(3) A failure in the Fauit Flip-Flop wIn fail .the 
system. This assumption is made because if 
the flip-flop fails to a permanent set state, an 
interrupt will occur which the computer cannot 
clear. It will then have to ignore fault inter
rupts and the next failure will fail the system. 

(4) Shorts to ground and shorted' diodes are as
sumed not to occur at critical points (i.e., com
parator, main and auxiliary unit inputs). 

it shouid be noted that the first three assumptions 
are highly pessimistic. There are many sequences of 
failures and types of f~ilures in these categories 
which could occur and not fail the system. Assump
tion (4) is optimistic, but not unrealistic. Molecular 
device failures tend to be opens rather than shorts. 
No significant data were found on the probability of 
these two types of shorts. The reliabilities calculated 
on the basis of these assumptions are thus pessimistic 

Through the use of these assumptions, Table I was 
generated. This Table illustrates for which combina
tions of failures the module will continue to operate. 
The Output Switches and Fault Flip-Flop are not in
cluded in the Table because it has been assumed that 
a failure in one of these will fail the module. From 
the Table it is possible to select mutually exclusive 
combinations of states for which the module will work. 
With these combinations and making the further as
sumption of statistical independence between part 
failures, the reliability (R) of the module may be writ
ten as: 

R = {RMRARC + RMRMFRAF (1 - RA) + RMRARMF 
(1 - Rd + RMRARAF (1 - Rc) (1- RMF) 

+ RCRARMFRAF (1 - RM)} RsRF (1) 

where the R's or reliabilities are the probability that a 
particular part will be working and -the subscripts 
refer to the parts listed above. 

Since the Main and Auxiliary Units are identical 
and the Main Failed and Auxiliary Failed Stores are 
identical, then RM = RA and RMF = RAF. Thus it is 
possible to simplify the expression for R to: 

R = {RM2RC + RMR~F - 2 RM2R~F + 2 RM2RMF 
- 2 RM2RMFRC + RMR~FRd RsRF 

(2) 

A similar fault table can be constructed for the mem
ory. However, the memory table is simpler because 
there is no comparator. Such a table would show the 
memory to be working under the following three con
ditions: 



TABLE 1-Module Failure Combinations 

i1) i1) i1) i1) s.. s.. s.. s.. 
0 .9 0 .9 .... en .... en os rn os en 

s.. 
~ '"0 '"0 s.. 

~ '"0 '"0 .9 .... ~ ~ 
0 .... ~ ~ 

~ >. os °ca °ca ~ >. os °ca °ca s.. s.. 
~ 

i1) s.. s.. 
~ i1) 

~ ~ u.. u.. :; ~ ~ u.. u.. :i c.. c: c: c.. c: c: a 0;< 
°ca °ca ~ '"0 a 0;< 

°ca °ca ~ '"0 
0 :: :: 0 0 :: :: 0 

U -< ~ ~ -< ~ u -< ~ ~ -< ~ 

F F F F F F W F F F F F 

F F F F W F W F F F W F 

F F F W F F W F F W F F 

F F F W W F W F F W W F 

F F W F F F W F W F F F 

F F W F W F W F W F W F 

F F W W F F W F W W F F 

F F W W W W W F W W W W 

F W F F F F W W F F F F 

F W F F W F W W F F W F 

F W F W F F W W F W F F 

F W F W W F W W F W W W 

F W W F F F W W W F F W 

F W W F W W W W W F W W 

F W W W F W W W W W F W 

F W W W W W W W W W W W 

F = FAILED 
W=WORKING 

(1) The Main and Auxiliary Units (memories) 
working. 

(2) The Main Unit and Main Failed Store working 
and the Auxiliary U nit failed. 

(3) The Auxiliary Unit, Main Failed and Auxiliary 
Failed Stores working and the Main Unit failed. 

From these conditions the reliability (R) of the mem-
ory module may be written as: 

R= {RMRA + RMRMF (1-RA) + RARMFRAF (1-RM)} Rs 
(3) 

Since RM = RA and RMJo, = RAt, this equation may be re-
written as: 

R = {R~ + RMRMJo, - R~RMJo' + RMR~Jo' - R~R~F}Rs 

(4) 

The R's are all time dependent, that is the reliabili-
ty of a unit depends on how long the unit has been op-
erating. The most commonly assumed form of time 
dependence is -

R(t) = e-At (5) 

where A. is the failure rate. Most data on component 
reliability are given in the form of A. or failure rate. 
For an exponential reliability curve the mean time to 
failure (MTTF) is ItA.. The MTTF is often used as a 
measure of system reliability. 

Self-Repair Techniques in Digital Systems 513 

For a non-self-repaired and non-redundant system, 
the system reliability is an exponential function of 
time, providing the component of subsystem reliabil
ities are also exponential functions of time. However, 
this is not true for a self-repaired or for a redundant 
system. The system reliability function is not an expo
nential, but a more complicated curve. Figure 6 shows 
the reliability, R(t), for a self-repairing module con
taining an accumulator register. The R(t) for the ac
cumulator without self-repair is plotted on the same 
axes to illustrate the difference between curves. 

'"11 
LO 

Ffttl· I I I 
KL'-R€PAUIUIC 

ll00UL€ 

• _o$[L' ~IP&l~I_ " 
_I ~.--" 

\ 

~ 
\ 

~. 

! 
A 

I 

,~ 
II liT aC~UIlULa_TO~ r...;~ 

0 . . 101 10 

TtME .M MOUltS 

Figure 6 - Reliability versus time 

A parameter which can be used in comparing vari
ous systems, then, is the reliability of the system at 
some mission time. The reliabilities of the various 
parts may be calculated in terms of the mission time 
and the part failure rates. Failure rates of .05 per 106 

hours for JK flip-flops and .02 per 106 hours for gates 
are assumed. 

Table II compares the reliabilities and component 
complexities for a hypothetical computer with and 
without self-repair. The compute'r is a simple 12-bit 
machine designed under the self-repair contract for the 
purpose of demonstrating self-repair techniques. The 
table shows both the increased complexity and the in
creased reliability due to self-repair. 

CONCLUSIONS 

A technique of implementing self-repair, via duplica
tion and spare switching, for digital systems has been 
described. It has been shown that the use of this tech
nique is feasible for increasing the reliability of these 
systems. The primary disadvantages of the technique 
are increased hardware and cost, and increased exe
cution times. However, in systems where reliability 
is of utmost importance, the reliability increase can 
offset the disadvantages. 



514 Spring Joint Computer Conference, 1968 

TABLE II - Hypothetical Computer Reliability 
and Complexity Showing Benefits of Self-Repair 

Module Complexity .. Module Reliability 
10,000 Hours 50,000 Hours 

Self-Repair No. Self~Repair Self-Repair No Self-Repair Self-Repair No Self-Repair 
I Register L 3.4 
I Register R 3.4 
N Register 3.5 
Sequencer 2;6 
Misc. Control 3.0 
A Register" L 2.4 
A Register R 2.4 
Q Regi~ter L 2.5 
QRegister R 2.6 
S Register 209 
P Register 3.0 
Memory 2.0 
Total Model 2.2 

REFERENCES 

1 R H WILCOX W C MANN 
Redundancy techniques/or computing systems 
Spartan Books Washington 0 C 1962 

1 

2 P W AGNEW R E FORBES C B STIEGLITZ 
An approach to self-repairing computers 
Diges"t of the 1967 IEEE Computer Conference 

.9956 

.9956 

.9969 

.9948 

.9735 

.9951 

.9945 

.9954 

.9954 

.9936 

.9918 

.9582 

.8861 

.9940 .9767 .9705 
.9940 .9767 .9705 
.9964 .9836 .9822 
.9871 .9693 .9371 
.9625 .8435 .8261 
.9796 .9656 .9021 
.9792 .9621 .9003 
.9859 .9714 .9315 
.9863 .9717 .9333 
.9875 .9636 .9389 
.9868 .9541 .9357 
.8248 .5718 .3818 
.7012 .3536 .1696 

3 W G BOURICIUS et aI. 
Investigations in the design 0/ an'automatically repaired 
computer 
Digest of the 1967 IEEE Computer Conference 

4 T L CHU J R SZEDON C H LEE 
Preparation and C-V characteristics 0/ silicon-silicon nitride 
and silicon-silicon dioxide-silicon nitride structures 
Solid State Electronics vol 10 p 897 1967 



A study of the data commutation problems 
in a self-repairable multiprocessor 

by KARL N. LEVITI, MILTON W. GREEN and JACK GOLDBERG 
Stanford Research Institute 
Menlo Park, California 

INTRODUCTION 

In recent years significant effort has been devoted to 
the de.velopment of techniques for realizing computer 
systems for which a significant problem of design 
arises from the unreliability of components and assem
bly as well as from special constraints on construction 
and operation.1 Examples of such systems are com
puters for aerospace missions and on-line process 
control. 

A significant effort has been directed in the past 
dec~de to attempt to solve various facets of the prob
lem of realizing ultra reliable digital systems. This 
work, also summarized in detail in Ref. 1 has ranged 
from investigations of fault-masking techniques for 
various computer subblocks such as arithmetic pro
cessor and memory units, to studies of reliability en
hancement policies for large systems. It is felt that 
most of the problems pertaining to enhancing the 
reliability of i.solated digital subbloc~s are now under
stood, at least from the standpoint of being able to 
make sOl}nd engineering judgments concerning the 
utilization of the various techniques. Strictly passive 
redundancy techniques (e.g., replicated voting logic, 
error correcting coding methods) have in part been 
appli,ed to the control and arithmetic processing sec
tions of the Satu~ IVb guidance computer, and it has 
been concluded2 that the application of such tech
niques exclusively cannot economically satisfy the 
computation and reliability requirements of future 
advanced computers. 

This conclusion has prompted many organizations 
to investigate dynamic error control mechanisms, 
in which the logical interconnections among the com
ponents of the computer may be altered.3.4.5 In the 
system schemes investigated, the reconfiguration is 
employed only at very high functional levels, but it is 
well-known that there is potentially greater gain to 
be achieved by employing the reconfiguration at 
lower system levels. 

515 

It has also been recognized that there is consider
able advantage to a system wherein the allocation·of 
computation tasks is adjusted so as to be consistent 
with the available. equipment. In such systems, which 
are colloquially said to embody "graceful-degrada
tion," most of the available equipment is performing 
useful computations. Among the many references on 
this approach, in Ref. 6 a single processor structure is 
assumed, and in Refs. 7 and 8 a multi-processor 
structure is postulated. In tbese studies as well as 
many others, several important items are not treated 
in depth, namely those relating to: 

(1) Diagnostic and replacement policies 
(2) Logical design techniques for memory, control, 

and processing units so that diagnosis and re
pair are facilitated (or indeed feasible) 

(3) Reliable commutation (or data switching) 
required for the execution of subsystem re
placement 

(4) The specification .of software for the control 
of diagnosis and repair. 

When the new sources of failure that are introduced 
by the mechanization of the above four items are 
included in the reliability analysis, it is not clear that 
the systems will perform as promised. This is an 
especially critical problem when reconfigurability 
is extended to low system levels or when the ca-
pability for graceful degradation is provided. . 

Hence, it is imperative that these four items be 
studied in detail, i.e., that design sche~s be devel
oped that minimize the new sources of failure, and 
that reliability analyses be carried out so as to accu
rately estimate overall system reliability. In this paper 
we develop a multiprocessor model- the structure 
which appears to be most appropriately matched to 
our computation requirements - and then study the 
data commutation problem within the framework of 
this multiprocessor organization. 



516 Spring Joint Computer Conference, 1968 

A multiprocessor model 

Many descriptions of multiprocessor systems have 
appeared in the literature,8.9,lo and several contempo
rary computer systemsll rely upon mUltiprocessing. 
Most of these previous descriptions have been con
cerned with (1) gross ~stimates of system reliability, 
assuming for example, that diagnosis and switchover 
are always executed correctly; (2) scheduling analyses 
and simulations to facilitate the determination of 
system responses to various inputs; and (3) the spec
ification of software that will enable the optimal utili
zation of the hardware. One of the most important 
functions within a multiprocessor is the switching of 
data and control signals among the component blocks. 
The components needed for such switching are them
selves sources of system error, and so it is neces-

. sary to design switching or commutation networks 
to achieve the utmost reliability. 

ALL DATA OIAf'!fifLS ARE MDlRECTfCIIAL 

Figure I - Multiprocessor computer system block diagram 

The model of a multiprocessor with which we will 
be concerned is depicted in Fig. 1. The system con
sists of a set of M high-speed working memories 
(WM); a set of N simpie processor and control units 
(SP); a set of Q arithmetic logic units (ALU); a set 
of R back-up memories (BAM); an input/output 
device controller (I/O) for which we provide sets 
of spare registers, counters, buffers,. and .real~time 
clocks; two commutation networks (eN); a super
visory control unit (SCU); a~d two registers for the 
setup, i.e. the establishment of input/output links, 
of the commutation networks; it is convenient to 
view these registers as forming a component of the 
SCU. In Ref. 12 we describe in detail the functional 
requirements of each block type, and, in addition, we 
present a flow description of the system responses 
to input, interrupt, and error conditions, 

It is' envisioned that each SP unit will have the 
capability of executing comparatively simple decision 
and arithmetic algorithms, the capability of control
ling program flow, and the capability of controlling 
processor allocation and scheduiing. An AL U will 
be used for the execution of complex algorithms re
quiring extensive processing hardware. The SCU 
will function as a "referee" in all error control pro
cesses, and, in essence, represents the system "hard
core" although it can be superseded by an external 
command. The BAMs will store the task programs, 
diagnostic programs, and the setup programs for the 
commutation networks. 

In addition to the intenmit communication links 
provided by the commutation networks, a single data 
channel (probably serial), shown as bold-faced 
lines in Fig. 1 is provided, linking the SP and WM 
units with the supervisory control unit. It was noted 
by Alonso1o that a complete mUltiprocessing system 
could be designed containing only this single data 
channel communication link, (although in practice 
it is doubtful that this link would be serial), but we 
have included the possibility of multiple-simultaneous 
communication between SP and WM blocks because 
of the additional flexibility thus provided and because 
at this· stage it seems appropriate to work with a 
general model. 

One important feature of the system, not shown 
explicitly in the figure, is that each defined block 
of the system will have at least one distinct power 
supply associated with it. Furthermore, it is assumed 
that the power can be disconnected from a faulty 
block without reSUlting in the propagation of errors 
into connecting blocks due to excessive loading on the 
part of the disconnected unit. Hence, one mode of 
error control would trivially involve the disconnection 
of a major s.ystem block, i.e., WM, SP, or ALU, upon 
the detection· of a hardware failure. However, it. 
appears that the overall system reliability is enhanced 
if some capability for repair is incorporated within 
these block types. We -have found that the repair 
operation is particularly. easy to carry out if each 
major system block is realized as a one-dimensional 
cascade of identical elements. We call such a logical 
realization a byte-sliced realization since it is natural 
to assign a byte (containing at present an undeter
mined number of bits) of each of the registers, adders, 
decoders, etc., to each element or slice in the cascade. 

The repair operation for byte-sliced realizations, 
assuming each major block contains several redundant 
slices, then requires the routing of external data to 
and from only the working, i.e., unfailed slices, of the 
block, and also the "shorting" of data internal to the 
block, e.g., arithmetic carry or control information, 
around faulty slices. 



In Refs. 1 and 12 logical design. techniques are 
presented to demonstrate the feasibility of realiz
ing in a byte-sliced structure, the memory, arithmetic 
logic, and microprogram control functions. 

Thus, it is seen that the commutation networks 
will perform the function of establishing communica
tion links between WM-SP units and between SP
ALU units, and also the function of repairing the 
units by routing data only to working byte-slices. 

Commutation requirements 

The data switching functions described in the pre
vious section give rise to a variety of specifications 
for commutation networks. In this section we will 
classify the major network types, and in the remain
ing sections we will present a number of detailed 
designs for the various types. 

In addition to meeting the particular switching 
requirements (e.g., number of active paths, number 
of configurations, etc), several engineering constraints 
should be considered in the design of practical net
works. Thus, for any commutation function it is desir
able to synthesize networks for which 

(1) The design is economical 
(2) The network setup is not difficult 
(3) The data transfer is rapid 
(4) Failures in the commutation network do not 

disable either the commutation network or the 
modules served by the network (this tolerance 
to CN failures should be achieved with minimal 
increase of network complexity), and 

(5) If the commutation network is "repairable", 
the diagnostic routines should be easy to specify 
and of minimal length. 

We have ~blssified two types of data commutation 
for ~h~ task of module assignment, (i.e., the assign
ment of, for example, WMs to SPs) namely: 

( 1) Complete permutation - complete utilization 
(2) Complete pefII?utation - inco~plete utilizat~on, 

and three types of commutation for the task of 
repair namely, 

(3) Incomplete permutation - order preserving 
(4) Incomplete permutation - nonorder preserving 
(5) "Shorting." 

These five commutation functions are described 
schematically in Fig. 2 where the specific applications 
of each function are also listed. 

The assignments associated with the complete 
permutation - complete utilization [CPCU (N)] 
function is obvious; the commutation network is to 
be capable of permuting in an arbitrary manner a set 
of N-input data lines (all lines active) emerging, 
for example, from a set of memories, to a set of N
output lines incident to, for example, a set of SP units. 

Study of Data Commutation Problems 5 i 7 

COMMUTATION RJNCTION ~ APPLICA TION 

COMPLETE PERMUTATION ::::M:: 
COMPLETE UTILIZATION ~ 

CONMUNICA TION BETWEEN 
WORKING MEMORY-SIMPLE PROCESSOR 

(F\A.L CAPACITY OF 
INTERCOMIECTION) 

COMPLETE PERMUTATION ~ 
INCOMPLETE UTILIZATION ~ 

CXlMMUNICATION BETWEEN 
BACKUP MEMORY-SIMPLE PROCESSOR 

(LIMITED CAPAOTY OF 
INTERCONNECTION) 

INffRCcNNECTION'liEN 

fl 
GOOC RE~DANT I.HTS EXIST 

GOOD BYTE AND DATA IS ORDER SENSITIVE 
INCOMPLETE PERMUTATION BYTE 
ORDER PRESERVING GOOD 1. CONMUNICATION BETWEEN 

BYTE GOOD BYTES OF WORKING 

BYTE =~~~LE 

GOOD UNIT RE~T UNITS EXIST 
INCOMPLETE PERMUTATION UNIT 1. COMMUNICATION BETWEEN ~ 

GOOD INTERCONNECTION WHEN 

NONOROER PRESERVING SPARE REGISTERS 

"SHORTING" 

GOOD GOOD 2. COMMUNICATION BETWEEN 
UNIT UNIT ALU-SJMPLE PROCESSOR 

ROUTING OF DATA 
AROUND FAUL TY 

BYTE SLICES 

Figure 2 -Classification of data commutation requirements 

In the illustration a data transfer path may represent a 
parallel set of lines containing one computer word 
(24-56). The assignments associated with the complete 
permutation - incomplete utilization [CPIU (N ,m)] 
function'- differ from those associated with the CPCU 

." ." 

function in that for the former, not all terminals are 
active at anyone time, i.e., only a subset containing 
m-inputs of the total of N-inputs and outputs need to 
be interconnected at a given time. For the incomplete 
permutation-order preserving [IPOP(r,rri)] function, 
a subset containing m inputs of the r-inputs, say for 
example associated with the working byte slices of a 
simple processor and control unit, is to be connected 
to a subset of the outputs, say associated with the 
working byte slices of an arithmetic logic unit, but 
with the restriction that spati~.l ordering of the input 
signals is to be preserved at the output. The preserva
tion of order is clearly required in the example since 
the data to be commutated is a binary number. The 
assignments associated with the incomplet~ permuta
tiofJ.-nonorder preserving [IPOP(r,m)] function 
differ from those of the IPOP case in that for the 
former preservation of order is not a requirement. 
It may be noted that this function differs from the 
CPIU function in that the CPIU function requires 
arbitrary specification of terminal pairs. For the 
shorting function the outputs of a given byte slice 
are either to be connected to the succeeding stage 
(slice) or "shorted" around that succeeding slice. 



518 Spring Joint Computer Conference, 1968 

Corssbar solutions to the commutation network 
design problem 

The obvious solution to the commutation network 
design problem relies upon the use of a single-level 
crossbar switch, similar to the type commoniy found 
in central telephone exchanges. I n Fig. 3 we display 
a schematic representation of a crossbar switch serv
ing a set of WMs and SPs. Here the crossbar, where 
each single pole-single throw switch represents a 
crosspoint, performs both the CPCU(N) and IPOP 
(r,m) requirements. Clearly a crossbar with N2r2 
crosspoint would be sufficient, but it was shown in 
Ref. I that actually N2(r2-m2) crosspoints are suf
ficient. In any event it is seen that 28.104 crosspoints 
are required to serve 25(=N) processors and mem
ories, 32(=r) total bytes, and 24(=m) bytes required 
for computation. Since a multiprocessor of this com
plexity is not unreasonable, there is considerable 
motivation to seek more economical commutation 
network designs. 

Figure 3 - "Crossbar" realization of commutation function 

The primitive building block of commutation networks 

Most of the commutation networks to be described 
in succeeding sections will be composed of inter
connections of the "cell" shown in Fig. 4. We have 
found that arrays of such cells provide a very attrac
tive balance among the various engineering constraints 
listed in one s~ction. In addition, the uniformity of cell 
types and the regularity of array structure make such 
arrays very well suited to advanced microelectronic 
technology (LSI). 

In essence, the cell is a double-pole, double-throw 
reversing switch controlled by a storage element 
(e.g., a flip-flop), with some means provided for set
ting the storage element to the desired state. Fig-

p 

(0) 

r--- ---, 
I I 

: I 
I : L _____ J 

(el 

r----
I 
I 
I 
I 

I 
I L _____ _ 

r---------------------, I I 
I I 

: : 

(b) 

(d) 

Figure 4 - Basic cell 

ure 4(a) shows a relay-contact version, analogous to 
circuits in the MOS technology, and Fig. 4(b) a NOR 
gate-realization of the cell in question. The two modes 
consist of a "crossing" Fig. 4(c) and'a "bending" 
Fig. 4(d) of the pair of input leads to the pair of out
put leads. Figure 4(e) depicts a redundant flip-flop 
version of the cell, for which any single component 
failure will result in one of two possible failure con
ditions, namely (1) the cell can realize only one of 
two possible modes, i.e., the bend or the cross, which 
we will call the "stuck-function" condition or (2) 
one output lead contains a faulty signal, which we 
shall call the "bad-output" condition. Table I sum
marizes the failure conditions resulting from various 
component failures of the cell of Fig. 4(e). 



TABLE I - Failure conditions for basic cell 

Component Fault 
Faulty OR gate 
Faulty 2-input AND gate 
Faulty 3-input AN D gate 
Flip-flop stuck in a mode 
Same logic value on two outputs 

.. of a flip-flop 

Failure Condition 
Bad-Output 
Bad-Output 
Stuck-Function 
Stuck-Function 
Bad-Output 

(It is assumed here that if one of the flip-flops is 
stuck in a particular mode, the other flip-flop is per
manently set to this mode, hence resulting in the 
stuck-function failure.) 

Commutation networks for complete permutation-
Complete utilization . 

1. Nonredundant networks 
The synthesis of economical CPCU(N) networks 

based upon two-state cells has been discussed else
where. 13,14,15 The most efficient known procedure 
is based upon the construction indicated in Fig. 5(a) 
where the subnetworks P A and P B are themselves 
CPCU networks; for N even each subnetwork serves 
N/2 inputs otherwise P A serves (N+ 1)/2 inputs and 
PB (N-I)/2 inputs. It is easily shown that the number 
N l(N) of cells required is 

N 1(N) = N (lOg2N ) - 2 log N + 1 * 

which is asymptotically close to the lower bound of 
(log2(N !» cells. * 

YN 

(a) 

Figure 5 - Networks for complete permutation - complete utiliza
tion 

*The symbol (x) denotes the smallest integer ~ x. 

Study of Data Commutation Problems ~1{\ 
J17 

It is of interest to investigate efficient techniques 
for setting-up the network cells to realize the neces
sary mode for a particular permutation. Consider, 
for example the network for N = 8, shown in Fig. 5(b), 
and assume that we require the setting of the cells 
as shown. Referring to Fig. 4 we see that each cell 
is in the "crossing" mode upon resetting the flip
flop. The cell is set to the "bending" mode by the 
coincidence of logic 0 values on the data inputs and 
logic 1 value on the P input. Clearly then by applying 
a 1 to the P-input of all cells in a given . level of the 
network-in Fig.5(b) a set of values X5 = Xs = 0, 
PI = 1 will set the cell serving X5 and Xs - and 
appropriately setting the N input signals, the net
work can be setup in a time interval proportional to 
the number of levels in the network. There are 2 
log2 N - 1 levels in the CPCU(N) networks presented 
above. 

(b) 

2. Byte-sliced commutation networks 

In this section we are concerned with the behavior 
of the CPCU networks under cell fault conditions and 
a simple technique of accommodating to these faults. 

It is clear that for the case wherein the basic cells 
are double pole, double throw, reversing switches, 
each' "bad-output" cell failure results in an error 
only on a single output of the network, and similarly 
each "stuck-function" failure results in an error on 
a maximum of two outputs. (In the latter case it is 
sometimes possible to accommodate to this failure 
type by appropriately setting the working cells of 
the network. This accommodation ·technique is dis
cussed in detail in a later section). i.J nfortunately, for 



520 Spring Joint Computer Conference, 1968 

the case of r-pole cells a single failure could result in 
the inability of the CPCU network to realize several 
of the WM-SP assignments. 

This state-of-affairs is significantly improved by 
byte slicing the CPCU network as shown in Fig, 6, 
in this case, the bytes (where each byte is assumed 
to contain b-bits) of the WM's are permuted in sepa
rate networks, that is, the first CPCU has as inputs 
the first byte of each WM, the second CPU has as 
inputs the second byte of each WM, etc. The outputs 
of the first CPCU are ultimately directed to first 
byte of each SP, etc. It is thus seen that for this 
byte sliced realization, which of course, requires the 
distribution of the cell memory flip-flops among each 
of the CPCU's, a cell failure disables a single byte. 
These commutation network byte failures can be 
accommodated for in the identical manner proposed 
for other byte failures, i.e., by the use of the incom
plete permutation-order preserving networks. 

Figure 6 - Byte-sliced permutation network 

3. CPCU networks insensitive to cell failures 

.a. The "stuck-function" fault 
For the moment consider only the case in whiCh the 

network is fault-free or has precisely one bad switch 
(cell). Figure 7(a) illustrates a straight-forward solu
tion to the single error correction problem. If PI 
and P 2 are both full permutation networks, then a 
fault occurring in one of them (such a fault being of 
the stuck-function type that does not disturb lead 
continuity) has no effect on the operations of the 
other network. Obviously this is a ra.ther wasteful 
approach since all of the remaining switches in the 
network containing the fault contribute nothing to
ward forming the desired permutation. Instead let 
P2 of Fig. 7(a) represent a permutation (CPCU) 
network and PI be a network specifically designed 
to undo the damage caused by a fault in P 2. Then if 
a fault occurs in P 2 it can be "repaired" by PI while 
a fault in P 1 causes no trouble because P 2 is a full 

permuter. What is required of the network PI? A 
single fault in P2 causes a simple interchange of some 
particular pair of leads at some cell within the net
work. This can only show up as a spurious reversal 
of exactly two ieads at the output. Of course, one 
might be lucky enough to have the switch fail in the 
correct position so that no trouble would occur. In 
any event it would be sufficient that the network PI 
be capable of effecting the interchange of an arbitrary 
pair of input leads without changing the relative 
assignments of the other input leads. 

~ PI P2 [ 
T& - 5510 - 136 

(0) 

TWO PERMUTATION NETWORKS IN TANDEM 

(b) 

A "DOUBLE-TREE" NETWORK 

X· I 

X· 2 

X' 3 

X' 4 

X' 5 

X' 6 

X' 7 

Figure 7 -(a) Two permutation networks in tandem; (b) A "double
tree" network; (c) stuck-function correcting networks 

The "double'tree" (D-T) network of Fig. 7(b) can 
do this job. Any pair of input leads can be directed 
to some switch on the left of the center switch. At 
this switch (to the left of the center switch) the leads 
may be interchanged. Whatever switch settings are 
required to do this, we copy by reflection in the 
(imaginary) center-line to the right-hand part of the 
network with the exception of the switch that actually 
effects the interchange. The corresponding switch 
in the right-hand part of the network is set in the 
opposite state. The scheme is illustrated in Fig. 7(b) 
for the particular case of N = 8 in which we wish 
to interchange inputs X2 and X5• Here the switch 
settings to the right and left of the center-line are 
identical, and the center switch effects the desired 
interchange. Similar networks exist for all values of 



N and are obtained by "pruning" the corresponding 
tree networks for the next largest power of two greater 
than N. 

When one of these "double-tree" networks is placed 
in tandem with a full permutation network, we are 
then able to correct the effect of one switch failure 
wherever it may occur in the composite total network 
formed by P~ and P2. If P2 is one of the CPCU type 
commutation networks we have already considered, 
it will be found that the input peripheral switches 
of P 2 and the output peripheral switches of the 0-T 
network match up into tandem pairs of individual 
switches. Note for example the pairing of leads at 
the input of the network of Fig. 5(a) and the similar 
pairing of output leads in Fig. 7(b). Whenever such 
a pairing occurs, we may omit one of the two switches 
if we have provided for the possible failure of one or 
the other of them. We may therefore omit the entire 
column of peripheral output switches from any of the 
D-T networks whenever we adjoin them to one of the 
CPCU networks. The single error correcting capa
bility is not affected by this "pruning" operation. 
Call the network that results from the removal of 
the output switches from the "double-tree" network 
the TDT(N) network (for truncated double-tree of 
N leads). Then single-error correction of any CPCU 
(N) network can be obtained by the tandem addition 
of one TDT(N) network. Furthermore, if one con
siders the possible effect at the output of the CPCU 
(N) of the multiple failure of switches, it turns out 
that the addition of p TDT(N) networks in tandem 
to any CPCU(N) network will suffice to correct up 
to p switch failures in the total network. The argument 
is much the same as the foregoing one, depending 
on the possibility of decomposing all such multiple 
failures into separate pairwise lead interchanges. 

To estimate the cost of error protection according 
to the foregoing scheme, we note that the TDT(N) 
networks contain approximately (3/2)N switches. 
To correct p errors then takes about 3/2 (pN) switch
es. Thus if N is very large, we can correct a "few" 
errors at a cost that is small compared with the total 
number of switches in the network (= Nlog2N). On 
the other hand, correction of mUltiple errors with 
TDT(N) networks does not furnish a recipe for creat
ing arbitrarily reliable networks (in the Shannon 
sense) while still meeting the asymptotic cell count 
i.e., = Nlog2N. We have not yet discovered how to 
do this although it appears likely that it' is possible. 
If anything can be concluded from results obtained 
for small values of N, it seems that single fault cor
rection should be obtainable at a cost of (lOg2N), 
extra switches in excess of the N 1(N). In particular 
we can exhibit specific networks that correct one 
fault ar.d have switch counts as indicated in Table II. 

Study of Data Commutation Problems 52 j 

TABLE II - Number of Cells in Single "Stuck-Function" 
Correcting CPCU Networks 

Leads 

2 
3 
4 
5 
6 

Switches in 
Redundant 
Network 

2 
5 
7 

II 
14 

J 
3 
5 
8 

11 

In each case the number of switches shown in 
Table II is exactly (lOg2N) larger than the correspond:
ing value of N l(N). In the cases N = 2, 3 and 4 it 
is reasonably certain that these realizations are the 
minimal ones that exhibit the single fault correcting 
property. An example of a single fault correcting 
network for N = 4 is illustrated in Fig. 7(c). 

------yl 

------y4 

As a result of extensive experimentation one feels 
impelled to make the following conjecture: 

The cost of protection against (correction of) p 
faults in a CPCU(N) network is no more than the 
difference in cost between a CPCU(N) network and 
a CPCU(N+p) network. That is, the cost of correct
ing each additional fault, say fault i, is smaller than 
(log2(N+i) ) 

If this conjecture is indeed true, then there would 
exist permutation networks of arbitrarily high degree 
of reliability whose cell-count would not exceed K· N 1 

(N) where K is a constant related to the probability 
of a switch failure. 

b. An alternative single stuck-function-correcting 
construction 

A different and slightly more economical [than the 
TDT(N) device] method of providing single fault 
protection in CPCU(N) networks stems from the ob
servation that the construction of Fig. 5(a) can tol
erate one cell failure in any peripheral cell if an extra 
cell serving outputs Y 1 and Y N column is retained 
rather than deleted. The reason for deleting this cell 
in the first place was that exactly one peripheral cell 



522 Spring Joint Computer Conference, 1968 

is unnecessary in the irredundant case. Since all of 
the peripheral switches are ~xactly equivalent in func
tion, it makes no difference which one we delete. 
Hence, by retaining all of them we can ignore exactly 
one failure in any of them. If each of the "internal" 
permutation networks that impiement the construction 
of Fig. 5(a) are augmented in the same way by replac
ing the deleted peripheral switch of the CPCU(N) 
configuration then we obtain a network, call it Sl(N), 
that can tolerate one switch failure anywhere. An ex
ample of such a network, namely Sl(4) is shown in 
Fig. 8. We notice first that the number of cells, k = 8, 
so that the network is not minimal [see Fig. 7(c)]. 
However, on ~ounting the redundant cells required 
when N = 2r we find that the extra cells are exactly 
N - 1 in number. This means that in the special case 
N = 2r the networks Sl(N) are more economicai than 
those produced by annexing a TDT(N) network to 
a CPCU(N) network. Recall that this required about 
3N/2 extra switches. 

Figure 8-Non-minimal redundant 4-permuter-single stuck-func
tion correcting 

c. Correction of bad-output fault types 

If one considers the effect of a single fault of this 
type on an otherwise full permutation network, it is 
apparent that exactly one output lead will receive an 
incorrect signal in response to the applied inputs. We 
can remedy the situation by adding one extra lead to 
the N -permutation network if we can also make sure 
that the input signals are applied to, and the output 
signals derived from the correct subset of N leads. 
One way of arriving at this situation is illustrated in 
Fig. 9.* The figure is dra~n for the case N = 4, but 
the method is perfectly general. To permute N leads 
we employ an irn!dundant N-t t permuterflanked on 
input and output with a ·"ladder" network having N 
switches. If the N + 1 permuter has a bad cell lead, 
this will show up as a failure of one of the signals on 
leads A, B, C, D or E of the "internal" N + 1 permuter 

*Clearly accommodation cannot be made for a bad-output failure 
on a cell immediately preceding a network. In this case the appro
priate byte is disabled. 

to arrive at its specified output. By setting the switches 
of the ladder network in the obvious manner, the fault 
can be corrected, as illustrated in Fig. 9 for the case 
wherein input C does not arrive correctly at internal 
output 4. 

<P 

IJ. 1 

B 2 

NON -REDUNDANT 

Nit-t"-..." 
c - ~ 5 -PERMUTER 

i 

i'-.." 
D 4 V/ -I r- - ~ 

E 5 

Figure 9 - Network for correcting bad-output faults 

The cost of correcting one failure by the method of 
Fig. 9 is 2N switches for the ladder networks plus 
(log2(N+1) extra switches [assuming the CPGU(N) 
construction of Fig. 5(a)] to implement the N + 1 per
muter rather than the N permuter. This cost, = 2N 
+ log2N is asymptotically negligible compared with 
the cost of a CPCU(N) network for large N. It is 
obvious that the foregoing construction can be ex
tended to correct multiple faults of the bad-output 
types. 

Commutation networks for complete permutation
incomplete utilization 
We are assuming here that the commutation net

work is to ~erve N-inputs and N-outputs [similar to 
the function of the CPCU(N) network], but in this 
case it is only necessary to provide simultaneous 
connections between m (m < N) inputs and outputs. 
Such a commutation function is referred to as em
bodying complete permutation - incomplete utiliza
ti~.fiaIid is denotedasCPlU(N ,rfi). It is desired to 
specify a network which is more economical in terms 
of cell-count and/or is easier to set up than a CPCU 
(N) network which, of course, also achieves the 
CPIU(N,m) function. 

It is easy to see that a CPIU(N ,m) network must 
contain enough two-state cells to specify (i;.)2(m!) 
possible permutations; thus N2(N,m) the number of 
cells in the network must satisfy 



or 

The above formula suggests that the CPIU(N,m) func
tion could be realized, as depicted in Fig. 10, by a 
network composed ofa CPCU(m) block (m-permuter) 
"sandwiched" between two "combination" networks. 

It is assumed that a combination network serving m 
inputs and N outputs, denoted as a COM(m,N) net
work, is to have the capability of connecting the set 
of m inputs onto any specified set of m output leads, 
without regard to the order of these signals on the 
outputs. A similar definition applies to a COM(N,m) 
network where the number of inputs is assumed to 
exceed the number of outputs. A COM(N ,m) network 
succeeded by an m-permuter would serve as a com
plete permutation-complete utilization network for the 
case ofN-inputs, m-outputs, m < N. 

XI YI 

x2 M-N (2 
roM BINA TION 

NETWORK 

XN 
YN 

Figure 10-Schematic representation of decomposition of a com
plete permutation incomplete utilization network 

A lower bound on the number of cells Nc(N ,m) 
required for an m, N (or an N, m) combination net
work is given by: 

Asymptotically, from Stirling's formula, we find that a 
network composed of N -1 cells might be" sufficient to 

. perform the combination function. 
We have not tound combinatIon networks, com

posed of the 2-input basic cell that approach this N-l 
cell bound, as closely as the CPCU(N) networks ap
proach the (lOg2N!) bound. However, it is not diffi
cult to specify a COM(N,m) network which requires 
only N two-state cells but wherein each cell contains 
m+ 1 inputs. 

Consider the two-state cell depicted in Fig. 11, 
with m horizontal inputs (m = 3 for the case shown), 
Ih 12, ... , 1m, m horizontal outputs 01, O2, ... , Om, 
one vertical input, Xb and one dummy (unused) verti
cal output. In the "cross" mode the three horizontal 
inputs are transferred unaltered to the three horizon
tal outputs. In the "bend" mode we effect the trans-

(0) 
CROSS MODE 

II--+---

12 ----

13--+--

" 
(b) 

BEND MODE 

Figure i i-Basic ceii wiih augmented set of inputs (a) cross mode; 
(b) bend mode 

formation Xi ~ Om, 1m ~-9m' 1m ~ Om-I, ... , 12 ~ 01. 
A COM(m,N). network is easily synthesized as a 
cascade, containing N of these augmented input cells, 
as shown in Fig. 12 for the case m = 3, N = 6. The 
appropriate cell modes are shown for the case where 
it is desir~d to connect the inputs X2, X4, and Xs to 
the three outputs~ Y 1, Y2, Ya that are the horizontal 
outputs of the last cell in the cascade. It is noted that 
the first cell in the cascade actually requires no hori
zontal inputs, the second cell only 1 horizontal input, 
... , the mth cell only m - 1 horizontal inputs. How
ever, if we consider the approximate cost of a cell to 
be proportional to the number of terminals served, 
then the cost of the combinational realization of Fig. 
12 is of the order of mN . We can find realizations 
which although require a number of cells in excess of 
N, exhibit a cost measure significantly less than the 
network previously described. 

We will now recursively synthesize a COM(m,N) 
network composed of basic two input cells. 
Consider the COM(m,N) network depicted in Fig. 
13, where it is assumed that 21 m and 21 N. The sub
networks Ql and Q2 are themselves combination net
works, each with half of the number of inputs of the 
total network. This arrangement· requires a number 
N 2(m,N) of cells which satisfies: 

Solution of the recursion for N = 2r , m = 2r- 1
, (using 

N 2( 1 ,2) = 1 *) yields 

or 

'N N 
N (2r- 1 2r) =- log (N) --+ 1 

2 , 2 2 2· 

*11 is clear that a single 2 input cell where one of the inputs is not 
used is a COM(1,2) network. 



524 Spring Joint Computer Conference, 1968 

For general m, N the number of cells required is 

N2(m,N) = (Min [mlog2n - 2m + 
N + 1, (N - m)log2(N - m) + m - N + 1] ) 

Figure 12 - An N, m combination network 

A constructive proof that this network is capable of 
developing a path from the m inputs to an arbitrarily 
selected set of m outputs is as follows. Let the in
puts and outputs be labelled XI' X2,···, Xm, and 
Y1, Y2,···, Y N as indicated in Fig. 13. We will start 

by indicating the appropriate modes for the ~ -1 (out

put) cells serving outputs Y2, ... , Y N-h so tnat for an 
arbitrary selection of m outputs, exactly m/2 of these 
outputs are connected to QI and m/2 to Q2' If an out
put cell serves two selected outputs, it can be arbi
trarily set to either mode. The output cells which 
serve the remaining set of selected outputs are then 
set to the appropriate mode so that the first of these 
outputs (including possibly Y I) is connected to QI' the 
second connected to Q2' etc. 

Xl 

X2 

Xm/2 

X m 

Q1 

m/2, N/2 

COMB. NET 

Q2 

m/2, N/2 

COMB. NET 

Y1 

Y2 

Y3 

Y4 

Ys 

____ Y

n

•

1 

L---------Jr--------------yN 

Figure 13 - Recursive approach to m - N combination network 

The entire procedure is now repeated for each of 
the networks QI and Q2' etc., until the entire network 
has been set up. The network for m = 4, N = 8, is 
shown in Fig. 14, where the cell functions are indicated 
for the selected output set Y 2, Y 4, Y 5, and Y 6' 

For the case of cell failures, techniques similar to 
those described in an ~arlier section can be applied 
such that the commutation function is maintained. 

,-----------------------~-- Y1 

"'--------------------- Y 8 

Figure 14 - 4-8 combination network 

Commutation networks for incomplete permutation
order preserving and incomplete permutation - non
order preserving 

It is recalled that the memory modules, arithmetic 
logic units, and simple processor and control units 
can be realized as a cascade of identical byte slices. 
These modules can continue to function, upon the oc
currence of failures in slices, if several spare slices 
are provided, 'and if a commutation network is pro
vided to route the signals between operating siices. 
The function of such a commutation network, denoted 
as an incomplete permutation-order preserving net
work, IPOP(r,m), is to set up connecting paths be
tween an arbitrary set of m inputs and an arbitrary set 
of m outputs, both sets of which are subsets of the r
inputs and r-outputs r ;::::: m, so that the signal order is 
the same at both input and output. Goldbergl6 has 
described an efficie~t serial transfer IPOP network, 
but the data transfer rate appears to be insufficient for 
many applications. 

It can be shownl2 that a lower bound on the number 
of two state cells required for an IPOP(r,m) network is 

between (lOg2(~) > and 2 (lOg2(~» although the upper 
- -.-_. -

value appears to be tighter. It is possible to realize the 
IPOP(r,m) function in a network composed of 2r 
two-state celis, where each cell contains m + 1 inputs. 
I t is ,seen that this network approximately satisfies the 



210g2<In) ! bound for the case m = r/2 since 

The basic cell is ,the type shown in Fig. 11, and the net
work is displayed in Fig. 15 for the case r = 6, m = 3; 
the modes of the cells are such to realize order-pre
serving connections between inputs X2 , Xa, Xs and 
outputs Y 4, Y 5, Y 6. Even though the number of hori
zontal inputs served by the first m - 1 cells in the 
cascade and the number of horizontal outputs served 
by the last m - 1 cells in the cascade can both be 
reduced, the cost of this network is of the order of 
2mr, a not inconsiderable cost. Similar to the situation 
with the other commutation functions, the cost of the 
realization is significantly reduced if the two input 
cell is used as the basic primitive block. 

'. 

Figure 15 - An incomplete permutation - order preserving network 

A network composed of two-input cells which 
realizes the IPOP(r,m) function, displayed in Fig. 
16 for the case r= 8, m=4. 

Xl Yl Y 
'1 

X. X2 Y2 'I 

X3 Y3 y. 
'2 

X. x. Y4 '2 

Xi3 Xs Ys 

X6 Y6 Y 
'3 

X
i4 Xl Y7 Y. 

'4 

Xa Ya 

Figure 16 - Recursive approach to incomplete permutation - order 
preserving network 

The number N3(r,m) of cells required, for the case 
r = 2k , m= 2k-I, again using N3(2,l) = 1, is shown to be 

3 N3(r,r/2)=rlog2r-·2r+2. 

The recursion technique will yield a similar expression 
for arbitrary parameters r, m. 

Study of Data Commutation Problems 525 

The following procedure, for the order preserving 
case will indicate the proper mode of each cell of the 
network of Fig. 16, for a given set of m inputs and out
puts, and hence will prove that the network can func
tion as an order preserving network. Let the distin
guished set of m inputs be XiI' Xj~" ... ,Xim, where ia 

>ijh if a > {3, and the m outputs be Yjl' Yh.'·~ .. 'Yj m 

where ja > is if a > {3. Consider each of the m inputs 
as residing in one of two disjoint groups. Group AI 
contai~s those inputs that do not "share" an input 
cell with another distinguished input and group BI 
contains those inputs which do share an input cell. 
We will similarly define groups Ao and Bo for the dis
tinguished outputs. The goal is to assign XiI a~d Yil to 

the same subnetwork (SI or S2), Xi2 and Yj2 to the same 
subnetwork, etc., and the procedure is as follows. 

Assign XiI and Yj1 to network Sl' by appropriately 
setting the pertinent input and output cells (except 
for the case where XiI = Xl and/or Yj1 = Y 1 in which 

case the assignment to Sl is automatic). Then assign 
Xi2 and Yj2 to network S2j; if XiI and Xi2 are in group 

BI and/or Yil and Y j2 .are in group Bo the assignment to 

S2 is automatic. Next assign Xi3 and Yj3 to Sl' etc., un~ 
til all of the· in distinguished inputs and OlltputS have 
been set. This procedure is then applied to set the 
pertinent output and input cells of the networks SI and 
S2, etc. It is clear that this assignment procedure can 
always be carried out. In Fig. 16.we show the setting 
of the input and output cells for the case XiI = X2, Xi2 
= X4, Xi3 = X5, Xi4 = X7 and Yh = Y1, Yj2 = Y3,_Yj3= 

Y 6, Yj4 =Y7 

The same network will realize the IPNOP function 
although the set-up is somewhat easier than for the 
POP case. 

The techniques for providing failure tolerant IPOP 
networks are not discussed in this section since they 
are quite similar to the techniques described pre
viously. We note that a cell failure in the IPOP net
work (two-input cell type) can disable no more than 
two byte slices each for the input and output. Since it 
is assumed that redundant slices are provided, it is 
possible that a nonredundant network would be used 
and when cell failures are qetected the slices which 
could not be served by the network would be discard
ed. 

Commutation networks/or "shorting" 

In Sec; VII we described networks which for a 
redundant byte-sliced network can serve to route 
external data between the operating slices of distinct 
networks (e.g., between an SP and ALU). It was 
noted· that internal data (e.g., control and carry infor-



526 Spring Joint Computer Conference, 1968 

mation) must be routed between the stages of the byte
sliced cascade. If a stage (or slice) has failed, then the 
internal data intended for that stage, which clearly 
comes from its immediate predecessor or successor, 
must be shorted around that failed stage. This shorting 
process must be accomplished reliably or else the en-
tire network would be disabled. 

Figure 17 - "Shorting" networks 

The shorting function is quite naturally effected with 
the two-input basic cell, as illustrated in Fig. 17. For 
convenience we have only indicated a signal flow to 
the right although it is clear that the network could be 
modified to handle bi-directional flow. We have shown 
the appropriate cell modes so that byte slice 2 and 
byte slices 5 and 6 ·are shorted out. We note that the 
network could recover from a single component fail
ure within a cell, which results in either the stuck
function failure or the bad-output failure. However, a 
more severe cell failure which results in, for example, 
a permanent logical zero signal on both outputs of a 
cell would clearly disable the network, i.e., interrupt 
the signal flow. 

Such a failure, which could only result from two 
component failures within a cell could be accom
modated for by the redundant shorting network of 
Fig. 18. We have indicated the appropriate modes for 
cells SI' Si, S2, S~ such that byte slice 1 is shorted out, 
i.e., the output from slice 0 is directed to the input 
terminal of slice 2. We h~ve also shown the appropri
ate modes for cells S3, S3, S4 such that the network con
tinues to function although both outputs of S~ are faul
ty. In this case byte slice 3 cannot be used, but the 
signal flow is not interrupted. Similarly we have shown 
how the network accommodates to a double-output 
failure in S5 in which case slice 5 is bypassed. This 
technique can be clearly extended to handle failures 
of greater multiplicity. 

Figure 18 - Redundant "shorting" network 

SUMf\1ARY 

In this paper we have studied in detail the logical 
design of networks which are well suited for realizing 
the various data switching or commutation functions 
required in a multiprocessor organization where the 
various modules are repairable. It is assumed that the 
memory, arithmetic logic, and possibly the simple 
processor and control modules are realized in a ,byte
sliced manner - a realization that has been demon
strated to be practical. These commutation networks 
might also be useful for certain logical functions with
in the various modules for example, in the distribution 
of the outputs of a decoder among control inputs of a 
set of registers. We feel that the designs we have 
presented, based upon the primitive two-input, two
output reversing cell represent adequate engineering 
solutions to an of the commutation probiems posed, 
although some theoretical minimization problems still 
remain. These pr9blems relate to minimum cost de
signs for the complete and incomplete permutation 
functions considering both the nonredundant realiza
tions and the realizations which are tolerant to cell 
failures. In particular our designs for the incomplete 
permutation functions require a number of cells sig
nificantly in excess of the lower bound. 

The delay in signal transmission encountered for 
the networks studied is significantly greater than the 
delay expected for a simple crossbar realization (ap
proximately 210g2N units compared with 1 unit), 
however, the fan-out and fan-in for the cell array is 
substantially less than in a crossbar, so that the over
all delays may be comparable, for certain dimensions 
and circuit parameters. If less delay is desired, the 
networks could be synthesized from, for ~ample, 
4-input complete-permutation cells, which would 
result in one-half the delay, at the expense of some
what greater total gate cost; however, the failure of 
such a cell might disable more network outputs than 
encountered for the two-input cell realizations. 

ACKNOWLEDGMENT 

The research reported in this paper was supported by 
NASA Electronics Research Center, Cambridge, 
Massachusetts under Contract N AS 12-33. 

REFERENCES 

I J GOLDBERG K N LEVITT R A SHORT 
Techniques for the ,realization of ultra-reliable spaceborne 
computers 
Final Report-Phase I Contract NAS 12-33 Stanford Research 
Institute Menlo Park California (September 1966) 

2 AES-EPO Staff 
A ES-EPO study program 
Final Study Report volunes 1 and 2 IBM Electronics System 



Center Owego N ew York (December 1965) 
3 A AVIZIENIS 

A set of algorithms for a diagnosable arithmetic unit 
Tech Report no 32-546 Jet Propulsion Laboratory Pasadena 
California (1964) 

4 A AVIZIENIS 
A design offault-tolerant computers 
Proc Fall Joint Computer Conference (AFIPS) (1967) 

5 W G BOURICIUSetal 
Investigations in the design of an automatically repaired CORl-

~w . 
Digest of the First Annual IEEE Computer Conference 
IEEE Publication 16C51 (September 1967) 

6 P W AGNEW et al 
An approach to self-repairing computers 
Digest of the First Annual IEEE Computer Conference 
IEEE Publication 16C5l (September 1967) 

7 R P HASSEIT E H MILLER 
Multithreading design of a reliable aerospace computer 
Presented at 1966 Aerospace and Electronic Systems Con
vention (3-5 October 1966) 

8 L J KOCZELA 
Study of spaceborne multiprocessing 
2~d Quarterly Report Volume II Contract NAS 12-108 Auto
netics Division of North American Aviation Anaheim Cali
fornia (October 1966) 

9 E C JOSEPH 
Self repair: fault detection and automatic reconfigurability 
Proceedings of the Spaceborne Multiprocessing Seminar 

Study of Data ComrI?-uta.tion Problems 527 

NASA Electronics Research Center Boston pp 41-49 (31 Oc
tober 1966 

10 R L ALONSO et al 
A multiprocessing structure Digest of the First Annual IEEE 
Computer Conference 
IEEE Publication 16C5l (September 1967) 

11 J F KEELEY et al 
An application-oriented multiprocessing system 
IBM Systems Journal Vol 6 no 2 (Entire Issue) (l9~7) 

12 J GOLDBERG M W GREEN K N LEVIIT H S 
STONE 
A study of techniques and devices for the realization of ultra-
reliable spaceborne computers . 
Interim Scientific Report no 2 Contract NAS 12-33 Stanford 
Research Institute Menlo Park California (November 1967) 

13 V E BENES 
Mathematical theory of connecting networks and telephone 
traffic 
Acad611ic Press New York... 1965 

14 W H KAUTZ K N LEVIIT A WAKSMAN 
Cellular interconnection networks 
Accepted for publication in IEEE Transactions on Electronic 
Computers 

15 A WAKSMAN 
A permutation network 
Accepted for publication in the Journal ofthe ACM 

16 J GOLDBERG 
Logical design techniques for error control 
WESCON paper 9/3 Session 9 (September 1966) 





A distinguishability criterion for selecting 
efficient diagnostic tests 

by HERBERT Y. CHANG 
Bell Telephone Laboratodes, Incorporated 
Naperville, Illinois 

INTRODUCTION 

Fault diagnostic procedures are usually derived by 
means of simulation methods. 1 One of the fault simu- . 
lation methods is the digital technique in which the 
diagnostic information, viz., the diagnostic tests and 
test results of a machine, is generated with the aid 
of a computer program. The input to the program is a 
logical description of the machine and the output is a 
sequential testing procedure for the machine, along 
with the simulated diagnostic test results.2 A se
quential testing procedure is one where the next test 
to be applied depends on the outcome of the previous 
test. 

The efficiency of a sequential testing procedure gen
erated digitally depends largely on the method by 
which tests are chosen and ordered in the procedure. 
Some tests, when properly chosen and ordered, will 
yield a shorter testing procedure and better fault re
solvability than others, and therefore, give rise to an 
"optimum" testing procedure. Previous results indi
cate that it is impractical to attempt to find a globally 
optimum testing procedure for any moderate size cir
cuit;3.4 local optimization techniques are therefore 
used. At each point in the test generation process, 
several candidates of tests are tried and evaluated, and 
the "best" one is chosen. Two criteria for evaluating 
the "goodness" of a test are available: the check-out 
or detection criterion and the information gain cri
terion.2.3.5.6 Both criteria, however'- share the draw
back that tests are evaluated, based on the "ability" 
to detect or identify faulty components, rather than 
the smal.lest replaceable module(s) or circuit pack
age(s). 

In this paper, a new criterion, called the distinguish
ability criterion, for computing the figure-of-merit 
of tests to derive efficient testing procedures is in
troduced. The criterion is aimed at optimizing the diag
nosability so as to identify failures only to the circuit 
package (or the smallest replaceable module) level. It 
appears that the distinguishability criterion is mor~ 

practical since the impact of integrated circuits and 
:> modern packaging methods makes distinguishability 
among faults associated with the same module less 
necessary. The testing procedure so generated tends 
to yield shorter test sequences and better resolvability. 

In Section 2, the sequential testing philosophy is 
reviewed and two of the existing criteria for selecting 
tests are briefly described. The distinguishability cri
terion is introduced in Section 3. Familiarity with 
References 2,3,5, and 6 is recommended. 

A review of testing philosophy 

The philosophy of sequential testing procedure has 
commonly been described as the "gedanken-experi
ment" or "black-box" philosophy.2.7 A machine or 
processor is considered to be a black -box with input 
and output terminals. A failure or fault is looked upon 
as a transformation of the fault-free or "good" ma
chine into a different machine. For example,·machine 
Mi may denote the output of gate Q stuck at low; ma
chine Mj may represent the second input terminal of 
gate R stuck at high; and so on. Thus, if there are N 
possible failures in a machine, * the objective of a diag
nostic procedure would be to identify one of the N + 1 
(including the good machine) possible machines or 
black boxes. The procedure for accomplishing this 
is essentially a multiple branching experiment in the 
sense of Moore.7 

In deriving a sequential testing procedure, a "test" 
or an input configuration is first applied and the "test 
result" or output configuration of each of the N + 1 
machines is computed by simulation. A test is useful 
if it partitions the collection of N + 1 machines into 
several equivalence classes, each of which contains 
only those machines having the same output configu
ration. Another test can now be applied to one of the 
equivalence classes. Again by simulating the behavior 
of each of the machines in this class, the secooci test 

*The single fault assumption is implied here. 

529 



530 Spring Joint Computer Conference, 1968 

may "partition" the set into smaller equivalence 
classes. This process is repeated for every equivalence 
class of machines until each failure or machine is 
identified, or the remaining subset ,of machines appear 
to be indistinguishable, 

• (3, t) 

~-
(2,1) 01 

~ 13,21 

/1'!~tt-~ 

~~ 114 I (3.3) 

(1,t)~Ot (2,2) ~ 

A.. ... -.... M _ I.. I 
I H nil ... I 

1 t (1,2) 

1 •• - •• ~1 M, 

01 

(3,4) 

to 

~ 
~. 

Figure 1 - An example of sequential testing procedure 

An example of such a procedure is shown in Fig
ure 1. Machines, or failures, are denoted as MI, 
M2, ... ,f\120, with "MI" representing the good ma
chine. An input configuration or test 1 0 11 is applied 
which partitions the set into three equivalence classes. 
Thus, if the output configuration is 11, one can con
clude that either the machine is fault-free, or it con
tains one of the following failures: M2, M3, M4, Ms, 
M7, Ms, M9 , MlO, Mlh M12, MIS, MIS, M17, MIS, M20. 
Similarly, if the output is 01, the machine contains one 
of the following failures: MI3, M14, MI9• It is seen that 
if the output is 00, failure Ms is uniquely identified; 
no more testing is necessary. The entry (i, j) denotes 
the equivalence class at ith level and jlh partition in 
the testing procedure. By convention, the top branch 
(I, I), (2, 1), (3, 1), ... will always denote the equiv
alence classes containing the good machine MI' 
, A second test 1001 may be applied to the set (1, 1) 

and further partitions (1, I) into (2, 1), (2, 2) and (2, 3). 
A different test 1010 may be applied to the set (I, 3) 
in order to partition machines {M I3, Mg , MI9}. A 
third and a fourth, ... , test may be chosen along each 
sequence to continue the testing as far as necessary. 
Each failure, or equivalence class of failures, such as 
{M14' M I9} in the terminal equivalence class would be 
identified by a test sequence, such as 10 j i, 0 j, 10 i 0, 
10. 

I t is evident that there are many input configura
tions or tests one may choose, to partition the set(s) 
(i, j). The criterion for choosing a test depends on the 
purpose at hand. If the purpose is check-out or fault 
detection, the check-out criterion may be used, This 
criterion says that for any test T k at the ith level in 
the testing procedure, the efficiency of T k can be 
measured by 

n(i, 1) - nk(i + I, 1) 
ak == 

n(i, I) (I) 

where n(i, j) denotes the number of machines in equiv
alence class (i, j), and Nk(i + I, j) denotes the number 
of machines in equivalence class '(i + I: j) resulted 
from the partitioning by applying T k • In other words, 
the test, which yields the maximum ak and is there
fore, considered to be the best choice, is the one that 
eliminates the largest number of machines from the 
good machine equivalence class (i, 1 ).2,5 

If, on the other hand, the purpose is diagnosis, the 
information gain criterion may be used. For a test 
that generates an m-nary partition, its information 
gain is computed as follows. Let (i + I, jI)' (i + I, 
j2), ... , (i + 1, jrn) be the m equivalence classes which 
result by applying test T k to (i, j) (see Figure 2). Then 
the information gain for test T k is 

where all faults in (i, j) are assumed equiprobable. The 
gain {3k defined in equation (2) is due to Mandelba~ms 
and is different from the one used by Seshu. S The in
formation gain defined by Seshu is suited for binary 
partition. The definition is then extended to the m-nary 
partition case by saying that an m-nary partition can be 
replaced by a string of m-I binary partitions. This is 
done by first computing the gain' over the good ma
chine equivalence class (i + I, 1) with respect to each 
of the rn-I faulty machine equivalence classes and then 
taking the sum of the gains. The measure so computed 
tends to yield a good detection testin~ procedure, 

Distinguishability criterionfor test selection 

The essential idea of the criterion to be described 
here lies in the notion of "fault distinguishability." The 
criterion is somewhat analogous to the one proposed 
by the author for combinational testing procedures.8 

Suppose there is a collection of machines Mh M2, 
... ,MN+l to be identified. One would like to apply 
a test to distinguish, if possible, ea'Ch fauhy machine 
from the good machine MJ, and from all other faulty 



Distinguishability Criterion for Selecting Efficient Diagnostic Tests 531 

NOTATION 

(iJ j 

nO,i> 

(i+i, jz) 

JI j n •. li.Lt i \ /1 .. ,,····"Z, 
ZI 

I 
I 
I 
I 

( ij). EOUfVALENCE ClASS AT iTH LEVEL AND 
jTH PARTITION 

n (I,U = MMD. OF MAatNES IN (itO 

nk Ci+f ,i.) = NUMBER OF MACHMS IN (it I, is), RESULTED 
. FROM APPLYING Til TO UJ} 

T k • TEST OR t4PUT CONFIGURATION 

Z t • Zz i .. ·.zm • TEST RESUIJ'S OR OUTPUT COtElGURATION 

Figure 2 - Partitioning of machines 

machines. I n other words, there are N(N + 12 pairs 
2 

of machines to be distinguished. A test is most useful, 
and therefore should be chosen, if it distinguishes the 
largest number of pairs of machines. 

I n general, a test T k partitions the set of machines 
in (i, j) into m equivalence classes (i+ I, jl)' (i+ 1, j2) 
, ... , i + 1, jm). Each equivalence class (i + I, js) (s= 1, 
2, ... ,m) contains nk(i + 1, js) machines that are 
are indistinguishable by test T k, where the sum 
m L nk(i + 1, js) is equal to n(i, j). Then, the test T k ac-

s=1 
tually distinguishes every machine in (i + 1, js) from 
every machine in (i + 1, jt), for s =1= t. The total number 
of pairs of machines distinguished by T k is therefore 
equal to: . 

'Yk == nk(i + I, jl) [nk(i + I, j2) + nk(i + I, j3) 

+ ... + nk(i + 1, jm) ] 

+ ... 

~I r f' It., ~ f·... , 1 
= L L "k\i T I, Js}' ~ nk\1 T I, Jt} J 

8=1 t=s+1 

The value of 'Yk reaches a maximum of JiliJll ~(i, j)= 1] 

when m = n(i, j) meaning that the test T k identifies 
uniquely each of the n(ij) faults. It reaches a minimum 
of zero when m = 1, meaning that the test T k cannot 
partition the set into smaller equivalence c.1asses. 
This measure is compatible with the information gain 
criterion concept which has been discussed previous
ly.5.6 

As an example· consider the case where three dif
ferent output configurations and the corresponding 
tests TI T2 and T3 yield the following partitions: 

1 
2 
2 

1 

2 

1 
3 

There are six faults to be identified. From Equation 
(3), the distinguishability 'Yk for each test is: 

'YI = 1(1+1+1+1+1) + 1(1+1+1+1) 
+ 1(1+1+1) + 1(1+1) + 1(1) = 15 

'Y2=2(1 +3)+ 1(3)= 11 
'Y3 = 2(2 + 1 + l) + 2(1 + 1) + 1(1) = 13 

The result indicates that T I is the best since it identi
fies each machine uniquely. T3 is better than T2 in 
that it isolates faults more finely. 

The distinguishability criterion defined in equation 
(3) must be modified if one is interested in isolating 
faults only to the module level, rather th~n the faulty 
component level. For most practical purposes, when
ever a fault is identified, it is the module(s), i.e., the 
smallest replaceable partes) of a machine such as a 
plug-in circuit package or an integrated circuit· card, 
that will be replaced. Thus, distinguishability among 
faults associated with the same module would be of no 
interest. For example, suppose the six faults just con
sidered are associated with three modules: faults 
fl' f2' f3 associated with one module PI, f4 and f6 asso-

. ciated with another module P2, and f5 with module P3' 



532 Spring Joint Computer Conference,. 1968 

Test T 2 partitions these faults into three equivalence 
classes: 

where f1j denotes a fault fi assoticated with module j. 
The distinguishability between faults fl of (i+ 1, jl) 
and. f3 of (i+ 1, j3)' or f2 of (i+ 1, jl) and f3 of (i+ 1, j3) 
is no longer relevant. Since, whenever either fh or f2 
or f3 occurs, module PI must be replaced. So the em
phasis of distinguishability criterion should be such 
that a test is considered most efficient if it distin
guishes the largest number of pairs of faults {fh fj} 's 
where fi and fj each is as'sociated with a distinct mod
ule. The measure of test efficiency can be redefined 
by removing from 'Yk the number of all those fault 
pairs that are distinguished by T k but are associated 
with the same module. 

Let n(i, j)p denote the number of faults in (i, j) that 
are associated with module p. Then, 

n(i, j) = L n(i, j)p 
p 

where L is defined to denote summation over, and 
p 

only over, all modules with which the faults in (i, j) 
are associated. In the previous example, n(i+ 1, j3) 
can be expressed as the sum of n(i+ 1, j3)., n(i+ 1, jJ2 
and n(i+ 1, j3)a, where n(i+ 1, ja)h n(i+ 1, jah and n(i+ 1, 
ja)3 denote, respectively, the number of faults in 
(i+ 1, ja) associated with modules p., P2 and Pa. Thus, 
of the m partitions generated by test T k' there are 

~ {~ [nk(i + 1, js)p . t~+l nk(i + 1, jt)p] } 

fault pairs which need not be distinguished. The dis
tinguishability measure 'Yk defined in Equation (3) 
should therefore be.rtlodified as follows: 

Ak == 'Yk - ~I {L [ nk(i + 1, js)~· f· ,nk(i + 1, jt)p ] } 
s=1 P t=s+1 

( nk(i + I, jt) - nk(i + I, jt)p ) ] } (4) 

The application of this distinguishability criterion 
to derive an efficient testing procedure may be illus
trated by the following example. 
Example Suppose in equivalence class (i, j) there are 
ten faults to be identified. The faulty components are 
associated with modules PI; P2 and P3 in the following 
way: 

PI: 11, q, fl, fl, fl, fl 
P2: n, f~ 
P3: f~, rto 

Six tests T k (k = 1,2,3,4,5,6) are available, each gen
erating a partition of equivalence classes as indicated 
in Table I. To derive a testing procedure 

TABLE 1-Configurations of Partitionings of (i, j) 

(i+l, jl) (i+l, j2) (i+l, j3) 'Yk Ak 

TI f1 ,t1,t],ij,f~,fto q,n. n,n I~ 
16 

T2 f1,t1,q,n,n,fl,t] ij, f~ flo Ii] 
T3 fl q fA fA q f~ f;1 f10 n,n I*' 8 
T4 f1 t1 q n n n f~ f~ flo f;l I "9 8 
T5 t1 q fl n fl t] f~ f~ fto f1 I 9 4 
Ts f1 t1 q fl n n ij fJ fto f~ 9 8 

that isolates faults to component .level, the first step 
is to compute the figure of merit of each test using 

. either Equation (2) (the information gain criterion) or 
Equation (3) (the distinguishability criterion at com
ponent level). Both criteria indicate test T I is the best 
choice to partition (i, j); T I is thus selected as the first 
test. The faults in (i, j) are then partitioned into three 
equivalence classes: {t1, q, ~, 1], ft, ito}, {fa, fl} and 
{q, il}. Similar computations can be made for selecting 
the next best test(s) to further partition each equiva

lence class. The resultant testing procedure, as shown 
in Figure 3, indicates that the average length of test 
sequence to isolate a fault is 2.7 tests. 

ill 
II 

Figure 3 - A testing procedure isolating faults to component level 



Distinguishability Criterion for Selecting Efficient Diagnostic Tests 

However, if the distinguishability criterion Ak is used 
to derive a testing procedure that isolates faults to 
replaceable module level, one observes that test T 2 
would be the best choice to partition (i, j) (see Table 
I). In this case test Tl is less efficient since it distin
guishes fewer fault pairs that are associated with dif
ferent modules. A sample computation using equation 
(4) to compute Ak is given: 

A2 = n2(i + I, jl)t { n2(i + I, j2) + n2(i + I, j3) } 

+ n2(i + I, jt)2 {[ n2(i + I, j2) - n2(i + I, j2)2 ] 

+ n2(i + I, j3) } 

+ n2(i + I, j2)2 { n2(i + I, j3) } 

=(6) [(2)+(1) ]+(1) [(2-1)+(1) ]+(1)(1) 

= 21 

Test T2 partitions (i, j) into three equivalence classes: 
{fI, f~, 'fA, fi, fg, fA, !1}, {q, il} and {t1o}· Each equiva
lence class can be further partitioned by test(s) that 
yields the maximum figure of merit Ak, computed by 
considering only those faults in each equivalence class. 
As an illustration, the Ak'.s of various tests partition
ing the set {fI, f~,fA, fl, n, fA, rH are computed and 
tabulated in Table II. In this case test T6 is considered 
the best choice. The process of test selection is con
tinued until all faults are identified to a single module. 
The resultant testing procedure is shown in Figure 4. 
The average length of test sequence to isolate a fault 
is 1.9 tests, which is much shorter than the 2.7 tests 
required to isolate faults to component level. 

TABLE II-Configurations of Partitioning of Equivalence Class 

Tl fl,q,q fl.n fl.Ps 4 
T3 fl. q, fl. fl. f~ n.Ps 2 
T4 fl-Ps. f~ 0 
Ts q-Ps, f7 fl 1 
T6 fl,f},fl.n,fl.Ps f..! 

7 [b] 

Another point worth mentioning is that the program 
memory required to store the diagnostic testing proce
dure is often significantly reduced, when diagnosabili
ty is aimed at the module level. As an example con
sider the two diagnostic testing procedures of Figures 
3 and 4. I t can be shown that the size of the corre
sponding program statements required to realize the 
procedure of Figure 4, where faults are isolated to 

I I 
, I ~;'33 

f,- f •• '7' Te, ~fl) 

Figure 4 - A testing procedure isolating faults to module level 

module level, is approximately half the size of the 
one required to realize the procedure of Figure 3, 
where faults are isolated to component level. For 
many real-time systems such as electronic telephone 
switching systems and air-borne computers, the re
sulted saving in memory could represent a significant 
reduction in cost. 

CONCLUSION 

A distinguishability criterion for measuring the ef
ficiency of diagnostic tests has been developed. The 
criterion is compatible with the concept of information 
gain described in the literature,3.5.6 if diagnosability 
is aimed at the component level. If, however, the diag
nosability is aimed -at the circuit package or module 
level, it is shown that the sequential testing procedure 
which is generated based on the distinguishability 
criterion tends to yield shorter testing sequences and 
better resolvability. 

REFERENCES 

lEG MANNING H Y CHANG 
A comparison of methods for simulating faults of digital system 
Digest of First Annual IEEE Conference 1967 

2 S SESHU 0 N FREEMAN 
The diagnosis of asynchronous sequential switching systems 
IRE Transactions on Electronic Computers Vol EC-I 1 August 
1962 

3 J D BRULE R A JOHNSON E KLETSKY 
Diagnosis ofequipmentfailures 
IRE Transactions on Reliability and Quality Control V~I RQC-9 
April 1960 

4 J F POAGE 
The derivation of optimum tests for logic circuits 



534 Spring Joint Computer Conference, 1968 

PhD Thesis Princeton University 1963 
5 S SESHU 

On an improved diagnosis program 
I EEE Transactions on Electronic Computers Vol EC-14 
February 1965 

6 D MANDELBAUM 
if measure of efficiency of diagnostic tests upon sequential logic 
I EEE Transactions on Electronic Computers Vol EC-13 

October J 964 
7 E F MOORE 

Gedanken-experiments on sequential machines 
Automata Studies Princeton University Press 1956 

8 H Y CHANG 
An aigorithm for seiecting an optimum set of diagnostic tests 
I EEE Transactions on Electronic Computers Vol EC- ] 4 
October ] 965 



1968 SPRING JOINT COMPUTER CONFERENCE COMMlnEE 

General Chairman 

A. S. Hoagland 
IBM Corporation 

Vice Chairman 

W. R. Lonergan 
RCA - EDP 

Bernard McGovern, Assistant 
RCA - EDP 

Technical Program 

T. R. Bashkow, Chairman 
Columbia University 

Richard Auerbach 
Computer U sage Development Corporation 

Glenn Bacon 
1MB Corporation 

Jess Chernak 
Bell Telephone Laboratories 

Borge Christensen 
General Electric Company 

Chester Y. Lee 
Bell Telephone Laboratories 

Morton H. Lewin 
RCA Laboratories 

Sheldon Weinberg 
Realtronics, Inc. 

Finance 

C. A. Erdahl, Treasurer 
Price Waterhouse & Company 

M. B. Basson 
Price Waterhouse & Company 

R. W. Liptak 
Price Waterhouse & Company 

Secretary 

S.M. Matsa 
IBM Corporation 

Local Arrangements 

H. L. Cooke, Chairman 
RCA Laboratories 

E. E. Andrews 
RCA - EDP 

Public Relations 

J. M. Kinn, Chairman 
IEEE 

R. T. Miller 
IBM Corporation 

Special Events 

A. A. Currie, Chairman 
Bell Telephone Laboratories 

R. L. Basford 
Bell Telephone Laboratories 

Exhibits 

W. M. Carlson, Chairman 
IBM Corporation 

R. F. Welch 
UNIVAC 

Burt Totaro 
UNIVAC 

Registration 

G. W. Jacob, Chairman 
Sperry Gyroscope Co. 

Solomon Scherr 
Hazeltine Corporation 



Charles Griebell 
Sperry Rand Corporation 

Patrick J. Ferrara 
Sperry Rand Corporation 

Ladies 

Cecilie Smolen, Chairman 
First National City Bank 

Frances Zederbaum 
IBM Corporation 

Gretchen Remick 
Computer U sage Development Corporation 

Ellen Schaefer 
IBM Corporation 

Printing and Mailing 

R. W. Thayer, Chairman 
Princeton Printing Company 

Advisor 

Harlan Anderson 
Time. Inc. 

AFIPS Society Representatives 

IEEE 

S. Levine 
The Bunker-Ramo Corporation 

ACM 

J. M. Spring 
Computer Methods, Inc. 

SCI 

R. J. Doelger 
Electronic Associates, Inc. 

ASIS 

Irlene Stephens 
CCNY 

AMTCL 

W.J. Plath 
IBM Corporation 



REVIEWERS, PANELISTS, AND SESSION CHAIRMEN 

A. Adler 
Wilheim Anacker 
James P. Anderson 
Gary Bard 
F. Bates 
Frank Bevacqua 
Ruth Block 
Shelton Boilen 
W. G. Bourichius 
Robert C. Calfee 
Harry N. Cantrell 
Richard Caplan 
S. H. Chasen 
A. Ben Clymer 
Steve Condon 
Warren A. Cornell 
Richard L. Crandall 
James W. Daniel 
H. A. Ernst 
Monroe Fein 
W. A. Fetter 
Tudor R. Finch 
R. Forbes 
R. Stockton Gaines 
Alonzo G. Grace, Jr. 
Charles Gulotta 
M.J. Haims 
C. Halstead 
P. J. Hanratty 
Tom Hastings 
R. A. Henle 

J. A. Archibald,Jr. 
Bruce W. Arden 
Julius Aronofsky . 
J. D. Babcock 
C. W. Churchman 
M. E. Connelly 
Philip A. Cramer 
David C. Evans 
M. M. Flood 
R. M. Franklin 
Ralph Gerard 
Harry A. Gray 
H. R.J. Grosch 
Robert V. Head 

REVIEWERS 

B. Herzog 
D.Hodges 
ThomasJ. Hogg 
Mu-Yue Hsiao 
H.Johnson 
B. J. Karafin 
H. B. Keiier 
Robert King 
Eldo C. Koenig 
Z. Kohavi 
Mark Koschmann 
J. Kurtzberg 
Chester Lee 
L. Lidofsky 
Y. S. Lim 
ArthurW. Lo 
R. Mandell 
Michael Marcotty 
T. J. Matcovich 
H. E. Meadows 
M. J. Merritt 
Gordon S. Mitchell 
Thurber Moffett 
Harrison Morse 
Mervin E. Muller 
Robert M. McClure 
H. S. McDonald 
I. D. Nehama 
Robert L. Patrick 
A. V. Pohm 
W. J. Poppelbaum 

PANELISTS 

William B. Helgeson 
Linder C. Hobbs 
Richard C. Jones 
H. A. Kinslow 
J. F: Lubin 
Tom Marques 
Andrew R. Molnar 
Henry S. McDonald 
Henry McDonald 
J. D. McGonagle 
T. William Olle 
Ascher Opler 
BuddJ. Pine 
R. C. Raymond 

Paul Reinhard 
John R. Rice' 
V. C. Rideout 
Lawrence G. Roberts 
Robert F. Rosin 
R. Roth 
Wendeii Sander 
F.J.Samsom 
C. L. Semmelman 
S. Shapiro 
R. L. Shuey' 
Warner V. Slack 
OttoJ. M. Smith 
Robert Spinrad 
A. Soudak 
Thomas B. Steel,Jr. 
William Sutherland 
A.J. Sutton 
R. N. Thompson 
William Timlake 
C.J. Tunis 
H. VanBrink 
E. VanHorn 
J. V. Wait 
C.J. Walter 
R. H. Wanders 
Robert Ward 
Roger C. Wood 
J. J. Y ostpille 
Edward Yourdon 
M. S. Zucker 

Walter Rosenblith 
Thomas Rowen 
Daniel W. Scott 

: J. E. Sherman 
Warren G. Simmons 
Robert Spinrad 

. Ithiel de Sola Pool 
William R. Sutherland 
C.J. Tunis 
Robert Ward 
Jerome B. Wiener 
M. A. Woodbury 
Kendall R. Wright 



C Bachman 
W.Beam 
C. R. Deininger 
P. Dorn 
G. Feeney 
R. Forest 
J. Githens 

SESSION CHAIRMEN 

L. Hittel 
E. L.Jacks 
W. Keister 
G, A. Korn 
C. Lecht 
T. McFee 
B. Neff 

A.Opler 
V. C. Rideout 
H. Sassenfeld 
c. Simone 
H. Teager 
J. Wiener 
R. O. Winder 



AMERICAN FEDERATION OF INFORMATION 
PROCESSING SOCIETIES (AFIPS) 

OFFICERS and BOARD of DIRECTORS of AFIPS 

President 
Dr. BRUCE GILCHRIST 

IBM Corporation 
Data Processing Division 

112 East Post Road 
White Plains, New York 10601 

Vice President 
Mr. PAUL ARMER * 

The RAN D Corporation 
1700 Main Street 

Santa Monica, California 90406 

Dr. ANTHONY G.OETTINGER 
Computer Laboratory 
HarvardU niversity 

Cambridge, Massachusetts 02138 

Dr. ROBERT W. RECTOR * 
Informatics, Inc. 

5430 Van Nuys Boulevard 
Sherman Oaks, California 91401 

Mr. SAMUEL LEVINE 
Bunker-Ramo Corporation 

445 Fairfield A venue 
Stamford, Connecticut 06902 

Mr. KEITH W. UNCAPHER 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

Simulation Councils Director 

Mr. JOHN E. SHERMAN * 
Lockheed Missiles & Space Corp. 

D59-10: B-151 
P. O. Box 504 

Sunnyvale, California 94088 

* Executive Committee 

ACM Directors 

IEEE Directors 

Secretary 
Mr. MAUGHAN S. MASON 
IBM Hybird Systems Center 

2670 Hanover Street 
Palo Alto, California 94304 

Treasurer 
Mr. WILLIAM D. ROWE * 

The Mitre Corporation 
5600 Columbia Pike 
Bailey's Crossroads, 

Virginia 22041 

Mr. J. D. MADDEN 
ACM Headquarters 
211 East 43rd Street 

New York, New York 10017 

Dr. WALTER HOFFMAN 
Computing Center 

Wayne State University 
Detroit, Michigan 48202 

Mr. L. C. HOBBS 
Hobbs Associates, Inc. 

P.O. Box 686 
Corona Del Mar, California 92625 

Dr. R.1. TANAKA * 
California Computer Products, Inc. 

305 N. Muller Street 
Anaheim, California 92803 

American Society for Information Sciences Director 

Mr. HAROLD BORKO 
Systems Development Corp. 

2500 Colorado Avenue 
Santa Monica, California 90406 



Associationfor Machine Translation 
and Computational Linguistics-Observer 

Dr. DONALD WALKER 
The Mitre Corporation 

Bedford, Massachusetts 01730 

Special Libraries Association-Observer 

Mr. BURTON E. LAMKIN 
Library & I nformation Retrieval Staff 

Federal Aviation Agency 
800 Independence Avenue S.E. 

Washington, D,C, 20003 

Society for Information Display-Observer 
Mr. WILLIAM BETHKE 

Abstracting 

Dr. DAVID G. HAYES 
The RAN D Corporation 

1700 Main Street 
Santa Monica, California 90406 

Admissions 

Mr. WALTER L. ANDERSON 
General Kinetics, Inc. 

11425 Isaac Newton Square South 
Reston, Virginia 22070 

Awards 

Dr. ARNOLD A. COHEN 
UNIVAC 

2276 Highcrest Drive 
Roseville, Minnesota 55113 

Conference 

Dr. MORTON M. ASTRAHAN 
IBM Corporation - ASDD 

P. O. Box 66 
Los Gatos, California 95030 

Constitution & By-Laws 

Mr. MAUGHAN S. MASON 
IBM Hybird Systems Center 

2670 Hanover Street 
Palo Alto, California 94304 

Education 

Dr. MELVIN A. SHADER 
IBM Corporation - SDD 
1000 Weschester A venue 

White Plains, New York 10604 

1806 N. J ames Street 
Rome, New York 13440 

AFIPS Committee Chairmen 

Government Advisory 

Dr. HARRY HUSKEY 
Univ~rsityofCalifornia 

Division of Natural Sciences 
Santa Cruz, California 95060 

Harry Goode Memorial A ward 

Mr. ASCHER OPLER 
T. J. Watson Research Center 

P. O. Box 216 
Yorktown Heights, New York ]0598 

IFIP Congress 68 

Dr. DONALD L. THOMSEN,JR. 
I BM Corporation 

. Old Orchard Road 
Armonk, New York 10504 

International Relations 

Dr. EDWIN L. HARDER 
Westinghouse Electric Corp. 

1204 Milton Avenue 
Pittsburgh, Pennsylvania 15218 

Planning 

Dr. JACK MOSHMAN 
Leasco Systems & Research Corp. 

4833 Rugby Avenue 
Bethesda, Maryland 20014 

Public Relations 

Mr. ISAAC SELIGSOHN 
IBM Corporation 
Old Orchard Road 

Armonk, New York 10504 



Finance 

Mr. WALTER M. CARLSON 
IBM Corporation 
Old Orchard Road 

Armonk, New York 10504 

Social Implications of Information 
Processing Technology 

Mr. STANLEY ROTHMAN 
TRW Systems 
1 Space _Park 

Redondo Beach, California 90278 

Technical Program 

Mr. JACK ROSEMAN 
Helidyne Corporation 

1401 Wilson Boulevard 
Arlington, Virginia 22209 

Newsletter 

Mr. DONALD B. HOUGHTON, 15-W 
Westinghouse Electric Corporation 

-3 Gateway Center, Box 2278 
Pittsburgh, Pennsylvania 15230 

1968 FlCC 

Dr. WILLIAM H. DAVIDOW 
Dymec Divisions 

Hewlett Packard Company 
395 Page Mill Road 

Palo Alto, California 94306 

1969SlCC 

Dr. HARRISON FULLER 
Sanders Associates, Inc. 

95 Canal Street 
Nashua, New Hampshire 03060 

lCC General Chairmen 

AFIPS Executive Secretary 

Mr. H. G. ASMUS 
AFIPS Headquarters 

9th Floor 
345 East 47th Street 

New York, New York 10017 

Publications 

Mr. STANLEY ROGERS 
P. O. BoxR 

Del Mar, California 92014 

Information Dissemination 

Mr. GERHARD L. HOLLANDER 
Hoiiander Associates 

P. O. Box 2276 
Fullerton, California 92633 

Consultant 

Mr. HARLAN E. ANDERSON 
Time, Inc. 

Time &- Life Building 
New York, New York 10020 

U. S. Committeefor IFIP ADP Group 

Mr. ROBERTC. CHEEK 
Westinghouse Electric Corporation 

3 Gateway Center 
Pittsburgh, Pennsylvania 15230 

1968SlCC 

Dr. A. S. HOAGLAND 
IBM Research Center 

P. O. Box 218 
Yorktown Heights, New York 10598 



1968 SJCC LIST OF EXHIBITORS 

Academic Press, Inc. 
Adage, Inc. 
Addison-Wesiey Pubiishing Company, inc. 
Addressograph Multigraph Corporation 
Advanced Computer Techniques Corp. 
Amp, Inc. 
Ampex Corporation 
American Telephone & Telegraph 
Anderson Jacobson Inc. 
Applied Data Research, Inc. 
Applied Dynamics, Inc. 
Applied ~ogic Corp. 
Association for Computing Machinery 
Audio Devices, Inc. 
Auerbach Corporation 
Auto-trol Corporation 

Baldwin ·Kongsberg Company 
Bolt Beranek and Newman, Inc. 
Brogan Associates, Inc. 
Burroughs Corporation 
Business Supplies CorP. of America 

Caelus Memories Inc. 
California Computer Products, Inc. 
Certex Inc. 
Collins Radio Company 
Comcor Astrodata, Inc. 
Communi type Corp. 
Computer Applications, Inc. 
Computer Communications, Inc. 
Computer Design Publishing Corporation 
Computer Industries 
Computer Methods Corp. 
Computer Sciences Corporation 
Computer Test Corporation 
Computer Sharing Inc./Mauchly Group 
Computers and Automation 
Computerworld 
Com-Share 
Concord Control, Inc. 
Control Data Corporation 
Cybetronics; Inc. 

Data Disc Inc. 
Datamark Inc. 
Datamation 
Data Processing Ma~azine 
Data Products Corporation 
Datascan 
Data Systems News 

Datel Corp. 
DilAn Controls, Inc. 
Digi-Data Corporation 
Digital Development Corporation 

Digital Devices, Inc. 
Digital Equipment Corporation 
Digitronics Corporation 
Dura Business Machines 
Dynamic Systems Electronics 

Eastman Kodak Company 
Educational Computer Products 
Elbit Computer, Ltd. 
Electro-Mechanical Research Inc. 
Electronic Associates, Inc. 
Electronic Design 
Electronic Memories 

Fabri-Tek 
Ferroxcube Corporation 

General Computers, Inc. 
General Design 
General Dynamics, Electronics Div. 
General Electric Company 
General Instrument Corp. 
General Kinetics Inc. 
Geo Space Corporation 

Hewlett-Packard Company 
Honeywell, Computer Control Div. 
Houston Instrument Div, Bausch & Lomb 

IBM Corporation 
IBM Industrial Products 
Information Control Corporation 
Information Displays, Inc. 
lnfotechnics, Inc. 
Institute for Electrical and Electronics Engineers 
Interdata 

Kennedy Company 
Keuffel & Esser Company 
Kleinschmidt, Div. SCM Corporation 

Laboratory for Electronics, Inc. Electronics Div. 
Lancer Electronics .Corporation 
Litton/Datalog Division 
Lockheed Electronics Company 



Magne-Head, A Div. of General Instrument Corp. 
Mandata Systems Inc. 
Matrix Corp. 
Memory Technology Inc. 
Micro Switch, A Div. of Honeywell 
Midwestern Instruments/Telex 
Milgo Electronic Corporation 
3M Company - Magnetic Products Div. 

- Mincom Div. 
- Dup. Products Div. 

Modern Data Systems . 
Monitor Systems, Inc. 
Motorola Instrumentation & Control Inc. 
McGraw-Hill Book Company 

The National Cash Register Company 
The National Cash Register Company/ 

Industrial Products 
National Computer Systems 
Nissei Sangyo, Ltd. 
North Atlantic Industries, Inc. 

Omnitec Corp., A Subsidiary of Nytronics, Inc. 

Peripheral Systems, Div. of Memorex 
Prentice-Hall, Inc. 
Presto Seat'Mfg. Corp. 
Pro-Data, Computer Services Inc. 

RCA EDP Div. 
RCA Electronic Components & Devices 
Raytheon Computer 

Redcor Corporation 
Rixon Electronics, Inc. 

Sanders Associates, Inc. 
Sangamo" Information Systems 
Scientific Control Corp. 
Scientific Data Systems 
Shepard Laboratories 
Software Resources ~orporation 
Soroban Engineering, Inc. 
Spatial Data Systems, Inc. 
Syivania Lighting Products 
Systems Engineering Laboratories, Inc. 

Tally Corporation 
Tektronix, Inc. 
Teletype Corporation 
Transistor Electronics Corporation 
Tymshare, Inc. 

United Telecontrol Electronics, Inc. 
UNIV AC Division, Sperry Rand Corp. 
URS Corporation 
U. S. Magnetic Tape 

Varian Data Machines 
Vermont Research Corporation 

Wang Laboratories, Inc. 
Wanlass Electric Co. 
John Wiley & Sons, Inc. 

Xerox Corporation 



AUTHOR INDEX 
Abraham, F., 345 Lambert, W. M., 193 
Aguilar, R., 81 Lass, S. E., 435 
Allen,J., 339 Lee, F., 333 
Anderson, A. H., 259 Levitt, K. N., 515 
Andreae, S. W., 105 Levy, A., 31 
Appel, A., 37 Lickhaiter, R. A., :353 
Balaban, P., 135 Little, J. L., 89 
Ballot, M. H., 461 Logan,J., 135 
Bandat, K., 363 Londe, D. L., 385 
Batcher, K. E., 307 Maki,G. K., 55 
Bell, W. V., 509 Mooers, C. N., 89 
Betyar, L., 345 Morgan,J. D., 73 
Bhushan, A. K., 95 Mueller, W. J., 151 
Boche, R. E., 67 McBride, J., 31 
Bohl, M.J., 423 McHugh, T. F., Jr., 209 
Bowman,S., 353 McLaurin, M. J., 197 
Brocker, D. H., 443 Newman,W., 47 
Cantrell, H. N., 213 Ohlberg, G., 161 
Chai, A. S., 467 Pullen, E. W., 491 
Chang, H. Y., 529 Raffel, J. I., 2$9 
Coffman, E. G.,Jr., 11 Reichard, R. W., 253 
Cole, F. B., 509 Richman, S. H., 483 
Constantine, L., 409 Rosko,J. S., 473 
Crowther, T. S., 2'59 Ruffels, W. R., 193 
DeMott, A. N., 61 Sackman, H., 1 
DelBigio, G., 183 SaIlen, R. P., 315 
Dent, B.A., 245 Sandewall, E. J., 375 
Dent, J. J., 503 Saxton, D. R., 415 
Ellison, A. L., 213 Schoeffel, W. L., 55 
Fantauzzi, G., 291 Schoen, W. J., 385 
Feldman, A. P., 323 Schuur, C. C. M., 267 
Feng, T. Y., 275 Schwartz, M., 483 
Forester, R. D., 73 Scott, E., 207 
Freeman, D. N., 229 Shuttee, D. F., 491 
Goldberg,J., 515 Sinowitz, N., 395 
Green, M. W., 515 Smith, R. J., 55 
Hand,J. E., 81 Smura, E. J., 111 
Hauck, E. A., 245 Steadman, H. L., 23 
Hauser, T. S., 453 Stewart, E. C., 443 
Herndon, T. 0., 259 Stotz, R. H., 95 
Herrmann, R. L., 283 Sugar, G. R., 23 
Hobbs, W., 31 Tang,C. K., 297 
Holcomb, R. L., 453 Tarter, M., 453 
Hollingsworth, T. J., 73 Teixera, J. F., 315 
Hyatt, G. P., 161 Tesler, L. G., 403 
Johnston, R., 345" Tracey,J. H., 55 
Jones, R. J., 171 Traister, W. A., 197 
Jordan, W. F.,Jr., 253 Tsujigado, M., 223 
Kamman, A. B., 415 Vichnevetsky, R., 143 
Kaplan, S. J., 119 Walter, A. B., 423 
Kavanaugh, W. P., 443 Walter, C. J., 423 
Kleinrock, L., 11 Woodward, C., 200 
Knight, K. E., 461 Yau,S. S., 297 


	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544

