
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 29

1966
FALL JOINT
COMPUTER

CONFERENCE
NOVEMBER 7-10

SAN FRANCISCO, CALIFORNIA

The ideas and opinions expressed herein are solely those of the authors
and are not necessarily representative of or endorsed by the 1966 Fall Joint
Computer Conference Committee or the American Federation of Information
Processing Societies.

Library of Congress Catalog Card Number 55-44701
Spartan Books, Div. of

Books, Inc.
1250 Connecticut Avenue N.W.

Washington, D. C.

© 1966 by the American Federation of Information Processing Societies, 211 E.
43rd St., New York, N. Y. 10017. All rights reserved. This book, or parts thereof,
may not be reproduced in any form without permission of the publishers.

Sole distributors in Great Britain, the British
Commonwealth, and the Continent of Europe:

Macmillan Co., Ltd.
4 Little Essex Street

London W.C. 2

CONTENTS

TIME-SHARING PROCESSORS AND EXECUTIVE SYSTEMS

A Conversational System for Incremental Compilation and
Execution in a Time-Sharing Environment

Performance of a Monitor for a Real-Time Control System

On-Line Debugging Techniques: A Survey

The SDS SIGMA 7: A Real-Time, Time-Sharing Computer

J. L. RYAN

R.L.CRANDALL

M. MEDWEDEFF

E. S. HOOVER

B. J. ECKHART

T. G. EVANS

D. L. DARLEY

M. J. MENDELSON

A. W. ENGLAND

INTEGRATED ELECTRONICS AND THE FUTURE OF COMPUTERS

Technological Foundations and Future Directions of Large
Scale Integrated Electronics

Effects of Large Artays on Machine Organization and
Hardware/Software Tradeoffs

A Prospectus on Integrated Electronics and Computer Architecture

The System/Semiconductor Interface with Complex Integrated
Circuits

A Look at Future Costs of Large Integrated Arrays

iii

R. L. PE TRITZ

L. C. HOBBS

M. J. FLYNN

W. B. SANDER

R. NOYCE

1

23

37

51

65

89

97

105

111

iv CONTENTS

COMPUTERS AND PUBLISHING

A Multiprogrammed Teleprocessing System for Computer Typesetting B. E. NEBEL

Integrated Automation in Newspaper and Book Production J. H. PERRY, JR.

A Special Purpose Computer for High-Speed Page Composition C. J. MAKRIS

Computerized Typesetting of Complex Scientific Material J. H. KUNEY
B. G. LAZORCHAK
S. W. WALCAVICH

D. SHERMAN

A Computer-Assisted Page Composing System G. Z. KUNKEL

HYBRID COMPUTERS AND RANDOM VARIABLES

A General Method for Producing Random Variables in a
Computer

A Unified Approach to Deterministic and Random Errors in
Hybrid Loops

Hybrid Computer Solutions of Partial Differential Equations
by Monte Carlo Methods

Parameter Optimization by Random Search Using Hybrid
Computer Techniques

G. MARSAGLIA

J. J. VIDAL

W. D. LITTLE

G. A. BEKEY
M.H.CRAN

A. E. SABROFF
A. WONG

ENGINEERING DESIGN BY MAN/COMPUTER INTERACTION

A Parametric Graphical Display Technique for On-Line Use

A System for Time-Sharing Graphic Consoles

The Lincoln Wand

Using a Graphic Data-Processing System to Design Artwork
for Manufacturing Hybrid Integrated Circuits

Automated Logic Design Techniques Applicable to Integrated
Circuit Technology .

M. 1. DERTOUZOS
H.L.GRAHAM

J. R. KENNEDY

L. G. ROBERTS

J. S. KOFORD
P. R. STRICKLAND
G. A. SPORZYNSKI
E. H. HUBACHER

R. WAXMAN
M. T. McMAHON
B. J. CRAWFORD

A. B. DEANDRADE

115

125

137

149

157

169

175

181

191

201

211

223

229

247

CONTENTS

COMPUTER MEMORIES

Cost Performance Analysis of Integrated-Circuit Core Memories

A 200-Nanosecond Thin Film Main Memory System

A Rotationally Switched Rod Memory with a 100-Nanosecond
Cycle Time

A 500-Nanosecond Main Computer Memory Utilizing Plated-Wire
Elements

A High-Speed Integrated Circuit Scratchpad Memory

Sonic Film Memory

NATURAL LANGUAGE

English for the Computer

An Approach Toward Answering English Questions from Text

DEACON: Direct English Access and CONtrol

Computer Assisted Interrogation

v

D. W.MOORE 267

S. A. MEDDAUGH 281
K. L. PEARSON

B.A.KAUFMAN 293
P. B. ELLINGER

H. J. KUNO

J. P. MCCALLISTER 305
C.F.CHONG

I. CATT 315
E. C. GARTH

D.E.MuRRAY

H. WEINSTEIN 333
L. ONYSHKEVYCH

K. KARsTAD
R.SHAHBENDER

F. B. THOMPSON. 349

R. F. SIMMONS 357
J. F. BURGER

R.E.LONG

J. A. CRAIG 365
S.C;BEREZNER

H. C. CARNEY
C. R. LONGYEAR

C. T.MEADOW
D. W. WAUGH

381

SOME COMMUNICATIONS ASPECTS OF TIME-SHARING SYSTEMS

, Some Problems in Data Communications Between the User
and the Computer

Communications Needs of the User for Management Information
Systems

L. A. HITTEL

D. J. DANTINE

395

403

vi CONTENTS

Elementary Telephone Switching Theory Applied to the
Design of Message Switching Systems

A Proposed Communications Network to Tie Together Existing
Computers

SCIENTIFIC APPLICATIONS

The Lincoln Reckoner: An Operation-Oriented, On-Line
Facility with Distributed Control

Telsim, A User-Oriented Language for Simulating Continuous
Systems at a Remote Terminal

Man-Machine Communication in On-Line Mathematical Analysis

L. STAMBLER

T. MARILL
L. G. ROBERTS

A. N. STOWE
R. A. WIESEN

D.B. YNTEMA
J. W. FORGIE

K. J. BUSCH

R. KAPLOW
J. BRACKETT

S.STRONG

IMPACT OF COMPUTERS ON GOVERNMENT: FEDERAL, STATE, LOCAL

The Check Payment and Reconciliation Program of the U. S. Treasury

Problems of Information Systems in State Governments

Impact of Computers on Local and Regional Governnient

An Information System for Law Enforcement

The Transfer of Space and Computer Technology to Urban Security

THE MAN-MACHINE INTERFACE

Recent Progress on a High-Resolution, Meshless, Direct-View
Storage Tube

The Plasma Display Panel-A Digitally Addressable Display
with Inherent Memory

G. F. STICKNEY

D. G. PRICE

H. H. ISAACS

L.B.McCABE
L.FARR

R. B. HOFFMAN

N. H. LEHRER
R. D. KETCHPEL

D. L. BITZER
H. G. SLOTTOW

SELECTED APPLICATIONS USING NUMERICAL ANALYSIS

The Use of Semi-Recursive Polynomials in the Design of Numerical Filters

Fast Fourier Transforms-For Fun and Profit

C. B. STALLINGS

W. M. GENTLEMEN
G. SANDE

413

425

433

445

465

479

501

505

513

523

531

541

549

563

CONTENTS

HIGH QUALITY PAPERS OF GENERAL INTEREST

A System for Automatic Value Exchange

Real-Time Recognition of Handprinted Text

Basic Hytran Simulation Language-BHSL

S. C. BLUMENTHAL
V. F. HAKaLA

G.F.GRONER

J. C. STRAUSS

ADV ANCES IN PROGRAMMING LANGUAGES

A Processor-Building System for Experimental Programming Language

The Introduction of Definitional Facilities into Higher
Level Programming Languages

Foundations of the Case for Natural-Language Programming

Explicit Parallel Processing Description and Control in
Programs for Multi- and Uni-Processor Computers

The Lisp 2 Programming Language and System

APL-A Language for Associative Data Handling in PL/I

COMPUTER-ORIENTED DATA ANALYSIS

Automatic Off-Line Multivariate Data Analysis

Data Analysis and Statistics: An Expository Overview

T. W. PRATT

T. E. CHEATHAM, JR.

M. HALPERN

J. A. GOSDEN

P. W. ABRAHAMS

G. G.DODD

G. SEBESTYEN

J. TUKEY
M. WILK

TECHNOLOGIES AND SYSTEMS FOR ULTRA-HIGH CAPACITY STORAGE

UNICON Computer Mass Memory System

An Electron Optical Technique for Large-Capacity Random-Access
Memories

A System of Recording Digital Data on Photographic Film Using
Superimposed Grating Patterns

A Photo-Digital Mass Stcrage System

C. H. BECKER

S. P. NEWBERRY

R. L. LAMBERTS
G. C. HIGGINS

J. D. KUEHLER
H. R. KERBY

vii

579

591

603

613

623

639

651

661

677

685

695

711

717

729

735

viii CONTENTS

HYBRID APPLICATIONS AND TECHNIQUES

Hybrid Computers in the Analysis of Feedback Control Systems

A Hybrid Computer Solution of the Co-Current Flow Heat Exchange
Sturm-Liouville Problem

A General-Purpose Analog Translational Trajectory Program
for Orbiting and Reentry Vehicles

Satellite Lifetime Program

Trajectory Optimization Using Fast-Time Repetitive Computation

COMMITTEE LISTS

List of Exhibitors

Author Index

C. K. SANATHANAN 743
J. C. CARTER
L.T.BRYANT
L. W.AMIOT

L.T.BRYANT 759
L. W.AMIOT

R. P. STEIN

A. I. RUBIN 771
L. SHEPPS

J. L. STRICKER 789
W. W. MIESSNER

J. S. RABY 799
R. C. WINGROVE

809

817

819

A CONVERSATIONAL SYSTEM FOR INCREMENTAL
COMPILATION AND EXECUTION IN A

TIME-SHARING ENVIRONMENT

James L. Ryan

Tymshare Incorporated, Los Altos, California

Richard L. Crandall

Com-Share, Incorporated, Ann Arbor, Michigan

and

Marion C. Medwedeff

Scientific Data Systems, Santa Monica, California

BACKGROUND

The Conversational Compiler System described
herein is implemented on the Scientific Data Systems
Model 940 Time-Sharing System. The SDS-940 has,
as its Central Processor, a modified SDS-930, the
modifications for which were developed at the Uni
versity of California at Berkeley by Melvin Pirtle.1

This hardware includes a paging scheme, a set of
privileged instructions for monitor as opposed to
user mode of operation, and the ability to perform
input/ output operations to secondary memory while
computing.

The internal organization of CCS was motivated
by ideas 'from Dr. Kenneth Lock 2 of the California
Institute of Technology at Pasadena, California, and
by B. Randell and L. J. Russell in their book,
"ALGOL 60 Implementation." 3 CCS operates as a
subsystem of the System Monitor developed for the

1

SDS-940 by Dr. Wayne Lichtenberger, Butler
Lampson,4 Peter Deutsch and Larry Barnes, all of
the University of California at Berkeley. CCS itself
is not involved in the basic management of the
system input! output, physical memory allocation or
scheduling of user programs. It does, however, take
into account the physical restrictions of its environ
ment such as page size, read only vs read/write
memory, and so forth.

The Berkeley time-sharing system includes almost
all of the service routines and other functions and
controls that were required by the design of CCS.
It was found that certain convenient hardware fea
tures were missing, but none was a serious hindrance
to the design of the system or its compilers.

The design of CCS is not oriented towards any
particular computer system; however, many of its
features would be difficult to implement or would be
totally ineffective without a favorable environment

2 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

such as that provided by the SDS-940 system and the
Berkeley Monitor.

CCS and its compilers were developed at Tym
share, Inc. in Los Altos, California, in cooperation
with Com-Share, Inc. of Ann Arbor, Michigan, and
Scientific Data Systems of Santa Monica, California,

SYSTEM OBJECTIVES

The design of the Conversational Compiler Sys
tem is predicated upon the attainment of several
objectives; specifically:

Conversational Interface. Since CCS will
be used in an on-line time-sharing environ
ment, a high level of interaction between
the user and the system is imperative for
maintenance of operational efficiency.
Therefore, the primary objective of the
system design becomes that of establish
ing a practical means for dialogue between
the user and the system.

Multiple Language Capability. It has be
come an accepted axiom in the computing
field that no single programming language
provides the best path to solution of all
problems. Thus, CCS is designed to, be
multilingual. The initial implementation,
as described in this paper, includes ex
tended versions of full ALGOL 60 and
FORTRAN IV.

Incremental Compilation and Execution.
During the development of a program,
there is likely to be an interleaving of
executions and program modifications. To
cope efficiently with this, compilers should
be incremental and execution should be
controllable. Incremental compilers would
allow for' fast turn-around time and mini
mal work for the system in keeping up
with programmer modifications. Controlled
'execution would allow the user to specify
ranges of statements to be executed as well
as single statement step execution.

Language Oriented Program Debugging.
Since the programmer should be ignorant
of the idiosyncratic nature of the computer
itself, the debugging techniques available
should be in terms of the conceptual pro
gram rather than of the computer upon

which that program is executed. Debugging
information should be provided, therefore,
in a direct relationship to the source lan
guage statements in the user's program and
the user should be able to easily obtain
information informing him of the effect of
individual statements. Furthermore, the
programmer should also have explicit con
trol as to the nature of the debugging
information provided.

Multiple "'1ode Execution. Normally, fol
lowing modification of a program, a trial
execution is undertaken to determine
whether the modification has the desired
effect on the operation of the program.
During this trial execution, a tight watch
should be maintained and the programmer
informed of any questionable condition
that mayarise. It is important to note that
even though a condition may be question
able, the effect of this condition may not
be adverse. Therefore, following this trial
execution, if it has been determined that
the program is in proper operating order,
the programmer should have the capability
of turning off these alarms. This will re
quire a dual mode execution capability,
one executing mode for program checkout
and a second for production use.

Common Internal Format. The output of
each of the language compilers should be
in a compatible form so that programs may
be comprised of segments written in dif
ferent languages. This capability would
make it possible, for instance, to use sub
programs written in ALGOL with a con
trol program written in FORTRAN.

Multiple Mode Program Storage. Thepro
grammer should have the capability of
creating Save files of a program in either
symbolic or internal forms, or a com
bined file that preserves both the symbolic
and internal forms, so that program modifi-:
cation may be continued at a later time.

Re-Entrant Characteristics. Given the mul
tiprogramming capability that accompanies
the more advanced time-sharing systems,
heavily used subsystems should be re
entrant. Time-sharing also introduces the

INCREMENTAL COMPILATION AND EXECUTION 3

capability for several people at different
remote terminals to operate simultaneously,
perhaps sharing a user-written program.
This implies that compilers should generate
re-entrant code allowing the user to write
shareable programs which are not a part
of the computer facility library.

User .Aid. A certain degree of self-teach
ing capability has already been given to
conversational systems via rapid answer
back of error diagnostics. This ability
should be extended to allow a more
natural question and answer capability.
The user should be able to ask English
language questions about his problems and
get immediate responses from the com
puter. This would replace the sometimes
len~thy process of referencing a manual
which never seems to be present when
needed.

SYSTEM OPERATION

The Conversational Compiler System consists of a
language independent supervisory program, service
routines, and associated language compilers. CCS,
itself, operates as a subprogram to a system executive.
Upon receipt of the proper language identification
command, the system executive activates CCS,
which is then controlled through its own system
command set.

CCS System Commands

Command Recognition. All CCS System Commands
are of the form:

< command identifier>
[, <specification field> ...]!

The command identifier may be abbreviated by
including only enough characters to uniquely identify
the desired command from the other commands in
the command set. Also, as will be shown, the
character content of the command identifier may be
redefined by the user.

Statement Numbers. Every statement in a CCS pro
gram has a statement number used only for text
manipulation and never for the executing logic of the
program. Statement numbers are assigned either
explicitly by the programmer or implicitly by the

system, as will be shown. Statement numbers are
decimal numbers with a maximum of three integer
and three fractional digits. Insignificant zeroes are not
considered as part of the statement number. The
smallest and largest statement numbers are .001 and
999.999, respectively.

Statement Designators. Most of the CCS System
Commands use statement designators to enable the
user to describe the portion of the program to be
affected by the command.

Statement designators may take the form
of:

• A statement number (+ and - may be
used to symbolically represent the highest
and lowest existent statement numbers).

• A statement number with increment
(specifying a statement which precedes
(negative increment) or follows (positive
increment) the numbered statement by the
number of statements indicated.

• An insertion indicator for the COMPILE
command. (A statement number followed
by a + or - sign indicating whether the
insertion precedes or follows the numbered
statement.)

• A statement range indicator (two of the
above separated by a colon.)

Program Text Control.

COMPILE, <statement designator>,
<in-statement> !

Enters the in-statement into the program
as directed by the statement designator.

The in-statement may be one or more source
language statements separated by the prop~r source
language delimiters. Statement designators contained
within a parenthetical pair and bounded by the
appropriate statement delimiters may appear in the
in-statement. These statement designators identify

. statements in the program that are to be included in
the text of the in-statement.

A file name, identified by the surrounding quotes,
appearing . in an in-statement causes the symbolic
text from the named CCS program file to be in
cluded in the in-statement.

DELETE, <statement designator> [, <state
ment designator> ...]!

4 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Removes designated statements from the
program.

RESEQUENCE, «statement designator>,
< statement designator» [(< statement des-

ignator>, <statement designator> ...]!

Assigns new statement numbers to the
statements identified by the first statement
designator in the parenthetical pair as di
rected by the second statement designator
which may specify an allowable statement
number range, or a base number and an
increment.

LOCK, < statement designator> [, < statement
designator> ...]!

Declares a protected status for the des
ignated statements. Locked statements can
not be removed from the program, or be
renumbered. Copying does not affect the
lock status.

UNLOCK, < statement designator> [, < state
ment designator> ...]!

Removes protected status from designated
statements.

OFF, <statement designator> [, <statement des-
ignator> ...]!

Temporarily deactivates designated state
ments, removing them from the execut
ing logic of the program.

ON, <statement designator> [, <statement des-
ignator> ...]!

Reactivates designated statements, restor
ing them to the· executing logic of the pro
gram.

Program Execution.

EXECUTE [, < statement designator>]

[

,DIAGNOSTIC J!
,PRODUCTION
,STEP

Executes the designated statements accord
ing to the specified mode. (If no mode is
specified, PRODUCTION is assumed.)
DIAGNOSTIC-causes a pause and out
put of an appropriate message whenever
an error or questionable condition occurs.
PRODUCTION-Aborts program when-

ever an error occurs. Questionable condi
tions trapped in DIAGNOSTIC mode will
be ignored.
STEP-Same as DIAGNOSTIC except
that a pause occurs after completion of
each statement (and its debugging routine)
allowing another system command to be
entered or execution to be resumed (by
entering an exclamation point) .

CLEAR!
Destroys internal data storage left after a
partial execution.

PERFORM, <in-statement>!
Executes the in-statement, but does not
enter it into the program. The in~statement
may modify, but not declare, data storage.

Program Debugging.

DEBUG, (<statement designator>, <statement
designator» [, «statement designator>, <state-

ment designator» ...]!

Declares statements identified by the sec
ond statement designator within each
parenthetical pair to be used as a debug
ging procedure for the statements identified
by the corresponding first statement des
ignator. The debug procedures will be
executed immediately following each state
ment for which they are declared: It is
possible for more than one debug pro
cedure to be declared for a given state
ment.

Program Information.

LIST [, <statement designator> ...]

[, QUICK]!
[, FORMATTED]
[, LOCK]
[, UNLOCK]
[, OFF]
[,ON]
[, DEBUG]
[, ERROR[S]]

QUICK - Prepares high-speed unfor
matted listing.
FORMATTED - Prepares formatted list
ing in which statements are indented ac
cording to program structure.
LOCK, UNLOCK, OFF, ON, DEBUG,

INCREMENTAL COMPILATION AND EXECUTION 5

ERROR[S] - List only statements of the
designated type.

The directives may be used in combinations. If no
directives appear QUICK is assumed.

FIND, <label>!

Lists the first occurrence of the indicated
source language label. Subsequent occur
rences of the same label may be found by
entering an exclamation point.

File Control.

LOAD, <file-name>!

Loads the specified CCS program file.
SAVE, <file-name> [, SYMBOLIC]!

Saves the program on the designated CCS
program file. If indicated, only the sym
bolic text will be saved.

System Control.

DEFINE, <old command identifier> = <new
command identifier>!

Specifies new character set to be used for
command identification.

Diagnostics

CCS provides three categories of diagnostic mes
sages; command, compilation and execution. An
immediate warning that an error has occurred is
given (for the teletype, a bell) so that the current
activity may, at the user's option, be interrupted
for corrective action. Depending on the nature of
the problem, however, immediate service may not be
required. For instance, during compilation of pro
gram text, even though a warning occurs upon detec
tion of each syntactical error, correction of the
errors may be postponed until completion of the
input of the text.

Command Diagnostics. Command diagnostics, given
in the form of a repeated warning, occur whenever
the intent of a command is not understood. In these
instances, the command should be re-entered.

Compilation Diagnostics. Whenever syntax errors in
program text are detected, an immediate warning is
given. Upon the completion of the processing of all
statements in the in-statement, the diagnostic infor
mation is returned as illustrated below:

User:
COMPILE, 5:10, A : = B + C; X :

Y * / Z; P = Q + R!
System: 2 SYNTAX ERRORS
User: LIST, ERRORS!
System: *7. X : = Y * / Z;

t
*9. P = Q + R;

t
The asterisk preceding the statement number in

dicates the statement is a part of an in-statement not
yet structured into the program. The position of the
upward arrow locates the position in the statement
where the error was detected. No further syntax scan
was made of the erroneous statement. If this is an
insufficient description of the error, the query WHY
may be used to obtain a detailed explanation as
follows:

User: WHY, *7!
System: *7. BINARY OPERATOR NOT

PRECEDED BY V ARIABLE OR CON
STANT.

If errors occur in an in-statement, corrective action
must be taken in the form of statement deletion or
replacement. New statements will not become part of
the program until all errors in the in-statement have
been removed. COMPILE and DELETE commands
may be used to modify the in-statement.

In the above example, statements *7. and *9. were
in error. The commands:

COMPILE, *7 : *9, X = Y * 5 / Z;
P: = Q + R!

COMPILE, *5: *10, (6); (1); X:
y* 5/Z; (*5)!

DELETE, *7 : *9!

would all be valid corrections. These commands
modify the in-statement group. Note, in the second
example above, that statements previously compiled,
either within or without the in-statement designator
range, may be copied into the in-statement. This
modified in-statement replaces the original in-state
ment. Since it is possible that other errors still exist
or new errors have been introduced, the error search
is repeated. Error correction proceeds until the entire
in-statement is free of errors. The in-statement is
then placed into the program as indicated by the

6 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

statement designator of the original COMPILE com
mand.

Execution Diagnostics. There are two forms of exe
cution diagnostics. Those that occur only when the
program is being run in DIAGNOSTIC mode and
those that occur regardless of the mode of execution.
If an execution diagnostic appears and the program
is in DIAGNOSTIC mode, a pause occurs. If the
diagnostic condition is to be ignored, execution may
be continued. Execution diagnostics appearing while
the program is in PRODUCTION mode terminate
the program.

CCS User Aid

Provided with CCS is an on-line question answer
ing service called HELP. * HELP accepts English
language questions about CCS, ALGOL, or FORT
RAN. The questions are analyzed by a key word
search; various common endings on key words being
viewed interchangeably (e.g., the word COMPILING
looks the same as the word COMPILE). The best
answer is chosen for the question and is printed out.

To use HELP, the user merely types: HELP!

as a command to CCS. The system is then set to
accept questions.

For example:
User: HELP!
User: WHAT IS A STRING LITERAL?
System: A STRING IS A SERIES OF CHARAC-

TERS PRECEDED BY A PRIME (')
AND FOLLOWED BY A QUOTE (").
E.G., 'STRING"

User: HOW DO I GET A PRIME IN A
STRING?

System: STRINGS MAY BE NESTED WITH
THE CONVENTION THAT ANY
STRING NESTED WITHIN ANOTHER
STRING HAS ITS SURROUNDING
PRIME AND OUOTE INCLUDED IN
THE SURROUNDING STRING. E.G.,
'A'B"C" HAS THE CONTENTS A'B"C.

User: HOW DO I GET ONLY A PRIME
WITHOUT A QUOTE IN A STRING?

System: USE NESTING AND THEN EXTRAC
TION.

* Actually the HELP system for CCS is an extension of
the Question Answering System (QAS) developed at the
University of California, Berkeley.5

User: HOW DO I EXTRACT CHARACTERS
FROM A STRING?

System: THE SYSTEM ROUTINE LEFT (N, S)
RETURNS THE STRING WHICH IS
THE LEFT N CHARACTERS OF
STRING S. THE SYSTEM ROUTINE
RIGHT (N, S) RETURNS THE RIGHT
N CHARACTERS OF S.

Edit Features During Text Input

Editing features are available to the user while
entering program text.

The symbol # deletes the preceding character.
This may be used iter'atively but applies only to the
current statement of input text.

The symbol ~ deletes the current statement.
A string of characters between two statement

delimiters may be considered to be a text segment.

The formation:
-n:

appearing at the beginning of a segment replaces
the text segment n segments previous with the text
segment following the colon. If a statement delimiter
immediately follows the colon the nth previous seg
ment.is deleted. If n refers to a segment not in the
in-statement, the text segment following the colon is
inserted at the beginning of the in-statement. n may
not be zero.

Example:

COMPILE,l: 3,A: =B+*C##C;O: =
E/*;C: =Q-F;-2: 0: =E/N;!
LIST, 1 : 3!

1. A : =B+C;
2.0: =E/N;
3. C: =Q-F;

SYSTEM ORGANIZATION

System Executive. The Conversational Compiler Sys
tem consists of a group of programs which operate
as a subsystem to a System Executive. Control is
given to CCS by the System Executive upon receipt
of an appropriate command, there being an entry
for each implemented programming language.
Although CCS is intended for use in a time-sharing
environment, most time-sharing attributes are pri
marily a function of the System Executive, which of
itself is not a topic of this paper.

INCREMENTAL COMPILATION AND EXECUTION 7

Command Dispatcher. CCS operations are controlled
through a Command Dispatcher which interprets
all system commands. Upon command identification,
control is transferred to an appropriate system
routine.

Source Language Compilers. The initial implementa
tion of CCS has two language compilers; extended
versions of ASA FORTRAN IV and ALGOL 60.
The compilers are entered from the Command Dis
patcher, and produce independent relocatable pro
gram elements for each segment of source language.

Source Language Structuring Routines. Upon the
completion of the compilation of a group of source
language statements, control transfers from the com
piler to the appropriate language structuring routine.
Whereas the compilers operate incrementally, the
structuring routine interacts with all of the elements
produced during a compilation phase, linking these
elements into a meaningful "structure" and enter
ing it into the program. Upon completion of this task,
control returns to the Command Dispatcher.

Source Language Definition Search Routines.
Although the structuring routines link statements
into a program, they do not supply operating defini
tions needed for execution. These definitions are
supplied by the appropriate language structuring
routine which is called from the Execution Monitor
upon recognizance that a particular program element

has not been previously executed. After definitions
have been supplied for this element, execution
proceeds in a normal fashion.

Execution Monitor. The Execution Monitor controls
program execution, its action being determined by
the specified execution mode, i.e., PRODUCTION,
DIAGNOSTIC, or STEP. The Execution Monitor
may interrupt the program upon the completion of a
statement; pausing or terminating the execution if
ordered. Upon completion of the execution of a pro
gram statement, the Execution Monitor will execute
any debugging routines active for the respective
statement.

Service Routines. These routines perform the neces
sary functions of preparing program listings, chang
ing program statement status, destroying data follow
ing partial execution, deleting program text, preparing
program files, and defining debugging routines.

SYSTEM MECHANICS

Memory Organization

The total computer memory allocation for each
CCS user can be divided into two general classifica
tions; System Memory, which is shared by all users,
and User Memory, which is unique in content for
each user.

SYSTEM
EXECUTIVE

PARENT SYSTEM
-------- --- --- --- -------

CCS
COMMAND

DISPATCHER
-------------, t /1\ r I

I 1 J, I \11
I

LANGUAGE I EXECUTION SERVICE
COMPILER

I MONITOR ROUTI NES I
I /1\
L _______

-------,

,II \11 I
I

LANGUAGE I LANGUAGE I

STRUCTURE DEFINITION SEARCH I
I
I

ONE SET FOR E AC H LAN GU AGE

Figure 1. CCS system organization.

8 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

AVAILABLE FOR
SYSTEM WHEN
PROGRAM NOT

EXECUTION
SYSTEM MEMORY } SYSTEM MEMORY

EXECUTING DATA REGION

~----------- USER MEMORY
(UNIQUE FOR
EACH USER) PROGRAM REGION

Figure 2. Memory organization scheme for CCS user.

System Memory. The proportion of the total memory
commitment given to system use varies with the
specific task being undertaken. Even though CCS is
comprised of many routines, only those needed to
perform current functions are included in the user's
allocation.

User Memory. User Memory is always separated into
two sections; the program region, and the data region.
The program region is used to store the program
itself, and acts as a de-facto communication buffer
between the compilation, structuring, and definition
search routines.

The data region is used during program execution
as the working area for data manipulation and stor
age. During a non-executing phase, the data region
may be swapped for system memory allowing more
efficient use of the total memory commitment.

From Source Language to Object Program

Compilation. All output from the CCS Language
Compilers is placed into the program area of user
memory. This output consists of a threaded list of
"elements," where the actual placement of each ele
ment is determined by the compiler upon inspection
of a "hole" list. Each of these elements contains the
encoded representation of a source language state
ment, directive information for the structuring
routine, or diagnostic information describing a syntax
error.

Structuring. Upon the completion of the compilation
of a given in-statement, the threaded list of elements
produced become, in effect, "data" for the appro-

priate language structuring routine. The first task is
to process elements indicating that other elements
from the original program are to be "copied" into the
element list. Following this task, the elements are
counted in order to determine the increment to be
used for calculating statement numbers. The list is
then searched for diagnostic elements and if any are
found an appropriate message is output and action
taken which causes the system to expect corrective
measures from the user. These corrective measures
modify the element string. Following modification,
the diagnostic search is again undertaken.

When no more diagnostic elements remain in the
element list, the formal structuring process begins.
Each element in the list is, in turn, checked for type
and it is determined if the statement has a proper
relationship to the other statements in the list. If an
illegality is detected, the action taken is the same
as that taken for syntax errors. If no errors are de
tected, a new header is created for each element
containing the "structure pointers" which define
the relationships between the different elements.

As part of the structuring process, modifications
are made to the Symbolic Text Dictionary which con
tains one entry for each statement in the program.
Dictionary entries are threaded in the' order in which
the statements appear in the text of the program.
Each entry contains a pointer to the corresponding
text on the Symbolic Text File and the core location
of the element representing the statement.

First Execution. Even though the structuring routines
connected elements into the program, complete def
initions for the program variables were not yet

INCREMENTAL COMPILATION AND EXECUTION 9

supplied. This task is undertaken by a "definition
search" routine. Upon encountering an element
which has not been previously executed, the Execu
tion Monitor causes a definition search to be
activated which traces through the program seeking
definitions for the undefined variables. If a definition
is not found, depending on the conditions and the
source language used, one of two actions will be
taken. An execution diagnostic will be output, or an
implicit declaration for the variable will be entered
into the program.

Subsequent Execution. Once definitions are supplied
via the first execution, an element may be executed
any number of times without further ado. Changes
to the data definitions or placement of the state
ment in the program may, however, require another
definition search.

Pseudo Machine Code

The encodation produced by CCS translators is in
the form of a quasi-interpretive language referred to
as "Pseudo Machine Code" or PMC. The net effect
of PMC is the expansion of the "hardware" ca
pabilities of the computer, thereby simplifying the
task of the compiler and enhancing the capabilities
of the system.

Data Formats. The PMC allows internal data to as
sume one of seven formats:

Integer
Real
Boolean
Expanded Precision Real
Complex
String
Text

Text and string variables have identical functions,
the difference being that while the storage for string
variables is taken from the user's memory, the stor
age for text variables will be taken from secondary
memory. The string and text variables are unique in
that they store character strings of indefinite length.
The amount of storage used is not fixed, but rather, is
a product of the number of characters actually con
tained in the string. Therefore the storage used by
string or text variables will possibly change during
program execution.

Any of the PMC data types may be dimensioned
to be arrays. Also, PMC provides the capability for

function subroutines to be defined in terms of any
of the above data types.

Instruction Set. PMC operations may be grouped into
three categories:

Data Operations
Storage Declaration
Procedure Control

Data Operations. PMC data manipulating instruc
tions are provided for arithmetic, relational and
Boolean operations. These instructions function in
dependently of data types.

Depending on, the mode of execution, illegal data
operations produce either an undefined result or an
execution diagnostic.

Storage Declaration. PMC storage declarations take
the form of a subroutine call with argument list.
When encountered during program execution, ap
propriate modifications are made to the data base
conforming with the intent of the declaration.

Procedural Control. Within the PMC instruction set,
operators ar~ supplied for the following procedural
control capabilities:

Transfer of Control
Subprogram Call with Parameters
Loop Control

Transfers of control may be either conditional, un
conditional, or selective. A conditional branch is
made or not made depending upon the content of a
Boolean variable. Selective branches may be made
to one of many locations depending on the resultant
value of an expression.

PMC provides a complete mechanism for sub
program calls. Parameters mayor may not be
present, and the parameters themselves may effect the
transfer of a value or identifier into the subprograms.
The parameters may, if desired, be expressions, and
it is possible to indicate whether the expression
should be reevaluated upon each use of the corre
sponding entry in the subprogram, or whether the
expression evaluation is undertaken only upon trans
fer of control to the subprogram.

The mechanism for programmed loops has been
provided in the Pseudo Machine Code. This mech
anism is flexible enough in scope to be capable of
proper performance of all variations of ALGOL
"for" statements and FORTRAN "do" statements.

Data Stack. The executing logic of the PMC assumes
a data stack. At the beginning of program execution,

10 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

the stack is empty. Data storage declarations cause
the necessary space to be placed on the top of the
stack (the PMC includes operations for subsequent
alteration of the size of the storage area). The top of
the stack is used as a scratch pad by the PMC rep
resenting a given statement. The executing PMC
access data on the stack through a network of dy
namically maintained indirection pointers. This
mechanism allows data definitions to be recursive
since the obscured definitions can be restored when
needed.

CCS INPUT/OUTPUT PACKAGE

A flexible and easy to use I/O package is avail
able for CCS users. Implicitly formatted I/O ca
pability is offered for easy data transfer to and from
a character oriented remote terminal. Explicitly
formatted I/O is available for more elaborate data
input and output to and from any storage media.
Formatted I/O is not device oriented, and only a
file designator (a system assigned number) is needed
to reference the file.

Format specifiers are designed for both business
and scientific applications. Additional flexibility is
obtained by using string data for formats. Through
the use of powerful string handling capability avail
able to the CCS user, formats can be constructed, or
modified, during program execution.

In order for all CCS languages to have ready
access to the I/O package, commands take the form
of system subroutine calls.

Implicitly Formatted I/O

The subroutine:
ACCEPT (vI)

(where vI is a list of variables, possibly subscripted,
separated by commas) will input data from the tele
type. A space, comma, or carriage return serves to
separate data. Data is input until the vI is exhausted.
Strings as well as numbers may be input in this
fashion using the prime and quote as string delim
iters.

The subroutine:
DISPLAY (el)

(where el is a list of general expressions separated by
commas) will output data to the teletype. Each value
that is printed is followed by three spaces. If a
string is printed, these spaces are suppressed. No
carriage return is issued until the el is exhausted, or
an output line is filled, at which time a carriage return

and line feed are automatically given. The terminat
ing carriage return may be suppressed by including
the system defined symbol "$" as the last element
in the el. "%" may be used to obtain intermediate
carriage returns; e.g., ('A=", %, 3) would print:

A=
3

Implicitly formatted I/O is intended to be a painless
way for novices and impatient experts to communi
cate rapidly with their programs.

Explicitly Formatted I/O

The subroutine:
READ (n, f, vi)

inputs data from the file n according to the format
f into the variables listed in vi. f may be either a
string literal or variable.

The subroutine:
WRITE (n, f, el)

outputs the values of the expressions in el to file n
according to format f.

Formats

A format is a string which is either in literal form
or addressed by a string variable. Each element in the
I/O list (i.e., vI or el) for the READ and WRITE
routines is described by a format part. Parts are
separated from each other by a colon (e.g., 'part:
part: part").

A part consists of special characters which de
scribe input and output fields.

A string of duplicate characters may be expressed
also with the number n preceding the repeated
character; e.g., DDDD is equivalent to 4D.

Any part may be enclosed within parentheses and
preceded by a number n indicating a concatenation
of the part; e.g., '2 (DD.D :)" is equivalent to
'DD.D : DD.D".

When a format string is exhausted before the I/O
list has been completely processed, the format is re
scanned.

All CCS I/O routines count lines and space out
pages on teletype I/O. Symbolic files have the neces
sary line feeds such that if they are ever printed,
spaced pages result.

When a specific field size is exceeded by trying to
output too large a number, an asterisk prints in the
leftmost position of the field along with the remain
ing part of the number that will fit.

INCREMENTAL COMPILATION AND EXECUTION 11

Any string literal appearing within a format is
printed verbatim excluding the surrounding primes.
String literals appearing in a format are ignored when
input, allowing an output format in many instances to
be used for input.

If a real (integer) datum is input and the receiving
variable is integer (real), the necessary conversion to
real (integer) takes place. This implicit conversion
feature extends to strings ..

Boolean values are printed as a "T" or "F" right
justified in the field. Any format character specifying
digit may be used for Boolean output.

Whenever an I/O list is exhausted, a carriage re
turn and line feed are automatically given. A special
character described below may be used to suppress
this action.

Special characters:

D: Specifies a digit for the corresponding
position in the I/O field. Insignificant
zeroes are printed and the sign is
suppressed;
e.g., the Format: 'DDD"

used with: Write: 3
will Print: 003
used with: Write: -3
will Print: 003

+ : Same as D except the sign "floats"
into the rightmost "+" which is not
needed for a significant digit;
e.g., Format: '+ +D"

Write: 5
Prints: /\+5
Write: -5
Prints: /\-5

Same as "+" except that a plus sign
is never printed;
e.g., Format: '--D"

Write: 5
Prints: /\ /\5
Write: -5
Prints: /\-5

Z: Same as "D" except leading zeroes are
not printed;
e.g., Format: 'ZZZ"

Write: 6
Prints: /\ /\6
Write: -6
Prints: /\ /\6

, . May appear anywhere in a part and
causes the printing of a comma. The
comma is not printed with an adjacent
space;

e.g., Format: 'ZZZ,ZZZ,ZZZ.DDD"
Write: 532468.29
Prints: ZZZZ 532,468.290

The symbols "D", "+", "-", "Z", and "," may be
used for input of integer data. The datum must be
such that it could have been created via a WRITE
using an identical part specification.

.. The decimal point indicates a real
number' is to be output. The special
characters to the left of the decimal
point describe the integer portion of
the datum while the fractional portion
is described by the characters to the
right. The decimal point prints in all
cases except when surrounded by
blanks. The definitions for "+", ",-"
and "z" are mirrored when to the
right of the decimal point;

e.g., Format: 'ZZZ.ZZ"
Write: 48.7
Prints:
Format:
Write:
Prints:

1\48.7.
'ZZZ.D+ +"

63.4
/\63.4+.

@ Represents base 10 exponentiation.
E: The coefficient . is described by the

characters to the left of the @ or E
symbol and the exponent is described
by the format characters to the right;

e.g., Format:
Write:
Prints:

'ZZZ.Z@DD"
463.2

463.2@01

Real numbers are input by specifying their field
with the "D", "Z", "+", "-", ".", ",", "@".
The number is automatically converted to the
mode of the corresponding variable in the input
list;

S: Specifies a scale factor to be used after
input or before output of numeric
data.
The formation:

S[n]
appearing at the beginning of a format

12 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

X:

part (n is an integer, possibly signed)
scales the number by 10 to the power
n;

e.g., Format:
Write:
Prints:
Format:
Write:
Prints:

'S[-2]DD"
3000

4

30
'S[2]DDD"

400

Acts as a skip on input and as a space
on output. The "X" may occur any
where in a format part;

e.g., Format: 'DD : XX : DD"
Write: 23,22
Prints:
Format:
Write: 468
Prints:

23/\/\22
'ZXZZ"

4/\68

L: Skips to the next line on output;
% ignored on input.

P: Skips to the next page on output;
ignored on input. After the page skip,
"L" is implied.

A: Specifies alphanumeric input or out
put;

e.g., Format: 'AAA: ZZ"
Write: ' A/\ =", 2
Prints: A/\ = /\2

I: Specifies implicit formatting; causing
READ to function as an accept and
WRITE to function as a DISPLAY.
The symbol "I" may not be used in
conjunction with any other special
characters other than "S".

The format specifier "I" is useful
for input of strings of unknown length.
Strings input must have primes as
delimiters. Output strings will be
printed with a special "invisible delim
iter" which will not print, but will
appear on a paper tape or file, allow
ing these strings to be input without
apparent primes.

$: Indicates a binary file is to be input
from or output to. No other specifica
tion characters may appear in the
format.

B: Suppresses the carriage return when
the I/O list is exhausted, allowing
more than one output statement to
print on a given line.

CCS-ALGOL

The motivation for creating CCS-ALGOL stems
from the desire to create, in conversational form, an
ALGOL 60 that adhered to the specifications of the
1962 Revised Report.

Much has already been said about the effects of
time-sharing on software. The one very important
effect of time-sharing is the fact that it enables the
user to operate a computer on-line. He therefore
expects things to happen very rapidly. He also ex
pects to have reasonable conversations with the
machine in order to debug programs and operate
them successfully. This necessitates a responsiveness
to the user's commands in terms of seconds rather
than minutes (or hours) as in batch processing ori
ented compilers. CCS-ALGOL has, in large measure,
achieved this goal by compiling input text in an
incremental fashion. A high degree of interaction
between CCS-ALGOL and the CCS Execution Moni
tor allows rapid repair of bug-infested programs.

Another goal was to have the object code pro
duced by the compiler, operate in a reentrant
fashion, allowing users to write programs and sub
sequently share them simultaneously with other users.

Finally, some rules defined under ALGOL 60
having to do with expression formation, name forma
tion and the use of strings were thought to be too
restrictive and were somewhat relaxed.

The philosophy adopted during the development of
the compiler, whenever a choice existed between
different methods of implementation, was to choose
that which allowed the greatest syntactic flexibility
and ease of programming.

The above goals have been attained in the im
plementation of CCS-ALGOL. CCS-ALGOL is a
fast, incremental, one-pass reentrant compiler pro
ducing reentrant object code.

A review of the more important capabilities and
extensions of CCS-ALGOL follows. The general
manner in which the compiler works. is subsequently
described. It is assumed that the reader is familiar
with ALGOL 60.

INCREMENTAL COMPILATION AND EXECUTION 13

Definitions

Identifiers. An identifier is a programmer-defined
name used to represent variables, arrays, procedures,
switches and possibly labels. An identifier is defined
to be any string of alphanumeric characters of
arbitrary length, containing at least one alphabetic
character. . Since blanks are ignored, the name
" ARRAY BETA" is the same as the name "AR
RAYBETA."

Examples: ABC, V ARIABLE1,
THIS IS A NAME, 123Q4

Labels. A statement label may take either the form
of an identifier or of an integer numeric. Insignificant
zeroes on numeric labels are ignored; e.g., 0068
68.

Examples: 12345, AB1, 015,
THIS IS A LEGAL LABEL,
4368J, 236

Delimiters. ALGOL 60 requires certain words which
have special meaning such as "GO TO" to be used
as unique symbols in the character set. These special
symbols and other single character symbols such as
arithmetic operators, are called delimiters. While
delimiters such as =, +, t, >, have unique rep
resentations on currently available input equipment,
delimiters such as "IF" and "GO TO" do not, and in
order to set them apart from identifiers (e.g., a
variable called "IF") CCS-ALGOL requires a single
dot (.) to precede an alphabetic delimiter. Examples
are: . IF, .GO TO, .ARRAY, etc.

In order to save typing, any delimiter comprised
of five or more characters may be contracted by
typing the dot, the first letter, a prime, and the last
letter. The only exception to this rule is . BEGIN
which has no abbreviation. For example, .PROCE
DURE·looks like .P'E and .BOOLEAN looks like
.B'N.

Variables and Constants. Variables may be any of
five types: text, string, Boolean, integer or real. A
variable or array element not containing data of one
of these types is considered undefined.

The Boolean constants are: . TRUE, and .FALSE,
and are the only values to which Boolean variables
or array elements may be set.

Integer constants have the appearance of a nu
meric string.

Real constants have the form:
x.y or a.b@c.

x, y, a, band c are integers. x, a and c may be
signed. @ symbolizes "ten to the power". If a.b. is
missing, 1.0 is assumed.

String constants have the form:

'STRING OF CHARACTERS"

Strings. Several string management features have
been included in CCS-ALGOL. In addition to those
described in ALGOL 60 specifications, a variable
may be declared to be of type "string" by the new
delimiter . STRING.

The declaration form:

.STRING .ARRAY x[a1:b1, ,an:bn]

declares x to be an "n" dimensional array of strings.
String array elements can contain strings of arbitrary
length and, therefore, may be thought of as extending
into the n + 1 st dimension.

Procedures may also be of string type in which
case they are expected to return a string when called
upon.

The relational operators (>, > =, < =, <, +,
< >) may have string variables as both operands
with the obvious meaning.

A string conversion capability is built into the
replacement operator. Just as ALGOL 60 converts a
value of real (integer) type to a value of integer (real)
type across the: = operator, a string may be con
verted to a real or integer number or vice versa.

Example: .STRING S; .REAL
. INTEGER I:

S : = '463.29";
R:=I:=S

R· ,

results in the real value 463.29 being placed in R
and the integer 463 being placed in I.

Concatenation of two strings is performed by the
system subroutine "JOIN" as follows:

a : = JOIN (sl, s2)

where a, si, s2 are string variables; s2 is appended to
sl and placed in a.

Extraction from strings is performed by the two
system subroutines "LEFT" and "RIGHT" as fol
lows:

a: = RIGHT (e,_ sl)

Here the rightmost e characters of sl will be placed
in a.

14 PROCEEDINGS-FALL JOINT COMPUTER CONfERENCE, 1966

Examples:

1. If sl : = 'ABCDE"
Then: a: = RIGHT (3, LEFT (4,
sl»
Results in: 'BCD" = contents of a.

2. If sl : = 'ABCD"
Then: a: = JOIN (LEFT (2, s1),
RIGHT (1, 'EFH"»
Results in:. 'ABH" = contents of a.

NOTE: with proper comments, these subroutines are
readable:

a: = LEFT (3) CHARACTERS OF:
(STRING 1)

q : = JOIN (STRING 1) WITH: (STRING
2)

Program Structure

CCS-ALGOL treats compound statements and
blocks in an identical manner. Blocks may be nested
to a depth of 64 levels.

Storage allocation is performed dynamically and,
therefore, storage for identifiers declared in a partic
ular block exists only during the execution of that
block. Upon entrance to a block, storage is created
for variables and arrays after evaluating subscript
bounds for array declarations. Storage is released
upon exiting the block within which it is defined.

Own variables and arrays have the special property
that their storage is not released. However, storage
for own arrays is dynamically allocated and array
bounds may be reset by re-entering the block con
taining the declaration. If the new bounds are dif
ferent than the previous bounds, elements of the
previous array within the new bounds retain their
previous values and subscripts. Array element values
outside of the new bounds are permanently lost, while
new elements have undefined values.

Statements and Expressions

The formation and meaning of all statements and
expressions in CCS-ALGOL patterns that of the
1962 revised ALGOL Report, except for the follow
ing generalizations:

The IF Clause. ALGOL 60 specifies no . IF clause
is to follow directly a . THEN delimiter because of
parenthetical ambiguity. CCS-ALGOL adopts the
convention that any . ELSE delimiter appearing in
the text is associated with the nearest previous . IF
delimiter that is not already matched with a . THEN.

Parentheses may be used to alter this precedence
rule.

Example:
The statement:

.IF A .THEN .IF B .THEN .GO TO
L1 .ELSE .GO TO L2 is equivalent to:

.IF A .THEN (.IF B .THEN .GO
TO L1 .ELSE .GO TO L2) and to obtain
the alternate meaning, parentheses must
be used as follows:

.IF A. THEN (.IF B. THEN .GO TO
L1) .ELSE .GO to L2

The Unary Operators. ALGOL 60 specifies that:
A .AND .NOTB

is a legal expression, whereas:
A*-B

is not. Since this is felt to be an unnecessary restric
tion, CCS-ALGOL allows all unary operators to
appear without preceding parentheses. Unary opera
tors may be repeated without ambiguity, although
there appears to be no reason for doing this under
normal programming conditions.

Example:
The expression:

A* -B + -,-C
is equivalent to:
A* (-B) + (-(-C»

The Replacement Operator. The replacement opera
tor ": =" may be used more than onoe in an
expression to set more than one variable to an
expressed value. The ALGOL 60 restriction that all
identifiers in the left part of an expression be of the
same type has been removed. If a mixture of variable
types appear in the left part list appropriate mode
conversions will be made.

Procedures. CCS-ALGOL allows a varying number
of parameters to be furnished in different calls to the
same procedure through the use of the new . LIST
declarator which applies to the last parameter in the
formal parameter list of a procedure definition.

Example:
. PROCEDURE PROC (A,B);
. INTEGER A; . LIST B;

B defines a list, references to which must be sub
scripted. The convention is that B[n] in the proce
dure body references the n-1 st element beyond the
element corresponding to B in the calling sequence.
If B[n] references an element which is not present
(i.e., n too large in the call), B[n] becomes undefined.

INCREMENTAL COMPILATION AND EXECUTION 15

Example:
Given the procedure definition:

. PROCEDURE PROC (A,B);

. INTEGER A; . LIST B;
B[A-l] : = B[A];

The call:
PROC (2,0,2)

would result in the following action: "A"
has the value 2, therefore, B[A-l] or B[1]
refers to 0, and B[A] refers to 2. PROC
will, therefore, store 2 into Q.

For an array passed through a call in this
manner, the following, rather awkward,
notation results:

ARRA Y [< list index>] [< array
subscripts>]

Procedures may recur, formal parameters being
saved and restored accordingly.

When an expression appears as a parameter in a
procedure call, references to the corresponding
formal parameter in the procedure cause re-evalua
tion of the expression at the level in which the call
appeared. The expression takes the form of an im
plicit subroutine eliminating duplication of in-line
code in the procedure body.

Passing a procedure name through a procedure
call, mentioning the corresponding formal param
eter is tantamount to a call to that procedure.

Example:
Given the code:

. PROCEDURE PROC I(A,B,C);
A(B,C);
. PROCEDURE PROC 2(M,N)
M:=N;

and issue the statement:
PROCI (PROC2,Z,3);

The call to PROCI ca1,lses the execution of the
statement A(B,C) and, since PROC2 corresponds to
the formal parameter A, a call to PROC2 results.
PROC2 sets M : = N or B : = C, or Z : = 3 and
returns. PROCI then returns completing the process.

A procedure name appearing in a calling sequence
to another procedure will be executed every time the
corresponding formal parameter is mentioned.

Example:
To perform the same action as the above:
Given the code:

. PROCEDURE PROCl(A);
A;

. PROCEDURE PROC2(M,N);
M:=N;

and issue:
PROCI (PROC2 (Z,3));

The parameters supplied to PROC2 are supplied
directly in this case.

When a statement label is furnished in a calling
sequence, a transfer to the corresponding formal
parameter effects transfer to the label.

Note that CCS-ALGOL allows numeric labels.
The ambiguity problem posed by having labels which
look like constants is solved by introducing the
capability of maintaining doubly defined symbols
using machinery transparent to the user. Suppose the
constant 11 were used in a program in which there
existed a label 11. Passing this numeric through a
procedure call causes no difficulty in interpretation
to CCS-ALGOL. A subsequent use of the corre
sponding formal parameter in an expression causes
the value 11 to be used. However, a transfer to the
formal parameter properly causes a transfer to the
statement labeled 11.

External procedures may be coded in CCS
ALGOL or some other language translated separately
-perhaps, not even under CCS. The only restric
tions imposed are: (a) that communication with the
call is through the formal parameters and, (b) these
parameters may not include implicit subroutine
calls.

All the standard system procedures specified by
the report are available in addition to the previously
mentioned I/O and string routines. These system
routines hav~ the property that if their name appears
in a declaration, the name loses its system meaning
and adheres to the user definition for the duration
of that block. Upon exit from the block, the name
regains its system meaning. There are, therefore,
no names off limits to the user in CCS-ALGOL.

Implementation

The ALGOL Compiler is implemented in a time
sharing environment and has therefore been made to
be modular and flexible. Full advantage is taken of
the time-slice and paging characteristics which are
becoming typical of time-sharing systems.

The compiler is comprised of two parts. The Text
Scanner performs on-line editing and text manipula
tion. The Syntax Analyzer generates code on. the
basis of the· meaning of the incoming program text.

16 PROCEEDINGS-·FALL JOINT COMPUTER CONFERENCE, 1966

The Text Scanner. The edit capabilities during text
input have been described previously. A special pass
must be made over the text to perform the edit func
tions, expand abbreviations and replace names and
delimiters with their assigned internal codes.

The scanner operates on a line of text at a time.
The text is scanned interpretively for edit characters
until the line is clean. Text is then divided into seg
ments to be written on the symbolic file according to
a few rules. The rules are needed because the user
is given the capability of deleting and changing
"statements" as described under the CCS-command
set. For instance, in ALGOL, a large block of code
may comprise one compound statement which is
normally looked upon as the same entity as a simple
statement. However, the user would like not to have
to delete the whole block (as a statement) in order
to delete a single statement within the compound
statement.

The rules that are followed are:

1. Simple statements terminate with a
semicolon.

2. Statements within blocks terminate with
either a semicolon or . END.

3. Statements within . IF statements
terminate with . ELSE.

4. A . BEGIN terminates the preceding
portion of the statement.

A statement such as: . IF B . THEN . BEGIN A
: = C; Q : = D . END . ELSE G : = F; would be
broken down into the following text segments.

1. .IF B .THEN
2. A: = C
3. Q: = D
4. G: = F

Terminating
Delimiter

BEGIN

.END .ELSE

The terminating delimiters are not included with
the text. Instead a code is carried along indicating
the terminating delimiter.

The above procedure has been adopted to make
the DELETE work on meaningful statements in
ALGOL. Actually, by noting the text segments
above, it is seen that this entire process is trans
parent to the user. He merely treats blocks as a
conglomerate of statements, and . IF statements as a
triumvirate of statements.

The text segments are written into a symbolic file
on secondary memory and are pointed to by elements
in the text dictionary.

The text is then broken down into sections with
out regard as to where a statement begins or ends.
A section is called an Identifier-Delimiter pair (I-D
pair) and consists of either a delimiter or an identifier
and a delimiter.

Example:

~ext: /A : =/ .IF/ Q>/B. THEN I C
. ELSE/ D; / Q : = / M; /

I=D Pairs: A
.IF

Q >
B . THEN
C . ELSE
D
Q
M

Each identifier is searched for in a name table.
If found, its position number is returned. If not, a
new entry is made and a new position number is
created and returned. Delimiters are looked up in a
delimiter table and replaced by their corresponding
codes. A zero is used to fill the identifier position
for those I-D pairs which contain only a delimiter.
The I-D pairs are then loaded into a ring buffer in a
buffer page.

The name table resides in the same memory page
as does all buffer storage. This coexistence will work
if the number of user defined names stays under 100.
For larger programs, more memory is automatically
obtained and used.

The Syntax A nalyzer. The Syntax Analyzer is built
to operate on one I-D pair at a time. It is this
characteristic that allows the compiler to never be
more than one line of text behind the user input.
Part of a statement may already be "compiled" while
another part may not yet have been input.

A control routine selects which part of the analyzer
is to be called. The selection is made entirely on the
basis of the delimiter in the I-D pair. Each delimiter
has a small piece of analyzer code that knows what
to do with the delimiter and its paired identifier.

The delimiter routines break down the statements
in reverse Polish form. This type of scan has the
property that it can be completed in one left-to-right
pass. An I-D pair is, therefore, looked at only once,

INCREMENTAL COMPILATION AND EXECUTION 17

another characteristic which is necessary for con
tinuous compiling.

A reverse Polish string has the form:
<operand, operand, operator>

where an operand is either an identifier or another
Polish string.

Example:

The Expression:
In reverse Polish is:
The Expression:
In reverse Polish is:

A+B
A,B, +
A+B*C
A, B, C, *, +

The order in which the operators appear in the
string is governed by the assigned precedence of the
operators. All delimiters have precedences and enter
into the Polish string. Actually the Pseudo Machine
Code corresponding to the delimiters is inserted into

I-D PAIR
(PRECEDENCE)

a) A (1)

b) B + (2)

c) C * (3)

d) D (0)

e) D (0)**

f) D (0)

g) D (0)

Resultant Code: A,B,C, *, : =, ;

STACK

empty

(1)

: = (1)
+ (2)

: = (1)
+ (2)
* (3)

: = (1)
+ (2)

(1)

empty

the string and is basically in the form necessary for
execution.

A push down stack is used to queue up delimiters
appearing in a statement until a delimiter of low
enough precedence is found that will permit the de
limiters in the stack to be inserted into the string.
This process is repeated until the end of the state
ment is reached.

A simple example is offered of the basic steps
performed during translation:

The Expression: A: = B + C*D;
1. is first broken down into I-D pairs.
IDENTIFIER DELIMITER

A
B
C
D

CODE

empty

A

A
B

A
B
C

A
B
C

*
A
B
C

*
+
A
B
C

*
+

+
*

PERFORM

1) Generate: "A"
2) Stack: = (1)

1) Generate "B"
2) Stack + (2)

1) Generate "C"
2) Stack * (3)

1) Generate "D"
2) Unstack * (3)
3) Generate "*,,

1) Unstack + (2)
2) Generate" + "

1) Unstack : = (1)
2) Generate": ="

1) Generate;

* * For steps e through g, the same delimiter (;) is being processed. This is because un stacking action is taking place.

18 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

2. Precedences of delimiters are found
during the table lookup phase.

DELIMITER PRECEDENCE
1

+ 2
* 3

o
3. I-D pairs are processed one at a time.

The stacking algorithm is basically· as
follows:

If the precedence of the current delimiter
being examined is less than or equal to the
precedence of the entry at the top of the
stack (= 0 if stack is empty), then take the
entry off the stack and generate the proper
PMC for it. If the above condition is not
true, then put the current delimiter with its
precedence onto the top of the stack.

4. At this point, an element is formed and
a compiled statement emerges. The re
sulting code that has been depicted here
is but a symbolic representation of the
PMC that are actually generated.

The scanner and analyzer portions of the
compiler are built to operate in parallel in a time
sharing system. The scanner must issue text writes to
secondary storage and is, therefore, swapped from
core periodically. Previous to write, the text to be
written has been broken down into I-D pairs which

SCANNER PHASE

PAGE TEXT
DICTIONARY o

PMC

2 PMC

3 PMC

BUFFERS
6 ------

NAME TABLE

7 SCANNER
CODE

have been loaded into a ring buffer. Hence, the
analyzer may be started up as a separate program
to process the pairs and, therefore, complete the
translation process. The analyzer is dismissed from
operation when its job is done.

The core layout for this operation looks typically
like the diagram in Fig. 3. Core is depicted in pages
of 2048 words. A typical configuration might have,
say, three pages of PMC.

The text dictionary is a table of pointers to sym
bolic text on secondary storage. Since all code is re
entrant ALGOL never takes more than three pages
for any number of users on the system. An addi
tional two pages unique to each user are required
for table storage.

CCS FORTRAN IV

The FORTRAN Language specified by the Sub
committee of the American Standards Association,
Sectional Committee X3, 7 is a subset of CCS FORT
RAN IV.

Compiler Description

The compiler incrementally translates each source
statement into an element consisting of pseudo
machine code and program structuring parameters.
Modifications to the source program can be made at
the statement level without recompiling the entire
program.

ANALYZER PHASE

ANALYZER
CODE

PAGE 0

PMC

PMC 2

SAME
PMC 3

BUFFE RS
------ 6

NAME TABLE

ANALYZER 7
CODE

Figure 3. Core layouts during compile.

INCREMENTAL COMPILATION AND EXECUTION 19

Text Input. The Input/Edit consists of a collection
of primary subroutines that perform the following
functions:

GET transfers the current character to the
higher level program making the request.
Successive GET's obtain the same charac
ter.
ADV transfers the next character to the
higher level program and. advances its
character pointer.
MRK places a pointer to the current
character in a table.
RST resets the current character pointer
according to the last entry in the table and
removes the last entry from the table.
Execution of more RST's than MRK's
constitutes an error.
CLR clears all entries from the table.

These subroutines are actually programmed op
erators or POPS that are a unique hardware feature
of the SDS computers. The GET and ADV requests
initially cause an entire line to be input to a text
buffer and the required editing performed. When the
current character pointer advances to the last input
character, a new line is read in. Lines that terminate
with a carriage return cause the entire mechanism to
be re-initiallized when the calling programs have ad
vanced the current character pointer to the carriage
return character.

Syntax Analysis. The Syntax Analyzer scans the first
alphanumeric string in a statement image. If a
special quote such as COMMON, DIMENSION,
etc., is recognized the corresponding statement type
is assumed and the appropriate syntax subroutine is
called. Failure to identify a special quote will cause
transfer to the arithmetic statement subroutine which
resets the scan to the beginning of the statement and
performs arithmetic replacement statement analysis.
Subsequent failures cause a diagnostic element to be
generated.

The Syntax Analyzer makes one left-to-right scan
to generate Pseudo Machine Code. The technique
is similar to that described for ALGOL in that the
analyzer operates on identifier delimiter pairs and
that statements are broken down in reverse Polish
form. Operators and delimiters are assigned prece
dence values and a push down stack is created.
During the stacking, delimiters or operators of lower
precedence cause previous delimiters and operators

in the stack to be unstacked and used for the gen
eration of Pseudo Machine Code.

Uncertainties that exist for a FORTRAN IV state
ment taken out of· context, such as implicit versus
explicit declaration of variables, are resolved by the
structuring routine prior to the execution of the pro
gram.

Conventional FORTRAN compilers often resolve
syntax ambiguities created by statements considered
out of context by requiring some types of statements
to precede others. An example is the statement func
tion vs. subscripted variable name, resolved by re
quiring dimension statements and statement function
definitions to precede the use of the corresponding
identifiers.

However, this technique is not appropriate for
incremental compilation. Therefore the convention
of brackets "[J" enclosing parameters of function
calls is adopted, thus, enabling the compiler to
produce the correct object code without reference to
other parts of the program. This removes odious
precedence relationships and creates a more under
standable syntax.

Elements generated for storage allocation state
ments are placed by the structuring routine at the
beginning of the program or subprogram in which
they appear. At execution time, a definition search
routine establishes pointers to variable storage ac
cording to the rules governing COMMON and
EQUIVALENCE interaction. The definition search
routine establishes a unique data reference for each
of several uses which might be defined for an
identifier within program and subprogram relation
ships.

Because CCS permits the interfacing of assembly
language written programs,· it is possible to use exist
ing programs 8 for intrinsic and basic external func
tions, conversion and editing of variable width
formatted input/output and memory to memory data
conversion.

The input to the compiler consists of free form
FORTRAN IV source text images from a type
writer console or the system file storage. A semi
colon or carriage return separates statements. A line
feed continues a statement to the next line.

Identifier Mechanics. A name table entry is created
by the compiler for each identifier encountered. The
associated table entry number is used for structural
references to the identifier.

20 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

In conjunction with the name table a bit table is
maintained which enables the definition search
routine to resQlve implicit definitions. Each bit of the
table corresponds to an associated name table entry
and is set depending on the first letter of an identifier
name. Explicit definitions will override implicit
definitions during the structuring phase, however,
the bit table is preserved to provide for implicit
definition should the explicit definition be deleted.

Diagnostics. When the compiler encounters a syn
tactical error during a statement scan, a diagnostic
element is generated which describes the nature of
the error and locates the symbolic text for the
erroneous statement.

Extended Features 0/ CCS FORTRAN IV

Many powerful extensions have been included in
CCS FORTRAN IV. These extensions are a natural
consequence of the structural environment created
by the design of CCS in response to the multipro
gramming demands of a time-sharing system. Some of
these extensions are listed below.

Statements may be written in free format and are
not affected by card boundaries. The semicolon or
carriage return is used to separate statements.

Alphanumeric data handling capability has been
extended with the inclusion of string variables and
string arrays. These declarators, in conjunction with
the string manipulating functions included in the
system library, provide a powerful string processing
capability. This capability encompasses extraction
and concatenation of strings as well as the obvious
uses of relational operators and input! output of
"messages," etc. As mentioned previously, string array
elements and string variables are of arbitrary length,
removing all considerations of machine dependency
with respect to the treatment of alphanumeric data.

Arithmetic expressions may be used in all cases
where a single variable is allowed, including sub
scripts. All expressions may be of mixed modes.

There are no limits to the number of subscripts
which may be declared for a dimensioned variable
and both upper and lower bounds may be defined
via variables, expressions or constants.

Internal subprograms are provided which may
refer to variables defined in the parent program with
out the use of argument lists or COMMON.

Storage allocation may be regulated so that stor
age is assigned only when required by the execut-

ing program. Programs debugged under other
compilers will result in the DIMENSION statement
being executed once at the beginning of the program
or subprogram in which it appears. However, a dy
namic dimension statement of the following form
may appear anywhere in the program

DYMENSION v (e1,:e2 ,eij:e4)

where e1 , e2 , e3 and e4 are expressions for evaluat
ing the general bounds of a two dimension array.
Note that storage no longer required may be effec
tively erased by executing DYMENSION v(o,o).

Using features provided by the Pseudo Machine
Code, CCS FORTRAN IV includes matrix logic
features similar to PL/I. For example, in the state
ment,

A = B+C

if A and B are arrays with corresponding subscript
bounds and C is a variable, each element in A is set
to the corresponding value in B added to the value C.

In addition, the programmer may specify "array
structures" which are components of arrays. For
example, the statement,

A(2,*) = B(2,*)

causes each element in A with value 2 in the first
subscript position to be set to the corresponding
value in the array B.

The arithmetic operators +, *, * *, / are
permissible in matrix operations with the obvious
meanings.

Dynamic Data Storage. As has been indicated, CCS
FORTRAN IV includes extensions to the syntax
for using dynamic data storage. The following cod
ing example illustrates some of the capabilities pro
vided with dynamic storage:

DATA K = DATA AREA SIZE
DIMENSION X(DATA SIZE 1), Y
(DATA SIZE 2)

DO 100 I = 1, F
100 ACCEPT [X(I)]

DO 200 I = 1, S
200 ACCEPT [Y(I)]

SCRATCH PAD = K - (F+S)

INCREMENTAL COMPILATION AND EXECUTION 21

IF (SCRATCH PAD .GT. 0) DYMEN
SION Z (SCRATCH PAD)

DYMENSION Z(O), S(SCRATCH PAD/
2), T(SCRATCH PAD/2)

FUNCTION DATA AREA SIZE
DISPLAY ['ENTER SIZE OF DATA
AREA", $]
DATA AREA SIZE = INPUT

FUNCTION DATA SIZE 1
DISPLAY ['ENTER SIZE OF 1ST
DATA GROUP",$]
DATA SIZE 1 = F = INPUT

FUNCTION DATA SIZE 2
DISPLAY ['ENTER SIZE OF 2ND
DATA GROUP",$]
DATA SIZE 2 = S = INPUT

FUNCTION INPUT
ACCEPT [INPUT]

END

CONCLUSIONS

It is our hope that the Conversational Compiler
System will prove to be a meaningful contribution
towards the achievement of effective man-machine
interaction.

CCS takes advantage of the concept of time-shar
ing to permit a rapid dialogue between the problem
solver and the computer in terms of the language
used to describe the problem or process. This is ac
complished by raising the debugging facilities to the
level at which the problem was defined.

Furthermore, since the programming language is
itself critical to the definition and solution of a

problem, CCS has been designed to facilitate the im
plementation of additional lan'guages and, hope
fully, to allow each language implemented to take
a form which is much more general and flexible than
its existing counterpart, if any. In fact, the inclusion
of features in a language on the system found in any
other language on the system, merely involves the
design of a suitable syntax to express that feature.

In final analysis, only extensive testing and ac
cumulation of experience will show whether these
efforts will help close the communication gap between
man and machine.

REFERENCES

1. M. Pirtle, "Modifications to the SDS 930 Com
puter for the Implementation of Time Sharing,"
Document No. 30.10.10, Department of Defense
Contract SD-185, U.S. Printing Office, 1966.

2. K. Lock, "Structuring Programs for Multipro
gram Time-Sharing On-Line Applications," Cali
fornia Institute of Technology, Pasadena, Calif.

3. B. Randell, and L. J. Russell, ALGOL 60
Implementation, Academic Press, London, 1964.

4. B. W. Lampson, "Time-Sharing System Ref
erence Manual," Document No. 30.10.30, Depart
ment of Defense Contract SD-185, U.S. Printing
Office, 1966.

5. C. S. Carr, "Question Answering System,"
Document No. 30.60.40, Department of Defense
Contract SD-185, U.S. Printing Office, 1966.

6. P. Naur, ed. (with amendments by Woodger,
M.) "Revised Report on the Algorithmic Language
ALGOL 60," International Federation of Informa
tion Processing, 1962. (Also in Communications of
A.C.M., Vol. 6, No.1, pp. 1-17, 1963.)

7. Specifications for FORTRAN established by
the Subcommittee of the American Standards As
sociation Sectional Committee X3, as reported in the
Communications of A.C.M., vol. 7, no. 10, pp.
590-625, 1966.

8. Scientific Data System, SDS FORTRAN IV
Reference Manual 90 11 07A, January, 1966.

PERFORMANCE OF A MONITOR
FOR A REAL-TIME CONTROL SYSTEM

Erna S. Hoover

Bell Telephone Laboratories, Holmdel, New Jersey

and

Barry J. Eckhart

Bell Telephone Company of Canada, Montreal, Canada*

INTRODUCTION

In planning the program design for a real-time
control system, it is essential that the monitor pro
gram use an appropriate policy for scheduling work.
The performance of the system will depend upon a
number of. things; but a wise choice of scheduling
algorithm is essential.

If the system to be controlled is complicated
enough, the advantages and disadvantages of par
ticular scheduling methods become apparent only
after the performance of the system has been ex
tensively studied. Frequently it is not possible in
early stages of program design to predict the be
havior of a system satisfactorily; in such cases simu
lation is a help to understanding, which in turn leads
to informed choices in the design and manner of
deployment of the system.

The use of simulation is· well suited to the study of
large real-time control systems and of computers op
erated in a multiprogramming mode. Such systems
usually have the following properties:

* Mr. Eckhart contributed to this work during an assign
ment at Bell Telephone Laboratories, Holmdel, N.J.

23

• Demands for control action arrive in a
random manner.

• Different kinds of demands have a dif
ferent tolerance for system delays.

• These tolerances must be met under all
load conditions.

In order to use the system efficiently, the sched
uling routine itself should use a minimum of system
time and arrange the order of processing· for the rest
of the work so that the system employs its time in
an efficient manner. This is especially important when
the system is operating under heavy demand.

A study of such a system has been made. By re
lying heavily on simulation, the suitability of a par
ticular scheduling algorithm has been determined.
The method chosen for scheduling machine time
affects the delay to jobs of different urgency by
checking relatively more frequently to see whether
jobs of higher urgency are waiting. Unlike the more
familiar priority allocator, the relative frequency al
locator serves jobs of a lower urgency when their
turn comes, no matter what more urgent jobis w~it
ing. As a result, even in very busy periods, the ratio
of delays experienced by jobs of two given urgencies

24 PROCEEDINGS~FALL JOINT COMPUTER CONFERENCE, 1966

is likely to change less than would be the case under
a priority system. No job is put off indefinitely.

During periods of very heavy demand for machine
time, this kind of monitor exhibit~ a "snowballing"
effect; once encountering an unusual amount of
work, it goes through its fixed order of service at an
unusually slow rate, processing all the work it finds.
Since work is likely to be waiting for it on the next
cycle, one slow cycle is likely to lead to another.
Most of the delays to jobs occur in these slow pe
riods. By means of simulation, it was discovered that
the same volume of work can be served with less
delay if the work is organized in a suitable way. The
fixed order of serving work must be arranged so that
the monitor is not likely to try to serve extremely
large amounts of work of a given urgency before go
ing on to the next class of work. Such an arrange
ment was found, and it was shown by simulation to
improve the grade of service to various jobs.

DESCRIPTION OF THE SYSTEM TO
BE SIMULATED

In certain communities, Bell System customers are
currently served by a new kind of automatic switch
ing system: A stored program of over 100,000 words
controls the telephone equipment and responds to
the customers' demands for service. This electronic
switching system must serve thousands of telephone
customers in a given exchange area and respond to
their demands for service without undue delay.l The
system has a monitor program which allocates the
processing time of the machine among the many
tasks which an automatic switching system must
perform. Like many real-time control systems, the
basic requests for service arrive at random and are
not under the control of the system. The system can
be considered as a single server processing multiple
queues where the service discipline is given by the
monitor.

Types of Tasks

The stored program control of the Electronic
Switching System: or ESS, spends the major portion
of its time processing telephone calls. 2 There are,
however, other tasks which must be done. In order to
permit the telephone companies to determine the
volume of calling and to provide sufficient equip
ment for it, the program measures the amount of
traffic and periodically reports the results for these
adlIlinistrative purposes.

The program also makes routine tests of the
equipment to check that all is working well. 3 When
ever a fault is found in a particular piece of equip
ment, it is immediately switched out of service. The
program then diagnoses the fault and prints out the
results of the investigation so that a repairman can
readily replace the portion of the equipment which
has gone bad. The monitor program must assign suf
ficient machine time at appropriate times so that all
these tasks, call processing, administration, and
maintenance, are properly performed.

The problems of real-time control encountered in
this system are similar but not .identical to those in
volved when a multiprogramming monitor operates
a computation center. In both cases a model of the
manner in which the processing jobs are done and
of the monitor scheme can be constructed. Fortu
nately, in the case of the telephone system, much is
known about the nature of telephone traffic so that
the demands made upon the system can be realisti
cally simulated, whereas much less is currently
known about the demands placed on a multi pro
grammed computation center.

System Delays

If the monitor system allows excessive delays the
following two general types of penalties can occur:

1. Equipment will be inefficiently used.
In a telephone switching machine there
are many groups of equipment items
supplied in quantities based on the ex
pected traffic. If the system organiza
tion causes excessive delays between
the occurrence of an event which
makes available one of these equip
ment items and the actual releasing of
the equipment item by the system, the
system monitor is in effect keeping that
equipment item busy. This applies to
both hardware equipment items and
temporary memory registers. This arti
ficial holding of items within a group
results in decreasing the capacity of the
group to carry traffic.

2. Service delays are increased. The sum
of the delays imposed by the monitor
form a component of the service delays
experienced by the customer. In this
way the system organization directly
affects the service given the customer.

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 25

Fortunately jobs vary enormously in the amount
of delay they can tolerate. Delays on the order of
tens of milliseconds, which seem long when meas
ured on the microsecond scale of machine instruc
tions, will barely be noticed by telephone customers.
Permissible delays for different types of work vary
from tens of milliseconds to a second or so. The pro
gram also deals with input! output signals where the
system must sample the state of certain circuits every
11.5 milliseconds or risk the loss of accurate infor
mation. The monitor takes advantage of this differ
ence in the tolerance of delay for different jobs when
it organizes its work.

Statistical Nature of the Major
Demands on the System

The system is arranged so that it can devote the
bulk of its time during the busiest hours of the day
to processing traffic. Even at these times, a certain
minimum, on the order of 1 or 2 % of system time,
must be spent in routine checks of the entire system,
including the data stored in memory, the circuits of
the memory and processor, and the circuits con
trolled by the system. Occasionally the equipment
will malfunction. This requires the attention of the
diagnostic programs which may wholly occupy the
system for a brief time. Since the hardware is de
signed to provide reliable telephone service day in
and day out, the occurrence of faults is very rare;
consequently a negligible amount of the total time of
the system is spent in diagnosing actual troubles.

The work of the machine in processing a tele
phone call is broken into a series of discrete tasks,
ranging in number from 2 to over 20, depending on
the complexity of the call. For example, when a cus
tomer dials, the machine spends a small fraction of
a millisecond to see whether dialing is complete. The
call can proceed either by ringing the desired party,
returning busy tone, or by routing the call to another
central office. These tasks are more complicated and
typically may take from 1 to 20 milliseconds to
complete. Thus some tasks place a demand on the
system which is 20 times or more the demand of
other tasks.

Not only does demand for call processing time
vary with the type of input, but the number of in
puts also varies. Studies made over the 'years on the
behavior of telephone customers indicate that the
number of requests for service arriving in a given
small period of time can be expressed as a Poisson

distribution. Similarly, conversation times are ex
ponentially distributed.

In order to accord each type of job the service
appropriate to it, jobs are divided into two groups;
those which have a tolerance for delay of less than
.2 of a second and those which have more than .2 of
a second. Many of the jobs in the first group must be
performed within a tolerance of 5 milliseconds, some
within a few microseconds. These jobs are subdi
vided accordingly.

Many of the jobs in the second group can tolerate
delays of over a second in a small fraction of cases.
However it is desirable that the average delay should
be less than .2 of a second for most types of jobs
and considerably less for some. Accordingly, these
jobs are also subdivided into types according to the
relative amount of delay which was judged tolerable.

Meeting Small Timing Tolerances

When the system was designed, two methods for
processing the more urgent jobs were known to the
designers. One method would require that all proc
essing sequences be broken into very short runs, on
the order of 100 microseconds. Between each run,
the monitor would check to see if any of the urgent
jobs were waiting.

The other method would provide an interrupt cir
cuit which would interrupt the program in control of
the machine and cause a transfer to the urgent job.4

Data pertaining to the interrupted program would be
transferred from the flip-flop registers of the ma
chine, preserved in memory, and restored when the
interruption is over. Therefore the interrupted pro
gram would not be aware the interruption had oc
cured.

The second method was chosen for several rea
sons. To require that programmers break their
programs into such short sequences is at best bur
densome and at worst impossible. Large control pro
grams perforce make extensive use of subroutines.
If the subroutines themselves transfer to other sub
routines conditionally, the program which calls the
first subroutine cannot control the running time.
Hence, either severe requirements must be placed on
the structure of subroutines, or such a restriction
cannot be met at all. But to meet such severe re
quirements would be burdensome for the program
mers. Also, such an arrangement would undoubtedly
result in the machine's spending much of its time in
overhead. Furthermore, on the rare occasion when a

26 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

malfunction occurs, it is desirable to transfer to the
maintenance programs as soon as possible. The in
terrupt method permits the transfer within a· few tens
of microseconds.

Figure 1 5 illustrates the time-sharing between the
jobs performed during an interruption and the base
level jobs. During normal operating conditions the
urgent jobs are mainly of an input/output character.
To meet their service requirements,· the machine is
equipped with an interrupt circuit which acts every
5 milliseconds. During each 5-millisecond interrup
tion a number of these urgent jobs are scheduled in
the order from least to greatest tolerance for delays.
First in the list is the most sensitive job which has a
tolerance of 1.5 milliseconds. Obviously these pro
grams must be short.

Very rarely, a hardware fault will occur. The in
terrupt circuit will then break in and pass control of
the machine to a program that will pinpoint the de
fective unit and switch it out of service. A hierarchy
of interrupt levels for maintenance exist so that the
occurrence of more serious faults may interrupt the
input/ output tasks and the programs which analyze
less serious faults.

When a higher level interrupt program is finished,
control is passed to the program which was inter
rupted. Control then continues down the levels of
interruptions. At each level the data which the in
terrupted program had held in the flip-flop registers

TIME IN
MILLISECONDS

BASE
LEVEL

+0

+1

+2

+3

+4

+5

+6

+7

+8

CLOCK
INTERRUPT

PROGRAMS
PROCESSING
WORK FOUND
IN HOPPERS
AND QUEUES

CLOCK
INTERRUPT

I
INTERRUPT

LEVEL

PRINT TO TELETYPEWRITER
WRITE CHARGING DATA ON TAPE

LOOK FOR NEW DIGITS

TRANSMIT DIGITS TO OTHER OFFICES
LOOK FOR ANSWERS
LOOK FOR HANGUPS

PRINT TO TELETYPEWRITER
WRITE CHARGING DATA ON TAPE
NPUT NEW DIGITS I
TRANSMIT DIGITS TO OTHER OFFICES

OUTPUT ORDERS
TO

NETWORK

Figure 1. Time sharing between base level and input! output
programs.

of the machine are replaced before control of the
machine is returned to that program. The mainte
nance programs that run during an interrupt are also
designed to run only as long as necessary. Once the
faulty unit is recognized and is switched out of serv
ice, the program stores its findings for another pro
gram which will operate in the base level to find the
exact cause of the fault.

The Hopper-Queue System

In order to be able to serve the different types of
work in the base level appropriately, the various
types of work must be identified. Usually these base
level programs are initiated by an input/output pro
gram which runs during an interruption. Fortunately,
a given input/output program usually initiates jobs
which can tolerate a uniform amount of delay.
Therefore a given input/output program will file all
its work in a specified area of memory called a
"hopper". The monitor then has the problem of
serving the hoppers, each of which contain work
with a certain service requirement.

At several stages in the processing of a given call,
the program will require the use of an item of mem
ory or equipment from some group of items. There
is a small probability that such an item will not be
immediately available. For example, each installation
is supplied with a generous set of ringing circuits. On
the rare occasions when a call requires a ringing cir
cuit and none is available, that call is placed in a
queue to wait for a circuit to become free. The moni
tor thus serves a set of queues for items of equipment
and a set of hoppers for work recently found by the
programs that operate on the interrupt level.

Choosing the Algorithm for Serving
the Hoppers and Queues

In choosing the monitor algorithm the designers
of the system were chiefly concerned with the nature
of the distribution of delay that each type of job
should experience. The precise form of the distribu
tion of delay for each type of job and the exact value
of the average delay which is tolerable could not be
specified at that early stage in planning the system.
Usually the average delays to serving jobs affected
the use. of equipment and hence affected economic
tradeoffs. The exact values of these tradeoffs were
not known at that early stage in planning. It was
easier to specify the limits on the tails of the delay
distributions because extreme delays interfere with

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 27

the proper processing of calls. The designers were
able to form a rough judgment about the ratios be
tween the average delays which each type of job
could tolerate. Accordingly, they assigned each type
of job to one of five classes, designated "A", "B",
"C", "D", and "E", according to the delay which
would be tolerable. They felt that during typical
busy periods in a large installation the B class of
jobs ought to experience about twice the delay of
the A class of jobs, the C jobs about twice the delay
of the B class of jobs, and so on. E jobs had a some
what different character because they consist of rou
tine maintenance and administrative jobs, whereas
the other classes consist of the call processing jobs.
In most cases the worst delay experienced by an in
dividual job of a given type could be four or five
times the average delay for a job of that type. As the
system became busier, the delays to each type of job
could be expected to increase. However, the design
ers decided that even during the busiest period which
an installation might encounter, the ratios between
the delays to jobs of different classes ought not to
change by more than a factor of 10 from the ratios
encountered during a more typical busy period.

Many aspects of a system influence the delay to
jobs. The average level of demand for machine time,
the statistical variations of the demand, the distribu
tion of the running times of jobs, and the proportion
of machine time used by jobs of each class all have
an effect on the delay in addition to the effect of the
particular monitor algorithm used. Some of these
characteristics of the system were known when the
monitor was chosen, but their exact effect on delays
could not be determined without a simulation.

However, the designers were aware of the general
effect of certain of the system characteristics. The
machine was likely to experience large fluctuations
in demand for machine time, which would tend to in
crease delays. Most jobs were short, 15 milliseconds
or less, which tends to reduce delays. One inevitable
portion of the. delay is the time spent waiting for the
current job, including interruptions, to finish running.
The other portion, of course, consists of the time
spent in serving other jobs before the particular job
is served. This will depend on the choice of the moni
tor algorithm and on the amount of total machine
time required for each class of jobs. The latter fact
could not be known when. the monitor was chosen.

In the light of the considerations known to them,
the designers chose the algorithm illustrated in Fig. 2
for serving the bulk of the base level work. The

----~--D
HOPPERS

D-~~~~-O
Figure 2. Organization of base level work.

monitor goes to each hopper in turn, looks to see if
there is work waiting, takes each waiting job from
the hopper in the order of first come, first served, and
turns control of the machine over to the appropriate
processing program. This program may be inter
rupted for input/output work, but control is returned
to it, and it is allowed to finish before any other base
level program is started. When the job in a hopper is
finished, the next job is taken. This continues until
the hopper is empty. Then the monitor goes on to the
next hopper or queue in the particular class being
served. Entries are taken from queues only if there
is an appropriate equipment item available. When
the monitor has served all the hoppers and queues in
a given class it then goes on to the next class indi
cated by the work cycle. The monitor cycles through
the five classes in the manner shown in Fig. 3.

This type of monitor gives different grades of serv
ice to the different classes of jobs by serving the more
urgent jobs relatively more often than the less urgent
ones. If there is no call processing work to do at all,
the monitor cycles through all the hoppers and
queues of Classes A through D looking for work and
finding none. Since the work in E is routinely sched
uled, the monitor will allocate a large portion of the
entire machine time to routine maintenance.

28 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

A
C

B A B
A

A
B

A ~ A

B

0 A

A 0

B A

A B

C A
A C

8
A

A
B E A

Figure 3. Monitor work cycle.

When the call processing work builds up, the time
it takes to come full cycle lengthens; but the machine
devotes less of its time percentagewise to Class E
work when demand for machine time is great. It is
desirable to reduce the proportion of time spent on
routine matters when call processing demand is great,
but to perform some minimum amount even when
the machine is very busy.

A monitor of this kind can be characterized as a
relative frequency allocator of system time in con
trast to the more familiar priority allocator. A rela
tive frequency allocator obtains different grades of
service for different types of work by giving the more
urgent work relatively more chances to be served.
However, when the place in the frequency table is
reached where a class of less urgent jobs are sched
uled, such a relative frequency allocator does not
check to see whether urgent jobs are waiting. It proc
esses the less urgent class of jobs. It is for this reason
that even low priority jobs receive a minimum grade
of service. No job is delayed indefinitely.

A priority allocator was also considered. When a
priority allocator is used, tIle queues and hoppers
which hold jobs of all the higher priorities are
checked before any job of the next lower priority is
begun. Under such an arrangement, when the ma
chine gets very busy, the ratio of the delays of the
lower priorities to the higher lengthen appreciably.
Sometimes the lower priority jobs are put off in
definitely while the machine occupies itself with the
higher priority tasks.

A strong form of the priority method is used in
ESS in the levels of interrupt jobs. In addition, a
weaker form is used for a small fraction of the base
level jobs. A few of these jobs are required to wait
only as long as the machine takes to finish its current
base level jobs including interruptions. The machine
checks to see if such a priority job is waiting when
ever a current job finishes. If so, it turns control over
to the priority job immediately. Fortunately, these
base level priority jobs constitute a small fraction of
machine time. If they occupied a large portion of
machine time, the delay they experience would con
sist to a significant degree in time spent waiting for
another priority job to finish. Thus, both the priority
method and the relative frequency methods are used
in ESS, but the bulk of the time used by base level
work is allocated by a relative frequency method.

Because exact delay requirements were not avail
able when the monitor was programmed, the assign
ment of jobs to frequency classes and the composi
tion of the frequency table were arranged so that a
simple change in the data consulted by the program
can alter the grade of service to the various hoppers
and queues. The monitor program which was written
has the additional advantage that the check for the
priority jobs and the check for the next job in the
schedule together consume relatively little overhead
time in the machine.

DESCRIPTION OF THE
SIMULATION PROGRAM

In order to obtain the delay distributions for the
various kinds of jobs, it was necessary to simulate
the behavior of the machine. This simulation uses a
fairly detailed model of the operating system itself
and an almost exact model of the monitor.

The behavior of telephone customers is simulated
according to the known characteristics of telephone
traffic. Calls arrive according to a Poisson distribu
tion; the lengths of conversations are distributed ex
ponentially. The distribution of times which users
take to dial and also to answer a ringing telephone
are closely approximated.

As is usual in studying complicated systems,. a
simplified model of the system was used to reduce
the burden of programming the simulation. Judgment
must be used in choosing the features to be elimi
nated lest important characteristics of the true sys
tem be omitted from the model. In the case of the
ESS, most of the program sequences are entered

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 29

very infrequently and do not make a large demand
on system time. Hence, it is possible to omit these
aspects of the real system from the simulation with
out affecting the ability of the model to accurately re
flect the performance of the real system.

Six main types of simplification were made:
1. Since maintenance interruptions which report

errors are very infrequent, only the interruptions
which represent the input/output tasks are per
formed in simulating the processing of telephone
calls.

2. Only the most common types of telephone
calls, which in fact make the predominant demand
on system time, were simulated.

3. Routine maintenance and administrative tasks,
which are performed during frequency Class E, are
simulated at first as if they always took a constant
amount of time to run. Later runs were made which
included the variation in running time. The most sig
nificant difference between the routine maintenance
and call processing programs lies in the fact that the
machine will always encounter at least 10 millisec
onds of work when it enters the E class. It may find
no work at all when it enters frequency classes con
taining call processing jobs.

4. The fault recognition and diagnostic programs
which are triggered when a hardware trouble occurs
were not simulated for two reasons. They occur so
infrequently that they are not a typical hourly experi
ence for the machine. When they do occur, their ef
fect is analogous to effects already simulated by the
interruptions caused by input/output and the base
level call processing programs.

5. The interrupt level of priority jobs were not
simulated in exact detail. In a large installation, it is
usual for the interruption triggered by the 5-milli
second clock to take, on the average, about 50 % of
the 5 milliseconds. But the actual times will vary de
pending on the work which the input/output pro
grams find to do. These interruptions have the effect
of stretching out the time to do call processing work
by a variable amount. The variation in interruption
times and its effect on the call proces.sing delays were
simulated. However, in the real system, longer than
average interruptions are caused when unusual
amounts of work for the base level programs were
found. Although the simulation imitates the varia
tions in finding jobs for the base level work, it uses
separate programs to generate the length of the 5-
millisecond interruption and the new inputs to the
hoppers. Hence the occurrence of long interruptions

is not correlated in the simulation with unusually
large amounts of work found for the hoppers. Since
the 5-inillisecond interruptions generally varied from
1 to 4 milliseconds and since most delays will include
at least five such intervals aQ.d usually many more,
it was judged that the simplified manner in which the
interruption intervals and the work to the hoppers
was generated would not distort the results appre
ciably.

6. Of the priority types of jobs which are per
formed in the base level on a priority above the fre
quency classes, only one type was simulated. When
an input program can find no space in the memory
allotted for its hopper, it puts in a request to the
monitor to empty that hopper as soon as it finishes
the base level job it is doing. It was judged to be de
sirable to provide ample space in hoppers, and con
sequently this situation in fact was never met. The
other priority jobs were ignored because they consti
tute a small fraction of total demand on the time of
the machine.

The simulation program generates the traffic to be
offered to the system and then simulates the per
formance of the system as it processes the traffic.
Finally, as output, it prints a number of tables show
ing the distribution of times taken by visits to each
hopper, the distribution of times spent in processing
the work of each hopper, the delays encountered by
the various types of jobs, and the overall delays ac
cumulated by each call. The time taken to complete
each cycle of the frequency classes is printed in se
quence as the simulation runs.

The program will realistically simulate installa
tions which vary widely in equipment configuration
and also in traffic patterns. By changing data cards,
the description of the equipment and traffic to be
simulated can easily be changed. Thus one can simu
late conditions not yet encountered in actual opera
tion.

The simulation was coded in FAP, the assembly
language of the IBM 7094 computer. Assembly lan
guage was chosen because it permits more efficient
packing of data in memory. Both the program and
large amounts of data must be kept in the core mem
ory of the IBM machine at the same time. Hence a
high packing efficiency was needed to insure that the
32,000 words of 7094 core memory .would not
be exceeded. Even though subroutines were used
wherever possible, the program consists of 11,300
words. Of these, 20% constitute the representation
of the logic of call processing sequences of ESS.

30 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Flow charts were drawn of those ESS program se
quences which constitute the bulk of the demand for
machine time. Blocks on these flow charts were rep
resented in the simulation program by subroutines
which simulated the appropriate action. The flow
charts themselves are represented by a series of call
ing sequences to these subroutines. Although much
simplified, the remaining model is still a complicated
logical structure.

An important element of realism in the simulation
is provided by the method for simulating the number
of instruction cycles which the ESS machine requires
to do each job. These cycles are entered as data to
the simulation. Before the ESS programs were fin
ished, estimates were made of the cycles which the
program used for each one of its tasks. As the actual
program became available, measurements were made
on the machine itself, and the appropriate program
sequences were examined in detail, so that accurate
cycle counts were used in the simulation. In spite of
efforts to simplify the tasks, the formulation of the
model of the ESS logic, the determination of realistic
cycle counts, and the design and writing of the simu
lation program all required considerable effort.

PROCESSING DEMAND AND
MONITOR INTERACTION

Certain characteristics of system behavior can be
predicted from a consideration of the monitor algo
rithm itself; other characteristics require simulation.
First let us consider what can be concluded by con
sidering the monitor algorithm.

Analysis of Monitor Algorithm

Processor Occupancy. The tasks which comprise in
put/ output functions and call processing in the base
level represent the real-time demand on the system.
The other types of tasks, routine maintenance and
administration, together with the time taken to cycle
through the hoppers and queues, are not dependent
on the real time but are a function of the way the
monitor schedules its work. These latter tasks, al
though necessary, constitute overhead. Therefore, the
occupancy of the processor is defined as the fraction
of time it spends on input/output and base level call
processing. If there is no call processing to do the
system simply performs more maintenance and
spends a higher percentage of its time looking
through hoppers that are empty. Together, the time

spent in overhead tasks plus the time spent in proc
essing real-time demands account for all of system
time.

Effect of Processor Occupancy on Work Cycle Time.
As more telephone calls are processed, the occu
pancy of the system increases and there will be more
input/ output work. Thus interruptions also take
more total time. As the monitor cycle goes through
the hoppers and queues it will find work and transfer
control of the processor to the appropriate processing
programs. Since the processor now takes time to
process the work, the total time taken to get through
the cycle of work increases. The length of a complete
cycle, including routine maintenance work in Class
E, will be called the Class E revisit time.

Let V = average E revisit time,
K = a constant time to cycle through the

hoppers and queues including routine
maintenance, and

x = machine occupancy, i.e., call process
ing and input/output.

Then V = K + x V, or
K

V=--
1 - x

The curves shown in Fig. 4 show the length of
time to revisit E as a function of occupancy for sev
eral different amounts of system overhead. In all the
curves shown, the time to go through the hoppers
and queues looking for work was held constant. The
period of time spent in Class E doing routine main
tenance and administration was chosen as 30, 10,
and 1 milliseconds respectively, on the three curves

...J

~ Q:
W
I-
~
I
~(/)
>0 wz Q:g
w~
(/):J
(/)...J

~.~
u~
u.
o

~
z
W
...J

400

300

200

100

0E=~~~~==~==~--~
o 20 40 60 80 100

PER CENT OF CALL PROCESSING OCCUPANCY

Figure 4. Length of Class E revisit interval vs system
occupancy for various Class E constants.

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 31

presented. The middle curve shows the theoretical
plot, together with points derived from running the
simulation. The other two curves show theoretical
plots only.

The above expression is, of course, for the aver
age Class E revisit time. The average revisit time for
any other class can also be derived. For any class,
the revisit time is defined as the time from the start
of processing that class to the next start on the same
class.

Given a particular order for cycling through the
classes of work, let:

My = the number of times Class y appears in
the list,

V = the time to cycle through the list once,
and

Vu = the average time between visits to Class y.

Then
V

V y =--
My

As a result, in the case of the ESS list, the aver
age Class C revisit time is V<!. of the Class E revisit
time at any given occupancy, since C occurs in the
list 4 times, E once.

If the demand in some system is uniformly dis
tributed, the frequency of processing work ought to
have a major effect on the delay characteristics of
the system .. If the demand varies greatly, because the
number of inputs per given unit of time vary, be
cause the input programs bunch them together in dif
ferent ways, and because the amount of machine
time demanded by different types of input vary, the
time to process each class of work will vary. As a re
sult the time to revisit a given class will also vary.
Under these circumstances the average delay to jobs
of a given type will be affected by the revisit times
when jobs are waiting, which is not under the con
trol of the monitor. One might therefore expect the
average delay to jobs of a given class to be about
half the average revisit time weighted for the number
of jobs found waiting.

Since the input programs bunch work and since
some types of urgent jobs take up a great deal of
system time, one could not expect these estimates of
the average delays to be exact. Furthermore, al
though one confidently might expect that the distri
bution of delays to a given class would be no worse
than the distribution of revisit intervals when work
was found waiting, it· was necessary to simulate to
obtain both of these distributions.

Class

A
B
C
D
E

Table 1. Revisit Behavior of the Monitor for
Jobs of Different Classes, Machine

at 96.5 % Occupancy

Ratio of Revisit

Average Re-
Time of Class D to

visit Time
Class Shown

milliseconds Predicted Simulated

38 7.5 7.1
70 4. 3.9

138 2 1.9
272 1 1.0
544 0.5 0.5

Simulation Study of Monitor Characteristics

Delay and Revisit Data Obtained from Simulation.
Tables 1 and 2 show the kinds of data pertaining to
delay characteristics.

As shown in Table 1, the average revisit times to
various classes fairly closely approximate the times
expected from the frequency of occurrence of each
class. However, if one omits the times when no work
was found waiting, the average revisit intervals for
typical jobs in each frequency class weighted accord
ing to the number of jobs found waiting are shown
in Table 2a. They are substantially higher than the
revisit intervals which include the occasions when no
jobs are waiting. Table 2a also shows the average
delay for the same types of jobs. As expected, they
are only. very roughtly half of the weighted revisit
intervals. The ratio of the average delays in each
class is not quite the same as the ratio of the revisit
intervals shown in Table 1. The standard deviations
are large, but acceptable to the designers of the sys
tem.

Table 2b shows the same data as shown in Table
2a for a machine which is very busy but not so ex
tremely loaded as the machine for which data is
shown in Table 2a. As was to be expected, the aver
age delays and average revisit intervals weighted by
the number of jobs found waiting are markedly lesS.
The ratio of average delays to weighted revisit in
tervals approximates 0.5 more closely.

In this case, although the difference in delays to
the different classes is still significant, it is not as
pronounced as in the earlier case. The ratio of the
delays have changed but not by as large a factor as
10.

Assignment of a job to a particular class has a
strong effect upon the delay which it will experience,
but other characteristics of the system also affect the

32 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Table 2. Data Pertaining to Delays and Weighted Revisit
Times for Jobs of Different Classes

Ratio of
Typical Type (1) (2) Average Standard

of Job of Average Weighted Average Delay of Deviation
Frequency Revisit Interval Delay Ratio of Class D of Delay
Class X milliseconds milliseconds (2) to (1) to Class X milliseconds

a. Machine Running at 96.5% Occupancy

A 81 38 .46 6.1 31
B 146 60 .42 3.9 60
C 237 121 .51 1.9 105
D 376 233 .62 1.0 165

h. Machine Running at 88.2% Occupancy

A 37.9 20.6
B 61.5 34.2
C 101.5 49.1
D 135.9 67.0

delays experienced. Because both the average
amount of delay and the standard deviations increase
markedly as the system becomes very busy, the man
ner in which the monitor behaved at very high loads
was investigated.

Figure 5 shows a distribution of Class E revisit
times for an ESS running at an occupancy of well
over 90 %. The very short visits occur when the sys
tem happens to find little to do, the very long ones
when a large amount of work happens to come into
the hoppers. Most of the system delays, especially
those which may exceed tolerances, result from these
long visits. Both the effect of monitor constants in
Class E and the effects of assignment of call proc
essing jobs to Classes A through D were investigated.

Effect of Monitor Constants on Long Delays. We
have seen that the constants which represent over-

250 500 750 1000 1250
"X" MILLISECONDS

Figure 5. Distribution of Class E revisit intervals when
ESS is operating at a high occupancy.

.54 3.3 17.3

.55 2.0 27.8

.49 1.4 45.4

.49 1.0 60.5

head determine the average Class E revisit time when
the system runs at a given occupancy. However, the
choice of overhead constants does not strongly influ
ence the occurrence of long visits and long delays, as
the following results indicate.

Figure 6 shows results obtained from the simula
tion giving the distribution of Class E revisit times
for three different values for the monitor overhead
constants. In each case the system was offered and
carried the same traffic load. This load caused the
simulated system to run at an occupancy of 93 per
cent in each case. The three cases represent different
arrangements of the overhead constants. The A curve
shows the arrangement whereby the lumped constant
in Class E is set to 10 milliseconds, whereas the dis
tributed constant required to look through all the

~
~
J:
~

Cf)
...JCf)

~o
ffi~
~z~
_Cf)

~:3 50
u;~

>= wx
0::=

\LO o.w
~~ 25
zx
ww
U

0::
W a.

AVERAGE CLASS E
REVISIT INTERVALS

A- 244 MS

B- 354 MS

C= 143 MS

250 500

VALUE OF CONSTANTS
A-NORMAL ESS DISTRIBUTED

CONSTANT-CLASS EIO MSlVISIT

B-DlSTRIBUTEO CONSTANT DOUBLED
CLASS E 10 MSIVISIT

C= NORMAL DISTRIBUTED CONSTANT
CLASS E I MSIVIS.IT

750 1000

"X" MILLISECONDS

1250

Figure 6. Effect of changes in monitor constants on Class
E revisit intervals.

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 33

classes of hoppers and queues is somewhat less than
10 milliseconds. The B curve shows the effect of
doubling the distributed constant, leaving the lumped
constant as in Curve A. The C curve shows the
effect of reducing the lumped constant from 10 milli
seconds to 1 millisecond, leaving the distributed con
stant as in Curve A.

As predicted, the average Class E revisit times
were proportional to the monitor constant, since the
simulated system ran at the same occupancy. How
ever, as can be seen from the curves, the different
choices of constant did not have a strong effect on
the percentage of long Class E revisit times.

Figure 7 shows, for the same length of run, the
actual number of long visits for each of these cases.

For comparison, we show in Fig. 8 a distribution
of the delays to the work performed in Class A. It
will be seen that the differences between the three
versions of the monitor are slight indeed.

We therefore conclude that long revisit times and
long delays are primarily a result of the way the
monitor serves the highly variable demand for call
processing.

Effects of Variable Demand. a) Correlation of
Lengths of Class E Revisits. As mentioned earlier,
inputs to the system arrive at random. Furthermore,
different types of input vary in the amount of work
which they demand of the system. As a result, over
periods of time on the order of tens of milliseconds,
the system may find very little or very much to do.
A look at the sequence of Class E visits, as furnished
by the simulation indicates that the length of succes
sive Class E revisit times experienced by the system
as it processes this random demand on its services

100
(/)
.J
~ a::

80 ~
~
I-
!!?=x
>= 60 we> a::z
wO

W
(/)W
(/)0 40 <xx
.Jw
0

IL.
0

a:: 20
W
CD
:!
:::> z

0
0 250

VALUE OF MONITOR CONSTANTS

A= NORMAL ESS DISTRIBUTED CONSTANT
CLASS E 10 MS/VISIT

B" DISTRIBUTED CONSTANT DOUBLED
CLASS E 10 MSIVISIT

C· NORMAL DISTRIBUTED CONSTANT
CLASS E I MSIVISIT

500 750 1000
"x" MILLISECONDS

1250

Figure 7. Effect of changes in monitor constants on number
of long Class E revisit intervals.

:x 100
z
<X
J:
I-

W
a:: o
~

o
w
~
ii1 50 o
(/)
W
0:.
I-
Z
w 25
IL. o
I-
Z
W

VALUE OF MONITOR CONSTANTS
A= NORMAL ESS DISTRIBUTED CONSTANT

CLASS E 10 MSIVISIT

B= DISTRIBUTED CONSTANT DOUBLED
CLASS E 10 MSIVISIT

C= NORMAL DISTRIBUTED CONSTANT
CLASS E I MSIVISIT

~ 0L---__ -L ______ ~~~~ ______ ~_

~ 0 50 100 150 200

"x" MILLISECONDS

Figure 8. Effect of changes in monitor constants on distribu
tion of Class A hopper entry delays.

are not independent. Unusually long visits tend to be
followed by other unusually long visits. Figure 9 il
lustrates this phenomenon.

Effects of Variable Demand. b) Explanation of Cor
relation. When an unusually large amount of work
arrives, the system stores the work in its hoppers and
queues and takes more time to get around to the dif
ferent classes. When the delay to serving a given
class is long, more work can be expected to arrive in
the hopper during this long delay,. since the work

2475

2229

19B3

1737

1491

1245

999

753

507

261

16
0

10 15 20 25 30 35

LENGTH OF SUCCESSIVE CLASS E REVISIT INTERVALS

ESS AT 95% OCCUPANCY

40 45

Figure 9. Representative sequence of Class E revisit in
tervals.

34 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

which arrives during this longer period of time will
now be stored in the hopper. Consequently when the
system finally serves a given hopper it is likely to
find more than the usual amount of work and spend
more than the usual amount of time in processing
this work. When this occurs, the delay in processing
the next hopper will therefore be longer than usual.
While the system processes this next hopper, work
continues to arrive in the remaining hoppers. This
leads to a general slowing up of the system in going
through its work cycle. Once the system experiences
an unexpectedly long interval in any class, it will take
some time for it to regain its normal cycling rate.
When the system is running at high occupancy, first,
the prqbability of experiencing an unexpectedly long
class interval increases, and second, the time taken
to recover from such an event is longer.

A brief shortage of work in a class can similarly
lead to a series of very short Class E revisit times.

Figure 10 illustrates the system behavior in such
a long visit. The scale of time is in milliseconds. The
length of time which the system spends serving each
class of hoppers is plotted against the horizontal axis.
In the upper plot the system revisited Class Every
quickly; the next revisit was very long. At the start
of the long interval an unusually large amount of
work came in. As the system continued to process
this work, more than the usual amount continued to
enter the system, resulting in a very long cycle. This
one long cycle is likely to be followed by another.
We concluded that this "snowballing" effect can be
controlled if the number of unusually long visits to
different classes can somehow be reduced.

t- LONGEST CLASS E REVISIT INTERVAL---I I ~ CLASS D UNRESTRICTED I

I
250

I
500

,
1000

MILLISECONDS

I-LONGEST CLASS E REVIS IT INTERVAL--I
E I CLASS D RESTRICTED I
D
C
B
A

I
250

,
500

,
1000

MILLISECONDS

I
1500

I
1500

Figure 10. Sequence of time spent in processing work of
each class in the monitor work cycle.

In order to verify this inference, it was decided to
simulate a monitor which limits the length of time
spent in a particular class in the work cycle on any
given visit. Although inputs to this class enter at
random, only a fixed number will be served on any
given visit. This limit does not affect the average rate
of serving that hopper; that is, the amount of the
traffic previously offered to the system and proc
essed by it is unchanged. Inputs to this one class may
encounter a slightly higher delay, but it was expected
that they will be served in a reasonable time and not
put off indefinitely. Since these inputs constitute a
significant portion of the demand on the system, the
system could not be operating under the same de
mand unless these inputs were being accepted at the
same average rate as before. Results from the simu
lation showed this to be the case.

A look at the upper plot in Fig. 10 indicates that
long visits occur in a number of classes, among them
Class D. It was decided to limit the amount of time
spent in some class on any given visit by limiting the
number of entries taken from the hoppers of that
class on any single visit. Since Class D by definition
contains work which can tolerate the most delay,
Class D was chosen in preference to Class A.

To study the effect of this limitation, the simula
tion was run twice with the same input traffic, once
without, and then with the limitation in effect. In
Fig. 10, the upper and lower plots represent the
longest Class E revisit in these respective runs. Al
lowing the monitor the ability to limit the call proc
essing work served in a particular visit does not
change the average E revisit time over a number of
minutes. It does, however, eliminate some of the very
long and very short visit times and thus reduce the
variance on the distribution of the Class E revisit
times. Since most of the delays which are likely to
exceed the allowable tolerances occur during very
long visits, eliminating these very long visits elimi
nates these intolerable delays.

Figure 11 shows the effect of this limitation on
the entire set of Class E revisit times for the two
simulation runs previously mentioned. Curves A and
A' respectively show the distribution of Class E
revisits plotted against the length of visit time for the
unrestricted and restricted monitor versions respec
tively. Curves Band B' show the corresponding per
centages of system time which is spent in visits ex
ceeding a certain length. Since the arrival of work
is distributed in time, rather than per visit, the second
pair of curves permits a better comparison of the

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 35

~
Z
l1J
o

100

75

It: 50
~

25

250

A a e UNRESTRICTED CLASS D INTERVALS
P; a e' RESTRICTED CLASS D INTERVALS

500 750 1000 1250

"x" MILLISECOND$

Figure 11. Effects of restricted Class D intervals on system
performance.

relative performance of the two versions of the moni
tor.

In the unrestricted case the system spent half its
time experiencing E-E revisit times in excess of 730
milliseconds, while in the restricted case half the
time was spent in visit times in excess of 500 milli
seconds. Small modifications such as these can ma
terially improve the system performance of the moni
tor.

An abnormally long time spent on any job or class
of jobs will lengthen the delays to other jobs much
more than the time used by the job itself. An un
usually long period spent on one or a few tasks is
likely to result in a series of long processing intervals
especially if the average occupancy of the system is
high. If a given delay is to be held below some maxi
mum, either the system monitor must exercise some
control over the demand on the system, or the system
must be operated at a comparatively low occupancy.
This implied that both the segmentation of the proc
essing programs and the variations in the input are
controlled. If these measures are taken, use of a
monitor of the type discussed will permit the system
to operate at a comparatively high occupancy and
yet meet all delay tolerances.

CONCLUSION

The purpose of the study discussed here was to
evaluate and possibly improve a real-time control

monitor. In order to make improvements it was
necessary to gain an understanding of the mechanism
governing system behavior. Since the system was ex
tremely complex, a detailed simulation of the system
was made. This approach has permitted an evalua
tion of a particular monitor algorithm and has shown
how it can be improved. The study has shown this
monitor algorithm to be well suited to certain real
time control systems.

ACKNO\VLEDGMENTS

In the course of this study most helpful sugges
tions were made by W. S. Hayward, Jr., J. B. Kru
skal, and E. Wolman. G. R. Faulhaber determined
the model of the No.1 ESS which was simulated and
suggested the expression for the average Class E
revisit time. Miss L. Sadaka planned and wrote most
of the simulation program. Miss F. L. Dermond ob
tained from the ESS program the counts of machine
instructions needed to perform various actions. A
number of ideas basic to the ESS monitor itself, as
well as the implementation of the monitor program
in the ESS were contributed by R. B. Smith and S.
Silber.

REFERENCES

The September 1964 issue of The Bell System
Technical Journal is devoted to various aspects of
ESS. It includes the following papers, which are
referred to in the text:

1. W. Keister, R. W. Ketchledge and H. E.
Vaughan, "No.1 ESS: System Organization and Ob
jectives," Bell System Technical Journal, Sept. 1964,
pt. 1.

2. D. H. Carbaugh et aI, "No.1 ESS Call Proc
essing," Bell System Technical Journal, Sept. 1964,
pt. 2.

3. R. W. Downing, J. S. Nowak and L. S. Tuo
menoksa, "No. 1 ESS Maintenance Plan," Bell Sys
tem Technical Journal, Sept. 1964, pt. 1.

4. J. A. Harr, F. F. Taylor with W. Ulrich, "Or
ganization of No.1 ESS Central Processor," ibid.

5. --, Mrs. E. S. Hoover and R. B. Smith,
"Organization of the No. 1 ESS Stored Program,"
ibid.

ON-LINE DEBUGGING TECHNIQUES: A SURVEY

Thomas G. Evans

Air Force Cambridge Research Laboratories, Bedford, Massachusetts

and

D. Lucille Darley

Bolt, Beranek, and Newman, Inc., Cambridge, Massachusetts

INTRODUCTION

One consequence of recent interest in the devel
opment of large-scale time-sharing systems to provide
on-line computer access to a large number of users
has been the widespread realization that the useful
ness of such a system is critically dependent on the
quality of the software provided to facilitate the inter
action between user and machine. In particular, one
area of critical importance for effective utilization of
such a system is that of facilities for program debug
ging. In view of the important role they play, sur
prisingly little attention has been paid to the develop
ment of facilities to aid in the process of on-line
program debugging. Furthermore, much of the work
in this field has been described only in unpublished
reports or passed on through the oral tradition, rather
than in the published literature. The purpose of this
paper is to survey the existing work in this area and
discuss some possible extensions to it, with the dual
goal of acquainting a wider public with currently
existing techniques and of stimulating further devel
opments.

What, precisely, is the intended scope of this
paper? First, we are concerned here only with de
bugging activities taking place in an on-line environ-

37

ment, with the user communicating "conversation
ally" with his computer by means of, typically, a
keyboard (or perhaps a display device and light
pen). Inevitably, there exists overlap between on-line
and batch-processing debugging techniques, but our
concern here is with the former. Second, we are con
cerned with program debugging; one can, of course,
view a wide range of computer use as the debugging
of something or other; for example, a numerical
method or a physical or economic model. On occa
sion, of course, this line can be difficult to draw, but
we intend to restrict ourselves to activities concerned
with the discovery and elimination of program
"bugs," in the usual sense, from programs written in
typical assembly and higher-level languages and to
the "subject-matter-independent" facilities provided
to an on-line user to assist in this process.

Why do we place such stress on on-line debugging?
Is there really so much difference from debugging in
a batch-processing mode? Yes, we think so. One can,
of course, ignore the conversational aspect of a time
sharing system and treat it as simply a remote-console
job-initiation system. However, in doing this, one is
neglecting a potentially very powerful tool-the capa
bility (mediated through suitable debugging aids)
for a very selective and close control over the exe-

38 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

cution of portions of one's program and for the
examination of intermediate results, together with
the possibility of making on-the-spot changes based
on them, as desired. These virtues of on-line access
have been praised many times, of course (and debug
ging is only one activity aided by such access-some
on-line uses are so dependent on this type of inter
action that they simply have no batch-processing
counterparts). We merely wish to add that these
benefits for debugging are not automatic results of
providing on-line access; as in other aspects of the
appearance of on-line systems to their users, careful
design of the facilities provided and the conventions
for their use pays immense dividends in usability.

Console debugging was common before batch
processing monitors were ever heard of. What's so
new about on-line debugging? Nothing, really; cur
rent on-line debugging techniques are the result of
a gradual development from the days when debug
ging at the computer console was the norm, as it has
remained for small computers over the years. De
bugging methods based on single-stepping through
parts of a program and on examination and modi
fication of memory registers by means of console
lights and switches were the natural precursors of
today's more sophisticated techniques, and there is
no sharp dividing line at any stage of the progression.
Perhaps the critical step was the replacement of con
sole lights and switches by some typewriter-like
device as the principal means of communication be
tween user and machine. This permitted the con
venient interposition of suitable system programs to
facilitate communication between the user and his
program. At first they permitted him to examine and
modify register contents in typed octal instead of the
binary of lights and switches. At a later stage in the
development they allowed him to associate symbols
with locations in his program and to debug in terms
of them, and still later to debug entirely in terms of
the original symbols of his assembly-language or
higher-level-language programs. The capabilities in
this area of current debugging programs will be dis
cussed below. Similarly, a development toward in
creasing sophistication in the user's control of the
flow of his program, as well as in other areas, has
taken place and will also be discussed later.

What is the relationship of on-line debugging to
time-sharing? On-line debugging (and on-line use of
. computers in general) is related to time-sharing only
in the sense that provision for on-line access to a
machine powerful enough for certain classes of

problems may be eco1)omically feasible only in a
time-sharing environment. Furthermore, it is reason
able to expect that many advances in on-line debug
ging will arise from the communities of users that
have already begun to assemble about the currently
existing large-scale time-sharing systems, as well as
from the expenditure on system programming that
the existence of such communities makes economi
cally justifiable. However, many of the debugging
features we shall be discussing had their origins in
work with small machines before the advent of time
sharing systems.

In a survey of on-line debugging, a problem of
emphasis arises: one might try to convey some of
the flavor of the use of typical currently-available
techniques to the reader unfamiliar with any existing
on-line debugging system; alternatively, one might
try to examine and compare in some detail the most
important features of the existing systems. We have
resolved the problem by attempting both.

The second section of this paper is devoted to a
consideration of the principal features of past and
present on-line debugging systems known to us, to
gether with some remarks on implementation, on use
of displays, and on some implications of the require
ments of debugging systems for compiler construction
and for hardware. We make no claim of exhaustive
coverage. We have discussed those systems which
incorporated features which seem to us to have been
interesting or significant contributions to the present
state of development of on-line debugging.

The third section attempts to impart some "feel"
for current on-line debugging methods through two
annotated examples. One represents a session devoted
to debugging a program written in a typical (but
nonexistent) assembly language; the other, a pro
gram written in a representative (also nonexistent)
algebraic-type language. The examples are idealized
in that no one present system contains all of the
capabilities illustrated (or uses precisely the set of
communication conventions we have adopted), but
every feature shown is present in some existing sys
tem.

The concluding section contains a few final com
ments of a general nature.

SURVEY OF EXISTING SYSTEMS

Assembly-Language Debugging

We shall first consider facilities to aid in the de
bugging of programs written in assembly language.

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 39

We have made no extensive effort to disentangle all
the threads of the earliest efforts at developing type
writer-based debugging programs. However, the
early program which had the greatest influence on
subsequent developments was that of Gilmore 1 for
the TX-O computer at Lincoln Laboratory in 1957.
It was the first in a series of closely-related and suc
cessively more elaborate debugging programs, in
cluding UT-3 2 and FLIT 3 for the TX-O (after it
was moved to MIT), and DDT -1,5 for the PDP-l at
MIT. FLIT, in particular, was a notable accomplish
ment, embodying capabilities on which much sub
sequent work with on-line assembly-language de
bugging has been based. With FLIT, for the first
time, it was possible for the user to examine and
modify his program in terms of the symbols used in
his source program and, in fact, to examine and
change the contents of registers in a form almost
identical to that used in the corresponding assembly
language. Furthermore, while some earlier type
writer programs had permitted one-instruction-at-a
time tracing of a program, by analogy to the console
single-step switch familiar to their creators, FLIT
introduced what is perhaps the central notion of
interactive debugging, that of a user-controlled
breakpoint. This technique, which we shall see illus
trated in both assembly-language and algebraic
language debugging in a later section ("Examples
Two Debugging Sessions"), consists of permitting
the user to specify (symbolically, typically) a point
or points in his program at which he wishes to inter
rupt its flow and return to the debugging routine,
which at entry stores the state of the live registers to
permit subsequent continuation from the breakpoint,
then permits the user to examine the state of his
program at that point and make changes, if he
wishes, before continuing. All that is required is that
the debugging program save the user's instruction at
the desired breakpoint location and plant in its place
a suitable transfer to itself. The effectiveness of the
technique is dependent, of course, on the ease to the
user of placing and removing breakpoints and on the
quality of the facilities for examination and modifica
tion available to him while at a breakpoint. With
judicious use, the breakpoint can be a very flexible
tool, giving the user great selectivity in the degree of
fineness of his examination of a portion of a program.
In the hands of an experienced user, it can permit
quite rapid isolation of many types of program error.
Here, as in other aspects of on-line work, conven
ience is critical. The user with only "examine and

modify" capabilities available to him could, of
course, get the effect of breakpoints by inserting
transfer instructions to appropriate inserted code,
but the convenience and freedom from elaborate
bookkeeping so important to the "iterative" use of
breakpoints described above are lost.

FLIT was a program for a one-of-a-kind machine,
the TX-O. Consequently, it never became well
known outside its user community at MIT. It was
through DDT (written at MIT soon after FLIT
as its counterpart on the PDP-l and embodying
much the same set of capabilities, including those
sketched above) that these notions were extensively
spread about as the PDP-l became a relatively
widely used machine. In this way, FLIT and DDT
became the acknowledged source of a large portion
of the assembly language debugging programs in the
major currently operating time-sharing systems pos
sessing such facilities.

One of the most important characteristics of FLIT
and DDT was the care devoted to the design of the
typing conventions. Single-letter commands and a
structure in which frequently desired states couldbe
reached easily from the present one (e.g., look at the
contents of the current register -+-1, look at the con
tents of the register. addressed in the current register)
minimized typing and aided rapid interaction. Simi
larly, convenient ways of typing the contents of a
given register in alternate formats (e.g., symbolic,
decimal, octal) were provided.

Starting with these capabilities, extensions have
been made in a number of directions in more recent
work. We shall discuss some of these. With the capa
bility for input of machine instructions in symbolic
assembly-language form, DDT is already nearly an
"on-line assembler," suitable as the sole tool for on
line writing and testing of small programs. With this
use in mind, Edwards and Minsky 6 added an "un
defined symbol" capability to DDT. In conventional
DDT, input of a line of code involving a symbol not
already defined by the user results in an error mes
sage. In their version, it results in a special symbol
table entry. Such entries are linked together, and
when the symbol is ultimately defined by the user
its previous occurrences are filled in appropriately.
This capability has also been included in the assem
bly-language system 7 of the Berkeley time-sharing
system (SDS 940).

DDT permits the user unlimited freedom to patch
his program arbitrarily by inserting whatever he likes
in some available space, then planting a transfer to

40 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

this insertion in his program wherever he desires.
This very freedom, unfortunately, can lead to situa
tions in which debugging of complex programs ulti
mately bogs down in a morass of patches on patches.
Furthermore, even when a highly patched program
has finally been made to perform satisfactorily, the
road to a corresponding "cleaned-up" symbolic ver
sion of the program can still be a very long and
error-susceptible one. We know of two efforts to
incorporate at least partial solutions to these book
keeping problems into assembly-language debugging
systems. In one approach, followed by Lampson 8 in
the design of one version of the assembly-language
debugging facilities in the Berkeley system, the user
requests the insertion of a specified piece of sym
bolic code starting at a specified symbolic location
in his program (or deletion of a portion of the exist
ing program, or both). In response to this request,
the debugging program performs two distinct
activities:

1. It edits the user's changes into his sym
bolic program stored on the drum.
2. It assembles the user's addition into a
"patch area" of core and automatically
links the resulting code to the user's pro
gram in a straightforward way by copying
instructions and inserting transfers, as nec
essary.

Thus, at each stage of the debugging process, the
user's patched binary program in core is "computa
tionally equivalent" to the edited version of his
symbolic on drum. At the completion of the debug
ging session, the user's updated symbolic is stored
again among his files.

An earlier approach 9 to the same problem, taken
by the present authors in work with an assembly
language debugging system for the M -460 computer
at Air Force Cambridge Research Laboratories, is
quite different in implementation. Once again, the
on-line user presents insertions, deletions, or a mix
ture of both (again in symbolic assembly language)
to the debugging program, using a quite similar set
of conventions. Once again two actions are taken:

1. The symbolic changes are stored in a form
suitable for entry, along with the original symbolic
program, to an editing program at the end of the
debugging session. This is automatically done and
the user provided with an updated symbolic file.
This difference-saving the corrections to do all the
editing at one time vs editing for each correction,

as in the system discussed previously-is a thorough
ly trivial and inessential one.

2. Instead of a patch being made corresponding
to the user's change, the part of the program affected
by the change is relocated appropriately in core. If
the change is an insertion, for example, the new code
is assembled into the space left vacant by the reloca
tion of the program from that point on. This reloca
tion process is possible only because the relocation
information resulting from the assembly of the user's
program, in addition to being used by the relocating
loader, is collected by it into a list structure which is
used by the debugging program each time a program
change is called for by the user, then updated accord
ingly. The symbol table passed by the assembler to
the debugging program must also be updated each
time. Thus the idea of "patching" disappears com
pletely. This relocation process can be rather time
consuming on large programs, but has certain
compensating advantages over the (quite fast)
"automatic patching" approach of Ref. 8. In particu
lar, it avoids the two drawbacks of his system listed
by Lampson:

a. In situations· in which location of words
in core relative to each other is important
(for example, subroutine calls picking up
arguments from following locations), the
patched binary and the edited symbolic
may behave differently.
b. The automatic patching process leaves
core in a rather confusing state, which may
require relatively frequent reassembly for
readability. For example, the user who
wishes to insert a breakpoint at an instruc
tion inserted during one of his previous
modifications must trackdown the present
location of that instruction by finding and
following out the patching. Thus, much of
the advantage of automatic patch inser
tion could well be nullified.

Any evaluation of the two approaches must bal
ance the added program complexity and computa
tion time required by the relocation approach against
the possible cost in inconvenience to the user of the
above difficulties (or, alternatively, the cost in com
putation time of the additional assemblies that may
be required to preserve sufficient readability).

One further extension to DDT in more recent
work pertains to the use of breakpoints. In addition
to the flexibility in the placement and moving of

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 41

breakpoints which is already present in DDT, a
facility has been added in a number of debugging
programs (including those for the SDC time-sharing
system,l° the DEC PDP-6,1l and the M-460 at
AFCRL) permitting the user to make the break
points conditional; when the breakpoint location is
reached, some test previously supplied on-line by
the user is executed to determine whether the break
is to be made (that is, control turned over to the
user) or whether execution of the user's program
should continue. This technique permits still greater
selectivity; the user can run his program till some
specified condition prevails at a specified point, then
examine the program state in whatever detail he
wishes. The SDC system gives the user a choice of
a number of built-in conditions; the other two permit
the user to insert an arbitrary piece of assembly
language code as the break test associated with each
breakpoint. Ideally one would like to combine
"canned," easily specifiable tests for certain com
mon situations with the capability of writing arbi
trary tests when desired. DDT, incidentally, had a
rudimentary but often useful form of the conditional
breakpoint which has been preserved in several later
systems; upon insertion of a breakpoint, the user may
specify (simply by preceding the command with a
number n) that the break is not to occur until the
nth time that that point is reached in the execution
of the program.

A possibility we have not yet examined, but which
forms a basic tool of some early on-line debugging
programs, is that of instruction-by-instruction trac
ing. More sophisticated versions of such tracing, with
considerable flexibility available to the user, have
been incorporated in debugging packages for batch
processing use, but such tracing features have
typically been omitted from more recent on-line
systems in favor of the breakpoint, on the grounds
that tracing represents a failure to make the most
of the capability for intensive interaction pos
sible in such a system and, at best, tends to pro
duce considerable irrelevant printout, a serious
consideration for an on-line user. However, it
seems to us reasonable to provide some tracing
capabilities in an on-line system, especially since
they can share much of the machinery already
provided for breakpoints. The user should be able
to specify a location in his program arid ask either
for the printing of certain information, for control,
or for a combination of both whenever that program
point is reached (and a specified condition is satis-

fied) . Currently no assembly-language debugging
system appears to have) quite this full capability,
though PDP-6 DDT 11 and the SDC DBUG pack
age 10 are close. Both are limited in the amount of
information that can be specified in advance to be
printed at a break-in the PDP-6 DDT to one regis
ter and in DBUG to one register or a live register
dump or a dump of some block of registers. Further
more, as mentioned above, DBUG does not permit
the composition of elaborate conditions for a break
to occur.

Another desirable feature not widely found in cur
rent assembly-language debugging systems is exten
sibility, in the sense of the capability for conveniently
defining complex debugging operations in terms of
the available primitives. The most general existing
facility of this type appears to be that described in
Ref. 8, where the macro-expansion capability of the
assembler used to process input to the DDT lends
itself quite naturally to this purpose.

Programs of the DDT family have many useful
features in addition to the ones we have described.
As one example, it is typically possible to conduct
a search between specified limits in core for all words
matching a given word in the bits specified by a
given mask.

Higher-Level-Language Debugging

When we turn to the examination of on-line de
bugging facilities for programs written in higher
level languages comparable to those we have con
sidered for assembly-language programs, we find
that, broadly speaking, a close analog of almost every
principal assembly-language debugging technique
exists in at least one debugging system pertaining to
some higher-level language. However, on-line de
bugging facilities for higher-level languages are in
general less well-developed and less widely used (rel
ative to the use of the languages) than their assembly
language counterparts. In part, this situation is prob
ably a consequence of the wide diversity of languages
in this class; probably it is still more a result of the
fact that the small machines on which the assembly
language techniques originated and were cultivated
were typically considered too small to support higher...:
level language compiling systems and were pro
grammed almost exclusively in assembly language.
Thus work in on-line debugging of higher-level
languages is of comparatively recent origin. We shall
be examining debugging systems for relatively few

42 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

languages in relatively few on-line computing sys
tems. This is not to say that much more on-line
debugging (in the sense that the user at a remote
console starts his program, examines the final results
or diagnostics in essentially the manner of batch
processing, edits his program, and· tries again) is not
taking place in these and other systems with these
and other higher-level languages. However, we are
concerned especially with efforts to obtain systems
which permit the on-line user something like the
flexible control over the execution of his program
and the capability of examining and modifying it that
are available to the one-line user of the assembly
language debugging aids we have discussed.

The language for which perhaps the most effort
has been expended in the development of on-line
debugging aids is the list-processing language LISP
1.5. However, no discussion of these debugging fea
tures has appeared in the literature; they are far from
completely described even in internal memoranda.
The first two full-scale on-line implementations of
LISP were those for the MAC system 12,13 (a modifi
cation of the batch-processing LISP system for the
IBM 7094 to run under the MAC time-sharing sys
tem) and for the M-460 computer at AFCRL. Sub
sequently, on-line LISP 1.5 systems have been cre
ated for the SDC time-sharing system,14 the Berkeley
system,15 the DEC PDP-6,16 and the DEC PDP-l
at Bolt, Beranek, and Newman, IncY We shall dis
cuss only the debugging features of the MAC and
M-460 systems, as the later systems contain essen
tially no debugging aids not already present in these.

First, the extensive tracing facilities of the LISP
system were made accessible to the on-line user.
Later, . they were extended and made conditional in
both systems. An editing program-not a conven
tional text editor but a program permitting the user
to modify the list structure in which LISP functions
are stored for interpretation-was introduced by
Martin into the MAC LISP system and soon modi
fied for use in M-460 LISP. This editor proved to
be a powerful tool, permitting quite easy program
modification in many cases. Conditional breakpoints
(insertible at any point in a LISP function defini
tion) were introduced into the M -460 LISP system
by one of the present authors-apparently, along
with the introduction of breakpoints into the SDC
IPL-V system by Weissman, 18 their first use in
higher-level language debugging-and soon after in
corporated in MAC LISP. Conditional breakpointing
and tracing have proved quite powerful for LISP

debugging, as it is possible to use the full capability
of the LISP language for the on-line composition of
the conditions. Thus one can easily express an
elaborate logical condition for which the counter- .
part in assembly language might be quite complex.
Furthermore, by "canning" a few useful special pred
icates for use in writing conditions, even more
selectivity in suppressing irrelevant tracing and
breakpoints can be attained. For example, in M-460
LISP there is a machine-language LISP function
which examines the interpreter's pushdown list to
answer the question: "At this point in the execution
of the program are we inside a call to function X?"
Incidentally, the ability of LISP to handle recursion
has proved very useful in debugging-the full capa
bility of the LISP system is available at a breakpoint
inside a function being executed. With some care,
it has been possible, for example, to find a bug while
at a breakpoint in running a test case, call the editor
to make a correction, run the program on a simpler
test case to verify the correctness of the change, then
resume execution of the original test case from the
breakpoint (without the addition of any special ma
chinery to the system for saving and restoring a pro
gram state, etc.).

At this point, it should be mentioned that both
LISP systems mentioned contain both an interpreter
(of LISP functions stored as list structures) and a
compiler (of LISP functions into machine code),
and that interpreted and compiled functions may be
quite freely intermixed. The existence of the inter
preter made the implementation of the debugging
facilities described above relatively simple. For ex
ample, insertion of breakpoints at arbitrary locations
in a LISP program is readily implemented by modi
fying the list structure corresponding to the program
so as to call the breakpoint-handling routine appro
priately. In addition, interpretation has the advan
tage that various types of user errors may be con
veniently detected at run time. A further advantage
in this case is that LISP is precisely a language for
manipulation of list structures so the breakpoint
insertion routine, among others, could itself be writ
ten entirely in LISP. On the other hand, the feature
in LISP that permits tracing of entries (with printing
of arguments) and exits (with printing of values)
of specified routines applies to both compiled and
interpreted routines. However, the usual mode of
operation in the systems mentioned has been to de
bug interpretively, then compile the debugged pro
grams in cases where the great speed advantage to

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 43

be gained by compiling is important. In general,
interpretation presents similar advantages for other
higher-level languages, and we shall see below that
it has furnished the basis for on-line debugging sys
tems for other languages, as well. We shall also
mention two systems which work with a compiled
program. Then we shall consider one effort to de
sign a system combining interpretation and compila
tion, with the intention of combining the speed
advantage of compiled programs with the ease of
modification that comes with interpretation.

The well-known QUIKTRAN system 19 is based
on interpretation of FORTRAN statements. The
FORTRAN program under debugging may be modi
fied freely by insertion and deletion of statements. A
form of nonconditional breakpoint capability is in
cluded in the sense that a statement can be inserted
at any point in the program which, when reached, has
the effect of transferring control to the user. Capa
bility for examining and modifying variables is
present, as well as a variety of modes of tracing
(print all assignments to variables in a given portion
of the program, all assignments to selected variables,
all control transfers within a specified region, etc.).
Furthermore, extensive run-time diagnostics made
possible by the interpretive mode are provided, and
several unusual "bookkeeping" features, similarly
based on interpretation, are available, such as the
AUDIT command, which generates information as
to which portions of the program were never exe
cuted, which variables were never set, or set but
never used, during a given execution of the program.

Another on-line debugging system based on inter
pretation is that for IPL-V in the SDC time-sharing
system.1S It contains (nonconditional) breakpoint
and tracing capabilities similar to those sketched
above for LISP.

The FORTRAN debugging system 20 for the
Berkeley time-sharing system and the MADBUG
system 21 for the debugging of MAD language pro
grams are very similar in their debugging capabili
ties, though different in overall scope: MADBUG
contains a set of editing facilities as well, while
editing of FORTRAN symbolic programs is carried
out in the Berkeley system by use of a general
purpose editing routine present in the time-sharing
system. In both cases debugging is performed on a
compiled version of the program, and the user can
readily ask for the values of variables and change
them. Breakpoints (nonconditional, as it happens)
at any specified statement (in the Berkeley FOR-

TRAN, labeled statement) may be inserted and de
leted. However, no facility is provided to modify
portions of the user's program (in both systems, a
user familiar with the code produced by the com
piler could, of course, use the available assembly
language debugging facilities to make such local
modifications). The only way to make program
changes is to edit the symbolic version and recom
pile the whole program.

The notion of an "incremental" compiler, in
which only those portions of a program to be
changed need to be recompiled, has been frequently
discussed; Lock 22 at California Institute of Tech
nology has given a detailed sketch of the design of
a system with such capabilities. The notion is to
compile each program statement separately and
place the resulting code, together with a copy of the
symbolic form of the statement and certain pointers
and other information, depending on the type of
statement, in a contiguous block of core. These
blocks would be linked together in lists. Since the
language in question is ALGOL, in which "state
ment" is a recursively defined concept, one has a
list structure (lists with elements which are lists,
etc.) instead of the one-level list of statements one
would have with, for example, FORTRAN. Inser
tion and deletion at the statement level proceed
straightforwardly by modification of this list struc
ture. Control is returned to a monitor between state
ments (this is a property of the code generated for
each statement) permitting, among other things,
breakpoint capability at the statement level (though
the author proposes simply a single-statement mode
of operation modeled, apparently, on single-step
switch machine-language debugging). The scheme is
interesting and quite ambitious. It remains to be seen
whether the organization based on compiled state
ments with interpreted flow of control between them
leads to significantly faster execution times than pure
interpretation with a well-designed internal repre
sentation such as that of QUIKTRAN. One possible
modification in the scheme would be to arrange
things so that the code in the block corresponding
to a statement transfers, not back to the executive,
but to what at that point is the correct next state
ment. The executive would maintain a table of these
transfer locations and "breakpoint" them, so to
speak, whenever this was called for (as a result, for
example, of a breakpoint request by the user). Thus,
at the cost of some additional complexity in the
executive, almost all the speed advantage of full

44 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

compilation would be realized with no loss in the
capabilities available to the user.

I t seems appropriate to mention at this point a
class of languages of which JOSS, BASIC, and
TINT are the best-known examples, even though a
principal characteristic of these languages, especially
the first two, is their lack of anything which looks
like the tracing or breakpoint features we have dis
cussed. These are "small" languages designed pre
cisely for easy learning and convenient on-line use
for problems requiring a numerical computing ca
pacity somewhere between a desk calculator and the
typical "FORTRAN + large computer" installation.
In all three languages, insertion, deletion, and modi
fication of statements is extremely easy; since this is
so, the effect of tracing and breakpoints can be
achieved for the small, relatively simple programs in
question by insertion of print and halt statements
respectively. Thus, at the borderline of the class of
languages and associated debugging tools that we
have discussed earlier we find a class of languages
that have rather effectively transcended the need for
such tools by careful design and ruthless simplifica
tion of language structure corresponding to the set
ting of limited objectives for the range of usefulness
of the language.

Hardware Aspects

There are many points of interaction between
computer hardware design and the design of soft
ware debugging facilities. We shall mention just two:

1. The capabilities of user consoles have a great
impact on the range of debugging facilities. Suppose
the user is provided with a display device in addi
tion to (or instead of) his keyboard. One may use
this added capability relatively conservatively as an
extension of facilities already present. For example,
the Edwards-Minsky version of DDT already men
tioned 6 used a display to permit the user much more
rapid and convenient examination (in symbolic and
octal) of his program in core than would have been
feasible with a typewriter alone. Programs to display
core in octal already existed more than 10 years
ago. 23 Other, more radical uses of display devices in
debugging are now being investigated. Flow-chart
languages, where programs are created on-line by
generating a flow chart with a light-pen, are being
studied at Lincoln Laboratory 24 and at RAND.25 A
dynamic display of the program state at any point
in terms of the flow chart is expected to be a useful

debugging tool. Other work at Lincoln Laboratory 23
is directed toward dynamically mapping out on a
display device the behavior of a more convention
ally-constructed program by means of a flow dia
gram, which is again expected to be a useful de
bugging aid.

2. Another area of contact between hardware and
debugging is involved with trapping. Program-con
trollable facilities for trapping on certain machine
conditions give promise of being a very important
debugging aid. The TX-2 computer at Lincoln Lab
oratory, for example, has recently been provided
with a quite powerful interrupt system of this nature,
which has been made accessible to the on-line user
through commands to a DDT-like program. 26 The
user may ask for a trap on any combination of a
number of conditions, such as a store into a specified
register, execution of an instruction at a specified
location, or execution of any skip or jump instruc
tion. The debugging program handles the interrupt
and reports the relevant information to the user.

EXAMPLES: TWO DEBUGGING SESSIONS

Assembly Language Debugging

Assume we wish to debug the following program
(written in a typical-but mythical-assembly lan
guage), which is meant to perform a simpleminded
exchange sort on a table of five numbers.

sort

loop

ok

nm2
table

pze
call
bci
pze
lix
Ida
sub
sma
jmp
Ida
ldq
sta
stq
tiz
jmp
ret
pze
bss
end

.readf
datal
table
nm2,1
table + 1,1
table, 1

ok
table, 1
table + 1,1
table + 1,1
table, 1
.+2,1
loop
sort

5

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 45

(This is admittedly a trivial program which should
not need the elaborate debugging facilities we have
discussed; however, it should serve to illustrate the
application of these techniques in an otherwise rea
sonably realistic context.)

We assume that, previous to this debugging ses
sion, we have stored our symbolic program as a
file, either by reading in cards or paper tape, or by
typing the program in directly from our console. We
then assembled our program from the file and
created a new file containing the loadable form of
the program as well as the symbol table. We omit
describing these procedures in detail, for the process
of controlling an assembly on-line and the error
diagnostics received are much the same as assem
bling off-line (with, however, the advantage that any
errors detected by the assembler can be corrected
immediately). We also assume that a test case file
called datal (which will be read by our program)
has been written. For definiteness, assume it consists
of the numbers 3, 5, 2, 1, 4 in that order.

The loading system has brought our program into
core and has left us in contact with the debugging
system, which it has supplied with the symbol table
for our program. We immediately attempt to execute
the program by typing:

G sort

(This calls sort, which is written as a subroutine.)
The debug system responds with a carriage return,
indicating completion of our program. We type:

P table; table + 4

which prints:

table 3
5
2
1
4

That is, the table we input is unchanged. Examining
our program, we note that the instruction at ok per
forms a test for the end of a pass through the table.
It seems a plausible instruction to monitor, so we
insert a breakpoint (number 1) there:

B10k

and then execute the program again. The computer
responds with:

ok

indicating that it has reached the breakpoint. At this
point we can examine whatever registers we wish,

including live registers, by typing the symbolic name
plus a tab. The computer will respond with the con
tents of the register in symbolic format, tab, and
wait for us to modify the contents of the register.
If we don't wish to, a carriage return signifies this.
Index register 1 is important in our program, so we
examine it:

It 0

We see that this value is incorrect. The instruction
at 100p-1 supposedly loads index register 1. We
check it:

100p-1 lix nm2,1

This is apparently correct, so we check nm2:

nm2 0

This is our error. We neglected to initialize nm2. We
give the following command:

C nm2
nm2 oct 3

which says to change the contents of the register
labeled nm2 to whatever follows; in this case, the
register is to carry the same label but contain the
number 3, the length of our table minus 2. Our pro
gram is physically changed in core, and the neces
sary information concerning this change is saved so
it can be given to an editing program at the conclu
sion of our debugging session. We remove the break
point inserted earlier by typing:

B1

and then start the program again. Again the debug
system carriage returns. We now check the contents
of the table, as before:

table 1
3
5
2
4

Obviously not all of the ordering is correct. Perhaps
it would be useful to reinsert the breakpoint at ok,
since it is the instruction immediately following the
instructions that switch the· contents of registers.
However, we would like to break here only if an
exchange did occur, and at the break we would like
to print the contents of the two registers in the table
that were switched. This allows us to monitor the
successive changes in the table, so we can see at

46 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

what point something goes wrong. We insert this
type of breakpoint by:

B 1 ok: P table,l; table + 1,1: C
B1C
Ida table + 1, I
sub table, 1
spa
end

The first line indicates that breakpoint 1 should be
inserted at ok and when that point is reached two
things should be printed out: the contents of the
register at (table + the contents of index register 1),
and the register at (table + 1 + the contents of index
register 1). C means to continue after the printing
without transferring control to the user. The second
line indicates that we are going to give a condition
for breakpoint 1, and the next three lines are the
condition, with the instruction following the spa
(skip on positive AC) the break branch and the
instruction following that the proceed branch. With
each breakpoint the debug program associates three
registers that are used in determining if a break
should occur when the breakpoint has been reached.
Initially, and each time a breakpoint is removed, the
three registers appear as:

nop (no operation)
(return for break to occur)
(return for no break to occur)

With this arrangement, a break occurs each time the
breakpoint is reached. When a condition (other than
a single skip instruction) for a break is entered, as
we did above, the nop instruction is automatically
changed to a jump to a patch region where the code
we supply is inserted. The first register following this
code is assumed to be the break condition and a
jump is inserted there to the first return. The second
instruction following the code is set up as a jump
to the second return.

We now execute our program again and get the
following results:

ok
table + 2
table+3 2

ok
table + 1 1
table + 2 5

ok
table
table + 1 3

which is correct as far as it goes, but after the above
printout the debug system carriage returns, again
indicating that our program has returned. Looking at
our program again, we see that we left out the outer
loop in our coding and are making only one pass
through the table. We make the following changes:

I sort+3
100p2 stz switch
I loop+ 3

Iok+1

I nm2

idx switch

Ida switch
sza
jmp 100p2

switch pze

The first change inserts an instruction labeled 100p2
after sort + 3 to initialize the register labeled switch,
which is at this point undefined. The second change
inserts an instruction after loop+ 3 to increment the
contents of switch. The third change is to insert
three instructions after ok + 1. They again refer to
switch and also to 100p2, which was defined in the
first change. The fourth change defines switch, and
at this point all references to it are automatically
filled in.

We now run our program again after removing
the breakpoint and type out the results as above.
This time the table is fully sorted. At this point in
our debugging session we decide that we now have
a working program in core. To get a clean symbolic
version, we give a command to the debug system to
supply the changes which we have made (and it has
kept) to an editing program, along with our original
file. The editing process takes place and the new
file is written and given whatever name we have
specified. Our final (purportedly debugged) program
looks like this:

sort pze
call .readf
bci datal
pze table

loop2 stz switch
lix nm2,1

loop Ida table + 1,1
sub table, 1

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 47

ok

nm2
switch
table

sma
jmp
idx
Ida
ldq
sta
stq
tiz
jmp
Ida
sza
jmp
ret
oct
pze
bss
end

ok
switch
table, 1
table + 1,1
table + 1,1
table, 1
.+2,1
loop
switch

100p2
sort
3

5

Higher-LeveL-Language Debugging

Our example of on-line debugging of a higher-level
language program will be shorter than the preceding
assembly-language example, since we simply wish to
show that the facilities exhibited there for control of
program flow and fDr examination and modification
Df program and data have their cDunterparts at other
levels of language as well. CorrespDndingly, ouor pro
gram example is even more trivial; it is the same
exchange sort prDgrammed in a typical (but again
mythical) algebraic language with the same sort of
(admittedly implausible for a program of this sim
plicity) errDrs.

Again we assume our program has previously been
made into a symbDlic file, then compiled and loaded.
We shall test it on the same file (data 1) as we used
in the previous example. Our program reads as fol
lows:

program sDrt;
array table (5);
readfile (data 1, table) ;

loop: for i~l step 1 unit 4 do through last;
~ table(i) ~table(i+ 1) go to last;
begin table (i)~table(i+1);

table(i+ l)~table(i)
end;

last: continue;
go to loop;

finish

(readfile is a system routine that we call to fill the
array named table from the file named datal). We

run our prDgram (named sort) by typing G sort,
as before. In this case, we conclude after a re
spectable interval that Dur program is looping. By
striking the interrupt key, we return tD the debugging
program. We realize that we have failed to provide
a test to escape from the program after a pass
through the table generates no exchanges. We there
fore make several additions tD our program, as fol
lows:

I loop -1
;init: switch~false;

(which means insert the labeled statement setting the
Boolean variable switch tD false after statement
loop -1, that is, then "readfile" statement) .

C last+ 1
;~f switch then gD to init else exit;

(which means insert the statement testing the vari
able switch instead of the statement last + 1, that is,
"go tD loop"). And finally:

I loop +2,2
;switch~true;

(which means insert the statement setting the vari
able switch to true after the second statement of the
compound statement at 10catiDn IDOp + 2) .

To verify the last change, for example, we can
type

E 100p+2

which prints:

begin table (i) ~table (i + 1) ;
-- table(i + 1) ~table(i) ;

switch~true

end

Now we try running our prDgram again. This time it
terminates and returns control to the debugging pro
gram. However, when we examine the results by
typing:

P table(l) ;table(5)

we get:

table(l) = 1
table (2) = 1

At this point we interrupt the printout, since our
answers are clearly in errDr. We insert a breakpDint
at the statement labeled last and add the condition
that we break only if switch has been set to true, by
typing: -

B1last
B1C switch

48 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

We run the program again and get the breakpoint
printout:

last

We examine the indexing variable:

2

So we look at:

table(2) 1
table(3) 1

This tells us we're dDing the exchange wrong. We
see that we are destroying table (i) toO' soon, and
correct this by typing:

I loop + 2,0
;tem~table(i) ;

and

Cloop+2,3
;table(i+ l)~tem;

and rerun our program. This time, when we examine
table, it is properly ordered. We terminate the ses
sion, as before, by passing the accumulated correc
tions to the editing program, which updates our
symbDlic. The final version of our program looks
like:

program sort;
array table (5) ;
readfile (data 1, table) ;

init: switch~false;

loop: for i~l step 1 until 4 do through last;
if table (i) :S;;table(i+ 1) go to last;
begin tem~table(i);

table(i)~table(i+ 1);
table (i + 1) ~tem;
switch~true

end;
last: continue;

if switch then go to init else exit;
finish

Once again, in conclusiDn, we stress that the pro
grams used in the examples of this section were not
intended as representative of those for which such
on-line debugging facilities are necessary or even
appropriate, but rather as uncluttered vehicles for
some simple illustrations of the use of these facilities.

SOME FINAL REMARKS

Very little data seems. to exist on the relative
efficiency of on-line program debugging versus de-

bugging in a batch-processing mode, though Ref. 27
represents a first effort in this direction and will
presumably be fDllowed by others. Meanwhile, we
can only recDrd our subjective impressions of a
quite widespread enthusiasm for the utility of on-line
debugging facilities among thDse with whom we have
discussed the subject.

What are SDme criteria for a good interactive de
bugging system (for an experienced user) ? We shall
try to' abstract SDme (perhaps platitudinDus) prin
ciples from the wide variety of systems considered
above:

1. The user must have flexible control
over the execution of his prDgram. He
must be able to specify this control in
terms of the natural units, small and
large, of the language in question and
be able to carry this cDntrol down to
the finest level of detail, if required (a
single instruction in assembly language,
or single noncompound statement in an
ALGOL-type language).

2. The user must be able to examine and
"incrementally" modify both data and
program at any time and do so in
terms of the notatiDn of the language
of the program.

3. The conventions of the debugging con
trol language should be designed to
minimize typing and shDuld convey in
formatiDn to the user as concisely as is
compatible with rapid cDmprehensiDn.

4. Automatic updating of a user's sym
bolic file "in parallel" with modifica
tion of the in-core representation Df his
program should be possible, to elimi
nate a distinct separate phase of
cleanup of the symbolic and re
debugging.

Each of these capabilities is now present, as we
have seen, to some degree in some current systems.
With feasibility thus demonstrated, in the near future
we shall presumably see the integration of features
taken from these systems into comprehensive on-line
debugging systems possessing all the desirable char
acteristics listed above. Incidentally, this seems to
present an opportunity for some valuable vDluntary
standardization; if the appearance to the user of the
debugging system for a given language could be
made the same Dver a number of future time-sharing

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 49

systems (at least to the degree that the language in
question is itself standardized), considerable savings
could well be realized. At any rate, this would seem
to be an opportune time to consider the possibility.

In addition to consolidation of known techniques
into comprehensive, widely available systems, one
can also expect the development of a variety of new
approaches; in particular, we have mentioned re
search which seeks to exploit the full capabilities of
displays for debugging, as well as the potential value
for debugging of flexible programmable interrupt
capabilities in computer hardware.

Considerable interest has been shown in recent
years in the development of methods for proving
that a given computer program has certain proper
ties. If this avenue of research proves successful, we
may one day see the virtual elimination or at least
diminution in importance of the program debugging
process. Until then, debugging will remain a critical
phase and potential bottleneck in the effective utili
zation of computers. It has been suggested 28 that,
from a period in which the limitations on computer
use were in core size and in sheer lack of enough
processor cycles to go around, followed by one of
lack of adequate languages, we are now entering an
era in which computer use is "debugging-limited."
If this is so, the development of improved on-line
debugging facilities would seem to be a particularly
fruitful and valuable endeavor, as well as a quite
fascinating one.

REFERENCES

1. J. T. Gilmore, "TX-O Direct Input Utility Sys
tem," Memo 6M-5097, Lincoln Laboratory, MIT
(Apr. 1957).

2. C. Woodward, "UT -3: A Direct Input Routine
for TX-O," Memo M-5001-1, Dept. of Elect. Eng'g.,
MIT (July 1958).

3. T. G. Stockham and J. B. Dennis, "FLIT
Flexowriter Interrogation Tape: A Symbolic Utility
Program for TX-O," Memo 5001-23, Dept. of Elect.
Eng'g., MIT (July 1960).

4. R. Saunders and R. Wagner, "On-Line De
bugging Systems," Proc. IFIP Congress, 1956, Vol.
2, Spartan Books, Washington, D.C.

5. A. Kotok, "DEC Debugging Tape," Memo
MIT-1 (rev.), MIT (Dec. 1961).

6. D. J. Edwards and M. L. Minsky, "Recent Im
provements in DDT," AI Memo #60, MIT (Nov.
1963).

7. L. P. Deutsch and B. W. Lampson, "DDT
Time Sharing Debugging System Reference Man
ual," Document #30.40.10 (rev.), Univ. of Calif.,
Berkeley (May 1965).

8. B. W. Lampson, "Interactive Machine Lan
guage Programming," Proc. FICC, 1965.

9. T. G. Evans and D. L. Darley, "DEBUG-An
Extension to Current Online Debugging Tech
niques," Comm. of the ACM, vol. 8, no. 5 (May
1965) .

10. R. R. Linde, "Q-32 Time-Sharing System
User's Guide Executive Service: Debugging
(DBUG) ," TM-2708/390/00, Syst. Devel. Corp.
(Apr. 1966).

11. "PDP-6 DDT Manual," Digital Equipment
Corp., 1965.

12. W. Martin and T. Hart, "Time-Sharing
LISP," Memo MAC-M-153 (rev. 1964).

13. W. Teitelman, "EDIT and BREAK Func
tions for LISP," Memo MAC-M-264, MIT (1965).

14. S. L. Kameny, "LISP 1.5 Reference Manual
for Q-32," TM-2337/101/00, Syst. Devel. Corp.
(Aug. 1965).

15. L. P. Deutsch and B. W. Lampson, "Refer
ence Manual-930 LISP," Document #30.50.40
(rev.), U niv. of Calif., Berkeley (Nov. 1965).

16. P. Samson, "PDP-6 LISP," Memo MAC-M-
313, MIT (June 1966).

17. D. G. Bobrow et aI, "The BBN-LISP Sys
tem," AFCRL-66-180, Bolt, Beranek, and Newman,
Inc., Cambridge, Mass. (Feb. 1966).

18. J. E. Schwartz, E. G. Coffman, and C. Weiss
man, "A General-Purpose Time-Sharing System,"
Proc. SICC, 1964.

19. T. M. Dunn and J. H. Morrissey, "Remote
Computing-An Experimental System," ibid.

20. C. S. Carr, "FORTRAN II Reference Man
ual," Document #30.50.50, Univ. of Calif., Berke
ley (Feb. 1966).

21. R. S. Fabry, "MADBUG-A MAD Debug
ging System," in The Compatible Time-Sharing Sys
tem, A Programmer's Guide, 2d ed., MIT Press,
Cambridge, Mass., 1965.

22. K. Lock, "Structuring Programs for Multi
program Time-Sharing On-Line Applications," Proc.
FICC, 1965.

23. T. G. Stockham, "Some Methods of Graphi
cal Debugging," to appear in Proc. IBM Scientific
Computing Symposium on Man-Machine Communi
cation (held May 1965).

50 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

24. W. R. Sutherland, "On-Line Graphical Speci
fication of Procedures," presented at SJCC, Boston,
Mass., 1966 (unpublished).

25. T. O. Ellis and W. L. Sibley, "The Grail
Project," ibid. (unpublished).

26. T. G. Stockham (personal communication).

27. E. E. Grant, "An Empirical Comparison of
On-Line and Off-Line Debugging," SP-2441, Syst.
Devel. Corp. (May 1966).

28. M. Halpern, "Computer Programming: The
Debugging Epoch Opens," Computers and Automa
tion, Nov. 1965.

THE SOS SIGMA 7: A REAL-TIME
TIME-SHARING COMPUTER

Myron J. Mendelson and A. W. England

Scientific Data Systems, Santa Monica, California

INTRODUCTION

The SDS SIGMA 7 Computer system (Fig. 1) is
unique among new computer designs in that it is the
only system which has seriously considered and
solved the problem of achieving true real-time re
sponse hardware and software capability while oper
ating in a multiprogramming, multiprocessing,
space-sharing, and time-sharing environment. This
paper presents an overview of the system's architec..:
ture and describes in some detail those of its fea
tures which provide its unique capabilities.

The paper is divided into two major portions. The
first part presents a succinct description of the archi
tecture of the system. Its purpose is to acquaint the
reader with the fundamental characteristics of
SIGMA 7 and to provide a meaningful framework
for the second section. The second section delineates
seven major problems which were considered critical
in the design of SIGMA 7 and presents the details of
their solution.

DEFINITIONS

Multiusage

We will use the generic term "multiusage" to
cover the spectrum of multiprogramming, multipro
cessing, space-sharing, and time-sharing operations.
These, together with the term "real time," will have
the following meanings:

51

Real-Time Operation. A true real-time operation
is one in which the response time requirements of
the system are imposed by the time sensitive de-

Figure 1. SIGMA 7 computer system.

52 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

mands of events external to the computer and its
conventional peripheral equipment. Failure to meet
this response time requirement results in true failure
of the real-time system, not just degraded perform
ance. The responsiveness of such a system is meas
ured by the time interval between the· arrival of an
interrupt trigger signal and the execution of the first
useful instruction in response to it. In the extreme
case the maximum acceptable length for this interval
may be measured in microseconds.

Multiprogramming. Multiprogramming is the con
current operation of two or more independent pro
grams in a single computing system, control being
switched among programs through the actions of
some central control program.

Multiprocessing. Multiprocessing is the simultane
ous execution of one or more programs in a single
computing system containing two or more proces
sors, preferably sharing a common memory pool.

Space Sharing. Space sharing is the simultaneous
residency in a common central memory of a number
of independent (and perhaps concurrently operat
ing) programs.

Time Sharing. Time sharing is a special case of
multiprogramming in which a multiplicity of sepa
rate users have on-line, interactive use of a common
system. It should. be noted that neither multipro
gramming nor time sharing imply space sharing but
that space sharing is an essential ingredient in
achieving true efficiency in these operations.

SYSTEM ORGANIZATION

Introduction

The following brief description of the SIGMA 7
system is presented in order to provide a meaningful
framework within which to describe the specialized
features which provide the system with a unique ca
pability to meet its design goals. The SIGMA 7 is a
modularly organized system which is configured out
of a combination of Central Processing Units
(CPU) (which contain Priority Interrupt Systems),
Memory Modules, Fast Memory Units, Multiplexing
Input/Output Processors (MIOP), Selector
Input/Output Processors (SlOP), peripheral equip
ment Device Controllers (DC), peripheral Devices
(D), and specialized real-time interfaces such as
Analog-to-Digital Converters, Digital-to-Analog
Converters, and Multiplexers (Fig. 2). This paper

will concentrate on the characteristics and structures
of the CPU, lOP's and memory systems and their
organization to meet the requirements of a broad
range of operating environments.

M emory Organization

Core Memory Modules. The SIGMA 7 core
memory is a 32 bit plus parity bit, word organized,
850 nanosecond cycle time unit which is available in
module sizes of 4K, 8K, 12K, and 16K words
(K = 1024). The system architecture permits the in
clusion and direct addressing of any size memory
which can be configured within eight memory mod
ules. This permits the structuring of 32 different
memory sizes ranging from 4 K words (16K bytes)
to 128K words (512Kbytes). Although the memo
ry is word organized and word parity checked it is
capable of altering less than a full word on a write
operation. From 1 to 3 bytes may be written with
out altering the remaining bytes.

Multiple Ports. The processor/memory system
complex is a bus-organized asynchronously operat
ing system with each processor having its own pri
vate bus. The standard memory module is equipped
with two independent access paths (called ports)
and an optional third port may be added. Subse
quent to the addition of a third port a memory port
expander provides for the four way expansion of
any single port so that a maximum of six independ
ent buses may be connected to any memory module.
The ports have a fixed priority relationship with re
spect to each other so that access request conflicts
are automatically resolved.

Asynchronous, Overlapped Operation and Memo
ry Interleaving. Memory operations may be initiated
at any time and are not synchronized to any central
clocking source. Memory operations are self -sustain
ing so that processor release occurs upon data ac
ceptance (by the memory) on a write operation,
and processor "go-ahead" occurs upon data availa
bility on a read operation. This permits maximum
utilization of CPU time and the overlapping of
memory cycles with respect to a single processor or
multiple processors in multiple-module memory
configurations. To insure memory overlapping under
any circumstances, address interleaving among sev
eral memory modules is provided on a two-way or
four-way basis.

Fast Memory Units. An integrated circuit, non
destructively read fast memory unit with a read cy-

SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 53

Core Memory
Module , Core Memory

Module

t
Core Memory

Module

J

Core Memory
Module

SIGMA 7
Central Processing Unit

I/O DeviceJ
15

Multiplexo/
I/o Processor

. Device :::
:: Controller> :.:.:.:.:.;.;.:.;.:-:

I/o Device

'----- Standard-Speed Peripheral Devices ---~

t Multiplexor lOP allows up to 32 devices {one per device
controller} to operate simultaneously with a combined
transfer rate of 500, 000 bytes per second.

I I/O Devke

Selecto/
t

I/o Processor

I/o Device
o

I LJ I/o Device
I 15

I I/o Device

High-Speed Peripheral Devices

ttSelector lOP allows one device at a time to operate at
a transfer rate of up to 3 mi II ion bytes per second. A
selector lOP may service up to 32 high-speed devices,
and two selector lOPs may share a single memory bus.

Figure 2. A typical SIGMA 7 system.

cle time of 60 nanoseconds and a write cycle time of
90 nanoseconds is used to implement a number of
special functions within the SIGMA 7 system. The
basic building block fast memory module provides
16 bytes of operating storage. Four such modules
are combined to provide 16 words of scratchpad
memory which serves as register storage for the
CPU. Other combinations of this single module type
are used for the implementation of memory protec
tion systems, fragmentation and dynamic program
relocation techniques, lOP channel control func
tions, and device buffering systems.

Every instruction makes one or more references
to a set of sixteen registers. These registers are

stored in a sixteen word fast memory unit which is
designated as a "register block."

In general, the SIGMA 7 register block can be
used to provide:

1. 16 separate single precision arithmetic
registers for fixed point word opera
tions or short floating point operations.

2. 16 separate double precision arith
metic registers for fixed point half
word operations.

3. 8 separate double precision arithmetic
registers for fixed point double preci
sion operations or long floating point
operations.

54 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

4. 7 separate index registers.
5. A decimal accumulator with a maxi

mum capacity of 31 digits plus sign.
6. A significance position marking register

for the EDIT instruction.
7. Control registers for byte string in

struction implementation.

A unique design feature of the SIGMA 7 is that it
may contain up to 32 blocks of registers. A 5-bit
register pointer designates which of the 32 is cur
rently active. The provision of multiple blocks
makes it possible to preserve one register set and
establish a new one within the 6 microsecond execu
tion period of a single environment preserving and
switching instruction.

Central Processing Unit

The CPU (Fig~ 3) is a 32-bit, word-oriented,
parallel-operating unit employing multiple registers
in its instruction implementation. Its extensive in
struction set provides for operations on 8 bit-bytes,
16-bit halfwords, 20-bit immediate operands, 32-bit
words, and 64-bit doublewords.

Instruction Format. SIGMA 7 provides 106 ma
jor instructions, many of which have multiple modes
of operation, all contained within a single instruction
format. The Basic instruction is 32 bits in length
and has the structure shown in Fig. 4. For a special
class of immediate operand instructions the X and
M fields are combined into a single 20-bit value
which is sign extended and used immediately for
computation with no further reference to memory
for an operand.

Direct Memory Word Addressing. The 17-bit
word address field in the primary instruction word
permits the direct addressing of the maximum sized
128K word memory system. A memory address in
the range 0-15 is used to designate the corre
spondingly numbered register and does not result in
access to core memory. Hence, the full power of the
instruction set may be applied to register-to-register
operations as well as to register-and-memory opera
tions.

Indirect Addressing. Indirect addressing is includ
ed for all instructions except those of the immediate
operand class. If both indirect addressing and index
ing are invoked, the indirect address operation is
executed prior to the indexing operation.

Indexing. The indexing operation employed in

SIGMA 7 is unique. The indexing operation as
sumes that a list of either bytes, halfwords, words, or
doublewords is stored beginning at the word address
contained in the primary instruction word. If the
designated index register is considered to contain the
value K, the indexing operation, under control of
the operation code (which establishes the operand
length), produces the address of the byte, halfword,
word, or doubleword displaced K units from this
word location. Thus, the same index register may be
used to locate the Kth operand of a list independent
of the operand length (Fig. 5).

Instruction Set. The SIGMA 7 instruction set is
comprehensive. It includes fixed point load, store,
arithmetic, logical, and comparison operations for
bytes, halfwords, 20-bit immediate operands, words,
and doublewords. Optional floating point instructions
provide full floating point arithmetic capability for
both short (32-bit) and long (64-bit) formats. An
optional set of decimal instructions includes full dec
imal arithmetic capability, plus Pack, Unpack, and
Edit. Standard instructions are provided for manipu
lating byte strings up to 255 bytes in length. Single
instructions are provided for moving a string; for
comparing two strings, for the translation of a string
from one character code to another, and for the
scanning of a string for a specified set of characteris
tics. Push-down stack instructions provide for the
efficient manipulation (including automatic stack
limit checking) of arbitrary size stacks in core mem
ory. Two generalized conversion instructions pro
vide for the high speed conversion between any
weighted binary information representation used ex
ternal to the computer and its equivalent internal
binary representation. Read Direct and Write Direct
instructions provide for the direct communication
between the CPU and external equipment without
the use of an I/O channel. A comprehensive set of
branch and system control instructions complete the
instruction repertoire.

Typical instruction execution times (including in
dexing and mapping and excluding any memory
overlap) are:

Fixed Point
Add/Subtract

Fixed Point
Multiply

Fixed Point Divide
Floating Point

Add/Subtract
(short)

2.26 microseconds

4.9 microseconds
12.5 microseconds

3.9 microseconds

SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER

Floating Point

Add/Subtract
(long) 4.5 microseconds

Floating Point
Multiply (short) 5.4 microseconds

o

CPU PRIVATE MEMORY

GENERAL REGISTER BLOCK (TYPICAL)

~~~~~~~~~~~~ ~ 
[>::?:C\f:::::\ii:i:::irHff/Y:))::i::::::::::::i/.] 

Index 
Registers 

Floating Point 
Multiply (long) 

Floating Point 
Divide (short) 

Floating Point 
Divide (long) 

8.0 microseconds 

12.3 microseconds 

24.5 microseconds 

ARITHMETIC AND CONTROL UNIT 

INSTRUCTION REGISTER 

o Indirect Address Flag 
o 

I II I II I I Operation Code Field 
1 7 

ITIJJ General Register Designator 
8 11 

ITIJ Index Register Designator 
12 14 

Reference Address Field 

11111111111111111111 
15 . 31. To/From 

55 

• 

2 rii::>,:::::\,,::::n>,::::::::>:::::r:::n:::::::/:::::::::rl 

3 I.: :::r:(::':::::::::::::::::::::::::::::::,:::::r:::::::::n:::::::::::::::'] 

4 1·:cr:::r::::f,:::::::H::::.t':::::?:,??f?::n:::,:n::::::::::::::1 

5 h·>::::H·::';::::::::,.n:':::::·'··.:::i':··,:::i::.:::;:::i:.::·:·::.,::::::::j 

6 F·:::i:::::':::i':m::::::::::::::m:·::m:::':::::::::::r:::::::f,::::::,,:.i,:::.:.:·,:::::::J 

7 E: it,:'.·.::::i:::::·:::;:::::.:;::·.::.:::··::::.:.·:::::::'::::::':::::::::·:::·:::::.::'::.:.:1 

......... ----4t~ Core Memory I 
• To/From _~.~ 

I/O Processors I 
8 I~ ________________ ~ 
9 

10 

11 

12 

13 

14 

15 

~--------------------~ ~ 

'--____________ ...J ~ 

31 

MEMORY CONTROL STORAGE 

Memory Map 

L..--I --L1-..I.-----J......I1 ~ ~L....I.-l ----' 
I--- 256 8-bit page addresses -f 
Memory Access Protection 

111111111111 I ~ ~--+-I""""""'II"""""'II 
~ 256 2-bit access codes ----f 
Memory Write Protection 

1IIIIIIIIIIil~~....--+--.-tl~111 
J--- 256 2-bit write locks -I 

31-digit 
Decimal 
Accumu
lator 

I 

1 Read/Write __ .~ 
Direct 

Interrupts 

Priority Interrupt System 
Write Direct 

PROGRAM STATUS DOUBLEWORD 

[]]]J Condition Code 
o 3 

[JJJ Floating-point Mode Control 
5 7 

o Master/Slave Mode Control 
8 

o Memory Map Control 
9 

OJ Arithmetic Trap Masks 
10 11 

Instruction Address 

I1111 II 1111"""1 
15 31 

OJ Write Key 
34 35 

[II] Interrupt Inhibits 
37 39 

r I I III Register Block Pointer 
55 59 

Figure 3. SIGMA 7 central processing unit. 



56 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

JiJ 
I 

0 I R Ix I M I 

16 GENERAL-PURPOSE 
REGISTERS 

I: Indirect Address Bit (1 bit) 
0: Operation Code (7 bits) 
R: Register Designator Field (4 bits) 
X: Index Register De.ignator Field (3 bits) 
M: Memory Word Address (17 bits) 

"-

REGISTER 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

IS 

+-

"EDIT MARK" 
REGISTER 

7 INDEX 
REGISTERS 

JoOCI ACCU 
MAL 

MULATOR 

Figure 4. Register and instruction format. 

Priority Interrupt System. The SIGMA 7 is 
equipped with the most powerful and flexible prior
ity interrupt system currently available. Since this 
system constitutes one of the major elements con
tributing to the real-time responsiveness of the SIG
MA 7 its description will be deferred to a later point 
in this paper. 

Instruction in memory: 

Instruction in instruction register: 

Byte operation indexing alignment: 

Halfword operation indexing al ignment: 

Word operation indexing alignment: 

Shift operation indexing alignment: 

Doubleword operation 
indexing al ignment: 

Effective virtual address: 

Input/Output Organization 

Multiplexing and Selector Type Input/Output 
Processors. The Multiplexer Input/Output proces
sor (MIOP) is designed to service a large number 
of slow to medium speed peripheral devices simulta
neously. A single MIOP can provide concurrent 
service to as many as 32 devices having a total 
bandwidth of approximately 500,000 8-bit bytes per 
second. A single Selector Input/Output Processor 
(SlOP), with the capability of operating at rates up 
to 3 million bytes per second is designed to service 
anyone of as many as 128 high speed devices which 
may be attached to it. SlOPs may have private buses 
or two may share a common bus. As many as eight 
lOP's may be attached to a single CPU. Each oper
ates independently of the CPU under control of a 
stored program which is held in core memory. The 
CPU activates and monitors the I/O operations 
through the use of a set of five I/O instructions. 
Once activated the sequencing of the stored I/O 

Figure 5. Index displacement alignment. 



SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 57 

program is under control of the appropriate lOP 
with no further operations required by the CPU. 
CPU-I/O interaction is accomplished through I/O 
interrupts, the conditions for which are specified by 
the CPU in the I/O command list. 

The lOP system operation is structured so that 
low cost, multiple channel, concurrent I/O opera
tions which demand little CPU time for their execu
tion are readily incorporated in the SIGMA 7 sys
tem. 

Device Controllers and Devices. A wide range 
of 8-bit oriented peripheral equipment is avail
able for attachment to lOPs. These include 
keyboard/printers high and low-speed paper tape 
input and output, punched card input and output, 
IBM compatible 7-channel multiple density magnet
ic tape units and single density 9-channel magnetic 
tape units, high speed line printers, fixed head rapid 
access disc storage units, communications equip
ment, and keyboard/display equipment. All such 
units are controlled by individualized Device Con
trollers which communicate with the lOPs through a 
common, simplified, electrical interface using a com
mon method for control and information exchange. 

Real-Time Interface Units. A full range of special 
systems equipment including such devices as Ana
log-to-Digital Converters, Digital-to-Analog Con
verters, and Multiplexers together with Device Con
trollers which interface them either with the direct 
input/ output system of the CPU or with the stand
ard lOP interface are also available. 

SEVEN CRITICAL DESIGN PROBLEMS AND 
THEIR SOLUTION 

General 

This brief exposition of the SIGMA 7 system pro
vides an over-all view of its principal features as a 
computing system, but it gives little insight into the 
special characteristics which uniquely permit it to 
carry out real-time tasks embedded in a multi-usage 
environment. Such an environment must be con
trolled by an executive program which allocates sys
tem resources; schedules operating intervals; pro
vides services such as trap and interrupt response 
control, editing, compiling, assembling, and debug
ging; controls and executes I/O operations; swaps 
active programs between core and rapid access mass 
storage units; and guarantees the integrity, privacy, 

and non-interference of all active programs and 
their associated data bases. 

If a real-time operation is to be maintained in a 
multi-usage environment, it must have guaranteed 
dedication and protection of the system resources 
which it requires. Core and disk space must be as
signed to it and protected from access by other pro
grams. I/O channels, peripheral devices, and inter
rupt levels must be assigned, dedicated, and 
protected from outside interference. The establish
ment of a real-time operation and the dedication of 
resources to it should be dynamically available 
through the operating system. These tasks must be 
accomplished in such a way as to permit full free
dom and capability to the non-real-time operations 
while in no way degrading the responsiveness of the 
system to the time-sensitive demands of the real
time program. In the following section we will de
scribe the design problems which were faced in 
meeting these requirements and present the SIGMA 
7 structures which provide for their solution. 

The Problem of Priority Interrupts 

The system must be equipped with a true priority 
interrupt system which is flexibly structured and 
controlled and whose operation in establishing 
priorities and recording and sequencing interrupt re
quests is essentially instantaneous and independent 
of CPU action. Interrupts of higher priority must be 
permitted to interrupt partially completed responses 
to those of lower priority. To maintain fast re
sponse, interrupt requests should require no decod
ing action on the part of the CPU to determine their 
source or nature. Capability for dynamically varying 
the priority sequence to meet the demands of a 
changing environment must be available. No other 
system element may be designed such that its proper 
operation requires the inhibition of the priority in
terrupt system for any period of time. 

The SIGMA 7 Priority Interrupt System. The 
SIGMA 7 interrupt system is best described from 
the ground up. The basic interrupt level has four 
mutually exclusive states which are designated as 
Disarmed, Armed, Waiting, and Active. A separate 
flip-flop is used to disable or enable the level (Fig. 
6). 

In the Disarmed state the interrupt level rejects 
all incoming interrupt trigger signals. In the Armed 
state the interrupt level will accept a trigger signal 
from an outside source, or from the CPU, and will 



58 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

INTERRUPT 
S TA TE FF CONFIGURATION 

LEVEL 
ENABLE 

SOURCE OF 
CHANGE SIGNAL 

DISARMED 

ARMED 

WA1T1NG 

ACTIVE 

[E~ 
rTol rn~'· -
~ CPUor 

CPU 

dJ [QJ '''emo' 51,001 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

rn 

CE 
'--- CPU 

INTERRUPT 
t----- TIMING 

1----- GROUP INHIBIT 
OFF 

NO HIGHER-PRIORITY 
LEVEL ACTIVE, OR 
WAITING AND ENABLED 

Figure 6. Interrupt level operations. 

move to the Waiting state, where it will remain until 
the level is acknowledged by the CPU. If the level is 
disabled any Waiting condition is held in abeyance, 
preventing it from entering the priority chain of re
quests for CPU action. All Enabled and Waiting in
terrupt levels are permitted to enter the priority 
chain of requests awaiting computer interrupt re
sponse action. 

Interrupt levels are organized into four classes 
which are designated as the Over-ride Class, the 
Counter Class, the I/O Class, and the External 
Class. The Over-ride class can never be Inhibited, 
Disarmed, or Disabled. A separate inhibit flip-flop is 
provided in the CPU for each of the other three 
classes, so that the CPU can prevent an entire class 
from entering the priority request queue. In effect 
this inhibit flip-flop disables the class regardless of 
the Enable-Disable states of the individual levels 
within it. The External Class is further divided into 
14 groups each containing 16 interrupt levels. The 
priority request queue starts at the Over-ride Class 
and then may be threaded through the remaining 
Classes (and Groups of the External Class) in any 
order which the customer may desire. Thus, external 
interrupts may be given priority positions above, be
low, or in between those allocated to the Counter 
Class and the I/O Class (Fig. 7). 

Each interrupt leve1 has a unique location in low 
order memory dedicated to it. Control of the CPU is 
automatically forced to this location when the inter
rupt is acknowledged and permitted to move to the 
Active state. This action occurs whenever the high
est priority Waiting, Enabled, and Uninhibited inter
rupt level is of higher priority than the highest 
priority currently Active interrupt level. 

The CPU can control the states of the interrupt 
system. A group of sixteen interrupt levels are oper
ated upon simultaneously under control of a sixteen 
bit mask which selects the subset of the sixteen to be 
modified. Operations which may be performed upon 
the mask -selected levels include Disarm, Arm and 
Enable, Arm and Disable, Enable, Disable, Load 
Enables, and Trigger. The Trigger function permits 
the CPU to apply an interrupt signal to its own in
terrupt system. This feature can be used to simulate 
an external interrupt environment for purpose of 
system checkout. It also permits the CPU to carry 
out the highly time sensitive portion of an interrupt 
response and then to create for itself a low priority 
interrupt to call for the deferred servicing of the less 
time sensitive portion at a less pressing time. 

1st Priority 2nd Priority 

Override 
Interrupts 

Counter 
Interrupts 

3rd Priority 

Externa I Interrupts Group 2 

4th Priority 

I nput/ Output 
'--------~ Interrupts 1---------. 

5th Priority 

External Interrupts Group 3 

6th Priority 

External Interrupts Group 4 

7th Priority 

External Interrupts Group 5 

Figure 7. Typical interrupt priority chain. 



SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 59 

The Problem of the Duration of Uninterruptible In
tervals 

Such an interrupt system is of little value if the 
CPU can remain for any significant period of time 
in an uninterruptible state. Under normal operating 
conditions, the longest uninterruptible interval must 
be kept short, and under abnormal conditions no 
malfunctioning peripheral hardware or software may 
be allowed to "hang up" the CPU in a noninterrupt
ible state. 

SIGMA 7 Interruptible Instructions and the 
Watchdog Timer. To insure that the longest uninter
ruptible interval which the CPU may experience in 
normal operation is short, all long instructions have 
been designed so that they may be interrupted dur
ing the. course of their execution. Registers are held 
in fast memory, but instruction execution occurs in 
hardware elements. Since the original operands are 
retained in fast storage until instruction execution is 
completed, instruction aborting occurs without loss 
of information. Instructions whose duration is less 
than 10 microseconds are never aborted. Instruc
tions in the 10-30 microsecond range are designed 
so that they may be aborted and subsequently re
started upon return from the interrupt. Instructions 
whose execution time exceeds 30 microseconds are 
designed so that they may be aborted and subse
quently have their execution resumed from their 
point of interruption upon return from an interrupt 
process. 

An instruction "watchdog timer," included in the 
standard SIGMA 7 configuration, guarantees against 
hardware hang-up by insuring that the time interval 
between interruptible points never exceeds 40 mi
croseconds. 

The Problem of Red Tape Time 

Mere capability to initiate action in response to 
an interrupt is of little use to a real-time situation if 
it requires an inordinate amount of time to preserve 
the operating environment which exists at the time 
of the interrupt and to establish the new environ
ment required for the processing of the interrupt. 
Hence, an extremely rapid context preservation and 
switching system must be provided in order to as
sure that minimum time lapse exists from the initia
tion of interrupt response to the execution of opera
tions which are truly pertinent to the demands of the 
interrupt situation. Such a switching system must be 
repeatable to any number of levels in order toac
commodate interrupts of interrupts. 

SIGMA 7 Context Switching. A single in
struction, Exchange Program Status Doubleword 
(XPSD) results in the collection of all of the active 
control states of the CPU and their storage in an 
arbitrarily designated doubleword location in core 
memory. This instruction execution then proceeds 
by loading the active control states with corre
spondingly structured information contained in the 
following two words in memory. Thus, the entire 
control environment of the CPU is stored and re
loaded in six microseconds with the execution of a 
single instruction. A return to a prior control state is 
accomplished through the execution of another sin
gle instruction, Load Program Status Doubleword 
(LPSD), which also provides for clearing and arm
ing or disarming the highest level active interrupt. 
An XPSD at the interrupt location saves the old 
environment and establishes the new one for the in
terrupt response. An LPSD at the conclusion of the 
interrupt process returns the CPU to its state prior 
to the interrupt. Since the storage and access loca
tions designated by the XPSD and LPSD instruc
tions are arbitrarily located in memory, nested 
chains of interrupted interrupt routines may occur to 
any level without loss of control and with automatic 
denesting as interrupt processes complete. 

A second major element of context saving is the 
preservation of register states. Registers may be pre
served in memory and restored through the use of 
mUltiple register load and store instructions or may 
be preserved in core implemented stacks through the 
use of multiple register push and pull instructions. 
Even the high speeds of these operations may result 
in too great an overhead time for some real-time 
processes; hence, a register storing and loading tech
nique which is accomplished during the· execution 
time of an XPSD instruction is provided. This tech
nique is available whenever the CPU is equipped 
with one or more of the optional additional register 
blocks. The 5-bit Register Pointer is a portion of the 
contents of the Program Status Doubleword which is 
stored and loaded with the XPSD instruction. 
Hence, if a register block is available and dedicated 
to a real-time process the execution of the XPSD 
instruction which initiates the process automatically 
preserves the control context and the register con
text of the interrupted routine and automatically es
tablishes the corresponding contexts for the inter
rupt process. Under these circumstances, the 
equivalents of register preservation, loading, and re
storing are all accomplished within the execution 



60 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

times of the XPSD and LPSD instructions which 
initiate and terminate the interrupt routine (Fig. 8). 

The Problem of System Integrity 

Some means must be provided to guarantee the 
integrity of the executive system and for it, in turn, 
to establish and guarantee the integrity of all other 
programs. 

Master/Slave States and Privileged Operations. 
The SIGMA 7 CPU can operate in either a Master 
or Slave state. In the Master state all instructions 
can be executed normally. In the Slave state instruc
tions whose execution are critical to the integrity of 
system resources are illegal. Such instructions are 
designated as Privileged Operations and are reserved 
to programs operating in the Master state. Privileged 
operations include all instructions which affect 
Input/Output operations through the Input/Output 
system, Input/Output operations direct to memory, 
the memory protection systems, the interrupt sys
tem, the operating state of the CPU (e.g. a Slave 
state program cannot switch itself to the Master 
state), or the continuation of system operation. 

Memory protection, the other aspect of guaran
teeing system integrity, is presented in the following 
section. 

The Problem of Space Sharing 

Efficiency inmultiusage implies the simultaneous 
residency of many programs, or portions of pro
grams, so that when conditions require that control 
be given to a new program it is resident and such 
action can occur immediately. Thus, under control 
of the executive system, partially executed programs 
must be permitted either to space share or to be 
swapped out of memory and later returned, prefera
bly to whatever space is available. When a program 
is held up for I/O operations, only its I/O buffer 
region should be retained in core with the remainder 
of the program dumped to disk so that its space in 
core may be available for other usage. As such ac
tions take place, the available memory space rapidly 
becomes fragmented into discontiguous regions 
which should be directly usable without having to 
repack the memory in order to achieve contiguity. 
Thus, a system should be provided for the execution 
of programs which have been dynamically relocated 
into discontiguous memory regions. 

REGISTER BLOCK 110 ~ ___ -, 
(STANDARD) 

REGISTER BLOCK 111 
(OPTIONAL) 

• 
• 
• 

REGISTER BLOCK '31 J-----...... 
(OPTIONAL) 

SIGMA 7 
CENTRAL 

PROCESSOR 

(AUTOMA T1CALL Y, THE BLOCK POINTER 
LOGICALLY CONNECTS ONE OF THE 32 
POSSIBLE BLOCKS TO THE CPU) 

Figure 8. Block pointer and register selection shown with a 
block pointer value of 1(00001). 

The SIGMA 7 Memory Map. Dynamic program 
relocation into discontiguous fragments of memory 
is provided through the incorporation of an optional 
feature, the memory map. If the map option is in
stalled, any program may be broken into 512-word 
pages and distributed throughout the implemented 
core memory in whatever 512-word pages of space 
are available. The memory map then permits the 
program to be executed as though it were located in 
the contiguous region of memory for which its ad
dresses have been established. Clearly, the map pro
vides the transformation of Virtual Addresses (i.e., 
addresses generated within a program such as in
struction addresses, operand addresses, and indirect 
addresses) into Real Addresses (i.e., the physical 
core addresses where program-designated values are 
actually located) . 

The memory map employs a 256-byte, integrated 
circuit memory in its implementation, and thus pro
vides for the mapping of a full 128K Virtual Ad
dress space. A mode flip-flop designates whether a 
program is to operate in a mapping or non-mapp~ng 
mode. When mapping is invoked, the followmg 
events occur every time an actual reference to mem
ory is to be made (Fig. 9): 

1. The 17 -bit address generated by the 
program is broken down into a 9-bit 
word address and an 8-bit page ad
dress. 

2. The 8-bit page address is used to 
access one of the 256-byte map mem
ory locations. 

3. The 8-bit page address stored at that 
location replaces the 8-bit page address 
portion of the Virtual Address to form 
a Real Address. 

4. The Real Address is used to access the 
memory. 



SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 61 

Because of the speed of the integrated circuit memo
ry, these actions add only 60 nanoseconds to each 
memory access. 

A special instruction, Move to Memory Control, 
provides for rapid changing of the memory map. 

With the map option, a program can be brought 
in and distributed to any set of 512-word pages 
which may be available in memory. The Move to 
Memory Control instruction is then used to write 
the map so that the proper address transformation 
will be made. The mapping mode is then entered 
and control is turned over to the program, which 

Instruction in memory: 
o 1 2 

Instruction in instruction register: 

The 8 high-order bits of the reference address are 
replaced with page address Z from memory map: 

Actual address of memory location 
that contains the direct address: 

Direct address in memory: 

Indirect addressing replaces reference 
address with direct address: 

Halfword operation indexing alignment: 

Effective virtual address: 

o 1 2 

The 8 high-order bits of the effective address are 
replaced with page address N from memory map: 

Final memory address, which is the actual address of 
halfword location containing the effective halfword: 

then operates as though it were located in the con
tiguous region of memory for which it was designed. 
The operation of such a program may be halted at 
any time, the program subsequently relocated to any 
other set of 512-word pages, the map rewritten, and 
the program operation resumed with no adverse 
effects. 

Programs whose addresses range over the 128K 
Virtual Address space may be executed on a ma
chine with far less than 128K words of implemented 
core. The map permits portions of such programs to 
be resident and operate in available core space. Pro-

III 

II I II 
18-bit displacement I 

12 13 14 15.10 17 Ie '0 20 21 n 23 24 25 26 27128 29 30 31 

II I I 
19-bit virtual alfword address 

mmmmmmmmm m 0 

Page i'-l 

Figure 9. Example of generation of actual memory addresses; indirectly addressed, halfword operation. 



62 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

gram references to blocks which are not resident are 
automatically trapped so that a page-turning system 
may be readily implemented. 

A number of design compromises were made in 
the incorporation of the map in SIGMA. The most 
important of these was the decision not to incorpo
rate a two-level (segment and page) 'mapping struc
ture. Consequently, all programs which 'must direct
ly communicate with each other, without the 
intervention of the executive system, must share a 
common Virtual Address space since they must 
share a common map. This includes the executive 
system itself which must provide services to user 
programs. When doing so, the executive system 
must operate in the mapping mode since no unique 
bit was available in each instruction word to desig
nate whether or not to employ mapping on an indi
vidual instruction execution basis. Thus, in the inter
ests of simplicity and limitation of costs, the map 
system has been deliberately incorporated in such a 
way that a user's Virtual Address space is curtailed 
by the size of the executive system and the public 
routines and services to which the user's program 
desires to have access. Further, these latter pro
grams must have dedicated space in the Virtual Ad
dress space of all users who desire to use them so 
that they may maintain constant residency in all 
users' maps. While these limitations were recognized 
it was felt that it was worth far more to achieve the 
powers of the mapping operation at a price which 
would bring them to a large segment of the market, 
than it was to achieve full segmentation for a much 
smaller portion of the market. 

The Problem of Memory Protection 

An additional aspect of guaranteeing the integrity, 
privacy and non-interference of all active programs 
is that of memory protection. Early implementations 
of memory protection were aimed almost exclusively 
at providing the write protection function which is 
essential for guaranteeing that one program cannot 
destroy another. The multi-usage environment adds 
further dimensions to memory protection require
ments. Privacy considerations of privileged informa
tion (such as payroll data) require that portions of 
memory be protected from unauthorized reading as 
well as writing. The complexity of the operating en
vironment makes it highly desirable to catch errant 
programs at the earliest possible time. This desire 
leads to the concept of instruction protection which 
prevents a program from executing an instruction 

taken from an instruction-protected region of memo
ry. 

Access Protection. An additional 512 bits of fast 
memory are supplied with the map option. These 
provide storage for two Access Protection bits 
which are associated with each of the 256 Virtual 
Address pages. These bits are accessed during the 
mapping operation whenever the CPU is in the 
Slave state. They are used to impose inhibitions on a 
slave program's use of the information in the page 
which it is attempting to access. These inhibitions 
are designated in the following table: 

Access 
Protection 

Value 

00 

01 

10 

11 

Inhibition/Permission 
Control 

Permit slave access to this 
page for any purpose 
Inhibit slave access for writ
ing, but permit instruction or 
operand read access 
Inhibit slave access for writing 
and instruction execution, but 
permit operand read access 
Inhibit slave access for any 
purpose 

Note that these inhibitions are imposed on slave 
Virtual Addresses and are in effect no matter where 
the slave program may be located physically in core. 

The Access Protection bits are used to restrict the 
operation of a slave program to its allocated ad
dressing domain, and within that domain to permit 
the establishment of read-only or read-and-execute 
only pages of information. Thus, provision is made 
to guarantee secrecy and preservation of sensitive 
information, for common use of non-destructible da
ta bases and public subroutines, and for the trapping 
of run-away program attempts to execute data. 

The 64-byte Access Protection fast storage area is 
loaded with a Move to Memory Control instruction. 
Because of the existence of this form of program 
inhibition, the memory map need only be loaded 
for the address domain over which a slave program 
is expected to operate. The Access Protection bits 
are loaded for the full 128K Virtual Address do
main and thus are guaranteed to protect against 
slave program operations in pages outside their pre
scribed domain. This fact reduces overhead time in
volved in map loading for slave programs with re
stricted addressing ranges. 



SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 63 

Memory Write Protection. The Access Protection 
bits operate over the Virtual Address domain, are 
effective only for slave programs, and are not availa
ble unless the Memory Map option is installed. 
Consequently, an optional memory write protection 
feature which operates independent of the Access 
Protection bits is also available. The memory write 
protection feature operates in both the Master and 
Slave states. This feature is implemented with a 
512-bit fast memory unit which stores a 2-bit write 
protection "lock" for each 512-word page. Every 
operating program is given a 2-bit "key" which, in 
conjunction with the locks, controls its write access 
to a page in the memory according to the following 
rules: 

1. If the lock value for the page is 00, 
writing is unconditionally permitted. 
That is, the page is "unlocked." 

2. If the key value for the program is 
00, writing is unconditionally permitted. 
That is, the program has been given a 
"skeleton key." 

3. If the lock and key values are both 
non-zero, then writing is permitted if, 
and only if, the lock and key values 
are identical. 

Note that this feature is associated with the use of 
Real Addresses and, therefore, supplies write pro
tection for physical memory. If the map option is 
installed, both forms of memory protection are 
operative, the Access Protection bits operating on 
the Virtual Address space of the program and the 
locks and keys on the physical memory space, after 
mapping. Locks are installed through the use of the 
Move to Memory Control instruction. The memory 
write protection system makes it possible to provide 
memory protection in the absence of the Memory 
Map. It also provides memory protection for simul
taneously resident Master mode programs, thereby 
guaranteeing their integrity and the integrity of pub
licly available, reentrant, pure procedures which 
service users of both classes. This form of memory 
protection also provides a powerful tool for the de
velopment or revision of portions of the executive 
system. Such a development can occur on-line, while 
the system is operating, since the unchecked portion 
can operate under a write protection constraint 
which guarantees the memory integrity of the sys
tem. 

The Problem of Recursive and Reentrant Routines 

Efficient operation in a multi-usage environment 
requires efficient utilization of memory and minimi
zation of program swapping. time. The provision of 
single, public copies of routines which are used in 
common by many concurrently operating programs 
is an essential ingredient in optimizing both of these· 
functions. Public routines avoid multiple copies, one 
for each user, and eliminate the swapping time asso
ciated with their transmission between core and rap
id access disk. (Indeed, swapping out time is always 
avoided for all pure procedures.) Public routines 
must be pure procedures which operate on a desig
nated context. When the context and working space 
are provided by the calling program and several 
such programs may be concurrently using the rou
tine it is said to be reentrant. When such a routine 
may repeatedly call itself, and, therefore, be re
quired to provide its own nested context and work
ing space, it is said to be recursive. A single routine 
may be both recursive, i.e., capable of calling itself, 
and reentrant, i.e., capable of being called by many 
different programs prior to its completion of opera'-
tions for any single one of them. Of primary impor
tance is the requirement that public routines must 
operate in an interrupting environment in which 
they may be invoked by one or more programs be
fore completing their operations for another. The 
primary SIGMA 7 design constraint that no soft
ware may be designed so that it must turn off the 
interrupt system in order to be guaranteed to oper
ate properly is particularly difficult to meet in this 
environment. These requirements place demands on 
the hardware to provide entry and context establish
ing methods which provide for efficient and dynamic 
utilization of space and guard against loss of infor
mation or control under all operating conditions. 

SIGMA 7 Hardware Features for Reentrance and 
Recursion. Both reentrance and recursion require an 
efficient means for guaranteed preservation of the 
context of a partially completed process, including 
the 16 general registers and the link address, and for 
the institution of the corresponding context for a 
new user. A Branch and Link instruction which pre:
serves the _program address in a designated register 
provides a simple and effective linking mechanism 
for both reentrant and recursive routines. The indi
rect addressing and indexing mechanisms provide one 
of the means for context designation in the reentrant 
case. Multiple register blocks provide a rapid means 



64 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

for context switching. The memory map provides 
the most direct and effective method for both con
text designation and context switching since it per
mits the reentrant routine to directly address its des
ignated context. Switching from context to context 
then merely requires a map change. 

Both types of programs require register preserva
tion. The Load Multiple and Store Multiple instruc
tions provide a ready solution for the reentrant case 
since the calling programs must provide storage 
space within their context regions. The recursive 
case is more complex since the recursive program 
must provide its own storage. In this case, however, 
such storage is always used in a nested fashion on a 
last-in-first-out basis. The SIGMA 7 pushdown 
stack manipulating instructions provide the ideal so
lution for this situation. There are five instructions 
in this set, PUSH, PULL, PUSH MULTIPLE, 
PULL MULTIPLE, and MODIFY STACK 
POINTER. These stack manipulating instructions 
provide an efficient means for moving information 
between single or multiple registers and core loca
tions which are contained within a pushdown stack 
which is under control. of a doubleword stack 
pointer (Fig. 10). 

The stack pointer contains the address of the top 
of the stack, a count of the words in the stack, a 
count of the number of spaces currently available in 
the stack, and stack underflow and overflow trap 
mask bits. With such a mechanism, recursive entry 
to a routine merely requires the execution of a single 
PUSH MULTIPLE instruction to preserve the cur
rent context in a ,stack for which space is provided 
within the routine itself. A routine which is both 
reentrant and recursive merely uses pushdown 
stacks which are stored within the context regions of 
the various calling programs. 

In general, the. pushdown stack mechanism pro
vides a powerful tool for any dynamic space alloca
tion situation in which a last-in-first-out nesting of 
information is guaranteed. 

Other Multiusage Features. The limitations of 
space do not permit the description of many of the 
details of the SIGMA 7 which make for efficiency of 
operation in a multiusage environment. A few addi
tional features are worthy of mention, however. A 

IH Space count 1-11 Word count 

3233 474849 63 

Figure 10. Stack pointer. 

set of four Call instructions, each providing sixteen 
independent branches, generate a total of 64 gener
alized operator or subsystem entrances; The Call, 
operating through the Sigma Trap system and the 
use of XPSD instructions, provides a mechanism for 
accessing generalized, re-entrant service routines. 
The Call mechanism provides the proper control 
states for these routines and establishes the means 
for returning to the control state of the calling rou
tine, without going through the executive program 
and without using the address portion of the Call 
instruction itself. Consequently, the address portion 
of the Call instruction is available for the designa
tion of operand (s) to the called routine. Calls thus 
can be considered a generalization of the SDS Pro
grammed Operator concept. 

The SIGMA 7 CPU is equipped with two real
time counters, and 60 cycle, lKC, 2KC, 4KC, and 
8KC clock sources, any of which may serve as in
puts to the counters. Optionally, it may be equipped 
with two additional counters. Clock pulse counting 
is handled by single instruction interrupts which 
cause counts to be accumulated ih arbitrarily desig
nated memory cells. Overflows from these locations 
cause a second interrupt, unique to each counter, to 
occur. Hence, real-time synchronization may be 
maintained, elapsed time intervals may be measured, 
and arbitrary length count down timers may be es
tablished, all without recourse to elaborate, soft
ware-derived timing routines. 

An extensive error-trapping system provides for 
automatic error detection and recovery from situa
tions which would otherwise eliminate all possibility 
of interrupt responsiveness. 

An optional power fail-safe system provides for 
the detection of incipient power failure and the or
derly shut-down of the system so as to preserve its 
operating state. An automatic start-up procedure is 
initiated upon restoration of power. 



TECHNOLOGICAL FOUNDATIONS AND FUTURE DIRECTIONS 
OF LARGE-SCALE INTEGRATED ELECTRONICS 

Richard L. Petritz 

Texas Instruments Incorporated 
Dallas, Texas 

INTRODUCTION 

The technological base of the electronics industry 
has undergone dramatic change in the past 20 years, 
largely related to the expansion of the use of mate
rials technology. With the invention of the transistor 
in 1948, semiconductor materials processing provided 
the technology for an entirely new class of electronic 
devices. The invention of the monolithic integrated 
circuit in 1958 extended the use of materials tech
nology to the formation of complete circuit functions 
on chips of semiconductor. We are now entering 
another phase of the expansion of materials tech
nology, in which complete equipment components 
will be processed on slices of semiconductor. 

It is the purpose of this paper to discuss the tech
nological foundations and future directions of this 
latter phase. 

This phase has already been given several names, 
some of which are "large-scale integration" (LSI), 
"computer on a slice," and "array technology." The 
term "large-scale integration" is close to being the 
most descriptive, although at times the syntax is 
awkward. A somewhat more precise term is "large
scale integrated electronics." We will use LSI to ab
breviate both "large-scale integrated electronics" and 
"large-scale integration." 

65 

The products of large scale integrated electronics 
will be called Integrated Equipment Components 
(lEC's) to distinguish from integration to the cir
cuit function (Integrated Circuits, IC's). 

In order to set the stage for the discussion of large
scale integrated electronics technology, Fig. 1 is in
cluded for review of the technologies of discrete 
semiconductor devices and monolithic integrated 
circuits. The reader is referred to the December 1964 
issue of Proceedings of IEEE 1 for a comprehensive 
review of integrated electronics. The article by Jay 
Lathrop 2 is an excellent discussion of integrated 
circuits technology. A discussion of the history of 
semiconductor technology is contained in Ref. 3, and 
the status of large-scale integration technology in 
1965 is reviewed in Ref. 4. Recent published reports 
of meetings concerning LSI are listed in Ref. 5. 

An important conclusion of Fig. 1 is that there 
are potentially 40,000 gates per I-inch slice of 
silicon. The use of a 1" slice of silicon is arbitrary
the industry is moving to larger slices. Today 114" 
is widely used and 3" diameter is forecast by 1.976. 
A principal goal of LSI technology will be to utilize 
this logical power in slice form; that is, inter
connect the gates such that powerful logic and 
memory functions are formed on single slices of 
semiconductor material. 



66 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

DISCRETE DEVICE PROCESS 

111 slice Process Scribe into Reconnect Number of Potential 
of silicon separate chips of to circuit transistors Number of 

0 
slices for 15 mils and Elec- 17(111)2/4 ~ Transistors 
transi stors, on side tronic Func- N 
diodes, 000 tion 

15x15xl0-6 
1.5 mils on 

resistors, 000 4000 side 
etc. Spec each Circuit transistors 

Transistors discrete Function per sl ice Np ~400,000 
device specs are 

0 4ft 
separately derived transistors 

I argel y from per sl ice 
device specs 

Diodes 

INTEGRATED CIRCUIT PROCESS 

111 sl ice 
of silicon 

Integrated 
Circuit 

Process 
t ransi stors, 
diodes, resis-
tors, etc. on 
same slice 
grouped to do 
circuit function 

I ntercon nect 
devices in 
evaporation 
step for cir-
cuit or elec-
tronic func-
tion 

oee 

Scribe into 
chips which 
contain com-
plete circuit 
or electronic 
function 
000 

000 

Spec circuit 
function, not 
each device 
in circuit 

Number of Potential 
gates on number 
Apollo SCN 

N = 1400 N = 40,000 
gates per gates per 
slice slice 

Figure 1. Discrete device and integrated circuit processes. 

Interconnections Required to Construct 
Equipment Components 

Before going further in our discussion of the tech
nological foundations of large-scale integrated elec
tronics, let us discuss the problem of building an 
equipment component, such as a memory or central 
processor unit, requiring the logical power of, for 
example, 10,000 gates. 

In Fig. 2 it is shown that the construction of an 
equipment component of 10K gates from discrete 
devices requires about 150 K mechanical connec
tions. We have assumed each gate has 10 internal 
and 5 external connections. Since each gate is con
nected to something else, a linear slope brings us to 
150 K for an equipment component of logical power 
of 10K gates. 

For multifunction integrated circuits, the 10 me
chanical connections needed to interconnect the 
discrete devices to form gates are made by materials 
processing (evaporation of metal). Thus a single gate 
has five terminal connections, and 50 K mechanical 
connections must be made to achieve an equipment 
component complexity of 10K gates (Fig. 2). 

We thus conclude that while integration to the 
circuit function level of complexity has reduced the 
mechanical interconnection problem (from 150 K to 
50 K in this example), there are still a great many 
mechanical interconnections to be made in order to 
construct an equipment component. 

It is of interest to observe that the use of equip
ment components as black boxes requires orders of 
magnitude less external connections, that is, most 



LARGE-SCALE INTEGRATED ELECTRONICS 67 
1M=-----.------r-----,------.---~ 

~100K~----4-----_+----~----~T7L-~ 
as 

VIZ 
zo 
00-

t=~ 
~ ~ 10 K ~-----+------+----~ 
Zz 
OLLJ 
u~ 
-,0-

j::; 
Z @' 1000 !",------+--
«LL. 
::co 
~~ 
~-LL.I-
o~ 
a::: a::: 
LLJI
co VI 
~Z 
=> 0 
ZU 

a::: 
~ 

FUNCTIONAL 
CONNECTIONS 

10 

Figure 2. Number of mechanical connections for equip
ment components vs number of gates. 

of the 50 K connections are internal. In Fig. 3, 
bottom left hand corner, it is shown that a typical 
ALU of a computer requires 85 external connections 
to add two 25-bit words. 

Defining R as the number of functional connec
tions per bit of processed data, 

85 
R = -- = 3.4 

25 

We note that the other equipment components 
shown in Fig. 3 have R values in the range of 1-10, 
relatively independent of the number of gates per 
equipment component. The shaded area on Fig. 2 
will contain the number of functional connections per 
bit for equipment components. Comparison of the 
shaded region with the lines for discrete devices and 
multifunction integrated circuits shows that most of 
the mechanical connections are internal. Essentially 
all connections above the shaded area are internal. 

As will be developed in detail below, a principal 
goal of large-scale integration technology is to make 
these internal connections a part of the materials 
processing technology (e.g., by evaporation). 

Those equipment components in which most of the 
internal connections are made by materials process
ing technology we shall call Integrated Equipment 
Components (IEC's), to distinguish them from 
Integrated Circuits (IC's) and from equipment com
ponents fabricated principally by mechanical tech-

niques. Figure 4 illustrates these definitions 
qualitatively. 
Technologies Suitable for Integrated 
Equipment Components 

The essential requirements of a basic technology 
are two: 

1. It must be capable of forming thousands 
or more of both active and passive 
devices in or on a common substrate. 

2. It must be capable of interconnecting 
thousands of active and passive devices 
into IEC's by a materials process such 
as evaporation without separate me
chanical handling of devices. 

Clearly monolithic semiconductor integrated cir
cuit technology has the potential of meeting both of 
these requirements as shown in Figs. 1 and 4. This 
paper will be concerned principally with semiconduc
tor technology, but before developing this further, let 
us consider what other technologies may also be 
suitable for large-scale integrated electronics. The 
consideration that the technology must be capable 
of forming complete electronic functions without in
termediate steps of dicing and mechanical handling 
eliminates the hybrid technologies as we know them 
today (e.g., thick or thin films, with chip transistors). 
However, hybrid and discrete device technology, in 
combination with monolithic semiconductor tech
nology, will add to the flexibility of LSI. 

Technologies in addition to silicon that appear to 
have promise include: thin films, where the TFT 

CONTROL 10 

DATA §K DATA SIGNAL SOO 
OUT 

IN. 25 EQ. GATES 25 IN. 1 EQ. GATES 

SIGNAL 
(DATA) 

OUT 

DATA 
IN.25 

DATA 
IN.25 

MEMORY RECEIVER 

60 
R = 25 = 2.4 

CONTROL 10 

10,000 
GATES 

ARITHMETIC 
UNIT 
85 R ,. 25 ,. 3.4 

DATA 
OUT 
25 

2 
R = I ,. 2 

CONTROL 1 

§ l-VOLTAGEI 
POWER SO CURRENT 
IN. 1 EQ. GATES (DATA) 

OUT 
POWER 
SUPPLY 

R = ~ ,. 3 
1 

Figure 3. Ratio of functional connections to bits of output 
data for equipment components. 



68 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 4. Pictorial view of integrated equipment ~omponent 
(IEC), integrated circuit (IC), and semIconductor 
device. 

(thin film transistor) now offers a method for achiev
ing an active element as an integral part of thin film 
technology; cryoelectronics, where logic, control, and 
memory functions are processed in compatible steps; 
and compound-materials technology, where more 
than one material may be involved in the processing. 

Applicability of LSI Technology to Linear 
as Well as Digital Functions 

It is clear that LSI technology is directly applicable 
to digital functions; the impact on linear functions is 
not so clear. A chief characteristic of digital func
tions is that signals are propagated through many 
levels of logic with no basic change in the signal level. 
The power gain supplied by the active element com
pensates for losses in the system. However, the signal 
level stays at the same amplitude (generally about 1 
V for silicon circuits). Thus, long chains of logic 
functions can connect together with a high degree of 
repeatability of the basic logic circuit (normally a 
NAND or NOR gate). Consequently, digital func
tions lend themselves rather naturally to LSI tech
nology. 

Linear functions are generally concerned with 
changing the level of the signal function. For ex
ample, in a low-noise amplifier the signal level is 
amplified from a few microvolts to a level of a few 
volts. Since there is a finite lower level (set by noise) 
and a finite upper level (set by the particular ap
plication) over which amplification must occur, a 
finite number of stages is required for linear applica
tions. An initial judgment is that array technology 
will not have a major impact on linear functions. 

However, one must temper this conclusion because 
there is a large class of linear functions that re
quires a number of parallel channels, each identical. 
Consider as an example a solid-state replacement for 
a vidicon. With an array of photodetectors, it would 
be desirable to place a linear amplifier at each detec
tion point in order to build up the signal level before 
it is multiplexed into a single channel. Thus, an 
array of photodetectors, combined with linear ampli
fiers, is an example of array technology impacting 
linear functions. 6 Arrays of compound semiconduc
tors, consisting of photo detectors and linear ampli
fiers, offer a possibility of vidicon-like sensors operat
ing in the infrared spectrum. There are other 
examples, including sense amplifiers for memories 
and light displays. 

General Aspects of Large-Scale Integration 
Technology in Semiconductors 

The calculations of Fig. 1 suggest that silicon 
slice processing has the potential of fabricating com
plete equipment components (lEC's) on a slice of 
silicon. Let us now outline the basic technological ap
proaches being pursued for accomplishing this end. 
With the semiconductor approach, two broad areas 
of effort can be identified as discussed below and 
shown in Fig. 5 and 6. 
Device-Based Design. The left side of Fig. 5 shows 
the approach which seeks to achieve complete equip
ment components by incorporating a relatively large 
number of devices within an area of silicon. This type 
of IEC is designed directly from devices and no 
particular effort is made to define unit circuits. The 
important distinction between this approach and the 
multifunction integrated circuit is that IEC's are 
achieved by incorporating many more interconnec
tions on the chip. A typical example of an IEC made 
by this approach is a 50-bit MOS shift register. 

Circuit-Based Design. The second broad approach to 
large-scale integrated electronics is shown schemati-



LARGE-SCALE INTEG RATED ELECTRONICS 69 

Figure 5. Evolution of integrated electronics. 

cally on the right side of Fig. 5. Here, unit cells 
consisting of circuit functions such as NAND gates 
or flip-flops are the basic building blocks. This type 
of IEC is formed by interconnecting an array of unit 
circuit cells. We will use the term array for this ap
proach. 

The unit cell may be a simple NAND-NOR gate, 
occupying, for example, an area 10 by 10 mils. More 
than a single unit cell may be used and they may be 
intermixed. The step-and-repeat optical process 
allows for repetition and intermixing of the unit cells 
over the entire slice of silicon. 

The distinctions between the device-based and 
circuit-based (or array) approach to large-scale in
tegrated electronics will be developed in more detail 
in a later section of this paper ("Discussion of Selected 
Aspects"). Before doing this, we will discuss basic 
devices for use in large-scale integrated electronics. 

LARGE SCALE INTEGRATED ELECTRONICS 

Figure 6. Large-scale integrated electronics. 

BASIC DEVICES FOR USE IN LARGE
SCALE INTEGRATED ELECTRONICS 

Two active device structures that will be con
sidered for LSI application are the bipolar transistor 
and the MOS transistor. 



70 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

BASED ON A 3 INPUT GATE WITH 6 XTRS, 3 RESISTORS 

NO. OF GATES TRANSISTOR AREA 

}

:I: 
1.0 I-

o 

0.5 : 

o ~ 
0.25 13 

It: 
100'Yo YIELD 

MAXIMUM LIMIT 

en 
..J 

:i 
d en 
I 

2°ct 

"" a: 
10< 

a: 
~ o 

"" ..J 
...J o 
o 
a: 
o 

It; 
en z 
~ 
~ 

100 2 3 1,000 10,000 

AREA USED FOR GATE - SQ. MILS 

Figure 7. Bipolar transistor and gate densities for I-inch 
slice diameter. 

Bipolar Transistor 

The bipolar transistor has made the transition 
from a two-sided device to a one-sided device suit
able for integrated circuits in an effective way. 

DEPLETION MOS FET 

DEPLETION REGION 

Numerous techniques have evolved, from triple 
diffusion to dielectric isolation, for processing one
sided transistors of high performance. The area re
quirements for transistors have decreased consistently 
over the past five years. Fig. 7. shows that 10,000 to 
50,000 gates can be fabricated in a I-inch slice of 
silicon by providing transistors of smaller collector 
area along with smaller resistors. Thus, bipolar 
transistors can provide for the high density packing 
required for large arrays. 

MOS Transistor 

The MaS transistor is outlined in Fig. 8 and some 
of its key properties are summarized in Fig. 9. It is 
inherently a single-sided device, self-isolating, and 
occupies a small area. The MaS device can be con
nected to form a load resistor as shown in Fig. 10, 
and in Fig. 11 the area is plotted that is required 
to achieve values of resistance by MaS, diffused and 
thin film technology. Figure 11 shows that the 
MaS device is a convenient way to achieve imped
ance levels of 100 kn in a small area. The ability to 
fabricate low-power, medium-speed circuits in a 
small area using MaS active devices and MaS load 

ENHANCEMENT MOS FET 

TRANSVERSE EFFECTS 

Figure 8. MOS enhancement and depletion models. 



LARGE-SCALE INTEGRATED ELECTRONICS 71 

- Vgs 

'0 - Ref I- 0 Z I-

UJ Z 
0:: UJ 
0:: 0:: 

::> 0:: 

u ::> 
+ Vgs U 

Z Z < < 0:: 
Q 0:: 

Q 

- Vgs 

EQUATIONS 

FOR TRIODE REGION 

10 = ~ [(VG-VD) VD - 1, 2 V~] 

FOR SATURATION REGION 
_ ~ 2 

10 - '2 (V G - V D) 

~( w 
WHERE~=~ 

L t 
ox 

9 = ~ (V - V ) 
m 9 P 

DRAIN VOLT AGE (VDS) 
DEPLETION 

DRAIN VOLTAGE (VDS) 
ENHANCEMENT 

o 
GATE VOLTAGE (VGS) 

DEPLETION 

Q ~~--------------~ 

GATE VOLTAGE (VGS) 

ENHANCEMENT 

Figure 9. Characteristic curves for MOS transistor. 

resistors is an attractive application of MOS tech
nology. 

Another promising application of Mas tech
nology is in the use of N-channel and P-channel Mas 
devices in complementary circuits as shown in Fig. 
12. This configuration will provide switching speeds 
in the 25-50 nsec region, with extremely low DC 
power drain (0.01 floW). However, it does not have 
the processing simplicity of the single-polarity MaS 
structures. 

Saturation-triode region boundary 

VO"VG-VP 

Vo "VO -Vp 

0" - Vp 

Figure 10. MOS connected as a load resistor. 

Applicability of Bipolar and MOS 
Transistor for LSIE 

With these general characteristics of both MaS 
and bipolar at hand, let us now attempt to assess the 
merits of each for specific LSI applications. A first 
consideration is the device densities that can be 
achieved, leaving aside for the moment the question 
of yield. Figures 13, 14 and 15 show the areas re
quired in terms of a fundamental width W for the 
bipolar device with load resistor, the MaS device 
(assuming it also is used as the load), and the basic 
inverters using the two devices. From these con
siderations device densities are forecast as shown in 
Fig. 16. This figure shows that single-polarity MaS 
is capable of higher device densities than bipolar by 
at least a factor of two. A principal reason for this is 
that no isolation diffusion is needed .for MOS; it is 
inherently self-isolating. The figure also shows that 
today we are working with MOS device densities of 
100,000/in 2 and bipolars of 50,000/in.2 The figure 
also forecasts a density limit of about 10 6 devices/ 
in 2 because of interconnection area requirements. 



72 
10meg 

5 

2 

I meg 

5 

2 

lOOK 

5 
'iii 
E 

.s:::. 
2 2 a:: 

10K 

5 

2 

IK 

5 

2 

100QI 

Figure 11. 

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

} 
MOS active load 

tax=1500A 

}THIN FILM 

I 
}OIFFUSEO 

1,0 10,0 100 
Gross Area (mil}2 

Load resistance vs slice area for MOS active 
load, thin film, and diffused resistors, 

!Ow+ 

TRANSISTOR 

The lower density of the discretionary curve is be
cause of the area used by redundant devices. 

A second consideration between MOS and bipolar 
is the speed-power relationship per unit of silicon 
surface area. Analysis 7 results in Fig. 17, which 
shows a clear superiority in bipolar where speed 

+v 

.-C~P_'h."~1 
~Output 

I Ie 
Input ~ 

t-channel 

(0) Circuit 

Gate Dielectric 

(b) Waveforms 

Gate Dielectric 

+v 

(c) Structure 

P-type 
isolation 
vapor etch 
and regrowth 
region 

Figure 12. Complementary MOS structures and circuits. 

RE 

Figure 13. Area for bipolar transistor and load resistor as function of resolution width W. 



LARGE-SCALE INTEGRATED ELECTRONICS 73 

and/or power is required. This superiority rela~es 

to the inherently higher gain (transconductance) of 
bipolar over MOS. The importance of grn is that it 
is a measure of a devices' ability to charge capacities, 
which in turn is a measure of a device's switching 
speed. Figure 17 shows that at 1 p,A, for the same 
area A and capacity C, the grn of a bipolar transistor 
is 40 p,mhos, while that of an MOS transistor is 4.5 
p,mhos. To achieve a gm of 40 for the MOS requires 
an area and capacity increase of 100 times. At higher 
currents the superiority of the bipolar over the MOS 
transistor is even greater. 

From the two comparisons developed above, de
vice densities and speed-power relations, we can 
reach some general conclusions as to the applicability 
of MOS and bipolar technologies. For those applica
tions where MOS has sufficient speed and current 
handling capability, it should win out on the basis 
of achieving higher complexity per unit of chip area. 
Examples today include shift registers in the 

1 
THIS 
DIMENSION 
ADJUSTED 
ACCORDING 
TO CIRCUIT 
NEED 

- --- -

P 

" 

LJ _/ 

n 

, , 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I 

megacycle speed range where the capacity loading of 
devices is small because the fan-out is basically one. 
Some remarkable achievements have already been 
made in employing serial logic using MOS for small 
processors such as desk calculators. 

On the other hand, bipolar will be the choice for 
parallel logic organization, particularly if speed is a 
factor. The basic advantage of the bipolar is its in
herently high transconductance (gm); therefore, it is 
superior where appreciable capacitance must be 
charged as in parallel logic. 

We forecast a large applications area for both 
technologies, and as our technological capability in
creases to where both kinds of devices are processed 
together on the same slice in monolithic structures, 
another very large area of application. Finally, while 
our discussion has been limited to bipolar and MOS 
device structures, many other device types, e.g., 
Schottky-barriers, will be integrated into LSI struc
tures. 

I 
I 
I 
I 

I 
I 
I 
I 
I , 
\ 

",,-

P 

'-
n 

61/2 w -------~.I 
r- 1112W--1 

p p 

n 

Figure 14. Area for MOS transistor and MOS resistor as function of resolution width W. 



74 PROCEEDINGS----FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 15. Basic inverters for MOS and bipolar. 

DISCUSSION OF SELECTED ASPECTS 
OF LARGE-SCALE INTEGRATED 
ELECTRONICS 

We now discuss key aspects of LSI, including more 
detail on the device-based and circuit-based ap
proaches, discretionary wiring, forecast of level of 
integration to be achieved over the next 10 years, 
design by computer, standard products versus flexi
bility to custom requirements, and special require
ments for subnanosecond arrays. 

Device-Based Approach to LSI 

The device-based approach is the natural extension 
of multifunction integrated circuit design and differs 
from the latter in that equipment components are 
designed and processed rather than circuit functions. 
Consider for example the design and processing of a 
50-bit MaS shift register. The design is worked out 
using MaS active devices and MaS load resistors 
in an optimum fashion, without any attempt to 
partition the shift register into circuit building blocks. 

The chief advantage to this approach is that one 
can achieve a very high density of devices, or con
versely, achieve an IEC in a small area. Table 1 and 
Figures 18a and 18b show typical IEC's made from 
bipolar and MaS devices: MaS achieves higher 
device density, but at lower speed as discussed above. 

The entire IEC, or at least a major part of it, 
is achieved within a relatively small chip size. A 
characteristic of this approach is that 100 % yield is 
required over the chip area (e.g., 100 X 100 mil), 
but not over the entire slice. Consider for example 
a 1.50-inch diameter slice where 

slice area 
Number of chips = ----

area/chip 

__ 1T'_9_/_16 __ = 175 

100 X 100 X 10-6 

If 50 of these 175 chips are good, the overall mate
rial yield is 35 %. 

While discretionary wiring techniques are not used 
within the chip areas (100% yield is demanded here) 
it is possible that discretionary wiring will be used 



LARGE-SCALE INTEGRATED ELECTRONICS 75 

s: 
u 
~ 

6 
en 
V; 
L&.I 
U 

> 
L&.I e 
~ 
en 
Z 
L&.I 
0 
L&.I 
U 

> 
L&.I 
0 

106 

DEVICE DENSllY 

INTERCONNECTION PROCESS LIMIT 

DISCRETIONARY SERIES 53 

67 68 
YEAR 

70 

Figure 16. Ten-year forecast of device density. 

to wire together N good chips in a slice to form a 
more powerful function. In the example above, the 
50 good chips might be connected together without 
scribing the slice into individual chips. One reason 
for doing this is that the oxidized silicon surface 
provides an excellent surface on which metallic 
transmission lines can be deposited. 

What are the chief handicaps or limitations of the 
device-based design approach to LSI? Probably the 
most important limitations are its lack of adaptation 
to change and long-time cycle for implementation. 
Each IEC design requires a complete set of masks, 
including diffusion and metallization. While some 
flexibility can be attained at the metallization level by 
providing extra devices in the chip (master slice con
cept), the approach is most suitable for standard 
products where relatively large production runs 
occur, or for custom designs of high volume. 

In summary, the device-based approach to large
scale integrated electronics is already off to a fast 
start. For the case of bipolar technology, the IEC's 
are being designed to give added logical power and 
capability to existing IC product lines, as for ex
ample, three of the TI units listed in Table 1 
augment the Series 54 line. For the case of MaS, the 

leading edge of this technology has aimed towards 
serial logic systems designed around shift registers. 

Array or Circuit-Based Approach to LSI 

In this approach circuits are used as the basic 
building blocks for designing and processing the 
IEC's. A number of advantages occur when one 
moves the building block level from the device to the 
circuit function. A key advantage is that Boolean 
logic equations are readily expressible in terms of 
NAND, NOR and related logical decision circuits. 
These equations, which are basic to the design of 
computers, are independent of the devices underlying 
the Boolean circuit element. 

Another advantage is that it is possible to in
corporate a high degree of flexibility into the process 
technology. Consider the problem of an IEC manu
facturer responding to a customer's request for a 
specific IEC. Assume that the customer presents the 
IEC manufacturer with Boolean equations and 
specifications. Let us examine the different methods 
(see Table 2) by which the manufacturer may 
respond. We will assume that silicon slices are 

MOS 

~~ BIPOLAR 9m = kT 

10,000 ~~---+-~~~~~~ -~'-----.~---l 

1,000 

S 
2-

E 
0> 

100 

10 r-~~-7~--+~~~--~~~~~~~ 

10 100 1000 
I (~A) 

Figure 17. Transconductance gm of bipolar and MUS 
transistors vs current and device area. 



76 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Table 1. Integrated Equipment Components-1966 

Area 
Mfr. Component Device in 2 

TI 
Series 53 

Bil?olar 0.7 
Array 

TI 
8-Bit 

Bipolar 0.006 
Shift Reg 

TI 
Honeywell 

Bipolar 0.0071 
Memory 

TI 
Parallel Load 

Bipolar 0.01 
Serial Shift 

GME 
A-C 100-Bit 

MOS 0.0065 
Shift Reg 

GI 
D-C 21-Bit 

MOS 0.0042 
Shift Reg 

TI 
22-Bit 

Bipolar 0.0126 
Shift Reg 

TI B to D 
MOS 0.0057 

Decoder 

processed with 100 % yield of unit cells-the ques
tion of dealing with cells on the slice that are not 
good will be discussed below, under "Discretionary 
Wiring." 

For those requirements where the logical function 
(IEC) can be built by connecting together identical 
unit cells (e.g. NAND gates), the manufacturer need 
only make masks which provide for interconnecting 
gates in a specific pattern. Processed slices would be 
on hand which have a large number of NAND gates. 
Such slices would have a first level of metallization 
on them as indicated in Category I, Table 2. Only 
new masks for 2nd and 3rd level metallization are 
required to meet a customer's specific request. More 
flexibility can be incorporated into this approach by 
providing more than one kind of unit cell on the 
slice. For example, a slice with a mixture of gates 
and flip-flops will meet a large proportion of com
puter requirements. This approach provides very fast 
response to customer's needs. 

A second approach, Category II, involves process
ing slices which have a common master unit cell 
through the diffusion and third oxide removal opera
tions. This master unit cell would have sufficient 
devices such that 10 to 15 different logical circuits 
could be attained by variations of the first level of 
metallization. Coupling this with the ability to inter
connect the unit cells together in specific ways pro
vides a high degree of flexibility. However, this 
requires a first-level metallization mask as well as a 
second (third if necessary) level mask. 

No. of Device Dens. Speed Power 
Devices devices/in 2 nsec mW Pads 

1,200 1,720 35 1200 60 

160 26,500 15mHz 190 6 

100 14,000 25 250 14 

150 15,000 25 270 22 

613 94,500 1mHz 200 12 

158 37,600 500 kHz 150 11 

350 27,800 3mHz 35 8 

152 26,700 200 kHz 25 26 

The third approach is to generate a complete set 
of masks for each order, as in Category III, Table 2. 
A complete set of diffusion masks are required, along 
with first level metallization masks (second and third 
if necessary). This is the most expensive approach 

Table 2. Categories of Array Approach to LSI 

Process 

Oxidation 

Collector 
Diffusion 

Base 

I 
Diffusion 

--

Emitter 
Diffusion 

Metal 
Deposition 

Insulation 
Deposition 

Metal 
Deposition 

Insulation 
Deposition 

Metal 
Deposition 

1st Oxide 
Itellloval (OR) 

2nd OR 

31'd OR 

4th OR 

1st L<,vel 
Leads 

2nd Level 

Insulation 

2nd Level 
Leads 

3rd Level 
Insulation 

Definition Category 

II 

1st Olt 

2nd 01{ 

:lrd OR 

4th on 

1st Level 
L<,ads 

2nd Level 

Insulation 

2nd LL'vel 
L<,ads 

I-r--

III 

1st OR 

2nd Of{ 

:lrd 01{ 

4th OJ{ 

1st L<,vel 

Leads 

I--+--------~-I-------

3rd Level 
Leads 

Operations in boxes permit component variability. 



LARGE-SCALE INTEGRATED ELECTRONICS 

a 

b 
Figure 18. Examples of device-based IEC's~haracteristics in Table 1. (a) Eight-bit bipolar IEC. (b) 

Binary-decimal decoder MOS IEC. 

77 



78 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

from the initial design phase and the most time con
suming, but it can provide savings in materials 
usage and therefore may be favored for longer pro
duction runs. 

A comparison of the approaches of Table 2 reveals 
that Category I provides the fastest turn-around time 
and lowest initial cost but has the poorest utilization 
of unit cells in the slice. Category III provides the 
best usage of area in the slice because it has no cells 
or devices that are not used, but is the slowest in 
turn-around time and has the highest initial expense. 
Category II is midway between I and III in all 
respects. 

All three categories are under development in the 
semiconductor industry. Prediction of the relative 
costs and degree of usefulness of these approaches is 
difficult at this time because of the embryonic state 
of the technology. 

Discretionary Wiring 

The goal of processing technology is 100 % yield 
of unit cells over the slice. For the same reason that 
integrated circuit yields are much higher than were 
expected, considering arguments based on discrete 
device extrapolations, array yields will be much 
higher than predicted from simple extrapolations of 
integrated circuit yields. However, at some array size 
one can expect that defective unit cells will become a 
problem which will affect overall array yield. It is 
desirable then to develop a system whereby defective 
cells can be omitted from the interconnected array. 

The problem of achieving discretionary wiring at 
low cost relates to testing, automatic mask making, 
and computer programming of interconnection sys
tems. It should be emphasized that successful im
plementation of the discretionary approach demands 
a rapid, low-cost mask-making procedure since each 
slice may require a different interconnection pattern 
because the "good" cells will occur in different loca
tions. Figure 19 shows an approach to discretionary 
wiring which is being developed at Texas Instru
ments Incorporated under sponsorship of the Air 
Force Systems Command, Wright-Patterson Air 
Force Base. 8 At the top left of the figure a silicon 
slice is shown which has an array of unit cells. The 
unit cells consist either entirely of NAND gates and 
flip-flops, or a mixture of the two. A first level of 
metallization is provided on these cells so that they 
can be probed by multiprobe test equipment. The 

Yield (Good and Bad 
Networks) InformaHon 
Provide to computer 

Figure 19. Discretionary wiring system being developed by 
Texas Instruments under Air Force sponsorship. 

information concerning location of good and bad 
cells is fed into the computer, which generates an 
interconnection pattern. The control for each pattern 
is fed to the high-resolution CRT, and a pattern is 
generated on the face of the CRT. This pattern is 
projected on photosensitive material to form a photo
mask. Finally the set of masks is used to process 
interconnection patterns on the semiconductor slice. 

All elements of this system are under active de
velopment. It is planned to have the system in opera
tion during the last half of 1966. 

To illustrate the discretionary wiring approach the 
series of pictures in Fig. 20 are given. Figure 20a 
shows a slice where the "good" gates to be used in 
the array have the first level of metallization applied. 
Each rectangular area contains four Series 53 gates, 
and the full array consists of 120 "good" gates. The 
slice with a layer of insulation applied and holes 
etched through to the first level metal are shown in 
Fig. 20b. Horizontal interconnections which were 
designed by the computer are shown in Fig. 20c. 
Figure 20d shows another level of insulation applied 
and holes etched through to the second level of 
metal. Figure 20e shows the third and final level of 
metallization which completes the interconnection of 
the 120 gates. 



LARGE-SCALE INTEGRATED ELECTRONICS 79 

a 

b 
Figure 20. Series 53 array of 120 gates (process description in text). 



80 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

c 

Figure 20. continued 



LARGE-SCALE INTEGRATED ELECTRONICS 81 

e 
Figure 20. continued 

While the masks for the above example were cut 
by normal techniques, the system shown in Fig. 19 
will make this an on-line process of short-time re
sponse. Characteristics of this array (the Series 53 
array) are shown in Table 1. Comparison shows that 
this array has nearly 10 times the number of bipolar 
devices than the other bipolar IEC's, which are of the 
100 % yield category. 

An important aspect of the discretionary approach 
is that it will allow for integrating to higher levels 
of complexity at any given time than will the 100 % 
yield approach. For example, the aforementioned 
program has a minimum goal of 250 gates per slice 
or 2500 devices per slice, and a maximum goal of 
1000 gates per slice or 10,000 devices per slice; 
furthermore, the arrays will be ready for production 
by the end of 1967. It is believed that this is an order 
of magnitude higher performance than will be 
achieved by 100 % yield methods in the same time 
period. 

We note that this approach to discretionary wiring 
has much in common with the process of Category I 
in Table 2. The interconnection pattern generator can 
be used to generate the second and third level masks 
required in Category I. If one has 100% yield over 

the area of the slice to be used, the probing step is 
eliminated. Also, the computer programs for pattern 
generation will be somewhat simpler because the 
location of gates is known. 

Forecast of Degree of Integration of lEe's 

Our forecast of device density in Fig. 16 over the 
next 10 years was relatively simple to make since it 
was derived from reasonably well-defined param
eters. In contrast, the forecasting of the level of 
integration of IEC's over the next 10 years is a much 
more complicated and less precise task. Subjective 
as well as objective points must be considered. How
ever, it seems worthwhile to discuss some of the 
aspects of the problem and to arrive at a "forecast," 
even though admittedly it is unprecise. 

Let us first define what we mean by level of inte
gration. By this we mean the total number of good 
devices that will be interconnected on a single 
monolithic chip of semiconductor material (presum
ably silicon). We will not discuss the "chipping within 
a package" approach. 

A first consideration is the theoretical device 
density, shown in Fig. 16. The MaS and Bipolar 



82 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Fixed curves imply 100% yield or fixed interconnec
tion pattern (FIP). The Discretionary curve indicates 
a lower density because of the area required for 
redundant devices. 

A next consideration is the chip size itself. Here 
we must consider a number of factors including single 
field of view optical limitations, step-and-repeat 
optical techniques, crystal size, and process yield 
limitations. 

Optical problems limit the area over which high 
resolution can be achieved in a single field of view. 
Figure 21 shows the capability of the best of today's 
lenses, and the 10-year forecast. A 100 X 100 mil 
area with 0.2 mil lines is representative of today's 
integrated circuits production. The area will increase 
to 300 X 300 mil and resolution should approach 
the wavelength of light. New techniques such as 
electron beam will be required to achieve further 
improvements, but we will not consider these pos
sibilities in the discussion. 

Step-and-repeat techniques allow for the stepping 
of a fixed field of view over much larger areas. This 
process is used in today's production technology such 
that 100 X 100 mil or smaller patterns are stepped 
over slices 11j2 inches in diameter. 

From these considerations Fig. 22 has been con
structed. The area labeled Fixed Field Pattern fore
casts that fixed pattern lEe's will increase from the 
present 100 X 100 mil size to 300 X 300 mil size. 

1000 X 1000 ,....---,r-T--.--.-.,--,--r-r.,..,.--r----r----.---......., 

IMAGE 
AREA 

(MILS X MILS) 

100 X 100 

lOX 10 

0.01 

4.,/ 
~,--

fli 
/;j MICROSCOPE ;il OBJECTIVES 

1(-
I 
r 

0.05 0.1 
LINE RESOLUTION (MILS) 

MOS 
64-Bit 

SR 
o 

o 
Ser 54 

Ser 53 
MOS 
B to D 
Decoder 

0.5 

Figure 21. Optical image dimension as a function of resolu
tion. 

Vl 

~ 10-1 

~ COMPLEXITY 10,000 GATES 

-3 
10 19':-:66---L----'19~68-'---19'-70----'--1 ~-'-72-'---19'-7 4-'---:-:' 

YEAR 

Figure 22. Chip size forecast. 

The smoothness of the curves relates to the gradual 
increase in area over which 100% yield is achieved. 

The upper shaded area is based on step-and-repeat 
optical techniques and discretionary wiring. ~he 

upper line shows the increase in crystal size from l
inch diameter to 3-inch diameter material. The lower 
line suggests that interconnection and yield improve
ment will allow for smaller chips to be used because 
of less area required for redundancy. 

Finally Fig. 23 shows the author's best judgement 
as to the number of devices per chip that will actually 
be used over the next 10 years. These curves have 
been developed by consideration of the factors of 
Figs. 16, 21, 22, and 23, by knowledge of today's 
capabilities (1966 data points of Fig. 23), and by the 
subjective consideration that 100,000 devices per 
chip, which will provide logic power of 10K to 20 K 
gates, is a practical requirement limit. One argues 
that 10K to 20 K gates provide suitable basic build
ing blocks for computer systems. 

Note that the distinction between discretionary and 
fixed patterns disappears in the 1 O-yearperiod. It is 
reasonable to forecast that 100 % yield will be 
achieved for this complexity in this period. This con
clusion does not invalidate the present program on 
discretionary wiring. As Fig. 23 shows, discretionary 
wiring technology will provide for the more rapid 



LARGE-SCALE INTEGRATED ELECTRONICS 83 

10
4 

V'l 
LU 

::: 
~ 
0 
LL. 
0 

~ 
co 
:E 
::> 
z 

10
3 

2 
10 1966 67 68 69 70 71 72 73 74 75 76 

YEAR 

Figure 23. Forecast of number of devices per chip-IEC 
complexity. 

development of the high-complexity lEe's that are 
vital for the industry. 

The merging of bipolar and MOS techniques does 
not invalidate our previous discussion-the 100 K 
MOS devices will be achieved in a smaller area than 
that required for the bipolar devices (Fig. 22). 

Our rather arbitrary limit of 100 K devices per 
chip does not imply a technological limit so much as 
a practical limit. The direction of digital system re
quirements, which we shall not attempt to forecast, 
could generate motivation to increase this limit 
markedly. 

Design by Computer 

At the levels of complexity that are forecasted for 
lEe's, the problem of design is a formidable one. 
For this and other reasons we can expect that com
puter-aided design will be developed. One approach 
is to use computer-aided design directly at the 
device level; that is, design lEe's by computer 
directly from device parameters. This is what the 
human does today when approaching LSI through 
device-based design. 

However, it is likely that a more useful approach 
will be to use computer design at the circuit func-

tion level. Here one defines a set of logical circuits 
such as NAND gates, shift registers, flip-flops, etc., 
and utilizes a computer to design layouts which 
minimize crossovers, area, etc. 

An important benefit of design by computer in 
terms of circuit building blocks is that it will shorten 
the reaction time of lEe manufacturers to system 
requirements. The systems manufacturer will state 
his requirements to the lEe manufacturer in terms 
of Boolean logic equations. The lEe manufacturer 
will translate these requirements to process steps in 
the factory using computer-aided design. 

Another reason for emphasizing design by com
puter is that in some cases, normal breadboarding 
techniques will not simulate sufficiently well the 
actual conditions on the silicon slice. For example, 
MOS devices, if breadboarded as discrete devices, 
would be so heavily loaded down with capacity that 
their performance would bear little relation to that 
in a monolithic structure. Subnanosecond bipolar 
transistors, if breadboarded as discrete devices, would 
have such large delays between devices as compared 
to the monolithic case, that information gained by 
breadbOarding would have little value. 

Finally, we note that back panel "patching" tech
niques are not available in highly integrated struc
tures, and so the elimination of human errors 
becomes especially important. 

Standard Products vs Flexibility 
to Customer's Requirements 

A key question of large-scale integrated elec
tronics is-To what degree will standard product 
lines of lEe's be accepted by the equipment and 
systems manufacturers, or conversely, to what degree 
will they demand custom lEe's? Before attempting 
to answer this, it is perhaps worth examining what 
has happened in integrated circuits. 

In the early days of integrated circuits considerable 
resistance was given to accepting the idea of standard 
circuits. Important custom designs have been and are 
continuing to be developed, and often these 
become the technological base for standard lines 
introduced at a later date. However, it is clear today 
that there has been far greater acceptance of stand- . 
ard lines by the industry as a whole than was 
originally predicted. 

Today one hears similar arguments. For example, 
because integration to the equipment component level 
necessarily involves the computer logic, some pro-



84 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

ponents claim that IEC's will be entirely a custom 
business. It is the author's opinion that this will not 
be the case. There certainly will be considerable 
custom design work, particularly in the early stages 
of the development of the technology. However, as 
time goes on, the author forecasts that standard 
IEC's will be developed and produced that will be 
basic building blocks of systems. Furthermore, it is 
the author's forecast that we will see an even greater 
acceptance of standard products at the IEC level of 
integration than at the Ie level of integration. 

Special Considerations for Ultra-High Speed 
(Subnanosecond) Arrays 

Designers of high-speed computers are faced with 
two fundamental problems in making computers that 
switch appreciably faster than about 5 nsec. The first 
problem is that of the transmission time between 
discrete components. Remembering that electro
magnetic signals travel 6 inches in one nsec, one 
recognizes that packing densities achievable by 
discrete devices run into phasing problems at about 
5 nsec. Multifunction circuits provide some gain 
here because of the increased packing density. How
ever, the improvement gained is marginal because 
each gate must be capable of communication with 
any other gate, at least on a single multilayered 
board. 

The second computer. design problem is also very 
fundamental: terminated transmission line structures 
of low impedance (,--..., 50 n) are needed in order to 
interconnect gates operating in the few nsec range. 
This configuration is required to prevent false reflec
tions. Devices of substantial current handling ca
pability are thus required which, in turn, limits the 
density to which circuits can be packaged together. 

Array technology provides solutions to both 
problems. By interconnecting on the slice, several 
hundred gates can be located within one inch of 
each other. Thus, phasing problems will not be 
encountered on the slice, at least for speeds in the 
range down to 0.1 nsec. For devices 10 mils apart, 
the transmission time will only be of the order of 
picoseconds. 

The second point is that the proximity of gates to 
one another (tens of mils) makes it unnecessary to 
provide low transmission line impedances between 
gates. Instead, the interconnections on the slice can 
be viewed as simple capacitors, ranging in the 1/10 
pF and less range. Thus, current drive capability for 

the active devices is reduced. This in turn allows for 
the appreciably higher packing densities required to 
minimize transmission delays. 

This subject is further developed in Ref. 4. The 
conclusion is that LSI technology will make it pos
sible to build computers which operate at decision 
switching speeds well below one nsec. 

IMPACT OF LARGE-SCALE 
INTEGRA TED ELECTRONICS 

This technology promises major impact in many 
areas of electronics. A few of these are: 

1. Lower cost data processing systems. 
2. Higher reliability processing systems. 
3. More powerful processing systems. 
4. Incorporation of software into hard

ware, with subsequent simplification of 
software. 

Pervasiveness of Electronics 

A more general, very important result has been 
discussed by Patrick E. Haggerty in his keynote 
article 9 in the Special Issue of the Proceedings of the 
IEEE on Integrated Electronics. Mr. Haggerty em
phasizes that Integrated Electronics will result in 
electronics pervading our entire social structure. 
Quoting from Mr. Haggerty's article: 

To say with Dr. Noble that electronics is a 
generic art, or for this author that electronics is 
inherently pervasive, is simply to say that the basic 
knowledge and the tools of electronics are so perti
nent to the needs of our kind of society that the 
products and services which are the result of the 
knowledge and tools have nearly unlimited useful
ness and can contribute in a major way across our 
entire social structure. 

Yet, in spite of the pertinence of the knowledge 
and tools, there have been very fundamentallimita
tions to our applying this knowledge and these 
tools as broadly as they justify and realizing the 
inherent power and full pervasiveness of elec
tronics. Some of the most harassing have been: 

1) The limitation of reliability 
2) The limitation of cost 
3) The limitation of complexity 
4) The limitation imposed by the specialized 

character of and relative sophistication of 
the science, engineering and art of elec
tronics. 

The limitations are, of course, interrelated. Cost is 
obviously affected by the need for high reliability 
and necessarily complex solutions. Conversely, the 



LARGE-SCALE INTEGRATED ELECTRONICS 85 

more complex the solution required, the greater the 
likelihood that reliability and/or cost will become 
a controlling limitation. Such solid-state devices as 
transistors and diodes have certainly led the way to 
marked improvement in reliability, but they have 
hardly eliminated complexity. The solutions we 
have achieved still have a relatively high enough 
cost to inhibit the application of electronics in 
those broad areas which we customarily describe 
as the industrial and consumer sectors of our 
economy. So far as the fourth limitation is con
cerned, electronics is indeed a sophisticated branch 
of engineering and as such it has required highly 
skilled practitioners. Yet the very sophistication 
called for inevitably limits the rate at which elec
tronics can pervade our society. For electronics to 
be truly pervasive, it must be readily and com
monly used by the mechanical engineer, the chemi
cal engineer, the civil engineer, the physicist, the 
medical doctor, the dentist, the banker, the retail 
merchant, and by the average citizen in broader 
ways than just for bringing entertainment to his 
home. Electronics cannot be truly pervasive unless 
such persons whose needs call for the powerful 
tools of electronics are capable of using them. It 
hardly seems feasible to suggest that all these 
highly skilled practitioners in other professions 
must also become skilled in the internal com
plexities of ours. The problem is considerably 
simplified, however, if the electronics skills which 
they require are limited to the comprehension and 
specification of the input and output parameters of 
the electronic functions they need. And, it is 
exactly here that integrated electronics may prove 
to remove a large percentage of these communica
tion limitations. The contributions integrated 
electronics is likely to make in removing limita
tions in the categories of reliability, cost, and 
complexity are also impressive. Indeed, because 
integrated electronics seems to have a high proba
bility of removing an appreciable percentage of the 
limitations in all four categories, I believe it may 
bring the total of these limitations to a critical 
level. Subsequently, it may initiate the terminal 
phase in which electronics contributes in truly vital 
ways to all segments of our society. 

Expanding upon the fourth limitation, large-scale 
integrated electronics, does indeed offer the promise 
of placing most of the problems associated with the 
specialized character of electronics in the hands of 
the materials technologist. The technologies described 
above should result in processed slices of semicon
ductor material; wherein the great majority of 
devices and internal connections are made by mate
rial processing. The terminals brought out of the 
packages will be functional in nature and relatively 
easy to work with. The inherently low cost and high 
reliability of Integrated Equipment Components 
should, along with the elimination of complexity and 
specialized "character of ... ," result in electronics 
pervading our entire social structure. 

Table 3. Generations of Electronics 

Limitations 
Generation Basic Product of Electronics 

First Tubes Cost 

Second Transistors Reliability 

Third Integrated Circuits Complexity 

Fourth Integrated Specialized 
Character of . . . 

Components 
Equipment 

Fourth Generation ot Electronics 

Because of the dramatic nature of large scale 
integrated electronics it seems appropriate to define 
it as the fourth generation of electronics. Table 3 
suggests that the first generation of electronics, 
namely tubes, made a major contribution because it 
was possible to manufacture them at relatively low 
cost. This opened up the radio market in the 1920's 
and 30's and was the beginning of electronics. 

The transistor can be identified as defining the 
second generation of electroni<;s. Reliability was its 
principal early contribution, with low cost soon 
following. A key aspect of the transistor is that it is 
fabricated by materials processing rather than by the 
mechanical techniques used to build vacuum tubes. 

Integrated circuits identified a third generation of 
electronics; here materials processing has been ex
panded to where complete circuits are fabricated on 
a chip of silicon. Another mechanical operation, 
namely that of connecting together discrete devices 
into circuits, has been eliminated. 

As we move into the fourth generation of elec
tronics, namely that of Integrated Equipment Com
ponents (IEC's), it is clear that a key technological 
result will be the use of materials processing in place 
of the mechanical operations of interconnecting 
thousands of circuits. This will result in IEC's which 
are easy to use and should result in electronics 
becoming truly pervasive. 

Structure ot the Electronics Industry 

Such a radical change in the technological base of 
electronics can be expected to have a dramatic im
pact on the structure of the electronics industry. 
Figure 24 shows the author's view as to what will 
happen to the electronics industry. 



86 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

FIRST 
GENERATION 

EQUIPMENT 
COMPONENTS 

EJ 
VACUUM 

TUBE 
DEVICES 

SECOND 
GENERATION 

THIRD 
GENERATION 

MECHANICAL TECHNOLOGY 

EQUIPMENT 
COMPONENTS 

CIRCUITS 

EQUIPMENT 
COMPONENTS 

FOURTH 
GENERATION 

:f\COMPONENTSd t 
f ~~~~;'~r~~;~t~ j 
III 

~ 
~ 
·11 

~ 
~ 
~ 

~! 
Figure 24. Structure of electronics industry. 

This figure forecasts that expansion of materials 
technology to the IEC level will result in the in
tegration of the device, circuit, and equipment 
businesses into a single business . . . segment. Those 
companies which will make up this business segment 
will integrate from materials up through equipment 
components. In order to do this, those companies 
must provide not only for materials technology, but 
also for device, circuit, and equipment design and 
fabrication capabilities. Because of the magnitude of 
this total problem, it seems likely that four or five 
large integrated 9 electronics suppliers will provide 
"electronic material," i.e., IEC's, IC's and devices on 
a . very broad base to a much larger applications
oriented electronics industry. 

Because of the tremendous expansion of the use 
of electronics which will result from the overcoming 
of the four limitations of electronics discussed above, 
the applications side of the electronics industry will 
expand in an unprecedented manner. While making 
ttis expansion, we forecast in Fig. 24 that much 
more emphasis will be given to the "software" as
pect of electronics by this applications-oriented indus
try. By software we do not mean simply program
ming, but rather use the term in the broad sense 

where the customers' total problem is considered 
and solved. 

The applications-oriented companies will use 
IEC's and other peripheral equipment components 
to provide a total solution to a customer's problem. 
It can be expected that this will be a very broad and 
diverse business consisting of many companies, a 
number of which are relatively small and specialize 
in a particular area of application. The materials
based integrated equipment component companies 
will relate to these applications-oriented companies 
much the same way as the chemical industry pro
vides processed chemicals to a very large applica
tions-oriented industry such as the clothing industry. 

Another possible structure of the electronics in
dustry is one that is highly integrated vertically such 
that systems houses provide their own IEC's. While 
this may happen to some degree, it is forecast that a 
very large materials-based integrated electronics 
business will still develop which supplies IEC's, IC's 
and devices on a very broad base to industry. The 
principal reason for this is the very pervasiveness 
that electronics will achieve. Compared to the very 
large number of companies which will use electronics, 
only relatively few companies will find it profitable to 
fabricate their own IEC's. Those companies whose 
internal requirements make it profitable for them to 
supply a part of their own IEC requirements will also 
depend upon the IEC suppliers for a significant part 
of their requirements. The sheer size of their needs, 
which is what makes it profitable for them to operate 
an internal facility, is also what makes it impossible 
for an internal operation to satisfy all of their needs. 

Finally, it is forecast that the IEC suppliers will 
vertically integrate in selected areas of equipments, 
systems and services. For example, the author's own 
company has interest in providing geophysical equip
ment, systems and services to the oil and related in
dustries. Such vertical integration will be a small 
fraction of the total application area of electronics. 

It is concluded that the expansion of materials 
technology to the level where Integrated Equipment 
Components are achieved on slices of semiconductor 
will result in an electronics industry consisting of two 
major segments, one based on materials technology, 
the other based on software technology. Materials 
technology will provide the technological base for a 
concentrated Integrated Electronics industry which 
will supply IEC's, IC's and devices on a very broad 
base to a much larger application-oriented electronics 



LARGE-SCALE INTEGRATED ELECTRONICS 87 

industry whose principal technology is software. 
Vertical integration will occur selectively, but will 
have no major effect on the overall division of the 
industry into these two major segments. 

ACKNOWLEDGMENTS 

The author is indebted to his colleagues at Texas 
Instruments for many stimulating discussions and 
helpful work on the subject of LSI: in particular, to 
Jay Lathrop for discussions of the overall aspect of 
the technology of LSI; to Jack Kilby for his personal 
leadership of the discretionary wiring approach to 
LSI; to Ray Warner for the forecasts and insight 
into the MOS technology. 

With respect to more general aspects of LSI, dis
cussions with Richard J. Hanschen, Cecil Dotson, 
Willis Adcock and Jack Kilby have been most help
ful. And finally, the farsighted vision of Patrick E. 
Haggerty on the pervasiveness and general impact 
of Integrated Electronics has provided stimulus to the 
author's thinking. 

REFERENCES 

1. Proc. IEEE, vol. 52, Dec. 1964, Integrated 
Electronics Issue. 

2. J. W. Lathrop, Proc. IEEE, vol. 52, pp. 1430-
43 (Dec. 1964). 

3. Richard L. Petritz, ibid, vol. 50, no. 5, pp. 
1025-38 (May 1962). 

4. --, Trans. Met. Soc. AIME, vol. 236, pp. 
235-49 (1966). 

5. Inter. Solid-State Circuits Conference, Feb. 9-
11, 1966, Philadelphia; Western Electronics Show 
and Convention, Aug. 23-26, 1966, Los Angeles. 

6. P. K. Weimer, Trans. Met. Soc. AIME, vol. 
236, pp. 250-56 (1966). 

7. H. C. Josephs, "A Figure of Merit for Digital 
Systems," Microelectronics and Reliability, vol. 4, 
pp. 345-50 (1965). 

8. J. W. Lathrop, "Discretionary Wiring Ap
proach to Large Scale Integration," Western Elec
tronics Show and Convention, Aug. 23-26, 1966, 
Los Angeles. 

9. P. E. Haggerty, "Integrated Electronics-A 
Perspective," Proc. IEEE, vol. 52, pp. 1400-5 (Dec. 
1964) . 





EFFECTS OF LARGE ARRAYS ON MACHINE ORGANIZATION 
AND HARDWARE/SOFTWARE TRADEOFFS 

L. C. Hobbs 

Hobbs Associates, Inc. 
Corona del Mar, California 

INTRODUCTION 

From the early days of electronic computers until 
the present, a period of over 20 years, electronic 
and magnetic hardware for mechanizing logical 
functions and storage in the central processor por
tion of a computer system have been extremely ex
pensive. Although these costs have been dropping 
steadily in terms of the cost per component, in
creases in the complexity and capacity of central 
processors have tended to keep pace with decreases 
in hardware costs. Hence, reductions in hardware 
costs to date have been reflected primarily in in
creased performance and capability rather than re
duced cost. However, developments presently under
way in batch-fabricated technologies will provide 
such significantly lower hardware costs in the central 
processor that it will not be possible to maintain a 
system balance from the standpoint of cost and re
liability. If properly used, large-scale integrated-cir
cuit arrays in particular will provide digital logic and 
control functions at such sharply reduced costs and 
increased reliability that the central processor will 
tend to become an almost negligible part of the sys
tem from the standpoint of both cost and reliability. 
The dominant factors in systems cost will be soft
ware and electromechanical mass storage and in
put/ output devices. 

89 

As a result of these technological advances in 
batch-fabricated hardware, the three major problems 
facing designers of future computer systems will be: 

1. The necessity of developing machine 
organization techniques that will per
mit the efficient utilization of large 
arrays to achieve their true potential in 
terms of cost, reliability, and maintain
ability. 

2. An urgent need to minimize the num
ber of electromechanical mass storage 
and input/output devices required in 
a system in order to reduce systems 
cost and increase systems reliability 
and an accompanying need for devel
oping new and improved types of such 
peripheral equipments. 

3. An equally urgent need for minimizing 
the cost of providing software, includ
ing both operating systems and user 
programs, even if this requires signifi
cant increases in the logical and stor
age hardware in the central processor. 

MACHINE ORGANIZATION IMPLICATIONS 

In considering the advantages of large arrays it 
seems apparent that the larger the array that can be 



90 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

effectively utilized the better the economics and re
liability up to the limit that can be achieved techni
cally in terms of the number of components per 
chip.l The use of very large arrays will reduce the 
initial fabrication costs and improve reliability and 
maintainability, but they will also present a serious 
problem. As the module becomes larger it becomes 
increasingly difficult to use it for more than one 
function within a single computer. Each packaged 
unit tends to become unique with only a single one 
of each type used in a given computer. Dr. R. N. 
Noyce called attention to this last year and indicated 
the anticipated progress in array size when he stat
ed: 

However, from a point on the complexity scale 
now where 50 components is the cheapest level 
for an integrated circuit, I expect to move to 1000 
by 1970 .... At the same time there will be new 
problems where it takes only 10 chips to make a 
computer and almost every circuit made will be 
different. 2 

This decreased "commonality" increases fabrication 
costs because of the low production volume of each 
type of module. It also increases the cost of the 
spares inventory, but the cost of spares usage will 
decrease as a result of significant(y higher reliability. 
In fact, the low rate of usage of spares coupled with 
the difficulty of repairing large arrays should lead to 
adoption of a "throw-away" maintenance concept 
where major portions of the computer are replaced 
but not repaired in event of failure. This will have 
significant effects on maintenance procedures and 
costs-particularly in military systems. 

The lack of flexibility in large arrays which tends 
to make each array within a system unique and the 
possible need for eliminating bad or substandard cir
cuits from the array to achieve a reasonable yield 
are two of the major problems in utilizing large ar
rays in computers. At least three different ap
proaches to fabricating large interconnected arrays 
to overcome these obstacles to their utilization are 
under consideration. The first is cellular logic in 
which large arrays of identical circuits are fabricated 
with a standard interconnection pattern (e.g., con
necting each circuit only to its four adjacent neigh
bors) with the ability to modify the function of the 
circuit by changing something in the circuit subse
quent to fabrication. 3 For example, one approach of 
this type uses a circuit with four cut-points which 
can be cut in different combinations to alter the 
function of the circuit. 

In the second approach, a large array of circuits 

is fabricated and each circuit is individually tested. 
The test results are put in a computer which is also 
storing logical equations of the function to be imple
mented. The computer then generates the proper 
interconnection pattern to interconnect available 
good elements (skipping the bad ones) to perform 
the required logical function. 4 In this approach, a 
separate mask must be prepared for each array 
fabricated; hence, this is an expensive operation 
unless cheap methods can be developed for pro
ducing interconnection masks under computer con
trol. On the other hand this approach offers a major 
advantage in that it is easy to vary the function 
performed by the array by changing the logical 
equations supplied to the computer that is controlling 
the interconnections. If each interconnection mask 
for each array is generated individually, there is little 
incentive for rigidly standardized functions. 

The third approach is advocated by those who 
believe that in the future it will be technically feasi
ble to achieve high yields of large integrated circuit 
arrays in which all circuits are good. This would 
permit a standardized interconnect pattern to be 
used for each specific logical function. This has the 
advantage that only one mask need be made for a 
particular function. This mask can then be used to 
interconnect the circuits in many arrays of that type. 
On the other hand, it is more difficult to change the 
function to be performed by the interconnected cir
cuit array since this requires making a different 
mask. 

In the future both of the last two fabrication tech
niques discussed above will probably be used. Pro
grammed control of the interconnection pattern will 
likely be used for small production volumes and 
unique or infrequently used functional modules. 
However, there is strong evidence that the semicon
ductor industry will produce large arrays with yields 
sufficiently high to permit the use of standardized 
interconnection patterns for functional modules that 
are used in large quantities. 

As semiconductor and batch-fabrication tech
nologies advance, the major physical limitation on 
the size of the functional unit will be the number of 
external leads that can be provided on a package. 
Although packages with larger numbers of leads· (in 
the order of 100) are being developed, additional 
research in machine organization is urgently needed 
to develop functional organizational concepts that 
will maximize the interconnections within a replace
able package and minimize the interconnections be-



EFFECTS OF LARGE ARRAYS 91 

tween packages. The way in which the computer is 
divided into functional modules can greatly increase 
or decrease the number of connections needed be
tween such modules. fi 

It will be necessary to use different criteria for 
design efficiency in batch-fabricated systems. in the 
past, minimizing the number of logical elements has 
been a major goal of most logical design efforts. In 
future systems, logical elements should be used 
inefficiently in order to minimize the number of in
terconnections needed between functional modules. 
For example, frequently in present computers a 
given gate or flip-flop supplies inputs to a number of 
logical elements in different parts of the machine; 
but in future systems the logical gate or flip-flop 
may be duplicated many times in different parts of 
the system to minimize the signals transferred from 
one module to another. Emphasis must be placed on 
reducing the number of packages and the number of 
interconnections between packages-even at the ex
pense of increasing the logical complexity of each 
package significantly. Perhaps an even more difficult 
problem will be motivating logical designers and sys
tems planners to use standard or predetermined 
functional modules. It is hoped that Dr. E. A. Sack's 
optimism was justified when he stated: "It is the 
author's opinion that the drastic reduction in cost 
per gate available in multi-gate arrays will overcome 
the system designer'S natural reluctance to employ 
prefabricated digital functions." 6 

In order to achieve the cost and maintenance ad
vantages offered by the use of large batch-fabricated 
arrays, it is necessary to develop machine organiza
tion and system design techniques that permit repet
itive use of packages containing very large arrays of 
circuits. One approach is to change the internal or
ganization and logical design of the large computer 
so that large functional arrays can be used repeti
tively even if this means that each array is relatively 
inefficient in terms of the utilization of circuits with
in the array.7 

Another approach is to use very small standard 
modular computers designed to be used either indi
vidually or in multicomputer systems. In this case, 
the uniqueness of large functional arrays within a 
given computer is accepted. Such a small standard 
modular computer can be fabricated with a very 
limited number of circuit arrays each of which is 
used only once within that computer. For example, 
the complete program control unit and all of its in
ternal interconnections may be fabricated in a single 

package, the complete arithmetic unit in a second 
package, the complete input/output control and 
buffering section in a third package, and storage mod
ules in additional packages containing 2000 words 
each. Economies in fabrication and spares inventory 
would be achieved as a result of the volume usage 
of each type of module made possible by the use of 
a large number of these standardized computers 
rather than by the use of a large number of identical 
packages within a single computer. When additional 
computing speed and capability is required the 
standardized computer would be used in a multi
computer configuration. 

A third approach is to develop parallel processing 
systems conceptually similar to those that have been 
discussed extensively in the literature.8 ,9 In this ap
proach, large arrays are used effectively by organiz
ing the machine on the basis of a relatively large 
number of identical processing modules. 

INPUT/OUTPUT IMBALANCE 

There are three major approaches to the 
input/ output problem: 

1. Improvements in the performance of 
present types of input/output equip
ment. 

2. Development of new types of input/ 
output equipment that are not in wide
spread use at present. 

3. System organization approaches that 
minimize the need for conventional 
input/ output equipment. 

Each of these approaches will play a part in provid
ing better balance in future systems. However, un
less much greater effort is placed upon the develop
ment of nonmechanical input; output equipment, the 
best hope for future systems probably lies in devel
oping system techniques that minimize the need for 
input; output equipment. Although a problem of 
major importance, these have been discussed pre
viously and will not be considered further here. IO 

HARDWARE/SOFTWARE TRADEOFFS 

The memory capacity of early computers was so 
limited that programming costs were not a 
significant part of the total cost-of-ownership of a 
computer system. However, reductions in hardware 
costs have been accompanied by greatly increased 
memory capacities which have permitted the storage 



92 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

and operation of larger and more complex pro
grams. The cost of hardware and the cost of engi
neering design required to efficiently use expensive 
logical components have exerted a strong pressure in 
the direction of very general-purpose computers 
which can be adapted to a large number of different 
operations so that design and production costs can 
be amortized over a relatively larger number of 
units. It has been recognized that a special-purpose 
computer can perform a particular task more 
efficiently than a general-purpose computer in terms 
of the amount of hardware required, but the cost of 
small volume production and specialized design have 
favored general-purpose computers. 

Under these circumstances, the tasks of specializ
ing the capabilities of a general-purpose computer to 
a specific job and adapting it to the control of a 
large number of different types of input/output and 
peripheral devices have been left to the programmer. 
However, the increased performance and capability 
of computers that have accompanied the reductions 
in basic hardware costs in recent years have placed 
greater and greater requirements on the program
ming necessary to adapt more sophisticated general
purpose machines to more complex operations in 
specific kinds of problems. 

While hardware costs have been decreasing, pro
gramming costs have been increasing significantly to 
the point that they now represent at least 50% of 
the initial cost of a new computer system and per
haps as much as 80% of the total systems opera
tional cost over a 10-year period. This problem is 
now magnified by new batch-fabrication tech
nologies, such as large-scale integrated circuits and 
plated-wire or thin film memories, which are expect
ed to reduce the cost of logic circuits and storage 
elements by one to two orders of magnitude. How
ever, the effect of these hardware cost reductions on 
the cost-of-ownership (initial procurement cost and 
systems operational cost over the lifetime of the sys
tem) is limited by the overwhelming software costs 
which will not be affected by these advances in 
hardware technology unless machine organization 
and system design concepts are changed. 

Fortunately, the significant reductions that are be
ing achieved in the cost of logic and storage offer an 
opportunity to also reduce the mounting cost of 
software by trading low-cost hardware for expensive 
software. Many of the functions relegated to pro
gramming in the past because of high hardware 
costs can be performed in the future by low-cost 

batch-fabricated hardware with a consequent reduc
tion in programming complexity and costs. Tech
nological changes now make it necessary to reverse 
the past practice of using additional software to 
minimize hardware requirements. In the future, ad
ditional hardware will be used to reduce program
ming requirements. This can only be achieved by 
reevaluating the criteria used for making hardware/ 
software tradeofIs in the past. 

At least three different approaches to altering pre
viously accepted hardware/software tradeoffs can be 
considered: 

1. Special-purpose computers and proces
sors. 

2. Different types of machine language 
and machine organization. 

3. Additional hardware functions in ma
chines with conventional languages and 
organizations. 

Special-Purpose Computers and Processors 

The question of special-purpose versus general
purpose computers has been argued in one way or 
another since the dawn of the computer era. The 
major arguments against special-purpose computers 
have been design costs and lack of flexibility. Spe
cial-purpose computers have been frequently fa
vored for applications where a relatively large 
number of machines have been required to do a cer
tain set of fixed tasks, but in most such cases some 
limited form of program control (e.g., paper tape, 
plug board, etc.) has been added to provide some 
flexibility. With the advent of computer-aided design 
and computer-controlled preparation of masks for 
large-scale integrated circuits much of the design 
cost obstacle is removed. In essence the question 
then becomes one of trading logical design in a spe
cial-purpose machine for programming in a general
purpose machine. In this case, the logical design will 
probably win out in terms of the number of man
hours required since the logical designer can address 
himself to the task at hand with few predesign 
boundary conditions while the programmer does not 
have a completely free hand because of the charac
teristics of the general-purpose machine he is adapt
ing to a specific problem. 

The problem of flexibility remains, but this may 
be partially overcome by a compromise in a multi
computer or multiprocessor system. A discussion of 
the many advantages of multicomputer and multi-



EFFECTS OF LARGE ARRAYS 93 

processor systems is outside the scope of this paper, 
but in many cases it is not necessary that all of the 
processors or computers in such a system be identi
cal nor that they all be general-purpose. A multi
computer or multiprocessor system is feasible in 
which some of the computers or processors are gen
eral purpose while others are special purpose, 'de
signed to perform specific tasks that are relatively 
common. For example, in a multicomputer scientific 
computation system one or more of the computers 
could be DDA's. As another example, in a multi
processor system one of the processors could be a 
logical processor, another an arithmetic processor, 
etc. It seems fairly obvious that such use of special
purpose computers or processors will reduce the 
programming requirements (as well as probably in
creasing processing speeds) and will be economi
cally feasible when the low-cost potentials of large
scale integration are realized. 

Different Types of Machine Language 
and Organization 

Present machine languages and machine organiza
tion concepts have been heavily influenced by the 
cost and capabilities of specific types of hardware in 
the past. The storage hierarchy is one example of 
this. The sequential one-address machine language is 
another. If word size were not limited by the cost of 
larger registers and storage, three-address machines 
would undoubtedly be more prevalent, particularly 
in data processing type applications. 

Machine languages have been designed to permit 
efficient implementation of the processor itself rather 
than to facilitate programming. Users on the other 
hand have developed pseudo-languages that facilitate 
programming from a human standpoint but that re
quire compiling operations that do not always utilize 
the true capabilities of the computer. On the surface 
there seems to be an advantage in using some higher 
order languages (e.g., FORTRAN or ALGOL) as 
machine languages, if hardware costs are sufficiently 
low. It will probably not be feasible to go this far, 
nor is it necessarily desirable. However, it is feasible 
and, desirable to design machine languages that will 
facilitate compiling operations and to implement 
certain parts of problem oriented languages in hard
ware. The need for better problem oriented lan
guages has been cited frequently.ll Hence, a joint 
effort by programmers and engineers to first design 
better problem-oriented languages and then to 
implement portions of them (e.g., mathematical 

operations) with hardware wherever possible should 
pay handsome dividends. 

The Burroughs B5000 with its Polish notation 
and push-down-list store represented an early step 
toward development of machine languages and or
ganizations that will facilitate compiling operations.12 

Other work in this direction includes an Air Force
sponsored study at the University of Pennsylvania 
using associative memory and list processing tech
niques. 13 With very low-cost large-scale integrated
circuit arrays just over the horizon, it should be eco
nomically feasible to implement machine languages 
that will eliminate many of the steps in present com
piling operations. 

Additional Hardware Functions in 
Conventional Machines 

It is not necessary to go as far as special-purpose 
computers or new machine languages and organiza
tion to achieve significant economies in software by 
greater, and perhaps "inefficient," use of low-cost 
hardware. Significant economies can be achieved 
within the framework of conventional machine lan
guages and organizations by: 

e Hardware implementation of special 
purpose functions and logical and 
mathematical operations. 

• Implementation of hardware features 
that minimize "red tape" and "house
keeping" programming requirements. 

• Hardware implementation of some of 
the machine functions presently handled 
by operating systems software. 

Many functions presently handled by pro
grammed subroutines can be implemented easily by 
special-purpose logic in a straightforward manner. 
Such functions include: 

Binary-to-decimal and decimal-to-binary 
conversions 

Code conversions 
Coordinate conversions 
Format control 
Table look-up operations 
Scaling 
Mathematical operations (e.g., square root, 

trigonometric functions, matrix opera
tions, etc.) 

In the past such functions have been handled by 
programmed subroutines using the machine's basic 



94 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

operations (e.g., add, multiply, shift, etc.) because 
of the cost of the hardware required to mechanize 
the functions in relation to the frequency of their 
use and because of the flexibility offered by the abil
ity to modify the routine either as it is stored or by 
index registers at the time of execution. From the 
cost standpoint, large-scale integration will make it 
feasible to mechanize such functions even when they 
are used relatively infrequently. The necessary flexi
bility can be retained by hardware mechanizations 
that permit program control of variable operations 
in such functions and still significantly reduce the 
software required. Hardware mechanization of func
tions of this type will not only reduce the program
ming effort and the storage space required for the 
program, but will also offer speed improvements 
since logical implementation of such functions is in
variably faster than the execution of the equivalent 
sequence of program steps. 

A large portion of most programs consist of "red 
tape" or "housekeeping" instructions that either are 
not conceptually necessary to the solution of the 
problem or that can be implicit to the operation per
formed rather than stated explicitly. These include 
operations such as: 

Register-to-memory or memory-to-register 
transfers 

Certain transfer-of-control operations 
Some operations on the contents of index 

registers 
Certain types of timing functions 

Additional hardware can greatly mInImIZe the 
number of operations of this type required in a pro
gram. For example, a set of general registers or a 
small high-speed control memory . can be used to 
represent multiple accumulators, index registers, and 
control registers. The availability of such multiple 
registers will sharply reduce the number of register
to-memory and memory-to-register transfers, the 
number of index modification operations, and the 
number of transfer-of-control operations required. 
There are, of course, many other examples of this 
type. A somewhat complementary concept is the use 
of large-capacity low-cost storage coupled with 
higher-speed machine operation to permit the effec
tive utilization of inefficient programs. This increases 
the size of the program in terms of the number of 
instructions involved but reduces the man hours re
quired to write a given program by removing the 
need for polishing and streamlining the program to 

make it run faster and fit into less storage 
space.ll 

The operating systems software provided with 
most computers handles three major functions: 

Input/ output control and editing 
Scheduling and storage allocation 
Interrupts and priorities 

The operating systems usually represent the most 
difficult and expensive area of systems program
ming. It has been estimated that one major com
puter manufacturer is spending $60 million this year 
for programming PLl, FORTRAN, COBOL, and 
the operating systems for a family of new computer 
systems. The operating systems probably represent 
at least one half of this cost. 

Many of the functions included in operating sys
tems software can be implemented by additional 
hardware. For example, special-purpose control log
ic and storage hardware can be provided with each 
type of input; output equipment to provide a com
pletely standard interface with the computer so that 
the programmer and the software system need not 
be concerned with the nature or characteristics of 
the particular input/output device. Special-purpose 
hardware and buffer storage can accommodate the 
differences in characteristics of tape units, disc files, 
card readers, keyboards, etc. Small associative mem
ories can be used to facilitate the cataloging and 
indexing of data files and the allocation of storage. 
Hardware can significantly reduce programming re
quirements in the servicing of interrupts and han
dling of priorities. Computer and I/O channel usage 
accounting can be facilitated by additional hard
ware. 

Most present computer systems use a multilevel 
storage hierarchy which usually requires program 
consideration of the particular level of storage being 
used and to some extent the differences in the char
acteristics of devices used for different levels. Addi
tional low-cost logic and special storage techniques 
can be used to cause this multilevel storage hier
archy to appear as a single homogeneous storage to 
the programmer, thus minimizing the need for pro
gramming attention to the capabilities and charac
teristics of the different types of storage. Many of 
the storage allocation, page turning, and memory 
protection schemes used for time-sharing, multipro
gramming, multiprocessor, and multicomputer sys
tems can be implemented by low-costhardware also. 



EFFECTS OF LARGE ARRAYS 95 

FUTURE PROGRESS 

Special-purpose computers or processors may 
evolve naturally as multicomputer and multiproces
sor systems are developed and used on an increasing 
scale. Hardware features to minimize housekeeping 
will also tend to evolve as designers find lower and 
lower cost elements and functions available to them. 
The hardware implementation of special-pur
pose functions is straightforward, but a catalog of 
present subroutines can give a clue to the functions 
to be considered for implementation. 

Present compilers and higher-order languages are a 
good starting point for considering machine lan
guages and organizations that will simplify program
ming; but, even with low-cost hardware, further re
search in programming languages is needed to 
determine a language closely related to users' prob
lem oriented languages that is still economically and 
conceptually feasible to implement as machine lan
guage. 

Much of the conceptual work necessary to imple
ment operating systems functions has already been 
done. The large and complex software operating 
systems that have been developed during the past 8 
to 10 years represent many man-years of effort in 
formalizing the necessary procedures and algo
rithms. Hence, the starting point should be a study of 
these operating systems to determine areas that meet 
three criteria-( 1) difficult or unsolved problems, 
(2) significant numbers of instructions, and (3 ) 
procedures and algorithms that are more feasible for 
mechanization by large-scale integrated circuits or 
other batch-fabricated hardware. Software functions 
meeting any of these criteria represent a promising 
area for development. Functions meeting all three 
will literally represent a gold mine of software Cust 
savings. 

J oint hardware, software, and systems design 
efforts are needed in choosing new hardware/soft
ware tradeoffs to properly utilize both the results of 
past work and the capabilities of new technology. In 
the past, hardware has been traded for software in 
order to improve speed and performance with the 
decisions made primarily on a cost/performance ba
sis. In the future, hardware will be traded for soft
ware to reduce the cost of programming with deci
sions made on the basis of total systems cost rather 
than only equipment costs. 

When transistors were first introduced there was a 
strong tendency to use them in the same way vacu-

urn tubes had been used previously. Unfortunately 
in the computer field a similar trend is in process 
now with integrated circuits being used in the same 
way that discrete semiconductors have been used in 
the past. Systems designers must consider large-scale 
integrated-circuit arrays as a new type of device that 
necessitates major revisions in systems design con
cepts, machine organization, and hardware/software 
tradeoffs. 

ACKNOWLEDGMENTS 

The author would like to express his appreciation 
and acknowledge the assistance of several people 
with whom the subject of this paper was discussed 
-particularly D. R. Ream, R. Rice, T. B. Steel, Jf., 
R. G. Tuttle, and D. F. Weinberg. Many of the ideas 
covered in this paper are an outgrowth of material 
developed during a study of "Technology Applica
tions for Tactical Data Systems," sponsored by the 
Naval Analysis Group of the Office of Naval Re
search under N ONT-4910(00). 

REFERENCES 

1. E. A. Sack, R. C. Lyman and G. Y. Chang, 
"Evolution of the Concept of a Computer ona 
Slice," Proceedings of the IEEE, vol. 52, no. 12, 
pp. 1713-20 (Dec. 1964). 

2. R. N. Noyce, San Diego Council of WEMA. 
3. R. C. Minnick, "Application of Cellular Logic 

to the Design of Monolithic Digital Systems," Mi
croelectronics and Large Systems, Spartan Books, 
Washington, D.C., 1965, pp. 225-47. 

4. J. S. Kilby, "Device Fabrication," Proceedings 
of the 1966 International Solid-State Circuits Con
ference, p. 30. 

5. R. Rice, "Systematic Procedures for Digital 
System Realization from Logic Design to Produc
tion," Proceedings of the IEEE, vol. 52, no. 12, pp. 
1691-1702 (Dec. 1964). 

6. E. A. Sack, "Complex Digital Integrated Cir
cuits: An Opportunity for the Logic Designer," Mi
croelectronics and Large Systems, Spartan Books, 
Washington, D.C., 1965, pp. 141-54. 

7. R. Rice, "Integrateds-The Predictable Effects 
on Engineering," Proceedings of the National Sym
posium on the Impact of Batch Fabrication on Fu
ture Computers, pp. 237-53. 

8. J. H. Holland, "Iterative Circuit Computers: 
Characterization and Resume of Advantages and 



96 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Disadvantages," Microelectronics and Large Sys
tems, Spartan Books, Washington, D.C., 1965, pp. 
171-78. 

9. G. A. Crane, "Economics of the DDLM, A 
Batch-Fabricatable Parallel Processor," Proceedings 
of the National Symposium on the Impact of Batch 
Fabrication on Future Computers, pp. 144-49. 

10. L. C. Hobbs, "The Impact of Hardware in 
the 1970's," Datamation, vol. 12, no. 3, (March 
1966) pp. 36-44. 

11. T. B. Steel, Jr., "Promising Avenues of Re
search and Development---,--Programming Research," 
panel discussion at 1965 FJCC. 

12. "The Descriptor, A Definition of the B5000 
Information Processing System," Burroughs Cor
poration, Detroit, Mich., 1961. 

13. H. J. Gray et aI, "Interactions of Computer 
Language and Machine Design," Technical Report 
No. RADC-TR-64-511 (AD617-616), University 
of Pennsylvania (May 1965). 



A PROSPECTUS ON INTEGRATED ELECTRONICS 
AND COMPUTER ARCHITECTURE 

Michael J. Flynn 

Northwestern University 
Evanston, Illinois 

INTRODUCTION 

In order to assess the impact of any technological 
breakthroughs on the computer user, it is first neces
sary to understand the nature of the computer user's 
problem in its present context. Indeed, it is a source 
of considerable disappointment to some that radical 
improvements in technology over the past several 
decades have resulted in noncommensurate impact 
on the user. The purpose of this paper is to examine 
the question: "What will be the impact of integrated 
circuits or integrated electronics on computer archi
tecture?" In the first part of the paper we will study 
the present picture of computing and show that, if 
no changes are made from present operating proce
dures, the impact will be small. In the second part 
of the paper, we analyze several aspects of comput
ing to find conditions which will enlarge the impact. 
The final part of the paper will list a number of 
open problems in computing for which integrated 
electronics may provide a solution. 

PRESENT STATUS 

To begin with we define the term architecture, a 
term first used in this context by F. P. Brooks, Jr. 1 

Computer architecture is the structure of the process 
that solves a user's problem. It cannot be regarded 
as simply a study of a processor itself but rather as 

97 

a disciplinary concern for the entire environment of 
the user. This process is much more than one ma
chine or one piece of apparatus. It is, in fact, a 
whole ensemble of equipment, facilities, people, 
arithmetic tools, linguistic skills, and economic con
ditions. 

In order to understand the computer user's prob
lem, we must introduce a measure of effectiveness. 
The measure I have chosen is simply cost per com
putation (for a standard problem). We are first go
ing to determine the fraction of computing cost 
represented by processor rental, and then determine 
the fraction of processor rental attributable to cir
cuitry. In any given installation computation cost is 
directly related to the annual budget. Expense items 
in a budget usually include: ( 1) equipment rental; 
(2) systems programming; (3) applications consult
ing; (4) training of users; (5) supplies, including 
paper and forms; ( 6) general overhead, building, 
etc.; (7) nonprofessional personnel, including key
punch operators, machine-room operators; and (8) 
management. Figure 1 seems to be a fairly repre
sentative picture of the budget of several computing 
centers. Even though the numbers in Fig. 1 are not 
precise, the processor costs (the area traditionally 
associated with integrated circuitry) rarely get above 
10% of the total budget. The costs described in Fig. 
1 are still frequently a small percentage of the true 
cost of the solution of a user's problem. Neglected 



98 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

PERSONNEL 

USER 

TRAINING 

~ 
Figure 1. User's costs. 

EQUIPMENT 

are the many program reruns for debugging, numeri
cal difficulties and program restructuring due to im
proved problem insight. 

Circuitry costs represent a similarly small frac
tion of the processor costs. The manufacturer's costs 
(Fig. 2) must reflect programming systems, servic
ing, maintenance, marketing costs, personnel over
head (whiCh includes support activities and manage
ment) , basic research and general overhead 
(facilities, etc.) items, as well as engineering design, 
records, maintenance, and variable manufacturing 
costs. The variable manufacturing costs include the 
circuitry, first-level packaging and assembly, second
level packaging and wiring, power supplies, frames, 
covers, cables and mechanical hardware, third-level 
assembly, and manufacturing debugging. 

The last breakdown is open to the comment that 
the manufacturer's costs are not directly related to 
the price the user pays. This further diminishes the 
percentage of computing costs represented by cir
cuitry. Thus, if circuitry costs zero, the user's cost of 
computing would not he affected noticeably. The 
basic assumption, of course, is that computing sys
tems would be built in much the same way as they 
have been. 

THE ARCHITECTURAL PROBLEM 

In order to avoid the pitfalls of the above as
sumption, we reexamine the problem. 

There .are three aspects of the architectural prob
lem: 

1. The external, man-system communica
tions problem. 

2. The internal, system-system communi
cations and processing problem. 

3. The external, problem-system inter
face problem. 

The Man-Systems Problem 

The fact that the decision-making electronic com
ponents represent only a very small fraction of the 
user cost is an indication that the interface between 
these components and the ultimate user, man, is a 
poor one or at least an inefficient one. 

The few percent of total cost represented by cir
cuitry is the cost component that actually solves the 
problem. The remaining costs allow man to com
municate with this circuitry. 

This communications interface between man and 
machine is characterized by the following aspects: 

1. Bandwidth: total amount of informa
tion provided by the machine per unit 
time. 

2. Storage. 
3. Language. 
4. Responsive interaction between man 

and machine. 

Bandwidth, per se, is not a significant problem if 
the storage, language, and responsive interaction 
problems can be solved. Presently typical problems 

VARIABLE COSTS: 

PACKAGING, 
CIRCUITRY, 

POWER SUPPLIES, 

MANUFACTUR lNG, 

DEBUGGING, 

ETC. 

MANAGEMENT 8 OVERHEAD: 

MARKETING, 

SERVICING, 

BAS IC RESEARCH, 

ETC. 

FIXED COSTS: 

ENGINEERING 8 

RECORDS 

PROGRAMM ING SYSTEMS 

Figure 2. Manufacturer's costs of a processor. 



INTEGRATED ELECTRONICS AND COMPUTER ARCHITECTURE 99 

run hundreds of pages of output. Clearly, much of 
the output is useless. The cause of the excess is that 
the human cannot interact readily with the system. 
The time lags are too great between the original 
query, the time the machine responds, and the still 
later time when the human can return to the system 
for further queries. Thus, the human demands ex
haustive amounts of output data to make up for the 
lack of interaction. 

Storage must be available on a semipermanent 
medium in such a fashion that it can be reanalyzed 
or acted on at a later, more convenient moment. 
The paper medium, presently used, has low cost, 
permanence and legibility. Its disadvantages are that 
printout is a relatively slow process and that the re
sult is not easily machine-readable. Any new inter
face must compete with its advantages as well as 
solve its problems. 

The third aspect of the problem is language. For 
various reasons, the computer as a processor does 
not work at the same linguistic level or in the same 
semantic mode that the human does. The human 
must adapt himself, therefore, to learn highly for
malized and stylized languages. This presents a bar
rier to the interface since the burden is on man. As 
pointed out in one of the other papers in this ses
sion,2 tradeoffs can be made to some degree to allow 
more ready linguistic interplay between man and the 
machine. 

Attempts to implement more responsive interac
tion between man and machine have usually taken 
the form of time-sharing systems 3,4 or "the utility 
concept." These user-shared systems are not the 
most efficient computing mechanism (due to the 
overhead of swapping storage and control between 
users). However, they do represent a higher level of 
man-system efficiency which, as we have discussed, 
is the more significant. While integrated circuitry 
may playa role in increasing the internal efficiency 
of the user-shared processor (via buffering) in this 
section we will consider the device with which man 
commun.icates: the display. The immediate access 
display is a necessary condition for the implementa
tion of a responsive system. 

The display itself has developed in phases. Early 
displays were unidirectional, acting as output-only 
rather than I/O devices. Their use was mainly for 
data compression or formatting (as in curve plot
ting). Later, semiresponsive displays were developed 
where interaction was restricted to manual keys or 
paper tape. More recently, the availability of the so-

called light-pen gives a new dimension to the inter
action, with an immediate program interrupt to fo
cus on any point of the display. In order to satisfy 
the aforementioned man-machine requirements, 
there should be another phase of development char
acterized by: 

1. Interactive Display-The continued use of the 
light-pen with refinements in electronics would be 
suitable. The major problem is the development of 
sufficiently versatile programming languages directed 
at graphic, interactive devices. 

2. Solid-State Display-The electrical mismatch 
between cathode-ray tube displays and integrated 
circuitry is an unfortunate cost impediment. A low
voltage, two-dimensional, variable-size solid-state 
display would be a major breakthru. 

3. Storage-A truly useful display should have 
facility for large quantity of storage which is ma
chine-readable and console-readable. A photo
graphic medium is an example of a low-cost, per
manent storage, suitable for such purposes as data 
reanalysis, program storage, etc. Current technology 
allows the resolution of 106 to 108 bits on a 2 X 2 
or 70mm film slide without involving mechanical 
motion. Photography can fulfill both of the basic 
functions of storage: the final (output) document, 
which needs only to be man-readable, and the inter
active, temporary results, which should be both ma
chine and man (via console) readable. 

4. Adaptability-A versatile console must be 
usable in conjunction with any standard communica
tion link (telephone, etc.)-i.e. it must be proxi
mate to the user. 

S . Cost-The overall cost should not exceed key
punch cost. It is here that integrated circuits could 
play the key role by providing complex functions at 
reasonable cost. 

Displays, available or under development, already 
exhibit some of these characteristics in varying de
grees. A display which fulfilled them completely 
would have great architectural significance. It would 
represent (from the user's viewpoint) the elimina
tion of the input/output factors, the keypunch per
sonnel, the endless program re-runs, and in general 
the wider acceptance of the computing system. 
Indeed, it would constitute an order-of-magnitude 
breakthrough for the user. 

While consoles, as above, could be associated 
with either small, private computers or large, shared 



100 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

"utility" computers, I feel that the latter will offer 
the general user a much more attractive interface. 
By interface, I mean libraries of programming sys
tems and subroutines, the availability of human con
sultants for difficult problems, and the availability 
of, or remote access to, very large data files. 

In spite of the obvious importance of the display 
area, quantitative data on relevant aspects of human 
learning with respect to the computing process are 
scarce. And while an encouraging amount of interest 
has been shown by manufacturers, too often the 
context of their interest is gimmickery, rather than 
studied usefulness. 

Systems-Systems Communications and 
Processing Problem 

Within the system, communications is an electri
cal signal processing problem and has been widely 
discussed. At least within the processor, large mono
lithic arrays will be the basic decision subunit of the 
system. Storage and I/O storage functions pose a 
difficult problem. Storage is usually regarded as a 
hierarchy in which the most immediate element, the 
main storage, has fast access with limited amounts 
of storage capabilities. Higher up on the hierarchy 
are the drum and the disk, which have substantial 
capacities, bl;lt have latencies of several milliseconds 
to access the first piece of data. Once access is 
achieved, transfer is usually made at rates substan
tially less (a factor of 10) than the main storage 
rate. This mismatch and the mismatches at higher 
hierarchical levels such as tape and I/O represent a 
key systems problem. 

While integrated circuitry holds promise for some 
implementations of main memory, it is still prohibi
tively expensive to consider as a storage hierarchy 
replacement. The only hope, it would seem to me, is 
the use of integrated circuits in conjunction with an 
inherently high-density storage medium. Develop
ments along this line would be most welcome. 

With respect to the processor and main storage, 
use of monolithic arrays has two important implica
tions: (1) Logic design must be viewed as an insu
lar problem wherein substantial amounts of circuitry 
are connected on a single chip; the criterion which 
determines the size of these logical islands is the 
number of external connections which are made to 
it. This requires that optimum use of connection 
bandwidth be made between units; otherwise, cost 
premiums will exist due to first and second level 

packages. Also, for similar speeds, the communica
tion to an external unit demands substantially more 
power than to an internal circuit decision element. 
Hence, to make most efficient use of power, the 
minimum number of external connections should be 
made. Thus one would tend to make maximum use 
of external connections or the bandwidth of the ex
ternal connections. (2) The most significant factor 
in costs is not the number of circuits per chip, or 
even by the total number of chips employed, but 
rather the number of different kinds of chips. 

Thus, the problem reduces itself to one of parti
tioning the system into a set of logical islands, each 
with a minimum number of external interconnec
tions which involve the minimum number of 
different type of islands. We will examine main stor
age, controls, data paths, arithmetic, and general 
logic design considerations as the five fundamental 
areas of the system to determine the influence of 
these constraints. 

1. Main Storage. The nature of storage is such 
that the connectivity and replication constraints are 
always satisfied. The number of input! output pins 
increase linearly with the logarithm of the number 
of bits contained on the chip. The problem of main 
memory is not these initial constraints but rather the 
economic advantage of competitively established 
technology, such as magnetic core or film, which 
have very efficient methods of interconnection and 
data storage. For integrated circuits to provide a 
valuable storage function, one must take advantage 
of the availability of its logical power. This allows 
consideration of such storage arrangements as the 
associative or content-address memory. In the asso
ciative memory, a known subportion of a data word 
is presented to the memory and inquiry is made on 
the appropriate portion of all such words contained 
in that storage. If match is detected, it is indicated, 
a:.1d the remaining (associated) information con
tained in the word is retrieved. With such memory, 
for example, sorting of data is no longer required. 
The cell structure of the associative memory is repet
itive, and with the absence of address inputs the 
cells require less interconnection than a corre
sponding array of coordinate-addressed storage. 

2. Controls. A traditional implementation of the 
control function is difficult if not impossible to du
plicate on the basis of array-replicated circuitry. 
Thus it is most natural to consider micro-program
ming for this function. Here storage plays the role of 



INTEGRATED ELECTRONICS AND COMPUTER ARCHITECTURE 101 

combinatorial and sequential decoder. The instruc
tion represents merely the address of the initial ele
ment in the sequence of gating descriptions which 
are retrieved and acted upon. The micro-program 
arrangement is much more versatile than the tradi
tional implementations. The fact that it is reload able 
makes possible rearrangements· of major portions of 
the machine and introduction of new instruction rep
ertoires. Most micro-program machines to date 
have been of the read-only variety, where changes in 
the micro-program storage is an involved task. 
There is no reason why, with availability of integrat
ed circuits, a machine could not dynamically re
structure itself by changing the contents of its micro
program storage. 

3. Data Paths. The principal functions of a data 
path are transfer of information from one subunit to 
another and provision of temporary storage at these 
entry and exit points. The data path then is a com
munications medium for logical units or subunits of 
the system. Data path circuitry may well be thought 
of as integral to the logical unit with which it is 
associated, thus insulating the unit from the outside 
environment. Further discussion on the external 
communications implications of the data paths will 
be made below. 

4. Arithmetic. Arithmetic has equipment implica
tions because it involves communications not only 
from the data paths but also across the numerical 
field of the word operated on. In selecting an algo
rithm for add, multiply, or divide, one must take care 
to maximize the efficiency of the implementation; 
for example, shifts could be accomplished on a digit 
rather than a bit basis, thus simplifying· the number 
of interconnections for multiplying. 

5. Considerations in Logical Design Using Inte
grated Circuits. As with the intra-system problems, 
the logic design problems can be divided into two 
groups: the internal problems, and the external 
problems of communication between modules: 

(a) Internal logical design. Decision ele
ments internal to a monolithic array 
have an ideal environment, with ex
cellent tracking of component values 
and power supply tolerances. Logical 
structures, such as multivalued logical 
structures, threshold logic gates, and 
specialized current summers, which 
were marginal at best in discrete im-

plementations, now become realiz
able. Respectable speeds may be 
maintained at the expenditure of 
much less power than the externally 
directed circuit. Thus the only prob
lem is to keep as many logical nodes 
as possible free from the restrictions 
of the outside environment. 

(b) External logical design. On a typical 
small card of about 25 square inches, 
fully populated with "flat packs", less 
than one per cent of the area is taken 
up by decision-making logical com
ponents; fully 99% of the area is de
voted to leads and to connections. 
Power is also a problem, but power 
is normally associated with driving 
the stray connector and line capac
ities. 

It is also interesting to note that present com
munication techniques are very inefficient. For ex
ample, it is rare that any line passes more than 50 
X 106 bits per second; whereas the capacity of that 
line exceeds 109 bits per second. This would be true 
for most terminated transmission lines. To relieve 
the communication-interconnection problems, it 
would be sufficient to serialize the data and maxi
mize the transmission rate. Of course this introduces 
complexity in the array, because now the informa
tion must be commutated; but since we have pre
sumed that the array originally had substantial 
amounts of logical decision capabilities this com
plexity would be acceptable. 

Thus we may see the partial return to the old 
serial computer where we have one input line, one 
output line operating at very high speeds, and proc
essing done within the array at lower speeds and in 
parallel. 

Problem-System Interface 

Thus far, we have discussed the potential for inte
grated electronics in the man-system relationship 
and in intrasystem optimization. There is a much 
broader level of application of integrated electron
ics: the direct problem-system implementation, with 
man eliminated as intermediary. "Closing the loop" 
has been the preserve of analog computers due to 
cost factors. Note that it is exactly in such a "people 
free" environment that the cost potential of integrat
ed electronics is maximized. But even this misses the 



102 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

singular promise of integrated electronics in the de,.; 
velopment of low-cost, versatile, high-performance 
digital transducers. This "digitizing the universe" 
(environment) is one of the truly expansive markets 
of the future. 

OPEN PROBLEMS 

Over the past decade, in device areas, logic de
sign, and systems work, we have optimized our com
ponents along several dimensions: ultrahigh-speed 
computing, minimum-cost computing, or cost-per
formance computing. I believe many of our prob
lems lie outside these broad classifications, and the 
pursuit of these open problems would provide sub
stantial "fallout," namely a much greater under
standing to the entire computing process. They 
represent overlooked dimensions of computing. In 
addition to man-machine interactive computing, pre
viously discussed, some of these areas might be: 

1. The Ultra-Reliable Computer. The problem is 
to build a computer whose failure rate is arbitrarily 
small. It is replaced rather than field-serviced. It 
should be able to operate in spite of any single fail
ure, and there should be some confidence of operat
ing over a large class of multiple failures. In order 
to take intelligent steps toward the realization of 
such a system, reexamination of many areas is re
quired: device failures, logic design techniques, cod
ing techniques, diagnostics, new concepts in 
input/ output equipment, and many others. It is 
clear that much more reliable systems can be built 
than the traditional triple-modular redundancy sys
tems; but even more significant than the resulting 
system itself would be the improved understanding 
of failure mechanisms in general. 

2. Physical Environm,ent Area. There would be 
numerous advantages in a computer which could 
operate under the most extreme environmental con
ditions and/or use the lowest possible power. Here 
again, this is a problem of more than just a device; 
it is a problem in circuit design and in logic and 
system techniques. 

3. Electronic Library. The third area is the prob
lem of the electronic library. This involves the con
struction of a very large (about 1010 bits) electronic 
storage with any bit accessible in under 10 microsec
onds. In present systems such arrangements must 
be handled, in part, by electromechanical storage 
media, and random accessing must be in· the order 
of milliseconds to seconds; thus many problems 

which have requirement for very large random 
memories (with interaction among any and all data 
in the memory) take excessively long times to be 
performed. The existence of such an electronic li
brary would present a three or four order-of-magni
tude breakthrough for these problems. To be most 
useful, such a memory should be operable in either 
the associative or coordinate address mode. 

4. The One-Chip Computer. The one-chip com
puter has been long discussed by Holland 5 and 
others. While each chip is a complete computer, its 
nature would be computationally atomic. The utility 
of the one-chip computer is in the possibility of as
sembling many chips into a vast network, the size of 
the network determining the performance of the to
tal processor. Thus, the processor may be expanded 
to suit any computational need. 

5. The Maximum Efficiency Computer. It is rec
ognized that most general-purpose computers are 
general-purpose only in the sense that they are 
equally inconvenient for all to use. It should be pos
sible to design a system whose organization is flexi
ble and versatile enough so that it might undergo a 
maximum restructuring by each user in a dynamic 
fashion. Thus, it might employ the micro-program
ming techniques previously discussed and incorpo
rate them into a versatile arrangement of data paths 
and logical subunits. The user would first describe 
the machine he would like to have work on his 
problem, and essentially load the instruction reper
toire that he desires into this microinstruction stor
age. He then performs his program on the computer 
that he has designed to be optimum for the solution 
of his problem. 

I feel that these problem areas have merit in 
themselves-as much as very-high-speed computing 
-and that they warrant the attention and interest 
normally associated with the more familiar comput
ing dimensions. They would not necessarily be the 
fastest and/or the most economical system; rather 
hopefully, they would be useful new horizons in 
computing. 

CONCLUSIONS 

We have seen that the present interface between 
man and machine is inadequate, and properly de
signed displays may provide a significant part of the 
solution. 

Within the framework of a computing system, 
integrated electronics is equivalent to monolithic 



INTEGRATED ELECTRONICS AND COMPUTER ARCHITECTURE 103 

integrated circuits. There appear to be two impor
tant considerations for the logic designer: maximiz
ing the number of decision elements per intercon
nection, and minimizing the number of different 
array types used. 

On a broader level, the more removed from the 
system man becomes, the more the potential of the 
integrated electronics can be realized. 

The message of this paper is a simple one. It is 
that integrated electronics should be much more than 
monolithic circuitry. The entire realm of physical re
sources, integrated with the systems resources we 
call computer architecture, should be directed to
ward furthering the best possible solution of the 
computer user's problems. The traditional form of 
these problems frequently masks their essential 
nature. It is only when this essential nature is under
stood that optimum technologic implementations are 
possible. 

REFERENCES 

1. G. M. Amdahl, G. A. Blaauw, and F. P. 
Brooks, Jr., "Architecture of the IBM System 
1360," IBM Journal of Research Development, vol. 
8, no. 2, pp. 87-101 (Apr. 1964). 

2. L. C. Hobbs, "Effects of Large Arrays on Ma
chine Organization and Hardware/Software Trade
offs," this volume. 

3. F. J. Corbat6 and V. A. Vysseotsky, "Intro
duction and Overview of the Multico System," Fall 
Joint Computer Conference, Vol. 27, Spartan Books, 
Washington, D.C., 1965. 

4. W. T. Comfort, "Computing System Design 
for User Service," ibid. 

5. J. H. Holland, "A Universal Computer Capa
ble of Executing an Arbitrary Number of Sub-Pro
grams Simultaneously," Eastern Joint Computer 
Conference, 1959. 





THE SYSTEM/SEMICONDUCTOR 
INTERFACE WITH COMPLEX INTEGRATED CIRCUITS 

Wendell B. Sander 

Fairchild Semiconductor, Research and Develop
ment Laboratory 

Palo Alto, California 

INTRODUCTION 

Batch-fabrication techniques in thin film, cryogen
ic and semiconductor technologies have been recog
nized for some time as potentially having a dramatic 
impact in computing systems, but the problem of 
how to translate batch-fabrication technology to ad
vanced systems has been brought home by the re
cent flurry of activity in high complexity integrated 
circuits. In the classic tradition of keeping all exist
ing computers obsolete, the emergence of orders of 
magnitude increase in device complexity comes just 
as the earliest conventional integrated circuit com
puters are available. 

In attempting to discuss the system/ semiconduc
tor interface problems with devices of over 100 
gates of logic power, it is interesting that no clear
cut single interface exists with conventional integrat
ed circuits. The decision to buy standard, design 
custom, or build-your-own is still a subject of long 
debates. 

The difference between conventional integrated 
circuits (IC's) and complex integrated circuits is 
basically in logic interconnection. Conventional IC's 
can be represented by simple logic expressions, 
(multiple NAND gates, flip-flops, etc.), whereas the 
complex circuits are some interconnection of the 
simple logic blocks (counters, shift registers, adders, 

105 

etc.). Since circuit design and logic design have 
been traditionally separated, it is fairly easy to select 
a conventional IC family and present it to the logic 
designer with the same kind of rules he had before. 
Conversely, it was a relatively easy task for the IC 
manufacturer to come up with a realistic IC family, 
since discrete circuit families of comparable com
plexity had been used for years. The circuits might 
change but the logic function required was fairly 
clear-cut. 

The problem of designing functions of more than 
a simple logic block is another problem. System 
manufacturers were faced with this problem in at
tempting to find a minimum type-count p.c. board 
set. These nearly always ended up being a card full 
of distinct logic functions with a very small amount 
of logic interconnection on the card. This problem is 
being attacked even harder now since low-cost con
ventional IC's can create severe pin limiting prob
lems on small p.c. boards. Connector and back
plane wiring costs are getting pretty tough to take. 

High complexity IC's are forcing the semiconduc
tor manufacturer into the same dilemma. He is 
finding room on the chip for lots of hardware but 
has to interconnect it to meet pin restrictions. The 
problem of the system man wanting a large variety 
of different interconnected functions for system opti
mization and the semiconductor man wanting to 



106 PROCEEDINGS--FALL JOINT COMPUTER CONFERENCE, 1966 

produce a minimum number of different things for 
production efficiency is the problem that must be 
faced. 

ARRA Y ENGINEERING APPROACHES 

In order to appreciate the system/semiconductor 
interface problem it is useful to review some ap
proaches presently being taken in complex IC's. 
Three distinguishable approaches seem to exist, each 
with advantages and disadvantages. 

Specialized Design 

The most obvious method of design for a com
plex IC is to design a circuit to perform the desired 
function. Figure 1 illustrates a decade counter chip 
and wafer designed to perform a specific function. 
In this approach the circuit and each device in the 
circuit is optimized to be the simplest possible to 
meet the desired terminal characteristics. 

This approach is great fun (and guaranteed em
ployment) for the integrated circuit designers but is 
a process man's nightmare. It is expensive to design 
and to learn to make but it ultimately is inexpensive 
to produce. It's the best way to go on a very high
volume product. It's easier to take this approach on 
MaS circuitry since MOS logic circuits are simpler 
than bipolar logic circuits. This approach will be 
used widely on standard products and on custom 
devices where volume warrants. 

Figure 1. Decade counter. 

Test and Connect 

The test and connect approach to complex IC's 
was cued by looking at a wafer like Fig. 2 where the 
black dots indicate bad devices determined by test
ing on the wafer. Why go to all the effort of cutting 
the wafer into pieces, packaging the dice, and put
ting them on an interconnecting p.c. board when 
multilayer metal can connect them on the wafer? 
This is a valid question and the interconnection can 
be performed. This approach can provide very high 
complexity with modest technology but it has some 
disadvantages. First of all, pad area must be provid
ed to perform the testing. Pads can typically amount 
to half the area of a present day conventional IC 
and would be most of the area of a small geometry 
IC. Second, at least four processing steps must be 
performed after testing which must be 100% good 
to interconnect the function. Third, the yield pattern 
is statistical therefore, the same function may have 
as many interconnect patterns as devices fabricated. 

The test and connect approach and redundancy in 
general can provide monolithic IC's of higher com
plexity than any other approach but is not necessari
ly the most economical approach if the equivalent 
function can be fabricated otherwise. One significant 
feature of this approach is that the interior gates of 
the complex IC can be thoroughly evaluated, a fea
ture that is difficult to accomplish and reduces the 
advantages of other approaches. 

With respect to the IC user this approach has 
some interesting features. Design is at the simple 
logic block level since each device is like a conven
tional IC but there is probably only one kind of 
element available. A mix of gate devices and 
flip-flop devices on the wafer is possible but life gets 
much more complicated in requiring the good de
vices to match the desired mix. Custom interconnec
tions of the gates to make custom functions is a 
minor perturbation to a system where two identical 
devices may have different interconnection patterns 
anyway. 

Cellular 

The cellular approach is illustrated by the pho
tograph of Fig. 3. Each cell has a fixed set of com
ponents but the components may be connected into 
one of several possible logic block circuits by cell 
intraconnection. In this case, the cell may be a dual 
rank flip-flop, a quad gate, etc. The cells are inter
connected on two layers. One layer of interconnec-



THE SYSTEM/SEMICONDUCTOR INTERFACE 107 

Figure 2. Mapped wafer. 

tion is shared with the cell intraconnection, thus re
quiring a total of only two layers of metal. The 
approach is analogous to a p.c. board for conven
tional IC's where any member of an IC circuit fami
ly may be placed in any of a fixed set of locations 
and interconnected by the p.c. board. 

This approach is distinguished from the test and 
connect approach in that no testing is done at the 
cell level, a selection of cell types is available and 
the interconnection pattern is fixed for a given func
tion. 

The interconnection patterns for this device were 
generated by taping exactly as would be done for a 
p.c. board. Wafers can be stockpiled presenting the 
processing man a much easier task since everything 
looks alike. 

The significant characteristics to the user are that 
he can design at the simple logic block level exactly 

as he does with a conventional IC family. Since cus
tomization is at the interconnect level with partly 
processed stockpiling permitted, the "tooling" cost 
and turn-around time for custom functions is rea
sonable. Similarly, the semiconductor manufacturer 
can use this approach to generate standard functions 
and sample them to customers without a large in
vestment. In both cases a special design can be gen
erated later if volume warrants. 

THE SYSTEM/SEMICONDUCTOR 
INTERFACE 

Within the framework of the technology described 
above, several possible divisions of effort and re
sponsibility are possible. A few of the interfaces and 
the problems associated with them are discussed 
now. 



108 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 3. Cellular array. 

Standard Products 

The simplest interface (Fig. 4) is the use of 
standard products designed and fabricated by the 
semiconductor manufacturer. It has the advantages 
of fast delivery and low per package cost. It's the 
kind of situation, that the semiconductor industry is 
best geared for today. 

The disadvantages are most severe to the large 
computer manufacturer who loses control of per
formance and who has enough volume that standard 
products may not be the lowest-cost solution. 

Testing and quality assurance problems can be 
worked out and spread over a large base of produc
tion. 

Black Box Specification Interface 

.------- ADVANTAGES 
• FAST DELIVERY 

• LOW COST PER DEVICE 

• MINIMUM INTERACTION 

DISADVANTAGES 

• DES I GN S RARELY OPT I MUM 

I N PERFORMANCE and 

NOT ALWAYS LOWEST COST 

An interface at the black box level (Fig. 5) is a 
situation with the semiconductor manufacturer act- Figure 4. Interface using standard products. 



THE SYSTEM/SEMICONDUCTOR INTERFACE 109 

\ 
\ 
L __ ~~~~~~~ ________ _ 

SYSTEM 

r----- ADVANTAGES DISADVANTAGES I 
SUBCONTRACTOR TYPE OF INTERFACE 

POOR DESIGN CONTROL 

by SYSTEM MANUFACTURER 

• CLOSE COORDINATION BETWEEN 

LOGIC and DEVICE DESIGN 

• TESTI NG AT MAJOR BLACK BOX LEVEL 

Figure 5. Interface at subsystem specification. 

ing more as a subcontractor than a component sup
plier. The system designer defines a black box 
specification for the semiconductor designer to fol
low. Logic and device design can be quite well coor
dinated but the semiconductor manufacturer must 
build up a very sophisticated design staff to cope 
with such work. 

In this situation testing can be performed at a 
major subsystem level thus significantly easing that 
problem. 

Logic Block Diagram 

One of the most intriguing interfaces is the logic 
block diagram level (Fig. 6). This interface is most 
apparent with the cellular or test and interconnect 
structures described above. The cell characteristics 
are defined much as they are today with convention
al Ie families. The system logic designers use this 
data to generate the logic block diagrams or equa
tions describing the required functions exactly as is 
presently done. The logic description is then used to 
define the chip interconnections. The loss of control 
of interconnections on the chip is not critical since 
the dimensions involved eliminate many of the usual 
reasons for desiring control of interconnections. 
With a large volume of custom logic designs the sem
iconductor manufacturer can afford design auto
mation for the mask-making. 

The primary problem with this interface is the de
sign of tests. The test sequence required for the 
complex IC's must be spelled out to the satisfaction 

of both parties. This could easily be a more difficult 
job than the design of the masks. 

Mask Design 

The final interface discussed here is for the sys
tem manufacturer to design the masks (Fig. 7) 
either in the form of a meaningful drawing or the 
physical artwork ready for reduction. This puts the 
system manufacturer in complete control of the situ
ation but makes it very difficult for the semiconduc
tor manufacturer to factor in process improvements 
or control. 

Mask design can apply at the ceIl interconnect 
level or at the circuit level although it seems more 
reasonable to stay at the cell level except possibly 
for MOS technology. 

The testing problem is very interesting because 
the system manufacturer is the only one in a posi
tion to generate the tests but the semiconductor 
manufacturer would like to verify that the test and 
design are compatible. 

CONCLUSIONS 

The most universal interface problem. is testing. 
Complete test of the function as a sequential ma
chine is impractical, in general. The device must be 
tested against possible failures 1,2 and with complex 
IC's, shorts and opens in the interconnection pattern 
are potential failures so that an intimate knowledge 
of the interconnect pattern is required to design the 
test. 

r---- ADVANTAGES 
• GOOD CONTROL of LOGIC DESIGN 

by SYSTEM MANUFACTURER 

• GOOD CONTROL of DEVICE DESIGN 

by DEVICE MANUFACTURER 

DISADVANTAGES 

• DEFINITION of TEST REQUIREMENT 

10 SATISFY EVERYONE 

is DIFFICULT 

Figure 6. Interface at logic description. 



110 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

.----ADVANTAGES ---, DI SA DVANTAGES 
• CURRENT DESIGN RULES 

• BEST CONTROL of DESIGN 
MUST BE MAINTAINED 

• SUITABLE CONTROL of ARTWORK 
QUALITY CAN BE DIFFICULT 

by SY STEM MANUFACTURER 

• WHO TESTS WHAT? 

Figure 7. Interface at mask design. 

An interesting facet of the interface is that a large 
volume of custom designs by the semiconductor 
manufacturer will justify use of computer-aids in 
logic design, mask-making and test sequence genera-

tion. This can effectively act as a service to the small 
system manufacturer who does not have the design 
volume to justify this kind of investment. 

The selection of the best interface will depend 
largely on the job to be done and the capabilities of 
the user. For jobs with low volume the standard 
product is the best approach. If the user has limited 
logic design capability, the black box level would be 
interesting. The large computer users will be more 
interested in the logic block and mask design levels. 

REFERENCES 

1. H. Y. Chang, "An Algorithm for Selecting an 
Optimum Set of Diagnostic Tests," IEEE Trans. on 
Electronic Computers, vol. EC-14, no. 5 (Oct. 
1965) . 

2. D. B. Armstrong, "On Finding a Nearly Mini
mal Set of Fault Detection Tests for Combinational 
Logic Nets," IEEE Trans. on Electronic Computers. 
vol. EC-15, no. 1 (Feb. 1966). 



A LOOK AT FUTURE COSTS OF LARGE 
INTEGRATED ARRAYS 

Robert N. Noyce 

Fairchild Camera & Instrument Corporation 
Mountain View, California 

INTRODUCTION 

Technology in integrated circuits has advanced to 
the point where we are considering integration on a 
substantially larger scale than is done today. In a 
companion paper to this one, R. L. Petritz has dis
cussed the technological basis underlying large scale 
integration. It is the purpose of this paper to briefly 
review the motivation for the electronics industry 
to proceed to higher level integration, and to discuss 
in particular the cost implications of large scale inte
gration. 

Change in the method of producing electronic 
equipment will not occur without this motivation, 
this driving force. In the past, motivation has been 
provided by: 1) improved performance; 2) im
proved reliability; or 3) improved costs. If total costs 
are considered, the third point probably covers the 
first two, although the proper assignments of costs 
are difficult to make. Petritz has pointed out the 
advantages in performance and reliability which may 
be expected as a result of large scale integration. 
Let us here attempt to look at the last motivation
cost. 

HISTORICAL COSTS 

Actual basic production costs have been, for the 
most part, the principal determinant of total costs 

111 

in the components industry. A component was de
signed, and then manufactured in such extremely 
large numbers that the amortization of design costs 
was not a major factor in the total cost. Using the 
semiconductor industry as an example of one of the 
more sophisticated components industries, where a 
relatively large investment in research, development, 
and production engineering is required, the amortiza
tion of these investments is only about 10% of the 
total cost. When an increase in these investments 
resulted in a small percentage decrease in the basic 
production costs, it netted an overall cost reduction. 
It was the probability of this cost reduction that 
spurred the changeover from discrete transistors to 
integrated circuits. 

A great deal of research, therefore, was invested 
to bring the technology to the point that practical 
yields could be achieved in integrated circuits, where 
the total labor, material, and manufacturing over
head was substantially reduced on a per device basis. 
As you know, this was done by. eliminating the ne
cessity of separating the individual components on 
the diffused wafer and individually testing and as
sembling them. Since the cost of processing an indi
vidual wafer through the diffusion process does not 
vary a great deal as a function of what is on that 
wafer, the basic production cost decreases as more 
can be packed on the wafer. 



112 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Now the industry is considering going a step 
further in integration, from integrated circuits to 
integrated arrays. Here again, production costs can 
be significantly reduced on a per circuit basis only 
by first achieving reasonable yields, then getting 
more circuits per wafer, and then reducing the total 
assembly costs. Assuming reasonable yields can be 
achieved, basic production costs could be reduced 
by virtue of more sophisticated design, probably by 
a factor of ten. Thus, there is enormous economic 
motivation to find a method of r~alizing these 
savings. 

At the same time, however, another factor has 
been pushing up total costs: the start-up costs of 
producing the integrated circuits needed by the 
industry. These costs are becoming a significant 
proportion of the total cost of supplying integrated 
circuits to the user. 

In particular, for integrated circuits designed to 
specific customer requirements, the start-up costs 
associated with making a custom circuit amount to 
approximately 30% of the total costs. This is an 
historical number from recent experience, but extra
polation of this experience leads us to conclude that 
integration on a larger scale is impossible until 
methods of reducing these critical custom start-up 
costs are found, even if we assume that the basic 
production costs are reduced to a negligibly small 
number. 

CLASSIFICATION OF TOTAL COSTS 

For the purpose of illustrating this point, let us 
divide the operating costs of a facility producing 
large arrays of integrated circuits into two classifica
tions: 

a. Basic production costs which are in
curred only once, the benefit being felt 
over all products. 

b. Custom costs which are incurred again 
each time a distinct product is made. 

This classification is not, of course, a clear dichot-
0my' but for simplification we shall assume that it is. 

a. In the category of costs which benefit 
all products, we might include: 

1. Cost of total facilities and equip
ment. 

2. Process development costs. 
3. Technology development costs. 

4. Costs of efforts aimed at reducing 
costs in Category b, such as design 
automation. 

b. The costs incurred for each product 
might include: 
1. Design of the array. 
2. Determining the specification nec

essary for a useful product. 
3. Devising a test program to assure 

that the specification is met. 
4. Tooling for this product, such as 

mask making. 
5. Certain inventory costs. 
6. Certain overhead costs. 

Passing over those basic production costs in Cate
gory a, let us consider what happens to costs in 
Category b as we go to large arrays. If we assume 
that these custom costs remain constant per array, 
even though the particular array of circuits being 
produced is many times more complex than the inte
grated circuit of today, these costs will rise in 
direct proportion to the number of different arrays 
being introduced. As mentioned above, in recent 
history, start-up costs of custom designed integrated 
circuits have amounted to 30% of the total; thus, if 
we must supply only somewhat Qver three times as 
many different arrays as we now supply circuits, 
these custom costs alone will be more than our total 
costs of supplying the customer need today. 

I have used in this example the business of sup
plying circuits to specific customer design, which you 
may consider unfair. In this case, we may look at 
the standard microcircuits as they exist today, where 
Category b costs are a lower percentage since pro
duction volume is higher. In this case, these costs 
amount to about 10% of the total costs. Thus, if the 
number of different arrays which must be furnished 
increases by a factor of ten, then again these custom 
costs alone will be equal to our total costs of sup
plying the customer today. 

Obviously, we have trouble finding economic mo
tivation for the use of large arrays if we greatly 
increase the number of arrays used and continue to 
operate in the same manner that we do today. 

HOW MANY DIFFERENT ARRAYS? 

It is well known that a logic system can be made 
up entirely of simple identical gates, and we have 
examples of computers where this has been done, 
such as the Apollo guidance computer. However, in 



FUTURE COSTS OF LARGE INTEGRATED ARRAYS 113 

digital integrated circuits, we have found it advan
tageous to go further than this and to include various 
different gates and flip-flops, for example. Most sys
tems being built today utilize from three to ten dif
ferent integrated circuits. As the level of integration 
increases, we expect that this number of distinctly 
different individual array configurations will increase 
drastically. 

Perhaps the closest example we have today of a 
system being built using large arrays is the IHAAS 
computer using MEMA (MicroElectronic Module 
Assembly) modules. In this system, six different 
integrated circuits of today's complexity are used. 
These are assembled intoMEMA's, each consisting 
of about twenty-five integrated circuits, and then en
capsulated. Over sixty distinctly different MEMA's 
are used in the system. Thus, the number of different 
components used in the system has increased by a 
factor of ten in going from the integrated circuit to 
the array of integrated circuits. If higher levels of 
integration were sought, this ratio would probably 
increase until the level of an entire subsystem were 
reached. On the basis of this example alone, we 
would expect that we would be producing ten times 
as many different arrays as we are now producing 
integrated circuits. Other systems which might use 
the same six integrated circuits at present levels of 
integration could be expected to add different arrays, 
resulting in far more than ten times as many con
figurations. 

CUSTOM ARRAYS OR STANDARD ARRAYS? 

Even with the significantly higher number of ar
rays needed and the present custom start-up costs, 
we might still have a chance of bettering today's 
costs if identical products could be furnished to large 
segments of the industry. I believe that the reaction 
to this suggestion will be similar to the reaction that 
greeted the suggestion that standardized integrated 
circuits be used. 

It has been demonstrated, of course, that identical 
integrated circuits can be used widely in the industry. 
This has allowed the potential cost savings of inte
grated circuits to be realized by the industry. It is 
clear that the economic motivation for such stand
ardization is greater now than it has been in the 
past and, therefore, the industry will surely move in 
this direction. How far the industry moves, however, 
may very well determine whether or not large arrays 
are used in significant quantity in the future. Some 

possible standard arrays can be seen today, particu
larly memories and shift registers. The appearance of 
more standard arrays seems inevitable. 

PLAYING WITH NUMBERS 

The component supplier has traditionally been 
asked to test his product extensively to assure that it 
meets a specification that guarantees its usefulness to 
the buyer. This will be possible only with some limi
tations in regard to large arrays. 

Let us assume that we have a ten-by-ten array of 
elements, each of which may assume either of two 
states. To test straightforwardly every combination in 
this array would require 2100 different tests. Even if 
testing rates could be increased to 108 tests per 
second, a complete functional test would require 1016 

years! There are ways around this, . of course, by 
breaking the array into smaller units to test. In this 
example, if ten groups of ten elements each were 
tested, an exhaustive test would require lOX 2~o 

tests, or 10,240 tests. This is possible. To do such 
testing would require that access be provided to 
intermediate points of the array, which is again quite 
possible. Functional tests of this magnitude are prac
tical with equipment now available. However, ex
haustive parameter tests of this magnitude would be 
prohibitively time-consuming. 

The difficulties of exhaustive testing will also, in 
all probability, initiate a change in the way that 
specifications for large arrays are worked out be
tween customer and supplier. Instead of being out
lined in a written document, as in the past, specifica
tions will be built into a complete test program. 
Consideration of how the large integrated array will 
be tested will be an important part of its design. 

WHAT LEVEL OF COSTS 
IS NECESSARY? 

An implied assumption has been made throughout 
this discussion that the component costs using large 
arrays must be less than the component costs using 
integrated circuits before integrated arrays become 
economic to use. This is not strictly correct, since 
some additional cost reductions will accrue to the 
systems manufacturer using large arrays. However, 
if the changeover from discrete transistors to inte
grated circuits serves as a good example, the actual 
component costs will have to be nearly comparable 
before widespread use occurs. 



114 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

The motivations other than cost, i.e., performance, 
reliability, size, and weight, will promote their use in 
special situations before the required cost level is 
met. 

HOW DO WE PROCEED? 

The primary motivation for proceeding to develop 
large scale arrays has been the promise of reducing 
the labor needed to produce that function. But we 
have seen that the straightforward extension of the 
methods for designing and producing integrated cir
cuits is economically impossible unless some stand
ardization can be achieved. If not,. the custom start
up costs for each array will be more than the total 
cost to produce it by other techniques. We come to 
this conclusion even presuming that basic production 
costs are negligibly small, and that the design costs 
for the integrated arrays will be no greater than for 
the much simpler integrated circuits of today. 

Still,. the motivation to find a way around this 
problem is great,because of the potential savings in 
basic manufacturing costs. So let us look again at 
the origin of these custom costs. 

Here we can take the solution which the systems 
designers have been using for years, and apply it to 
the component business. We have argued that stand
ardization must be achieved if arrays are to be made 
economically, and have tacitly assumed that this 
standardization must be at the complete array level. 
Attempts to do this in system design have been 
largely unsuccessful in the past. We have seen stand
ardization at the level of the basic gate, however, 
and this is certainly the clue to the solution of our 
problem. 

As a matter of fact, if we examine closely where 
the custom costs for·· a new integrated circuit family 
arise, we find that the cost of the basic gate is by far 
the highest, with the other elements following rela
tively inexpensively. Can we not standardize on the 
basic element, and let the rest of the integrated array 
be designed to the particular requirement? 

There is, of course, a great deal of design work 
beyond this level, but here the component manufac
turers can draw on much that has been accomplished 
by the equipment manufacturers. The design of 
masks for interconnecting basic gates is not much 
different than the problem of laying out printed cir
cuit boards, even though the constraints may be 
different. We expect that we will have to rely on the 
computer to do this job, just as the computer manu
facturers themselves have done. In this manner, we 
trade costs in Category b for costs in Category a. 
The complete design automation software will have 
to go much further. Starting with logic reduction, 
after determining what elements are necessary, it 
must give us a graphic output of the interconnection 
patterns, and devise a test program for assuring that 
the final product is adequate. These programs are 
well underway, and are scheduled to provide positive 
results by the time the processing technology for 
making large integrated arrays is really available. 

CONCLUSIONS 

Basic production costs, such as yield improvement, 
will be substantial for a family of large arrays. How
ever, they will be incurred only once, and can be 
amortized over the entire product line, so they will 
not be so critical. 

Custom design and test costs, on the other hand, 
are going to be very critical. These costs, occurring 
each time a new array is produced, will preclude 
widespread use of arrays until they can be drastically 
reduced. Standardization will help to reduce these 
custom start-up costs, either at the array level or, 
more likely, at the level of the basic gate. Also, 
automatic techniques for array layout, tooling, and 
testing must be perfected before arrays can be pro
duced economically in quantity. 

Only standardization, plus the development of 
automatic design capabilities, will make integrated 
arrays available in the future at a substantial cost 
reduction compared with today's integrated circuits. 



A MULTIPROGRAMMED TELEPROCESSING SYSTEM 
FOR COMPUTER TYPESETTING 

B. E. Nebel 

Los Angeles Times 
Los A ngeles, California 

INTRODUCTION 

The use of computers to hyphenate and justify 
printed material is widely accepted in the printing 
and publishing industry, as well as in institutions 
conducting research in literary analysis and photo
composition.1-4 Newspapers are among those using 
computers in the production of type cast in lead. 
The staff of the Los Angeles Times, in collaboration 
with RCA Corporation, implemented a program for 
the RCA 301 to accept typewriter by-product paper 
tape at 1,000 characters per second, to justify and 
hyphenate lineage of variable font size to newspaper 
column width, and to produce paper tape output 
used to drive automatic hot lead linecasters. This set 
of programs has been supporting typesetting produc
tion requirements of over 300,000 lines per week 
for the past three years. Additional requirements, 
both present and future, demanded that a more uni
versal use of the computer as a system with teleproc
essing capability be implemented. The three princi
ples underlying these requirements were: 

1. Immediate recovery capability for op
erational failure and hardware demise. 

2. Centralization of the computational 
function to allow remote news sources 
and printing facilities the use of the 
automatic typesetting resources. 

115 

3. Potential to expand the system allow
ing on-line graphic display terminals 
and time-sharing with large business 
applications. 

Twin IBM System 360/Model 30's were chosen 
as base processors with a suitable peripheral 
configuration to satisfy at least the first two require
ments. Expansion was considered a reasonable gam
ble when accepting the alleged upward compatibility 
of the system. The necessity of multiprogramming 
capability to service even slow-speed paper tape ter
minals, as well as the unavailability of software to 
support either these devices or a multiprogrammed 
mode of operation, was recognized and became the 
major in-house systems programming project. 

The purpose of this paper is to describe that por
tion of the typesetting system dealing with paper 
tape terminal service and multiprogramming imple
mentation, with the hope that it will demonstrate the 
feasibility of both teleprocessing and multiprogram
ming techniques for a typesetting application on a 
small computer within a basic operating system 
configuration. There is no attempt here to examine 
that portion dealing with type composition. The 
complexities of the typesetting techniques could eas
ily be the subject of another paper and are certainly 
beyond the scope of this presentation. 



116 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

SYSTEMS PROGRAMMING OBJECTIVES 

The objectives set forth during the planning 
stages of the project are: 

1. Support existing typesetting hot metal produc
tion requirements. 

2. Implement a multiprogramming system to: 
Accommodate on-line photo-composition pro

grams. 
Facilitate additions and changes of application 

programs. 
Permit multi-task processing. 
Gain maximum speed from asynchronous in

put devices. 
3. Provide telecommunication capability for: 

Remote Printing requirements. 
Economic interchangeability of typesetting 

terminal devices. 
4. Adopt methods compatible for transition to 

higher level systems. 

These may be summarized as: 

• Implement telecommunication system 
capable of expansion with growing ap
plication areas and yet of simple enough 
construction to require minimum addi
tional standards and rules to be imposed 
upon the applications programmer. 

• Implement a multiprogramming system 
utilizing as much of the distributed soft
ware as possible; making minimum 
modifications; and adhering to a phi
losophy compatible with larger systems. 

• Implement file design and job flow tech
niques which will allow load balancing 
between the twin processors when a 
channel-to-channel adaptor level is 
reached. 

When posed with a Model 30, 32K, 2 fLsec per 
byte memory hardware level, and D~sk 8K BOS su
pervisory software level, these objectives, coupled 
with the typesetting requirements, were at once am
bitious enough to arouse great interest among the 
staff and restrictive enough in scope to permit a rea
sonable design pace. * 

As a result of the stated objectives, 8K BOS con
stra'ints, and the choice of configuration, it was de
cided at the outset to restrict the supervisor 

* Core storage was later expanded to 64K, 1.5 f..Lsec per 
byte memory. 

modification to ( 1 ) augmenting the multiplexor 
channel scheduling to permit device (terminal) 
scheduling, (2) intercepting selector channel 110 in
terrupts only when pertaining to a single logical unit 
data set so as to allow relative freedom of the 
processor programs to use the existing logical I 0 CS 
for private data set definition. 

Regarding the multiprogramming requirement, it 
was decided to adopt the more primitive commuta
tor program scheduling techniques on the grounds 
that they are easier to implement than the more ad
vanced C.P.U. list methods, are more in keeping 
with the pre-load bound variable technique used by 
the 8K BOS Linkage Editor, and can be adapted t 
from existing systems.5 ,6 

SYSTEM CONFIGURATION 

Hardware 

The hardware configuration for the present sys
tem implemented at the Los Angeles Times, as illus
trated in Fig. 1, is described below. 

The "front end" teleprocessing equipment is com
posed of TTS, IBM and DuraMach type
writer-perforators operated off-line by typists trained 
in the preparation of textual material properly coded 
for the hyphenation-justification programs. The pre
pared tape (with typist identification) is transferred 
by an operator to Teletype CX Paper Tape Readers 
attached to IBM 2972 Line Control Units. The 
2972 Control Unit appears to the C.P.U. as an IBM 
1030 type device and is polled across full duplex 
telephone common carriers terminated at each end 
by Western Electric 202D Data Set modems. Each 
2972 Control Unit allows up to 18 attached devices, 
but at present with half duplex mode only two de
vices (paper tape reader and punch) are attached to 
each of seven control units. 

Interfacing with the Model 30 C.P.U. are two 
IBM 2702 Transmission Control Adaptors capable 
of transmission speeds of up to 60 cps on from 1 to 
16 lines simultaneously with 24 unique addresses 
per line. The 2702 is equipped with a two-channel 
program controlled switch making the adaptors 
accessible from either of the two C.P.U.'s. In the 
Model 30 configuration, the channel switch feature 
is used primarily for backup and recovery purposes 
in the event of C.P.U. failure. The twin Model 30's 

t The IBM 7040/7090 Direct Couple System was the 
principal basis for the adaptation. 



A TELEPROCESSING SYSTEM FOR COMPUTER TYPESETTING 117 

SYSTEM 360/30 
BACKUP CPU 

SEL SEL 
CHNL CHNL 

r-------""'1 =2 =1 

2402 2402 2402 2402 2402 

MAGNETIC TAPE UNITS 

2311 2311 

27.02 
=2 

2702 
=1 

Transmission 
Control 

Adaptors 

MULTI· 
PLEXOR 

CHANNEL 

2311 

SEL 
CHNL 

=1 

2311 

line Control 
Units 

SYSTEM 360/30 
TYPESETTING CPU 

Figure 1. Typesetting hardware configuration. 

are identical except that the backup C.P .D. has two 
selector channels and the 1401 compatibility feature. 
The backup C.P.D. normally performs business data 
processing installation functions with a peripheral 
configuration, including: a 240.4 read-while-write 
tape control unit with five 2402 9-track magnetic 
tape drives; a separate 2841 control unit with three 
attached 2311 disk drives; a 1403 printer; and a 
254o.-card read/punch. The typesetting C.P.D. has 
as local backup storage two 2311 disk drives under 
control of a 2841 Control Dnit (on one selector 
channel) again with a program controlled switch 
making it accessible from either C.P. D. 

This configuration, both from the standpoint of 
typesetting and commercial applications, is judged 
economically sound and a reasonable starter system 
configuration for the design objectives. 

Software 

Referring to Table 1, the software configuration 
may be described in terms of the program control 
and typesetting system functions as: 

1. 8K BOS (Disk) supervisor modified 
to include 2702/2972 terminal service 
with device scheduling. 

2. Typesetting system control program in
cluding multiprogram scheduling, multi
task management, disk I/O control, 
direct access methods with dynamic 
track allocation, data buffer pool man
agement, and system initialization or 
recovery processes. 

3. Telecommunication service programs 
providing message initialization, identI
fication, blocking and recovery proc
essing. 

4. Communication editing programs pro
viding message translation, routing and 
task initialization. 

5. Typesetting application programs in
cluding all hyphenation and justifica
tion capability, wire service processing, 
and production accounting processing. 



118 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Table 1. Program Control and Typesetting 
System Functions 

8K Basic Operating System 
Supervisor 

Supervisor Expansion 
for 

Teleprocessing 

Commutator 

System Control 
Resident Programs 

Task Control Table 
and 

Master Track Allocator 

Global Data Set 1/0 
Processor 

Checkpoint 
Processor 

Teleprocessing 
Terminal Service 

Processor 

Communication 
Editing Processor 

Overlay Area 

Hyphenationl Justification 
Processors 

library Maintenance and 
Retrieval Processors 

Buffer Pool 

Job Control 
System loader 
Channel Scheduler 
Physical 10CS 
Interrupt Processing 
---------------------
Multiplexor Device Scheduling 
Terminal 1/0 Control 
Input Device Polling 
Terminal Error Routines 

Multiprogram Scheduling 
Save and Restore Functions 
_~~~~_<:?~t~o~ __________ _ 

Multitask Scheduling 
Global Data Set 1/0 Queuing 
Dynamic Track Allocation 
Task Purging 
System Initialization 
_~~~~~~~~r __________ _ 
Global Data Set 1/0 Scheduling 
Interrupt Synchronization 
Priority 1/0 Functions 
---------------------
System Check Point Scheduling 

Terminal Control Block Maintenance 
line Turnaround Scheduling 
Interrupt Synchronization 
Error Recovery Routines 
---------------------
Message Translation 
Task Routing 
Message Error Detection 
Task Initialization 

Typesetting Processing 
Message Splitting 
Production Accounting 
library Retrieval and 
Take Correction Functions 

6. Library maintenance providing the 
transfer of processed "takes" to mag
netic tape backup files for historical 
and retrieval purposes. 

TAILORED CONTROL PROGRAM 
CONSIDERATIONS 

Commutator 

The commutator is assembled from a set of 
GATE macro instructions, each expanding into a 
routine providing uniquely named program exit 
points for system sharing and program deactivation. 
Register saving and restoring, and program entry 
point linkages, are provided automatically when re
quired. The macro parameter OVERLAY and 
AREA cause the generation of coding to fetch the 

program phase specified by the macro parameter 
NAME. Program execution is scheduled by constant 
polling of the commutator gates where the physical 
position in the list determines the program priority. 
If a gate is "open" control is passed to the named 
program, otherwise the polling continues sequential
ly. An accelerator switch is provided to change the 
course of the polling in case a high priority program 
requires immediate control. The activity status of 
the entire commutator is examined at the end of 
each polling operation to prevent the system from 
clocking time when all functions are complete. 
Under these conditions the wait state is entered until 
an external interrupt causes polling to begin again. 

Program Sharing 

It is incumbent upon the systems and applications 
programmer to share control of the system when 
waiting for some asynchronous event to occur or be 
completed. The programmer releases control to the 
system during a waiting period by issuing a SHARE 
macro instruction which generates the necessary 
linkage to the share exit point in his commutator 
gate routine. The housekeeping necessary for proper 
reentrance is performed by the commutator routine. 
When the task segment is complete, the programmer 
deactivates his program by issuing a DONE macro 
instruction which simply provides linkage to that ex
it point in the commutator routine which closes the 
appropriate gate. 

Data Buffering 

A common (global) buffer pool provides fixed 
length buffers arranged as a simple push-down list. 
At present the global data set is the only one availa
ble to the programmer and therefore file design must 
be made to conform to it. Efforts are now under 
way to provide the programmer with the ability to 
specify private (local) pools of variable length 
buffers allowing more freedom in handling pre-pre
pared volumes without setup requirements. 

Task Priority 

The system tasks are introduced at the 2972 ter
minals in the form of paper tape messages. Each 
message, a priori, constitutes a task which is added 
to the Task Control Table by the terminal service 
programs. Task Control Table entries are ordered 
on a first-in-first-out (FIFO) basis. Since the type-



A TELEPROCESSING SYSTEM FOR COMPUTER TYPESETTING 119 

setting applications generally do not require express 
action for one segment of work over another, there 
is presently no priority of tasks established in the 
Task Control Table structure. Each task is staged 
appropriately for the processor program which it re
quires. Consequently the stage mix at any time 
represents, and can be measured as, the contention 
factors for the system resources. The programmer 
acquires tasks by the use of the GETSK macro in 
which he specifies his own stage as a parameter. 
When a segment of work has been completed on a 
task, the programmer stages the task for another 
processor by use of the PUTSK macro and the 
OPNGTmacro which opens the appropriate com
mutator gate. 

Track Allocation 

The global data set available to all programs is 
contained on one entire 2311 disk pack volume. 
The current status of all tracks on this volume is 
maintained in a master track allocator bit table, 
where each bit represents one track. An available 
track, when required, is obtained by subjecting the 
relative position of the available bit to a simple 
transformation algorithm which produces a cylinder/ 
head address. Each Task Control Table entry con
tains track control bytes which provide the track 
identity. Tracks are allocated and returned to 
availability status dynamically under complete con
trol of the programmer. 

Overlay Areas 

The typesetting system allows permanent overlay 
areas to be defined at Linkage Edit time. Applica
tionprogram phases specify into which area they are 
to be loaded by Linkage Edit phase parameters, and 
thereafter contend for C.P.U. control according to 
the commutator priority (the relative position of the 
application program's gate in the commutator). 

8K BOS (DISK) MODIFICATIONS 

The Basic Operating System was modified in 
some fairly minor areas, with the exception of major 
additions to ,the multiplexor channel scheduler. 
These are described below and depicted in Table 2. 

lob Control was altered by the addition of a sepa
rate phase to allow the console option of calling for 
normal end of job. (SYSEOJ) processing,. the Type-

Table 2. IBM 8K BOS (Disk) Modifications 

Job control 

SYSDMP 

Multiplexor channel 
scheduler 

Selector channel 
scheduler 

Additional SVC codes 
(supervisor call) 

1052 Console job control options 
Specific program fetch control 
Program check console snapshot 

option 

Dump to disk 

Terminal control block 
Device scheduling 
Error recovery routines 
Polling of input devices 

Global data set interrupts 
synchronized with system I/O 

Terminal disabling by a system 
processor 

Separate start I/O capability for 
terminals 

setting Control System, a special SYSDMP program, 
or any other phase from the core image library if 
specified by name. The last option is used primarily 
to fetch system and communication line diagnostic 
programs. 

SYSDMP was modified to dump core to a scratch 
disk rather than to a printer. This was necessary 
since the typesetting C.P. U. does not have a printer 
attached to it when operating in the normal installa
tion environment. The pack is switched to the back
up C.P.V. for off-line printing. 

Multiplexor Channel Scheduler has undergone ex
tensive modification to allow polling of telecom
munication lines, to allow data chaining in the chan
nel command word string facilitating asynchronous 
data transfer from each terminal for buffers of any 
length, to service the I/O interrupts from telecom
munication terminals in coordination with the device 
scheduler and the buffer queuing requirements, and 
to selectively implement error recovery techniques 
on a real-time basis. 

Selector Channel scheduling is unchanged except 
that I/O interrupts pertaining to the global system 
data set are intercepted in order to perform system 
I/O synchronization. All other selector channel ac
tivity is unmolested thereby giving the programmer 
freedom to define other. direct access private data 
sets. The only restriction imposed for private data 
sets is that the WAITS typesetting system macro 
must be used instead of the logical 10CS W AITF 
macro. No . program wait loops are permitted iIi the 
system. 

Additional SVC Codes have been implemented to 
allow separate start I/O (SIO.) capability for the 



120 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

telecommunication terminals under device schedul
ing. SVC codes have also been added to permit the 
processor program to selectively stop anyone or all 
paper tape readers in the midst of transmission. The 
latter codes are required if the system approaches 
saturation. 

TELECOMMUNICATION SERVICE 
PROGRAMS 

The telecommunication terminal service programs 
formulate and maintain Terminal Control Blocks for 
all enabled devices. The Terminal Control Block 
contains current status bytes indicating device avail
ability, primary and secondary buffer pointers and 
buffer status bytes, error status on the line or device 
(sense 10 bytes), and pointers to channel control 
word (CCW) strings associated with the device. 

The telecommunication service programs main
tain constant polling of all reader devices.' When a 
reader starts transmitting data, the message is 
identified by date, line number and sequence 
number, and added as a task entry to the Task Con
trol Table staged for the terminal editing routines. 
As soon as the primary buffer is filled, data is 
chained to the secondary buffer, the primary buffer 
is transmitted to the editing routines and the pri
mary buffer becomes secondary; the secondary be
comes primary. 

When, an end of message code terminates the in
put operation, the communication line is "turned 
around" and readied for output. When a task staged 
for punch output becomes available for the line, the 
service programs generate visual identification 
header information and subsequently punches the 
hyphenated/justified text enqueued from the disk 
file. 

At termination of the punching operation the line 
is again "turned around" readied for input and poll
ing is resumed. 

SYSTEM RESIDENT FUNCTIONS 

The system control resident programs perform 
task management, global data set disk I/O queuing, 
track allocation, task purging, system initialization, 
checkpoint and processor save and restore functions. 

The meaning of a "task" to the communications 
editing programs differs from the meaning to other 
processors in that the editing program '. conSIders a 
full input buffer as a task whereas the other proces;.; 

sors consider a task as an entire message. The edit
ing routines are at any moment most likely process
ing messages from all terminals simultaneously. It is 
principally for this reason that "task local informa
tion" bytes were included in the Task Control Table 
entry as shown in Fig. 2. These bytes contain the 
track queuing information from buffer to buffer for 
each message. The other portions of the task entry 
are necessary to all processors. The date, originating 
device address, and "take" number are collectively 
termed the Task ID, carried throughout the process
ing and identified as such in the output punched vis
uals and the library directory for retrieval purposes. 
The "take" header track address points to the first 
record in the chain of queued records on the backup 
storage. The task stage number identifies the current 
stage of processing. The track control bytes specify 
the next available track for the task. The tasks are 
added (created), restaged) gotten and purged by the 
programmer by use of ADTSK, PUTSK, GETSK 
and PURGE macros. As tasks are finally staged for 
the . library or purged, the entries are in the former 
case transferred to the library directory and then 
overlayed, or in the latter case simply overlayed, to 
make room for additional entries. 

The global data, set is used by the applications 
programmer when dealing with data which is either 
being passed to him from another processor or 
which he is creating for the future use of another 
processor. This data set is defined and opened by 
the system resident disk I/O processor. The pro
grammer has access to the data set by use of the 
DSKRD and DSKWR macros and in special cases 
where a file update operation must be accelerated, 

TASK ENTRY 

Activity Track Date Device Take Task Stage Task 
Status Control Address Number Header Communication 

Bytes Record 
Address 

Bytes 

Activity Status: Indicates whether task is currently in process 

Track Control Bytes: Current Status or Track Allocation for this task 

Task 
ID 

1 
DATE: (Month/Day) Generated at task initialization from system 

communication area 

D,EVICE ADDRESS: (CHAN/UNIT) transferred from terminal control 
block at task initialization 

TAKE NUMBER: Sequential number established at task initialization 

Task Header Record Address: Track Address of take header or starting link in 
chain of records ' 

Stage Number: Processor Stage Identification 

Task Communication Byte~: Inter-processor communication area 

Figure 2. ' Task control table format. 



A TELEPROCESSING SYSTEM FOR COMPUTER TYPESETTING 121 

by the priority write DSKPW macro. The DSKRD 
macro includes a parameter for posting the comple
tion of the operation, thus serving as a "waiting" 
indicator during the course of program sharing. The 
control program maintains a separate queue for this 
data set, synchronizes the I/O operation and accel
erates the execution by maintaining a high priority 
for control of the C.P.U. 

Track allocation is accomplished through the use 
of the TRACK macro. The track control bytes in 
the task entry contain a pointer to a list of all tracks 
currently in use by that task. As tracks are allocat
ed, they are made unavailable in the master track 
allocator and recorded in the track control list. 
When the task is subsequently purged, all tracks in 
the control list are returned to the available status in 
the master track allocator. The task entry itself is 
then overlayed and all trace removed from the sys
tem. 

Whenever a task is added to the Task Control 
Table or the stage of a task is changed by means of 
the PUTSK macro (i.e., the last stage was success
fully completed), a checkpoint is taken of the Task 
Control Table, the master track allocator, task con
trol pointers and other information required for re
covery of the system. The extent of this checkpoint, 
plus a minimal restart operational procedure has 
proved atlequate in recovering system operation 
from the last checkpoint within five minutes from 
either a catastrophic C.P.U. failure which requires 
switching to the backup C.P.U. or an intermittent' 
disk error which requires only a restart procedure at 
the terminals. 

SYSTEM TASK FLOW SUMMARY 

In summary, the course of a "take" through the 
system is described below in conjunction with the 
flow presented in Fig. 3. 

The "take" information (message) immediately 
follows the 2972 device ready response to a polling 
operation. This peculiarity requires the acquisition 
of primary and secondary buffers prior to the poll
ing of each terminal (line address). The physical 
message blocks (terminated by a carriage return 
code) are concatenated by the terminal service pro
grams into a logical buffer record. A program con
trolled interrupt, caused by the first primary buffer 
of a message being filled, signals the terminal service 
programs to construct a task skeletal entry contain
ing the task ID (date, device address, take number), 

and add the entry to the Task Control Table staged 
for the Communication Editing programs. The edit
ing programs, in turn, translate the message char
acters from the originating code to EBCDIC, exam
ine the message parameters to determine future 
routing requirements, record this and any data error 
indications in the buffer control bytes, acquire a 
track (from the global data set) for the task, and 
queue the buffer record on disk. When the editing 
routines encounter an end-of-message code, an 
end-of -file condition is recorded at the end of the 
queued records and the task is staged for whichever 
application processor the edit programs decide is re
quired. In most cases the takes require the action of 
the hyphenation/justification processors; however in 
some cases the messages may only be routed to a 
terminal other than the one from which it originat
ed. The hyphenation/justification routines, when 
gaining C.P. U. control, process the input take and 
create ( add) a task containing justified text in a 
form ready to drive the typesetting device. The out
put record chain is queued to disk again as part of 
the global data set, and the created task is staged for 
the terminal service output programs. The input task 
is normally staged for processing by the library 
maintenance programs but may in some cases be 
purged from the system at this point. The terminal 
service output programs, when gaining C.P.U. con
trol, enqueue the output message, transmit it to the 
terminal specified by the routing information and, 
after disconnecting the terminal, purge the output 
task. Accounting information (line count, typist 
identification, error count, etc.) is recorded in the 
header record of the input task and processed dur
ing slack periods for accounting reports. 

CONCLUSION 

The adaptation of multiprogramming and teleproc
essing techniques to a "small scale" computer sys
tem within the bounds of a distributed basic operat
ing system was a prime objective in the Los Angeles 
Times Typesetting System project. The system has 
been operational only a short time and consequently 
no statistical system timing evaluations have been 
made. The system gross performance has so far led 
us to feel justified in attempting techniques of this 
kind even at a basic system level. It is our belief that 
the present typesetting requirements as well as those 
of the future will be met with versatility as a result 
of the high degree of programming modularity. 



122 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

MULTITASK MODE 
SYSTEM 

INTERFACE SINGLE TASK MODE 

I Asychronous I 
Terminal I/O 

I \ 
Input 

Terminal Service 

Buffer Acquisition 

Message Block 
Concatenation 

Task Initialization 

Output 
Terminal Service 

Message Enqueuing 

Visual Generation 

Communication 
Editing 

Translation 

Routing 

+---- ---, 
I 
I 
I 
L.._ 

------+ 

Task 
Relinquished 

to Terminal 
Service 

-

Data Dependencies 
Recorded 

+- -------

Message Queued 
to Global Data 

Set 

At End-~-message 
Staged for 

Required Processor 

Task Control 
'--R;ji;q~i;h;d-- + 

to System 

Figure 3. System task flow. 

Required 
Processor 

Gains Overlay 
Control 

~ ~ 

Output Task 
Created by 
Application 

Processor 

~ ~ 

Input Task 
Staged for 

library 



A TELEPROCESSING SYSTEM FOR COMPUTER TYPESETTING 123 

ACKNOWLEDGMENTS 

The author wishes to acknowledge the work of 
the following persons, without whom the project 
could never have been accomplished: Lynn Abbott, 
Los Angeles Times, wrote the typesetting hyphena
tion programs; Joyce Stevens, Los Angeles Times, 
wrote the input message editing programs; Joseph 
Maloney, IBM, wrote the telecommunication termi
nal service programs and the multiplexor channel 
additions to 8K BOS; Gil Flores, IBM, wrote the 
typesetting justification programs. 

REFERENCES 

1. Lee Ohringer, "Progress in Computerized 
Typesetting," paper presented at the 17th Annual 
Meeting of the Technical Association of the Graphic 
Arts, June 1965. 

2. M. V. Matthews and Joan E. Miller, "Com
puter Editing, Typesetting and Image Generation," 
Proceedings 1965 FlCC, vol. 27, Spartan Books, 
Washington, D.C., 1965. 

3. P. F. Santarelli, "Computer Prepared Text: A 
Real-Time/Time-Sharing Multi-Terminal Publica
tion System," Technical Report, IBM, SDD (Apr. 
1965) . 

4. M. P. Barnett, Computer Typesetting; Experi
ments and Prospects, MIT Press, Cambridge, Mass., 
1965. 

5. R. V. Bergstresser, "Tutorial on the Attached 
Support Processor Multiprocessor Operating Sys
tem," paper delivered to ASP Users Group at 
SHARE XXVI Convention, Mar. 1966. 

6. William Desmond, Real Time Data Processing 
Systems, Introductory Concepts, Prentice-Hall, 
Englewood Cliffs, N.J., 1964. 





INTEGRATED AUTOMATION IN NEWSPAPER AND 
BOOK PRODUCTION 

John H. Perry, Jr. 

Perry Publications, Inc. 
West Palm Beach, Florida 

For your background information-and so that 
you may better understand the scope of our automa
tion effort-I should like to explain that our opera
tions include the publishing of 27 newspapers and 
two magazines. 

We also operate the statewide All-Florida News 
Service. We have offices in 35 cities and employ 
some 2,000 persons. Our commercial printing covers 
the full range from simple brochures to complicated 
catalogs and encyclopedias. 

Making computer technology the very heartbeat of 
such an organization has been a gratifying experi
ence. We feel that in moving toward the era of a total 
computer system, we have contributed leadership in 
the direction which an industry afflicted with ever
rising costs eventually must go. 

Although our primary concern is with newspapers, 
unforeseen capabilities of the computer have enabled 
us to lease time for outside data processing and to 
embark on book production. So far, our computer 
equipment has been used to produce more than 
3,000 books. 

Perry Publications' use of electronic computers in 
printing and publishing began almost four years ago, 
when the Radio Corporation of America suggested 
we use a computer not only for accounting, as we 
had been doing for two years with IBM punched 
card equipment, but also for preparation of type
setting. 

125 

In those early days, there were few of us at Perry 
who had heard of such a thing as a nanosecond. But 
we have since learned. 

At Perry, we use both the offset and letterpress 
processes; and both hot metal and cold type. Our 
early expectation was that automation would enable 
greater use of less-costly cold type. The expectation 
has come true. 

To get us started, RCA set up a group of spe
cialists to analyze our problems and work with our 
staff. 

Our first computer was the RCA 301. Its primary 
purposes were bookkeeping, hyphenation and justifi
cation. 

To obtain accurate hyphenation, we programmed 
the dictionary into the system's magnetic tape unit. 
However, this slowed the operation so much that the 
computer could be used only for straight-matter com
position. To overcome this, we superimposed a logic 
system consisting of a series of phonetic tables which 
provided hyphenation. 

We then decided that installation of a second 301 
computer would be advantageous because it would 
not only add greatly to our capacity but also give us 
a back-up facility. 

With the two computers in operation, we were 
able to use one system entirely for composition. It 
provided straight-matter tape for both hot metal and 
photocomposition machines-Photon 513's which 



126 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

we had the Photon Company build so they could be 
computer-driven. 

The second 301 was-and still is-used for book
keeping and allied activities. This eliminates costly 
interruptions and reel changing under the original 
one-unit system when composition was needed. 

That pretty well establishes the background. Now 
for more recent developments and plans for the fu
ture. 

First, a Soroban Paper Tape Punch has been in
stalled to replace our former punch in the primary 
composition system. This device has a speed capa
bility of 300 characters per second as opposed to a 
maximum speed of 100 characters per second for 
the replaced punch. 

The Soroban Punch presently is giving us an effec
tive thru-put speed for all composition programs of 
180 characters per second. As time permits, some 
modifications will be made to our production pro
grams to capitalize further on the speed of the new 
punch. 

Our original plans for installing a magnetic drum 
as a storage medium for the dictionary and the vari
ous programs now in use have been changed. Instead 
of a magnetic drum, we have two Data Disc Files 
which have a storage capacity of 22,000,000 char
acters each. 

One feature of these devices is our ability to store 
in these an "Exception Word Dictionary," which is 
utilized by all composition programs. The dictionary 
is updated with all words once found to be errone
ously hyphenated. As a result, all stations serviced by 
the computer center receive equal consideration by 
providing the proper names peculiar to their particu
lar area or subject. 

The Data Disc File should not significantly affect 
the thru-put speeds of any of our composition rou
tines. 

We have not abandoned the idea of eventually in
stalling the magnetic drum as the primary storage 
medium. However, a final decision on that has been 
deferred until the anticipated delivery and installa
tion of a whole new computer generation complex, 
the RCA Spectra 70. 

Another piece of computer hardware has been in
stalled on the supporting system. It is an RCA paper 
tape reader with 1,000 characters-per-second capa
bilities and a paper tape punch with 100 characters
per-second output speed. This replaced an original 
RCA combination paper tape reader-punch which 
had a transfer rate of 60 characters per second. 

The thru-put speed of this system is approximately 
80 characters per second for all composition rou
tines. 

As for our hot metal straight-matter composition, 
modifications are made from time to time, but the 
program is basically the same as we have had in use 
since December, 1962. This program currently is 
capable of handling anyone of the 20 available fonts 
contained in the tables. Any font can be added to this 
program within a 24-hour period. 

It has been a busy time for us in the production 
of straight-matter by photocomposition, using the 
American Type Foundry Model CS. 

We have found the CS completely reliable for this 
production. Our program operates in the same man
ner and is capable of producing the same data as the 
hot metal program for anyone of the five fonts avail
able on discs. 

We have installed six of the Model CS's at our 
smaller papers. Among the appealing features of the 
CS are its small size, relatively inexpensive costs, 
ease of maintenance and its consistent 10 lines per 
minute production. 

While the CS satisfies immediate needs of our 
smaller papers, it is not capable of meeting our de
mands for high-speed computerized production in 
our larger plants. The answer to this problem ap
pears to be the Photon 713, which is capable of 35 
lines of straight-matter composition per minute. We 
have received delivery of 6 Model 713's. 

Since the Model 713 is primarily a straight-matter 
machine, it will not replace the Photon Model 513's 
also in operation. Our current program for the 513 
covers 15 different type styles and 90 special char
acters that can be delivered in anyone of 12 sizes 
ranging from 6 through 72 points in variable line 
length up to 42 picas. 

Another new development in conjunction with the 
Photon 513 is what we call a commercial disc, espe
cially designed for composition of books, magazines, 
brochures and similar matter. 

During recent months we have had a sort of three
way wedding of production facilities in our West 
Palm Beach plant. It involves the computer, the 
Photon 513 and the Perry Photo-Composer. The 
Perry Photo-Composer (Fig. 1) is an automated 
version of three manual ones we have had in use for 
several years. It is, in effect, an automatic full-page 
makeup machine. 

Like Photon 513, the Photo-Composer takes 
punched tape from one of the 301's and this tape in-



INTEGRATED AUTOMATION IN NEWSPAPER AND BOOK PRODUCTION 127 

Figure 1. Perry Photo-Composer. Developed by Perry Publications, Inc., the Photo-Composer in an automatic page makeup 
device which positions and exposes type on film and adds, phqtographically, such features as pictures, artwork and borders. 
The Photo-Composer works with reversed film and automatically projects the image to the proper position according to direc
tions supplied by paper tape codes. 

structs its own computer to position and enlarge the 
film from the 513 to complete the automatic page 
makeup. 

The machine is capable of automatically putting 
on borders, but does not add cuts and artwork. These 
two items are stripped in by artists in the quality 
control department. 

At present, two programs are in operation for 
the Photo-Composer. The first is advertising block 
copy. This block copy, consisting of any mix re
quired, can be delivered in a single exposure on the 
Photo-Composer, providing it is not greater than 30 
picas wide and four and one-half inches deep. 

The second is line copy. This line copy, consisting 
of anyone parameter, can be delivered on the Photo-

Composer for any width up to a page, and any size 
depending on the enlargement requested, up to an 
actual limit of 8 times 72, or 576 points. 

Let me give a step-by-step outline of how the 
Photo-Composer operates in producing what we feel 
are remarkable results. 

Key to the Photo-Composer's functioning is a 
marked sheet of sensing paper (Fig. 2), measuring 
81h X 14 inches. On this sensing sheet are 6,900 
small printed boxes. 

Each represents the lower righthand corner loca
tion of desired copy blocks to be called from the 
memory of the computer system by means of as
signed code numbers. 

After an ad layout is prepared, the sensing sheet is 



128 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDOOODOOOOOOOOODDOODDD 
DDDDDDDDDDDDDDDODDDDDDDDODUDODDD 
DDDDDDDDDDDDDDDDDDDDDDOODDDDDDDD 
DDDDDDDDODDDDDDDDDDDDDUDDDDDDDDD 
DDDDDDDDDDDDDDDOODDDDDOODDDODDDD 
DDDDDDDDODDDDDOODDDDODOODDDODDDD 
DDOOODOOODODOOODOOOODOOODDODOOOO 
DDDDDDDODDDDDDDDDDDODOOODDDODDDD 
DDDDDDDDDDODDDDODDDDDDODDDDODDDD 
DDDDDDDDDDDDDDDODDDDDOOOODDDDDDD 
DDDDDDDODDDDDDODDDDDDOOODDDODDDD 
DDDDDDDOODDDDDDDDDDDDOOODDDODDDD 
ODDDDDDDDDDDDDDDDDDDDDODDDDDDDDD 
DDDDDODDDDDDDDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDODDDDDDDDDDDDDDDOD 
ODDDDDDDDDDDDDDDDDDDDDDDDDDDDDOD 
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDOD 
ODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDO 

Figure 2. Portion of a mark-sensing sheet, key to opera
tion of the Perry Photo-Composer. Each complete sheet 
contains 6700 boxes and measures 8Y2 X 14 inches. 

placed on the layout and the lower righthand corner 
of each copy block is marked, with pencil, on the 
sensing sheet. 

When the marking of the sensing sheet is com
pleted, the ad copy is then typed onto a Retina Read
er typing sheet in the exact order and sequence as 
the marked sensing sheet. 

Next, both sheets are fed into an Electronic Retina 
Computing Reader (which we shall describe in de
tail later). The Retina Reader produces magnetized 
tape that is, in turn, converted to justified output pa
per tape. 

The tape for the copy then goes to the Photon, 
which turns out a negative of the desired copy. From 
there, the negative and tape produced from the 
marked sensing sheet are taken to the Perry Photo
Composer. 

The tape moves the composer bed into proper po
sition for the desired copy block which is on the 
negative. At this point, the composer pauses, photo
graphs the block and then moves on to the next po
sition. 

The Photo-Composer is of extreme value to ad
vertisers, who are able to have their predetermined 
ad style stored in computer memory and to indicate 
by parameter code on the copy block the exact for
mat desired for reproduction and publication. 

The parameter code is one of the secrets of the 
operation. This code is shown on the computer print-

out, so that all the advertiser need do is go through 
his catalog of previously used ads, select the copy 
block he wants to duplicate-and we do the rest, 
using new copy which he submits if he desires to 
change previous ad text. 

The parameter code indicates type size, line length 
and style, whether type is to be quadded right, left, 
or center; whether there is to be leading between 
lines and whether copy is justified or line-for-line. 

With the code, the adman can indicate use of all 
or just part of the copy block. 

No text assuch is stored; only the type sizes, line 
lengths, and type faces are stored. 

To date, the Photo-Composer has been used only 
for ad preparation, but now we are experimenting 
with it on newspage makeup. 

I should like to tell you in some detail of the oper
ation of the previously mentioned Electronic Retina 
Computing Reader. 

The full name of the equipment is the Electronic 
Retina Character Reader System. It is built by Rec
ognition Equipment, Inc., of Dallas, Texas. Elec
tronic Retina is the trademark of that firm. 

The Electronic Retina uses a two-dimensional 
matrix of photosensors that senses an entire moving 
character rather than a segment of it. The Retina has 
a character resolution approaching that of the hu
man eye and reads up to 2400 characters per second. 
It eliminates sweeping and timing circuits and critical 
adjustments because spatial relationships are fixed by 
the retina itself. 

One significant advantage of the Retinal concept 
over single-spot or columnar methods is that infor
mation regarding the entire character is transmitted 
simultaneously to the recognition unit in analog form. 
Other methods must store information until a com
plete character has been scanned before attempting 
to identify it, and this can be done economically 
only in digital form. Not only is some information in
evitably lost in the conversion to digital form, but it 
is limited to a simple black or white; or black, dark 
gray, light gray, or white in a four-state system. The 
Retina, on the other hand, begins identification in
stantly and can recognize an infinite range of gray 
shades; this, in effect, adds a "third dimension" to 
the character. 

Each photocell in the Retina matrix is influenced 
also by those surrounding it so that weak lines are 
emphasized and smudges eliminated. 

The Electronic Retina equipment is fully com
patible with the RCA 301 system. 



INTEGRATED AUTOMATION IN NEWSPAPER AND BOOK PRODUCTION 129 

Figure 3. Retina Reader console. 

In detail, the Electronic Retina system (Fig. 3) 
consists of: (1) a Rapid Index Page Carrier, (2) an 
Electronic Retina and Recognition Unit, (3) a Scien
tific Data System 910 Computer, and (4) two Am
pex Magnetic Tape Stations compatible with RCA. 

Hard copy is fed into the system and the char
acters are read by the Electronic Retina. This hard 
copy, prepared with special typewriters developed 
for us by Olivetti, can be editorial text matter, classi
fied advertising set solid, semidisplay, display, legals, 
accounting data, or any other alphanumeric informa
tion. 

The Electronic Retina converts the typewritten 
characters and spaces into predetermined electrical 
impulses stored on magnetic tape. The magnetic 
tape, in turn, produces justified paper tape to drive 
the linecasting machines-either hot or cold type. 

The Electronic Retina will read printed or type
written copy up to the rate of 2400 characters per 
second. That is approximately 28,000 average words 
per minute. 

The machine processes pages which vary from 3~ 
by 4'VB inches to 14 by 14 inches and in weight from 
12-pound paper to 30-pound paper at a rate of from 
10 to 30 pages per minute, depending on total infor-

mation to be read from any page. At anyone time, 
different-sized pages, within the range just given, can 
be handled intermixed so long as there is no more 
than four inches difference in length among the pages 
in the batch. 

The Electronic Retina closely resembles the func
tioning of a human eye. In fact, it was designed after 
a thorough study of the eye. It views constantly 
rather than intermittently. It senses black, white, and 
all shades of gray (Fig. 4). 

The Electronic Retina also adds a slight amount 
of "jitter" when viewing a subject-just as the hu
man eye does to smooth out the edges of rough lines. 

Overall, the Electronic Retina is capable of: 

1. 

2. 

3. 

Producing unjustified magnetic tape for 
the 301 to set all local display adver
tising, using the present 301 programs. 
Producing unjustified magnetic tape to 
set all classified display and set solid 
classified advertising, using the 301 
programs. 
Producing unjustified magnetic tape to 
handle all accounting, using the 301 
programs. 

PW NEA GIFTS 26 4-25 abcdexy tues 

Jz{{::080$110"nea l!ifts-4-2S{H}'lsimple bridal l!iftsHI}{6 

~ifts{M>a I 

{M}NEVI YORK (NEA) - Very personal l!ifftS6 i!ifts b6 for a bride 

are remembered thrOUl!h the Years. One such present that fits 

this special cateeor'l is the bridal handjrrchlef.{H}u 

{M)A crisp, white. beautifully edl!ed hand" hanky tucked within 

II sleeve or pocket of the bridal i!own is an eee-ald tradition. 

BJtsi6 But in this •• era of action with little thouJi!ht such 

an item often is foreotten.{H)u 

{H)-The 1!1ft has lastine: meanin!! primarily because it can be handed 

down throu!!h the family. AferA fA After iSA its use in the weddlni! 

ceremony, the hnakyscanA hanky can be turned into a christenin.!! 

bonnet for the first child, taken apart for the marriai!e of 

the child Years leter.{M)11 

{HlSe'ect a rich I y 'aced haritkerchief and inc I ude instruct ions 

for turnin« it from hanky to bonnlt and back in the 

packa!!e.{H)11 

{H)The makers of Nia.ara starch su.e:aest this method of makin!! 

a bonnet for babYI Select a 11- to 12-inCh handkerchief. Use 

spray st.rch and iron if cri..,. and ISA square. FaJ d hander.6 

handkerchief In hal f and told in hal f aeain so a square II quarter 

of the oriaina' size Is formed. SIiDStttch folded edl!es 

touthlr.{H)1I 

{H)Maintain a doubll thickness and aDen the square aut to form a 

point. Brine' point down 11/2 inchls alanl! stiched ed«e to form II 

trian!!le and baA tack in place. 

This forms a basic thA hat spa" shaPI. For further shapin!!, 

backsticA backstitch two 1/4-tnch darts about 2 inches lonlh 

11/2 tnches from eithlr , .. side of center back. Finish with ribbon 

rOllttl1 or baWl and narrow ribbon tlls. Sinci all is hand-stichedA 

hand-stitched, mlrely clip the thread to return hankY to orhHnal 

forll.{H)11 

Figure 4. Copy ready for the Retina. 



130 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

4. Reading and transmitting unjustified 
magnetic tape to the 301 for all text 
matter programs. 

We were able to get magnetic tape stations com
patible with the 301 tape stations. As a result, we 
are able to go from magnetic tape to magnetic tape 
through taking, by hand, magnetic tape from the 
Electronic Retina and positioning it on the 301 tape 
station by hand. 

After typed copy is read by proofreaders and edi
tors, the copy is corrected before reading by the 
Electronic Retina by using a special correction rou
tine. 

If there is anyone central point about the Elec
tronic Retina in which interest centers, it probably 
is in this matter of corrections and how they are ac
complished (Fig. 5). Since the production routine 
calls for input of typewritten copy, editorial people, 
quite naturally, wonder how the penciled editing 
changes are reconciled. On the other hand, produc
tion people are concerned about proofreader marks 
and how corrections, long the major bottleneck in 
photocomposition from the standpoint of speed and 
cost, can be made quickly and economically. 

The key to this routine is making the corrections 
before composition is accomplished. Or, rather, mak
ing the corrections before the Electronic Reader pro
vides the idiot tape for the 301. 

Here is how it works: 
Each line on each typewritten page of hard copy 

is identified by number. Editing and proofreading 
changes are marked on the hard copy before it is in
serted in the Electronic Retina. These changes and 
corrections are marked in the conventional manner 
on regular copy and, in addition, an identifying 
mark-usually numerical sequence-is made in the 
right-hand margin at the end of the affected line. 

When the editors and proofreaders complete their 
work on the copy, the original is returned to a typist 
at one of the special typewriters. 

The typist then retypes the lines, or segments of 
lines affected by the changes, using a new piece of 
copypaper as a correction sheet. The correction sheet 
then is fed into the Electronic Retina ahead of the 
original copy which is to be corrected. 

The reader stores these corrections and its coded 
instructions concerning them in its memory system. 
Then, as the regular text comes in behind the correc-

Figure 5. Computer printer and tape station. 



INTEGRATED AUTOMATION IN NEWSPAPER AND BOOK PRODUCTION 131 

tion sheet, the Electronic Retina's computer deter
mines whether there is a correction in each line. 

If there is one, the Retina wipes out the original 
copy and accepts the corrected line, or lines, insert
ing the revised material until the correction is com
pleted. Under this routine, the Retina will accept cor
rections ranging from transposition of two letters in 
a single four-letter word to insertion of dropped copy 
ranging up to an indefinite, number of lines. Then it 
returns to the regular text, accepting it without in
terruption until another corrected line is encountered. 

We spent considerable time training typists to as
sure us an ability to produce accurate typewritten 
copy for the Electronic Retina. And our program
mers labored over a long period programming the 
typewriter face-or font-from the Olivetti type
writers. 

At the same time, we have been at work on an 
advertising insertion order for national, local, classi
fied, legal and accounting. 

The insertion order contains the code number for 
accounting, production, classification, and the num
ber of the product, as well as all other insertion in
structions and other information. It also enables us 
to transmit the exact information from the advertis
ing insertion order to the actual account. If it sets 
solid classified, it sends the composition to the com
posing room, and it counts the number of lines of 
copy so that we can have the exact line count for 
makeup purposes. When the last ad is stored in the 
computer, we know exactly how much space to allot 
for the classified advertising section. 

One of the major problems confronting us before 
all our properties can make full use of the Electronic 
Retina is the matter of getting hard copy from the 
various points into the Retina at West Palm Beach. 
Several possible solutions are under study, most in
volving broadband transmission systems. 

A partial answer to this problem can be supplied 
quite simply. It involves installation of one or more 
of the special typewriters at the individual points for 
use in preparing hard copy for insertion orders, ac
counting information, editorial features and other 
such matter. The material then would be sent to 
West Palm Beach by mail. After processing, the 
justified tape needed for production at the point in
volved would be transmitted back over our Data 
Speed network, while the other material needed in 
the West Palm Beach center would be retained there. 

Now, what about the economies possible through 
use of the Retina Reader? 

I should like, in this regard, to quote Mr. Herman 
L. Philipson, Jr., president of Recognition Equip
ment, Inc. 

"The economic consideration of optical character 
recognition," he tells us, "hinges on two very im
portant factors: the cost of a keypunch stroke and 
the cost of an error." You can figure typical key
punching costs roughly as follows, he estimates: 

Monthly Cost 

Salary ........................ . 
Vacation (2 weeks/year -7 12) .... . 
Sick leave (3 weeks/year -7 12) 
Insurance, payroll taxes, pension .... 

Personnel Total ............. . 

Supervision and G&A (20 % of salary) 
Floor space .................... . 

Overhead Total ............. . 

Equipment rental ............... . 
Card stock .................... . 

$380.00 
14.62 
21.92 
53.00 

$469.54 

$ 76.00 
25.00 

$101.00 

$ 65.00 
31.50 

$ 96.50 
MONTHLY TOTAL. .. .. . . .. $667.04 

Cost per keypunch stroke formula: 

$667.04 1 month 1 hour 

month 140 hrs. * 8,000 keystrokes 

$667.04 
.06¢ per keypunch stroke 

(140) (8,000) 

This table shows the average cost to be about .06¢ 
per keypunch stroke, or 6¢ per 100 strokes with no 
verification. If you have 72 keypunch operators pro
ducing 2 million cards per month (average 40 char
acters per card), monthly keypunching costs with no 
verification are approximately $48,000 per month. 

Recognition Equipment's Electronic Retina Com
puting Reader, which leases for approximately 
$15,000 per month, is capable of processing up to 
13 million card equivalents per month in single-shift 
operation, assuming 75% operation efficiency. 

Thus it is clear that directly reading information 
with current OCR equipment offers a tremendous 
profit potential over keypunching as a data input 
method. What is less clear is the fact that, by simply 
typing this information that cannot be read directly 

* Based on 21 days per month, 6.67 hours per day. 



132 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

instead of keypunching it, the user can realize im
mediate, substantial savings while he implements di
rect-read applications that realize the true profit po
tential of optical character recognition. Consider 
what Mr. Philipson offers as typical typing costs: 

Monthly Costs 

Salary ........................ . 
Vacation (2 weeks/year -7- 12) 
Sick leave (3 weeks/year -7- 12) 
Insurance, payroll taxes, pension 

Personnel Total ............. . 
Supervision and G&A (20% of salary) 
Floor space .................... . 

Overhead Total ............. . 

Equipment rental 
Paper and ribbon 

$380.00 
14.62 
21.92 
53.00 

$469.54 
$ 76.00 

12.50 

$ 88.50 

$ 10.00 
17.00 

$ 27.00 

MONTHLY TOTAL. . . . . . . .. $585.04 

Cost per typing stroke formula: 

$585.04 

month 

1 month 

140 hrs. 

$585.04 

(140) (14,000) 

1 hour 

14,000 keystrokes * 

.03¢ per typing stroke 

This table shows the cost to be .03¢ per typing 
stroke or 3¢ per 100 strokes. To produce 2 million 
card equivalents per month (72 operators and 
$48,000 with keypunching and no verification) 
would require 40 typists. The total input cost, in
cluding rental of an Electronic Retina Computing 
Reader, would be approximately $39,000 per month. 

Probably of more significance than the cost of a 
keypunch stroke is the cost of an error or the cost 
of reentry. The cost of reentry varies from $.20 to 
$10, depending on the application. 

The Electronic Retina Computing Reader present
ly is reading with a substitution or error rate of less 
than 1 error per 100,000 characters. To achieve this 
degree of reliability with keypunching would require 
100 % verification. 

* Effective stroke rate used for comparison only. Based 
on increase in stroking speed plus reduction in number of 
strokes by eliminating the need to stroke leading zeros, 
duplicated information, etc. 

Early in 1967, we may receive delivery on the 
RCA Spectra 70 computer complex. 

Preliminary examination discloses that this hard
ware, in lieu of our present 301 's, will give us a 
capability 28 times that of the present setup. Besides 
the enormous increase in speed, error will be reduced 
because tape punching operations in present systems 
will largely be eliminated. 

The reason we are considering this elaborate, com
plex system is our belief in the necessity for a sys
tems approach to the whole problem of producing a 
newspaper. Just how costly all this eventually will 
prove, I don't believe there is any accurate way to 
figure at this time. We simply are considering it be
cause we believe it is the only correct approach to 
the subject in our particular case. 

The functions and capability of the Spectra 70 are 
not considered separately, but rather as an integral 
part of a total system. We expect the total system 
not only to do hyphenation, justification, bookkeep
ing, billing, ad composition, classified and circula
tion, but also market research. 

The Spectra 70, in basic design, is a total man
agement information system. It has the hardware, 
the software, the language, the communications, the 
total capability to meet our needs now and for years 
to come, we believe. This it can do on line and in 
real time. The Spectra 70 is a true third generation 
computer. It works on a monolithic integrated cir
cuit. With it we may even do foreign-language 
encyclopedias. 

Since Spectra 70 harmonizes with most computers, 
it will save our present programming investment and, 
we hope, eliminate costly reprogramming, retraining, 
and reinvestment. Its speed is measured in nanosec
onds; our present 301 systems operate in millionths 
of seconds. This will be an important step ahead in 
our crucial dictionary retrieval system. 

We have been working on the cold type process 
continuously since 1946 and are completely sold on 
it. The only bottleneck is the need for a higher speed 
straight-matter machine. We believe a solution is 
near, either by installation of Photon 900 with its 
150 lines-per-minute speed or an Electro Gun or 
Page Generator with speed in the neighborhood of 
a full, complete page in less than 200 seconds. 

Another vital function which the Spectra 70 can 
perform as a total management information system 
is to provide what we call a Business Profile Anal
ysis. 

We would program into the memory bank a wide 



INTEGRATED AUTOMATION IN NEWSPAPER AND BOOK PRODUCTION 133 

range of pertinent information concerning each of 
our properties. This not only would include data re
garding actual operations of the property, but sig
nificant details about the specific community and 
area, such as population, growth trends, degree of 
circulation penetration by households, employment, 
industrial expansion, degree of competition from 
other media, and so on. Current operating data will 
be combined with this basic stored-up information at 
regularly designated intervals-probably every seven 
days-and management will be provided with a de
tailed performance report far more elaborate and 
informative than conventional operating statements 
in use today. These reports not only would indicate 
trouble areas immediately after they develop, but 
would show trends and indications to enable man
agement to head off trouble before it develops. 

In more conventional typesetting operations, the 
computers' function is this: Copy is keyboarded on 
TTS machines producing six-channel tape at the rate 
of 800 newspaper lines per hour. 

Punched either at the West Palm Beach plant or 
at any of the 25 outlying plants in our group, this 
unjustified tape is sent to the main plant via high
speed Data Speed (telephone) relaying lines. 

In West Palm Beach it is justified and hyphenated 
by the 30 1 logic system, with the exception word 
dictionary, and returned via the Data Speed lines. 

Each Perry plant has its own composing and press 
equipment. 

And so, as you can see, we at Perry have been 
caught up in a quick-paced march of progress to
ward better, faster, more profitable operations for 
ourselves and improved services and products for 
our customers. 

An increasingly major part of our business is the 
audio-visual field. 

Not long ago, a major university was encounter
ing trouble with an audio-visual book. This book 
contains listings of films that most major colleges 
have in their libraries. It needed to be referenced 
into two sections in two different manners: first, the 
alphabetical listing of the films and, secondly, listings 
according to subject. 

The biggest problem was that in order to produce 
a film catalog, the film director or the school needed 
to create for the printer both an alphabetical listing 
in the front section as manuscript, and then to sort 
down all these films and place them in a subject
heading file for the printer. This was laborious, time
consuming and, in most cases, conducive to error. 

The university usually spends about six months pro
ducing a supplement to the master catalog. By the 
Perry method, we produce the catalog in two weeks 
after receipt of manuscript. 

As an input, the computer uses from the university 
a card into which all the information is typed into 
specially prepared blocks. These cards, after receipt 
at the Perry organization, are typed onto Olivetti 
sheets. These typed sheets are fed into the Retina 
Reader and stored on magnetic tape. The magnetic 
tapes are then placed on the computer. 

The magnetic tapes are read through the computer 
producing a computer printout. This print is sent as 
a sheet to be read and corrected by the school, which 
runs down to film listings, checks our copy, and re
turns a proofread computer printout. This then is 
turned over to the typist, who makes any corrections, 
deletions or additions. At that point these are fed 
onto a magnetic tape, which at a later stage is merged 
with the original tape, making a third or corrected 
magnetic tape. 

During the whole process the keynote is that we 
are only printing out memory we have, not setting 
type, or pulling proof, or in any way going into the 
preparation of typesetting. 

When the printouts have been approved for type
setting, at that moment the button is pushed, and we 
begin to spew out justified paper tape sorted into 
alphabetical order or numerical order as the school 
requires-and this tape then is ready automatically 
to run photo typesetting machines to produce the 
film listings in alphabetical sections. 

The computer program not only drives out this 
tape but also paginates while delivering the paper 
tape. Thus when the photo composition comes off 
the machine, it is paginated and need only be applied 
to the grid sheets for the artist rather than be cut up 
and pasted. Time is saved, plus· the fact that many 
persons can work on the unit at once-rather than 
have one worker paste and cut. 

The second section, or the subject heading index, 
in the computer program will go back into the origi
nal input and find in a particular coded field all the 
subject indexes in which that particular film applies, 
creating a section in alphabetical order. It will take 
these films and place them in order, listing the film 
titles. This film may appear in more than one cate
gory in several locations. Once this has been done by 
the computer, another tape is dumped and delivered 
to the Photon which created the subject-heading in
dex. 



134 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

In the event the school wants subsidiary report 
checks, these can be made. As an example, if a 
school wants to find out how many films by a certain 
producer are currently in the school film library, the 
computer goes down this magnetic tape and picks 
them off. Or if a particular division of the university 
wants a list of all films that run less than 15 min
utes-this can be obtained. Or if a school of science 
or of engineering so desires, we can pick out of the 
master listing a special supplement pertaining only 
to that school. There is no costly manuscript by the 
school; there is no manuscript submitted for the sub
jecting indexes. 

Schools for which we have done work include the 
University of Michigan, Michigan State, Wayne State 
University, the Dade County School system in Mi
ami, and Florida State University. In some cases, 
input preparation time and the cost of clerical help 
have been reduced 30 to 40%. 

Big savings occur the second year, when new 
manuscript need not be submitted, but only changes 
and deletions to the existing catalog or the stored 
magnetic tape. Thus as the year progresses, the 
school simply keeps up with new film by filling out 
a card and dropping it into a box. At the end of the 
period, the cards are collected and shipped to us. We 
need not even reread what is on tape as it is cor
rected. Thus a laborious proofreading task and 
chances of error are eliminated. These new cards are 
put in separately and a special printout for the 
school's checking comes out. 

Assuming there are changes in 10% of the final 
listings, or 4000 film titles, the time needed to get 
the first justified tape is only a matter of hours. 
Pages start going back to the university the first 
week. With regular typesetting methods, the usual 
time period is six months or more. 

Due to publicity we have received on this audio
visual system based on magnetic tape, many cata
loging firms have contacted us to work with them on 
a method of creating catalogs from year to year by 
storing past material that has not been changed, thus 
saving typesetting, storage of metal and the usual 
fumbling at the last minute for a complete catalog 
ready for the printer. Some of the firms are large and 
we have done pioneer work for them, in either de
velopmental activities or on actual jobs, so that they 
can benefit from the Olivetti typewriter and Retina 
Reader. 

The automated approach is particularly interesting 
to one automobile manufacturer who produces a 

reference manual and a repair manual. In the past, 
they had to farm this job out to five different type
setters. 

The problem was that if the typesetter who had 
chapters 1 through 10 fell behind, this held up com
plete collection of the chapters. Much time was 
spent by company personnel to check the printers at 
their various stages. Checks had to be made on 
quality, compatibility of type facings, corrections, 
etc. This was quite a problem. 

In our case, we are able to mass many machines 
under one organization and produce photocomposi
tion rapidly-using instant retrieval of programs in 
memory storage. Weare now in the process of 
creating a large general-purpose catalog program 
that would encompass almost every aspect of catalog
ing. In six months to a year this master catalog 
program will be ready to take on almost any style 
or collection in retrieval, or catalogs in general. 
Currently we are limited to the audio-visual program, 
which enables us to use up to eight available blocks 
for storage and retrieval plus a ninth block for 
corrections. 

So far as the newspapers' future is concerned, we 
hope one day to use the computer to evaluate and 
qualify news in order to provide the editorial content 
of the papers with proper balance. 

An editor can quickly review a news story from 
the printed copy and assign each story a category, 
which would be encoded for future computer use. 

Additions or corrections could also be encoded; 
and because a computer can digest and arrange 12 
hours of normal copy in roughly 15 minutes, the 
editor is freed of the humdrum of sorting his own 
news. 

All original news stories would be translated from 
the paper tape on to a magnetic tape, which would 
then act as a memory. A second tape would be pre
pared, listing all corrections, additions and deletions. 

Each news item would be prefaced by a category 
number and a priority rating. A third tape is then 
prepared, carrying the editor's instructions. This tape 
contains the news balance formula the editor is us
ing as well as the size of the "news hole." 

Inside the computer, all news could be assigned to 
categories, such as: government and politics; war, 
defense, diplomacy; economics, business and travel; 
crime; public moral problems; health and welfare; 
accidents and disasters; science and invention; educa-



INTEGRATED AUTOMATION IN NEWSPAPER AND BOOK PRODUCTION 135 

tion, classic arts, religion; popular amusements; mass 
media; and general human interest. 

After determination of the size of the "news holes," 
the emphasis for each category and allowable length 
for each story, here's what would happen: 

1. Category percentages would be multi
plied by the news hole figure to deter
mine desired lines per category. 

2. Memory tapes containing all available 
news would be searched, lines counted 
and stories selected. 

3. Desired lines per category would be 
revised to reflect surplus or deficiency. 

4. Desired lines per story would be set 
according to editing formula and story 
priority. 

5 . Available story line would be matched 
with desired amounts. 

6. Results would be revised to' reflect 
surplus or deficiency in any particular 
category. 

7. Highspeed printer would produce copy 
arranged according to categories with 
each line one news column in width. 

One advantage of such use of the computer would 
be to fortify the newspaper against charges of being 
unfair. Most everyone at some time has felt the 
value content of a news item was unbalanced-and 
frequently this has been so. We except the com
puter could prevent any such future injustice. 

As for use of the computer in market research, 
there is interest on the part of advertising agencies. 
Most major agencies want a tremendous amount of 
detailed information to back up dollar expenditures 
and, in fact, a number offered to set up a computer 
center which would, in cooperation with member 
newspapers of the American Newspaper Publishers 
Association, establish a National Central Advertising 
Plan. 

The central office machine headquarters would be 
connected with all agencies and all newspaper mem
bers. All information concerning the newspapers 
would be fed to the machines, which would process 
the data for use by the agencies. The agencies would 
send orders to this central office as well as requests 
for information. The central office would, in turn, 
send orders to the newspapers and do billing for the 
newspapers. 

It is possible the office also would send checks to 
the newspapers on a weekly basis. 

The agencies could in reality depend on this central 
office for virtually everything except creative work. 
We should capitalize on the electronic marvels em
bodied in the computer complex, not only to enable 
us to achieve greater profits but to render greater 
service to our subscribers. 

The functions of a newspaper are many: to make 
the community's economy work through effective 
advertising; to permit expression of public opinion 
through letters to the editor, so that all sides of 
issues can be debated; to make the community aware 
of any bad situations into which it has drifted; to 
acquaint community leaders with activities of other 
leaders; to help the reader understand his environ
ment so that he may crusade for its improvement; 
to strengthen the moral resolutions of citizens; to 
provide a medium of entertainment; to attend to the 
small wants of classified advertisers; and to give 
readers a sense of identity. 

All these functions can be performed better and 
more economically through the computer. 

Currently we are at work on a computer program 
designed to help us build better and deeper sub
marines-another activity of Perry Publications, Inc. 
We produce a somewhat famous small submarine 
called the "Cubmarine," one of which recently helped 
locate the missing hydrogen bomb off Spain. With 
computers, we can test in a matter of hours new 
designs that normally would take weeks of trial and 
error. 

If all stress formulas, weights, balances, move
ments and other stability factors are put into the 
program and we decide to enlarge or shrink a dis
placement, we can find out almost immediately what 
will happen to all the other factors involved. There
fore, it becomes possible to find an optimum point 
at which to stop with very little extra expense. 

We have also been in the television business. We 
owned and operated Channel 2, NBC affiliate for 
Central Florida with studios in Daytona Beach and 
Orlando. There is a place for the computer in such 
operations, too. 

We have devised a program to keep logs, avail
abilities and other factors and automate the station's 
operations. The tremendous amount of information 
that goes back and forth between an advertising 
client, agency, national representative, and TV station 



136 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

and its market can be enormously speeded up and 
assimilated by proper computer programming. 

At Perry, 1965 was the year when the experi
mental era with computers ended and they began 
paying off handsomely. Determination of this fact 
was made by the increasing use each of our outlying 
p'ublications made of the central facility in West 
Palm Beach. 

Late in 1964, we had set up a pricing schedule 
which charged each user so much per minute of 
computer facility time. Individual use of the facility 
was entirely voluntary. And as the papers began to 
measure their use against this dollar cost, their in
creasing use made it obvious the hump had been 
overcome. The total percentage use of the computers 
jumped beyond 75 % overall. In some peak time 
areas it jumped to 100%, using both 301 systems. 

This has resulted in our setting up a new pricing 
schedule very much on the order of a television or 
radio network. Prime time has a higher price than, 
for example, the midnight to 6 A.M. period. Now 
our managers are rescheduling their computer re
quirements to best take advantage of the new lower 
rates at less prime time. 

Perry Publications had estimated it would take 
about three years for the initial sizable investment in 
computers to payoff. This timetable has been met. 
Spectra 70 could, we feel, payoff in even less than 
three years. 

With Spectra 70 we foresee its use to explore 
various theories of decision-making. The computer 
can help us with an analytical approach to business 
problems by having the decision-maker break down 
large, complex problems into a series of relatively 
simple ones. Thus, we should be able to exercise 
judgments and preferences on each of the relatively 
simple problems and allow the theory to indicate the 

most consistent action in the larger, more complex 
one. 

An extension of this approach also will allow the 
business manager to evaluate the desirability of pur
chasing additional information before he acts. When 
added information is obtained, this approach will 
indicate the proper combination of that data with 
the decision-maker's previous judgment. 

The old concept of waiting six months to a year 
for an outside audit to tell you whether your business 
is headed in the right direction has become a critical 
hazard. Before computers, for example, we never 
received our monthly profit and loss statement before 
the 15th of the following month. Today we get it on 
the fourth of the following month. Soon we will be 
able to get a weekly profit and loss statement each 
Monday morning. 

Before computers, our production level and em
ployee load were comparable with other operations 
of our size in our industry. Today, at The Post-Times 
in West Palm Beach, with the aid of computers, we 
are producing approximately 50% more work than 
we were six years ago with approximately half the 
production personnel we then had. Our total em
ployment is up, however. We have more personnel 
in the editorial department, for example. 

The jet airplane, direct distance dialing, concepts 
of instant checkless banking, and computers working 
at nanosecond speeds are giving business and industry 
a realization that time itself has tremendous value. 
Twenty years ago, it took an hour or more to en
grave a printing plate. Today, quick etching can 
do it in a few minutes. Tomorrow, electron guns and 
lasers will do a whole page within seconds. 

While the cost of all these tools themselves will be 
enormous, the cost of installing them will be even 
more enormous. Industry must have profits to afford 
them. But the results will be worthwhile. 



A 

SPECIAL PURPOSE COMPUTER 

FOR 

HIGH-SPEED PAGE COMPOSITION 

Constantine J. Makris 

Mergenthaler Linotype Company, Division of Eltra Corporation 
Brooklyn, N ew York 

INTRODUCTION 

For several years now, computerized page com
position has attracted the interest of workers in the 
printing and data processing fields. Considerable 
work has been conducted in the past in both fields 
by various concerns with the primary goal to speed 
up the laborious work of page makeup and thus 
reduce the page makeup CQst. 

Our studies in the page composition area have 
shown that page makeup can be implemented by 
either one of two methods-namely, page compo
sition employing the stored program flexibility of a 
general-purpose computer or page composition exe
cuted by a computer specifically designed for that 
purpose. 

We adapted both methods, for each one in itself 
presents attractive features depending upon the 
application and the nature of the matter which is to 
be processed. 

This paper discusses only one phase of the Lino
tron System; specifically, the typography program of 
page formatting as executed by a special-purpose 
computer called the "Page Formatting Computer." 

During the system concept period, the philosophy 

137 

of this system design was guided by three primary 
objectives: 

1. High-page composition machine 
throughput. 

2. Flexibility of machine to handle a large 
variety of tabular and text formats. 

3. Machine simplicity to insure smooth 
man-machine interface. 

The first two sections of this paper present the 
Linotron System and its organization in the page 
typography program and a functional synopsis of 
the characteristics of the phototypesetter. 

The succeeding five sections discuss the organiza
tion of input material to the page typography pro
gram and present various definitions and problems 
encountered in the process of page formatting. 

The last section presents the internal organization 
of the page formatting computer and describes and 
brings into focus the major characteristics of the 
system. 

LINOTRON SYSTEM 

The Linotron (a Mergenthaler-CBS Laboratories 
development) is a high-performance phototypesetter 



138 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

with x-y plotting features that produces high-quality 
lexical-graphical matter under the control of a prop
erly programmed magnetic tape. 

The formatted tape which drives the Linotron 
phototypesetter is the product of the typography 
program performed by either a general-purpose or 
a special-purpose computer. 

This discussion is focused on the manner with 
which the Page Formatting Computer (PFC) is 
organized and tied in with the overall page compo
sition and typography system. 

Figure 1 shows a simplified diagram of the Lino
tron System. The basic task of the PFC in the 
overall Linotron System is to receive from magnetic 
tape edited lexical-graphical matter. Then the PFC 
by means of its computational capability properly 
composes and sets this matter on the page according 
to prescribed page formats of good typography. The 
system outputs this formatted information on a 
magnetic tape medium with all the necessary instruc
tions to drive the Linotron Phototypesetter. 

THE LINOTRON PHOTOCOMPOSER 

Figure 2 shows the block diagram of the Linotron 
Photocomposer and the flow of data through the 
system. 

It is conveniently subdivided into seven large func
tional subsystems: 

1. Magnetic tape recorder 
2. Tape control and buffer storage 
3. Control logic 
4. Character generator 
5. Cathode ray tube display system 
6. Positioning· servo 
7. Recording camera 

Magnetic Tape Recorder 

The magnetic tape read transport reads the con
trol tape which is the precipitation of the page for
matting program. On this tape are recorded codes 
of the characters to be typeset with the manner with 
which they will appear on the copy. In addition to 
the character codes, character positioning and system 
control codes have been properly recorded to insure 
proper functional operation of the system. Data can 
be furnished to the system in either 6, 7, or 8 level 
codes at 556 bpi. 

Control Logic 

This is the section of the machine which reads the 
information from the input core buffer and sorts 
the character codes from the positioning and/or con
trol codes. It routes the character codes and char
acter size codes into the character generator block; 
and the positioning codes into the positioning regis-

PROOF 
READ 

EDIT 
INSERTION 
PROGRAM 

TYPOGRAPHY 
PROGRAM 

PAGE FORMATTING 
COMPUTER 

LlNOTRON 
PHOTOTYPESETTER 

Figure 1. Simplified block diagram of Linotron system. 

FINAL 
COpy 



A COMPUTER FOR HIGH-SPEED PAGE COMPOSITION 139 

PUT MAG. CHARACTER CATHODE RECORDING OU.TPU 
TAPE ~ 

.. .. - GENERATOR RAY TUBE - CAMERA -READER 

IN T 

~ 
, , 

~ l 

, r , 

TAPE CONTROL 
.. CONTROL - POSITIONING -

& BUFFER . LOGIC .. SERVO - -

I 
Figure 2. Block diagram of Linotron Phototypesetter. 

ters. It also generates control signals from the servo 
block, cathode ray tube assembly and recording cam
era assembly upon the recognition of control codes. 

Character Generator 

The function of the character generator is to 
receive the character and character point size code 
and in return generate a high-quality video signal of 
the character. The character is selected from an 
assembly of 1024 characters whose typographical 
configuration is stored in four film plates (grids). 

The heart of the character generator is the Lino
tron tube-a single-envelope, high-quality tube which 
transforms the light image of characters focused on 
its photocathode into a character video signal of a 
given size. ~ 

The generation of the character video signal is 
accomplished by optically focusing the entire com
plement of a character grid (256 characters) into 
the photosensitive cathode of the tube. The result
ing electron image beam from the photo cathode is 
imaged onto an aperture plate by means of magnetic 
lenses and then wobbles back and forth at the aper
ture plate. A small aperture of 0.001 inches is 
associated with each of the 256 character images at 
the aperture plate. As the images are wobbled back 
and forth, the aperture's scanning of the image is 
accomplished as in the image-dissector video camera 
tube. 

The electrons which pass through the apertures 
are all trapped except for the aperture that scans the 
selected character. This is accomplished by means 
of a bar matrix (16 vertical X 16 horizontal) that 

lines up with each aperture and is biased with nega
tive voltage. The control logic places positive volt
ages on the selected x-y bars that line up with the 
desired aperture. The electron beam in the form of 
pulses is amplified by means of the multiplier section 
of the tube thus producing a video signal. 

Cathode Ray Tube 

The cathode ray tube assembly consists of a 
high-resolution, high-intensity CRT and deflection 
system. The electron beam of the tube which pro
duces a spot of less than 0.001 on the screen sweeps 
into synchronization with the scan rate of the Lino
tron tube. The character video signal is utilized for 
unblanking the Z axis of the tube thus the output 
screen exhibits an accurate reproduction of the 
original character. Size of the characters can be 
changed by changing the amplitude of the sweep. 
This is controlled automatically by the control logic 
when a point-size change has been called for by the 
tape. 

Positioning Servo 

The precise character positioning on the screen 
face of the CRT is accomplished with the aid of the 
positioning servo, which makes use of a second CRT, 
the spot position of which is accurately referenced 
to a set of precision-ruled gratings. Initially, the 
horizontal and vertical coordinates of character posi
tion are obtained from the control logic and used to 
position the spot close to the correct character posi
tion. Then the servo circuitry brings the spot pre
cisely to the desired position-the precision gratings 



140 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

being used as a reference-and keeps it there until 
the character is printed. The CRT display, which is 
actually producing the character, is slaved to the 
positioning servo tube. Its beam accurately follows 
the beam motion of the servo tube. Thus, the posi
tioning of the character is accurately controlled by 
the precision servo. 

Recording Camera 

The full composed page displayed by the CRT 
is photographed onto the film or paper by the record
ing camera. The film of the camera advances frame 
by frame (page length) as instructed by the logic 
control block when it recognized film advance code. 

FORMAT ANALYSIS AND 
DEFINITIONS OF PAGE FORMATTING 

A study and anal:'sis of a large variety of page 
formats was a prerequisite to the design of an effi
cient page-formatting system. This study disclosed 
the following fundamental page typesetting char
acteristics: 

1. The formatting program of any new page for
mat does not necessarily have to be rewritten from 
scratch. 

2. The page makeup program consists of a num
ber of distinct typesetting operations, such as line 
justification, column justification, etc. Each type
setting operation required in the page makeup can 
be split into a number of small independent routines, 
each one of which is programmed to accomplish 
just a fragment of the overall program of the typeset 
operation. 

3. The program of any page makeup can be ac
complished by the proper collation of independent 
typeset microroutines. 

4. Each page format contained its own format 
parameters which have to be inputted and stored as 
program parameters. 

5. The editing process could be minimized to just 
a simple data item labeling. 

The following page formatting definitions had to 
be developed as format analysis was taking place: 

1. Format: The unique spatial layout of 
the page items (such as columns, fields, 
paragraphs, etc.) within the page, and 
the specific sequencing of the type
setting routines within the item in the 
page as well as the specific sequencing 

of the routines between one item on 
the page and another item on the same 
page. 

2. Typesetting Routines: Format-inde
pendent, self -sustained routines which 
implement a defined fraction of a type
set operation program. 

3 . Format Program: The program which 
sets the complete page format by 
means of selecting and sequencing the 
proper typesetting routines. 

4. Format Parameters (Program Param
eters): The spatial parameters of the 
format (such as, X, Y marginal dimen
sions, line measures, etc.) and typo
graphical parameters of the format 
data (such as typeface, point size, etc.) 

5. Edit Instructions (Page Item Identi
fiers): Labels inserted before page 
items which identify copy blocks of 
identical spatial, typographical and 
typesetting characteristics within the 
format. 

Figure 3 shows two pages of a representative 
text format. 

CLASSIFICATION OF INPUT DATA 

The source data input to the PFC has been classi
fied as (1) edited lexical-graphical input data and 
(2) page format parameter data. 

Appropriate format parameters had to be defined 
for each format on hand which had to be applied to 
the input and stored as program parameters. 

The format parameters have been divided into 
two categories: (1) the typographical parameters of 
the format that prescribe the style of type and size 
for each page item and (2) the format dimensional 
parameters. Since the format parameters had to be 
changed occasionally at the command of the typog
rapher or page format designer, they had to be gen
erated separately and stored in a separate tape-the 
parameter library tape. 

It is noted that the bulk of the typographical for
mat parameters consists of the character widths for 
each typeface at different point sizes. For example, 
for 1024 characters that the Linotron Phototype
setter handles simultaneously and for 8-point sizes, 
there are 8192 character widths with a byte of 3 
BCD digits maximum. Assuming 2 BCD digit stor
age per core locations in a character width look-up 



A COMPUTER FOR HIGH-SPEED PAGE COMPOSITION 

I Cha..1)ter 3 

~SUPPORT I 

~44. Introduction I 
0---1~.II~se=c:fitii;on;Tl.lGiiE~NiiEi'RAiiLLII 

Combat, combat support, and combat ser
vice support units are provided to the forward 
infantry, mechanized, or armored brigades 
and battalions as required to assist in the 
accomplishment of the mission. These units 
ma be organic, attached, in support of, or 
under operation control of the brigade or 
battalion. For the purpose of this chapter 
only, those units normally assisting the 

brigade or smaller units in combat will be 
covered. 

45. Other Specific References 

For a detailed discussion of combat support 
of infantry and armor elements, see the FM's 
of the 7- and 17 -series. A detailed description 
of combat service support functions is con
tained in chapter 3 (secs. III, VI, and VIII) 
and appendix II, FM 101-5. 

~CONTENTSI 
Section II. COMBAT SUPPORT 

General. .................................................... 46 
Tactical Air Support ................................. .47 
Artillery Support ...................................... .48 
Chemical Support ..................................... .4l) 
Engineer Support ...................................... 50 
Ground Transport Support.................. . .. 51 

46. General 

This section generally covers organic 
normal supporting units of mechanized in
fantry and armored brigades. Nonorganic 
combat support units available to brigades in 
the support role include tactical air support; 
Army aviation; and artillery, chemical, en
gineer, and ground transportation units. 

An appropriate number of mechanized infantry 
battalions and tank battalions are attached to the 
brigade headquarters according to the operation 
plan. 

47. Tactical Air Support 

a. General. The flexibility and long-range 
striking power of tactical air makes it an im
portant means of destroying the enemy. 
Superiority in the air, or at least relative 
freedom of action, is a predominant factor in 
securing success in desert operations. Tactical 
air power has three general missions: gaining 

air superiority, interdicting the battle area, 
and providing close support. These are in
herent in joint air-ground operations and 
apply equally to desert operations. Since 
desert areas produce little~.llJ~~~""'''''1IIio 
military forc~-""'" 

posItion and then 
position after dark. 

This causes the enemy to concentrate his 
efforts on a false position while friendly units 
will have moved to the primary position.2 

Retrograde operations are characterized by detailed 
centralized planning and decentralized execution. Com
munications and control become increasingly difficult. 
Subsordinate commanders must have detailed knowledge 
of the overall plan so that they may properly conduct 
independent actions when communication with higher 01' 

adjacent units is lost. Retrograde planning for desert 
operations is influenced by desert terrain and its effect 
on the mobility of the force concerned. Lack of obstacles 
and barriers dictates a speedy, organized withdrawal. 

b. Dispersion in the desert is greater during 
daylight hours than at night. After dark, dis
persion is less than in daylight hours. This 
causes the enemy to concentrate his efforts 

1 Typical of these fortress.type defenses were the coastal harbors or 
Tobruk, Bardia, and Mersa Matruh in North Africa during WO"ld War II. 
EI Alarnein, due to its right flank being on the sea and anchored on the left 
by an impassable (to vehicles) salt marsh (the Qattarra depression), was 
also considered a fortress. 

15 

Figure 3. Representative text format. 

141 



142 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

table, there is a 16,384 of maximum core require
ments plus time consumed by the program to address 
and retrieve the character widths. 

To avoid this core storage and time requirement, 
the character width parameters have been separated 
from the parameter library tape and a flexible circuit 
logic block has been designed which would accom
modate the character width parameters with fast 
access and minimum cost. 

ORGANIZATION OF INPUT EDITED DATA 

The edit program of the system is the program 
where raw data together with edited instructions are 
generated directly from the keyboard. The purpose 
of this program is to provide properly edited, unfor
matted data on paper tape or magnetic tape. This 
data is utilized as input to the formatting program. 

The edit instructions have been made simple in 
order to allow some flexibility to the keyboarding. 
A decimal number from 1 to 99 inserted before the 
data of a page item (copy block) serves as the edit 
instruction. Copy blocks which demonstrate fixed 
formatting characteristics such as quad left data, 
quad right data, main text justified copy, headings, 
etc., are labeled with the assigned item identifier 
instruction number. Table 1 shows a list of page 
copy blocks that have been assigned to an item iden
tifier edit instruction number. 

ORGANIZATION OF 
FORMAT PARAMETERS 

The typographical page parameters fall into three 
categories: (1) type face of copy block, (2) point 
size of characters, and (3) character grid number 
where the type face is located. 

The dimensional parameters of the page format 
have been subdivided into the horizontal and vertical 
parameters as follows: 

Horizontal 

1. The Xon group: These are the absolute horizontal 
vectors that define the horizontal location of various 
copy blocks on the page with the left side of the page 
as reference, such as absolute margin of column, 
indentations, etc. 

2. The LLn group: These are relative dimensions 
that define the line length of copy blocks useful in 
line justification operation. 

3. The Smin and Smax group: These parameters de
fine the maximum and minimum range of values that 

Table 1. Assignment of Copy Blocks to Item Identifiers 
for Format 

Copy Blocks 

Item 
Identifier 
Numbers 

Chapter number (single column) 01 
Chapter title (single column) 02 
Section number and title (single column) 03 
Contents (title of table of contents) 04 
Chapter number (double column) 05 
Chapter title (double column) 06 
Section number and title (double column) 07 
Side head (quad left) 09 
Side head (quad right) 10 
&~~rt 11 
Text (with shorter line length than body text and 

having same right-hand margin) 12 
Text (with shorter line length than body text and 

centered to text body) 13 
Text of lower point size (with same line length 

as body text) 14 
Text of lower point size (with shorter line length than 

body text and centered to text body) 15 
Notes (with same line length as body text) 16 
Notes (with shorter line length than body text and 

centered to text body) 17 
Notes (with shorter line length than body text and 

having same right-hand margin) 18 
Table of contents (single column leadered table) 19 
Footnote 20 
Line plot (single column) 21 
Line plot (double column) 22 
Underscore 23 
Beginning of caption 24 
End of caption 25 

For Tabular Formats 

Fixed fields and/or unjustified line copy 
(line that does not overset) 

Justified line copy (line that may overset) 
Constant page heading 
Running heading 
Column heading or subheading 
Notes 
Running heading (index) 

01-17 
18-20 

21 
22 
23 
24 
25 

the word space can receive in the line justification 
procedure. 

4. The ~x group: These are incremental fixed values 
selected for a particular format to position on page 
copy blocks with respect to previously set data. 

Vertical 

1. The Yon group: These are absolute dimensional 
parameters that reference and position items from 
the top edge of the page. 

2. The Y LA group: These are the incremental param
eters that define the line advance of text copy. 



A COMPUTER FOR HIGH-SPEED PAGE COMPOSITION 143 

3. The Y LP group: These are parameter values that 
define the various incremental separations between 
the end and the beginning of a copy block or vice 
versa, such as end-of -text paragraph to the following 
heading. 

4. The Yo or ~Y group: These values define the 
limits and tolerance of the vertical data settings in 
column justification operations. 

For tabular formats where the fields of data and 
digits per field of data are fixed, parameters besides 
dimensional ones have been derived-such as, num
ber of fields, number of digits per field, number of 
lines, number of columns, number of groups of lines. 

HYPHENATION 

In setting a justified line of type of small line 
measure, hyphenation is unavoidable; hence, the sys
tem had to be equipped with a hyphenator algorithm 
that could hyphenate the over set word and thus help 
the program justify the line. 

The hyphenator algorithm that has been devel
oped by Mergenthaler is based on the eight-window 
principle developed by Lockheed Co. It consists of 
a logic mechanism that recognizes and samples the 
structure of the word as the word flows through a 
field of 11 windows (a 6 bit X 11 position shift 
register) . 

Each character of the word under investigation is 
shifted from one window to another at the rate of the 
applied clock. The contents of each window are 
decoded and the information is supplied in a parallel 
form into a cluster of hyphenation logic rules. The 
logic of each hyphenation rule consists of a static 
gating. When the contents of the windows have the 
proper character combination, which can satisfy 
either one of the rules, then a hyphen can be in
serted by the control section of the Hyphenator be
tween the characters that surround the checkpoint. 

The Hyphenator has demonstrated high accuracy 
-over 97 % -with acceptable hyphen efficiency on 
representative vocabularies. It has been built in a 
modular form with a data transfer rate of 0 to 
100,000 characters per second, suitable for inter
facing high-speed computers. 

MAJOR CHARACTERISTICS OF THE PFC 

The basic characteristics of the page format 
processor are as follows: 

1. The capability to compose a large 
variety of tabular and text page for-

mats by receiving edited source data on 
magnetic tape. 

2. The ability to format and process pages 
by means of a wired-in program at a 
considerably higher throughput rate 
than the conventional stored program 
computers of medium size and cost. 

3. The ability to change the program of 
the machine conveniently by merely 
changing either one or two printed cir
cuit matrix cards depending upon the 
format program complexity. 

INTERNAL ORGANIZATION OF 
THE PFC SYSTEM 

General 

The Page Formatting Computer that can prepare 
formatted tape to drive the Linotron Photocomposer 
is basically a special-purpose computer with a 
wired-in rather than stored program. It can be 
viewed, however, as a general-purpose page for
matting machine in that the program of the Processor 
can be changed readily with different page programs. 
This is possible by plugging into the computer the 
desired format program control boards which actu
ally are matrix logic cards. 

The simplicity and flexibility with which the for
mat program of the machine can be changed is 
attributable to the internal organization of the system. 

The control of the CPU of the system consists of 
a library of independent typesetting routines whose 
program has been specifically designed to handle 
microtypeset operations. The proper selection and 
sequence of these microtypeset routines by the format 
program control can compose a variety of tabular 
and text formats. The formatting program is accom
plished at relatively high speeds due to the parallel 
operation of the arithmetic computations and the 
simultaneous execution of the routines program. 

The machine is equipped with three core memory 
units: 

1. Input Memory (buffer) 
8K X bits 

2. Output Memory (page memory) 
16K X 6 bits 

3. Working Memory (scratchpad and 
parameter storage) 

2048 X 17 bits 



144 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

The number system with which the system per
forms arithmetic operations is in BCD. Five BCD 
digits parallel arithmetic is performed in two arith
metic sections that operate simultaneously. 

The internal coding system of the computer is 
based on 6-level BCD code. The system, however, 
can accept input data recorded on either 6-level or 
8-level code, in BCD ASCI or extended BCD coding 
system. 

The computer is equipped with a cluster of address 
tracking, index and utility registers. 

The machine control section of the processor 
responds to nearly 160 command instructions which 
can be addressed by the format program control 
independently. 

The basic machine cycle (MC) of the system is 
5 microseconds and instruction can be executed from 
about 0.2 MC to 10 MC depending upon the nature 
of the routine called for by the instructions. 

Figure 4 presents the system's internal organiza
tion. It is. subdivided into three units: (1) processor 
storage unit, (2) central processor unit, and (3) in
put/ output unit. 

CENTRAL PROCESSING 
UNIT 

Processor Storage Unit 

This unit includes the input memory (1M) and 
the output memory (OM) of the system. 

The unformatted data is stored in the 1M. The 
CPU operates on the data stored in the 1M and 
forms lines. When the CPU has formed a line of 
type in the 1M, it transfers it to the OM. 

The OM is the page memory of the system. In this 
memory, the data of a complete page is formatted 
and assembled. 

In certain formats-such as double column for
mats-the last item on the page, as recognized by 
the CPU in the 1M, may cause repositioning of all 
page items already stored semi-formatted in the OM. 

The OM, therefore, stores the data of the page 
until the last page item is read from the 1M which 
mayor may not overset the page. 

Central Processing Unit 

The various functional blocks of the central proc
essing unit have been designed and developed with 
the modular concept in mind. These blocks have in-

LIBRARY OF ROUTINES. 
CONTROL OF ROUTINES 

PROGRAM 

I/O CONTROL BUS 

Figure 4. Page' formatting computer system diagram. 



A COMPUTER FOR HIGH-SPEED PAGE COMPOSITION 145 

dividual controls of their own, thus making them 
independent, self-sufficient and asynchronous. Under 
the control of the routines, the blocks can be time
shared to perform the routine program in a syn
chronous manner with the rate that the routine itself 
dictates. 

The CPU is divided into the following sections: 

1. The working memory section 
2. The arithmetic section 
3. The address, index and utility registers 
4. The input instruction and data decoding 

section 
5. The character width section 
6. The library of control program of type

setting routines 
7. The format program control 
8. The hyphenator 

The Working Memory Section 

The working core memory of the system is basical
ly the scratchpad storage of the CPU and the format 
parameter storage. 

During the page formatting program, the results of 
temporary computations are stored in this memory. 

Words up to 17 bits long can be retrieved or stored 
in this memory practically from all the registers as 
well as from the accumulators of the arithmetic sec
tion in either parallel or sequential mode. 

This is made possible by means of the. input out
put address and data channel multiplexer that can 
communicate with the rest of the blocks. The typo
graphical and dimensional parameters of the format 
are also stored by the parameter library in a pre
determined area of this memory. 

The Arithmetic Section 

The arithmetic section of the system has been di
vided into two units-the horizontal arithmetic unit 
equipped with two accumulators that can perform 
parallel addition and subtraction of 5 BCD digits in 
1.5 microsecs.; and the vertical accumulator unit 
equipped with three parallel accumulators of the 
same speed. The separation of this section into two 
arithmetic units and the reinforcement of each unit 
with several accumulators insures fast and parallel 
computations of the horizontal and vertical arithme
tic equations involved in setting the data on the x-y 

plane of the page. Comparison decision modules and 
auxiliary registers-namely, Sn, en, Ln and Y n regis
ters-have been incorporated in this section to speed 

up, facilitate and simplify the routines program. All 
accumulators can store their results in either the 
scratchpad or input and output memory through the 
I/O channel multiplexing. 

Address, Index, Utility Registers 

Addressing, tracking and indexing of data in the 
scratchpad input and output memory is implemented 
by means. of the respective registers. 

The A-B registers are primarily utilized by rou
tines that form the line in the input memory. The 
10 register is utilized by routines to help sort out 
graphic data, footnotes or any type of headings from 
the input data and subsequently store this data tem
porarily in a separate area of the input memory. 
Registers P and M are primarily utilized by routines 
to index in the scratchpad memory the addresses of 
lines and various items that lie semi-formatted in 
the output area as well as the temporary storage area 
of the input and scratchpad memories. Registers C 
and D are associated with indexing data address of 
items already stored in the OM. 

Input Instruction and Data Decoding 

This is the section that decodes the edit instruc
tions and data characters when the machine is in the 
read input data mode. 

It sorts out the input edit instructions (Item 
Identifiers or Typographical Control Codes) from 
the printed data codes and keeps up to date the for
mat program control by means of control signals on 
the state of instruction and data the program is work
ing on. Certain routines receive control lines from 
this section. 

This block provides command control signals to 
the character width block and P z, F, G storage regis
ters when input character codes are to receive a 
width value. It also provides command control sig
nals to the address matrix of the working memory 
to switch the memory to the appropriate core area 
where the parameters of the particular copy block are 
stored. 

Character Width Section 

The function of this block is to receive a 6-bit 
character code from the input/ output channel multi
plexer of the input memory and yield· as an output 
the typographical width of this character in parallel 
BCD form. 

The character width that is being outputted by the 



146 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

block is a function of the three typographical param
eters which are received from the parameter section 
of the working memory or directly from the input; 
namely, the typeface, the point size of the face, and 
the Linotron grid number. The width information is 
accessed at its output in less than 300 nanoseconds 
thus speeding up a typographical command so repeti
tive in printed matter. The character width informa
tion is routed via the program of the specific routine 
into the Horizontal Arithmetic Unit. This block is 
rather flexible since it holds up to 16 different type 
faces which can be substituted externally by a differ
ent one when the job calls for it. 

The Hyphenator 

The duty pf this section is to receive the word 
which oversets the line and output the same word 
with all the grammatically legitimate hyphens that it 
can find. The overset word is transferred from the 
1M into the Hyphenator by means of the I/O chan
nel multiplexer and from the Hyphenator into the 
scratch pad area of the working memory. When the 
program finds that a word is split within the justifica
tion zone, then the line is set in the (OM) with the 
last word hyphenated. 

Control of Typesetting Routines 
Program (Routine Library) 

Like any other control section of the computer, 
this is the instruction execution section of the CPU. 
It consists of 160 independent routines subdivided 
into the following four distinct sets: 

1. Routines associated with the horizontal 
computation and set up of text body 
copy blocks in the page memory. 

2. Routines associated with the setting 
and temporary storing in the input 
memory copy blocks that may cause a 
column or a page to overset, such as 
headings, footnotes, nonmandatory 
graphics and captions as well as up
dating and storing page-derived run
ning heading copy blocks. 

3. Routines that are associated with the 
vertical setting of copy blocks within 
the columns of the page. 

4. Routines associated with the setting of 
table data, generating and setting page 
number and setting initial parameters 
within the computer blocks. 

When the routines are instructed to perform, they 
control the operation of each individual module 
within the CPU and thus determine and synchronize 
the direction and flow of data within the machine. 
They output clocked signals to the computer blocks 
that they control by having access to all clocks that 
the machine cycle and clock distributor provide. 
Interfacing control signals are received by this sec
tion from various blocks of the CPU for certain 
routines whose program calls for it. 

Upon the completion of their program, the rou
tines turn themselves off and the majority report the 
end of the routines program to the Format Program 
control which initially activated them. 

Figure 5 shows the flow chart of a typical program 
for such a routine. 

The Format Program Control 

The format program control is the controller of 
the central processor unit in that it controls the 

Figure 5. Flow chart of routine scanning graphics data 
in 1M. 



A COMPUTER FOR HIGH-SPEED PAGE COMPOSITION 147 

various computations and operations which produce 
a properly composed typographical page. 

Upon the provision of edit instructions and data 
by the decoding section, the format program control 
selects and sequences the appropriate typesetting 
routines. 

As a program controller, it supervises the state of 
the routines and the state of the page being for
matted. It follows prescribed page composition rules 
on graphics insertion, footnote formatting, running 
heading updating, etc. Following is a list of some of 
the page make-up rules which it obeys and executes: 

1. A double-column nonmandatory graphic* re
ferred to on a page will be set by the program at the 
top of the next page. 

2. A single-column nonmandatory graphic re
ferred to on a page will be set by the program either 
on the same page or on succeeding pages. The pro
gram will never place a graphic in a column preced
ing the graphic reference in the text. 

3. A single-column nonmandatory graphic that is 
referred to in the first column and the program dis
covers that this graphic cannot fit in that column will 
be placed at the top of the second column. The 
program will continue processing the text in the first 
column until the valid column depth is reached. 

4. When a single-column nonmandatory graphic 
appears in the second column of the page and the 
program discovers that it cannot fit it in that column, 
it will transfer this graphic to the next page on the 
top of the first column. The program will continue 
to process the data in the second column until the 
valid column depth is reached. 

5. Any single-column mandatory graphic t will 
be placed by the program right after the reference 
point in the text. If the graphic does not fit in the 
first column, the length of the first column will be 
left short. The program will transfer this graphic at 
the top of the second column and the depth of the 
second column will be made equal to the depth of 
the first. 

6. Any single-column mandatory graphic that is 
called for in the second column of the text and the 
program cannot fit into this column will be trans
ferred to the top of the first column of the next page. 
The program will readjust the depth of the second 
column to equal the depth of the first column. 

* Nonmandatory graphic is the graphic which is not 
necessarily set on the same printed page. 

t Mandatory graphic is a graphic that is placed right 
after the point of text reference. 

7. Any double-column mandatory graphic that 
appears in the first column for the first time will 
cause the program to split the already processed col
umn into two parts. If the split occurs between a 
heading, the heading will be part of the second col
umn and the second column will be longer than the 
first. If the split occurs between text, the program 
will justify the second column to the depth of the 
first column. The program will continue processing 
the data following this graphic in column one. 

Exceptions to the rules are as follows: (1) A min
imum depth will be required of the first column in 
order to be able to justify the second column to the 
depth of the first. (2) If a split occurs between a 
heading and the heading is the first line of the col
umn, then the column will not be split. The second 
column will contain no text and the graphic will be 
placed after the text in the first column. 

8. If a double-column mandatory graphic is called 
for in the second column, the material preceding it 
will be arranged by the program into two justified 
columns above the graphic. If the graphic does not 
fit, the program will end the page and the graphic 
will be placed on the top of the next page. If in the 
process of splitting the column, the program senses 
that the column is split immediately after a heading, 
the heading will be placed in the second column and 
the first part of the column will be justified to the 
second part of the column. 

9. If a graphic-text format contains double-column 
mandatory graphics and a single-column nonmanda
tory graphic, then the single-column nonmandatory 
graphic will be treated in the program as a double
column nonmandatory graphic. Rule 1 will then 
apply. 

10. If a footnote reference appears in the text of 
the first column being processed, the footnote infor
mation will be placed by the program at the bottom 
of the first column. If the depth of the footnote data 
is such that the program cannot fit it into the first 
column, then the program will place this footnote at 
the bottom of the second column. 

11. If a footnote reference appears in the text of 
the second column being processed, the program will 
place this footnote at the bottom of the second col
umn. If the depth of this footnote is such that the 
program cannot fit it in the second column, it will 
place it in the following page. The footnote reference 
(superscript) will be an asterisk instead of a nu
meric in such cases. 



148 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

12. If a single-line heading appears at the end of 
the column being processed and the program cannot 
fit this heading with one line of the text following, 
then the program will transfer the heading to the top 
of the second column. 

13. If a new-page-derived running heading is de
tected, the program will replace the wording of the 
old-page running heading which is temporarily stored 
with the new one. 

14. Any double column heading that appears in 
the first column will cause the program to split the 
already processed column into two parts and the 
program will proceed as in Rule 7. 

The Format program control section can house 
up to six different format programs which are plain 
matrix boards that can be plugged into the machine. 

The Input/Output Unit 

The Input/Output Unit is equipped with three 
tape stations and a page display monitor-the For
matscope. 

The first and second tape stations can accept tape 
drives reading either IBM 729 tape formats or 
IBM 360 tape formats depending upon what tape 
drive is chosen by the input requirements. Both 
tape stations can accept tape drives with speeds up 
to 112.5 ips reading tapes with packing density up 
to 800 bpi. 

Thus the system accepts data recorded in either 
6 or 8-level code. The code converter block reduces 
the 8-level code to 6-level BCD code, the internal 
coding of the system. Either one of the two input 
stations can be utilized for input data loading or 
parameter loading. 

The third tape drive is utilized as output when 
the formatted page stored in the output memory is 
to be loaded on a magnetic tape. 

The F ormatscope is a video display output device 
which, as an x-y plotter, upon command can display 
on a video screen the data of a complete formatted 
page. Each character is shown as a dot. It serves 
as an on-line diagnostic device for the operation 
of the machine proper. 



COMPUTERIZED TYPESETTING OF 
COMPLEX SCIENTIFIC MATERIAL 

J. H. Kuney, B. G. Lazorchak, S. W. Walcavich 

American Chemical Society 
Washington, D. C. 

and 

D. Sherman 

In/oronics, Inc. 
Maynard, Mass. 

The successful development of computerized type
setting has been a process of striking a balance be
tween input coding and capacity to program the 
variety of decision-making steps which characterize 
the typesetting process. The most frequent of these 
decisions-justification-has proved most adaptable 
to computer handling. Even hyphenation, with its 
variety of rules, has been handled via the computer 
with varying degrees of success. But composition for 
scientific journals creates special needs both for in
put coding and for computer processing in the 
handling of non-text elements such as special char
acters, tables, mathematical expressions, and graphic 
data in the form of chemical structures. Spacing 
considerations and character selection become much 
more complex and involve many decisions which are 
a matter of choice, not rule. 

In this paper we will describe a macro coding sys
tem for inputting text, mathematical expressions, and 
tables, employed in a computer-based typesetting 
system which performs routine typesetting calcula
tions and also implements the variety of decisions 
made by an input operator in the setting of scientific 

149 

material. 1 First tests of a new program for the type
setting of chemical structures will be detailed. 

Macro expressions are used extensively to instruct 
the computer programs to call into operation a de
fined series of instructions and/or to recall textual 
strings. There are two distinctive operations within 
the macro mode-initialization and recall, either of 
which may be put into effect at any moment in the 
input stream. 

The system contains both permanent and tempo
rary macros. The permanent macros apply to the 
repetitive format patterns which characterize the 
typographic style of a particular journal. Temporary 
macros are used to meet specialized needs within a 
particular processing period. For example, if a long 
chemical term is to be used frequently in an article, 
it may be entered as a temporary macro and thus 
save keyboarding time. The keyboard operator has 
available all of the permanent macros entered in the 
system and may himself create temporary macros to 
meet the particular needs of the moment. In effect, 
he uses the macro codes as a typesetting language 
to reduce input strokes and to optimize computer 



150 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

processing. The macro code system is the basis for 
the development of a formalized typesetting language 
now under development at the ACS. 

INITIALIZATION AND RECALL 

The operator enters the macro mode by punching 
a code which is the color shift key. The operator 
follows the color shift key with a control key to 
denote initialization and one more key to identify 
the type of macro to be initialized. An alphanumeric 
or special character macro identification code used in 
recalling the macro is keyed next. The operator then 
enters the series of typographic functions and/or text 
matter that will define the particular macro expres
sion. A second color shift code terminates the macro 
mode. When the computer system senses a macro 
initialization mode, it compiles the subsequent macro 
expression and allocates it to a macro library acces
sible from disk storage. Each journal in the system 
is allocated 40 permanent macro positions of 90 
characters each, and space is available for 80 tempo
rary macros of 90 characters each. Alphabetic and 
special characters are used to identify permanent 
macros and numerics are the keys to temporary 
macros. 

MACRO USAGE 

Once a macro is initialized by the following coded 
sequence: color shift, control key, i, ID, content of 
macro, color shift-the computer compiles the con
tent and stores it on the disk. The macro may be 
accessed at any point in the stream of input data by 
the following calling sequence: color shift, macro 
ID, color shift. At this point the computer accesses 
disk storage and merges into the output stream the 
previously compiled macro expression. 

In tables, the macro serves to facilitate the setting 
in columnar form and is initialized with a slightly 
different coding sequence: color shift, control key, 
t, ID, content of macro, color shift. Here the char
acter "t" instructs the program to process the macro 
to handle columnar spacing using the tab key to 
separate columns within the macro expression. Each 
tab key begins the definition of a column in the 
table. The definition usually consists of column 
length, justification within the column, and other 
relevant typographic functions or text matter. 

Figure 1 is the hard copy of the Flexowriter input 
to the computer system. The initialization of the 
macro takes place on the second line with the punch
ing of the "&tl". The macro which follows contains 

the line lengths of the respective columns and instruc
tions for centering the material of the respective 
columns within the given line length. The tab key is 
used to separate column entries. The operator may 
call in other macros or alter justification for any 
given entry as might be required with automatic 
return to the original macro control. Disengagement 
from the tabular mode is automatic when the text is 
completed or when the operator punches an end-of
line code. The tab key reenters the tabular mode 
under macro control. Figure 2 shows the table as 
set on the Photon under control of the computer
produced tape. 

SETTING MATHEMATICAL EXPRESSIONS 

In the setting of mathematical expressions, the 
spacing considerations and the variety of character 
selection become so complex that we have attempted 
little more than to reduce the spatial relationships to 
some linear form for input coding. An actual ex
ample will illustrate how macro expressions can be 
used in the setting of mathematical formulas via 
computer as well as the variety of decisions the oper
ator must set for the computer. Hopefully we would 
expect to work toward a method of handling which 
would transfer more of the decision-making choice 
to the computer. 

In setting the equation shown below, four lenses 
and seven fonts were used as follows: normal 8 pt., 
numerator 8 pt., denominator 8 pt., and 18 pt. for 
the two-line characters; italic, greek, roman, math, 
caps and small caps, superior, and inferior fonts. 

1 2 3 4 5 6 

oJ' = ',[I."(lt,! vJ~w")dlJ I (21) 

First, the operator must determine that the equa
tion will fit within the assigned column width of the 
journal. Next, the equation is divided into vertical 
segments wherein the spacing treatment is the same. 
Since we can accommodate three levels of typesetting 
in each line, this particular equation causes no special 
problems on the horizontal level. 

N ext the operator must determine the line length 
of each segment. This can be done in several ways: 

1. Calculate by setting on Photon and 
reading off a counter; 

2. Estimate on chart of frequently used 
combinations; 

3. Process by computer for calculation. 



COMPUTERIZED TYPESETTING OF COMPLEX SCIENTIFIC MATERIAL 151 

HTable III. /x/xDistribution of Notation Size (4383 Compounds of Commercial Deck Ass1gned W1swesser Line Notations)&xOSO 

&t1 &c&044 &c&047 &c&061r3 

1 &h Size &h Siz3e&0 

&h /8r &h r&3&0 

Designa@ Cumulative Des1gna@ Cumulat1ve 

t10n ( ;#S/x&3) No. t10n ( ;#S/x&3) No. 

1 Inl /nO.1 D 14 /n89.6 

'2 /n2 /nl.8 E 15 /n91.3 

:3 /n3 10.4 F 16 /n92.9&xOSO 

4 /n4 19.2 G 17 /n94.1 

S /nS 29.5 H 18 /n94.7 

6 /n6 39.6 I 19 /n95.4 

7 /n7 56.8 J 20 /n9S.9 

8 /n8 60.3 K 21 /n96.4 

9 /n9 67.8 L 22 /n96.6&xOSO 

0 10 74.5 M 23 /n97.0 

A 11 80.0 N;NZ 2'&n36 100.0 

B 12 84.3&0 

C 13 87.5&0 
Figure 1. Friden hard copy of table input to computer. 

Since many of the combinations which appear in 
equations are repetitive, the operators become skilled 
in estimating segment lengths. The respective seg
ment lengths are added, subtracted from the over-all 
line length, and one half the difference becomes the 
measure of the lefthand indention in order to obtain 
a centered condition of the equation. The sixth seg
ment is not included in this calculation since the key 
number sets flush right on the over-all column width. 
The remaining five segments are to be set as follows: 
( 1) flush right, (2) center, (3) justify, (4) center, 
and (5) flush left. 

The operator is now ready to begin punching the 
input tape for the setting of the equation shown 
above. His next step is to write the instructions using 
temporary macros to control the spacing of the seg
ments. The first macro controls the setting of the 
line of text preceding the equation and contains 
justify instructions, font, size, leading, and line 

length. These are shown in Fig. 3. In the setting of 
the equation the operator used the macro for seg
ment (1) and the remaining instructions controlled 
the following steps: greek font, italic font, roman, 
greek, inferior, 18 pt. lens, half set, 8 pt. denomi
nator lens, inferior, zero set, 18 pt., math, no flash, 
half set, flash, normal set, 1/16 space, 8 pt. numer
ator lens, superior, 18 pt. lens, math font. In a 
similar fashion the remaining segments were key
punched. After processing in the computer, the out
put tape was run through the Photon to produce 
the result shown in Fig. 3. 

TYPESETTING CHEMICAL STRUCTURES 

The problems of setting chemical structures have 
been considered in the overall context of how com
puters process data which consist mainly of graphic 
information. One approach is to develop notation 
systems which employ a linear sequence of letters 



152 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Table III. Distribution of Notation Size (4383 Compounds 
of Commercial Deck Assigned Wiswesser line Notations) 

Size Size 

Designa- Cumulative Designa- Cumulative 
tion (S) No. % tion (8) No. % 

1 1 0.1 D 14 89.6 
2 2 1.8 E 15 91.3 
3 3 10.4 F 16 92.9 

4 4 19.2 G 17 94.1 
5 5 29.5 H 18 94.7 
6 6 39.6 I 19 95.4 
7 7 56.8 J 20 95.9 
8 8 60.3 K 21 96.4 
9 9 67.8 L 22 96.6 

0 10 74.5 M 23 97.0 
A 11 80.0 N-Z 24-36 100.0 
E 12 84.3 
C 13 87.5 

Figure 2. Table as set on Photon after computer processing. 

and symbols to express graphic data. Generally this 
approach entails the use of an elaborate and some
what unnatural set of rules to translate graphic in
formation into a non-graphic cipher system. Another 
approach is to describe rather than translate graphic 
information within a system of topological coding 
by showing atom-to-atom connections in a com
pound, with the atoms as nodes and the connections 
as branches of a network. In the ACS system all of 
the input data is preserved, including orientation and 
proportion. Chemical structures are mapped directly 
onto a graphic matrix and processed as purely 
graphic data. 

The use of a computer to assist in typesetting 
chemical structures is an example of tying together 
complex graphic· input and output devices. The cur
rent inputs to the system are paper tapes produced 
by typewriters specially designed to produce readable 
chemical structures and coded paper tape. Two such 

typewriters are in use, and a third is in the near-final 
stage of development. 2- 5 Input tapes for the initial 
tests of the programs for setting chemical structures 
were supplied from the Army Chemical Typewriter 
operated by Herner & Co. for the Walter Reed 
Institute for Army Research. 

The basic system output is a paper control tape 
to drive a phototypesetting machine. An IBM 1460 
computer has been programmed to accept input 
tapes from the Army Chemical Typewriter, to proc
ess and transform the input data from linear strings 
to a graphic matrix, to analyze the grid-form struc
ture, and finally to punch a paper tape to control a 
Model 200 Photon equipped with an eight-channel 
reader and a specially designed matrix disk con
taining the components required to build chemical 
structures. The further ability of the system to gen
erate topological connection tables is envisioned in 
later development; 



COMPUTERIZED TYPESETTING OF COMPLEX SCIENTIFIC MATERIAL 153 

&Etest,JOOO,dOOO,gl,p,bl&o&o&o 

/ig&J&3/9&,lOO&346 

/il&:z&r&170 

/i2&z&:c&:355 

/i3&:z&c&385 

/ 14&:z&c&:4 22 

/i5&z&r&256 

/i6&:z&r&346 

MACRO INSiRUCTIONS 

~quation 17 will reduce to&x150&0 

Equation 17 will reduce to 

/ [J,L( N ar;) ] oJ = f'n L VI -W n dl 
() 1-" ay" 

(21) 

At the optimal value of l', when the extremal is no1 
restricted, the value 0[' must vanish for all variations wn(l) 
It is therefore seen from Equation 21 that a necessar) 
condition for an optimum is 

Q);¢d;#I&3 ;¢ej=n &1/3$/fT/4;-/dO/3&1;F/fT&f/s/x/5&5L/3&1' 

@Y8~5&5~4;=J 0 

@/8;¢u;-J 

~5;$2/d9/S;#f;-~8&3/f&:m/f&mVf&mVS/~/4;$2;#Y;-n 

~/8;¢0;-n/3&1&m/8;#dl/3&l

@/8&3(21) 

&x150 

@VrnAt the optimal value of &t3I, when the extremal is not restricted, the value ;¢d;#I&3 must vanish for all 

variations ;¢0;-n&3(&t3l).It is therefore seen from Equation 21 that a necessary condition for an optimum is&o 

&e 

Figure 3. Hard copy of input for setting of mathematical formula. Temporary macros (circled) control positioning of formula 
elements. The computer-set formula produced from input is shown in the inset. 

INPUT DATA PREPARATION 

The paper tapes produced by chemical structure 
typewriters consist of normal alphanumeric symbols, 
special symbols to represent chemical bonds, and 
X, Y coordinates which supply a frame of reference 
for the input data strings. Coordinates are punched 
automatically by the typewriter when the spatial ref
erence of the input is changed by rolling the platen 
in either direction, tab, backspace, carriage return, 
etc. The X, Y coordinates refer to the location of 
the beginning of the string of symbols preceding the 
platen movement, backspace, etc. 

The chemical structure typist need make only the 
decisions necessary to reproduce accurately the struc
ture provided as copy. The Army Chemical Type
writer has three cases in order to provide a large 
symbol set. In addition, the typewriter provides cer
tain options to simplify the typist's job; these are: 
nonspacing keys, double length extended keys (to 
make a bond and vertex with one keystroke) and 
keys which print a high or low version of a symbol 
(for example, upper dot or lower dot; upper and 

lower here -do not refer to case). Thus in typing /, 

the typist would use the lower dot, diagonal, and 

upper dot keys without having to roll the platen to 
type the diagonal or the second dot. 

Errors in layout or alignment during the course 
of typing a structure are frequent and allowable. 
Errors are corrected by shifting color from black to 
white which causes the typewriter to punch the cur
rent X, Y coordinates. The carriage and platen are 
positioned to the error, and the error repeated using 
a whitening material under the key. Color is then 
returned to black, causing another set of coordinates 
to be punched (this set locates the beginning of the 
erroneous symbols to be deleted), and keying can 
then resume. This error correction scheme is similar 
to what is ordinarily used in typing and does not 
require any tape manipulation or repunching. 

INPUT PROCESSING 

During Phase I of the system, paper tape input is 
converted to a standard format by ( a) converting 
input codes to a concise internal computer repre
sentation which includes ~X and .Ll Y references; 
and (b) dealing out all coordinates and recording 
them in a separate table. Input data, as previously 
described, consists of strings of symbols followed by 



154 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

an X-Y pointer which refers to the beginning of 
the symbol string. 

This input data structure is altered both by re
coding input symbols and by removing X-Y coor
dinates from the data strings so that X -Y pointers 
are no longer embedded in the input stream. Symbol 
recoding is performed by look-up and derives for 
each input symbol a single character recode as well 
as a LlX, .Ll Y reference. For example, both upper 
dot (input code 322) and lower dot (input code 77) 
will have the same symbol recode (1); however, 
the upper dot will have Ll Y = -1 while the lower 
dot will carryaLl Y = + 1 .. A similar distinction· will 
be made (in terms of ,LlX = 0 or .LlX = 1) between 
spacing and non-spacing input characters. 

All the input data is read and held in core memory 
until an end-of-job code is found. The entire graph 
reference system is then normalized to the left-top 
corner of the total graph area by adjusting values 
in the X-Y table to the minimum X-Y values en
countered. The X-Y tables are then written out (on
to magnetic tape or disk) followed by all the input 
data which is written in small blocks of 225 symbol
LlX, Ll Y pairs. 

GRID PROCESSING 

Phase II of the system re-reads the X-Y table 
and a single block of recoded input data. The data 
strings are now to be mapped onto a two-dimen
sional grid or matrix in which the linear input se
quences will be reassembled into a coherent graphic 
system resembling (in form) the original structure. 

The dimensions of the grid are defined dynami
cally according to the maximum normalized X and 
Y values of a particular structure. That is, the length 
of each row is taken to be XMAX + 2 and the length 
of each column is YMAX + 4. (The factors of 2 and 
4 beyond the maximum values create an unused 
border of one column and one row around the struc
ture. This is useful for later processing.) For ex
ample, if a structure extends in the X direction a 
maximum of 22 cells, the 26 cells in the Y direction, 
grid rows would look like: 

Grid Row Core Addre~s 
(0) GRID to GRID + 23 
(1) GRID + 24 to GRID + 47 
(2) GRID + 48 to GRID + 71 
(3) GRID + 72 to GRID + 95 

(26) GRID + 600 to GRID + 623 

The maximum size of the grid is currently defined 
as 5940 cells or 66 disk sectors. 

A data symbol is mapped onto the grid by using 
both the X-Y references for the symbol string and 
also the .LlX-.Ll Y factors of the symbol itself. Since 
the Army Chemical Typewriter uses a three-row 

range for its input (e.g., /), the .Ll Y factor (-1, 

0, + 1) is added to the symbol string Y reference 
in order to locate the proper grid row (upper, mid, 
or lower). Similarly, LlX determines whether or not 
to step an X index to the next column. When a white 
color code is encountered, a correct-error flag is 
turned on. During the correct-error condition, all 
non-blank input symbols are stored as blanks, and 
erase the previous contents of the cell into which 
they are deposited. When a black color code is en
countered, the flag is turned off and normal data 
mapping resumes. If a data symbol is to be deposited 
in a cell which is already occupied, a check is made. 
If the two symbols are the same they are treated as 
one; if the two symbols are different, a vertex symbol 
( dot) is deposited on the assumption that this is 

an overstrike and that -1- and -; - are typo

graphically (though not chemically) equivalent. 

OUTPUT PROCESSING 

Phase III of the system consists of analyzing the 
chemical structure as it exists in its grid representa
tion; the analysis is in accordance with rules that 
will map the grid symbols into Photon control codes. 
These rules are based largely on the design of the 
Photon disk. Different chemical structure symbols 
on the Photon disk (specially designed for the ACS) 
can extend to 1, 2, or 3 rows of printing. Four varia
tions of this symbol exist on the disk: 

(two tOws} 

.~ :00 
extend. up 

(The single letters represent the Photon disk posi
tions of the symbols. ) Each of the four different 
variations can be used to represent the grid cell 
symbol/. 



COMPUTERIZED TYPESETTING OF COMPLEX SCIENTIFIC MATERIAL 155 

(two row.) (tltree row.) 

:fm ~ 
extends down extends up and down 

The choice among variations depends on what 
exists in the upper right and lower left cells adjacent 
to the / cell. 

(- = row bemg processed) 

RR 
~riJ 

Where (NV);;: any 
non-verfexsymbol 

·tlli 
Where· = 
a vertex dot 

·Em 
~ 
iii. -- -(NY) 

I 

. 

Photon Output 

(nolextended) 

CfulryeKtendecf) 

Cextendsup) 

Cextendsdown) 

In the case of single bonds, the processing rule is first 
to consider cells adjacent to the cells being analyzed; 
each of the four basic single bonds symbols has two 
significant adjoining cells: 

r 
I 
! 

1 
I , 
! 
I 
i 

I 
I 

LD V RD I 

" t / 

H~ SYM --. 

RD 

/ l " V 

H = Horizontal bond 
V = Vertical bond 

LD = Left Diagonal bond 
LR = Right Diagonal bond 

i 
I 
i 
! 

HI 
I 
I 
I 

LD 

A vertex dot discovered in either adjacent cell is 
a signal to consider a half extended character (2 
rows); vertex dots in both adjacent cells indicates a 
fully extended character (3 rows); no vertex dots in 
either adjacent cell requires flashing a non-extended 
character (1 row). If the grid cell being processed 
(rather than an adjacent cell) contains a vertex, 
then it is ignored; a grid row consisting entirely of 
vertices would not produce any output Photon codes 
except for leading and line drop. 

Processing rules for double bonds consist of going 
through the single bond procedure and then deter
mining whether to place the inner bond (it is a 
separate disk symbol) on the left or right, or upper 
or lower side of the single bond. The decision about 
where to place the inner bond (i.e., which inner bond 
symbol to use) is made by examining the adjacent 
bond symbols beyond the adjacent vertices. For 
example, assume cell 8 is being processed. 

The presence of vertex dots in cells 7 and 9 indicates 
an extended bond is to be used. The presence of 
"~" in cell 1 and "/" in cell 5 indicates that the 
inner bond to be flashed is an upper bond. In grid 
(b) the situation is reversed. Cell 3 is being proc
essed. "/" in cell 6 and "~" in cell 10 means that 
a lower inner bond symbol is to be selected from the 
disk. 



156 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

SUMMARY 

Computer programs for the setting of chemical 
structures, as in the case of our typesetting pro
cedures, are designed to be independent of input or 
output devices. Our philosophy is to work with 
available equipment but to design systems capable of 
utilizing new equipment as it becomes available. For 
example, in our current work on the setting of struc
tures, we have made use of the several tapepunching 
typewriters designed to reproduce representations of 
chemical structures. But already optical scanning for 
reading chemical structures into an information sys
tem has been described by workers at Chemical 
Abstracts Service.6 Character generators have now 
reached the prototype stage, and these devices with 
their capability of unlimited character selection and 
of output speeds upwards of 500 characters per 
second promise to widen the versatility of our exist
ing systems, both for input and output. 

But while the progress of current work and the 
promise of future hardware developments are speed
ing the full development of the use of computers in 
typesetting, the investigation of the role of com
puterized typesetting has developed an awareness 
that new concepts of information handling are now 
possible. The use of computers frees typesetting from 
its tie with the printed page and opens up a concept 
of information handling which begins with the en
coding process at the time the information is first 
processed for publication. The ability to handle all 

the complexities of scientific material via the com
puter is an important step toward realizing the full 
potential of information handling techniques of the 
future. 

ACKNOWLEDGMENT 

We wish to acknowledge our appreciation to the 
National Science Foundation for their support of 
this work under Grants GN-140 and GN-426. 

REFERENCES 

1. J. H. Kuney, B. G. Lazorchak, and S. W. 
Walcavich, 1. Chern. Doc., vol. 6, p. 1 (1966). 

2. A. Feldman, D. B. Holland, and D. P. Jacobus, 
1. Chern. Doc., vol. 3, p. 187 (1963). 

3. A. Feldman, Amer. Doc., vol. 15, p. 205 
(1964). 

4. J. M. Mullen, "Atom-by-Atom Typewriter In
put for Computerized Storage and Retrieval of 
Chemical Structures," 150th ACS Meeting, Atlantic 
City, N.J., Sept. 14, 1965. 

5. M. Gordon, private communication, Sept. 
1965 (Description of Friden Chemical Typewriter). 

6. W. E. Cossum and M. E. Hardenbrook, "Com
puter Generation of Atom-Bond Connection Tables 
from Hand-Drawn Chemical Structures," Proceed
ings of the A merican Documentation Institute, vol. 
1, pp. 269-275, Spartan Books, Washington, D.C., 
1964. 



A COMPUTER-ASSISTED PAGE COMPOSING SYSTEM 

Featuring Hyphenless Justification 

George Z. Kunkel 

Central Intelligence Agency 
Washington, D.C. 

INTRODUCTION 

The Central Intelligence Agency has a computer
assisted system for phototypesetting which is produc
ing fully made-up pages of high-quality text com
position on positive film. This system was developed 
by a team of representatives of the Printing Services 
Division (the Agency's printer) and the Agency's 
computer people. 

The system utilizes both customer tape-prepared 
as a by-product of manuscript typing-and tape per
forated in the composing room. All errors in key
boarding or formatting of data are eliminated before 
the material is cast on a Photon 513 phototype
setting machine. We make no corrections on the 
film. 

The computer plays an important role in the sys
tem, providing interim proofs, performing variable 
justification arithmetic for the elimination of hyphens, 
and furnishing a fully formatted Photon control 
tape. The system accepts a full range of tape, from 
basic tape furnished by the customer to tape fully 
formatted by the printer. 

We have found that our system makes high
quality type composition truly competitive with 
typewriter or cold type composition, because of the 
by-product tape, increased wordage per page, and 

157 

because of the ease of keyboarding, editing, and 
correcting. 

The system separates the functions of the author 
and the printer, allowing both to apply their par
ticular talents to doa job to the best advantage
word composition for the writer, typographic for
matting for the printer. 

When the Agency was offered the opportunity 
to present this paper it was asked to describe new 
or novel features of its computer-assisted photo
typesetting system. To me, as a printer, the entire 
project is new and novel. 

First, the development of the system demanded 
that we examine minutely, existing composing pro
cedures in order to find out what could be changed, 
and more importantly, what should be changed so 
that we could profitably introduce the digital com
puter into our typesetting and composing operations. 
The advent of the computer allowed us to change 
our procedures drastically and to make real improve
ments and savings in our composing operations. 

Although new equipment has from time to time 
been available to us, it has never enabled us to 
change our basic production procedures or work
flow. In the past it has always been necessary to 
perform proofreading and page makeup after type
setting-not because we liked it that way, but be
cause there was no other way. Now, with the aid 



158 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

of the computer, we can read an intermediate proof, 
produced on the lineprinter, correct by updating 
the original file until it is to our liking, and then 
perform page makeup, receiving a summary page 
makeup proof of these efforts, and, when every
thing is deemed proper, request a tape with which 
a phototypesetting device can cast fully made-up 
pages on film. 

Secondly, because of the intermediate lineprinter 
proof, we can ask our customers (authors) to supply 
paper tape along with their manuscript and use 
this by-product tape for original input to the com
puter. The printer, by adding to the data via the 
update capability, can supply format sophistication 
or whatever else the author was unable to include. 
Customer tape lessens the keyboarding and proof
reading tasks for the printer and does not penalize 
the author. 

These two advantages just noted are basic to our 
page composing system. The novelty lies in changed 
procedures made possible by the computer, and 
in customer involvement in source machine language. 

BASIC FLOW, EQUIPMENT, AND PROGRAMS 

The system begins with the production of manu
script by the customer's typist and ends with a fully 
composed page on film, ready for platemaking. 

The major items of equipment and programs 
used are as follows: 

Input devices, producing endless paper tape: 
Flexowriter 
Dura Mach 10 
TTS perforators 
Royal McBee typewriter 

Processing equipment: 
Paper tape to magnetic tape converter 
360/65 and peripheral gear 
1403 lineprinter 
Paper tape punch 

Casting equipment: 
Photon 513 

The three main computer programs used are: 

1. Phase 1 Program, in which records with indices 
are created. These data are separated into records 
of justified lines, each with an index describing the 
typographic environment of the line as well as the 
line number and the addresses of words within the 
line. Phase 1 also handles the updating of Phase }. 

records after correction by the printer. Corrections 
are effected by the punching of paper tape repre
senting the revisions as noted on the lineprinter 
proof produced by the Phase 1 utility print program. 
Phase 1 final outputs are a magnetic tape and a 
lineprinter proof. 

2. Phase 2 Program, in which the printer's in
structions for the arrangement of text on a page are 
performed. The products of this program are a 
detail tape for later use with Phase 3, and a sum
mary page makeup lineprinter proof of the results 
of Phase 2 processing. Phase 2 does not alter the 
Phase 1 data in any way. It processes data in the 
Phase 1 tape so as to determine if the page, as 
formatted by the printer will fit the page image 
area according to the rules of leading. 

3. Phase 3 Program, in which the detail tape of 
Phase 2 and the final updated tape of Phase 1 are 
processed so as to produce a Photon control tape. 

The system flow is this: 

Phase 1 
Keyboarding 
Computer 

processing 
Proofreading 
Correction, 

verification 
Computer 

up-date 

Phase 2 
Page makeup 
Computer 

processing 
Verification 

Phase 3 
Computer 

processing 
Photon 

casting 

As can be seen from the table, Phase 1 consists 
of: basic keyboarding (with whatever sophistication 
the customer is capable of producing); Phase 1 
processing (justification and record establishment); 
proofreading and copy preparation; correction key
boarding and verification; and Phase 1 reprocessing 
for updating of the file. 

Phase 2 consists of: page makeup instructions 
(keyboarded by the compositor); Phase 2 proc
essing; and verification of a summary print. 

Phase 3 consists of: Phase 3 processing to pro
duce Photon control tape; and casting of material 
on the Photon. 

With this basic flow in mind I will now run 
through it in some detail and emphasize the things 
which we feel are important. 

DETAILED FLOW, PROCEDURES, AND 
PROGRAM DESCRIPTIONS 

Basic keyboarding has received considerable effort 
from our group. We have developed typewriters 
with considerable editing capabilities. These 



A COMPUTER-ASSISTED PAGE COMPOSING SYSTEM 159 

machines, in the hands of competent typists, can 
greatly simplify and expedite redrafting of revised 
manuscript in the customer's office. 

The typist can, while revising a tape, take con
trolled jumps at 40 characters per second by word, 
line, paragraph, or page. Insertions, deletions, and 
substitutions to the original tape can be made 
swiftly and accurately. 

Generally speaking customer tape contains very 
little sophistication insofar as typographic formatting 
is concerned. 

The reasons for this are that writers or authors 
are primarily concerned with the production of their 
writing (basic data) and not the ultimate format, 
and typists, for the most part, are not knowledgeable 
of typographic requirements. 

After the basic typing is completed the customer 
forwards his tape for computer processing. Then 
there are two elective procedures: (1) the customer 
can update the lineprinter proof, or (2) he can 
forward it to the printer for formatting and produc
tion. 

Phase 1 processing is accomplished as follows: 
The paper tape is transferred to magnetic tape 
and the data are then fed into the Phase 1 program. 
The text is justified according to the font, point 
size, and measure prescribed in a control message 
which precedes the data. Each justified line or 
record is accompanied by a program-generated index 
which describes all the typographic features, or 
environment of the line as well as its record number 
and the core position of each word in the line. 

This is the method by which the "endless" data 
are broken up into records and the record index 
is established: The amount of alphanumeric data 
to be contained on a record is determined by the 
rules for justification. The variable justification tech
nique makes this step swift with no detours for 
hyphenation routines. During the justification step 
the typographic facts of the line are recorded in an 
index. Also recorded in the index are the addresses 
of the first letter of each word in the line. This is 
extremely useful to the update routine. The total 
facts recorded are: 

Line number of record. 
Quad condition of line. This tells how the 

deficit space should be distributed in 
the line. 

Lens size. 
Measure. 

Set-size and set-multiplier. These are data 
necessary for Photon casting. 

Font condition of first character, and 
Shift condition of first character. These 

two items are essential when updating. 
Presence of accents, symbols, or piece 

fractions. These data are used in the 
print and punch programs. 

Deficit space to be generated for justifica
tion. This is used in punch program. 

Line-ending code. Necessary to the update. 
Error indicator. This is used by the print 

program. 
Extract flag. 
Update indicator. Used to flag lines on an 

updated lineprinter proof. 
Normal vertical value of line. Used by 

the page makeup program and print 
program. 

Expansion and contraction factor for verti
cal space. Used by the page makeup 
program. 

Total paragraph vertical space. This ap
pears as a paragraph total on the line
printer proof. 

Column vertical value. Used in page 
makeup. 

Special indention indicator. Used by the 
punch program and print program for 
special formats. 

Word number index. Used by the update 
routine. 

Ultimately the record length, after Phase 1 
processing, becomes 504 positions, 300 for data, 
and 204 for the index. The index is utilized on 
subsequent passes to supply information necessary 
to the update routine, the print program, the page 
makeup program, and the punch program. The 
program was written originally in Autocoder for 
the 7010 and amounted to 36 inches of tab cards. 
It has subsequently been rewritten for the 360 in 
ALC (assembly language coding) . 

The justification processing is fast-in the neigh
borhood of 275 records per minute for original 
Phase 1 processing. Updating speed depends on the 
number of corrections. Only revised words and 
lines need to be run through Phase 1 justification. 
Unchanged material is transferred intact to the new 
Phase 1 output tape. 

Phase 1 will process a tape with any degree of 



160 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

typographic complexity which a typist is capable 
of entering into the record. However, as mentioned 
previously, most of our customers are not interested 
in producing more than basic data tape, and are 
relying on the printer to apply format indicators 
and other refinements by way of the Phase 1 update. 
The Phase 1 program will not discontinue because 
of input errors. This can be stated as a "Garbage 
in, Goodies out" program. Keyboarding is very 
simple-it consists of a basic font and, with the use 
of the start and stop precedence codes the entire 
capability of the composing device is available at 
the end of the system. There are 16 floating accents, 
360 symbols, font selection (12 fonts in 12 point 
sizes), as well as many other things. All are easily 
keyed by an operator. 

Proofreading and copy preparation are the pri
mary tasks performed at this stage. This is. not 
the traditional paired reading, it is called a "silent 
reading." The purpose of this reading is to read 
for sense, mark typographic errors, indicate special 
symbols and accents, and to perform typographic 
formatting. Paired reading has been eliminated for 
that material produced from customer tape. 

The system provides the reader with a lineprinter 
proof which is as easy on the eyes as we could 
make it. Capitals and lowercase letters, superiors 
for word numbering, floating accents (Fig. 1). 

The proof is informative-containing all the ap
propriate typographic information needed by a 
proofreader in a clean and unambiguous manner. 
Notice the accents, format indicators, vertical values 
for paragraphs. This proof gained immediate ac
ceptance by our proofreaders because of ease of 
reading and because it presented the necessary 
information to them. It is an incomparable improve
ment on the all cap proof usually available from a 
lineprinter. 

After proofreading, corrections are punched on a 
Flexowriter-all calls for typographic formatting, 
accents, symbols, and special formats appear in· red 
(second line of Fig. 2), as the ribbon shift and rib
bon unshift are the precedence start and stop codes, 
respectively. 

This hard copy serves as the revised proof and 
is verified by a proofreader for accuracy before 
the tape is forwarded for processing. 

The eight digits on the left are the line and word 
addresses of the beginning and ending of the correc
tion address. A correction can only affect the area 
addressed and' the Phase 1 program·· is written to 

maintain the font and shift integrity of material 
without the confines of the correction address. 
The maintenance of integrity by the computer elimi
nates any possibility of inadvertently damaging text 
elements other than those addressed. This feature 
of the program, we feel, is valuable and unusual. 

The correction data are then run through Phase 1 
against the original record, and again a proof is 
produced. This proof is then used to perform page 
makeup instructions. 

Page makeup instructions are prepared by the 
printer after the Phase 1 proof has been declared 
correct. The human processes for this stage are 
makeup planning and keyboarding of the instruc
tions on a Flexowriter. Makeup planning is done 
with the use of the Phase 1 proof, an adding 
machine, and a planning form on which the makeup 
planner enscribes his decisions. The first action is 
to prepare the page makeup program control mess
age. This message, which requires 72 keystrokes, 
contains the basic parameters for processing. Infor
mation included in this message is: 

Program selection indicators. 
Job number. 
Number of columns. 
Beginning page number. 
Whether running heads are to be gen

erated. 
Whether running feet are to be generated. 
Whether out-of-reading-sequence material 

(inserts) will be used. 
Space between columns. 
Horizontal image width. 
Space between running head and text. 
Space between text and running foot. 
Basic column width. 
Allowable expansion and contraction limits 

for leading. 
Vertical depth of the page. 

The second step to page makeup is to determine 
the Phase 1 lines to be included on a page. The 
Phase 1 proof displays the normal leading value 
of each paragraph. The value is expressed in points 
(1/72 of an inch). The makeup planner knows 
that each Phase 1 record's vertical value may be 
expanded or contracted as instructed in the control 
message. His problem lies in prescribing a suitable 
number of Phase 1 records to a page which by 
program-controlled leading expansion or contrac-



001 76 

001 77 

001 18 

001 79 

001 80 

001 81 

001 82 

001 83 

001 84 Ql 

001 85 

001 86 

001 87 

001 88 

001 89 

001 90 

001 91 

001 92 

001 93 

001 94 

001 95 

A COMPUTER-ASSISTED PAGE COMPOSING SYSTEM 

old Mr. Rodman died, in the fall of 1790; and, in the 
01 O~ 03 0_ 05 06 07 08 09 10 11 1~ 

ensuing iliinter, both his daughters perished of the small-
01 O~ 03 0_ 05 06 07 08 09 

pox, within a few weeks of each other.~Shortly afterwards 
01 02 030_ 05 06 07 08 09 10 

(in the spring of 1791), Mr. Julius Rodman, the son, set 
01 02 03 0_ 05 06 07 08 09 10 11 

out upon the expedition which forms the subject of the 
01 O~ 03 0_ 05 06 07 08 09 10 

followin;J pa:jes.eReturning from this in 1794, as 
01 02 03 0_ 05 06 07 08 

hereinafter stated, he took up his abode near Abingdon, 
01 O~ 03 0_ 05 06 07 08 09 

in Virginia, where he married, and had three children, 
01 O~ 03 0_ 05 06 07 08 09 

and where most of his descendants now live. 
01 02 03 07 08 

ewe are informed by Mr. James Rodman that his 
01 02 03 0_ 05 06 07 08 09 

:jrandfather had merely kept an outline diary of his tour, 
01 02 03 0_ 05 06 07 08 09 10 

juring the many difficulties of its pro:jress; and that the 
01 02 03 0_ 05 06 07 08 09 10 

MSS. with which we have been furnished were not 
01 02 03 0_ 05 06 07 08 09 

iliritten out in detail, from that diary, until many years 
01 02 03 0_ 05 06 07 08 09 10 

afterwards, when the tourist was induced to undertake 
01 02 03 0_ 05 06 07 08 , 
the task, at the instigation of M. Andre Michau, the 
01 02 03 0_ 05 06 07 08 09 10 

botanist, and author of the >f02<Flora Boreali-Americana, 
01 02 03 0_ 05 06 07 08 ,. , 
>fOl<and of the >f02<Histoire des Chenes d'Amerique. e>fOl<M. 
01 02 03 0_ 05 06 07 08 

Michau, it will be remembered, had made an offer of his 
01 02 03 0_ 05 06 07 08 09 10 11 

services to Mr. Jefferson, when that statesman first 
01 02 03 0_ 05 06 07 08 

Figure 1. Phase 1 lineprinter proof. 

161 

tion, will suffice to produce a vertically justified 
column. The lines to be included are designated by 
the inclusive line addresses as shown on the Phase 1 
proofs, and a column prefix letter (leftmost column 
is "a"). As an example the instruction for a one
column page might be "a00107-00157." This in
struction obviously, would result in a final page 
with the 51 lines addressed contained in it. The 
lines will have been adjusted (leaded) to comply 
to the prescribed depth by the Phase 2 program. 
Another tool of page makeup consists of an instruc
tion to insert material from a Phase 1 stepchild 
tape containing material for footnotes or figure 
captions. This material was identifi~d at Phase 1 

keyboarding time by an extract request e5. The 
Phase 2 program searches the Phase 1 records 
and transfers all lines so flagged to an insert tape. 
This material is requested by the makeup planner 
by adding an additional prefix letter"i" to the line 
address required. For example, "a00107-00157, 
ai00101-00106.", would result in a one-column page 
with a footnote. 

The makeup planner must also provide space 
within columns for the insertion of graphics. This 
job cannot be done prior to page makeup, for the 
exact position of the figures cannot be determined 
without simultaneously knowing the pagination 
breaks. A figure insertion is requested as "af270," 



162 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

J. 1-20815 Upd;;,.te 7-21-66 

cl,r,l,l-20815,101-101,fOl-m332-110-v00720,08-15-66 ,6, 

pOCl 
1 )iCGl l107g12ntle 
]1083109thlnk 
pOC2 
93019302Greenwlch 
pOQ3 
22>02?e03for-ty
zend 

End Update 

Figure 2. Flexowriter proof (lines 2 and 10 are in red in 
the original), 

which means that column "a" will have 270 points 
of blank space reserved for a graphic insert. 
For example, "a00107-00137,ai0010l-00l06, 
af270", would result in a page with 31 lines of 
text and the blank space for a picture. Vertical 
space requests may be assigned to one, two, or three 
columns by prefixing, as "abc270". This would 
place blank space of 270 points in depth in three 
columns. Text lines may also be multicolumn-as
signed in the same manner. 

Subsectioning of pages, that is a specific vertical 
depth justification within the page depth justification 
may also be accomplished. In this case the planner 
describes the depth of the subsection and then the 
elements to be equalized, as: "s250,a0010l-00120 
xbOOI21-00140;" which requests that the "a" 
column and "b" column material each be made 
equal to 250 points in vertical depth. 

The sequence of elements within the instruction 
determines their ultimate sequence on a page. 

Keyboarding consists of punching a tape from 
the makeup planner's form. This is done on a Flexo
writer. The hard copy is verified before the tape 
is forwarded to the computer room (Fig. 3). 

The Phase 2 program performs 3 major tasks: 
column segregation, leading contraction and/or ex
pansion, and the creation of a detail tape from which 
a Summary Page Makeup Proof can be generated, 
and which can also serve as input to Phase 3. 
Input consists of: 

The ultimate Phase 1 tape. 
The page makeup instruction tape. 
The Phase 2 program tape. 

Output consists of: 

A detail tape. 
A summary listing (for verification by 

the printer). 

This page makeup system bypasses entirely the 
traditional metal assembly steps and equipment. 

The summary listing flags any page makeup in
struction which has not met the specifications for 
leading contraction or expansion to accomplish col
umnar justification (Fig. 4). Notice also that the 
running heads and feet have been generated for each 
page. 

The Phase 3 program utilizes the output of the 
Phase 2 program and the Phase 1 tape to c~nstruct 
an output tape which will control the off-line punch
ing of the Photon 513 control paper tape. The pro
gram arranges the lines for sweep casting. It calculates 
the leading codes to be output-these are not the 
same as those indicated in the column tapes-they 
represent the comparative difference in vertical loca
tion of column lines cast in a sweep. The program 
also generates running heads and feet and page num
bers. The program interprets all typographic instruc
tions and translates them to Photon machine 
language. 

Flexibility is a feature of the system-it will 
accept unverified 6, 7, or 8 level tape-typography 
is limited only by the capability of the casting device. 
The material can be updated as often as necessary. 
Page makeup can be 1, 2, or 3 columns, with or 
without illustrations. 

PROGRAM SUMMARIES 

Now a word about the computer programs used 
with this system. They are quite complex. They bear 

c2,p,l,l-30815 
e2,cl,w216, 

,101-101,c3,vo0720,g025,p001,h018,f018,y,y,y, 

:ll:J011 G-00177 ,al00107-0011 0, 1.'132tl, lJ0017P.-00212xc00213-002116, 
clOOll'-C011' joc100112-00114, oOC3[;o-co!.:rl+, c001105-oo422., 
cl00115-00115. 
zend 

End Page Eakeup 

Figure 3. Page makeup instruction proof (lines 2, 3, and 
7 are in red in the original). 



A COMPUTER-ASSISTED PAGE COMPOSING SYSTEM 163 

JOB NO. 1-20815 VERT.DEPTH 00120 NO. OF COL. 2 

fll 

SECTION 

Fll VOL IV 

COL. 

A 
B 

THE JOURNAL OF JULIUS RODMAN 

ELEMENT 

00229-00289. 
00290-00349. 

014 

PAGE 002 

Figure 4. Summary page makeup proof. 

very little relationship to computer programs written 
for a slug-casting machine operation. The specifica
tions for the Phase 1 program include an updating 
requirement. The instructions for this requirement 
were that it must be "as conservative as possible of 
keystrokes to an operator." Consequently eight key
strokes are all that are required for addressing the 
beginning and end point of a correction. A correc
tion may be the deletion of data, addition of data, 
or the substitution of new data for old. 

The Phase 1 program must deal with 17 inter
acting factors which can modify a line. A change in 
any of these factors always affects the bookkeeping 
(addresses) and typographic environment of a line, 
and consequently the line index. The program must 
remember the shift and font modifiers of every word 
in a line. The update portion of the program has 
been written so as to maintain the typographic char
acteristics of material not addressed for correction. 
Thus a keyboard operator need only concern himself 
with correcting errors and not confuse himself with 
concern for the effect of his corrections on the data 
subsequent to, or following the correction address. 
We have dubbed this feature "maintenance of typo
graphic integrity." 

The Phase 1 program accepts unverified input 
data-the only thing that must be flawless is a 50-
character control message to initiate the program 

and to set up the constants necessary for the pro
gram to begin processing. 

The program handles 52 discrete input codes and 
considerable precedence-code-bracketed material by 
which typographic requirements are related to the 
text. The program handles measure change, font 
change, lens change, quadding, indexing, floating 
accents, special symbols, and piece fractions as well 
as compound instructions for special formats within 
ajob. 

Keep in mind that the program handles these 
things in the update routine as well as when originally 
processing. 

Input errors in the precedence-code-bracketed 
material are flagged by the computer and the ques
tionable data printed in the text. The program 
continues processing, using the last known param
eters. The ease and flexibility of updating makes 
correction of these flaws in data very easy for the 
operator. 

The print program for Phase 1 also does a yeo
man job. Besides printing capital and lowercase 
letters it produces any of 16 floating accents over or 
under (whichever is appropriate) any letter on the 
chain. 

The page makeup program-Phase 2-adjusts 
leading values in from one to three columns of text, 
justifies the columns to be a specified overall depth 



164 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

and will, when instructed, justify portions of col
umns within the overall depth to prescribed pa
rameters. 

It produces data for running heads and running 
feet, controls page numbering, inserts footnotes and 
vertical space for graphics, and then produces a sum
mary proof of the pages it has "theoretically" con
structed, with occasional chiding remarks to the page 
makeup man when he has asked for some impossible 
page design. 

Phase 3 collates the records of a Phase 1 tape 
into their column sequences as indicated by the 
Phase 2 detail tape and then reconstructs them in 
casting sequence for the Photon. It must prescribe 
the most efficient XY movements to accomplish 
casting and punch all characters and functional con
trol codes for the Photon. 

The programs represent the product of a mag
nificent effort by the data processing people of the 
Agency to write programs that are useful, depend
able, and efficient. 

HYPHENLESS JUSTIFICATION * 

An important and, we believe, novel feature of 
our system is hyphenless justification. By taking ad
vantage of the Photon's set-size-change capability, 
the Phase 1 program seldom has to produce a word
dividing hyphen. This results in extremely rapid 
processing in Phase 1 and allows the use of core 
and peripheral gear for things other than hyphenation 
logic. Set size variation is NOT letterspacing. It 
produces words whose horizontal letter proportions 
are not changed as they are in letterspacing. This 
is of benefit to the reader because it is visually 
smoother and because end-of -line hyphens do not 
interrupt his reading. 

The arithmetic advantage can be explained as 
follows: 

Metal linecasting justification is accomplished by 
adding the widths of the characters in a line to the 
widths of the expanded interword spaces so as to 
achieve a predetermined measure. 

width of characters + spaces = line length 

This arithmetic allows for one variable~the space
band. Using this system you will get a certain num
ber of end-of-line hyphens for a given number of 

* Hyphenless justification was the subject of articles which 
appeared in the April 1965 issues of Datamation and Print
ing Production. 

lines, depending on the type size, measure, and 
alphabet length of the font. 

The standard justification arithmetic for the Pho
ton is approximately the same: 

width of characters + spaces X set size 
= line length (in units) X set size 

Here is the arithmetic as before in the linecasting 
justification with still one variable~the interword 
space. There is one other factor in the formula, the 
set size. This must be in the computation in order to 
allow for the horizontal area of the letters at the 
different point sizes available. Twelve different point 
sizes can be set from one font. Still the same result~ 
hyphens. 

The following formula shows a variation in the 
arithmetic that gives us hyphenless justification: 

width of set size 1 
characters, or 

in units set size 2 line 
+ X or length, X set 

spaces, set size 3 in units size 
in units or 

set size 4 

It works like this: Make two of the factors variable; 
make the set size variable as well as the interword 
space. 

Figure 5 shows the effective increase in justifica
tion range by comparing the standard method for 
justification to our method. The band at the top of 
the figure represents the units of relative value neces
sary to set a 20-pica line using one set size-10. It 
points out that the justification range of this line, 
assuming it had 5 spaces in it, would be 50 relative 
value units. The minimum for a space being 4 units 
and the maximum desirable space 14 units or 10 
units of expansion for each space. The computer 
must turn out a line with precisely 426 units in it, 
and find a place to end the line within the justifica
tion range of 50 units-this is approximately 7 char
acters. If it can't find a legitimate line ending point 
it has to try to find a place to drop in a hyphen and 
it has to find the right place. 

The second band (Fig. 5) represents the same 
measure but shows the increased range accomplished 
by allowing a choice of set sizes-in this case four. 
The 4 set sizes give us a choice of 4 lines measured 
in terms of the relative value to accomplish our 20 
pica measure~from the minimum of 387, to the 
maximum of 448, a range of 61 units. This, added 
to the range of the 5 spaces gives us a total range 



A COMPUTER-ASSISTED PAGE COMPOSING SYSTEM 165 

e SPACE 
EXPANSION 

MrNIMUM MAXIMUM 

426 

387 
or 

.406 

UNITS x 

.426 
or 

.4.48 
UNITS 

10 

x 

,20 -- pIcas 

9.5 
10 = 
10.5 

20 
picas 11 

.426 

SET SIZE 
EXPANSION 

448 

'-- INCREASE...,,/' 
RANGE 

SPACE 
EXPANSION 
(50 units) 

+ SET SIZE 
EXPANSION 
(61 UNITS) 

-- 15 CHARACTERS 

(111 UNITS) 
Figure 5. Justification range comparison for a 20 pica line with 5 spaces. 

of 111 units or 15 characters. This is quite an edge 
to carry into the fray. In order to stall this system 
a 16-character word would have to be the last word 
in the line. From experience, we have determined 
that this system will go indefinitely without the need 
for an end-of-line hyphen. We are using it primarily 
on a 20-pica line of 10-point type and very rarely 
have had to put in a hyphen. As in normal type
setting the fewer the spaces, the shorter the justifica
tion range, but as long as we have a single interword 

space at 20 picas we have 71 units in which to get 
an end-of-line hit. When the computer does get 
stalled on a rare line, it is programmed to drop the 
hyphen in the offending word using the normal set
size value, so that there will be plenty of room for a 
printer to make a correction on a subsequent pass 
through the computer. Most of the lines are pro
duced at the normal (that is the recommended) set 
size. The extremes occur only occasionally. 

unexplored region." It is, moreover, 
the only unexplored region within the 
limits of the continent of North America. 
Such being the case, our friends will 
know how to pardon us for the slight 
amount of unction with which we have 
urged this Journal upon the public 
attention. For our own parts, we have 
found, in its perusal, a degree and a 
species of interest such as no similar 
narrative ever inspired. Nor do we 
think that our relation to these papers, as 
the channel through which they will be 
first made known, has had more than a 

Figure 6 shows hyphenless text. 

1784 (being then about eighteen years of 
age), with his father and two maiden 
sisters. The family first settled in New 
York; but afterwards made their way to 
Kentucky, and established themselves, 
almost in hermit fashion, on the banks of 
the Mississippi near where Mills' Point 
now makes into the river. Here old Mr. 
Rodman died, in the fall of 1790; and, in 
the ensuing winter, both his daughters 
perished of the small-pox, within a few 
weeks of each other. Shortly afterwards 
(in the spring of 1791), Mr. Julius 
Rodman, the son, set out upon the 

Figure 6. An example of hyphenless text. 

contemplated sending an expedition across 
the Rocky Mountains. He was engaged 
to prosecute the journey, and had even 
proceeded on his way as far as Kentucky, 
when he was overtaken by an order from 
the French Minister, then at Philadelphia, 
requiring him to relinquish the design, 
and to pursue elsewhere the botanical 
inquiries on which he was employed by 
his government. The contemplated 
undertaking then fell into the hands of 
Messieurs Lewis and Clarke, by whom it 
was successfully accomplished. 

Continued on Page 48 



166 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

This feature of the system is indeed unique, both 
for the fact that for all practical purposes we have 
no hyphens, except for compounding, and because 
of the method by which end-of-line hyphens are 
avoided. We have perhaps the only computerized 
typesetting system which produces hyphenless com
position of high quality without letterspacing. This is 
why we have not had to develop a hyphenation pro
gram. We can use our computer capacity for more 
useful purposes. 

MISCELLANY 

Hyphens 

Some of the thinking and sweating that went into 
our decision to go with this system of hyphenless 
justification went like this: 

The hyphen at the end of a line is a device in
vented years ago to solve a problem-it does not 
help a reader or improve understanding, or serve 
any grammatic purpose. Its use is indefensible except 
as a method of ending a justified line when the 
justification method cannot end the line at a natural 
breaking point-the end of a word. 

Other niceties of typography are necessary and 
defendable-capital and lowercase letters, justifica
tion, variable width letters-and at the risk of sound
ing pedantic, I think it is important to go on record 
as to why these niceties are necessary. 

Upper and Lowercase Print Chain 

In the development of goals, and subsequently, 
the specifications for the computerized typesetting 
system and the concomitant computer programs, the 
computer members of the team properly asked the 
printers about the necessities of our time-honored 
requirements of typography relating to the compo
sition of text. 

These questions sound childish but what they 
point out is that in the marriage of composing and 
computing a modus vivendi must be worked out 
which is based on real need and real capability, not 
on maintaining habits and traditions whose reason 
for existence is lost in antiquity. 

The first question was: "Why do you need capital 
and lowercase letters on your print chain?" These 
facts were offered: 

Capitals and lowercase letters are more "legible" 
-this means "capable of being read or deciphered." 

Lowercase letters are less subject to misreading, as 
for example compare the capitals Q and 0, or F 
and E to the minuscules q and 0, and f and e. 

Groups of letters comprising a word produce a 
more recognizable shape when composed of minus
cules rather than majuscules. Words produced in all 
caps produce only quadrangular shapes varying only 
in length. Lowercase words not only vary in length 
but the presence of letters with ascenders and de
scenders creates distinctive word shapes. 

The use of both capital and lowercase letters is 
essential to assure that proper interpretation of the 
thoughts of a writer are passed on to the reader 
without ambiguities. For example, this question in all 
caps or all lowercase defies accurate interpretation: 

WHERE IS JOHN BROWN? 

The question could mean: Where is John brown? 
or Where is John Brown? 

Monospacing 

A question related to the previous one is: Why do 
you want letters of variable width? Why not mono
spacing? 

The shape and size of the letters of the alphabet 
have evolved by what can be compared to the "law 
of natural selection." 

The letters we use today are the survivors of thou
sands of symbols which have in the past been used 
to represent sounds. Each letter of our present 
alphabet is separately recognizable by its design and 
comparative shape as well as being capable of meld
ing with adjacent letters to form words which are a 
distinct entity even though comprised of singularly 
discrete symbols. 

Monospacing requires that letters which should 
be naturally slim be made wider and conversely let
ters naturally wide be compressed so as to conform 
to a monospacing norm. This may be mechanically 
advantageous but the advantage is gained at the 
expense of the reader. The crudity of the printed 
material is accepted by the reader as a necessary 
evil but not as desirable. 

Even Right Margin 

The next question the computer people asked us 
was: Why do you need to justify your text lines? 
Why not let them run ragged? 



A COMPUTER-ASSISTED PAGE COMPOSING SYSTEM 167 

To defend this requirement I will offer admittedly, 
a somewhat abstruse answer, replete with logic, per
haps not Boolean, but still logic. 

A line which does not fill a measure marks the 
end of a paragraph. 

Words are elements of a sentence, a sentence is 
a complete thought, and a paragraph is a group of 
related thoughts. Therefore the existence of a justi
fied line implies to the reader that the group of 
related thoughts has not ended and that more will 
follow. Conversely the short line indicates the end 
of a group. Whether or not the reader is consciously 
aware of the reasons for justification is not impor
tant-what matters is that his mind is led effortlessly 
and naturally from thought to thought and group to 
group. And, of course, there can be no question but 
that even right-hand margins greatly improve the 
appearance of a page. 

Agreement of all team members to the necessity 
for capital and lowercase letters, variable width 
characters, and justification of lines of text was at-, 
tained. The problem that next presented itself was 
determining how to chop up a fixed sequence string 
of characters so as to fill a line of a prescribed 
measure. 

More on Hyphens 

At first, we investigated existing information on 
programmed hyphenation. We quickly came to the 
conclusion that there was no foolproof way to ac
complish proper hyphenation with complete accu-

racy, and that whatever route we took for doing it
logic, dictionary, or a combination of the two, the 
program would be large and use up a sizable amount 
of computer core and processing time. 

The use of fixed letterspacing was discarded as 
a means of extending the justification range because 
it destroyed the proportional balance of the letters. 
Increasing the acceptable interword space was also 
discarded as being disruptive to the reader. When 
we hit upon varying the set size to increase justi
fication range it enabled us to preserve letter balance 
and control interword space. Variable set-size justifi
cation solved our problem-without sacrificing 
readability. 

SUMMARY 

In summary, we feel that a few of the novel fea
tures of our system are: 

1. Customer tape-tape produced as a 
by-product of manuscript typing. 

2. The change in workflow made possible 
by the computer. 

3. The cap and lowercase lineprinter 
proof with floating accents. 

4. The environmental index to Phase 1 
records. 

5. Maintenance of integrity of shift, font, 
and measure during updating. 

6. Hyphenless justification. 
7. Page makeup flexibility. 





A GENERAL METHOD FOR PRODUCING 
RANDOM V ARIABtES IN A COMPUTER 

George Marsaglia 

Boeing Scientific Research Laboratories 
Seattle, Washington 

SUMMARY 

Many random variables can be approximated quite 
closely by c(M + V 1 + V 2 + V 3), where c is con
stant, M is a discrete random variable, and the V's 
are uniform random variables. Such a representation 
appears attractive as a method for generating variates 
in a computer, since M + V 1 + V 2 + V3 can be 
quickly and simply generated. A typical application 
of this idea will have M taking from 4 to 7 values; 
the required X will be produced in the form c(M + 
V 1 + V 2 + V 3) perhaps 95-99% of the time, and 
occasionally by the rejection technique, to make the 
resulting distribution come out right. This paper de
scribes the method and gives examples of how to 
generate beta, normal, and chi-square variates. 

INTRODUCTION 

Given a sequence of independent uniform random 
variables V 1 , V 2 , ••• , we are concerned with meth
ods for representing an arbitrary variate X as a func
tion of the V's. Such representations lead to pro
grams for generating X's in a computer. There are 
any number of ways to represent X as a function of 
the V's; the problem is to find those which lead to 
fast, accurate, easy to code programs which occupy 
little space in the computer. 

Programs which are very fast and accurate may be 

169 

based on representing the density of X as a mixture 
of "easy" and "difficult" densities, the latter being 
called for infrequently. See Ref. 2 for a general dis
cussion and Refs. 1 and 3 for applications to normal 
and exponential variables. These programs are very 
fast, but at the same time they are rather complicated 
and require hundreds of stored constants. In this 
paper, we will try to develop a general method that 
is simpler, but still very fast. The procedure will be 
explained by way of three examples (a beta variate, 
the normal distribution, and a chi-square variate), 
from which the suitability of the method and its gen
eral applicability can be inferred. These points are 
discussed in the final section. 

Throughout this article, we will use f(x) to repre
sent the density of V 1 + V 2 + V 3, with the V's in
dependent, uniform over [0,1]. This density is a 
piecewise parabola, once differentiable, or, if you 
prefer, a parabolic spline curve: 

n~: -1.5 (x-I)' 
f(x) =l.~x' - 1.5(x-l)' + 

A BETA VARIATE 

0:S;x:S;1 
1:S;x:S;2 

1.5 (X_2)2 2:S; x:S; 3 

x < 0 orx > 3. 

We want a method for generating a variate X with 
a beta density, say b(x) = 105x4(l_X)'2, 0 < X < 1. 
Our aim is to generate X in the form c (M + V 1 + 



170 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

V 2 + V s) most of the time, occasionally generating 
X by the rejection technique in order that the result
ing mixture be correct. A good choice for c in this 
case is .1. We will generate X in the form .1 (M + 
VI + V 2 + Vs) with as high a frequency as possi
ble. That is, we will put X = .1 (0 + VI + V 2 + 
Vs) with probability Po, put X = .1 (1 + VI + V 2 
+ Vs) with probability PI, put X = .1 (2 + VI 
+ ... + Vs) with probability P2, . .. , and put X = 
.1 (7 + VI + V 2 + V 3 ) with probability P7' It turns 
out that we must put Po = 0, since b(x) varies as 
x 4

, while f(x) varies as X2, at the origin. We can, 
however, fit b(x) very closely with a mixture of the 
densities of .1(1 + VI + V 2 + Vs), .1(2 + VI + 
V 2 + Vs), ... , .1(7 + VI + V 2 + Vs). We may 
formulate the problem of finding the best set of p's 
as follows: 

Choose PlJP2, ... , P7 so as to maximize 

PI + P2 + Ps + P4 + P5 + P6 + P7 

subject to the condition that P'i ~ 0 and 

PI[10j(10x-1)] + P2[10f(10x-2)] 
+ ... + P7 [10f(10x-7)] :::; 105x4(1-x)'2 

for 0 :::; x :::; 1 ( 1 ) 

This optimization problem is similar to those of 
linear programming-in fact, if we specify condition 
( 1) for a suitably fine mesh of x values, we have an 
ordinary linear programming problem. We find that 
we can get PI + . . . + P7 very close to 1, in fact 
LPi = .9915, and still maintain condition (1). Thus 
we write 

7 

105x4 (1-x)2 = ~ pi,[10f(10x-i)] + .0085h(x) 
i=I 

for 0 :::; x :::; 1, 

where the p's are, in order, .0199, .0633, .1297, 

.1978, .2369, .2155, and .1284, and LPi = .9915. 
The residual function g(x) = .0085h(x) is drawn 
in Fig. 1. We may generate X with density h (x) by 
the rejection technique. We summarize with this out
line: 

To generate a beta variate X, density 105x4 (l-X)2, 

o < X < 1, 

1. with probability P5 = .2369 put X = .1 [5 + VI 

+ V 2 + Vs] 
2. with probability P6 = .2155 put X = .1[6 + VI 

+ V 2 + V 3 ] 

3. with probability P-1 = .1978 put X = .1[4 + VI 

+ V 2 + Vs] 
4. with probability Ps = .1297 put X = .1 [3 + VI 

+ V 2 + Vs] 
5. with probability P7 = .1284 put X = .1 [7 + VI 

+ V 2 + Vs] 
6. with probability P2 = .0633 put X = .1[2 + VI 

+ V 2 + Vs] 
7. with probability PI = .0199 put X = .1[1 + VI 

+ V 2 + Vs] 
8. with probability .0085 generate X with density 

hex) by the rejection technique outlined in 
Fig. 1. 

Referring to Fig. 1, we see that the residual func
tion g(x) = b(x) - Lp.i[10f(10x-i)] has a peak on 
the right end which makes the rejection technique 
too inefficient; this difficulty may be overcome in 
several ways-for example, by adding one more step 
to the procedure, as described in the figure. This will 
add another step to the outline: 

7a. with probability .0044, put X = .05 (17 + VI 

+ V 2 + Vs), 

and the probability in step 8 will be changed from 
.0085 to .0041 . 

. 072~------------------------~7----------------------------------------------~~---' 

. 014 

o 

g(x)= 105x 4(1.x)2- ~ p. [10f(10x-i)] 
;=1' 

Pl =.0199, P2 = .0633, P3 = .1297, P4 = .1978, P5 = .2369, P6 = .2155, P7 = .1284 

To generate a random variable X with density g(x)/.0085, generate pairs x=U1, y= 

.072U2 until y < g(x), then put X = x. The efficiency of this rejection technique is 

.0085/.072, or 12%. This may be raised to .0041/.014, or 29%, by subtracting another 

term from g(x). The resulting curve is dotted. In this case, generate pairs x=U 1, 

y = .014U2 until y < 9 (x) - .0044 [20f(20x-17)], then put X = x . 

Figure 1. Method for generating a variate from the residual portion of the beta distribution, by the rejection technique. 

1.0 



A GENERAL METHOD FOR PRODUCING RANDOM VARIABLES 171 

THE NOR1VIAL DISTRIBUTION 

We want a method for generating a standard nor

mal variate X, density (27T )-.5e-. 5X2. We temporarily 
discard the tails, JxJ > 3.5, and divide the interval 
-3.5 < x < 3.5 into 10 parts. We will generate X 
in the form .7(M + VI + V 2 + Vs), where M 
takes values-5,-4, -3, -2, -1, 0, 1, 2 with 
probabilities Pl,P2,' .. ,Ps' We choose the p's so as to 
maximize the frequency of the representation X 
.7(M + VI + V 2 + Vs), as follows: 

Choose PlJP2,' .. ,Ps so as to maximize 

PI + P2 + ... + Ps 

subject to the condition that Pi > 0 and 

10 10 10 10 
Pi[-f(-x+5)] + P2[-f(-x+4)] 

7 7 7 7 

10 10 + ... + Ps[-f( -x-2)] ~ (27T )-.5e-· 5X2 

7 7 

for -3.5 ~ x :s; 3.5 (2) 

The solution is PI = Ps = .0092, P2 = P7 = 
.0517, Ps = P6 = .1576, and P4 = P5 = .2767, 
with PI + ... + Ps = .9904. Thus we write 

s 10 10 
(27T)-·5e-· 5X2 = ~ Pi[-f(-x-i+6)] 

i=l 7 7 

+ .0091347418h(x) + .0004652582t(x) 

where hex) is the residual density on -3.5 ~ x ~ 
3.5, and t(x) is the tail, i.e., the density of X, con
ditioned by JxJ > 3.5. We generate X with density h 
by the rejection technique (Fig. 2), and from the 
tail by the method described in Ref. 4. These are 
steps 9 and lOin the following outline: 

To generate a standard normal variate X, density 
(27T) -. 5e-· 5X2, 

1. with probability .2767, put X .7(Vl + V 2 

+ V s '- 1) 
2. with probability .2767, put X .7(V] + V'!. 

+ Vs '- 2) 
3. with probability .1576, put X .7(Vl + V:!. 

+ V 3·- 0) 
4. with probability .1576, put X .7(V1 + V 2 

+ Vs - 3) 
5. with probability .0517, put X .7(V1 + V'!. 

+ V3 - 4) 
6. with probability .0517, put X .7(U1 + V 2 

+ Vs + 1) 
7. with probability .0092, put X .7(V1 + V'!. 

+ Vs -5) 
8. with probability .0092, put X .7 (VI + V 2 

+ Vs + 2) 
9. with probability .0091347418, generate (x,y) 

10. 

uniformly from the rectangle of Fig. 2 until y 
< g(x), then put X = x. 
with probability .0004652582, generate pairs 
x = 2V1 ,- 1, Y = V 2 until y < 3.5(12.25 -
21n JXJ-·5 then put 

{ (12.25 - 2InJx\)·5 
X - ) 

- t -(12.25 - 2In\xi)·5 

if x < 0 

if x > 0 

A CHI-SQUARE VARIATE 

We will develop a procedure for generating a x~ 
variate X, density x Se-· 5X /96, x > 0, along the 
same lines as the two examples above. We choose 
the interval .4 ~ x ~ 20.4 for fitting our mixture, 
dividing it into 10 parts. We will generate X in the 
form 2(M + VI + V'!. + V 3 ), where M takes values 
.2, 1.2, 2.2, ... ,7.2 with probabilities PI, P2,· .. , Ps. 
The best choice of the p's comes from solving this 
problem: 

Choose Pb P2,' .. , Ps so as to maximize 
PI + P2 + ... + Ps 

To generate a variate X with density g(x)/.0091347418, generate pairs 

.00382 ____ x=7~1-.5), y=.0038~2 until y<g(x~e~t X=x_. __ _ 

PI =PS=0092, P2=P7=·0517, P3=P6=.1576, 

P4 = Ps = .2767 
Eff' . .00913 

IClency = .02674' or 34%. 

-3.5 o 
Figure 2. Method for generating a variate from the residual portion of the normal distribution. 

3.5 



172 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

a 
g(x) =x3e - .Sx - }; Pi [.5f (.5x-i + .8) ] 

96 i=1 

.00505 r------:::~-..., 
Pl=·1608, P2=.2313, P3=·2128, p",=.1571, Ps=·1013, P6=.0599, P7=.0318, Pa=.0182 

To generate a variate X with density g (xl /.0178758526, choose (x,yl uniformly from the 

U-shaped region until y < g(x), then put X = x. The efficiency is 46%. 

Generate (x,y) uniformly over the region bounded by heavy lines by putting 

I 
(3Ul, .00505U2) with probability .39355760 

(x,y) = (3 + 14.5UJ, .0006U 2) with probability .22600338 

(17.5 + 2.9U 1, .00505U2) with probability .38043902 

.0006 

o 3.0 17.5 20.4 

Figure 3. Method for generating a variate from the residual portion of the chi-square-8 distribution. 

subject to the condition that Pi > 0 and 

P1[.5f(.5x-.2)] + p2[.5f(.5x-1.2) 
+ ... + Ps[.5f(.5x-7.2)] ::;; x 3e-· 5X/96 

for 0 < x < 2004 

The solution PI, P2,' .. , Ps of this problem is given 
in the outline below and in Fig. 3. The sum of the 
p's is .9732. We generate X from the residual density 
by the rejection technique as described in Fig. 3. We 
generate X from the tail, i.e., conditioned by IXI > 
2004, by transforming the tail to the unit interval and 
using the rejection technique (see Fig. 4). All of the 
steps combine to form this outline: 

To generate a chi-square-8 variate X, density 
x 3e-· 5X /96, x > 0, 

1. with probability P2 = .2313 put X = 2( 1.2 + 
VI + V 2 + V 3 ) 

1.0~----------------B 

2. with probability P3 = .2128 put X = 2(2.2 + 
VI + V 2 + V 3 ) 

3. with probability PI = .1608 put X = 2 (.2 + 
VI + V 2 + V 3 ) 

4. with probability P4 = .1571 put X = 2(3.2 + 
VI + V 2 + V 3 ) 

5. with probability P5 = .1013 put X = 2(4.2 + 
VI + V 2 + V 3 ) 

6. with probability Pa = .0599 put X = 2 (5.2 + 
VI + V 2 + V 3 ) 

7. with probability P7 =.0318 put X = 2 (6.2 + 
VI + V 2 + V 3 ) 

8. with probability Ps = .0182 put X = 2(7.2 + 
VI + V 2 + V 3 ) 

9. with probability .0178758526 generate X from 
the residual density drawn in Fig. 3, by the re
jection technique. 

To generate a X~ variate X, conditioned by X > 20.4, choose (x,y) uniformly 

from the quadrilateral OABC until y < x-5 e 10.2-10.2/x, then put X=20.4/x. 

o 0.7 C 

The efficiency is 70%. Generate {x,y} uniformly from OABC by putting 

_{{.7-.7M + m, .1-lM} with probability 1/4 

(x,y)- (.7+ .3M, .1 + .9M-m) with probability 3/4, 

0.1 

Figure 4. Method for generating a variate from the tail of the chi-square-8 distribution. 



A GENERAL METHOD FOR PRODUCING RANDOM VARIABLES 173 

10. with probability .0089241474 generate X from 
the tail of the X2 distribution, by the rejection s 
technique described in Fig. 4. 

GENERAL REMARKS 

The examples above suggest the following general 
procedure for dealing with a density q (x). The only 
requirement is that q be close to the x-axis at its ex
tremities. An interval containing most of the density 
is chosen, say a < x < b, then divided into n equal 
parts; In is usually a good choice. If h = (b-a)/10, 
then this linear programming-type problem is solved: 
choose P1' . .. ,Ps so as to maximize P1 + P2 + ... 
+ Ps, subject to the condition that Pi. > 0 and 

p,j ( x;) + P2f (X-:-h)+ ... + P,I( X-:7h) 
~ hq(x) 

Then X may be generated by putting X = a + heM 
+ U1 + U2 + U3 ), where M takes values 0,1,2, ... , 
7 with probabilities Pl . .. , Ps, or by choosing X 
from the residual density by the rejection technique, 
or from the tail, in a manner suggested by the above 
examples. The sum of the p's will usually be quite 
close to I-it was .9915, .9904, and .9732 in the 
three examples, and thus the resulting programs will 
be very fast. Few constants are needed, and the pro
grams should be easy to code; they vary little from 
one density to the next, only the constants and some 

details from the residues or tails changing. In fact, 
the fast parts of the programs-generating c(M + 
U1 + U2 + U3 ), are so consistent from one density 
to the next that a basic program for this part of the 
outline can be written in machine language, with the 
constants inserted for the particular density under 
consideration. The slow parts of the program-the 
residual density and tail can be handled by FOR
TRAN, or some such convenient language, subrou
tines. 

The procedure for a normal variate outlined above 
is almost as fast as the super program in Ref. 3, yet 
it is much simpler and requires very little computer 
space. 

REFERENCES 

1. M. D. MacLaren, G.eMarsaglia and T. A. Bray, 
"A Fast Procedure for Generating Exponential Vari
ables," Communications of the Association for Com
puting Machinery, vol. 7, no. 5 (1964). 

2. G. Marsaglia, "Expressing a Random Variable 
in Terms of Uniform Random Variables," Annals of 
Mathematical Statistics, vol. 32, pp. 894-98 (1961). 

3. --, M. D. MacLaren and T. A. Bray, "A 
Fast Procedure for Generating Normal Variables," 
Communications of the Association for Computing 
Machinery, vol. 7, no. 1 (1964). 

4. --, "Generating a Variable from the Tail of 
the Normal Distribution," Technometrics, vol. 6, 
no. 1, pp. 101-2 (1964). 





A UNIFIED APPROACH TO DETERMINISTIC AND 
RANDOM ERRORS IN HYBRID LOOPS 

Jacques J. Vidal 

University of California 
Los Angeles, California 

INTRODUCTION 

Hybrid computation in general owes its growing 
acceptance to the increasing number of sophisticated 
problems that neither digital nor analog computers 
alone can handle adequately. In most cases this ap
parently cumbersome approach is justified by the 
speed of analog computers, a speed impossible to 
attain in all-digital systems, even where the problem 
requires the memory and logic capabilities that only 
digital computers can provide. 

Both types of computers introduce specific errors 
in the hybrid loop. In addition, a number of per
turbations are generated by the exchange and distri
bution of the information between the computers and 
by analog-digital. and digital-analog conversion. 
These "interface errors" must be considered when 
evaluating a particular hybrid configuration, as they 
may become a major source of solution errors. A 
breakdown of the error sources in a typical loop is 
represented in Fig. 1. Many of them result from a 
tradeoff between performance and equipment com
plexity. For instance, parallel transfer of information 
can remove the necessity for multiplexing and distri
bution. In addition, quantization and round-off errors 
may be made negligible by increasing the number of 
bits used to represent digital information. 

DIA CONVERTER 

Component Errors 

Jitter 

Reconstruction Error 

DISTRIBUTOR 

Skewing Error 

Noise 

Time Delay 

t t 

ANALOG COMPUTER 

Component Errors 

Amplifier Offsets and Drifts 

Phase Shifts 

DIGITAL COMPUTER 

Round Off 

Truncation 

Time Delay 

MUL TIPLEXER 
SAMPLER 

Slewing Errors 

Folding 
Aperture Errors 

Jitter 

AID CONVERTER 

Quantization 

Coding 

Time Delay 

It is clear from Fig. 1 that most of the error 
sources are random rather ,than deterministic. On the Figure 1. Typical hybrid loop with major error sources. 

175 



176 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

other hand, deterministic errors frequently lend 
themselves to some compensation. A previous paper 
was devoted to deterministic errors and presented a 
method, based on sensitivity analysis, that provided 
the solution error functions under some general con
ditions. 

The aim of the present study is to extend the same 
approach to random perturbations, as suggested by 
Meissinger '2 in the particular case of noise excita
tions. In the process, uncompensated deterministic 
errors will be included as a special case. A statistical 
(standard deviation) bound will be provided for the 
solution error, regardless of the deterministic nature 
of some of the incident perturbations. It is first rec
ognized that a dynamic system under study on the 
hybrid computer may be represented by a system of 
first-order linear or nonlinear differential equations: 

x = j(x,t) X(O) = Xo (1) 

where x = {Xn}; n = 1, 2, ... , N is the state N
vector; and Xo the initial state. The trajectory in the 
state space 

x = x(t) 

is the nominal (error-free) solution. The first step in 
the present error analysis scheme is the identification 
of the perturbations and the introduction of a corre
sponding additional forcing function into system (1). 
This task is generally straightforward and involves 
transforming (1) into a perturbed system of equa
tions. This is sometimes done by Taylor expansion, 
in which case only first -order terms are retained. The 
perturbed equations take the form: 

x = j(x,t) + H(x,t) . q 
0< t < T 
x(O) = Xo (2) 

where q = {gj}; and j = 1,2, ... , I is a I-vector 
whose elements are weighting factors characterizing 
the intensity of the I error sources acting on the sys
tem. 

H = {hnj (x,t)} 

is a N X I matrix whose elements are the functions 
of the state variables and time, coupling each error 
source j to each state equation. The individual func
tions hnj can frequently be found by inspection or by 
a first-order expansion of the function f. 

The presence of the additional forcing terms 
causes the solution of (2) to differ from the nominal 
solution x (t). This may be written: 

X(t) + .6x(t) (3 ) 

where AX = { ,AXn } is the state deviation N-vec
tor. Two major assumptions are made at this point: 

1. It is assumed that the perturbed solution lies in 
a linear domain in the state space in the vicinity of 
the nominal solution. Then the deviations due to in
dividual perturbations are additive and 

J 

.6xn (t) = ~ 6xn j (t) (4) 
j=l 

where 6xn j is the contribution of the perturbation j 
to .6xn • 

2. It is assumed that the state deviations .6xn j de
pend linearly on the intensity of the perturbation j. 
Then 

AXnj (t) = Unj (x,t) . qj (5) 

and there exists a set of N X I functions Unj (sensi
tivity functions) that linearly relate the state devia
tions to the intensity of the error sources. They form 
a N X I matrix 

U = {unj (x,t)} 

Both of these assumptions depend on the fact that 
errors must remain small through the integration 
domain if the computed solution is to have any 
value. They imply that f(x,t) must be sufficiently 
smooth and q sufficiently small. 

Analyzing the error sources that generate the addi
tional terms introduced in (2) reveals that the per
turbations can be separated into four classes in 
accordance with the deterministic or stochastic 
character of the forcing function and the deter.;, 
minis tic or random nature of the weighting coeffi
cient. The first class covers systematic and known 
error sources in the computing system. The average 
time delay in the digital loop is of that type.1 The 
second class corresponds to error sources that are 
systematic in nature but whose amplitude is only 
statistically known. Departures from nominal value 
in the analog components are one example: The 
distribution of the actual values in the component 
supply may be known or hypothetized, but actual 
deviations in the particular elements used are un
known. Another example is provided by the offsets 
or drifts in analog amplifiers, which have a constant 
value during a computer run but are known only by 
the equipment specifications and performances. For 
the third and fourth classes the forcing functions 
hnj (x,t) are stochastic processes. The third class 
covers perturbations that have a noise-like character 
and fluctuate continuously during the solution but are 



DETERMINISTIC AND RANDOM ERRORS IN HYBRID LOOPS 177 

systematic in nature such as round-off, quantization 
and reconstruction errors. Although there is an alter
nate and more rigorous deterministic approach to 
those, the statistical description is in general suffi
cient to provide adequate error estimates. Finally, 
perturbations arise where both the forcing function 
and the weighting coefficient are random. Incident 
noise and jitter are important examples. 

At this point, the following hypotheses are made: 

1. When qj is random it has zero mean. This is 
always realizable with a proper choice of q j. 

2. When hnj(x,t) is stochastic, it takes the approx
imate form: 

(6) 

where ~j is deterministic and n(t) is white noise of 
unity power density. Then hnj has zero mean and the 
actual power density of the perturbation must be 
characterized by q'~. 

J 

3. hnj and qj are statistically independent (or at 
least uncorrelated) for all t. 

In the section below on the derivation of the sensi
tivity equations, the sensitivity functions Unj are 
shown to constitute the outputs of linear differential 
equations whose input forcing functions are hnj • 

Therefore when hnj is given by (6), Unj has zero 
mean and for any t, qj and Unj are independent 
random variables. With these assumptions, taking the 
expected values of both sides in relation (5) yields 

E{~Xnj} E{unjqj} 

E{unj }E{qj} (7) 

E{~X2 .} 
nJ 

E{u2 .q~} 
nJ J 

E{u2 .}E{q~} nJ J 
(8) 

Finally the values or statistical moments of q j, Unj 

and ~Xnj may be summarized (Table 1). 

Table 

The weighting factors q j are either known constants 
or random variables of known distribution w (q j ) , 

in which case q~ = f 00 q~w(q .)dq .• The sensitivity 
J -00 J J J 

functions U . (or u-2
.) are computed according to a 

nJ nJ 
procedure discussed in the section on derivations. 
Therefore, as shown in Table 1, the quantities 
E {~x .} and E{~X2.} are completely determined. 

nJ nJ 

ESTIMATION OF THE SOLUTION ERROR 

Let £2 denote the mean square of the length lI~xll 
of the state deviation vector in presence of J per
turbation sources: 

(9) 

A bound for £2, expressed in terms of the known 
elements in the last column of Table 1, is provided by 
the following 

Theorem: 

If ~X = {~Xn} is an N-vector whose components are 
given by relation (4), then, for all t, the following 
inequality holds: 

,2 < ~(~ E{LU!) 

+ 2 ~ ",,~,..J E{LU!j}E{LU!.}) (10) 

Proof: The squared length of ~X is given by 
N 

lI~xW = ~~.x'~. Taking the expected values 
n=l 

" = E 1 ~ ~x! f ~ E 1 LU~ f ( 11) 

E { ~X!} may be evaluated by replacing ~X n by its 
value given by (4): 

1 

Class Weighting Factor Sensitivity Function Deviation 

qj E{qj} E{q~} unj E{unj } E{u2 .} E{"LlXnj } E{~X2 ,} 
J nJ nJ 

const. qj q~ determ. unj. u2 qjunj q~U2. 
J nj J nJ 

2 rand 0 q-2 determ. Unj U2 0 q-.2U2. 
j nj J nJ 

3 con st. qj q~ stochas. 0 U-2 0 q~u-2. 
J nj J nJ 

4 rand. 0 q-.2 stochas. 0 U-2 0 q-.2U-.2 
J nj J nJ 



178 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

E 1~ a~f + 2 ~ J, axn;,unk \ 

or (12) 

~ E 1 ax!, \ + 2 ~ k~' E 1 ax njax ok \ 

Using the Schwarz inequality 

E l~x .~X t::;;:: ~ I E{~X2.} E{~X2k} (13) 
nJ nk ~ "'I nJ n 

Then 

J-l J 

+ 2 ~ ~ ~ E{~i!j}E{~X!k} (14) 
j=l k=j+1 

Replacing in (11) establishes the theorem. 
Quite obviously, the same relation (10) provides 
also a bound for the mean 

since the variance (S'2 - 1-'-2) is always positive. 

DERIVATION OF THE SENSITIVITY 
EQUATIONS 

(15) 

A differential equation in U may be obtained by 
differentiating (2) with respect to q and permuting 
the differentiation symbols. The latter operation is 
permissible since the solution is assumed continu
ously dependent on q: 

• _ [ oj (x,t) . oj (x,t) ] U + H(x,t) 
U - ox + q ox q = 0 

then 
• U = G(x,t) . U + H(x,t) U(O) = 0 (16) 

oj (x,t) 
where G(x,t) = is a NXN Jacobian matrix. 

ox 
Since no error may have developed at t = 0, it may 
be seen from (5) that all initial conditions for (16) 
are zero. In compact notation, the matrix Eq. (16) 
represents I-independent systems of N linear, time
dependent differential equations (one for each col
umn; that is, one for each perturbation j). Taking 

one system at a time, (16) reduces to the vector 
equation: 

11j = G(x,t) Uj + h j (17) 

where Uj = {und and hj = {hnj }, n = 1, 2, ... ,N, 
are N-vectors. The remarkable point about (17) is 
that its homogeneous part is the same for all j. There
fore, if the transition matrix of (17) is known, 
superposition techniques may be applied for each 
forcing function. This is a major advantage when a 
large number of perturbations are present since a 
unique transition matrix has to be computed. The 
computational aspects of generating the transition 
matrix and the subsequent mean-square sensitivities 
are discussed below and in the next paragraph. A 
classical use is made of the adjoint homogeneous sys
tem that provides the transition matrix in convenient 
form. It must be noted that the digital storage capa
bilities of hybrid computers remove the simulation 
difficulties encountered when this approach is imple
mented with pure analog techniques. The superposi
tion integral that leads to the mean-square sensitivi
ties may be evaluated digitally afterwards. In the 
latter operation, aimed directly at the generation of 
the error bounds, accuracy is usually unimportant. 
A crude integration technique and large sampling 
intervals are generally acceptable. The homogeneous 
equation associated with (17) is 

v(t) = G(x,t)v(t) (18) 

Let ¢ (t, r) be the state transition matrix for (18). 

Then 

Uj(t) = !o t p(t,T) . hj(X,T) . dT 

and 

Uj(T) = loTp(T,T)'hj(X,T)'dT (19) 

The state transition matrix may be obtained experi
mentally by solving (18), since ¢ (t, 7) satisfies by 
definition 

~(t,7) = G(x,t) ¢ (t,7) ¢(t,7) = I (20) 

Computing the matrix ¢(t,r) implies N integration 
of the system, taking each column of the identity 
matrix in turn for initial conditions at t = 7, and 
therefore obtaining, per run, one column of the tran
sition matrix for that particular 7. Since (19) re
quires that ¢(t,7) be available as a function of 7 for 



DETERMINISTIC AND RANDOM ERRORS IN HYBRID LOOPS 179 

u;(T) = la T .,,*(T -~,O) . h,(T -nd~ (25) 
a fixed t = T, it is advantageous to solve the adjoint 
system instead. The adjoint to (18) becomes 

wet) = -G* (x,t) wet) (21) 

where G* designates the transpose of the matrix G. 
The state transition matrix for (21) is 0/(t,7), and 
satisfies 

• 0/(t,7) = -G* (x,t) . 0/(t,7) 

0/(7,7) = I (22) 

On the other hand, the following relation exists be
tween 0/ and cf> * : 

1/'(t,7) = cf>* (7,t) 
or letting T = T 

'f,(t,T) = cf>* (T,t) (23) 

Therefore, solving one column of system (22) with 
T = T will yield one row of the functions cf> as they 
appear in (11). However, this would be a final value 
problem with the condition 

o/(T,T) = I 
A classical change of variable yields the so-called 
modified adjoint system, where the final conditions 
are replaced by initial conditions more suitable for 
computing: 

t=T-(, 

The new variable (, runs backward with respect to 
the problem time in the interval (0, T). Putting 
T = T in (22) and transforming yields: 
• o/(T ,- (,,0) = G*(x,T - (,) . o/(T - (,,0) (24) 

which can be solved as an initial value problem with 
initial conditions obtained columnwise from the 
identity matrix: 

0/(0,0) = I 
It must be noted that the function x (t) appearing in 
G* must also be introduced backward as x(T - (,). 

This presents no computing difficulty on the hybrid 
computer as long as one complete run of the original 
system in the interval (O,T) is available from mem
ory. 

EVALUATION OF THE MEAN-SQUARE 
SENSITIVITIES 

At this point, for any deterministic vector h j 

(classes 1 and 2), actual values of the sensitivity 
function at t = T may be computed according to Eq. 
( 19). With the change in independent variable, this 
integral becomes: 

The procedure is not applicable when h j is a sto
chastic vector function. However, when the elements 
hnj have the form given by (7), the autocorrelation 
matrix A (u j) can be evaluated by 

A(uj) = Uj > < u/I< 

= !o T ""(T-~,O) H; (T-O .,,(T-~,O)d~ (26) 

where A(uj) = {unj . Umj} n = 1,2 ... N; m 

1,2, ... ,N, and H j is the outer product - -H j = hnj > < h;j n = 1,2, ... , N 

whose elements are the deterministic part of the 
perturbation functions. The diagonal terms of A (Uj ) 

are the mean-square values of the sensitivity func
tion. Expanding (26) yields 

Unj (T) = r T i h~j (T-(,) o/~m (T-("O)d(, ) ° m=l 
(27) 

The flow chart given in Fig. 2 illustrates the proce
dure. 

CONCLUSION 

The method may now be summarized. A first 
computer run is used to solve the original system 
( 1 ) and store the N output functions in tabular 
form. The stored x-functions are then read out back
ward to drive the modified adjoint system (24). This 
operation requires N separate runs as the initial con
ditions are rotated and yields the N2 functions 

x( T-U from memory 

Figure 2. Symbolic flow chart for the mean-square sensi
tivities. 



180 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

(T-t,O) that constitute the elements of the transi
tion matrix. This information is now used to evaluate 
the superposition integrals (25) or (27). Only at 
this stage are the specific forcing functions hnj (x ,t) 
introduced. A moderate accuracy is generally ac
ceptable for the integration and memory space may 
be saved by a coarse sampling of the functions o/nm 

and hnj • The functions o/nm are independent of any 
specific perturbation and the procedure becomes 
especially economical when a large number of error 
sources are to be considered. Also, critical error 
sources may be singled out to direct eventual cor
rective action. 

Finally, the bound on the total mean square devia
tion may be computed in accordance with (10) after 
forming the proper products of the mean-square 
sensitivities and weighting factors. 

REFERENCES 

1. W. J. Karplus and J. Vidal, "Characterization 
and Evaluation of Hybrid Systems," Proceedings 
IFAC Symposium on System Engineering, Tokyo, 
Aug. 1965. 

2. H. Meissinger, "Parameter Influence Coeffici
ents and Weighting Functions Applied to Perturb a-

tion Analysis of Dynamic Systems," Proceedings 
Third International Congress AICA, Optija, Yugo
slavia, 1961, pp. 207-16. 

3. R. Tomovic, W. J. Karplus and J. Vidal, "Sen
sitivity of Discrete-Continuous Systems," Proceed
ings Third Congress of the IFAC, London, June 
20-25, 1966. 

4. T. Miura and J. Iwata, "Effects of Digital 
Execution Time in a Hybrid Computer," Proceed
ings FICC, 1963, pp. 251-66. 

5. J. Vidal, W. J. Karplus and G. Keludjian, "Sen
sitivity Coefficients for the Correction of Quantiza
tion Errors in Hybrid Computer Systems," Proceed
ings IFAC Symposium on Sensitivity Analysis, 
Dubrovnik, Yugoslavia, Sept. 1964 (L. Radanovic, 
ed.), Pergamon Press, Oxford, 1966, pp. 197-208. 

6. --, and W. J. Karplus, "Characterization 
and Compensation of Quantization Errors in Hy
brid Computer Systems," IEEE International Con
vention Record, New York, 1965, pt. III, pp. 236-
41. 

7. J. H. Laning, Jr., and R. H. Battin, Random 
Processes in Automatic Control, McGraw-Hill, New 
York, 1956. 

8. G. A. Korn, Random-Process Simulation and 
Measurements, McGraw-Hill, New York, 1965. 



HYBRID COMPUTER SOLUTIONS OF PARTIAL DIFFERENTIAL 
EQUATIONS BY MONTE CARLO METHODS 

Warren D. Little 

Process Computer Engineering, Canadian General Electric Company 
Peterborough, Ontario 

INTRODUCTION 

In addition to finite-difference methods,l Monte 
Carlo methods 2 also are known for solving certain 
partial differential equations. When implemented on 
a digital computer, however, the Monte Carlo meth
ods have generally proven to be very inefficient. In 
1960, a study carried out at the University of Michi
gan described analog computer techniques for mech
anizing Monte Carlo methods. 3 From the Michigan 
study it became evident that a fast analog computer 
together with a small digital computer and a modest 
interface could obtain Monte Carlo solutions at rates 
competitive with standard finite-difference methods. 

With rare exception, the Monte Carlo methods 
that have been programmed on either an analog or 
digital computer have been for elliptic partial dif
ferential equations (e.g., Laplace's equation). In this 
paper the classical Monte Carlo methods are gen
eralized to yield methods for solving parabolic equa
tions (e.g., the diffusion equation) as well as homo
geneous and nonhomogeneous elliptic equations of 
a very general form.4 Techniques for implementing 
the Monte Carlo methods on a hybrid system con
sisting of a general-purpose analog computer and a 
general-purpose digital computer as well as some 
typical results are also discussed. 

181 

PARTIAL DIFFERENTIAL EQUATIONS 
FOR CONTINUOUS MARKOV PROCESSES 

The Monte Carlo methods to be discussed are 
based upon partial differential equations that can be 
written for continuous Markov processes. A con
tinuous Markov process is a stochastic process hav
ing the property that future values of a stochastic 
variable r depend only upon present and not past 
values. To solve a boundary value problem that is 
defined on an open bounded region R and its bound
ary C, a continuous Markov process defined on R 
and C must be simulated. 

To facilitate description, consider a three-dimen
sional Markov process with stochastic vector 
r = r(x,y,z) where components x, y and Z are given 
by the following stochastic differential equations: 

dx - + Al (x,y,z,t) = B1 (x,y,z,t)N1 (t) (1) 
dt 

dy 
- + A 2 (x,y,z,t) = B 2 (x,y,z,t)N2 (t) (2) 
dt 

dz - + A 3 (x,y,z,t) = B 3 (x,y,z,t)N3 (t) (3) 
dt 

The coefficients A i and B.i are, in general, slowly 
varying continuous functions of x,y,z and t. The 
driving terms Ni (t) are uncorrelated with each other 



182 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

and each term is ideally Gaussian white noise with 
power spectral density 2Di • 

For a Markov process as defined by Eqs. (l) to 
(3), two relevant conditional probability density 
functions f and g are defined. 

(A) f(r2 ,t2 I ro,to) dr2 is the probability that the 
stochastic vector ris in dr2 within C at time t2 if 
at time to, r = roo 

(B) g(rb,tb I ro,to)drbdtb is the probability that 
the stochastic vector r will reach boundary C 
for the first time within drb between times tb and 
tb + dtb if at time to, r= roo 

The notation used in definitions (A) and (B) is 
illustrated in Fig. 1. 

The conditional probability density functions de
fined above satisfy the following initial and boundary 
conditions 

(A) lim f(r;,t21~to) = 0 (r; - "To) 
to~t2 

where 0 (r;- ro) = 0 for r2 -¥:- ro 

and f 8(r, - ro)dr, = l. 
R 

(B) lim g(rb,tb I ro,to) 
to~t2 

o 

(C) lim f(~2,t2 I ro,to) = 0 
ro~rb 

(D) lim g(rb,tb I ro,to ) = o(ro - rb)o(tb - to) 
ro~rb 

where 0 (Yo- rb) 0 (tb - to) = 0 unless ro = rb and 

and It2 f8(r;, - rb)8(t, - to)dr,dt, = 1 

C 

For the above Markov process it can be shown 
that the density functions f and g also satisfy the 
following backward Kolmogorov partial differential 
equations: 4,5 

_ !!. (r2,t2 I ro,to) = Lro tj(i;,t2 I ro,to) 

oto 

_ og (rb,tb I ro,tb) 

oto 

(4) 

(5) 

z 

x 
Figure 1. Space region illustrating terms used in definitions. 

where 

(6) 

The coefficients ai (ro,lo) and bi ("f"o,to) are moments 
of the Markov process and are related to the coeffi
cients A i and Bi of the stochastic differential equa
tions by Eqs. (7) and (8). 

(7) 

(8) 

By simulating the Markov process given by Eqs. 
. (1) to (3), boundary value problems with partial 
differential equations of the same form as Eqs. (4) 
and (5) can be solved. More general partial differ
ential equations in which the dependent variable 
and not only its derivative exit can also be solved by 
considering auxiliary probability density functions u 
and v as defined below.4

,6 

(9) 



HYBRID COMPUTER SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 183 

In these definitions the brackets 
r(to ) = ro 

denot~ a conditional expectation; that is, the expected 
value of the function within the brackets subject to 
the condition that r(to) = ro and r(t2) is in a small 
region dr2 about '2' The term m(t2,io) is the integral 
of a slowly varying continuous positive function 
d(rU),t) of the stochastic vectorr(t) and t. That is, 

(11) 

The auxiliary probability density functions u and 
v satisfy the following partial differential equations. 

OV (f"i,tb I ro,to) 

oto 

= Lro,tPlr2,t2 I ro,to) 

-dC1""o,to)u(F;,t2 1 ro,to) (12) 

_ ov (r.b,tb r ro,to) 

oto 

= L~,toV(?b,tb [Yo,to) 

-dCYo,to)V(Yb,tb I fo,to) (13) 

Equations (4), (5), (12) and (13), together 
with initial and boundary conditions (A) to (D), 
will now be used to develop Monte Carlo methods 
for solving a large class of partial differential equa
tions. 

MONTE CARLO METHODS FOR 
SOLVING PARTIAL 
DIFFERENTIAL EQUATIONS 

In this section, relationships between probability 
density functions f, g, u and v and solutions ~ of 
boundary value problems will be developed. The 
methods apply to problems in which ~ itself is given 
initially and on all boundaries. For all problems the 
solution at a point within a region R is obtained as 
the expected value of initial and boundary values at 
the terminal points of random walks that originate 
at the point for which the solution is desired. The ex
pected value is written in terms of the functions j, 

g, u and v. An approximation to the expected value 
is determined experimentally from a large number 
of random walks simulated on an analog computer. 

Consider the following boundary value problem 
involving a parabolic partial differential equation. 

Problem A 

Determine ~(ro,to) such that: 

(1) o~(;:;;,to) = Lr;"to ~(ro,to) (14) 

oto 

is satisfied within a bounded region R; 

(2) a piecewise continuous initial condition ~,JYa) 
is satisfied within R; i.e., 

(15) 

(3) a piecewise continuous boundary condition 
~c ("Fb,to ) is satisfied on the boundary C of R; 
i.e., 

(16) 

The boundaries and initial and boundary condi
tions of a typical problem with one space variable 
are shown in Fig. 2. Note that ~(f"o,to) is a function 
of the initial position ro and starting time to. The time 
to is defined to be negative so that random walks 
take place in the time interval tostsO. 

To obtain the solution ~ of Problem A at a point 
('Fo,to), random walks are started at (fo,to) and each 
walk is terminated as soon as a boundary is reached 
or at t = O. If a walk terminates on a boundary at 
some (Jb;tb) the boundary value ~c(rb,tb) is recorded, 
whereas if a walk is terminated at t = 0 with posi
tion-rz, the initial value ~O(r2) is recorded. The ex
pected value of the initial and boundary values ob
tained in this manner is a solution of Problem A. 

The expected value defined above can be written 
in terms of density functions j and g as follows: 

~(ro,to) = f !\o(;:;)f(;:;,O I r"to) dr, 

R 

+ i~ f Mi'i"tb)g(i'i,,f, I r;"to)drbdtb (17) 

C 

The fact that ~ era,to ) as given above is indeed a so
lution of the problem can be shown by operating on 
both the right and left side of Eq. (17) with the 

o 
operator - + L-r t • This gives 

oto 0' 0 



184 PROCEEDINGS---F ALL JOINT COMPUTER CONFERENCE, 1966 

J ~0(r2) GtO + L,o,'o) /(/,;,0 I ro,to)dr, 

R 

+ J: J ~,(/';,t,) (:t" + L'%) g(T"t, I To,to) dr,dt, 

e 

-J Mr;,to)g(i'i"to 17;,to)dr, 

e (18) 

The right side of Eq. (18) is zero by Kolmogorov 
Eqs. (4) and (5) and initial condition (B). Thus 
~ c:r-o,to ) satisfies the partial differential equation of 
Problem A. 

By direct application of initial' and boundary con
ditions (A) to (D) to Eq. (17), it also follows that 
~(ro,to) satisfies the initial and boundary conditions 
of Problem A. 

The Monte Carlo solution of Problem A is ob
tained by approximating the expected value ~(Yo,to) 
given by Eq. (17) with the average ~N(1a,to) of 
initial and boundary values ~'i that are recorded from 
a set of N random walks originating at (Yo,to). This 
average is 

(19) 

Steady-state solutions of equations of the type 
considered in Problem A are the solutions of an im
portant class of elliptic partial differential equations. 
Consider the following problem for this type of equa
tion. 

Problem B 

Determine ~ (r 0) such that: 

(1) (20) 

is satisfied within a bounded region R; 

(2) a piecewise continuous boundary condition 
~ccrb) is satisfied on the boundary C of R, i.e., 

(21) 

The subscript to is deleted from operator Lro,t o to 
indicate that Lr 0 is independent of time. 

The solution of Problem B is the solution of a 
corresponding problem of type A for to = - 00 • 

Since Problem B is independent of time, the required 
expected value can be obtained by starting random 
walks at to = 0 rather than to = - 00 and allowing 
each walk to continue until a boundary point is 
reached. The expected value of the boundary values 
at such terminal points is 

t 

~--~~?-----~------~~-X 

Figure 2. Random walks' and initial and boundary condi
tions of a typical problem with one space variable. 



HYBRID COMPUTER SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 185 

~(r;) = 10 00 f !\c(r;;)g(r;;,tb I r;,O)dr"titb (22) 

C 

As was shown for Problem A, it follows the ex
pected value of Eq. (22) is a solution of Problem B. 
An average of the same form as that of Eq. (19), in 
which the ~i are boundary values selected by random 
walks starting at Yo, approximates the expected value 
and is the Monte Carlo solution. 

Solutions of Problems A and B can be combined 
to yield solutions of a class of nonhomogeneous par
tial differential equations as defined by Problem C. 

Problem C 

Determine ~ (ro) such that: 

(1) (23) 

is satisfied within a bounded region R, where H{fo) 
is a piecewise continuous function; 

(2) a piecewise continuous boundary condition 
~c(Yb) is satisfied on the boundary C of R; i.e., 

(24) 

To obtain the solution of Problem C, consider the 
time-independent boundary value problem of type B: 

(1) Lr;,~l eFa) = 0 within R, 

(2) ~1(?b) = ~c(rb) on the boundary C of R; and 

the time-dependent boundary value problem of type 
A: 

(1) 

(2) 

(3) ~'2("fb,tO) = 0 
The solution of Problem C is given in terms of the 
solutions of the two subproblems by 

Wo) = ll,(ro ) + J~;!"to)dt" (25) 

This solution is verified by substituting Eq. (25) 
into the conditions of Problem C and using the in
formation provided by the subproblems. 

The Monte Carlo solution of Problem C is ob
tained by determining 010:;;) and 02 (Yo,to) by the 
methods of Problems A and B and then integrating 
~2 (Yo,to) with respect to tv by some numerical tech
nique. 

More general partial differential equations than 
those for which Monte Carlo methods have been out
lined can be solved by using Eq. (12) and (13) for 
density functions u and v. From the definitions of u 
and v (Eqs. (9) and (10)) it follows that u and v 
satisfy the same initial and boundary conditions as 
density functions f and g respectively. It therefore 
follows that problems similar to Problems A, B, and 
C but with Lro'to and Lro replaced by Lro'to - d(Yo,to 
and Lro-d(Yo) respectively have solutions that can 
be written as expected values with respect to func
tions u and v. For example, 

with initial and boundary conditions as given by 
Problem A has solution 

~(r"t,,) = f ~"(r,)u(r,,O I r"to)dr, 

R 

+ rOf~cCh,tb)V(rb,tb I ro,to)drbdtb 
J~ (27) 

C 

From definitions (9) and (10), Eq. (27) be
comes 

~(r"to) = f ~,,(r,) 
R 

fO reO) = rz 

exp - } to d(r(t) ,t)dt _ _ 

r(to) = ro 

(28) 



186 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

The expected value ~(ro,to) given by Eq. (28) can 
be approximated by the average ~N(ro,to) of the 
product Yi~i for walks originating at (ro,to) where 
~i is the initial or boundary value at the terminal 
point of the ith walk and Yi is the value 

Y = exp _ (T d(r(t),t)dt (29) 

J to 

for the corresponding walk. The upper limit of inte
gration, T, is 0 for walks terminating at t = 0, and 
tb for walks terminating at a boundary. The Monte 
Carlo solution is therefore 

In a manner similar to above it follows that if Lr 0 

in Problem B is replaced by Lro - d(ro) the Monte 
Carlo solution is as given by Eq. (30). In this case 
each ~i is a boundary value selected by a random 
walk that starts at ro and each Y'i, is a corresponding 
value of 

Y = exp - (tb d(r(t) )dt 

J to = 0 
(31) 

The superposition of solutions of Problems A and 
B to obtain solutions of Problem C also applies to 
equations containing the d(~) term. 

HYBRID COMPUTER MECHANIZATION 
OF MONTE CARLO METHODS 

A computing system for mechanizing the Monte 
Carlo methods that have been developed must carry 
out the following operations. 

(A) Simulate stochastic differential Eqs. (1) to (3). 
(B) Evaluate Y as given by Eq. (29) or (31). 

A-D 
CONVERTER 

ANALOG DIGITAL 
MODE -COMPUTER CONTROL COMPUTER 

FLIP-FLOP 

D-A 
!cONVERTER 

Figure 3. Hybrid computer system for Monte Carlo methods. 

Figure 4. Block diagram for simulation of a stochastic 
differential equation. 

(C) Terminate solution of the stochastic differential 
equations at either time t = 0 or whenever a 
boundary is reached. 

(D) Generate the initial or boundary values corre
sponding to the terminal points of the random 
walks. 

(E) Form the averages given by Eq. (19) or (30). 

Automatic readout of the solutions ~N(ro,to) and ad
justment of (ro,to) after each set of N random walks 
is also desirable. 

A hybrid system in which synchronism of the two 
computers is realized by a mode-control flip-flop is 
shown in Fig. 3. Operations (A) to (D) listed above 
are performed by the analog computer whereas op
eration (E) as well as adjustment of the analog 
computer and readout of solutions are handled by 
the digital computer. 

SIMULATION OF STOCHASTIC 
PROCESSES 

An analog computer block diagram for simulating 
stochastic differential Eq. ( 1) in its most general 
form is shown in Fig. 4. The function generation 
indicated in this figure can be realized simply with 
diode function generators and multipliers whenever 
closed-form mathematical expressions are known for 
the functions or whenever the functions are of only a 
single variable. Special techniques 7 are required 
for generation of functions of a more general form. 

Integrator A2 shown in Fig. 4 is used to "track
and-hold" the random variable x. This track-and
hold feature is used to hold the terminal value of the 
random vector r, and consequently the initial or 
boundary value ~i generated from r, at a constant 
value while '~i or (Yi~i) is read by the digital computer. 



HYBRID COMPUTER SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 187 

The mode-control signal c and its logical inverse c 
synchronize the track-and-hold modes of integrator 
A2 with the compute and initial-condition modes 
respectively of integrator AI. 

The uncorrelated Gaussian white noise terms N i 
that drive the stochastic differential Eqs. (1) to (3) 
must be simulated on the analog computer by noise 
sources that are physically realizable. Noise sources 
with characteristics that. approximate the ideal char
acteristics can be derived from gas tubes, pseudo
random noise generators 8 or discrete-interval binary 
noise generators. 9 The example solutions given in 
this paper were obtained with a discrete-interval 
binary noise generator that was multiplexed to give 
three essentially uncorrelated noise channels. 

For problems in which y must be generated, the 
following implicit method is used. From Eq. (29) 

- d(r(t) ,t)y 

(32) 

The response y of these equations is obtained easily 
on the analog computer. The mode of the integrator 
that is used to simulate Eq. (32) is controlled by the 
signal c of the mode-control flip-flop. 

DETECTION OF BOUNDARIES 

The mode-control flip.;..flop is set when a random 
walk reaches a boundary or at the terminal time 
t = 0 by using the outputs of suitably driven analog 
voltage comparators. The flip-flop is reset by the 
digital computer after the boundary or initial value 

C 

RESET SIGNAL 
FROM DIGITAL 
COMPUTER 

Figure 5. Boundary detection for problems with one space 
variable and one time variable. 

y 

--~--------~~~~--~--------~~ X 

Figure 6. Two-dimensional region. 

at the terminal point of the random walk has been 
read into the digital computer for averaging. For ex
ample, for the problem illustrated in Fig. 2 the 
scheme shown in Fig. 5 would be used to trigger the 
mode-control flip-flop. 

The boundaries . of problems with two or more 
spatial variables can be detected by using function 
generators together with voltage comparators. Con
sider the two-dimensional region R shown in Fig. 6, 
in which the curves C1 (X) and C 2 (X) that form C 
are both single-valued functions of X. It is clear from 
the figure that a random walk with instantaneous 
components (x,y) reaches C whenever y = C1(x) 
or y = C2 (x). These boundary detection criteria 
are implemented on the analog computer by the 
method shown in Fig. 7. 

The boundaries of a region as shown in Fig. 8 in 
which C 1 ( U) and C 2 ( U) are single valued functions 
of position U along a dividing line D are detected by 
using a coordinate transformation. That is, variables 
x and yare transformed to u and v by the trans
formation 

u 
v 

x cosf3 - y sinf3 - a 
x sinf3 + y cosf3 b 

X~ ________ ~ ____ __ 
(33) 

TO MODE-
Y CONTROL 

FLIP-FLOP 

Figure 7. Two-dimensional boundary detection. 



188 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

y 

v 

Figure 8. Coordinate transformation used for boundary 
detection of two-dimensional regions. 

In u, v coordinates the criteria that a random walk is 
at the boundary is v = C1(u) or v = C 2 (u). 

The boundaries of simply connected regions of 
arbitrary shape are detected by dividing the region 
into simple regions R 1,R2 •••• Rn that have dividing 
lines D i. The exit of a random walk from each 
simple region is detected by the previous methods. 
The resultant signals are combined with an AND 
gate to give a signal when the walk leaves all Ri and 
hence the total region R. 

The boundaries of circles and ellipses of the form 

( X : a )
2 

+ ( y ; c )' == 1 are detected by com

paring thefunction t(x,y) ==( x : a)' + ( y ; c)' 
with 1. Hence only two multipliers and one com
parator are required for these common regions. 

The preceding methods can be generalized to 
three-dimensional regions by using a dividing plane 
separating the boundary into surfaces that are single
valued functions of position on the plane. For boun
dary surfaces which are simple functions of the two 
plane variables, the method is easy to apply. If this 
is not the case, special purpose function generator 
techniques 7 are necessary. 

The boundaries of three-dimensional regions with 
some type of symmetry can often be detected by 
combining the methods described for one- and two
dimensional regions. For example, cubic regions are 
detected by using three pairs of comparators in the 

same manner that a single pair is used for one
dimensional problems. In addition, the boundaries of 
spheres and ellipsoids can be detected with three 
multipliers and a single comparator in the same 
manner that two multipliers and a comparator are 
used for circles and ellipses. 

GENERATION AND AVERAGING OF 
INITIAL AND BOUNDARY VALUES 

At the instant a boundary C is reached, the mode
control flip-flop is triggered from a comparator by 
the methods that have been discussed. The triggering 
of this flip-flop places track-and-hold amplifiers in 
the hold mode so that the terminal values of the 
components x, y, and z of r are available as constant 
voltages on the analog computer. The initial and 
boundary values ~i are generated with function gen
erators from these components of r. 

The function generation prescribed above can be 
carried out with function generators and multipliers 
whenever the boundary values are known as simple 
functions of x, y and z or whenever they can be 
expressed as a function of a single variable. For two
dimensional problems in which a dividing line D is 
used for detecting the boundaries, the boundary 
values are conveniently generated as a function of 
the variable u defined along the dividing line. 

When the values ~i cannot be generated con
veniently by analog computer techniques, they can 
always be generated within the digital computer. 
When the digital computer is used for function gen
eration, the components x, y and z of the terminal 
position vector are read; then a table stored within 
the computer is scanned, or some other method is 
used, to determine the corresponding value of ~i' 
Since more than one value must be read by the dig
ital computer and since additional digital operations 
are required, this procedure with slow digital equip
ment is more time-consuming than analog function 
generation. However, with fast digital equipment it 
is possible to store the terminal components x, y and 
z of the ith walk with a track-and-hold arrangement 
and read them during the (i + 1) st walk. Thus, if 
the conversion equipment and digital computer are 
sufficiently. fast, the values x, y and z can be read 
and the digital function generation for the ith walk 
can be carried out while the analog computer is sim
ulating the (i + 1 ) st random walk. This procedure 
is very efficient in that essentially no time is wasted 
between walks. 



HYBRID COMPUTER SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 189 

The average ~N(ro,to) for each point (ro,to) at 
which a solution is desired is formed by adding, in 
sequence, each value ~i (or Y'i~i) to a partial sum 
stored within the digital computer. A tally of the 
number of random walks that have been completed 
is kept by the digital computer and after N walks the 
average is typed out. A digital computer, or at least 
a digital method, is' necessary for the averaging op
eration because for N large (1000-40',000) a large 
dynamic range is required to obtain the sum pre
cisely. After the solution has been obtained at a point 
the digital computer adjusts the starting point (ro,to) 
on the analog computer so that the solution at an
other point can be obtained. In this manner the solu
tions at all points of interest are obtained. 

EXAMPLES 

The examples given in this paper were selected 
from a large number of problems that were solved 
using an EAI 231 R -V analog computer and a 
Logistics Research Alwac III-E digital computer. 
With these slow computers, it was possible to simu
late about 10 random walks per second. To obtain 
solutions with a small variance, 1000 random walks 
were used for each point solution. 

Solutions of a one-dimensional time-independent 
problem for three parameter values are shown in 

1.0 

.6 

.2 

-.2 

-.6 

-1.0 -.6 -.2 

Figure 9. Solutions of 

MONTE CARLO SOLUTION • 
ANALYTICAL SOLUTION 
N-IOOO 0-1.72 

.2 .6 

d2(fJ df/) 
Dl-+K-=O,for(fJ(-I) = -land(fJ(1) = 1. 

dX02 dxo 

1.0 
MONTE CARLO SOLUTION • 
ANALYTICAL SOLUTION-

.6 N=IOOO 0= 1.72 

.2 

-.2 

-.6 

-I. O~---------~--~-'----;~~ 
-.6 -.2 .2.6 Xo 

Figure 10. Solutions of 
d20 
- - (1 - x02) (fJ = 0, for (fJ( -1) = 1 and 0(1) = A. 
dX02 

Fig. 9. When K/Dl = 0, the average duration of a 
random walk for this problem is 

T(x
o

) = 1 - x~ 
2Dl 

(34) 

Since T(xo ) is very easily measured, Eq. (34) pro
vides a simple method for determining the power 
spectral density 2Dl of the noise source. 

The solutions of another one-dimensional problem 
for three different boundary values are shown in Fig. 
10. This problem is of the type that requires genera
tion of the functional y. According to Eq. (31) the 
required functional is 

1tb 
y = exp - Dl (1 - x 2 )dt 

to = 0 
(35) 

As a final example, solutions of the diffusion 
equation 

- of) (70 ,to) = \l2~(rc,to) (36) 
3to 

with initial condition ~o (ro) = -1 and boundary 
condition~c(rb) = 1 are shown in Fig. 11. The 
solutions shown are for the center of a line, square 
and cubic region. From this example, it is significant 
to note that the average time T (0) for a random 
walk to reach a boundary decreases with the dimen
sion of the problem. 



190 

111 

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

1.0 

. 6 

.2 

-.. 2 

-.6 

MONTE CARLO SOLUTION • 
• ANALYTICAL SOLUTION -

N -1000 0-1.72 
T(O) -286 MS FOR LINE 
T(O) - 165 M S FOR SQUARE 
T(O) - 127 MS FOR CUBE 

-1.0 ~~ ________ - __ -""':"'=-::-~ 

160 240 320 400 -tJ. MS) 
o 

Figure 11. Solutions of the diffusion. equation at the center 
of a line, a square and a cubic region. 

CONCLUSIONS 

Monte Carlo methods have been developed for ob
taining approximate solutions to partial differential 
equations of a very general form. The methods are 
easily mechanized with a small analog computer 
coupled by means of a modest interface to a small 
digital computer. 

The Monte Carlo solutions are obtained sequen
tially in a point by point manner. Therefore, if solu
tions at only a few points are required the methods 
may be more efficient, even using slow computers, 
than conventional finite-difference methods. On fast 
computers, and especially special-purpose fast com
puters,lO the methods should provide a powerful 
means for solving many types of partial differential 
equations. 

REFERENCES 

1. G. E. Forsythe and W. R. Wasow, Finite
Difference Methods for Partial Differential Equa
tions, Wiley & Sons, New York, 1960 . 

2. T. J. H. Curtiss, "Sampling Methods Applied 
to Differential and Difference Equations," Proc. 
Seminar on Scientific Computation, International 
Business Machines Corp., New York, Nov. 1949. 

3. K. Chuang, L. F. Kazda and T. Windeknecht, 
"A Stochastic Method of Solving Partial Differential 
Equations using an Electronic Analog Computer," 
Project Michigan Report 2900-91-T, Willow Run 
Laboratories, University of Michigan (June 1960). 

4. W. D. Little, "Hybrid Computer Solutions of 
Partial Differential Equations by Monte Carlo Meth
ods," PhD thesis, University of British Columbia, 
Oct. 1965. 

5. A. T. Bharucha-Reid, Elements of the Theory 
of Markov Processes and their Applications, 
McGraw-Hill, New York, 1960, Chap. 3. 

6. D. A. Darling and A. J. Siegert, " A Systematic 
Approach to a Class of Problems in the Theory of 
Noise and Other Random Phenomena, Part I," IRE 
Trans. on Information Theory, vol. IT-3, pp. 32-37 
(Mar. 1957). 

7. R. H. Wilkinson, "A Method of Generating 
Functions of Several Variables using Analog Diode 
Logic," IEEE Trans. on Electronic Computers, vol. 
EC-12, pp. 112-29 (Apr. 1963). 

8. R. L. T. Hampton, "A Hybrid Analog-Digital 
Pseudo Random Noise Generator," Simulation, voL 
4, no. 3, pp. 179-85 (Mar. 1965). 

9. H. Kohne, W. D. Little and A. C. Soudack, 
"An Economical Multichannel Noise Source," ibid, 
vol. 5, no. 8 (Nov. 1965). 

10. G. A. Korn, "Hybrid Computer Monte Carlo 
Techniques," ibid, vol. 5, no. 4, p. 234 (Oct. 1965). 



PARAMETER OPTIMIZATION BY RANDOM 
SEARCH USING HYBRID COMPUTER TECHNIQUES * 

G. A. Bekey 

University of Southern California, Los Angeles, California 

and 

M. H. Gran, A. E. Sabroff, A. Wong 

TR W Systems, Redondo Beach, California 

INTRODUCTION 

Optimum selection of the parameter values for a 
complex dynamic system usually consists of three 
distinct phases: (1) a proposed system configuration 
is selected, in which only parameter values remain 
as unknowns; (2) one or more performance or cost 
criteria for evaluation of the system are selected; 
and (3) a computer technique or algorithm is chosen 
for adjusting the system parameters until an optimum 
value of the criterion function is achieved. Typical 
algorithms are those based on relaxation or steep 
descent methods. 1 However, both of these methods 
are primarily suited to optimization of criterion func
tions with unique minima or maxima. Furthermore, 
they may fail to converge or may converge only very 
slowly if the criterion function-parameter space 
exhibits "ridges"2 or if the criterion function is only 
piecewise differentiable or piecewise continuous. 
Both of these difficulties are likely to arise in con-

* The work reported in this paper was supported by the 
U.S. Air Force Flight Dynamics Laboratory, Research and 
Technology Division, Air Force Systems Command, Wright 
Patterson Air Force Base, Ohio, under Contract No. AF 
33(615)-135. 

191 

nection with nonlinear systems. This paper presents 
an approach to finding a global optimum by means 
of a modified sequential random perturbation tech
nique implemented on a hybrid computer. 

Random search techniques for parameter optimi
zation were originally proposed by Brooks.3 They 
were successfully implemented on analog computers 
by Munson and Rubin 4 and Favreau and Franks. 5 

A hybrid computer implementation using only two 
parameters, a fixed step size, and an algebraic cri
terion function was studied by Mitchell. 6

, 7 This 
paper extends the previous work by applying it to a 
nonlinear dynamic system with nine parameters. 
Furthermore, the effects of initial conditions and 
analog computer errors are included in the optimiza
tion program in a systematic way. The method is 
illustrated by application to the optimization of a 
satellite acquisition system.8 

PROBLEM FORMULATION 

The dynamical system to be optimized is described 
by the differential equation: 

(1) 



192 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

where.:! is the (n X 1) state vector,l is an (n Xl) 
vector function, g: is an (m XI) parameter vector 
and t represents running time. It is desired to study 
this dynamic system over a large class of initial 
conditions. Define Xo as the set of all (n XI) initial 
state vectors which are of interest to be studied and 
an element of Xo as ~o. A unique solution of (1) is 
solely dependent on Xo, ~ and t and therefore can 
be represented as: 

(2) 

A cost or criterion function can be written ordering 
the desirability of the particular choice of g: for a 
given.!.o as: 

J (.!.;!!) == f t g «(d;t;!!) dt) (3 ) 

where g is a scalar function of 4' :!! and t. Examples 
of J may be fuel consumed or time required for satel
lite acquisition for a given parameter and initial con
dition set. 

For a given initial condition and parameter setting, 
equation (3) provides. a scalar value describing the 
"quality" of the dynamic system in a quantitative 
fashion. As it is desired to study the effect of the 
parameter settings over the entire space of initial 
conditions, a new criterion function must be defined 
as: 

F (g:) = f h [Jl!o;g:)] d Xo 
all 

XQ 

(4) 

where h is a scalar function of the functional f~o;~) 
and the integral is a Rieman-Stieltjies integral which 
allows integration of discrete Xo spaces as well as 
continuous. This provides a single measure of the 
"quality" of a selection g over the entire space of 
initial conditions. Examples of F studied in this 
paper are: 

F1 = max f (.!.o, Q) 
.:!o e l{o 

q 

F2 = ~ f (.!:oj, ~) 
;=1 

q 

F3 = ~ max f (:!-oj, !!) 
;=1 

(Sa) 

(Sb) 

(Sc) 

For a given criterion functional F, a computer 
algorithm is desired which finds the optimum g: 

which will be denoted by g:* , 

F* (Q*) = min F (~) (6) 

Values of Q* for different criteria will, in general, 
be different. With nonlinear differential equations, 
the criterion functions cannot be assumed to possess 
a unique minimum or maximum, and the optimiza
tion algorithms must be designed to seek the global 
extremum. Since for any physical problem, the allow
able range of all parameters is limited, admissible 
parameter vectors will be constrained to the allow
able region of the parameter space. Local continuity 
of the criterion function will be assumed. 

Exhaustive search for an optimum design, in which 
parameter values are quantized and all possible 
parameter combinations are tested, is clearly limited 
to systems with only a few parameters. Consequently, 
an organized search procedure is required. 

Let the initial parameter choice be indicated by 
,!!(O), so that the initial criterion function is 

(7) 

If the parameter adjustment is made according to 
the gradient method, then a parameter increment is 
computed from 

h.Q(O) = k V F (;9:(0» 

where k is a scaling matrix. 

(8) 

Gradient methods suffer from three major disad
vantages for systems of the type being considered 
here. First, the computation of the gradient requires 
m trial steps to determine each component; second, 
the method leads only to a local minimum of the 
criterion function, and third, the gradient me_thod 
encounters significant difficulties if the criterion func
tion exhibits "ridges" or. "narrow valleys" in the 
parameter space.2 

AN ALGORITHM FOR RANDOM 
SEARCH OPTIMIZATION 

Strictly speaking, pure random search refers to a 
computation of the criterion function at a number 
of randomly chosen points in the parameter space, 
and selection of the particular parameter values (aI' 
(2) yielding the smallest value of F (a) . However, 
such a sequence of randomly selected parameter vec
tors does not take advantage of the local continuity 



PARAMETER OPTIMIZATION BY RANDOM SEARCH 193 

properties of most criterion function surfaces. Con
sequently, the strategy to be discussed below should 
more properly be referred to as "sequential random 
scanning" or "random creep". 7 Assume that the 
initial parameter vector is again designated by Q(O). 

Now, choose an increment ~a(O) by selecting the in
dividual parameters ~ai (0), i = 1, 2, ... m from m 
Gaussian sequences of random numbers with mean 
zero and variance Ci. Then, if the m random se
quences are independent, the orientation and length 
of the parameter increment ~Q(O) will be random, 
and a trial value 

(9) 

is obtained. The criterion function F' = F' (g') is 
computed and compared to Fo = F(g(O». If there is 
an improvement, the parameters are updated by 
letting g' = g (1). If there is no improvement, the 
trial step is abandoned and a new trial step is 
chosen. This basic strategy is illustrated in the flow 
chart of Fig. 1. 

Now from the standpoint of computer implemen
tation, the differential equations can be solved on 
the analog computer for each trial value g'. The 
random increments ~ai can be obtained by sampling 
analog noise generators, by generating pseudo
random sequences in the digital computer, or by 
construction of special devices such as shift register 
noise generators with several independent outputs. 7 

INPUT OJ 

VARIANCE ~ C j 

SAMPLE NOISE N j 

CHECK RESOLUTION 
i:::: m? 

Figure 1. The basic algorithm. 

OK 

Modifications of the Basic Algorithm 

In order to take maximum advantage of the prop
erties of the criterion surface, the basic strategy can 
be modified in a number of ways. Successive steps 
can be made correlated in such a way as to favor 
successful direction. The mean of the distribution of 
steps can be biased in the direction of a successful 
step, or after a specified number of successive suc
cesses.6 Thus, the jth trial step could be computed 
from 

where NU) is a column vector of Gaussian random 
samples, C(j) is a diagonal matrix of variances, and 

.!2.(j) is a bias vector, which may be altered after one 
or more successes (or failures). 

In the present study, the term "absolute biasing" 
has been used to denote the repeated use of a suc
cessful random step as long as continued success is 
attained. That is, if L\a(j) is successful, we choose 

~a(j+1)' = ~a(j) (11 ) 

and test for success. If ~a(j) was a failure, one 
chooses 

(12) 

Such a technique will be referred to as "absolute 
positive and negative directional biasing." 

It is also possible to adjust the variance of the dis
tribution of step sizes. For example, as a local mini
mum is approached, the variance can be decreased 
in order to decrease the probability of overshooting 
the optimum. 

The basic algorithm logically divides into two 
parts, concerned with the search for a local minimum 
and the global minimum respectively. 

Search for a Local Minimum 

This strategy, using absolute positive and negative 
biasing, is illustrated in Fig. 2. It consists of the fol
lowing steps for the computation of the jth trial 
step: 

1. A Gaussian random vector !i(j) is ob
tained. In the present study the com
ponents l!i (j), i = 1, 2, ... m, were 
obtained from successive trial samples 
of an analog high-frequency noise gen
erator. The sampling frequency was 
sufficiently low compared to the noise 



194 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

SET a'j ~ a'j' ALL j 

F' ~ F' 
S ~ 0 

RESET NON-SUCCESS 
COUNTER 

SEARCH COMPLETE, 
BEGIN GLOBAL 

INPUT OJ 

VARIANCE ~ C
j 

SET 0
1 i = 0' i 

SETF'~F,S~O 

SAMPLE NOISE N j 

COMPUTE Cj N j 

UMIT Cj N j 

DOES j ~ N ? 

YES 

COMPUTE 
0

1 
i = 0' i + 6. OJ 

LIMIT ALL a'j 

COMPUTE F', /j. F 

NO 

Figure 2. Absolutely biased local random search flow 
diagram. 

bandwidth to insure that successive 
samples are essentially uncorrelated. 

2. A trial step is computed with magni
tude constraints imposed on all param
eters. 

3. The analog computer is used to com
pute a new value of F = F'. 

4. F' is compared with F(j). If F' < F(j), 
we let F' = F(j+l) and!!;' = ~(j+l). If 
F' > F(j), the increment -Lla(j) is 
tried. 

5. The number of trials which leads to 
either no change or an increase in F 
is counted and used as a stopping cri
terion. 

Search for the Global Optimum 

Once a local optimum has been found, it must 
be tested to determine whether it is indeed the 
global optimum. The approach selected in this study 
is a random search. This allows much flexibility in 
that the statistics of the search may be adjusted to 
correspond to estimates of the location of other likely 
optima. For the present case, it was felt the space 
near the local optimum was the most likely location 

for an even better optimization criterion. The 
strategy then consisted of randomly sampling num
bers corresponding to the parameters ( as in the 
local random search), starting with a very small 
variance and expanding this variance slowly if no 
better points are found. If an improvement is found, 
a local search strategy is once again initiated. Fig
ure 3 gives the flow detail of the global random 
search algorithm. 

Initial Condition Set Selection 

Equation (3) suggests that natural criterion func
tions such as fuel consumption or acquisition time 
are functions of the initial conditions as well as 
parameter values. If both the differential equation 
and criterion function (J) were linear, a single set 
of parameters could be found which would optimize 
the J for all initial conditions simultaneously. The 
present study is concerned with the more general 
case where both the differential equations and the 
criterion function may be nonlinear. In this case, . 
the same set ~ may not optimize J for various initial 
conditions. In order to provide a single criterion 
function, the J's must be synthesized in some fashion 
as indicated by Eq. (4). As the allowable I.e. space 
K 0 is generally a continuous set, an infinite number 
of I.e.'s exist. Apparently not all I.e.'s can be con
sidered. The twofold problem then exists: (1) which 

F ~ F' 

EXIT TO LOCAL 
SEARCH ROUTINE 

ENTER FROM LOCAL 
SEARCH ROUTINE 

SETC j ~C (0) 

J ~ 0 

SAMPLE N j 

COMPUTE AND LIMIT 
N j 

COMPUTE /j. OJ 

a'i :::: 0' i - 6. OJ 

LIMIT a'j 

COMPUTE F', 
/j. F - F' - F 

CONTINUE SEARCH 
INCREASE 

VARIANCE, C j 

Figure 3. Random global search flow diagram. 



PARAMETER OPTIMIZATION BY RANDOM SEARCH 195 

initial conditions should be considered, and (2) how 
the synthesis should be accomplished. 

If the criterion space is reasonably smooth it can 
best be described by partitioning the space and in
specting an initial condition from each partition. For 
the case of six variables (and, therefore, six initial 
conditions), as may exist for the satellite dynamic 
and kinematic equations, quantizing each variable 
into as few as five values yields 56 = 15,625 differ
ent initial conditions. This increased cost due to high 
dimensions has been aptly described by Bellman as 
the "curse of dimensionality." 9 

The synthesis function h may serve to reduce the 
dimensionality. Frequently all that is desired is a 
reasonable set of initial conditions which will de
scribe the worst possible conditions for F. 

This is the minimax criterion: 

F* (x*) = min max I (Xo, a) (13) 
a Xo e Xo - -

In some cases, the general location of this worst case 
can be estimated eliminating much of the initial con
dition space. The same algorithm employed to 
minimize I with respect to a can be used to maximize 
I with respect to the initial conditions. This approach 
has been programmed but the results are not in
cluded in this paper. The minimax criterion may 
unfairly penalize the more likely cases. For this 
reason, the synthesis procedure used in this paper 
was the most obvious linear relation-an unweighted 
average: 

q 

F = ~ I (:!OJ,Q:) (14) 
j=l 

The most desirable aspects of Eqs. (13) and (14) 
can be combined by the following procedure. The 
I.C. space is divided into q subdivisions which we 
designate by Xl, ... , Xq. For a given ,£, each of 
these subspaces are searched for the maximum initial 
condition set. These maximum I.C. points are then 
algebraically summed as in Eq. (14). Equation (15) 
expresses the operation: 

q 

F = ~ 1* (:!OJ,~) 
j=l 

where .:!oj e X j and 

1* (:!oj,~) = max] (:!.OJ, g) 
.:!.OJ e Xj 

(15) 

As this type of search procedure for every trial ~ 
is prohibitively expensive in computer time, the 

maximization is only performed after a given number 
of improved Q:'s have been found. Experience with 
the acquisition simulation indicates these worst I.C.'s 
remain nearly the worst case for a large variation 
inQ:. 

A SATELLITE ACQUISITION 
OPTIMIZATION 

The general acquisition problem considered is 
that of aligning a single axis of a satellite parallel to 
a desired vector and driving the angular rotation 
about this axis to zero (one-axis acquisition prob
lem). The reference coordinate frame is a three
dimensional, Cartesian set (1.1, 12, i3) with the three 
axes defining the desired pointing direction. The 
kinematic representation consists of the three direc
tion cosines of the satellite axis to be aligned with 
the three reference axes. The control system can con
sist of any collection of sensors (that can be de
'scribed by the six variables), whose outputs are 
processed by a compensation network which can be 
described by the parameters to be optimized. The 
outputs of the networks are then used to drive angu
lar acceleration devices (torquers). In order to pro
vide a more concrete control equation, the sensors 
are assumed to be three rate sensors and two direc
tion cosine sensors. The control laws were chosen 
to be proportional but saturable control. The equa
tions expressing the acquisition dynamics, kinematics, 
control law, several potential optimization criteria 
and the end of run criterion are given in Table 1. 
Six initial conditions (three attitudes and three rates) 
were specified for each trial optimization. 

A nalog Simulation 

The above-mentioned equations were simulated 
on a Beckman 2132 analog computer. The end of 
run criterion indicated in Table 1 is necessary to 
determine when acquisition is complete. This is 
especially critical when the time of acquisition is the 
optimization criterion. The criterion selected is the 
absolute value of a weighted sum of the variables 
biased by some fixed voltage (see "Computer Error 
Detection" below). The criterion is assumed satis
fied when this sum becomes zero. The bias is neces
sary as noises and drifts by the analog would prevent 
an unbiased zero from ever occurring. The bias level 
selected is more a function of actual voltage levels 
than their equivalent variable units. 



196 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Table 1. Simulated Acquisition Equations 

Item 
Description Equations Discussion 

a13 = W2 a 33 + W3 a 23 a i3-Direction cosine from i body axis to 3 inertial 

Kinematics a 23 = WI a 33 - W3 a 13 W i-Body rate about i body axis 

a 33 = W 2 a 13 - wI a 23 

~l = [(12 - 13)/11] W 2W 3 + 11 I i-Inertia about i principal inertia axis 

Dynamics ~2 = [(13 - 11)111] W I W 3 + 12 1 i-Control angular acceleration about i axis 

~3 = [(11 - 12 )/13 ] W I W 2 + 13 

11 = - a l (a23 + a 3 WI) 
Control laws 12 = - a 2 (-aI3 + a 4 w 2 ) ai (i = 1, 2, 3,4, 5)-Controllaw gain constants 

13 = - a 5 W3 

End-of-run 3 2 
criterion ~ hi I wi I + ~ ci I ai3 I -K = 0 hi' ci-Weighting and scaling constants 

i = 1 i= 1 K-a constant 

Minimum fuel T 
criterion F= f ~ I 1i I dt 

o I 

Minimum time T 
criterion F = f 0 dt 

a7' a!), a 6 Limits on magnitude of 11' 12' 13' respectively 
Constraints as> a 10 Saturation values of a 13 and a 23 , respectively 

all' a l '2' a 13 Saturation values of WI' W 2 ' W 3 ' respectively 

Digital-Analog Interface 

The digital computer provides those functions 
it is best suited for. It provides the optimization 
algorithm, initialization search procedure, controls 
the analog modes (Initial Condition, Operate), pro
vides voltages for the initial conditions of the vari
ables and parameter settings, and reads the optimiza
tion criterion from the analog. 

In order to better understand the operations of 
the various elements of the optimization process a 
logical flow diagram of the entire computer opera
tions in the optimization phase is shown in Fig. 4. 
An optimization criterion is selected (for example, 
minimum fuel or time) . A set of initial conditions for 
the variables is selected based on the space search 
that has· already been run. A best initial guess for 
the parameters is made. The error criterion (F) for 
this initial setting will be assumed already calculated. 

A new point in parameter space is selected by the 
optimization algorithm. For each set of variable 
initial conditions, three analog computer runs are 
made giving a J for each run. The three J's are com
pared to check parity ( the reasons are explained 
later). If their standard deviation is within tolerance, 
the mean J for the three is selected as the criterion 
for this set of I.C.'s. This ~s the innermost loop (loop 
I). This process is repeated for each set of I.C.'s 
(loop II). The J's for each I.e. set is averaged to 
give F. This is the F used to determine (loop III) 
whether the explored point is better than the present 
point. Loop III minimizes time or fuel as the error 
criterion. 

COMPUTER ERROR DETECTION 

The speed and accuracy of convergence of the 
optimization procedure is directly related to the 



PARAMETER OPTIMIZATION BY RANDOM SEARCH 197 
DIGITAL-ANALOG 

CONVERTER 

ANALOG TO IC 
SET IC VALUES 

SET PARAMETERS 
ANALOG TO OPERATE 

ANALOG 
COMPUTER 

ACQUISITION 
f-+ EQUATION: COMPUTE F f-+ 

HOLD AT END-OF-RUN 

( DIGITAL COMPUTER) 

ANALOG-DIGITAL 
CONVERTER 

ANALOG CONTROL 
CODE F

IC 
OPTIMI2.ATION 
ALGORITHMS 

LOOP I 

(a) COMPUTE F
IC 

THREE TIMES (ONE a AND IC) 

(b) FIND DEVIATION OF RUNS 

(c) IF ACCEPTABLE FIND AVERAGE FIC 

(a) COMPUTE F
IC 

FOR EACH IC SET 

(b) SYNTHESIZE FIC TO OBTAIN F 

(a) COMPUTE F FOR OPTIMIZATION 

(b) OPTIMIZE THE OJ 

LOOP II 

LOOP III 

Figure 4. Optimization master logic flow diagram. 

accuracy and repeatability of the analog simulation. 
Extensive testing of the analog computer found that 
for many runs in succession or even on separate 
days with identical inputs, the optimization criterion 
would be repeatable to within one volt unless an 
obvious malfunction occurred. The prime sources of 
malfunctions were: ( 1) a bit lost in the analog to 
digital converter, (2) a momentarily defective elec
tronic switch, and (3) drift in the electronic multi
pliers. Most malfunctions were of a momentary 
nature so that for over 99% of the time no more 
than two successive runs were adversely affected. In 
light of this knowledge, the computer was pro
grammed in the following manner to prevent com
puter malfunctions from negating an algorithm or 
consuming excessive time in trouble shooting. 

Overload Detection 

An overload indicates either an unstable differ
ential equation or an equipment malfunction. The 
computer was programmed to halt on overload. 

Time Limit Detection 

Certain parameter combinations may result in ex
tremely long optimization times. Occasionally, how
ever, a computer malfunction could have the same 
effect. The computer was programmed to stop on a 
maximum time and try the problem again. If time is 

exceeded again, it is printed out, a large value is 
assigned to the optimization criterion and the op
timization continues automatically. 

Standard Deviation Tests 

The use of confidence tests provides a powerful 
tool for improving the accuracy of analog computer 
studies. Assume that errors in analog computer re
sults are normally distributed with zero mean and a 
known standard deviation (1'. The assumption of 
zero mean can be justified if the computer is bal
anced frequently and (1' can be estimated from the 
sample variance Vs. Then, confidence tests can be 
used to determine the number of runs needed to 
satisfy a particular accuracy criterion. For example, 
suppose it is desired to be confident with .95 prob
ability that the computer has no more noise than 
when (1' was estimated. For N = 3 runs, we require 
that V Vs ~ 3.0 (1'. When the allowable variance is 
exceeded, it is concluded that the computer is not 
operating properly. The computer makes three runs 
with the same inputs. If the standard deviation is 
less than one volt, operation is assumed normal and 
the optimization continues. If the standard deviation 
is greater than a volt, malfunction is assumed. In 
this case, the large standard deviation is printed out 
and another set of three runs attempted. If this set 
is accepted, the first set is discarded and the optimi
zation is continu'ed. The operator may stop the com
putation if he desires. 

Note that if a set of runs is accepted, the three 
values of F are averaged, thus increasing the accu-
racy of the optimization criterion by V 3. 

RESULTS OF THE OPTIMIZATION 
STUDY 

The specific numerical values used in the op
timization are given in Table 2. A maximum of nine 
independent parameters were studied at one time. 
Fig. 5 shows a typical optimization using acquisi
tion time as the criterion for the absolutely 
biased local random search. The nine parameter 
settings are plotted versus real time. The vertical 
lines indicate when the computer is in reset. Three 
trials are simulated and compared before the case 
is accepted as discussed in the preceding section. 
The optimization runs shown considered just one 
initial condition set. To indicate the improvements 
in system performance during the optimization for 



198 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Table 2. Numerical Values for Acquisition Optimization Study 

Wim 

wia 
a ijn 

Parameter 

aiimin 

aiimax 
(12 - 13 )/11 

(13 - 11 )/12 

(11 - 12 )/13 

Description 

Maximum initial rate 
Average initial rate 
Nominal direction cosines 
Minimum initial attitudes 

Maximum initial attitudes 
Inertia ratios 
Inertia ratios 
Inertia ratios 
Roll position gain 
Pitch position gain 
Roll rate to position gain 
Pitch rate to position gain 
Yaw rate gain 
Yaw torque limit 
Roll torque limit 
Pitch direction cosine limit 
Pitch torque limit 
Roll direction cosine limit 

a All physically realizable combinations. 

o~ /luO 
(SEC, 

as/ 100 
(SEC) 

.. , 'I!!; 

.. • • • • • ~ . • ....... , . ! I ! : ! ! 11 
: : ; ; : ~ ; ; J 

Figure 5. Nine parameter minimum time optimization using 
absolutely biased local random search. 

Assumed Value or 
Range of Values 

±70 
±26 

a 13 = a23 = 0 a33 = + 1 
± 1 a 

+1, ±lIV3a 

+0.311 
-0.802 
+0.643 

0.001 to 0.100 
0.001 to 0.100 
0.001 to 0.100 
0.100 to 10.0 
0.100 to 10.0 
0.001 to 0.100 
0.001 to 0.100 
0.01 to 1.00 
0.001 to 0.100 
0.01 to 1.00 

Units 

milliradiansl sec 
milliradiansl sec 

sec-2 

sec-2 

sec-2 

sec 
sec 

rad/sec2 

rad/sec2 

rad/sec2 

one I.C. set, Fig. 6 gives the response of five in
dependent variables (wx, Wy, Wz, a13, a23) as defined 
in Table 1, the end-of-run criterion, time of run and 
fuel consumption for (1) the initial parameter set
tings, (2) the optimized minimum time settings, and 
(3) the optimized minimum fuel settings. 

The major results of the study were the following: 

1. Absolute biasing is an efficient way of im
proving the convergence of a random search process. 

2. A successful strategy for changing the variance 
of the distribution of steps during the local search 
was not found. A subsequent study of USC10 
verified the conclusion that a uniform variance 
yielded convergence to a local optimum as rapidly 
as any variance adjustment strategy attempted. In 
this study, a variance equal to 4 % of the range 
between maximum and minimum limits on each 
parameter was used. 

3. The random global search technique proved 
to be very useful. The strategy that appears most 
useful is that of using the local optimum as the 
origin and initiating the purely random (no biases) 
search with a very small variance. After each 
search, the variance is widened until any point in 
the parameter space has some chance of being 
inspected. For the most successful strategy found in 
the study, the variance was initially set equal to 
0.5% of the span (upper limit to lower limit) of 
each parameter which was incremented by a factor 



PARAMETER OPTIMIZATION BY RANDOM SEARCH 199 

INITIAL 
PARAMETER 
SETTINGS 

W 1 +0.025~,;: ;; ; 
1 0 ~l : ' : ' ' 

(SEC- ) -0.025 --l~ 
I"!! , 

MINIMUM 
TIME 

PARAMETER 
SETTINGS 

.I. •• ,.+. ,. 
J.,;j~. 

MINIMUM 
FUEL 

PARAMETER 
SETTINGS 

:. I' i 

~ 

: : : j: ~ , 

•. '1_i.I~' __ ...... __ 

. . ! ! t ~ 

i • -i 4- +-+ ---< + ••• 

w3 +0.025,-----d : ~ !:; 
-1 0 r-~ r.-+-, -, --, , ~ 

(SEC ) -0.025--' ":::;:, 
-; ! r t t __ ~ ; i ; ~1 __ : ; ~ 

ru',:+':,:,: ., I I, 

~ : ; 1 . 

:l:,H" 
'1' Hi-_, __ i 

'!!"! t 

f- t -+-t
j! i i: 
1'+ t '!' 

! i j i 
;--r-;T 
1 :- r; 

I' ' 

1\lJJl
' , , , ' 

, ';' t· 

-T, , " " ': " " • I ••• 

+-~ 

r-' -: -,. ;. t ~ t 
, i· . . 
~ ... • t t - t ! . 

-+.j..--+.. . f' '-1 

(SEC) + 1 00 -~: : '! ' ! ,! : : : .. : : TIME OF RUN "I,!,:::,,' :::::Y' ',':::,::,:: 
o-Y::~::, '::::: 

FUEL 

(SEC - 1) +0.40-:-~;, ',' , , 
r......-+---:: ::::,: 

O-~---'l~~: ~ 
TIME-- 25 

SEC 
Figure 6. Comparison of minimum time and minimum fuel 

optimal solution with pre-optimization solution. 

of 1.02 every trial until the variance reached 50% 
of the span. This strategy assumes that the proba
bility of a further improvement is highest near the 
local optimum and decreases linearly as the dis
tance from the local optimum. In nearly every 
search for which the global optimization strategy 
was used, improvements were found. 

4. With 9 free parameters 300 to 500 runs were 
made, with a limit of 100 or 200 runs in the global 
search subroutine. With 2 solutions per second, 
the total time was approximately 4 to 6 minutes 
per optimization. It should be noted that with a 
modern high speed iterative analog computer, this 
figure could be reduced by one to two orders of 
magnitude. 

A NOTE ON CONVERGENCE 

It has been stated by Korn 7 that the random 
search technique will converge whenever the gradi
ent technique does. Clearly, for the local optimiza
tion algorithm, convergence can be assured since the 
strategy results in a sequence of criterion function 
values which is monotonically decreasing and 
bounded from below by zero. However, the rate of 
convergence is another matter. Rastrigin, who pub
lished one of the early papers on random search 
optimization,11 has also investigated its convergence 
properties.12 , 13 In the case of uninodal criterion 
functions, where constant F contours are hyper
spheres in the parameter space, he shows that the 
mean rate of progress of the random search method 
in the gradient direction exceeds that of the steep
est descent method when more than 3 parameters 
are involved. However, no such proof is available 
for the nonlinear case. 

Global search, which in the limit samples the 
parameter space everywhere, will converge to the 
global optimum with probability one. However, any 
computer implementation is finite and therefore 
cannot insure the location of the global optimum. 

CONCLUSIONS 

Parameter optimization by sequential random per
turbation is an efficient and easily programmed 
technique for the optimization of nonlinear dynamic 
systems. The technique is well suited to hybrid 
computation. 

REFERENCES 

1. S. H. Brooks, "A Comparison of Maximum 
Seeking Methods," Operations Research, vol. 7, pp. 
430-57 (July 1959). 

2. D. J. Wilde, Optimum Seeking Methods, Pren
tice-Hall, Englewood Cliffs, N.J., 1964. 

3. S. H. Brooks, "A Discussion of Random Meth
ods for Seeking Maxima," Operations Research, vol. 
6, pp. 244-51 (March 1958). 

4. J. K. Munson and A. I. Rubin, "Optimiza
tion by Random Search on the Analog Computer," 
IRE Trans. on Elec. Computers, vol. EC-8, pp. 
200-203 (June 1959). 

5. R. R. Favreau and R. G. Franks, "Statistical 
Optimization," Proc. 2nd Intern. Analog Computer 
Conference, 1958. 

6. B. A. Mitchell, "A Hybrid Analog-Digital 
Parameter Optimizer for Astrac-I1," Proc. AFIPS 



200 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Spring Joint Computer Conference, vol. 25, pp. 
271-85 (1964). 

7. G. A. Korn, Random Process Simulation and 
Measurements, McGraw-Hill, New York, 1966, pp. 
207-10. 

8. A. E. Sabroif, et aI, "Investigation of the Ac
quisition Problem in Satellite Attitude Control," Air 
Force Technical Report AF FDL-TR-65-115 (Dec. 
1965). 

9. R. E. Bellman, Adaptive Control Processes: A 
Guided Tour, Princeton University Press, Princeton, 
N.J., 1961. 

10. R. J. Adams and A. Y. Lew, "Modified 

Sequential Random Search Using a Hybrid Com
puter," University of Southern California, Electrical 
Engineering Department report (May 1966). 

11. L. A. Rastrigin, "External Control by the 
Method of Random Scanning," Automation and Re
mote Control, vol. 21, pp. 891-96 (1960). 

12. --, "The Convergence of the Random 
Search Method in the External Control of a Many
Parameter System," ibid, vol. 24, pp. 1337-42 
(1963) . 

13. L. S. Gurin and L. A. Rastrigin, "Conver
gence of the Random Search Method in the Presence 
of Noise," ibid, vol. 26, pp. 1505-11 (1965). 



A PARAMETRIC GRAPHICAL DISPLAY TECHNIQUE 

FOR ON-LINE USE 

M. L. Dertouzos and H. L. Graham 

Massachusetts Institute of Technology 
Cambridge , Massachusetts 

INTRODUCTION 

Graphical displays are gaining unquestioned im
portance 1 in the growing field of communication 
between man and digital computers. The develop
ment of time-shared digital computers 2 further ac
centuates the need for widely-used graphical inter
action within the framework of certain economic 
constraints. Typically, these constraints involve the 
use of relatively low telephone-channel data rates and 
the temporary storage of graphical data at the' dis
play site. User requirements dictate both an input and 
output ability of alphanumeric and graphical data * 
for. typical. applications. A typical time-shared appli
cation, WhICh gave rise to· the technique and proto
type described in this paper, involves the online 
design ~f electronic circuits. 3, 4 Here, a designer 
c?mmumcates graphically a circuit to the computer, 
VIsually observes circuit-analysis results in the form 
of curves, and modifies on-line circuit parameters 
and topology in order to improve circuit perform
ance. 

The display technique to be presented involves 
only ~he ou.tput of graphical data. It is normally 
combmed wIth a device such as a teletypewriter or 

* T~is distinction between alphanumeric and graphical 
data ~s one of efficiency, since character generation and 
graphlcal-segI?ent generation could be accomplished by the 
same mechamsm: 

201 

a light-pen for graphical data input. Main objec
tives in developing this approach have been the dis
play of complex curves in terms of relatively few 
computer commands, and the evolution of a display 
system sufficiently simple and inexpensive to accom
pany a typer of a time-shared installation. 

First, the principle of operation is described. Dis
cussion of certain system-design decisions is followed 
by the way in which the experimental prototype was 
implemented. Experimental results, relevant soft
ware, and conclusions complete the paper. 

PRINCIPLE OF OPERATION 

A block diagram of the basic elements used in 
t~is technique is shown in Fig. 1. Visual data is pro
VIded by an x-y graphical display device such as a 
storage-type cathode ray tube driven by waveforms 
x(t) and y(t), where t is time. These waveforms are 
the outputs of two linear networks, Tx and T y , char-

XDi 

COMpm~ ( Pi 
WORD 

YD j 

Figure 1. Basic configuration. 



202 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

acterized by unit-step responses T x (t) and T y (t) , 
respectively, which are constrained to have unity 
steady-state gain, that is T x ( 00) = 1 and T y ( 00 ) 

= 1. Signals XA (t) and Y A (t) are the outputs of 
digital-to-analog converters which convert two parts, 
XD i and YD i , of the computer output from digital 
into analog form. A third part, Pi, of the computer 
output controls the parameters of networks T x and 
Ty. 

Assume that at time, tk, the linear networks have 
attained steady state. As a consequence, outputs of 
Tx and Ty will be X(tk) = XA (tk) and y(tk) = 
Y A (tk), thus establishing at time, tk, a point 
[XA(tk), YA(tk)] on the CRT: Suppose that at 
t = tk the computer output changes, so that 

XA (t) = XA (tk) + AXU-1(t - tk) (1) 
Y A (t) = Y A (tk) + AYU-1(t - tk) (2) 

for t > tk, where U-1 (t) is the unit step. Signals x(t) 
and y (t) will then be, by the linearity of T x and T y, 

for t ~ t1\ 

x(t) = XA (tk) + AX Tx(t - tk) (3) 
yet) = YA(h) + AY Ty(t - tk) (4) 

Since T x and T yare constrained to have unity 
steady-stage gain, the final values of x(t) and y(t) 
at some time tk+1, where tk+1 - tk is much greater 
than the time constants of Tc and T y, will be 

~(tk+1) = XA (td + AX (5) 
y(tk+1) = Y A (fk) +b..Y (6) 

thus, establishing a point [XA (tk) +b..X, Y A (tk) + 
b..Y] at time tk+1 on the CRT. 

What is of interest here is the trajectory I(x, y) = 
O-resulting from elimination of t in Eqs. (3) and 
(4 )-between these two points. This trajectory will 
depend upon the nature of networks T x and T y and 
on the way in which their internal parameters are 
controlled by Pi. For instance, in the special case 
where TIlJ is identical to Ty , Eqs. (3) and (4) give 
the following trajectory: 

AY 
y = Y(tk) + - (x- X(fk)) 

b..X 
(7) 

which is, as expected, a straight line. In general, 
when Tx and Ty are not identical, the trajectory will 
be some type of curve segment dependent upon the 
class and parameters of Tx and T y. 

It is, therefore, desirable that T x and T y be prop
erly chosen, so that a large and useful class of curve 
segments will be available through appropriate con-

trol of network parameters with Pi. A complex 
curve may then be synthesized as a composition of 
these basic curve segments. 

SELECTION OF NETWORKS Tx AND Ty 

Let Tx and T11 have step responses which are rising 
exponentials, i.e., 

Tx{t) = (1 - e-uxt)u_l{t) (8) 

T 11 (t) = (1-e-Uyt )u_1(t) (9) 

where Ux, U y are positive and U-l (t) is the unit step. 
If XA(tk) = X o, YA(tk) = Yo, .b..X = (Xl - X{)), 
and b..Y = (Yl - Yo), then by Eqs. (3) and (4), 
signals ·x(t) and yet) will be 

x{t) = (Xl + (Xo - Xl)e-UX(t-tk»)U_l(t - tk) 

(10) 

yet) = (Yl + (Yo - Yl)e-Uy<t-tk»)U_l(t - tk) 

(11) 

for t > fr.. Eliminating time between Eqs. (10) and 
(11) gives, between points (Xo, Yo) and (Xl, Y l ), 
the following trajectory: 

By varying the ratio of natural frequencies, Uy/ ux, 

the class of curve segments connecting points (Xo, 
Yo) and (Xl, Y l ) is given by Eq. (12). Various 
members of this class are shown in Fig. 2, for X 0 = 
Yo = 0 and Xl = Y l = 1. As shown, it is possible 
to obtain a large, well-spaced family of curves by 
properly varying U1J/ ux. This set of curve segments, 
however, has a major disadvantage. The final slope 
of a segment is easily shown to be: 

r 0 
dy I i (Yo - Yl)/(XO - Xl) 

dx I x=Xl L 00 

for U!J > u,c 

for Uy = Ux 

for U!I < U x 

(13) 

That is, the final slope is either zero or infinity except 
for the special case when the segment is a straight 
line. This constraint imposes the severe limitation of 
slope discontinuities between adjacent curve seg
ments. 

It appears, then, that besides the determination 
of steady-state coordinates, the selected networks 
should have at least two degrees of freedom in order 



A PARAMETRIC GRAPHICAL DISPLAY TECHNIQUE 203 

1.0 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 

x-
0.6 0.8 1.0 

Figure 2. Family of curves obtained from simple exponen
tial realization. 

to specify either initial or final slope, and in order to 
yield, for each such slope, a class of varying-curva
ture segments. On this basis, two alternative realiza
tions of T x and T yare investigated next. 

Polynomial Realization 

Let Tx(t) and T1f(t) be of the form 

Tx(t) = (1·- e-at ) U-l (t) (14) 

Ty(t) = (a + (3e- fJt + ye-2fJt + Be-3CJt )u_l (t) 
(15) 

where a + (3 + y + B is constrained to be the initial 
value of y, in this case 0, and a is constrained to be 
the final value, in this case 1. The initial slope of 
the resulting trajectory from (Xo, Yo) to (Xl, Yl ) is 

dy I = f3 + 2y + 38 

dx x=x Xo - Xl 
o 

(16) 

and the resulting trajectory curve is a third-order 
polynomial of the form 

y(x) = Ax3 + BX2 + Cx + D (17) 

C = (Q+Yc)/Xc-2Xl(2Q+MoXc-Yc) 

/ X2 + 3X2 (Q-Y c + MoX c) / X3 
C 1 C 

D = YI-XI(Q+ Yc)/Xc+X~ 

(2Q+MoXc- Y c) 
/X2_Xl3(Q- Y c+MOX c)/X3 

(20) 

(21) 

where Xc = Xl - Xo and Y c = YI ' - yo. Some 
representative curves generated by varying M 0 and 
Q are shown in Figs. 3 and 4. As seen from these 
figures, this approach permits specification of initial 
slope of a given curve segment to match the final 
slope of the previous, segment. A good "fit" to the 
desired curve can then be obtained by varying Q. 
Values of a, (3, y and B are determined by the 
computer, and are converted into appropriate com
mands through Pi. More degrees of freedom are 
available by varying y and B independently instead 
of attempting to match slopes. 

Exponential Approach 

An alternative realization is given by 

-fJot -fJxt 

Tx(t) = (1- (axe + (1-a.r)e )) U-1 (t) 

1.0 

0.8 

0.6 

0.4 

Mo= 1 

xo~o XI = 1 

Yo=o YI =1 

(22) 

Defining initial slope Mo and class index Q = y + B, 0.2 

yields for the coefficients of Eq. (17) the following: 

A = (Q - Y c + M OX c)/X3 
C 

(18) 
o~-L __ ~ __ L--J __ -L __ ~~~-L __ ~~ 

o 0.2 0.4 0.6 0.8 1.0 

B = (2Q + MoXc-Yc) x-
/X2-3XI (Q- Yc+MoXc) /X3 

c c 
(19) 

Figure 3. Curve segments from polynomial realization. 



204 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

1.0 
MO=2 

XO= 0 XI = I 
YO = 0 YI ~ I 

0.8 (FI NAL SLOPE 
=Q+I) 

t 0.6 

~ 

0.4 

0.2 

oL-~--~--~~---L--~--~~--~~ 

o 0.2 0.4 0.6 0.8 1.0 

x-
Figure 4. Curve segments from polynomial realization. 

under the constraints 

x = Xl + (XO-XI ) 

0:::::; ax :::::; 1 

o :::::; ay :::::; 1 

ax < 1= all = 1 

all < 1= ax = 1 

(1'm > (1'0 and ·(1'11 > (1'0 

(
ax(Y-YI) + (l-ay) ( Y-YI ) :: ) 

YO-YI YO-YI 

for ay = 1 and ax :::::; 1 (25) 

Some typical members of this class are shown in Figs. 
5 and 6. The final slope mf of any such segment is 

(26) 

From Eq. (26), final slope is determined only by 
parameter ax or ay and by coordinate values. There
fore, a large family of curves with a given final slope 
can be obtained by fixing x and Y and· by varying 
the ratio of natural frequencies as shown in Fig. 6. 

Both of the above realizations can display com
plex curves with smoothly connected segments. 
While the first realization yields a larger class of 
curve segments, it has two distinct disadvantages 
when compared to the latter: ( 1 ) computing time 
necessary to select an optimum set of segments to 
match a given curve is far greater, and (2) imple
mentation is much more complicated and expensive. 
For example, the order of three times as much 
equipment is required, and there exist timing prob
lems and an increased tolerance sensitivity. The 
prototype was, therefore, implemented with two 
exponential-type networks, capable of slope match
ing and class indexing, given by Eqs. (22) and 
(23). Further implementation considerations follow. 

1.0 

0.8 

0.6 

0.4 

0.2 

oy = 2eTo 

xo=Yo = 0 
XI = YI = I 

O~~ __ ~ __ L-~ __ -L __ ~ __ L-~ __ -L~ 

o 0.2 0.4 0.6 0.8 1.0 

x-
Figure 5. Curve segments obtained from exponential reali

zation. 



A PARAMETRIC GRAPHICAL DISPLAY TECHNIQUE 205 

1.0 

0.8 

0.6 

0.4 

0.2 

Xo = YO = 0 

XI = YI = I 

ax: I 

a y = 114 

:: I 

O~~---L--~--~--L-~--~--~--~~ 

o 0.2 0.4 0.6 0.8 1.0 

x-
Figure 6. Curve segments with the same final slope. 

IMPLEMENTATION 

The experimental prototype was designed for use 
in cO'njunction with a remote teletypewriter console 
O'f the time-shared computer facilities at Project 
MAC. Digital infO'rmation specifying a curve seg
ment is available at the console in series-parallel 

COMPUTER 
LINE 

form, as four* bits per character. Bit requirements 
of each curve segment are as follows: six bits each 
for XD and YD, six bits for ax and fX. y, five bits 
for y ( the ratio of natural frequencies), and a 
single bit for designating whether the beam' is to' be 
ON O'r OFF. Thus, 24 bits, or 6 characters are 
needed to specify each curve segment. 

The basic components of the system are shown 
in the block diagram O'f Fig. 7. Functions O'f the 
major components are as follows. 

The interface has three functions: (1) It 
converts bit information from the cO'n
sole to signal levels compatible with 
the system logic. (2) It generates a 
strobe pulse coincident with the cO'nsole 
signals for sampling purposes. (3) It 
recognizes the delimiter signal (which 
defines the completion of a segment 
description) and generates a delimiter 
pulse coincident with this signal. 

The storage registers retain the curve 
parameters supplied by the computer. 

The word designator "points" to that por-

* Actually, 8 bits are sent to the teletypewriter for each 
character. However, all combinations of only 4 bits are 
available. 

BEAM 

--;-}SZgPE 

figure 7. Block diagram of complete system. 



206 PROCEEDINGS~FALL JOINT COMPUTER CONFERENCE, 1966 

tion of the storage register which is to 
be filled by each set of bits. It is ad
vanced to sequential portions of the 
storage register by the strobe pulse and 
is reset by the delimiter pulse. 

The D / A converters along with their asso
ciated storage, convert the coordinate 
value to analog form. These con
verters are loaded by the delimiter 
pulse. 

If the beam-intensity bit is ON, the inten
sity control increases the intensity of the 
trace while the curve segment is being 
plotted. 

A Tektronix type 564 storage oscilloscope is used 
as the display device. 

Implementation of Tc and T lj follows the config
uration decided upon in the previous section, and is 
shown in Fig. 8. Note that due to the constraints on 
ax anday only one of the variable resistors of Fig. 8 
is in use for plotting any given segment. Likewise, 
only one set of the multipliers is used for plotting 
any segment. Thus, the variable resistor, an a multi
plier and a (1-0'.) multiplier are time-shared be
tween Tc and T y as shown in Fig. 9. The switch 
control,as, which is one of the bits used to specify a, 

differentiates between the two cases (ax = l,ay S 1) 
and (ay = 1, ax S 1). The multipliers are realized 
with a resistive divider scheme, and have variable' 
"gain" from 0 to 1 in steps of 1/16. The buffers 
and the adder are differential amplifiers with unity 
feedback. 

XA(t) I----)((t) 

YA(t) )----y(t) 

Ro 

Rx Co ~ RoCo 
Ry Co ~ Ro Co 

Figure 8. Configuration of T x and T y. 

As shown in Fig. 9, the variable resistance is 
obtained by operating switches across resistors in a 
series string. For reasons of economy, magnetic 
reed switches were used here and whenever a floating 
switch was needed. These switches have a switching 
time of 1 msec which is adequate for present data 
rates. Solid-state switches may be easily substituted 
if the device is to be used with a higher data-rate 
channel. 

SOFTWARE TRANSLATOR 

The process of converting a desired curve from 
point-by-point description to a series of segments 
within the class, realizable by T J' and T y , is the task 
of a software translator. 

In the case of online design of electronic circuits .'1 

the curve to be displayed is available within the 
computer as a set of closely spaced points or ordered 
pairs (X'i, Yd. The translator software converts 
this set of points to a set of ordered quadruples 
(XD-i, YD i , a, y), which are display commands. 

A chosen performance index matches the given 
curve with the minimum possible number of seg
ments within a given maximum allowable error. 
Wherever possible, slopes of connecting segments 
are matched. For simplicity, the translator algorithm 
has been divided into several steps. 

1. Initially the curve is scanned to locate 
all local maximum and minimum 
points in both the x and y directions. 
Since all segments are single-valued in 
both x and y (except for the trivial 
cases of vertical and horizontal lines), 
no single segment can contain such a 
maximum or minimum. Thus the curve 
is matched between successive pairs of 
these points with a minimum number 
of segments. All these points are stored 
in an array, P. 

2. Next, a search is conducted for curve 
segments with the realizable class that 
match successive points in P with min
imum error. This search, which is 
binary, ·locates the smallest number of 
segments that will match the curve 
between each pair of points in P within 
a maximum specified error. * For each 

* Absolute value of the error in the x(y) direction is 
used as error measure for segments that are functions of 
y(x). 



A PARAMETRIC GRAPHICAL DISPLAY TECHNIQUE 207 

x (t) 

10K 
XA (t) ---....... - ........... N'v--....... -----l 

Figure 9. Schematic of reduced Tx and Ty. 

segment a is set to match the slope of 
the previous segment or, if this is not 
possible, to match the slope of the 
given curve. 

3. The computer words found in Step 2 
above are then mapped into the corre
sponding symbols to be sent to the 
console. 

This algorithm was implemented in the AED 
version of Algol as used by Project MAC. 

Figure 10. Voltage response of tunnel diode circuit (0.5% 
fit). 

EXPERIMENTAL RESULTS 

Used in connection with CIRCAL/ the language 
for on-line design of electronic circuits, the proto
type hardware and the translator software gave rise 
to results shown in Figs. 10, 11, 12, and 13. Figure 
10 shows output voltage versus time for a tunnel 
diode circuit. Four segments were used to compose 
this curve. No display time was spent in labeling 
and dimensioning curves. If necessary, this infor
mation can be supplied by the typewriter upon 

Figure 11. Voltage response of tunnel diode circuit (3 % fit). 



208 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 12. Step response of a damped L-C circuit. 

request. The translator operated for a fit of 0.5%. 
"Fit" here is the ratio of error measure, defined in 
the preceding section, to full scale. Decreasing the 
desired accuracy of fit to 3% reduced the number 
of segments to three as shown in Fig. 11 for the 
same curve. Computing time spent in translation 
was 0.5 seconds for a 0.5% fit and 0.3 seconds for 
the 3% fit. 

Figures 13 and 14 show other curves resulting 
from this display. Observe that in Fig. 13 the 
storage property of the scope permits the superposi
tion of any number of curves for comparative study. 
Figure 14 shows an automobile silhouette drawn 
with 26 segments. These segments are shown in 
Fig. 15. This number of segments can be contrasted 
with possibly a few hundred points necessary for a 
piecewise-linear approximation or a point-by-point 
plot of the same drawing. 

CONCLUSIONS 

The main feature of this display technique is the 
utilization of few computer words for the display of 

Figure 13. Superimposed voltage responses. 

Figure 14. Automobile silhouette. 

a complex curve. Advantages resulting from this 
feature are small storage requirements for the trans
lated curves and a relatively fast display time. The 
main penalty is the computational effort necessary 
for translation of a given curve into appropriate 
display commands. 

One obvious conclusion is that the display should 
be more advantageous in cases where standard parts 
are repeatedly used. In such cases, an initial trans
lation would be successfully justified after repeated 
use of the translated data. Besides the above class 
of applications, the prototype has proven to be 
useful in cases of one-time curve plotting. Used in 
the on-line design of electronic circuits, the fraction 
of a second spent in curve translating can be justi
fied both economically and temporally, since it repre
sents but a small fraction of the computation effort 
allocated to circuit design. The advantage of having 
a visual display of the analyzed data in a typical 
display time interval of 2-3 seconds by far overrides 
the inconvenience of using the teletypewriter as a 
plotting tool at the expense of 3-.:.4 minutes of 
plotting time and significant accuracy. 

ACKNOWLEDGMENT 

This research was sponsored in part by the 
National Aeronautics and Space Administration 
under contract number NsG-496 (Part). Work re
ported herein was supported (in part) by Project 
MAC, an M.LT. research program sponsored by the 
Advanced Research Projects Agency, Department of 
Defense, under Office of Naval Research Contract 
Number Nonr-4102(01). Reproduction in whole or 
in part is· permitted for any purpose of the United 
States Government. 



A PARAMETRIC GRAPHICAL DISPLAY TECHNIQUE 209 

1-
0,14--

/ 
10 

_7 

• t 
29 30 

Figure 15. Command points for plot of Jaguar. 

REFERENCES 

1. Nilo Lindgren, "Human Factors in Engineer
ing," IEEE Spectrum, vol. 3, no. 4 (Apr. 1966). 

2. MIT Project MAC Progress Report, July 1964. 
3. J. F. Reintjes, and M. L. DertollZos, "Compu-

ter Aided Design of Electronic Circuits," Wincon 
Conference, Feb. 1966, Los Angeles, Calif. 

4. M. L. Dertouzos and C. W. Therrien, "CIR
CAL: On-Line Analysis of Electronic Networks," 
Report ESL-R-248, MIT Electronic Systems Labo
ratory (Oct. 1965). 





A SYSTEM FOR TIME-SHARING GRAPHIC CONSOLES 

James R. Kennedy 

Lockheed-Georgia Company 
Marietta, Georgia 

INTRODUCTION 

There is a large class of problems whose solution 
statements, in their most natural form, involve not 
only operation of verbal algorithms on easily defined 
data, but also provide assistance and prompting 
to a man "in-the-Ioop" that enables him to give 
information or data which may otherwise be inac
cessible or not easily described. The advent of de
velopments in the area of graphic hardware provided 
the necessary environment which allows for im
plementation of problem-solution statements which 
include provisions for human intervention. In order 
to economically justify human intervention, it is 
necessary, first, that there be sufficient problems of 
this type requiring a solution. Once this demand 
becomes apparent, it is further necessary that a 
system for sharing a single high-speed computer 
among several human operators be made available. 
Such a system, which provides for time-sharing 
(with good response characteristics) a single central 
processing unit among several graphic display con
soles, is the subject of this. paper. 

GRAPHIC INTERACTION 

From an intuitive point of view, graphic inter:
action is fairly well understood. It consists of a 
close interplay between a human operator at a 
graphic console and programs written for the pur-

211 

pose of carrying out the computer's role in the 
interaction. The operator at the console has, as his 
means of communications, several methods for 
generating hardware interrupts which can be ex...; 
ami ned by the programs for syntactic and semantic 
information on which to base a reaction. Some of 
the commonly known ways of generating these 
interrupts are by pressing one of several buttons on 
a keyboard panel, pressing a button on a light-pen, 
stepping on a foot pedal, or holding a light-pen 
over some portion of the display cathode-ray tube at 
a time when its electron beam is striking the face 
of the tube in proximity to the position of the light
pen. This last method of generating an interrupt 
can be referred to as a light-pen strike or, more 
simply, a "pen strike." 

By these and other methods, therefore, the op:
erator generates a stream of interrupts, the meaning 
of which must be interpreted by programs. For 
example, programs are written such that when a 
particular button is pressed, an associated sub
routine is called to perform the function implied by 
the button. Another example is found in the "light 
button." The light button concept is brought into 
play by the operator in the following way: The 
operator depresses the light-pen button causing an 
interrupt which signals that he wishes to point to 
some light on the CRT with the light-pen; then the 
operator moves the pen near a marker of some sort 
being displayed on the CRJ face. This action causes 



212 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

a pen strike to be generated and interpreted in a 
way analogous to an interrupt caused by a button 
being depressed; that is, the program analyzes the 
position of the light which caused the pen strike 
or obtains sufficient information in some other way 
to arrive at a correspondence with a particular sub
routine which is then executed. 

CPU interrupts are classified as follows: They are 
either caused as a result of some action on the part 
of the operator or generated as a result of program 
action. For example, in order for a system to under
stand the full meaning of a single depression of the 
light-pen button and a single pointing action on the 
part of the operator, it may generate a sequence 
of possibly four or five interrupts to be interrogated 
-each supplying a small portion of the total mean
ing. During the interaction, both system and ap
plication programs are brought into play in a 
random fashion depending on the whims of the 
console operator. Since system reaction to interrupts 
is very rapid compared to the reaction speed of a 
man at the console, one finds that the computer is 
usually idle and waiting for the next set of instruc
tions in the form of interrupts. 

A PROTOTYPE EXPERIMENT 

In January of 1965, the Lockheed-Georgia Re
search Laboratory obtained a UNIVAC 418 Com
puter· and a DEC 340 Precision Incremental Display 
for the purpose of studying man-computer graphics 1 

systems. A "Sketchpad" 2-like drawing program had 
already been outlined and the coding virtually com
pleted. In the following months, this program and 
others formed the basis for a series of subjective 
human factors studies and was a training ground 
for both systems programmers and specialists in 
various fields of aircraft design. After many modi
fications and improvements on the original design, 
the basic program, which was three-dimensional 3 

from the beginning, was stripped apart to form a 
two-dimensional drawing system. This system was 
then expanded in its construction capabilities and 
refined internally to give a very efficient system for 
forming a generalized two-dimensional list data 
structure (containing geometric properties) and con
trolling subprogram operators which generated dis
play information based on this data structure and 
made in~ertions, deletions, and modifications such 
as translation and expansion. 

Coincident with the emergence of the two
dimensional drawing capability was the develop-

ment of an application program which could perform 
calculations based on the two-dimensional data 
structure for the purpose of generating commands 
to drive a numerically controlled milling machine. 
This application program, whose output resulted in 
a milled part of somewhat arbitrary shape, there
fore formed the mechanism by which the Lockheed
Georgia Company was able to make an intimate 
study of the relationship between a human operator 
and a highly interactive graphic control system. 

Among the more important results of this study 
were the following: 

1. In general, production application pro
grams would be too large for perma
nent core residency. 

2. Application and graphic system rou
tines had to be structured such that 
CPU control did not hang up within 
a subprogram waiting for further ex
ternal information to continue its task. 

3. Display beam-driving commands are 
inefficient when their storage is struc
tured in the form of sequential core
resident arrays. 

4. The concept of program and data 
"state" must be implemented and or
ganized with care. 

5. Of the two sets of information that are 
tending to grow in size as the inter
action continues (listed data structure 
and display beam driving commands), 
the display commands tend to occupy 
the largest amount of storage. 

Based on these findings and justified by adequate 
requirements for a large-scale production system 
similar to the prototype, extensive equipment evalu
ations were performed and specifications for a sys
tem to time-share multiple consoles were drawn up. 

SYSTEM SPECIFICATIONS 

Hardware 

In the fall of 1965, a firm order was placed for 
a CDC 3300 computer configured to include a 
Digigraphics display system with three 22" CRT 
devices 4 for graphic I/O. (See Fig. 1 for CDC 
hardware configuration. ) Driven by a controller, 
relatively static picture information displayed on the 
three CRT's is refreshed in an off-line fashion from 
a six-track drum. More dynamic information is 



A SYSTEM FOR TIME-SHARING GRAPHIC CONSOLES 213 

B·------' 

T - 604 Tape Transport 
CPU - 3300 

CORE - 32K 
DISK - 1311 

C1 - 3228 Tape Controller 
C2 - 271 Controller 

CPU 

C3 - 3231 Peripheral Controller 
DRUM -275 Buffer Memory 

D - 273 Display Console 

C3 

G 

Figure 1. CDC Hardware configuration. 

routed directly from core to each of the displays. 
Since one drum revolution requires 33 milliseconds, 
and because each of the six tracks can contain 
10,000 words of display information, large amounts 
of information can be displayed "flicker free" on 
each CRT. Controller commands can be stored on 
the drum intermixed with CRT beam-driving com
mands in order to switch display control from one 
track to another. If switching is not required, each 
CRT could be driven from a single track thus leaving 
three tracks (or 30K) of high speed peripheral 
storage for other uses. 

Software 

Specifications for software listed the following 
requirements: 

1. The entire system had to be interrupt 
oriented. 

2. A sophisticated scheme for dynamic 
allocation of storage was a necessity. 

3. Most system subprograms and all ap
plication subprograms would be dy
namically relocatable and loaded into 
main memory only on demand. That 
is, nonresident subprograms reside 
permanently on disc or drum until a 
transfer to them for execution is at
tempted. 

4. The system must be capable of moni
toring the execution of all application 
subprograms. 

5. It must recognize the possibility that 
an application subprogram may be 
frequently called by allowing the sub
program to remain resident for a tem
porary period after return from its 
initial execution. That is, decisions 
concerning residency must be based 
on dynamically changing requirements. 

6. System subprograms dealing with I/O 
to graphic consoles must free applica
tion programs of the burden of details. 

7. System. interfacing with application 
subprograms must not interfere with 
the programmer's choice of coding 
language. 

8. The system must respond to unrelated 
applications with equal assistance. 

9. The system must be open-ended and 
thereby allow for future modification 
and extension. 

SYSTEM IMPLEMENTATION 

Development of the time-sharing system was 
brought about by a merger of already existing sub
programs provided by Control Data Corporation's 
Digigraphics Laboratory and locally coded routines 
to provide disc I/O capability and a resident load 
function. A careful study of CDC's Function Con
trol Program indicated that interrupt processors and 
byte stream generators could be extracted easily 
with only slight modifications to remove references 
to their overlay programs. This incorporation of 
routines which dealt intimately with the hardware 
meant that local systems programmers· could turn 
their attention to the problem of implementation 
of system and application programs within a disc 
and drum environment. System routines are cate
gorized as either resident or nonresident routines. 



214 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Resident System 

Main Executive Program. Under idle conditions, 
main frame control resides in a program which is 
stack driven. MAIN loops on two tests. One test 
is to determine whether any function buttons (key
board buttons or light buttons) have been activated 
by a console operator and stacked by the ap
propriate interrupt processor. The other is to deter
mine if a return has been stacked on completion 
of an I/O request. These tests involve two stacks 
which we can refer to as the button and I/O stacks. 

Each n-component element 5 on the button stack 
gives a· numeric code which corresponds to a sub
routine to be executed and the console from which 
the request for action came. The code number is 
used as an index to an array of pointers for the 
particular console to a· table entry for the appro
priate subroutine. The table entry for a routine 
gives its BCD name,. a bit to indicate if the routine 
is a permanent core RESident and a pointer, PNTR. 
If the routine is a permanent core resident, RES 
is a 1. In this case, PNTR is the absolute entry 
point to the routine. If RES is a 0, PNTR may be 
nil or a pointer to a "status table" for the routine. 
If PNTR is nil, the routine is nonresident and must 
be loaded. If PNTR is nonzero, the status table 
must be referenced to determine whether the routine 
is resident or not. When RES is 0, there is an extra 
entry in the table which indicates WHERE the 
routine is to be found. Since a pointer to this table 
is the argument given to XEQT (explained below) 
to cause the routine to be executed, this table is 
called XEQTTAB. See Fig. 2 for a typical entry. 

MAIN uses the console number as an index to 
an array giving the beginning of Common for each 
console. Common for the appropriate console is 
set into a variable known as ACTCOM and a call 
to the subroutine is effected via an "execution inter
face" routine giving, as a single argument, a pointer 
to the table entry for this subroutine. MAIN also 
interrogates a millisecond clock for accounting 
purposes. 

The second (I/O) stack contains elements giving 
absolute return addresses and the contents of ma
chine registers, and is the path by which control 
returns to a routine that has requested an input/ 
output function to be performed on the disc or 
drum unit. 

XEQT. XEQT is a transparent interface between 
subroutine calls and the actual execution of the 

BCD 

NAME 

R 
E F M B S PNTR 
S 

I 
I WHERE I 
I I 
I J L _______________ _ 

Figure 2. XEQTT AB. 

subroutines. The basic philosophy underlying the 
need for such an interface routine is that highly 
interactive programs will in general consist of a large 
set of relatively small subroutines that perform 
functions or subfunctions indicated by the system 
user. Normally, the entire program cannot be con
tained in core. However, with a dynamic load-at
call-time capability, those parts of the total which 
are required to respond to user requests can be 
shuttled in and out of main memory on a "demand" 
basis, thereby requiring only a relatively small part 
of main memory for program allocation at any 
given time. 

The interface can be signaled to provide as many 
as 15 arguments which may be used by the sub
routine in the form of dynamically allocated dimen
sioned arrays. The storage for each of these arrays 
is obtained by the interface at call-time and returned 
after execution of the subroutine. The actual size 
of the dimensioned arrays' given as arguments is 
arbitrary and specified only in the call through the 
interface to the subroutine to be executed. The inter
face automatically provides for loading the called 
subroutine from either the drum or disc peripheral 
storage devices (using WHERE) or for entry to a 
routine which is already resident in core. Since both 
the subroutine and dynamically dimensioned arrays 
are returned to free storage on exit, it is necessary 
that any state variables or results of computations 
that are required by other routines after execution 
be placed in Common. 



A SYSTEM FOR TIME-SHARING GRAPHIC CONSOLES 215 

The compilation or assembly of a subroutine call
ing another routine via XEQT causes a string 
through the external symbol usages to be placed as 
the first argument (which is the name of the routine 
being called) in the call to XEQT. This results in the 
necessity for XEQT to reference directly the first 
argument to obtain a pointer to the table entry for 
the appropriate subroutine. However, there are cases 
where a reference to a table entry is desirable in an 
indirect fashion. 

Suppose, for example, that a pointer to the sub
routine table was stored as a component in an ele
ment. In this case, it would be necessary to fetch 
the component from the element and store its value 
into a variable declared in the fetching program. 
Since it is not possible to determine during com
pilation of the· fetching routine that the component 
was a "procedure" component, the external symbol 
string does not appear. In order that XEQT may 
be able to reference the table for this procedure 
component, a special entry has been provided for 
this purpose. 

Another entry, known as a "terminal" entry, has 
been provided for the purpose of concatenating sub
routine calls without retaining the calling routine in 
core. An example of the use of this entry point would 
be made in the case of a control routine. The pur
pose of the control routine might be to examine 
parameters to determine which of many possible 
subroutines should be called. If the control routine 
calls the appropriate subroutine as its last logical 
function, it is not necessary or desirable that it re
main resident. Therefore, it could make a terminal 
call to the appropriate subroutine, which, upon com
pletion of execution, would return control directly 
to the routine which called the control routine. The 
control routine would have been unloaded at the 
time of the terminal call. Entries to XEQT which 
can be typed integer have also been provided. (See 
Fig. 3 for flow of program control when XEQT is 
used.) 

Load Function. When a routine is found by XEQT 
to be nonresident, a call is made to GETPROG giv
ing it a status table pointer, the address of console 
Common and the address of the call to XEQT. On 
return from GETPROG, XEQT is supplied with a 
status table pointer and caller address which corre
spond to a program that has been loaded. 

GETPROG performs the job of providing-via 
FREE-an input buffer, obtaining the WHERE 
word and building a stack block which contains a 

CURRENT 1----0 
I .---~___.lI-:.--=CA=Ll=B=EA=_D --+--,: - - - - _LJI 

SIZE PREY • 

CALLRTN XEOTTAB 
NFREE FSTARG J 1 

I----+ __ XE-'.OT_T_A B_---t~ - - - -lL..... ___ ~--'r -- lSTATTAB 
SUBR . 
DAl DYNAMIC 
Al ARRAY 
A2 

AN 
XEOTR 

v 
Figure 3. Program flow . 

call to an input routine and a call to a loader initial
izing routine. A jump into the block at the input 
routine call is then executed carrying parameters in 
both the block and machine registers to the loader 
initializer. 

The input routine stacks the input request and 
then tests to see if I/O is busy. If so, a jump to the 
idle loop in MAIN takes place where other consoles 
may have requests to be performed in the form of 
stacked buttons or return addresses resulting from 
1/0 requests. If I/O is not busy, it is initialized and 
then a jump to the idle loop is executed. In either 
case, it is the jump to the idle loop by the input/ 
output stacking routine which provides for process
ing of other requests when an I/O request forces a 
"wait" condition on a particular console. 

After the input has been performed and control 
passes to the loader initializer via a "return-jump" 
instruction in the stacked block (which gives a point
er to a fixed word in the block), the initializer 



216 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

P 
R SIZE ENTRY 
I 

OTHERS 

XEQTTAB 

I 
1 IF PRI-l I BLOCKA I 

1 IF PRI-O ~ MONIT : 
:- - - - - - - - - I -- - - - - - - - - - - - - -l 
1 IF PRI-l I BLOCKS I 

: IF PRI-O I NONE l 
f- - - - - - - - .J. - - - - - - - - - - - - - -I 
I IF PRI-l MONIT I 
I I 
I IF PRI-O NONE I L _________________________ ~ 

Figure 4. STATTAB. 

examines the first card of the program to determine 
program size. This is used to get a block into which 
the program will be loaded. Program block address 
and size are put into ST A TT AB (Fig. 4). 

The return-jump to the initializer is changed to 
a return-jump to a routine which will call the loader 
to process each card beyond the first. This routine 
gives the loader a relocation factor, next available 
Common location and a pointer to the first word of 
a card to be processed. When the program overlaps 
onto more than one drum sector or di~c track, it 
jumps back into the stacked block at the call to the 
input routine. After the program has been loaded a 
return to XEQT is made as mentioned above. 

Building and Using Tables. For each entry point 
defined by the load process, the loader calls an entry 
to LOADAID giving it the BCD name of the entry 
and its absolute address. If the BCD name of the 
entry being processed does not match the BCD name 
of the routine that was called, the entry is a second
ary entry and a pointer to its XEQTT AB is found 
by searching all XEQTTAB's in the "neighborhood" 
of the table for the routine which was called. When 
it is found, a ST A TTAB is formed and PNTR is 
set. The STATTAB of the "called" entry is formed 
by the loader initializer before it stores program 
'block parameters. The status table for secondary 
entries to a routine does not contain the program 
block address and size since it is unnecessary. Bit 23 
is set zero for all secondary entries to indicate this 

difference. In all other ways, however, the STAT
TAB's for both primary and secondary entries are 
identical. 

,'The absolute address which corresponds to the 
BCD name given to LOADAID by the loader is 
stored in ST A TTAB along with a pointer to the ap
propriate XEQTT AB. One other entry is made in 
ST A TT AB at this time. It is a pointer to the status 
table for the primary entry. Each time the loader 
calls LOADAID giving a new entry and a BCD 
name, the ST A TT AB of the previous entry is made 
to point to the new entry and the new entry is made 
to point to the primary entry. In this way, a "ring" 
of entry points to the routine being loaded is kept 
to allow for unloading all entries at the same time 
and returning all STA TT AB's relating to the routine. 

Four other entries appear in word 2 of the 
XEQTTAB of each entry. Each relocatable program 
on peripheral storage has a s~t of these to be inter
preted as follows: a bit to indicate frequency; a bit 
to indicate monitor status; a bit to indicate a break
point; and a four bit integer to indicate the number 
of dynamically allocated arrays to be supplied by 
XEQT. When the program is output to a peripheral 
device at sign-on time, the four-bit integer is picked 
up from a control card and inserted into the 
XEQTTAB as it is being formed for each entry 
point. The remaining bits are Booleans that are set 
dynamically. 

When XEQT is setting up the call sequence block 
for the subroutine, if the integer giving the number 
of dynamic arrays is nonzero, it is assumed that it 
gives the number of arguments, beginning with the 
first, which supply sizes of blocks required by the 
routine. These block sizes are used by XEQT to 
acquire, from free storage, pointers to blocks of the 
appropriate size. These pointers are ;then placed in 
the call sequence to the routine in the position of 
the argument corresponding to the size of the block. 
In this way, the blocks can be referenced as dimen
sioned arrays by the routine during execution. After 
execution is completed, XEQT refers back to the 
execute table to see if any dynamic arrays were 
supplied. If so, the call sequences are referenced 
again to return the arrays to free storage. 

If the bit indicating monitor status is a one, extra 
space can be provided in each STATTAB for the 
routine. This space is used to store debugging or 
accounting information pertinent to each entry point 
just prior to and immediately after execution. Two 
system routines, known as PREXEQM and POST-



A SYSTEM FOR TIME-SHARING GRAPHIC CONSOLES 217 

XEQM, are called to provide pre-execution and 
post-execution monitoring functions. At present, 
these routines provide a trace of calls to and returns 
from an entry and give application programmers a 
debugging aid in the form of the number of times 
an entry is called and the absolute location of the 
program block. 

When the bit indicating a break-point is set, an 
absolute address corresponding to a given relative 
address within the subroutine is referenced after 
loading to fetch the instruction stored there. This 
instruction is saved in a block on the Break Point 
Instruction (BPI) stack which is a string that begins 
in STATTAB. It is then replaced by a return jump 
to an element in the block. The block contains a 
pointer component to the appropriate status table 
and a return jump to a system entry called Break
Point Enter (BPE). If the instruction at the break
point is reached, BPE returns the original instruc
tion to its proper location and builds another stack 
block which contains the instruction address, status 
table pointer and machine conditions. This block is 
set into a Break-Point Hold (BPH) stack and can 
be used as input, along with the resident program, 
to many debugging operators. Break-Point Return 
(BPR) is a system routine that maps the BPH stack 
block into an I/O return stack. block to effect re
sumption of the halted routine. 

The final insertion into XEQTTAB is a bit which, 
when set to one, indicates that the frequency of 
execution is known or expected to be high. After 
execution, if this bit is set, XEQT will not "unload" 
the routine from core. All insertions and tables are 
allowed to remain for future use. It should be noted 
that if the monitor status bit is a one, XEQT will 
allow the ST A TT AB entries to remain resident even 
though the frequency bit is a zero and the routine 
is unloaded. If this occurs, XEQT clears the absolute 
address entry pointer in ST ATTAB to' indicate that 
the routine is nonresident but being monitored. 
Future calls to the same routine result in LOAD AID 
using the same STATTAB's that were used on previ
ous calls. 

Considerable debugging aid is obtained by pre
and post-execution monitoring routines which print 
out on the console typewriter the fact that a routine 
is going intO' execution or is returning and giving its 
absolute core location. A· manual interrupt routine 
has been provided to allow for console typewriter 
entry of the names of those routines whose execution 

is to be monitored and for entry of break-point in
formation. 

For each external symbol, the loader calls LOAD
AID which searches all tables for the console and 
provides a pointer. If the symbol represents a per
manent resident routine, the pointer is its absolute 
entry; if it represents a nonresident routine, the 
pointer gives the associated XEQTTAB. 

Free Storage. Two entry points are provided for call 
by all system and application routines to obtain 
blocks of contiguous storage and to return these 
blocks when they are no longer needed. FREE has 
access to a string O'f all blocks of contiguous storage 
available for use by any program. This string is 
formed by the RELease N WorDs (RELNWD) 
entry and consists O'f all blocks which have been re
turned to free storage after use. A request for a 
certain sized block is· a call to FREE to' search the 
string for the smallest block which will satisfy the 
request. FREE then returns the unneeded portion 
of the block to the RELNWD entry and gives, on 
return, the requested portion of the block to the 
user program in the form of a pointer to' the first 
word in the block. 

Because even a simple action on the part of a 
console operator may result in many calls to free 
storage for different sized blocks for the purpose of 
loading programs and building data both permanent 
and temporary, storage tends to be broken intO' many 
small blocks as the interaction cO'ntinues. There are 
complicated implications brought about by the 
"shattering" of core memory resulting from continu
ing and varied demands. Therefore, a way of 
"clumping together" many small available contigu
ous segments of storage into larger segments is pro
vided as an automatic feature of free storage. That 
is, each time a block is returned to free storage, an 
attempt is made to combine this block with other 
returned blocks to keep storage blocks as large as 
possible. This "garbage collecting" is the only system 
process which tends to counteract the normal shat
tering of free storage and is therefore very important. 

As a safety measure, each block is made two 
words larger than requested. One of the words con
tains the size of the ·block and is compared to' the 
block size when it is being returned. A mismatch is 
illegal and is assumed to be an error. The other word 
is used to string together all of the blocks for a par
ticular console and provides the only means by which 
the system can. recover storage given to an applica-



218 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1966 

tion when an error occurs. This extra information 
is seldom destroyed by an undebugged application 
and can provide for full system recovery except in 
cases where only memory protection through hard
ware would suffice. 

Interrupt Processors. The interrupt processor for the 
Digigraphics I/O channel is of special interest. It 
provides an analysis to determine the cause of dis
play controller interrupts and branches to a sub
processor for further action. Types of interrupts that 
can occur on the Digigraphics channel are sector 
pulse, pen strike, maintenance, and keyboard. 

Pen strike processing consists of enabling, at the 
controller, a sector pulse . interrupt for the sector 
preceding the one on which the pen strike occurred 
and also inserting a mask in a table to indicate that, 
when the sector pulse interrupt occurs on the next 
drum revolution, an "identification" (lD) read op
eration is to be performed upon receiving the next 
pen strike. If light-pen tracking on a console is in 
progress, pen strikes from drum display are ignored 
temporarily. The resident maintenance interrupt 
processor checks for drum and/or controller parity 
errors that arise during drum I/O or information 
exchange with the controller. 

Parity errors generally result in a second attempt 
before giving up. The keyboard processor results in 
a stacking of the console number and button number 
for future processing as mentioned in MAIN. The 
sector pulse interrupt processor is driven by a table. 
Given the sector number, it refers to the table to 
find out what needs to be done on this sector. The 
table provides an index for an array of entry points 
to routines to perform the following functions: read 
ID bytes from the drum; perform a drum read or 
write operation; update the position of the tracking 
cross and cause it to be displayed from core; per
form a core display; increment a drum-timed clock; 
or enable a pen strike interrupt. Reference 4 pro
vides a detailed description of the hardware involved 
for further information. 

N onreside:zt System 

Certain system routines were made nonresident 
because their frequency of use was assumed to be 
low. The combined size of these routines represents 
approximately 7K of core. 

Byte Stream Generators. The byte stream generators 
form a set of routines which are FORTRAN callable 
for the purpose of generating the display beam driv-

ing commands and certain identification information 
to be placed on the drum. To display a line, for 
instance, the byte stream generator for a line is 
called giving it the coordinates of the endpoints of 
the line. This routine generates the 12-bit bytes 
which drive the CRT beam to cause the line to be 
displayed. After it inserts the byte stream into a 
resident buffer, another routine is called to generate 
the identification bytes which follow in the buffer 
immediately after the beam driving commands. 
These identification bytes are ignored by the con
troller when performing the off-line display function. 
They can, however, be read back into core from 
the drum by the interrupt processors when a pen 
strike from the line occurs. The ID contains in
formation that is somewhat arbitrary; at present it 
consists of a code number which indicates that the 
displayed element was drawn by the console oper
ator, the track and sector on which the beam com
mands for the element reside, a pointer to the ele
ment definition block in core, and certain other 
information which is necessary in order to extract the 
bytes from the sector if the element is deleted. 

Routines are also provided for displaying strings 
of alphanumeric characters from four different fonts 
with variable character spacing. The strings can be 
displayed with any of three different ID byte codes. 
One causes the character BCD code to be packed 
into an application buffer. Another causes a button 
number and console number to be stacked for 
processing by MAIN (this is the light-button fea
ture). The final ID is null and causes pen strikes 
to be ignored. 

Maintenance Power Checks. This routine was made 
nonresident under the assumption that power failures 
would be infrequent. It provides for processing 
interrupts received when console power changes. 
Application initiation or termination can take place 
at this time as a result of console power change. 

Recursive String Processor. Because most high-level 
coding languages, such as FORTRAN IV, are not 
adapted to building, searching, and referencing list 
data structures, a recursive procedure, callable by 
FORTRAN, has been provided to perform the 
search function. STRING is given, as formal pa
rameters, the following: .a function name, a pointer 
to the beginning· of an arbitrary string, an integer 
Which specifies the word number of the string com
ponent in an arbitrary n-component element, and 
one variable parameter which will be passed on to 



A SYSTEM FOR TIME-SHARING GRAPHIC CONSOLES 219 

the function when it is called. STRING steps through 
the list following the string component from block 
to block. At each block, the function provided as 
a parameter is called, giving it the variable param
eter and a pointer to the block. The function may 
perform any operation on the block after which it 
returns providing STRING with a Boolean TRUE 
if a step to the next block on the string is desired 
and FALSE if the string processing is to be dis
continued. Because STRING is recursive, it is 
possible for the function parameter to also call 
STRING at any block for the purpose of processing 
a substring. In this way, FORTRAN coded routines 
can process list data structures. For each different 
component in a block, an assembly language routine 
must be called to fetch or store a value. Using these 
assembly language routines, FORTRAN coded rou
tines can build and reference blocks on a list. 

An entry to STRING is provided so that if the 
function wishes to delete the block that is currently 
being processed, STRING may be signaled to per
form the deletion. A corresponding routine to make 
insertions is not provided at this time because or
dered strings have not yet proved necessary. Block 
insertions at the beginning or end of a string may be 
made by calling a special routine for this purpose. 

STRING is normally a nonresident routine called 
through XEQT. This means that if a substring is 
processed, at the end of the substring a normal 
return will result that would tend to "unload" 
STRING. The frequency bit can be turned on or 
off by a call to a system entry, FREQ, to set the 
frequency. STRING, therefore, sets its frequency 
"high" unless only one string is being processed. The 
frequency of the function is also set high until just 
before the last call. If the function returns to 
STRING with a FALSE value, STRING calls a 
system routine to FLUSH the function. This action 
will cause it to be "unloaded." 

APPLICATION PROGRAM STRUCTURE 

In order to appreciate good response from the 
system, application programs should be structured 
to complement the systems capability. As mentioned 
before, applications consist of many "small" sub
routines structured keeping the following points in 
mind. (There seem to be no hard and fast rules 
and an individual programmer's good judgment nec
essarily plays an important role.) 

Dynamic vs Static Arrays 

Because of the "shattering" of storage mentioned 
previously, it seems obvious that, although the use 
of dynamically dimensioned arrays is a required 
capability, it is not desirable to "overdo" this capa
bility. For instance, consider a FORTRAN sub
routine which requires several dimensioned arrays 
whose sizes are relatively small compared to the size 
of the subroutine. Specifically, suppose the sub
routine size is 200 core words and three dimensioned 
arrays, each of size 5, are required. If these arrays 
are dimensioned internal to the subroutine definition, 
space will be provided for them in the same storage 
block with the subroutine. This means that at execu
tion time, one block of size 215 would suffice. If, on 
the other hand, the arrays were obtained from free 
storage by XEQT, the breaking-up of storage which 
results not only requires extra work on the part of 
the system but may also result in noncontiguous 
blocks thereby degrading storage integrity. 

On the other hand, suppose the subroutine size is 
400 words and three 200-word blocks are required 
as dimensioned arrays. In this case, if the arrays are 
dimensioned internally, 1,000 words of storage is 
required in a contiguous block in order to load the 
program. After a lengthy period of system operation, 
the 1,000-word block may not exist! However, it is 
obvious that a 400-word block has a better chance 
of being available-as do the three 200-word blocks. 
In this case, it seems that externally dimensioned 
dynamic arrays might be more desirable. As can be 
seen, there is some uncertainty involved in the struc
turing of a subprogram requiring dimensioned arrays. 
At a given time during the system evolution, it is 
certain that past history has an effect on the "good
ness" of a particular choice. 

Program State Variables and Common 

All variables which must be used by a particular 
subroutine and cannot be passed on to this sub
routine by a concatenation of calls must be assigned 
space in Common. For instance, suppose a line is to 
be defined. A subroutine would be loaded to initialize 
the definition of a line by obtaining a block of stor
age to be used for parameters that define the line 
and relate it to its two end points and other lines. 
A pointer to this block must be left in Common 
after the initialization until the console. operator has 
defined the first point. The first point may not be 
defined "soon." However, main frame control cannot 



220 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

be held up in the defining routine by a PAUSE. The 
defining routine must return to its caller-in this 
case MAIN-leaving in Common the results of its 
execution. When the console operator defines the 
first point on the line, another routine is called which 
uses the variables left in Common and adds the co
ordinates of the point to a point definition after 
which it returns. At some later time, the second point 
is defined and another sequence of routines is loaded 
to complete the definition and cause the line to be 
displayed. As mentioned before, the system defines 
Common to the loader such that it will be the same 
for a given console no matter what subprogram 
execution is required. 

Calls to N onr.esident Routines 

All calls to nonresident subprograms are made via 
the execution interface routine described previously. 

Calls to Resident Routines 

Calls to free storage to obtain· dynamic storage 
blocks and FREQ to set frequency are made direct. 
Calls to assembly language coded routines for storing 
and fetching block components are also made resi
dent since they are as much a part of the resident 
data as are the data values themselves. 

Subroutine Frequency 

There are several instances where a subprogram 
must concern itself with frequency. One of these 
instances was mentioned earlier in the discussion of 
the recursive string processor. Another is when a 
routine is itself recursive. In this case, the routine 
must set its frequency high until just before the 
last exit. This requirement places an added burden 
on the programmer and should be satisfied in a 
better way. However, the use of recursive routines 
seems to be limited at present. 

Although these seem to be the only instances 
when a subprogram must concern itself with fre
quency, consider the multiple entry routine each 
of whose entries will be executed shortly after 
initial loading. If one of the entries initializes or 
sets up parameters defined in the body of the rou
tine, it must remain resident or the parameter values 
and initial state will be destroyed by reloading. 

Of prime consideration, also, is the overhead 
cost of loading a· routine that is called, for instance, 
in a FOR-STEP-UNTIL-DO statement in ALGOL 

or a DO loop in FORTRAN. In cases where a 
second or higher call can occur, response to an 
application becomes noticeably slower when the 
routine is resident on drum and can be prohibitive 
when disc input is involved. 

Program Linkage 

Subprogram linkage is accomplished in three 
ways. One way is by a direct subroutine call. 
Another, and less familiar way, is by a mechanism 
known as the active function stack. Considering 
again the definition of a line, at the end of the 
initialization phase the entry to the subroutine which 
will provide for processing the first point is placed 
on the active function stack just prior to a return 
to MAIN. When the console operator defines the 
first point, the action taken by the operator causes 
an application subprogram to be executed. The sole 
function of this subprogram is to remove the entry 
on the top of the active function stack and initiate 
a call to it via XEQT. Therefore, through a com
bination of sharing Common and the linkage pro
vided by the active function stack, subprograms act 
much like the runners of a relay race-the first 
passing on parameters in Common to the second 
before it is loaded. A third and final way is through 
the concept of a request function stack. This con
cept has not been implemen.ted for application use 
in the first phase of the system but existed in the 
prototype. It provides a way of "chaining:' together 
subroutines that do not require any external action 
on the part of a console operator between sub
routine execution. The request function stack is a 
system stack in the sense that MAIN would test 
this stack for an entry after it finds there is nothing 
left to do but go idle. In the current system, the 
I/O stack is a system request function stack. 

CONCLUSIONS 

As can be seen, an interactive application is one 
which takes full advantage of the fast response 
characteristics of the system and does not retain 
program control for an extended period of time 
such as would result from a lengthy iteration 
scheme or a tape-bound process. In order that an 
application may successfully be implemented within 
the system environment, a careful study of the 
problem to be solved must be made in order to 
determine that portion which is inherently graphic 
and requires the type of graphic interaction that 



A SYSTEM FOR TIME-SHARING GRAPHIC CONSOLES 221 

has been discussed. Unless the application can be 
analyzed in this fashion, it generally proves better 
to resort to batch processing to obtain printed or 
plotted· output. 

Furthermore, the application programmer must 
coricern himself with the setting of subroutine fre
quency . and the flushing of subroutines after use if 
his application is to function efficiently. (As men
tioned before, flushing is automatic on exit if fre
quency is low.) . 

It has become painfully obvious that most present 
day compilers-FORTRAN N, where N=II, III, 
IV, for example-cripple a programmer's freedom 
in dealing with list structures. It would seem that 
computer manufacturers should have recognized 
this fact after so many years and begun to provide 
the needed capabilities. There exist compilers that 
do provide some of the required features, but they 
have not been accepted on a largescale and there
fore defeat attempts to retain compatibility and 
machine independence. The only bright lights on 
the horizon seem to be the AED 6 system being 
developed at MIT and a recent proposal 7 regarding 
ALGOL. However, the present demand is still not 
satisfied and is not likely to be for several years. 

As can be seen by the comments regarding the 
stacking of I/O requests and by the fact that the 
I/O routines are terminated by an interrupt at 
end-of-operation, time-sharing (in the sense used 
here) means that while an I/O request is being 
performed by the system to service one application, 
another application can have use of main frame or 
Digigraphic channel time. Control is idle in MAIN 
only when no requested functions for any console 
exist (console operators are thinking, perhaps) or 
when all applications have I/O requests stacked 
and incomplete. It is possible that a "time-slicing" 
scheme may be devised in the future, but the 
"natural" time-slicing provided by calls to non
resident routines (implied I/O requests) and ex
plicit application requests for I/O seem to make 
"system imposed" time-slicing unnecessary. 

At present, all compilations and assemblies must 
be done off-line under a standard batch monitor. 
No provision is made for concurrent batch and 
graphic job execution as is the case in some other 
systems servicing a single graphic console applica
tion.8, 9 This provision can best be provided, per
haps, with a second core bank-a feature that may 
be added later. 

Storage requirements for the system involve only 

that of the· resident portion which uses slightly less 
than 10K. The remaining 22K is controlled by the 
free storage program which is callable by both 
system and application programs. As can be seen, 
storage allocation for program residency is not a 
loader function. It is possible that only one other 
group of systems programmers 6 uses a similar 
scheme for storage allocation. Console Common 
requirements are determined at application initializa
tion time when application subroutines are written 
onto peripheral storage. A block of the appropriate 
sized storage is obtained and a pointer to it saved 
for use when loading. A typical size for console 
Common might be provided by the numerical con
trol application which requires 20010 words for state 
variable storage. It may be worth noting that this 
application has over 26010 entry points to nonresi
dent subroutines. 

Many improvements are planned for the system. 
The most important of these to be implemented 
soon will submerge the XEQT feature below the 
source level and make it an invisible feature of 
the system. Additional graphic debugging aids will 
be provided by late fall. 

Some of the more obvious advantages and dis
advantages of the system can be listed as follows. 

Disadvantages 

1. High load function overhead compared 
to overlay schemes. 

2. Restricted program structure. 
3. Little storage protection. 
4. Programs must be compiled or assem

bled off-line. 

Advantages 

1. Monitoring of subprograms. 
2. Storage optimization on a demand 

basis. 
3. Virtually unlimited application pro

gram extension capability. 
4. Transparency of display console to 

application programs. 
5. Good debugging features. 

SUMMARY 

All application and most system subprogram resi
dency is made a function of console operator de
mand. That is, a subprogram is resIdent only when 
it is required to perform some computation in re
sponse to a demand made by the operator. Upon 



222 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

completion of the computation, the storage which 
it occupied during execution is promptly returned 
to the system for future use by the same or another 
application. Furthermore, all application programs 
are structured in a highly modular form such that 
an application consists of many small subroutines 
which are loaded only when called and are allowed 
to remain resident only during their period of active 
execution. Application programs therefore consist of 
sets of subroutines residing in a relocatable form on 
a peripheral random access high speed storage de
vice. Associated with each application program 
(console) is a resident table in a form which is 
sufficient to allow the system to find subprograms 
when they are called and cause them to be loaded 
into an available block of storage just prior to trans
fer of control to them for execution. System sub
routines are provided for interfacing applications 
with the display consoles and all display drum I/O 
is handled by the system. 

REFERENCES 

1. S. H. Chasen, "The Introduction of Man
Computer Graphics into the Aerospace Industry," 

FICC, vol. 27, pt. 1, Spartan Books, Washington, 
D.C., 1965. 

2. 1. E. Sutherland, "Sketchpad, A Man-Machine 
Graphical Communication System," SICC, vol. 23, 
Spartan Books, Washington, D.C., 1963. 

3. T. E. Johnson, "Sketchpad III, A Computer 
Program for Drawing in Three Dimensions," ibid. 

4. --, "Digigraphic System 270; System In
formation Manual," Control Data Corporation Digi
graphics Laboratories, Burlington, Mass., 1965. 

5. D. T. Ross, "An Algorithmic Theory of Lan
guage," ESL-TM-156, MIT Electronic Systems 
Laboratory, Cambridge, Mass. (1962). 

6. --, "AED-O Programming Manual-Pre
liminary Release # 1 ," MIT Electronic Systems Lab
oratory, Cambridge, Mass. (1964). 

7. N. Wirth and C. A. R. Hoare, "A Contribu
tion to the Development of ALGOL," Communica
tions of the ACM, vol. 9, no. 6 (June 1966). 

8. E. L. Jacks, "A Laboratory for the Study of 
Graphical Man-Machine Communication," FICC, 
vol. 26, pt. 1, Spartan Books, Washington, D.C., 
1964. 

9. C. A. Lang, "New B-Core System for Pro
gramming the ESL Display Console," MAC-M-216, 
Project MAC, Cambridge, Mass. (Apr. 1965). 



THE LINCOLN WAND 

Lawrence G. Roberts 

Lincoln Laboratory, * Massachusetts Institute of Technology 
Lexington, Massachusetts 

An ultrasonic posItIOn-sensing device has been 
designed which will allow a computer to determine 
periodically the x, y, and z coordinates of the tip of 
a pen-sized wand. The device can replace the light
pen and RAND Tablet 1 for 2-D work, and extend 
the usefulness of such devices by virtue of the extra 
dimension available. The extremely large working 
space in which the WAND can operate allows it to 
be used for an entirely new set of pointing functions 
not directly connected with a display as well as the 
normal display control functions. 

The specifications of the device as it exists on the 
TX-2 are as follows: 

Working space,. . . . . . . . . . . . . .. 4 X 4 X 6 feet 
Resolution. . . . . . . . . .. .02 inch-(12 bits/axis) 
Sampling rate . . . . . . . . . . . . . . . . . . . . . .. 25 cps 
Computer time . . . . . . . . . . . . . . . . . . . . . . .. 1 % 
Absolute accuracy ................ 0.2 inches 

The technique currently being implemented uses 
four ultrasonic transmitters and one receiver. Each 
transmitter is pulsed periodically so as to produce 
a 20-p.sec burst of energy, bandpass limited between 
20 kc and 100 kc. This burst arrives at the receiver 
after a time delay proportional to the distance be
tween the' two devices. The receiver amplifier is 
tuned for 50 kc and thus rejects most room noises. 

* Operated with support from the Advanced Research 
Projects Agency. 

223 

Its output is clipped so that it outputs a pulse when 
the signal is received. This pulse is used to stop a 
counter which was started by the pulse to the trans
mitter. If any reflections are seen by the receiver they 
occur after the straight path reception and are there
fore ignored. Ten milliseconds after one transmitter 
has been pulsed the next one is pulsed to find the 
distance between that transmitter and the receiver. 
In this way the four vector distances to the receiver 
are determined and thus its position in space can 
be calculated. 

The major inherent advantage of the ultrasonic 
delay method of determining the position of a stylus 
is that the measurements are all delay measurements 
where a digital counter can provide a direct digital 
readout without requiring an analog to digital con
version. Sound is very convenient for measurement 
purposes since its propagation velocity is approxi
mately one foot per millisecond. Thus, a I-megacycle 
counting rate will resolve distance to .014 inch 
and a 13-bit counter will allow measurements of 
up to 9 feet. Allowing time for II-foot reflections 
to die out, the transmitters can be pulsed at 10-
millisecond intervals. Since four transducers are 
used, the total cycle takes about 40 milliseconds, 
providing an operating frequency of 25 cps. The 
hardware is currently arranged so that the computer 
is interrupted when a new count is completed, at 
which time it reads the counter value and the trans
mitter number {see Fig. 1). It is left to software to 



224 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

4 BITS 

DIGITAL 
READOUTS 

TO 
COMPUTER 

13 BITS 

4-STAGE 
SHIFT 

REGI STER 

SHIFT 
AND 

PULSE 

CLEAR 
AND 

START 

i3-BIT 
COUNTER 

2 

3 

4 

STOP 

COUNT 
PULSES 

4-CHANNEL 
PULSE 

AMPLIFIER 

i00-cps 
PULSE 

GENERATOR 

RECEIVER 
AMPLIFIER 

AND 
CLIPPER 

i-Mcps 
PULSE 

GENERATOR 

TRANSMITTERS 

2 

3 

4 

RECEIVER 
MICROPHONE 

CATHODE 
FOLLOWER 

Figure 1. Block schematic of Lincoln WAND system. 

calculate the x, y, z coordinates from the four dis
tances. 

DISPLAY POINTING DEVICES 

There are two basic kinds of pointing capability 
which have proven important in graphic activities 
utili~ing a display scope. 2

, 3 The first, item pointing, 
provIdes the machine with the command "that'" the 
second, position pointing, essentially says "h~re." 
Item pointing allows one to select one item out of 
many displayed on the scope thus facilitating multi
ple-choice answering or text and drawing editing. 
The position-pointing capability permits the con
struction of drawings and the repositioning of sym
bols on the scope. Without this ability the coordinates 
of e~ch item would have to be typed in, making 
drawmg extremely inconvenient. Both capabilities 
c.an be p~ovided either by an item-pointing device 
lIke the lIght-pen or position-pointing devices like 
the .RAND Tablet and the WAND. An item-pointing 
deVIce can be extended to provide position informa
tion by displaying a tracking cross which follows it; 

however, the cost in computer time is typically about 
5 % per console. A position-pointing device can be 
used to provide item-pointing capability if a hard
ware or software comparison is made between the 
coordinates of all points displayed and the position 
provided by the device. Such a hardware compara
tor has been built in the TX-2 display generator. 
The computer merely sends the device position (x, 
y) to a sample and hold circuit in the scope and 
if any subsequent vector or point generated by the 
scope goes near that position, the analog comparison 
circuits generate a program interrupt so that the 
identity of. the item being displayed can be recorded. 
With comparator hardware for the central display 
generator, position-pointing devices are preferable 
to light-pens because there is no need to track them' 
the pointing is more precise, and they will work· 
with long persistence phosphors. 

POINTING IN THREE DIMENSIONS 

The ability to provide conveniently three-dimen
sional position information makes it practical to 



THE LINCOLN WAND 225 

draw lines and curves in three dimensions. 4 Transla
tion of solid objects "stuck" to the WAND is also 
straightforward. In a slightly less direct manner rota
tions and viewpoints can be controlled. It is prob
ably not profitable to use the three coordinates from 
the WAND for more complicated input data (such 
as rotation angles) unless the transformation is easily 
comprehended, because the user needs to be able to 
predict the effect of each movement using the 2-D 
display mainly for confirmation. An acceptable 
method of rotating an object would be to "fix" one 
point on it and move another point. This would con
trol two angles of rotation and the object size. Alter
natively, the distance between the fixed and moving 
point could be ignored to provide pure rotation. 
Usually, the ability to choose the points eliminates 
the need for a full three-angle rotation. A viewpoint 
for a new picture can be specified by first pointing 
out a new focal point and then specifying the loca
tion of the center of the focal plane. This technique 
provides the translation, perspective, and two rota
tion angles of a new viewing transformation. The 
third rotation angle is the extra one which rotates 
the picture on the scope face and normally would 
be fixed to keep the horizon horizontal. 

In applications where a two-dimensional display 
is sufficient, the WAND can be used, in effect, as a 
large-scale RAND Tablet.1 In this case, the z dimen
sion is available as a scalar control. For example, 
consider the construction of a circuit diagram. There 
are two basic problems in such a process which 
usually require the use of a typewriter. 

1. Each component has a numerical value 
which must be specified in some way 
to the computer. 

2. Selections from a standard library of 
parts must be called up onto the screen 
whenever needed. Also various con
trol buttons are required for specifying 
functions. 

One method of obtaining numbers, parts, or func
tions which is very distracting is to put down the 
light-pen or tablet stylus, turn to the keyboard, and 
type the name or number. An alternative is to point 
to items around the edge of the display which can 
be filled with spare parts and control targets. How
ever, there are usually so many parts and functions 
that several groups of items must be called up and 
searched to find the desired one. This "tree search" 

is slow and loads down the edge of the scope with 
essentially dead pictures and labels. 

The WAND provides solutions to both these prob
lems because of its third control coordinate and the 
large working area. Numbers can be easily modified 
from their starting values by pointing at them and 
then "pulling" them up or down with the z axis 
control. The whole number could be adjusted or the 
mantissa and exponent separately. If the number 
were changed exponentially faster with increased 
velocity, a large dynamic range could b~ controlled. 
The large volume available for pointing can be used 
to point to target areas and pictures of library parts 
which are completely off the scope. Since the WAND 
has more range in x and y than the field of the scope 
and can operate in free space, it can be used to point 
at large boards of both photographs and typed sheets 
of function names. 

The useful surface area surrounding a scope which 
would be accessible to the WAND is at least 5000 
square inches. Even with one item per square inch 
this is an impressive library. The advantages of such 
a setup in reduced display load, preparation time, 
and specification time are obvious, but perhaps even 
more significant is the ease with which a user can 
simply point at what he wants. An even more am
bitious step would be to include a 35mm slide pro
jector with a ground glass screen and have the com
puter control the slide selection. 

WAND SYSTEM GEOMETRY 
AND COMPUTATION 

The physical layout of the transmitters determines 
the complexity of calculating the x, y, and z coordi
nates. However, an even more important considera
tion is the ease of computing an error check on new 
measurements before they are accepted. 

When a distance is measured the error is usually 
very small or very large, thus a simple threshold limit 
on an error measure would eliminate most bad 
measurements. This is the reason for using four 
transmitters instead of three. Since any three dis
tances determine· the three-space position of the 
WAND, the fourth provides a geometric check on the 
measurements. Of course, some sort of dynamic con
sistency check could be used to reject wild measure
ments; however, when the WAND is jerked, such a 
check is almost sure to fail. Furthermore, one type of 
error, the reception of a reflection when the direct 
path is blocked, is very consistent when it occurs and 
can only be detected by a geometric check. 



226 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

In Drder tD provide a simple computation of the 
error check, the transmitters are placed at the comers 
Df a square or rectangle. This arrangement also 
allows them to be mounted flush on the front panel 
of a display scope. Considering a square geometry, 
assume the origin of the x, y, z coordinate system 
to be at the center of the square· and the transmitters 
to be at x = + a, and z = 0 (see Fig. 2). Since 
the square of the distance between two points is equal 
to the sum of the squares of the x, y, and z displace
ments, assuming the WAND is at (x, y, z), the 
squares of the four measured distances are as 
follows: 

d 2 -1 - (x+a)2 + (y-a)2 + Z2 (la) 

d2~ = (x-a)2 + (y-a)2 + Z2 (lb) 

d 2 -3 - (x-a)2 + (y+a)2 + i;2 (lc) 

d Z -4 - (x+a)2 + (y+a)2 + Z:2 (ld) 

The computations for x and yare extremely simple. 

x = (d1
2 

- dz2 )/4a 
= (d4

2 ,- d3
Z )/4a 

y = (d4
2 

- d1'Z)/4a 

= (d3
2 - d22) /4a 

(2a) 

(2b) 

A relative measure of the error in both x and y is 
then given simply by 

E = d 1
2 - d22 + d3

2 - d4
Z (3) 

The computation of z is more difficult. Since all the 
transmitters are in . a plane, only Z2 can be found. 
However, it is only necessary to perform one Newton 
iteration to produce a new z from Z2 if we use the 
last value of z as an approximation. 

Z2 = d/ - (x+a)2 - (y-a)2 (4) 

z = 1h (zo + Z2/Z0) (5) 
where Zo = previous z. 

COMPUTATION TECHNIQUE AND 
TIME REQUIREMENT 

Since the computation of the W AND position 
must be done continually for each console, unless 
special hardware is provided, it is important to keep 
the computation time down. For this reason an incre
mental technique has been developed. 

Given a new distance, d1 , for channell, the 
change in d 12 between this time and the last time it 
was sampled (4 units ago) is given by 

(6) 

RECE IVER 
(WAND) 

T1 

Figure 2. WAND geometry for receiver and four trans
mitters. 

Then in order to calculate the new value of E we use 

E(t) = ~ + d 1
2 (t-4) - d2

2 (t-3) 
+ d3

2 (t-2) - d4
2(t-l) (7) 

or more generally, 

E(t) = E(t-l) + ~ 

(plus for n = 1, 3 minus for n = 2, 4) . (8) 

Providing we accept this error, we would save the 
new dn'2 and E. Then every fourth time we would 
compute x, y, and z using Eqs. (9a), (9b), (9c), 
and (5). 

Z2 = [16a 2 (d1
2 + d2

2 + d3
2 + d4

2 
- 8a2

) 

- X2 - y2] 8a (9c) 

These values of x, y, and z are computed from 
all (not just two) of the distances and thus average 
out errors better. The computation which is required 
each 10 milliseconds uses approximately 15 instruc
tions on the TX-2 Computer and about 30 addi
tional instructions every 40 milliseconds. Thus, the 
time required (on the TX-2) is about 1 % of the 
total computer time. 



THE LINCOLN WAND 227 

ERROR ANALYSIS 

Occasional errors arise in a gross way in the dis
tance measurements because of room noise (mainly 
typewriters) triggering the receiver before the pulse 
is received. This would not occur if the capacitor 
microphones presently being used as transducers 
were replaced by more powerful transmitters. At 
present the error check eliminates a few samples each 
time a typewritter clanks. Errors also occur when 
one of the four direct paths is completely blocked. 
Then the receiver will either miss triggering alto
gether, which is easily detected, or one of the ever
present reflection paths triggers the receiver. This is 
the only case when too long a distance is observed. 
It is difficult to block the path with just a hand or 
arm unless one intentionally cups a hand over the 
transmitter. In any case these gross errors are easily 
rejected by the error check. 

There are also fine errors due to the speed of 
sound changing in the air. A breeze is the most im
portant cause of error of this type and can cause 
errors from .02-.1 inches in a 3-foot distance. Tem
perature changes also cause small changes in the speed 
of sound (about 0.1 % per degree). Slow tempera
ture changes mainly affect the absolute accuracy, not 
the short term stability. In addition to these effects, 
the pulse width at 50 kc is equivalent to 0.1 inch 
so the received signal must be detected carefully. 
Altogether, the fine short-term errors can be as large 
as about .02 inches in each distance. 

Since x and yare computed from the difference of 
squares of these distances, the error can be magni
fied. If the transmitters are on a 20" X 20" square 
and the receiver is three feet away at x = y = 0, 
then we have unity gain on errors from each dis
tance. That is, a .02" error on one distance would 
cause .02" error in x and y. However, at six feet 
away the errors are almost doubled in their effect on 
x andy. 

All effects considered and performance measured, 
stability of the position is as bad as 0.1" on an in
stantaneous basis. However, the programs have been 
designed to include damping of the x, y, and z values. 
With the damping averaging over 0.1 seconds the 
stability is about .02" and the tracking of reasonable 
hand motions is excellent. 

The absolute accuracy has not been measured 
since it is of little importance in man-machine-dis
play work. It is likely to be about 0.2" in the pres
ent system but could probably be improved with 
additional effort. 

PLANS 

The Lincoln WAND has been operational since 
April 1966. In the present configuration, operation 
has been mainly with test programs to determine 
the causes of errors and to find remedies in both 
hardware and software. It is expected that this 
development will continue. Application programs 
are also being designed. The WAND operates within 
the time-sharing system and the expansion to four 
or five WANDS is being planned. It is possible for 
all the transmitters in the same room to share the 
same pulsing logic. 

A large portion of the cost of the current WAND 
is the $1,500 for the ultrasonic equipment which 
should be reduced considerably in the near future. 
There are additional costs for the counter, pulser 
logic and receiver amplifier, but it is apparent that 
the total cost of the WAND should be competitive 
with two-dimensional sensors. 

REFERENCES 

1. M. R. Davis and T. O. Ellis, "The Rand Tab
let: A Man-Machine Graphical Communication De
vice," AFIPS FlCC Conference Proceedings, vol. 
26, pt. 1, Spartan Books, Baltimore, 1964, pp. 
325-31. 

2. Ivan E. Sutherland, "Sketchpad: A Man
Machine Graphical Communication System," AFIPS 
SlCC Conference Proceedings, vol. 23, Spartan 
Books, Baltimore, 1963, pp. 329-46. 

3. Timothy E. Johnson, "Sketchpad III-A Com
puter Program for Drawing in Three Dimensions," 
AFIPS SlCC Conference Proceedings, ibid, pp. 
347-53. 

4. L. G. Roberts, "Machine Perception of Three
Dimensional Solids," MIT Lincoln Laboratory 
Technical Report No. 315 (May 22, 1963). 





USING A GRAPHIC DATA-PROCESSING SYSTEM TO DESIGN 
ARTWORK FOR MANUFACTURING HYBRID 

INTEGRATED CIRCUITS 

J. S. Koford,* P. R. Strickland, G. A. Sporzynski, and E. M. Hubacher 

IBM Components Division, East Fishkill Facility, 
Hopewell Junction, New York 

INTRODUCTION 

This paper will describe a computer program 
that utilizes a graphic data processing system to aid 
in the design of mask artwork for hybrid integrated 
circuit modules of the type used in IBM System/360 
Data Processing Systems. The system includes a 
small digital computer connected to a large-screen 
buffered display equipped with a light pen. A drafts
man uses the light pen to assemble a circuit· sche
matic on the display screen; simultaneously, a 
description of the schematic is entered into the com
puter memory. Thereafter, the draftsman can use the 
light pen to layout detailed artwork for fabrication 
of the circuit mask, subject to automatic checking 
against the stored schematic. When the layout on 
the display screen is complete, the corresponding 
mask artwork will be drawn by the computer via its 
digitally-controlled plotter. The graphical manipula
tions on the display screen, the automatic checking 
operations, and the control of the digital plotter are 
all part of a FORTRAN program that employs 
graphical subroutines to communicate with the light 
pen, display, and plotter. 

* Currently with the Fairchild Research & Development 
Laboratory, Palo Alto, Calif. 

229 

Although the system is still considered to be in 
the development stage, its performance has already 
demonstrated that computer-aided graphics can sig
nificantly reduce the time required to produce the 
circuit artwork, and that the amount of data process
ing required is within the capabilities of the small 
computer. It is not only desirable, but even impera
tive, that the total time required for a circuit design 
to be converted from a hand-sketched schematic to 
the finished working module be made as short as 
possible. During the development stages of the mod
ule, fast artwork turnaround time will speed up the 
"breadboarding" of circuits to assure desired circuit 
performance. During the manufacturing stages, fast 
artwork turnaround time is valuable because minor 
physical modifications of the circuit layout used on 
a module will often result in a higher yield of accept
able parts. Usually these simple changes become 
apparent only after extensive observation of the 
automatic mechanism of the production line, and 
detailed statistical analysis of data derived from the 
line. There are many stations in the production line, 
and a layout change which results in an improvement 
at one station may not necessarily be an improve
ment elsewhere. Therefore, continual minor revisions 
of the mask used to make the module are very de
sirable, providing such changes can be made easily 



230 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

and at a cost that justifies the change. The system 
described herein provides fast turnaround time for 
the original mask artwork and permits later revisions 
to be made quickly and easily. 

Other major advantages of computer-assisted cir
cuit layout are the increased accuracy and ease of 
record-keeping made possible by such a technique. 
Since the original circuit schematic and the finished 
mask artwork do not look at all alike, it is rather 
easy for mistakes to occur when manual layout is 
used for mask artwork. When computer-assisted lay
out is used, checking can be performed to insure 
that the artwork always agrees with the original 
circuit schematic. Once the correct circuit descrip
tions have been stored in the computer, they can be 
recalled at any time, examined, and updated. These 
descriptions could be easily merged with other engi
neering records in a large central data file. Auto
matic record-keeping and file-management tech
niques could then be employed to simplify the 
problem of keeping, updating, and managing engi
neering records. 

The system described in this paper has the ad
vantage that it uses a small computer with a stand
ard programming language. The general problem of 
using computers to aid the engineer in the design 
process is currently being investigated in many 
places. Very large programming systems have been 
developed that employ large conventional computers 
to automate significant portions of the large-system 
design process.1 Graphically-oriented computer lan
guages and processor have been developed that sim
plify the control of computer-driven plotters and 
numerically controlled machine tools. 2,3 Others have 
investigated the use of somewhat less conventional 
equipment to provide the engineer with new tools 
for accomplishing his designs. 4 An outstanding ex
ample of the application of unconventional input
output equipment to a mechanical design problem 
is the MIT "Sketchpad" project 5 that uses the 
computer-driven display and light pen as the basic 
communication device. 

In the specific area of integrated circuit design, 
very useful results have been obtained with the 
CADIC System, developed by a group of engineers 
and programmers working under an Air Force con
tract at the Norden Division of United Aircraft 
Corp.6,7 The group has developed and implemented 
an effective off-line system, using card input and 
digital-plotter output, for the computer-design of 
monolithic integrated circuits. The group is currently 

programming an on-line procedure that employs a 
light pen and CRT display for circuit layout. * The 
system described in this paper was developed inde
pendent of the Norden effort; however, many of the 
basic display functions in the two systems will, no 
doubt, be very similar. 

THE SYSTEM HARDWARE 

The equipment upon which the module layout 
program is implemented is shown in Fig. 1. As indi
cated in the block diagram of Fig. 2, the system is 
built around an IBM 1620 Mod. II computer with 
a capacity of 60,000 digits in main core storage. 
Attached to this data processor are two IBM 1311 
Disc Files, each with 2,000,000 digit capacity, upon 
which all of the system programs and data structures 
reside. Conventional input and output are provided 
through the console typewriter, the IBM 1443 
Printer and the IBM 1622 Card Read-Punch. 
Graphi~al communication with the computer is pro
vided by a direct-view display console equipped with 
a light pen. The display console uses a shaped-beam 
display tube that has a circular screen, 19 inches in 
diameter. The display is regenerated independently 
of the computer by an internal core buffer that has 
sufficient capacity to display at one time 1,023 
straight-line segments, or about 5,000 characters, or 
a mixture of both. * * The console is also equipped 
with a function key system that, along with the light 
pen, can interrupt the data processor at any time to 
inform its program of operator action. Hard copy 
graphical output is provided by a 29-inch incremen
tal drum plotter. 

The basic disc-resident programming system is 
built around the monitor system supplied by the 
manufacturer. An assembly language and FOR
TRAN II are available to the user, along with 
supervisory loader routines. A set of graphical sub
routines, enterable from FORTRAN programs, pro
vide all communication between the main program 
and the graphical equipment. 

THE SLT MODULE 

The SLT integrated circuit module used in IBM 
System/360 computers is shown in Fig. 3. The 

* The Nordon off-line system was developed under Air 
Force Contract AF 33(615)-3544; the Nordon on-line sys
tem is being developed under Air Force Contract AF 
33(615)-1395. 

* * Some flicker occurs on the display tube when large 
numbers of characters or vectors are displayed. 



A DATA-PROCESSING SYSTEM TO DESIGN ARTWORK 231 

Figure 1. The graphic data processing system hardware. 

module consists of a square ceramic substrate, 455 
mils on a side, upon which electrode and resistor 
patterns are placed. Figure 4 illustrates the steps in 
the manufacture of such a module. Metal masks or 
screens are used to transfer the electrode patterns to 
both sides of the ceramic substrate, and also to apply 
resistor paste to the substrate. In subsequent steps 

DISC STORAGE 1-+---------, 

IBM 1311C 
(2) 

DISPLAY 
CONSOLE 

IBM 4554 

SANDERS EO-C 
LIGHT PEN 

PAPER-TAPE 
READER-PUNCH 

IBM 1621 

CORE STORAGE 
(60K) 

IBM 1625 

PRINTER 
IBM 1443 

CARD READER
PUNCH 

IBM 1622 

X-Y PLOTTER 
CALCOMP 564 

Figure 2. Block diagram of system hardware. 

Figure 3. The SLT hybrid integrated circuit module; (1) 
chip transistors and diodes, (2) circuit pattern, 
(3) resistors. 



232 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 4. Steps in SLT module fabrication; (A) bare substrate, (B) print circuit pattern, (C) print resistors, (D) insert 
connecting pins in holes, (E) dipped into solder, (F) trim resistors, (G) attach chips, (H) encapsulate in metal 
shell. 

the resistor paste is fired, the module is dipped in 
solder to tin the electrode pattern, and connecting 
pins are inserted in the holes of the module. Tran
sistor and diode chips are next joined to the module, 
and finally the circuitry is encapsulated in a metal 
cap. 

Figure 5 shows typical metal masks of an elec
trode pattern and its associated resistor pattern. The 
graphic data processing system produces artwork in 
the form of high-quality India-inked drawings on 
mylar tracing paper. These drawings can be trans
ferred by photographic techniques to glass masters 
for making the masks. 

A DETAILED DESCRIPTION OF THE 
OPERATION OF THE 
MODULE LAYOUT PROGRAM 

Figure 6 indicates the general flow of the module 
layout program, beginning with the insertion of the 

circuit schematic, and ending with the drawings of 
the artwork on the plotter. The draftsman begins by 
assembling a schematic diagram of the circuit on the 
display screen. A schematic symbol of anyone of 
several standard components can be caused to appear 
on the display screen by firing the light pen on the 
appropriate "light button" at the bottom of the 
screen, as shown in Fig. 7. The draftsman then uses 
the light pen to assign a number to the component 
by either selecting a desired two-digit number, using 
a displayed matrix of digits, or by asking the com
puter to assign the next number in sequence for that 
type of component. A terminal of the component 
can then be connected to any point in the circuit by 
firing the light pen first on a circuit point and then on 
the terminal. As is shown in Fig. 8, a line will appear 
on the screen to indicate the connection. The drafts
man can then place the component symbol in any 
position on the screen by moving a light pen tracking 



A DATA-PROCESSING SYSTEM TO DESIGN ARTWORK 233 

Figure 5. Metal masks for the electrode and resistor patterns on an SLT module. 

pattern (the small square on the display in Fig. 8) 
close to the desired component position. The com
ponent will then be moved so that the connecting 
line can be drawn either horizontally or vertically to 
produce a circuit schematic that is ple-asing to the 
eye, as is shown in Fig. 9. 

There are several advantages in using the display
light pen system of input instead of punched-card 
input to enter the circuit schematic into the com
puter. Data are entered in a convenient pictorial for
mat that enables easy checking for omitted con
nections or components. Since the program is 
self-teaching (i.e., at each step a message on the dis
play screen directs the draftsman to the next step) 
the draftsman needs no programming experience and 
does not have to concern himself with input data 
formats. A draftsman with some experience can enter 
a typical circuit containing 25 elements and their in
terconnections in approximately 10 minutes. 

Having assembled the schematic on the display 
screen, the draftsman can request via the light pen 
that the schematic either be drawn on the system 

plotter, or that it be stored on punched cards. If the 
schematic is stored on cards, it can be re-entered at 
any later date from the cards for further modifica
tions. 

The next step in the design of the circuit layout 
is the entry via the console typewriter of the values 
and power dissipations of all the resistors in the 
circuit. After entering this data, the nperator can 
specify the value of the resistor paste, or he can 
allow the computer to calculate the resistivity. This 
is done by firing the light button at an appropriate 
instruction on the display screen. The computer will 
then calculate the size of each resistor based on con
straints of maximum power dissipation, tolerance for 
trimming, maximum electric field across the resistor, 
and minimum allowable length and width. 

The most important part of the man-machine in
teraction occurs in the next portion of the program; 
i.e., the placement of the devices and the routing of 
the interconnecting leads nn the module. Since the 
schematic has been entered intO' the computer, the 
information from the schematic is used to assemble 



234 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

a parts list that is placed alongside a displayed blank 
module substrate, as shown in Fig. 10. 'At this point 
in the program, the draftsman is responsible for de
termining the placement of components on the 

module and for overall layout organization. The 
computer is responsible for keeping track of the 
interconnections and insuring that the electrical char
acteristics of the circuit (as indicated by the sch~-

ENTER 
SCHEMATIC 

FROM 
CARDS 

CONNECT POINTS 

POSITION LEADS 

LAYOUT EDITI NG 

COMPUTE: 

SPECI FY CIRCUIT 
PARAMETERS 

PASTE RESISTIVITIES 
RESISTOR DIMENSIONS 
POWER DISSIPATION DENSITIES 
ELECTRIC FIELD STRENGTHS 
DESIGN LIMITS 

LOCATE DEVICES ON 
SUBSTRATE SURFACES AN 0 

ELIMINATE REDUNDANT CONNECTIONS 

STORE PRESENT 
LAYOUT ON DISC 
AND WAIT FOR 

INSTRUCTION 

CHANGE SURFACES 
(DEVICE PLACEMENT 

OR DISPLAYED SURFACE) 

ALIGN ELEMENTS 
( FOR VERTICAL OR HORIZONTAL 

LINES) 

TRIM LEADS OR PINS 

ENTER LAYOUT FROM CARDS ENTER LAYOUT FROM DISC 

Figure 6. General flow chart for the module layout program. 



A DATA-PROCESSING SYSTEM TO DESIGN ARTWORK 235 

Figure 7. Labels on the CRT display screen permitting operator to select schematic components. 

matic) are not altered by additions to or deletions 
from the circuit. 

The draftsman employs the light buttons displayed 
at the bottom of the module representation, as shown 
in Fig. 10, to select programs for various options 
during layout. The first and most basic option is 
"LOCATE DEVICES." Having selected this option, 
the operator can place components on the module 
by firing the light pen on the labels in the parts list, 
and then moving the tracking pattern to the desired 
position of the devices. When a device is placed on 
the module, its label disappears from the parts list 
and a pictorial symbol appears on the display. These 
symbols are rectangles that are drawn to scale to 
indicate to the draftsman the exact area which will be 
occupied by the real devices on the actual module. 
Connections between devices are represented by single 
lines, and these connections appear automatically as 
the operator brings connected parts on to the dis
played module substrate. 

At any time, during or after placement of devices, 
the draftsman can move or rotate any component. 
All leads connected to the component are auto
matically repositioned and the electrical integrity of 
the circuit is preserved. Thus the operator can 

very easily try a number of device. placements to 
optimize some criterion such as number . of cross
overs, lead length, or any other parameter. Figure 
11 shows an operator working on a layout for the 
top surface in which some lead positioning and de
vice placement has been done, and which has all of 
the components from the schematic placed upon the 
substrate. Three resistors from the parts list have 
been placed on the bottom surface, and therefore 
do not appear in Fig. 11. 

Leads are routed by selecting the "POSITION 
LEAD" option. To route a particular lead, the op
erator fires the light pen on the displayed line repre
senting the lead. A bending point is formed on the 
line, that can be moved to any position on the 
screen. The operator uses the light pen to move 
the tracking pattern to the desired position of the 
bending point. The draftsman indicates that the 
tracking pattern is at the desired position by firing 
the light pen at an "INACTIVE TRACK" message 
appearing on the display screen. The lead then will 
follow, much in the fashion of a rubber band. Up 
to 10 bending points can be formed in anyone lead 
and the lead can be routed to any desired complexity. 
Figure 12 shows an example of lead-routing. 



236 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 8. Connecting a schematic symbol into a partially· 
completed schematic. 

To add new leads to the layout, the draftsman 
chooses the "CONNECT POINTS" option. He may 
then choose two points to be connected by firing 
the light pen at any two terminal points on the dis
play, where a terminal point may be either a bending 
point of a lead or a terminal of a component. The 
program checks to insure that the requested connec
tions does nO't violate the schematic; if no violation 
is found the connection is drawn upon the display 
screen. If a violation is found an error message 
appears on the screen and the connection is not 
established. 

By returning to the "LOCATE DEVICE" section 
of the program, the draftsman may delete any con
nection from the layout, provided the deletion does 
not violate the circuit schematic. He selects a lead 

for deletion by simply. firing the light pen on that 
iead. If the deletion is valid, the connecting line will 
disappear; otherwise an error message will warn the 
operator of the violation and the .lead will . not be 
deleted. 

Another option of the program is "TRIM 
LANDS." Around each module pin there is a ring
shaped land to which various . leads connect. On a 
complex module where space is at a premium, some 
of these ring-shaped lands need to be trimmed. When 
the· light pen is fired at. the octagon representing a 
pin,a chord is constructed on the display which can 
be moved toward or away from the center of the 
octagon with· the aid of the light pen. When the 
chord is in the proper position,. the light pen is fired 
on the octagon and the section beyond the chord 
is trimmed away. Figure 13 shows the chord being 
used to trim pin 13 of the module. 

In a similar manner the widths of interconnecting 
lands can be altered. In the displayed representation 
of the module, all connecting leads are represented 
by single lines. The draftsman can vary the width 
of a particular land by firing the light pen on the line 
representing that land. Lines indicating the outline 
of the land will appear along the representation line, 
and a land-width control pattern will also appear on 
the display screen. By firing the pen at appropriate 
points in the control pattern, the draftsman can shape 
the land in a variety of ways to fit the requirements 
of the layout. Figure 14 shows the display of a land 

Figure 9. Schematic after component has been placed in 
position. 



A DATA-PROCESSING SYSTEM TO DESIGN ARTWORK, 237 

outline, with the land-width control pattern in the 
lower right comer of the screen. 

The "LOCATE DEVICE" and "CONNECT 
POINTS~' options have been subject to a checking 
feature which insures that the draftsman will not 
violate the original schematic. In the "RECONFIG
URE" option of the program, a mode of operation 
is provided in which the draftsman can add new 
devices or leads, or delete old ones. While operating 

in this mode, a blinking message on the display 
screen reminds the draftsman that the circuit-check
ing features are not operational. A very powerful 
feature of this· editing program is the ability to call 
anyone of 20 special devices from a previously
defined library of such devices. This feature allows 
non-standard devices to be called onto the module 
and manipulated as easily as standard devices. Hence, 
changes in the manufacturing process or in compo-

Figure 10. Blank module substrate and parts list as they appear on the CRT screen. 



238 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

nent technology which alter component geometries 
do not require basic changes in the module layout 
program. Figure 15 shows a non-standard device 
selected and about to be connected into the circuit 
on a partially-completed module. Once devices are 
connected into the circuit by the "RECONFIGURE" 
section of the program, they will be recognized by all 
other sections of the program, and will be treated as 
if they had been entered in the original schematic. 

In the SLT manufacturing process, resistors and 
connecting lands may be placed on either side of the 
bottom (pin side) of the module substrate. The 
"CHANGE SURF ACES" option of the program 
allows the draftsman to layout the top, bottom, or 
both sides of the module. The bottom of the module 
appears superimposed on the top, as though the 

module substrate were transparent. All devices and 
lands are placed first on the top surface, after which 
the draftsman selects with the light pen the devices 
and lands that he wishes to place on the bottom 
surface of the module. Since the only connections be
tween top and bottom surfaces are by the module 
pins, the program will not allow the draftsman to 
transfer a portion of the circuit to the bottom of the 
substrate unless it is connected to the top through 
a pin. The draftsman can layout the top and bottom 
parts of the module simultaneously and can transfer 
components back and forth between the two sides. 
He may select either side of the substrate for dis
play, or display both sides superimposed, with the 
devices and lands on the bottom side of the module 
blinking. A message along the top edge of the dis-

Figure 11. Operator working on partially-completed layout of the substrate top surface. 



A DATA-PROCESSING SYSTEM TO DESIGN ARTWORK 239 

Figure. 12. An examp:_~ of lead-routing. 

played substrate indicates which of Uk two sides is 
currently being displayed. 

The "ALIGN ELEMENTS" option allows the 
draftsman to align all connecting lands in vertical, 
horizontal, or 45-degree orientations. Figures 16 and 
17 show two versions of a module layout of the bot
tom surface containing the three resistors, one before 
aligning and one after aligning lands. 

After the module layout is completed on the dis
play screen, the draftsman can choose either to pre
serve the layout on punched cards (for subsequent 
re-entry) or to draw finished masks on the system 
plotter. If he requests that masks be drawn, a com
pletely automatic plotting program converts the 
diagram of the layout on the display screen into 
finished drawings on the masks to any required 
scale. Up to four masks may be produced: two land 
masks for the top and bottom surfaces of the 
substrate, and two corresponding resistor masks. The 
artwork generated by the plotter is of sufficient 
quality that it may be photographically reduced to 
provide final-size masks for circuit fabrication. Fig
ure 18 shows the four finished mask drawings for 
the land and resistor patterns of the module, Fig. 19 
shows system-produced assembly drawings of the 
module shown in Fig. 18 for engineering documen
tation. 

DISCUSSION 

The module layout program has been implemented 
in FORTRAN on a small computer with limited 
main-memory capacity. It has, however, been pos
sible to organize the program in such a manner that 
the speed and capacity of the computer are adequate 
for the graphical manipulations and associated proc
essing. Most computer-initiated actions take place 
instantaneously as the draftsman requests them with 
the light pen. Actions which require involved list 
processing (such as checking for schematic viola
tions) require more time, but rarely more than 15 
seconds. All of the frequently requested actions, 
such as component placement and lead positioning, 
are accomplished within one or two seconds after 
the original request. 

These processing speeds were achieved by keeping 
simple skeleton lists, containing summary information 
about the module layout, stored in the COMMON 
section of main-core storage. Detailed information, 
such as the exact routings of lands and the graphical 
configurations of the special devices, is read from 
the disc files whenever required. The skeleton lists 
contain, for the majority of the operations, sufficient 
information to allow them to be searched without 
reference to the disc file. In this manner, very simple 
list processing can be used to analyze light pen inter
rupts, with disc references only necessary when a 
required element is found in the list. When such an 
element is found, the data required can usually be 
read from the disc, updated in the computer and 
on the display, and rewritten on the disc within a 
few hundred milliseconds. 

The disc is also used for core-image program over
lays. Because the module layout program exceeds 
the amount of core storage available by an order 
of magnitude, it has been necessary to segment the 
program into discrete blocks, or links. A link and 
subroutines occupying the entire computer memory 
can be overlayed from the disc in about 3 seconds. 
In most cases the section of the program implement
ing one of the options described in the previous 
section will fit into a single link. Therefore, overlay 
usually occurs only when going from one option to 
another. 

The FORTRAN-plus-subroutines approach em
ployed with disc overlay techniques has proven to be 
an adequate method for implementing the module 
layout program. It has been possible to develop the 
required programs from scratch with an expenditure 
of about two man-years of effort. Furthermore, it 



240 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 13. An example of pin-trimming. 



A DATA-PROCESSING SYSTEM TO DESIGN ARTWORK 241 

Figure 14. Display of a land outline' with land-width con trol pattern in lower right corner of the screen. 



242 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 196~ 

Figure 15. A non-standard device about to be connected into the circuit of a partially-completed module. 



A DATA-PROCESSING SYSTEM TO DESIGN ARTWORK 243 

Figure 16. Bottom surface of module layout before land alignment. 



244 PROCEEDING~FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 17. Bottom surface of module layout after land alignment. 



A DATA-PROCESSING SYSTEM TO DESIGN ARTWORK 245 

~ I 
D D 

~ ~ 

i=:;? c=J 
= 

= 
Figure 18. System-produced mask drawings for the land 

and resistor patterns of the finished module. 

has been found to be relatively easy to teach FOR
TRAN and the graphical subroutines to individuals 
wishing to use the system. In addition, the use of 
FORTRAN has permitted easy modification of exist
ing programs to improve their efficiency or to make 
them more convenient for the operator. Pending the 
development and widespread release of powerful 
graphical-programming and design languages,8 the 
approach used here has proven to be an extremely 
successful interim solution to the graphical-device 
programming problem. 

CONCLUSION 

The SLT module layout program represents a suc
cessful application of graphic data processing. Be
cause the program is implemented with a standard 
programming language on a small computer, it 
appears to be quite feasible in the economic sense. 
While there remains much to be done, the develop
ment of the system described in this paper has shown 
beyond doubt that the use of graphic data processing 
techniques can result in significant improvements in 
both the ease and speed with which integrated circuit 
artwork may be produced. 

REFERENCES 

1. P. W. Case, et aI, "Solid Logic Design Auto
mation," IBM Journal, vol. 8, no. 2, pp. 127-140, 
(April, 1964). 

:u 
n = 

L 

hL 
Figure 19. System-produced finished assembly drawings of 

the module in Figure 18 for engineering docu
mentation. 

2. Richard H. Waters, "A Drafting Document 
Generation Language," IBM Technical Report 
TR 02.328, San Jose, California, October 6, 1964 
(parallels studies performed by Don Hollo at IBM, 
White Plains, N.Y., for the IBM 1620 System). 

3. E. A. Bates, "Automatic Programming for 
Numerically-Controlled Machine Tools-APT-III," 
Proceedings of the 1961 Computer Applications 
Symposium, The Macmillan Company, New York, 
N.Y., 1961, pp. 140-156. 

4. Donn B. Parker, "Solving Design Problems in 
Graphical Dialogue," University of California Exten
sion Lecture Series on Man-Computer Systems, Lec
ture 13, Berkeley, Calif., Fall, 1965. 

5. 1. E. Sutherland, "Sketchpad, A Man-Machine 
Communication System," Proceedings of the Spring 
Joint Computer Conference, Detroit, Mich., May 
21-23, 1963,pp. 329-346. 

6. Final Report, "Techniques for Rapid Inte
grated Circuit Layout," Technical Documentary Re
port No. ML-TDR-64-103, Norden Division, 
United Aircraft Corporation, Norwalk, Connecticut, 
April, 1964. 



246 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

7. Interim Engineering Progress Report, "De
velopment of On-Line System for Computer-Aided 
Design of Integral Circuits," Norden Division, Proj
ect No. 9-521, United Aircraft Corporation, Nor
walk, Connecticut, 1 March, 1966, 31 May, 1966. 

8. D. T. Ross and J. E. Rodriguez, "Theoretical 
Foundations for the Computer-Aided Design Sys
tern," Proceedings of the Spring Joint Computer 
Conference, Detroit, Mich., May 21-23, 1963, pp. 
305-322. ' 



AUTOMATED LOGIC DESIGN TECHNIQUES APPLICABLE TO 
INTEGRATED CIRCUITRY TECHNOLOGY 

R. Waxman, M. T. McMahon, B. J. Crawford and A. B. DeAndrade 

IBM Components Division, East Fishkill Facility 
Hopewell Junction, New York 

INTRODUCTION 

Rapidly advancing integrated circuit technology 
has placed many new and often unforeseen demands 
on logic packaging techniques and, . hence, is also 
impacting traditional computer design concepts. For 
instance, one of the most pertinent and immediate 
requirements is the. optimum utilization of input/ 
output (I/O) connections since the package size is 
strongly dependent on such connections. The pack
age efficiency is measured in part by the I/O pin-to
circuit ratio, assuming the circuits in a package are 
connected in a way to provide an optimum logic 
function. Another potential problem to be consid
ered is power dissipation, since integrated circuits 
may be contained in extremely small areas. 

Consequently, it is imperative for a logic designer 
to interconnect . many circuits within a package, 
thereby reducing I/O pins, yet' not overburden a 
package with more heat than it can safely dissipate 
by the cooling provided. The above considerations 
are further impacted by the fact that integrated 
circuit technology inherently should provide inexpen
sive circuits. Thus the logic can be reasonably re
dundant to accomplish the minimum I/O pin-to
circuit objective as well as to minimize package 
types. The more versatile a package, the fewer types 
are required; the /more functional a package (from 

247 

a non-iterative machine function point of view), the 
more part numbers are required. The most versatile 
package is a simple logic connective for exa.mple a 
NAND; however, the pin-to-circuit ratio is unac
ceptably high. A way must be found to obtain com
plex logic packages which do not require an infinite 
variety of package types. 

A possible solution to the problem is to use Large 
Scale Integration (LSI), letting most packages be 
customized and still large enough to reduce the quan
tity of packages in any machine. The customization 
of each part leads to inventory problems at the place 
of manufacture. In addition, the complexity of each 
part may lead to many wiring layers which may be 
inaccessible for engineering changes. If an error is 
discovered during the fabrication process, the part 
may have to be scrapped. This delays delivery and 
increases cost of an acceptable part. 

Another possible solution is the utilization of chips 
or cells having a certain defined logical complexity, 
flexibility, and acceptable pin-to-circuit ratio. This 
would enable engineering changes and modifications 
at the chip or cell level, thus making engineering 
changes of the interconnections between cells pos
sible. 

The proposed approach described in this paper 
is a compromise between a fixed interconnection 
pattern and entirely discretionary wiring between 



248 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1966 

cells on a wafer. That is, the interconnection of 
optimized fixed pattern logic arrays may be pro
grammed to nbtain varinus logic functions. Some 
related work has been done in this area. For in
stance, an array of logical elements which are inter
connected in a specific pattern has been suggested.1 

Each logical element may be programmed to per
form one nf several two-variable functinns by cutting 
certain interconnections within each cell. A similar 
approach has also been repnrted by AFCRL.2 In 
that study it was proposed that each element be a 
NOR with possible interconnections to' any or all 
eight neighbor NOR's. The interconnectinn pattern 
thus determines the functinn that is to be obtained. 
The work leads to' speculation that a computerized 
approach might lend more sophistication to the 
synthesis procedure. 

TRADITIONAL COMPUTER DESIGN 
PROCEDURE 

The traditional procedure in designing a computer 
is first to define its major logical sections. The data 
flow paths are usually designed initially since they 
are generally well defined. Controls and non-iterative 
sections are determined last since they are heavily 
dependent on data flow organization. In recent 
years, the controls have become more organized 
through use of read-only memories (i.e., micro
programming) . The read-O'nly memory replaced 
much isolated and non-iterative hardware. 

The various parts of the computer are still pack
aged in much the same way as they were first or
ganized on paper. That is, the adders, registers, 
shifters,and other iterative networks are packaged 
to take advantage of their repetitive occurrence 
within the machine. The non-iterative sections are 
added without apparent organization. 

How is the designer using integrated circuits 
presently? He is packaging iterative logical networks 
in an attempt to make efficient use of integrated 
circuits: These adders, registers, etc. have a high 
circuit density relative to the input/output connec
tions to an integrated circuit element. He is pack
aging unit logic on integrated circuit elements to 
satisfy the non-iterative logical sections of a machine. 
These elements have a low circuit density relative 
to the input/output connections to' an integrated cir
cuit element. In other words, his design philosophy 
has not changed but succeeded in locking him into 

a pattern that will not permit efficient use of mono
lithic technology. 

How can the designer break out of this pattern? 
He is starting to change the pattern by packaging 
highly dense one-of-a-kind integrated circuits. This 
is efficient from the technology point of view, but 
creates inventory problems as well as greater fabri
cation cost due to the singularity of each part. Large 
Scale Integration (LSI) is being used in a manner 
which may reduce total parts, but not necessarily 
total part types. Problems of inventory and engineer
ing change capability must be overcome. Also being 
investigated are the use of logical arrays in matrix 
form. Each cell at present is usually a simple logical 
connective, which results in an inefficient use of the 
elements because of interconnection limitations on 
the matrix. 

To summarize, the relatively high cost of a com
ponent with discrete elements has never permitted 
the reduction of total part numbers by designing 
with a reasonable amount of redundancy. Although 
cost criteria and packaging techniques have changed 
today, logic design techniques have not kept pace. 
Economy now requires a reduction in parts, but not 
necessarily a reduction in logical elements. In fact, 
logical element redundancy can be a big factor in 
cost reduction if used properly. Efficient packaging 
today demands high circuit densities to take advan
tage of monolithic technology. 

MULTIPURPOSE LOGIC CELLS 
AS A SOLUTION 

An approach adding sophistication to the above 
ideas will be described in this study. Engineers al
ready have taken the first step by proposing logical 
elements of the AND-OR variety (i.e., AND's feed
ing OR's). The limitation is that many a designer 
has been trained to see AND-OR groupings on the 
logic sheet, and that he imposes this AND-OR re
striction on logic wherever permissible. He unfortu
nately is unable to see more complex functions that 
are not in the form (AND-OR), used in several 
equivalent forms. If he could, he would have avail
able multiple-purpose logic blocks with an efficient 
circuit density relative to input! output ports. In an 
LSI application, he would have an array with com
plex yet versatile cells. Wiring of the final intercon
nection between cells could be one of the last 'steps 
of the process, perhaps allowing all personality wir
ing to be accessible for engineering change. Person-



AUTOMATED LOGIC DESIGN TECHNIQUES 249 

ality wiring is the wiring of interconnections between 
cells which establishes the desired function of the 
LSI wafer. 

A cellular array built on Large Scale Integration 
(LSI) principles would achieve the following objec
tives: 

1. By making each cell a complex func
tion, a large percentage of the wiring 
(the wiring of each element) could be 
completed before committing the pack
age to its ultimate functional use. 

2. By making each cell with a favorable 
pin-to-circuit ratio (where pin means 
I/O ports from each cell), the final 
personality wiring complexity may be 
reduced. This enables all personality 
wiring to be done on "outside" layers. 

3. Reduce the inventory of different parts 
(since personality is the last step of the 
process) . 

4. Throughput to the user is faster since 
impersonalized arrays are available 
"off the shelf." 

5. A mixture of fixed pattern wiring of 
cells with discretionary wiring between 
cells would result. This would provide 
a compromise between long computer
time high-wafer yield discretionary 
wiring between every circuit, and short 
computer-time low-wafer yield fixed
pattern wiring between every circuit. 

The problem then is this: What logical functions 
should complex cell elements generate? This study 
describes a tool to aid in determining an optimum 
set of multipurpose logic blocks, personalized to a 
given computer or set of computers. 

THEORY OF EQUIVALENCE CLASSES 

The basic theory to be applied to the automated 
design procedure proposed in this study is that of 
equivalence classes. Another approach might be that 
of pattern recognition of logic clusters. However, the 
pattern recognition approach lacks the ability to de
tect logically equivalent functions that have been 
laid out in different patterns. 

Suppose a logic block existed which could imple
ment a particular function with a given set of vari
ables at its input. Suppose also that both the true 
and the complement of that function were available 

at the output of this block. For the same input vari
ables, two different functions are available at the 
output-the true and complement function. Now if 
the input variables are; permuted (i.e., ordered dif
ferently on the input leads), it is possible to change 
both the output function and the complementary 
function into other functions which are, by defini
tion, in the same equivalence class. That is, the 
internal circuitry of the block has not changed, but 
a different logical function has been obtained simply 
by permuting the input variables. If, in addition, 
both true and complement are available to the input 
(not both at the same time, but whichever one is 
needed), more functions both in true and comple
ment form are available at the output. This last 
freedom of both true and complementary variables 
available at the input (one or the other, but not 
both) is reasonable since we are allowing both true 
and complement of every function to be available 
at the output of the logical block (see Fig. 1). 

DESCRIPTOR PROGRAMS 

The equivalence class descriptor program gen
erates an identical octal number for any function in 
a particular equivalence class. The program is lim
ited to functions of six variables or less. The input 
to the descriptor program is the octal number repre
sentation of the function column generated from a 

NAND BLOCKS 

A 

OR INVERT 

12: BF + SF + E 

IF B: C THEN '2 : ~ 

F : A :. THE TWO FUNCTIONS ARE IN THE SAME EQUIVALENCE CLASS 
E : D 

Figure 1. Example of equivalence class theory. 



250 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

6-variable truth table. Both the truth table and de
scriptor programs are written in FORTRAN and 
must be run separately due to the limited core stor
age capabilities of the 1620 computer. Once a logic 
cluster has been partitioned out, the computer run
ning time to obtain the descriptor for the cluster is 
one to two minutes. 

The output of the system is a list of 22-digit octal 
numbers which represent the output function for 
every cluster partitioned out of the original logic. 
By comparing the numbers in the list, it is possible 
to obtain the quantity of each equivalence class re
quired to reimplement the original logic. 

One of the major constraints of the system is its 
limitation of function size to six variables or less. 
With the present technique for generating a descrip
tor by manipulation of truth tables, it is not eco
nomical, time-wise, to handle larger functions. A 
6-variable true table has 64 rows and 6 columns. 
For each additional variable, the size of the truth 
table matrix doubles in length and increases one 
column. In order to handle a 12-variable function, 
the truth table and descriptor programs would have 
to manipulate a matrix with 12 columns and 4096 
rows. The octal descriptor would have 1366 digits. 
Even on a very large computer, the running time for 
descriptor generation and comparison would be in 
the order of hours for a 100 cluster partitioning. 
Also, a 1366 digit descriptor is not the ideal input 
to the logic designer who is asked to implement the 
function. Storage of a reference table of all functions 
with their descriptors is not practical since there are 
22n functions of n variables. To overcome these limi
tations, the following technique to generate an equiv
alence class type descriptor will be incorporated into 
the system. Descriptors for functions of greater than 
12 variables can be realized. The descriptor is quite 
short and its length is not directly dependent on the 
number of variables in the function. There is also a 
correlation between the descriptor and the physical 
implementation of the logic (see Fig. 2). 

The steps for obtaining the descriptor are as fol
lows: 

1. Calculate the Boolean expression for 
the output of the logic cluster that has 
been partitioned out of the original 
logic. The expression should be calcu
lated in sum of products form. Either 
the true or inverse form of the output 

A 

F = ABC + BDEF + AB 

DESCRIPTOR = 432 

TWO LEVEL IMPLEMENTATION 

AND 

A 

AND OR 

,B 

Figure 2. Descriptor example. 

expression can be used, depending on 
which gives the sum of products form 
having the least number of terms. 

2. Assign to each term in the expression 
a number corresponding to the number 
of variables in the term. An illustra
tion is given below: 

Function = ABC + DEBF + AG 
Descriptor 3 4 2 

3. Permute the digits to give the largest 
number; i.e., largest digit first, smallest 
digit last. The descriptor resulting from 
the function shown in the illustration 
will be 432. 

Since we are allowing both true and complement 
outputs of every function, the bars appearing over 
the variables in the Boolean expression do not have 
to be accounted for. If an inverted signal is re
quired, the complemented output of the logic block 
generating the . signal is used. In the case of the 
example given, the physical implementation of the 
function could be a 4-way AND, a 3-way AND and 
a 2-way AND, all connected to a 3-way OR block. 
Thus it is a very simple matter to go from the 
descriptor to an actual implementation. 



AUTOMATED LOGIC DESIGN TECHNIQUES 251 

It is possible that two functions in the same equiv
alence class (by the classical definition of equiv
alence) could have different descriptors. In actual 
practice, however, this would occur only a small 
fraction of the time. An important advantage of a 
descriptor of this type is that many equivalence 
classes can be implemented from one descriptor. To 
realize this advantage, the logic described by the 
descriptor would have to be implemented in two 
levels of logic. In the case of the descriptor 432, all 
functions having a descriptor of 3 digits, the first 
digit being 4 or less, the second digit being 3 or less 
and the third being 2 or less, could be realized by 
the logic used to implement the 432 example. 

THE SYSTEM HARDWARE 

An IBM 1620 Mod II Data Processing System 
coupled to a 4554 Video Display unit was used to 
implement the automated technique. The display has 
its own buffer, making it independent of the 1620 
as far as maintaining the visual pattern on the CRT. 
The logic designer may. communicate with the dis
play unit by use of a light pen or through two sets 
of pushbutton switches. 

The program and data may be read into the 1620 
from cards, or it may be stored on a disk pack and 
called by name into the 1620 core storage. Because 
of core memory limitations, all programs are stored 
on the disk and called into core storage by the main 
program when needed. 

MAN-MACHINE PARTITIONING TECHNIQUE 

The automated technique consists of a general 
man-machine interaction program to aid the designer 
in partitioning logic to a useful set of multipurpose 
logic blocks. It is in a form compatible with a logic 
designer's present partitioning method-that is, it 
allows a designer to cull out of larger sections of 
logic, small partitions that have meaning to him. 
The advantage of the automated synthesis technique 
is that it results in computer building blocks con
sistent with technology requirements of Large Scale 
Integration without mushrooming part numbers. 

A typical application of the system will be de
scribed. Reference to Fig. 3 will aid in understanding 
the flow through the system. Figure 4 illustrates the 
IBM 1620 Mod. II system employed in the auto
mated partitioning technique described in this section. 

The first step in the procedure is to generate the 

GOOD It UNPARTITION 
LOGIC 

itlNDICATES LIGHT PEN COMMANDS 

Figure 3. Flow chart of logic partitioning. 

logic preliminary to partitioning it. Initially, the pro
gram is ready for a light-pen interrupt. At this point 
the designer sees an array of 7 X 7 diamond shaped 
dots on the screen. At the bottom of this array is a 
set of instructions, as shown in Fig. 5. By firing the 
light pen at the touch point adjacent to each instruc
tion, the designer may choose the desired action. 
In designing logic, the first step could be to activate 
the touch point adjacent to the type of logic block the 
designer wished to draw, for example "AND." Once 
this has been done, the light pen may be pointed to 
any of the diamonds in the 7 X 7 array. As each 
diamond in the array is addressed by the light pen, 
a logic block will be drawn around it and labeled 
as the particular logic function corresponding to the 
instruction touch point previously activated (see Fig. 
6.). The logic on the screen may be designed by 
interspersing AND's, OR's and INVERTERS, or the 
designer may work from a pencil sketch and is able 
to put on the screen all the AND's followed by all 
the OR's, followed by all the INVERTERS, in any 
sequence desired. 

Once all the logic blocks are on the screen, as 
shown in Fig. 7, the designer can point the light pen 
at the instruction entitled "DRAW LINES." He may 



252 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 4. The IBM 1620 Mod. II Data Processing System, coupled to an IBM 4554 Video Display Unit, used to imple
ment the automated logic partitioning technique. 

then connect the logic blocks in the desired pattern 
by pointing to the end point of each line he wants 
drawn (see Fig. 8). The computer program then 
draws the lines. When the logic is completely inter
connected (Fig. 9), the designer may then point to 
the instruction label entitled "LABELS." A box 
with labels of one letter will appear on the bottom 
of the screen. The initial letter in the box is "A." 
The designer may then point to each input he wishes 
to label "A." If he wishes to label an input "B," 
he points the light pen to the block with the "A." 
The label changes to "B" and all inputs subse
quently addressed by the pen will be labeled "B" 
(see Fig. 10). He may then continue to label all 
inputs down through "z" (Fig. 11). 

Should the designer make an error in drawing 
the blocks, lines, or labels, there are instruction 
touchpoints for erasing blocks, lines, and labels. He 
may then go back and draw in the correction by the 
appropriate light-pen procedure. 

In place of a manual input, the system is capable 
of accepting into the disc file up to several thousand 
blocks of interconnected logic. Up to 49 blocks of 
this stored logic may be placed on the screen at any 
one time. 

When the logic has been placed on the screen, 
the designer may point at the instruction touchpoint 

entitled "FUNCTION." When the program is in this 
mode, pointing at any block output will . result in 
the Boolean function being printed out on the screen 
for up to three prior levels of logic; i.e., anylabeled 
inputs up to three prior levels, as well as the desig
nation numbers of any blocks feeding the third level 
of logic, will appear in the Boolean expression. The 
number of variables in the function mode of opera
tion is not limited (Fig. 12). 

If the designer desires to partition the logic into 
smaller segments, he may point his light pen at the 
instruction touchpoint labeled "PARTITION." Then, 
by pointing the light pen at the connected logic 
blocks which he· desires to partition from the overall 
cluster on the screen, he directs the computer which 
blocks are to be partitioned. The next operation is to 
energize the instruction touchpoint labeled "DRAW 
PARTITION." All logic then disappears from the 
screen, except for the blocks that were partitioned 
out, as shown in Fig. 13. If the function is limited to 
six input variables, the touchpoint labeled "TRUTH 
TABLE" may be energized. 

When the output for the point at which the truth 
table is desired is· activated by the light pen, the 
octal number representing the truth table will be re
corded on a punched card. This information may 
then be fed into another program which will deter-



AUTOMATED LOGIC DESIGN TECHNIQUES 253 

mine the classical equivalence class descriptor of that 
function. The function routine may also be used 
(Fig. 14). The other approach mentioned earlier 
will enable us to obtaIn a descriptor which is not 
limited to six variable functions. This unlimited vari
able descriptor will be incorporated into the system 
represented in Fig. 3. 

In order to give the designer some idea of how this 
partitioning is progressing, he may touch the instruc-

tion point labeled "UNPARTITIONED LOGIC." 
This restores on the screen all the logic which has 
not been partitioned, minus those positions which 
have been partitioned out, as shown in Fig. 15. If 
for some reason the designer needs to refer to the 
overall cluster of logic, he may energize the instruc
tion touchpoint labeled "REDRAW LOGIC." This 
will draw all the logic blocks back on the screen with 
the partitioned section showing in its original posi-

Figure 5. Light-pen instructions (bottom) and touch points. 



254 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

tion but disconnected from the rest of the logic as 
indicated in Fig. 16. If the partition does not meet 
some arbitrarily established criteria, the designer may 
energize the instruction touchpoint labeled "UN
PARTITION." He may then point his light-pen at 

Figure 6. Logic block generated by firing light-pen at touch 
point. 

each of the blocks that have been partitioned out, 
energize the instruction touchpoint labeled "RE
DRAW LOGIC," and the logic will then appear on 
the screen with the section that had been partitioned, 
reconnected as it was originally displayed. The de
signer then continues to partition the logic, calling 
out the instruction, "UNPARTITIONED LOGIC" 
until all the logic on the screen has been partitioned 
(Fig. 17). 

The designer may operate on larger sections of 
logic by means of the touchpoint labeled "SHIFT 
LOGIC." The CRT then acts as a window through 
which the designer may look at any section of 49 
blocks or less of the entire logic stored on the disk. 
Once "SHIFT LOGIC" is activated, another set of 
instructions appear at the bottom of the screen (see 
Fig. 18) which enables the designer to shift the logic 
on the screen, to the right or the left the number of 
blocks specified. Figure 18 shows the shifting instruc
tions on the bottom of the CRT coupled with the 
logic as yet unpartitioned. Figure 19 shows this logic 
shifted three columns to the right. The logic for a 
complete computer can be visualized as being stored 
on a "scroll" which is seven logic blocks high by a 
couple thousand logic blocks wide. 

All inputs to a 49-block cluster are either labeled 
as a primary input with letters or with the designa
tion number of the logic blocks that feed the cluster 
(Le., logic blocks on the part of the "scroll" not 
visible on the screen). The designer may then go 
through the partitioning technique for the cluster 
which is being viewed. After partitioning a 49-block 
cluster, there will be individual logic blocks around 
the edges of the screen (Fig. 20). These were not 
partitioned out but are connected to logic appearing 
other places upon the logic "scroll." He may then 
shift the logic and include these stragglers in parti
tions with logic blocks to which they are connected 
(Fig. 21). 

Using the above technique, several hundred par
titions may be taken out of the overall machine 
logic, their function described by the appropriate 
descriptor and the total number of function types 
thus greatly reduced. This process may be repeated 
by the same designer or by other designers in order 
to obtain an optimum set of logical elements to be 
used in the implementation of the computer being 
designed. 

An important advantage of this approach from the 
designer's point of view is that it enables the indi-



AUTOMATED LOGIC DESIGN TECHNIQUES 255 

Figure 7. Complete logic block array generated by light pen. 



256 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

vidual engineer to design as efficiently as possible. 
He is not restricted by package limitations or cell 
function constraints in his "raw" logic design. The 
functions partitioned out by one or more designers 

Figure 8. Two logic blocks connected by a light-pen using 
"DRAW LINES" routine. 

may be evaluated, compared and combined into 
efficient multipurpose cells or Universal Logic 
Blocks. The cells may then be replaced into the 
logic, where the original partitions were removed, 
and connected as determined by the descriptor pro
gram which is now under development. 

APPENDIX 

LIBRARY SUBROUTINES 

The library subroutines used to change the con
tents of the buffer, thus changing the pattern on the 
CRT, are CHAR and VECT. 

CHAR (NX, NY, N, NALPHA, J, L) 

NX,NY 

N 

NALPHA 

J 

L 

x, Y coordinates of first character of 
message 

number of characters to be displayed 

name of the array which contains the 
message 

an index which is incremented by the 
amount of buffer positions used to 
store message 

buffer position where message is 
started 

VECT (NX, NY, NXE, NYE, J, L) 

NX, NY 
NXE, NYE 
J, L 

coordinates of start of vector 
coordinates of end of vector 
as explained for CHAR 

The other library subroutines used are: 

WAIT 

ACT 

INACT 

CORDNT 

CONR 2 

Causes machine to stop processing 
until there is a light-pen interrupt. 

Turns off the mask on the 1620 so 
that information from the light-pen 
can enter the processor. 

Turns the mask on so information 
from the light-pen won't interfere 
with· the processor. 

Determines the x and y coordinates of 
the character the light-pen is firing 
on. 

This subroutine is used by CORDNT 
to transfer one word of information 
from the display memory to the 



DTOC 

FEINT 

AUTOMATED LOGIC DESIGN TECHNIQUES 257 

processor memory. The word that 
is transferred depends on the char
acter that the light-pen is firing at. 

Is a decimal to octal conversion sub
routine. 

This is another subroutine used by 
CORDNT. It provides the proces
sor with the display memory ad-

RESUME 

dress and other information (such 
as which character is a narrative 
word) when there is a light-pen 
interrupt. 

Returns processor control to IR 1. 
When there is a light-pen interrupt 
control is transferred to IR 3. 
When the processor is under con-

Figure 9. Complete logical array interconnected. 



258 

QUINK 

DISCR 
DISCW 

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

trol of IR 3 it cannot accept an
other light-pen interrupt. 

Permits programs stored on the 
disc in core image to be loaded 
into storage much more quickly 
than the conventional FORTRAN 
'LINK' statement. 

Reads information from disk. 
Writes information on disk. 

ACKNOWLEDGMENTS 

The authors wish to thank Messrs. T. Kameda 
and Y. N. Patt for their assistance during the sum
mer of 1965 in obtaining an understanding of the 
classification of Boolean functions. 

REFERENCES 

1. D. Slepian, "On the Number of Symmetry 
Types of Boolean Functions of n Variables," 

Figure 10. One logic block label~d using "LABELS" routine. 



AUTOMATED LOGIC DESIGN TECHNIQUES 259 

Canadian Jour,nal of Mathematics, vol. 5, pp. 185-
93, 1953. 

2. S. W. Golomb, "On the Classification of 
Boolean Functions," IRE Transactions on Circuit 
Theory, vol. 6 (Special Supplement), pp. 176-86 
(May 1959). 

3. R. C. Minnick, "Cutpoint Cellular Logic," 
IEEE Transactions on Electronic Computers, Dec. 
1964. 

4. W. F. King III, and A. Guisti, "Can Logic 
Arrays be Kept Flexible?" AFCRL Report No. 65-
547 (Aug. 1965). 

5. I. E. Sutherland, "Sketchpad; A Man-Machine 
Graphical Communications System," MIT Technical 
Report No. 296 (Jan. 30, 1963). 

6. D. T. Ross, "Implications of Computer-Aided 
Design for Numerically Controlled Production," MIT 
Report ESL-TM-212 (Sept. 1964). 

Figure 11. Completed logical array labeled. 



260 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 12. Example of a three-level function from unpartitioned logic. 



AUTOMATED LOGIC DESIGN TECHNIQUES 261 

Figure 13. Partitioned-out cluster of logic. 



262 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 14. Partitioned-out cluster of logic with output function. 



AUTOMATED LOGIC DESIGN TECHNIQUES 263 

Figure 15. Unpartitioned logic with one partitioned cluster missing. 

Figure 16. Logical array with partitioned cluster disconnected. 



264 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 17. Unpartitioned logic with several partitioned clusters missing. 

Figure 18. Logical array shown with "SHIFT" instructions shown at bottom of CRT. 



AUTOMATED LOGIC DESIGN TECHNIQUES 

Figure 19. Logical array shifted three columns to the right. 

Figure 20. Logic blocks remaining on screen after parti
tioning. Figure 21. Logic shifted to the right of screen. 

265 





A COST /PERFORMANCE ANALYSIS 
OF INTEGRATED-CIRCUIT CORE MEMORIES 

Dana W. Moore 

Honeywell Computer Control Division 
Framingham, Massachusetts 

INTRODUCTION 

The purpose of this paper is to give added insight 
into· the influence of memory organization on system 
cost and performance, to show how various con
figurations may be best suited to satisfying a par
ticular set of requirements, and to indicate the effects 
of low-cost integrated circuitry on the storage 
array / circuit cost tradeoffs available with varying 
organizations. To accomplish these objectives, five 
typical organizations were selected, and each was 
dealt with in sufficient detail to allow subsequent 
predictions of cost and performance. Those chosen 
are applicable to random-access ferrite-core memo
ries, and each design makes use of integrated cir
cuitry to the extent permitted by the devices which 
presently may be procured in volume quantities. 
The configurations discussed are as follows: 

3D, four-wire (3D, 4W) 
3D, three-wire (3D, 3W) 
2~D, three-wire (2~D, 3W) 
2~D, two-wire (2~D, 2W) 
2D, two-wire (2D, 2W) 

Cost estimates for. systems incorporating these 
organizations were obtained by examining each in
dividually. First, however, circuit modules were 
designed to perform the basic high-current switching, 
decoding, and sensing functions required in core 

267 

memories. These modules, or slightly modified ver
sions, were then assembled to create a family of sys
tems about each organizational structure. Costs for 
the modules were estimated on the basis of typical 
volume procurement and assembly costs currently 
prevalent in the industry. Total cost is then tabulated 
as a function of memory capacity for comparison 
with alternative approaches. Totals include all de
coding selection and sensing circuitry and estimated 
cost of third and fourth wires which may be included 
in the storage array, depending upon the organization 
considered. Not included are costs of the cores and 
the basic two-wire array necessary for all configura
tions considered, regardless of organization. Also 
excluded are costs of registers, timing and control 
logic, hardware, power supplies and system assembly, 
since their contribution is relatively small and the 
functions performed are similar in each design. 

The result is a cost comparison of functionally 
equivalent memory systems representing each of sev
eral organizations. The effect on this comparison of 
changing memory capacity is examined in detail. All 
designs except the 2Y:zD, two-wire mass memory 
operate at speeds of the order of Ip.sec. 

The following section describes the circuit modules 
common to all designs, their use and estimated unit 
cost. Subsequent portions show how the modules are 
most effectively used or modified to realize each of 
the five configurations, and concluding remarks give 



268 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

a comparative summary of all results as well as 
general effects of changing speed requirements. 

CIRCUIT FUNCTIONS 

Each design requires arrays of matrixed switch
ing circuitry to route large drive currents into selected 
lines of the storage arrays. In the past, large memo
ries of this type were most economically constructed 
by using a minimum quantity of relatively high
performance drive circuitry. Large stacks were em
ployed containing 5000 or more cores per drive 
line and, consequently, the lines were necessarily 
ter~inated in their characteristic impedance. Four 
diodes per line were required to isolate the termina
tion and to permit use of identical current sources 
for both read and write currents. Typical line im
pedances required memory voltages in excess of 60 
volts to provide 400 ma current flow and, although 
selection-circuit component costs were high, these 
voltages and currents could be handled by discrete 
circuitry. This, coupled with high assembly costs 
and low packing densities of discrete modules, made 
the approach using a minimum of circuit functions 
the most attractive. 

The advent of integrated circuits, however, has 
economically obsoleted systems designed about this 
approach. Monolithic technology has significantly 
lowered the cost of low-voltage functions, reduced 
assembly costs, and increased packing densities. 
Consequently, an overall gain may be realized by 
employing a larger number of cheaper circuit func
tions to reduce the power requirements placed on 
each. Drive lines may be shortened to the point 
where termination is unnecessary. Supply voltages 
then may be reduced to some value which yields 
adequate current stabilization through a series limit
ing resistor or a lower value determined by rise-time 
considerations when active current sources are em
ployed. 

Selection Switch 

Drive· matrices in all designs except the large 
21hD, two-wire system incorporate the above phi
losophy, and these matrices are assembled with cir
cuit modules containing four read-write pairs on a 
21h" square card. The switches are transformer
coupled to logic circuitry and capable of handling 
400 ma currents at 30 volts. In addition, sufficient 
integrated gating and amplification is provided on 
each module to permit selection of lout of 16 
pairs without external gating. It is estimated that the 

Figure 1. Selection switch module. 

switch module could be manufactured in quantity 
at a cost of $40. A schematic of the circuit is shown 
in Fig. 1. 

Diode Matrix 

The switches are used with passive current sources 
in a two-diode-per-line matrix where the diodes are 
purchased in standard integrated-circuit packages for 
approximately 20¢ each. A schematic of the matrix 
used is shown in Fig. 2. The maximum size of this 
configuration for I-fLsec operation is 256 untermi
nated lines of 1024 cores each. Discarding the 
termination permits use of a low-voltage supply (24 
volts) thereby reducing component costs within the 
matrix. The constraint on matrix size results from 
the increasing bus capacity, which would exceed 
1000 pf for 16 lines of this length in a four-wire 
array. 

Sense Amplifier 

Lower voltage excursions within arrays help re
duce sense-line perturbations to the point where inte-

TRANSFORMER-COUPLED 
TRANSISTOR SWITCH 

+ 

DRIVE LINE 

+ 

Figure 2. Unterminated drive matrix with passive current 
source. 



COST PERFORMANCE ANALYSIS OF CORE MEMORIES 269 

grated sense amplifiers are practical. This is 
particularly important in 21hD configurations where 
nonsquare arrays increase coupling to drive lines in 
the digit matrices. Sense amplifiers compatible with 
these designs may be purchased in quantity at $20 
per unit and are suited for cycle rates in excess of 
1 mHz. They may service a maximum of 4096 cores, 
corresponding to a normalized cost of 1h ¢ per core 
in systems of 4096 addresses or greater. In 3D sys
tems, however, care must be taken to limit current 
rise-times when low-voltage sense amplifiers are em
ployed. Otherwise, large difference signals may ap
pear at amplifier terminals for certain data patterns, 
and high-speed inhibit transients might then cause 
permanent damage to the sensing circuitry. 

Current Switch 

For 3D systems, a current switch is required to 
handle data-modulated inhibit currents. The circuit 
used to provide this function employs components 
similar to those in the selection switch and includes a 
discrete transformer-coupled transistor switch driven 
by an integrated-circuit power gate. It is estimated 
that these components may be procured, assembled, 
and tested for $6.25 per switch. 

In summary, a number of circuit modules were 
specified, designed, and cost-estimated. The func
tions which they perform represent the major ex
pense in most large magnetic-memory systems, and 
they may be organized or modified in a variety of 
ways to build families of systems of varying capacity 
and organization. The functions are listed in Table 1 
along with their costs and the organizations in which 
they are used. In cases where functions are modified 
to suit unique requirements of particular configura
tions, those changes are described in subsequent 
sections which discuss each design in some detail. 

3D, Four-Wire Configuration 

The 3D configuration of selection circuitry prob
ably is, and most certainly has been, the most 

popular method of accessing coincident-current core 
arrays. 1 Although the organization requires fewer 
circuit functions than any of those discussed, it is 
dependent upon a more complex stack. Drive lines 
of each axis thread through all bits of the data 
word, and individual inhibit and sense wires thread 
through all cores associated with a bit position in the 
data word. Currents in inhibit wires then are modu
lated by incoming data or data about to be regen
erated to cancel "write one" drive currents. 

The design consists of the two drive matrices, each 
composed of selection switches and diodes, described 
previously. Lines are unterminated and limited in 
length to 1024 cores, and this results in a family of 
maximum module capacities where word length 
equals the number of cores per line divided by the 
square root of the number of addresses. In this case 

210 

Bmax=--
VA 

Inhibit drive circuitry uses one current switch per 
4096 cores and an external resistor. Cycle times of 
the order of 1 p,sec could, then, be achieved with 
these circuits, a 24-volt supply (not included in 
costs) and 30-mil core arrays. 

Shown in Fig. 3 are curves which indicate the 
effects of changing capacity on the costs of systems 
organized in this fashion. The costs at each point 
represent an optimum assemblage of the functions 
described above, and the relative contributions of 
selection, regeneration, and array costs are shown 
for each capacity. 

Also shown are the maximum number of bits per 
module for each capacity where a module refers to 
a single stack assembly. In those units requiring 
matrices of unequal size (i.e., 2048, 8192, etc.), 
two matrices are employed on one axis such that all 
lines may contain the maximum number of cores. 
Maximum word length for these modules is, con
sequently, equal to that of the next smaller capacity. 

As would be expected, selection circuit costs be-

Table 1. Memory-Circuit Functions 

No. Functions Cost per Used in: 
Function 

per Module Function 3D,4W 3D,3W 2~D, 3W 2~D,2W 2D,2W 

Selection switch 812~" card $ 5.00 Yes Yes Yes Mod Mod 
Diode matrix 16/fiat pac .20 Yes Yes Yes Mod Mod 
Sense amplifier lIfiat pac 20.00 Yes Yes Yes Mod Yes 
Current switch 612~" card 6.25 Yes Mod No No Mod 
Inhibit wire l/core .005 Yes No No No No 
Sense line l/core .005 Yes Yes Yes No No 



270 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

5: ,:, " " " , 

F~·' 
8 MAX BITS/ MOD 

8 BITS/WORD 

~, "-~---
a ~ '" .--._-_. (] 2 ................ ::::::::. __ • ___ . SENSE LINE 

~ .__ INHIBIT LINE 

o 

o 
.5K IK 2K 

32 

.----. __ .~ INHIBIT CKT 
._--. SELECTION 

4K 
ADDRESSES 

16 

8K 

16 

16K 32K 

8 MAX BITS/MOD 

~ 6 

Z 5 • 32 BITS/WORD 

~~ i : :~:~=====:== "N' UM 

I ____ .---._. ___ :INHIBIT LINE 

.-._ SENSE & INHIBIT CKT 
o .--_.--_.--_. SELECTION 

.5K IK 2K 4K 8K 16K 

ADDRESSES 

Figure 3. Circuits costs for optimum 3D, four-wire configu
rations. 

come less significant as capacity increases, and this 
is made more apparent when considering the addi
tional array and assembly costs required to complete 
a module. These might typically amount to 1 ¢ for 
a 30-mil core and 0.5 ¢ to provide control logic, 
registers, hardware and assembly for a 250,000-bit 
unit. 

3D, Three-Wire Configuration 

This configuration is identical to the 3D, four
wire approach except for the fact that a single wire 
is routed through the core array in such a way that 
it may be time-shared to provide both sense and 
inhibit functions. Although regeneration-circuit costs 
increase with the addition of components used to 
combine the two functions, overall savings can result 
from the lower three-wire stack cost. A unique array 
is required which, in spite of its dissimilarity to 2~D 
and other 3D stacks, imposes no design problems 
other than a small initial development cost to estab
lish a source. This stack, once designed, would re
quire fewer connections to associated driving and 
sensing circuitry than any of the others discussed. 

In the scheme proposed for comparison, a family 

of systems are considered using selection circuitry 
identical to that in the 3D, four-wire case, for stack 
wiring and sense and inhibit circuitry. The same 
restrictions regarding line length and matrix size 
apply. Line capacity, however, is lower here than 
in the four-wire situation and, consequently, line 
length might be extended to take advantage of the 
shorter propagation time. 

A circuit module was designed to provide sense 
amplification and inhibit currents for two bits of 
4096 addresses each (see Fig. 4). Both source and 
sink ends of the inhibit circuit are placed on the 
same module to keep the high-current loop area 
small. A full select current is supplied initially at the 
source end which then divides in two parallel 
branches of the sense-inhibit wire. Current division 
is assured by a balance transformer placed at the 
opposite, or sensing, end of the line. Series diodes 
are placed at the terminals of the balance trans
former to. isolate it from the sensing path during 
readout and to provide a high impedance for rapid 
transformer recovery. A sense amplifier is then di
rectly coupled to the line at the balance-transformer 
end and, in this configuration, the signals to be 
sensed are essentially identical to those which would 
occur with a separate sense winding. 

The module which was selected to provide the 
above function is composed of devices used in the 

en 
w z 
::::i 

>
V 
ID 

j 

-64X LINES-

Iwy ~ ~ f f ~ ~ f 

Iwx 

Figure 4. Sense and inhibit circuitry for two bits of 4096 
addresses each. 



COST PERFORMANCE ANALYSIS OF CORE MEMORIES 271 

selection switch, diodes, and the integrated sense 
amplifier. Additional diodes are included to discharge 
the line inductance through the current-limiting re
sistor, and two transformer-coupled switches are 
connected in parallel to provide the full select in
hibit current. Cost of the configuration was estimated 
at $41 per data bit for each 4096 addresses. 

A circuit cost increase of 0.2¢ results over the 
four-wire approach, but an overall saving of O.3¢ 
is realized when the 0.5¢ cost of the discarded wire 
is considered. 

Figure 5 shows plots of memory cost vs capacity 
for this design in fashion similar to that of Fig. 3. 
Cycle times for these configurations also are of the 
order of 1p..sec when used with 30-mil core arrays. 

2~D, Three-Wire Configuration 

It is commonly known that the high cost of adding 
a fourth wire to high-density core arrays in many 
cases justifies a 2:v2 D organization.2 The descriptor 
21;2 D refers to the method of coincident element 
selection, and identifies two- or three-wire memories 
in which inhibit lines and drivers are replaced by an 
independent selection matrix for each bit of the 
data word. In these instances, the cost of repeating 
the digit matrix for each bit is more than offset by 

8 ~ 

t~\ 
8 BITS/WORD 

~, . ~-
5 2 ~ • ____ .--.--
~ .~.__. SENSE LINE 

o .___ '--;;:;;-;'INHIBIT CKT .--. __ . 
O+-_--"-r __ --.-__ ..,....-_---,. __ --,-__ -,-;.:SELECTION 

.5K IK 2K 4K 8K 16K 32K 

ADDRESSES 

~: \. 32 BITS / WORD 

i: .~ 
~' ~:~ 
§ 2 ~:==::== .. :===: SENSE LINE 

o I ____ .__ SENSE & INHIBIT CKT 

.-.-.------. SELECTION 
o 

.5K IK 2K 4K 8K I K 32K 

ADDRESSES 

Figure 5. Circuit costs for 3D, three-wire configurations. 

the consequent reduction of core array complexity 
from four wires per core to three. Furthermore, if 
care is taken to minimize delays of address fanout 
to the multiple-digit matrices, higher speeds may be 
obtained with a given storage element than in large 
3 D systems because it is unnecessary to cancel write 
currents with an overlapping inhibit current. Instead, 
in the 2:v2D scheme, individual digit matrices are 
modulated by incoming data. The scheme is made 
practical by the advent of low-cost integrated cir
cuitry. In addition, discarding the inhibit function 
permits efficient use of a read-write interchange tech
nique which reduces by half the number of drive 
wires to be selected on one axis of the stack. 

Because of the repetition of the digit matrix, non
square core arrays are employed to optimize total 
selection-circuit costs. Consider a 2:v2D system 
where the X matrix services all cores and the Y 
matrix is repeated for each bit. Total selection circuit 
cost is, then, 

where Ks 
D 

= cost of a read-write switch pair, 
= cost of matrixing component, 

Lx = number of X lines, 
Ly = number of Y lines per bit 
W = numbers of words, and 
B = number of bits per word. 

Since reentrant Y lines and read-write interchange 
logic are employed, 

W = 2LxLy 

Substituting this expression into the total cost 
function yields 

T = 2Ks [ I W + B VLy ] + D [w + BLy ] ~'2Ly 2Ly 

The first term represents selection-switch costs, 
which are proportional to the square root of the 
number of lines selected. This term is minimized 
when 

Ly=~ fw 
B ~2 

or 

The second term accounts for costs which are pro
portional to the number of lines (such as diodes, or 
transformers if used), and its minimum occurs when 

L.= JW 
2B 

or 



272 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

The optimum aspect ratio for the total expression is 
a function of the relative magnitudes of D and Ks 
but must fall between Band B2. For large systems 
where the selection switches are used more efficiently, 
or if D is made large by a requirement of a trans
former per line, the latter term will dominate and 
the optimum ratio will approach B. For small sys
tems, the converse occurs as selection switch costs 
become more significant, and the best ratio will 
approach B2. When a large ratio is required, Lx 
may exceed the maximum matrix size. In these in
stances, the ratio of Lx = B2Ly , as determined by 
selection switches, is invalid. Instead the expression 

L 
IC 

N2~=B2 
Ly 

applies, where N is the optimum number of X 
matrices, each of which selects one of Lx lines. 

The total number of addresses then is 

and 

W = 2NL Ly 
IC 

max 

max 

This value for Ly then will minimize the first term 
of the total cost expression when the number of 
matrices required is a multiple of X. 

Determining the best overall ratio is, of course, 
simplified by the fact that values for Lx and Ly are 
limited to those numbers which are powers of two, 
and possible solutions are so few that the ratio may 
be determined iteratively. 

Other restrictions include practical considerations 
such as limitations on stack form factors; or solutions 
may result which would require an excessive number 
of circuit module types to generate a family of 
systems each of which is optimumly organized for 
varying capacity. Also, a third level of matrixing 
often is employed in the selection of switch pairs, 
and this represents a cost term which is dispropor
tionate to the number of switches as matrix size 
changes. Including this factor would require that the 
total cost expression include a third term propor
tional to the fourth root of the number of drive lines. 

The points plotted in Fig. 6 represent circuit costs 
of 2~D, three-wire systems built with the same 400 
ma switching matrices as used in the 3D designs. 
Regeneration-circuit costs include the $20 integrated 
sense amplifier and sense 'line for each 4096 cores. 

8 BITS/WORD 

512 512 512 • 256 
32 

512 
32 64 12B 256 •• 

16 16 8 4 2 ••• 

SENSE LINE 

SENSE AMP 

8K 16K 32K 64K I28K 256K 

AIJORESSES 

4.0 
64 BITS/ WORD 

0 256 

~ 3.0 
8 

512 

64 

512 

16 
32 

512 

32 
16 

512 
64 

512 

128 

4 

512 • 
256 •• 

2 

u .* NO. OF END-AROUND Y LINES 
3 ~ * NO. OF X LINES 

~ 2.0 ~ ••• MAX NO. OF BITS/X MATRIX 

In "'---x 8 ._____ --x-x_x 
3 .----.__ \ SENSE LINE 
~ 1.0.____ '_._. 

' ___ .__ SENSE AMP ----- .. ---. • __ • ___ • ___ • ___ • ___ • YSELECTION 

O+----,r-----r---r---~--...--___....J x SELECTION 
4K 8K 16K 32K 

ADDRESSES 
64K 128K 256K 

Figure 6. Circuit costs for optimum 2Y:zD, three-wire con
figurations. 

Each point represents the most economical arrange
ment of these functions within the confines of elec
trical restrictions such as capacitive limitations on 
matrix size and reflections in excessively long, un
terminated lines. Matrix size is consequently limited 
to 256 lines of 1024 cores each. End around (re
entrant) Y line length limits the number of X lines 
(Lx) to 512, and the allowable X line length deter
mines the maximum word length per stack. All con
figurations operate at 1 p'sec, and the best aspect 
ratio for each capacity is shown by the number of 
lines in each matrix. The results are consistent with 
the foregoing discussion in that optimum ratios 
(where unrestricted) fall between Band B2. The 
ratios increase towards B2 as the number of ad
dresses decreases and increases again as word length 
increases. 

2-?hD, Two-Wire Configuration 

As shown in the previous section, large 2~D, 
three-wire system cost approaches an asymptote com
posed principally of array and sensing costs. Con
sequently, when capacity requirements are large 
(> 106 bits), it is sometimes practical to institute a 
dollar-speed tradeoff to fill the void between rotating 
machinery and high-speed, random-access electronic 



COST PERFORMANCE ANALYSIS OF CORE MEMORIES 273 

storage. Systems commonly described as mass stores 
exemplify such a tradeoff where 21hD selection is 
employed without a third sense wire. 3 Sensing cir
cuitry, although more complex, is integrated into 
the digit matrix in such manner that many more than 
4096 cores may be monitored by a single amplifier. 
The added intricacy of the sensing function results 
from the requirement to discriminate a low-level 
core response from large signals generated by half
select drive currents flowing in the same wire as 
used for sensing. 

Cycle times are generally in the 2- to 8-,usec 
range for several reasons. One is the incentive to 
use a low-drive (but slower) core to reduce the cost 
and power of the digit-selection matrix which must 
handle full select currents. These currents divide and 
flow through two legs of a balanced drive/sense 
line configuration. Second, large sense signals result 
from digit current transients, and drive currents 
must necessarily be staggered. Third, a DC offset 
voltage appears across the sensing terminals for the 
duration of the read cycle. Consequently, added time 
is required to either differentiate or DC-restore the 
incoming signal. Fourth, drive lines are long, and 
current in the digit axis must stabilize before a core 
is switched by a current in the alternate axis. 

A system of this organization was examined which 
appears to be a promising approach to the problem 
of isolating the sensitive sense circuitry from disturb
ances in the selection matrix. The design was carried 
out in sufficient detail to permit reasonably accurate 
estimates of component costs which, in turn, were 
tabulated in optimum configurations. 

A low-drive core is used in the contemplated 
design such that the large matrix common to all bits 
need only switch 300 rna currents. Consequently, it 
is feasible to use the low-voltage selection switches 
in a matrix of terminated lines containing up to 
4096 cores. Four 20¢ diodes per line are used for 
isolation, and two active current sources, at $25 
each, are employed for each 256-line matrix. The 
digit matrices, however, are more complex since 
their design must accommodate element sensing as 
well as selection. 

In the contemplated scheme, lines are driven. in 
parallel pairs to reduce "zero" noise and DC offset 
voltages which appear at sense-line terminals as a 
result of variations in core state, line resistance and 
diode drops (see Fig. 7). One drive transformer per 
pair of lines is included to allow matrixing of drive 
circuitry at one end of the line only. Lines are 

shorted at the sink end but terminated at the source 
for the duration of the current pulse. Four diodes 
are provided at the sink end for each pair of lines 
to isolate unselected lines from the sensing circuitry 
and to provide a high-impedance path for rapid line 
and transformer recovery during turn-off of the 
transformer matrix. Two current-balancing trans
formers and one sense amplifier and filter may then 
service the entire digit matrix or a maximum of 
256,000 cores. Sense-amplification and filtering func
tions were estimated at $100 per matrix, and digit
selection components total to approximately $300 
for the largest matrix of 64 line pairs. Each of these 
lines threads 2048 cores, and maximum module size 
is then limited to 262,144 X 32. Cycle-time esti
mates of 3 ,usec are not unreasonable for this capac
ity and may be reduced by shortening the drivel 
sense wire to limit module size to a smaller number 
of addresses. Total memory-circuit cost, exclusive 
of logic, comes to 0.21¢ and 0.36¢ for 262,144 
X 32 and 131,072 X 32 modules respectively, as 
shown in Fig. 8. 

2D, Two-Wire Configuration 

3D and 21hD organizations as applied to DRO 
systems require storage elements of sufficient quality 
to permit interrogation by the coincidence of two 
half-select currents. At present only ferrite cores are 
suitable, and those must be individually fabricated, 
tested, and wired into storage arrays. The property 
of the elements which permits coincident readout 
is simply the high ratio of outputs which occur for 
full- and half-select currents. 

In a 2D, or linear-select, organization destructive 
readout occurs when current in a single wire switches 
all bits of the data word. Only one element per 
common sense-digit line experiences any excitation 
and, consequently, elements of much lower quality 
placed in arrays of two wires per element are suit
able for comparable, and often superior, perform
ance. In 2D organizations, however, element 
"squareness" is still a desirable property since a 
direct consequence is the percent of total element 
flux which may be modulated by a coincident write 
operation. In all cases, the digit field must be less 
than the element's coercive force so as not to disturb 
corresponding bits in other addresses. A square ele
ment where 90% of the flux may be modulated by 
a coincident write would give one/zero output ratios 
of the order of 10: 1. On the other hand, a low-



274 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

+V 

F 
I 
L 
T 
E 
R 

2048 CORES----+ 

SENSE AMP ~ 

SWITCHES HELD NORMALLY OFF TO ALLOW RAPID RECOVERY\') 
OF LINE AND TRANSFORMER AFTER CONDUCTION THROUGH} 
ALTERNATE SWITCH 

Figure 7. Digit matrix for 21hD, two-wire scheme. 

quality, low-cost element may be employed where 
only 10% of the total read flux is permanently 
affected by the digit field. In these cases, two inter
sections, or two elements per bit, are employed such 
that the bulk of the read flux cancels and the data
modulated portion adds to regain a distinguishable 
one/zero output-signal ratio.4 

An advantage of linearly organized ferrite-core 
arrays is the accompanying ability to apply unlimited 
overdrive at read time and thereby increase switch
ing speed over that available with coincident current 
selection.5 The write portion of the cycle, however, 
is necessarily a coincident operation, and one of the 
following three methods may be employed: 

1. A full-select word current is over
lapped by a positive or negative half
select digit current. 

2. A full-select word current is over
lapped by an opposing half-select digit 
current. 

3. A half-select word current is applied 
in coincidence with a half -select digit 
current. 

Method (1) yields a faster switching time with 
the added expense of full-select word drive circuitry 
and bipolar digit drivers. In addition, the bipolar 
digit requirement complicates the mixing circuitry 
which normally would combine digit and sense func
tions on a single wire. Relative economies of Meth
ods (2) and (3) are obvious by consideration of 
the current amplitudes employed. An advantage of 
Method (2) however, is that elements are disturbed 
in the read direction only. "Zero" noise at readout 
is reduced from that which would occur with the 
opposite-polarity disturbs of Method (3). Use of 
elements with poor squareness ratios can make dis
turb polarity an important consideration. On the 
other hand, cycle time may be decreased with 
Method (3) since it is not necessary that digit cur
rents overlap word currents. In any event, the prin-



COST PERFORMANCE ANALYSIS OF CORE MEMORIES 275 

,59'\ 
4.0 256 256 256 

8 16 32 

~O ~6 ,\64 
8 BITS/WORD 

512 512 1024 2048 .. 

32 64 64** 

64 32 32 32 ... 

.. NO. OF X LINES 
.. NO. OF Y LINE PAIRS 

.... MAX NO. OF BITS/X MATRIX 

2.0 .~'~ 

O ~ .~"-- ~~E~~~~~: 
I.. .--=:::::: x 

~.--.~. ~=---~ 
16K 32 64K 128K 256K 

ADDRESSES 

4.0 32 BITS/WORD 

512 1024 1024 2048 2048. 

16 16 32 32 64** 

128 128 64 64 32 ••• 

11 NO. OF X LINES 
... NO. OF Y LINE PAIRS 

.... MAX NO. OF BITS/X MATRIX 

g 
u 

S I. 
~ 
U '---':~--

--.----.~-.---~~=, .---._. 
O+-----~----~----~----~----~----~~-

4K 8K 16K 32K 

ADDRESSES 

64K 128K 256K 

Figure 8. Circuit costs for optimum 2Y2D, two-wire con
figurations. 

cipal speed increase obtained by reorgamzmg a 
coincident array to operate in a linear select mode 
results from the decreased read switching time. 

A more significant advantage is the available 
reduction of array complexity. Low-cost, two-wire 
arrays must be linearly organized to economically 
obtain speeds in excess of 1 f..tsec and, as memory 
speed requirements increase, necessitating the use of 
smaller toroids, third and fourth wire costs become 
increasingly significant in total array cost. In large 
I-f..tsec systems for example, the cost of the fourth 
wire in 30-mil core arrays has already justified 21h D 
organization. Similarly the higher cost of the third 
wire in smaller 400- to 500-nsec core arrays may 
justify the next step in the array/circuit cost trade
off, i.e., a 2D linear selection scheme to either reduce 
a stringing operation to two wires per element or 
exploit the potential low-cost speed of various batch
fabrication techniques. 

Increased circuit costs in a linear organization as 
opposed to coincident selection of similar storage 

elements result from two factors. First, since word 
drive currents are destructive, digit circuitry cannot 
be matrixed to service a number of lines; second, the 
matrix word drive selection must handle full-select 
read currents. The inherent high circuit cost increases 
the effect of memory aspect ratio on total cost, and, 
lowest cost occurs in general, where word length is 
in excess of that normally required by a computer. 
In these cases, it is profitable to extend the memory 
data register to some multiple of the computer word 
length and provide address decoding to select the 
desired portion of the memory data word for read 
and write operations. Consider, for example, a sys
tem requirement of W words at B bits per word. This 
capacity may be realized by a memory with W m 

addresses and Bm bits per word where 

WB == WmB.m 

Total circuit and array cost per element is then 

Ka Kw 
C=Kc +--+-

Wm Bm 

where Kc cost per storage element, 
Kw cost of word drive circuits per word 

line, 
Ka cost of sense and digit circuits per 

regeneration loop, 

and W m exceeds the maximum selection-matrix size 
such that drive circuit cost per line is not a function 
ofWm • 

The optimum aspect ratio may be determined by 
holding the product of Wm and Bm constant and 
setting the differential of total memory cost equal to 
zero. The lowest cost results when total word drive
circuit cost equals total digit- and sense-circuit cost. 
The ratio is then 

--=--
Bm Kw 

Total cost for systems employing this optimum ratio 
then reduces to 

C = Kc + 2 I KaKw 
~'WXB 

where W X B is total memory capacity. The cost 
of added gating required when Bm > B is considered 
negligible. 

The relationship is, of course, invalid for systems 
where all word lines are selected with one drive 
matrix. For these systems, the cost of word drive 



276 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

circuitry per line (Kw) is a function of W m. In this 
case 

Kto" = total drive-circuit cost 
Wm 

2Ks vWm + DlW'm 

Wm 

where Ks cost per switch or cost per switch pair 
for core systems requiring bipolar 
drive currents, and 

Dl = cost of the matrix component, i.e., 
diodes or transformers and diodes. 

Substituting Kw' for Kw in the total cost expression 
gives 

Ka 2Ks Dl 
C=Kc +-+--+-

Wm BmWm Bm 

Total system cost is then optimized for the W m, 

equaling some power of 2, which most nearly satis
fies the following expression: 

To examine the cost characteristics of a linear or
ganization, an example of a configuration is given 
which gives similar performance to previously dis
cussed 2lh D and 3D systems. Consider a low-drive, 
30-mil core which would yield I-fLsec cycle times 
when linearly selected. 

A 3/2 full-select read current of 750 rna and 
half-select 250-ma write current could be supplied 
by switch circuits similar to those used previously. 
In this configuration, circuit cost is increased by 
$2.00 per switch pair over that used in other or
ganizations to allow for high-current components. 
Three integrated diodes per line are provided to 
allow for the high read currents, and $50 is included 
per matrix for two active current sources. Total cost 
of this configuration when selecting one of 256 lines 
amounts to $606. 

Only large systems are considered where word
selection circuitry is composed of numbers of these 
matrices. It follows that Kw is constant and equals 
$606/256 = $2.37 per line. Word lines are short, 
and back voltages would limit length to something 
less than 250 cores per line. 

The digit drive, sense, and mixing circuitry must 
perform the same function as that described iri the 
3D, three-wire discussion. A similar configuration 
providing a full select current to be divided equally 
in two sense-line branches and balanced by a termi-

nation transformer could be provided at a cost of 
$41 per bit and include a sense amplifier. These cir
cuits may service a maximum of 4096 addresses, 
limiting module size to approximately 106 bits. Since 
Ka = $41.00 for this configuration, the optimum 
ratio is 

Ka - = 17.3 
Kw 

Tabulating the total circuit costs for optimumly 
organized systems of varying total capacity yields 
the figures shown in Table 2. 

Table 2. Circuit Costs for Optimumly Organized 
Systems of Varying Total Capacity 

Words per 
Bits per Total Capacity J 2KaJ(w Word in Bits 

Module (W) 
(B) (W x B) WxB 

4096 236 0.965 X 106 $0.02 
2048 118 0.242 X 106 .04 
1024 59 6.05 X 104 .08 
512 30 1.53 X 104 .16 
256 15 38.4 X 102 .32 

This example is plotted in Fig. 9. The dotted line 
connects points where the best ratio of 17 is main-

8 BITS/WORD 

1024 • 1024 2048 

64 ~28 '" 

4096 4096 

256 

MEMORY ADDRESSES 

128 MEMORY BITS ,:, 
.... ,,-.: 

"'I! 

.~~.~"--
~--,.____ WORD DRIVE 

~.----=-.---
REGENERATION 

O~---.------~---~~---~------~---~~ 
4K 8K 16K 32K 64K 128K 256K 

ADDRESSES 

64 BITS/ WORD 

2048 4096 4096 MEMORY ADDRESSES 

~ 6 
128 128 256 tJEMORY EIlTS 

u 
~ 5 

Z 
~ 4 

~ 3 

§ 
2 u 

------ WORD DRIVE 

REGENERATION 
0 

4K 8K 16K 32K 64K 128K 256K 

ADDRESSES 

Figure 9. Circuit costs for optimum 2D, two-wire con-
figurations. 



COST PERFORMANCE ANALYSIS OF CORE MEMORIES 277 

tained. Practical solutions, however, are limited to 
those where the number of addresses equals some 
power of 2. These points are connected by solid 
lines and the resultant deviation is apparent. 

COMPARISON OF RESULTS 

In the preceding section, systems of varying or
ganization were described briefly and cost character
istics were plotted individually to show the relative 
contributions of different circuit functions. These 
results are superimposed as shown in Figs. 10 and 
11 to illustrate at what portion of the capacity spec
trum each organization, may be most effectively em
ployed. 

The 2V2D, three-wire, and two 3D systems are 
the most similar of those discussed with regard to 
performance, circuits, core type, and applicable 
packaging techniques. The best range of capacity 
for these three systems is made apparent by the cost 

~ 
Z 
LIJ 
~ 
LIJ 
...J 
W 

7 

6 

5 

ffi 4 
Q.. 

(I) 

~ 
z 
w 
U 

z 3 

~ 
CI) 

o 
u 

t: 
:::> 
u 
It: 
U 

.51< II< 21< 41< SI< 

crossovers shown. For systems requiring fewer than 
2048 addresses, the four-wire approach shows slight 
improvement over the three-wire, 3D system, but 
vast gains may be achieved by selecting either 3D 
scheme over a 2V2D design. The intersection of the 
3D system at 2048 results from the increasing cost 
per element of the more complex sense-inhibit cir
cuitry with decreasing capacity as opposed to the 
assumed constant cost of the fourth wire used in the 
alternate case. In some instances, however, the 
fourth wire cost would increase for smaller arrays. 
Although the cost of both systems is increased, the 
crossover would then move to lower capacities. As 
system size increases beyond 4096, however, sense
inhibit circuitry must be repeated for every 4096 
addresses. The added per-element circuit cost of the 
three-wire scheme then becomes constant, and a cost 
differential of 0.3¢ per core results for all capacities 
in excess of 2048. 

0 

0--0 20 - 2 WIRE 

~--~ 21/20 -2 WIRE 

x---x 2112 0 - 3 WIRE 

0--0 30-3 WIRE .--. 30-4WIRE 

161< 321< 641< 12SI< 2561< 

ADDRESSES 

Figure to. Drive and sensing circuit costs for various organizations as a function of memory capacity (at 8 bits/word). 



278 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

o 

7 

6 

0--0 20-2 WIRE 
~--~ 2112o-2WIRE 

5 x--x 21/20-3 WIRE 
~ 

<!)--<!) z 3O-3WIRE 
w 
::E 0---0 30-4 WIRE 
w 
...J 
w 
a:: 4 
w 
Q. 

(J) 

~ 
z 
w 3 0 

z 

~ 
(J) 

0 
0 2 6 
~ <!) 0 0 
~ 
0 
a:: X X 
0 

---~ 

.5K II< 2K 4K 8K 16K 32K 64K 128K 256K 
ADDRESSES 

Figure 11. Drive and sensing circuit costs for various organizations as a function of memory capacity (at 64 bits/word). 

The 2Y2D, three-wire design becomes advan
tageous as address capacity increases to the range 
of 4096 to 16,384, depending on data word length. 
It, in fact, crosses the 3D, three-wire system since, 
in the 2Y2D scheme, selection circuits continue to in
crease with the square root of the number of ad
dresses. In the 3D configuration, however, inhibit 
circuitry increases linearly with address capacity 
after 4096 and eventually involves a greater expense 
than the alternate three-wire arrangement. As ca
pacity continues to increase, selection costs become 
approximately equivalent for all three approaches. 

The 2Y2D, two-wire design is plotted to show the 
savings which may be obtained in multi-megabit 
stores. Points at lower capacities represent unrea
sonable approaches since the cost is high and cycle 
times for any of these systems probably would ex
ceed 2 p.sec. For addresses in excess of 32,768, 

however, the approach may yield sufficient savings 
to justify a lower cycle time in certain applications. 
The cost difference here results from the vastly in
creased sensing efficiency. No sense line is required, 
and one detection circuit can service up to 262,144 
cores. 

The cost of the 2D organization is clearly high 
when compared to other medium-sized systems. 
Note, however, that the configuration competes for 
large systems, the difference being in the rate of cost 
increase as capacity decreases. A linear-select stor
age element might be obtained at slightly lower cost, 
and this would enhance the case for 2D at large 
capacities. For smaller sizes, the cost curve ascends 
quickly, and the array soon becomes an insignificant 
portion of the total. In general, the configuration is 
made popular only by the potential low cost and 
high speed of batch-fabricated arrays, nearly all of 
which must be interrogated linearly. 



COST PERFORMANCE ANALYSIS OF CORE MEMORIES 279 

Effects of [ncr-eased Speed 

With the exception of the mass memory, each de
sign would provide cycle times of the order of 1 
p,sec. Although actual costs were not plotted for 
higher speed systems, certain trends can be extra
polated from the data shown by understanding the 
nature of the circuit-array cost tradeoff. In the case 
of the three- and four-wire systems, each crossover 
is a result of selection circuit cost per element reduc
ing as larger matrices become more efficient. This, 
compared with the constant cost of array complexity 
in the four-wire approach, results in the latter losing 
out at higher capacities. As speed requirements 
increase, however, compatible storage arrays will 
become more costly and probably at a more rapid 
rate than corresponding circuit increases. In this 
event, third and fourth wire costs will exceed the 
half-cent figure used in these plots for 30-mil cores, 
and the crossovers will move toward lower capacities 
as core diameter is necessarily reduced. The 3D, 
three-wire approach, for example, would be superior 
to a four-wire configuration for all capacities if core 
s.ize were reduced to 20 mils or less. Similarly, 
hnear-select systems will become practical for smaller 
capacities as core diameter is reduced and will even
tually win out over all alternatives as cycle times fall 
below 500 nsec. The crossover of the three-wire 
designs would be less affected since similar arrays 
are used. Discontinuities in cost/speed curves here, 
however, would show the 21hD design to be superior 
since better cycle times (15 %) may be achieved for 
a given core size with this approach. 

Selection vs Sensing 

The curves in the preceding section show the 
relative costs of various circuit functions for systems 
of each organization. It is interesting to note that, 
in all designs other than the mass store, cost reduc
tion is limited by sensing and inhibit circuitry which 
repeats for every 4096 cores. In this range, cost of 
selection circuitry is almost insignificant, and changes 
in sense amplifier or array prices can reflect as large 
percent changes in the total. Consequently, improved 
sensing efficiency is the most fruitful area of study 
for cost reduction in 21hD systems of 8192 and 
larger. Reducing selection circuitry cost is effective 
in 21hD, three-wire machines containing less than 
32,768 addresses. Larger 21hD and 3D systems 
would benefit to a lesser degree. 

CONCLUSIONS 

In summary, a number of remarks may be made: 

1. The 3D approach a.t present is the 
most economical design for systems of 
8192 addresses or less when required 
cycle rates do not exceed 1 mHz. At 
some added cost, however, better cycle 
times may be achieved in this capacity 
range by selecting a 21hD, three-wire 
design using the same 30-mil core. 
This approach would often be cheaper 
than maintaining the 3D configuration 
with a smaller element. 

2. Of the two 3D designs, the three-wire 
approach is favored for large systems, 
although the crossover is extremely de
pendent upon the fourth-wire cost in 
the storage array. 

3. The 21hD, three-wire design is best 
for systems larger than 8192 when 
speeds higher than 3-p,sec rates are 
needed. For lower speeds a 21h D , , 
two-wire scheme, may be best em
ployed. 

4. As speed requirements increase, neces
sitating the use of smaller elements , 
crossovers will occur at lower capaci
ties. Consequently, 2D and 21hD de
signs using simpler arrays will become 
practical for smaller systems as well as 
large. 

ACKNOWLEDGMENTS 

The author would like to acknowledge the assist
ance of G. W. Booth, R. W. Reichard, W. F. Jordan 
and R. W. Fletcher of Honeywell Computer Control 
Division in preparing this material. 

REFERENCES 

1. J. W. Forester, "Digital Information in Three 
Dimensions Using Ferrite Cores," J. Appl. Phys., 
vol. 22, p. 44 (1951). 

2. M. A. Alexander, M. Rosenberg, and R. 
Stu~rt-W!!liams, "Ferrite Core Memory is Fast and 
RelIable, Electronics vol. 29, no. 2 (Feb. 1956). 

3. R. J. Petschauer, G. A. Andersen, and W. J. 
Neumann, "A Large-Capacity, Low-Cost Core 
Memory," presented at IFIP Congress, New York, 
May 24-29, 1965. 



280 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

4. R. A. Shahbender, et aI, "Laminated Ferrite
Memory," Proc. Fall Joint Computer Con/., 1963. 

5. C. S. Holzinger, "Techniques for Determining 

the Speed Capabilities of 2D Ferrite Core Memo
ries," IEEE Trans. on Magnetics, vol. 1, no. 4 (Dec. 
1965). 



A 200-NANOSECOND THIN FILM 
MAIN MEMORY SYSTEM 

S. A. Meddaugh and K. L. Pearson 

UNIVAC Division of Sperry Rand Corporation 
St. Paul, Minnesota 

INTRODUCTION 

Several papers have appeared in the last few years 
which propose a design for large, high-speed memo
ries using planar thin films. Included in this category 
are memories with greater than 250,000 bits and 
cycle times of less than 250 nanoseconds. Some au
thors 1,'2 have set rather high goals of 10 6 bits and 
100 nanoseconds cycle time, and, after performing 
a number of calculations, have concluded that it is 
indeed possible for such a memory to operate, pro
vided the problems of building it can be solved. 
Others 3 have presented the results of early, partially 
implemented models with less ambitious goals, and 
of course have concluded that a full-sized memory is 
indeed feasible. These are necessary steps preceding 
the building of a fully populated, reliable, manufac
turable memory. This paper describes the design of 
such a memory. 

Capacity of this memory is 4096 68-bit words 
(278,528 bits, to be exact) and it operates with a 
cycle time of 200 nanoseconds and an access time 
of 160 nanoseconds. It is a word-organized, random
access memory. The memory element is composed of 
a pair of planar thin films coupled together and read 
out destructively. 

As the memory is intended for a military applica
tion, Mil-Specs were observed and worst-case design 
was used. 

281 

SYSTEM ORGANIZATION 

A large, fast memory requires parallel organiza
tion primarily to avoid the accumulation of excessive 
digit line delay. Thus, this memory has been orga
nized into four 1024-word stacks, each with its own 
digit drivers and sense preamplifiers. The remainder 
of the digit circuitry is shared between stacks and is 
located in the two circuit chassis. Refer to Fig. 1 for 
the block diagram of this configuration and to Figs. 
2 and 3 for the physical arrangement. 

The word access system must be divided into small 

PRE-WORD 

DRIVER 

CIRCUITS 

DATA 
IN 

68 BITS 

SENSE GATES 

AND 

DATA REGISTER 

68 BITS 

PRE-DIGIT DRIVERS 
AND 

DIGIT CONTROL 

DATA OUT 

Figure 1. Basic memory system organization. 



282 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

4 LOGIC 
CHASSIS 

4096 WORDS X 68 BITS 
FULL MEMORY ~..-PC CARD 

, I '~~~=====71 : )-:i 
/'.- ~ ~~(~~: >"O,--------r' 

/W 
STACK 

STACK 

CIRCUIT CHASSIS 
STACK 

1024 WORDS - - - - - - -.~----=--=---~ 

CIRCUIT CHASSIS 

STACK PRE-AMP BOARD 

STACK PLANE 

PLANE 

PLANE 

'- PLANE 

" ,,<--D_IG_IT_D_RIV_E_R_B_OA_R_D-./ 

Figure 2. Physical arrangement of memory. 

matrices to minimize selection delays. Here the ma
trix size is 16 X 16, with each matrix, along with the 
output stage of the associated word drivers, con
tained on the front half of the memory plane. Pre
word driver circuits are located on the circuit chassis. 

The address register, address translation, parity 
error checking circuits for both address and data, 
and timing and control circuits are all located in the 
four logic chassis. 

The four stacks and two circuit chassis are identi
cal and interchangeable among themselves. 

STORAGE ELEMENT 

The storage element utilized in this memory con
sists of two planar magnetic thin films operating in a 
coupled mode. The films are made of nickel-iron, 
vapor-deposited through masks on 3-mil glass sub
strates to form 30-mil square bits. Typical charac
teristics 4 of the uncoupled films are: 

Thickness 1100 angstroms 
Anisotropy field (Hk ) 4 oersteds 
Coercivity' (He) 2 oersteds 
Skew (f3) 2 degrees 
dispersion (0:: 50) 4 degrees 

Two films are coupled together around drive and 
sense lines to form a single element, as shown in 
Fig. 4. Thus, the field applied to the top and bottom 
films, by current flowing in both word and digit lines, 
is in opposite directions, so that the magnetization 
vector in the two films is always antiparallel. There
fore, the two films are always coupled, regardless of 
applied field. 

The benefits of coupling films in this manner are 
modified by the distance the films are separated by 

the conductor array. The array is constructed of Ih
mil copper bonded to both sides of 1h -mil polyester 
film and etched to form 20-mil-wide word and digit 
lines. Film core arrays are then bonded to both sides 
of the array. The resultant spacing between films is 
about 2 mils, which is sufficiently close to improve 
film characteristics significantly over uncoupled films. 

The resultant coupled-film characteristics are 
shown in Fig. 5. The digit curve, Fig. 5 a, is a plot of 
output available for a given digit current, for a single 
write, after an adverse history, followed by many 
disturbs. 

Output is essentially constant from 100 rna to 300 
rna for digit-disturb only; when a 30-ma word-dis
turb pulse is added, the upper limit is reduced to 200 
rna. The maximum word-disturb current the films 
will have to withstand is less than 30 rna. 

The word plot, Fig. 5b, shows undisturbed film 
output as a function of word current. While the flux 
output levels off at about 600 rna, peak output am
plitude increases beyond this point, since the films 
switch faster for large currents as the effective rise 
time to 600 rna is less. 

From these plots and other considerations, mini
mum word current was chosen to be 700 rna, and 
digit current 140 ± 20 rna. 

WORD AND DIGIT LINES 

The geometry of the word and digit lines in the 
neighborhood of the films is shown in Fig. 4. Not 
shown are the top and bottom ground planes which 
are spaced about 3 mils away from the films by the 
glass substrates. 

Both word and digit line are slotted. This was 
found to be necessary in order to allow the films to 
switch completely from, for instance, a one to a zero 
during a writing operation with a word current pulse 
width of 40 nanoseconds. Unslotted lines cause flux 
to be trapped, particularly in the word line, causing 
a restoring torque to be applied to the films. One slot 
in the digit line and two in the word line were found 
to be sufficient. 

The word line is 68 digits long, has a Zo of 16 
ohms and a delay of 2 . nanoseconds and is termi
nated as shown in Fig. 6a. A far-end short-circuit 
termination was chosen to minimize the word line 
voltage 'swing to prevent excessive word noise caused 
by unbalanced capacitive coupling to the two legs of 
the digit line. A shunt-resistive termination at the 
driving end is necessary to minimize reflections. 

The digit line is used both for driving digit current 



A 200 NANOSECOND THIN FILM MAIN MEMORY SYSTEM 283 

Figure 3. 200-nanosecond memory-4096 words, 68 bits. 



284 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 4. Memory element geometery. Not shown are the surrounding ground planes. 

and sensing film output. Experimentally, this was 
found to yield much lower digit noise than the al
ternative separate sense and digit lines. Capacitive 
and inductive coupling between the separate lines is 
very strong in this system, and thus, the sense and 
digit lines must. not only be well balanced to ground 
but to each other-a more difficult task than balanc
ing a single digit line to ground. In addition, the 
more complicated connection scheme for the sepa
rate sense and drive lines. is a source of digit noise. 
Good resistive balance of the common sense-digit 
line is not difficult to achieve since all connections 
are soldered; Furthermore, the elimination of one 
layer of etched wiring . allows the films to be more 
tightly coupled and simplifies construction problems. 

The length of the digit line is limited to 1024 
words, to keep the delay within reasonable limits. 
Zo is 12 ohms each leg to ground and the delay for 
1024 words is 16 nanoseconds. The termination net
works, shown in Fig. 6b, are designed to allow dif
ference and common-mode signals to be terminated 
separately. 

Since the down-and-back delay of the digit line of 
32 nanoseconds is much longer than the 10 nanosec
ond digit current risetime, it is necessary to. exactly 
terminate digit current (a common-mode signal) at 
the right end of the line. Film signal is 10 nanosec
onds wide-again much shorter than the down-and
back delay----,-making it desirable to terminate the 
backward-flowing portion of film signal at the left 
end. This prevents it from appearing at the sense pre
amplifier at varying times with respect to the for
ward-flowing film signal, depending on the film's po
sition along the digit line. Line attenuation is 2 db. 

The exact difference termination on the left end 
helps reduce noise coupled from adjacent digit lines 
by terminating backward-coupled noise instead of 
allowing it to propagate back to the sense amplifier, 
as in the shorted case. Forward-coupled digit noise is 

reduced by the crossovers; however, the crossovers 
are not close enough together to have much effect on 
backward-coupled noise. Only the two adjacent digit 
lines couple any noticeable noise, with the worst-case 
total being about three times the signal amplitude. 
Self-digit noise is typically equal to the minimum 
signal amplitude. 

All connections in the digit line are made with 
micro-strip line soldered in place to maintain uniform 
line characteristics and balance through the connec
tion area. 

~----------4Io---~-----~ 

-20 

-401~----__ --~~--------------~ 

DIGIT 
DISTURB 

ONLY 

'DIGIT DISTURB 
WITH 

30 mo. WORD 
DISTURB 

Figure 5. Typical film output vs digit current (a), vs word 
current (b). 



DIGIT 

DRIVER 

A 200 NANOSECOND THIN FILM MAIN. MEMORY SYSTEM 

WORD LINE 

TERMINATION 

NETWORK 

Zo = 16 ohms 

TO = 2 nsec 

(a ) 

DIGIT LINE 

CROSSOVERS AT THE CENTERS 
OF EACH OF THE FOUR PLANES 

Zo = 12 ohms, EACH LEG TO GROUND 

To = 16 nsec 

( b) 

TERMINATION 

NETWORK 

Figure 6. Word and digit line characteristics and terminations. 

285 

1 

SENSE 

PRE -AMPLIFIER 

STACK ORGANIZATION taining 68 circuits and· digit line terminations. The 
physical arrangement of these planes into· a stack is 
shown in Fig; 2. A 1024-word stack contains four identical mem

ory planes consisting of two sealed memory element 
packets each containing 128 68-digit words, and a 
word access board containing the final stages of the 
word access circuits. Also included in the stack are 
sense preamplifier and digit driver boards, each con-

The flexible strip line connections between planes 
allow the planes to be hinged together to permit un
folding the stack to make repairs and to facilitate 
testing. The stack appears in its folded and unfolded 
states in Figs. 7 and 8. 

Figure 7. Folded stack. Sense preamplifier board is on top. 
/ 



286 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 8. Unfolded stack. Sense preamplifier board is at 
near end. 

WORD ACCESS CIRCUITS 

The word-access matrix in this memory employs 
transistors as the selection element. Selection is per
formed on the base-emitter junction of the transistor 
in a manner similar to that used in a diode-access 
matrix. Unlike conventional diode-matrices, the tran
sistors allow the half-selected word lines to be iso
lated from the access-matrix resulting in lower word 
noise and lower word line sneak currents. 

A block diagram of the portion of the word selec
tion system contained on a 256-word plane is shown 
in Fig. 9. The word-access matrix is composed of a 
transistor-per-word organized in a 16 X 16 array 
located immediately adjacent to the memory element 
packet. The bases of the word driver transistors are 
connected together in rows and the emitters are con
nected together in columns. Selection of one base 
line, followed by the selection of one emitter line, 
causes the word driver transistor at the intersection 
of these lines to turn on, thus allowing word current 
to flow down the associated word line. 

The schematic of the word selection array is shown 
in Fig. 10. The word driver transistors are packaged 
four-per-integrated-package (a 0.6 inch diameter, 11 
pin header) with the emitters common. The word 
line termination resistor is integrated in the same 
package. The word driver transistors are operated in 
a linear common-base mode driving a word line with 
a delay of two nanoseconds and a characteristic im-

DIGIT LINES STORAGE 
AREA 

256 WORDS 
X 68 DIGITS 

16 X 16 

TRANSISTOR 

MATRIX 

16 
EMITTER 

LINE 
DRIVERS 

16 
BASE 
LINE 

DRIVERS 

Figure 9. Memory plane organization. 

EMITTER LINE 
DRIVER 

Figure 10. Schematic of 16 X 16 word selection array. 



A 200 NANOSECOND THIN FILM MAIN MEMORY SYSTEM 287 

pedance of 16 ohms, shorted at the far end and 
shunt-terminated in a resistance slightly larger than 
Zo at the near end. Rise and fall times of the word 
current are 8 nanoseconds and the driving voltage is 
about 4 volts as shown in Fig. 11 for a nominal 
word current of 800 rna. The word drivers are turned 
on for read, turned off, and turned on again for write 
to limit power dissipation in the system components. 

The base lines have a characteristic impedance of 
10 ohms and are terminated at one end in Zo and at 
the other end with a saturated transistor. Thus, the 
impedance seen by the base of the word driver tran
sistor is less than 5 ohms. The base line delay 
through the array is 7 nanoseconds. Base line return 
voltage, V 2, is regulated and referenced to track VI 
to prevent excessive base-emitter reverse bias on the 
word driver transistors. 

The emitter lines have a characteristic impedance 
of 5 ohms and are terminated, during the rise time, 
with a series RC network. Line delay across the ar
ray is 1.5 nanoseconds. The emitter line drivers are 
turned on after the base line is selected and stable. 
The negative excursion of the emitter line driver col
lector voltage forward biases the selected word
driver transistor permitting word current to flow. The 
amplitude of the word current is fixed by VI, Vs, and 
RI. Vs is regulated and referenced to track VI, to 
prevent voltage tolerance buildup from affecting cur
rent amplitude. A program-controlled adjustment is 
included in this regulator to permit variation of word 
current :-f- 10% of nominal for on-line margin 
checking. Timing inputs to the emitter line drivers 
are incremented in four steps of 4 nanoseconds, each, 

f' 
~ \ 

\ r-

111 .... 
1 \" c V I 
\ 1 . 

J 

\ I 
L- ./ 

V 

Figure 11. Word line waveforms, 10 nsec/div. Top: Word 
line current, 200 ma/div. Bottom: Word line 
voltage, 1 volt! div. 

to compensate for the digit line delay. The maximum 
time from the initiate to establish word current is 75 
nanoseconds. 

All transistors in the selection system are normally 
off, resulting in low idle power. 

The emitter line drivers are mounted directly be
hind the transistor array to permit short emitter se
lection lines. The less critical base line drivers are at 
the rear of the plane with the line termination re
sistors located at the sides of the array. Alternate 
base lines are driven from opposite sides of the array 
to facilitate packaging. Base line and emitter line pre
drivers to provide amplification from logic level to 
access plane current requirements are mounted on 
printed circuit cards located in the circuit chassis, a 
photograph of which is shown in Fig. 12. 

DIGIT SYSTEM 

A block diagram of the digit system is shown in 
Fig. 13. The line terminations, sense preamplifiers, 
strobe preamplifiers, digit drivers, and digit timing 
circuits are mounted in the stack on the upper and 
lower planes. All other circuits are located in the cir
cuit chassis. 

The integrated sense preamplifier is a two-stage, 
differential, emitter compensated amplifier with the 
stages capacitor-coupled. The two stages are identical 
and packaged, one stage per integrated package. The 
emitter resistors are disc~ete components and the 
resistor in the second stage is selected in five steps to 
adjust midband gain. For each value of this emitter 
resistor, a corresponding value of emitter-compensa
tion-capacitor is used in each stage to adjust the fre
quency response. The nominal midband voltage gain 
is 70 into a 140-ohm load with a rise time of 7 
nanoseconds. A typical sense preamplifier output is 
shown in Fig. 14. 

The sense preamplifier outputs of the four stacks 
are OR'ed together at the sense gate in the circuit 
chassis. The interconnecting wire is 140-ohm twisted
pair terminated in Zo with a series resistor in each 
side and a low-input, impedance-differential, com
mon-base stage. The resultant OR efficiency is about 
90 % at the cost of eight interface pins per bit. 

The sense gate is composed of a common-base, 
differential input stage capacitor coupled to a com
mon-emitter differential stage with emitter feedback. 
DC restoration is provided by a centertapped 15-
nanosecond delay line connected between the bases 
of the common-emitter stage with the centertap re-



288 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 12. Circuit chassis with printed circuit cards. 

turned to a threshold voltage. A block diagram is 
shown in Fig. 15. 

Direct-coupled to the collectors of the second 
stage is a modified-current-mode flip-flop which 
serves as the sense gate latch and data register. 

This circuit has three stable states and, when 
cleared, requires a positive signal to set to the one 
state and a negative signal to set to the zero state. 
The output of this circuit is shown in Fig. 16. The 
latch is forced clear before signal time with a current 
pulse. The removal of this current pulse serves as the 
strobe which allows the latch to be steered with 
signal. To ensure that noise does not set the latch, the 
strobe is enabled during the usable signal duration 
of about 10 nanoseconds. 

The critical timing of the strobe pulse is achieved 

DIGIT 
DRIVERS 

STACK 

CIRCUIT CHASSIS 

DIGIT 
TIMING 

DIGIT 
PRE-DRIVER 

Figure 13. Block diagram of sense-digit system. 



A 200 NANOSECOND THIN FILM MAIN MEMORY SYSTEM 289 

Figure 14. Digit line waveforms, 40 nsec/div. Top: Digit 
current, 100 ma/div. Bottom: Sense preamplifier 
output, 200 mv/div. 

by means of an access-derived enable. A strobe line 
with a delay identical to the digit line is located 
orthogonal to the emitter lines and parallel to the 

4 P 
IN 

.. 

.. -
- LINEAR 

REAMP "OR" 
PUTS 

... 

... 

... -... 

~ H 
COMMON 

BASE 
DIFFERENTIAL 

STAGE 

f-+ H 

determined by the emitter current of the latch, which 
is dependent on three system voltages. To make this 
current constant, the threshold-voltage reference at 
the delay line is derived with a temperature-com
pensated regulator that tracks the three critical volt
ages simultaneously. 

Writing of external data into the memory is accom
plished by forcing the latch to the one or zero state 
prior to the sense signal being received from the read 
portion of the cycle. 

The output of the data register, shown in Fig. 17, 
is sent to the external system through a line driver, 
to logic for parity checking, and to the digit pre
drivers. The digit predriver, together with an even
odd address decoder, determines which polarity digit 
driver will be enabled. This enable is fanned-out to a 
digit driver in each of the four stacks but only one 

15 ns. DELAY 
LINE 

COMMON 
EMITTER 

DIFFERENTIAL 

STAGE 

INPUT 

DATA 

3 STATE 
LATCH 

a 
DATA 

REGISTER 

STROBE 

OUTPUT 
DATA 

Figure 15. Block diagram of sense gate. 

digit lines at the collectors of the emitter line drivers. 
The capacitance at each junction is approximately 2 
pf, and a nominal signal of 60 mv is induced in the 
line when an emitter line driver is turned on. The 
strobe line location at the emitter line driver ou,tput, 
rather than using a dummy sense line, was chosen 
because an order of magnitude greater signal is ob
tained 5 nanoseconds ahead of the sense signal at the 
cost of a slight additional timing jitter of the emitter
line delay and word··driver delay variations. The 
strobe signal is amplified on the preamplifier plane 
and OR'ed at the circuit chassis in a manner similar 
to that of the sense signal. 

The amplitude threshold of the three-state latch is 

Figure 16. Three-state latch output referenced to initiate, 
40 nsec/div. Top: Initiate pulse, 2 volts/div. 
Bottom: Three-state latch output, 2 volts/div. 



290 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

. 

! l V ~ - _ .... J ... --
II • . . . 

- r io--
1 "T 

J. . L J -' -- f 

r"IU/!-
\.J [\.lIdl 

Figure 17. Output data referenced to initiate, 40 nsec/ div. 
Top: Initiate pulse, 2 volts/div. Bottom: Output 
data, 2 volts/ div. 

stack receives timing. Digit timing is enabled by the 
access-derived strobe pulse so the word-current digit
current relationship is constant. 

The digit driver is a bipolar, transformer-coupled, 
two-stage switch direct-coupled to the digit line. The 
nominal digit current is 140 rna (70 rna per line) with 
a 10-nanosecond rise time and a l5-nanosecond fall 
time as shown in Fig. 14. Total sense-digit loop
delay, including the digit line, is 60 nanoseconds. 

LOGIC 

The standard logic module is an integrated pack
age with resistor-transistor logic. Typical switching 
speed is 4 nanoseconds and average propagation 
delay is approximately 5 nanoseconds. The logic 
modules are mounted on a logic chassis with space 
for 297 modules. Intrachassis wiring utilizes wire
wrap connections. 

Main timing is accomplished with delay lines lo
cated on the logic chassis with 5-nanosecond taps for 
rough timing and 2-nanosecond taps for fine timing. 
A diagram of significant memory timing, indicating 
worst-case anticipated logic and circuit timing jitter, 
is shown in Fig. 18. 

SYSTEM FEATURES 

The use of four identical substack assemblies and 
two identical circuit chassis assemblies in the makeup 
of the memory permits complete interchangeability 
of these units and greatly reduces spare requirements. 
In addition, this building block organization permits 
various other system arrangements to be imple-

TIME (NANOSECONDS FROM INITIATE) 

o 50 100 150 200 250 300 

INTERFACE TIMING I I I I I I 

INITIATE -ADDRESS INPUT 

INPUT DATA 

OUTPUT DATA 

INTERNAL TIMING 

BASE LIN E INPUT 

EMITTER LINE INPUT 

WORD LINE INPUT 

DIGIT LINE INPUT 

Figure 18. Memory timing diagram. 



A 200 NANOSECOND THIN FILM MAIN MEMORY SYSTEM 291 

mented. Memories of 1024 words, with either 34 or 
68 bits, require no changes in the memory hardware. 

The 68-bit data word may be used by the external 
system as two 34-bit words. A byte-select bit in the 
address register permits writing new data in one 34-
bit byte while restoring the other 34 bits. Parity is 
checked independently in the two bytes. Thus, the 
memory can be used as an 8192 word, 34-bit 
memory. 

Indicator drivers are provided on all registers and 
control flip-flops, and may be used by the external 
system to indicate memory contents. The registers 
are held "set" at the end of the cycle to facilitate 
indication. Error detection is accomplished by means 
of parity checking. 

PERFORMANCE 

Performance data presented in this section was ob
tained from a developmental model, which is essenti
ally the same as the production models, except that 
two stacks are omitted for reasons of economy. The 

900 

remaining two stacks can be placed in any of the 
four stack positions without special tUijing and per
formance will not be affected. 

Data on margins is obtained by running the 
memory with an exerciser which is capable of gen
erating a number of different patterns to test for such 
things as base line shift in the sense amplifier, element 
disturb, and others. Using the full repertoire of tests, 
voltage margins are greater than ;-+- 5 % with the 
memory operating at 200 nanoseconds. Cycle time, 
likewise, can be decreased more than 5 % from 
nominal. Figure 19 shows a word and digit current 
schmoo plot for a 1024-word stack operating at 200 
nanoseconds. 

As mentioned, the exerciser contains a very com
prehensive disturb testing mode. No disturb problems 
have been encountered in the stacks used in this 
model. 

SUMMARY 

The memory design presented in this paper has 
been shown to be a good workable design which is 

x--x-----x-

o 
E 

o 
a:: 
o 
3: 

800 

700 

600 
------------- --x--x 

- - - - TEST LIMITS 

100 125 150 175 200 

I DIGIT (rna) 

Figure 19. Schmoo plot for a 1024-word stack. 



292 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

capable of operation ata cycle time of 200 nano
seconds with ,good margins. The memory is currently 
in production and several modules will have been 
evaluated by November 1966. 

ACKNOWLEDGEMENTS 

Grateful acknowledgement is given to the many 
engineers and technicians in the memory element 
design, mechanical design, and circuit groups in the 
Advanced Memory System Department for the design 
and development effort that made this memory sys
te!ll possible. 

REFERENCES 

1. A. V. Pohm, et aI, "Large, High Speed DRO 
Film Memories," Proceedings of the Intermag Con
ference, 1963. 

2. W. Dietrich, et aI, "The Design of a One-Million 
Bit 100 Nanosecond Magnetic Film Memory," ibid. 

3. Q. W. Simkins, "A High-Speed Thin-Film 
Memory-Its Design and Development," AFIPS 
Conference Proceedings vol. 27, part 1, Supplement 
(1965) . 

4. H. W. Katz, et aI, "Proposed Low-Frequency 
Measurement Standard for Magnetic Films," IEEE 
Transactions on Magnetics, vol. MAG-I, no. 3, p. 
218. 



A ROTATIONALLY SWITCHED ROD MEMORY 
WITH A lOO-NANOSECOND CYCLE TIME 

Bruce A. Kaufman, Paul B. Ellinger and H. J. Kuno 

The National Cash Register Company, Electronics Division 
Hawthorne, California 

INTRODUCTION 

Thin film memory techniques are beginning to 
offer an attractive alternative to magnetic core 
memories, particularly for high-speed operation. The 
memory reported in this paper utilizes a plated-wire 
(Rod) memory device operating in a 512-word 36 
bit per word memory system. The DRO mode is em
ployed and operation at a 100-nanosecond read-write 
cycle time is achieved. In order to attain this high 
speed, modified concepts of memory circuitry have 
evolved affecting every aspect of the memory design. 
Integrated circuit techniques have been employed for 
all logic and sensing functions and may be utilized to 
break some of the economically imposed limitations 
on contemporary memory circuit design. The poten
tial for low-cost batch fabrication of monolithic and 
hybrid circuits requires utilization of these techniques 
to secure cost and performance improvements. Ac
cordingly, the design for this memory makes maxi
mum use of the existing and projected capabilities of 
integrated circuits. 

MEMORY DEVICE CHARACTERISTICS 

The storage element used in this memory is an 
anisotropic thin film of permalloy plated on a beryl
lium copper wire 10 mils in diameter 1 (see Fig. 1). 
During the plating process, a direct current flows in 

293 

the substrate wire, producing a magnetic film with a 
circumferential easy axis and the capability of rota
tional switching. This geometry offers the advantage 
of a closed flux path in the quiescent state and makes 
it possible to use relatively thick (10,000 A) films 
with minimized demagnetization effects, resulting in 
increased switching output. 2 

For the read operation, the magnetization of the 
film is rotated out of the circumferential direction by 
application of an axial field orthogonal to the easy 
axis. The resulting flux change induces a voltage in 
the substrate wire which is a unique indication of the 

0.01 IN. DIAMETER 
BeCu SUBSTRATE 

"I" 

Figure 1. Memory device. 

WORD SOLENOID 
lO-TURN NO. 36, 
0.02 IN. 1.0. 
0.062 IN. LONG 



294 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

state of magnetization. In order to reduce sensitivity 
to skew and dispersion, a high overdrive in the word 
direction is used. This drives the film beyond the Hk 
value and demagnetizes the bit during read, giving 
rise to DRO operation. 

Wall motion, although a second-order effect, can 
cause creep. Low-level bit-to-bit interaction along 
the Rod is also possible, and is caused by the applica
tion of a disturbing digit field in the presence of 
small repeated transverse fields such as fringing from 
an adjacent bit position. Typically, this problem has 
been severe on rotationally switched memories.3 , 4 

One approach to eliminate the interbit interaction 
consists of controlling the anisotropy field and the 
wall motion threshold. In the present state-of-the-art 
of plated-wire element manufacture, this approach 
appears to be rather difficult to achieve; therefore, a 
more direct approach of on-line etching of the plated 
wire to provide physically isolated magnetic regions 
is used. In this process, the plated wire is selectively 
covered with a chemical resist, following continuous 
plating with permalloy. The exposed area is etched 
off through an on-line process, thus yielding isolated 
magnetic areas (Fig. 1). This procedure limits the 
creep to the physical limit of the bit region and has 
played an important part in reducing adjacent bit 
creep. The on-line etching process introduces an ad
ditional step in the plating operation; however, this 
step is easily controllable and has not caused serious 
yield or processing problems. The plated wire is 80-
20 permalloy plated from a modified Wolf's bath, and 
is approximately 10,000 A thick. Hk is approximately 
5 Oe and He approximately 4 Oe. Figure 2 illustrates 
low-frequency B-H loops of the element. 

MEMORY STACK 

The commitment to employ a circumferentially 
oriented, rotationally switched device governs certain 
aspects of the memory stack organization. To take 
advantage of the closed flux path, the word current 
must provide a magnetic field in a direction parallel 
to the axis of the cylindrical element and the digit 
field should be applied around the circumference of 
the element; thus, the digit current must flow down 
the center of the Rod itself. In addition to the closed 
flux path, this geometry provides a digit-sense line 
with the lowest inductance possible, combined with 
the maximum coupling of the magnetic element to 
the sense line. Note that no additional winding is 

(A) B·H LOOP IN AXIAL DIRECTION 
(2 OE PER DIVISION) 

(B) B.H LOOP IN CIRCUMFERENTIAL 
DIRECTION (5 OE PER DIVISION) 

Figure 2. B-H loop. Top: In axial direction (2 Oe per 
division). Bottom: In circumferential direction (5 
Oe per division). 

required on the plated wire, which forms the sense
digit line. 

The word field must now be provided by current 
flowing in either a strip line or a solenoid. As a result 
of the multiple turns, the solenoid approach yields 
high field efficiency with a relatively low current level 
and efficient coupling to the film. The dimensions of 
the stack are 36 bits by 16 by 32, as diagrammed in 
Fig. 3. 

In order to employ existing tooling, a bit spacing 
of 0.125 in was used in all three axes. A reduction 
of this spacing to 0.100 in would double the cubic 
packing density and can easily be achieved. The word 
line consists of 36 solenoids in series; the far end is 
returned in a single pass under the solenoids to pro-



A ROTATIONALLY SWITCHED ROD MEMORY 295 

32 X 16 = 512 36-BIT WORD LINES 
= 2 X 512 = 1024 IS-BIT WORDS 

Figure 3. Stack factoring. 

vide a low inductance return. This line has a trans
mission delay of approximately 6 nsec which must 
be considered in the design of the word drivers. A 
sense-digit line consists of 16 plated wires, each 32 
bits long. The stack is assembled so that the solenoids 
are axially aligned; the wires are then inserted and 
are connected in a transposed noise-canceling pattern. 
For optimum symmetry, the sense amplifier bridges 
the sense-digit line in the middle,5 and the digit cur
rent is driven symmetrically at either end, as shown 
in Fig. 4. The Rods are connected to form the sense
digit line by means of hand-soldered jumper wire; 
these are formed of light flexible wire to minimize 
stress. 6 

The sense-digit line is terminated with a single 
resistor at each end. The digit line is the plated wire 
with word solenoids distributed along the length at 
VB -in intervals. The solenoids, with discrete cylinders 
of magnetic plating as a core, form inductances; this 
inductance with the capacitance between the Rod and 
the word solenoid forms a lumped constant trans
mission line. The capacitance at one bit intersection 
between Rod and solenoid is 0.3 pf. The word 
solenoid itself with Rods inserted represents 80 nh 
and without the Rod 30 nh per bit. The Rod itself 
represents 6 nh per bit. Since the inductive and 
capacitive coupling between the two halves of the 
sense line is small compared to the digit-line to word
line capacitance, a suitable representation for this 
line results if each half of the sense-digit line is con
sidered to form a separate lumped constant transmis
sion line with the word line as the return. Therefore, 
the only meaningful termination at the ends of the 
sense-digit lines is that to ground, as shown in Fig. 4. 

The sense amplifier then detects the difference in 
voltage between the two lines. Resistors across the 
two halves of the sense-digit line at the end serve 
only to attenuate signals and are not necessary. Be
cause of the three-dimensional mesh characteristics 
of the actual coupling, the situation is much more 
complicated than the preceding description. In prac
tice, the sense line termination was empirically deter
mined. 

The drive requirements for a 10-turn solenoid are 
200-ma word current, with 20-nsec rise and fall 
times, and 60-nsec width. This produces an axial field 
of 14 Oe at the center of the solenoid, and 7 Oe at 
the ends. The digit current is :-+- 25 rna * with 15-
nsec transition time in the nonreturn to zero mode. 
The digit field is approximately 0.5 Oe at the surface 
of the film. The digit driver, however, must drive .-+-
50 rna because it drives two lines in parallel (see Fig. 

* "+" and "-" are determined by the information to be 
written in. 

ROW ROW 
ADDRESS DESIGNATION 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

E1 
EVEN __ 

ODD --
EVEN ---
ODD ---
EVEN --
ODD -
EVEN ---
ODD ---
EVEN --
ODD --
EVEN ---
ODD ---
EVEN -
ODD --
EVEN -

DIGIT DRIVER , 
IDiGIT FOR "I" 

DIRECTION INDICATES: 

"I" OUTPUT FOR EVEN 
COLUMNS 

"a .. OUTPUT FOR ODD 
COLUMNS 

SENSE 

AMPLIFIER 

CURRENT AND VOLTAGE CONVENTIONS 

Figure 4. Sense digit-line geometry. 



296 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

4). Under these conditions, the bipolar sense signal is 
50 mv minimum, measured in a standard test fixture. 
The worst-case signal is :+ 20 mv measured at the 
sense amplifier input terminals. The loss· is primarily 
due to attenuation in the sense line. The time rela
tionship of these signals is shown in Fig. 5. Figure 6 
is a schmoo diagram. 

Since there is no threshold in the transverse direc
tion, rotationally switched DRO memories must be 
organized as a linear select matrix. * The ideal ap
proach would be to terminate the line in its charac
teristic impedance at the far end, and drive from a 
voltage source equal to the amount of voltage neces
sary to drive 200 ma into the characteristic imped
ance. In this case, the dissipation required of each 
termination resistor would be such that a 6-w resis
tor would be required for each line. This is prohibi
tive, primarily because of the required packing 
density with presently available resistors. 

To employ currently available components, the 
technique described by Pohm 7 was chosen. This 
technique requires a termination at the near end of 

* A related organization similar to 2~ D selection is 
possible with rotational switching if the word drive does not 
exceed the NDRO threshold. In this manner, it is possible 
to drive a long word line (many data words) and rewrite 
only new infomation. 

o 10 20 30 40 60 70 80 

rt----------.. ---- ADDRESS 
LINE 

MRQ 

WORD 
CURRENT 

SENSE 
AMPLIFIER 

INPUT 

SENSE 
.r-----i-- AMPLIFIER 

OUTPUT 

--+-----........ /---------- --- FLP~WOP 

DIGIT LINE 

__________ ~/ ,------------- :::::NET 

WORD CURRENT: 200 MA/CM 

SENSE AMPLIFIER 
OUTPUT: O.SV /CM 

DIGIT LINE VOLTAGE: 10V /CM 

B. TIMING SIGNALS (10 NSEC/DIV) 

ADDRESS 

WORD CURRENT: 200MA/CM 

SENSE LINE SIGNAL: 50 MV/CM 

Figure 5. Timing and signals for 10-Me memory. 

400 

300 

200 

100 

10 

INDICATES 
LIMITS OF TEST 

20 

I (ma) 
DIG 

30 

Figure 6. Limits of memory operation at 12 Me. 

50 

the line and a short at the far end. The line must be 
driven from a current source, so that the first voltage 
reflection is inverted at the shorted end of the line; 
in two times the one-way delay (in this case, 12 nsec), 
the first voltage reflection returns to the sending end. 
The sending end is terminated so a second reflection 
does not occur. If the rise time of the driving current 
pulse is greater than two times the one-way delay, 
"stair-stepping" of current will be prevented. Further
more, the power dissipated in the termination resis
tor is low, and in this case a Y<I. -w resistor is suitable. 

Another significant advantage in using rotational 
switching is that, to a first order, the inductance of 
the word line is not a function of the information 
stored, i.e., the line inductance is not pattern-sensi
tive. Each time the word current is applied, the same 
amount of back emf is produced for each word line 
regardless of information stored. Therefore, current 
regulation of the word driver is easier to achieve 
than in a conventional core or Rod memory in which 
back emf may vary with the data pattern (see Fig. 7). 
This feature is especially important in a memory 
where the film device can switch much faster than the 
rise time of the drive current, because in that case, 
the shape of the rise of the drive pulse determines the 
output. 

WORD SELECTION SCHEME 

Most previous linearly selected memories have 
used row and column drivers with diodes to prevent 
sneak paths and isolate the lines. While diodes pro
vide excellent DC isolation, their capacitance causes 



A ROTATIONALLY SWITCHED ROD MEMORY 297 

A. ROD STORING A 'I' HD IN 'I' DIRECTION 

B. ROD STORING A '0' HD IN 'I' DIRECTION 

C. ROD STORING A 'I' HD IN '0' DIRECTION 

D. ROD STORING A '0' HD IN '0' DIRECTION 

HW = WORD FIE LD 

HD = DIGIT FIELD 

CP1 = FLUX IN "Itt DIRECTION 

CPo = FWX IN "0" DIRECTION 

CPR = RESULTANT FLUX 

i.\CPW = FLUX CHANGE IN WORD DIRECTION 

Figure 7. Resultant fields in Rod elements under various 
conditions. 

very poor transient isolation, thus making it neces
sary to drive nearly the whole memory stack during 
word transitions. This not only causes asymmetric 
noise on the sense line, but also complicates the 
design of the word driver, sin.ce this parasitic capaci
tance must be charged before current can flow. 

An alternate technique, using one transformer for 
each word, has also been proposed. 8 While this 
isolates the capacity of unselected lines, this has 
economic limitations, since high-speed transformers 
are expensive and difficult to manufacture to tight 
tolerances. Ferrite memory cores have been used as 
switch cores in a similar scheme, but at much lower 
speed. Because of the recirculation delay, the word 
current must be on for approximately 60 nsec to 
achieve a 100-nsec cycle time. This would require a 
duty cycle greater than 50% for the word trans
former, and would represent an extremely difficult 
circuit problem. 

An approach originally proposed a number of 
years ago for linear select memories consisted of us
ing one driver per word. This is a desirable technique 
which eliminates sneak paths and reduces the par
asitic capacitance to be driven by each word driver. 
When transistor costs were relatively high, this ap
proach was judged economically prohibitive; how
ever, because of integrated circuit technology, this 
technique is worthy of consideration. High quality 
transistors, suitable for word driving in discrete 
form, are only slightly more expensive than the two
line diodes presently specified for most high speed 
core memories. Improved performance justifies the 
use· of one transistor per line. Additional savings re
sult if silicon chips consisting of single or multiple 
devices are attached to a ceramic substrate for im'
proved heat transfer and higher packing density. 
Cost estimates have indicated that these chips could 
be available for approximately $.10 each in large 
quantities. 

In order to eliminate recovery problems associated 
with a transformer, it became necessary to use a 
direct -coupled circuit. The circuit as used is shown in 
Fig. 8. The selection scheme is shown in Fig. 9. 

This circuit solves the problem of driving the line 
with a constant current while the line voltage is 
changing. When current is first driven into the line, 
the short at the far end is not yet effective and the 
line exhibits its characteristic impedance. Thus, the 
voltage across the line will rise to /gZo/2, (25v) as 
shown in Fig. 10. Later, the short becomes effective 



298 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

ADDRESS 

TIMING 

2.4K 
IW 

+30 

2N2369 2N2369 

-S.2 

200 
1/4W 

300 
IW 

+30 

EMITTER COUPLED COLUMN DRIVER _ L.22!C~B~ ______ , 

LINE CIRCUIT 

-10 

CURRENT 
SOURCE 

+2S +30 

270 
4W 

+30 

2.4K 
2W 

-S.2 

ISO 
1/4W 

ADDRESS 

L ________ .J 

TIMING 

DECODE 
LOGIC Figure 8. Word driver. 

and the voltage across the line becomes only Igrl' or 
very nearly zero. 

The word driver circuit has a transistor for each 
word line with one end of the word line connected to 
a DC voltage (+ 25v); the sending end of the word 
line, which is terminated, is connected to the collec
tor of the line transistor. This provides better isola
tion than if the line were connected to the emitter, 
since there are no other connections to the collector 
terminal. 

In the selection scheme, a row of line transistors, 
Q 1, have their emitters connected to a constant cur
rent source with a dummy transistor (alternate cur
rent path), Q2. All word lines are quiescently at 
+ 25v. When the dummy is turned off, the constant 
current source provides whatever voltage is necessary 
to 'maintain constant current. A negative voltage is 
developed on the row bus and if one of the line 
transistors is saturated, this voltage will be the 25v 
(lgZo/2) plus the transistor drop (approximately 
O.5v). The column driver, Q3, causes one line transis-

tor to saturate by applying a slowly rising voltage to 
the bases of all line transistors in its column. 

The signal delivered to the base of the line transis
tor is shaped so that just enough current to keep the 
line transistor in saturation is drawn at any time. 
This is essential since the base current flows through 
the emitter and into the current source, thus sub
tracting from the line current. A current-limiting 
resistor, Rl, is also used to insure that the current 
is evenly distributed to all bases. An emitter-follower, 
Q3, is used to drive the high capacitance of the line 
transistor column bases. Unselected line transistors 
have 25v reverse bias on their base emitter diodes. 
Since this exceeds the rating of most transistors, a 
diode was added in series with the emitter of each 
line transistor. This line driver configuration requires 
one transistor, one diode, and one resistor for each 
word line. In a production version of this memory, 
integrated circuits would be used; the cost of an 
entire row of these line circuits would be about the 
same as that of an integrated circuit diode array of 
similar size. 



A ROTATIONALLY SWITCHED ROD MEMORY 299 

~--------r-WORD LINES ROW 

+25 

+25 

I 

I 
I 

+25 

+25 

+25 

DUMMY TRANSISTOR 

ROW BUS 

+25 +25 

Figure 9. Word selection scheme. 

I-
iLG iU 

tJ
~\.OOOOOOOO~QQQOQOQ-3' 

• _~ ~ _ SHORTED LINE 
Zo ....-----..------

"·IL 
'''·I~ 
'''.1 L 
".~ t~ 

'--_.L...-_.L...-_..I.-_ ........ _-'--_-'-___ •• TIME 

Figure 10. Word driver waveforms. 

Design of the constant current source for this word 
driver presented another difficult problem. Recovery 
problems at this speed and duty cycle obviate the use 
of a conventional inductive current source. Because 
high voltage compliance at high speeds is necessary 
to prevent pattern shifts, transistors of sufficient speed 
and power rating to form the current source, and 
operable in the common-base mode, would be ideal. 
Since transistors of this type are still costly, a com
bination of the two methods in series was used. The 
high-speed compliance is provided by 04 and 05 in 
parallel. Care must be taken in selecting this transis
tor type, as well as the layout to minimize capacitance 
at the collector node. This will cause overshoot or 
ringing and loss of compliance (dynamic range). Re
cently, high-speed, high-power transistors utilizing 
multiple emitter designs have become available so 
that a true transistor constant current source would 
now be possible. 

The word selection scheme, using one transistor 
per line, retains the row-column decoding feature by 
connecting the bases of the line transistors together 
in columns and the emitters together in rows. This 
has the additional advantage of isolation, so that a 
larger memory can be segmented and driven from 



300 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

multiple drivers for each row or column. In a con
ventional diode selection scheme this isolation does 
not exist, so there is an upper limit to the size of 
memory that can be operated for any given speed for 
a given factoring. 

DIGIT DRIVER 

One of the most severe problems of a high-speed 
memory is recovery from the digit transition noise. 
Classical· memory organizations utilize a pulse for 
the digit drive with some resulting circuit advantages 
(paJ:ticularly the use of low-duty cycle transformer 
coupling); however, this causes two digit transitions 
per cycle. 

The digit driver for this memory must provide 25 
ma per side or 50 ma total current at approximately 
10v. Although discrete circuits are used in the present 
design, properly designed monolithic circuits could 
be employed for this function. 

The use of a nonreturn-to-zero (NRZ) digit drive 9 

is a unique feature, and requires only one digit transi
tion per cycle in the worst case. This approach 
alleviates several difficult recovery problems of the 
sensing system. 

The NRZ mode requires that the digit current flow 
at all times, even during the read cycle. The digit 
drive is reversed only if necessary to write the desired 
information. With the high word drive levels used, 
only a slight theoretical difference in the output signal 
occurs, depending on the direction of the digit drive. 

An additional advantage of the NRZ digit circuit 
consists of lower worst-case power dissipation than 
for an RZ circuit, since the worst-case PRF of the 
digit driver is equal to one-half the memory cycle 
rate. For example, at a 10-Mc rate, the digit driver 
would only cycle at a 5-Mc rate, and in many acces
ses, it would not cycle at all. This reduces the aver
age dissipation which is increased by transitions. 

An additional circuit requirement is that flip-flop 
or storage action must be provided within the digit 
driver circuit. The digit driver circuit utilizes two 
totem-pole drivers with current-determining resistors 
providing drive directly to both ends of the digit line. 
These totem-pole drivers are formed from a PNP
NPN pair, and have the load connected to the 
emitters to gain speed; thus, the totem-pole driver is 
actually a complementary pair of emitter-followers. 
The storage is provided by two emitter-coupled logic 
gates, cross-coupled in a latch circuit. The schematic 

of the digit driver-sense amplifier recirculation loop 
is shown in Fig. 11. 

SENSE AMPLIFIER 

Perhaps the most difficult circuit design in a com
puter memory is the sense amplifier. Various require
ments such as high speed, fast recovery time, DC 
coupling, high gain, gain stability, reduced size, and 
low cost, appear to conflict with one another. A DC 
coupled long-tail-pair approach has been used to 
eliminate pattern-shift problems resulting from over
load closely followed by small input signals.10 This 
approach offers a practical solution to the sense 
amplifier requirements. Modifications to adapt the 
techniques proposed in that paper for much higher 
speed operation are discussed in the following para
graphs. 

At very high speeds, the word noise problem is 
such that common mode rejection at high speeds is 
extremely important, since good stack design converts 
capacitively coupled word noise into a common mode 
signal on the sense line. High common mode rejection 
is difficult to obtain at high speeds due to capacitive 
unbalance between two halves of a long-tail-pair. A 
"balun" transformer provides better common-mode 
rejection at nanosecond speeds than is possible with 
an amplifier, and alleviates DC tolerance problems 
associated with connecting the amplifier directly to 
the digit line. The hazards in controlling the amplifier 
bias levels with direct coupling to the sense line have 
been described in a previous report. 10 

Two chips on a common header have been used to 
provide DC stability resulting from similar thermal 
environments.1o This technique has been used in the 
present sense amplifier, in the form of an emitter
coupled logic gate as an input stage. l1 The configura
tion provided by Motorola Type MC 356 may be 
used as a differential amplifier with slight modifica
tions. One approach would be the use of two IIC 
emitter-coupled logic stages in cascade; this can be 
accomplished at lower speeds, but being designed as 
a logic device, the dynamic range is limited. There
fore, to achieve a higher-gain bandwidth amplifier 
with improved dynamic range, the second stage uses 
two chips in a common header in a long-tail-pair 
followed by emitter followers for power driving, and 
diode clipping to prevent saturation of the follow
ing logic stage. A strobe is applied at the emitters of 
the second stage during the digit transient, thereby 
enhancing recovery. The first stage has sufficient dy-



A ROTATIONALLY SWITCHED ROD MEMORY 301 

DIGn ('~IVER 

r-------------------~, 
"5 

I SENSE ·5.2 I I A',1PLlf'ER 

I 3K :50 l 
.D I I 

--- _____ -.J 390 I 
I 

JII 
11)[1 

·510 
4,0 

·10 

5K 

30K 

I ~ 
I ~ 

+5 

I I L...- _______________ .....J 

DIGIT DRIVER 

'.:0 

Figure 11. Sense amplifier and digit driver. 

namic range to handle the input, as well as the digit 
transition, without overload. 

A fast emitter-coupled logic gate is used as a 
threshold element which has approximately a 300-mv 
"gray zone," that is, a zone of uncertainty. A DC 
transfer characteristic for this gate is shown in Fig. 
12 and the applied signal is as indicated. 

The tunnel diode provides an ideal threshold ele
ment because of temperature and current stability and 
uniformity from one tunnel diode to the next. Tunnel 
diodes are expensive in comparison with present day 
transistors, and do not seem amenable to monolithic 
integrated form. The main disadvantage of the tunnel 
diode discriminator, however, is the low-voltage out
put and the necessity for amplification to logic levels 
after the sense of the output has been determined. 
This requires additional circuitry and delay time, thus 
increasing the recirculation time of the memory. 

The use of a high-speed emitter-coupled gate pro
vides a threshold element compatible with all logic 

levels, thereby eliminating level-shifting or gain
changing with resultant delay and tolerance problems. 
Such a gate has a propagation time in the order of 
2.5 nsec and requires no resetting, as does the tunnel 
diode discriminator. A temperature-stable threshold 
results, and perhaps more important, the gate tracks 
with the sense amplifier because both can be operated 
from common supply voltages. 

The more common approach to sense amplifier in 
high-speed memories, DC cascaded long-tail-pairs, 
requires excellent DC stability over the operating 
temperature range. This stability can be achieved 
only with common thermal environment for both 
halves of the sense amplifier. To eliminate complex 
adjustments, both halves of the amplifier should be as 
similar as possible, especially with respect to tem
perature coefficients. This similarity is a n~tural con
sequence of building the entire amplifier on a single 
chip.l.2 Monolithic circuitry provides this unique ad
vantage and offers better performance than the dis-



302 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966. 

BIAS POINT 

INPUT VOLTAGE 

-1.8 -1.6 -1.4 -1.2 
(VOLTS) 

-1 -0.8 -0.6 -0.4 

NOR-
~ 

\ I 
\~ 

I~ 
J \. 

OR - ~ 
......... r........ ~ 

I-- MINIMUM 
SIGNAL 

f-

E i'~';r'''i 

0 

-0.2 

-0.2 

.0.4 

-0.6 

-0.8 

-I 

1.2 

-1.4 

-1.6 

-1.8 

-2 

OUTPUT 
VOLTAGE 
(VOLTS) 

Figure 12. MECL threshold element transfer characteristic. 

crete or hybrid separate-chip approach. The inherent 
simplicity of monolithic sense amplifiers leads to 
superior performance and eventually, lower cost than 
possible with discrete equivalents. 

ADDITIONAL CIRCUITRY 

As mentioned previously, the memory design was 
implemented with fast (2.5-nsec propagation time) 
emitter-coupled gates for all logic, address decoding, 
and timing functions. The basic ECL circuit is shown 
in Fig. 13. The emitter-followers included in these 
blocks allow driving of matched 100-ohm . lines. 
These serve as delay lines for timing, as well as dis
tribution lines for delivering various timing and logic 
pulses throughout the system. 

Figure 14 shows the major system components. 
The only areas where the emitter-coupled logic is not 
used are the word and digit current drivers; these 
areas are interfaced to the ECL by a "power" emit
ter-coupled logic to convert the 800-mv logic swing 
to that suitable for driving high-level circuits. 

The basic circuit used to convert the 800-mv 
signals to higher levels is shown in Fig. 15. This cir-

14 __ t-H 

R5 R7 R8 

R4 

13 12 11 10 3 

RI2 RI3 
RIO 

c;,;;:;;:::~Fi~-r=i:==:::J14 
GND L-r--c.rl:==:::J 13 

-V E 

~12 

1~11 ~ 10 

Figure 13. High-speed emitter coupled logic circuit. 

DATA INPUT 
18 BITS 

RELEASE 

Figure 14. 10-Mc memory block diagram. 

A9 

Q8 



A ROTATIONALLY SWITCHED ROD MEMORY 303 

LOAD 

2N3009 

+v 25 

3.3K 
R2 

-5.2 

Rl 
200[2 

Figure 15. Current mode switching circuit. 

cuit employs current-mode switching to obtain fast 
rise and fall times. Both resistors act as current 
sources, with the current being switched to alternate 
paths. When 02 is conducting, the current from R2 
flows through 02 and into R 1. The other possibility 
occurs when 01 supplies current to R1, and the 
current from R2 flows into the base of 03, causing 
03 to conduct. Fast 03 turn-off is due to the anti
saturation diode which allows R1 to have a greater 
current than R2. This excess of current draws the 
stored charge from the base of 03, and cuts 03 off 
quickly. After 03 is cut off, the excess current is 
supplied by the antisaturation diode. 

PACKAGING 

Considerable planning, both electrical and me
chanical went into the package design of the memory. 
At these speeds, the package design bears an intimate 
relation to the electrical performance, and care is re
quired to effect a producible design that does not 
compromise high-speed performance. The packaging 
of this memory is of unique design, with cards ar
ranged in a cluster around the stack, which is used 
as a basic frame. This configuration eliminates long 
leads from the word and digit-sense circuits. This 
constituted a major problem in other types of 
memory packaging where these circuits were encased 
in conventional card cages. Figures 16 and 17 show 
the packaging arrangement. In addition, the printed 
circuit boards used are of two-layer construction with 

a ground plane in the middle. This layout not only 
provides an electrostatic shield, but also improves the 
high-frequency ground system. The cards which plug 
into the stack also connect into a wiring frame which 
contains wire-wrapped logic and interface connec
tions over a ground plane. 

SUMMARY 

In designing this memory, the need for a new 
approach to memory circuitry was apparent. A direct
coupled word driver matrix drive, and careful 
attention to stack balance and transmission line 
characteristics is required. Packaging becomes more 
important as speeds increase and the memory stack 
is designed so that circuit cards plug directly into the 
stack itself. Extensive use was made of ground planes 
in sandwich circuit cards for shielding and noise 
reduction. 

Monolithic integrated circuits, in addition to their 
attractive costs, afford opportunities for improved 
performance. These are utilized in the sense amplifier 
as a threshold device and as part of the amplifier 
itself. The emitter-coupled logic gates are used to 
achieve fast logic speed. The logic level is 800 mv, 
which made it necessary to design all drivers to op
erate from this voltage. The timing generator also 
utilizes ECL gates in conjunction with ordinary 

Figure 16. lO-Mc memory (front). 



304 .PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 17. 10-Mc memory (back). 

coaxial cable for delays to form the required timing 
signals. 

The rotationally switched memory device has such 
an inherently fast switching time that the speed of 
this memory is determined by the stack electrical 
properties and drive current rise times. High over
drive in the word direction combined with a relatively 
thick (1 micron) film yields high output signals. This 
high overdrive makes DRO operation necessary and 
makes the memory more susceptible to adjacent bit 
creep, but it tends to minimize the effects of varia
tions in device properties. Creep is limited to a fixed 
but acceptable range by interbit etching of the film. 

ACKNOWLEDGMENTS 

The authors are pleased to acknowledge the sup
port and assistance of the Thin Film Memory Device 

Project under Dr. H. White in supplying the Rods, 
the contributions to the sense amplifier design by W. 
Wong, the packaging design work of R. Sloppy, and 
the skillful assembly work of Miss M. Roberts, Miss 
R. Reale, and Mrs. J. Greenwell. 

REFERENCES 

1. B. Kaufman and E. Ulzurrun, "A New Tech
nique for Using Thin Magnetic Films as a Phase 
Script Memory Element," Proc. FlCC, 1963. 

2. H. J. Kuno and P. Ellinger, "Demagnetization 
Effects in Cylindrical Thin Magnetic Films," Proc. 
IEEE, vol. 54, pp. 991-92 (1966). 

3. U. F. Gianola, "Disturb Thresholds in Cylin
drical Film Memory Wire," l. Appl. Phys., vol. 34, 
pp. 1131-32 (1963). 

4. A. H. Anderson, T. S. Crowther and J. I. Raf
fel, "Drive Current Margins for Magnetic Film Mem
ories," l. Appl. Phys. vol. 34, pp. 1165-66 (1963). 

5. R. Latlpheimer, "An Improved Union of Digit
Select Lines and Sense Lines in Word Select Ferrite 
Core Memory Systems," Proc. IEEE, vol. 53, pp. 
432-33 (1964). 

6. H. J. Kuno, "Effect of a Torsional Stress on a 
Cylindrical Thin Film Element," ibid, pp. 1754-55 
(1965). 

7. A. V. Pohm, et aI, "Large, High Speed, DRO 
Film Memories," Proc. Intermag. Conference, 1963, 
pp. 9-5-1 to 9-5-14. 

8. J. B. Jones, B. J. Steptoe and A. A. Kaposi, 
"The Design of a 4096-Word One-Microsecond 
Magnetic Film Store," Proc. Wescon, 1962. 

9. "Project Lightning, Third Phase, Third Quar
terly Progress Preport," Remington Rand-Univac 
(Dec. 1, 1960-Feb. 28, 1961), vol. I (AD 263 
110), pp. 63-65; vol. II (AD 263 109), pp. 113-
16. 

10. B. A. Kaufman and J. S. Hammond, "A High 
Speed Direct-Coupled Magnetic Memory Sense Am
plifier Employing Tunnel Diode . Discriminators," 
IEEE Trans. on Electronic Computers, EC-12, pp. 
282-95 (1963). 

11. S. T. Robertson, "Build a Differential Am
plifier from Logic Gates," Electronic Design, Apr. 
26, 1965. 

12. D. R. Breuer, "Integrated High-Frequency 
D. C. Amplifier," Wescon Paper 2.2, 1964. 



A 500-NANOSECOND MAIN COMPUTER MEMORY 
UTILIZING PLATED-WIRE ELEMENTS 

James P. McCallister and Carlos F. Chong 

UNIVAC Division of Sperry Rand Corporation 
Philadelphia, Pennsylvania 

INTRODUCTION 

From its earliest use in digital data processing 
systems, plated wire has shown great potential as a 
practically ideal element for high-speed, random
access computer memories.1 Some of the advantages 
of the plated-wire element are as follows: 

1. It can be manufactured in a continuous 
process. 

2. It can be tested in a continuous proc
ess. 

3. It has a very rapid switching time, 
about 80 nanoseconds, when driven 
with a current pulse having a 40-nano
second rise time. 

4. Its output, when driven with a pulse 
having a 40-nanosecond rise time, is 
5 to 10 millivolts; this is sufficient to 
permit practical sense-amplifier de
signs and good signal-to-noise ratios. 

5. The word current is 800 milliamperes, 
and the bit current is 40 milliamperes; 
these are reasonable values for good 
system design. Furthermore, the back 
voltage on the drive lines is very small, 
so that the power dissipation of the 
driving circuits can be kept low. 

305 

6. A practical nondestructive readout 
(NDRO) mode using identical read 
and write word currents can be used 
with plated wires, thereby permitting 
faster cycle times and economical or
ganization. 

7. Plated-wire memories can be inex
pensively constructed. 

Initial applications of the plated-wire element to 
memories for aerospace use have successfully dem
onstrated many of these advantages; notably, the 
switching time, the output, the low drive currents 
with their associated low-power drive circuits, and 
the NDRO mode.'2,3 Also, work has been reported 
using the destructive readout mode/,5 and other 
modes of operation. 6 

This paper describes an engineering model of a 
150,000-bit (16,384 words by 9 bits) plated-wire 
memory. One-half of the maximum capacity was 
constructed and tested. 

REVIEW OF PLATED-WIRE PROPERTIES 

The plated wires are made by electroplating an 
iron-nickel alloy onto a beryllium-copper wire which 
has first been electroplated with copper. The wire is 
0.005 inch (0.13 millimeter) in diameter, and the 
iron-nickel alloy is approximately 10,000 Angstroms 



306 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

thick. The wire is plated in the presence of a circum
ferential magnetic field which is generated by pass
ing current through the wire. The result is an aniso
tropic magnetic structure that has an easy axis in the 
circumferential direction. 

To make use of the magnetic coating, a combina
tion of circumferential and axial fields is used. The 
circumferential field is produced by a current through 
the plated wire; the axial field is produced by current 
through a loop surrounding this wire (in practice, 
many plated wires are surrounded by one loop). The 
loop which carries the word current is referred to as 
a word line, word strap, or solenoid. Each intersec
tion of a plated wire and a word strap is a storage 
cell for an information bit. Figure 1 is a simple rep
resentation of a plated-wire memory bit. The mag
netization of the film can rest in either the clockwise 
or counterclockwise sense of the circumferential easy 
direction. These two senses represent the binary one 
and binary zero identities of the information being 
stored. 

In reading, the plated wire serves as its own sense 
line. The word current establishes an axial magnetic 
field that causes the magnetization of the film to 
rotate toward alignment with the axial field. This ro
tation changes the flux normal to the loop formed by 
the sense wire and its ground return and causes a 
voltage to be generated. The voltage generated may 
be of either polarity, depending on the binary iden
tity of the information stored in the wire. In the 
NDRO mode, the film magnetization returns to its 
original orientation when the word current is re
moved, thus completing the read cycle. 

In writing, -the plated wire serves as its own bit 
wire. At the same time that the magnetization vector 
is partially rotated by a word-current field, a small 
current is driven through the bit wire. This bit cur-

BIT CURRENT 
BIT FIELD 
FOR ONE 

MAGNETIZATION VECTOR-ONE 
STORED-REST POSITION 

Figure 1. Information storage· on plated wire. 

221-13 

rent provides a circumferential field which steers the 
magnetization to the proper sense. Writing is thus a 
coincident-current operation in which the bit current 
must be large enough to switch the film under the 
active word strap but small enough not to switch the 
films under the inactive word straps. Writing will be 
successful as long as there is at least a minimum 
time-overlap between the word and bit currents. The 
magnitudes of the word and bit currents can be es
tablished by using the same principles applied to 
planar thin films. 7,8 

Because the individual bits are not physically dis
crete elements but are actually portions of a continu
ous magnetic cylinder, there is a tendency for inter
ference between bits. This interference, which is re
versible, occurs when information of the same polar
ity is repeatedly written into one bit cell. The bits 
under adjacent word straps may be. reversed and 
cause the wrong information to be read out. An ef
fective technique has been devised to prevent this 
interference. During a single write cycle, first the 
complement· of the information is written, and then 
the desired information. Thus, in every case, the 
magnetic history of a particular bit is balanced in 
ones and zeros, and no more than two write opera
tions of the same polarity can occur consecutively at 
anyone bit location. 

LOGICAL ORGANIZATION OF THE MEMORY 
SYSTEM 

With the introduction of 21h D and other similar 
core memory systems, various methods of address 
selection in the bit and sense dimensions have come 
into use.9 The bit-sense matrix used in the memory 
described herein is a highly efficient and economical 
method for reducing the number of word lines. Fig
ure 2a shows a 16,384-word memory of conven
tional word-organized design. Figure 2b shows the 
modified· word-selection system which uses the bit
sense matrix. The matrix consists of 144 switches 
between the sense amplifiers and bit drivers on the 
one side and the plated wires on the other. The func
tion of the matrix is to route the desired signals from 
the plated wires to the sense amplifiers and to route 
the bit currents from the bit drivers to the desired 
wires. The same switch serves both routing functions. 
Each sense-amplifier, bit-driver combination is asso
ciated with 16 plated wires, one of which is selected 
by the bit-sense matrix. The selection of one of the 
16 switches is controlled by 4 bits of the address. 



A 500 NANOSECOND MAIN COMPUTER MEMORY 307 

p..:...... 
9 

READ I 
AMPLIFIERS 9 I 

I 
PLATED ----------i---------r· 

9 WIRES I 
I 

BIT I 
1 

DRIVERS 

J I J rr 
I SELECTION SYSTEM FOR 

16,384 WORD STRAPS 

o. Conventional 

.......... ..... 

I 
I t lL 

1 
1 
1 
1 
I 
I 

9 LINES 9 x 16 I 

9x16=144 I 
BIT-SENSE 1 

PLATED I 
9 MATRIX I 

READ 1 SWITCHES WIRES ------1------
1 I 

AMPLIFIERS I 1 
1 I 1 1 I 
1 1 

9 1 I 
1 1 

BIT i I 

DRIVERS 

I I J", I SELECTION SYSTEM I 
FOR 1024 

281-27R2 WORD STRAPS 

b. Modified 

Figure 2. Block diagram of a conventional and a modified 
word-organized memory. 

Thus, what was basically a 16,384-by-9 stack be
comes a 1024-by-16-by-9 stack. Also, the length of 
the bit-sense line in the array is reduced by a factor 
of 16, thus making large arrays a practicality. The 
switch accommodates a bipolar bit current of ap
proximately 40 milliamperes and sense signals of a 
few millivolts without contributing noise. (The 
switch circuit will be discussed later.) Because of the 
NDRO mode, the action of the active word strap on 
the 15 unselected wires per bit channel does not de
stroy information. The bit-sense circuits which would 
otherwise be needed for regeneration are not re
quired. 

This memory organization is possible only with 
an element which has NDRO characteristics for both 
read word current and write word current. Its econ
omy lies in the fact that a single switch element con
trols selection for both sense and bit drive functions 
and thus requires an array with a common wire for 
both functions. A small back voltage on the bit-sense 
wire during the bit-writing pulse is desirable for sense 
dimension recovery and for realizing the dual-func
tion switch element. 

Figure 3 is a block diagram of all elements of the 
selection process. The complete memory array is ar
ranged on four planes. Each plane contains 144 
plated wires which intersect 256 one-turn word 
straps; the 144 bits under each word strap comprise 
16 words. Each word line is in series with a diode, 
and all the word lines are arranged electrically into 
a matrix. The selection lines (called A and B lines) 
at opposite ends of the matrix are orthogonal to each 
other. On each plane there are 16 B-selection lines 
and 16 A-selection lines. Physically, two planes are 
mounted to a single base plate, one on each side. On 
each 2-plane assembly, 1 set of 16 A-lines serves 
both sides, but there is a separate set of 16 B-lines 
for each side. In the complete array of 4 planes, the 
16 A-lines of each 2-plane assembly are driven by 
separate sets of switches, which have identical inputs. 
That is, the same A-line is selected on both assem
blies simultaneously. Thus, logically, the 1024 word
line diodes are in a 64B-by-16A array, but electri
cally there are two 32B-by-16A arrays. 

The bit-sense matrix consists of 144 W -selection 
switches which connect 9 wires out of 144 to the .9 
sense amplifiers and 9 bit drivers. The W-selection 
switches are in turn driven by circuits which derive a 
l-out-of-16 selection from 4 bits of the address. 

OVERALL PACKAGING 

Figure 4 is a front view of the complete memory 
system, and Figure 5 is the rear view. The circuits 

t4-BIT 
ADDRESS 

Figure 3. Selection system. 



308 PROCEEDING~FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 4. Complete memory system-front view. 

are assembled onto 6-inch-by-6-inch (15.3 centi
meters by 15.3 centimeters) printed circuit boards. 
The W-selection switches are assembled on special 
oversized boards approximately 6 inches by 12 
inches (15.3 centimeters by 30.5 centimeters). One 
such board mounts all W -switches associated with 
two sense amplifiers. A complete set for one sense 
amplifier consists of 16 switches for the l-out-of-16 
plated-wire selection plus one switch for a noise
canceling channel. Thus, each board holds 34 
switches. These boards contain three copper layers: 
signal, ground, and selection. Because the dielectric 
between the signal and ground layers is very thin, 
noise coupling into the signal paths is held to a low 
value. The two assemblies containing the four planes 
are mounted behind the main card library frame. 
Connectors are mounted directly on each of the two
plane assemblies, which hold the printed circuit 
boards for A-switch and B-switch selection of word 
lines and associated circuits. The 144 plated-wire 
circuits and the 9 noise-canceling wire circuits are 
connected to the W -switch matrix boards by means 
of the disconnectable cable assemblies shown at the 
top of the picture. 

MEMORY PLANE AND STACK 

The memory plane design successfully meets three 
different sets of requirements: mechanical, electrical, 
and magnetic. In the first step of the construction of 
the plane, oversize pilot wires are sandwiched be
tween two sheets of Teflon*-coated Kapton*, the 
Kapton being toward the outside. Heat and pressure 
are applied, and the Tefl()n flows, conforming to the 
wires. Next, the ground sheet, the spacer, the bottom 
word~strap layer, the~ire sandwich, and the top 
word-strap layer are laminated onto a unified assem
bly, as shown in Fig. 6. The pilot wires in the sand
wich are then pulled out, leaving tunnels 0.008 inch 
(0.2 millimeter) in diameter. Since the plated wires 
used in the memory are 0.005jnch (0.13 millimeter) 
in diameter, they can be inserted into the tunnels 
easily with very little force. 

The word straps are etched on a substrate of glass 
epoxy. Separate sheets are used for the top and bot
tom, and the ends are soldered together to form a 

* Registered trademarks of the duPont Company. 

Figure 5. Complete memory system-rear view. 



A 500 NANOSECOND MAIN COMPUTER MEMORY 309 

KAPTON 

ALUMINUM 
GROUND PLANE 

Figure 6. Memory-plane construction. 

complete one-turn solenoid. The electrically signifi
cant dimensions are given in Table L 

For every 16 magnetic wires, there is one non
magnetic, noise-canceling' wire which serves as the 
other half of a differential-input pair. In order to 
avoid discontinuities in the magnetic structure, it is 
necessary that the spacing of the magnetic wires not 
be interrupted by the noise-canceling· wire. There
fore, the plated wires ar.e inserted into every other 
tunnel, and the noise-canceling wires are inserted be
tween two plated wires at appropriate intervals. Fig
ure 7 is a closeup photograph of the wire termination 
area of a plane and shows the plated wires ·on 
O.030-inch (0.76 millimeter) centers soldered to 
etched copper pads. Figure 8 is an overall photo
graph of one plane and shows the 256 word-line 
diodes, the wire ends, and the active plane area. 

CIRCUITS 

Logic and Control Circuits 

The basic logic element chosen is a three-input 
positive AND inverter (Fig. 9). It is a single-tran
sistor DTL circuit. By adding. a diode gate structure 
to the input, two-level AND/OR logic can be per
formed. Maximum dissipation is 285 milliwatts, and 
worst-case delays are 10 nanoseconds for turn-on 
and 14 nanoseconds for turn-off. Maximum input is 
6, and maximum output is 31h logic loads plus 50 
picofarads of capacity. 

A 3-transistor, high-power amplifier was designed 
to drive a maximum of 15 logic loads plus 250 pico
farads of capacity. The circuit has a complementary 

Table 1. Electrically Significant Memory-Plane 
Dimensions 

Word-line spacing, center to center 
Word-line width 
Word-line solenoid thickness, inside, 

face-to-face 
Word-line conductor thickriess 
Tupnel inside diameter 
Plated-wire diameter 
Tunnel spacing, center-to-center' 
Plated wire spacing, center-to-center 

Milli 
Inches meters 

0.060' 
0.040 

0.011 
0.0015 
0.008 ... ·· 
0.005 
0.015 
0.030 

1.52 
1.02 

0.28 
0.038 
0.20 
0.13 
0.38 
0.76 

transistor emitter-follower output stage (Fig. 10) . 
Worst-case turn-on and turn-off delays are each 10 
nanoseconds. 

A delay flop (Fig. 11) was designed. ,to' generate 
. timing and control pulses. The .. delay· period can be 
varied from 40 to 250· nanoseconds by adjusting the 
timing capacitor. The delay flop 'has the same input 
and output loading as the inverter. 

W ord.;.Selection Circuits 

The word-selection circuits select 1 of 1024 word
line solenoids. Figure 12 is.a simplified diagram of 
the word-selection system. A conventional diode ma
trix is selected by 16 A-switches and 64 B-switches. 
A current regulator is used to supply a word current 
of up to 1 ampere with a maximum rise time of 30 
nanoseconds. A current sink quiescently accepts the 
current from. the . current regulator during standby. 
After an A-switch and a B-switch are turned on, the 
current sink is turned off; as a result, the current 

Figure 7. Closeup of wire termination area. 



310 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 8. Memory plane. 

from the regulator is forced down the selected word 
line via the· selected switches. The B-switch transis
tors are 2N3015, and the A-switch transistors are 
2N3725. The word-line diodes are FD-6's. 

Figure 13 is a schematic of the A-switch. Diodes 
D 1, D2, and D3 form an input AND gate for a tim
ing signal and two decoded and amplified address 
signals. Transistors 01 and 02 are emitter-follower 

V2 
+12V 

Op C2 

VI 
+3V 

CI 

R2 
1.47K 

+~ RI 
154Sl 

+~ 
01 

[ 

02 
INPUTS -i4--+---<.....,~~..-~--t-I 

VINJ\ 

V2 

R2' 
1.47K 

01' 

R3 
4.42K = 

-12V (f'C3 

INPUTS -f4--+--4~~ 
[ 

02' V3 ~ 

NOTE: 
ALL DIODES TYPE IN914 

Figure 9. Inverter circuit. 

stages with the collector of 02 driven by the current 
source. 

Figure 14 is a schematic of the B-switch. Six bits 
of the address are decoded into two groups of eight 
outputs. One group is amplified and drives the bases 
of the B-switch transistors. The other group is am
plified and drives the emitters of the B-switch tran-

-12V 
V3 

NOTE: 
ALL DIODES lN914 

V2 
fl2V 

+--__ - OUTPUTS 

RESISTANCE IS IN OHMS UNLESS 
OTHERWISE SHOWN 

Figure 10. High-power amplifier. 



A 500 NANOSECOND MAIN COMPUTER MEMORY 311 

NOTES: 

E3 
H.IY 

ALL DIODES TYPE IN914 

RI3 
100 

TRANSISTORS 01,02,04 ARE TYPE 2N30ll, 03 IS TYPE 2N3012 
RESISTANCE IS IN OHMS UNLESS OTHERWISE SHOWN 

Figure 11. Delay-flop circuit. 

E2 
+12Y 

+3Y 

OUTPUT 

sistors. By matrixing in this way, the number of 
transistors required in the B-switch system is re
duced. One other input of the B-switch transistor is 
a charging circuit. This charger is an emitter-follower 
circuit that pulls the collector of Q 1 back up to 12 
volts after the word current ends. One charger serves 
the whole memory. 

W-Matrix Switch (Bit-Sense Matrix) 

The W -matrix switches are a set of gates between 
the plated wires and the read amplifiers and bit 
drivers. Because of the modified word-selection 
structure described earlier, 16 words are energized 
by each word-group line. During a read operation, 
9 W -switch elements gate the 9 signals from 1 word 
selected out of 16 into the read amplifiers. During 
the write operation, the same elements gate the bi
polar bit currents into the desired plated wires. The 
W -switch matrix element consists of two comple
mentary transistors, as shown in Fig. 15. When a 

AOO 

AOI 

A02 

A03 

I 
I 
I 

. ---+---
I AI7 I 
I 

'" 

r 
L 

16 
A-SWITCHES 

_--TO A-SWITCHES 

WORD - LINE DIODE 
(TYPE FD -6666) 

WORD 
LINE += 

--- TO B - SWITCHES 

Figure 12. Word-line selection system. 

01 
TIMING 

02 

ADDRESS [ 03 

+ 15V 

at 
2N3015 

FROM 
~_---4- CURRENT 

02 
2N3725 

-3V 

Figure 13. A-switch circuit. 

SOURCE 

-----1 
'---~Ir---..... / 

32 
WORD-LINE 

DIODES 

circuit is selected, turn-on currents are applied to the 
bases of both transistors. The PNP transistor, when 
thus selected, has a collector-to-emitter drop of 1 to 
2 millivolts and a dynamic resistance of 18 ohms. 
For a write operation, the PNP transistor conducts 
the positive bit current, and the NPN transistor con
ducts the negative bit current. 

Read Amplifier 

There are four different causes of a DC shift, 
which operates on the signal as it enters the read 
amplifier. These causes are listed as follows: 

1. The W -switch adds a DC offset voltage 
directly. 

2. The average value of the actual signal 
beyond the switch is not zero, since the 
wire output is switched into the ampli
fier only part of the time. 

3. The writing process impresses a very 
large, non,...zero-average voltage on the 
amplifier terminals. 

ADDRESS 
AMPLIFIER 

ADDRESS 
PREAMPLIFIER 

i 

16 
WORD LINES 

Figure 14. B-switch circuit. 



PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

+12V 

-12V 

+12V 

SELECT LINES 
NOTES: 

TRANSISTOR Qt SIMILAR TO TYPE 2N30tt, 
Q2 SIMILAR TO TYPE 2N30t2 
DIODES TYPE tN914 

Figure 15. Bit-sense matrix circuit. 

TO READ 
AMPLIFIER! 
BIT DRIVER 

4. The sense line itself takes a significant 
amount of time to recover completely 
from the bit current. 

Several configurations of read-amplifier design 
were tried in which AC coupling, noise-protection 
switches, common-mode rejection chokes, and other 
devices were used. The most successful design, and 
the one used in this model, employs a DC differen
tial-input amplifier followed by a DC restorer. The 
DC restorer might more properly be. called a DC 
corrector. Its function is to shift the amplifier output 
so that just prior to readout the amplifier is at zero 
reference level regardless of any DC shifts which 
may actually exist at the input. 

Figure 16 is a block diagram of the complete bit 
dimension circuitry associated with each of the nine 
bit-channels. It was found convenient to package all 
elements shown in this diagram on a single-printed 
circuit board, one board for each bit channel. This 
made a considerable reduction in backboard wiring, 
noise pickup, and wiring delays. A single register 
serves for either input or output information. During 
write cycles, the contents of the register are gated 
against two timing signals to generate first the com
plement writing pulse and then the normal writing 
pulse, as described earlier. These two timing signals 
are referred to as Phase 1 and Phase 2, respectively. 

During read cycles, the one-zero decision is made 
by applying the signal and a 20-nanosecond-wide 
strobe pulse to 2 transistors with a common collector 
resistor. If both transistors cut off, an output results. 
Preceding this stage are the DC amplifier and DC 
restorer, previously described. 

Because of the bipolar wire output signal, the 
strobed detector can be biased very close to a zero
voltage input, so that a one-signal will trip the de
tector, while a zero-signal will reverse and provide 
noise protection. Hence, the AC signal-to-noise ratio 
is quite good and permits the use of high-gain sense 
amplifiers. A limitation on gain does exist, however, 
because of the following constraints: 

The DC restoration process unavoidably 
introduces some noise, which must be 
kept small compared with the signal 
level at the restorer. This calls for gain 
ahead of restoration. 

DC offsets (or DC noise) at the input 
must not drive the amplifier out of line
arity ahead of the DC restorer. This 
limits gain ahead of the restorer to less 

h (total output range ) 
t an total DC input noise range • 

Thus, the signal-to-noise ratio at the detector will be 
expressed as 

signal pulse amplitude X gain ahead of restorer 

noise introduced by DC restorer 
Gain following the restorer cannot improve this ratio. 

Figure 17 is a schematic of the amplifier and DC 
restorer. The amplifier has a differential gain of 52 
decibels, with an 8-megahertz cutoff frequency. The 
common-mode-rejection ratio at 10 megahertz is 46 
decibels. The amplifier output continuously charges 
capacitor C1 through its own low impedance plus 
that of the restorer transistor, Q8, which is turned 
on. Just prior to the time a signal is expected, Q8 is 

FROM 
PLATED -+_+---. 

WIRE 

FROM NOISE 
CANCELLING -..-----' 

WIRE 

Figure 16. Block diagram of bit dimension circuitry. 

DATA 
OUT 

DATA 
IN 



A 500 NANOSECOND MAIN COMPUTER MEMORY 313 

+12V 

+12V 

C2~+12V 3.31'F 

56K 
OUTPUT 

Q9 

61.9 

-3V 

NOTE: 

L~========::t=======-.J ~~~EN~~361~~NSISTORS ARE 

+12V UNLESS OTHERWISE SHOWN 
RESISTANCE IS IN OHMS. 

Figure 17. Read amplifier and DC restorer. 

turned off, and all variations in output are trans
mitted to the next stage. While Q8 is on, the time 
constant of Cl is less than 5 nanoseconds; while Q8 
is off, the time constant is 1 microsecond. Capacitor 
C2 was necessary to isolate the DC conditions of Q9, 
and as such is a compromise in performance. Varia
tions in waveshape cause DC shifts on this capacitor 
which are equivalent to a I-millivolt input signal. In 
operation, the overall signal-to-noise ratio is typi
cally 5: 1. 

SYSTEM OPERATION 

Figure 18 is a timing diagram of the system func
tions. The basic objective was to perform noisy op
erations as quickly as possible, so that the wire 
output signals could occur at a quiet time. No ob
jectionable noise is introduced by the rise of the word 
current proper. The most sense-line noise is caused 
by turning on the B-switch, which moves 16 word
line solenoids through a large voltage excursion, and 
by turning on the low-level W -matrix switch, where 
momentary unbalances in base current during tum
on become a direct input to the amplifier. When 
operated and tested, the memory had a 500-nano
second cycle time and a 300-nanosecond access time. 
The limitations on cycle time in this unit are almost 
entirely in the circuits. In every case techniques are 
now available to improve upon the demonstrated 
performance. 

TEST AND RESULTS 

Figure 19 shows the test pattern sequence which 
is the worst-case for the memory system described. 

The test includes simple operation, nondestructive 
readout operation in the presence of many disturbs, 
and operation in the presence of adjacent-bit dis
turbs. After a normalizing history, every other bit 
along each wire is written one time. These are called 
test bits, and those which are skipped are called 
adjacent bits. The test bits are never again written 
during a given test. A fourfold cycle of passes 
through the memory is continued indefinitely: A first 
pass reads all bits, the second pass writes adjacent 
bits to be the same as the test bits, the third pass 
reads all bits, and the fourth pass writes adjacent 
bits to be opposite from test bits. In this manner, the 
cycle is continued. 

The system operated successfully with this set of 
patterns for extended periods of time representing 
many millions of word disturbs and bit disturbs on 
every test bit. It was also used successfully for sev
eral months as a main store for a small computer. 

CONCLUSIONS 

The construction and operation of the memory 
system described indicate that such a system is in
deed a practicality. It seems a certainty that plated 
wire memories will become a very important member 
in the hierarchy of storage systems to be used in the 
computers of tomorrow. 

TIME (NANOSECONDS) 

o 100 200 300 400 500 

START 

W-SWITCH 

a-SWITCH 

A-SWITCH I----J 

IW~----

Ial-----~ 

,,'-...... 
SIGNAL 1--___ ""'< .)-________ ~ 

AT WIRE 

STROBE ~ ______ .... _-------~ 
AT GATE 

INFORMATION OUTPUT I--_______ .J 

GATE 
407-.0 

Figure 18. Timing diagram of system functions. 



314 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

1. HISTORY: 

2. LOAD: 

ALL I's 
ALL O's 

I 

: 
I 

ALL I's 
ALL O's 

(TEST BITS ONLY) 

3. TEST: 

WRITE I lit t ttl I 

[

READ I 0 I 0 I 0 I 0 I 0 I 0 lOt 0 I ------
WRITE ttl tIl I I -----
READ t ttl til Itt 1 ttl t t t -----

WRITE 0 0 0 0 0 0 0 0 -------

[

READ tOt 0 tOt 0 lOt 0 tOt 0 t ------
WRITE I tIt I I t I ------
READ ttl t I I I I I t I I Itt I I -------

TESTW~:: J JO J JO J JO J JO J JO J JO J JO J JO L~~~~~~~ 
ADJACENT BITS 

POSITION ALONG WIRE 

Figure 19. Worst-case test pattern. 

ACKNOWLEDGMENTS 

The significant contributions to this work are too 
numerous to list. However, we especially wish to 
acknowledge the work of Dr. J. S. Mathias, who 
made the wire; Mr. G. R. Reid, who was responsible 
for the design and construction of the planes; Mr. P. 
Zakarian, who did much of the circuit-design work; 
and Messrs W. J. Bartik and G. A. Fedde, under 
whose direction the project resulting in this memory 
was undertaken. 

REFERENCES 

1. T. R. Long, "Electrodeposited Memory Ele
ments for a Nondestructive Memory," l. Appl. 
Physics, vol. 31, p. 123S (1960). 

2. G. A. Fedde, "Design of a 1.5 Million-Bit 
Plated-Wire Memory," Proc. Eleventh Annual Conf. 

on Magnetism and Magnetic Materials, l. Appl. 
Phys., vol. 37, pp. 1373-75 (1966). 

3. --, and G. H. Guttroff, "A Reliable Very 
Low Power Plated Wire Spacecraft Memory," Proc. 
National Electronics Conference, vol. 20, pp. 681-86 
(1964) . 

4. H. Maeda and A. Matshushita, "Woven Thin
Film Wire Memories," Proc. Intermag. Conference, 
Apr. 1964, pp. 8-1-1 to 8-1-6. 

5. T. R. Finch and S. Waaben, "High-Speed 
DRO Plated-Wire Memory System," Proc. Intermag. 
Conference, Apr. 1966, paper 12.3. 

6. M. Bienhoff, J. Camarata and M. Sherman, 
"Some Considerations in the Design of Plated Wire 
Memory Systems," Proc. IEEE National Symposium 
on Batch Fabrication, Apr. 1965, pp. 88-102. 

7. A. V. Pohm and E. N. Mitchell, "Magnetic 
Film Memories, A Survey," I.R.E. Trans. on Elec
tronic Computers, EC-9, p. 308 (1960). 

8. H. J. Oguey, "Theoretical Hysteresis Loops of 
Thin Magnetic Films," Proc. of I.R.E., vol. 48, 
p. 1165 (1960). 

9. T. J. Gilligan and P. B. Persons, "High Speed 
Ferrite 2~D Memory," Proc. Fall loint Computer 
Conf., 1965, pp. 1011-21. 

BIBLIOGRAPHY 

Fedde, G. A., "A Low Power Plated-Wire Memory 
System," Sperry Engineering Review, Fall 1965, 
pp.19-22. 

Bartik, W. J., C. F. Chong and A. Turczyn, "A 100-
Megabit Random Access Plated-Wire Mem
ory," Proc. Intermag. Conference, Apr. 1965, 
pp. 11.5-1 to 11.5-7. 

Danylchik, I., A. J. Perneski and M. W. Sagal, 
"Plated Wire Magnetic Film Memories," Proc. 
Intermag. Conference, Apr. 1964, pp. 5-4-1 to 
5-4-6. 

Oshima, S., K. Futami and T. Kamibayashi, "The 
Plated Wire Memory Matrix," ibid, pp. 5-1-1 
to 5-1-6. 



A HIGH-SPEED INTEGRATED CIRCUIT 
SCRATCHPAD MEMORY 

I. Catt, E. C. Garth and D. E. Murray 

Motorola, Inc., Semiconductor Products Division 
Phoenix, Arizona 

INTRODUCTION 

Computer systems are presently being designed 
and fabricated using one- to two-nanosecond current
mode logic gates. High-speed scratchpad memories 
are required in order to utilize this circuit speed 
effectively. 

This paper describes an integrated circuit memory 
containing 64 words of 8 bits per word, which is 
compatible in respect to both speed and signal level 
with high-speed current-mode gates. The memory has 
a nondestructive read cycle of 17 nanoseconds and a 
write cycle of 10 nanoseconds without cycle overlap. 
This is considerably faster than previously reported 
integrated circuit memories.1- 4 

In addition to high speed, a large degree of sys
tem flexibility is achieved by using an integrated 
storage flip-flop of the type described in this paper. 
Multiple, independently addressed read channels can 
be included in the memory allowing simultaneous 
access to more than one storage location. Separate 
write address decoding allows a write operation to 
take place at the same time that one or more read 
operations are occurring. Possible applications of 
simultaneous read and write operations will be de
scribed later, along with certain constraints. 

A description of the device, circuit, package, and 
system design required to implement a memory of 

315 

the type referred to above is contained in the follow
ing sections. 

SYSTEM ORGANIZATION 

A block diagram of the memory system is shown 
in Fig. 1. As can be seen, the memory has a dual 
read capability, i.e., any two storage locations can be 
addressed and read simultaneously. The address de
coding is performed in two levels of logic to limit the 
fan-out to eight and the fan-in to three. 

The memory is designed for a particular applica
tion and operates in what is referred to as a read
decision-write cycle. This means that following a 
read operation, a decision is made whether or not to 
write predetermined data into a predetermined 
address. 

Figure 2 contains a timing diagram for the 
memory system. In a read-decision-write cycle, an 
A-Channel and/or B-Channel read address, a write 
address, and write data are presented to the memory 
prior to the receipt of a read initiate A or read 
initiate B pulse. The read initiate pulse starts the 
memory cycle by clocking the read address into the 
read address register. The address is decoded and 
the data contained in the selected word gated onto 
the output lines where it is then OR'ed to the output 
data register. The appropriate delayed read initiate 
pulse clocks the information into the output data 



316 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

WRITE COMMAND WRITE ADDRESS READ ADDRESS A READ ADDRESS B 

~~'-i---------+-------4t-READ INITIATE A 

1-+-+------4--+-------4~- READ INITIATE B 

WRITE COMMAND 
FAN- OUT 

OUTPUT 
DATA A 

64 x 8 

STORAGE ELEMENTS 

OUTPUT DATA 
FAN-IN A 

OUTPUT DATA 
FAN-IN 6 

OUTPUT DATA 
REGISTER A 

OUTPUT DATA 
REGISTER B 

MASTER CLEAR 

OUTPUT 
DATA B 

Figure 1. Block diagram of memory system. 

register. The information is then sent to the computer 
which takes 15 nanoseconds to make the decision 
of whether or not to write. If the computer decides 
to write, a write command pulse is supplied to the 
memory. The write command combines with the 
write address, which is clocked into the write address 
register at the appropriate time by a delayed read 
initiate pulse, and allows the write operation to pro
ceed. The write data is also clocked into the write 
data register by the same delayed read initiate pulse. 

As the timing diagram indicates, the written in
formation is not available to be read from the 
memory until the third cycle. In the particular appli-

o 7 34 51 68 

READ INITIATE 
I 

READ DECODE OUTPUT ~r----r----'I....-~-r---t----1-
MEMORY BIT OUTPUT ~r--t--,--~_.s--;---I-

I 
DELAYED READ INITIATE-i-' --' I 

MEMORYOUTPUT~I __ ~---; __ ~r----1L--
I I 

WRITE COMMAND! : 
I 

MEMORY BIT F -F : I • • • • I :. 

-I 1-5 ns. (TYP) 
" . 

I I, 
NOTE: THE DIAGRAM IS DRAWN TO INDICATE POSSIBLE TRANSITIONS 

AND NOT ACTUAL POLARITY. 

Figure 2. Memory timing diagram. 

cation for which the memory is designed, it is desir
able to have access to the written information on the 
second cycle. This is accomplished by providing 
circuitry external to the memory which bypasses 
the memory whenever a read and write operation 
occur in the same storage location. The external cir
cuitry contains registers which store the read and 
write addresses and the new data being written into 
the memory. When the read and write addresses 
match during a cycle when a· write command is sup
plied to the memory, the memory output is inhibited 
and the new data is gated out of the external register 
and used in place of the memory output. With the 
external bypass route, the memory performs a full 
read-decision-write cycle in 17 nanoseconds, the 
read cycle time. 

The block diagram of Fig. 1 indicates a master 
clear capability. The master clear circuitry can clear 
the entire memory to ZEROS in 10 nanoseconds. 
This feature is provided only for the particular appli
cation, and it is not required to clear a word to 
ZEROS prior to writing, since writing is a jam 
transfer operation. 

The output data fan-in block of Fig. 1 is the 
64-input OR required in each of the eight bit posi-



A HIGH-SPEED INTEGRATED CIRCUIT SCRATCHPAD MEMORY 317 

tions to connect the output from all 64 words to the 
single output data register flip-flop. The method of 
implementing this OR is discussed later. 

The write command fan-out and write data fan-out 
blocks are simply extra stages of logic to limit the 
required fan-out on any node to eight. 

MEMORY CIRCUITS 

Memory Bit Circuit 

Two memory bit circuits such as those shown in 
Fig. 3 are interconnected on each integrated circuit 
die to form one bit of two different words. All inputs 
and outputs are directly compatible with current
mode logic gates. Each bit consists of a gated 
flip-flop which drives two current-mode read gates. 

One of the gated flip-flops is made up of tran
sistors T 1 , T2 , T3 , T4 , T5 , T6 , Ts, T9. Transistors 

BIT 

Ts and T9 form a current-mode gate which operates 
one diode drop below normal logic levels. The base 
of transistor T 9 is connected to the bias voltage, V BB, 

through the diode formed by transistor T 10, and the 
base of transistor T s is connected to the word write 
input, WW h through the emitter-follower level shift 
formed by transistor T7 • In the quiescent state, WW1 

is low and transistor T 9 conducts the current down 
through transistor T 2 or T 5 depending on the state 
of the flip-flop. During a write operation, the WW 1 

input is pulsed high and the current is switched into 
transistor T s. This causes either transistor T 1 or T 6 

to conduct depending on whether the bit or bit 
input is high. A ONE is written when the bit input 
is high and a ZERO when the bit input is high. At 
the end of the WW 1 pulse, the current is switched 
back into transistor T 9 and the flip-flop is latched 

OUTPUT A 
~ ....... -o 

OUTPUT B 

READ 2A 

READ GATE r ---------l 
Vee 

I I 
I I 
I I 
I I 
I I 
I I 
I~ I 
I INPUTS VEE I '"-- ________ .-J 

Figure 3. Schematic of memory bit circuit. 



318 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

in the desired state. The storage flip-flop and the two 
AND functions required to write selectively into any 
bit location are thus achieved at the expense of. only 
one unit of circuit power. The delay from the word 
write input to the slowest output of the flip-flop is 
approximately 1.7 nanoseconds resulting in a power
speed product of 100 picojoules for the entire func
tion. 

It should be mentioned that the bit input can be 
connected to V BB, thus reducing the number of 
inputs by one. A ONE is then written when the bit 
input is high and a ZERO when the bit input is low. 
The use of single-ended inputs reduces the com
plexity of the printed circuit board layouts con
siderably. This is not done in the present system 
because data taken on a discrete component bread
board indicates that one side of the flip-flop is sig
nificantly slower when single-ended inputs are used. 
This effect is largely due to stray capacitance in the 
breadboard, however, and the monolithic circuits 
show very little difference in switching times between 
single-ended and complementary inputs. Future sys
tems will be constructed using single-ended inputs. 

Transistors T 11 and T 12 are used to implement 
the clear function. When the clear input is pulsed 
high, the current is switched from transistor T9 into 
transistor T 11 thus forcing the flip-flop into the 
ZERO state. It should be noted that if the collector 
of transistor T 11 were connected to another set of 
bit and bit transistors, a dual write function would 
be achieved. The delay from the clear input to the 
flip-flop output is the. same as for the write delay, 
approximately 1.7 nanoseconds. 

The read gates are current-mode gates which are 
capable of driving a 50-ohm load with a delay of 
1.5 nanoseconds. Corresponding outputs from the 
two bits are connected together on the die to pro
duce a tied-emitter OR. Eight such groups are then 
fed into an 8-input OR gate to achieve the desired 
64-input OR. The 8-input gate drives the output data 
register. 

Figure 4 shows a photomicrograph of an inte
grated circuit die containing two complete memory 
bits. Double layer metallization is used to provide 
the interconnections on the die. The die is 50 by 55 
mils in size. 

A single die is placed in a standard 14-lead 
flatpack and all leads are used. The total power dis
sipated in the memory bit package is approximately 
275 milliwatts. The thermal design of the memory 
is discussed in the packaging section. 

Register Circuit 

The register circuit is a simple modification of the 
memory bit circuit, and a variation of the same 
integrated circuit mask set is used to produce both. 
Two register circuits like those shown in Fig. 5 are 
contained on each die. As can be seen, the modifica
tions consist of deleting the read gates, eliminating 
the clear input, and altering what is now the clock 
input. The resistor values are also changed to allow 
the circuit to drive a 50-ohm load. The change in 
resistor values tends to increase the power dissipa
tion; however, the elimination of the read gates 
reduces the overall circuit power substantially. The 
total power per die is approximately 150 milliwatts. 
As before, one die is placed in each 14-lead flatpack. 
A photomicrograph of a register circuit die is shown 
in Fig. 6. Two-layer metallization is again used to 
perform the desired interconnections. 

The modifications to the clock input were made to 
allow tapping of transmission lines with a minimum 
of reflections. The flip-flops in any particular register 
are usually grouped in a cluster. If all the flip-flops 
are connected to the end of a long transmission line, 
a large reflection results from the capacitive loading. 
Figure 7 shows how the emitter-follower level shift 
transistor can be used to buffer the flip-flops from the 
line. Only one emitter follower is connected to the 
line and its emitter is used to drive all of the flip
flops in the register. 

Gate Circuit 

All of the decoding and fan-out trees in the mem
ory are implemented using three-input current-mode 
gates like the one shown in Fig. 8. Two gates are 
included on each die as the photomicrograph of Fig. 
9 indicates. Only three of the four input transistors 
shown are actually utilized, and a single layer of 
metal is used to interconnect the circuit. The gates 
are capable of driving a 50-ohm load with a typical 
delay of 1.35 nanoseconds. One die is bonded in each 
14-lead flatpack and the total power per package is 
approximately 100 milliwatts. 

PACKAGING 

Since a signal experiences a delay of one nano
second when traveling a distance of 6 inches down 
a transmission line on a printed circuit board made 
of epoxy glass, the physical layout of the system is 



A HIGH-SPEED INTEGRATED CIRCUIT SCRATCHPAD MEMORY 319 

Figure 4. Photomicrograph of memory bit die. 

carefully designed to mlmmlze line lengths. In the 
final design, a distance of about 18 inches is traveled 
in each of the 17 -nanosecond read cycles, resulting 
in a time loss due to signal propagation of some 3 
nanoseconds compared to 14 nanoseconds of delay 
through circuits. This gives a ratio Line Delay / 
Circuit Delay = 3/14 = 0.21, and makes the ratio 
of line delay to total delay 3/17 or 0.18. This is 
quite good since a reasonable ratio for line delay to 
circuit delay is up to 1/3, or 0.33, making the ratio 
of line delay to total delay 1/4 or 0.25. It should 
not be much higher for the following reasons: 

1. Inasmuch as faster circuits are more 
expensive, it is inefficient to pay for 
circuit speed which is subsequently lost 
in interconnections. 

2. The time taken for reflections to damp
out in a transmission line increases 
with line length. If lines are long com
pared to circuit delays, line character
istic impedances and line terminations 
have to be more accurate, resulting 
in extra cost. 

3. The problem of mismatch due to 
branches in a transmission line is 
greater with longer lines. 

Basic Packaging Philosophy 

In a memory, the worst-case delay is paramount. 
Nothing is gained by making access time to one 
memory word less than access time to the worst
case memory word. A rule was formulated which 



320 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

~--oRESETI 

Vaa 

Vee 

1-+--oRESET2 

Figure 5. Schematic of register circuit. 

was of great help in organizing the physical layout 
of the memory: 

The fastest memory layout is that where 
access time to every word is the same, i.e., 
every path is a worst case delay path. This 
approach avoids timing problems by elimi
nating signal skew. 

A 2-dimensional, 64-10cation storage array is 
represented in Fig. lOa. Assume that the word-select 
information enters the array at A and the output data 
leaves the array at B. If it is further assumed that 
signal propagation is restricted to the X and Y 
dimensions (no propagation along diagonals), it is 
clear that the distance from A to any storage loca
tion to B is a constant. For example, the length of 
path ACB is equal to the length of path ADEFB. 

It is required that points A and B be on one con
nector at one edge of the memory. To meet this 
requirement, the memory array of Fig. lOa is folded 
at the centerline, GH, putting points A and B on 
opposite ends of a rectangle as shown in Fig. lOb. 

As shown in Fig. 10c, there are always two paths 
between two points such asA and E. In address 
decoding, half of the address lines are sent each way 
and the final level of decoding performed in a two-

input AND gate located at the memory word. This 
is similar to the well-known coincident current de
coding used in magnetic core stores. Write command 
and write data can travel either route from A to E 
equally well. Likewise, output data can take either 
route from E to B. 

The foregoing refers only to the layout of the 
memory storage elements and the second level of 
decoding. Consideration is now given to the addition 
of address registers and first-level decoding required 
at the input to the memory and the output fan-in and 
registers required at the output of the memory. 
Figure .10d shows the location of the address regis
ters, first-level decode, output fan-in, and output 
data registers. A typical set of paths through the 
memory is as follows: 

1. Read initiate enters at the left edge 
of the memory. 

2. Half of the first level decode informa
tion (X-decode) is sent up the left 
edge of the memory and horizontally 
across the array. 

3. Half of the decode information (Y
decode) is sent vertically up through 
the array. 

4. The output data is sent to the output 
fan-in gates which then drive the out
put data register. 

System Implementation 

To achieve equal path lengths from any word in 
the memory array to the output, it is necessary to 
send the output data from all storage locations to 
the far end of the card in the Y dimension, and from 
there back to the near end. By making the Y dimen
sion very short, it is possible to simplify the wiring 
by not sending the output data to the far end of 
the array. Signal skew is still very small as long as 
the difference in path lengths is small compared to 

. the total line delay plus circuit delay. This is achieved 
by placing the memory circuits on small cards in 
the third (Z) dimension. Making the cards remov
able from the mother card results in ease of main
tainability. 

The system packaging dimensions are somewhat 
fixed by a requirement that the. memory be com
patible with an existing larger system. Two of the 
overall system dimensions are limited to 4.5 _and 
6.875 inches, and cooling is specified as forced air. 



A HIGH-SPEED INTEGRATED CIRCUIT SCRATCH PAD MEMORY 321 

Figure 6. Photomicrograph of register circuit die~ 

A detailed discussion of cooling follows in another 
section. 

A convenient division of the system into multiple 
groups of identical logic results in 12 multilayer 
printed logic cards interconnected by plugging into 
the 13 layer mother card as shown in Fig. 11. The 
mother card consists of seven signal and six voltage 
planes to form interconnections between the logic 
card connectors spaced on 0.2-inch centers. 

The basic printed logic card, measuring 1.6 X 6.5 
inches, interconnects three rows of up to 16 ceramic 
flat packages. This arrangement, shown in Fig. 12; 
results from the compatibility requirement and the 
ease with which the memory logic divides into sec
tions. Three signal and three voltage planes are re
quired. The inner signal plane is designed to be 55 
ohms characteristic impedance, while the surface 

conductors are designed to be 75 ohms. All critical 
path logic is routed, where possible, on the higher 
impedance surface conductors to reduce the circuit 
input capacitance loading effect. On the long lines, 
the distributed loading reduces the effective imped
ance to approximately 50 ohms. Conductor widths 

50..n.. 

':" nil", 
FROM COMPUTER 
VIA 50 A LINE 50..n.. 

-2V 

EACH LEAD LOWER INPUT 
TO GATED F-F 

A 

Figure 7. Method of distribution of clock pulses to register 
circuits. 



322 

A 

Vee 

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

OR 
OUTPUT 

NOR 
-~------~OUTPUT 

are 6 mils on the inner plane and 8 mils on the outer 
planes. The tolerance on the conductor widths is 
-+-~ mil. The overall card thickness is 50 mils. Each 
circuit mounting pad has a plated-through hole to 
serve as a signal crossover when necessary and to 
add mechanical strength. The leads on the packages 
are bent flush with the bottom of the package and 
then reflow soldered on top of the multilayer card. 
This allows the packages to be mounted and re
placed very easily. 

Figure 8. Schematic of three-input gate circuit. 

Since memory is highly repetitive, division into 
sections can be made in many ways. The memory 
elements are divided into eight groups of eight 
words, each group being contained on one of the 
small logic cards. The 64 bits on each card are 
sub-divided into four groups as shown in 'Pig. 13. 

Figure 9. Photomicrograph of gate circuit die. 



A HIGH-SPEED INTEGRATED CIRCUIT SCRATCHPAD MEMORY 323 

Each subgroup contains two words and the last level 
of read, write, and clear logic for both words. 

Three other card types of like dimensions contain 
the input/output circuits. In keeping with the previ
ously mentioned layout philosophy, the input logic 
enters the matrix of memory logic from one corner 
while all outputs are taken from the opposite corner. 
Therefore, when viewing the logic cards from the 
package side, the input circuits are located on the 

C ·8 
• • 

64 LOCATION 

STORAGE ARRAY 

G H - -
E .F 

A 1 
to) 

NOTE: 

leftmost side while the outputs are on the right side. 
Logic for these three card types divides naturally 
into read input! output, write address, and write 
data. 

The read input! output card contains the read ad
dress register, the first-level read decode, the output 
data fan-in, and the output data register. Two identi
cal read input! output cards are required because of 
the dual read channel requirement. Timing for enter-

G~ ________________________ ~H 

I ' I I E -FI 

l----J----l A "'0 

t b) 

ASSUME THE ABOVE SQUARES ARE PARTITIONED 
INTO 64 EQUAL SECTIONS. EACH SECTION 
CONTAINING ONE WORD. 

G -
.E 

1 1 A 

\ c ) 

·8 
• 

H -

• 

G H 

Y 

Lx 
Y DECODE AND OTHER 
PERIPHERAL CIRCUITS 

\d ) 
ADDRESS REGISTERS 
AND X DECODE 

OUTPUT FAN-IN 
AND OUTPUT 
DATA REGISTERS 

Figure 10. Two-dimensional storage array. 



324 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 11. Scratchpad memory system. 

ing output data into the output registers is obtained 
by suitably delaying the read initiate signal by the 
same time required to access the memory. This is 
accomplished through use of binary weighted lengths 
of printed circuit delay line suitably connected in 
series to form any desired delay to the nearest one
half nanosecond. This can be seen on the artwork 
for the inner plane of the read input! output card 
shown in Fig. 14. 

The write address card contains the write address 
register, the first-level write decode, the first two 
levels of write command fan-out, and the first two 
levels of clear fan-out. As in the case of the read 
input-output card, the write address logic card has 
its inputs on the left side to equalize the length of all 
write paths. Write address information is entered 
under control of the read initiate signal. For proper 

Figure 12. Printed circuit logic card. 

timing, . this signal is delayed through use of variable
length printed circuit delay lines. 

The write data logic card contains the write data 
register and the write data fan-out gates. Each data 
bit enters a register located in the card's center and 
is then distributed to gates located at points across 
the card for an even distribution to the memory 
circuits. 

In the preceding discussion, the many practical 
considerations leading to the exact dimensions of the 
overall memory package are described. It should be 
mentioned that a more analytical approach can be 
taken to determine if these dimensions are close to 
the values required to produce the minimum total 
path length through the memory. For minimum path 
length, an optimum ratio exists between the X and Y 
dimensions on the mother card (refer to Fig. 1 Od) 

II., III 1'1, •• 11, 11,,11111111, II " 11111' .,1111 .'1 I 

~ 
m 
II 
o 

= READ DECODE GATES 

= WRITE DECODE GATES 

= CLEAR DRIVERS 

= ~ATED STORAGE ELE MENTS 

= CONNECTOR STRIP 

Figure 13. Subdivision of memory array logic. 

and the Z dimension on the plug-in logic cards. By 
relating both the total path length and the area 
required to contain the circuits to the X, Y, and Z 
dimensions, it can be shown that the optimum ratio 
of X: Y : Z should be 6: 3 : 1. The ratio obtained using 
the actual package dimensions is 6:2.2: 1.05. The 
fact that the optimum ratio is not used results in 
only 0.2 ~nches (40 picoseconds) of extra distance 
that must be traversed during each read access. This 
is insignificant compared to the total path length. 

The 14-pin ceramic flat package is used as the 
circuit package because ( 1 ) sufficient leads are 
available to handle the required circuits, (2) the 
heat transfer characteristics are adequate as dis
cussed in the Thermal Study section, and (3) the 
reflow solder attachment technique allows ease of 
assembly and repair. 

Separate terminating resistors are required since 
the circuits are designed for driving a 50-ohm trans-



A HIGH-SPEED INTEGRATED CIRCUIT SCRATCH PAD MEMORY 325 

Figure 14. Read input/output logic card artwork. 

(0 ) SIGNAL PLANE, 
COMPONENT SIDE 

(b) VOLTAGE PLANE, 

VEE 

(c) VOLTAGE PLANE, 

Vee 

(d )SIGNAL PLANE, 
INTERNAL 

(e ) VOLTAGE PLANE-, 

Vee 



326 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

mission line system. However, many lines are suffi
ciently short to be treated as lumped allowing a 
higher impedance termination. The 50-ohm termina
tions are resistive divider networks connected across 
the positive and negative supplies, giving a termina
tion voltage slightly more negative than the negative 
logic level. Higher impedance terminations are single 
resistors returned to the negative supply. One-tenth 
watt carbon resistors are attached to the boards by 
reflow soldering in the same manner as the packages 
are attached. Lead lengths are kept to a minimum 
to reduce stray inductance and capacitance. 

Provision is also made for attaching power supply 
bypass capacitors. In addition, the Vee and VEE volt
age planes are separated by only two mils of dielec
tric resulting in a relatively large distributed capaci
tance throughout the memory. 

The copper-clad epoxy material is selected for the 
thickness required to construct striplines of the de
sired characteristic impedance. Only normal control 
of etching is required to achieve the-+-~ mil toler
ance on line width. Holes in the logic cards before 
plating are only 16 mils to reduce lumped capaci
tances and to allow routing of printed runs between 
holes on the inner plane. 

Logic card connectors are required with a suffi
ciently large number of pins available to distribute 
voltages and signals across the entire width of the 
card to reduce transmission line discontinuities. A 
close card spacing is also required. These require
ments are met using a double row strip connector 
having contacts on 50-mil centers. The connector 
thickness allows card spacing to be on 0.2-inch cen
ters. 

Prior to the design of the memory, a detailed 
study of stripline characteristics was made. This 
enabled the layout and fabrication of a' system with 
predictable characteristic impedances and signal 
cross coupling. Signal cross coupling is limited to less 
than 5% in all cases. The high package density 
greatly reduces the number of crosstalk and termina
tion problem areas. 

Thermal Study 

A thermal study was required to show feasibility 
of the proposed system packaging configuration. Due 
to the very fast circuit operation, steps were taken 
to reduce signal propagation times between circuits 
resulting in an increased power density. In addition, 
the cooling method was specified as forced air at 

70°F and a pressure of 0.2 inches of water. This left 
thermal resistance, air flow pattern, and cooling sur
face area as variables. 

A total of 500 e junction to ambient drop was set 
as a design goal to limit the junction temperature to 
less than 75 °e. Therefore, an anticipated maximum 
0.3 watt per package limited the junction to ambient 
thermal resistance to less than 166°e per watt. A 
standard production type 0.25 by 0.25 inch ceramic 
flatpack was examined and found to have a junction 
to case thermal resistance of 30 to 400 e per watt 
depending upon the quality of the die bond. This is 
acceptably low if the case ambient thermal resistance 
is 125°e per watt or lower. 

To properly simulate the actual system's environ
ment, multilayer thermal test cards (Fig. 15) were 
constructed which contained voltage planes in the 
same manner as the proposed system. Circuits 
mounted on these cards contained an isolated diode 
whose forward voltage drop could be measured as a 
function' of temperature. This is shown schematically 
in Fig. 16. During testing, three fully populated cards 
were spaced on 0.2-inch centers and subjected to 
25°e air under a blower pressure of 0.2 inches of 
water. Temperature measurements were made on 
the center card. 

Four package attachment techniques were ex
plored. In each case, the package leads were at
tached by reflow soldering to the test card. In the 
first test, each package was mounted with the bottom 
or circuit side of the package closest to the card. 
The test measurements showed about 1900 e per 
watt thermal resistance with an insignificant variation 
along the length of the card. The second test in
volved a simple inversion of the package placing the 
chip side of the package away from the card and in 
the air stream. The result was an improved 167°e 
per watt. Though this mounting technique was ac
ceptable, others were explored. 

To effect further improvement, the packages were 
heat-sinked to the card to gain cooling area improve
ment. A plated-through hole was placed beneath 
each package which was connected to a copper volt
age plane on the opposite side of the card. Heat 
transferred readily to all parts of the card thereby 
using both sides of the card as cooling surfaces. A 
nonsetting thermal joint compound was applied be
neath each package during assembly. The result was 
a thermal resistance of 131°e per watt. 

The second heat-sinking technique involved spe-



A HIGH-SPEED INTEGRATED CIRCUIT SCRATCH PAD MEMORY 327 

(a) 

(b) 

(c) 

(d) 

Figure 15. Thermal test card. 



328 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

r--- INT~ATEUIRCU!.!!CHIP 

I THERMAL i 
I DIODE I 

l I 
.----+---1--... ----, I 

I I 
I I 

..L ISOLATION I 
~ DIODE I 
; I 

GATE 

I I 
2t----.--+--_----4_ .... _--== -J~ __ ..J 

Figure 16. Thermal test circuit. 

cially prepared circuit packages with metallized bot
toms which were soldered to the plated-through 
holes with a low temperature solder. Though requir
ing a more involved attachment technique, test re
sults showed a significant improvement at 88°C per 
watt. 

The thermal joint compound is used in the final 

WRITE 
ADDR ESS 

system since it provides a margin of safety and pre
sents no unusual assembly problems. 

TEST RESULTS 

Partially Populated Model 

The printed circuit boards, as described in the 
Packaging section, are designed and fabricated for 
a 64-word memory of 8 bits per word. It is felt that 
four paths through the memory are sufficient to test 
the memory circuits and interconnections. The mem
OIy boards are populated in a manner such that four 
words of two bits each can be accessed for both 
read· and write. Each circuit node· in the four paths 
is fully loaded with fan-out so that worst-case circuit 
delays are present. The block diagram of Fig. 17 
illustrates the circuits included in the. partially popu
lated model. The circuits are· positioned such that 
the worst-case path lengths are encountered. Small 
variations in path length exist even though the mem
ory is designed to minimize this effect. The difference 

( 

READ 

READ 
ADDRESS 

INITIATE=~tr.b:..._+-~t:-:I~--1-____ ......., 

r-;W;--;b±--;~--+-"""'t.ii:STER---[§:!!J 

WRITE 
ADDRESS~-+I_~ 

WAR :t WRITE ADDRESS REGISTER 

RAR .. READ ADDRESS REGISTER 

WDR = WRITE DATA REGISTER 

o D R = OUTPUT DATA REGISTER 

M B .. MEMORY BIT 

Figure 17. Partially populated model. 

READ 
~""iI+--+-er- ADD RESS 



A HIGH-SPEED INTEGRATED CIRCUIT SCRATCHPAD MEMORY 329 

between the longest and shortest paths is in the order 
of 0.5 nanoseconds. 

Worst case conditions on the following parameters 
are important in the operation of the memory: 

Circuit loading 
Stripline delay 
Crosstalk 
Reflections 
Power supply tolerance and noise 
Junction temperature 

As discussed above, the worst-case circuit loading 
and stripline delays are included in the partially 
populated model. 

The use of partially populated, full-size system 
boards also allows a fairly thorough evaluation of 
crosstalk and reflection problems. As mentioned 
earlier, the striplines are designed with the goal of 
keeping crosstalk below a certain level. The test re
sults indicate that this effort is very successful since 
even the longest lines have crosstalk of well under 
the design goal of 5 %. The memory is overdesigned 
in this respect since a I-nanosecond risetime is as
sumed in the design, while a 2-nanosecond risetime 
is actually achieved in the system. All lines of under 
2 inches in length are treated as lumped and a 180-
ohm output resistor used for the gate load. All lines 
over 2 inches are treated as distributed and termi
nated in 50 ohms. As previously described, the 
actual striplines are designed for a 75-ohm char
acteristic impedance in areas of distributed load so 
that the loaded line is close to the desired 50 ohms. 
The reflections due to connectors, loads, and termi
nations are also well under 5 % of the total signal 
amplitude. 

The positive power supply can be varied by 
+10% and the negative supply by +20% before 
an error is detected. Also, the power supplies are 
almost entirely free from noise resulting from cur
rent transients. This is, due to the use of the thin 
2-mil dielectric between voltage planes and miniature 
tantalum capacitors distributed around the cards. It 
is felt that the results achieved in the partially popu
lated model are more than satisfactory and that no 
problems will arise when the remainder of the mem
ory is populated. 

Since the full power dissipation is not present in 
the memory, worst-case temperature effects cannot 
be determined. The individual circuits have been 
tested at temperatures in excess of those predicted 
by the thermal studies previously described, how-

ever, with no adverse effects on the switching char
acteristics. The DC circuit characteristics are also 
within specification at the elevated temperatures. On 
the basis of these tests, no problems are anticipated 
in regard to higher junction temperatures in the full 
system. 

Memory Exerciser 

The memory exerciser is designed to test the 
memory with various patterns of read addresses, write 
addresses, and write data. Counters containing two 
stages are used to determine the read and write 
addresses. The two counters count in opposite direc
tionsand can be preset to any value. A third stage 
on the write address counter switches between two 
patterns of write data. The two patterns are simply 
mechanical switches which can be set to ONE or 
ZERO independently. The pattern bit in the counter 
changes state only after all four memory locations 
have been selected. This results in the pattern A in
formation and the pattern B information being writ
ten into all four locations alternately. The exerciser 
compares the actual information obtained during. a 
read cycle to the expected data and stops the ma
chine, if an error occurs. 

Memory Operation 

Figure 18 shows the read initiate pulse supplied 
by the memory exerciser, the memory bit output at 
the point of the tied emitter OR, and the output of 
the output data register. Thirteen nanoseconds are 
required from the time the read initiate clocks the 
read address into the register until the stored infor
mation is available at the input to the output data 

READ INITIATE 
ENTERING MEMORY 

MEMORY BIT 
OUTPUT AT 
TI ED -EMITTER"OR" 

READ DATA 
LEAVING MEMORY 

TIME = 20 ns IDlY. 
AMPLITUDE 0.5 mY I DIY 

Figure 18. Memory waveforms. 



330 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

register~ The delayed read initiate arrives at the 
output data register one nanosecond later and clocks 
the stored information into the register. The data is 
available at the terminals of the memory 17 nano
seconds after the start of the read initiate pulse. 

It is important to note that the memory bit output 
is directly compatible with the current mode logic 
and no amplification is required. This eliminates the 
usual memory noise problems and attendant recov
ery time· periods allowing the extremely fast memory 
speeds. This is simply an extension of the same tech
nology used in the remainder of the computer ap
plied to the implementation of a high speed bank 
of independently addressed registers to be used in 
various critical points in the computer. A later sec
tion gives examples of the use of a memory of this 
type. 

In the read-decision-write cycle, a delayed read 
initiate pulse clocks the write address and write data 
into the appropriate registers. The exerciser then 
supplies a write command pulse 15 nanoseconds 
after the read is completed. The write operation is 
completed approximately 8 nanoseconds after the 
start of the write command pulse. 

In a more general application, the write command 
would be used to clock the write address and write 
data into the registers. This is a longer delay path 
and 10 nanoseconds would be required to perform 
a write operation. 

The memory exerciser contains no bypass route 
in case the read address and write address are identi
cal during a cycle. If this occurs, the old information 
is obtained during the read operation since the read 
is completed before the memory bit changes state 
(refer to Fig. 2). The memory bit changes state 
during the first portion of the next read cycle just 
prior to the time the address information filters down 
to the memory bit read gate. The error detection 
circuitry is designed to account for this type of oper
ation. 

The only limitation placed upon simultaneous 
read and write operations is that the memory bit 
cannot be accessed for a read operation during the 
period of time (approximately 2 nanoseconds) 
when the memory bit is actually changing state. As 
long as the system designer knows whether the mem
ory bit is accessed before or after the change of 
state, he can use the memory output accordingly. 
This allows a large degree of flexibility on the part 
of the system designer. 

It should be noted that the registers at the inputs 
and outputs to the memory are included for gen
erality only. In most cases, these registers are con
tained in the logic portion of the computer and can 
be eliminated from the memory, assuming the 
proper timing can be guaranteed. This, of course, 
allows faster operation of the memory. 

In certain instances, cycle overlap could be used 
to decrease the read and/ or write periods. The 
actual read access time and/ or write time would 
remain the same; however, the rate of operation 
would be increased by taking advantage of the read 
address, write address, and input data storage time 
in the various decode and fan-out trees. 

SYSTEM APPLICATIONS 

The memory described thus far is designed for a 
particular application requiring a read-decision-write 
cycle and 64 words of 8 bits per word. As previously 
mentioned, other modes of operation for different 
applications are possible. The memory capacity can 
also be altered quite easily. 

The number of bits of storage can be increased 
in several ways. A modular approach can be used 
by connecting 64 X 8 memories in parallel or the 
memory boards can be redesigned to accept the 
larger number of bits. The modular approach is 
particularly applicable to the distribution of small 
memories of various sizes throughout a large com
puter. It is possible to construction a 64 X 32 
memory using either of the above approaches with a 
cycle time of approximately 20 nanoseconds. The 
extra 3 nanoseconds result from one stage of logic 
plus line delay. 

The memory has all of the usual applications of 
scratchpad memories, but its two read channels 
suggest other special· applications. 

The arithmetic unit of a computer operates on 
two words at a time. A dual read operation could 
provide both words to the arithmetic unit in only 
one memory access time. The simultaneous write 
feature would allow the memory to be written into 
at the same time the read operations were taking 
place. The data being written could come either 
from the main memory or the arithmetic unit. 

In some computers, a separate adder is used for 
index and dynamic memory relocation operations. 
A memory with dual read capability could provide 



A HIGH-SPEED INTEGRATED CIRCUIT SCRATCH PAD MEMORY 331 

the index quantity and relocation coefficient to the 
adder simultaneously. The adder would then add 
the above two quantities to the address in one step. 

The dual read operation could also be used to 
provide both halves of a word for double word 
length operations. 

All of the above applications are used to reduce 
the effective memory access time by one-half. 

CONCLUSIONS 

This paper describes an extremely high-speed 
memory that is very flexible in application. The 
physical size required to implement a flip-flop mem
ory of this speed can only be obtained using densely 
packaged integrated circuits. The use of a storage 
element operating at standard logic levels contributes 
greatly to the high speed and allowed the develop
ment of this memory in the relatively short period of 
1 a months. The memory speed, flexibility, and de
velopment time are all improvements over prior 
attempts to implement under-l aO-nanosecond mem
ories using magnetic techniques. 

ACKNOWLEDGMENTS 

The authors extend their thanks to all of the 
persons in the Integrated Circuit Research and De
velopment group at Motorola who contributed to 
the design and construction of the memory described 
in this paper. The efforts of Howard Hannah, Rob
ert Hawn, Dave Turcotte, and Anthony Ziolkowski 
are particularly appreciated. 

REFERENCES 

1. R. P. Shively, "SMID: A New Memory Ele
ment," Fall Joint Computer Conference, vol. 27, 
part 1, Spartan Books, Washington, D. C., 1965, 
pp.637-47. 

2. H. A. Perkins and J. D. Schmidt, "Integrated 
Semiconductor Memory System," ibid, pp. 1053-64. 

3. J. R. Burns et aI, "Integrated Memory Using 
Complementary Field-Effect Transistors," 1966 In
ternational Solid-State Circuits Conference, Digest 
of Technical Papers, vol. IX, pp. 118-19. 

4. G. B. Potter and J. Mendelson, "Integrated 
Scratchpads Sire New Generation of Computers," 
Electronics, vol. 39, no. 7, pp. 118-26 (Apr. 4, 
1966). 





SONIC FILM MEMORY * 

H. Weinstein, L. Onyshkevych, K. Karstad and R. Shahbender 

Radio Corporation of America 
Princeton, New Jersey 

INTRODUCTION 

The sonic film memory represents a novel ap
proach to the storage of digital information. Thin 
magnetic films and scanning strain waves are com
bined to realize a memory in which information is 
stored serially. The remanent property of magnetic 
films is used for nonvolatile storage. The effect of 
strain waves on magnetic films is used to obtain 
serial accessing. This effect is also used to derive a 
nondestructive read signal for interrogation. 

The concept of a block -oriented random access 
memory 1 (BORAM) was recently introduced. In 
such a memory, information is stored in blocks with 
random access to blocks being accomplished at elec
tronic speed. Information in a block is retrieved 
serially at bit rates compatible with computer speeds. 
The sonic film memory represents one possible 
realization of a BORAM. 

SYSTEM DESCRIPTION 

The simplest configuration for a sonic film memory 
block 2,3 consists of a glass tube with a magnetic 
film coating. A conductor threads the tube, an ultra
sonic transducer and an ultrasonic absorbing termina
tion are attached to the ends, as shown in Fig. 1. 

* The work described in this paper is partially supported 
by the USAERL under contract numbers DA36-039-AMC-
03248(E) and DA28-043-AMC-01392(E). 

333 

The magnetic coating has square loop properties and 
is originally saturated circumferentially along the' 
entire length in one direction. To enter information 
serially into the block, a strain wave is launched 
along the tube and propagates from the transducer 
end to the termination. At the termination, the wave 
is completely absorbed. As the wave propagates 
along the tube, it reduces the switching threshold 
of the strained region. A pulse of current applied to 
the conductor linking the magnetic coating will cause 
flux reversal only in the strained region permitting 
the selective writing of information. 

Nondestructive serial retrieval of the stored infor
mation is effected by propagating a strain wave along 
the rod. This produces a reversible change in the 

TRANSDUCER ABSORBING 
TERMINATION ~---'-~ 

1 d r 
0 -v 

STRAIN D 
to 
Xo 

DIGIT ________ --LD...L-___ _ 

Figure 1. Sonic film memory realization. 



334 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

magnetization of a strained region. This change in
duces a voltage in the linking conductor whose 
polarity depends on the remanent state of the flux 
corresponding to the stored information. 

Figure 1 shows that the region in space occupied 
by the strain wave determines the dimensions of a 
"bit." The spatial dimension d, shown in Fig. 1, is 
given by: d = vt, where v is the velocity of sound, 
and t is the time duration of the strain wave. 

To enter information, it is necessary that the 
strained magnetic region complete its switching in 
a time which is a fraction of the time duration of the 
strained pulse. For high bit densities, say in excess 
of 50 bits to the inch, this implies a switching time 
of the order of 10 nanoseconds. 

Assuming that the strain wave causes a reduction 
in the magnetic threshold of only a factor of 2, it is 
clear that switching must be accomplished with rela
tively modest overdrives. The requirement of high
speed switching, with relatively modest overdrives, 
rules out the possibility of using isotropic magnetic 
materials for the storage medium. However, thin 
magnetic films with uniaxial anisotropy have the 
required property of very fast switching, of the order 
of 2 nanoseconds, with drives of the order of the 
anisotropy field. 4 

For the memory configuration shown in Fig. 1, 
and high bit densities, it is necessary that the mag
netic coating have uniaxial anisotropy and be capable 
of fast switching. Such coatings with a circum
ferential easy axis and an axial hard axis are in use 
for random access memories. 5 

STRAIN DEPENDENCE OF MAGNETIC 
CHARACTERISTICS OF FILMS 
WITH UNIAXIAL ANISOTROPY 

The gross magnetic properties of a planar film 
with uniaxial anisotropy may be described by specify
ing the direction of the anisotropy (easy axis), the 
magnitude H k of the anisotropy field, and He the 
easy axis coercive field. The dependence of the ani
sotropy direction and anisotropy field on uniaxial 
strains applied at an arbitrary angle with respect to 
the easy axis may be derived analytically. 6-8 The re
sults of these derivations are: 

sin 2cf> 
tan 20r = K-----

1 + K cos 2¢ 

hk = Hk/Hko = (1 + K2 + 2K cos 2cf>)1/2 

hk = sin 2cf>/sin 2(¢ - Or) 

where cf> angle between the strain axis and the 
unstrained easy axis, 

K 

the angle through which the strain 
rotates the easy axis (referred to the 
unstrained easy axis), 
the strain-free anisotropy field, 
the effective anisotropy field in the 
strained film, 

S AHk 
strain parameter = - -- for cf> = 

Hko AS 

o or 7r /2, and 
S strain. 

Figures 2 and 3 are plots of the above equations.8 

In Fig. 2, Oris plotted as a function of K with cf> as 
a parameter. In Fig. 3, Hk is plotted versus K with cf> 
as a parameter. 

Inspection of Fig. 2 shows that if the strain is 
applied along the easy axis (cf> = 0°), the anisotropy 
direction is unchanged for all values of strain (ten
sile or compressive). On the other hand, if the strain 
is applied at rightangles to the easy axis (cf> = 7r /2) , 
the anisotropy direction changes discontinuously at 
K = 1 from Or = 0° to Or = 7r/2. 

Inspection of Fig. 3 shows that Hkcan be increased 
or decreased by application of strain. For a positive 
magnetostriction coefficient and a tensile strain, K is 

90 

80 

70 

60 

Vi 
Q) 

~ 50 
Ol 
Q) 

~ 

eX; 40 

30 

20 

10 

4> = 90° 

4>= 89.75° TAN e K s~n 24> 
r ItK cos 24> 

I 2 

K (NORMALIZED STRAI N) 

Figure 2. Axis rotation angle Or vs strain parameter K. 



SONIC FILM MEMORY 335 

o 
G:lI.Ei 
i:i: 
>a.. 
~ 1.2 

b 
(Jl 

Z 
<X 0.8 

o 
ILl 
N 

~0.4 
~ 
a: 
o 
z Or---~L-----------+-----------~--~ 

Figure 3. Normalized effective anisotropy field vs strain 
parameter K. 

positive (a compressive strain corresponds to K neg
ative). For this case the normalized anisotropy field 
H k. is reduced by the application of a compressive 
strain along the easy axis (cp = 0) or a tensile strain 
along the hard axis (cp = 7r /2). From Fig. 3 it is 
seen that for values of K > 1 and cp = 7r /2 the 
Hk< O. This is a result of the discontinuous rotation 
of the easy axis as indicated in Fig. 2. 

Experimental data on planar thin films/ and films 
with cylindrical symmetry 9 are essentially in agree
ment with these theoretical predictions. 

For highly magnetostrictive iron-nickel films the 
experimental data indicates that a strain of 10-4 is 
required to produce discontinuous rotation of the 
easy axis. Similarly, a reduction in the anisotropy 
field by a factor of 2 is realized with a strain of 10-4

• 

To accomplish sequential selection in a memory 
block, either the rotation of the easy axis with 
strain, or the reduction of the anisotropy field with 
strain, or a combination of both effects may be used. 
In either case, the required strain is of the order 
of 10-4

, and it is necessary to generate this strain at 
the film. Use of magnetic compositions with higher 
magnetostriction permits a reduction in the required 
strain amplitude. 

STRAIN SWITCHING OF THIN 
MAGNETIC FILMS 

The switching thresholds for thin magnetic film 
are given by the well-known astroid shown in Fig. 4. 
For an unstrained element the thresholds are de
termined by the value H ku and the outside astroid 

in Fig. 4a. For a strained element, the threshold is 
given by H ks shown by the inside astroid in Fig. 4a. 
This assumes that the strain is applied along the 
easy axis or along the hard axis and is of a magni
tude so as not to produce discontinuous rotation. 
Consider the points PI and P2 in Fig. 4a. It is clear 
that a hard axis bias in combination with either a 
positive or a negative easy axis drive will cause 
switching of a strained element but will not cause 
switching of an unstrained element. Thus a coinci
dence of an easy axis drive with a strain pulse will 
cause switching at the local strained region. 

Alternatively, the rotation of the easy axis due to 
the application of strain may be utilized to enter in
formation into the memory. In this case, the strain 
rotates the easy axis and an easy axis drive com
pletes switching of the strained region. This is illus
trated by the astroids shown in Fig. 4b. Bipolar 
easy axis drives are required to produce both rem
anent states. In an actual film, a combination of 
both rotation and reduction in the anisotropy field is 
probably the cause of switching. 

(a) REDUCTION IN 
ANISOTROPY FIELD 

P
2, 

HARD AXIS 

I 
I 
I 
I 

I EASY AXIS 
I-- DRIVE AMPLITUDE 

~. 
~. 

.-);:KS -// 
I 

I, 

(b) EASY AXIS I ' 

EASY AXIS 

ROTATION I " \: 
I / " ~ EASY AXIS 1/..------ --_~ DRIVE AMPLITUDE 

/ Y 
Figure 4. The switching astroid. 



336 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

50 TURN SENSE COIL 
(MICROMETER MOUNTED) 

HELMHOLTZ 

~~~~~~~~~~/COILS 
FUSED QUARTZ
(4"x{'x~")

PERMALLOY FILM.
DCT(0.2" DIA.)

Figure 5. Memory device geometry.

MEMORY CELL TEST DATA

Static Magnetic Fields

The storage system selected for initial testing
consists of thin permalloy films deposited on a
fused quartz substrate. The substrate measures
4 X % X % inches and has a PZT transducer
bonded to one end surface as shown in Fig. 5. The
PZT transducer operating in the longitudinal mode
is used to generate strain pulses in the substrate.
This is accomplished by exciting the transducer at its
resonant frequency of 4 Mcps, from an external
generator with a modulated sine wave voltage.

The thin film storage elements have a composition
of 60:40 nickel-iron and a diameter of 200 mils.
The spacing between the film spots is 0.5 inches to
eliminate magnetic coupling between the spots from
interfering with the measurements. The hysteresis
loops measured under static strains for samples of
this composition indicated a uniaxial anisotropy
together with a relatively high strain sensitivity. The
substrate with the magnetic films is inserted in the
mounting jig shown in Fig. 6.

For the device shown in Fig. 5, the strain pulse
propagates in a direction along the hard axis of the
magnetic films. Helmholtz coils provide bipolar mag
netic fields of approximately 5 Oe in the easy direc
tion during writing and are used to establish the
original direction of magnetization of the films. A
50-turn coil is positioned close to a film element
and is used to detect the output sense signal. A
strain pulse packet is generated by the transducer
and sequentially scans the magnetic films. Figure 7
shows the voltage applied to the transducer. The first
signal is the voltage applied by the generator to the
transducer and the second waveform is due to the

Figure 6. Sonic film memory rod mounted on drive jig
(side view).

strain wave being reflected from the far end of the
quartz substrate and impinging on the transducer.
The lower trace in Fig. 7 shows the waveform ob
tained from the sense coil. This waveform is ex
panded in Fig. 8 for both binary remanent states
in the films. As can be seen in Fig. 8, the sense sig
nals are bipolar in nature. They are truly nonde
structive for limited strain amplitudes.

The magnitude of the sense signal was found to
be linearly dependent on both the strain amplitude
and the diameter of the film spot. When a static
easy axis magnetic field is maintained during the
sense operation, the magnitude of the sense sig.nal
diminishes. For a field of 7 Oe, the sense signal is
reduced to zero.

To switch a film with a given strain amplitude, a
threshold value for the static magnetic field exists.
The higher the amplitude of the strain pulse, the
lower is the threshold value for causing magnetic
reversal. For transducer excitation of 100. volts
peak value, the magnetic threshold is 2.8 Oe. For
a sonic drive amplitude of 50 volts peak value, no
change in magnetization is observed when the mag
netic field is reversed. This demonstrates that· a coin-

SONIC FILM MEMORY 337

IOfLsec/dlV

TRANSDUCER VOLTAGE
20V/dLv

SENSE SIGNAL
0.1 V/dLv
(WAVEFORM EXPANDED
IN FIG.8)

Figure 7. Sonic drive and sense signal.

cidence of a magnetic field and strain pulse is
required to cause switching in the magnetic film.

To further demonstrate the need for coincidence
between strain pulses and magnetic· field pulses to
produce switching, dynamic "Write-Read Disturb"
testing was undertaken.

Dynamic Testing

For this test the sense coil of Fig. 5 is used to
apply the magnetic bit field. A common clock pro
vides synchronization between the sonic and mag
netic pulses. The sonic drive program consists of a
doublet of sinusoidal bursts as shown in the timing
diagram of Fig. 9. The first burst is used for writing
information· into a memory element. The second
burst is used to read out the information. The mag
netic field pulse is applied via the sense coil in coin
cidence with the strain burst arriving at the storage
element. The upper trace in Fig. lOa shows the
voltage waveform applied to the transducer for a
write-read sequence. The lower trace illustrates bi
polar magnetic digit drives (one and zero) timed
to coincide with the arrival of the write strain
pulse at the test storage location. Figure lab illus
trates the disturb condition. Only magnetic energy
is applied to the memory cell under test without a
write strain pulse. Figures lac and lad show the

VERT: 200fLV/d~v
HOR: 0.2fLsec/dLv

SENSE"I"

SENSE "0"

Figure 8. Expanded sense signals.

sense signals corresponding to the write and disturb
conditions, respectively. For Fig. lac the sense
signals are bipolar corresponding to the binary state.
Figure lad shows the sense signals obtained by dis
turbing the binary one state by both positive and
negative digit pulses. As can be seen, the digit
pulses produce very little disturb effects.

For this set of dynamic tests, distinct thresholds
were observed for both the strain and magnetic drive
amplitudes. However, the margins of operation for
both the strain and magnetic field pulses were nar
rower than in the case of static magnetic testing.

Unipolar Strain Pulse Testing

For this set. of tests, films with an iron-nickel
cobalt composition having very high magnetostric
tion are used. . The elements, with a rectangular
shape, measure 0.1 X 0.15 inches and are approxi
mately 1000 A thick. These films are deposited on
conventional microscope glass slides measuring
1 X 3 X 0.04 inches. A shear mode PZT trans
ducer, resonating a 1.5 MHz, is bonded to one end
of the glass slide, a fine layer of viscous material is
used for damping ultrasonic reflections. Figure 11
shows the geometrical arrangement of the magnetic

w
~
0.:::
o
U

z
o
(f)

o
..J
W
iL:
f
t9
(5

...J
<t
Z
!:2
(f)

w
(f)

Z
w

READ

(f) ~ ______________________ _

Td = PROPAGATION TIME FROM TRANSDUCER
TO MAGNETIC FILM

Figure 9. Timing sequence for dynamic testing.

338 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

WRITE SONIC READ SONIC

{
WRITE "I"

MAGNETIC WRITE "0"

{DISTURB -I"
MAGNETIC1.DISTURB"O

5JLsec/div

(a)

IOOVldiv

10VI d iv
ACROSS 50n

READ SONIC

5fJ-sec/div
(b)

DRIVE SIGNALS

100V/div

-
IOV/div
ACROSS 50n

0.2fJ-sec/div
(c)

0.2 fJ- sec/div
(d)

SENSE SIGNALS

0.5 mV/div."O"DISTURB

Figure 10. Memory cell operation.

films, direction of the easy axis, and the direction
of particle motion in the shear mode wave.

The glass substrate is sandwiched between two
copperclad etched circuit boards which form the
sense and drive windings for the magnetic films. Uni
polar pulses from an external generator are applied
to the transducer to generate strain pulses in the sub
strate. Excitation ranges from 30 to 100 volts and
is adjusted in width for optimum transducer re
sponse.

Figure 12 shows the sense signal (sense winding
parallel to easy axis) generated when a given storage

SENSE
(WINDING PARALLEL TO E.A.l

PZT TRANSDUCER

SONIC
DRIVER

\

t
PARTICLE
MOTION

rr=-~I:-==+-i=-=-=-i;lH=--=-=W=-:-=.-.,

I I
I I
I I

TO SENSE AMPLIFIER
a DRIVE CIRCUITRY

(WINDING PARALLEL TO H.A.l

Figure 11. Planar film storage array.

t E.A.

location is switched into one of the two remanent
states. This is accomplished by the coincidence of
a strain pulse and a magnetic field pulse applied to
the transducer and the drive windings, respectively.
As can be seen, the sense signals are bipolar and of
an amplitude of 0.5 millivolts.

The magnitude of the sense output may be en
hanced by applying a constant hard axis bias during
the sense operation. For the device configuration of
Fig. 11, a hard axis bias is applied by a pair of
Helmholtz coils. The output sense signals are shown
in Fig. 13. In the absence of a hard axis bias, the
sense signals induced in a winding parallel to the
hard axis are negligibly small.

STRAIN WAVE GENERATION

For operations of a high-density sonic film mem
ory, unipolar strain pulses with a width of approxi
mately 10 nanoseconds, and a strain amplitude no
greater than 10-4 must be radiated into a fused
quartz substrate. The most practical method for
generating such pulses is by means of piezoelectric
transducers.

While a considerable number of materials are
piezoelectric, five were selected for investigation.

SONIC FILM MEMORY 339

.,~I
~ .1- (a) SENSE "1"

n PL .. ~Ll
(b) SENSE "0"

L

0.5mV/div .• 2#Lsec./div.

Figure 12. Sensing a single bit.

These are quartz, cadmium sulfide (CdS), lithium
metagallate (LiGa02), antimony sulfur iodide
(SbSI), and lead zirconate-Iead titanate (PZT). The
emphasis was on quartz which is readily available
and capable of fundamental mode operation up to
approximately 100 MHz. PZT is used in the low
MHz range, because of its high conversion efficiency.
The three other materials were investigated because
of their great potential. A brief survey is given be
low of the piezoelectric characteristics of these
materials.

Material Characteristics

1. Quartz. For X-cut quartz, vibrating in its thick
ness mode, strains generated10 by an applied electric
field, E, is:

s = d ll X E

where dll is the transmission sensitivity. For quartz
d ll = 2.3 X 1 0~1'2 coulombs/newton.

The strain propagating in a fused quartz substrate
may be evaluated by using a transducer as a receiver.
The electric field generated by the transducer due to
an incident strain pulse is:

E = gll X T = gll X Y X s

where T is the incident stress, Y is Young's modulus
for fused quartz, and gll is the reception sensitivity.
For quartz,

gll = 0.058 volt-meter/newton.

(0) Hh = + 100e

(b) Hh = - 100e

0.5mV/dhL, 2,.,. sec /div.
Figure 13. Sense signal from a 4-element storage array .

For an exact determination of strain at a specific
location, losses in the bond and the substrate must be
taken into account.

To generate a narrow strain pulse, a wideband
transducer is required. The pass band of a transducer
is defined almost entirely by the ratio of the acoustic
impedance of the transducer to that of the delay
mediumY Fortunately, the characteristic acoustic
impedance of quartz (15.1 X 10-6 kg/ rri2-s), and
fused quartz (13.1 X 10-6 kg/ ni2-s) , are almost
equal. A quartz crystal loaded with fused quartz and
air backing has a mechanical quality factor Qm ,::::::
7T/2.

The objective is to have a strain pulse with a rise
or fall time T of the order of 5 nsec. This requires a
transducer bandwidth B of 80 MHz (T X B :::::: 0.4)
and a natural resonance frequency in excess of 60
MHz.

For a 1 mil thick transducer, the resonance fre
quency is 100 MHz. To generate a strain of 10-4

requires 1100 volts. The emf generated by the trans
ducer operating as a receiver due to an incident strain
of 10-4 is 11.5 volts.

Quartz has a low dielectric constant (K = 4.5);
the acoustic losses are extremely small and the capac
itive loading is unimportant for the required pulse
response.

2. Cadmium Sulfide, (CdS). CdS has a higher trans
mission sensitivity than quartz:

d33 = 10.3 X 10-12 c/n

The single crystal material is difficult to lap down to
thin wafers (below 3 mils thick). However, CdS
can be evaporated and recrystallized12 giving an at
tractive approach for making practical high frequency
transducers. Fundamental mode operation at 100
MHz requires a film thickness of 17.51'-, and 175 v
will generate strain of 10-4 •

The characteristic impedance of CdS is 21.5 X
10-6 kg/rri2-s and there is a mismatch to fused quartz
representing a 2.3 dB loss, which must be added to
bond losses caused by imperfect bonding. With evap
oration techniques, however, inherently good bonds
are expected.

3. Lithium Metagallate, (LiGaOz). Relatively little is
known about this material. 13 Single crystals are me
chanically hard and have a low dielectric. constant.
The acoustic Q (> 105

) has been measured. The
electromechanical coupling coefficient k t = 0.25 and
d33 = 7.7 X 10-1'2 c/n. The compound seems to

340 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

have most of the attractive qualities of quartz, but is
capable of generating three times higher strain for
the same drive voltage. The characteristic impedance
is 27 X 106 kg/m'2-s and the mismatch of LiGa02
to fused quartz causes a loss of 3.5 dB.

4. Antimony Sulfur Iodide, (SbSl). This material
has only recently been investigated as a piezoelectric
transducer.14 It is the strongest piezoelectric material
known. At 18°C, d33 = 2000 X 10-1'2 c/n which is
three order of magnitude greater than for quartz.
The coupling coefficient k t ranges from 0.8 to 0.9.
Disadvantages are the very high dielectric constant,
and the Curie temperature of 22°C.

5. Lead Zirconate-Lead Titanate, (PZT). This ce
ramic compound is readily available and has been
investigated thoroughly. Its transmission sensitivity
d33 = 260 X 10-1'2 c/n. A potential of 110 v across
a 20 mils thick transducer produces a strain of 10-4

•

The relative dielectric constant is large (K3 = 1300),
and makes unipolar pulse operation difficult. The
characteristic impedance is 30 X 106 kg/m2-s and
losses due to mismatch to fused quartz are 4.2 dB.

Experimental Data

1. Quartz. Transducers having thicknesses of 1, 2,
and 3 mils were tested in the longitudinal mode of
vibration. One-mil thickness corresponds to a reso
nant frequency of 100 MHz, and is about the upper
practical limit for fundamental mode operation.

For the delay material we used fused quartz be
cause of its low attenuation characteristics. Most of
the material used is commercial grade. The end sur
face of the fused quartz" rod is given a conductive
coating of gold.

A good bond between the crystal and the metal
lized rod is difficult to achieve at high frequencies.
The bonding agent finally adopted is waterglass (po
tassium silicate). The tensile strength of the bond is
high and its characteristic impedance is close to
quartz (::::: 9 X 10-6 kg/m2-s), although the bond is
not of a permanent nature.

We tested the samples to estimate strain magni
tude, determine pulse shape, optimize the width of
the drive pulse, determine amplitude/frequency re
sponse, signal-to-noise ratio, insertion loss, attenua
tion in bonds and delay medium, and observe extran
eous modes. The transducer assemblies are mostly
operated single-ended: the same crystal is used for
both transmitting and receiving with the signal re
flected from the polished end of the fused quartz.

A figure of merit F may be defined as the ratio
of the transducer output voltage when "operating as a
receiver to the exciting voltage applied to the same
transducer. The figure of merit measured for the best
samples is:

F = 1.4 X 10-3

for a 3 inch long single-ended sample
and

F = 2.5 X 10-3

for a % inch long single-ended sample.

These samples were excited with unipolar pulses
from a mercury pulse generator. The output voltage
is measured across a 50-0 termination. Up to 1000 v
are applied. The figure of merit values include losses
in bonds and in the delay material.

The losses are measured at 100 MHz by observing
the exponential decay of reflected echoes while the
transducer is excited with bursts of 100 MHz sine
waves. Losses in a bond are 2.45dB, and the in
trinsic loss in fused quartz is 0.26 dB/em. Similar
values are given in the literature.15

Figure 14 illustrates pulse response from 1 mil
thick crystals. The output amplitUde can be maxi-

(0)

(b)

(c)

(d)

INPUT:

Ein =400V
H ="IOnsec/cm

OUTPUT:

SAMPLE NO."6"
114 II OIAM. x 718"
H= IOnsee/em
V = 40a mY/em

OUTPUT
SAMPLE NO."S"
1/4· OIAM. x 718"
H= 10 nsee/em
V= 400mV/em

OUTPUT:
SAMPLE NO. "5"
1/4" x 1/4" x 3"
H = 10 nsee/em
V =200mV/em

Figure 14. Output from three different samples of quartz
transducers, single-ended.

SONIC FILM MEMORY 341

12

> 10
E

....
=>
0

8 lLJ
o

0

6
I

-- - -- - -- -I - --- -- ~ --- - --- - - - - - -

4

2

0
30 40 I 50 60 70 80

I
I

90 100 110 120 I 130 140 150
t (Mc/s)

Figure 15. Frequency response characteristic for I-mil quartz transducer.

mized by adjusting the width of the input pulse.
The optimum input pulse width Tin is related to' the
transducer resonance frequency fr by:

1
Tin = - = 5 nsec

2fr

We measured Tin = 7 nsec and the output pulse
width is T = 6 nsec.

The pulse response is indicative of a wideband
transducer. This is confirmed in the amplitude/fre
quency response curve shown in Fig. 15. The 3-dB
bandwidth in this curve is 100%. The signal-to
noise ratio of the sample is 67: 1. The SIN ratio is
defined as the ratio between the first echo and the
largest spurious signal following it. The measurement
is done with short bursts of sine waves at 100 MHz.
While the transducer ideally should vibrate only in
its longitudinal mode, some shear modes, mode con
versions, and spurious modes will always be gener
ated.

2. Cadmium Sulfide, (CdS). High-resistivity films
which are piezoelectric active in the 100 MHz and
lower frequency range have been produced by an
approach based on the de Klerk method.16

Figure 16 shows the response from a 1 inch long
sample operated with bursts of sine waves at 100
MHz. The figure of merit (unipolar operation) is
F = 30 X 10-3

•

3. LiGaOz SbSI, and PZT. Lithium metagallate has
been used at a natural resonance frequency of 19
MHz. The figure of merit is about three to four times
higher than observed for quartz.

SbSI is a material difficult to cut and polish be-

H: 20JLs/cm. V:200mV/cm.

FUSED QUARTZ ROD: lUx O.25"DIA.

Figure 16. Echo response from evaporated CdS transducer
(f = 100 MHz).

342 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

cause of its soft porous nature. One 5 mil thick
sample operated at 23 MHz. However, the figure of
merit is far below theoretical expectation.

Experiments with PZT-4 material were carried out
for samples as thin as 5 mils and fundamental opera
tion of 17 MHz. The figure of merit for unipolar
pulse operation is 130 X 10-3

• This is two orders of
magnitude higher than for quartz.

4. Guided Wave Propagation. To check the feasibil
ity of strain wave interaction with anisotropic thin
magnetic film a guided wave structure is employed.
In this structure, planar films are evaporated on a
standard microscope glass slide (1 X 3 X 0.040").
The glass slide serves as the delay line. As shown
in Fig. 17, a shear mode transducer with indicated
polarization is attached to the end of the glass slide.
The end-surface is first polished and metalized with
an evaporated gold electrode. The transducer is
bonded to the substrate with silver epoxy.

According to earlier work,17 an infinite number of
width shear modes can propagate in a strip of in
finite width. All of these modes are dispersive with
cut-off characteristics except for the zero-order
mode, which propagates at all frequencies from zero
upwards. At frequencies sufficiently low so that an
acoustical wavelength is greater than twice the strip
thickness, only the zero~order mode can propagate
and it is completely free from dispersion. From the
viewpoint of acoustical transmission alone, the fun
damental nondispersive shear mode of propagation
offers the most advantageous characteristics. Also
the shear wave velocity is less than the velocity of
extensional waves by a factor of about three-fifths,
and permits greater ·bit packing density.

DIRECTION OF
POLARIZATION

t
PARTICLE

MOTION

DIRECTION OF ~
PROPAGATION

Figure 17. Strip delay line with shear mode transducer.

o. SINE WAVE OPERATION
H: 20p.s/cm. f= I. 5 MHz

b. DC PULSE OPERATION

H: 50 p.s/cm.

c.
H: 0.5p.s/cm.

Figure 18. Echo response: PZT shear mode transducer on
strip delay line 1 x 3 X 0.040".

The lowest cut-off frequency of the longest dis
persive mode for the chosen substrate geometry is
Ie = 1.9 MHz. The resonance frequency of the
transducer used for testing is chosen 1.5 MHz, and
the acoustical wavelength is 100 mils. Since the strip
width is many times the wavelength, the main lobe is
narrow in the width direction. Furthermore, the
minor surfaces are coated with an absorbing material
to lower reflections of energy from secondary lobes.

The echo pattern reflected off the end of the 3 inch
long strip is shown in Fig. 18. Figure 18a illustrates
sine wave drive, while unipolar pulse operation is
shown in Fig. 18b. The first pulse echo is expanded
in Fig. 18c. The optimum width of the input pulse is
330 nsec, and the bandwidth of the transducer is
34%.

MAGNETIC MATERIALS

Requirements

The objective of the material investigation is to
find a composition with high sensitivity to strain and
low threshold values -He or H k •

In addition, the films must have the following
properties: good orientation of the easy axis, good
squareness of the hysteresis loop, and low dispersion.

Nickel-iron magnetostrictive alloys have thresh
olds below 10 Oe, good squareness, and good orien
tation. The highest strain sensitivity encountered with
these materials yields a change in threshold by a

SONIC FILM MEMORY 343

factor of 2 for a strain of 10-4
• For practical opera

tion, a sonic memory material with a similar change
for a strain of 10-5 is desirable.

Materials Investigation

To find a desirable film material special ihstru~

mentation was constructed for production and static
testing of samples as described below.

Fabrication Facilities. For this phase the films are
produced by evaporation. Figure 19 shows the evapo
rator used, as well as some of the jigging especially
constructed for this purpose. The melt material is
evaporated from an alumina crucible by rf induc
tion heating. Eight substrates can be coated serially
in a single run. The vacuum during evaporation is of
the order of 10-6 torr.

The substrates are heated to 350°C by specially
developed individual ceramic heaters. The heat dis
tribution over a slide is rather critical. A thorough
investigation shows a maximum variation of only
+ 5°C from slide to slide and over a single slide
from its edge to the center. The temperature of the
slides is closely monitored by thermocouples.

Thickness is measured by a crystal monitor. The
reading is differentiated to produce a rate reading,
which in turn is fed back to control the power output
of the rf power supply to achieve a constant rate.
Automatic shuttering is used to produce films of
very uniform thickness.

The films are evaporated and cooled in .. a uniform
magnetic field of 50 Oe. In Fig. 19, the Helmholtz
coils used are visible. One of the coils is swung back
for access to the jigging.

Both glass and fused silica are used as substrates.
Cleaning of the substrates is accomplished by boiling
in chromic acid, ultrasonic shaking and repeated
rinsing in acetone, alcohol, and distilled water. Pat
terns of spots are produced by masking. Figure 20
shows some of the films used in this program. In
order to prevent oxidation of some of the more active
films, they are coated with plastic spray immediately
after opening of the bell jar.

Static Testing Facilities. In order to measure the
magnetic parameters of the films under various con
ditions of static strain,.· an unique hysteresis loop
tester was constructed; the active part of which is
shown in Fig. 21.

This instrument permits testing of film-spots of
various diameters from 1h inch to 20 mils. To

accomplish this, sensing heads of various sizes are
used. The sensing heads consist of coils, wound in a
figure-8 pattern, each half consisting of 200 turns of
small wire.

Magnetic drive at 10kHz is applied to the
sample with a maximum of 60 Oe peak-to-peak.

Strain can be applied to the sample-both tension
and compression. The substrate is cemented with
epoxy into bakelite jaws which are coupled to a pneu
matic system. The system can apply static strains in
excess of 10-4

• Strain gages are used to monitor the
strain induced in the substrate.

Both the sensing coil and the film sample can be
rotated and moved laterally with respect to the driv
ing field. A DC bias field at right angles to' the driv
ing field is also provided.

Materials Tested. Figure 22 shows the Ni-Fe-Co
melt compositions tested to date. Samples were pre
pared corresponding to the points indicated in the
figure. The films were . then tested by fluorescence
and wet chemical analysis techniques to determine
the exact composition. Note that the chart in Fig. 22
gives the melt compositiO'ns rather than the film
compositions. The exact percentages for the eight
films evaporated serially from a melt differed by a
few percent both from the melt and among them
selves. The films were then subjected to testing on
the hysteresis loop tester, and, selectively, to' X-ray
diffraction analysis to determine the crystal structure.

Results. The best results obtained so far are from
melts in region A on the chart of Fig. 22. Films
from melts more iron-rich than that end up with a
mixture of a Ni-Fe-Co alloy in a body-centered (a)
or face-centered (y) cubic crystal and precipitated
a-iron. More cobalt-rich films sometimes give a mix
ture of body-centered cubic (a) and hexagO'nal (e)
phases; this causes instability and very high values of
coercivity. Nickel-rich films have lower magneto
striction, which actually goes through a null along
the line indicated in the chart (Fig. 22).

In region A one can obtain very good films, pro
vided a single crystalline phase is achieved. Sub
strate temperature, surface cleanliness, rate of
deposition and other factors determine . the film
characteristics. Annealing may be used to improve
film characteristics.

Figure 23 shows the hysteresis loop of an espe
cially good film obtained from a melt in region A.
The photograph shows the hysteresis loop in the
direction of the original easy axis under various con-

344 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Figure 19. The main evaporator, with bell jar open.

SONIC FILM MEMORY 345

Figure 20. Typical films produced for testing;

ditions of strain, applied along the original "hard"
axis direction. The film is well oriented, with a
square loop in the "easy" direction; the unstrained
He = 7.7 Oe, Hk = 3.8 Oe. Under strain the easy
axis rotates 90° for a strain of approximately
4 X 10-5

• A strain of 1.6 X 10-5 decreases the switch
ing threshold in the original easy axis direction by
a factor of 2 (see Fig. 24). Some films made from
this melt composition were used in the dynamic ex
periments described in the section on· memory
cell test data.

CONCLUSIONS

The experimental data presented show conclusively
that rotational switching of thin magnetic films with
uniaxial· anisotropy may be accomplished by the co
incidence of strain pulses and magheticfield pulses.
The tested films exhibit thresholds for both strain
and magnetic fields. Nondestructive· read signals are

obtained by subjecting a film element to a strain
pulse.

The relative magnitude of the current pulses re
quired to switch a film is compatible with semicon
ductor circuitry-of the· order of 1 ampere. The
sense signals derived from elements of 0.1 inch diam
eter for a strain pulse of 100-nsec risetime are 0.5
millivolts. The magnitude of the sense signal is pro
portional to the· diameter of the film spot and in
versely proportional to the risetime of the strain
pulse. For smaller film spots, shorter risetimes may
be used to maintain the sense signals outputs. Thus
for a 5-nsec risetime and a spot· size of 5 mils, the
sense output is expected to be of the order of 0.5 mv.

Transducer developments showed that evaporated
CdS films of the required thickness generated· high
amplitude strain pulses of the required speed with
modest drive voltages. The developed magnetic rna ...
terials with magnetostriction coefficients considerably
higher than permalloy, further reduce the transducer

346 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Figure 21. Close-up view of the looper fixture.

drive voltage to levels compatible with semiconductor
circuitry.

Magnetic interactions between adjacent bits will
undoubtedly be of importance at high bit densities.
For random access film memories, bit densities of the
order of 50 per inch appear feasible. 18 For the sonic
film memory, the number of disturbing magnetic field
pulses to which a given bit is subjected does not ex
ceed the number of bits in a block. Thus it is ex-

Ni

• MELT COMPOSITIONS TRIED

Fe 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 Co
\. "I. Fe

Figure 22. Nickel-iron-cobalt compositions.

Ij '~ ...:!
IJj

rJ rJ " IJ

'J '"j flJj !!'II - ~ Ii\\\!! ~
II

CALIBRATION: 4.80e/DIV

~_-4.2 xI0
5

STRAIN
6.3x 10"5 STRAIN
8.4 x lo"5STRAIN

NO STRAIN

2.lx 10.5 STRAIN

IN THE DIRECTION OF THE ORIGINAL "EASY" AXIS
NO BIAS
STRESS APPLIED IN THE DIRECTION
OF THE ORIGINAL "HARD" AXIS

Figure 23. Stress sensitivity of a magnetic film made from
a 25% Fe, 15% Co, 60% Ni melt.

pected that disturb effects will be of smaller magni
tude allowing high bit densities.

Achieving high bit densities and block lengths of
several thousand bits is crucial to the economic suc
cess of the sonic film memory. Continuing effort is
directed toward achieving this goal.

ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions
and guidance of Dr. J. A. Rajchman, Director, Com
puter Research Lab, RCA Research Center, Prince
ton, N.J.

Mr. S. Hotchkiss contributed in the area of me
chanical design and was primarily responsible for
the design and construction of the hysteresis loop

9~~--~~~--~r--~--~--~~--,~~<--'~

(J)

X
<X
= 8
>-
(J)

<X
~7
-I
<X
~ 6
<.!)

a:
~5
J:
I-

~4
Z
o
i=3
u
ILl
It:
02
ILl
J:
I-

Z

J:

x~
x---x ____ x __ _

00 2 3 5 8

(Y, COMPRESSIVE STRAIN IN THE DIRECTION OF THE ORIGINAL
"HARD" AXIS

Figure 24. Coercivity in the "easy" direction vs strain.

SONIC FILM MEMORY 347

tester described in the paper. The authors wish to
express their appreciation for his help.

Mr. D. Leibowitz developed the technique for
fabricating CdS film transducers. His efforts are
greatly appreciated by the authors.

Mr. J. Walentine developed an extremely ingen
ious technique for reliable bonding of quartz trans
ducers to quartz substrates.

Mr. A. Monsen and Mr. T. Ward were instru
mental in many phases of this work and were pri
marily responsible for device and sample preparation.
The authors greatly appreciate their help.

Finally, the authors wish to acknowledge the con
tinued interest in the progress of this work by Messrs
D. Haratz and D. Hadden of the U.S. Army Elec
tronics Research Laboratory, Fort Monmouth, N.J.

REFERENCES

1. B. H. Gray, D. R. Hadden, Jr., and D. Haratz,
"Block Oriented Random Access Memory," Pro
ceedings National Symposium on The Import of
Batch Fabrication on Future Computers, Los
Angeles, Apr. 1965.

2. J. A. Rajchman, RCA Technical Notes, RCA
TN No. 346 (1959).

3. J. W. Gratian and Freytag, "Ultrasonic Ap
proach to Data Storage," Electronics, May 4, 1964,
pp.67-72.

4. H. Weinstein, "An Investigation of Serial,
Nonvolatile Computer Memories Based on a Mag
netoelastic Interaction in Ferromagnetic Storage
Media," Ph.D. dissertation, Polytechnic Inst. of
Brooklyn, E. E. Dept., 1965.

5. T. R. Long, "Electrodeposited Memory Ele
ments for a Nondestructive Memory," 1. Appl. Phys.,
vol. 31, p. 123s (1960).

6. T. S. Crowther, "Angular and Magnitude Dis
persion of the Anisotropy in Magnetic Films," J.
Appl. Phys., vol. 34, p. 580 (1963).

7. E. N. Mitchell, G. I. Lykken, and G. D. Bab
cock, "Compositional and Angular Dependence of
the Magnetostriction of Thin Iron-Nickel Films," J.
Appl. Phys., vol. 34, p. 715 (1963).

8. H. L. Pinch and A. A. Pinto, "Stress Effects in
Evaporated Permalloy Films," J. Appl. Phys., vol.
35, p. 828, (1964).

9. H. Weinstein, "Static and Dynamic Stress
Effects in Cylindrical Ferromagnetic Films," 11th
Annual Conference on Magnetism and Magnetic
Materials, San Francisco, Nov., 1965.

10. W. P. Mason, Physical Acoustics and the
Properties of Solids, Van Nostrand, Princeton, N.J.,
1958.

11. Brockelsby et aI, Ultrasonic Delay Lines, Iliffe
Books, London, 1963.

12. N. E. Foster, "Ultra-High Frequency Cad
mium-Sulfide Transducers," IEEE Transactions, SU-
11, Nov. 1964.

13. J. P. Remeika and A. A. Ballman, "Flux
Growth, Czochralski Growth, and Hydrothermal
Synthesis of Lithium Metagallate Single Crystals,"
Appl. Phys. Letters vol. 5, no. 9 (1964).

14. D. Berlincourt, et aI, "The Piezoelectric Effect
in the Ferroelectric Range in SbSI," Appl. Phys.
Letters, Feb. 1964.

15. W. P. Mason, Physical Acoustics, Academic
Press, New York, 1963, vol. I, part A.

16. J. de Klerk and E. F. Kelly, "Vapor-De
posited Thin-Film Piezoelectric Transducers," Rev.
Sci. Instr., Apr. 1965.

17. A. H. Meitzler, "Ultrasonic Delay Lines
Using Shear Modes in Strips," IRE Transactions on
Ultrasonic Eng., 1960.

18. Q. W. Simkins, "A High Speed Thin-Film
Memory-Its Design and Development," Proceed
ings 1965 Fall Joint Computer Conference, vol. 27,
part 1, supplement.

ENGLISH FOR THE COMPUTER

Frederick B. Thompson

California Institute of Technology
Pasadena, California

What about English as a programming language?
Few would question that this is a desirable goal. On
the other hand, I dare say every one of us has rather
deep reservations both about its feasibility and about
a number of problems that it entails.1 This paper
presents a point of view which gives some clarity to
the relationship between English and programming
languages. This point of view has found substance
in an experimental system called DEACON. The
second paper in this sessi6n will describe the specific
DEACON system and its capabilities.

There is one source of these reservations that we
should recognize, and that is the fact that we have
no adequate notion of the nature of natural language
and no precise description of its vagaries. It is for
this reason that most of those working on language
problems have concentrated on programming lan
guages or confined themselves to syntax. However,
the semantics of natural language pose important
problems. These remarks are related to those
problems.

The excellent work that has been done on pro
gramming languages, in particular on syntax-directed
compiling and its associated semantics, and work in
the area of symbolic logic have cast much light on
the natural language problem as well. It has illumi
nated some very real difficulties. It has also illumi
nated some aspects which can be exploited to good
ends. And more important, it has allowed the sepa-

349

ration of the deep difficulties of dealing with natural
language from some of these exploitative opportuni
ties. We shall build upon this work as well as on
recent work in linguistics.

What can be said about English as a computer
language? There are certain aspects of a very difficult
nature that are· involved in a full-blown natural
language, namely the fact that it is self-referent. In
English, we can speak of English; we are doing so
at this very minute. We can say such things as:
" John believes Mary lies. " Worse, we can say: "This
sentence lies." And we are all aware of the implica
tions of this fact as discussed by Tarski, 2 Godel, and
Turing. 3 When we think of the possible uses of
English as a computer language, we realize that little
will be lost if we abandon those parts of English
which are self-referent or involve indirect discourse.
Let us do so.

Much of the world's knowledge is in written form.
Computers are being applied to the processing of
such documentary information and are being pro
grammed to do some of the more routine functions
of the research librarian. To this end they must
indeed have a certain understanding of English.
Good work is being done in this direction, for ex
ample, the work of Robert Simmons.4

,5 However,
the use of (fomputers to intelligently service docu
mentary material is quite distinct from the use of
English as a comp:uter language.

350 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Thus I would like to focus our attention on the
use of English to:

1. input information into a computer,
2. instruct the computer to process the

information that it has stored away,
and

3. query the computer concerning the in
formation it has stored away, and
which results from processing.

These are the functions that programming languages
perform.

Usually when we think of English, we are tempted
to include the traditional patterns of syntactic analy
sis. But the parts of speech-noun, adjective, verb
are not a part of English, but rather a method that
grammarians imposed long ago in their attempts to
understand the regularities of structure that are ap
parent in language. Modern linguists, in their study
of syntax, have ramified, redefined, and modified
these traditional categories, well aware that they are,
at best, an imperfect tool for understanding the
structure of language. We shall feel free, therefore,
to choose our syntactic categories in whatever way
is useful in our analysis, and shall feel no compunc
tion to stick to the traditional parts of speech.

In programming languages, we also find syntactic
categories: operator, label, subscripted integer varia
ble, etc. In the formal expression of the syntax of a
programming language these categories are used in a
fashion parallel to the use of parts of speech in a
phrase structure grammar for English.

Typical phrase structure rule for English:

<Verb phrase>:: = <Verb> <Noun phrase>

Typical phrase structure rule for a programming
language:

<real expression>:: = <add op> <real factor>

However, there is a striking difference. The parts of
speech of traditional linguistics do not have semantic
implications beyond that made explicit by the rules
of grammar. They can be fully characterized as non
terminal symbols which are used in expressing the
recursive relationships of English structure. In times
past, loose attempts to define these parts of speech in
terms of meaning have been made. However, since
Bloomfield such attempts have fallen into disrepute.

In sharp contrast, the syntactic categories used in
the description of programming languages have clear

semantic implications. An integer variable and a real
variable designate two quite distinct entities, inde
pendent of how these variables are used syntac
tically in program statements. In FORTRAN, for
example, to say that an expression is a doubly sub
scripted variable implies a good deal about the
associated material in memory, namely that it is a
two-dimensional array stored column after column
contiguously. The part of speech of a word used in
a programming language carries clear structural im
plications for the way the corresponding material is
stored in memory.

The work of Irons ,6 and of those that have
followed him in the development of syntax-directed
compiling, has exploited this relationship and indeed
has gone much further. With each rule of grammar
there is associated a corresponding segment of code
which expresses the operations on memory structures
implied by a grammatical phrase to which the rule
applies. The syntactic analysis of a program state
ment in terms of these rules of grammar provides the
necessary directions for compiling these segments of
code into a computer program which expresses the
semantic context of the statement. One of the most
elegant formulations of this point of view has been
given by Wirth and Weber in their paper: "EULER:
A Generalization of ALGOL, and its Formal
Definition." 7

The following definitions of a formal language are
a straightforward generalization of these develop
ments, for example, of the definitions given in the
Wirth-Weber paper.

A syntax is an ordered quadruple (V, q"

B, s) where V is a vocabulary; q, is a finite
set of syntactic rules CPi (these rules may
be assumed to be of the form x ~ y, where
x and yare strings from V); B designates
the terminal symbols, a subset of V; and s
is an element of V -tJ (which can be
thought of as the part of speech "sen
tence") .

The rule x ~ y is to be read "the substring x may
be rewritten as y." Thus it permits a string w x Z

to be rewritten as w y z. If a string u can be trans
formed into a string v by successive rewritings of
substrings according to the syntax rules, then u is

* said to produce v; in symbols, u ~ v. In a derivation

* such as u ~ v, a sequence (cpl' CP2, ••• , cpm) of

ENGLISH FOR THE COMPUTER 351

syntax rules is applied. The inverted sequence (cprn,
cprn-l, ... , cp1) is called a parse of v from u. A string

* x is a sentence if s ~ x, and all of its symbols are
in B, i.e., are terminal symbols.

If all the rules are of the form x ~ y, and x is
always a single element of V, the syntax is called a
context-free phrase structure syntax. Although con
text-free phrase structure grammars are convenient
to work with, it is known that they are not adequate
to describe current programming languages, nor do
they appear at all adequate for description of natural
language. On the other hand, it is known that any
language whose sentences are recursively enumerable
has a syntax as defined above, i.e., has a Post pro
duction grammar 8; thus our definition is as general
as one would desire. In practice, one may wish a
more complex form of syntactic rule-one that
specifies more completely the character of the strings
x for which a substitution may be made. Such rules
will be discussed at length below.

The terminal symbols B can be divided into two
parts: B = FUR. R, the referent symbols, are those
which refer to specific values. Typically, variables and
constants are referent or English words such as
"house" and "red." F, the function symbols, are
exemplified by delimiters or by the English words
"and" and "all." They play a quite different role
from referent words, as will be seen below.

The referent words of a language are differentiated
by the type of objects they may denote. In program
ming languages, referent symbols include integer
variable, real two-dimensional array variable, list
name, function name, etc. Moreover, phrases (deri
vations from referent symbols) may also be differ
entiated by the types of objects they denote. Thus
in FORTRAN, not only do] and J denote integers,
but so also does] + J; in LISP, not only are A and
B list names but so is (A B). When we examine the
rules of syntax for a programming language, we find
that the nonterminal symbols appearing in these
rules are names for these categories of objects which
the corresponding referent symbols or phrases may
denote. They may also contain certain syntactic in
formation (for example, the difference between a
term and a factor), but there is indeed a relationship
which relates each nonterminal symbol to a category
or group of categories of objects which the referent
symbols and. phrases may denote. These categories
are the environment for the language.

An environment E is a finite set (C1 , C2 ,

... , Cn) of categories of memory struc
tures. The Ci need not be disjoint.

For example, the environment for FORTRAN is
the set of integer and floating point scalars, one-,
two-, and three-dimensional arrays, and Boolean
elements.

An interpretation rule 0/ defines an action
(or sequence of actions) involving the
objects of an environment E. This formal
izes a semantic counterpart of syntax.

A formal language L is a septuple (V, <1>,
F, R, s, 'lr, E), where

a. (V, <1>, FUR, s) is a syntax, and
b. E is an environment.
c. There is a correspondence (possibly

many-many) between the symbols
of V-(FUR) and the categories
of E.

d. There is a correspondence between
R and objects of the categories of E,
thus establishing the initial values of
referent symbols.

e. ir is a set of interpretation rules such
that a one-one mapping exists be
tween elements of ir and <1>, and E
is the environment for elements of ir.

To be complete, somewhat. more than this must
be said about the relationship between syntax rules
and interpretation rules. We illustrate this with an
example:

Rule: cp: a1a2a3 ~ b1b2b3b4
Suppose: bi corresponds to Ci e E

ai corresponds to C'i e E
cp corresponds to the interpretation rule 0/.

Then 0/ is on C1 X C2 X C3 X C4 to C'l X C'2
X C' 3. In this example, we have assumed neither
side of the rule cp contains function words. Function
words, being nonreferent, do not enter into the de
termination of the arguments or values of 0/.

We are now in a position to define the
meaning of a sentence of L. The meaning
M (x) of a sentence x of L is the effect of
the execution of the sequence of intepreta
tion rules 0/1, 0/2, ... , o/rn on the environ
ment E, where CP1, ••• , CPom is a parse of
the sentence x into the symbol s, and o/i
corresponds to CPi for all i.

352 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

I should' like to rephrase certain of these notions
in diagrammatic form to make clear certain of their
interrelationships. Let the environment E consist of
the categories C l , C2 , ••• ,Ck • Then the relationship
between a referent word or phrase x and its value X
can be shown by the following commuting diagram,
where P E V- (F U R) is the part of speech of x
and C E E is the category associated with p.

x ~ P
J, J,

E
X,~ C

Consider now the case of a context-free phrase struc
ture rule of grammar cp: q ~ P1P2 . . . Pn. Suppose
we have a string Xl ... Xn where each Xi is a string
of terminal symbols and has previously been parsed

* to Pi, i.e., Pi ~ Xi. According to the above defini-
tions, there is an interpretation rule if! corresponding
to cp such that the following diagram commutes.

Xl X2 .•• Xn ~ (</>: q~Pl P2 Pn)
J, J, J, J, J, J, J,

if!(Xl , X 2, ... , X r.) =Y~(tfr: C~C1XC2X ... X Cn)

where Xi is the value denoted by Xi and Xi, as a
memory structure (such as an array or list), is in
the category C i. The top half of the diagram shows
that the string Xl ... Xn can be further parsed by cp,

* i.e., q ~ Xl ... Xn. Correspondingly, the value de-
noted by Xl ... Xn isY = if! (Xb ... , Xn). The
interpretation rule if! is shown as a functor that maps
the Cartesian product of the categories Cb ••• , Cn

into the category C.

A more general diagram for a noncontext-free,
Post production rule is shown as follows:

in terms of the structural aspects of the categories
alone. Further, if! should be constructive, i.e., there
should be an algorithm for computing if! (Xl' X 2, .•. ,
X n) whenever Xl, X 2, • • • are in the appropriate
categories. A general definition of "interpretation
rule" can be given satisfying these two requirements,
along either the programming line following Mc
Carthy9 or constructive set theory following Godepo;
the details however would take us too far afield here.
We shall simply speak of an interpretation rule if!

as being structural and constructive.

Now we come to the point of the matter. The
above two' diagrams show that the domain of defini
tion of tfr is the whole of the Cartesian product
C l X C2 X ... X Cn • There is no particular need for
this stringent a requirement. Its domain of definition
may be some appropriate subset K C Cl X C2 X .. ,.
X Cn. However, just as if! itself must be defined in
terms of the structural aspects of the Ci alone, so
also must this subset be identified by restrictions. of
a similar character. A particular important class
of such restrictions are those which refer not only
to the parts of speech Pi and their associated cate
gories Ci but also to the existence ofcert~in parsings
of the strings Xi and the categories, associated there
with. Such rules are of particular, importance be.:.
cause the restriction on their domain of application
can be stated in terms of parsings of the constituent
Xi strings and thus stated in purely syntactic terms.
Such rules of, grammar for natural languages have
been identified by Chomsky ,and Harris who have
correctly stressed their importance.n -'13 These are
the transformation rules. The importance Chomsky
gives, to the concomitant transformation of the

Xl X2 ... Xn -------~) (cp: ql. . qm ~ Pl . . . Pn)

J, J, J, J, J, J,' J,
if!(Xl , X'2, ..• , Xn) (Y b ••• , Y m) ~ (tfr: C'l X ... X C' m ~ C 1 X ... X Cn)

What conditions must be placed on the inter""
pretation rule if!? Considering. the matter from the
point of view of syntax-directed compiling, it cer
tainly must be the case that the definition of if! is
independent of the particular values Xi and depends
solely on the character of the categories Ci of
memory structures to which it applies. For example,
the code compiled for an arithmetic expression 1;+
J, where land J are integer variables, depends only
on this fact that they are integer variahles and not
upon their particular values. The if! must be defined

phrase marker (roughly: parsing tree), as well as'
his condition of the substitutability of strings in ele
mentary transformations; can be seen in the above
terminology to insure that the restriction on the,
domain . of tfr is indeed dependent only onques
tions concerning categories and not on particular
values involved (see in particular pp. 300-3 of
Ref. 12). Such a condition, we have seen, is exa,ctly
the one necessary to' insure compilable code in a
syntax directed compiler.

ENGLISH FOR THE COMPUTER 353

An example at this point may be in order. Con
sider the situation where one wishes to analyze the
sentence "John saw Mary and Joan" into the two
sentences: "John saw Mary. John saw Joan."
Notice that the rule: NVN.NVN.~NVN and N. is
not adequate, for it does not signal the condition
that the first and fifth constituents (namely "John,"
and "John" in the example sentence) must be iden
tical. This extra condition cannot be simply stated
in phrase structure form but is easily and correctly
stated as a transformational rule. The passive trans
formation, N1VN2~N2 aux V by N1, is another
example where an extra condition is necessary to
correctly identify the switched positions of subject
and object. Indeed, in the formation of many trans
formation rules, it is desirable that the rule be ap
plied to the entire sentence where the restriction of
the domain of the transformation is stated in terms
of an analysis of the structure of the sentence. In
this case, the phrase structure aspect of the rule
takes on the trivial form s~s (Ref. 12, pp. 300-
303). It is interesting to conjecture that the use of
such rules in defining programming languages might
well permit the statement of rules covering paren
theses conventions in arithmetic expressions without
the introduction of superfluous parts of speech as
is now done. The compiling time such complex rules
entail w:ould, of course, not warrant the change.

The final diagram, encompassing transformational
rules, can thus be shown:

structural and constructive nature of if;. In fact,
using the particular definition of if; , we can char
acterize certain structural categories C 1 , C2 , ••• Cn.

If Xi e Ci, i = 1, ... , n, that is if the structures
in memory which can locally be reached from the
Xi have the determined characteristics, then we can
determine from the definition of if; precisely what
the value if; (Xi, ... , Xn) will be, independent of
the rest of memory. (On arguments which do not
have these structuarI characteristics, i.e., Xi e Ci is
not true, we can not predict what if; will do; thus if a
program applies a list processing operation to a
"non-list" address, the resulting indeterminacy is
characterized as a bug).

Suppose we start with a finite number of inter
pretation rules if; 1 , if; 2 , ... , if;m. From there we can
determine as above a finite number of structural
categories C 1'C2 , ••• C k such that the domains of
the if;i are subdirect products of the C/s, that is,
the domain of if;i is not only a subset of C i1 X
Ci2 X ... X Cini , but can be characterized struc
turally in terms of relationships among elements
identified in the definitions of the Ci/s.

Suppose further that certain arguments X 1,X 2,

... , Xi are initially given. We now ask what argu
ments can be reached from the Xi by application
and composition of the functions if;j? What is com
putable? We shall answer this question by relating
interpretation rules, categories and initial arguments
to our previous discussion.

Xl X 2 ••• Xn -------~) (cf>: Q1' •• qm ~ Pl' .. Pn)

~ 1- ~ with side condition
if;(Xt, X 2 , ••• , Xn) (Y1' ... , Y m) ~ (if;: C'l X ... X C'm ~ K ~ Cl X ... X Cn)

The explanatory power of the approach presented
here can be seen to greater advantage by starting
with the semantic aspects rather than the syntax.
Let us focus our attention for a moment on the
memory of the computer. Considering it indepen
dently from any particular program or programming
language, it is difficult to say whether it contains
any fixed point variables, arrays or list structures.
But it unmistakably has a complex, interknotted web
of structure. Now consider a structural, construc
tive interpretation rule if; , say taking n arguments
(where each of its arguments may be considered
as an address in memory). We note that the value
if; (Xl, X 2, ••• , Xn) obtained by application of the
rule if; depends on the structure of memory "local"
to X t, X 2, • • • , X n. This statement follows from the

Correspond to each of the Xi a referent word, or
formative; this will be our referent vocabulary R.
The categories Ci will constitute the vocabulary V -
(R U F). If the domain of a rule if;i is a subdirect
product of Cil X ... X C ini we will adopt a trans
formational rule of grammar establishing "CilCi2
. •. cint as a grammatical phrase subject to the
structural side condition.

Composition of interpretation rules applied to
appropriate arguments can now be seen to have as
an exact counterpart the parsing of the corresponding
string of formatives. For example (in the case of
context-free -rules where it is easiest to see):

354 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

corresponds to the parsing tree

where Xi is the referent word corresponding to Xi.

Thus those arguments in memory which can be
reached starting with the Xi by using functional
composition of the interpretation rules are exactly
those which can be defined in the corresponding
formal language.

It is the underlying structural, constructive inter
pretation rules on memory which are at the heart
of language. From these, the rest including syntax
can all be reconstructed. The expressiveness of a
formal language reduces to what can be reached
from the references of its words by functional com
position of its interpretation rules.

Before going on, let us pause to consider the role
of function words. According to the definition of
meaning given above, a sentence may have multiple
meanings, i.e., be semantically ambiguous. This may
arise when a sentence has two parsings (though this
by itself does not necessarily imply semantic am
biguity). A typical case of ambiguity would occur if
parentheses were dropped from all arithmetical ex
pressions. Consider, for example, the expression
1 + J X K. By convention we assume the multipli
cation is to precede the addition. If the addition were
to be done first, delimiters would be inserted:
(1 + J) X K. It has been shown by David Benson
that any syntax can be made unambiguous through
appropriate augmentation by function words, and
this in such a way that no possible meaning (in the
above sense) will be lost. Thus function words are
seen as a device for reducing or eliminating syntactic
ambiguity. English sentences are replete with func
tion words, including all sorts of suffixes, prefixes and
auxiliary words. Many words play dual roles in this
regard, both as pointers which help to establish
meaning, and as delimiters; for example, prepositions
and determiners.

The above definition of a formal language has
been developed in such a way as to show its clear
relationship to the notions of syntax directed com
pilers and programming languages, and to current
investigations of the syntax of natural languages.
An equally close relationship exists between this

definition and the formal languages of symbolic
logic. Rather than formally show this correspondence
here, let us see whether we can use the above mecha
nism to identify the "logic" of a programming
language.

The semantic studies which lie at the root of
modern logic and metamathematics are based upon
an adequate definition of the notion of truth. The
fundamental problem can be stated as the problem
of determining for a sentence those environments
where it is satisfied. To this end, let us choose s,
the preferred symbol of our formal language, to be
a Boolean variable. In this case, we see that for any
sentence X, the meaning M(x) of X will be either
"true" or "false." The interpretation rules become
the counterpart of Tarski's definition of satisfaction
for languages of symbolic 10gic.14 A sentence X is
logically true, or a tautology, if M(x) is "true" for
every initial assignment of values to the referent
symbols in R. By this simple means, the' notions and
results of mathematical semantics can be extended
to the generalized notion of formal language given
by the above definition.

But what about English? Recall that our interest
in this paper is English as a programming language.
If we are to develop a syntax-directed interpreter for
English, we must first determine what structural
categories are to make up its environment E. This
question is in some sense a priori to the question of
English, for English presumably does not prejudice
the structural relationships that exist among the ele
ments of a universe of discourse. On the other hand,
the decision as to the memory structures the com
puter is to use in storing its data is a crucial one.
The efficiencies of a programming language depend
strongly on policies concerning memory management
and structuring. If the universe of discourse is weakly
structured with few cross-relationships one would
expect any language, English or not, dealing with
such subject matter to be inefficient to use and of
very limited expressiveness.

The first major issue, then, in using English as a
programming language is the same as that for any
other programming language, the policy concerning
memory management and structuring. When using
English, we take for granted a richly connected web
of implicit relationships, which we must now make
explicit in computer memory. In the current DEA
CON work, data is organized into ring structures.
These structures are similar in many respects to the
plex structures defined by Ross 15 and used by

ENGLISH FOR THE COMPUTER 355

Sutherland in Sketchpad,16 and are an extension of
the notion of list structure.

Once the structural categories of the environment
have been chosen, the central issue can be imme
diately clarified. Each of the referent words and
phrases of the language have, as their denotational
values, elements which are members of these cate
gories. These categories correspond therefore to parts
of speech. Can a syntax for English be developed,
using these new parts of speech, which accounts for
all of its richness of grammatical structure? A second
way to put the same question is this: if the subject
matter of English is limited to material whose inter
relationships are specifiable in a limited number of
precisely structured categories, does English essen
tially become a formal language as defined above? I
believe that the DEACON work to date constitutes
a confirmation of this hypothesis.

DEACON makes use of transformational rules as
discussed above. It does this in a rather clear way
by dividing the syntactic aspect of the grammar
rule into two parts. The first is a straightforward
phrase structure rule (not necessarily context-free).
The second part can be considered as essentially
determining whether the constituents fall within the
subspace on which the interpretation rule is defined.

In their discussions of transformational grammars,
both Harris and Chomsky have pointed out that it
is possible through transformations to reduce a com
plex sentence to a series of interrelated sentences of
simple type. Quite independently, we found it most
expeditious to use what we refer to as a Verb Table
for analysis of a sentence in the DEACON System.
The columns in this table correspond quite directly
to kernel sentences. The various columns are cross
linked from right to left showing the role of one
kernel sentence in defining a constituent of a prior
one in the table. The Verb Table is a rudimentary
realization of the notion of the deep structure of a
sentence. It is interesting to note that the Baseball
English language query system by Green et al 17 pro
duces a spec list as an intervening table between
syntactic and semantic analysis, which can also be
viewed as a realization of the notion of deep struc
ture when applied to the segment of English used in
that system.

It is the central thesis of this paper that, when the
subject matter of English is limited to material whose
interrelationships are specifiable in a limited number
of precisely structured categories, English essentially
becomes a formal language as defined above. This

hypothesis has far-reaching consequences. It implies
that the complexities of natural language arise
neither from vagaries of syntax nor from the variety
of its subject matter, but rather from the immense
complexities of the intervening memory structures
which mediate between stimulus and verbal response.
The words of the language are keys to the specific
structures in memory which carry the referenced in
formation. The relationships established among a
particular set of words by a particular sentence are
keys to the structural transformations, the interpre
tation rules, that develop the meaning of the sen
tence from the structures keyed to its constituent
words. If we artificially limit these structural forms,
English reduces homomorphically to a formal lan
guage.

I should like to make a few remarks on certain
issues concerned with the efficacy of English as a
programming language. First, it can be said that cer
tain other existent programming languages are Eng
lish-like in their sentence formats, for example
COBOL. What is the essential difference between
such languages and extended versions of DEACON?
COBOL and other similar languages have chosen a
restricted set of formats for their statements which
are, to be sure, English-like. However the number of
such phrase formats is very limited and any di
vergence from these formats is excluded. In develop
ing these languages there appears to have been a
hesitancy to allow the great plurality of forms which
one finds in everyday English, possibly because of a
fear that unacceptable levels of ambiguity might
arise, possibly because of the acknowledged comput
ing time required by a more elaborate parsing
algorithm. In particular little has been done to capi
talize on the rich variety of function words which
one finds in English. In the DEACON work the bull
was taken by the horns, so to speak. It has been
found that a wide variety of forms can be accom
modated in a reasonable number of rules. Although
computing time due to parsing is still a critical prob
lem, even here times are achieved which make the
result feasible for a number of applications.

What about ambiguity? It is well known that sys
tems for the syntactic analysis of natural languages
produce an unacceptably high number of ambiguous
syntactic analyses for a given sentence. This is to
some extent true in the DEACON syntactic analysis
as well. However, systems built along lines described
herein go beyond syntactic analysis. It is found in
practice that the semantic analysis aspects of the

356 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

system resolve many of these syntactic ambiguities.
In many cases, several parsings will yield a single
meaning. More often, the interpretive rules, when
applied to a parsing, will indicate it to be seman
tically vacuous, thereby reducing the number of
meaningful analyses.

However, ambiguities remain. In some areas of
computing, areas indeed which currently account for
the great bulk of computations, a single program will
be used to make a large number of calculations, and
speed of processing and precision of statement are
prime requirements. In this case, an algebraic lan
guage allowing no ambiguities, with an optimizing
compiler to produce an efficient object program, is
certainly called for. Even here the question of am
biguities at the problem definition level, before the
programmer begins his translation, cannot be wholly
overlooked.

When the ultimate user is less clear concerning his
problem and the computer enters into the creative
feedback loop, there is great advantage in providing
the means for communication directly with the com
puter in a language he finds natural and which has
greater flexibility. Further, there is a vast area where
the computer can be of great value to ongoing oper
ations, where military and management staffs need
effective access to data in forms responsive to their
immediate needs. The expression of these data ma
nipulating requirements to the computer differs only
by degree from programming as the computer spe
cialist knows it. It is in these latter categories of
programming that the programming language should
be English. The conversational mode provides the
means for immediately resolving ambiguities. The
advantages of the interpretive mode for immediate
response are not over balanced by the need for op
timized code. And the naturalness of the language
frees the user for concentration on the problem at
hand rather than on its translation.

REFERENCES

1. For recent comment on the problem and pros
pects of "English as a Programming Language" see
the discussion between Jean Sammett, R. W. Floyd
et al in Comm. A CM, vol. 9, pp. 228-30 (1966).

2. A. Tarski, "Der Wahrheitsbergriff in den for
malisierten Sprachen," Studia Philosophica, vol. 1,
pp. 261-405 (1936); English translation in Logic,
Semantics, Metamathematics, Oxford University
Press,New York, 1956, pp. 152-278.

3. See papers of Turing and G6del in M. Davis
(ed.), The Undecidable, Raven, New York, 1956.

4. R. F. Simmons and K. L. McConlogue, "Maxi
mum-Depth Indexing for Computer Retrieval of
English Language Data," Amer. Documentation, vol.
14, pp. 68-73 (1963).

5. --, S. Klein, and K. L. McConlogue, "In
dexing and Dependency Logic for Answering English
Questions," ibid, vol. 15, pp. 196-204 (1964).

6. E. Irons, "A Syntax Directed Compiler for
ALGOL 60," Comm. ACM, vol. 4, pp. 51-55
(1961).

7. N. Wirth and H. Weber, "EULER: A Gen
eralization of ALGOL, and its Formal Definition,"
ibid, vol. 9, pp. 13-25, 89-99 (1966).

8. E. L. Post, "Formal Reductions of the General
Decision Problem," Am. J. 01 Math., vol. 65, pp.
197-215 (1943).

9. J. McCarthy, "A Basis for a Mathematical
Theory of Computation," in P. Braffort and D.
Hirschberg, Computer Programming and Formal
Systems, North Holland, Amsterdam, 1963, pp.
33-70.

10. K. Godel, The Consistency of the Axiom of
Choice and of the Generalized Continuum-Hypoth
esis, Princeton University Press, 1940.

11. N. Chomsky, "Three Models for the Descrip
tion of Language," IRE Transactions on Information
Theory, IT-2(3), pp. 36-45 (1956).

12. --, and G. A. Miller, "Introduction to the
Formal Analysis of Natural Languages," in R. D.
Luce, R. Bush, and E. Galanter (eds.) , Handbook
of Mathematical Psychology, vol. II, Wiley, New
York, 1963, pp. 269-322.

13. Z. S. Harris, "Transformational Theory,"
Language, vol. 41, pp. 363-401 (1965).

14. A. Tarski, "The Semantic Conception of
Truth and the Foundations of Semantics," Phil. and
Phenomenological Research, vol. 4, pp. 341-76
(1944); reprinted in H. Feigl and W. Sellars (eds.),
Readings in Philosophical Analysis, New York,
1949.

15. D. T. Ross and J. E. Rodriguez, "Theoretical
Foundations for the Computer-Aided Design Sys
tem," Proc. of Spring Joint Computer Conference,
1963, pp. 305-22.

16. J. E. Sutherland, "Sketchpad: A Man-Ma
chine Graphical Communication System," ibid, pp.
329-346.

17. B. F. Green, Jr., et aI, "Baseball: An Auto
matic Question Answerer," Proc. of Western Joint
Computer Conference, 1961, pp. 219-24.

AN APPROACH TOWARD ANSWERING ENGLISH
QUESTIONS FROM TEXT *

R. F. Simmons, J. F. Burger and R. E. Long

System Development Corporation
Santa Monica, California

INTRODUCTION

Research on question answering by Raphael, l

Black,2 and Elliott,3 and our own work on Proto
synthex II 4 has shown that question-answering algo
rithms can be most easily written if the text source is
in the form of simple, explicitly structured sets of
subject-verb-nominal strings. Question-answering
algorithms that have thus far been developed in
clude word- and structure-matching operations and
some few logical inference functions. All of the sys
tems cited have in some fashion limited their input
language to simple subject-verb-nominal strings, thus
eliminating many problems of syntactic analysis and
providing a normalized form for language data.

Our approach to question answering from natural
language text requires that both text and question be
normalized into standard subject-verb-nominal ker
nels. Determining whether a set of text kernels
answers a question or not is a complex matter of
applying meaning-preserving transformations, to dis
cover if pairs of apparently unlike kernels are in
fact synonymous. The essential feature of the re-

* The research reported in this paper was sponsored by
the Advanced Research Projects Agency Information Proc
essing Techniques Office and was monitored by the Elec
tronic Systems Division, Air Force Systems Command,
under contract AF 19(628)-5166 with the System Develop
ment Corporation.

357

search reported here is an approach to question an
swering that depends on the discovery of sets of
equivalence operators that can determine whether or
not two English language strings are meaning-pre
serving paraphrases of each other.

AUTOMATIC DERIVATION OF KERNELS

Recently Kuno 5 and Foster 6 have developed algo
rithms that can derive kernel sentences from English
text that has been analyzed by the Harvard Syntactic
Analyzer. Joshi 7 and a group at the University of
Pennsylvania have also developed what may prove
to be programmable algorithms for kernelizing. None
of these algorithms is in completely programmed
form as yet, nor are the definitions of kernels that
have been so far developed completely suited to
question-answering.

We have constructed a system that produces a
type of text-normalizing kernel that we believe is
more satisfactory for the purpose of answering ques
tions from English text. We base our derivation of
kernels on Chomsky's 8 theory of deep syntactic
structures of sentences. For each phrase marker
headed #S# of the underlying deep structure of
a sentence, the kernel maker is required to produce
a kernel string. The kernel strings are of the form
Xl R X2 where Xl and X 2 are usually in the form
of nouns but may be reference numbers to other

358 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

kernels, adjectives, adverbs, or null, and where R is
a relational term ranging from simple verbs such as
be, have, run, to a complex verb-particle or verb
preposition combination such as be-of, run-off, fly
from, etc. A null term (symbolized N') in an X
position is typified by the "someone" or "it" of an
incomplete passive construction. In the case of cer
tain sentences such as "J ohn wants to swim the
Channel" the X 2 position of the kernel # 1, "John
wants 2," must refer to a second kernel #2, "John
swims the channel." It is convenient to treat Xl
terms in a similar fashion in such sentences as "That
she will come is delightful."

In addition to such referencing within kernels
from one to another, each kernel is associated with
a cross-referencing term that records and labels its
relation to coordinate or immediately superordinate
kernels of the sentence. The intent of the cross
referencing is to maintain a labeled tree structure for
the set of kernels that has been extracted from the
sentence. Labels include conjunctions, relative pro
nouns, and indications of adjectival, prepositional
and other types of subordination. For example in the
sentence "John or Mary went to the store that sold
skis," the following kernels with reference terms are
derived:

1. John went-to the store (or 2)
2. Mary went-to the store (or 1)
3. Store sold skis (that 1, 2)

The referencing scheme is designed to allow for the
complete reconstitution of the original sentence and
its surface structure. The reference terms will be seen
below to be required for some question-answering
operations.

Underlying the kernel-maker we use PLP II,
which is a parsing system that· produces (among
other things) an immediate constituent analysis for
a wide range of complex English text. Where phrase
structure rules are inadequate to produce the IC
analysis (particularly as in questions) a limited num
ber of transformational rules have been included in
the grammar. The form and operation of the PLP II
system is described in Burger, Long and Simmons.9

It is important in regard to the kernel maker to note
that it produces multiple analyses for most sentences
that are given to it. However these are each in the
form of a single structural description as illustrated
in Fig. 1. The fact that only single unique descrip
tions are passed on to the kernel maker greatly sim
plifies its task. Our concern in this research is not

with resolving syntactic ambiguity but with deriving
kernel strings from the surface structure description
of sentences.

Our procedure for obtaining kernels from the sur
face SD (structural description) of a sentence is out
lined below. Although there may be room for argu
ment that kernels representing deep structures can
be obtained directly from the surface SD of the sen
tence, we interpret the procedures used by Kuno,5

Foster,6 and Lieberman 10 and our own experience
with recent experiments in kernelization to indicate
a strong affirmative to the notion.

1. Given a complete surface SD of a sen
tence as in Fig. 1 (c), scan it to dis
cover structural indices of kernels. A
structural index (SI) for a kernel is a
three-node structure A(B C) such that
Band C are both nodes dominated by
A. Thus NP(N PP), NP(NP PP),
NP(Adj. N), S(NP VP) are all ex
amples of structural indices that iden
tify kernels. NP(Art. N), VP(V NP),
VP(V PP) and PP(Prep. N) are ex
amples that do not.

JACK AND JILL WENT UP THE HILL AND FEm::HED A PAIL OF WATER •

(2 PARSIWS)

1

«1 JACK N AND 2)

(2 AND CONJ AND 8)

(3 JILL N AND 2)

(4 WENT v AND 8)

(5 UP PREP WENT 4)

(6 THE ART HILL 7)

(7 HILL N UP 5)

(8 AND CONJ ' ¢)

(9 FE~HED v AND 8)

(l¢ A ART PAIL 11)

a) Dependency Analysis

(11 PAIL N FETCHED 9) (12 OF PREP PAIL il) (13 WATER N OF 12 »

TREE b) Dependency Tree structure

«AND (AND (JACK) (JILL»

(WENT (UP (HILL (THE»» (FETCHED (PAIL (A) (OF (WATER»»»

I CL c) Immediate Constituent Structure Description

(8 (NP (N JACK) (HNP (CONJ AND) (N JILL»)

(vp (vp (V WENT) (pp (PREP Up) (NP (ART THE) (N HILL»»

(HVP (CONJ AND)

(vp (V FE~HED)

(NP (ART A) (NP (N PAIL) (pp (PREP OF) (N WATER»»»»

KERNEL d) Kernel Structures

1 «JACK WENT UP THE HILL) and #3
(JACK FETCHED A PAIL) and #1

(JILL WENT UP THE HILL) 4 (JILL FE~HED A PAIL) 5 (PAIL (IS OF) WATER»

Figure 1. Examples of computer-produced syntactic analy
sis from PLP II, showing simple kernels.

ANSWERING ENGLISH QUESTIONS FROM TEXT 359

2. Look up the SI in a list of kernel struc
tural indices (KSI) to discover if it is
a KSI. If not, continue the scan. If it
is a KSI, there will be associated with
it a function that operates on the SD
of the sentence to produce, first a ker
nel SD, then a kernel string. The func
tions are exactly equivalent to inverse
transformational rules.

For example given the KSI, NP(Adj.
N), the associated function transforms
it to Sk (N be Adj.) which is the SD
of a kernel string. (Sk stands for kernel
sentence.) A more complicated case is
illustrated by the KSI, NP (reI. pron.
VP). Here the function is required to
find the noun antecedent of the relative
pronoun and substitute it into the re
sulting kernel string. This occurs in
two steps, which may be most easily
shown in a transformational notation:

#1 NP((... Nl ...) (NP (reI. pron. + VP») ~
NP((... N1) (NP(N1 + VP»)

#2 NP(N1 + VP) ~ Ks (N + VP)

The Ks is now able to generate a ker
nel string.

3. Label each kernel. The labels for each
kernel correspond to specific features
of the KSI functions that generate
them. The label for the last illustration
would include the actual relative pro
noun. The label for a prepositional or
adjectival kernel would be "prep." and
"adj.," respectively.

4. Reference each kernel to the kernel or
kernels that are coordinate and super
ordinate to it. This information is
available as a result of the order of
processing from deepest structures up
ward and from the labels previously
assigned.

So far we have experimented with LISP functions
that accomplish steps (1) and (2) and, though we
can see that (3) and (4) are not difficult in prin
ciple, we have not yet fixed on a particular algorithm.
It will be noticed that we do not follow transforma
tional programming conventions of the type adopted
by the MITRE system or by Foster. The reasnn is
that in LISP notation, the SD of a sentence is rela-

tively easy to deal with directly and with generality.
Chomsky,S the MITRE group, Foster 6 and our own
experience indicate that relatively few KSls and
functions will be required to generate kernels from
a wide range of English sentences.

Serious problems are expected in recovering ker
nels from those surface structures that have resulted
from the repeated application of deletion transfor
mations. Additional problems are expected in de
veloping fully adequate nntation for cross-referencing
and labeling the kernels from a sentence. Problems
involving the need to find antecedents for pronouns
and other pronominal expressions will probably also
have to be dealt with. In this latter regard rules for
resolving anaphora developed by Olney and Londe 11

have proved helpful.
Other problems concern our definition of the R

(relational) term of the kernel-we are by no means
certain that our method of dealing with verbs, ad
verbs, and prepositions is the best. We expect further
light to be shed on this problem as a result of
attempting to use the kernels for answering questions.

ANALYSIS OF QUESTIONS

Our basic approach to' question answering is to
make a surface structure analysis of the question,
resolve it into kernels, * and then compare the ker
nels resulting from the question with those stored in
a directed graph structure. The stored data are ob
tained by kernelization of English sentences that have
been given to the system. As in the approach to
kernelizing above, PLP II is used to obtain a surface
parsing of the question.

The comparison of Question kernels (Q-kernels)
with Text kernels (T-kernels) will be a simple com
parison only in the case that the question is com
plete/3 that is, of the form "Aux V NP VP," or "is
NP NP," (e.g., do NP VP, can NP VP, is NP NP),
and there exists an exactly corresponding T -kernel.
Generally, the problem will be one of discovering if
an appropriate set of T-kernels can be found in the
data structure and transformed into a match with the
set of Q-kernels derived from the question.

In perhaps the simplest case, the question "Is X
a Y?" is first resolved into the Q-kernel, X be Y. t
X and Yare used to search the headings of the data

* This approach was discussed earlier by Walker and
Bartlett.12

t This discussion assumes "N be N" kernels to select the
class membership sense of be. Kernels of the type "N be
Adj." follow a different line of logic.

360 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

structure (described in Simmons 4). If the T -kernel X
be Y is discovered there is no problem. If the T
kernels X be W, W be V, B be Yare discovered,
the fact that "be" is known to be logically transitive
allows X be Y to be derived, again answering the
question. This logic applies also for such obviously
transitive relations as farther than, nearer than,
brother of, part of, etc. (see Raphael,t Cooper,14 and
Black 2).

If no transitive relation is found to lead from X
be W to X be Y, the synonym operation of inferring
that W r-../ Y may show that (X be W) ~ (X be Y),
and again an answer is possible. The operations illus
trated in this simple question are almost the only'
ones that have been used in question-answering sys
tems up to the present. * They are obviously not
sufficient to answer more than a tiny subset of ques
tions. The more ambitious systems 16,17 have devoted
a great deal of effort to dealing with analysis of the
question into its request structure, its syntactic struc
ture, finding word and structure matches, using
synonyms, etc., but they have dealt only superficially
with what we see as the central problem of trans
forming from a set of relevant T -kernels :j: into the
exact form of the Q-kernels.

More generally the problem can be described as
follows:

Given the set of
Question kernels, Q1 = {KQl KQ2 ... KQn}

and the set of Text kernels, Tl = {KTl KT2 ... KTm}
If there is a set of {Tal T02 ... TOk}

transforming operators, TO =

such that, Ql = TO x T 1,

or, T 1 = TO X Q1,

than Q1 has a complete answer.:!:

Discovering operators of the set TO and the condi
tions under which they may be applied to English
words appears to be the basic research problem in
question answering.

In Belnap's 13 logic of' questions, a. question may
be analyzed into two parts, a request and a set of

* However, as exceptions, Bobrow 15 used implication in
his algebra problem-solver and Elliott 3 studied the use of
reflexivity, symmetry and other properties of relational
words in a question answerer.

tAT-kernel is defined as relevant if one or both of the
N's in its N-R-N structure is the same as, or can be trans
formed into, an N from a Q-kernel.

:!: Also a measure can be applied to Q1 and to TO x T 1

to discover the degree to which TO x T 1 corresponds to
Q1. This is a measure of the completeness of the answer.
The percent of word and structure matches measured in
Protosynthex I, is a crude first approximation to such a
measure.

alternatives. The request can usually be recognized
in such forms as "what," "what (noun) ," "what are
(number) ," "where," "when," "how," "how many,"
etc. The set ·of alternatives may be the remainder
after the request kernels are removed.

Given a question: "What are the paths of rockets
or missiles called?" the following set of Q-kernels
can be derived:

1) Paths are what?
#2) Someone calls paths.
#3) Paths are-of rockets.
#4) Paths are-of missiles.

There is obviously a request kernel, # 1), and two
kernels specifying the set of alternatives. (Whether
or not it will always be as easy to separate request
kernels and alternatives is not known but it is doubt
ful.) The alternatives are used in a question-answer
ing system as index terms to find relevant informa
tion. The request is used to evaluate the information
(e.g., "how many" requires a number, "where"
requires a place coding, "when" a time coding, etc.)
and sometimes also to process it (how many, or the
commands, "list 7, name 3, etc." require counting
or listing functions) . *

Although both request kernels and alternative
kernels must be identified so that we can understand
how to use them, the main difference seems to be
that the request kernel definitely indicates a set of
operations to be performed on the answer kernels
while the alternative kernels imply a set of operations
to be performed on the data base. It may be that
these operations may be conceived. of in the same
framework as the transforming operations required
to match sets of T -kernels to a set of Q-kernels (with
a consequent simplification of the whole system).

LINGUISTIC INFERENCE VIA
EQUIVALENCE-OPERATORS

We see the basic problem of question answering
to be one of discovering equivalence-operators and
describing the conditions under which they can be
applied to make Q- and T -kernels identical. Chomsky
(p. 162),8 among others, offers the following two
sets of sentence-pairs as examples of paraphrases
that are not accounted for by identical deep syntactic
structures:

* In this research we are concerned only with fact
retrieval questions and are ignoring the algebra problem
or questions typified by "How many letters are in Oliver
Goldsmith?"

ANSWERING ENGLISH QUESTIONS FROM TEXT 361

1. John strikes me as pompous.
I regard John as pompous.

2. I liked the play.
The play pleased me.

The second pair is in the form of kernels and it can
be seen that some form of inverse operator * can be
applied to account for the paraphrase:

(N1likes N 2) X TOi = (N2 pleases N1)

where: "X" signifies the application of the operator,
and " = " is interpreted to mean "functionally
equivalent in context." The operation appears to
apply for kernels involving "like" as a verb in the
syntactic context of nouns.

In set 1, however, the situation appears to be more
complex. In the first place it applies to a complex
three-part relationship as follows: t

(N1 strikes N2 as Adj.) X TOil =
(N2 regards N1 as Adj.)

This equivalence operation appears to apply without
exception with reference to strikes-as: regards-as but
it does not apply to the kernel (N 1 strikes N 2)
especially where the striking is accomplished with a
club.

Apparently the inverse-equivalence operator is a
very common occurrence in English in such pairs as
bought-sold, gave-received, read-write, etc., as well
as in the active-passive syntactic transformation.
There appear to be many cases of its application
where only syntactic conditions restrict its use.

Another frequent case of paraphrase that has
proved important in question answering is the matter
of substituting synonyms. If we consider a synonym
equivalence opetator, Ts, there are some cases such
as:

(N1 eats N2) X Ts = (N1 devours N2)

where the equivalence may be sufficient for practical
purposes but where there are probably always
semantic restrictions limiting the substitution. Sparck
Jones 18 discusses this point in detail.

There is also a large set of weak implication oper
ators that may be applied to English statements but
apparently only under highly specified semantic and
pragmatic conditions. For examples:

* Inverse (R1R2) = Vx, y (x RIY ~ Y R2X)

t It is of interest to note how easily this applies to a five
part nonkernel in contrast to the cumbersomeness of apply
ing it to two kernels.

? A eats B -+- B is inside of A
? A flew-from B :-+- B was at A
? A is-made-from B-+- B is-part-of A
? A is-above B ,-+- B is-below A
? A struck B -+- B received a blow.

The question marks and the symbol "-+-" indicate
our ignorance of the conditions under which these
equivalences may be valid.

A more satisfying set of operations has to do with
class membership. If A is a member of the class B,
A~B.

Thus: walk ~ move
go ~ move

aardvark ~ mammal
mammal ~ animal

steak ~ meat
meat ~ food

However such relationships are not easy to discover
for many if not most English words.

From our work in question answering we are
dimly aware that there are many complicated
equivalence operations involved in the various ways
that answers to a given question may be paraphrased.
The matter of matching Q-kernels to T-kernels will
prove a very complex process requiring not only the
discovery of appropriate equivalence operators and
the syntactic and semantic conditions of their use,
but also an understanding of the logical properties
(e.g., transitivity, symmetry, asymmetry, reflexive
ness, etc.) of relation terms to further define their
application. In our work we concentrate mainly on
the discovery of operations that depend only on
syntactic restrictions and believe that these may
prove to be sufficient to greatly increase our under
standing of the question-answering process.

PROPOSED DISCOVERY PROCEDURE
FOR EQUIVALENCE-OPERATORS

Our approach to the study is to select a broad range
of question types with varying forms of answering
statements associated to each question. Questions and
answers will be reduced to kernels (by hand if neces
sary or by the kernelizer described above). We will
attempt to discover a set of equivalence-operators
that can transform the T -kernels into Q-kernels.
Such operators will be tested on larger samples of
English text by being translated into LISP functions
and tested in the context of Protosynthex II.

362 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

It is our hope that the set of equivalence opera
tors that are discovered and the LISP functions that
embed them may eventually form the basis of a
powerful question-answering and paraphrasing lan
guage.

The questions will be selected from the Modern
Science Quiz Book,19 which offers a wide range of
syntactic forms and semantic content. Although we
do not propose any rigidly specified sampling pro
cedure, we intend to pay particular attention to the
more difficult and complicated questions represented
in this compendium.

In selecting answer sets for each question, we will
depend on encyclopedias such as Compton's and the
Golden Book to insure a wide and varied range of
paraphrases. We expect also to compose answers in
some cases, and to use answers made up of more
than one sentence.

Table 1 shows a question Q1, the set of its
Q-kernels and two alternate answers Al and A2 and
the sets of T-kernels derived from them. We will
describe some operations that can be applied to the
Q-kernels and to the T-kernels that can serve to
make them isomorphic. Since this theory of question
answering has not yet been empirically tested, we
do not pretend that this discussion or the resulting
operators are more than illustrative-they are in
cluded only to exemplify the line of approach.

The kernel Q 1.1 may first be subject to a deletion
operator. The basis for this is that "N' calls N" is
a kernel (where N' is deleted after the passive trans
formation) which shows that "calls" is used in a
meta-structure that is not necessarily relevant to
answering the question. * After this operation the
kernels A2.1 and A2.3 form a sufficient answer
(assuming "is = are" and recognition of the mean
ing of the "or" relation between Q1.2 and Q1.3).
The resulting answer is in the form "Paths are tra
jectories, paths are of missiles," or some combination
of these into a more complex sentence.

To discover how Al is also an answer is more
difficult. As native speakers of English we under
stand that in kernel A 1.1 it is legitimate to transform
"rockets leave paths" into "paths are-of rockets";
on the other hand if the kernel were "rockets leave
planets" it is not at all satisfactory to say "planets
are-of rockets." Thus, if it is possible to transform
"N1 leave N2" into "N2 are-of N1," there must be

* This assertion must be worked out in more detail for
"calls," "names," etc.

Table 1. Q-Kernels and T -Kernels from a Question
and Two Possible Answers

Q1 What are the paths of rockets or missiles called?
QL1 N' calls paths
QL2 Paths are what
QL3 Paths are-of rockets
Q 1.4 Paths are-of missiles

A 1 Rockets leave fiery paths as their trajectories.
ALl Rockets leave paths
AL2 Paths are-of fire
AL3 Paths are-as trajectories
A 1.4 Trajectories are-of rockets (assumes pronoun

substitution)
A2 The path of a bullet or missile is its trajectory.

A2.1 The path is trajectory
A2.2 Path is-of a bullet
A2.3 Path is-of a missile
A2.4 Trajectory is-of a bullet

(assume pronoun substitution)
A2.5 Trajectory is-of a missile

(assume pronoun substitution)

semantic conditions limiting the N 1-N2 pairs to
which equivalence applies.

Ignoring this possibility, kernel A1.3 appears
more tractable. "N1 are-as N2" appears to lend
itself invariably by deletion operation, Tas, into "N1
are N2." (Reasons for this have been found in con
sidering "as" in certain environments as a marker
of discourse equivalence by Olney (unpublished).

By using:

Tas X (N1 are-as N2) ~ (N1 are N2),

kernel A1.3 now states "Paths are trajectories."
Since "is" has the property of transitivity, it follows
that we can equate "trajectories" and "paths" in
A1.4 to get a new kernel A1.5 "paths are-of rock
ets." Now a match is available as follows:

Q1.1 (N' calls paths) = cp
Q1.2 (Paths are what) = A1.3Tas =

(paths are trajectories)
Q1.3 (Paths are-of rockets) = A'1.5 =

(paths are-of rockets).

The discussion essentially illustrates our approach
to a discovery procedure for finding equivalence
operators. The importance of translating these into
programs and testing them on larger samples of text
can hardly be overrated. In the first place, the need
to ,program them insures a complete understanding
of ~ what is the operational meaning of such easy
phrases as "equating 'trajectory' and 'path' on the

ANSWERING ENGLISH QUESTIONS FROM TEXT 363

basis of the transitivity of 'is'."* In the second place
the program makes them more easily testable against
larger sets of text so that a fair assurance can be de
veloped that a final set of equivalence operators is
of wide generality.

In summary, we propose to test the theory by
developing sets of equivalence rules that can be used
to transform T -kernels from statements that are
answers to questions into the form of the Q-kernels
from the questions. As these rules are developed,
they will be expressed in the form of LISP functions
and used in the context of the Protosynthex II ques
tion-answering system to test their validity on a wider
range of questions.

ACKNOWLEDGMENTS

We are grateful to Dave Londe and John Olney
for their critical reading and helpful suggestions and
to Bruce Fraser, whose critical comments on a first
draft of this paper were extremely helpful.

REFERENCES

1. B. Raphael, "SIR: A Computer Program for
Semantic Information Retrieval," Proc. Fall Joint
Comput. Conf., vol. 25, Spartan Books, Washington,
D.C., 1964. (Also available as a doctoral disserta
tion, Math. Dept., MIT, 1964.)

2. F. S. Black, "A Deductive Question-Answering
System," doctoral dissertation, Div. Eng. and App.
Phys., Harvard Univ., 1964.

3. R. W. Elliott, "A Model for a Fact Retrieval
System," doctoral dissertation, Univ. of Texas
Comput. Ctr., 1965.

4. R. F. Simmons, "Storage and Retrieval of
Aspects of Meaning in Directed Graph Structures,"
Commun. of the ACM, vol. 9, no. 3, p. 211-15
(1966) .

5. S. Kuno, "A System for Transformational
Analysis," Rep. NSF 15, Comput. Lab., Harvard
Univ., (1965).

* e.g., Transitivity of R = Vx,y,z (x R yAy R z ~
x R z).

6. D. R. Foster, "Automatic Sentence Kemeli
zation," ibid.

7. A. Joshi, "A Transformational Decomposition
Program," paper presented at Inform. System
Colloq., NSF, 1966.

8. N. Chomsky, Aspects of the Theory of Syntax,
MIT Press, Cambridge, Mass., 1965.

9. J. F. Burger, R. E. Long, and R. F. Simmons,
"An Interactive System for Computing Dependen
cies, Phrase Structures and Kernels," SDC document
SP-2454, System Development Corp., Santa Monica,
Calif. (1966).

10. D. Lieberman et aI, "Automatic Deep Struc
ture Analysis Using an Approximate Formalism,"
Studies in Automatic Language Processing, AFCRL-
65-680, 1965,pp. 1-73.

11. J. C. Olney and D. L. Londe, unpublished
communication, 1966.

12. D. E. Walker and J. M. Bartlett, "The Struc
ture of Languages for Man and Computer: Prob
lems in Formalization," First Congo on Inform. Sci.,
1962.

13. N. D. Belnap, Jf., "An Analysis of Ques
tions: Preliminary Report," SDC document TM-
1287, System Development Corp., Santa Monica,
Calif. (1963).

14. W. S. Cooper, "Fact Retrieval and Deductive
Question-Answering Information Retrieval Systems,"
J. of the ACM, vol. 11, no. 2, pp. 117-37 (1964).

15. Bobrow, D. G., "Natural Language Input for
a Computer Problem-Solving System," Proc. Fall
Joint Comput. Conf., vol. 25, Spartan Books, Wash
ington, D.C., 1964. (Also available as doctoral dis
sertation, Math. Dept., MIT, 1964.)

16. B. F. Green, Jr., et aI, "Baseball: An Auto
matic Question Answerer," Computers and Thought,
McGraw-Hill, New York, 1963, pp. 207-16.

17. R. F. Simmons, "Synthetic Language Be
havior," Data Processing for Mgmt., vol. 5, no. 12,
pp. 11-18 (1963). (Also available as SDC docu
ment SP-1245, System Development Corp., Santa
Monica, Calif., 1963.)

18. K. Sparck Jones, Synonymy and Semantic
Classification, Cambridge Language Research Unit
M.L. 170, Cambridge, England, 1964.

19. O. E. Epple and L. E. Epple, Jf., Modern
Science Quiz Book, Platt and Munk, New York,
1958.

DEACON: DIRECT ENGLISH ACCESS AND CONTROL *

James A. Craig
Susan C. Berezner
Homer C. Carney

Christopher R. Longyear

General Electric Company, Santa Barbara, California

INTRODUCTION

The extensive syntactic ambiguity inherent in nat
ural language has been convincingly shown by such
systems as the Harvard syntactic analyzer. 1 Further
more, no semantic techniques are in prospect for
satisfactory resolution of this ambiguity by computer.
In contrast, well-developed semantic techniques exist
for formal languages.

In an accompanying paper,'2 Thompson defines a
formal language and a technique for determining the
meaning of sentences in that language. The semantic
technique is to use interpretation rules which define
actions (or sequences of actions) involving the. ob
jects of an environment. An environment is defined
as a finite set of categories of computer memory
structures. Thompson hypothesizes that English es
sentially becomes a formal language as defined if its
subject matter is limited to "material whose inter
relationships are specifiable in a limited number of
precisely structured categories [memory structures]."

-The DEACON system constitutes a test (and, we

* The DEACON project is primarily supported by the
Rome Air Development Center under contract AF30 (602)
4272 and also by the Research and Development Center of
the General Electric Company.

365

feel, a confirmation) of that hypothesis. t The en
vironment, in this application, consists of "ring"
structures in which data is stored as it is introduced
into the system. The interpretation rules are computer
programs that perform various operations on the ring
structures.

Because these programs are written in terms of
structural categories (independent of content), the
interpretation rules apply to any subject matter that
is stored in these categories.:!: Each interpretation rule
is associated with a rule of a context-sensitive phrase
structure grammar. A combination phrase structure
rule/interpretation rule determines the meaning of
the phrase that is formed by applying the rule. A
sequence of rules applied by a parsing routine deter
mines the meaning of an English sentence, phrase by
phrase, in accordance with the subject matter of the
data base. Simmons has called this "parsing directly
into a data structure." 5

t Not only did Thompson develop the theoretical basis
for DEACON, but he also directed and participated in all
aspects of its application before joining the staff of the
California Institute of Technology. .

:j: This is the major advance of DEACON over Green's
BASEBALL 3 and Lindsay's SAD SAM.4 These earlier
systems provided valuable background for DEACON, and
discussions with Lindsay on DEACON itself were ex
tremely helpful.

366 PROCEEDINGS--FALL JOINT COMPUTER CONFERENCE, 1966

The question of subject-matter limitations (which
are necessary in order to use formal-language
semantic techniques on English) is crucial to the
effectiveness of a DEACON system. The severity of
the limitation depends inversely on the adequacy of
the memory structures that are used. Among the
more advanced structures yet devised are ring struc
tures, such as those used by Sutherland in SKETCH
PAD.6 The particular ring structures now used in
DEACON (devised by Thompson, with contributions
by R. Donald Freeman, Jr.) are described later in
this paper.

Ring structures are adequate for storing a wide
range of richly interrelated data that is pertinent to
such functions as intelligence analysis, management
planning, and decision making. Typical of these
functions are resource allocation problems, in which
the pertinent data is an inventory of the resources,
their characteristics, and their interrelations. This
type of data is specifiable in ring structures.

It is for such management functions that
DEACON is being developed. DEACON as a man
agement information system has the following charac
teristics: Any particular management staff works with
a private data base relevant to its own operations,
rather than with a universal or pre-established data
bank. A user puts data into the system by typing
appropriate English statements at a teletype in his
normal working area. Similarly, he elicits data by
typing English queries. Whether inputting data or
asking questions, the user need not know how the
data is stored. The interpretation rules automatically
relate English statements to the data structures stored
in computer memory. This permits the user to con
centrate on his problem rather than irrelevant detail.

The use appropriate for a DEACON system differs
in a number of important respects from uses which
might be thought appropriate for large, fixed-format
systems. Characterization of human informational
processes suggests the theoretical inadequacy of fixed
format systems in any real application and also
predicts that the most efficient informational proc
esses occur only within a small informational com
munity concerned with shared subject matter in a
rapidly changing context. The intended use of a
DEACON-type system based on augmenting human
informational processes is discussed more fully in
references 7 to 11. These references present both the
philosophy of informational processes and illustra
tions of the anticipated use of DEACON-type sys
tems.

This paper is intended to illustrate the application
of the theory presented in Reference 2. It describes
the use of interpretation rules by the DEACON sys
tem in analyzing and responding to English sentences
on the basis of stored data. The following section
shows the functioning of a typical rule in abstrac
tion and then illustrates its use along with others in
analyzing a sample sentence. Ring structures and how
they are built (data input rules) are then described,
followed by a description of the use of a "verb
table" in analyzing certain types of sentences. Next
is a description of the parser that applies the gram
mar rules, followed by a brief description of the
hardware configuration used and then some con
clusions. An appendix describes some more grammar
rules and lists sample sentences and corresponding
system responses.

INTERPRETATION RULES IN SENTENCE
ANALYSIS

To analyze a sentence, the DEACON system must
be able to recognize the strings of characters that
form the sentence. To accomplish this, a dictionary
of vocabulary terms is built up from definitions typed
in by the user (currently in an interactive mode of
operation but using formatted statements). A vocab
ulary term may be a word (a string of characters
between blank characters in a sentence) or an idiom
(a string of two or more words, such as San
Francisco) .

Because of the nature of the subject matter of a
DEACON system, most of the vocabulary terms are
those normally considered to denote objects, their
characteristics and their interrelations. In DEACON,
however, these terms denote structures in the data
base. The examples used in this paper assume as
subject matter a simulated army environment. In
the sample data base, or subject matter characteriza
tion, the term BATTALION denotes a ring contain
ing data about battalions, and the term 638TH
denotes a ring containing data about a particular bat
talion named the 638TH. The ring denoted by
638TH may also be denoted by a more descriptive
name, such as BLUE EAGLES. Or a given vocab
ulary term may denote more than one ring.

The rings mentioned above are called the data
referents, or referent rings, of the vocabulary terms
that refer to them. The referent rings may be
thought of as doors to the data, with specific data

DEACON: DIRECT ENGLISH ACCESS AND CONTROL 367

entries consisting of connective rings intersecting
appropriate referent rings, as shown later.

The terms that denote rings are called referent
terms, and usually are assigned part of speech R, for
ring, or V, for verb. * Function words, such as prep
ositions and articles, normally do not denote rings.
In some areas of the system, these words are
treated as a class, and are identified with part of
speech F. In rules of grammar, however, each func
tion word is its own part of speech.

Other parts of speech are: N for number; X for
pronoun; T for time; S for sentence. These will be
discussed as they arise.

The definition of a vocabulary term consists of a
part of speech, grammatical information, and (for
denotational terms) a link to a referent ring in the
data base.

When a sentence is typed into the system, a dic
tionary lookup routine finds all the pre-defined vo
cabulary terms from the sentence. From each vo-

* These parts of speech indicate something about the
types of structures used for storing referent data of vocab
ulary terms that have these parts of speech. These parts of
speech therefore function as both syntactic word classes
and semantic categories.8 In this paper, they are called either
"part of speech" or "category."

cabulary term found, the system forms an initial
phrase. In this paper, therefore, "phrase" applies to
single words as well as to syntactic constructions.
The DEACON representation of a phrase also in
cludes its part of speech, grammatical information,
and a link to a referent ring.

A parsing routine applies rules from the system's
grammar to combinations of initial phrases to· form
syntactic constructions, or intermediate phrases. Each
rule consists of two parts-the syntactic, or phrase
structure, part and the semantic, or interpretation,
part.

The phrase structure part of a rule specifies the
part of speech symbols (categories), grammatical
characteristics, and positional relations that its input
phrases must have. Similarly, it specifies the part of
speech and grammatical characteristics of its output
phrase. For example, phrase structure Rule 5 states
that two adjacent R-phrases (which may be initial
or intermediate phrases, each with part of speech
R) may be combined to form an intermediate R
phrase. The syntactic construction of this inter
mediate R-phrase is shown in tree form in Part A "of
Fig. 1. The fact that this part of the rule deals with
part of speech symbols (not with the associated vo-

Interpretation Rule No.5: Rl + R2 ~ Rl

phrase Structure Ru Ie No.5:

R+R ~ R

r '"
,.

Rl
.., ,- ~

R ?\ If ~ • •). then-< > i otherwise -<
Rl R2

Rl R2 R~ A
~9 00 R QP R

... .JJ ,

The phrase structure part of the rule deals with the part of speech symbols and side grammatical con
ditions {not shown} to form a syntacti c construction. The interpretation part checks for appropri ate
interconnections between the referent data rings of the two input phrases. If found, it establishes the
referent ring of the first input phrase as the referent ring of the output phrase. Otherwise, it aborts
the rule application.

LEGEND: ~ = Referent ring.
".----,

(I = Connective ring.
'~-""

Figure 1. The functioning of a typical DEACON grammar rule.

.)

>-

368 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

cabulary term) is emphasized by writing the phrase
structure rule as R + R ~ R, where "+" indicates
concatenation. The specific grammatical checks (for
number, case, etc.) are not shown.

After phrase structure Rule 5 is successfully
applied, interpretation Rule 5 is applied. The inter
pretation rule first determines whether the phrase
being formed is meaningful in the data base by
looking for a certain type (or types) of connective
ring that may intersect the referent rings of the input
R-phrases. In our example, a two-link connective
ring satisfies the rule's conditions, as shown in Part
B of Fig. 1. Therefore, the rule establishes a link in
the output phrase to a referent ring which, in this
case, * is the referent ring of the first input R-phrase
(shown as RI). To show the correspondence of the
referent ring of the output phrase to the referent
rings of the input phrases, the rule may be written
as RI + R2'~ RI.

If no appropriate connective ring is found, the rule
application is aborted as though the phrase were
ungrammatical. (Actually, the phrase is marked
"VACUOUS DESCRIPTION" and is later typed out
as a response if no alternative analyses result in a
different response.) Eliminating such constructions
that are "grammatical but meaningless for the subject
matter of the data base" is a primary technique for
controlling ambiguity in the system.

The following sentence illustrates a specific ap
plication of Rule 5 and other rules:

WHO IS COMMANDER OF THE
638TH BATTALION?

The relevant dictionary entries, data base entries, and
cross references are shown in Fig. 2. The dictionary
lookup produces the following internal representation
of the sentence:

F R F F R
WHO IS COMMANDER OF THE 638TH

R F
BATTALION ?

Each segment of this representation is an initial
phrase shown without its grammatical information
and with the vocabulary term itself used as the link
to a referent ring where appropriate.

* Other rules that have two R-phrases as constituents but
which produce different output phrases are discussed in the
Appendix.

DICTIONARY ENTRY DATA BASE

LEGEND: <:) REFERENT RI NG

PART OF REFERENCE '..:::) CONNECTIVE RI NG
SPELLING SPEECH TO DATA

(CATEGORY) BASE
_ DATA REFERENCE

638TH R (RING WORD)
, ... _--~38TH

'BATTALION" \ 0'-"'/ \ BATTALION R -- , \
I ,

COMMANDER R
cf3;MMANDER/

I I
F(FUNCTION , I

OF WORD)
\ / "OF"

JONATHANM.
\ /

PARKER R '"
PARKER

THE F "THE"

WHO IS F "WHO IS"

? F "?"

Figure 2. Sample dictionary and data base entries, and their
cross references.

The parser, matching grammar rules with com
binations of initial-phrase parts of speech in the ift
ternal representation of the sentence, finds that Rule
5 (Fig. 1) applies to the string "638TH BAT
TALION." Its application is illustrated in Fig. 3A.
Since the application is successful, the internal rep
resentation of the sentence is rewritten with the out
put phrase of the rule replacing the two input phrases
(see Fig. 3 B). In this case, the effect is the same as if
the phrase BATTALION had been dropped from the
original representation (after verifying that the
638TH is a battalion).

N ext, the parser matches its rules against the new
sentence representation. It finds Rule 11; THE +
R '~ R (see Fig. 4). This rule in effect drops the
article THE. It also illustrates the use of a function
word as its own part of speech. Again, the sentence
representation is rewritten.

Figure 5 shows the application of Rule 8, RI +
OF '+ R2 ~ R 3 , to COMMANDER OF 638TH.
This rule introduces a new feature, i.e., that the out
put phrase refers to a referent ring not mentioned in
the input sentence. Through the rules applied thus
far, the string COMMANDER OF THE 638TH
BATTALION has been replaced by its equivalent,
JONATHAN M. PARKER.

The application of a final rule, WHO IS + R +
? ~ S, forms a sentential phrase and sets up the

DEACON: DIRECT ENGLISH ACCESS AND CONTROL 369

o F
Who is Commander of

Rule 5: Rl + R2~Rl

F G)~R2
the 638TH Battolion

~---~ - .. -
Interpretation: Does an appropriate connective ring intersect the
638TH and BATTALION referent rings?
YES. Therefore, make output phrase refer to same referent ring
as lst input phrase (638TH).

Sentence representation after Rule 5 applied to previous representation:

F F F Rl F
Who is Commander of the 638TH

R1AR2

638TH BATTALION

Figure 3. Examples of application of Rule 5, Rl + R2 ~
Rl' and rewriting of sentence representation fol
lowing iL

o

F
Who is Commander of

Rule 11: THE + R--R

Rl(638TH)~
FAR F

the 63iTH ?

<:)

I nterpretation: No data check performed. Make output phrase
automatically refer to referent ring of input R phrase. Mark that
output phrase has been modified by THE (not shown).

o New sentence representation:

R
Who is Commander of

R
638TH

Figure 4. Example of application of Rule 11, THE + R
~R.

answer to the question (see Fig. 6). The system is
ready to accept another message after the output
routine types the answer:

WHO IS COMMANDER OF THE 638TH
BATTALION?

JONATHANM.PARKER

The overall sentence analysis is shown in· Fig. 7.
Conceptually, the system checked the data base to
ensure that the unit called 638TH is a battalion,
found the portion of the 638TH data record that
designated its commander, and typed the associated
name as the response to the sentence.

This illustration shows only one analysis of the
sample sentence. However, if either syntactic or re
ferent ring ambiguity causes alternative interpreta
tions of the s~ntence, each corresponding answer is
typed out. Techniques for dealing with ambiguity

F
Who is

(
Jon:;han)
M. Parker

Rl~R2
Commander of ___ p638TH ---.I o /

Jonathan ,," ,/ /
M." .,.

ParkOer / ;r/
_/ ----- o Rule 8: Rl + OF + R

2
--R

3
Interpretation: Does an appropriate connective ring intersect the referent
rings of 638TH, COMMANDER, and a third ring?
YES. Therefore, make the output phrase refer to the referent ring of the third
ring (JONATHAN M. PARKER, in this case).

New sentence representation:
F R

Who is Jonathan M. Parker

~
Figure 5. Example of the application of Rule 8, Rl +

OF + R2 ~ R3 •

o

S

(
Jonathan)

M. Parker

F F
Who is Jonathan M. Parker ?

Rule 303: WHO IS + R + ?--S
Interpretation: Make the output phrase refer to the referent ring
of the input R ph rase.

New sentence representation:

S
JONATHAN M. PARKER

~

Figure 6. Example of the application of Rule 303, WHO
IS + R + ? ~ S. Since the output phrase, of this
rule is a single phrase with part of speech S (for
Sentence), and all the elements of the input·
sentence are subsumed under it, its associated
spelling is typed out as the answer to the input
query.

are 'discussed in the parser section and in the Ap
pendix.

Sentences that include a verb are handled some
what differently. ("IS" ,is not defined as a verb in the
above example.) Since verb processing involves more
complex data structures, a, sample verb analysis is'
not shown until after the following description of ring'
structures and data input rules.

RING STRUCTURES'AND DATA INPUT

In the preceding example, the fact that the or
ganizational entity called the 638TH is a BAT
TALlON was shown by a connective ring intersecting

370 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

F R
WHO 15 COMMANDER

5
(JONATHAN
M. PARKER)

F
OF

R
BATTALION ?

Figure 7. Tree diagram of sample sentence analysis, with
nodes labeled with references to pertinent data
structures.

the referent rings of 638TH and BATTALION.
This connective ring (Fig. 2) was established as a
data entry in response to the sentence,

DATA: THE 638TH IS A BATTALION!

Such data input sentences are parsed in the same
way that query sentences are, using the same gram
mar. The difference comes only at the final step,
where queries result in an output message, while
data input statements build connective rings in the
data base. * All such rules for data input begin with
the word "DATA:" and end with an exclamation
mark, as in Rule 901, DATA: + R + / + R + !
~ S.

The slash (/) is an arbitrary function word symbol
originally used in a group of formatted data input
statements, such as:

DATA: 638TH / BATTALION!

These formatted statements were used to build an
initial "debug data base" and are still part of the
grammar. The format was relaxed slightly by add
ing the rule IS + A ~ /. Applying this rule and
Rule 11, THE + R ~ R, to the statement shown in
Fig. 8 sets up the required inputs for Rule 901,

* Rings of the data base are stored as pages on the disc
and accessed from grammar rules through a paging tech
nique.1'2

which is then executed to form the two-link connec
tive ring.

Three-link rings are formed similarly. Samples of
various ways of inputting the fact that PARKER is
COMMANDER of the 638TH are shown in Fig. 9.
For any of the statements to be successful, it must
be parsed down to an unambiguous characterization
in a form such as "DATA: COMMANDER OF
638TH IS PARKER!" If any ambiguity remains, the
data entry is rejected. As illustrated, the connective
ring is directed but not ordered; i.e., no "starting
point" is marked. However, when such a statement
is accepted, the R-word that is used attributively
(COMMANDER, in this case) is placed on a special
data ring associated with the preposition OF. The use
of this special ring, which in effect orders connective
rings such as that in Fig. 9, is discussed in the Ap
pendix.

A variation of the three-link connective ring is
introduced to store time-dependent data. For ex
ample, if the 638TH BATTALION moved from

5 (Form Connective
Ring in Data Base)~

F
DATA:

F F R
15 A BATTALION

6~ ~ BATTALION n --.... o
~--~".,

638TH BATTALION

00
Figure 8. Example of the parsing of a data input sentence

and the resulting formation of a two-link connec
tive ring in the data base.

DATA: 638TH/COMMANDER/ PARKER:

DATA: THE COMMANDER OF THE 638TH BATTALION 15 PARKER:

DATA: LT. COL. PARKER IS THE 638TH'S COMMANDER!

DATA: LT. COl. JONATHAN M. PARKER IS COMMANDER OF THE ENGINEER
BATTALION AT FT. LEWIS!

Figure 9. Examples of data input statements that result in
the formation of the three-link connective ring
shown.

DEACON: DIRECT ENGLISH ACCESS AND CONTROL 371

TIME FAN
STRUCTURE .

/1
63BTH /.600 BEGIN } LOCATION

~...--< ,1BOOOEND ---~
~ "\. T20000BEGIN ---~,

/ '\i "
{ " \
l \ \
'" J \

" / I
".......... FORT LEWIS /' /' /
,,~- ~,y / " -- ~----- /

................... FORT IRWIN ..,.,¥ /'

........ --- ~------~

Figure 10. Use of time fan to record that the 638th Bat
talion was at Fort Irwin between times 600 and
18000 (points on a "time line" corresponding
to particular dates) and has been at Fort Lewis
since 20000.

FORT IRWIN to FORT LEWIS, this could be
recorded by simply changing the connective ring.
However, if a locational history is desired, a different
approach is required. The technique used for record
ing time-dependent data involves a "time fan," as
illustrated in Fig. 10.

The connective ring fans out through a "time
line"* and may then lead to several different "values"
for the "attribute" LOCATION. In the current sys
tem, an attribute may have only one value at a given
point in time, except for the instant of change.

A time fan entry includes not only a time point,
but also an "aspect" marker to show whether the
applicability of the associated value is just beginning,
is continuing, or is ending. For example, in Fig. 10
the 638TH has the value FORT LEWIS for the
attribute LOCATION for a time span beginning
at the time 20000.

Time dependent data may be input by formatted
statements such as

DATA.: 638TH / LOCATION / FORT LEWIS /
BEG 20000!

Alternatively, it may be input by a sentence such as

DATA: THE 638TH BATTALION ARRIVED AT
FORT LEWIS AT 20000 !

* Since actual dates and times are of little concern in our
experimental use of the DEACON system, we have to date
dealt only in terms of relative numbers on a continuous time
line. Lower numbers correspond to earlier dates. However,
various time words such as tomorrow and next week are
mapped onto the time line in relation to the recorded time
of "now" and/or to the "beginning of time." "Now" is set
to 0 when the system is initialized,. but may be reset by
typing a statement such as "IT IS NOW 20500!"

The parsing of a sentence such as this builds a "verb
table," as discussed in the following section. Cur
rently, a separate input statement is required for
each entry on the time fan, and a specific time (not
a span) must be given.

One other type of data structure is used. N u
meric values, stored as numbers rather than as rings,
result in data "dead-ends." For data such as PARK
ER'S SERIAL NUMBER, the number is appropri
ately unitless. However, the data structures used do
not yet make allowance for units where they are
required. Therefore, distances, weights, etc., are now
stored and used as unitless numbers.

Attempts at inputting data are rejected by the
system under various circumstances. Of course, any
input statement is rejected if it is beyond the gram
matical capability of the system. Also rejected are
statements involving ambiguous data referents. For
example, if there are two PARKERS in the data
base, the following statement is rejected:

DATA: PARKER'S SERIAL NUMBER IS
96738332!

PARKER IS AMBIGUOUS

The user may restate the command, identifying which
PARKER he means.

If the data being input is already recorded, the
system so states:

DATA: LT. COL. PARKER'S SERIAL NUMBER
IS 96738332!

INFO ALREADY IN DATA

Although the current system does have a few more
capabilities that have not been discussed above, a
good deal more work needs to be done on inputting
data. Additional interactive features are required
and planned. Also needed are the ability to input
more than one connective ring per input statement,
the ability to input data while defining a word, and
an improved ability for inputting characteristics that
apply to each item in a given class. Also, only rudi
mentary capability now exists for changing data
entries or deleting them from the data base.

VERBS

Grammar rules involving verbs are somewhat dif
ferent from those described so far. The difference is
that these rules do not check data structures imme-

372 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

diately. Rather, each contributes to the building of
a verb table. A verb table specifies an event space
and an event that is hypothesized to have occurred
within that space. Finally, in a rule that forms an
S-phrase, the validity of this hypothesis is tested
against the data base by a set of programs called
the "verb routine."*

A verb is considered to specify an event, which is
defined as the existence of a state or a change of
state as indicated by a time-dependent three-link
connective' ring in the data base. (See Fig. 10.)
Specifically, the verb is associated with the referent
ring that is used as an attribute. Also, it concerns a
particular aspect of the relationship-a beginning,
continuing (existence) or ending of the relationship.
For example, ARRIVING, VISITING, and DE
PARTING are associated with a beginning, continu
ing, and ending, respectively, of a LOCATION.

The associated attribute, aspect, and tense of a
verb are specified in its definition. This information,
which is provided by the dictionary lookup as part
of the initial verb phrase, forms part of the verb
table.

A completed verb table and tree diagram are
shown in Fig. 11 for the sentence:

HAS THE 638TH BATTALION ARRIVED.
AT FORT LEWIS SINCE 18000?

Rules 5 and 11 apply as previously shown to reduce
THE 638TH BATTALION to 638TH. Rule 51,
HAS + R + V·~ V, then applies to HAS 638TH
ARRIVED. This rule checks the compatibility of the
auxiliary verb with the tense of the main verb, and
places 638TH on the verb table as Subject. The
output phrase in the tree diagram is labeled
ARRIVED', with the prime indicating that the verb
table has been extended or modified. Other rules
place FORT LEWIS on the verb table as Value and
set the time span as 18000 to 20500 (the implicit
current time).

After the verb table has been completed (at the
node labeled ARRIVED IN), the "hypothesis test
ing" rule, V + ? ~ S, searches the data base for a
BEGINNING LOCATION of the 638TH at FORT
LEWIS between times 18000 and 20500. Since Fig.
10 shows an appropriate arrival (at 20000), the
response to the sentence is YES.

The verb routine is also used in a variation of its

* The verb routine programs were developed by Russell
J. Abbott.l:2

S(YES)

V

HAS THE 638TH BATTALION ARRIVED AT FORT LEWIS SINCE 18oo?

VERB TABLE (ARRIVED"')

SUBJECT 638TH

ATTRIBUTE LOCATION

ASPECT BEGIN

VALUE FORT LEWIS

TENSE PAST

TIME Tl 1800

TIME T2 20500 (NOW)

Figure 11. Tree diagram and verb table.

role as a hypothesis tester to fill in gaps in the
"completed" verb table. For example, consider the
sentence

WHEN DID THE 638TH ARRIVE AT
FORT LEWIS?

The verb table would not actually have a gap, since
the phrase DID ... ARRIVE sets the time span as
past. However, in checking the data base for struc
tures corresponding to past arrivals of the 638TH
at FORT LEWIS, the verb routine fills in the specific
times for which arrivals are recorded. Rule 308,
WHEN' + V + ? .~ S, therefore executes the verb
routine, retrieves the list of times (or time spans,
i.e., "between and. ," in case of im
plied arrivals for which a definite time is unavailable)
and prepares the list as the response to the sentence.
Similarly, if the sentence did not specify the pl~ce
of arrival, the verb routine would fill the gap WIth
a list of places in which the 638TH had arrived. In
more general terms, it fills in all appropriate values of
the verb's associated attribute for the sentence sub
ject.However, no rules of grammar have yet been
written to take advantage of this type· of verb table
gap-filling.. ..

Reference 12 describes the use of lIst processmg
"generators" which are used in con~unction wit~ ~he
verb routine for dealing with quantIfiers. In addItIOn

DEACON: DIRECT ENGLISH ACCESS AND CONTROL 373

to quantifiers such as "any" and "all," the concept of
quantifiers/ generators applies to "what" and "how
many."

In addition to its use in queries, the verb table is
also convenient for inputting time-dependent data.
Since it characterizes an event, a similar characteriza
tion in ring structures can be established if the verb
table is specific enough. This use of the verb table
was discussed earlier, in the section "Ring Structures
and Data Input."

More complex verb tables, which result from more
complex sentences, are discussed in Reference 12.
Additional grammar rules, both verb and non-verb,
are also shown in Reference 12. The strategy for
determining what rules are applied in what sequences
is described in the following section.

THE LEVEL PARSER

The procedure used by the DEACON system to
apply rules of grammar is a bottom-to-top, rewriting
parser that produces, in parallel, all analyses of a
sentence that the grammar allows. The unique fea
ture of the parser is its use of level conventions to
restrict redundant application of grammar rules. *
This is an especially important consideration in a
parser which was designed to use a context sensitive
phrase structure grammar with discontinuous rules.

As indicated in the preceding examples, the pars
ing tree (Fig. 7) that represents an analysis of the
sentence is built from the bottom up. The parser's
ultimate goal is to apply enough grammar rules to
collapse the sentence to a single sentential phrase
(S). Analysis proceeds in steps from the sentence to
(hopefully) the S-phrase goal. At each step in the
parsing, the sentence is represented within the com
puter as a list of phrases, which is called a subgoal.
Such a list made up exclusively of initial phrases is
called an initial subgoal. Every subgoal is a rep
resentation of the sentence, but only the phrases
in initial sub goals correspond directly to terms of the
sentence. Other subgoals are a partially parsed rep
resentation of the sentence and contain at least one

*This particular DEACON parsing procedure is presented
here because, as far as we know, it is unique in its use of
levels. Kuno has suggested a modification which he believes
would make the Level Parser more efficient, and Hays has

.. suggested that perhaps the level parameter could be in

. corporated into the Cocke-Robinson parser, although the
return on the effort to do so would probably not justify
it. The idea for a level parser was conceived by Thompson;
its implementation in the parser described here was by
Gregory D. Gibbons.

intermediate phrase. This distinction beween partially
parsed subgoals and initial subgoals is ignored by the
parsing procedure, but is useful in describing the
parser.

The DEACON parser is a rewriting parser, which
here means something more than a parser that em
ploys rewriting rules of grammar. For, when a rule of
grammar successfully applies to a sequence of phrases
in a subgoal, the whole subgoal is rewritten. * The
output phrase from the grammar rule is substituted
for. its constituents and the other phrases in the sub
goal are copied. The new subgoal is added to a list of
subgoals and is parsed along with them.

Thus, the list of subgoals represents all possible
analyses of onet initial subgoal that have been de
veloped up to a certain point. All potential analyses
are' developed in parallel. In contrast to a parsing
strategy that follows a single analysis as far as pos
sible and then backtracks to get other analyses (if
any), the Level Parser carries all analyses along
together and discards unproductive ones.

The Level Idea

The level idea is based on the standard representa
tion of an analysis of a sentence as a parsing tree
(Fig. 12). If only context-free rules of grammar are
used, a level corresponds to the height of a phrase
within the parsing tree. Phrases in an initial subgoal

* Although, it is not necessary to rewrite t~e whole sub
goal, the context phrases in context sensitive rules and the
intervening phrases in discontinuous rules must be re
written. A new parser which rewrites only what is neces
sary, but which does not uSe levels, has been implemented.

t There may be more than one initial subgoal for a
sentence if terms of the sentence have alternative syntactic
definitions. In such cases, each initial sub goal is parsed
separately due to lack of core space.

s-. - - - --Level 4

AN PAN U V Level zero
THE BALL IN THE AIR WILL FALL

Figure 12. Levels in a context-free parsing tree.

374 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

are assigned level zero; they are at the bottom of
the parsing tree. Any phrase produced by combining
phrases is represented as a node which is higher
in the parsing tree than the nodes which represent
its constituents. A phrase which is produced by ap
plication of a grammar rule to phrases in the initial
subgoal is, for example, assigned a level of one. This
intuitive idea of level was modified slightly so that
context sensitive rules could be used. This modifica
tion is necessarily detailed and is described in con
junction with the two simplified parsing examples
below.

Using the level idea, the parser first combines
phrases at the bottom of the parsing tree. When all
that can be done at· this lowest level has been done,
the initial subgoal is discarded and the parser con
siders the next higher level, or . level one. When all
subgoals that are at this level have been used, they
are discarded and the next higher level is considered.
Finally, when the subgoals at some level are dis
carded, there is nothing left to parse.

The Level Conventions

The level conventions and the general path of the
parser work in conjunction to reduce* redundant ap
plication of grammar rules to the same sequence of
phrases. The level conventions are given below; the
path of the parser is described by fiat in the two
examples which follow the level convention descrip
tion.

The parsing routine keeps a master level which
defines the level within the parsing tree where the
parser is currently working. Because the parsing
routine begins at the bottom of the. parsing tree, the
master level is initially zero.

Each phrase in every subgoal is assigned a level.
The level for initial phrases is zero. Any phrase out
put by a grammar rule is assigned a level equal to
one plus the master level. Unaffected phrases in the
subgoal are copied with whatever level they happen
to have.

As the parser systematically matches phrases in the
subgoals to rules, the following level restrictions must
be met:

* All such redundancy cannot· be eliminated because of
context sensitive rules and because alternative initial sub
goals are parsed separately. A phrase history, which con
tains rule outcomes for each sentence, eliminates actual re
application of rules.

Table I. Subgoals produced by the Level Parser in a
simplified context-free example.

Master level = 0 Rules

Initial 5ubgoal AO BO Co 1) A+ B-E
2) C -F
3) E + F_5

After application of Rule 1 in the initial subgoal

Initial Subgoal AO BO Co
Subgocil 1 E1 Co

After application of Rule 2 in subgoal 1

Initial Subgoal AO BO Co
Subgoal 1 E1 Co
Subgoal 2 E1 F1

After application of Rule 2 in the initial subgoal

Initial Subgoal AO BO Co
Subgoal 1 E1 Co
Subgoal 2 E1 F1

Subgoal 3 AO BO F1

Master level = 1

After application of Rule 3 in subgoal 2

Subgoal 1 E1 Co
Subgoal 2 E1 F1

Subgoal 3 AO BO F1

Subgoal4 S2

1. No rule of grammar will be applied if
any of its input phrases has a level
greater than the current master level.

2. No rule of grammar will be applied
to a sequence of phrases unless at least
one phrase in the sequence has a level
equal to the master level.

Restriction 1 postpones the processing of· recently
produced phrases until the parsing routine begins
work at the next higher level. Restriction 2 insures
that the phrases at a lower level, which have already
been processed, will not be done again.

Examples

Table I shows an abstract example where the
level conventions are used to reduce redundant pars
ing. (Unfortunately, an interesting example is too
lengthy for presentation at this time.) The example
also gives a more detailed explanation of the order
of parsing.

DEACON: DIRECT ENGLISH ACCESS AND CONTROL 375

The initial subgoal is made up of three phrases
with categories A, B, and C, respectively. Each in
itial phrase is given level zero (indicated by sub
scripts). The master level is initially zero.

Parsing begins at the left on phrase A in the
initial subgoal. Rule 1 matches phrases A and Band
after successful application, the initial subgoal is. re
written incorporating the new phrase E, which is
assigned a level one.

The parser moves down the first column to the
phrase E in subgoal 1. Consideration of this phrase
is aborted because the level of E is greater than the
master level. Parsing of phrase E is postponed until
the master level is raised to one.

The parser moves to the top of the next right
column and finds that no rules apply to phrase B.
Moving down the second column, Rule 2 applies to
phrase C in subgoal 1. New subgoal 2 is added to
the bottom of the subgoal list. Phrase F in subgoal 2
is out of range and Rule 2 applies to phrase C in the
initial subgoal to produce subgoal 3. Continuing, the
parser finds that there are no 3rd phrases in subgoals
1 and 2 and that phrase F in subgoal 3 is out of range.

The parser has completed its first left-to-right
sweep. Everything that can be done strictly at the
bottom of the parsing tree has been done. The master
level is raised to one. Now each sequence of phrases
to which a rule can apply must have at least one
phrase at level one. Because no sequence of phrases
in the initial subgoal can meet this requirement, the
initial subgoal is discarded. Whenever the master
level is raised, subgoals containing only sequences of
phrases that are now out of range are discarded.

Beginning at the top left and moving in the estab
lished pattern, the parser finds that no rule applies
to the sequence E C in subgoal 1. Rule 3 applies to
phrases E F in subgoal 2, producing subgoal 4. *

Rule 1 would normally apply to the string A B
in sub goal 3. But this has already been done. Rule
1 was applied to this particular string in the initial
sub goal. If it were applied again, the resulting subgoal
would be exactly like subgoal 2. Level restriction 2
(at least one phrase level equal to the master level)
prevents this. Since neither phrase A nor phrase B in
subgoal 3 . has level one, the sequence is not re
parsed. Restriction 2 also applies to phrase C in
subgoal 1 and the parsing of this example is com
pleted.

* In actual practice, phrases with category S are not
rewritten into the subgoal list, but are set aside on a special
output list.

Table II. What level should be assigned a phrase
which has been used as context?

Master level = 0 Rules

Initial Subgoal: V 0 Wo Xo 4)V+W---Y
5) W+ X---W+ Z
6) Y + Z --- 5

After application of Rule 4 in the initial subgoal

InitialSubgoal YO Wo Xo

Subgoal 1 Y
1 Xo

After application of Rule 5 in the initial subgoal

Initial Subgoal Vo Wo Xo

Subgoal 1 Y
1 Xo

Subgoal 2 Vo W? Zl

The general problem in allowing context sensitive
rules is that of having the context available when it
is needed. Because the DEACON parsing method re
writes entire subgoals, the context is always available
when needed. The problem, instead, becomes how
to insure that the context is properly parsed after it
has been used as context. Consider the example in
Table II.

Following the parsing procedure outlined in the
previous example, Rule 4 and Rule 5 are applied to
the initial subgoal V W X, resulting respectively in
subgoals 1 and 2. At the end of the first left-to-right
sweep, there are three sub goals, namely the initial
subgoal, subgoal 1. and subgoal 2. The master level
is raised to one and the initial subgoal is discarded.
Subgoal 1 is obviously a blind alley; there is no way
to parse it to completion because in creating the Y
phrase, the context W which is required to parse the
X-phrase was used up.

Subgoal 2, on the other hand, represents the case
where the context W has been properly used to
parse the X-phrase into a Z-phrase. But now what
can be done with the phrase sequence V W? If the
intuitive level idea is followed strictly, it is obvious
that phrases V and Ware still at the bottom of the
parsing tree and hence each might have a level zero.
But because the master level has been raised to one,
level restriction 2 will prevent the re-application of
Rule 4 to the V W sequence. In this case, no further
rules could be applied to sub goals ·1 and 2. When
the. master level is raised to 2, all subgoals that do
not contain at least one phrase with level 2 are
discarded. Subgoals 1 and 2 are discarded and there

376 PROCEEDING~FALL JOINT COMPUTER CONFERENCE, 1966

Table III Parsing continued after appropriate assign
ment of level to context phrase.

Master level = 1

After application of Rule 4 to subgoal 2

Subgoal 1 Y
1

Xo

Subgoal 2 V 0 W1 Zl

Subgoal 3 Y 2 Zl

is nothing left to parse. No analysis of the sentence
V W X could be found.

To correct this undesirable state of affairs, the
level idea is pragmatically extended. Any phrase
"output" by a grammar rule is assigned a level equal
to one plus the master level. Phrases "output" from
a grammar rule are the single new phrase and any
phrases which should be retained as signalled by the
grammar rule. Assignment of level to the new phrase
corresponds with the intuitive level idea. The phrases
which are to be retained are the. context phrases.
So any phrase used. as context is also assigned the
new level and not just rewritten with whatever level
it happened to have.

A review; of Table II with this new level conven
tion in mind will show that'the W phrase in subgoal
2 is assigned level 1. Then the sequence V W meets
the requirement of having at least. one phrase with
level equal to the master level and Rule 4 may be
applied. (The phrase history list is consulted to
obtain this previous result directly.) The problem of
what to do with context phrases is resolyed, as
shown in Table III. '

At the end of the left-te-right sweep, subgoals 1
and 2 are discarded as above, but this time there is
a subgoalleft to parse. Application of Rule 6 to sub
goal 3 results in the desired completion of" parsing.

This slight modification to the .. levelconventions
changes· the nat~re of the i~ea of level. Instead of
"height within the ,parsing tree," the levels, therefore,
no longer say something about ,the phrase to which
they are attached. Instead, they in,dicate something
about the subgoal coritaining the phrase to which
they are attached.'

HARDWARE CONFIGURATION

The current experimental DEACON system is im
plemented ona 16K GE~225 general purpose digital
computer with a 20-bit word length' and an 18

microsecond cycle time. A random access disc unit
of six million words is used for secondary storage.
Model 33 or Model 35 teletypes connect to the main
frame through a DATANET-15 interface unit, which
allows interactive use but no time-sharing. The hard
ware configuration also includes a card reader, a
punch, a printer, and six tape units. These devices
are used for service jobs such as building the system,
assembling programs, and taking dumps.

CONCLUSIONS

The DEACON system is in its second phase of
development as a management information system
featuring English language data input and query ca
pabilities. The first phase, the DEACON Bread
board,l.3 proved the feasibility of using interpretation
rules for relating English statements to computer
stored data structures. The data base was pre-stored
in list structure form as a static part of the system.
No time-dependent (i.e., historical or projected) data
was permitted. Queries could be given in English,
on punched cards, and system responses were by
printer. Peripheral memory was magnetic tape, and a
considerable part of the development effort· con
sisted of devising techniques for using list processing
in conjunction with peripheral memory.

The present system includes the following major
advances over the Breadboard system: (1) the pro
vision ;of direct access to the computer via teletype,
permitting interactive use for developing the system
and experimenting with it; (2) the ability to input
data from the teletype in English; (3) the use of
ring-type data structures, which have proven richer
than the earlier list structures; (4) the use of disc
peripheral memory rather than tape; (5} the use of
generally. more efficient processing routines such as
the parser and the dictionary and data handling tech
niques; (6) the incorporation of time-dependent data;
and (7) the use of a more generalized method for
handling verbs.

Future work will concentrate .. on adding new fea
tures as well as extending and improving the effi
ciencyof current capabilities. Perhaps the most
significant new feature needed· is the ability to define
vocabulary terms in English, using previously defined
terms. The importance of this. capability is discusse,d
in reference 9 as "recursive definition and the recur
sive behavior of structural modification." Some initial
work is being doneon this and on'algebraic gram
marfules. Other major areas of planned gramm~r

DEACON: DIRECT ENGLISH ACCESS AND CONTROL 377

extension include pronouns (with some cross-sentence
referencing), negation, and clausal modification. The
grammar currently consists of some 250 rules.
Various techniques are under consideration to make
it easier to write grammar rules.

Data structures are receiving much attention as a
promising area for increasing the semantic capability
of the system, and for improving processing effi
ciency. The processing systems such as the parser and
dictionary and data handling techniques are also be
ing improved apart from the data structures work.

Sentence processing time varies normally from
under a minute to three or four minutes, but has gone
as high as 17 minutes. System improvements as
mentioned above, greater use of machine-language
programming, and use of a larger, faster machine
should much more than offset the slowing tendencies
to be expected from enlarging the grammar and data
base.

Our experience with the DEACON system has
convinced us of the soundness of its theoretical basis.
Conclusive proof may await the test of a prototype
operating in a live, rapidly changing context. How
ever, we look forward to such an operation as a
source of guidance for continuing development of the
DEACON system.

APPENDIX: SAMPLE RULES
AND SENTENCES

Some R-phrase modification rules have been il
lustrated, such as Rule 5, Rl + R2 .~ Rl, and Rule
8, Rl + OF + R2 ,~ R g • There are several other
rules that take two R-phrases or two R-phrases and a
preposition as input, and produce an R-phrase as
output. For example, Rule 1 is Rl + R2 ,~ R2 in
which the output R-phrase has the same data referent
as the second input R-phrase. It is needed for strings
like

Rl
LT. COL.

+ R2 ~

PARKER ~
R2

PARKER

This rule checks for existence of an appropriate
connective ring between the referent rings of LT.
COL. and PARKER. If satisfied, it uses the referent
ring of PARKER as the referent ring of the output
phrase. That is, it verifies that PARKER is a LT.
COL. before accepting the string LT. COL.
PARKER as a syntactic unit. Or, assuming that there
is more than one PARKER but only one is a LT.
COL., this rule selects the appropriate referent .ring

Rulel: Rl + R2--R2

LT. COL. PARKER

Q-__ OPARKER
l

\ " , 0 PARKER 2

" " RANK&

~..:...--

Figure 13. Example of resolution of multiple-data-referent
ambiguity by data checking in a linguistic
modification rule.

for the output phrase. As shown in Figure 13, the
name PARKER is ambiguous in the input phrase
because it leads to three distinct referent rings.

In this case, the data check resolved the ambiguity.
Obviously, if the data base had been different, some
or all of the ambiguity might have remained; or, if
no PARKER were a LT. COL., the output R-phrase
would be marked VACUOUS DESCRIPTION. If
no successful analysis results from parsing LT.
COL. and . PARKER differently (conceivably in
something like "WHO WAS THE LT. COL.
[THAT] PARKER SUCCEEDED?"), the V AC
UOUS DESCRIPTION (LT. COL. PARKER) is
typed out as a clue to the failure to answer the
query.

Since Rule 1 and Rule 5 each require two ad
jacent R-phrases as constituents, an attempt is made
to apply both rules to LT. COL. PARKER (in
alternative parsings). If successful, Rule 1 interprets
the phrase as PARKER, and Rule 5 interprets it as
LT. COL. However, the connective ring shown in
Figure 13 does not satisfy the requirements of Rule
5, so this possible ambiguity is quickly resolved. Both
rules do successfully apply to the string 638TH
BATTALION as shown in Figure 14. But since the
referent ring of BATTALION does not link to that
of COMMANDER, the parsing in which Rule 1 was
used is aborted at the next step. If such ambiguities
are not resolved, and result in different answers to a
query, the alternative answers are typed out along
with their respective parsings.

Rule 2, Rl + R2 ~ R 3 , introduces a new type of
output phrase referent ring-a "scratch" ring created
by the rule and linked by connective ring to appro-

378 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

ALTERNATIVE RULE APPLICATIONS

R (BATTALION,
BY RULE I)

R F R R
COMMANDER OF 638TH BATTALION

R F R R

v"""'"''"'''' R (PARKER)

DATA STRUCTURE

638TH _ _ _ BTN.

C;>,,-• .E:>
I "
, CDR.\

Q I PARKER

'-0

Figure 14. Ambiguous interpretation (by two alternative
rules) of a given phrase resolved by a data check
at a higher level phrase.

priate referent rings in the permanent data base.
The application of this rule to the string ENGI
NEER BATTALIONS causes such a scratch ring to
be formed. (Fig. 15.) This rule also illustrates an
interesting aspect of ambiguity. Although each con
stituent R-phrase is unambiguous, the combination
may be ambiguous because their data referents are
interconnected via alternative p~ths. For example, if
some BATTALIONS are HEADQUARTERED at
FOR T IRWIN and others are temporarily LO
CATED there but HEADQUARTERED elsewhere,
an ambiguous response would result from the state
ment

LIST FORT IRWIN BATTALIONS.
BATTALION (HEADQUARTERS) FORT
IRWIN

522ND
436TH
593RD

BATTALION (LOCATION) FORT IRWIN
638TH

94TH
523RD
117TH

Two separate scratch rings are created in this ex
ample-one for each interpretation.

There are also prepositional forms of these rules:

Rule 8: Rl + OF + R2 ~ R3
Example: COMMANDER OF 638TH ~

PARKER

Rule 31: Rl + OF + R2 ~ Rl
Example: PARKER OF 638TH ~

PARKER

Rule 35: Rl + OF + R2'~ R3
Example: BATTALIONS OF FORT

IRWIN .~ FORT IRWIN
BATTALIONS
(R3 refers to two scratch rings as
in earlier example.)

Rule 36: Rl + IN + R2 ~ R3
Example: BATTALIONS IN FORT

IRWIN ,~ FORT IRWIN
BATTALIONS
("IN" eliminates the location/
headquarters ambiguity.)

The dual application of Rule 8 and Rule 31 to
"R OF R" expressions produces ambiguity that
tends to remain unresolved in such questions as
WHO IS COMMANDER OF 638TH? With both
rules applying, the response would be

(305 WHO IS (8 COMMANDER OF
638TH) ?)

PARKER

ENGINEER BATTALIONS

t';c) ,-~
~ Q~r
I \ I ,"

,\ "TYPE * \ \, q \)
'-........-p638TH

......... _-"

OUTPUT
RULE 2: Rl + R2--R3

R3 (SCRATCH RING)
~\ "ENGR. BTN."

Rl ~ ~R2
BATTALIONS

j:~NEER Q\
I~ " '\ ... ~r
I \ I \
\ \ \
\ ,TYPE t \ SCRATCH \ 0 \: (ENGR. BTN.)

\ ." \ I _ .. ~
" ~I/~, '" ,- \ .,/" V

..... -- ~
... - - - 638TH -----

TO OTHER BATTA
LIONS WHOSE TYPE
IS ENGINEER

Figure 15. Creation of a scratch block, linked by connec
tive rings tOo referent rings in the permanent data
base, during application of a grammar rule' in
analyzing a query.

DEACON: DIRECT ENGLISH ACCESS AND CONTROL 379

(305 WHO IS (31 COMMANDER OF
638TH)?)

COMMANDER

Actually, the restrictiveness of the pronoun
"WHO" eliminates the second output in this ex
ample unless the system has been told that the word
COMMANDER itself is in the range of the pronoun
WHO.

In practice, a more general ambiguity resolver
eliminates Rule 31 's application sooner. Under "Ring
Structures and Data Input," it was stated that input
statements of the form "Rl OF Rz IS R3 " caused the
data referent of Rl to be placed on a special OF
referent ring as a reminder that it may be used at
tributively. Rules 8 and 31 compare their Rl data
referents with the OF ring. Rule 8 applies if Rl is on
the OF ring, and fails if it is not; Rule 31 applies if
Rl is not on the OF ring, and fails if it is. These

1. List all engineer battalions.

425 TH
638 TH

94 TH
523 RD
682 ND
496 TH
117 TH

2. List the commanders of engineer battalions.

J.C. Irvin
D.J. James
J.M. Parker
S. V. Olsen
T.e. Allen
I. S. Parker
J.C. Conway

3. Where is Parker?

Ft. Lewis
Ft. Irwin

[Ambi guous - 2 Parkers]

4. Where is Lt. Col. Parker?

Ft. Lewis
[Only one is a Lt. Col.J

5. When will Lt. Col. Parker leave Ft. Lewis?

22000
[Times are currently treated as relative numbers on a "time line. "J

6. It is now 230001

OK
[There is now no system clock yet. The user must set "now"
explicitly or it is automatically "0. "J

7. Where is Lt. Col. Parker now?

Presidio

complementary checks, which resolve the P ARKER/
COMMANDER type ambiguity, amount to adding
the part of speech "ATTRIBUTE".

These few rules have been presented in some detail
to give the "flavor" of the problems involved in
developing the DEACON grammar. These and
similar rules used recursively and in combination
with the verb rules, data input rules, and sentence
forming rules such as

Rule 301: LIST + R + : ~ S

WHAT IS
Rule 305: WHAT ARE + R + ? ~ S

Rule 307: WHERE IS + R~S,

successfully analyze a wide range of sentences involv
ing attributive relationships. Some sample sentences
that the system now accepts are shown with their re
sponses in Fig. 16.

8. What is the date of rank of the commander of the 638 TH
Battalion of Fort Lewis?

11600

9. What is Olsen's date of rank?

12900

10. Does Parker's date of rank precede Olsen's date of rank?

Yes

11. What staff colleges has Lt. Col. Parker attended?

Command General School
Infantry School

12. Has Lt. Col. Parker arrived at the Presidio from Ft. Lewis?

Yes

13. What is the readiness of Lt. Col. Parker's Battalion?

Orange

14. Data: The 425 TH will leave Ft. Lewis at 219501

OK

15. Data: The 638 TH will arrive at Ft. Lewis at 200001

OK

16. Is the 638 TH scheduled to arrive at Ft. Lewis before the
425 TH leaves Ft. Lewis?

Yes

17. How many combat engineer companies have trained at
Ft. Irwin this year?

6

18. How many Sixth Army installations are there?

38

19. What is the distance from the 638TH Battalion to San Diego?

61
[No units are currently stored. Forts and cities are located
on a square world of xy coordinates, so "distance" is the
"square root of the sum of the squares •.. "]

Figure 16. Sample sentences.

380 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

ACKNOWLEDGMENTS

Our greatest debt is to Dr. Frederick B. Thomp
son, who is clearly the author of DEACON, if not of
this paper. Mr. John W. Gwynn and Mr. Gregory
D. Gibbons contributed to the Breadboard and the
experimental system. Mrs. Jacque Suzanne Pruett
was a valuable member of the Breadboard team, and
Mr. Russell J. Abbott, Mr. Robert L. Price, and
Mrs. Marillyn Popkin have contributed to the ex
perimental system since its beginning. Dr. John C.
Fisher adeptly pulled together the enabling resources
for the experimental system. The project is under the
management of Dr. Herbert R. J. Grosch.

REFERENCES

1. S. Kuno and A. G. Oettinger, "Multiple Path
Syntactic Analyzer." Information Processing 1962,
North Holland, Amsterdam, 1963, pp. 306-312.

2. F. B. Thompson, "English for the Computer,"
AFIPS, Volume 29, Proceedings of the Fall Joint
Computer Conference, 1966. (This volume)

3. B. F. Green, et aI, "Baseball: An Automatic
Question Answerer," Computers and Thought,
McGraw-Hill Inc., New York, 1963.

4. R. K. Lindsay, "Inferential Memory as the
Basis of Machines Which Understand Natural

Language," Computers and Thought, McGraw-Hill
Inc., New York, 1963.

5. R. F. Simmons, "Storage and Retrieval of As
pects of Meaning in Directed Graph Structures,"
SP 1975/001/02, System Development Corp.,
Santa Monica, 1965.

6. I. E. Sutherland, "Sketchpad: A Man-Made
Graphical Communication System," AFIPS, Volume
23, 1963 Spring Joint Computer Conference, Spar
tan Books, .Washington, D.C., pp. 329-346.

7. F. B. Thompson and R. W. Callan, "Concept
for the Navy Operational Control Complex of the
Future," (RM 62 TMP-49-1), General Electric,
TEMPO, Santa Barbara, Calif., 1962.

8. F. B. Thompson, "The Semantic Interface in
Man-Machine Communication," (RM 64 TMP-35),
TEMPO, 1963.

9. , "Application and Implementation of
DEACON-Type Systems," (RM 64 TMP-ll),
TEMPO, 1964.

10. , "Design Fundamentals of Military
Information Systems," Military Information Systems,
1964.

11. "Information Systems Research," Project
DEACON, (RM 65 TMP-69), TEMPO, 1965.

12. "Phrase Structure Oriented Targeting Query
Language," (RM 65 TMP-64), TEMPO, 1965.

13. F. B. Thompson, et aI, "DEACON Bread
board Summary," (RM 64 TMP-9) , TEMPO,
1964.

COMPUTER ASSISTED INTERROGATION

Charles T. Meadow and Douglas W. Waugh

IBM Corporation
Bethesda, Maryland

INTRODUCTION

Summary

Computer Assisted Interrogation (CAINT) is a
system of computer programs for use in man-machine
communications. Its principal function is to enable a
computer to elicit information from a man by inter
rogating him-asking him a program of questions
where the program follows a logical course depending
both on information available before the interroga
tion started and on that gained during the interroga
tion. The information acquired is intended to be put
to immediate practical use, in updating a data base,
generating reports, or driving other interrogations.

During the course of an interrogation, the inter
rogee will be given information as well as asked
questions, and he may ask his own questions, as well
as provide answers. Thus, a CAINT interrogation is
truly conversational, with information and questions
flowing in both directions. The conversation, particu
larly in the machine-to-man direction, is somewhat
stereotyped, the machine's versatility being limited by
a repertoire of generalized, fragmented statements
which are particularized and assembled for use as
needed. The conversational range of the computer,
then, depends upon a system user's versatility in de
signing these statements-a process somewhat akin
to computer programming. In its present state,
CAINT imposes few restrictions on man-to-machine

381

communication although it is unable to perform any
content analysis on a natural language response. We
feel that CAINT achieves one of the aims of man
computer symbiosis, as defined by J. C. R. LickIider,1
"to enable men and computers to cooperate in mak
ing decisions and controlling complex situations with
out inflexible dependence on predetermined pro
grams."

CAINT is applicable to a broad class of informa
tion acquisition problems. It is being developed in
conjunction with a project whose aim is computer
program documentation. Here, guided by the struc
ture of the program itself, and design information
previously contributed by the programmer and
others, CAINT interrogates a programmer about his
own program and elicits a detailed, up-to-date, pro
gram description. It can also be used for other highly
structured reporting activities and for advanced edu
cational programs.

The Nature of the Conversation

CAINT superficially resembles Computer Assisted
Instruction, CAL 2 In CAl, information is presented
to a student in short paragraphs, or frames: A ques
tion is asked about the information, the student an
swers the question, and the system responds to a
student's ans~er. The student's answer controls
branching within the instructional program, which can
then produce a comment on the answer, change the

382 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

planned sequence to review the material if necessary,
ask the student to try again, or go on to new material.
In CAl, however, student responses must be antici
pated. To oversimplify-the question "When did
Columbus discover America?" anticipates the correct
answer "1492." The system may accept "fourteen
hundred and ninety-two" but might not recognize,
hence might reject, "late 15th century."* CAINT
sometimes anticipates answers, but serves its greatest
purpose when it asks questions, the answers to which
are not known to anyone but the responder-infor
mation entirely new to the system. CAINT can also
vary its question-asking routine by using information
obtained from any prior response or any items in a
data base whose information originates outside
CAINT, perhaps in another information system. The
conversational capabilities of CAl, then, are a subset
of CAINT's functions.

We can more formally define CAINT as a three
way communications system. The communicating
elements are: a data base; a man, or group of men,
engaged in some activity; and an executive. The initi
ative lies with the executive, who is the person who
contributes an executive program and the set of gen
eral statements. The executive program directs the
system how to respond to different stimuli or condi
tions. It may specify, for example, that upon receipt
of a change in item X of the data base, a certain set
of statements is to be issued to the human responder,
the exact form of these statements depending upon
the particular values of item X before and after the
change, and on other data base items. Responses to
these statements by the responder may further modify
the program of statements. Thus, each of the three
communicating elements has some control over the
conversation, with a sort of policy control exercised
through the executive program.

CAINT permits an item of information arriving in
a data base to be presented to a man, and enables
the system to ask a set of questions about the datum.
These are tailored to that datum in the context of the
overall data base as it stands at the moment. In other
words, different questions might be asked, in response
to the same stimulus, given a different data base

* IBM's Computer Assisted Instruction system enables a
course writer to anticipate any of these answers and treat
them as correct. He can even accept any answer which
contains a given set of key words as "fourteen," "ninety,"
"two," which would recognize "fourteen-ninety-two" as cor
rect. However, this obviously requires both more computer
time and more instructor time, and could be avoided by
requiring dates to be entered as numbers.

environment. For example, in a management report
ing system, a conversation between CAINT and a
programming group leader might be, in part, as
follows:

Machine Statements User Responses

Your responsibility is: 1 DECEMBER 1966
Tracking Program. Esti-
mate your completion
date.

The machine then responds to this estimate de
pending upon the history of the original assignment
and responses to this question when asked in pre
vious interrogations. Possibilities include:

Your estimate includes
adherence to original
schedule.

Your last estimate indi
cated 1 October 1966.
What is the reason for
the delay?

(NO RESPONSE RE
QUIRED)

DESIGN CHANGE
PROMULGATED IN
PROJECT MEMO
RANDUM NO. 123
INCREASED COM
PLEXITY OF THE
PROBLEM.

The term data base applies to files stored in a com
puter system accessible to CAINT. It is important to
note that data base information can come from ex
ternal sources or from responses to CAINT interro
gations. We will occasionally use the term to refer
solely to data selected from other than interrogation
sources, but we do this to stress that CAINT can be
made susceptible to external control, not to imply
that responses cannot enter the data base.

The term responder will generally be used to refer
to a single individual. All our current experimental
work centers around individual responders. How
ever, there is no conceptual bar to thinking of the
responder as a group being independently interro
gated on the same subject, a team, each member of
which performs a different function contributing to
a common goal, or another data processing system.
For example, a group of managers might work to
gether to plan a schedule and organization for a new
project.

CAINT is a practical information acquisition tool.
The result of an interrogation is to add information
to a file. The CAINT system has the capability to
compile documentary reports from the data base,
using the same logical capability to select and se-

COMPUTER ASSISTED INTERROGATION 383

quence interrogation frames. This use of CAINT re
duces the CDst and time required to produce the right
information to meet the needs of the moment.

A Survey of Applications

We discuss here four possible applications of
CAINT. In a later section (Program Logic), we ex
pand one of these examples to illustrate the logic of
CAINT programs.

1. Programming documentation. A computer pro
gram is a complex structure, with many interlocking
threads, with data sets or files shared by some parts
of a program, not shared by others, data names or
labels meaning the same thing in one part, different
things in others. The problems inherent in changing
someone else's program are notorious, largely due
to inadequate documentation. Our objective is not
only to produce documentation good enough to en
able a programmer to change another's program,
but to have a new version as well-documented as the
original, so a third party can change the joint work
of the first two. We find that programmers easily for
get details of their programs (witness the relearning
process after each debug run) and need to be taught
much of their own program, in order to document
it successfully.

Given a completed computer program to be docu
mented, we perform a preliminary analysis of it,
breaking it down into segments and providing such
information as, for each segment, the possible suc
cessor segments and the numbers and types of state
ments or instructions used. This information is stored
in the data base. The executive program uses the
successor table to follow threads in the program, con
sidering segments in the order in which they might
actually be executed. By examining detailed informa
tion about the statements in each segment, the
executive program decides what specific questions to
ask; whether, for example, to ask for an explanation
of the meaning of a file of input data, or of the
limit on the index of a DO statement. The pro
grammer is then asked a series of informed questions
about his own program, interspersed among state
ments reminding him about the program's structure,
use of data, etc. He responds mainly to requests for
explanation or amplification of data already found
in the data base. Different using organizations could
provide for different forms of documentation by
varying the executive program or the preliminary

analysis that creates the bulk of the data base. The
responding programmer will contribute some data
base items and could be given control over the path
to be followed whenever the choice is arbitrary, such
as at a conditional transfer. Thus, the executive
programmer, the responding programmer, and the
program to be documented each exert some control
over the final document and the sequence of steps
taken to produce it.

2. Management information systems are another
possible CAINT application. Too often, these are
merely storage and retrieval systems for fixed reports
or questionnaires. Questionnaires on complex sub
jects tend to become cumbersome and confusing
because there is so much variation in how questions
can be answered, and, sometimes, each possible
answer to a question generates a different set of
ensuing questions.

Actually, out of a large number of possible ques
tions concerned with, say, progress reporting, only
a few may be applicable to any particular manager.
We would like tOo see these, and only these, asked.
This will reduce the time spent on reports, and, even
more significantly, will change the report from a
highly stereotyped, virtually meaningless, document
into one whose relevance is obvious to the interrogee,
and to which more attention and respect will then be
paid by him.

The report that any individual manager (or indi
vidual engineer, programmer, salesman, etc.) is
asked to file, then, consists of his answers to a series
of informed questions which enable him to concen
trate only on areas of significance, to explain when
necessary, and to do this with a minimum of effort.
This gives the project manager or reviewing authority
specific answers to questions that are Dnly asked
because there is something in the files that indicates
that they should be asked, rather than stereotyped
answers to stereotyped questions.

3. Military intelligence is an area in which the
importance of the information required depends not
only upon who is answering the questions, but what
the current politico-military situation is. For example,
one would not normally ask a political intelligence
analyst the tactical significance of a new type
armored vehicle. An aerial photograph interpreter
follows a certain general regimen in analyzing photos,
but the specific facts needed by the military com
mander tOo whom he reports can vary. Topographic

384 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

information may be of first importance when an army
is moving rapidly into unfamiliar terrain, but not so
in a static situation. Perhaps an on-the-spot obser
vation by a patrol may create an immediate need to
reexamine photos {)f a particular area, to verify some
reported item. The generation of the appropriate
questions for the interpreter can be handled by
CAINT so long as the implications of the arrival of
the patrol's report in the data base can be pro
grammed. We elaborate on this application in the
section on program logic.

4. Swets and Feurzeig,3 describing a possible ap
plication of computer-aided instruction, give an illus
tration of a teaching system for medical students.
Their example differs from the conventional pro
grammed instruction course in that the machine,
rather than volunteering its store of information,
often waits for a student input and then responds
with tutorial information specific to that input. Thus,
to the student, the system appears to know more
about the patient, whose condition is the subject of
the course, than is given explicity by the course. The
machine's responses to students' inputs, then, appear
to be based on data base information as well as the
student answers. CAINT could carry this a step fur
ther and allow the use of a real data base in providing
this type instruction. Furthermore, it could perform a
double service by interrogating the doctors, nurses,
and technicians in charge of the patient to assist them
in making their reports, thus acquiring information
on the one hand, and teaching it on the other.

SYSTEM DESCRIPTION

Overall System Description

We define an object system as that which is de
scribed by the data base, and which is the object of
most of the conversation between man and machine.
The object systems we have illustrated include a
computer program, the management control system
for a project or other multi-person activity, an aerial
photograph (or in a larger sense, the entire system
of intelligence available to an armed force), the
status of a hospital patient and various related hos
pital activities.

In addition to conversing about the substance of
some object to be documented, CAINT requires two
way communication on what amounts to administra
tive subjects. We differentiate between substantive
and service messages transmitted in either direction
between the computer and the system user. Sub-

stantive messages either give the user information
from the data base which has some external meaning
to the object system, or they are responses to ques
tions and are to be added to the data base as new
information or commentary on existing information.
A service message, on the other hand, might ask the
narrator which of two paths he wishes to follow in
an interrogation. The answer to this question is also
a service message. Neither this question nor the
answer are descriptive of the object system. The
distinction is not always clear-cut. A message asking
which path to take also conveys to the narrator the
substantive information that there are two paths, but
his answer adds no substantive information to the
data base.

Although not clear-cut, the distinction is im
portant. Even in early simulations, we have found
that there is a high percentage of service message
flow during an interrogation, and these messages
have relatively little intellectual content. Hence, the
narrator reads them quickly and comprehends them
easily. The twofold nature of information trans
mitted introduces a human engineering problem of
presentation of service frames, for the user can be
easily bored or distracted by slow presentation of
uninteresting service information. Substantive infor
mation requires thought while reading or composing.
Hence, time delays imposed by slow transmission are
not critical. Cathode ray tubes or other high-speed
displays may be indicated for the service messages,
while typewriter speeds have so far been acceptable
for the substantive messages.

The system user does not need elaborate training
to operate CAINT. The system is designed to pro
vide built-in, computer assisted training which, while
specific to the particular application, is relatively easy
to supply and would presumably be employed in
each application. In our program documentation ap
plication, there are two programs of instruction for
system users. One explains the mechanics of the use
of CAINT, how to select and change modes, and
what these modes are. A second, much longer, course
teaches our approach to program documentation and
some of the special jargon we have employed, and
takes the neophyte user through a sample interroga
tion and report production.

Finally, we reiterate, the total system is one in
which messages flow as follows:

Data base changes. These can enter directly
through a storage and retrieval system
into the data base.

COMPUTER ASSISTED INTERROGATION 385

Information statements and questions
from the CAINT system to the users.
Statements and questions can inform
users, on demand, about the content of
and activities in the data base, can in
struct them on information they need to
operate the system or to branch within
an interrogation or instruction program.

Information statements and questions
from man to the machine. Again these
can be about the object system, can be
questions about procedures involved in
CAINT, or can be answers to either
object-system related questions or pro
cedural questions.

Tabular and narrative reports. These are
generated by the system and can then
be transmitted along with any other
messages to any output devices avail
able. Hence, CAINT could be used for
transmitting nonverbal messages to sys
tem components in control system appli
cations, as well as for providing conven
tional documentation.

Operating Modes and Activities

CAINT operates in three basic modes: control,
conversation, and utility. In any mode there may be
several activities permitted. An activity is a specific
function performed by a user. The system is in a
given mode if a particular set of computer programs
is loaded. The control mode provides entry into the
system, indoctrination in system mechanics, and en
ables the user to switch among modes and activities.
The conversational mode enables the user to select
among a set of production activities: narration, re
port compilation, editing, and instruction. * The
utility mode covers the storage and retrieval activi
ties.

Control Mode. A user performing, say, narration can
switch to retrieval by invoking the control mode
and specifying the new activity he wishes to shift
to. He can then shift to the instruction activity, then
back to narration, at the place where he left off, and
complete his original task. Figure 1 shows the rela
tionship among the modes and activities. Note that,

* We use the term instruction to mean teaching a user
about information in the data base, and indoctrination to
mean teaching the use of CAINT.

I ,
Narration

,
Report

Compilation

,
Editing ---

1

Instruction -...

-

DATA
BASE

f4 f-.

-
-

.. .

CONVERSATIONAL MODE

CONTROL MODE

Mode Switching
Indoctrination

Communication

SYSTEM
USER

.. --

r 1 l' 1 I

UTILITY
MODE .

Storage and
Retrieval

Figure 1. Relationship among modes and activities.

from any mode or activity, to make a change, the
control mode is invoked and the change made from
there.

In order to initiate an activity, the user first enters
the control mode. This mode receives all user re
quests for activity selection or processing, and takes
appropriate action. All user activities are handled
by computer-initiated acquisition of user commands.
That is, rather than requiring the user to enter con
trol cards or otherwise initialize the system for a
particular application, CAINT elicits control infor
mation in much the same way as it gathers the user's
substantive knowledge about the object system. An

386 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

important feature of the control mode is the incorpo
ration of an indoctrination capability. Indoctrination
is instruction in the capabilities and use of CAINT.

Conversational Mode. The principal CAINT func
tions are performed in the conversational mode. This
is the mode in which messages are selected for trans
mission to the user, and his responses are acted
upon. We shall show in the section on program logic
how several conversational activities are actually
handled by the same basic set of computer programs.

Narration, or, from the computer's point of view,
acquisition, is the activity in which a man contributes
his own substantive knowledge to the system data
base. This is the key activity for which CAINT was
designed. This system produces a sequence of
frames, some, but not necessarily all, being ques
tions. The frames which are not questions are usually
serving to inform the man about the contents of the
data base preparatory to asking him some questions
about them, "priming" him. The important questions
call for new information-discrete facts or interpre
tations of existing items. Some of the information
flow, in both directions, is service information con
cerned solely with sequencing-deciding what topics
or frames to consider next.

We have found that the sequence in which infor
mation and question frames are introduced, in order
to elicit information, is not necessarily the sequence
in which a reader would like to review the infor
mation elicited. The report compilation activity en
ables a user to assemble his responses, together with
some of the purely informational frames, prepared
titles, transitional text, and data base items other
than question responses, into a report organized for
ease of reader comprehension. As we shall see, the
report requires more computer programming than
does conventional report generation where the objec
tive is to selectively dump portions of a file.

Since the CAINT user (or narrator or responder)
answers a series of discrete questions which follow
an overall approach dictated by the executive pro
gram, he would probably like to review and revise
his copy before pUblication. The report compilation
activity compiles a report designed to aid the reader.
The narrator can use this for review and modifica
tion-the edit activity. Editing gives the user the
chance to read his output, in a context different from
that in which it was written, to indicate those por
tions he wishes to change, to make the change, and
to update the data base as he does so. The narrator

flags the portion of the report he wishes to change, *
CAINT finds the set of frames that asked the ques
tion that led to this response, the set is recalled and
asked again, new responses are stored in the system
files, and changed report copy is issued.' All this is
done on-line, in the conversational mode.

Editing of computer-stored, digitized text has
been accomplished by several different program sys
tems.4 , 5 These programs use much more elaborate
editing commands than those used in CAINT, but
one factor makes the edit process in CAINT strik
ingly different from conventional text editing. This
is the fact that, in CAINT, there are several inte
grated processes all making use of a single data base.
Thus, a change to a report alters the data base and
then can cause changes to future acquisition, instruc
tion, and reporting activities.

Once the narrator has established a file of re
sponses that are acceptable to him, on his review
in the edit activity, this information can be made
available to others in an instructional format. A per
son who wishes to learn, say, a program that has
been documented through CAINT engages in the in
struction activity. Here, the narrator's responses and
other data base items are embedded in instructional
frames (using an executive program to do so) and
then presented in a sequence guided by the execu
tive program, but modifiable by the learner. This
mode of instruction fits the definition of programmed
instruction given by Lysaught and Williams,6 "ar
ranging materials to be learned in a series of small
steps designed to lead a student through self-instruc
tion from what he knows to the unknown." To
provide the desirable element of reinforcement, the
student is periodically asked to summarize the
frames he has read, then to compare his summary
with one elicited from the original programmer.

As a simple example, consider the interrogation
dialogue below:

Machine Statements

What is the name of the
Input File?
How many records are
in the file?

User Responses

HOURLY TEMPERA
TURE READINGS

24

* Perhaps ideally, he would do this by light-gunning copy
as it rolls by on a CRT. We use typewriter lIO in which
each item of report copy, contributed by the narrator as a
response, is numbered. The editor flags the response by
typing the number. Report copy not contributed by a nar
rator cannot be changed except by an executive pro
grammer.

COMPUTER ASSISTED INTERROGATION 387

Machine Statements

Justify your estimate.

User Responses

READINGS ARE
TAKEN ONCE PER
H 0 U R, THROUGH
OUT THE DAY

A tutorial version of this information can be as-
sembled and might be:

The input file is HOURL Y TEMPERATURE
READINGS.

It consists of 24 records, estimated as follows:
READINGS ARE TAKEN ONCE PER
HOUR, THROUGHOUT THE DAY.

Clearly, this frame results from inserting specifi
cally requested responses into a skeleton frame
which reads:

The input file is _----'-___ . It consists
of records, estimated as
follows: ____________ _

The programming logic of the instruction process
is almost identical to that of acquisition. Again, an
executive program is provided which states the con
ditions under which the individual frames are to be
displayed to the user. The same executive program
is not used for both, however, since the sequence of
presentation of the stored data may be different
from the sequence in which it was acquired. The
executive program may give the user an opportunity
to direct the presentation of the course material
through his responses to branch-directing frames.
This feature permits browsing on the part of the
user to the degree permitted by the executive pro
grammer when he developed the frames and the
selection logic.

Utility Mode. The utility mode of CAINT encom
passes all of the normal file processing activities of a
conventional information retrieval system, providing
a system user access to the data base to retrieve
individual items or arrays, and to make modifications
to the files. Although this mode represents a large
share of the total programming effort for CAINT, it
will not be discussed in detail here since the tech
niques employed are conventional.

Executive Programming

Executive programs must be written prior to any
use of CAINT in conversational mode. These, while
changeable, need not change often. In a management

reporting system or photointelligence reporting sys
tem, for example, an executive program could be
considered almost permanent. There are two facets of
executive programming-writing skeleton frames and
specifying the conditions under which a frame is to
be used. As in man-to-man interrogation, the skill of
the interrogator in deciding what question to ask,
when to ask it, and how to frame it is paramount to
the success of the process.

The executive program provides both an oppor
tunity and an obligation for someone to exercise
policy, or broad procedural, control over the CAINT
process. While such control can be exercised in any
program system, executive programming enables this
control to be wielded without recourse to computer
programming or re-programming. The language of
the executive program resembles a subset of a high
order computer programming language, such as
FORTRAN or PL/I, but has many fewer operations
and is easily learned by the nonprogrammer. More
importantly, the executive program is easily modified
in its own simple language.

The executive program makes use of a set of
skeletonized messages, or frames, which will become
its vehicle of communication with the CAINT sys
tem user. Writing these skeletons is an important part
of executive programming, and is the portion that
most resembles instructional programming. In effect,
the executive programmer writes a generalized, para
meterized program of frames. He then writes an
executable program, quite similar to a computer pro
gram, to specify how and when to use the skeleton
frames.

When the executive programmer knows that, under
some stated condition, he will always want to "say"
the same thing, he need not skeletonize his program.
Thus, a frame always used at the beginning of an
interrogation might be "Enter your name," and this
is complete in itself. On the other hand, a report to
a narrator of data base changes might be worded
as follows:

Item ___ has changed from ___ to __ _

or

Items ___ have changed from ___ to __ _

388 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

These illustrate two kinds of variation-inserts to the
frame to be made from the data base, and changes in
the wording of the frame as a function of data base
items, in this case the number of items changed. We
may rewrite these frames as a single, skeletonized
frame:

1. Item/Items
2. *
3. has/have
4. changed from
5. *
6. to
7. *
8.

These segments constitute a skeleton frame of eight
subframes. The first subframe illustrates a wording
variation. The executive programmer specifies that
one of the choices offered here be selected, depending
on whether the number of items changed is 1 or
greater than 1. The subframes consisting of an * illus
trate completion options. Each * is to be replaced
with the appropriate information retrieved from the
data base, in this case the names of items changed,
and their original and final values. Subframes 4, 6,
and 8 have no associated options. They are always
used if the frame is selected.

The operable portion of an executive program
performs two functions. It decides, within a major,
subject-related group of frames, which specific frames
to use in any specific instance. This is called selec
tion. Then, it exercises options on word use or inser
tions into subframes. This is called completion.

It consists, basically, of a set of conditional state
ments, followed by action statements of the general
form:

IF (condition on data base items)
THEN (call frame, increment counter)
ELSE (go to next condition statement)

Conditions are stated in terms quite similar to
PL/I or FORTRAN IF statements; as IF (A >
B U C = 0) where A, B, and C represent data base
items. The action statements call for such operations
as selecting and completing a frame, incrementing a
counter, or branching to another executive program
statement.

To illustrate, we first suppose that we are in the
report compilation activity, and are working on the
part of the report where data base transactions are

covered. Within the set of frames that are concerned
with these transactions is the one we have illustrated
above. It will be selected for use only if the data
base item NO_CHANGES (TIME_PERIOD) * is
greater than O. Completion uses a different attribute
of the field NO_CHANGE (TIME_PERIOD), its
value relative to 1, to make the wording choices in
subframes 1 and 3. Also used are the list of items
changed, the list of corresponding original values,
and the list of new values.

CAINT COMPUTER PROGRAM LOGIC

Program Organization

The system to be described has been implemented
as a working, laboratory model. This is a model of
a longer-range design planned for a System/360
time-sharing computer. The preliminary system was
built around existing programs, primarily the Com
puter Assisted Instruction Operating System,2 and
operates on an IBM 1440 computer, using IBM 1050
consoles for communication. We shall describe the
logic of the system in terms of our System/360 plans,
rather than the early model.

Several computer programs are involved in the
processing of the various CAINT modes and activi
ties. However, the main thread of CAINT processing
is performed by one program-the executive pro~
gram interpreter (EPI). In general, EPI retrieves
conditional statements contained in the executive
program, evaluates them, and takes the action indi
cated in the appropriate action statement in the
executive program. The primary action is that of dis
playing a frame on a console. Included in this action
is the process of frame completion.

The completion process basically consists of mak
ing choices among a variety of subframes and filling
in blank subframes with information from the data
base, including prior responses to frames. The con
ditional statements for determining which subframes
to use and which values to insert are identical in
form to those used in the executive program. There
fore, using the same form of conditional and action
statements discussed above with the addition of a
CHOOSE action statement to indicate a subframe
choice and an INSERT action statement to indicate
the filling of a blank subframe, the completion lan-

* The number of changes in a given time period. The
variable TIME_PERIOD is an index on the variable
NO_CHANGES.

COMPUTER ASSISTED INTERROGATION 389

guage is the same as the executive programming
language.

Let us examine how the various CAINT modes
and activities make use of the executive programming
interpreter, which is the nucleus of the CAINT pro
grams.

The principal processing of the control mode is
accomplished via the EPI. Selection of the system
activities to be performed is accomplished by the
user at the console, responding to frames which
describe the choices open to him. The two major
areas of control mode processing that require addi
tional programming are (1) console input/output
and (2) mode switching. Console input/output
routines are included in the control mode because
they might be invoked from any other CAINT pro
gram, and it is economically sound to have them
reside in high-speed memory at all times. Since the
control mode programs are also designed to be
resident programs, the two were combined. These
routines simply display frames to the console and
accept responses when appropriate. Mode switching
requires a program to interpret mode switching com
mands, save data on the interrupted process, initiate
the new mode, and, after completion, restore the
original process. The normal start where no inter
rupt is involved is the same process without the
store and restore steps and is thus accomplished by
the same computer program.

The acquisition or narration activity is performed
using the EPI plus a set of file processing routines.
These routines perform the function of retrieving and
storing information in the data base as called for in
the executive program. During the narration activity,
additional information, in the form of user responses,
is acquired and stored in the data base and, therefore,
is available to the remainder of the executive pro
gram.

An Example

In order to illustrate the program logic, we con
sider an application of CAINT to the extraction of
information from aerial photography by military
intelligence photo interpreters. Usually an interpreter
has no computer -based system files from which to
retrieve known information about the area under sur
veillance, nor has he any specific directive concerning
the precise intelligence information requirements. Of
course, he knows a great deal about what types of

objects are likely to be militarily significant and what
are not. However, beyond this initial observation, the
information derived from the photograph will be
quite heavily dependent on the particular interpreter
and his point of view. In short, today's problems of
photo interpretation for military intelligence may be
categorized as follows:

1. Entry of redundant information.. There is no
effective feedback from the information user to the
collector; hence, the same information is often col
lected repeatedly. This has obvious implications on
the amount of unnecessary message traffic sent and
also on the amount of time wasted by the photo inter
preters. The latter is quite important since photo
interpreters are highly trained people, always in short
supply.

2. Omission of needed information. Again, with
out some form of two-way conversation, the photo
interpreter may neglect to report elements of infor
mation derived from the aerial photography which,
on any given day, may seem unimportant to him, but
are critical items to someone else.

3. Lack of consistency. The somewhat loose con
trol of the activity brought on by the one-way com
munication leads to inconsistency in the choice of
items reported by various interpreters, and in the
language and format in which the items are reported.

4. Report preparation is currently one of the most
time-consuming tasks of the interpreter. Reports are
compiled and written manually and must be for
matted to the specifications of the recipient. In most
photo interpretation activities there are individuals
whose responsibility it is to ensure that the reports
issued by the interpreters are accurate in content and
format. These individuals act in this capacity as
editors.

5. In military organizations, particularly, there is
a large turnover of personnel. New people must be
instructed on current strategic or battlefield situa
tions and indoctrinated in the local operating pro
cedures of the organization. In the field, where the
accent is on mobility, the terrain and battlefield situ
ation being photographed change often, thus, even
the veteran interpreters may need instruction.

The foregoing is, of course, quite generalized but
is stated to give a framework within which CAINT
could be applied and within which the logic of the
CAINT programs can be described.

390 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

. A sample ?f typical messages that might be displayed during the acquisition activity in the photo interpreta
tIOn applIcatIOn follows:

Machine Statements

1. Are there any tanks visible on the photo?

2. How many?

3. What kind?

4. Are there any mortars?

5. Give coordinates for each type, heavy, medium,
light.

6. Consists of: tube 4.2 inch diameter, 5 feet long,
base plate, tripod.

7. Give coordinates for each type: heavy, medium,
light.

8. POW reports: CP BUNKER ON HILL AT
UTM FR 744320. Can you confirm?

9. Are there any fortifications visible on the
photo?

10. Give coordinates of: BUNKER

11. Indicate condition by appropriate letter (s)
a. destroyed

This particular sample represents just a small por
tion taken from the middle of a much longer acqui
sition. Frames 1, 2, and 3 might have been selected
because of a stored message from higher headquar
ters stressing the importance of information about
tanks in this area. Note that the interpreter was not
asked for a precise location of the tank. This is be
cause the executive programmer has decided that
the location question need not be asked for what
are normally mobile items. Frame 4 is displayed
because of a standing intelligence requirement to
report locations of all mortars. Frame 5 requests
location information for mortars by type. The re
sponse to frame 5 is a query (the Q is assumed to
switch the system into utility mode) for the char
acteristics of one of these types, the heavy mortar,
that will assist the interpreter to identify a particular
mortar he sees. The retrieved information appears in
frame 6. Following this, the original question of
frame 5 is repeated, as frame 7, and it elicits two
answers.

YES

1
M-48

YES

Q

User Responses

FIND CHARACTERISTICS
HEAVY MORTAR

HEAVY: UTM FR741324
LIGHT: UTM FR742324

NO

BUNKER

UTM FR741325

Frame 8 is an example of how data base infor
mation from other sources may become part of a
CAINT frame. The statement "POW REPORTS CP
BUNKER ON HILL AT UTM FR 744320"* has
been inserted into the frame, although it was actu
ally collected during a prisoner-of -war interrogation
at some previous time. Frame 10 shows the use of
a prior response in a frame. The word BUNKER
was the response to frame 9 and was then inserted
into frame 10.

The executive program for the selection logic for
frames 8 through 11 is shown below.

Statement
No. Statement Text

9 IF SCALE> THRESHOLD & AREA_FOR-
TIFICATIONS = 1

* UTM stands for Universal Transverse Mercator which
is a grid coordinate system used by the Army for maps.
FR 744320 is the actual coordinate, in which 744320 is a
displacement (x coordinate = 744) from a point in the
earth's surface designated by FR.

COMPUTER ASSISTED INTERROGATION 391

Statement
No. Statement Text

THEN CALL FRAME 8;
ELSE DO: IF SCALE> THRESHOLD

THEN DO: CALL FRAME 9;
GO TO 11; END;

ELSE GO TO 12; END;
10 IF RESPONSE 8 = 'NO'

THEN CALL FRAME 9;
ELSE DO: CALL FRAME 10;

CALL FRAME 11;
GO TO 12; END;

11 IF RESPONSE 9 "* 'NO'
THEN DO: CALL FRAME 10;

CALL FRAME 11; END;
ELSE ...

12 IF ...

The scale of the photo is compared with a pre
determined threshold, representing the minimum
scale at which certain objects may be identified, and
a check is made for a prior indication of fortifica
tions in the area. In the example, both conditions
are met and frame 8 is displayed to ask for confir
mation of previously acquired information. The
CALL FRAME 8 statement also causes the com
pletion of the skeleton frame. In this case, the text
"CP BUNKER ON HILL AT UTM FR 744320"
and an indicator specifying the source as a prisoner
of war report are retrieved from the data base in
order to complete the skeleton frame. If there had
been no prior indication of fortification in the area,
but the scale had been over the threshold, frame 9
would have been displayed to ask a more general
question about the presence of fortifications on the
photo.

Since the responder could not confirm the POW
report, frame 9 was displayed next to see what for
tifications are present. A YES response to frame 8
would have caused immediate selection of frames
10 and 11 to acquire more specific location and con
dition information.

Since the response to frame 9 was not NO, indi
cating a positive response, frames 10 and 11 were
displayed to follow up. Otherwise, no frames would
be selected.

System Outputs

There are two major outputs, other than those re
trievable in the utility mode. These are instructional
materials and printed reports. Instruction is almost

identical to acquisition from the programming point
of view. The same type executive program is used
and the same interpreter program. Of course, in the
instruction process, what were originally question
frames are reworded in declarative form, and are
combined with the responses through the frame com
pletion logic. These instruction frames are displayed
one at a time to the user at the console.

Report preparation is similar to the instruction
activity except that the report is printed off-line and
is intended more as formal documentation of the
data base rather than as instructional material. The
same EPI program with a different executive pro
gram is used for reporting, for a report is a sequence
of frames printed without user interruption.

The following is a possible report generated from
the information obtained during the interrogation,
plus previously collected information and specially
prepared titles:

PI Report-Print 109VV 67°51'N 67°32'E
4 July 1965

Line

1. Previous prisoner of war report (Reference
2. PW 710) of command post bunker on hill at
3. FR 744320 could not be confirmed.
4. A camouflaged bunker was identified as
5. under construction at FR 741325.
6. * * Weapons Reported * *
7. 1 tank M-48
8. 1 mortar Heavy FR741324
9. 1 mortar Light FR742324

The sample report is divided into a narrative and a
tabular section to indicate that either, or a mixture
of both, is a possible output. It should be noted that,
in addition to appearing in the printed report, all of
this information resides in the data base for subse
quent queries, reports, frame selection and comple
tion, etc.

Editing has been previously described as a combi
nation of several other activities. The one additional
program needed is that to translate edit commands
into acquisition parameters, if required, and to do
simple text editing.

The following editing example shows how two out
of many possible editing situations would be handled.

Machine Statements

1. Give change com
mand.

User Responses

INSERT AFTER "CON
FIRMED."

392 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Machine Statements

2. Enter change.

3. Give change com
mand.

4. Give coordinates of
bunker.

User Responses

CLOUD COVER PRE
VENTED OBSERVA
TION.
CHANGE LINE 5 "FR
741325."

UTM FR 741330'.

The first two lines represent the commands to the
system to insert the sentence "CLOUD COVER
PREVENTED OBSERVATION" following the
word "CONFIRMED" in line 3 of the report. This
is only an insertion of additional information and
represents no change to the data base or any CAINT
activity. Line 3, however, requests a change to cor
rect some erroneous data acquired during the acqui
sition activity. In order to effect this change, CAINT
reenters the acquisition activity to again display the
frame requesting the information (line 4). The cor
rected response is then given. The report would
appear as follows after editing:

PI Report-Print 1a9VV 67°51'N 67°32' E
4 July 1965

1. Previous prisoner of war report (Reference
2. PW 71 a) of command post bunker on hill at
3. FR 744320 could not be confirmed. Cloud
4. cover prevented observation.
5. A camouflaged bunker was identified as
6. under construction at FR 741330'.
7. * * Weapons Reported * *
8. 1 tank M-48
9. 1 mortar Heavy FR 741324

10'. 1 mortar Light FR 742324

STRA TEGY FOR USE OF CAINT

Acquisition

The strategy to use in eliciting information from
a responder is very much a function of the individual
application. The nature of the questions to ask, the
amount of time needed or allowed for an interroga
tion, the amount of information needed by a re
sponder, and the language restrictions to be placed
on responses do not fall into clearly defined cate
gories. In our early experimental work we have
discovered a few principles which appear to have
broad application, but it would not be at all sur-

prising to find, a year hence, that interrogation tech
niques are vastly different from those now in use.

One of the first difficulties we encountered was
excessively slow interrogation, caused both by slow
terminal speed and the wording of our messages. In
particular, we found that the frame writers had a
tendency to instruct the responder too often in how
to reply, for example, asking a question that obvi
ously calls for a yes-no response and taking two
lines of print to tell him so. In the course of an
hour's work on the console this can be very irritat
ing. We find, then, that frames should be as terse as
possible, with reliance on prior education and call
able explanations to handle the ambiguous situations
that will inevitably arise.

Reliance on a user's prior experience with CAINT
is most important. If the frame writer feels com
pelled to explain himself and offer hints on respond~
ing in every frame, the effect on the experienced
responder is deadening. For this reason, we have
extensive indoctrination courses for use in our pro
gram documentation application, and recommend a
similar approach to all other CAINT users. Once
it is assumed that the responder is already familiar
with the frame author's meaning, there can be a
great reduction in the verbiage needed in a frame,
even for a relatively complex subject, for all we need
do is to get across to the responder which question
we want him to answer. He can have seen before
hand the explanation of it. When this approach is
not feasible, as it will not be in all possible CAINT
applications, instruction can be embedded with in
terrogation, but the result is a slower overall process.
The most important thing seems to be for the system
user to understand what CAINT is driving at, even
when the machine-generated messages are vague,
and to know what he has to do to provide the needed
information. This skill will come from practice, par
ticularly in seeing how individual responses are
woven into a report format.

Another time-saving technique is the concept of
"priming" the responder. This term describes the
technique used in the following situation. Suppose
we wish to ask a fairly difficult or complex question
and we know what information the responder will
need to answer it, but suspect he will not have these
facts at hand. If some of this information is in the
system data base, we can lead up to the question
with a series of informational frames that provide
the responder the information he is going to need,
then ask the question. He may need still more infor-

COMPUTER ASSISTED INTERROGATION 393

mation and want to switch into the utility mode, but
the intent is to minimize the need for this, while still
not boring him with well-known or irrelevant data.
Priming, then, is a skill that must be developed by
the interrogation course author. It is essentially the
same skill as is used by the author of a text book,
who must plan the sequence in which he introduces
material so that there is a logical flow and the stu
dent always has on hand the information needed to
tackle the new topics.

The interrogee, as does any author, will want to
review his text periodically, as he writes it. The
CAINT responder can always scan his previous re
sponses, but, as we have pointed out, these are not
always in the best context for review. He may, then,
request periodic operation of the report generating
activity to provide a review of his most recent few
responses in their ultimate context. We shall have
more to say on this review process in the next sec
tion. At this point we introduce the notion that re
view, in addition to its value after the interrogation,
is of value during the interrogation, as an aid to
answering questions, as well as to compiling well
written reports.

Finally, it has been our experience that we must
rely heavily upon the user of CAINT to become
skillful in this means of reporting. Our indoctrination
programs replace manuals, they do not automatically
impart skill.

Report Preparation and Editing

A CAINT compiled report can be published di
rectly or used in an edit process. The report editor
informs the system of the number of the report sec
tion or line he wishes to change. When he does so,
the interrogation frame that elicited the response
found there is retrieved and asked again. A new
response is made and it replaces the old response, as
stored in the system files. It may be necessary or
desirable to repeat more than one interrogation
frame in this situation. The priming frames originally
used, and possibly some additional ones that will
review a topic in interrogation context, may be nec
essary. It would be very easy, for example, for an
editor to forget some of the background information
against which a frame was originally asked, when he
decides to change his response. This editing tech
nique can be called into use after the entire interro
gation is complete, or it can be done partially, at
intervals, in the interrogation process, or both.

We have said that a compiled report consists of
text taken from three sources: previous interrogation
responses, data base items, and skeleton frames. A
responder can change only one of these, the re
sponses. However, especially in early development
stages, the automatic assembly process might fail to
be sufficiently expressive, or may be misleading.
Even worse, a response may appear in, or affect,
more than one report entry. A desired change in the
response to suit one occurrence may not suit the
other. To handle these situations, it will be possible
to use an escape technique which would allow the
editor to change any portion of a report, even non
response material, but the changes would not be
stored in the system files. Obviously, use of this mode
of operation should be carefully controlled, for it
can easily become the easy way out of some difficult
writing problems. It would appear, however, to be a
necessity.

Instruction and Indoctrination

Indoctrination is the use of true computer-aided,
programmed instruction to teach the use of CAINT.
The courses, which may be difficult to write initially,
will be relatively stable, changing as patterns of stu
dent usage develop or the system itself is changed.
As we have mentioned we find that heavy emphasis
on indoctrination pays off in faster interrogation,
which is more of a benefit for its ability to hold a
responder's interest than for mere clock time saved.
Hence, all special usages in the interrogation should
be explained here, and sample interrogations run so
that the responder becomes thoroughly familiar with
the basic frames, their meanings, and their contri
bution to the assembled report, before he starts mak
ing operational use of the system.

With this approach, the usual, cumbersome oper
ating manual is unnecessary. A neophyte need only
make his presence at a console known to the system
and, from there on, the indoctrination program
guides him and tests him, until he shows sufficient
mastery to go out on his own.

There is always the possibility that a responder,
during a regular interrogation, will encounter a
frame he cannot understand. When this occurs, we
recognize a special response, such as "HELP" which
retrieves a longer version of the frame, one written
with this 'situation in mind, having an elaborate ex
planation of the meaning and purpose of the ques
tioned frame. Having such back-up enables frame

394 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

writers to use the shortened frames that keep inter
rogation moving at a fast pace. It does mean, though,
that many frames must be written twice.

In instruction, elicited responses and data base
items are again embedded in new skeleton frames
which are then used to teach the content of the sys
tem files. The sequence of presentation is again con
trolled by an executive program, following some
logical chain inherent in the subject matter. If branch
points are encountered in this structure, the learner
can be given control over the choice of path, or it
can be forced upon him. Whether or not to delegate
control can be at the discretion of the executive pro
gram writer. We have had little direct experience
with instruction to date. It offers a great potential
-the ability to create training programs directly
from reports or data files. The pitfalls are many,
however. We cannot automatically test the learner
on his comprehension and use the test results to
choose a path through the instructional material
the technique that allows a fast learner to move
ahead quickly by skipping some material and a slow
one to get the extra remedial and review work he
needs-the technique that makes CAl the valuable
tool it is. We do require the student to summarize
material as he goes, and to compare his summary
with one written by the original programmer. The
student then must judge whether he has correctly
perceived the material.

Still, we can offer the learner control over speed
and sequence, the ability to review, and the ability
to query. These capabilities, while less than those of
a full CAl system, go a long way toward that goal;
certainly much further than a conventional tech
nical report. Especially valuable is that training
courses . are automatically updated almost instan
taneously upon a change in the object system. These,
coupled with the imagination of the executive pro
grammer, offer a possibility that limited training

goals can be met at very low cost and preparation
time.

Conclusion

The essential point of this paper is that man
machine communication can be made intelligent and
purposeful, in both directions. In CAINT, machine
utterances are not mere items retrieved in response
to a carefully worded query, nor are they diagnostics,
however clever. The machine's statements are based
upon a rational analysis, by the machine, of what
information it needs, under a condition which it is
programmed to recognize. The result is a true dia
logue-a conversation that enhances the knowledge
of both parties.

REFERENCES

1. J. C. R. Licklider, "Man-Computer Symbio
sis," IRE Transactions on Human Factors in Elec
tronics, vol. HFE-l, no. 1 (Mar. 1960).

2. "IBM 1401, 1440, or 1460 Operation Sys
tem, Computer Assisted Instruction," Form C24-
3253, IBM Corp., White Plains, N.Y. (1965).

3. John A. Swets and Wallace F. Feurzeig,
"Computer-Aided Instruction," Science, vol. 150,
no. 3696, pp. 572-76 (Oct. 1965).

4. M. V. Matthews and Joan E. Miller, "Com
puter Editing, Typesetting, and Image Generation,"
Proceedings, Fall Joint Computer Conference, vol.
27, pt. I, Spartan Books, Washington, D.C., 1965,
pp. 389-98.

5. Michael P. Barnett and K. L. Kelley, "Com
puter Editing of Verbal Texts, Part 1. The ES1
System," American Documentation, vol. 14, no. 2,
pp. 99-108 (Apr. 1963).

6. Jerome P. Lysaught and Clarence M. Wil
liams, Programmed Instruction, Wiley & Sons, New
York, 1963, p. 2.

SOME PROBtEMS IN DATA COMMUNICATIONS
BETWEEN THE USER AND THE COMPUTER

L. A. Hittel

General Electric Company, Phoenix, Arizona

INTRODUCTION

The ever increasing utilization of computer com
plexes from remote sources imposes a new dimen
sion to the almost overburdening task of systems de
sign. Remotely accessed systems require a tight
integration of communications services and equip
ment in order to effect a system which is both
efficient and responsive.

This paper is a tutorial attempt to acquaint the
computer system planner with the extra segments of
system implementation necessitated by the desire to
serve remote users. Time-sharing systems, direct-ac
cess systems, and management information systems
will require an ever increasing penetration into the
world of digital communications.

Four chronological phases in the development of a
communications-oriented computer system will be
examined.

The first phase is the establishment of a com
munications plan. The idea of the communications
plan is to document the choice of functions, the
choice of facilities, the planned capacity, the neces
sary test features and terminal equipment required
to implement the system.

The next phase covers the period between the or
dering of the system and the installation of the sys
tem. This time period should be utilized to develop
the necessary programming required for operation
and control of the communications equipment.

395

The third phase devotes attention to the installa
tion itself. Pre-installation preparation and common
installation problems are discussed.

Phase four has been chosen as the operational pe
riod. In this section of the paper attention is given
to operation and maintenance of a remotely accessi
ble system.

This paper is designed to provoke thought among
those who build systems in a "batch" environment.
It is dedicated to those rugged individuals who now
wish to tackle on-line, direct-access, or information
systems.

THE COMMUNICATIONS PLAN

Like any system plan, it is not complete unless all
parts of the system have been fully considered in
relation to each other. Many designers treat the data
inputs and· outputs as peripheral functions and as
sume that they have little control over the choice or
the operation of this piece. This is hardly the case.
Nowhere else in the system is there such a wide
selection of methods, services and equipment.

Improper use of communications can result in
excessive cost and poor service to the system users.
The following factors must be evaluated in order to
arrive at the system communications needs:

1. The average time that each terminal
to-computer connection will be in use.
This is called "holding time."

396 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

2. The urgency of each computer access
request. How long can you wait for
the computer service?

3. The amount of output that must be
printed arid how fast it must be com
pleted. The printing speed will often
govern the choice of a given data rate.

4. The number of graphics (characters)
which must be input and printed on
the terminal. Large graphic sets along
with the required control code char
acters will need a corresponding num
ber of bits to describe each character
uniquely. ASCII has provisions for 94
printing characters.

I have tried to organize a chart of data services
useful to the time sharing designer. For simplicity of
explanation I like to separate data communications
into three speed classes:

Class One-Up to 30 characters per sec
ond. This class is used for keyboard
printer terminals. Nominal speeds are 6
characters per second for older communi
cation terminals, 10 characters per second
for newer terminals and 15 characters per
second for typewriters and proposed com
munication terminals. The typical data set
limit is 30 characters per second.

Class Two-100 to 300 characters per
second. This is the normal telephone cir
cuit. The speed differences are a function
of the quality of the circuit and the so
phistication of the Data Set. The better
circuits and the more sophisticated Data
Sets are priced accordingly.

Class Three-1000 to 10,000 characters
per second. This class is still in the early
development phases. American Telephone
and Telegraph Company offers a wide
band data service using their TELP AK
circuits with special Data Sets. Western
Union has a limited availability of wide
band circuits and experimental Data Sets.
The prime use of this class of service is
for high speed terminals such as line
printers and magnetic tape stations. Com
puter to computer transmission will also
use this type of service as the need for the
interconnection develops.

The aforementioned circuit speeds are available
in variations of switched (dial) service and private
line service from common carriers, such as AT&T,
Western Union, and General Telephone. Switched
network services which are useful for time sharing
connections are:

TELEX. This is a combined domestic and interna
tional dial service offered by Western Union. This
service is useful for connecting teleprinter terminals
to computers. The service is limited to 50 words per
minute. The available graphic set is limited.

TWX. This is a domestic dial service offered by the
American Telephone and Telegraph Co. It is useful
for dial service between teleprinters and computers.
Two speeds are available: 60 words per minute with
limited graphic set and 100 words per minute with
an improved graphic set. Availability of this service
is excellent.

Dataphone. This is a domestic service offered by
AT&T through its operating companies. Data Sets
are provided to allow an alternate use of the existing
public telephone system. It is useful for dial service
between various terminals and computers. The un
metered use of metropolitan service is very conven
ient for local terminals. W ATS can be used for high
usage long distance service. Speeds vary as a
function of the Data Set used. 30 characters per sec
ond, 120 cps. and 300 cps. represent typical limits.

Foreign Exchange Service. This is a telephone serv
ice offering which allows a computer to have tele
phone numbers which belong to a locality other than
the one in which the computer is located. This al
lows inter-city or inter-zone operation on a fixed
cost basis.

TELP AK. This is a bundle rental plan for Bell Sys
tem circuits. The bundle sizes are 12, 24, 60 and
240 voice grade circuits. It is possible to use all or
part of the bundle with a suitable Data Set for high
speed data transmission. TELP AK can be used in
conjunction with Foreign Exchange Service or for
interconnection of two Private Business Exchanges.

Broadband. This is a Western Union dial system for
data transmission. The data rates are variable and
selectable. In several cities bandwidths of 2kc and
4kc are available. Bandwidths of 8kc, 16kc and
48kc can be obtained in a few major cities. Broad
band service is useful for short-ta-medium duration
transmissions between high-speed terminals and
computer centers.

SOME PROBLEMS IN DATA COMMUNICATIONS 397

DATEL. This is a new international data transmis
sion service being offered by ITT World Communi
cations Inc. DATEL 100 is a full-duplex 100 bits
per second facility. DA TEL 600 can be used for
600 to 1200 bits per second transmissions. Addi
tional DA TEL services are being made available.

The problem of choosing the best service for your
applications may seem insurmountable after scan
ning the above list. I will try to give a few guide
lines as an insight to the problem.

If you have most of the terminal devices located
within a "private" geographical center, such as a
building or a complex of buildings, consideration
should be given to installing the entire system with
out using common carrier services. This is a "pio
neering" attitude but has economical advantages.

There can be specific disadvantages to this meth
od which should be considered. Unfortunately, not
many computer manufacturers can supply and main
tain the required hardware. The installation costs of
proprietary computer links can vary extensively as a
function of the building type and local building
codes.

The major cost savings are in the elimination of
separate Data Sets or "modems." On short "loops"
or circuits within a building, the extra sophistication
of a Data Set designed for long distance is not need
ed. Some replacement is required; but it usually can
be integrated into the terminal electronics on one
end and the computer channel on the other end.

A variation on this method is to use common car
rier supplied "loops" with integral line couplers.
This is useful where installation costs are prohibi
tive. It also allows the circuits to be extended
beyond the boundary of the private property.

Customer-supplied Data Sets can be used on all
private line common-carrier circuits, provided they
meet the common carrier interface standards.

An interesting combination of the previously
mentioned techniques can be used where a large
number of terminals are to be located in each of
several buildings. The data terminals can be con
nected to a concentrating device with customer
owned wires and couplers. The concentrating equip
ment can be connected to the computing facility
using common-carrier supplied circuits and Data
Sets.

When only a few terminals are located in a con
centrated area, but many terminals are to be con
nected to the computer facility, an entirely different
approach is needed. The use of a switched-network

service should be investigated as a function of cost.
In order to calculate cost, more information on the
use of the terminals is required.

"Holding Time" is a term used by the communi
cation people to indicate how long a circuit is in use.
If the holding time is in the order of seconds, a dial
circuit may be too time-consuming to use. More
time would be devoted to completing the computer
con~ection than devoted to the computer operation.

If the holding time is a few minutes for each ter
minal to computer operation and only a few connec
tions per day are needed, the lowest cost dial service
should be sought. If the holding time is long for
each terminal connection, but only a small number
of connections per month are required, a dial service
should still be investigated. Inward W A TS at the
computer could be used to reduce toll costs. If the
geographical distribution of the terminals is such
that time charges would not be in effect if Data
phone were used, the long holding times would only
require more computer access lines. If the time
charges appear to be excessive, then an evaluation
should be made of a private line circuit from a com
mon carrier versus a switched network circuit.
WATS can reduce toll costs.

W A TS (Wide Area Toll Service), Foreign Ex
change service, and CCSA (Common Carrier Spe
cial Applications) networks will be less costly if
properly used with dial service. When many circuits
are required between the foreign point and the com
puter, TELP AK can be used with Foreign Exchange
service to hold down the cost.

I mentioned concentrating devices before without
explanation. These devices may range in complexity
from simple wire-multiplexing equipment to stored
programmed communication computers. In the wire
multiplexing types, both frequency-division and
time-division are used. Frequency-division devices
take a wide-band circuit and break it into several
smaller band channels. Some bandwidth loss results
from the unused space needed to separate each
channel. These lost segments are referred to as
"Guard Bands."

Time-division devices interlace data bits from
each of several lower bit-rate channels on one
higher-speed channel. In order to accomplish this
simply, the interlacing must be done synchronously.
The high-speed bit-rate must be greater than the
low-speed bit-rate times the number of low speed
channels. A loss on the time-division equipment re
sults from the neeq to add reference and synchro-

398 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

mzmg bits. When terminals having mixed bit-rates
need to be concentrated, synchronous or time-divi
sion concentrators cannot combine the varied bit
rates by definition. In order to concentrate mixed
bit-rates on a frequency-division concentrator, each
sub-channel must be designed for the bandwidth
necessary to transmit the required bit-rate. Another
alternative is to select a single sub-channel band
width which will pass the highest required bit-rate
and use it for all sub-channels. Communication
computers are useful when the circuit costs are high
in relation to the cost of the computer. A stored
program device can usually provide a much higher
concentration ratio by using short-term buffering.
Since most terminals are not used at maximum bit
rate continuously, it is possible to average the com
bined data rates. This is accomplished by operating
the computer in a fast store and forward mode.

PROGRAMMING FOR DATA SET CONTROL

One hardly equates programming and Data Set
operation until he has attempted to operate a system
that is remotely accessed through a switched net
work. Most Data Sets have automatic answer and
automatic disconnect features. These automatic fea
tures operate well provided that human supervision
and intervention is available to handle exception
cases.

When a large number of Data Sets are connected
to a computer, human supervision is neither practi
cal nor possible. Figure 1 lists some conditions that
would require supervision above and beyond the au
tomatic features found in the Bell System's 103
Series Data Sets. Class 1 conditions can be detected
through monitoring of the distant carrier at the ap
propriate times. Class 2 conditions can be detected
through an elapsed time check from the last trans
mission received.

Class One Non-Spacing Disconnects

1. Circuit loss due to network failure.
2. Abrupt terminal disconnect (EOT).
3. Power failure at remote end.
4. Short disconnect (less than 1.6 sec.).

Class Two Loss of activity on the channel

1. Broken tape on sender.
2. Failure to disconnect at end of job.
3. Terminal operator called away.
4. Electronics failure.

Figure 1

YES

Exit

Figure 2

Figure 2 illustrates a typical block diagram for
the necessary logic to provide Class 1 protection us
ing the 103A Data Set. When starting from an idle
condition, the channel is checked for a ringing signal
every second. If the ringing signal is detected for a
channel, the "Data Terminal Ready" signal is sent to
the Data Set. This signal causes the Data Set to
answer the phone. After a sufficient time is allowed
for completion of a "handshake" between Data Sets
(about 10 seconds), the Data Set is checked for
"Carrier On." This indicates that a data carrier is
being received from the distant station. If the carrier
is not on, one can assume that the calling party does
not have a compatible Data Set (if any) or has
"hung up." In this latter case, the Data Terminal
Ready signal is turned off and the Data Set will go
"on hook."

When carrier is detected upon completion of the
answering signal, an elapsed-time counter is initial
ized. This counter is used to shut down the circuit if
no data is received within an established limit of
time such as, say 10 to 20 minutes.

Figure 3 shows a protection scheme for circuit
loss. Everyone second the channel is checked for
incoming carrier being present. When a carrier loss
is detected, a seven-second time-out is started. If the
carrier returns within the allotted time, the counter is
reset and the operation resumes. If the carrier is still
off after seven seconds, the Data Terminal Ready
signal is removed, causing the Data Set to "hang
up." When this condition arises, it may be desirable
to inform the system executive to save any tempo
rary data for the user until he can reconnect with
the system.

SOME PROBLEMS IN DATA COMMUNICATIONS 399

Enter Each Is YES
Carrier >----l~

Secone ON

NO

Exit

Exit

NO

Exit

Figure 3

Figure 4 gives an abbreviated list of the channel
states implied by the flow diagrams in Figures 2 and
3. When programming for other Data Sets, especial
ly those used in a half-duplex mode (one-way-at-a
time transmission), the carrier check cannot always
be used as a guide. Slow-speed Reverse Channels
are sometimes used for assurance that the circuit is
still connected. If reverse channels are not available,
then a time check is needed. This technique requires
that each message be acknowledged by the receiving
end. Dummy messages are sent to test idle circuits.
When an acknowledgement is not received within
the specified time period, a circuit loss is assumed.

On private line circuits, circuit supervision is
needed for a different reason: identifying the loss of
a circuit and reporting that loss to a repair service.
It is difficult to discuss communications program
ming without a word about character sets. There is
a strong temptation to restrict the code set within
the computer to something less than what exists at
the terminal. This is usually done to make the code

State Condition Normal Branch
No. Description Exit Exit

0 Idle Hold 0 1 (Ring)
1 Ringing 2 (answer) 0 (no ans.)
2 Send Ready 3
3 Check Carrier 4 (carrier on) 3 (time-out)
4 Normal Receive 7 (end job) 5 (carrier loss)
5 No Carrier 4 (carrier on) 7 (time-out)
6 Normal Send 4 (end trans.) 7 (end job)
7 ShutDown 0 (1 sec. delay)

Figure 4

set map into that which is used for batch data proc
essing (6 bit BCD).

Most of the terminals in use today can produce a
printable character set which is equal to or greater
than the set used for regular computer input and
output. In addition to the printable character set
there are many terminal control codes in use today.
These codes must be employed in order to effective
ly utilize the terminal.

The most elementary keyboard printer terminal
uses such functions as idle, carriage return and line
feed. Other common terminal control characters
are:

1. Horizontal and vertical tabulating
2. New form or page
3. Red and black ribbon selection
4. Paper tape reader on-off
5. Paper tape punch on-off
6. Punched card reader on-off
7. Card punch on-off
8. Main printer on-off
9. Auxiliary printer(s) on-off

10. Subscript and superscript line controls
11. Ring bell

When designing a system with a mixed terminal
set, it is desirable to provide the applications pro
grammer with a common code set. In choosing the
common code set it is better not to have shift char
acters. Shift characters will require all system pro
grams to use a more complex input scanning algo
rithm. The disadvantage to increasing the byte size of
all characters is that it will increase buffer sizes and
decrease file efficiency.

The communications programmer should provide
the specified terminal delays required for mechanical
functions such as carriage return and tabulation.
This may require him to maintain a line character
count for each channel in order to calculate the
proper deJay. Once a communications plan has been
drawn and the terminal types have been picked, the
system designer must work with the system pro
grammer to specify the programming implementa
tion required. This is necessary in order to operate
the data services effectively and provide a common
interface for the application software implementa
tion.

INSTALLATION

In the earlier part of this paper, I indicated that a
communications plan was needed for any measure

400 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

of success. If inadequate planning is done during the
system design phases, installation will be chaotic.
Perhaps the best use of a good communications plan
is for an implicit specification of the common-carrier
supplied pieces of the system and the communica
tions hardware vendor supplied items. A large
order, if released to a common carrier on short no
tice, may result in the operation having to accept
temporary service of an inferior nature. It takes time
to engineer and install a large number of good com
munications circuits.

If switched circuits are to be used, the capacity of
the switching office may have to be increased, or
specialized switching equipment may be needed to
meet system requirements. If the terminals are locat
ed in areas served by different switching offices, the
inter-office capacity may have to be increased. A
two-to-five year capacity forecast would be useful to
the common carrier for his long-range planning. The
customer will then have assurance that he can have
the service available as he expands his operation.

Terminal options and Data Set options should be
reviewed when the order is placed with the salesman
and again during the installation with the installers.
Many a customer has been frustrated during instal
lation by not having a list of the compatible options
among system software, Data Sets, terminals and
computer interfaces. Unfortunately, most option in
formation does not appear in the standard literature
of either the Computer System manufacturer or the
Common Carrier. Be sure to ask; this has been a
major problem in many installations.

Plan ahead for a method of testing the installed
communications circuit after installation. Do not de
pend upon unchecked software to do this job. If
necessary, prepare some very simple test programs
to exercise the terminals, Data Sets, and computer
channels. If the communication system permits,
terminal-to-terminal checks may be very useful.

MAINTAINABILITY AND OPERATION
CONSIDERATIONS

Once a time-sharing system is installed, the prob
lem of operating it and keeping it operational is im
portant. The system application and user relation
ship will determine the required operational
schedule. My advice to the neophyte operations
manager is that to provide a satisfactory on-line
service, it must be available when the user needs it.
This often means six a.m. until midnight (executive

schedule) and weekends. In a public system, the
operating hours are usually longer. Off-hours are not
usually profitable for time-sharing-but neither are
they for the common carriers. The operations staff is
dealing with an unseen set of users who are con
stantly changing. The only awareness that the opera
tor has that a system is working is from the com
munication circuit indicators. A trained operator
soon can relate the number of active communica
tions circuits with the time-of -day. It is this type of
acquired intuitive judgment that provides today's
operators with assurance of correct hardware per
formance.

It is time to give consideration to an instrumented
approach to system checking. With technology bor
rowed from the airframe manufacturers, instrument
ed checkout techniques can be implemented within a
time-sharing system. Two types of checking are re
quired: . system-checking and channel-checking.

System checking can be accomplished by simulat
ing a customer on one or more channels and com
paring results with previous tests. An "all is well"
message can be printed periodically on the opera
tor's log. Abnormal results can be indicated imme
diately.

Channel checking can be implemented at two lev
els of detail. The choice is governed by hardware
available to do the job, its costs, and the incentive
for exacting tests.

When common-carrier supplied circuits are used
with common-carrier supplied Data Sets, it is neces
sary to determine only if the channel is working
properly (GO or NO-GO). It is still desirable to
offer the common carrier repairman detailed infor
mation as to the type of failure. This speeds the
repair of your service.

If dial circuits are being used, then a separate,
compatible Data Set with the appropriate originating
interface should be installed for checkout purposes.
Each working channel is "dialed" and data is passed
in both directions and compared for errors. This
process can be included in the system software as a
fill-in task during periods of low system use. A
faulty channel on a straight rotary-selected dial
group can guarantee the most trouble for the most
users. When the system activity level results in the
selection of the faulty channel, errors cause the
short-duration use of this channel. As soon as ter
mination occurs, that channel is then made available
for the next selection. When this pattern is repeated

SOME PROBLEMS IN DATA COMMUNICATIONS 401

several times by the same user he will report the
trouble.

When random selection is used, a fault becomes
transitory to a specific user and, therefore, is almost
never reported. If it is reported, the bad channel is
difficult to isolate. If the error is not reported, ran
dom trouble is experienced for many days. When
error situations are detected on rotary dial channels,
the faulty channel should be reported and temporar
ily removed from use. Patch panels can be used to
connect spare hardware to the dial circuit for this
purpose.

An alternative to patch panels is to use a "busy
out" feature which can be provided by most com
mon carriers. This feature will prevent the associat
ed circuit from being selected by the switching
equipment. Newer Data Sets may allow control of
the "busy-out" feature through the business machine
interface.

Private-line operation requires specialized hard
ware to accomplish this channel selection for test
purposes. If private-line circuits are used, channel
errors will affect only one terminal. Therefore,
identification of the faulty circuit is easy.

When the Data Sets are owned by the customer, a
new requirement is added to the problem of channel
testing. The user now needs diagnostic information
which will help to effect the repair. If audio carrier
Data Sets are used, a programmed (digitally con
trolled) frequency generator and amplifier could be
used to send test patterns to the Data Set in ques
tion. A digital counter could be used to check trans
mission frequencies of the Data Set. Similar equip
ment can be used to introduce and measure DC
loop waveforms and currents. A step-by-step test
program can be included in the system software to
drive the programmable test equipment. Quantita
tive evaluation of each channel's performance could
be made. Deviations above preset limits would be
noted for maintenance purposes. Perhaps some day
in the future, common-carrier supplied Data Set sys
tems would include this type of test facility.

SUMMARY

In closing I would like to recap the four phases of
time-sharing communications planning which have
been covered in this paper. The first phase was the
development of a communications plan. In this
phase the designer is directed to examine his system

objectives as they relate to communications. Points
to ponder in this examination are:

1. The distribution of the terminals.
2. The amount of time each terminal will

be in use.
3. The reliability required for each ter

minal.
4. The code set and message structure.
S. The human requirements for the ter

minals.

Once the objectives have been qualified and,
hopefully, quantified; the designer should acquaint
himself with the communication services available.
If he has difficulty with developing a suitable under
standing of communications networks, there are
many private consulting firms willing to assist. When
a solution to his objectives has been found in a set
of communications hardware and services, he has a
Communications Plan. In order for the Plan to be
effective, it must be fully documented.

Communications software is the orphan of the
decade. Most system designers apply insufficient at
tention to the problems of:

1. Data Set control
2. Circuit and System checking
3. Human aids for the terminal operator
4. Message formats and line control
S. Graphic sets and control codes

I have yet to meet the system designer who felt that
he had adequate software for communication con
trol in his system when it went into service.

System installation has often been considered a
manufacturer's problem. When one or more com
puter hardware manufacturers and one or more
communication service suppliers are involved, the
final responsibility resides with the system manager.
He should be prepared to:

1. Specify all options in the hardware.
2. Advance-order all communications

services.
3. Develop a communications testing

plan.

Once a system is "on the air," attention is focused
on how to make the installation a smooth running
one. Time-sharing service is provided for a set of
jobs which are unseen by the operator. This is a new
phenomenon to most computer center managers. In
stead of being able to judge system performance by

402 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

the job accomplishments, the operators need a sys
tem diagnostic tool that is independent of the user's
work.

Although the responsibility for hardware mainte
nance may belong to the computer manufacturer
and the communication service supplier, the systems
operations staff cannot neglect their customers.

Therefore diagnostic procedures and hardware test
ing within the software is a necessary part of the
successful operation. A cooperative attitude will
speed system repairs faster than finger-pointing. Re
member the system users are measuring the overall
performance and are not sympathetic to intramural
disputes.

COMMUNICATIONS NEEDS OF THE USER FOR
MANAGEMENT INFORMATION SYSTEMS

D. J. Dantine

Clark Equipment Company, Buchanan, Michigan

The need for data communications is not restricted
to only the very large and very widely dispersed
business or service organizations. Small businesses
tend to have all the problems of their larger counter
parts, especially the problem of the conveying of key
financial and operating data to the personnel in
volved in the daily activities of that business. The
extent of geographical dispersion of the business is
also not a delimiter of the communications need. The
widely dispersed organizations usually will reap
greater benefits because data communications will
help overcome their problems of geography. But,
have you ever considered that a management person
could have his desk backed right up to a computer
and yet have a severe communications void?

As the reader might already suspect, the term
"data communications" is something much more
than the pure communications services offered by
companies like Western Union and the Bell System.
In addition, it must permeate the complete data
processing system of an organization and be an
essential consideration in its very design. Then, and
only then, can it be a true management information
system.

DEFINITION OF MIS

A management information system is a data proc
essing system that augments the management of the
business at all levels and in all functions by supply-

403

ing to the managers, their subordinates and staffs,
information needed for control of operations,. plan
ning and decision-making. It is characterized by:

1. an integrated, on-line. retrievable data
base

2. a communications capability inbound
and outbound (time and place utility
of data)

3. response times compatible with peo
ple'S needs

4. an optimum totality of essential busi
ness data stored and processed in a
way that it produces useful informa
tion to the managers in a form com
patible with their needs and objectives.

The first three of the characteristics of the MIS
are intimately tied into some form of communica
tions. Is it any wonder that data processing equip
ment planners see the future computer systems as
75% communications and 25 % central processor?
Must we also begin to suspect that most of our sys
tems design and programming in the future will be in
the communications and data base areas?

PHYSICAL EQUIPMENT AND
FACILITIES NEEDS OF THE USER

Although growing at a significant rate today, the
users' communications needs in the equipment and

404 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

facilities area are not being completely satisfied. The
two most serious impediments to continued progress
are the lack of satisfactory communications software
and the undue interference by government in the
data communications field. The whole area suffers
from a lack of good fresh thinking by terminal
equipment designers, people who continually restrict
and inhibit their designs to accommodate pseudo
conventions like punched cards and paper tape that
should have been discarded at the advent of the busi
ness computer, or at best the year after its advent.
We shall look at the needs of the user in each of
these two areas separately.

REMOTE TERMINALS

Hardware Considerations

It is not the purpose of this paper to deal with
each terminal type separately and at length, but
instead, to outline for the reader some thoughts that
must be entertained by him in equipping his system
with the terminals necessary to make it a true in
formation system.

a. Suitability to Purpose. It is hoped that in the fore
seeable future that the user will have as much flexi
bility in the selection of a terminal device to fit his
need as the consumer has today in selecting a TV set
or electric shaver. They both demand only 115v.
60 cycle A.C. current (standards arrived at thru
free and open competition); the manufacturer being
a choice of the customer not determinable by the
brand· name of the generator (the processor in the
case of the computer). With the terminal being much
smaller and less complex than the central computer
gear, there exists the distinct possibility that many
manufacturers will be able to compete effectively in
the field to the benefit of the user. As such, the user
should have the alternative of fitting the terminal
to his specific need without the need to resort to
general purpose devices or pay the severe penalty
for a "customized" device.

b. General Purpose vs. Special Purpose. A key con
sideration here is the user as a person. A clerk
performing a high volume repetitious job, like a
bank teller, is better suited to a special purpose
terminal. On the other hand, the general purpose
clerk who might be concerned with some data input,
some form typing, some letter and secretarial work
plus an amount of computational work would be bet
ter suited with a general purpose device. This device

could look like a typewriter but indeed act like a
keypunch, compute like a calculator and all in all
suit the clerk especially from a cost and efficiency
standpoint. The same comments can apply to higher
speed devices that might serve a department or sec
tion of people.

c. Economic Considerations. Terminals, like any
other piece of data equipment, must yield a return
on investment. However, the user must beware of
justifying each and every terminal. The justification
must be made on the system as a whole. As an ex
ample, a recent decision by a large corporation to
move toward a data processing utility time-sharing
system requires the use of high speed (240-480
cps) terminals to replace some 12 existing com
puters. The terminals will be installed in all key func
tional areas of each product division. Justification of
these terminals in each area is impossible. The re
moval of anyone of them leaves the system incom
plete. However, the total cost of all the high speed
terminals almost exactly equals the cost of the in
put/ output peripherals on the present computers.
Thus the terminals are justified in total and all areas
are served including some areas not now able to
justify and have a computer.

d. Central vs. Remote Logic and Control. To date
most terminal design has been in precisely the wrong
direction. It has attempted to build into the terminal
all the logic and control necessary for it to stand
alone. Even in this regard it has missed the boat
because no terminal designed to date has been able
to duplicate the control that can and must be exer
cised by the central processor at input or output
time. A terminal in a MIS rarely stands alone but
instead must stand as an integral on-line part of that
system. In trying to build this logic and control into
these terminals the designers have been forced to
price their terminals at a price too high for effective
llsage.

The production recording terminals seen to date
are perfect examples of this design error. Their cost
is so high that they cannot be used to directly serve
the factory worker. Instead they must be pooled into
centers thus forcing a secondary communications
system between the worker and the center or else
cause the worker to physically move to the center
with loss of time and efficiency. Even in doing so the
recorder still cannot perform all the audits and
checks necessary to validate the transaction. Sure, it
can check to see that a card was inserted· in the
reader (probably a redundant operation), that a

COMMUNICATIONS NEEDS OF THE USER 405

badge was also inserted, and that someone entered
the right number of characters of variable informa
tion (a form of controlled GIGO). When all this
is completed, the computer will still hang when it
finally senses that the man completed more pieces
than were started in the first place. It thus becomes
obvious that the "cheap and dirty" terminal such
as a telephone sitting right next to the worker could
do a much better job plus have the advantage of
having the computer tell the worker what he did
wrong before it accepted the input.

The on-line high speed modular terminals with
communications-accuracy checking capabilities can
also be looked at in the same light when contrasting
them to the on-line computer acting as a terminal.
These communications terminals are to be preferred
for the following reasons:

• They cost only about 50% of that of
the on-line computer. If the on-line
computer is of sufficient size to handle
complex editing and output formatting,
the cost could be as high as five times
that of the terminal.

• The on-line terminal makes use of the
processing capability of a larger cen
tral CPU with a much lower unit oper
ating cost.

• The on-line terminal forces all data thru
the central controlled data base thus
ensuring that there exist the complete
data base needed for a true MIS as op
posed to the "islands of information"
systems installed today.

e. Environment. Heat, humidity, power and space
considerations must be a part of design considera
tions. Terminals basically should be designed to exist
where people exist today.

f. Subsets and Modems. The development of the
subset and modem has permitted the more universal
use of the terminal for it now can be used wherever
phone lines exist. However, the subset has also cre
ated a cost factor that at times exceeds the cost of
the terminal. Quantity and competition (if permitted
to be used on Bell facilities according to reasonable
specifications) should bring the cost down. The in
stallation of a MIS usually envisions the use of many
terminals at some locations. This subset cost prob
lem could be eased materially thru the development
of modular subsets that would serve multiple ter
minals thus eliminating redundant circuitry. The use

of line concentration and multiplexing possibly com
bined with modulation and demodulation could also
materially reduce these costs. It is not unusual to
find the cost of subsets and line termination charges
to exceed line costs today on lines of several hundred
miles or less.

g. Flexibility and Adaptability. Terminals should be
designed in such a way that they can be adapted to
the needs of the user. The teletype has some of these
capabilities built into it. During the past year one
user had requested that Bell change their teletypes to
print the end-of-message character which in the
standard machine does not print. The answer was,
"It could not be done." Further investigation with
a teletype engineer proved it was possible to do it.
The problem turned out to be more one of adminis
tration than one of engineering. The part involved
perhaps costs 15 ¢. The real problem is one of filing
of special tariffs in all 48 states. Here is a case where
undue government regulation almost makes the satis
faction of users' need impossible. The purpose for
regulation is to protect the consumer in the case of
monopoly or utility situations. However, the tele
type attached to a subset is not a product just of
the monopoly. I can rent it from either Bell or
Western Union. If I don't like a teletype I can rent
an IBM 2741 on-line typewriter, or a Dura, or you
name it. Here lies a real problem that must be re
solved realistically and to which the FCC must tum
their attention so that their policies do not become a
stumbling block to data communications progress.

Software Considerations

Software to date has little supported the terminal
area. The cost of programming of communications
based systems has been a more portentous consider
ation than the cost of the hardware in many in
stances. A fact that makes this weakness of today's
systems so frustrating is that much of the communi
cations software need not be custom designed for
each installation. Much of the software could be
composed of standard sub-routines that could be
combined in a modular fashion along with the user's
connecting logic to yield the would-be custom system.

In the main, communications software is now fol
lowing the same evolutionary paths followed by the
general purpose computer assemblers and compilers.
Again computer manufacturers have relied on the
customer to hack his own path using only crude
assemblers working almost at the 1: 1 level. Diag-

406 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

nostics have been almost non-existent as a part of
operating software and very weak as a part of main
tenance software. As a result needless time is spent
determining the cause of malfunctions; whether they
exist in the program, the hardware, the subsets, the
facilities or the terminals. It is with these thoughts
and experiences in mind that the writer recommends
the following software considerations as basic re
quirements for future computer systems.

a. Communications Executive for R.emote Program
mable Terminals.

1. Provide communications accuracy con
trol.

2. Provide terminal diagnostics with re
sults being output at the control point.

3. Provide bootstrap ability for program
overlaying from central CPU.

4. Eliminate the chances for operator
error.

5. Provide for both attended and unat
tended operation.

6. Provide for diagnostics flot only of the
terminal but also for the modems and
facilities between CPU and terminal
itself.

b. Communications Executive for Non-Program
mable Terminals. Be essentially the same as above
but built-in as either hard-wired logic or hardware
design.

c. Central Processor Software. The central processor
software should have the following characteristics:

1. It should be a part of the operating
system if the communication devices
are to operate in on-line real-time
mode.

2. It should contain all needed sub-rou
tines for the control over each terminal
and each communications facility or
device utilized including diagnostics.

3. The communications operating pro
gram should, for the most part, be able
to be written and compiled in a high .
level language producing efficient cod
ing and linked to the operating system.

4. It should provide for operation in
either the reactive or batch mode at
the option of the user with terminal
considerations in mind.

5. The operating system used will be as
sumed to include an adequate data
base establishment and maintenance
system to support the reactive stations,
retrieval devices and on-line real-time
data entry devices.

Human Considerations

The human considerations in the design of termi
nals are quite different from those of the processor
itself. With a processor, the people involved can be
selected and conditioned to adapt themselves to the
unit. The opposite exists with terminals. Here we
no longer have a select group but instead the com
plete cross section of all employees from the factory
worker through the clerk to the busy executive.
They all have one point in common and that is that
they will resist any amount of forcing them to adapt
to a terminal. As such, the terminal must fit their
environment, their mentalities, and if possible, be
come a part of their work station. To these ends
designers must consider such things as:

• Ease of training.
• Acceptance.

Does it make their work harder or
easier?
Is it a close relative of devices they
encounter in their everyday activi
ties?

• Heat, noise, smell.
Does it make their working condi
tions worse and as such impair ac
ceptance?

• Accessibility.
Can the person get at the device to
solve his problems or because it is
non-accessible will he continue to use
manual or less efficient methods?

CP U Considerations

The use of terminals has a definite effect on the
type of processor that must be utilized. In the main,
none of the third generation computers are specifi
cally designed and built for communications. The
only exceptions have been recent announcements in
the time-sharing area. These computers would better
be separated into a class by themselves since their
similarity to other models of their line seems to end
with the model series number. In spite of not being

COMMUNICATIONS NEEDS OF THE USER 407

designed specifically for communications, the third
generation hardware can do a creditable job given
adequate software and the use of communications
hardware options. Some of the hardware features a
user will require and should look for are:

a. Buffers/Communications Controllers. In order of
effectiveness these fall into three distinct classes.
They are:

1. Hardware Buffers or Interfaces. These
units essentially have the capability of
receiving characters or words over a
communications line and storing same.
Most other work must be accomplished
by the processor itself. In a fairly large
system this process work alone could
occupy 100% of the capacity of the
smaller models of even third genera
tion computers.

2. Communications Controllers/Comput
ers. These units are computers in their
own right except that they might not
contain all the computational abilities
of GP computers. However, they might
have bit handling characteristics not
found in small computers. These units
handle the entire communications job
exclusive of processing and storage of
the data, the latter being handled by
the GP processor to which they are
attached.

3. Integral Buffer/Controllers. This unit
is an integral part of the input/output
controller of the CPU and terminal
communications are handled with all
of the ease and by using the same in
terrupt and memory access schemes as
used for regular peripherals. In the
more sophisticated models of these
units the special bit and character ma
nipulation necessary for communica
tions (unlike peripherals) is handled
by hard-wired micro logic built right
into the I/O controller. As such, the
unit uses little more processor time
for the handling of communications
terminals than it does for peripherals.

All three of the above devices can be effective as
long as the first two are adequately supported by
software. In the first, the user pays the price of high

CPU time for communications. In the second the
user pays the price of additional hardware and some
CPU utilization. The last situation is that of hardware
almost exclusively. The above devices, in the order
listed, will normally be added to small, medium and
large scale CPU's.

b. Memory. On-line real-time communications in
crease computer memory requirements unless one
wants to pay the price for overlaying or paging. This
additional memory is needed for the added size of
the operating system that must be employed, the
buffer areas that must be provided and the addi
tional communications and processing programs that
must be in core at any moment. A trade-off avail
able to the user to offset the large memory require
ments is the use of hardware paging techniques as
found in the pure time-sharing systems just being
announced.

c. Multi-Programming/Time-Sharing. As soon as
on-line communications. capabilities are added to a
system the need for having more than one program
resident in core at one time becomes mandatory. The
larger and more complex the MIS and the organi
zation being served by it, the more programs that
must be in core at one time. There are two solutions
to this problem. The first is that of multi-program
ming. However, as soon as more than about 10 pro
grams are in core at one time the control job im
posed on the operating system seems to become so
severe that software ceases to be an acceptable an
swer. The addition of a second processor to the
system increases the capability of running more
programs, but only to a minor extent. With it the
software job becomes even more complex. The only
logical solution to the problem seems to be the
substitution of some hardware functions for the
operating system's relief. Thus, with the hardware
oriented time-sharing systems we may expect the
number of simultaneously run programs to materially
increase plus effectively be able to utilize the capac
ity of additional processors, memory controllers and
I/O controllers.

After reading some of the above, the very small
user could have become even more disenchanted
than at the outset. This need not be the case. The
very small, and even users of single medium scale
second generation equipment, might well consider
the purchase of time and facilities from a data proc
essing utility. Already we note signs of some of
these organizations coming into existence. The West-

408 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

ern Union organization appears to be making ma
terial strides in this area. Not only will they be
able to supply the computation service and termi
nals, but will be able to supply the facilities as well.
We can be sure that many of the present scientific
only time-sharing systems will in the future be sup
planted by time-sharing systems that will offer busi
ness data processing and storage services as well.

FACILITIES

The second major area is that of facilities· or those
equipments and/or services provided to the user by
the common carriers or by the user himself, should
he provide his own lines or microwave system. Some
business organizations which are physically located
totally at one location may not need to initially con
cern themselves with facilities and as such only be
concerned with terminals. However, at some later
date, with the advent of information storage utilities
and concepts like on-line banking, all users will
eventually have to consider such interconnections.

Considerations of the Line Facilities

Considerations of the line facilities are assumed
to include not just the pure rental of the lines, but
the connections and special adaptations necessary to
permit these lines to operate with data. Items that
must be considered are discussed separately in the
following paragraphs.

a.· Suitability to Purpose. There are a great number
of different types of services available today. It
would appear that the user is more than amply
served. However, a look at the numbers and types
of terminals already announced, plus those being
worked on might indicate that a shortage of facilities
exists. The actual condition might be more one of
inflexibility of services offered rather than shortage.

The tendency has been to group facility offerings
so as to better comply with tariff and administrative
problems. A whole new fresh approach to tariffs
and offerings must be found, else data communica
tions will become hopelessly mired in a jungle of
undue legality and undue control. I cannot believe
that this is the. objective of. the FCC for such com
plexity works to their disadvantage as well as the
User. The involvement of the state commissions in
the area of control only acts to increase the com
plexity, especially in an area like data communica
tions which, because of technical considerations,
makes control even tougher. It would appear that the

.four basic determinants for pncmg should be 1)
switched vs. non-switched services, 2) band width
(baud rate) of the facility, 3) volume or number
of such facilities employed between points by the
user as it impacts on projected (mature offering vs.
introductory offering) costs to the carrier and 4)
usage (economics of time actually dedicated to the
user per day) .

If such factors could be the determinants, then
the question of whether or not W A TS, WADS or
both should be supplied, whether there must be a
single line offering or a TELP AK offering (or any
combination t4ereof), whether the facility handles
data, voice, pictures or noise, or whether the user
is politically privileged or not, all become academic.
The problem of supplying a new baud rate then
would resolve itself down to the engineering job
as it should be. The user would then have a firm
basis for feasibility determination thru time without
having to concern himself with the political ac
ceptability or non-acceptability of a tariff.

b. Switchable vs. Dedicated Facilities. Both of these
facilities have a place to the user. Volume of use is
usually the chief determinant. The lease line in the
past has tended to serve only the large volume users.
Those organizations with many remote points and
with very small volumes at each point can be better
served by switched facilities rather than the second
choice compromise of party-lines. Here lies a place
for a tariff like the WADS tariff. An adaptation of
Western Union's Telex system could also benefit
users. The Broad Band offering of WU is part of an
answer but, because of limited coverage, has not seen
the acceptance it deserves.

Because of the complexity of services offered
today, only detailed analysis by the user can deter
mine the optimum choice. The use of simulation and
LP techniques has yielded significant results. The
use of a simulation technique for the optimum con
figuration of W A TS lines by zones and between
measured and full-time by a W ATS user yielded a
30% or $6000 per month differential between the
optimum configuration and the pure geographical
configuration for a given busy condition.

c. Economic Considerations. The following points
must be kept in mind by the user in arriving at a
facilities choice. Simulation techniques as mentioned
above have use herein.

• Volume rates offered by some services.
• Economies of full time vs. measured

COMMUNICATIONS NEEDS OF THE USER 409

time facilities plus the optimum combi
nation of the two. The user should also
consider the advisability of using meas
ured time lines on a controlled basis
(program control thru parameters) to
yield acceptable response times during
peak periods and periods when facilities
could be temporarily out of service.

• Economics of dual use of facilities for
both voice and data either on a timed
basis or priority basis.

• Compatibility with purpose-renting of
a facility that equals the baud rate need.

d. Reliability. Communications facilities, like com
puters, tend to be statistically reliable. The mean
time to failure figures look good, but the mean time
to repair times can put a company heavily committed
to a c.ommunications oriented on-line MIS out of
business. The user himself can employ many tech
niques to correct this problem and end up with a
system with much more reliability than a non on-line
system. He must give considerations to 1) back-up
power supplies that include the communications gear,
2) dual or split communications cables into his data
center, 3) protection of the center and its gear from
fire and other hazards, 4) insist that separate facili
ties via separate routes are used to connect locations
on the MIS network, and 5) build extra capacity
into the MIS hardware system.

Many of the above safeguards could be even im
proved upon if the carriers would start today engi
neering better back-up into their systems and
facilities. They too must become mindful of the
critical position into which they put their customers
if they cannot guarantee continuity of service even
in severe emergency conditions. Here, like in the
computer configuration of an MIS system, duality
is a key consideration. It is far better to have the
system running at half speed 5 % of the time with
no 100%· failures than to have the system down
2~ % of the time. A MIS system can· handle the
key priority business, if properly designed, even
when running at half speed.

e. Geographical Availability. Not all facilities are
available in all parts of the country. Considerations
of international availability of certain facilities are
involved in the selection of international head
quarters and plant sites in the future.

f. Equivalent Equipment and: Facilities. Manyoffer
ings of both major common carriers are very much

alike. Considerations of service, uptime, physical
condition of plant and compatibility of the service
with other services must be considered and fitted to
the needs of the user.

Software Considerations
Hardware Considerations

To the communications novice, it would appear
that the type of facility employed should only be a
hardware consideration in that the user need only
apply the proper buffer yielding the proper bit rate
and right number of bits per character. True, these
hardware considerations are important, otherwise
the system cannot even function at all over a facility.
However, for effective utilization of the facility a fair
amount of operating diagnostic software must be
employed. This software is used for:

a. Error Control and Detection. The user must be
aware that the system operates mainly in an un
attended mode at the computer site. Humans are not
available to scan the incoming or outgoing traffic
to detect error conditions. These must be detected
by the program. For instance, the repetition of a
single character over a given number of times is an
indication of a possible stuck tape at the terminal.
The computer thus must perform the same checks
performed by a human.

b. Adaptation to a Facility. Each communications
facility has its own peculiarities and vagaries. A
perfect facility never actually exists. A dial system
has a given number of misdials per thousand trials.
We've all detected these in our using the phone sys
tem. Sure the system has erred. A dial system that
yielded 100 % perfection would be too costly for
us to afford to use. As such it becomes one of the
functions of software to detect misdials and in so
doing it must actually log the misdials by location
and report these on a periodic basis only when the
misdial rate exceeds a standard norm for that facility.

c. Handling of Special Conditions Peculiar to the
Facility. Certain facilities have conditions attached
to their use. These must be controlled by the pro
gram. For instance in the utilization of W A TS
facilities the program can be made to take advan
tage of idle W A TS lines of zones beyond the point
to be contacted. Thus if a busy condition exists on
all zone 3 lines the computer can, under control, use
an open zone 4 line. However, it must first test to
be sure that no zone 4 calls are waiting. Similar

410 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

logic can also be used to call into play the more
expensive measured time lines by using response
time indicators as branch parameters.

d. Trouble Shooting, Analysis and Diagnosis. Proper
diagnostic routines can determine 1) when a line
is out of order, 2) when it is failing repeatedly,
and 3) whether a problem exists in a line, a subset
or a dialer. Sophisticated routines can also deter
mine which particular lead on a subset or dialer is
giving us trouble. The reader might ask, "But aren't
these the common carrier's problems, why doesn't
he take care of them?" Yes, they are the carrier's
problems, but you are the user. He cannot afford
to have a maintenance man monitor each and every
line and piece of equipment day and night, nor can
you, the user. But, your computer can. In doing so
it can detect problems soon after they start occurring.
The system can even be programmed to construct
and send an error or trouble message to the carrier's
test center indicating the possible location of the
trouble. Thus in helping the carrier, the user helps
himself keep his facilities at maximum efficiency.

SYSTEM DESIGN CONSIDERATIONS
OF THE USER

This paper has covered in some detail thoughts
and ideas relative to present and future uses and
needs in the physical equipment and facilities areas.
There is a whole other area of considerations that the
MIS systems designer must be aware of. For the
sake of brevity, the writer has chosen to list these
considerations since the paper would be incomplete
without them. These considerations are of sufficient
importance and complexity to be the subject for a
future paper in themselves.

SPEED

Considerations

• Cost of terminals and facilities increase
with speed but at a declining rate.

• The error rate increases with speed as
the transmission approaches the baud or
equipment design limits.

Alternatives to Speed

• Exception transmission-management by
exception.

• Time sharing with central computation
and central data base. (The actual
amount of raw new data entered into
any computer for the first time each
month is very small. It only gets large
because of the mUltiple times we force
ourselves to rehandle it. If this can be
kept internal, the actual input and out
put volumes are actually small.)

• Use of more slower terminals dedicated
to do a specific job or service a specific
functional area.

• The use of time and band mUltiplexing
of lines to yield equal costs for many
small slower terminals vs. one larger and
faster terminal. In many applications
people will experience a faster turn
around and response on the slower de
vices at their fingertips than from faster
devices at a somewhat remote location.

ERROR RATES

Accuracy and Error Control

The two aspects are 1) the potential accuracy
problems inherent in equipment and 2) the error
situations generated by the humans.

Methods for Control of Mechanical Errors

• Use of data grade facilities.
• Proper hardware design with error de

tection designed into it.
• Use of hardware that has been engi

neered with a low error rate in mind.
• Use of block parity checks on medium

and high speed terminal equipment.
• Use of equipment with automatic re

transmit capabilities.
• Use of program checks to detect format,

range and· A/N errors.
• The system must be designed to abso

lutely reject an error transmission at in
ception.

Methods for Control 01 Human Errors

• Training of personnel in error control
techniques.

• Use of data control and data audit sec
tions.

COMMUNICATIONS NEEDS OF THE USER 411

• Program checks to detect:
Format errors
Range errors
Alpha/Numeric errors
Logic errors-by ref. to data base
Base data errors-by ref. to data base

DATA SECURITY

Data Security Outside the Organization

Possible Methods:
• Answer back validation
• Phone connection verification (needs to

be developed by common carrier)
• Use of pass words
• Computer hang-up and redial

Data Security Inside the Organization

Possible Methods:
• Answer back validation
• Key entry
• Pass words
• Hang-up and redial
• Library procedures and coding
• Data base procedures and coding

RESPONSE TIMES

Considerations:
• Cost-hardware vs. value of time of

personnel

• Actual response needed vs. response de
sired

• Advantages of a reactive system in the
efficiency of personnel

• The type of response as contrasted with
the capability of the terminal to turn
around quickly

• Time on the line (efficiency of line usage)

• Scheduling and efficiency of the CPU

DATA REDUNDANCY

Considerations:

• Line time used for redundant transmis
sions

• Time of personnel wasted during redun
dant transmissions

• Considerations of error rate. Redun
dancy increases the chance for error

• Redundancy can be materially reduced
with on-line communication oriented
data base systems

• Considerations of wasted terminal time

• Many terminals designed for redundant
operation have a higher cost than other
terminals

• Simple terminals tend to have lower
error rates than complex terminals.

ELEMENTARY TELEPHONE SWITCHING
THEORY APPLIED TO THE DESIGN

OF MESSAGE SWITCHING SYSTEMS

Leon Stambler

RCA, Communication Systems Division
New York City

INTRODUCTION

The application Df telephone techniques to' a mes
sage switched system will be discussed in this paper.

The first part of the paper will briefly review the
traffic techniques employed. Then a mDdel of the
message switch is systematically developed based Dn
the traffic analysis approach.

This problem is similar in nature to thDse enCDun
tered in cDnnection with logistics, air and highway
traffic contrDI, and phases Df military strategy.

REVIEW OF TELEPHONE TRAFFIC
TECHNIQUES

Throwdown Studies

One of the techniques which has found use in tele
phDne traffic analysis is the throwdDwn study. This
technique is concerned with large quantities of input
data which are statistical in nature.

In this technique, a sufficient number of typical
situatiDns are tried to obtain statistically reliable
results.

The name "throwdown" stems from the use of
dice in the early study Df telephone traffic problems.
Each die is designated to represent a particular inde
pendent event and the faces of the die are designated
according to the probability of the event taking

413

place. By repeatedly "throwing down" a number of
such dice and observing the results, the probability
of a particular combination of events taking place
can be estimated.

Other similar methods based on selections from
lists of randDm numbers have been used in switching
traffic studies for a number of years. Mathematicians,
using digital computers, have employed similar sta
tistical methods on problems relating to' diffusion of
gases, electron ballistics and the sDlution to certain
types of differential equations. They have called this
the Monte Carlo methDd.

The throwdown study involves a method of arti
ficially generating traffic, in which an attempt is
made to' simulate the traffic which would actually
appear to' the live operational system. This involves
processing a large number Df calls systematically
and determining what happens to each of the calls
(i.e., whether they are blocked-lost-or delayed,
and for how long as a function of the switching sys
tem parameters such as number of trunks, number
of registers, processing (Dr holding) time of common
equipment, type Df switching network, transmission
characteristics, and vlriability of human Dr machine
inputs.

A single throwdown test will indicate the per
fDrmance of the system under a specific set of con-

414 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

ditions. In a typical traffic study, a given traffic load
is first assumed, and a simulated system model to
handle this load is devised. The test run will then
show the performance of the system under these par
ticular conditions and indicate the adequacy of the
initial model and possible improvements. To obtain
a proper balance between equipment quantities and
traffic load may require several additional runs.

Characteristics of Subscribers Affecting Traffic Data

Traffic presented to a switching system by sub
scribers is only moderately influenced by the type
of system serving their telephones.

Subscribers, although they are individuals, ex
hibit many "group characteristics," dictated not by
the requirements of the switching system but by
their mode of life. This fact allows statistical treat
ment of many observed action distributions without
introduction of significant error. However, these
group actions also present problems of congestion in
switching systems which require detailed throwdown
study for solution.

As an example of group characteristic, subscribers
do not originate a steady barrage of calls over the
24 hours of the day. During midmorning and mid
afternoon hours traffic is built to a peak value,
whereas during certain of the. remaining hours it is
reduced to a minimum. In some residential areas
peak traffic may also occur during the early evening.
The traffic analysis however is primarily concerned
with the busy hour, the hour in which the greatest
number of calls are originated, regardless of its ac
tual time of day occurrence.

Useful datum obtained from busy hour field ob
servations is the calling rate per subscriber (calls per
hour) which can be used to set up traffic load con
ditions on the simulated switching system. The call
ing rate characteristics can be measured as average
calls per hour placed by subscribers in a number of
group classifications.

Subscribers, in originating calls, act independently
within their classified group in maintaining the aver
age calling rate. Originating times of calls, therefore,
occur at random within the hour.

When calls are completed to other subscribers, the
connections will be held for a varying amount of
time. It has been determined from field observations
that the frequency distribution of these holding times
is closely approximated by an exponential distribu
tion.

Procedure for a Throwdown Study

The procedure in a throw down study is to first
obtain data representative of the traffic to be handled
by the system.

Throwdown input data for subscriber traffic is
concerned with expected busy hour traffic (or how
many calls should originate in each hour), at what
time during each hour will each call be originated,
and how long will each call last (holding time).

Specific calls using these factors may be generated
artificially with the use of random numbers.

Since subscribers act independently, originating
calls will occur at random within each hour.

Throwdown input data representing subscriber
originating time can be produced by assigning to
each call, of the total number of calls within a spe
cific hour to be studied, a six-digit number from a
list of random numbers. The hour is then divided
into one million parts, and the assigned random
numbers determine the millionth part of the hour
during which the call will originate.

(Random numbers can be obtained from a sub
scriber telephone directory, omitting all numbers that
could not be considered ofa chance nature, or from
the use of a table such as Tippett's Table of Random
Numbers).

For throwdown purposes, a simplifying assump
tion can be made: that the holding time of a call
(length of the call) is not a continuous variable, but
is quantized, so that a particular holding time can
have several values. To determine these values an
exponential distribution having the proper average
is plotted as shown in Fig. 1.

The area. under the curve is then divided into

1. 0 ~-----r----.------r---'----.----,------,

0.8

II

0.6

0.4

0.2

100 700

riME, T, I," SECONDS

Figure 1. Distribution of holding times.

ELEMENTARY TELEPHONE SWITCHING THEORY 415

equal subareas (lOin this case). The mean value
of holding time of each subarea is then used to rep
resent each subarea. Ten holding times are thus pro
duced, which are weighted according to the exponen
tial distribution.

These holding times can be designated with num
bers ° to 9, and then assigned to random calls by
choosing single digit random numbers from a ran
dom number table.

As a simple example of how the throw down is
used suppose that it is desired to determine how
often on the average an "all trunks busy" condition
will occur in a particular group of trunks handling
inter-office calls.

With the data of call origination times and holding
times prepared, the throwdown run can be started.
The calls are listed in the order of their originating
times. The first call is assigned to the first idle trunk.
A record that this trunk is busy is made and the time
at which it will become idle determined by adding
the assigned holding time to the time of origination.
This is also recorded. The call which follows in time
of origination is then assigned to the next idle trunk
and the process continued for succeeding calls. Be
fore each call is established the release times of all
busy trunks are scanned to determine whether any
busy trunk should be made idle. In setting up each
call, idle trunks are chosen from the group in the
same order of preference that would be used in the
system being simulated.

Thus, the performance of an actual system is
reproduced with considerable accuracy and detailed
records of this performance can be made. From a
study of these records the desired information can
be determined. The probability of encountering an
"all trunks busy" condition can be found, the aver
age number of trunks busy can be determined, or a
frequency distribution chart showing the percentage
of the time the number of busy trunks is above any
given number can be constructed. If proper records
are kept such information as the average number of
trunks searched over in locating an idle trunk can
be determined.

This particular problem can also be solved by
analytical methods and is presented here only to
illustrate the application of the throwdown technique.

Lost Calls Served on a Blocked or Delayed Basis

Another analytical method which has been used
for many years is the lost or delayed call analysis.

If a telephone subscriber does not receive dial
tone from a register immediately after lifting his
handset, the call is not considered to be lost, but is
delayed, because if he waits he will get the register
and receive dial tone. Naturally, the object is to
make this delay as short as possible, consistent with
providing an adequate grade of service.

Calls which are delayed can either be served in a
random order (according to random theory) or
stored in a queue and served on a first come first
served basis (in order of arrival queue theory).

The problem of traffic engineering on a delay
basis has been studied by A. K. Erlang, l E. C.
Molina, 2 F. Pollaczek 3 and C. D. Crommelin,4
among others.

The usual way of describing delay distribution is
to indicate the probability that a call will be delayed
in excess of a certain time (generally expressed in
multiples of the average holding time).

It has been shown that calls with exponential
holding times served in random order yield greater
delays than calls served in order of arrival.

For calls with constant holding time an analysis
was given by Pollaczek 3 in 1930, which provides the
formula which gives directly the probability of a
delay greater than t seconds.

The exponential holding time analysis given by
E. C. Molina 2 in 1927 for calls served in order of
arrival gives the probability of a delay greater than
zero, and also the probability of a delay greater
than t.

Figure 2 indicates the formulas which are used in

(1)

(2)

(3)

(4)

(5)

c -a
a e c ---zr-. c-a

P(>O) = -------
1- P(c,a) + aCe-a

P(c,a) = Poisson =
Summation

-c-,- . c-a

x -a
a e

x=c ---xr--

P(> t) = P(>O) e -(c-a) +
d = P(>O) ~

c-a

d = d = t
P(>O') c-a

where a = erlangs of traffic offered

c = number of registers (or outlets)

t = average holding time

(6) a co ~ = occupancy (% of time c is being used)

(7) a = erlangs = No of busy hr. calls x ave. holding time in sec.

3600 sec/hr.

Figure 2. Exponential holding time analysis.

416 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

this analysis. Equation (1) in the figure is probability
of a delay greater than zero, or the blocking prob
ability. P(c,a) is the blocking probability for the case
of an infinite number of subscriber sources and where
lost calls are held for one average holding time.
Equation (3) is the probability of a delay greater
than t seconds. Equation (4) is the average delay
on calls, averaged over all calls, and Eq. (5) is the
average delay on those calls which have been
blocked.

For some specific examples of how these formulas
may be applied in practice, see Example No. 1 (Fig.
3).

Example No.1. Suppose we are required to deter
mine the number of registers in a switching center
so that no more than 1 % of the busy hour calls
receive dial tone delays in excess of one second.
(The register is a time-shared unit of equipment,
commonly used in telephone switches.)

During the busy hour the switching center will be
required to handle 1200 newly originated calls. The
subscribers use the registers with an exponentially
distributed holding time with an average of six
seconds.

First we compute the busy hour traffic offered in
erlangs as the quantity a. Then we assume a value
for c, the number of registers. We then compute
P(c,a) or get the value of P(c,a) from a table of
cumulative terms of the Poisson Formula. We next
compute the blocking probability where the term
aCe-a Ie! can be obtained from a table of individual
terms of the Poisson formula. We next compute the

Example No.1

Given: p(>1 sec) = 0.01 = 1%

B~:af7i~ur} = 1200 ca lis

Average Register} - t - 6 d
holding time - - secon s

The number of registers = c Find:

1200 ca lis x 6 sec
Solution: a = 3600 sec (busy hr .) = 2.0 erlangs

Assume: c = 6 registers

P(c,a) = 0.016 (from eq (2»

(0.012). (1.5)
p(>0) 1-0.016 + (0.012) (1.5) = 0.018 (from eq (1»

P(> 1) = (0.018) (e -.667) = 0.90A>

Hence: c = 6 registers was a correct assumption

Also: P(>2) = (0.018) (e -1.33) = 0.5%

And: d = (0.018) (1.5) = 0.027 second

Figure 3. Register analysis.

Example No.2

Given: c = 10 trunks

Busy Hour} = 100 II
Traffic ca s

Average hOlding} 3 . t
time of a call = mlnu es

Find: The percentage of the calls that are delayed.

Solution: a = 100 x 3 = 5 erlangs
60

c = 10 trunks

P(c,a) = 0.032

_ (0.018) (2) _
P(>O) - 1-0.032 + 0.036 - 0.035

Hence: 3.5% of the busy hour ca lis w ill be de layed.

Figure 4. Delay on trunks.

probability of a delay of more than one second. Since
our answer is 0.9% the initial assumption of six
registers was correct. We can also compute P (> 2)
and the average delay.

For another example of the application of these
formulas, see Example No.2 (Fig. 4).

Example No.2. Suppose that a 10-trunk route carry
ing exponentially distributed holding time calls with
an average length of 3 minutes is loaded with 100
calls during the busy hour and any calls delayed will
be served in order of arrival. What percentage of
these calls will be delayed? First we compute the
traffic offered to the trunks in erlangs as the quantity
a. We next look up P(c,a) and aCe-ale! in tables,
from which we can compute the blocking proba
bility P(>0).

We see that 3.5 % of the busy hour calls are
delayed.

TELEPHONE TRAFFIC MODEL FOR
THE MESSAGE SWITCHED SYSTEM

General

In this analysis, one of the criteria to be used in
determining the effectiveness of the message switch is
the trunk utilization. We will assume that calls or
messages from subscriber terminals originate at ran
dom. Of these calls, a certain percentage which
originate simultaneously may require access to a
given trunk. The message switch queues (stores)
these calls in a manner which permits maximum
occupancy of the trunk.

In developing this analysis, we make the following
assumptions:

1. Message lengths have an exponential
frequency distribution.

ELEMENTARY TELEPHONE SWITCHING THEORY 417

2. Messages which are blocked and de
layed for trunk transmission are held
in the "In-Transit" store for delivery
on the basis of order or arrival.

3. For this analysis we assume a 2400-
bit/ sec trunk speed.

4. We will assume that the average hold
ing time for a message which is being
transmitted over the trunk is 3 seconds.

Additional assumptions will be made and these
will be pointed out as the analysis develops.

Blocked Calls Delayed

The next assumption we will make is that we have
one trunk (c = 1), and that it is occupied with mes
sage traffic 70% (0: = 0.7) of the time during the
busy hour. From this assumption we can compute
the number of messages sent over the trunk during
the busy hour.

1 message
N = X3600 sec/hr X 0.7 occupancy

3 sec

= 840 messages/hr

We next desire to compute, with the use of Eq.
(5) in Fig. 2, the average delay encountered for
those calls which have been blocked from accessing
the trunk immediately.

From Eq. (7) in Fig. 2, the traffic submitted to
the trunk is:

840 X 3
a = = 0.7 erlangs

3600
and

c = 1 trunk
Hence

- T 3
d=-=--= 10 sec

c-a 1-0.7

This means that when the trunk is 70% occupied
(during the busy hour), those messages which are
delayed will have an average waiting time of 10
seconds before they can get on the trunk. These
messages would then wait on the "In-Transit:' store.

As indicated above we have shown that 840
messages are sent over the trunk during the busy
hour. The next assumption will be to assume that
840 messages are also originated by subscriber
terminals and enter the message switch during the
busy hour.

Trunk vs Line Transmission Speeds

At this point, two alternatives present themselves,
since we must dea1 with the problem of a transmis
sion speed differential between subscriber lines and
the trunk.

To cope with this problem, one alternative is to
provide a one-message buffer, on a per line basis
to take care of the speed differential. With this ap
proach, when the total message has been received
in the line buffer, it is then immediately transferred
to the "In-Transit" store, where it may have to wait
before going out on the trunk. The other alternative
is to provide a one bit buffer on a per line basis to
take care of the speed differential. With this ap
proach, when a bit has been received in the line
bit store, it is then immediately transferred to the
"In-Transit" store, where it may have to wait for
the total message to be accumulated, and may have
an additional wait before accessing the trunk.

In transferring information between the input
buffer and the "In-Transit" store, the alternatives· in
dicated above assume that the access time plus the
transfer time from the buffer to the "In-Transit"
store is short enough such that no incoming data bits
are lost.

In the case where buffered bits are transferred
directly to a magnetic drum memory, which is used
as an "In-Transit" store, the access time will in
general be greater than the input bit transmission
time. The minimum size buffer can then be com
puted by first summing the access time to a selected
drum memory location with the time to transfer from
the buffer to the "In-Transit" store, and then multi
plying this sum by the input transmission rate.

Both of these alternatives will be developed and
compared in the analysis that follows. However, the
problems associated with message, block, or bit in
tegrity and channel coordination are not covered in
this analysis, and remain as areas for future study.

Case I: One Message BuDer per Line. We desire to
compute the size of the "In-Transit" store in terms
of the number of average message stores. This com
putation will be based on a probability that one mes
sage in a thousand will fail to find an empty message
slot available to it when it is ready to be transferred
from the line message buffer to the "In-Transit"
store.

As previously computed, the average holding time
of delayed messages in the "In-Transit" store is 1 0
seconds.

418 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

We now compute the traffic submitted from all line
buffers to the "In-Transit" store.

840 messages X 10 sec
a = = 2.33 erlangs

3600 sec/hr

For a blocking probability (P(>0» of .001 for
messages sent to the "In-Transit" store from the
line buffers, with 2.33 erlangs of traffic submitted,
we now use Eq. (1) in Fig. 2 to determine the
value of c, which in this case is the number of mes
sage stores required. From traffic tables (given
P(>O) = .001, and a = 2.33), we find that
c = 9 message stores. Hence, the minimum size of
the "In-Transit" store required is 9 messages. An
other way of looking at this result is to say that the
probability of more than 9 messages requiring simul
taneous access to the "In-Transit" store from the line
buffers is 1 in 1 000.

We will next make another assumption with re
spect to the traffic characteristics of subscriber lines
during the busy hour. Assume that all lines are
occupied 70% of the time sending message traffic
to the switch during the busy hour.

To simplify matters, let us further assume that all
lines are TTY's operating at 75 bits/sec.

We next compute the average holding time of a
message on a line.

t = trunk speed X av message
line speed holding time on trunk

2400
= -- X 3 = 96 seconds

75

We next assume that the number of messages sent
by each line is uniformly distributed for all lines .
. (T?is is a conservative assumption, since we still
InSISt upon 70% occupancy during the busy hour for
~ll line~.) Hence, the number of messages sent per
hne dunng the busy hour is:

busy-hour occupancy X 3600 sec/hr

av message holding time on line

(0.7) (3600)
96 = 26.25 messages/line

Then the number of TTY lines which can be accom
modated by this model is:

No. messages submitted by all lines

No. messages per line

840 = -- = 32 lines
26.25

Fig. 5 is a block diagram of the resulting model
for Case 1.

Case II: One Bit BufJer per Line. We desire to com
pute the size of the "In-Transit" store in terms of the
number of message stores. This computation will be
based on a probability that one message in a thou
sand will fail to find an empty message slot available
to it, when the first bit of the message is ready to be
transferred from the line bit buffer to the "In
Transit" store.

As previously computed, the average holding time
of delayed messages in the "In-Transit" store is 1 0
seconds. In order not to complicate matters, we will
assume that the total message must be accumulated
in the "In-Transit" store before any part of it can
access the trunk.

Hence, for TTY lines, the average message ac
cumulation time (as previously computed) is 96 sec
onds.

We now compute the traffic submitted from all
line bit buffers to the "In-Transit" store as:

(840 messages/hr.) (10 + 96) sec
a = ---------------------------

3600 sec/hr

= 24.7 erlangs

For a blocking probability (P(>0» of .001 for
messages sent to the "In-Transit" store from the line
bit buffers, with a = 24.7 erlangs of traffic sub
mitted, we again use Eq. (1) of Fig. 2 to determine
the value of c, which in this case is the number of

GATING
SWITCH

NINE
MSG
IN-TRANSIT
STORE

ONE
BIT
SPEED
BUFF

TRK I
2400
Bls

I
I

I I L _______ ~
MSG SWITCH

Figure 5. Model for Case I.

ELEMENTARY TELEPHONE SWITCHING THEORY 419

message stores required. From traffic tables (given
P(>O) = .001, and a = 24.7), we find the c = 41
message stores. Hence, the size of the "In-Transit"
store required to handle 24.7 erlangs of input traffic
is 41 messages.

For a 70% line occupancy during the busy hour,
the optimum of TTY lines is again 32. Figure 6 is
a block diagram of the resulting model for Case II.
lt is also interesting to note that a 41-message "In
Transit" store can also accommodate eight 2400-
bit/sec input lines, when these lines deliver a total
busy hour traffic of 24.7 erlangs.

Other Types of Traffic Flows

Thus far the model which has been constructed
has been very simpleminded, i.e., the only traffic con
sidered has been that which was originated by many
subscriber lines and forwarded over a single trunk.

It is now desired to take a broader look at the
traffic flow, so as to arrive at a more realistic and
versatile model which will accommodate outgoing
trunk traffic to more than one switch, incoming trunk
traffic from more than one switch, and outgoing local
line traffic.

For the case of outgoing traffic to lines, and trunks
to more than one switch, one may choose to consider
the size of the "In-Transit" store as a fixed system
parameter, in which case additional outgoing trunks
and lines provide additional outlets for messages ac
cumulated in the "In-Transit" store. However, if
additional outlets are added to a fixed capacity "In
Transit" store, then trunk and line occupancies are
sacrificed. That is, all lines and trunks may be idle

#1

32

GATING
SWITCH

41 MSG
IN-TRANSIT
STORE

MSG SWITCH

Figure 6. Model for Case II.

ONE
BIT

TRK

2400

part of the time and may not be gainfully employed
during the busy hour.

GENERALIZED ANALYSIS

Let Co = the number of outgoing trunks
C i = the number of incoming trunks
La = the number of outgoing lines
Ll = the number of incoming lines

aco = the busy hour occupancy of all outgoing
trunks

aCi = the busy hour occupancy of all incoming
trunks

ala = the busy hour occupancy of all outgoing
lines

ali = the busy hour occupancy of all incoming
lines

tc = average message holding time on a trunk
t1 = average message holding time on a line

First consider all outgoing traffic.

The number of outgoing messages during the busy
hour for all outgoing trunks is:

1 message sec
(a c) (Co trunks) X 3600-

a tc sec hr

aco X Co X 3600

The number of outgoing messages during the busy
hour for all lines is:

1 message sec
nLo = (aL) (La lines) X 3600-

a tL sec hr

The outgoing trunk traffic in erlangs is:

(ac o X Co X 3600) (tc)

tc
Aco = ---------- = aco X Co erlangs

3600

The outgoing line traffic in erlangs is:

(aLa X La X 3600) Cid

h
ALa = ----------- aLo X La erlangs

3600

420 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

The average delay for outgoing trunk messages which
have been blocked is:

Co (1- ac) o

The average delay for outgoing line messages which
have been blocked is:

Lo (1 - aL) o

Next, consider all incoming traffic. The number of
incoming messages during the busy hour for all
trunks is:

(
1 message) (C k (3600 sec) nco = (ac.) i trun s)

~ ~ tc sec hr

The number of incoming messages during the busy
hour for all lines is:

() (
1 message) (1. (3600 sec)

aL· Li Illes)
~ k~c ~

We will examine two cases. One provides speed
buffering between slow-speed lines and high-speed
trunks using message stores on lines and trunks.
The other case provides one-bit stores on lines and
trunks.

Case I: Speed buffering with message stores for
each line and for each trunk.

The incoming trunk traffic submitted to the "In
Transit" store is:

3600

The incoming line traffic submitted to the "In
Transit" store is:

3600

= ---...: erlangs
(

aLi)(L.)
1 -aLo Lo

The total input traffic submitted to the "In
Transit" store from line message buffers and trunk
message buffers is:

A in = _ ~ _i + _ ~ _i erlangs
(

ac-)(C) (aL:)(L)
1 ac i Co 1 aLo Lo

This input traffic can now be used to determine the
size of the "In-Transit" store which is required for
a blocking probability (P (>0» of .001. For ex
ample, suppose, Ci = Co and Li =Lo. (This is the
case of a full-duplex system.)

aCi aLi

Ai = + erlangs for full duplex.
n 1 - aco 1 - alo

Suppose now that aCi = a co = ali = al o = 0.8; that
is, all inputs and outputs are occupied with message
traffic for 80% of the busy hour. Then,

0.8 0.8 1.6
Ai = + = - + 8 erlangs

n 1 - 0.8 1 - 0.8 0.2

Then for P (>0) = .001, using Equation (3) in
Fig. 2, the number of message stores required in the
"In-Transit" store is 19 message stores. Figure 7
shows a plot of occupancy vs size of the "In-Transit"
store. Two curves are indicated. One curve shows the
size of the store for equal occupancies on all in
coming and outgoing lines and trunks. For this curve,
when either all outgoing trunks or lines are 100 %
occupied, no additional incoming traffic can get out.
Further, any additional incoming traffic (ac i or
al. >0) will be blocked from entering the "In-

~

Transit" store. In such case, the additional incoming
traffic must either wait at the source, or overflow to
some other place.

The other curve shows the size of the store re
quired for normal plus multi address traffic. For this

ELEMENTARY TELEPHONE SWITCHING THEORY 421

a IN = 67%

50

45

40

35
VI
u.J g 30

0

~ 25

0
0

20

Z

15

10

.1 .2 .3 .4 .5 .6 .7 .8 .9 1. 0

OCCUPANCY = a IN

Figure 7. Size of store vs occupancy-Case 1.

case we have assumed that the occupancy of out
going lines and trunks is one and one-half times as
great as that of incoming lines and trunks. For this
case,

so
aCi ali

3 + --3-- erIangs.
aCi ali

1-- 1--
2 2

For this case, when either all incoming lines or all
trunks have an occupancy of 67 %, the output lines
or trunks will be 100 % occupied. Any additional
traffic or occupancy greater than 67% on all lines or
all trunks will cause this traffic to be blocked from
entering the "In-Transit" store. These messages will
have to wait at the source or overflow somewhere
else.

Case II: All messages are speed buffered on the basis
of bit buffer stores fO'r each line and trunk.

In this case, when a bit has been received in the
line or trunk bit store, it is then immediately trans
ferred to the "In-Transit" store, where it waits for
the total message to be accumulated, and then the
message may have an additional waiting time in the
"In-Transit" store before it can access an outgoing
line or trunk.

The incoming trunk traffic submitted to the "In
Transit" store is:

3600

= _ ~ -~ + aC
i

Ci erlangs
(

ac·) (C.)
1 aco Co

The incoming line traffic submitted to the "In
Transit" store is:

3600

The total input traffic submitted to the "In
Transit" store from the line and trunk bit buffers is:

A,. = (1 ::,") (~:) +ao,e,

+ (1 :'a,) (~:) + a" L, erlangs

This input traffic can now be used to determine the
size of the "In-Transit" store which is required for a
blocking probability (P(>O)) of .00'1. For the case
of a full duplex system C i = Co and Li = Lo, so

aCi ali

Ain = + ---1 ,- aco 1 - alo

+ (aCi Ci) + (ali L i) erlangs

In this case we note from the above input traffic that
the size of the "In-Transit" store will depend on the
occupancies and, in addition, on the number of in
coming lines and trunks. Figure 8 shows a plot of
occupancy vs size of the "In-Transit" store for equal
values of occupancy on lines and trunks, and for

422 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

several values of (Ci + L i) as a parameter. For
this case

Ai, = (1" ,,) 2 + a(e, + L,)

Also shown on Fig. 8 is the total number of mes
sages stores for Case I. This is obtained by taking
the store size curve in Fig. 7, for equal occupancies,
and adding to it the number of message stores re
quired for speed buffering, which is a function of
C + L. The intersections of these curves on Fig. 8
provides a method for comparing the two cases for
the equal occupancy condition. These curves inter
sect in the region of 75 to 80% occupancy (for equal
numbers of terminations). Hence, one can conclude
that for high values of occupancy (constant high
traffic periods), both approaches give about the same
service for about same cost. For low occupancy,
Case II is far superior, since per line message buffers
are not used.

Figure 9 shows a plot similar to Fig. 8. However,
these curves are plotted for normal + multiaddress
traffic. For this case

so

ac· Li
A in = ~ + + aCi Ci + aLi Li

1-3 a Ci 1-3 aLi

2 2

The curves intersect in the region of 46-58% input
occupancy. Hence, for inputs below 50% occupancy,

8C\

70

Q 60
Vl

~
;:;; 50

0 40
0
Z

30

20

10

d = 100%

.~ .3 .4 .5 .6 .7 .8 .9 1.0

OCCUPANCY = a

Figure 8. Size of store vs occupancy-Case II.

a= 67%

90

80

V'>

g
<..')

~ 50

o 40

o
Z

70

10

.1 .2 .3 .4 .5 .6 .7 .8 .91.0

OCCUPANCY" a

Figure 9. Cases I and II for multiple address.

Case II is preferred, and for inputs above 50%
occupancy, the two cases are very similar.

A FUNCTIONAL RELATIONSHIP
BETWEEN THE NUMBER OF
LINES AND TRUNKS

The quantity of lines and trunks that are to be
served by a given switch can be related by the fol
lowing variables:

1. The quantity of traffic flow between
lines and trunks. This can be stated in
terms of their respective occupancies,
and a multiple address factor.

2. The type of transmission facility which
is provided on lines and trunks. These
can be related by comparing the length
of time required to transmit an average
message on each.

As before, we can compute the total number of
messages received by the switch, during the busy
hour, from all lines and trunks as follows:

·ac. X 3600 X C i aL. X 3600 X Li
I = ~ + -~------

tc tL

We next compute the total number of messages
transmitted from the switch, during the busy hour,
from all lines and trunks as follows:

ac X 3600 X Co aL X 3600 X Lo o = 0 + _0 ___ ----

tc tl

ELEMENTARY TELEPHONE SWITCHING THEORY 423

Each input message may generate one or more out
put messages. Hence, the total number of input
messages may be related to the total number of out
put messages by some averaged constant, K,.

We categorize this averaged constant K as the
multiaddress constant. Hence, 0= K I or

ac X 3600 X Co aL X 3600 X Lo
0+ __ 0 _____ -------

tc tL

aa X 3600 X C i = K __ 1 __________ _
aL. X 3600 X Li

+ --",-----------
h te

This reduces to:

aco X Co ,-K aC
i

C i

tc
For the full duplex system Li = La = L, and Ci

Co = c. Hence,

L t1 a ca - K aCi

C - tc . K ali ,- aLa

We can illustrate the use of this formula with a
simple example. Suppose all traffic was from incom
ing lines to outgoing trunks, i.e.,

Then
L 71 'ac()

- - --
C tc Kali

If aco = ali = 1.0, and K = 1.5, and tl = 96 sec
and Ic = 3 sec, then

L 96 1
-=-,-=21
C 3 1.5

For a system that has already been constructed and
is in use, the ratio of LIC has been fixed by the
equipment. The holding times are somewhat fixed
by the transmission speed facilities, but these also
depend on the statistical nature of the length of
messages. The occupancies and the multi address
factor K are the true variables in this case, since
these are determined by the actual traffic.

Since the parameters on the right-hand side of
this formula all vary under operational traffic condi-

tions, both sides of the identity may not be equal,
in which case the switch is not performing as well as
it might be.

If the system is designed to force the identity to be
true, then it is operating with maximum efficiency.
All parameters on the right-hand side are measurable
and can be computed by the switch as it passes
traffic. The switch can then be conceived to be
adaptive in nature, and when it finds that the identity
is not true, it can automatically exercise line or trunk
load control to readjust the traffic flow.

CONCLUSION

The traffic techniques described herein have been
used by system engineers for telephone trunking
problems since the early 1900's. The equations and
results given are valid for message switching, pro
viding the statistics of the message traffic agree rea
sonably with the assumption of exponential message
length distribution.

There still remains a host of problems concerned
with channel coordination procedures and hard
ware-software tradeoffs that can be studied using
the techniques described in this paper.

REFERENCES

1. A. K. Erlang, "Solution of Some Problems in
the Theory of Probabilities of Significance in Auto
matic Telephone Exchanges," P.O.E.E. fl., vol. 10,
p. 189 (1917).

2. E. C. Molina, "Application of the Theory of
Probability to Telephone Trunking Problems,"
B.S.T. fl., vol. VI, July 1927.

3. F. Pollaczek, various articles including those
found in: Mathematische Zertschrift, vol. 32, pp.
64-100 and 729-50 (1930); Electrische Nach
richten-Technik, June and July 1931; Telegraphen
und Fernsprech-Technik, 1930, pp. 71-78.

4. C. D. Crommelin, "Delay Probability Formu
lae, When the Holding Times are Constant,"
P.O.E.E. fl., vol. 25, p. 41; "Delay Probability
Formulae," ibid, vol. 26, p. 266.

5. R. I. Wilkinson, "Working Curves for Delayed
Exponential Calls Served in Random Order," B.S.T.
Il, vol. 32, pp. 360-83 (Mar. 1953).

TOWARD A COOPERATIVE NETWORK
OF TIME-SHARED COMPUTERS

Thomas Marill

Computer Corporation ot America, Cambridge,
Massachusetts

and

Lawrence G. Roberts

MIT, Lincoln Laboratory, * Lexington, Massachusetts

INTRODUCTION:
NETWORKS AND THE PROBLEM OF
COMPUTER INCOMPATIBILITY

Incompatible machines represent an old problem
in the computer field. Very often, because of com
puter incompatibility, programs developed at one in
stallation are not available to users of other installa
tions. The same program may therefore have to be
rewritten dozens of times.

Assume, for example, that a program which per
forms a syntactic analysis of natural English sen
tences has been developed for a certain computer, Y.
Such a program would be of interest to workers in
the fields of natural-language inputs to computers,
mechanical translation and linguistics, information
retrieval, command and control, and a number of
other ancillary disciplines. Unfortunately, the pro
gram would be available only to those who had direct
access to Y (or to a computer compatible with Y);

* This work was supported in part under a subcontract of
MIT, Ljncoln Laboratory, which is operated with support
from the Advanced Research Projects Agency.

425

users of other installations would have to recode the
program for their own computers, at a cost per com
puter comparable to the cost of the original pro
gramming development. Viewed on a nationwide
scale, such inefficiencies can be enormously expen
sive.

The time-honored remedies for computer incom
patibility have been the following.

1. Use identical computers. Thus, for
example, the use of two identically
modified IBM 7094's at Project MAC
and at the MIT Computation Center
made possible the development of the
Compatible Time-Sharing S y s t e m
(CTSS), allowing programs written for
one system to be run on the other.

2. Write programs in a high-level lan
guage for which compilers exist on
different machines. Thus, a given
FORTRAN source program can be
compiled for and run on a large num
ber of different computers.

426 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Unfortunately, these remedies have worked quite
badly in the past and will probably work as badly in
future time-sharing environments. Regarding remedy
(1), there is no indication that the proliferation of
hardware is ending. It is not difficult to find examples
of situations where, even within a single organiza
tion, incompatible new computers are being added
to existing ones, requiring duplication of program
ming efforts. Regarding remedy (2), one finds that
new computer languages are developed daily. It has
been estimated that the number of time-sharing in
stallations is roughly equal to the number of lan
guages offered among them.

Thus we see no particular reason to believe that
the old remedies will work better in the future than
in the past. The possibility exists, however, that
the technique of computer networking will con
tribute to the solution of the problem. Since time
sharing systems, by their nature, are designed to be
operated'· remotely on a real-time basis, we can
envision the possibility of the various time-shared
computers communicating directly with one another,
as well as with their users, so as to cooperate on the
solution of problems. To return to our earlier ex
ample, if a user of machine X wanted to use, as part
of a larger program, the syntactic-analysis routine
running on computer Y, this larger program would
communicate the sentence to be analyzed to Y, cause
the syntactic-analysis program to run on Y, accept
the results, and go on running at X.

Such an approach would circumvent the problem
of incompatible machines by allowing all programs
to run on their home computer.

A program which ran on computer Y would not
need to be rewritten or recompiled for computer X
in order to be part of a system running on X; the
program would run on Y, as always, and its output
would be communicated to X at the proper time.

Within a computer network, a user of any cooper
ating installation would have access to programs
running at other cooperating installations, even
though the programs were written in different lan
guages for different computers. This forms the prin
cipal motivation for considering the implementation
of a network.

The establishment of a network may lead to a
certain amount of specialization among the cooper
ating installations. If a given installation, X, by rea
son of special software or hardware, is particularly
adept at matrix inversion, for example, one may ex
pect that users at other installations in the network

will exploit this capability by inverting their matrices
at X in preference to doing so on their home com
puters.

Carrying this train of thought one step further, it
may develop that small time-shared computers will
be found to be efficiently utilized when employed
only as communication equipment for relaying the
users' requests to some larger remote machine on
which the substantive work is done. Such smaller
installations might then be considered to be "retail
outlets" for the "wholesale computer power" provid
ed by the giant machines. *

SOFTWARE CONSIDERATIONS

The Elementary Approach

We will first discuss an elementary approach to
the problem of forming computer networks. This
approach certainly does not represent the best alter
native, but it has the advantage as a point of depar
ture of being by far the simplest, since it allows a
network of existing time-sharing systems to be
formed without any appreciable change to hardware
or monitor software.

Using this approach, the only requirement a sys
tem must meet to be eligible for membership in the
network is the following: the time-sharing monitor
must allow user programs to communicate with two
terminals. If this requirement is uniformly fulfilled,
then the network can be implemented without
change to the monitor at any installation, by the
simple expedient of letting each computer in the net
work look upon all the others as though they were
its own remote-user terminals.

Figuratively speaking, we may think of the com
puter-to-computer link in such a network as being
the result of removing a user terminal from its cable
on computer X, removing a user terminal from its
cable on computer Y, and splicing the two cable
ends together.

* It may be pointed out that the type· of network de
scribed above is not the only possible type. One might alter
nately consider a network in which programs are shipped
from one computer to another. Such a program-shipping
network could be used for load-sharing: When the queue of
programs waiting to run on a given computer becomes too
long, certain of the programs are shipped off to another
computer where quicker service is available. The establish
ment of a program-shipping network seems to us to be an
exceedingly difficult undertaking and will not be considered
in the present paper. Instead, we restrict ourselves entirely
to the type of network in which all programs run exclusively
on their home computer, that is, on the computer they were
programmed for.

COMMUNICATIONS NETWORK TO TIE TOGETHER EXISTING COMPUTERS 427

Such a network operates as follows. The user
dials up his home computer, CH, from a console. He
logs in normally by transmitting characters from his
console to the monitor MH. He sets up his user pro
gram PH and starts this program. PH, through the
second channel available to it, logs in at the remote
computer CR, by transmitting the correct sequence
of symbols to the remote monitor MR. (Note that it
is the user's program PH, not the monitor MH, which
has the responsibility for doing this.) The remote
monitor MR takes the proper actions and communi
cates with PH that the actions have been taken. PH
accepts these messages. PH then communicates with
MR to set up the desired program PR at the remote
computer; it then runs PR and transmits and accepts
data from it, until it is done. PH then logs out by
communicating with MR. PH continues on its own
until done. The user logs out by communicating
with MH.

Note that neither MH nor MR was required to
behave in an unusual fashion. The monitors did
what they always do. The only requirement, as stat
ed earlier, was that the user program PH be allowed
to communicate with two terminals, its own user ter
minal and the remote computer. Most present-day
monitors provide for such a capability.

There are a number of problems with this ele
mentary approach. First, while it is true that most
present-day monitors allow the user program to
communicate with two terminals, they typically al
low this communication to occur only at very low
data-rates. This is because the multiple remote-ac
cess lines which monitors are designed to service are
teletypewriter lines, operating at teletypewriter data
rates, i.e., at rates on the order of 100 bits per sec
ond. In the following section we discuss alternative
approaches to circumvent this difficulty.

Second, the elementary approach leads to a net
work which in many circumstances is quite incon
venient. One reason is that the responsibility for
making the network operate rests on the calling pro
gram PH. This program must handle the communi
cation with the remote monitor, possible code con
version, error checks, etc., without any assistance
from the monitor. Another reason is that there is no
way of "reaching" remote programs other than those
which take all inputs from, and give all outputs to, a
user terminal. Ways of dealing with this second class
of problems will be discussed below under the head
ings of Message Protocol, Auxiliary Software, and
The Problem of Displays.

Achieving Higher Data-Rates

We have seen how an elementary network could
be achieved without changing existing hardware or
monitor software. This elementary network operates
at teletype data-rates, i.e., at rates on the order of
100 bits per second. We consider next how to
achieve higher data-rates while still preserving, as
much as possible, the hardware and software of ex
isting time-sharing systems. Two possibilities are
open to us:

1. The limitation on the rate at which bits are
transmitted to and from teletypewriter stations is im
posed by the speed of the teletypewriters, not by the
capabilities of the hardware interfacing the remote
lines to the computer. Trivial modifications to this
communications interface will frequently allow the
bit-rate to be increased considerably over the tele
type rate. An improvement by a factor of 10, lead
ingto a rate of approximately 1000 bits per second,
should not strain any existing hardware. Such a
change in the hardware does not require any change
in the monitor software, provided of course, that we
do not exceed the monitor's capacity for accepting
characters.

2. The channels considered up to· now have been
command-plus-data channels which carry commands
(from user to monitor) as well as data (from user
to user-program and vice versa). Since commands
come at unprediCtable times in the data-stream, each
character transferred over a command-plus-data
channel must be analyzed by the monitor. Not so
for the case of data-only channels, such as those
which transfer information between a user program
and a disc file or a magnetic tape. The data-flow
over a data-only channel contains no information
addressed to the monitor itself; hence the informa
tion need not be analyzed by the monitor and can
be transferred at higher rates.

This fact suggests that data-rates higher than
those discussed up to now could be achieved by us
ing data-only channels as computer-to-computer
links; such channels are already available in existing
time-sharing systems, and could be modified for net
working applications.

However, data-only links would not be sufficient
for a network, since it is necessary to transmit com
mands to the monitors (in order to log in, for exam
pie); primary data-only links would have to be
supplemented by secondary command-plus-data
channels.

428 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Thus, a possible alternative technique for achiev
ing increased data-rates without greatly increasing
the burden on the monitor would be to use high-rate
data-only links, supplementing these by low-rate
command-plus-data channels over which communi
cation to the remote monitor could take place.

Message Protocol

We have seen how an elementary network, oper
ating at low data-rates, could be implemented with
virtually no changes to existing hardware or soft
ware, and how somewhat higher data-rates could al
so be achieved without radical redesign. However,
the networks created by the principles discussed so
far have great shortcomings, particularly since they
require the user program initiating the call to the
remote computer to do all the work associated with
carrying out the transmissions. This can be a very
greet inconvenience; it would be much more desira
ble to have the monitor take over some of the
chores.

The first step in that direction is the establishment
of a message protocol, by which we mean a uniform
agreed-upon manner of exchanging messages be
tween two computers in the network.

The primary reasons for considering the establish
ment of a message protocol are the following:

1. By formatting transmissions into mes
sages, and including a cneck-sum wIth
each message, transmission errors can
frequently be detected. If detected,
the messages can automatically be re
transmitted in accordance with the
protocol.

2. If an existing command-plus-data link
is used, certain characters or strings
of characters are normally given spe
cial consideration by the monitor.
Hence, binary data cannot efficiently
be sent over such a link without some
extra provision which specifies that a
certain block is to be regarded as
binary information. The protocol pro
vides for such an extra provision and
thereby allows binary information to
be transmitted efficiently.

As will be seen below, work is proceeding on an
experimental network between the TX-2 computer
at Lincoln Laboratory and the Q-32 computer at

System Development Corporation. The protocol to
be used in this network is given in the Appendix.
This protocol will be handled as an extension of the
two monitors, which will automatically take care of
error-checks, retransmissions, and acknowledgments.

While the implementation of a message protocol
is a great convenience to the user, a certain caution
ary remark may be in order. If a protocol is adhered
to between two computers in the network, say A
and B, it is not absolutely necessary that the same
protocol be established between C and D, nor even
between A and D. Since the motivation for the net
work is to overcome the problems of computer in
compatibility without enforcing standardization, it
would not do to require adherence to a standard
protocol as a prerequisite of membership in the net
work. Instead, the network should be designed for
maximum flexibility. If a protocol which is good
enough to be put forward as a standard is designed,
adherence to this standard should be encouraged but
not required.

Auxiliary Software

Let us assume that we have a command-plus-data
channel over which computers X and Y communi
cate, and that a message protocol has been ar
ranged. Consider now the auxiliary software neces
sary to make use of the networking capability.

Let us say that X is the home computer (the
.. ~ "I • "I: T

'-V111pUl'-J. VU VVUJ.'-U lUI;; U1)\';oJ. J.1) J.V.5o'-U lU) Q,l1U U.lQ,l ..L

is the remote computer. There are two types of pro
grams on Y that are of interest to the user of X:

1. "Total program packages," that is to
say those programs all of whose inputs
are typed in by the user and all of
whose outputs are typed out to the
user. An example of such a package
is an on-line engineering-calculation
program.

2. Subroutines, that is to say those
programs which are called by other
programs, whose arguments are trans
mitted at time of call, and which re
turn control to the calling program
together with the result of the calcula
tion.

Consider now the auxiliary software that needs to
be provided at the remote computer Y in order for
the two types of programs to be usable remotely
from X.

COMMUNICATIONS NETWORK TO TIE TOGETHER EXISTING COMPUTERS 429

• To use a total program package remote
ly, no additional software is necessary
at Y.

• To use a subroutine remotely, a user
program running on Y must be pro
vided. This user program is an ihter
face between the link and the desired
subroutine. The user program accepts
type-in from the link, calls and runs
the desired subroutine, and types out the
answer to the link. A separate user
program could be provided for each
subroutine of interest; or else a common
program could be written which is
given the arguments and the name of
the desired subroutine.

Consider next the auxiliary software that needs to
be provided at the home computer X. For each re
mote program that is to be used, code needs to be
written for calling up the remote computer, logging
in, calling up the program, transferring data, and
logging out. This code may as well be public, so as
to be available to all users of X. Thus, if the pro
grams ABLE and BAKER running on computer Y
are to be used remotely from X, programs PSEU
DOABLE and PSEUDOBAKER will be provided
on X. These PSEUDO-programs will be called by
the user-programs of X in the same manner as ordi
nary public programs at X. Since ABLE and
BAKER run on the same computer, Y, PSEUDOA
BLE and PSEUDOBAKER will have a great deal
of overlap (the dial-up and log-in routines for Y,
for example). Hence PSEUDOABLE and PSEU
DOBAKER will probably be written in such a way
as to employ a common subroutine which handles
all communications with Y. Given this routine,
PSEUDOABLE and PSEUDOBAKER are trivial to
write.

The Problem of Displays

There are certain special problems associated
with the remote use of display programs. The first of
these deals with the fact that display programs fit
into neither of the two program categories discussed
above. Display programs are not total program
packages, since they do not type out their results;
nor are they subroutines in the sense defined, since
they do not return their results to the calling pro
gram, but instead send these results to a display
generator.

In order for an existing display program to be
used remotely, therefore, it is not sufficient to intro
duce auxiliary software as user programs. A change
to the monitor is required.

What is required is (1) that the monitor recog
nize the situation in which the user who is calling up
the display program is not an ordinary user but
rather a remote computer and (2) that it take spe
cial action in this case regarding the display infor
mation. The special action required is to ship the
display information out over the link rather than to
the local display. If such a monitor modification is
made, existing user programs involving displays can
then be called from the remote computer, and the
display information will be sent to the home com
puter.

The second problem arises from the fact that
there is no agreed-upon language for transmitting
displays. The handling of displays in a time-sharing
system is usually built right into the time-sharing
monitor. Unfortunately, every monitor handles dis
plays differently, with the result that each computer
in the network must be programmed to understand
the display languages of the others. This can certain
ly be done, but it is inconvenient. *

It might be pointed out that if we solve the two
problems stated above in a satisfactory manner, so
that display programs can be used remotely in a net
work of time-shared computers, we will ipso facto
have solved also another problem of current interest,
namely the problem of small satellite computers
used as remote display consoles. In fact, there is no
reason why satellite computers and network com
puters need be treated differently. A satellite com
puter also must log in, run a program, and have
display information transmitted back down the com
munication channel.

HARDWARE CONSIDERATIONS

There exists a multitude of hardware problems
that must be considered when a computer network
is planned. Decisions must be made regarding type
and speed of communication channels, character
size, serial versus parallel transmission, synchronous
versus asynchronous transmission, full-duplex versus
half-duplex, etc. Since these problems have been dis-

I

* As in the case of message protocol, adherence to a
proposed standard should be encouraged but not made
mandatory. In any event, the problem at the moment is not
lack of adherence to a standard, but rather lack of any
proposed standard.

430 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

cussed in detail elsewhere, l and will also be consid
ered by other contributors to the present conference,
no further review will be undertaken here.

One comment may be in order. Automatic calling
units (devices· which allow computers to place calls
over common-carrier dial-up networks) are becom
ing available. These devices allow a computer to
place a call to a remote computer at the time the
connection becomes necessary, eliminating the need
for permanent connections. In fact, if the remote
computer is to perform a lengthy computation, it
would be feasible to start the remote program, hang
up, and have the remote program call back when it
gets the answer.

NETWORK EXPERIMENTS

Work is proceeding on the implementation of an
experimental network involving the APEX time
sharing system 2 running on the TX-2 computer at
MIT Lincoln Laboratory in Lexington, Massachu
setts, and the time-sharing system running on the
Q-32/PDP-1 computer complex at System Develop
ment Corporation in Santa Monica, California.3 Ini
tially, a 4KC four-wire dial-up system will be used
with 1200-bit-per-second asynchronous modems.
The message protocol given in the Appendix will
be used. In addition, a special display language is
being developed, and suitable monitor changes are
planned, so that display programs can also be used
remotely.

As soon as possible, a series of demonstrations
and experiments will be performed using the experi
mental network. The experience gained will be re
ported at the conference. If the outcome of the ex
periments supports the validity of the concepts, it is
hoped that other time-sharing installations will join
the experimental network.

APPENDIX

MESSAGE PROTOCOL FOR TX-2/Q-32 LINK

This Appendix describes the message protocol for
use with the link between the Q-32 at System Devel
opment Corporation in Santa Monica, California,
and the TX -2 at Lincoln Laboratory in Lexington,
Massachusetts.

Each character consists of eight data-bits, sent
least significant bit first, preceded by a zero start bit
and followed by a one stop bit. When not transmit-

Table 1. Special Characters for Message Protocol

Octal ASCII Meaning

HEADER
201 SOH characters for monitor
202 STX characters for user
221 DC1 data for monitor
232 SS data for user

END OF MESSAGE
203 ETX end of message

ACKNOWLEDGMENT
225 NACK message in error, repeat
234 FS message OK, but wait
206 ACK message OK, send next

message
QUERY

230 CNCL resend last acknowl-
edgment

SYNCHRONIZATION
226 SYNC ignore

SPECIAL FUNCTIONS
220 DLE help/break
233 ESC panic.

ting a character, the link transmits a one contin
uously.

All information transmitted is sent in the form of
messages consisting of a header character, body,
end-of-message character, and a checksum. All mes
sages are acknowledged.

There are four types of messages. Each has a
unique header character that determines both the
destination of the message (user or monitor) and
the mode of the message (character string or binary
data). The specific characters used are listed in Ta
ble 1.

The body of the message has a maximum length
of 119 characters if the message is a character string
and 118 characters if the message is binary data. If
the message consists of binary data, the first char
acter of the body is a count character equal to the
total number of characters in the body including the
count character. Two through 118 are legal values.

The body of the message is followed by an end
of-message character. This is immediately followed
by a checksum-the 8-bit ring-sum of the header
character and all the characters in the body.

A message is acknowledged by sending one of
three characters. One indicates an error, requesting
retransmission. The second indicates that the mes
sage was received correctly, but requests that the
transmitter wait before sending the next message, as
the receiver buffers are full. The third type of ac-

COMMUNICATIONS NETWORK TO TIE TOGETHER EXISTING COMPUTERS 431

knowledgment indicates that the last message was
received correctly and/or that the receiver is ready
for the next message.

There are four other special characters. The first
-query-requests the receiver to res end the'last ac
knowledgment character that it sent, or to indicate
an error if it is currently receiving a message or has
received garbage since the last correct message.

The second-sync-will be used by another (syn
chronous) link attached to TX-2. As far as the
SDC/TX-2 link is concerned, sync characters are
ignored.

The other two-help and panic-are both treated
as a break at SDC or help request at Lincoln. Even
tually panic will be used for a higher-level interrupt
at Lincoln.

As described herein, the system is capable of
transmitting and receiving messages simultaneously.
To speed up text transmission, acknowledgments
and queries may be interjected in the middle of
character strings (not binary data) as the receiver
will always be looking for special characters when in
the character mode. Interjected characters are not
included in the checksum.

Since SDC desires not to transmit and receive si
multaneously, programs using this system should be
arranged to alternate messages or groups of mes
sages.

To avoid "hung" conditions, the transmitter is re
sponsible for getting the message through and ac
knowledged. If the transmitter does not receive an
expected acknowledgment within one second, a
query is sent to see if the message or acknowl
edgment was lost. Similarly, if a ready condition
(ACK) is not received within 30 seconds of a
"wait" (FS), a query is sent to determine if the
ready was lost.

All special characters have the high order bit set
to one. This leaves all 128 characters whose high

order bit is a zero available to transmit the full 7 -bit
ASCII code in the character mode. Care must be
exercised by programs using this system, since it is
possible to send characters that could not originate
from a teletype.· When in the character mode, char
acters whose high order bit is a one are ignored if
they are not special characters.

ACKNOWLEDGMENTS

The authors wish to thank the many individuals
who have generously taken the time to discuss com
puter networks with them: at System Development
Corporation, C. Fox, D. Kemper, L. Gallenson, J.
Schwartz, R. von Buelow, C. Weissman; at MIT
Project MAC, S. Dunton, D. Edwards, R. Stotz; at
Lincoln Laboratory, J. Forgie, K. Konkle, J. Mit
chell, J. Raffel; at Computer Corporation of Ameri
ca, W. Mann, H. Murray. In addition, the people at
System Development Corporation, Lincoln Labora
tory, and Computer Corporation of America are
participating in setting up the experimental network,
and their cooperation is very much appreciated.

REFERENCES

1. T. Marill, "A Cooperative Network of Time
Sharing Computers: Preliminary Study," Technical
Report No. 11, Computer Corporation of America,
Cambridge, Mass. (1966).

2. J. W. Forgie, "A Time- and Memory-Sharing
Executive Program for Quick-Response On-Line
Applications," Proc. Fall Joint Computer Can!., vol.
27, part 1, Spartan Books, Washington, D.C.,
1965, pp. 599-609.

3. J. I. Schwartz, E. G. Coffman, and C.Weiss
man, "A General-Purpose Time-Sharing System,"
Document SP-1499, System Development Corpora
tion, Santa Monica, Calif. (1964).

THE LINCOLN RECKONER: AN OPERATION-ORIENTED,
ON-LINE FACILITY WITH DISTRIBUTED CONTROL

Arthur N. Stowe, Raymond A. Wiesen, Douwe B.
Yntema, and James W. Forgie

Lincoln Laboratory, * Massachusetts Institute of
Technology

Lexington, Massachusetts

GENERAL DESCRIPTION
OF THE RECKONER

The Lincoln Reckoner is a time-shared system for
on-line use in scientific and engineering research. It
looks forward to the day when a computational
service can be put into the office of every serious
research worker, and it was designed as an experi
ment to find out what features of such a service will
have an important effect on the amount of work the
user gets done.

The present system does not by any means offer
all of the services that a computer might provide to
scientists and engineers. Instead, it offers a library of
routines that concentrate on one particular applica
tion, numerical computations on arrays of data. It is
intended for use in feeling one's way through the
reduction of data from a· laboratory experiment, or
in trying out theoretical computations· of moderate
size.

Using Routines from the Public Library

The Reckoner is primarily a facility for making
use of routines, not for writing them. To run a rou-

* Operated with support from the U.S. Air Force.

433

tine, all the user has to do is type the name of the
routine, the name or names of the operands on
which he wants it to operate, and the name or
names under which he wants the results to be filed
away for future reference.

Suppose for example that two arrays, X and Y,
have already been loaded into the system: X is an
m X n array and Y is m X 1. The user would like to
find the coefficients /3 j that minimize the expression

~ (Yi- ~ Xij.{3j) 2

i j

Let us assume he knows some matrix algebra: he
realizes that the desired coefficients are the compo
nents of the column-vector ,{3 that may be found by
solving the matrix equation

X' X X X f3 == X' X Y

in which X and Yare the given arrays and X' is the
transpose of X. To find {3 he might then type the
four lines shown in Example 1.

Example 1:

TRANSPOSE X XPRIME
MATMUL XPRIME X L
MATMUL XPRIME Y R
SOLVELRBETA

434 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

The first line says that the array named X is to be
transposed and the resulting array is to be called
XPRIME. TRANSPOSE is the name of the routine
that transposes a matrix (i.e., a two-dimensional ar
ray), X is the name of the array on which the rou
tine is to operate, and XPRIME is the name under
which the user wants the result to be filed away.
When he has typed this line and has pressed the
carriage-return key on his typewriter, the system
performs the operation without further ado. He need
not know where TRANSPOSE and X are stored,
and he need not concern himself with the dimen
sions of the operand X or of the result XPRIME.

The second line says that the matrix XPRIME is
to be post-multiplied by the matrix X and the prod
uct is to be called L. MA TMUL is the name of the
matrix-multiplication routine, there are two oper
ands, named XPRIME and X, and L is the name
the user wants to give to the result.

The third line is similar, and the fourth says that
the matrix equation

LXf3=R

is to be solved for ,/3. Land R are the names of the
operands, SOLVE is the name of the routine, and
BETA is the name for the result.

At this point the user may want to see how well
each of the approximations 2.j Xij .f3j agrees with the
corresponding Yi. He might therefore type

MATMUL X BETA XBETA
PLOTXBETA Y

The first line multiplies the m X n matrix X by the
n X 1 matrix BETA to produce the m X 1 matrix
XBETA, and the second produces on a cathode-ray
tube near the user's typewriter a graph of the ele
ments of XBET A plotted against the corresponding
elements of Y. The routine chooses the scales for
the two axes, puts tick marks on the scales at inter
vals chosen to conform to custom and readability,
and decides whether to ·label every tick mark or
every fifth one. There are other routines, with addi
tional parameters, that allow the user to specify the
ranges of one or both of the axes.

Building and Using a «Process"

As the user works on a· problem, he often finds
himself using over and over a series of operations
that he has come to regard as a single unit. When he

does, he will probably want to define a "process"
that will allow him to run off the whole sequence
with a single statement. For example, he may come
to think of the four lines shown in Example 1 as one
unit, a least-squares fit. To make the four lines into
a process he could proceed as shown in Example 2.

Example 2:

BUILDLSF
GOON

TRANSPOSE X XPRIME
MATMUL XPRIME X L
MATMUL XPRIME Y R
SOLVELRBETA
/ FINIS

OK

On the first line, BUILD is the name of the routine
that constructs a new process, and LSF (for "least
squares fit") is the name the user wants to give the
process. The system responds GO ON to show it is
ready to accept the definition of a process, and he
types the four lines that constitute the definition.
Then he types /FINIS to show he is through, and
the system responds OK. Henceforth, whenever he
types LSF followed by a carriage return, the system
will perform the four statements exactly as though a
rapid typist had typed them very quickly. Processes
can call upon processes: the statement LSF can ap
pear in the definition of another process, which can
be called by yet another process, and so on.

Sometimes it is convenient to let a process have
operands and results so that it can be used like one
of the primitive routines in the library. If the user
had chosen to make LSF a process of this kind, he
could have proceeded as in Example 3.

Example 3:

BUILDLSF
GOON

pABC
TRANSPOSE A .APRIME
MATMUL .APRIME A .L
MATMUL .APRIME B .R
SOLVE .L .R C
/FINIS

OK

The line beginning with the circled p is the pa
rameter line: it shows which of the names that ap
pear in the process are to be treated as variables
that the user will specify when he asks for the proc-

LINCOLN RECKONER: AN OPERATION-ORIENTED, ON-LINE FACILITY 435

ess to be performed. For example, if he types the
line

LSF X Y BETA
the process will be run off just as though the four
statements were typed by a rapid typist who was
instructed to substitute X where A appears,'y wher
ever B appears, and BETA where C appears.

The curious names that begin with periods are
names for intermediate results that the user does not
want preserved after the execution of the process is
complete. The system automatically adds to each of
these names a prefix composed of a period and the
name of the process itself. For example, wherever
the user has written .R, the fictitious typist· writes
.LSF .R, so that .R becomes in effect a local name
peculiar to this·process; thus if the statement

LSF X Y BETA
appears in another process in which the name .R is
used, the two results called .R will not be confused.
When the execution of the process is complete, the
system automatically makes the name .LSF .R
undefined so that it will not clutter up the user's
records.

The versatility of processes is greatly increased by
two features that have not been illustrated by these
examples. First, processes may include uncondition
al and conditional jumps. For example, when the
line

__ 5.5

appears in a process, it means "jump to Line 5.5 of
this process"; and the line

..- 5.5 ALPHA > Z
means "jump to Line 5.5 of this process if the cur
rent value of the scalar named ALPHA is greater
than the current value of the scalar named Z." (The
lines of a process all have numbers, though the user
need not bother to type them if he wants the lines
numbered simply 1, 2, 3, ...) Second, there is a
symbol, <I), which means "now exit from this proc
ess." This symbol did not appear in the examples
because a process is always understood to have an
exit at the end.

Since the user is able to construct processes that
contain conditional jumps and behave like library
routines, the public library of basic routines does
not have to be very large. The present library, which
is specialized for numerical calculations on arrays of
real numbers, is described in the Appendix. It con
tains only 64 operations-some large, many trivial.
While it is easy to think of other operations that

might well be included, we have been pleased and
a little surprised to find how adequate this small
library is.

Further Details

The Reckoner has some other features that
should be mentioned because they greatly affect the
appearance of the system to the user. It is easiest
just to list them:

1. There is a buffer area in which the system
stacks inputs from the user's keyboard. After typing
a carriage return, which is the signal to execute a
statement, he may begin a new statement imme
diately without waiting for an indication that the
system has finished executing the old one~ Stacking
inputs in this fashion is a cheap way to increase the
apparent speed with which the system responds: the
system can be working on one statement while the
user is typing the next. Indeed he never needs to
wait for the system except when he types a command
that calls for an output, and when he goes into or
out of the process-builder. (In theory he would have
to wait if he typed fast enough to fill the buffer,
which is set to hold about 700 characters; but no
one has ever filled it so far as we know.) There is of
course an unpleasant moment of confusion if he is
typing a statement when the system begins to type
an error-message about some previous statement,
but the occasional unpleasantness is. a small price to
pay for the apparent increase in speed of response.

2. The user may edit the definition of a process:
he may make changes before he has typed the
[FINIS that shows the definition is complete, and he
may reopen the process later, perhaps after he has
tried it, and make changes then. Lines are replaced
and deleted by number, and are inserted by giving
them intermediate lirie-numbers. Line-numbers
may have up to four decimal digits before and four
after the decimal point.

3. A name may be 50 characters long, and may
consist of any combination of digits, periods, and
roman capital letters, provided it contains at least
one letter. However, it'is unwise to choose a name
beginning with a period or a digit; names that begin
with periods can be confused with names of in
termediate results, and names that begin with digits
are sometimes used by the system for its own pur
poses.

4. There is an operation (i.e., a public routine)
by which the user may specify that one name shall

436 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

have the same meaning as another. For example, the
basic public name of the matrix-multiplication rou
tine is 5MMUL. If the user does not like that name
-and presumably he will not-he may create a
synonym like MA TMUL, the name used in the ex
amples. He may also create synonyms for the names
of his own processes and arrays of data. In particu
lar, he may create one- or two-letter synonyms for
names he uses often.

5. When a name is given a lfew meaning-either
by making it a synonym to another name, or by
using it as the name for the result of an operation
it is detached from its old meaning, if any, and at
tached to the new meaning; if it did not have syno
nyms, the thing to which it referred is forgotten. The
system does all this without any comment or warn
ing. This arrangement appears to be proper and
convenient from the user's point of view; but it does
imply that when he wants to protect a valuable file
of data, he should give it a long, complicated name
that he is not likely to reuse inadvertently.

6. A process may be interrupted by the interrupt
button, by a special statement in the process itself,
or by an error message. The process is put into a
suspended state-and so is the process, if any, that
called for it, and the process which called for that
one, and so on. Control is returned to the keyboard,
and the user may print the results obtained so far,
plot them, or do subsidiary calculations on them. In
doing so he uses library routines and existing proc
esses just as he usually would; he is even free to
define and use new processes. He uses names like
.LSF.R, which was discussed in connection with Ex
ample 3, when he wants to refer to intermediate re
sults of a process that is in suspension. If he wishes
he may tell the system to continue the complex of
suspended processes, starting where it left off.

There are several other details of more interest to
the professional programmer than to the typical
user: (1) The routines in the present library do all
calculations in single-precision, floating-point arith
metic (9-bit exponent; 27-bit fraction, including
sign) and simply take the nearest integer when an
integer is needed-e.g., for the number of rows in
an array. (2) At present all arrays are n-dimension
al rectangular arrays of single-precision, floating
point numbers; the number of elements in an array
may not exceed 8190n. (3) The routines in the
public library are binary, reentrant, closed subrou
tines that occupy fixed addresses; processes run in-

terpretively, as will be explained below. (4) In
termediate results of the sort illustrated in Example
3 are handled in such a way that a process can be
recursive: if the process is called PROC, and it is
already in use on another level, then the prefix add
ed to names of intermediate results is .1 .PROC in
stead of .PROC; if it is already in use on two levels,
then the prefix is .2 .PROC; and so forth.

Three Case Histories

Our general impression is that the Reckoner is a
good, workaday facility for doing calculations with a
minimum of fuss about clerical details. We have
chosen three case histories to illustrate how the sys
tem works out in practice. The Reckoner is some
times used to attack sizable problems that require
many hours of work, but for the sake of brevity, we
have chosen short cases.

Case A. Senior member of the Laboratory's staff;
poor touch-typist; had written programs as pencil
and paper exercises but never run them; using the
Reckoner for the first time, spending an hour trying
it out with the help of an experienced user.

Spent about 10 minutes typing small arrays into
the system and doing various operations on them
more or less at random. Then turned to a problem
that had arisen the previous day in his work: Itera
tively compute the vector S from the equation

C X Sp + V
-----=Sn

6

where C is a square matrix, V is a column-vector
with each element equal to 2, Sp is the value of S
from the previous iteration, and Sn is the new value.
Typed a 5 X 5 matrix C and an initial vector S into
the system, and with occasional coaching from the
experienced user, did one round of the iteration and
typed out the elements of S. Applied the process
repeatedly until S stabilized.

Did not believe the results, and spent about five
minutes with pencil and paper thinking about the
physics of the problem. Tried another initial value
of S, got the same results, and then saw they were
reasonable. Asked if he wanted to save his files,
said, "No, I have my answer."

Time: 55 minutes, including some discussion of
the purpose of the Reckoner.

Case B. About two hours previous experience with
the Reckoner; fair-to-middling typist; had written

LINCOLN RECKONER: AN OPERATION-ORIENTED, ON-LINE FACILITY 437

and used two small programs in machine language;
no acquaintance with languages like ALGOL or
FORTRAN.

Communication-satellite problem that had arisen
in a study group in which he had participated. Con
siderable advance preparation in his office (amount
of time unknown) reading documents about the
Reckoner, doing algebra on the blackboard, and
writing out two processes on paper.

At the console, began by typing latitudes and lon
gitudes of six cities around the globe. Assumed four
communication satellites in polar orbits: for simplic
ity, circular orbits all of the same altitude. Typed in
initial latitudes and longitudes of the satellites.

Defined a process that computed which satellites
were visible from which cities. Did not believe the
answers, and looked back through the results of in
termediate calculations. Found he had gotten con
fused about whether sine or cosine of 60° was 1h.
Corrected the error and redid the computation.
Then printed out a 6 X 6 table with a row and a
column for every city, each entry being the number
of satellites through which the two cities were able
to communicate.

Defined another process, which advanced time
i.e., rotated the earth by a certain number of
minutes and moved each satellite around in its orbit
by the same number of minutes. The process then
computed which satellites could be seen from which
cities and printed the 6 X 6 table.

Using this process, ran the simulated communi
cation-system through most of a day's operation,
drawing conclusions about the way the initial place
ment of the satellites had affected the continuity of
communication.

Time: 1 hour and 45 minutes in a continuous
session, plus an unknown amount of advance prepa
ration. The time is particularly impressive because
the Reckoner did not yet have routines for sines and
cosines; the user was continually calculating his way
around their absence.

Case C. Very experienced user, one of the designers
of the system; facile typist.

Was demonstrating the Reckoner to a prospective
user who had spent several hours the previous day
with a desk calculator finding how well

7f'
cos (2: cos (j)

sin (j

is approximated by sin (j in the interval 0 to 7f' /2.
To show how the computation would be done on

the Reckoner, typed a six-statement process, which
when given an array of numbers, (j, created a new
array, each of whose elements was derived from the
corresponding element of (j according to the expres
sion

7f'
cos (- cos (j)

. 2
sm(j------

sin (j

(Note: This is a case where an algebraic language
would clearly have been helpful.)

Starting with the operation that creates a one-row
array of the integers from 1 to N, then multiplying
each integer by 7f'/2N, created an array THETA
that contained a couple of hundred numbers equally
spaced between 0 and '7T/2 (0 excluded). Applied
the process to this array and plotted the results
against the elements of THETA. Saw that the mag
nitude of the expression given above is maximum in
the vicinity of () = 0.6; so asked for an expanded
graph of the function in that region and read off the
value of the maximum as 0.0850

Time: Under 10 minutes, including time to state
the problem.

OPERATION-ORIENTED SYSTEMS

The Reckoner may be said to belong to a class of
systems that includes the OPS system 1 at Project
MAC, the MAP system,2 which is also at MAC, the
AMTRAN system 3 at the Marshall Space Flight
Center, the system on which Culler is working at
Santa Barbara,4 and the earlier Culler-Fried system,5
which influenced the design of the Reckoner in
many ways.

All of these systems have the following three fea
tures:

1. Automatic application of routines. Almost all
of the clerical work needed to perform an operation
-i.e., to apply a public routine-is done automati
cally. The system takes care of the location of the
data, the dimensions of arrays, and so forth. Ideally,
all the user has to do is somehow indicate the opera
tion he wants to apply, the data to which he wants it
applied, and-perhaps-the way in which he will
identify the results when he wants to use them
again.

We say "perhaps" because some of the systems
have a sort of accumulator from which the typical

438 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

operation takes one of its operands and in which it
deposits the result; thus a result that is to be used
only in the next operation need not be stored away.
And we say "almost all the clerical work" because
the ideal can be approached but never achieved en
tirely.

2. Automatic retention of results in such a form
that they can be used as operands for other routines.
The results of operations are stored in such a fash
ion that they can be used later as inputs to other
operations-including operations that the user did
not have in mind when the results were obtained.
He need only specify the name or the button by
which he wants to identify a result; the system re
members where the result has been stored and auto
matically records the descriptive information that
will be needed if the result is to be used later as an
operand-e.g., the dimensions are recorded if the
result is an array of numbers.

3. Facilities for concatenation of routines. The
user can define a sequence of operations and then
use the sequence as he would use one of the primi
tive routines in the library. The new operation can
be used as part of another sequence, and so on.

We propose that the class of systems defined by
those three' characteristics be called "operation
oriented." To the user, a process or a primitive rou
tine is just an operation that he may perform on files
of data to produce graphs, printed tables, or new
files of data. In a different sense the word "opera
tion" is appropriate from the designer's viewpoint,
too. These systems are oriented not toward the
preparation of routines, but toward the operation of
them. There may of course be provisions for writing
a new routine; but whether there are or not, conven
ience in the execution of existing routines is essen
tial.

It should be emphasized that operation-oriented
systems need not look alike to the user. A system
whose library was specialized for the manipulation
of text would look very different from the present
Reckoner.

Appropriateness

The users for whom we are designing are
scientific and engineering research workers who may
not know much about programming, but who could
benefit from computational assistance, especially in

feeling through moderate amounts of data or
through relatively small theoretical calculations.

Operation-oriented systems seem appropriate for
that kind of user. The present system indicates it is
feasible to provide routines that can be combined to
perform most of the operations that the user wants;
so it is efficient for the system to emphasize the con
venient use of routines from a library. A user who is
feeling his way through a problem often has no clear
idea of what he will do next; so it is efficient to
retain results in such a form that they can be used
as inputs to operations that were not foreseen when
the results were obtained. And as the user gets fa
miliar with a problem, he generally thinks of the
calculations in larger and larger units; so it is
efficient to let him build processes that conform to
those units.

The advantages of an operation-oriented system
extend beyond the use of library routines. No matter
how complete the library may be, the user, or his
programming assistant, will sometimes have to write
new routines to perform operations that cannot be
satisfactorily contrived from the operations in the
library. Some operation-oriented systems therefore
provide access' to procedure-oriented languages like
FORTRAN and MAD, and a small procedure lan
guage is being added to the Reckoner. To be most
useful, a procedure language must allow one to
write routines that can be used like the routines in
the library. A new routine will generally be used a
number of times with different parameters or with
different sets of data; so convenience in applying it
is important. Furthermore, the programmer has less
work to do if he can write a routine that accepts the
results of library routines as inputs and stores its
results in such a form that library routines can em
ploy them. He can concentrate on the crucial
aspects of the new operation, and can rely on the
library for preparation of the inputs, inspection of
the results, and so on.

Problem-oriented languages are also very useful
to the class of people for whom we are designing.
But if "problem-oriented" is understood in its strict
sense-oriented toward the problems of a particular
field like statistics or stress analysis-then these lan
guages have limitations. A research scientist or en
gineer will inevitably push against the limits of any
problem language that can be provided for him.
After all, his job is partly to define new problems.
He will often want to step outside of the language
provided for him, apply 'his own processes, and then

LINCOLN RECKONER: AN OPERATION-ORIENTED, ON-LINE FACILITY 439

go back. Thus problem languages, like procedure
languages, will be more useful if they are embed
ded in an operation-oriented system.

Indeed, it seems that the three characteristics we
have listed would be desirable in any work that a
researcher might want to do on-line-editing FOR
TRAN programs, making drawings, writing memo
randa, and all the rest. We are almost prepared to
argue that any system for on-line use in a research
laboratory should be operation-oriented.

THE RECKONER FROM THE
PROGRAMMER'S POINT OF VIEW

This section will describe how the Reckoner is
put together and will comment on some decisions
that were made in designing it.

Services Provided by the Time-Sharing System

The Reckoner is time-shared and runs on TX-2,
the Laboratory's experimental computer. The TX-2
time-sharing system, which is called APEX, pro
vides the Reckoner with three important services:
the input buffer, the directory of names, and the
stack of "maps." We shall just summarize them;
they have been described elsewhere. 6

The input stacker takes characters from the key
board and puts them into a buffer area. The execu
tive notifies the user's program when each statement
is complete-i.e., when the user has sent a carriage
return-but it continues to stack further statements,
up to the capacity of the buffer, whether the user's
program has processed the previous ones or not.

The executive maintains a private directory for
each user, and also a public directory of library rou
tines and the like. In either case, the directory is a
ring-structured dictionary of names and definitions.
If the name refers to a single number, then the
definition consists simply of the number, but if the
name refers to a file (either a routine or a file of
data) then the definition includes an indication of
where the file may be found' and some of the de
scriptive information about it. The user's directory
can contain a name defined by a pointer to a defini
tion in the public directory, and there can even be
names with no definitions (an important provision
in a system of this type). The user's programs are
not allowed to write in the directories, but they can
manipulate the private directory and inspect both
directories through calls to the'executive.

The executive also maintains the user's stack of
"maps." APEX provides each user with an "appar
ent computer" whose core memory is divided into
16 segments. A segment can contain only one file,
and a "map" is a list specifying the name of the file,
if any, that goes in each segment. A program may of
course get access to a subroutine by asking the exec
utive to put the subroutine in a given segment on
the current map. But to make it easy for one routine
to use another when their memory-address require
ments conflict, the calling routine may direct APEX
to put the new routine on a fresh map and transfer
control to the new routine, remembering the
specification of the old map. This process is called
"going up" to a new map, because the new map is
regarded as stacked on top of the old one. The re
verse process, returning to the calling routine on the
next lower map, is called "peeling back." Common
to all maps is a special file, called the connector,
which is used for passing information between rou
tines on different maps. By convention, the first reg
ister in the connector contains a pointer to the first
register that is not currently in use.

The input buffer, the directory, and the stack of
maps were built into the APEX executive partly for
reasons that depend on the nature of TX-2, and
partly because APEX was intended to support
operation-oriented systems. These three services
must be provided in some form, but they do not
necessarily have to be built into the time-sharing ex
ecutive.

The Basic Translator

The execution of a library routine or a process
that the user has called from the keyboard begins
with the basic translator. It takes the statement out
of the buffer area, cleans up deleted characters and
so on, and then divides the statement into its com
ponent terms, which are usually separated by
spaces. Terms that are text-i.e., material between
the characters that are used as quotation marks
are set aside, and terms that satisfy the rules for
numbers are converted to numbers in binary form.
Any term that is neither a quote nor a number is
assumed to be a name, and the basic translator asks
APEX to look it up. APEX looks first in the user's
private directory and then in the public directory,
and if the name does not appear in either directory,
inserts it in the private directory as a name that is
not yet defined. In either case APEX replies with a

440 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

pointer to the location of the name in one of the
directories.

The translator types an error-message if it is una
ble to interpret one of the terms as a quote or a
number and is unable to get the directory to accept
the term as a name. It also gives an error-message if
the first term in the statement is not the name of a
binary, executable routine.

If there are no errors, the translator puts into the
connector a calling sequence that is a term-for-term
translation of the statement the user typed: quotes
are given literally, numbers appear as actual binary
numbers, and names are represented by pointers to
the directory. Finally, the translator issues a "go up"
call to APEX, giving as a parameter of the call the
pointer to the first name in the statement, the name
of the routine that is to be executed.

The subroutines for number conversion and for
cleaning up the statement are fairly sizeable, but
otherwise the basic translator is rather simple. It can
be simple because its only responsibility is to con
struct a calling sequence and then go up. It balks at
going up to anything except an executable routine,
but aside from that, it does not know anything about
the nature of the routine that it is calling: it does
not know which terms the routine will use as inputs,
which it will use as names of outputs, or how many
terms are expected; it does not even know whether
it is calling a process or a library routine. Letting
the basic translator work in such ignorance is an
example of a policy that we shall call distributed
control. We shall come back to that later.

Library Routines

When a library routine has been entered by going
up to it, it gets its instructions from the calling se
quence in the connector. If it is to operate on files of
data, it takes from the calling sequence pointers to
the names of the files and asks APEX to set them
up on the current map. It computes from the data
descriptions in those files the amount of space it will
need for working storage and for results, and it asks
APEX to create on the current map new files of the
appropriate sizes.

The routine then proceeds to do the computations
that are its main task, and inserts into the file (or
files) of results whatever descriptive information is
conventional for files of that type. It then takes from
the connector a pointer to the name that the results
are to have, and passes the pointer to APEX with a

request that the file be given this name. (The nam
ing of the results is done last so that if the name of
an input is to be the same as the name for a result,
the name will not change meaning until the routine
is sure that it can finish successfully.) And finally,
the routine peels back to whatever called it.

Since the basic translator does not know the re
quirements of the routines that it calls, a library rou
tine must check the acceptability of the terms that
appear in the calling sequence, and the acceptability
of the data to which they refer. It must see that the
sequence contains the right number of terms, that
the term for the result is a directory pointer and not
a number, that the dimensions of arrays on which it
is to operate are compatible, and so on. If any of
these legality checks fails, or if an error condition
like overflow is encountered during the computa
tions themselves, then it types an appropriate error
message.

Putting the legality checks into the library rou
tines themselves was an almost inevitable decision.
The author of a new library routine should not have
to change programs that other people have written,
and he is the person who knows what his routine
can accept.

Building, Running, and Interrupting Processes

A process, like a routine, is an executable file.
Actually, only a small piece of it is executable, a
dozen instructions at the beginning, to which control
is transferred when the process is called. These few
instructions set up the process runner on the same
map and transfer control to it. The rest of the proc
ess consists of a list structure that the runner inter
prets.

The process builder can be used to construct a
new process, or to modify an existing one. It takes
each statement from the APEX buffer area and in
corporates the statement into a simple list .structure,
assigning it a line number unless the user has
specified a number himself. These line numbers pro
vide the necessary identification for replacing, insert
ing, and deleting lines, or for printing parts of a
process. The builder checks each line to see whether
it is an ordinary statement, a meta-command (e.g.
to delete aline), a jump statement, parameter line,
or an exit line. These· last three types are checked
for format, but other lines are inserted into the list
structure without any format checking. Dummy pa-

LINCOLN RECKONER: AN OPERATION-ORIENTED, ON-LINE FACILITY 441

rameters and names beginning with periods are not
ed for special treatment at run time.

In handling an ordinary statement, the process
runner behaves very much like the basic translator.
It must construct temporary names' for names r that
begin with periods, and it must substitute the appro
priate terms for dummy parameters, but aside from
that, it just builds the same calling sequence that the
basic translator would and issues a go-up request.
Like the basic translator, it does not know whether
it is calling a library routine or another process.

And like the basic translator, the runner makes
only those legality checks that cannot be left to the
routines that it calls. It makes the same checks that
the basic translator does, and it objects when it tries
to execute a line that contains a dummy parameter
for which no term was provided in the calling se
quence by which the process itself was called. It also
checks jump lines to determine that the jump is to a
line that exists, and to determine that the relation in
a conditional jump is a relation between scalars.
And finally, when a routine that the runner has
called peels back, the runner checks to see whether
there is a flag indicating that the routine encoun
tered an error condition. In this last case the routine
will have printed an error message, so the runner
does not. But in all cases the runner types the line
number and the name of the process it is running. It
then suspends the process and goes up to the basic
translator on the next map.

There are two other ways in which a process may
be suspended. The process itself may include a
statement that explicitly says go up to the basic
translator, and the user may press the interrupt but
ton, which also has the effect of a go-up to the basic
translator. In any case, once the process has been
suspended, the user may use the basic translator to
call for processes and routines. He may also give a
special command that resumes the interrupted proc
ess, or a command that destroys the whole stack of
maps and returns control to the basic translator on
the lowest level.

New Primitive Routines

No matter how much effort is put into the public
library, the user will sometimes have to write a new
primitive routine, or get a programmer to do it for
him. A compiler for a small procedure-oriented lan
guage is therefore being written with the help of a
compiler-compiler 7 that is under development at the

Laboratory. The object programs are named in the
directory; they can be called in the normal manner
by the basic translator or the process runner, can
accept as inputs the files and numbers named in the
directory, and declare their results in the directory
all as a library routine would.

The language is rather simple: it has no provision
for text (i.e., literals), for in-out operations, for sub
routines, or for calls to other routines. It has an
arithmetic statement, which is very like FOR
TRAN's, except that subscripts are actually typed as
subscripts; a begin statement, which simply marks
the beginning of a loop; an end statement, which
marks the end of a loop and shows the ranges over
which the variables in the loop are to run; a jump
statement, which transfers control to another state
ment in the same routine; a conditional statement,
which contains, first, a relation between two
numbers, and second, an ordinary arithmetic or
jump statement that is executed if the relation is
true; and a calling statement that shows which
names are to be treated as parameters and indicates
the order in which they will appear in the calling
sequence when the routine is used. There is also a
dimension statement that gives the dimensions of an
output array (the programmer does not declare the
dimensions of input arrays). The dimension state
ment is executable: it generates code that requests
APEX to create a file of a certain size.

An unusual feature of the language is a type of
expression called a "greatest allowable subscript."
For example, BETA,---2 means "the second dimen
sion (i.e., the number of columns) of the array
named BETA." Expressions of this type may be
used freely in dimension statements, arithmetic
statements, and so on.

The seven statements listed above seem adequate
for the user who wants a routine for his own use,
but they are not really enough for the author of a
new routine for the public library. He will need
statements that can be used to check for error con
ditions-such as an undefined input term-and to
specify the messages that he wants printed when
various errors are detected.

Comments on the Distribution of Control

Perhaps the most common policy in designing a
system for on-line use is to put a compiler, or some
other language processor, in control of the calcula-

442 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

tions that the machine performs for the user. As has
been seen, we adopted a different policy, which may
be called a policy of distributed control.

The basic translator is a fairly simple routine, and
can scarcely be said to control the system. In fact,
no one routine is in charge. Consider for example
that the basic translator may pass control to a proc
ess, which sets up the process runner, which may
pass control to another process; the new process
again sets up the runner, which may now pass con
trol to a library routine, which will peel back to the
runner; and so on. Throughout the whole chain of
events, no routine that puts control into another
map, either by going up or by peeling back, has any
information about the nature of the routine that will
take control. Thus, control is handed about among
modules that are remarkably independent. They are
held together only by the stack of maps, which
records the return path through the structure, and
by the directory, in which all results are entered so
that other modules can find them.

Even the control of the time-sharing system itself
is not vested in a translator in the usual way. APEX
has no command language and no command lan
guage translator. The functions that are usually
treated as commands-e.g., creating a synonym,
dropping a file, resuming a suspended process-are
all performed by small library routines that issue the
necessary calls to APEX. The use of these routines
is no different from the use of a matrix inversion
routine, either from the user's viewpoint, or from
the viewpoint of whatever routine calls them.

This way of handling commands is so neat and
straightforward that it has much to recommend it,
even in a system where control is not distributed in
the more thorough sense described above.

We should mention that some of our colleagues
feel there is one point at which we have not carried
the distribution of control far enough. A routine that
detects an error controls the delivery of the error
message to the user: it just hands the message to
APEX and requests that the message be printed. A
more flexible arrangement would be to have the rou
tine pass an error indication to the routine that
called it. Then the calling routine could decide
whether to print the message or to take some other
action.

Advantages of Distributed Control

The virtues of distributed control arise mainly
from the severe modularity that it enforces. The

same advantages could no doubt be obtained by
other means, with enough persistence and enough
administrative effort, but with distributed control
they fall out naturally.

In the first place, there are advantages to the user.
The system not only is modular; it looks modular.
From the user's viewpoint the library routines are
tools with stable, fairly simple properties. When the
system comes to rest-i.e., when control is returned
to the basic translator-he can use those tools to
inspect his processes and his results before he em
barks on another computational excursion. These
same tools are available when the system comes to
rest on a higher map after a process is suspended.
The users therefore have not felt any great need for
extra debugging tools.

Second, there are advantages to the system pro
grammer. As usual, thorough modularity means that
the system is generalized by making additions, not
alterations. Even a new data-type-list structures,
for example-is strictly an additive matter. The pro
grammer must write library routines that will create
and manipulate files of the new type, but beyond
that his only problem is administrative: he must
agree with other programmers on an identifying
code for files of the new type. He does not have to
make any change whatever in the existing software.
There is also a peculiar advantage to the author of a
new problem-oriented language. Assuming that the
necessary library routines already exist, he can write
a translator that just makes up a series of calls to
those routines.

And finally, we expect there will be some sociolog
ical advantages that might be summed up by Lick
lider's 8 phrase "coherent programming." He sug
gested that the software for an on-line system should
not be created at one stroke; instead, he envisioned
"a cooperative mode of programming through which
a community of creative people, most of them sub
stantive users, but some of them professional system
programmers, might over a period of a few years
develop a software base" of the sort that substantive
users need. We would add that the basic require
ment for coherence is this: The results of any opera
tion must be ready for use as inputs to any other
operation, even when the operations are described in
different languages. This of course assumes that the
operations make sense-the system is allowed to
balk at computing the eigenvalues of a list of cities
-but with that restriction, we would say that a soft-

LINCOLN RECKONER: AN OPERATION-ORIENTED, ON-LINE FACILITY

ware base is coherent only to the extent that it
meets this requirement.

An operation-oriented system, with the modular
ity enforced by distributed control, seems a natural
environment for coherence of just that kind .• Be
cause adding to a modular structure is relatively
easy, a programmer will often find it economical to
write his program as a library routine, or as a trans
lator that just calls on library routines. In any event,
he will generally be able to save himself work by
making his program compatible with the rest of the
system. If his program can use results produced by
other parts of the system, and if it stores its results
in such a form that other parts of the system can use
them, then the rest of the system will provide the
user with many auxiliary services that the program
mer would otherwise have to provide himself. That
sort of incentive may be what is needed to make
coherent programming more common than it has
been. A chance to avoid extra work is often more
effective than social pressure.

APPENDIX

The following is a list of the 64 operations availa
ble in the Reckoner public library in the summer of
1966. (There are not, however, 64 distinct routines;
for example, sine and cosine are entrances to the
same routine.)

Basic Arithmetic on Arrays (12 operations)

On two arrays

Add
Subtract
Multiply
Divide

On one array

Reciprocal
Square root
Log (base e or 10)
Antilog (base e or 10)
Sine
Cosine

Other Arithmetic on Arrays (8 operations)

Add a scalar to all elements
Multiply all elements by a scalar
Find sums of rows (columns)
Multiply each row (column) by corre

sponding element in a 1 X n or n X 1
array

Give largest and smallest elements
Find dimensions (number of rows, of

columns, etc.)

Data Shuffling in Two-dimensional
Arrays (14 operations)

Copy an array, transposing it
Copy an array, deleting certain rows

(columns)
Copy an array, saving only certain rows

(columns)
Copy an array, changing one element
Copy an array, replacing one row (col

umn) by a given n X 1 or 1 X n array
Copy one element
Copy two or more arrays, and join the

copies to make a new large array
Copy a square array, replacing the di

agonal by a given n X 1 or 1 X n array
Copy the diagonal and make it a 1 X n

or n X 1 array

Matrix Operations (6 operations)

Matrix multiplication
Matrix inversion
Rank
Determinant
Eigenvalues and eigenvectors of a sym

metric matrix
Solution of the matrix equation AX == B

Signal Analysis (2 operations)

Fourier transform
Inverse Fourier transform

Input (6 operations)

Enter an array (or single number) from
keyboard

Create a 1 X n array of the integers 1,
... ,n

Create an n X m array of zeros
Define a new process
Change a process

Output (9 operations)

Type a scalar, an array, a row, a column,
an element, text, or a process

Type dimensions of an array
Type largest and smallest elements
Type a synonym of a given name
Xerox listing of all names now defined
Plot on CRT (with or without automatic

choice of scales)
Turn plot off

443

444 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Miscellaneous (7 operations)

Define a synonym for a name
Un define a name
Un define all names of an entity
Go up to the basic translator
Resume operation at the next lower map
Resume operation at the lowest map
Prepare for sign-off

ACKNOWLEDGMENTS

C. K. McElwain and L. G. Roberts, together with
some of the present authors, were responsible for
designing APEX to support operation-oriented sys
tems. M. L. Goodman, E. A. Martin, and M. L.
Wendell were major contributors to the Reckoner
public library. M. A. Morfield, R. T. Mitchell, and,
especially, J. E. K. Smith contributed to the design
of the facility as seen by the user.

REFERENCES

1. M. Greenberger, et aI, "On-Line Computation
and Simulation: The OPS-3 System," MIT Press,
Cambridge, 1965.

2. R. Kaplow, S. L. Strong and J. W. Brackett,
"MAP: A System for On-Line Mathematical Analy
sis," MIT Project MAC Technical Report No. 24
(Jan. 1966).

3. L. J. Wood, et aI, "AMTRAN-Pushbutton
Route to Instant Mathematics?", Datamation (in
press) .

4. G. J. Culler, "The Computer-Aided Lecturer,"
Proc. Spring Joint Computer Conference, Spartan
Books, Washington, D.C., 1966.

5. --, and B. D. Fried, "The TRW Two-Sta
tion, On-Line Scientific Computer: General Descrip
tion," in M. Sass and W. D. Wilkinson (eds.), Com
puter Augmentation of Human Reasoning, Spartan
Books, Washington, D.C., 1965.

6. J. W. Forgie, "A Time- and Memory-Sharing
Executive Program for Quick-Response, On-Line
Applications," Proc. Fall Joint Computer Confer
ence, Spartan Books, Washington, D.C., 1965.

7. J. A. Feldman, "A Formal Semantics for
Computer Languages and its Application in a Com
piler-Compiler," Communications of the ACM, vol.
9 (Jan. 1966).

8. J. C. R. Licklider, "Languages for Speciali
zation and Application of Prepared Procedures," in
Spiegel and Walker (eds.), Second Congress on the
Information System Sciences, Spartan Books, Wash
ington, D.C., 1965.

TELSIM, A USER-ORIENTED LANGUAGE FOR SIMULATING
CONTINUOUS SYSTEMS AT A REMOTE TERMINAL

Kenneth J. Busch

Bell Telephone Laboratories, Incorporated
Whippany, New Jersey

INTRODUCTION

Telsim is a TELetypewriter SIMulation language
designed for nonprogrammers and written for a
moderate-size time-sharing system. It simulates con
tinuous systems that can be described by a block dia
gram. Its input language is a natural engineering de
scription of the boxes that comprise the diagram.
The time-sharing system is offered commercially by
the General Electric Company.1 This system uses a
GE-235 computer shared by a number of remote
model 33 or 35 teletypewriters. The programming
language is a special version of FORTRAN II.

Telsim is more than a problem-oriented language;
it is also user-oriented. In the past many problem
oriented simulation languages have been written for
a batch-processing environment. 2 Many of these
have been only a limited help to nonprogrammers in
their use of digital computers. Telsim's advantage
lies in freeing the user from memorization of an in
struction manual and from the requirements of spe
cialized formats. The machine remembers the rules
and helps the man. The man directs the computa
tion; the machine does it. In this way a complex
problem can be formulated and solved with Telsim
in a relatively short interactive session.

445

TELSIM CHARACTERISTICS

During the problem definition stage, the boxes are
specified one at a time in the order chosen by the
user. He types the box number, its contents, and the
inputs from other boxes. Each box is arbitrarily as
signed a label from 1 to 99. A box may contain a
signed or unsigned number, a symbolic constant, a
function name, an algebraic operator, or an integra
tion operator. All types are shown in box form in
Fig. 1. When the block diagram is completely
specified, Telsim produces (and types out upon re
quest) a set of first-order differential equations that
represent the dynamic behavior of the box graph.
An auxiliary set of output equations is also compiled
if required. These equations are valid Fortran
expressions.

After seeing the equations, the user may recycle
and edit the block diagram, deleting or adding
boxes. In fact if he elects to save his input on a
private file, he may resume this particular problem
any time in the future. Once he is satisfied that his
problem has been adequately described, the user di
rects Telsim to generate a Fortran simulation pro
gram that contains the equations for his system. He
then requests the computer to compile the program
and to run it with precompiled subroutines. The
fixed portions are stored in the time-sharing system

446 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Al~ l:A j

~2 ~I---j-----+,,-
An

Al~ 1T"j Ai !2 *~~-........
An

~ l/A
A~~--•• -

~
A· -CJ -

CONSTANT

----.J I A * (CONSTANT) •
A I CONSTANT : -

I
A~

A-1

:~~
WHERE:

SYMBOLIC CONSTANT
SYMBOL

SYMBOL I A*<SYMB. CON ST.)

FUNCTION
FUNCTION (A)

OR

FUNCTION (A l' A 2)
FUNCTION

IS EITHER A BOX LABEL OR T,
THE VARIABLE OF INTEGRATION

•
•

lis IS A SYMBOL FOR AN INTEGRATOR.

CONSTANT IS A SIGNED OR UNSIGNED NUMBER
(DECIMAL POINT OPTIONAL).

SYMBOL

FUNCTION

IS A STRING OF UP TO FOUR
ALPHAMERIC CHARACTERS· (FIRST
CHARACTER MUST BE A LETTER l.

IS ONE OF THE FOLLOWING,

SINF ,COSF, LOGF,EXPF,SQRTF, ATANF,
ABSF, MODF, SIGNF, DIMF, MAXOF, MINOF.

Figure 1. Box types.

and available on call. The user may also permanent
ly store any simulation program produced by Tel
sim.

During the problem simulation stage, the user di
rects the computation. He may make any number of
simulation runs. The simulation consists of numeri
cally integrating the set of differential equations over
a given interval and printing output at a specified
period. The dependent variables in this set will be
called state variables. The independent variable is
designated as "T." Before and after each simulation,
the user may list the values of state, change the state
initial conditions, and indicate which state variables
should be included in the printout. He may also list
and change the values of any symbolic constants.
The state variables and constants are listed and
changed by index numbers. A request may be made
to list the user-assigned names corresponding to
these index numbers.

The user can also change the integration control
parameters prior to a· simulation run. These parame
ters are the initial and final value of T, the integra
tion step size (,~ T), and the print period in units of
T.

In addition, the simulation can be made to recycle
automatically until a miss tolerance is met or a
specified number of iterations has been completed.
Both of these values are under the user's control.
On each iteration a state initial condition will be
incremented in a direction to minimize the miss.

This increment (s) is supplied by the user before re
questing a run in the optimization mode. If on a
given rerun of the simulation the miss increases, the
initial condition will be incremented in the opposite
direction and the run repeated. Should both direc
tions fail to decrease the miss, the initial condition
will be reset to its original value. Hence any itera
tion may recycle the simulation one or more times.

A successful iteration causes an adjustment of the
initial condition of a state variable. An unsuccessful
one leaves the initial condition for a given variable
unchanged. This process is continued using succes
sive state variables with nonzero increments until
the recycling is terminated. If all variables with non
zero state increments have been perturbed and a ter
mination criterion has not been reached, the entire
process is repeated. The first state variable adjusted
is again changed in the optimal direction (if any)
found on the previous attempt. The user can select
this optimization mode only if he designated a par
ticular box output as the miss variable during the
problem definition phase. Before an optimization
run is started, the user indicates how often through
out the run he wishes to be given a choice of con
tinuing or terminating the recycling.

AN ILLUSTRATIVE EXAMPLE

As an elementary example, let us suppose a
bombing plane, flying at a constant altitude of 1024
feet with a velocity of 240 ft! sec, is overtaking a
surface ship traveling at 80 ft/sec in the same direc
tion as the plane. At what distance astern of the
ship should a bomb be released in order to hit the
ship if the air resistance is neglected? 3

Suppose in addition that just as the bomb is re
leased the captain of the ship spots the plane
through his telescope. If the plane appears to be
very low on the horizon, he is unconcerned and al
lows his ship to proceed at its current speed. How
ever, if the plane is almost overhead he orders the
engine room to accelerate at 1 ft/ sec. 2 Let us assume
then, that in effect the captain of the ship contin
uously orders an acceleration equal to the sine of
the angle that his telescope makes with the horizon.
Under these conditions at what point should the
plane drop the bomb?

This problem can be described in block diagram
form as shown in Fig. 2. The blocks have been arbi
trarily numbered. The user now calls the computer
with the "hello" sequence shown in Fig. 3 and re-

TELSIM, A USER-ORIENTED LANGUAGE 447

VERTICAL {
MOTION OF

BOMB

ALTITUOE {
OF PLANE

HORIZONTAL {
MOTION OF

BOMB eo PLANE

HORIZONTAL {
MOTION OF

SHIP

CAPTAIN'S {
ORDERS TO
ACCELERATE

TOTAL OIST. {
BETWEEN BOMB

AND SHIP

(21) (36) (62) (45)

~l/S ALT

1(9) (411

HORIZ. BOMB POSITION

Figure 2. Typical block diagram.

quests an instruction manual on how to use the pro
gram.

Figure 4 shows the procedure for describing the
block diagram to the computer. The sequence
"BOX: =" is supplied by the machine; the user
types the rest of the line. In this sample the boxes
were described randomly to emphasize this feature.
After all the boxes are specified, Telsim asks the
user to identify those boxes (a maximum of five in
cluding T) whose outputs should be printed during
the simulation run. He gives the box number and a
title for each output. Finally, if the user wishes to
use the optimization mode in the simulation pro
gram, he must indicate which output variable is to
be optimized. This variable is called the terminal
miss. The above procedure is shown in Fig. 5.

Telsim then asks the user if he wishes to see the
equations for his problem. In problems that are ini
tially formulated in terms of a block diagram an ex
amination of the equations is an important part of
the system analysis. Indeed for those problems de
scribed originally as equations (and converted to a
block diagram) a comparison of the equations de
rived by Telsim with the original ones is a valuable
check. The user may wish to change the block dia
gram after inspection of the equations. Telsim pro
vides this opportunity. Once the user is satisfied with
his input, he directs Telsim to punch out the pro
gram. The equations and a partial listing of the
punched program for this example are shown in
Figs. 6 and 7, respectively.

This program is then loaded with fixed portions
of Telsim and the simulation started. In Fig. 8 the
user requested a manual describing how to use the
simulation. Figure 9 shows the method of initializing
the integrators and specifying constants. In this

problem the initial conditions on state variables
(ST.IC) have the following meanings:

Index
No. Symbol

1 X8
2 X36
3 BOMB
4 X62
5 SHIP

Definition

Horizontal Velocity of Ship
Vertical Velocity of Bomb
Horizontal Pos, of Bomb
Change in Alt. of Bomb
Horizontal Pos. of Ship

Ie
80 ft/sec
Oft/sec
Oft
Oft
(Unknown)

"VP" is the only symbol in this problem. It repre
sents the horizontal velocity of the plane, 240
ft! sec. The user's strategy in finding the solution to
this problem is to make the following two runs:

1. A standard simulation run in which the
initial position of the ship is directly
under the plane (0 ft) .

2. An optimization run using the results
of the first run.

The above strategy is arbitrary but it was chosen
because it demonstrates an efficient use of interac
tion in order to converge quickly on a solution.

The first run, shown in Fig. 10, will yield the time
it takes for the bomb to reach zero altitude. A good
approximation to this time is found by hand interpo
lation between the last positive altitude and first
negative altitude points. The second run is then
made using this time as the simulation run time and
the final separation distance near impact as the ini
tial guess for the initial condition of state variable 5.
State increment 5 is now set to 9 feet and an optimi
zation run is made as shown in Fig. 11. The optimi
zation proceeds until the final separation distance at
impact is less than 10 feet. Listing the state initial
conditions yields the answer that the plane should
drop the bomb 1254 feet astern of the ship to score
a hit.

TELSIM IMPLEMENTATION

A syntactic form is generated for each box as it is
specified by the user. Once the block diagram is
completed, a one-pass algorithm is used to compile
from this information equations in infix notation
with minimal parentheses. Some simplification in the
form of the equations is achieved by using tables to
control replacement of certain operator combina
tions. The algorithm permits inclusion of all Fortran
functions without defining each function name as an
operator. This is accomplished by introducing three
special operators for functional notation. In fact this

448 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

SHELLO
3 USER IUMlIR-·WH'15IKJI

SYSTEM--sa'ORTRAI
RUN TV'E-- SLOAD IIPUT,GRAPH,O',IOXES

LOAD LIMITS 11463 161"

DO YOU VANT AI IISTRUCTION ~IUAL
ANSWER VES OR IO,:Y!S

TELSI" ACCEPTS A DESCRI,TIOI 0' A ILOCK DIAGRAM.
~CH BOX IS INPUTTED AS FOLLOWS,

.IX,: 10 TV'E INPUTS

WHERE BOX.: IS TYPED IV TELSIM
NO IS A DISTINCT LAIEL FOft BOX BEING IN'UTTED
TYPE IS DESCRIBED BELOW
INPUTS ARE LABELS 'IR THE LEADS INTO GIVEN BOX OR THE SYMIOL FOR

tIME, T. INPUTS ARE SEPARATED IV ONE OR MORE SPACES.

A LABEL IS AI IITEGER 'ftOM 1-".
BOX TV'ES ARE SPECIFIED AS FOLLOWS.

+
•
•
II
lIS
CONSTAIT

FUNCTIOI

SYMBOL

ALL INPUTS ARE SUMMED
ALL INPUTS ARE NEGATED, THEN SUMMED
ALL IN'UTS ARE MULTIPLIED TOGETHER
IN'UT IS DIVIDED INTO I
IN'UT IS INTEGRATED
ANY SIGNED OR UNSIGNED NUMBER WITH OR WITHOUT A DECIMAL
(OR 'ORTRAN FLOATING 10TATIOI)
ANY ONE 0' THE 'OLLOWING 'UNCTIONS. SIN' COSF LOGF
EX'F SQRTF AtAN' ABS' INTF MOD' SIGN' DIMF
~XIF MINIF (SEE GREEN CARD 'ORTRAN MANUAL, 'P 14-1'
'OR DETAILS)
ANY StRING 0' FROM I TO , NOI-BLANK ALPHAJETIC OR
NUMERIC CHARACTERS, AT LEAST ONE OF WHICH IS NON-NUMERIC.
A SYMiOL MAY IE SIGNED OR UNSIGNED.

IF THE LEADS INTO A BOX ARE TOO NUMEROUS TO IE TY'ED ON A SINGLE LINE
THEY MAY IE CONTINUED ON THE NEXt LINE BY TYPING A S AS THE LAST
NON-BLANK CHARACTER OF TH! ORIGINAL LINE.

IN EDITING A BOX DIAGRAM, A BOX ~Y BE DELETED AS FOLLOVS.

lOX.: NO DIlETE

WHERE -NO- IS LABEL OF lOX TO BE DELETED

TO TERMINATE BLOCK DIAGRAM DESCRI'TION TYPE,

BOXt: END

Figure 3. Telsim instruction manual.

TELSIM, A USER-ORIENTED LANGUAGE 449

TO SAVE IN'UT 01 PRIVATI FILEeR RERUN USlla BLOCK DIAGRAM DESCRI'TIOI
01 PRIVATE FILE, AISWER THE FOLLOWINa REQUEST.

OPEN FILE NO.4.:

VITH XXXXXX,IAMEYYYY

VHERE XXXXXX
lAME
YYYY

: YOUR USER NUMlER<FIRST , CHARACTERS)
: YOUR FIRST AID LAST IIZTIALS
: YOUR 'HOIE EXT.(4 DIGITS)

IF sYSTEM TY'ES -RETRY,:- REPEAT ABOVE INFO.
IF SYSTEM tv'ES-FILE lOT T·HERE, RETRYs:- YOUR OLD INPUT MAY BE LOST.

TELSIM ALLOWS THE USER TO S'ECIFY UP TO , OUT'UTS.
~CH our'UT IS S'ECI'IED AS FOLLOWS,

OUT.: NO lAME

IS TY'ED IY TELSI ... VHERE OUT.=
NO
NAME

IS TH! LAIIL OF A BOX TO BE OUT'UTTED
IS A SYMBOL USED TO IDENTIFY THE OUT'UT(4 CHARACTERS MAX)

TO DESIGNATE TIME AS AN OU1'UT, TY'E

OUT.= T

TO DELETE THE LAST OUT'UT S'ECIFIED, TY'E

OUT. : DELETE

TO TERMI NATE OUT'UT S'ECI FICA TION, TY'E

OUT.: END
*** GOOD LUCK •••

Figure 3. (continued)

scheme can easily be extended to include any func
tion as long as its skeletal form is available for em
bedding into the target code.

Syntactic Construction

After each input box specification is scanned for
errors, the Polish suffix 4 notation can readily be
written. The Polish form for each type is given in
Table I. All operators are either binary or unary.
Unary operators are indicated with a subscript "u."
Note that Hamblin's early-operator Reverse Polish
form is used. 5 In general, this should tend to reduce
the total stack space required in the compiling algo
rithm. Function names, like symbols, are treated as
operands. With this convention all functions are
represented in terms of a binary and unary null
operator (cp, cpu respectively) and the comma opera
tor. In tree notation, the function

<name> (arg1 , arg2 , ••• , argn)

has the form indicated in Fig. 12. The null operators
control the generation of parentheses as explained
later.

The scanning and syntactic construction phase is
shown schematically in Fig. 13. A pointer to the
Polish information for each box defined by the user
is placed in an index table. This box index table
(LTB) consists of 99 locations, one for each possi
ble box label. The information describing the Polish
suffix form for a box is placed in the box Polish
table (L TP). These two tables are used to feed a
source stack as explained in the following section.

The final step in preparing the input for compila
tion is to set up two entries for each "output" box to
be printed during the simulation. The output box
number is entered into the output box table (LOB).
In addition, a pointer to the user's output name is
placed in the output name table (LON) at a loca
tion corresponding to the LOB entry.

450 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

The State and Auxiliary Equations

The desired equations are produced by a stack
compilation technique. Before discussing this algo
rithm, first consider which equations must be gener
ated. The output of each integrator is a state varia-

IS THIS A RDUN
ANSWER YES OR 101:NO

DO YOU WANT INPUT SAVED ON A 'RIVATE
ANSWER YES QR NOt:YES FILE

O'EN FILE NO. 4::WH,e51,KB2803

BOX': 21 -32.1'

BOX': 19 VP

BOX': 8 lIS 50

BOX': 50 SINF 13

BOXt: 36 lIS 21

BDXt: 41 lIS 19

BOXt: 75 liS 8

BOX:: loS ATAN' 28

BOX,: 62 115 36

BOXt: 45 + 62 60

BOX:: 60 1024

BOX.: 28 • 60 5

BOXt: , II 33

BOX': 33 + 73 54

BOX,: 90 • 33 33

BOX.: 78 SQRTF 96

BOX.: 54 41

BOX:: 96 + 90 87

BOXt: 87 • 45 45

BOXt :END

TO CONTINUE TY'E SLOAD OUTPUT .BOXES
.5TO' " AT 11332 AFTER .STO'.

Figure 4. Input description of block diagram.

Table I-Polish Suffix for Each Box Type

Name

Summer

Negate Sum

Multiplier

Reciprocal

Integrator

Unsigned Value

Posi ti ve Value

Designa tion

+

1/

l/S

x.xx

+x.xx

Polish Suffix Form

Bl B2 + B3 + ... Bn +

Bl - u B2 - B3 - ... Bn -

Bl B2 * B3 * ... Bn *

Bi l/u

x.xx Bi * (with input)

X.XX (no input)

Same as above

Negative Value -x.xx X.XX -u Bi * (with input)

x.xx -u (no input)

Symbolic Constant <Symbol> <Symbol> Bi * (with input)

<Symbol> (no input)

Function <name> <name> Bi ¢'u ¢' (with one input)

<name> Bl B2 , B
3

, ..• Bn , ¢'U ¢'

Legend

B denotes a box and the subscript notation is as follows:

1, 2, ... n represents n inputs to a box
i represents the only input to a box
j represents the given box

A subscript "u" on an operator denotes a unary operator.

"¢''' denotes a null operator.

ble. Let us designate these variables as X's. The
input to an integrator is dX/dT, where T is the var
iable of integration. A set of state equations of the
form

dXi/ dT = fi (X1,Xz, • •• ,Xn)

$LOAD OUTPUT,BOX[S

LOAD LIMITS 07625 16311

OUTa: T

OUTa: 73 SHIP

OUTa: 41 80MI

OUTa: 45 ALT

OUTI: 78 DIST

OUTI:END

i = 1,2, ... ,n

TO CONTINUE TYPE SLOAD COMPIL,EQNFeft.80XES
.STOP 8 AT 86633 AFTER ,*STOP.

SLOAD COMPIL,EQNFOft,80XES

LOAD LIMITS 12407 15285

IS OPTIMIZATION DESIRED IN THE SIMULATION.
ANSWER YES OR NOt=YES

tyPE NAME OF TER"INAL MISS VARIABLE I:DIST
Figure 5. Specification of printout and optimization.

TELSIM, A USER-ORIENTED LANGUAGE 451

DO YOU ~IT TO SEE YOUR EQUATIOIS
AISW!R YIS OR IOt:YES

DX8:SIIF(ATAIF(1824/(SHIP-IOMl»)
DX3S:-32.1 S
DlOMl:VP
DXS2:X3C
DSHIP:X8
ALT:XS2+1824
DIST:SQRTF«SHIP-80MB).(SHIP-IOMB)+(X62+1824).(X62+1824))
T":DIST

TO CHAleE YOUR PROBLEM! REftUN THE PREVIOUS SECTI.I BY TYPING.
$LOAD INPUT.8RAPH.OF.IOXES

.STOP 8 AT .S412

Figure 6. Equations compiled by Telsim.

must be generated. Here i refers to successive inte
grators and is not the box number. There is a total
of n integrators for a given problem. In addition to
the state equations, auxiliary equations must be gen
erated for each output variable that is not a state
variable. These equations are of the form:

<output name> = gj(X1,X2 , • •• ,Xn)

Although not explicitly shown, the f /s and g /s may
(and usually do) involve the values and symbols
entered by the user. The equation for the input to
an integrator (dX ddT) or an output variable can
be constructed by threading backwards through the
block diagram. This backward motion is always in
opposition to the arrows of the diagram and is ter
minated on those branches that end in either a val
ue, a symbol, or a state variable. For example, using
Bn to represent the output of box n, the state equa
tions for Fig. 2 are:

d(X36)/dT = -32.16
d(X62)/dT = X36

d(BOMB)/dT= Vp

d(X8)/dT = B50
= sin(B13)
= sin (atan (B28))
= sin (atan (1024* B5))
= sin (atan (1 024* (1./ B33)))
= sin(atan(1024* (1./ (B73 +

B54))))
= sin (atan (1024* (1./(SHIP+

(-BOMB)))))
d(SHIP)/dT = X8

A similar relation can be written for the auxiliary
equation needed to compute DIST. Note that if the
user does not assign an output name to a state varia
ble, the compiler must provide a distinct symbol to

represent it (Xk was chosen, where k is the box
number).

The Compiler Algorithm

To generate these equations the box index and
box Polish tables feed a source stack. This proce
dure is designed so that as the source stack is
popped the Polish suffix for an equation is scanned
from right to left. Scanning in this order permits
identification of required infix parentheses in one
pass. In compiling a state equation the source stack
is primed, with the Polish for the corresponding inte
grator box (i.e., DXjB i =). * The first token en
tered is the left-hand token of the Polish for the box
(DXj). The source is then popped on a last-in first
out basis (LIFO). Tokens representing noninte
grator boxes cause the source stack to be replenished
by the corresponding box Polish form, left to right.
A box token for an integrator box causes the state
symbol (Xk or user output name if assigned) to be
pushed down on the source stack.

Tokens not representing boxes or operators will
be called "symbols" for the purpose of this discus
sion. Operators popped from the source stack are
held temporarily in an operator stack. When symbol
tokens are popped, they are entered directly into the
target stack, preceded by any necessary right paren
theses, and followed by an operator from the opera-

* For an auxiliary equation the Polish form
< output name> B =

is used. B represents the box assigned to the output name.

GO TO I ••

11311 2 CONTINUE

11341 DXS:SI Nil' (ATA "' <I 1241 (OSHI"-OIO"» >

flJ8351 DX36=-32.1e

.8361 ODIO .. :SV ..

18371 OX62:X36

113S1 ODSHII':XS

11391 GOTO(III,1fIl2,113,1 14) ,IDE

11411 3 COIlTINUE

IfIJ411 OALT:XS2+1fIl24

IfIJ421 ODIST:SQIIT'((OSHI "-OIOI'l8>*(OSHI "·0101'l8)+(X62+1.24). (X62+1 124

IfIJ431 I»

IfIJ441 T"=ODIST

IfIJ451 PIIINTIT ,OSHI",OBOI'II,OALT ,ODIST

YOUII ""0G"AI'I TA .. E HAS IEEII COI'I"LETED AIID THE TA .. E .. UIICH SHOULD BE
TUllIIED 0"

DO YOU KIIOIl HOIl TO .. II0CEED
AIISIIEII YES Oil NO,:IIO

DO YOU KIIOIl HOIl TO O .. ERATE THE ... -
ANSIIER '¥ES OR 1101:110

.IIHAT 1'100'" -

Figure 7. Partial listing of FORTRAN program compiled
by Telsim.

452 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

SLOAD SAMPLE,USING,TELSIM,SYSTEM

LOAD LIMITS tl'52 .'132

DO YOU WAIT THE INSTRUCTION MANUAL.
ANSWER YES OR IO,=YES

TELSI" WILL SIMULATE YOUR BLOCK DIAGRAM SYSTEM. THE OUTPUT OF EACH
INTEGRATOR (liS) IS A STAT! VARIA8LE lAMED. XBi -- WHERE BB IS BOX
NUMBER OR ZZl -- WHERE Zll IS YOUR OUY,UT lAME. IF YOU SPECIFIED
sYMBOLIC CONSTANTS. EACH CONSTANT IS IDENTIFIED BY THE SYMBOL YOU GAVE.

LISTING NAMES AND VALUES, BEFORE AND AFtER A RUN, YOU CAN ASK FOR A
LIST OF THE STATE VARIABLES AND SYMBOLS. IN LISTING NAMES AND VALUES
AN INDEX NUMBER IS ALSO PRINTED. THIS INDEX NUMBER IS THE KEY THAT
ASSOCIATES A VALUE WITH A STATE VARIABLE OR SYMBOL.

CHANGING VALUES, BEFORE A RUN, YOU CAN CHANaE ANY OF THE STAtE VAR
IABLES OR SYMIOLS. AFTER A REQUEST FOR A CHANGE YOU MUST SUPPLY THE
INDEX NO. IDENtIFYING THE ItEM TO IE CHANGED. A SPACE Oft COMMA, AND THE
NEW VALUE. AS MANY VALUES AS DESIRED MAY BE ENtERED ON SUCCEEDING LINES
INCLUDING RETYPING A BAD ENtRY. WHEN FINISHED TYPE, 0 8

ASSOCIATED WITH EACH STATE VARIABLE ARE THE KEY VOROS,

SW.PRT

ST.Ie

ST.INC

PRINT FLAGS WHICH YOU CAN SET TO I IF YOU WANT THE INTEGRATOR
VALUE PRIITED WI TH THE SI MULA TI ON OUTPUT.

SWITCH TO CONTROL PRINTING OF ABOVE INTEGRATORS. STATES ARE:
OFF, NORMAL, INITIAL(ONLY), 'INALCONLY).

INITIALS CONDITION (I.E. THE VALUE) OF THE INTEGRATOR AT THE
START OF THE SIMULATION.

IF YOU SPECIFIED A TERMINAL MISS VARIABLE (TM) IN TELBOX,YOU
CAN CHOOSE TO MAKE AN OPTIMIZATION (O'T> RUN IN WHICH THE
SIMULATION WILL AUtOMATICALLY RECYCLE, AND THE ICS ARE
SYSTEMATICALLY ADJUSTED UNTIL THE TM VALUE IS LESS THAN THE
TOLERANCE YOU SPECIFY OR THE lUMBER OF ITERATIONS EQUALS
tHE ~XIMUM YOU S'ECIFY.

ALL OF THE ABOVE CAN BE LISTED (INCLUDING NAMES), AND,CHANGED AS DES
CRIBED ABOVE. THE INDEX NO. OF THE CORRESPONDING STATE VARIABLE IS
USEP WHEN CHANGES ARE MADE~

Figure 8. Simulation instruction manual.

TELSIM, A USER-ORIENTED LANGUAGE

CONTROL OF INTEGRATION. YOU MUST SUP~Y (AND CAN CHANGE) THE INITIAL
AND FINAL VALUES OF T, THE VARIAILE OF INTEGRATION. IN ADDITION, AN
INTEGRATION STEP SIZE AND PRINT INTERVAL IN UNITS OF T MUST BE GIVEN.
IF A PRINTOUT IS DESIRED ONLY AT THE BEGINNING AID END OF A SIMULATION
~KE THE PRIIT INTERVAL EQUAL TO OR GREATER THAN THE TOTAL CHANGE IN T.
WHEI MAKING AN OPTIMIZATION ~UN YOU MUST SUPPLY (AND CAN CHANGE) THE
toLERANCE ON THE TERMINAL MISS, 10. OF ITERATIONS, AND THE NO. OF ITER.
CYCLES BEFORE .INQUIRY. ONE ITER. CYCLE CONSISTS OF AN ITERATION FOft
EACH STATE VARIABLE WHOSE ST.INC IS NONZERO. AFTER THE NO. OF ITER.
CYCLES S~!CI'IED YOU WILL HAVE THE CHOICE OF CONTINUING OR TERMINATING
THE O~TIMIZATIOI.

HOW TO TYPE NUMBERS.

INDEX NO.

VALUE

AN UNSIGNED INTEGER, NO DECI~L POINT

A rtOATING POINT NUMIER OF THE FOLLOWING FORMI
+1.234"'8, -1234."'8, -123.4"'8E-2, +1.2345'78£+24
WHERE THE SIGNS, WHEN +, CAl BE OMITTED, THE DECIMAL MAY
OCCUR ANY WHERE, THE NUMBER OF DIGITS MAY BE LESS, AND
THE EXPONENT ESNN MAY BE OMITTED BUT WHEN ~RESENT
REPRESENTS THE POWER OF TEN WHICH MULTIPLIES THE VALUE.

ST .PRT FLAGS -- AN INTEGER, a OR I

LEAVE A SPACE BETWEEN EACH NUMBER, HIT RETURN XEY WHEN FINISHED •

•••• * ••• * ••••••••••••••••••••
ON COLD START (FIRST RUN) ALL ST.Ie, SYMBOLS, ST.PRT, AND ST.INC HAVE
BEEN CLEARED, I.E. SET TO ZERO. YOU MAY CHANGE THEM AS DESIRED •

•••••••• *.GOOD LUCK ••••••••••

Figure 8. (continued)

453

tor stack and left parentheses as required. The
operator stack consists of two parallel stacks: the
indirect operator and a left parenthesis counter. The
flow of operator tokens and parenthesis information
in and out of these stacks is the heart of the algo
rithm. The overall procedure is shown schematically
in Fig. 14.

terms (A + B) * (C-D) are represented by the Pol
ish suffix string:

The token stream flowing across the interface in
Fig. 14 is indeed the Polish suffix notation for the
equation being generated. The first token across is
the right-hand token of the suffix equation. This can
be proven by the reader if he studies a simple block
diagram and uses the standard Polish forms given in
Table I. Insight into the details of the algorithm for
transforming this stream into infix notation is gained
by observing the dynamic building of equations us
ing binary trees.

Let us consider a few simple algebraic terms be
fore compiling a sample equation. The algebraic

AB+CD-*

When this is scanned from the right-hand side, the
first two tokens can be represented diagrammatically.
as:

The incomplete portion of the structure is indicated
by buds on the nodes. The buds to the left and right
on the "-" node will eventually point to the left
and right operands, C and D respectively. The left
bud on the "*" will blossom into a "+" node repre
senting the left-hand term (A+B). When the "-"
node is added as the right-hand term to the "* ," one
can easily determine whether parentheses will be re-

. quired. A parenthesis value for operators added to

454 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

TYPE VALUES FOR: INITIAL T, FINAL T, INTEGRATION STE', PRINT INTERVAL
: =0 10 .5 I

QUES: EX'LAIN LIST CHANGE RUN END
QUES: NAMES VALUES ST .PRT NONE
QUES: SYMBOLS STATE ST .IC ST.INC NONE

1 X8 2 X36 3 BOMB • X62 5 SHI'
QUES: EXPLAIN LIST CHANGE RUN END
QUES: VALUES ST.PRT SW.,,,T CONTROL NONE
QUES: SYMBOLS ST .IC ST.INC NONE
: = 1 80.
:=0 0

QUES: EX'LA IN LIST CHANGE RUN END
QUES: NAMES VALUES ST .'RT NONE
QUES: SYPIBOLS STATE ST.IC ST.I NC NONE

1 v..
QUES: EXPLAIN LIST CHANGE RUN END
QUES: VALUES ST .PRT SW.PRT CONTROL NONE
QUES: SYMiOLS ST.IC ST .INC NONE
t:1 240.
1=0 0

Figure 9. Method of identifying and changing variables and symbols.

QUES: EX'LAIN LIST CHANGE RUN END
QUES: STD O'T NONE

T
0.000000E-01
1.008000E+I0
·2.100000E+10
3.000000[+00
4.000000E+I0
5.000000E+00
6.000000E+10
7.000000£+00
8.000000E+10
9.101008E+00
1.000010E+01

QUES: EX'LAIN
QUES: VALUES

SHI' BOMB
0.111100E-01 1.000111[-11
7."67e8E+ll 2.400001£+02
1.'834'2[+02 4.80081IE+02
2.3'078IE~02 7.200111[+12
3.12'"3'£+82 9.611010E+02
3.888839[+12 1.280000E+03
4.640802£+12 1.44101IE+03
'.385523£+02 1.68800IE+13
6.1 23562!+02 1.921110£+13
6.85543IE+02 2. I '0000E+03
7.581592E+12 2.410000£+03
LIST CHANGE RUN [NO

ST.PRT SV.PRT CONTROL

ALT
1.124111[+03
1.007'21[+13
'."'801£+12
8.79280IE+12
7.6"211£+02
'.221101£+12
4.451210£+12
2.3"880£+02

-5.120017£+11
-2.784801[+12
·5.84101IE+02

NONE

: :LIST
: =NAMES
: =ST. IC

:=CHANGE
:=VALUES
:=ST.IC

: =LIST
:=NAMES
: =SYMBOLS

: :CHANGE
::VALUES
::SYMiOLS

::RUN
::STO

DIst
1.02408IE+03
1.821"3£+03
1.11214'E+83
1.00365"£+13
I. "03291 E+13
1.122151£+03
1.172638£+83
1.165616£+13
1.307654£+03
1.500525£+03
1.142612E+03

t:CHANG£
: :CONTROL

TV'E VALUES FORt INITIAL T, FINAL T, INTEGRATION STE', 'RINT INTERVAL
1:0 7.98 .5 7.98

QUES: EXPLAIN
QU£S: VALUES
QUES: SYMBOLS
::5 13"8
::0 0

QUES: EX'LAIN
QUES: VALUES
QUESt SYMIOLS
::5 9.
1=0 0

LIST
ST.'RT

ST.IC

LIST
ST.PRT

ST.IC

CHANGE
SV.'RT
ST~INC

CHANGE
SW.'''T
ST.I NC

RUN END
CONTROL
NONE

RUN END
CONTROL
NONE

NONE

NONE

Figure 10. Standard simulation run.

t =CHANGE
: :VALUES
: :ST. IC

::CHANGE
:=VALUES
::ST.INC

TELSIM, A USER-ORIENTED LANGUAGE

QUES. EXPLAIN LIST CHANGE RUN END
QUES: STD OPT NONE

:=RUN
:=OPT

TYPE VALUES FOR: TOLERANCE ON. TERMINAL MISS, NO. OF ITERATIONS, NO. OF
ITER. CYCLES BEFORE INQUIRY. :=10 II ~

T
0.000000E-01
7.980000E+00

T
0.000000E-01
7.980000E+00

T
0.000000E-01
7.980001£+00

T
0.000000£-01
7.980000E+00

T
0.000000E-II
7.980000E+01

T
0.000000E-01
7.980000E+01

SHIP
1.308800E+13
1.970540E+03

SHIP
I .31 7001E+13
1.979444E+03

SHIP
1.299000E+03
1.961636E+03

SHIP
1.29000IE+03
1.9'273IE+03

SHIP
1.281010E+03
I • '43827E+03

SHIP
1 .272080£+03
1.934'23E+03

80MB
0. 080100E-flJl
I.' I '200E+13

BOMa
1.111100E-ll
1.9.'21IE+83

BOf'1B
1.11110IE-Il
1.91520IE+03

BOMB
1.010080E-81
1.91 5210E+13

iOMB
1.100000£-01
1.915211£+03

80MB
1.001000£-11
1.91 '210E+03

DO YOU WANT TO CONTINUE
ANSWER YES OR NO:=YES

T
0.000000E-01
7.980000E+00

T
0.010000E-01
7.980000E+00

QUES. EXPLAIN
QUES, NAMES
QUES: SYMBOLS

SHI' BOM8
1.26300IE+03 0.100000E-II
1.92'019£+13 1.9.5200E+03

SHI' BOMi
1.254000E+03 0.010008E-01
1.91711~E+03 1.91'200E+03
LIST CHANG£ RUN END

VALUES ST.PRT NONE
STATE ST.IC ST.INC

ALT
1.024000E+03
1.'16218E-02

ALT
I. 02~000E+03
1.91'218E-02

ALT
1.024000E+03
1.91'218E-02

ALT
1.124800E+03
1.916218E-02

ALT
1.124000E+03
1.91'218E-02

ALT
1.024000E+03
1.'16218E-02

ALT
1.124000E+03
1."'218E-02

ALT
'.024000E+03
1.9"2'8E-12

NONE

8.0000000E+01 2 0.1100100£-01 3 0.0000000E-91
5 1.2540000E+03

QUESt EX'LAIN LIST CHANGE RUN END
QUES: NAMES VALUES ST.PRT NONE
QUES, SYMBOLS STATE ST.IC ST.INC NONE

DIST
1.'61156E+03
5.533981 E+01

Dl5T
1.6682'2E+03
'.424~10E+01

DIST
1.'54179E+03
4.6435'6E+01

DIST
1.647020E+03
3.7'3134E+01

DIS!
1.639981 E+03
2.8'271 ~E+01

DIS!
1.63296IE+03
1.972295E+01

DIST
1.625960E+03
1.081875E+01

D1ST
1.618979E+03
1.9'4'8&E+00

s=LIS!
:=VALUES
:=ST.IC

4 0.0000000E-01

s :LIST
s=VALUES
, :STATE

8.6132114£+01 2 -2.5663680E+02 3 1.,r5200IE+03
5 1.9171145E+03

QUESt EXPLAIN LIST CHANGE RUN END

~ -1.0239808[+03

s:END

END OF RUN. GOOD-BYE •
• STOP 0 AT 0755'

ELAPSED TIME IN HUNDREDTHS OF HOURS 078

Figure 11. Optimization run.

455

456 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Table II-Right-Hand Table

Indirect
l/u Pointer Op

l/u

$6u

$6 NA

/

+

10

Legend

NA: not applicable

0: no parentheses required

-1: parentheses required

-

-1

-1

NA

-1

-1

Current Op

$6u ¢ / *

NA 0 NA NA -1

NA 0 NA NA

NA 0 J I~.~.

-1 NA NA NA ~;.~

NJl. 0 NA HJl. \)

NA (I EA NA -1

I'll'. NA NA

NJl. NJl. riA

I'll'. ~·I .J.. ill',

~:A M"_ liJl.

>0: pointer to operator to l'ep1ace l11dl,.,,,~t oper';"' c,;'

-1 -1 llA

-1 lLt.

Ill\

;:Jl. NA 1:1'.

0 NA

-1 -1 NA

-1 NJl.

NA

-.1 -1 ill'.

iiJl.

right-hand buds is found from Table II. For opera
tors added to left buds, Table III is used. In these
tables the added operator is the current operator; its
parent in the tree ("*" in this case) is the indirect
operator. The table look-up indicates parentheses
are required. This is indicated as:

, 0,0

where the number on the left stands for a left paren
thesis count; the right number, for a tight parenthe
sis. The counts on the starting node are zero. The
next token is then taken from the Polish string and
added to the first available right bud:

0,0

o
As long as operators are being added the structure
continues to grow. Each new operator is added to
the lowest bud with a preference given to right buds.
An operand, on the other hand, is a leaf of the tree.
These leaves trigger the pruning of both operands
and their associated branches. In pruning right
branches the number of right parentheses indicated
above the last operator is written into the target
stack. The operand which triggered the pruning is
written next, followed by the operator. The target
stack resulting from the pruning is shown alongside

0,0

~)0 -

L
TREE TARGET STACK

the tree. The right side of this stack is the top of a
LIFO stack. After pruning the right branch, the bi
nary operator is marked with an L to indicate it has
only a left bud remaining. This is necessary in order
to prevent the operator from being written a second
time when its left branch is pruned. The next token

Table Ill-Left-Hand Table

Indirect Current OP

Pointer _QI'. l/u -u $6u ¢ / * + -
(See Note)

1 1/u 0 0 NA NA NA NA NA NA NA

2 -u
0 -1 NA NA NA NA NA NA NA

3 $6u
0 -1 NA NA NA NA NA NA NA

4 $6 I'll'. NA NA NA NA NA NA NA NA

') 0 0 NA 0 0 NA 0 0 0

6 / 0 0 NA 0 NA NA 0 -1 -1

-r * 0 -1 NA 0 NA NA 0 -1 -1

8 + 0 9 NA 0 NA NA 0 0 0

9 - 0 -1 NA 0 NA NA 0 0 0

10 = 0 0 NA NA NA NJl. NA NA NA

~

NA: not. applicable

0: no parentheses required

-1: parentheses required

>0: Pointer to operator to replace indirect operator

Note: When current operator i;::; unary, the indircr('1. op..:rai.or is
1st "right"- parent.

=

NA

NJl.

NA

NA

NA

NA

NA

NA

NA

0

ARGn

ARG3

Figure 12. Function tree.

TELSIM, A USER-ORIENTED LANGUAGE 457

Figure 13. Syntactic construction.

C is added. In this case no right bud is available, so
it is added to the lowest left bud of the structure.

0,0

A~
c~

In so doing, another branch is completed and prun
ing starts again. For a left branch the operand is
written followed by the number of left parentheses
indicated by the left count above the connecting
node. The node is then discarded.

0,0

"fi)
L

TREE TARGET STACK

This also completes the right branch of the "*,, node
and causes it to be pruned and marked as described

GENERATION OF SUFFIX EQN. -,,+011_..- GENERATION OF INFIX EQN._

LTP LTB

1 TO R BOX
INDEX

BOX
POLISH

Figure 14. Compiling procedure.

above. Now the structure grows again with the addi
tion of a "+" node to the remaining left bud.

0.0

~
In this case the parenthesis count is determined
from Table III. The addition of the last tokens, in
turn, completes the tree and causes pruning of all
the nodes. The target stack will then contain:

)D - C(*)B + A(

Unloading this on a LIFO basis gives the original
terms in correct infix notation.

This simple example did not involve two very
significant aspects in compiling infix equations. First,
parentheses will accumulate as operators are nested
within expressions. To accommodate this, the right
hand count is cumulative while the structure grows
along successive right branches. This count is reset
to zero when the growth changes to a left branch.
Thereupon, the left count is accumulated as the
structure continues to grow downward to the left.

Second, if the expression contains unary opera
tors, slightly different rules are needed to accommo
date them. If a unary term requires parentheses, for
example in the expression A * (-B), the left paren
thesis is always adjacent to the operator. No amount
of nesting of terms within an expression will ever
break this bond. For a binary operator it would be
to the left of the left-hand symbol. The corre
sponding right parenthesis for a unary operator,
however, may be considerably removed from the
operator. This occurs if the unary node is a parent
of other nodes as in the expression A * (-C*D IE) .

This suggests that right parenthesis information
for unary operators might be handled in the same
fashion as that for binary. But the left parenthesis
count should be treated differently. If the unary
operator requires parentheses, the right counter is
incremented and the operator itself is marked with a
P. This mark will indicate that when the operator is
written into the target stack, it should be followed
immediately by a left parenthesis. With this conven
tion unary nodes need carry only one count, the
right parenthesis.

The expressions given above that involve unary
operators should suggest that such operators may
lead to situations where operator replacement is de
sirable. For example A + (- B) is better written as

458 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

A-B. In this case the unary term is a right-hand
term of the " +" operator. Note that Table II
indeed indicates this replacement. A similar situa
tion may prevail when the unary term is a left-hand
term of a binary operator as in A + (- B*C). Here
(- B) is the left term of "*". But to ascertain that
replacement is possible, one must consider not the
immediate parent (the "*,, in this case) but rather
the closest "right" parent (the "+"). The left-hand
table, Table III, shows this special consideration for
these unary operators. Now consider the following
equation:

Infix: X = Sin ((T - TI) *27T*F)
Suffix: X Sin T TI -u + 27T * F * cpu cp =

The unary minus operator was used, since the block
diagram corresponding to this equation would cause
it to be present. The dynamic growth and pruning of
the tree that represents this equation is shown stage
by stage in Fig. 15. The source and target stacks are
shown at each stage.

The reader may want to follow the flow indicated
in the successive parts in Fig. ·15. Note that the
nodes "+ -u" were placed by "-" in Figs. 15(c)
and (d). The target stack in 15 (g) is completed
when "X" is added as the last item. Unloading the
target stack on a LIFO basis and suppressing the
null operators (squeezing out blanks) gives the de
sired infix equation, left to right.

The complete algorithm is flow-charted in Fig.
16. Before compilation of each equation, the indi
rect operator (OP) and left parenthesis counter
(Lparen) stacks are primed with "L=" and "0",
respectively. The purpose of this priming is to pro
vide an indirect operator for the first operator in the
source stack (always =) that gives an initial count
of 0, O. Note that the marking of nodes is indicated
by preceding the operator with the marking symbol.
Let's step through the algorithm using the preceding
suffix equation. This is shown in Table IV. The first
line represents the priming operation. Succeeding
lines give the results as successive tokens are taken
from the source and processed. Popping the opera
tor stack in the algorithm also implies discarding the
Lparen entry. The last entry in Table IV shows the
desired infix equation in the target stack.

Data Structure

A good data structure is important if compilation
is to be fast. The structure used in Telsim permits
quick identification of the three types of tokens:

Source
Token

(Prime)

~u

F

Table IV-Compilation Example

Counters
K n Stack

Contents of Stacks After
Each Token Is Analyzed

Op L=
Lparen 0
Target

o Op
Lparen
Target

o Op
Lparen
Target

-lOp

Lparen
Target

o Op

Lparen
Target

L= =
o 0

L= = ~
o 0 0

L= = ~ P~u *
o 0 0 0

Op L= = ~ P¢," V

I Lpare 0 0 0 0

~ __ +-~-~IT-arg~e~)_F_*-------__ ----____

o Op L I' Pi"', L' •

I ~~~~~ 'J j: ,
I-----+-~-+----I--------------------------... ----

2lT L· 1J P,z: L' i-

n J C,

) F * :2.

+ -lOp L~ f- Py L' L' ,

Lparen Q (', ~,

Tar[!;et) F *

9 Op L= = ~ P~u L* L* -
Lpare - coo (1 C 1
Target) F * 2lT *

TI Op L= = ~ P~u L* L* L-

Lparen 0 0 0 0 0 1
Target) F * 2lT *) TI -

T Op L= = L~
Lparen 0 0 0
Target) F * 2lT *) TI - T (¢., (pi

Sin Op L= L=
Lparen 0 0
Target) F * C'lT *) TI - T (fl, (;6 oin

x Op

~~~~~~ ) F * 21' * ) TI - T ( i'1J ( '" ::1" Y. 

boxes, symbols (or function names or values), and 
operators. The entries in the box Polish table are 
actually pointers to the primitive information stored 
in a text table. The text table is appended to the box 
index table starting at location 100. * Symbols and 
values are then distinguishable from boxes since the 
latter have pointers whose magnitude is less than 
100. To separate this operand class from the opera
tors, the box and symbol pointers are made nega
tive. In processing the operators, the algorithm also 
needs to identify its type: either binary or unary. 
This is accomplished by constructing the operator 
entries to point to an operator table (LTO). The 
operator table entry then references the primitive in 
the text table. A positive pointer in the operator ta
ble indicates that the operator is binary; negative is 
unary. Furthermore, the operator table is ordered to 

* In this version of Telsim a maximum of 99 boxes can 
be specified. 



0,0 

0,0 

SOURCE: X SIN T TI -u + 
TARGET: )F* 

(a) 

(b) 

0,0 

SOURCE: X SIN T TI 

TARGET: ) F* 27T* 

(c) 

TELSIM, A USER-ORIENTED LANGUAGE 

F 

271' 

0,0 

SOURCE: X SIN T 

TARGET: )F* 271'* 
(d) 

0,0 

SOURCE: X SIN 

TARGET: ) F* 27T*) TI
(e) 

0,0 

~ 
SIN 

SOURCE: X 

TARGET: )F*271'*)TI-T (~u (16 
( f) 

0,0 

X 
A 

SOURCE: EMPTY 

TARGET: )F* 21r*) TI-T (~u (16 SIN: 

(CJ) 

Figure 15. Dynamic tree structure. 

459 



460 

INDEX 

TEXT 

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

99 

PRIMING: °Lo" TO OP STK;"O" TO LPAREN STK 

NOTATION: OP AND LPAREN ARE TOPS OF DUAL STACKS. 

OPj IS INDIRECT OPERATOR (LAST ITEM IN oPt 

OPe IS CURRENT (OPERATOR) TOKEN. 

P AND L STAND FOR "MARKED" OPERATORS. 

BOX INDEX AND TEXT 
(LTB) 

S L TP POINTER 

S IS IF BOX IS "liS", 

+ OTHERWISE 

Figure 16. The compiler algorithm. 

BOX POLISH 
(LTP) 

#: POINTERS IN POLISH SUFFIX 
LIST 

- IS POINTER TO LTB 

100 S CHARACTER COUNT + ~-L, ________________________ ~ 

o , , CHARACTER STRING 

WHEN: S IS + PREFIX ON OUTPUT 
I S DON'T PREFIX 

WHEN: 0 IS - STRING IS OUT NAME 
+ OTHERWISE 

WHEN A NAME ENTRY IS MADE FOR 

"1/s" BOX, TWO ITEMS ARE ENTERED: 
DXn AND Xn (n IS BOX NO.) 

OPERATOR LIST 
(LTO) 

+ POINTER TO L TB FOR 
BINARY OPERATOR 

- POINTER TO LTB FOR 
UNARY OPERATOR 

Figure 17. Telsim data structure. 

OUTPUT BOX NOS. 
(LOB) 

+ BOX POINTER TO 
LTB FOR NON 
"lis" BOXES 

- BOX POINTER TO 
LTB FOR "l/S" 
BOX 

NOTE: POPPING OP STK. ALSO 
IMPLIES POPPING LPAREN 
STACK. 

OUT PUT NAMES 
(LON) 

- CORRESPONDING 
TEXT POINTER 
(L TB) TO NAME 
ENTRY 

SAME AS ABOVE 



TELSIM, A USER-ORIENTED LANGUAGE 461 

correspond to the entries of the right- and left-hand 
tables used in the algorithm. The details of this 
structure are shown in Fig. 17. 

Referring back to Fig. 14, we see that during the 
generation of the suffix equation the box pointers 
are numbers in the range of -1 to - 99. All sym
bol pointers are less than this, and operator pointers 
are positive. In the next phase, the algorithm 
proper, all symbol pointers are set positive when fed 
into the target stack. In pruning operators, the mag
nitude of the pointer in the operator table is placed 
in the target stack. This means that after an equa
tion is compiled it will be a list of pointers to the 
primitives in the text table. Special conventions 
within the text table have been designed as seen in 
Fig. 17 to distinguish user symbols and output 
names from each other and from numbers and 
compiler-generated symbols. This permits symbol 
prefixing to be done on the fly in punching out the 
final program. No prefixing is done when they are 
printed for the user's inspection. These details will 
not be discussed here. 

Before leaving this subject it should be mentioned 
that entries for integrators in the box index table 
and output box table are set negative. Negative 
pointers in the box index table indicate when a state 
variable is encountered in popping the source stack. 
Output integrator boxes also are marked, since no 
auxiliary equation will be needed for them. 

Str1!cture of the Simulation Program 

The state and auxiliary equations are embedded 
by the compiler in a segment of a Fortran program. 
The complete simulation program consists of this 
variable segment together with a fixed segment and 
precompiled subroutines. The structure of the simu
lation program is relatively straightforward and is 
shown in Fig. 18. 

The variable segment contains the necessary 
bookkeeping ( common, equivalence, etc. ) that 
changes from problem to problem. These instruc
tions are arranged so that, together with flags that 
give the number of integrators and symbols, the 
common layout is known by all subroutines. Rou
tines such as those that print and read the contents 
of various arrays must be able to communicate with 
this common data region. Following the "bookkeep
ing," a statement transfers control to the section that 
plays the "question game" with the user. The user is 
given a choice of actions for the program to carry 

COMMON AND EQUIVALENCE STATEMENTS 

FORMAT FOR TITLES OF SIM. OUTPUT 

NI' < NO. OF INTEGRATORS> 

NS' < NO. OF SYMBOLS> 

NT' < TERMINAL MISS FLAG> 

,------1 STATEMENTS SETTING ARRAYS TO BCD NAMES 

r - - - STATE (DIFFERENTIAL l EQNS. 

I 
I 
I 

AUXILIARY EQUATIONS 

(VARIABLE SEG.l f-------------
(FIXED SEG.l 

LOGIC TO PRINT STATE VARIABLES 
I 
I LIST 
:==~ "QUESTION-GAME" MESSGS. AND LOGIC 

I CHANGE 

I CONTROL 

I OPT. 

I STD 

I L __ _ 

ARRAY PRINTING CALLS 

ARRAY READING CALLS 

SET UP INTEGRATION CONTROL PAR. 

SET UP OPTIMIZATION PAR. AND FLAG 

INITIALIZE SIM. RUN 

INITIALIZE PRINT PERIOD 

I NTEGRATION ROUTINE 

PRINT SIM OUTPUT 

IS SIM RUN FINISHED? 

OPTIMIZING? 
NO 

YES 

Figure 18. Simulation program structure. 

out, such as list or change. Based upon his re
sponse, the next choice is funneled to a subset of 
such meaningful descriptors as names or values. 
This "funneling or steering" is a technique that has 
been employed in control" of graphical routines. In 
this instance the user employs a light pen to point at 
the appropriate control word displayed on the cath
ode ray tube. 6 Programming this interactive dialogue 
was facilitated by using a general purpose message 
routine. 7 

The variable segment is completed by embedding 
the state and auxiliary equations immediately after 
the statement transferring control to the "question 
game." The equations are executed, as indicated by 
the dotted lines in Fig. 18, by transferring out of 
(and then back to) the integration and print sec
tions of the fixed segment. The integration method 
presently used is 4th order Runga-Kutta. 8 

The unusual structure of this program deserves 
comment. The GE-235 computer has a machine cy
cle of six microseconds and no floating-point hard
ware. This together with the time-slicing required to 
time-share the system tends to make large blocks of 
computation relatively slow. The simulation pro
gram was designed to minimize transfers to subrou
tines once the integration computations were under 
way. In effect, the integration and equations which 
compute the derivatives are the main program in 
Telsim. This corresponds to turning the usual struc
ture of a simulation program "inside-out" in order 
to make it as fast-running as possible. 



462 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

SUMMARY 

This version of Telsim is an initial effort to pro
vide user-oriented languages for control system anal
ysis and synthesis. A user-oriented language must be 
responsive. There should be a man-machine dia
logue during both problem definition and solution. 
Telsim attempts to do this. 

Telsim is a compiler not an interpreter. It is a 
language programmed in Fortran that produces For
tran code designed for efficient simulation. Telsim 
uses a one-pass table-driven compiler algorithm to 
produce the state ( differential) and output equa
tions. This is a departure from the existing "se
quencing" method used in current simulation lan
guages. 9

-
11 "Sequencing" or "sorting" of boxes 

requires that an ordered list of Fortran expressions, 
one for each box, be generated such that the last 
expressions give the values for each of the deriva
tives. As a consequence of this new method there is 
no need to apportion storage space among the var
ious types of boxes as done in the past. The user 
can specify any number of the different types as 
long as storage is not exhausted. He can then view 
the equations in meaningful form and thereby check 
his block diagram. These equations are valid For
tran expressions. * Telsim compiles efficient and fast
running Fortran code for either simple or complex 
diagrams. This results in a program comparable to 
one hand-coded by a good programmer. 

By using the procedures presented in this paper, 
Telsim can be extended to allow the user to define 
and name functions by a block diagram composed 
of primitive boxes. In addition, Telsim has advanced 
language features such as symbolic labeling of con
stants, use of Fortran functions (including nesting), 
and relative freedom in input formats. The simula
tion program, itself, has an optimization mode that 
permits automatic adjustment of initial conditions in 
solving boundary value problems. 

This effort has suggested a number of improve
ments. Three things will be done immediately. Little 
more can be, since this version of Telsim has taxed 
the available time-sharing system to its capacity. 
First, the optimization ability will be extended to 
include automatic adjustment of symbolic constants 
in an analogous fashion to the initial condition fea
ture. Included with symbolic constants are the initial 
and final values of T, the variable of integration. 

* The time-sharing system's Fortran compiler converts 
these into machine code. 

Second, Telsim will be improved to allow the user to 
specify a termination function (akin to the terminal 
miss variable) to control the final time in a simula
tion run. And finally, the user will be provided a 
choice of the method of numerical integration to be 
used during the simulation run. 

There are many more desirable features that one 
would like in a general simulation language. During 
problem definition, the following should be consid
ered: 

1. The ability to accept equations as the 
specification for the whole system or 
part of a block diagram. 

2. The ability to simulate composite sys
tems with both continuous and discrete 
portions. (For discrete system simula
tion the reader is referred to the 
BLODI language.) 12, 1.3 

3. A larger subset of primitive boxes to 
specify nonlinear elements, transfer 
functions, random noise generator, and 
tables. 

4. A simple method for the definition of 
new functional boxes thereby provid
ing system growth. 

5. Superblock specification by the user of 
those portions of a system that are re
peated a number of times. 

6. Graphical input specification. 
7. Diagnostics during the compilation 

algorithm and efficient handling of sub
expressions found to be common. 

During the simulation phase the user should have: 

1. The ability to select from a set of 
optimization procedures. 

2. The ability to specify events and cri
terion information. 

3. Automatic determination of integration 
methods and step size. 

4. More freedom in selecting printout 
(choosing any variable and nonuniform 
printing interval during a run). 

5. Graphical output. 

Needless to say implementation of these features 
will have to await the arrival of a larger time-sharing 
system. However, exploratory programming and de
velopment along these avenues will be started in a 
batch-processing environment. 



TELSIM, A USER-ORIENTED LANGUAGE 463 

ACKNOWLEDGMENT 

The skillful programming done by Misses Mary 
Lou Flynn and Ruth L. Salmon, and Messrs. Robert 
E. Downes and Gardner C. Patton has made this 
version of Telsim possible. The helpful suggestions 
and comments by Dr. W. C. Ridgway, III during the 
preparation of this paper are appreciated. 

REFERENCES 

1. Desk Side Computer System Reference Man
ual, General Electric Company, Missile Space Divi
sion, Valley Forge, Pa. (Jan. 1966). 

2. J. J. Clancy and M. S. Fineberg, "Digital Sim
ulation Languages: A Critique and a Guide," 
AFIPS Volume 27, Proceedings, 1965 Fall Joint 
Computer Conference, Spartan Books, Washington, 
D.C., 1965, pp. 23-36. 

3. F. W. Sears and M. W. Zemansky, College 
Physics, Addison-Wesley Press, Inc., Reading, Mass., 
1948, p. 99, prob. 9. 

4. P. Wegner, Introduction to System Program
ming" Academic Press, New York, 1964, pp. 101-
121. 

5. C. L. Hamblin, "Translation to and from Pol
ish Notation," The Computer Journal, vol. 5, no. 3, 
pp. 210-213 (Oct. 1962). 

6. W. H. Ninke, "Graphic I-A Remote Graphi
cal Display Console System," AFIPS, Volume 27, 
Proceedings, 1965 Fall Joint Computer Conference, 
Spartan Books, Washington, D.C., 1965, pp. 
839-846. 

7. G. C. Patton, "The MESSAG Dialogue Sys
tem," Bell Telephone Laboratories Memorandum 
(May 10, 1966). 

8. F. B. Hildebrand, Introduction to Numerical 
Analysis, McGraw-Hill Book Co., New York, 1956, 
pp. 236-239. 

9. Clancy and Fineberg, op. cit. 
10. M. L. Stein, J. Rose, and D. B. Parker, "A 

Compiler with an Analog-Oriented Input Lan
guage," Proceedings, Western Joint Computer Con
ference, San Francisco, 1959. 

11. R. M. Janoski, R. L. Shaefer, and J. J. 
Skiles, "COBLOC-A Program for All-Digital 
Simulation of a Hybrid Computer," IEEE Transac
tions on Electronic Computer, vol. EC-15, no. 1, 
pp. 74-82 (Feb. 1966). 

12. J. L. Kelly, Jr., C. Lochbaum, and V. A. 
Vyssotsky, "A Block Diagram Compiler," Bell Sys
tem Technical Journal, vol. 40, pp. 669-676 (May 
1961) . 

13. B. J. Karafin, "The New Block Diagram 
Compiler for Simulation of Sampled-Data Systems," 
AFIPS, Volume 27, Proceedings, 1965 Fall Joint 
Computer Conference, Spartan Books, Washington, 
D.C., 1965, pp. 55-61. 





MAN-MACHINE COMMUNICATION IN ON-LINE 
MATHEMATICAL ANALYSIS * 

R. Kaplow, J. Brackett and S. Strong 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

During the past four or five years increasing atten
tion has been paid to providing efficient, direct access 
to digital computing machines. Interactive or "on
line" systems have been implemented on various 
machines with a variety of programming techniques. 
Whether the system uses a small computer which can 
handle only one user-operator or is part of a time
shared multiple-access computing utility, the goal is 
to permit the user to have direct communication 
with an. operating program. Among other advan
tages, such an on-line system permits a user to insert 
decisions during the course of problem solution, with 
his judgments benefiting from current results. 

A large multiple-access system serving a wide 
variety of users, such as the Project MAC System,l, 2 

tends to become a repository for problem-solving 
techniques. Therefore, the lay user of such a sys
tem, in contrast to an experienced programmer, may 
more often be concerned with the problem of locat
ing and learning to use suitable procedures than with 
writing a program himself. In such a circumstance, 
all of the problems associated with obtaining a pro-

* The work reported herein was supported by Project 
MAC, an MIT research program sponsored by the Ad
vanced Research Projects Agency, Department of Defense, 
under Office of Naval Research Contract Nonr-4102(Ol). 

465 

gram from a library are present, including incom
plete or nonexistent cataloging and documentation. 

It appears that efficient general utilization of 
computers will depend on the evolution of subsys
tems which combine available procedures for specific 
applications in such a manner that little or no library 
searching or programming will be required. Such 
subsystems have already been developed in a num
ber of specific fields, such as civil engineering,3, 4 

electrical circuit 5 and nuclear reactor design,6 and 
simulation techniques. 7 It also appears to be a feasi
ble approach in the more general area of mathe
matical analysis since appropriate combinations of 
approximately 30 to 50 numerical procedures will 
suffice for large classes of problems. Though users 
may ultimately do relatively little programming with 
such a system, it is clear that rather sophisticated 
programming will be required to support the system. 

The present paper, which deals with a new system 
for on-line mathematical analysis, illustrates a gen
eral approach which can eliminate programming for 
many users. Our interest in the program grew out of 
consideration of the manner in which digital com
putation techniques could be best utilized in teaching 
subjects in which side excursions for programming 
could not be tolerated and in which "black box" 
programs would serve little or no purpose. It was 
decided, at the outset, that one would want to pre
serve an analytical approach, that is, the breakdown 



466 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

of the problem into its component parts, each part 
consisting of a particular mathematical procedure. 
The required system would be one in which the 
writing (or, more likely, the typing) of normal 
mathematical nomenclature would cause the results 
of the operations to be generated. Thus it would be 
required that the student, or other user, have a 
sufficient grasp of a particular problem so that he 
could describe it in standard mathematical form. He 
would then expect the system to request all of the 
necessary specific information, do all the indicated 
mathematics and, on request, to present the results 
in a useful form. With these intentions, we have 
been developing such a system, called MAP (for 
Mathematical Analysis Program),8 for use in con
junction with the MIT Computation Center and 
Project MAC Compatible Time-Sharing Systems 
(CTSS). 

Techniques for utilizing direct computer access in 
mathematical analyses have been discussed by J. C. 
Shaw,9 G. Culler and R. Huff,1° and G. Culler and 
B. Fried. ll ,12 In each instance the system was imple
mented within a less powerful facility than is avail
able at the MIT Computation Center and Project 
MAC. CTSS facilitates the use of English language 
communication and allows the storage of extensive 
programs and data. The aims outlined in the fore
going paragraphs are therefore more readily imple
mented. 

The most striking aspect of an on-line system is 
the extent to which it may be programmed to carry 
on a meaningful dialogue. While the computer can
not generate ad-lib responses, a sophisticated pro
grammer, working within the framework specified 
by a particular type of problem, can anticipate 
what kinds. of questions will be asked and what kind 
of responses will be made by a user. He can there
fore pre-store or provide a program to generate 
responses to be made and questions to be asked in 
reply to the user's input. 13 Most likely, of course, 
he will place a definite limit on the vocabulary which 
the computer will understand, simply in order to 
make the programming and storage requirements less 
demanding. The computer's responses can nonethe
less be quite varied; they can depend on previous 
dialogue, the sophistication of the user's questions 
and responses, the results of calculations and other 
factors as well. 

A number of previous applications have taken 
good acivantage of this "conversational" facility of 

direct-access computers. Among those which are in 
operation are systems for computer-aided design in 
mechanical engineering,14 design of electrical net
works,15 searching the technical literature,16 describ
ing and analyzing the three-dimensional structure of 
large molecules,17 and computer-aided teaching.18 

For those who have had no previous contact with 
user-machine dialogues a very readable general dis
cussion by Licklider will be of interest.1.9 

The form and language of the user-machine com
munication is the most obvious and probably the 
most important single aspect in the design of a con
versational system. It is necessary to strike a balance 
between the terminology commonly understood and 
an efficient but cryptic code. At one extreme is the 
possibility of using English prose throughout, and at 
the other the possibility of a two or three-letter code 
just complex enough to eliminate ambiguities. The 
former choice requires a great deal of rather useless 
translation and elimination of redundancies by the 
computer and an excess of input and output. On the 
other hand, codes are a nuisance for the user to 
memorize or decipher. The major requirement, of 
course, is that the demands on the user should be 
minimized, in terms of both typing and deciphering 
effort. We have therefore chosen neither of the ex
tremes, but a combination of modifications of both. 
The user "talks" in one or two-word phrases or in 
arithmetic equations, while the computer uses a 
passable form of English. Conversation between the 
user and the computer consists primarily of questions 
and answers, with statements (for informational pur
poses) and outright commands occasionally admixed. 
Questions, which in the present context are any 
requests for information, are often phrased in the 
normal form of commands, because of the simpler 
grammatical form of the latter. 

ILLUSTRATION OF USER-MACHINE 
COMMUNICATION 

Even if space permitted, there would be little pur
pose in describing all of the facilities available within 
MAP. Rather we shall attempt to illustrate the sa
lient features of the user-machine conversation with 
a specific illustration. For this purpose we select the 
following problem: 

Given an experimental function, spect (v), deter
mine, by fitting, the best set of values for the physical 



MAN-MACHINE COMMUNICATION IN ON-LINE MATHEMATICAL ANALYSIS 467 

parameters qi, Vi and ri, the pertinent relationships 
being: 

J
+OO 

spect(v) = -00 lev') ABS(v-v') dv' 

ABS(v) = l-exp [-b~qi r'i2/(4(v-vd'2 + ri2)], 
i=l 

and r 8, b = known constants of the experiment. 

The physical basis of the problem happens to be 
Mossbauer y-ray absorption spectroscopy, but that 
is of no importance in this discussion. It may be 
perceived, however, that since the unknowns deter
mine the positions, magnitudes and widths of a 
series of Lorentzian peaks in an absorption spec
trum which is subsequently convolved with the 
source spectrum, the usual programming approach 
(in a language such as FORTRAN) will be quite 
complex. Even a discussion of a suitable program 
would require an inordinate amount of time if stu
dents were to utilize the computer in a laboratory 
subject. With MAP, as we shall see, it is only neces
sary for the student to understand the mathematics 
of the analysis at the same level that the instructor 
would normally desire. 

If this were a laboratory problem, the instructor 
would probably suggest that the student compare his 
normalized data-to be called normda (vr ) -to trial 
calculations of spect(v), until agreement was achieved 
and the corresponding parameters determined. 

We will assume that the user has available to him 
one of the more than 100 remote terminals on the 
MIT campus, with or without display hardware. The 
terminals are connected to the computer system via 
a private branch exchange; a user may dial either the 
Project MAC or the Computation Center system. 
Once logged into the system, the user reaches MAP 
by typing "resume map" to the CTSS supervisor; 
the computer responds "COMMAND' PLEASE", 
indicating its readiness for a command. 

In this instance the first step would be to convert 
the experimental counting rate data into normalized 
absorbed intensity values. In the following example, 
note that the upper-case type is computer-generated; 
only the lower-case lines and the numerical input 
were typed by the user. The user inputs have been 
underlined to make them distinct. 

COMMAND PLEASE 

(normda(vr) = l-cr(vr) /cbase) 

DECIMAL VALUE OF THE CONSTANT CBASE 
PLEASE. 5.544 

CR(VR) IS NOT DEFINED. IF IT HAS A DIF
FERENT NAME, TYPE THE NAME. IF YOU 
WANT TO TYPE IN NUMERICAL VALUES 
NOW, TYPE THE WORD INPUT. OTHERWISE, 
GIVE A CARRIAGE RETURN AND DEFINE 
THE FUNCTION BEFORE USING THE NAME 
AGAIN. 

input 

PLEASE PRINT ON THE NEXT LINE MIN, 
MAX, AND DEL FOR THE VARIABLE VR. 

-5. 5. .1 

MIN =-50 MAX = 50 

TYPE IN DATA IN ARBITRARY FORMAT, 
EACH DATA POINT SEPARATED BY A 
SPACE. THE INPUT DATA CAN BE EDITED 
BY USING THE CONVENTIONS GIVEN IN 
THE MANUAL. WHEN ALL DATA POINTS 
HAVE BEEN ENTERED, GIVE TWO CAR
RIAGE REURNS, COMPLETE .EDITING IF 
NECESSARY AND GIVE COMMAND 'FILE 
INPUT DATA'. 

INPUT: 

5.544 

5.549 

5,544 

5.551 

EDIT: 

locate 5,544 

change /, /. / 

print 

5.544 5.544 

file input data 

5.549 

5.542 

5.549 

COMMAND PLEASE 

5.545 5.546 

5.547 etc. 

5.545 5.546 

As illustrated here, MAP will always request 
values for variables specified in an operation, but not 
previously defined. When arrays of data (i.e., func
tions) are requested, the input is placed under the 
supervision of an editing program and is available 



468 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

for editing in Hollerith (BCD) form until written 
over by the next input data. The editing illustrated 
above, which was required because of the accidental 
and initially unnoticed typing of a comma instead of 
a decimal point, is self -explanatory. The editing 
facility is essentially identical to that available di
rectly in CTSS.2 In addition to the standard type
written form of data input, as illustrated above, the 
data can be inserted off -line in punched card form. 

Functions are referred to in the usual mathe
matical form (e.g., cr (vr) ). If the tabulation of a 
function corresponds to equal intervals in the inde
pendent variable, the range of interest can be speci
fied by the first, the last, and the interval between 
values of the independent variable. In such instances 
the independent variable (e.g., vr) has an identity of 
its own and can appear explicitly in equations. Sub
scripts are nonetheless inherent in a digital machine 
and the values typed by the computer in response 
to the min, max, del input (e.g., MIN = '-50 
MAX = +50) are the subscripts assigned to the 
first and last values of the function (using the con
vention, subscript = vr/ del) ; the user will not usual
ly be concerned with these numbers. If the function 
values do not correspond to equal intervals in an 
independent variable, the user may type integers for 
min and max which are then taken to specify the 
exact subscript sequence desired. 

The results of an operation, such as the evalua
tion of the arithmetic expression to the right of 
the = sign, are not automatically output. It is as
sumed that most results are intermediate and that the 
user does not want them printed or displayed. How
ever, the simple request 

print normda ( vr ) 

would produce a listing of the calculated function; 

print normda(vr) -1.1. 

would yield only those results for '-1. ~ vr ~ + 1.; 

print normda (vr) -1.5 2.50.025 

would cause a new array, including interpolated val
ues, to be generated and printed for -1.5 ~vr~2.5 
at an interval in vr of 0.025. 

The ability to selectively control the output and to 
specify the currently most meaningful range and 
interval has reduced the volume of printed output in 
comparison with batch processing and also facilitates 
the user's comprehension of his results. 

The second step in the data analysis is to generate 
the theoretical incident intensity distribution, i(v). 

(i(v) = sqrtf(gamsqs) /(pi* (4. *v**2+gamsqs))) 

PLEASE PRINT ON THE NEXT LINE MIN, 
MAX AND DEL FOR THE VARIABLE V. 

-1. 1. .05 

MIN = ,-20 MAX = 20 

DEC. VALUE OF CONSTANT GAMSQS 
PLEASE 0.01 

COMMAND PLEASE 

In this equation, the system assumes that v is the 
name of an independent variable in the arithmetic 
expression, rather than a constant, since it is used 
as the independent variable of the answer array, i (v) . 
Since no functions appear in the expression, the 
desired range of v is not defined, and is therefore 
requested. The particular range used here, -1. to 
+ 1., should be adequate to include all the significant 
values of the peak. If the user had not previously 
thought much about this point, and if he were at one 
of the consoles which had display facilities, he would 
get a quick verification by displaying the resulting 
function. It is important to note, however, that the 
system does not depend on the availability of graphi
cal display hardware; printed results are produced 
in an easily readable form and should always be 
sufficient, though not necessarily always as con
venient. 

A graph of the function i (v), which is shown in 
Fig. 1, could be generated by using a plot request 
in the following manner: 

plot 

PLOT WILL PRODUCE A GRAPH OF THE DE
SIRED FUNCTION (S). 

WHAT FUNCTION(S) WOULD YOU LIKE TO 
PLOT. i(v) 

SHOULD THE PLOT BE LINEAR, LOG-LOG, 
LINEAR-LOG, OR LOG-LINEAR. linear 

DO YOU WANT A POINT OR LINE PLOT OF 
I(V). line 

IF YOU DO NOT WANT ALL OF THE POINTS 
OF THE FUNCTION(S) PLOTTED, TYPE THE 
RANGE AND/OR INTERVAL IN V TO BE 
USED. OTHERWISE GIVE JUST A CARRIAGE 
RETURN. 

COMMAND PLEASE (The plot would now be on 
the display screen) 



MAN-MACHINE COMMUNICATION IN ON-LINE MATHEMATICAL ANALYSIS 469 

With the above request we have illustrated the 
"long form" of a request, in which the user need 
type only the one word which is the common name 
for the mathematical procedure or data presentation 
technique desired. The response of the computer 
will then be sufficiently explicit, hopefully, that even 
an inexperienced user will be able to convey the 
necessary (or optional) specific information. How
ever, such "conversations" may become tedious be
cause after some experience one can anticipate the 
questions. Therefore optional "short forms" may be 
used in which some or all of the parameters are 
presented with the original command. If parameters 
are given with the command they must usually be 
presented in the order in which they would have 
been requested. If only some of the required param
eters are given, the unspecified ones will be re
quested. Certain procedures, however, will assume 
that a particular option is desired if nothing is 
stated to the contrary. The "short form" has been 
illustrated previously, in fact, with the various op
tions of the print request. 

It may be noted, in the question for i (v), that 
operational functions may be used (e.g., sqrtO, 
utilizing the names and f suffixes which are familiar 
to. FORTRAN users. In addition to those operations 
which are normally available in programming lan-

Proceeding with the analysis, 

7 51---··~··"··-·l····"··":·········r······ .. t····-·············:-·····~ .. ~~~~~:~=~l 
. : 

6 

....... '.. ~. .. .. 

.5) ........ + ........ ; ........ +. ~ ....... + ....... : : . :" ~ 

2 i .. · .. · .... ; .... ·· .. ·L ........ ~ ......... L.... ..t·· ·····;··· .... ··J..· .. ··· .. · .. · .... ··~··· .... ·t 
1 .: !- ........ 1.. .. :.: ... : ........ 1 ...... : . .:... . ... !.... . ............................ : .... : ....... J 

OE-l i ~ 
-lE 0 .8 .6 .4 .2 0.2 .6.8 

Figure 1. Graph of i(v) versus v generated by the "plot" 
command, as described in the text. Only the 
origin is labeled with the appropriate power of 
10. 

guages (sinf, sinhf, asinf, sqrtf, absf, expf, etc.), 
MAP includes procedures which operate on all or 
part of a function simultaneously, such as the sum
mation of all tabulated values (sumO, the total 
integral over the entire range of a function (intO 
and the derivative (derif). 

(c(vdum) =conb* (qa*gmsqa/( 4. * (vdum-va) **2+gmsqa) 

MORE LEFT PARENS THAN RIGHT, CONTINUE OR GIVE CARRIAGE 
RETURN TO CANCEL. 

+qb*gmsqb/(4.* (vdum-vb) **2+gmsqb) +qc*gmsqc/(4.*(vdum-vc) **2+gmsqc))) 

PLEASE PRINT ON THE NEXT LINE MIN, MAX AND DEL FOR THE 
VARIABLE VDUM. 

-5. 5. .05 

MIN = -100 MAX = 100 

DEC. VALUE OF CONSTANT GMSQC PLEASE. .12 

(all other constants not previously defined would be requested in the same manner) 

COMMAND PLEASE 

(abs(vdum) = 1-expf( -c(vdum))) 

COMMAND PLEASE 



470 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

A wider range, - 5. to + 5., is required for the 
significant values of the absorption factor abs(vdum), 
than was required for i ( v ). Again, since no functions 
appear in the equation for c ( vdum) , a range and 
interval is requested for vdum. If v had been used as 
the independent variable, the system would have 
used the previously assigned range, -1 ~ v ~ + 1., 
automatically. The dummy variable, vdum, has been 
used in order to allow specification of the more ex
tensive range that is required for the abs function 
and hence the c function. 

The calculated spectrum is then obtained by con
volving the incident intensity distribution with the 
absorption factor. 

convolve 

THIS COMMAND OBTAINS THE INTEGRAL 
OF THE EXPRESSION A(X)*B(R-X)*DX 
FOR ALL PERTINENT VALUES OF R. 

WHAT IS THE NAME OF THE FUNCTION OF 
THE TYPE A(X). abs (vdum) 

WHAT IS THE NAME OF THE KERNEL FUNC
TION. i(v) 

NAME OF ANSWER PLEASE. spect(vr) 

COMMAND PLEASE 

For the convolution procedure, the only requirement 
on the two input functions is that they each be tabu
lated at equal intervals in their independent variables. 
The computer will interpolate (second order) if it is 
necessary to compensate for an initial inequality of 
the intervals in the two functions. The resultant 
function, spect(vr), will be generated with the in
terval common to both, or the smaller of the two, 
and with the augmented range implicit in the con
volution. Here, for example, the range of spect (vr) 
will extend from -6. to + 6. In all the procedures, 
including equations, the system will handle mixtures 
of functions with different ranges and intervals and 
automatically derive results only for the range in 
which all the functions are defined. When mixed 
intervals appear, the user will be interrogated to 
determine· whether finer or coarser specifications of 
the functions are more appropriate to his problem. 

Having calculated a first approximation to the 
fitting function, the user can check the fit using the 
graphical display. The following is an illustration of 
a short form of the plot command. 

plot normda ( vr ) points spect (vr ) lines - 5. 5. 

Unless otherwise specified, the range used for the 
graph, when two or three functions are displayed, 
would be sufficient to include all the values of the 
various functions. Here the user has limited the 
range to -5.~vr~ +5., the interval covered by 
his data. It may be noted that the comparison, shown 
in Fig. 2, is reasonably good but nonetheless capable 
of improvement. The user would presumably go 
through the procedure again, starting at the calcula
tion for c(vdum), after deleting or redefining any 
parameters which he thought required alteration. 

COMMAND SEQUENCES 

Since at least two iterations and probably more 
will be required for most procedures of the type 
illustrated, it is advantageous if the computer stores 
particular sequences of commands. This facility is 
available in MAP, and would normally be used for 
this problem. After generating the normalized data, 
normda (vr), and the incident intensity, i (v), the 
user need only type the word "create" to define a 
sequence of commands. 

create 

TYPE IN COMMANDS, ONE PER LINE. WHEN 
ALL COMMANDS HA VE BEEN ENTERED, 
GIVE TWO CARRIAGE RETURNS, EDIT IF 
NECESSARY, AND GIVE COMMAND 'FILE 
XXXXXX' (WHERE XXXXXX IS A NAME 
OF 6 OR FEWER CHARACTERS BY WHICH 
YOU CAN IDENTIFY YOUR COMMAND SE-

OE - ~ !:::::::.:!::::::::L::~:::.:::::J:··::l::····:j:::::.' .... ::.:.:::·.:::L.:·:l 
-SE 0 -4 -3 -2 -1 0 1 2 3 4 S 

Figure 2. Simultaneous plot of normda(vr), as points, and 
the initial calculation of spect (vr), as a con
tinuous curve. 



MAN-MACHINE COMMUNICATION IN ON-LINE MATHEMATICAL ANALYSIS 471 

QUENCE). THE COMMANDS CAN BE EDITED 
AND PRINTED BY USING THE CONVEN
TIONS GIVEN IN THE MANUAL. 

INPUT: 

(c(vdum) =conb* (qa*gmsqa/( 4. * (vdum-va) ** 

2+gmsqa) 

+qb*gmsqb/(4.* (vdum-vb) **2+gmsqb) 

+qc*gmsqc/( 4.* (vdum-vc) **2+gmsqc)) 

(abs(vdum) = l-expf( -c(vdum))) 

convolve abs(vdum) iCY) spect(vr) 

plot spect (vr) lines normda (vr) points -.5 5. 

0.1 

EDIT: 

file mossb 

COMMAND PLEASE 

The user has created a "command sequence" and 
assigned to it the name "mossb." This list of com
mands may be edited either before the file request, 
or at any later time (using the request "edit mossb"). 
Execution of the entire sequence can be initiated by 
typing "run mossb." Unless it is specifically erased, 
the sequence will remain available for use during 
subsequent console sessions. During execution each 
statement in the command sequence will be executed 

-5E 0 -4 -3 -2 -1 0 1 2 3 4 5 

Figure 3. Simultaneous plot of normda(vr), as points, and 
the final fitting function, spect (vr) , as a con
tinuous curve. 

OE - 2 1 2 3 4 5 6 7 8 9 0 

Figure 4. The initial fitting spectrum, spect(vr), plotted 
versus the normalized data, normda(vr). A 
diagonal straight line would represent perfect 
agreement; the three cusps correspond to the 
three peaks in the spectrum. 

just as if it had been typed in at that moment. Hav
ing created mossb, the user's typing could be limited 
to a series of run mossb's and the adjustment of 
parameters between iterations, repeating the se
quence until satisfactory agreement was achieved. 
The complete flexibility of on-line operation is re
tained, of course, since the user may inject side cal
culations of any sort between iterations, and may 
even work on an entirely new problem; the com
mand sequence will remain defined until he deletes 
it from the system. 

It is worth emphasizing that the subsidiary results 
of command sequences remain available. For ex
ample, after finding the best fit the user might want 
to compare the spectrum to c(vdum), which is more 
directly related to the physical nature of his speci
men. 

plot spect (vr ) c(vdum) -5. +5. 0.1 

would produce the graph in Fig. 3. Another sort of 
comparison, which may be useful whenever the result 
of a transformation or calculation must be compared 
to an input function, is to plot one function against 
another: 

compare spect(vr) normda(vr) 

presents a plot of normda (vr) versus spect (vr ). The 
graph shown in Fig. 4 was produced when the initial 
fit was compared to the data. Though they are not 



472 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

cam manly used at present, such graphs pravide a 
wealth af infarmatian to the experienced eye. 

Unless further calculatians are required which in
valve these particular data and calculated functians, 
the user wauld ultimately erase them, but he wauld 
prabably prefer to' retain the cammand sequence 
"massb." If he types "data update," the camputer 
will type aut the names af all canstants, functians 
and cammand sequences that he has defined within 
the MAP System and will ask him which anes aught 
to' be raised to' a mare permanent star age level; he 
shauld respand "massb." The subsequent request, 
"data restare," will erase everything else that has 
been defined. 

We have as yet said nathing about user errars 
which cammanly accur and which lead to' seriaus 
frustratians when a system is nat sufficiently attuned 
to' their likelihaad. Insofar as typing mistakes are 
cancerned, MAP makes use af the CTSS erasure 
facility; typing n quatatian marks deletes the n pre
viaus characters and a questian mark deletes the 
entire line. All input data and cammand sequences 
can be altered immediately after they are typed, or 
after they have been used by utilizing the "edit" re
quest. 'Vithin the MAP pracedures themselves, we 
have attempted to' detect all" lagical incansistencies 
and incamplete ar impossible requests and, ins afar 
as is passible, to' allaw the user to' carrect himself. 
Often, the user will realize that he has made a mis
take when the camputer asks him a questian that 
he had nat expected; in nearly every case, typing the 
ward "quit" will cause the system to' stap the cur
rent operatian ar sequence af aperatians and revert 
to' "COMMAND PLEASE." If, while waiting far a 
calculatian to' be completed, the user realizes that he 
had sent the system off an' a faal's errand, he may 
interrupt the system by twice depressing the "quit" 
buttan an the cansole. 

invalved, the interpretatian procedure used in MAP 
will be less efficient than a campiled prO' gram ). In 
arder to' accammadate such users, the MAP System 
cantains features which facilitate the writing af pra
grams and allaw executian af those prO' grams to' be 
intermixed with the basic pracedures already avail
able. Suitable pragrams may be written in any lan
guage which can call a MAD subrautine 20 (e.g., 
FAP, MAD, AED, etc.). A MAD pragram which 
will exactly duplicate the cammand sequence illus
trated above is shawn in Fig. 5. 

This MAD prO' gram cauld be written, translated 
and filed in MAD and BSS farm, using the facilities 
available within the time-sharing system. 2 The CTSS 
cammand "resume map" wauld then return cantral 
to' the MAP System. If the pragram had been as
signed the name "pmossb," it cauld be executed at 
any time, even in the middle af a cammand se
quence, with the MAP cammand "execute pmassb." 
With this particular pragram, "execute pmassb" 
wauld be exactly analagaus to' "run massb" using the 
previausly illustrated cammand sequence. The nu
merical results wauld be identical and the camputer's 

INTEGER MIN, MAX, I 

DlMENSIDN C(1000), ABS(1000) 

QA=VALUE. ($QA*$) 

QB=VALUE. ($QB*$) 

QC=VALUE. ($QC*$) 

VA=VALUE. ($VA*$) 

VB=VALUE. ($VB * $ ) 

VC=VALUE. ($VC*$) 

GA=VALUE. ($GMSQA*$) 

GB=VALUE. ($GMSQB*$) 

GC=VALUE. ($GMSQC*$) 

CON=VALUE. ($CONB*$) 

EXECUTE RANGE. ($VDUM*$, MIN,MAX,DEL) 

THROUGH LOOP, FOR I=MIN, 1,I.G.MAX 

V=I*DEL 

C(I-MIN)=CON* (QA*GA/(4.* (V-VN.p.2+GA) 

1 +QB*GB/(4.*(V-VB).P.2+GE) 

USER PROGRAMS WITHIN MAP 2 +QC*GC/ (4. * (V-VC) . P. 2+GC) ) 

We have traced the spectrum-fitting prablem alang 
thase lines which we would expect a student ar 
sparadic user to' fallaw. Hawever, far the researcher 
whO' spends his days analyzing Mossbauer spectra, 
cammand sequences may nat be entirely satisfactory. 
He may have in mind a mare saphisticated analysis 
technique than is immediately available in MAP, ar 
might prefer to' sacrifice same of the ease af abtain
ing the first solution for the sake af increased effi
ciency aver the lang run (when lang equations are 

LOOP ABS(I-MIN)=l.-EXP. (-e(I-MIN» 

VECTOR VALUES ARG1=$ABS(VDUM)*S 

EXECUTE ou'r. (ARG1,ABS,MIN,MAX,DEL) 

VECTOR VALUES ARG2=$ABS(VDUM) I (V) SPECT(VR)*S 

EXECUTECONVOI. (ARG2) 

VECTOR VALUES ARG3 $SPECT(VR) LINES NORMDA(VR) 

1 POINTS -5. +5. 0.1*$ 

EXECUTE PLOT1. (ARG3) 

EXECUTE CHNCOM. 

END OF 1 PROGRAM 

Figure 5. Example of the program "pmossb" for use with 
the "execute" command. 



MAN-MACHINE COMMUNICATION IN ON-LINE MATHEMATICAL ANALYSIS 473 

requests for undefined parameter values would also 
be the same. 

Since the MAD program may look more compli
cated than it is, it may be worthwhile to foJlow it 
through in some detail, paying particular attention 
to the MAP library subroutines which have been 
used. First of all, one should note that the $ ... * $ 
notation is used in MAD to indicate a BCD specifi
cation, i.e., the information within the dollar signs 
is regarded to be alphanumeric text, with the * indi
cating to the processing program the end of a specific 
block of text. The subroutine "value" will obtain 
the value of a MAP constant from the disk storage. 
For example, 

GA = VALUE.($GMSQA*$) 

obtains the value of the MAP constant named gmsqa 
and stores the number in the storage unit assigned 
to the MAD variable gao If a value is not available, 
one will be requested in the usual manner. 

The subroutine "range" will obtain the range and 
the interval of a MAP independent variable if that 
specification already exists. If such values had not 
been defined previously, they will be requested. 

The subroutine "out" will use the values of the 
specified MAD array to create the named MAP func
tion, with the last three arguments of the calling 
sequence specifying the range and interval of the 
function. Since a BCD argument can be included 
directly as an element in the argument list only if 
it can be expressed in six or fewer characters (in
cluding the final asterisk), the vector values state
ment immediately preceding the call to "out" 
has been used to store the necessary argument, 
$abs(vdum) *$. (A MAD "vector values" statement 
presets and dImensions an array; in this case the array 
argl is created with each word containing succes
sive six character groups of BCD information.) The 
opposite procedure is accomplished with the subrou
tine "in," which has the same argument form. The 
values of the named MAP function are placed in the 
specified MAD array, and the range and interval of 
the function determine the values of the last three 
arguments. If the function had not been defined pre
viously, values would be requested. For both "in" 
and "out" we use the convention that the first tabu
lated value in the MAP function, i.e., the one cor
responding to min, is the first element of the MAD 
array, i.e., array (0) . It may be noted that this con
vention is implied in the subscripting used in the 
equations for the c and abs arrays. 

The subroutine "convol" is the exact equivalent 
of the MAP convolve procedure. The argument 
should be a BCD list equivalent to the information 
that would be requested by the MAP procedure, or 
which could be typed, in whole or in part, on the 
command line. In this example the program has been 
preset with the "short form," all the parameters hav
ing been included in the vector arg2. At the opposite 
extreme, the following calling sequence is possible: 

EXECUTE CONVOI. ($*$) 

In this call no parameters have been incluqed in the 
argument list and the execution will be equivalent 
to typing just "convolve" as a MAP request. All of 
the MAP procedures have their counterpart subrou
tines, the names being formed from the first five let
ters of the procedure name followed by a 1 suffix. 
In addition to the print, plot and convolve already 
mentioned, such analyses as integration, Fourier 
transform, least square fitting, differentiation, inter
polation and others are presently available. 

The subroutine "chncom" returns control to the 
MAP System. Generally the next response would be 
a "COMMAND PLEASE," but if the "execute" 
had occurred in a command sequence, the analysis 
would simply continue in its prescribed course. 

We have, in this sample program, purposely preset 
all the parameter names (e.g., the MAP names qa, 
qb, etc.) so that it would be exactly analogous to 
the previously illustrated command sequence. A user 
might find it advantageous, however, if some or all 
of the parameter names were not specified until exe
cution time. Of course, when MAP procedure sub
routines are involved, any parameter names which 
are not required elsewhere in the program may be 
left unspecified by giving an empty argument list in 
the calling sequence. A more general procedure is 
available, however, in a subroutine called "setup" 
which will pick up the parameter names presented 
at executi()n time on the command line, following 
"execute pmossb." In the foregoing MAD program 
the MAD variable con was defined to be equal to 
the value of the particular MAP constant conb, with 
the statement con = value. ($conb* $). If it were de
sirable to leave the MAP parameter unspecified until 
execution time, that statement could have been re
placed by the following sequence of statements: 

EXECUTE SETUP. (NAME(O),l) 
NAME(l) = $*$ 
CON = VALUE. (NAME) 



474 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

At execution, the computer would then look for one 
additional word on the command line, and would 
take that word to be the name of the MAP variable 
whose value should be used for con. As many as 13 
parameter names may be supplied at execution time 
in this fashion; all of them would be picked up by a 
single execution of "setup," with the second argu
ment in the call to "setup" indicating the number of 
parameters expected (if the specified number are not 
supplied, the computer will give the user an oppor
tunity to retype the list of names). 

Additional programming subroutines, also auto
matically available in the MAP library, are designed 
to further assist the programmer in maintaining con
tact with the other parts of the MAP system and in 
achieving a high level of sophistication in the trans
mission of information in both directions through 
the console. Since it is easy to convert a program 
written for the "execute" command into an ordinary 
MAP command, expansion of the system into par
ticular regions of interest is readily accomplished. 

ACCURACY, COMPLEXITY AND TIME 

The majority of prospective users of a system 
such as MAP are relatively naive on the subject of 
accuracy in numerical analysis. It would therefore 
be self -defeating to require each user to determine 
the most appropriate order of approximation to be 
used for each specific problem (though this might 
be appropri~e in a course on numerical analysis). 
Rather we~ have decided that, at worst, each pro
cedure should be (nearly) exact if three point fitting 
is adequate. Thus the user need only remember that 
all experimental data and calculated input functions, 
with the exception of those intended for least square 
fitting, should be tabulated such that a parabolic fit 
over three successive points specifies the function as 
exactly as is meaningful or required. The various 
procedures (e.g., Simpson's integration, five point 
differentiation, quadratic interpolation, double pre
cision matrix inversion, etc.) should not lose any of 
the precision inherent in the input. Nothing prevents 
the more knowledgeable user, of course, from com
piling his own approximation to a given procedure, 
which he can then use as freely as any of the MAP 
procedures. 

Since MAP is designed to be used by persons who 
are not expert in numerical analysis, it is necessary 
that some attempt be made to prevent users from 

ascribing an unreasonable degree of accuracy to their 
results. The proper interpretation of computer output 
will become increasingly important as more people 
use computers without understanding the details of 
the algorithms· employed. Although we do not have 
a solution to the problem in general, we have at
tempted to provide error messages in all cases where 
the mathematical operation is not meaningful (e.g., 
whenever a requested integration range is greater 
than the range of the integrand) or liable to give 
grossly inaccurate results (e.g., whenever too few 
points are available in a function to perform a valid 
interpolation). In the case of the least square analy
sis an estimate of probable errors, based on the size 
of the diagonal elements in the inverted matrix and 
the agreement between the fitted curve and the input 
data, is printed. However, for many procedures there 
are no general methods for estimating the errors. In 
the last analysis, all users of computers (including 
those who write their own programs) must be con
vinced of the necessity of considering all results with 
a critical eye, and for testing new procedures with 
test cases or by circular calculation wherever pos
sible. Since all functions generated by MAP are 
saved and easily available, the user is readily able 
to examine intermediate results for test purposes. 

It ought to be obvious that complex problems (or 
even simple problems) which require a large amount 
of machine time between interactions are not par
ticularly suitable for on-line solution. When the re
quired block of machine time is many times larger 
than the quantum of time allotted to each waiting 
user, the elapsed time becomes excessive unless one 
is doing other work simultaneously. Therefore, in 
addition to making recommendations along these 
lines in the user's manual, we have attempted to force 
certain limitations where they seem appropriate. For 
example, the least square fitting procedure will not 
accept a problem involving more than 100 data 
points and 5 fitting functions, though the program 
which is used is capable of handling up to 1000 
points and 20 unknowns. The prospect of on-line 
initiated batch processing shows promise of being a 
useful compromise in many instances. The few nec
essary programs will be written, therefore, so that 
jobs can be initiated in MAP (retaining all possible 
user-machine interaction) and the required calcula
tions performed later, utilizing the on-line initiated 
batch processing facility that is being developed for 
CTSS. 



MAN-MACHINE COMMUNICATION IN ON-LINE MATHEMATICAL ANALYSIS 475 

The question of elapsed time at the console is one 
of the most critical tests of the feasibility of an on
line system. It is also a difficult test to apply since 
different users have different states of nervousness 
while waiting for output and since the waiting time 
faced by any given user depends on the current 
efficiency and the load on the overall system. On the 
basis of two years' experience we have been able to 
ascertain, however, that whenever service is generally 
considered to be good by most users of CTSS it is 
perfectly adequate for MAP. We feel now, for ex
ample, that when the maximum number of users 
(upwards of 30) are logged in, the system response 
tends to become too slow; with 20 users the com
puter and the user are roughly equally matched; 
with 10 or fewer consoles logged in, the user's 
nervousness may have a reversed source, i.e., the 
computer may seem to be pushing him. 

THE TERMINAL PROBLEM 

At present most of the consoles available to the 
CTSS system are simply teletypewriters, and the time 
spent at the terminal depends significantly on the 
volume of input data and printed output. The 
graphical figures in this paper were generated on 
the MIT Electronics Systems Laboratory display 
terminal,21 which provides two users simultaneously 
with a CRT display, a light-pen, and analog devices 
for input and manipUlation of displayed patterns. 
This facility is expensive and requires a direct data 
channel to the computer; it is therefore not a feasible 
terminal to provide to many users. The Project MAC 
display facilities have been augmented with a number 
of storage oscilloscopes which will shortly be avail
able at various remote consoles, utilizing switchable 
telephone lines. 

At the present time, we may make some sugges
tions as to the desirable features for remote terminals 
to be used with a system such as MAP: ( 1) type
writer input and rapid output; (2) rapid and locally 
maintained display, in a moderately lighted room, 
of curves, points and formatable text, including the 
option-or alternative-of hard copy; (3) graphical 
input (curve tracing and free hand); (4) a device 
for automatic input of large blocks of previously 
recorded data (probably punched paper tape). More 
sophisticated units, such as those required for dis
play of three-dimensional surfaces, would be de
sirable, but could be available only at a few central 
locations. 

APPLICATIONS IN RESEARCH AND 
TEACHING 

In the Introduction we mentioned that 30 to 50 
mathematical procedures would be desirable in a 
system of general usefulness. Actually, we have been 
using MAP effectively in its present and lesser states 
of development even though only 14 procedures have 
been implemented so far. It has been of value in 
analyzing data from a wide variety of experiments 
and in various theoretical calculations. 

The system has also been used in the teaching of 
three lecture courses, two graduate and one under
graduate, all concerned with the physics of solids, 
and in a laboratory course in solid state physics. In 
these trial subjects we have used MAP to allow the 
students, working in pairs, to do computational prob
lems related to the experiments or to the lecture 
material. Through a variety of problems we have 
tried to use the computer to deepen their under
standing of the basic subjects, rather than as a 
separate topic itself. In more definite terms, we may 
list four specific points: 

1. Study of the form of complex analytical 
and numerical solutions. 

2. Study of the effect of variation of the 
parameters in a physical situation. 

3. Introduction to and experience with some 
of the mathematical procedures important . 
to the subject. 

4. Development of a sense of familiarity with 
the subject through working with the equa
tions and numbers in which it is expressed. 

Since the majority of the students had no previous 
computer experience it would have been impossible 
to use the computer at all, except for demonstrative 
purposes, without a system such as MAP. Even an 
experienced programmer would have required the 
equivalent of many days of class time to obtain a 
working program for some of the problems which 
were solved. In practice we have found that the 
students required only a couple of hours of attention 
during their first sessions at the console, and there
after were able to work quite independently. 

The fact that a relatively small number of pro
cedures is yet available is more seriously felt in 
teaching than in research applications. Even if noth
ing more were available, for example, than the 
equation interpreter and the Fourier transform pro-



476 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

cedure, many experimenters would find the system 
useful. Even a single course, however, tends to re
quire a greater generality. Thus, though we have 
been able to treat such class problems as the forced 
motion of a particle in an arbitrary potential, the 
relationship between the real and momentum space 
wave functions, the relationships between expecta
tion values, charge density and scattering factor, 
and the effect of various parameter combinations in 
the Kronig-Penney model for periodic potentials, we 
have had to avoid any topics in the courses which 
would have required matrix operations, differential 
equations and functions of more than one variable. 
These latter procedures, plus the solution of integral 
equations, we intend to install in the near future. 

It should also be mentioned that all of the research 
and teaching applications were actually implemented 
without any display facilities. As has been previously 
discussed, such facilities are now available (and are 
being further extended and tested) and will be a 
great advantage to subsequent users. 

In closing we should mention that insofar as teach
ing is concerned, we have barely touched the surface. 
One can readily visualize, for example, the inclusion 
of particular problem-solving and teaching programs. 
As examples of such programs we might consider 
the nuclear reactor design programs 6 mentioned in 
the introduction and the "Socratic" teaching system 
which has been discussed by J. A. Swets and W. 
Feurzeig.18 In each case the combination of general 
mathematical procedures with specific programs 
aimed at particular subjects should provide powerful 
tools which will have a profound influence on teach
ing concepts. 

ACKNOWLEDGMENTS 

The MAP System would not have been possible 
without the existence of the MIT Compatible Time
Sharing System which is due primarily to the staffs 
of the MIT Computation Center and Project MAC. 
Virtually all of the applications of the system, in both 
research and teaching, were accomplished at the 
Center. We are indebted to the authors of various 
programs which were utilized in the system; in par
ticular, we would like to thank Dr. Thomas G. 
Stockham, Jr., of the MIT Lincoln Laboratory for 
his assistance in implementing the graphical displays. 
It is a pleasure, also, to thank Professor B. L. Aver
bach, of the MIT Metallurgy Department, for his 
encouragement in the development of MAP, par
ticularly in its application to teaching. 

REFERENCES 

1. R. M. Fano, "The MAC System: The Com
puter Utility Approach,"IEEE Spectrum, vol. 2, 
pp. 56-64 (Jan. 1965). 

2. P. A. Crisman (Ed.), The Compatible Time
Sharing System: A Programmer's Guide, 2d ed., MIT 
Press, Cambridge, Mass., 1965. 

3. D. Roos, "An Integrated Computer System for 
Engineering Problem Solving," Proceedings of the 
Fall Joint Computer Conference, vol. 27, Spartan 
Books, Washington, D.C., 1965. 

4. I. R. Whiteman, "New Computer Languages," 
Int. Sci. and Tech., Apr. 1966, pp. 62-68. 

5. M. L. Dertouzos and J. F. Reintjes, "Com
puter-Aided Electronic Circuit Design," Project 
MAC Progress Report II, July 1964-65, MIT, 1966. 

6. K. Hansen and I. C. Pyle, "TREC: A Time
Sharing Reactor Codes System," ANS Trans., vol. 7, 
p. 2 (Nov. 1964). 

7. M. Greenberger et aI, "On-Line Computation 
And Simulation: The OPS-3 System," MIT Press, 
Cambridge, Mass., 1965. 

8. R. Kaplow, J. W. Brackett and S. Strong, 
"MAP, A System for On-line Mathematical Analysis: 
Description of the Language and User Manual," 
Technical Report MAC-TR-24, MIT, 1966. 

9. J. C. Shaw, "JOSS: A Designer's View of an 
Experimental On-Line Computing System," Proceed
ings of the Fall Joint Computer Conference, vol. 26, 
Spartan Books, Washington, D.C. 1964, pp. 455-64. 

10. G. J. Culler and R. W. Huff, "Solution of 
Nonlinear Integral Equations Using On-Line Com
puter Control," Proceedings of The Spring Joint 
Computer Conference, vol. 21, Spartan Books, 
Washington, D.C., 1962, pp. 129-38. 

11. --, and B. D. Fried, "An On-Line Com
puting Center for Scientific Problems," Thompson 
Ramo Wooldridge Computer Division Report (now 
Bunker-Ramo Corp.), Canoga Park, Calif., June 
1963. 

12. --, "The TRW Two-Station, On-Line 
Scientific Computer: General Description," Com
puter Augmentation of Human Reasoning, Spartan 
Books, Washington, D.C., 1965. 

13. J. Weizenbaum, "Eliza A Computer Pro
gram for the Study of Natural Language Com
munication Between Man and Machine," Comm. 
ACM, vol. 9, pp. 36-45 (Jan. 1966). 

14. D. T. Ross and C. G. Feldman, "Computer
Aided Design," Project MAC Progress Report II, 
July 1964-65, MIT, 1966. 

15. J. Katzenelson, "AED-NET: Simulator for 
Nonlinear Networks," Proceedings of the IEEE (to 
be published in 1966). 



MAN-MACHINE COMMUNICATION IN ON-LINE MATHEMATICAL ANALYSIS 477 

16. M. M. Kessler, "The M.I.T. Technical Infor
mation Project," Physics Today, Mar. 1965, p.28. 

17. C. Levinthal, "Molecular Model Building by 
Computer," Sci. Am., June 1966, p. 42. 

18. J. A. Swets and W. Feurzeig, "Computer
Aided Instruction," Science, vol. 150, p. 572 (Oct. 
29, 1965). 

19. J. C. R. Licklider, "Man-Computer Partner
ship," Int. Sci. and Tech., May 1965, p. 18. 

20. The Michigan Algorithm Decoder (MAD) 
Manual, University of Michigan Computation Cen
ter, Ann Arbor, Mich., Oct. 1965 and previous eds. 

21. J. E. Ward, "Display Systems Research," 
Project MAC Report: Progress to July 1964, MIT, 
1965. 





THE CHECK PAYMENT AND RECONCILIATION PROGRAM 
OF THE U. S. TREASURY: PRESENT STATUS AND 

FUTURE PROSPECTS 

George F. Stickney 

Department of the Treasury, Washington, D. C. 

INTRODUCTION 

On October 14, 1955, the Secretary of the Treas
ury, the Comptroller General of the United States, 
and the Director of the Bureau of the Budget, jointly 
announced the adoption of new procedures involv
ing the use of electronic data processing equipment, 
for the "payment" and "reconciliation" of the 350 
million checks drawn annually by over 2,300 indi
vidual government disbursing officers against the 
Treasurer of the United States. They announced that 
they expected these new procedures to save the 
government $1.75 million in administrative costs 
annually and that further decreased costs of about 
$500,000 could result in the Federal Reserve Banks. 

Actually, adoption of the new system resulted in 
an annual savings of about $4 million and involved 
a reduction of about 800 employees. In testifying on 
the appropriation for the Office of the Treasurer of 
the United States before the Subcommittee of the 
Committee on Appropriations, House of Representa
tives, in March 1966, Secretary Fowler said: 

Fiscal year 1967 will mark the 10th anniversary 
of the use of electronic data processing equipment 
by that office in support of its check handling 
activities. By the end of this 10-year period, the 
use of that equipment will have saved the Govern
ment over $30 million. Fiscal year 1967 will also 
mark the full recovery of the capital investment 
expended in prior years for the purchase of e1ec
tronic equipment. Savings resulting from owner-

479 

ship rather than leasing will then equal the cost of 
the equipment. 

When this equipment was installed in fiscal year 
1957, the annual check volume was 363 million; in 
1967 a check volume of 522 million is expected. 
The same equipment used to handle the 522 mil
lion checks will also be used to process an esti
mated 210 million postal money orders for the 
Post Office Department on a reimbursable basis. 

There is attached as Appendix B a synopsis and 
cost analysis of the EDP program in the Office of the 
Treasurer, U. S. This information was furnished the 
Appropriations Subcommittee of the House of Rep
resentatives on March 3, 1966, at its request. 

DEFINITION OF PAYMENT AND 
RECONCILIATION 

"Payment" and "reconciliation" of checks involve 
control processes with which almost everyone is 
familiar. Everyone who has a checking account at a 
bank understands that the bank "pays" the checks 
drawn by him by charging them against his account. 
He knows further that in this "paying" process the 
bank must set up controls to avoid, among other 
things "paying" checks: (1) which do not contain an 
authorized signature, which contain evidence of al
teration, or are otherwise improperly drawn; (2) 
when the bank has previously been supplied with a 
"stop-payment" notice; and (3) when there is an 
insufficient balance in the drawer's account. 



480 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

The holder of the checking account is also quite 
familiar with the operation of "reconciliation" of the 
checks drawn by him with the checks "paid" by the 
bank and returned to him with his statements of ac
count. He knows he must effect a proof of the paid 
checks with his issue records and that he must de
velop the amount of outstanding checks in order to 
reconcile his balance with that shown by the bank 
statement. 

The processes of "payment" and "reconciliation" 
of government checks are basically the same as these 
simple processes. Therefore, a study of the basic 
features of the program for use of electronic data 
processing in this area provides a rather unique op.,. 
portunity of exploring the implications of these ad
vanced techniques in terms of application to simple 
and widely understood control processes. Such a 
study should bring out the fact that even the simplest 
of procedures must be completely "re-thought" in 
terms of their objectives, as distinguished from exist
ing routines, to provide a basis for application of 
electronic data processing. Of further interest will be 
the great amount of research and study which is in
volved in this "re-thinking" process and in the devel
opment and installation of the electronic procedures 
to meet established objectives. The organizational 
impact which results from the adaptation of these 
advanced techniques to even these simple processes 
will be another matter of special interest. The effect 
of the installation of these new procedures on tradi
tional concepts of auditing and internal control will 
also be discussed in this paper. Finally, there is dis
cussed also very briefly the future prospects of a 
checkless-no-money-economy. 

GENERAL OUTLINE OF PREVIOUS 
PROCEDURES 

There is no fundamental difference between the 
functions of "payment" and "reconciliation" of 
checks in the Federal government and commercial 
practice. It seems necessary, however, to provide a 
general outline of the areas of responsibility involved 
in the government's disbursing processes so that such 
similarity can be recognized in terms of the orga
nizational structure of the Federal government. 

The outline, which is included as Appendix A, is 
intended only to provide general background with 
respect to the basic processes, and related alignments 
of responsibility. It does not deal with many different 
procedures which cover various special problems in 
this general area. 

SUMMARY OF PRESENT SYSTEM 

The government now issues an average of two 
million checks daily. The checks are payable at 
Washington, D. C. The payment and reconciliation 
functions are performed through the use of an elec
tronic system composed of one large transistorized 
computer, a smaller auxiliary-type computer, and a 
battery of card-to-tape (specially designed) con
verters, which are operated off line. 

Each disbursing officer is required to furnish either 
listings or reels of magnetic tape of all checks writ
ten. These listings or reels of tape, which contain the 
detailed information on each check plus certain 
block totals,are submitted at least monthly directly 
to the Treasurer of the United States and subsequent
ly are used for reconciliation. 

Following encashment of a check by the payee, it 
is deposited sooner or later in a commercial bank. 
The bank will honor the check after proper exam
ination and then will apply to its cognizant Federal 
Reserve Bank for the reimbursement, which usually 
takes the form of a credit to the bank's reserve ac
count. The Federal Reserve Bank then applies to the 
Treasurer of the United States for reimbursement of 
the amount which it has credited to the commercial 
bank. When the Treasurer has electronically exam
ined the check to determine that it bears an author
ized disbursing officer's symbol and serial number 
and that there is not a stop-payment notice against 
it, the check is considered "paid." Checks are re
ceived in batches of about 1,000 checks, accom
panied by detailed listings. 

Card-to-tape conversion: 

The first step in machine processing consists of 
the following operations: 

a. A front-end audit is done on each 
batch. 

b. Double punch, blank column and other 
error checks are separated. 

c. A record on magnetic tape is written 
for each accepted check. 

d. A locator number is printed on each 
check, which is also incorporated into 
the tape record. 

The purpose of the front-end audit is to establish 
that the total dollar amount of the checks in each 
batch corresponds to the charges in the transmittal 
letter. Imperfectly punched checks are not acceptable 



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 481 

to the system. The converter will route these checks 
into a separate pocket and not write them on tape. 
Later on, replacement cards are key-punched for 
such items, after which they are re-entered. 

Checks arrive in random sequence and a batch 
may contain checks from many disbursing offices. It 
is necessary that the tape records be sorted in se
quence by disbursing officer's symbol and serial num
ber which eliminates the necessity of physically sort
ing the checks. It is essential, however, to maintain 
physical access to all checks so that any check can 
be located and examined for signature, endorsement, 
etc., upon demand. The converter prints a consecu
tive "locator" number on the face of each check and 
simultaneously writes the same number as part of 
the tape record. The checks are then physically filed 
in locator number sequence having been handled 
only once. When the tape records are sorted by dis
bursing officer's symbol and serial number, the lo
cator number for each check is carried along. Thus, 
when it is necessary to make a physical examination 
of a check, the check record on tape can be easily 
located in its logical sequence by disbursing officer's 
symbol and serial number and it will show the lo
cator number which will pinpoint the location of the 
check in the file. 

Card-to-tape converters are also used, incidentally, 
to enter all the other types of transactions, such as 
issue information and stop payment notices, that are 
required by the system. Each item bears a transaction 
code for the computer to use in identifying the type 
of record. 

Computer functions: 

After operations are completed on the converter, 
the check records are ready for processing on the 
computer. The following major steps are essential in 
accomplishing the three objectives of payment and 
stop payment, reconciliation, and check status re
porting: 

a. Balance and Condense 
b. Sort 
c. Pay and Stop Payment 
d. Detailed File Maintenance 
e. Reconciliation 

Balance and Condense is a preparatory run which 
normally involves processing a group of 14 to 18 
converter reels. Further "grouping" is accomplished 
during this run, which is designed to reduce the 
amount of tape handled without reducing the amount 
of information. There is still process time left over, 

and this time is used to do some initial sorting, in 
preparation for the next run. 

Sort is a run which completes the operation of 
placing the records in sequence by disbursing officer's 
symbol and serial number. Normally, the Balance 
and Condense Run and the Sort Run are performed 
twice daily, with the number of transactions proc
essed ranging between 1.6 and 2 million. 

Pay and Stop Payment is the daily ledger mainte
nance run. A master file is updated which contains a 
history record for each disbursing officer, showing 
the disbursing officer's symbol and authorized range 
of check numbers. The master file also contains all 
stop-payment notices which are active. Checks from 
the Sort run are matched against this master file and 
are either paid, intercepted by a stop payment, or 
rejected for unauthorized disbursing officer's symbol 
or range of serial numbers. Paid checks are written 
out on another tape for use in subsequent runs. Un
accepted checks are written out on a separate tape 
for analysis. When a stop payment has intercepted a 
check, the event is recorded on a "print" tape. New 
stop payments enter the system in the same manner 
as checks and are placed in proper sequence on the 
master file. They are also sent forward with the ac
cepted checks to search the detail file in order to 
determine whether the check was paid prior to re
ceipt of the stop payment. 

During the Pay and Stop Pay run, the computer 
starts to collect and organize information for use in 
controlling reconciliation. The decision of when and 
how to reconcile is a fairly complicated one, and a 
good decision invariably involves a compromise. 
Treasury has adopted the management by exception 
technique of reconciling by blocks of checks, and 
only examining individual checks or issue records 
when the blocks fail to reconcile. This technique has 
proven to be a highly efficient and economical meth
od of audit control. In order to use this technique, 
however, it is necessary to strike a balance between 
two opposing forces. On one hand, it is highly desir
able to reconcile a block as soon as possible, in order 
to detect error conditions early and to minimize the 
amount of information which must be carried in 
tioat. On the other hand, it is desirable to postpone 
reconciliation of a block to allow time for the indi
vidual checks to arrive. Otherwise, the number of 
checks which are still outstanding at the time of 
reconciliation would be unreasonably large and the 
system would defeat itself. A great deal of thought 
and statistical analysis have been devoted to this 
question. 



482 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

In general, the factors governing reconciliation 
are: 

a. The elapsed time since the first check 
was filed in the block. 

b. The number of checks in the block 
which have been received. 

c. The relationship between total pay
ments and total issues. 

Even though reconciliation is performed on a 
block level, it is still necessary to maintain a com
plete record of individual checks, so that they may 
be located and examined in the event that a block 
fails to reconcile. During the first month or so fol
lowing the issuance of a block of checks, the rate of 
arrival is quite high, and it is logical to maintain the 
detailed records right in the system. Sooner or later, 
a point is reached where most of the checks are in 
and it may take months or even years for the remain
ing few to get cashed and presented for payment. At 
this point, it makes more sense to remove from the 
system and print the records of the checks which 
have arrived, while maintaining in the system records 
of only those few checks which are still outstanding, 
and a skeleton record which may be used to identify 
the listings upon which the checks were printed. 

An edit tape is prepared during the Pay and Stop 
Pay run which is later used in conjunction with an 
auxiliary computer/printer system to produce vari
ous accounting reports reflecting the scope of the 
day's business. 

Detail File Maintenance covers one-fifth of the 
total file on a daily basis. As previously stated, checks 
which are found to be acceptable update the Pay and 
Stop Pay Master File and are recorded on an output 
transaction file which is divided into five segments. 
The reason for performing this segmentation is that 
the Treasurer's Detail File Maintenance operations 
are cycled in such away that one-fifth of the files are 
serviced each working day, with the entire file being 
serviced every five days. 

Corresponding output transaction file segments of 
paid checks and related transactions from each of the 
five preceding working days are merged into a single 
sequence, in order by disbursing officer's account and 
check serial number. This combined segment, repre
senting a week's accumulation of paid checks for the 
accounts encompassed in one particular fifth of the 
file, is now ready for posting to the corresponding 
segment of the detail file. Each segment of the detail 
file is quite large, in that it contains data for about 40 
to 50 million checks which have been paid but have 

not yet been reconciled, at any given time. Since the 
basic purpose of the file is to show which checks have 
arrived and where they have been physically filed, the 
information carried for each check is the locator 
number which was assigned back in the card-to-tape 
conversion operation. Each check which has arrived 
will have a locator number stored in this file. By the 
same token, the absence of a locator number for any 
given check number is proof that the check itself has 
not yet arrived. 

In order to conserve space on tape, a technique 
was developed for storing all this information with
out having to record the serial numbers for each 
check. For each group or block of 100 checks, the 
serial number of the block alone will be shown; the 
locator numbers for the individual checks are placed 
in predetermined positions during the posting process 
in such a way that when the record is eventually 
printed on a matrix or grid type of form paper, the 
locator number for any given check may readily be 
determined by reference to the matrix coordinates. 
Before the locator number of any check is stored or 
posted to the detail file, however, the predetermined 
position is examined to see if a locator number is 
already there, in which case a duplicate check condi
tion has been discovered, and the computer will 
branch into another routine to initiate an investiga
tion. 

The printout, which is eventually made for all 
blocks, also contains line and column totals of 
amounts which will assist a clerk in tracking down 
out -of -balance conditions. 

The technique which has been described consid
erably reduces the size of the file since the serial 
number for each check can be deduced and need 
not be recorded. The ratio of condensation is 30 to 
10.1. 

Reconciliation is performed for each block of 
checks. When any given block of checks is "flushed 
out" of the detail file (for later printing on form 
paper), each locator number "pocket" is examined 
and an "outstanding check" serial number is gen
erated for each position which is blank. These out
standing serial numbers, along with the block totals, 
are recorded on an output reel of magnetic tape 
which is used later to update an Outstanding Master 
file. In subsequent weeks, when any of these out
standing checks arrive, they are processed through 
the Pay and Stop Pay run and the Detail File Main
tenance run. They pass through the latter run and 
are written on an output tape which will be run 
against the file of outstanding numbers. There, they 



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 483 

will match up with previous outstanding serial num
bers, thereby reducing the number of items carried 
in the system as "outstanding." 

When the age of the block indicates that reconcili
ation is imminent, the computer is programmed to 
cause the remaining outstanding check serial num
bers, in the case of non-tape accounts, to be punched 
out on mark-sense type punch cards. These cards 
are routed to a reconciliation clerk who has on file 
the original issue list submitted by the disbursing 
officer. This issue list contains the check serial num
ber and amount for each check plus an amount total 
for each block. Each punch card is marked with the 
appropriate amount and this amount is subsequently 
automatically punched into the card. Such cards, now 
completed as to outstanding amounts, are converted 
to magnetic tape and are then reintroduced into the 
system. (The preceding steps are unnecessary of 
course for the "tape-accounts," as the amounts of 
outstanding items are preserved on tape as furnished 
by disbursing officer.) This technique has not only 
made it possible to reconcile each block of work in 
the system automatically, reporting out for investiga
tion only those few blocks found to be out of balance, 
it also furnishes the advantage of future protection by 
immediately disclosing any straggler check received 

that has been altered or raised in amount and which 
might otherwise remain undetected until such time as 
the block became overpaid. 

During the entire process, amount totals at various 
levels and other accounting controls are continuously 
generated and compared to assure complete audit 
protection of the system. 

SIGNIFICANT TECHNIQUES 

In retrospect, the new system embodied some sig
nificant techniques which came about by "re-think
ing" some of the procedures previously followed in 
terms of their objectives. 

File locator number: 

Probably the most significant technique in the new 
system is the file locator number shown in Fig. 1. 
This is a progressive number and is printed on each 
paid check and added to tape record by the card-to
tape converter. It may be viewed as the second serial 
number. This technique permits us to handle the 
checks only once and eliminates the necessity for 
sorting the documents by symbol and serial number. 
Under previous procedures they were handled 15 to 

FILE LOCATOR 
NUMBERS 

CITY, STATE No.OO,OOO,OOO 
628 7656640 SYMBOL 0000 

~_ID111f tIJt 1nitrb Jta1m 19~~l 

~~~ 
~~~(,~ . 

DRAWN fDRABOYE OBJECT ___________________________________ I 

Figure 1. File locator numbers. 



484 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

20 times during the payment and reconciliation func
tions. 

Elimination of sorting checks: 

Historically speaking, it was always necessary un
der previous procedure to physically sort paid checks 
at least in order by disbursing officer to obtain the 
total amount of payments to be posted to the draw
er's account. In view of the large volume of govern
ment checks, particularly in some disbursing ac
counts, it was necessary to further arrange the paid 
checks for each drawer in serial number sequence. 
The arrangement in serial number sequence was re
quired to facilitate reconciliation of paid checks with 
issue records and to provide a basis to locate paid 
checks subject to claim of non-receipt by the payee. 

Each working day about 2,000 claims (stop pay
ments) are received which require an examination 
of the subject check (if previously paid) to deter
mine whether an investigation of forgery is to be 
made by the Secret Service. 

Again the use of the file locator number eliminated 
the necessity for sorting paid checks in sequence by 
drawer's account and check serial number which 
represents 12 digits of numerical information for 

each record. It is interesting to note that at the time 
of conversion in 1956 there were more than 150 
numerical card sorters used for this purpose. 

Construction of master file: 

The master file of paid checks on tape has been 
designed to record each paid check in a matrix for
mat which is illustrated by a sample print out on 
Fig. 2. The "matrix" permits reduction of about 66 
percent of the numerical digits comprising each paid 
check record obtained from the card-to-tape con
version. More specifically, originally each paid check 
record is represented by 30 digits of numerical in
formation. When filed in the (matrix) master file of 
paid checks each record requires an average of 10 
plus numerical digits. 

One will observe that what has been accomplished 
is the elimination of repeating the - ( 1) disbursing 
officer's account symbol, (2) check serial number, 
and (3) individual amount. Again, the file locator 
number, which is recorded in prepositioned spaces 
on the master tape depending on the check serial 
number, is the factor which permits this substantial 
reduction in the number of required digits of data. 

In brief, the file locator number technique is un-

FILE LOCATOR 
NUMBERS 

STATEMENT 

OATE ____ _ 

LIST NO. 

Figure 2. Printout of master file matrix. 



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 485 

doubtedly the most significant factor in the entire 
process and its use has been the major factor in 
realizing very substantial economies in operations. 

EFFECT ON EMPLOYMENT 

Probably no single change in procedure involving 
a simple repetitive operation ever had as large an 
impact on organization and employment in the Fed
eral government as the introduction of an electronic 
data processing system for the payment and recon
ciliation of checks. Once the recommendation was 
approved to use the electronic data processing 
method, our problems in personnel became very real. 

More than 50 percent (net) of personnel re
quired under previous procedures was eliminated. 
The new function required testing, selecting, and 
training of employees for the new system. In order 
to place the personnel, whose services were not re
quired under the new plan of operation, a program 
of testing and retraining employees for other types 
of employment was carried out over a period of 
more than a year. 

Among many questions which faced us, were
How were we to obtain qualified programmers and 
console operators? Where would we relocate the 
majority of our people whose positions were being 
abolished by the installation of the electronic data 
processing equipment? In the event we could not 
produce sufficient qualified programmers, to what 
sources would we go? To what extent should we go 
in attempting to train some of our people in other 
lines of work? What was to be an adequate rate of 
pay for programmers and operators? You must bear 
in mind that until this time there had been no posi
tive reason for us to be concerned with the potential 
of our employees in other than non-technical types 
of work. A great many of our people had been with 
us since W orId War I and over the years had ad
vanced to higher graded clerical and administrative 
types of positions which did not require, in most 
instances, formal education beyond high school nor 
aptitude for scientific type positions. Briefly, they 
composed the nucleus of dependable public servants 
who were dedicated to the performance of their jobs 
in an efficient manner. 

Our first order of business was to determine who 
of our employees were considered potential pro
grammers and console operators. By memorandum, 
an invitation was made to employees in the Check 
Payment Division of the Treasurer's Office and the 

Check Reconciliation Branch of the General Ac
counting Office to qualify for training as program
mers and console operators. A battery of aptitude 
tests which consisted of arithmetic reasoning, asso
ciation of symbols, etc., was administered to 82 em
ployees of the Check Payment Division and 130 em
ployees of the General Accounting Office. Of this 
group, 24 (8 from Treasurer's Office, 16 from Gen
eral Accounting Office) were selected for training. 
Since we were unable to obtain a sufficient number 
of employees to send to Programming School from 
the immediate areas affected by the conversion pro
gram, an invitation was extended to employees in 
other areas of the Treasurer's Office and the General 
Accounting Office to take the aptitude test. 95 addi
tional employees of the Treasurer's Office took the 
test, 7 being selected for training. 37 employees of 
the General Accounting Office took the aptitude test 
and 10 were selected for training. At this point, 
supervisory evaluations were obtained on each em
ployee who passed the aptitude test which developed 
such information as their dependability, attitude, 
ability to work under constant pressure, ability to 
accept frequent changes in assignments, etc. 

Personal interviews were held between applicants 
and operating officials during which the applicants 
were apprised of the difficulties under which they 
would work, the rigid deadlines, strenuous training 
sessions, prolonged and indefinite periods of over
time, etc., so that those who were inclined would 
have an opportunity to withdraw from competition. 
Arrangements for the training were made with the 
manufacturer of the data processing equipment to 
give a four-to-six week intensive course in the funda
mentals of programming. Two identical courses were 
given to the selected employees, 20 employees at
tending the first course and 21 the second. Of the 
41 participants, 18 made acceptable marks. Weekly 
progress reports were furnished by the instructors 
indicating those employees who should be withdrawn 
because of an inability to grasp the fundamentals of 
programming, those employees who should be con
tinued in the programming field, and those who 
would better serve in the capacity of console opera
tors. Upon completion of their intensive training the 
successful candidates were immediately assigned to 
develop phases of basic programs including the in
troduction of their programs into the electronic data 
processing system so that as many weaknesses as 
possible would be eliminated before the conversion 
was effected. 



486 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

During the period when our programmers and 
console operators were being trained by the manu
facturer, we were concerned with the problem of 
establishing the organization, developing job de
scriptions and classifying the positions, which in ef
fect determines the salaries to be paid for specific 
duties. Since the Treasurer's Office was a pioneer in 
this field in Government, we actually had very little 
to work with in the way of precedents for determin
ing salaries. For the benefit of those not familiar 
with personnel regulations pertaining to Federal 
Government, it should be explained that in most 
series or categories such as accountants, stenogra
phers, tabulating equipment operators, claims ex
aminers, etc., guide lines known as Classification 
Standards are promulgated by the Civil Service Com
mission. These standards which define responsibili
ties of work at each grade level are used as a means 
of evaluating the duties of a particular position under 
consideration in order to arrive at a proper grade 
classification. 

At the time we were developing the job descrip
tions for our programmers and console operators 
there were no Class Standards for the series to which 
we would allocate these positions. This greatly in
creased the problem because we were entering the 
area about which we knew relatively little and, there
fore, were hampered in our attempt to be objective in 
determining grade values. Our classifiers visited one 
or two existing small installations but received little 
assistance because the programming in those instal
lations was being performed by operating officials, 
which was not in our plan. We evaluated the quality 
of the duties against the quality of comparable duties 
in other series such as Methods Examiners, for which 
standards existed, and determined what we consid
ered to be adequate grade evaluations for our posi
tions. Interestingly enough, the Civil Service Com
mission subsequently has issued Class Standards for 
these series and to a great extent incorporated the 
duties of our positions as typical at the various grade 
levels to which we assigned them. Our job descrip
tions have channeled into about every Government 
agency which either plans to install electronic data 
processing equipment or has such an operation now 
in effect. 

In the latter part of 1956, as the need for addi
tional qualified employees developed in the electronic 
data processing operations, invitations were issued 
again to all employees of the Office of the Treasurer 
who were interested in being considered for posi-

tions in electronic operations. Seventy-eight em
ployees took the aptitude tests and 16 were selected 
to attend four weeks of formal training. Upon com
pletion of this training, 7 were reassigned to elec
tronic operations. 

In the middle of 1958, a further attempt was made 
to determine those employees in the Office of the 
Treasurer who were interested in receiving training 
in electronic operations. Sixty employees made ap
plication, 48 were given an aptitude test, 12 were 
considered on the basis of scores made in previous 
tests and a total of 20 was selected for training. Six 
employees made acceptable grades and were de
tailed to attend additional courses in programming. 

Briefly, in the Treasury, 303 employees were 
tested for aptitude, 51 were selected for training and 
15 successfully completed instructions and were as
signed to electronic operations. Of the General Ac
counting Office personnel involved, 167 employees 
were tested, 26 selected for training, and 8 finally 
assigned to electronic operations. 

In addition to the aptitude tests, it was mentioned 
that a supervisory evaluation was obtained on each 
employee tested; however, the aptitude test was the 
principal guide for selecting candidates to attend the 
classes of instruction in programming. Final selec
tions of employees to become regular programmers 
or console operators were made on the additional 
basis of marks achieved in Programming School and 
satisfactory performance of programming duties on 
subsequent detail assignments. 

Generally speaking, the use of the aptitude test as 
the main guide for selecting employees to receive 
training in electronic programming has been satis
factory. Our experience establishes the fact, however, 
that final selection of the employee for regular elec
tronic operations should not be made until the em
ployee has demonstrated acceptable completion of 
programming classes and progress while detailed to 
actual programming work. It is interesting to note 
that, based on our experience, a person who passes 
the aptitude test with an acceptable rating and has 
a good background in conventional tabulating op
erations appears to comprehend a little more quickly 
the problems inherent in developing computer pro
grams. Another interesting fact is that a number of 
employees considered by their former supervisors as 
doing only a satisfactory job are among the best 
programmers we have developed. 

In short, the experience of the Treasury in this 
matter leads to the conclusion that employees with 



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 487 

an aptitude for programming as indicated by ac
ceptable scores achieved in this aptitude test, and 
who make acceptable marks in formal classes in pro
gramming and who show sufficient interest and ef
fort on their part, have an excellent chance of be
coming good electronic personnel. 

Probably, the most difficult task we experienced 
was in translating or defining the requirements of the 
integrated check payment and reconciliation process 
to the personnel selected to program the job. It 
pointed up the necessity for systems people to de
scribe proposed processes in much greater detail 
than had ever been required previously for conven
tional type of equipment. 

Again for the benefit of those not familiar with 
Civil Service regulations, we are obliged to work 
within a framework of rules and regulations which 
protect the rights of employees to retention under 
certain conditions. When it is necessary to separate 
employees because of retrenchment, consolidation of 
functions, etc., a Federal agency must observe re
duction-in-force procedures in determining which 
employees are to be released from employment. 
Usually, in private industry when a similar situation 
occurs, employees may be separated on the basis of 
seniority primarily, without regard to the type of ap
pointment, veterans preference, etc. In Federal Serv
ice employees with a non-permanent type of appoint
ment must be separated before non-veterans with 
permanent appointments and veterans with perma
nent appointments. This involves establishing various 
retention categories and within each category deter
mining relative standing by length of service. 

In order to avoid displacing any employees (which 
would necessitate following the procedure outlined 
above), we determined to exhaust every other possi
bility at our command. 

First, we reviewed the files of all our employees 
and categorized them by specializations, i.e., ac
countants, correspondents, typists, clerks, tabulating 
equipment operators, etc., based on past training and 
qualifying experiences. As vacancies occurred within 
the Treasury first consideration was given to those 
qualifying for the specific vacancy. This resulted in 
the reassignment to permanent positions of several 
employees. 

Next, a memorandum was addressed to employees 
in the Check Payment Division in grades GS-1, 2, 
and 3, whose positions were being affected by the 
installation of the electronic system, announcing a 
refresher course in typewriting for employees having 

some basic typing knowledge. The offer for this 
course, conducted on the employee's own time, by 
one of our training assistants, brought in about 50 
applications. Proficiency tests were given and ap
proximately 30 employees were selected to partici
pate in the course. About 26 participants improved 
their typing technique to the point that they passed 
typing examinations and were assigned to positions 
requiring trained typists or where a knowledge of 
typing was of value in the performance of the par
ticular duties. 

Perhaps in a way this conversion was a blessing in 
disguise to some of these people. For a number of 
years they had operated in positions which did not 
require them to use skills long forgotten and at a 
level perhaps below their ability. This training was, 
in effect, a challenge to them to prove what they 
could do and in some instances strengthened their 
self -confidence. There were several cases where, 
because of a lack of urgency, employees continued 
to perform a rather routine uninteresting clerical 
function, all the while within themselves harboring 
a feeling that they were not being used to their full 
capacity. Being faced with the necessity to qualify 
for other positions, their hidden talents came to light 
and resulted in placement in positions for which 
they are well suited. These employees apparently are 
contented in their present assignments. 

As one reviews the pattern of organizational re
lationships and the organizational changes required 
to make possible a system for centralized electronic 
processing of over 500 million checks annually, it 
seems remarkable that it was accomplished. It could 
only have been accomplished by the fullest coopera
tive spirit of the personnel of many organizational 
units. 

ORGANIZATIONAL EFFECTS 

Organization structure is one of the more rigid 
aspects of administration. This is by reason that 
changes in such structure are infrequent in most or
ganizations. However, adoption of an electronic data 
processing system requires basic changes in person
nel and procedure which in turn necessitates change 
in the formal organization structure. Also, substan
tial changes in working relationships between orga
nizational units must be anticipated. This is the les
son we have learned from the adoption of an EDPS 
for the payment and reconciliation of Treasury 
checks. 



488 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Principles covering the payment of checks by the 
Treasurer of the United States: 

From the inception of the joint accounting im
provement program, instituted by the Secretary of 
the Treasury, the Comptroller General of the United 
States, and the Director of the Bureau of the Budget 
in December 1947, one of the major fields of work 
has dealt with simplifying and improving procedures 
and operations relating to government disbursements 
and collections. A major segment in this area con
cerns the issuance, payment and reconciliation of 
more than 500 million checks drawn annually on the 
Treasurer of the United States by more than 2,000 
government disbursing officers. While many im
provements were made in the disbursements and 
collections area during the first few years of the pro
gram, it became apparent at an early date that there 
were real potentials for savings by integrating the 
check reconciliation operations performed by the 
General Accounting Office, as a function of external 
audit, with the payment operations of the Treasurer 
of the United States. This contemplated a reorganiza
tion of the payment function of the Office of the 
Treasurer of the United States in accordance with 
the following principles: 

a. It should be a function of accounting 
and internal control on the part of 
the Treasury Department, which is 
charged with disbursement and cus
tody of the public funds, to effect a 
proof of checks paid in relation to the 
checks which are issued. 

b. The General Accounting Office, from 
the standpoint of its responsibilities in 
connection with accounting systems 
and independent audit, and the Treas
ury Department, from the standpoint 
of its operating responsibilities, should 
be in complete agreement on the pro
cedures necessary to accomplish such 
proof of checks paid and the incor
poration of these procedures into the 
accounting system of the Treasury De
partment as an integral part thereof. 

c. In the light of a revised system of ac
counting and internal control by the 
Treasury Department, it should be 
possible to eliminate the detailed rec
onciliation of checking accounts of dis
bursing officers as a function of inde
pendent audit, substituting therefor 

reliance upon the effectiveness of in
ternal control as reviewed in actual 
operation and the furnishing of such 
data as may be required for compre
hensive audit purposes. 

Centralization versus decentralization: 

It is significant to record that while the study for 
installation of the new system was being conducted 
the predominant emphasis of the joint program to 
improve the accounting in the Federal Government 
was one of decentralization of accounting for man
agement. At first glance it might appear that the 
centralization of check payment reconciliation op
erations was inconsistent with this general policy and 
trend. It might be, and has been, argued that recon
ciliation of disbursing accounts, which involves com
parison of paid checks with issue records, is a basic 
element of internal control of the agency responsible 
for making the disbursements. Hence, it could be 
contended that paid checks should be sent back by 
the Treasurer of the United States (the government 
banker) to the agencies responsible for making dis
bursements for reconciliation of their disbursing ac
counts as a part of the internal control. Fundamental 
analysis of the problem, however, disclosed that the 
clerical work involved in handling the processing of 
paid checks at these diverse points would contribute 
nothing of substance to the real objectives for de
centralizing accounting for management needs. On 
the contrary, by injecting necessity for the clerical 
effort involved, it would tend to becloud the real 
purpose of decentralization of accounting which 
should emphasize providing management, as a basis 
for decisions, with useful and reliable data with re
gard to the programmed and actual costs of the op
erations for which it is responsible and the effective
ness with which assigned responsibilities are being 
carried out. 

Thus, the centralization of these vast clerical proc
esses involved in the payment and reconciliation of 
Government checks cannot in any way be regarded 
as incompatible or inconsistent with the established 
policy and objective of decentralization of accounting 
for management. On the contrary, it has facilitated 
real decentralization in the light of its true purposes. 

Impact on organizational structure: 

The payment and reconciliation of checks directly 
involved the Treasury Department, the General Ac
counting Office and the Federal Reserve Banks. 



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 489 

About 1,575 persons were directly involved in prior 
operations for payment and reconciliation of checks 
in these agencies. Of this number about 1,175 were 
engaged in operations pertaining to the "payment" of 
checks in the Treasury Department and Federal Re
serve Banks, and 400 were involved in processes 
pertaining to the "reconciliation" of checks in the 
General Accounting Office. Under the electronic data 
processing system, the processes of "paying" and 
"reconciling" checks were brought together in one 
integrated system in the Treasury Department with a 
reduction of about 50 percent in overall personnel 
requirements. This reduction was accomplished not
withstanding that volume has increased in the past 
decade by more than 60 percent. These data are re
flected in Fig. 3. 

It is significant to point out here that while there 
has thus been, in effect, a transfer of processes from 
the General Accounting Office to the Treasury, there 
has been no real transfer of functions. The General 
Accounting Office continues to audit and settle dis
bursing officers' accounts, based on reconciliations of 
checks paid against checks issued, and other factors. 
It has been, however, relieved of the necessity for 
going through the detailed work involved in recon
ciling individual paid checks against related check 
issue records, etc., since this is performed as one part 
of the integrated electronic payment and reconcilia
tion operation in the Treasury Department. As
surance that adequate controls are built into the 
Treasury system, as a result of cooperative systems 
development work and periodic reviews of proce
dures in operation, provides the basis for eliminating 
the many detailed processes then performed in the 
General Accounting Office in connection with its 
function of auditing and settling disbursing officers' 
accounts. 

It is thus obvious that this change in basic ap
proach to the performance of functions and the re
lated transfer of detailed operations, reduction of 
personnel and general change in procedure has had a 
very significant organizational impact on both the 
General Accounting Office and the Treasury Depart
ment. In the General Accounting Office it resulted in 
the complete elimination of large-scale mechanical 
operations (on conventional punched card equip
ment) for reconciling card checks as well as the 
clerical processing involved in reconciling paper 
checks. In the Treasurer's Office, where the new 
integrated operations were established, a complete 
reorganization was involved. In the Check Payment 
Division of the Office of the Treasurer of the United 

States, the Bookkeeping Branch with 15 employees 
was eliminated; the Card Check Branch with 49 em
ployees was eliminated; the Electric Accounting 
Branch was increased from 15 to 50 employees; the 
Examining Branch with 61 employees was elimi
nated; The Proving Branch with 69 employees was 
eliminated; the Reconciliation Branch with 7 em
ployees was eliminated; the Sorting Branch with 44 
employees was eliminated; and the Statement Branch 
with 82 employees was eliminated. However, several 
new branches were formed: Receiving Branch; Elec
tronic Branch (Data Processing); a new Reconcilia
tion Branch; Files Branch, Control Branch, and a 
Messenger Branch. 

The organizational influence extended far beyond 
the Treasury Department and the General Account
ing Office. For example, provision had to be made 
for significant and fundamental changes in the proc
essing of government checks by the 12 Federal Re
serve Banks and 24 branches. These changes were all 
in the general direction of simplification. Among 
other things, the new procedures made it possible to 
eliminate (1) transfers of various checks from one 
Federal Reserve Bank to another; (2) the sorting and 
arranging of checks according to disbursing accounts, 
serial number, etc.; and (3) the preparation of state
ments (including listings of paid checks) for various 
disbursing accounts. These changes stemmed from 
the fact that under the new procedures all checks 
are "paid" by the Treasurer of the United States at 
the central point, whereas under previous procedures 
most of them were "paid" by designated Federal 
Reserve Banks acting as agents for the Treasurer. 
This centralization of "payment" was made possible 
by use of the electronic data processing procedures 
for an integrated payment and reconciliation opera
tion and would not have been feasible, because of the 
large volume involved, with techniques used in the 
late '40s. 

Reorganization of procedures for the issuance of 
checks: 

In order to install the new system, it was also 
necessary to deal with the problem of integrating the 
procedures for preparing the checks with the basic 
changes that had been worked out in the processing 
of the checks after they had been disbursed. While 
the procedural changes in this area were not great, 
they involved the procedures for 2,500 disbursing 
accounts, which are subject to the administrative 
control of about 75 Federal agencies. These include 



490 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

OFFICE OF THE TREASURER, U. S. 
PAYMENT AND RECONCILIATION OF CHECKS 

AND 

I 
HUNDREDS 

1.597~ 
16~--~~=---+-~ 

I 

PROCESSING CHECK CLAIMS 

I I I 
KEY 

EMPLOYEES (IN HUNDREDS) 

CHECKS PAID (IN MILLIONS) 

I 

I I I 
14 ~~----I----+--+---+----+---+----+---5~'118"', 5 39,000 

I 
MILLIONS 

~-+---+------t 650 

,-+----1----1 550 

~_V 
-----..",..,.....-

12~~ __ ~ __ ~ __ --+---+--4---4---~~4---4--4---4---4---~450 

/~ 
~--+--.....,... 

10~~ __ ~~~~~ __ -+-_~i_~--~_~--~--~--~--~--~~~350 .,.cy 
316,993,000 

776 

8~~ __ ~ __ ~ __ --~--~--.r-.r--~--~--4---~ ,----+-----1 250 

* ESTIMATED 

Figure 3. Personnel and volume data. 



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 491 

such far-flung activities as the disbursing accounts of 
Navy officers aboard ships, and Government officers 
drawing checks on the Treasurer of the United States 
in foreign countries. 

A key problem in synchronizing check issuing 
procedures with the revamped procedures for proc
essing checks after they have been disbursed relates 
to the procedures of those disbursing officers who 
had not been issuing checks in punched card form. 
For over four years, representatives of the joint ac
counting improvement program of the three central 
fiscal agencies in consultation with representatives of 
major disbursing agencies where checks were still 
being issued in paper form-the Department of De
fense, the Post Office Department, and certain others 
-had been working on this problem from two 
points of view: first, to convert all issuing operations 
where it was feasible from the standpoint of volume 
and other considerations to the issuance of checks 
in fully punched form; secondly, to develop proce
dures which would permit mechanization in the proc
essing of paid checks for those disbursing officers 
where it was impracticable to issue the checks in the 
first instance in fully punched form. 

Very substantial progress was made in the first 
area in bringing about conversion of paper checks 
to punched card checks. Between 1952 and 1955 
an additional volume of about 33 million was con
verted from paper to fully punched card checks. In 
1955 about 12.5 percent of the total number of 
checks issued was still in paper form. Incidentally, 
the cost for "paying" this 12.5 percent of the total 
checks was approximately 63 percent of the total 
appropriation to the Treasurer for "paying" all 
checks. 

It is, of course, obvious that the electronic data 
processing procedures for paying and reconciling 
checks required a solution to the problem of getting 
the remaining 12.5 percent of paper checks into 
punched card form so that they would be compatible 
with the remaining checks. The problem was solved 
with the close cooperation of the Accounting and 
Check Subcommittee of the Federal Reserve System. 
Under the plan which was approved, all disbursing 
officers for whom it was impractical to install proce
dures for preparing checks in fully punched form 
issued a new form of card check which required no 
punching at the point of issue. From the point of 
view of the disbursing officer who issues the check, 
it is inscribed as to payee, amount, etc., as if it were 
a paper check. These checks are, however, pre
punched at the time of manufacture to identify the 

serial number, disbursing office, and other constant 
information. The amounts are punched by Federal 
Reserve Banks when they receive the checks through 
the banking system during the course of their check 
clearance operations. Thus, when the checks are re
ceived at the central facility in the Office of the 
Treasurer of the United States for electronic proc
essing for payment and reconciliation, they are com
pletely compatible with all other punched card 
checks. 

HARDWARE AND SOFTWARE EXPERIENCES 

Early in 1953, the Secretary of the Treasury, the 
Comptroller General of the United States, and the 
Director of the Bureau of the Budget, designated 
representatives to serve as a joint government com
mittee to study the feasibility of utilizing electronic 
equipment for a large accounting operation of the 
Federal government. 

At the outset, the committee devoted its resources 
to making a comprehensive study of operations con
cerning the issuance, payment and reconciliation of 
the government checks with a view to making rec
ommendations regarding: 

1. The use of electronic data processing 
equipment for an integration of the 
check payment and reconciliation 
functions in the operations of Treas
urer of the United States; 

2. The manufacturer whose equipment is 
considered best suited for the proposed 
system; and 

3. A course of action, including a time
table and financial factors. 

The committee filed its report on September 1, 
1955, recommending the use of EDP equipment to 
perform an integrated function of paying and recon
ciling government checks within the Treasury De
partment. The report was approved on October 14, 
1955, and the committee was requested to supervise 
the implementation of the recommended procedures 
with a view of beginning operations on July 1, 1956. 
In this connection, budgetary considerations made it 
desirable to install the recommended system at the 
beginning of a fiscal year. Perhaps it is appropriate 
at the outset of a discussion of our experiences in 
hardware and software to mention the fact that op
erations commenced on August 1, 1956. The delay 
of one month was the result of unforeseen problems 



492 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

involving hardware, training, planning, and many 
other factors which were encountered in the first 
eight or nine months of implementing the program. 

Request for Proposals: 

In the solicitation of proposals, the Fiscal As
sistant Secretary of the Treasury wrote a letter to all 
known manufacturers inviting them to attend a two
day symposium in the fall of 1953. In announcing the 
symposium, he set forth detailed specifications of 
present requirements and requested interested manu
facturers to submit proposals contemplating the use 
of machines and components thereof presently being 
manufactured or under development. Proposals were 
received from the following: 

International Business Machines Corpora
tion 
Radio Corporation of America 
Raytheon Manufacturing Company 
Remington Rand, Incorporated 
Underwood Corporation 

Criteria: 

The committee, with technical advice from repre
sentatives of the National Bureau of Standards and 
the National Security Agency, established the fol
lowing factors as criteria for evaluating proposals 
submitted by manufacturers: 

1. Reliability and efficiency of equipment 
2. Cost of equipment-lease vs. purchase 
3. Direct labor requirements 
4. Cost of supplies (tape, paper, etc.) 
5. Maintenance and service requirements 
6. Building specifications and cost of in

stallation 
7 . Availability of equipment 

Evaluation of proposals: 

Each proposal was analyzed in detail by the com
mittee, with technical advice from representatives of 
the National Bureau of Standards and the National 
Security Agency. Following this detailed analysis, 
the committee met on numerous occasions with rep
resentatives of each manufacturer to discuss in detail 
certain points of procedure. Early in the evaluation 
of the manufacturer's proposals, the committee 
adopted the position that "proprietary interests" 
would not be permitted from any manufacturer. On 

the basis of these discussions, four of the five pro
posals received were amended by the manufacturers 
so that they became practically identical insofar as 
procedural techniques were concerned, although 
varying as to the specific electronic equipment to be 
used. 

Selection: 

The final selection of equipment was narrowed to 
two manufacturers. The proposal of the International 
Business Machines Corporation was built around a 
705 configuration which resulted in an annual sav
ings of about $200,000 below the next highest com
petitor's proposal. Actual tests of live data were 
performed on both types of equipment and the com
mittee was satisfied that from an operating stand
point either system could adequately do the job. This 
type of equipment was selected only after detailed 
evaluation of each of the five proposals received. 

Changeover considerations: 

The original machine procedures for the payment 
and reconciliation of checks which were designed 
around the IBM 705 computer did not differ much 
from those in use today. However, the demands on 
the equipment in time outgrew its capacity and proc
essing was transferred to two newly-installed IBM 
7070 computers. The two major considerations 
which led to this changeover to more powerful equip
ment were: the lack of computer reserve capacity and 
the increasing difficulties being encountered in serv
icing check inquiries which had grown to about 1,600 
daily in the fall of 1960. Three months of the year, 
March through May, the IBM 705 computer was in 
operation three shifts a day, seven days a week, and 
the annual increase in check volume was about 4 
percent. In fiscal 1961 the volume of checks proc
essed was 440 million; in 1962 it ran approximately 
458 million; (in 1966 was 520 million). With the 
IBM 705, the master files had to be split into halves 
because their volume exceeded machine capacity. 
Each half was serviced on alternate weekends and 
thus two weeks might elapse before a report could 
be furnished on the status of a particular check. 

A third consideration was the possibility of savings 
since the estimates for the new equipment indicated 
that rental costs would be somewhat less, despite im
provements in the quality and quantity of output. 
Even if additional costs had been involved, however, 
the first two considerations would probably have led 



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 493 

to a decision to make the change to more powerful 
equipment, provided, of course, the increased costs 
were reasonable in relation to the potential improve
ments. 

In planning for the installation of new computers 
there was one requirement that was paramount: tltere 
could be no cessation of operations during the period 
required for the changeover. Absolute continuity was 
mandatory. It was obvious, therefore, that a different 
physical location would have to be found for the new 
computer system and with the cooperation of the 
General Services Administration this was arranged. 

Programming considerations: 

Past experience in programming for the check 
payment operation prompted a fairly conservative 
approach with respect to the amount of time that 
should be provided for testing and debugging pro
grams for the new equipment. Since final testing 
would involve dealing with large quantities of data, 
and with large master files which would be converted, 
it was felt that not less than three weeks of parallel 
operation should be scheduled for the period imme
diately preceding the contemplated changeover. In 
view of these considerations, sufficient funds were 
budgeted to provide for simultaneous usage of both 
computer systems for a period of several months. It 
is fortunate that this approach was taken, since it is 
now clear that a less conservative one would have 
led to rather serious difficulties. 

At the time the decision was reached to make a 
changeover to more powerful equipment, the com
puter system in operation included several thousand 
reels of magnetic tape, a battery of specialized pe
ripheral equipment and huge master files containing 
live data. It was most important, therefore, that the 
new computer system be compatible with the old 
one, particularly in regard to input and output tape 
requirements. Initially it was decided to update the 
system with an IBM 705, Model 3, which would 
provide urgently needed reserve capacity and at the 
same time afford an opportunity for improved check
claims servicing. Four months later, after about 40 
percent of the programming for the IBM 705, Model 
3, had been completed, the new IBM 7070 was an
nounced. The 7070 is a fixed-word-Iength computer 
in contrast to the variable-word IBM 705 series com
puters. To switch to the IBM 7070 required some 
re-education of the programming staff, systems ana
lysts and a number of the operating personnel. By 
ordering two of the IBM 7070 computers, not only 

could sizable savings be effected but it would be pos
sible to keep workload current by doubling the work
load on one computer if the other were down for 
extensive repair. 

Conversion of programming: 

The check payment and reconciliation operations 
in the Office of the Treasurer require six major pro
grams for the IBM 7070s-none of less than one 
hour duration on the computer-and six major pro
grams for the IBM 1401. Initially programming re
sponsibilities were divided between two lead analysts. 
One assumed control over the three programs 
involving Federal Reserve Bank balances, the clear
ance of checks against the ledger and the stop-pay
ment file, while the other supervised the file mainte
nance operation-the merging and updating of the 
main check file and the updating of the outstanding 
file. The programming effort for the IBM 1401 was 
also equally divided. Due to the fact that system 
analysts and programmers were faced with not one 
but two new computer systems, these responsibilities 
were realigned as soon as the testing stage was 
reached to give supervision of the 7070 programs 
to one and supervision of the 1401 programs to the 
other. 

Program aids provided by the manufacturer 
proved very helpful in the conversion of the previous 
IBM 705 programming. One outstanding example is 
the standard Input-Output-Control-System package 
program, called laCS. This standard program con
tains all of the instructions needed to read and write 
tape records, including: routines for handling errors; 
end-of-file and end-of-job routines; tape-labeling 
routines; and check-point and restart routines. These 
thoroughly-tested instructions comprise about 40 
percent of those required in most large programs and 
may represent as much as 60 to 80 percent of some. 
Their use not only enabled the programming staff to 
devote more time to the other areas but provided a 
standard input and output routine for all program
ming. Standard routines also simplified the console 
operations. 

In the programming conversion, the search for the 
most efficient programs was extremely thorough. 
When two million checks are processed daily, and 
this was a normal volume during the income-tax re
fund period, there is a daily total of 58 million opera
tions. The records are read from tape into the com
puter ten times, processed ten times, and written 
from the computer onto output tape nine times-a 



494 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

total of 58 million operations. If only 144 micro
seconds per operation were saved in each program, 
about $4,800 would be saved yearly. Since each of 
the six major programs has from 4,000 to 8,400 in
structions, the potential for savings was quite sub
stantial. We used symbolic language throughout all 
of our programs. 

Conversion lessons: 

On the whole, the conversion undertaken in the 
Office of the Treasurer of the United States to change 
electronic processing from IBM 705s to IBM 7070s 
and an IBM 1401 was extremely interesting and 
highly satisfying. From the experience gained in this 
undertaking it can be said that anyone concerned 
with the conversion of a computer system would do 
well to consider: 

1. Teaming an inexperienced or newly
trained programmer with an experi
enced programmer. 

2. Giving careful consideration to master
file conversion programs. 

3. Using good personnel on all assign
ments. 

4. Guarding against overeagerness to test 
the new computer. 

5. Allowing the engineers ample time to 
check the equipment thoroughly before 
taking over. 

6. Spending as much time as possible in 
checking programs before actual ma
chine testing is begun. 

7. Planning parallel test· runs to include 
as much volume as possible. 

8. Providing generous allotments of time 
in planning conversion schedules-un
foreseen problems do arise and ma
chine failures on new equipment must 
be expected. 

9. Using packaged programs furnished by 
the computer manufacturer and assign
ing a programmer to familiarize him
self with each-they should become 
experts in order to see that the sys
tems function properly and are cur
rently maintained. 

10. Avoiding undue overtime for any addi
tional programmer-a tired program
mer can cause much damage. 

11. Having the machine testing controlled 
by one person who is made responsible 

for scheduling on a priority basis and 
for coordinating all operations. 

12. Verifying the results of the parallel op
eration in minute detail-overlooking 
a seemingly minor detail may be costly. 

PROCESSING POSTAL MONEY ORDERS 

The Treasurer's electronic data processing facili
ties are also being used to service the Post Office 
Department's money order operations, on a reim
bursable basis. This program involves the use of 
procedures and techniques which are quite similar 
to those described for the check payment and recon
ciliation operation. A major variation, however, is 
that the accounts of some 35,000 postmasters are 
involved, who issue approximately 210 million 
money orders annually. Our review indicates that 
about $750 thousand is being saved on a recurring 
annual basis through implementation of this plan. 

A LOOK INTO THE FUTURE 

I have devoted considerable time to discussing the 
past and present systems for payment and recon
ciliation of government checks. Perhaps a peek into 
the future would be helpful. One might ask "How 
can you improve the present system?" Certainly we 
can't eliminate the one remaining handling. If we 
could, we wouldn't need checks at all. I'm sure you 
all have heard or read about the no check-no cash 
economy-or-the universal credit system. Much al
ready has been written and much much more will be. 
The day may come when we can eliminate or prac
tically eliminate checks. 

Undoubtedly, the technology to develop a univer
sal credit system is available today. Whether such a 
system could be justified from an economic stand
point today or ever is another question. In order to 
explore the question of economic justification, one 
must first determine who among the users stands to 
benefit economically from a universal credit system. 
The users are merchants, banks, and customers. The 
benefit to customers is debatable when compared to 
today's credit system. Sure, it would eliminate the 
necessity for him to write checks, but at the cost of 
immediate loss of cash in his "no check" account at 
his bank. Of course, if the system provided for auto
matic overdraft coverage by the bank at an agreed 
rate of interest, the customer would pay a carrying 
charge (to the bank) for many purchases which are 
interest free to him inasmuch as he now pays by 



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 495 

check some time after he has deposited funds to 
cover such payments. 

It will be contended that the immediate availabil
ity of credit will bring the merchants' prices down 
and the customer will benefit from reduced prices. 
This probably would be true if the system we~e truly 
universal and used by everyone. In other words, all 
merchants would be on a cash basis if immediate 
charge were made to the customer's bank account. 
I would, however, remind you we haven't yet con
sidered the cost for this super network of communi
cations linking millions of input-output gadgets. It 
looks as though customers would not benefit eco
nomically, at least the initial studies do not demon
strate that it would have any immediate economic 
value to customers. 

The other users of such a system are merchants 
and banks. Both of these users have a motivation 
(profit) to the establishment of such a system. How
ever, in the final analysis the customer's desire in the 
matter will prevail. I suggest that he will, at the out
set, have the option to be billed monthly as at present 
or automatically to his bank. Bank billing may be 
daily or periodically. If these basic assumptions are 
correct, it would appear that a universal credit sys
tem will emerge only when the cost of operations is 
not prohibitive. Assuming that a system could be 
devised which would be profitable for the owners, 
the question then is "Who would be the owners?" 
Either banks or merchants or perhaps both. Will 
there be competitive systems similar to those in ex
istence today or will there be a single one? Many 
questions are still unanswered and much more study 
must be given before we see the real beginning of a 
universal credit system. 

Perhaps there may be something more important 
than the profit angle. I have in mind that any such 
study should possibly consider whether the govern
ment should operate such a system with eventual 
ownership passing to the public. I am not advocating 
government ownership. I am merely suggesting that 
consideration be given to such an arrangement. The 
government certainly has a major interest in credit 
and monetary policies of the country. I would sug
gest, in closing, that the establishment of a universal 
credit system will pose a lot of questions and prob
lems with which the government has a concern. 

Regardless of who owns and operates the system 
the initial step is to agree on the method of identifica
tion. The social security number, with the addition 
of a self-checking digit assigned at the time of birth, 
seems to me a basic requirement if we are ever going 

to have a no check-no cash economy. If this step is 
not forthcoming, then I fear we will continue to ro
mance with the idea. Both within and outside the 
government, this idea will continue to require study, 
research and development. 

APPENDIX A 

GENERAL OUTLINE OF PREVIOUS 
PROCEDURES 

The following outline is a generalization of the 
principles observed in the Federal Government prior 
to adoption of the electronic system for the payment 
and reconciliation of Government checks. 

The Treasurer of the U. S.: 

In the Federal Government, the Treasurer of the 
United States occupies the same relative position in 
relation to an authorized government disbursing of
ficer as the bank does, to the holder of a commercial 
or personal checking account in the business world. 
Checking accounts are established on the books of 
the Treasurer of the United States for those indi
viduals who are authorized by their respective gov
ernment agencies to make disbursements of govern
ment funds. Checks drawn by these individuals are 
"paid" only after they have been examined by the 
Treasurer's Office and charged against the appro
priate checking account on substantially the same 
basis as checks paid by a commercial bank. 

Issuance of checks: 

Checks drawn against the Treasurer of the United 
States can only be issued by authorized "disbursing 
officers." For the greater majority of civilian agencies 
the issuance of checks is performed by another or
ganizational unit of the Treasury Department-the 
Division of Disbursement. This Division maintains 
regional offices throughout the country where checks 
are issued on the basis of certified vouchers sub
mitted by the agencies which incurred the obligations 
for which the payments are made. In the military de
partments and certain civilian agencies the disbursing 
officers are attached to the operating agencies which 
incur the liabilities which give rise to the payments. 
Such disbursing officers are located throughout the 
world but for each a checking account is established 
on the books of the Treasurer of the United States 
and all checks drawn by such officers are ultimately 



496 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

charged against such accounts in the process of "pay
ment." In all, about 2,400 checking accounts are 
maintained on the books of the Treasurer of the 
United States. 

Each authorized disbursing officer is provided with 
an appropriate stock of blank checks, each of which 
carries the designation "TREASURER OF THE 
U.S." (at the place where the name of the bank 
usually appears on a commercial check). The checks 
also indicate in each case the disbursing symbol 
(identifying number) of the checking account on the 
books of the Treasurer of the United States against 
which the checks will be drawn. Most government 
checks were issued in punched card form (about 300 
million out of a total of 350 million a year). Such 
checks were normally pre-punched. at the time of 
manufacture with the disbursing officer's checking 
account number and the identifying serial number of 
the check. During the process of issue the amount 
and date of issue (and in some cases certain reference 
information relating to the disbursement) were 
punched into the check in addition to being inscribed 
on the face. Prior to installation of the new system, 
where it was impracticable or uneconomical (by rea
son of low volume or otherwise) to install punched 
card equipment at the check issue points, conven
tional paper checks were issued. 

Basis of control over check-issuing operations: 

The following is a brief summary of the principal 
features of the general plan of control over check
issuing operations which are important from the 
standpoint of a general understanding of the controls 
surrounding the check issuance, payment and recon
ciliation processes in the Federal Government: 

a. The disbursing officer is held accountable for 
all blank check stock with which he is supplied. That 
is, he is required to control the use of his stock, and 
make periodic accountability reports (which are sub
ject to both internal and external audit), so that he 
can account for all check stock received as either 
(1) issued, (2) canceled or spoiled, or (3) on hand. 

b. The disbursing officer is required to support all 
checks issued by vouchers approved by an authorized 
"certifying officer" of the agency for whom he makes 
the disbursement, and his accountability for issuance 
of checks is determined on that basis. In this con
nection he prepares a monthly report (commonly re
ferred to as his "Account Current") which shows, 
among other things, the total (supported by a listing) 
of (1) the checks issued (usually a copy of a machine 

run showing check number and amount) and (2) the 
total of the certified vouchers he has as authority for 
such disbursements supported by the originals of the 
"certified" vouchers on the basis of which he made 
the payments. The procedures established for (1) 
controlling the "certifying officer" (i.e., with respect 
to the underlying legality, propriety, etc., of the au
thorization for the disbursement represented by the 
voucher) and (2) the comparison of the disbursing 
officer's record of checks issued with the related au
thorizing vouchers are beyond the scope of this dis
cussion. We are concerned here with the procedures 
involved in the final step in the control of the dis
bursement process-i.e., proving through appropri
ate "reconciliation" procedures that the checks as 
actually "paid" are in agreement and reconcilement 
(through development of outstanding checks, etc.) 
with the checks reported by the accountable dis
bursing officers as having been issued and pinning 
down responsibility for any discrepancies. 

General flow of government checks through commer
cial channels: 

Checks when issued are normally mailed directly 
by disbursing officers to the payees indicated. From 
the payees they, of course, find their way through 
normal business channels to a commercial bank. The 
commercial bank in turn sends the checks it receives 
to an authorized government depositary (normally a 
Federal Reserve Bank). The Treasurer of the United 
States maintains funds on deposit (in an account 
known as the "Treasurer's General Account") at 
each of the thirty-six Federal Reserve Banks against 
which the checks can be charged as a basis for en
abling the Federal Reserve Bank to extend imme
diate credit to the remitting commercial bank. The 
Federal Reserve Bank then sends the checks for 
"payment" to the Treasurer of the United States. 

Former decentralization of ((payment" function: 

Due to the large volume of work involved (well 
over an average of a million checks a day), the Treas
urer of the United States found it necessary under 
procedures previously followed to decentralize the 
"payment" function so that this large work load 
could be distributed to a number of different places. 
This was accomplished by designating various Fed
eral Reserve Banks as her "paying agent" for specific 
checking accounts. Under this arrangement each Fed
eral Reserve Bank maintained the accounts and per-



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 497 

formed the related "paying" functions for a desig
nated group of checking accounts. All checks drawn 
on such accounts carried, in addition to the Treasurer 
of the U. S. designation, the legend "Payable 
Through Federal Reserve Bank of " 
Under this general arrangement, each Fed~ral Re
serve Bank was required each day to sort the Treas
ury checks it received from commercial banks ac
cording to the checking accounts against which they 
were drawn as a basis for enabling it to send them 
to the proper point of "payment" (sorting of punched 
card checks was, of course, done by machine; paper 
checks by hand). Those drawn on checking accounts 
for which the receiving Federal Reserve Bank was 
itself the paying agent were, of course, retained by 
the Federal Reserve Bank to which they were sent 
by the commercial bank. Checks drawn on other 
checking accounts for which other Federal Reserve 
Banks, or the Treasurer of the United States in 
Washington, were the designated points of payment 
were forwarded to such points. All checks received 
by each Federal Reserve Bank (or the Treasurer of 
the United States)-whetherdirect from commercial 
banks or from other Federal Reserve Banks-were 
combined for processing through the "payment" pro
cedures outlined below. 

Former "Payment" Procedure: 

The following are the principal elements of the 
"payment" procedures as previously followed by the 
Federal Reserve Banks or the Treasurer of the 
United States for checks drawn on the checking ac
counts for which they were the responsible paying 
agents: 

a. All checks were sorted by serial num
ber within the checking account sym
bol against which they were drawn (by 
machine in case of punched card 
checks; manually in case of paper 
checks). 

b. Active "stop-payment" notices were 
checked against the checks presented 
for payment by serial number and any 
checks thus intercepted ret urn e d 
through banking channels to the remit
ting bank. 

c. Checks were examined for genuineness 
of drawer's signature, evidence of al
teration, etc. 

d. Checks in order for payment were 
listed (by tabulating machine in case of 

punched card checks and adding ma
chine in case of paper checks) and re
lated totals developed for posting to 
the checking account. This list served 
as support for the statement of the 
checking account (comparable to the 
customary bank statement of a com
mercial bank). It showed both the iden
tifying serial number and amount of 
each check and was used for reference 
purposes for handling inquiries regard
ing claims of non-receipt of checks by 
payees and related requests for stop
payment, issuance of duplicate checks, 
etc. 

Former Procedure for Reconciliation of Checking 
Accounts:· 

As in commercial practice, paid checks and re
lated statements of checking accounts were sent from 
the point of payment (the bank in private business; 
the Treasurer of the United States or the paying Fed
eral Reserve Bank in the Federal Government) to the 
point where a reconciliation of the statement could 
be effected with the corresponding records of checks 
issued. In business this is generally done in the ac
counting department of the business whose checking 
account is involved. Such reconciliation is, of course, 
subsequently reviewed as a part of whatever inde
pendent audit is conducted of the firm's books as 
one phase of the review of internal checks and con
trols. In the Federal Government this reconciliation 
was heretofore performed centrally directly by the 
auditing agency-the General Accounting Office-as 
a part of its responsibilities for auditing and settling 
disbursing officers' accounts for their accountability 
for proper disbursement of government funds. The 
extensive use of punched card checks made it pos
sible to place a substantial portion of these opera
tions on a highly mechanized, mass-production basis 
with the use of conventional punched card equip
ment. The reconciliation was ordinarily performed 
about three months after the close of the month of 
issue (at which time there were normally very few 
outstanding checks). The monthly statement of dis
bursing officers' accountability (referred to in para
graph 3b) and which is supported by lists (i.e., 
usually copies of machine runs) of checks issued 
formed the basis for reconciling the statements of 
the paying agency (i.e., the Treasurer of the United 
States or her agent Federal Reserve Bank) with the 



498 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

accountability records of the disbursing officer who 
issued the checks. Statements of differences, etc., de
veloped during the course of these reconciliations, 
lists of outstanding checks (for reference use in proc
essing claims for duplicates, requests for stop-pay
ment, etc.) were supplied the issuing and paying 
agencies and appropriate adjustments effected. 

Relationship of checking account reconciliation to 
other control and audit processes: 

This paper deals only with the check payment and 
reconciliation processes. It is obvious, however, that 
these processes are but a small part of the total and 
much broader problem of control and audit of finan
cial operations. In recent years the emphasis in the 
Federal Government has been on providing effective 
internal controls over all financial operations in the 
accounting systems and related procedures of the in
dividual responsible operating agencies. External 
audit by the General Accounting Office is to a con
stantly increasing extent performed on the basis of 
a review of such internal controls and selective ex
amination of individual transactions-employing 
much the same basic approach used by public ac-
counting firms in the audit of commercial ente~prises. 
The central reconciliation of checking accounts is, 
of course,. readily coordinated with this broader audit 
(through the monthly accountability report of the 
disbursing officer) and avoids the necessity for much 
detailed clerical work at the sites of operation. 

APPENDIX B 

SYNOPSIS AND COST ANALYSIS OF EDP 
PROGRAM IN THE OFFICE OF THE 
TREASURER, UNITED STATES 

In June of 1953, a committee was established, 
composed of representatives of the Bureau of the 
Budget, General Accounting Office, and Treasury 
Department, to study the feasibility of using elec
tronic equipment for handling Government checks. 
Sixteen manufacturers· of electronic equipment with 
the required capacity potential were requested to 
submit proposals, including the cost of equipment 
recommended. Proposals were received from five 
manufacturers and selection of equipment was made 
on the basis of comparative costs. 

Conversion of check· payment and reconciliation 
opetations to the electronic system was started in 
August 1956 and completed in January 1958. Be-

fore conversion to the new system the committee 
estimated there would be an annual recurring savings 
of $2.2 million. A comparison of costs for fiscal year 
1959, the first complete year of operation under the 
new system, with costs under the old system in 1956, 
showed an annual recurring savings of $2.9 million. 

In March 1960, the Post Office and Treasury De
partments initiated a study to determine the feasi
bility of expanding the electronic facilities in the 
Treasurer's Office to provide for processing postal 
money orders. Conversion of the money order opera
tion to the electronic system was started in June 1962 
and completed in April 1963. This resulted in addi
tional savings to the Government of $750,000 an
nually. 

With the approval of the House and Senate Ap
propriations Subcommittees, a capital investment of 
$2Y2 million was made during fiscal years 1963 and 
1964 to purchase the electronic equipment. After 
recovery of this capital investment, which will occur 
this year, an additional annual savings of $900,000 
will be realized as a result of purchasing the equip
ment compared to what it would have cost to rent 
the equipment. 

At the present time, the existing electronic system 
is considered adequate to meet the needs of this of
fice in the foreseeable future. However, our repre
sentatives attend meetings at which are demonstrated 
advances in electronic machines and techniques of 
different manufacturers. Thus far, nothing has been 
developed which would improve our existing system 
in terms of service or cost, but we will continue these 
appraisals. 

SHARING EDP EQUIPMENT 

Amortization costs recovered from other bureaus 
and agencies for the use of our purchased equipment 
from July 1, 1962, through December 31, 1965-
amounts recovered and deposited to the general fund 
as miscellaneous receipts are shown in Table I. 

ACKNOWLEDGMENT 

The success of this application, embodying numer
ous technologies, is the result of the dedicated effort 
of many individuals. To these individuals the author 
extends his sincere appreciation. I wish to also ac
knowledge the contribution of Professor Walter Frese 
of the Harvard Graduate School of Business Admin
istration who as Head of the Accounting Systems 
Division of the General Accounting Office was large-



CHECK PAYMENT AND RECONCILIATION PROGRAM-U.S. TREASURY 499 

Bureau or Agency 

Post Office 
Department 

Agriculture 
Department 

Railroad Retirement 
Board .......... . 

Federal Reserve Board 

Labor Department .. 

Veterans Administra-
tion ............ . 

Navy Department .. . 

Treasury Department: 

Internal Revenue 
Service ....... . 

Bureau of Public 
Debt ......... . 

Bureau of Accounts 
Office of the 

Secretary ..... . 
Office of Interna

national Affairs . 
Comptroller of 

Currency ..... . 

Table I 

Fiscal 
Year 

Fiscal Fiscal Fiscal 1966 
Year Year Year ~hrough 

1963 1964 1965 Dec. '65 

$37,000 $151,219 $168,416 $80,400 

17,841 53,615 61,286 14,848 

3,200 5,801 6,604 3,200 

83 2,575 

5,433 247 

50 5 

17 

2,358 1,135 1,688 

505 700 
440 634 

343 328 

170 203 

5 

Total ....... $65,899 $213,316 $242,686 $98,448 

ly responsible for organizing the original study. His 
counsel to the committee was a major contribution 
to the success of the study. 

BIBLIOGRAPHY 

1. "Electronic Processing of U. S. Treasury 
Checks," Interim Progress Report, Washington, 

D.C.: Joint Government Committee Representing 
the Bureau of the Budget, the General Accounting 
Office, and the U. S. Treasury Department under the 
Joint Accounting Improvement Program, June 30, 
1954; 119 pages. 

2 ."Electronic Processing, U. S. Treasury Checks," 
Final Report (Equipment Acquisition Proposal), 
Washington, D. C.: Joint Government Committee 
Representing the Bureau of the Budget, the General 
Accounting Office, and the U. S. Treasury Depart
ment under the Joint Accounting Improvement Pro
gram, September 1, 1955; 84 pages. 

3. "Final Joint Report on the Electronic Data 
Processing Installation in the Office of the Treasurer 
of the United States," Washington, D. C.: Joint 
Government Committee Representing the Bureau of 
the Budget, the General Accounting Office, and the 
U. S. Treasury Department under the Joint Account
ing Improvement Program, August 28, 1959; 8 
pages. 

4. Hearings Before the Subcommittee on Census 
and Government Statistics of the Committee on Post 
Office and Civil Service, House of Representatives, 
Eighty-Sixth Congress, First Session, June 5, 1959. 

5. Hearings Before the Subcommittee on Census 
and Government Statistics of the Committee on Post 
Office and Civil Service, House of Representatives, 
Eighty-Sixth Congress, Second Session, March 2 and 
4, 1960. 

6. Hearings Before the Subcommittee on Census 
and Government Statistics of the Committee on Post 
Office and Civil Service, House of Representatives, 
Eighty-Seventh Congress, October 2, 3, and 5, 1962. 

7. "Use of Electronic Data Processing Equipment 
in the Federal Government," House Report No. 858. 
Committee on Post Office and Civil Service, House 
of Representatives, October 16, 1963. 

8. Robert H. Gregory and Richard L. VanHorn, 
Automatic Data Processing Systems: Principles and 
Procedures, 2nd Edition, Wadsworth Publishing 
Company, Inc., Belmont, California, 1963, 816 
pages. 





PROBLEMS OF INFORMATIO'N SYSTEMS 
IN STATE GOVERNMENTS 

Dennis G. Price 

Director, State Computer Systems Development 
Albany, New York 

DEVELOPMENT OF STATE GOVERNMENT 
INFORMATION STRUCTURE 

The Cause of the Information Structure 

Like all forms of government organization, the 
structure of state government organization has 
evolved over the years, responding to the new. de
mands of the people served. Because the structure 
has had to adapt to these demands, generally there 
has been a piecemeal development, and it has been 
virtually impossible at most times for the structure 
to evolve according to any long-term plan. Of 
course, periodically there have been comprehensive 
investigations into the structure at any given time, 
but these in general have not resulted in massive 
reorganizations. 

The easiest way to respond to a new demand for 
services is to create a special organization whose 
function is solely to administer to that demand. This 
has the advantage of giving the new function empha
sis, making it clearly visible, and pinpointing the re
sponsibility. Very often, therefore, new agencies 
have been created in response to demands for these 
services. If one were to look at the organization 
chart of practically any state government one would 
find departments such as Mental Health, Welfare, 
Motor Vehicles, Commerce, etc.-functions which 

501 

usually did not exist 50 years ago. And these are 
clearly labeled as separate departments. In addition, 
there is usually a proliferation of committees, com
missions, authorities, and other groups of a tempo
rary or permanent nature which reflect new and 
pressing demands for services. 

The Response of State Governments 

The response of the newly created organizations 
in terms of information has been simply to request 
new information! It is a cliche that information is 
the lifeblood of an organization, and there is no 
doubt that the creation of a new agency, usually in 
response to some crisis demand, leads to a request 
for new information quickly. This traditionally has 
had the following effects: 

1. Duplication of Information. Although the new 
agency may be aware that the information it needs 
is available in another government agency, it does 
not get it from this other agency for two basic rea
sons. One is that the information is not in the actual 
format required. And the other is that the informa
tion may not even be immediately accessible without 
cutting through masses of bureaucratic red tape. For 
these reasons, the new agency prefers to get its own 
information. 



502 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

2. Increasing Requirements at the Source of In
formation. Because the new agency makes pressing 
demands for information in order to provide the 
services, it goes immediately to the source of the 
information and requests this source to cooperate. 
Even though the source is providing the same or 
virtually the same information to another agency, it 
has very little choice other than to provide the infor
mation as requested. This, of course, is very unsatis
factory and creates resentment at the source of in
formation-the taxpayer, other governmental organ
izations, or private industry. 

3. Increasing Difficulty in Relating Information 
Concerning the Entity. Because the source of infor
mation has given the same information to two or 
more agencies, it now becomes increasingly difficult 
for these agencies to relate information concerning 
the same entity. Had the information been sent only 
once, then of course this difficulty could have been 
avoided. Unfortunately this is not the way matters 
develop. Therefore, we arrive at a situation where 
essentially the same information is available in sev
eral agencies of government, derived from the same 
source, possibly in different reporting periods, and 
probably in different formats, so that it is almost 
unrecognizable as the same information when it is 
received and processed by the receiving agencies. 

4. Increasing Cost of Information. Since the in
formation is generated several times from the same 
source, and is processed by several agencies, ob
viously the cost of that information is much higher 
than it need be. Moreover, because the information 
is now stored in incompatible formats, another cost 
. is added: the cost of reconciliation. 

Recent Examples of New Demands for Service 

We are all aware of the problems of our growing 
urbanization, the dynamic growth of our economy, 
and the realization of the goals of equal opportunity. 
When state governments act to solve or alleviate 
these problems we see the growth of new functional 
agencies. These are concerned with law enforce
ment, economic opportunity, unemployment, educa
tion, health, urban redevelopment, and statewide 
economic. planning. All of these in turn create prob
lems of how and where to find new revenues. 

They also create problems of how and where to 
find the required information. 

FEDERAL-STATE-LOCAL GOVERNMENT 
INFORMATION RELATIONSHIPS 

The demands of the federal government for infor
mation constitute a growing problem for the states. 
It is interesting to note the reasons for these de
mands. Historically the federal government has been 
primarily concerned with fiscal accountability, as 
one of the tunes called by the federal piper in return 
for federal funds. Secondly, and more importantly 
today, information from the states reports to the 
federal government the progress of application areas 
and programs for which it has responsibility or for 
which it shares responsibility with the state govern
ment. Thirdly there is a mutual interest shared by 
the federal government and by the state government 
in having the federal government collect information 
from all states and then disseminate it. 

If we were to examine the various federal pro
grams, we would note that they had grown up in 
piecemeal fashion, so that they have established 
their own reporting requirements with the corre
sponding state and local government agencies. This 
in turn means that much information is sent by the 
state to the federal government without its being re
lated to the needs of other state agencies. 

Some examples of federal programs which are 
having a major impact on state information collec
tion follow: 

1. Education. The Office of Education has devel
oped a "basic educational data system" (BEDS) 
which is aimed at collecting source data from the 
records of educational agencies and institutions. 
This information will flow to the state departments 
of education and from there to the Office of Educa
tion in machine-readable form. The BEDS system 
will contain basic data in all five areas of staff, in
structional programs, pupils, finance, and facilities. 
It will furthermore be compatible, collected at the 
same time, and therefore most useful to the federal 
and state authorities. 

2. Public Health. A very considerable amount of 
information is reported on vital statistics, these 
records being created in about 30,000. local offices 
and passing usually through the state health depart
ments. Practically the whole burden of maintaining 
the vital statistics system is borne by the states-an 
example of cooperation rather than compulsion in 
federal reporting. 

3. Criminal Information. Since 1930., when the 
Uniform Crime Reporting Program was instituted, a 



INFORMATION SYSTEMS IN STATE GOVERNMENTS 503 

considerable amount of information on criminals 
and criminal activity has been collected by the FBI. 
Again this very successful program has been main
tained on a voluntary basis. Beginning in 1967, the 
National Criminal Information Center in Washing
ton will receive information from cooperating 'state 
and local governments concerning stolen vehicles, 
certain stolen property, and extraditable warrants 
for wanted persons. The information will be sent in 
machine-readable form via communication facilities. 
Any cooperating government can then inquire of the 
file. 

The above are only a few of the many applica
tions areas with which federal and state governments 
are concerned. Obviously such new major federal 
programs as pollution control and medicare will 
have and are having equally significant effects. The 
major deterrent to the flow of information from the 
local to the state and from the state to the federal 
level is simply the incompatibility of the data. In 
other words, the same data in many application 
areas are coded differently by local governments, 
states ( and even by different agencies within the 
same state), and by the federal government. 

Thus, there is a need for the standardization of 
data elements and their codes before an efficient in
formation flow can take place among the different 
levels of government. This problem is being now 
widely discussed, and in a few instances some gov
ernment jurisdictions are taking action. For exam
ple, the Tri-State Transportation Commission 
(which is financed by the three states of New York, 
New Jersey and Connecticut, the Bureau of Public 
Roads and the Department of HUD) is responsible 
for transportation planning in the New York City 
conurbation. It spent a great amount of time devel
oping a land use code, a geographic location code, 
and other codes, simply because there were no 
standard codes available. 

There are some helpful signs for tackling this 
most significant problem: 

1. The February 1966 National Confer
ence on Comparative Statistics, which 
was held in Washington and attended 
by government officials from all levels 
of government, discussed this major 
problem. 

2. The Council of State Governments' 
Committee on Automation, Technol
ogy and Data Processing has been well 

aware of the problem and has given its 
support to the American Standards As
sociation's efforts in the standardiza
tion of data elements and their codes. 
It has also given its endorsement to the 
establishment of a joint data process
ing center in Des Moines, Iowa, which 
would process local, state and federal 
data; part of this effort would, of 
course, be concerned with data stand
ardization. 

3. GSA is currently considering a pro
posal to establish a joint local-state
federal data processing center. 

4. There is a bill (S. 561) that has passed 
the Senate and gives all federal agen
cies, rather than only a few, at present, 
authority to cooperate with state and 
local governments on technical mat
ters, including data processing. 

5. The Conference of Governors has 
recommended that central statistical 
offices be established in each state. 
New York State has had such an 
office for two years, and it has made 
a complete inventory of statistical 
series maintained by the various state 
agencies. 

Of course, while the federal government must take 
the lead in the national programs, the state govern
ments should similarly take the lead in educating 
and assisting the local governments. The present 
state-local situation is similar to that existing at the 
federal level where we have noted a piecemeal ap
proach. Presently, most state governments, which 
are doing anything about assisting their local gov
ernments, are using a rather fragmentized approach 
which concentrates on the mechanization of specific 
functions. This makes it difficult for a municipality 
to consider the use of one computer for all func
tions, as against several computers or the use of 
service bureaus, and tends to inhibit the design of 
"total" systems. Moreover, the regional concept of 
providing cooperative data processing services can
not be given proper consideration if a piecemeal ap
proach is followed. 

Presently in New York State there are five or six 
state agencies which are all concerned with giving 
consulting advice on data processing to local govern
ments. Recently we have coordinated these ap-



504 PROCEEDING~FALL JOINT COMPUTER CONFERENCE, 1966 

proaches by establishing a Joint State-Local Auto
mation Planning Council, composed of senior 
officials from state and local governments. It is de
veloping a comprehensive program in functional 
areas (such as welfare and education) and planning 
for the establishment of regional computer centers 
and the provision of expert advice in technical data 
processing areas. 

California has taken a similar approach using the 
concept of an "information central" connecting all 
state and local government computer installations. 
Of course, for the local jurisdictions to be able to 
talk to any state agency computer via the information 
central, standardization on data elements is essential. 

CENTRAL CONTROL OF INFORMATION 
SYSTEMS DEVELOPMENT IN 
STATE GOVERNMENTS 

Because of the foregoing discussion concerning 
the development of state government information 
structure, the impact of the federal demands, and 
the work of the states with their local governments, 
it is obvious that there is a very large investment 
currently in state data processing. About two years 
ago I estimated that all the states together were 
spending $25 million on computer rental, and, when 
the costs of associated peripheral equipment and 
personnel were added, the figure was between $80 
and $100 million annually for data processing activ
ities. The figure today is probably between $120 and 
$160 million. 

In order to control these investments many states 
have adopted very positive programs by establishing 

a central agency. In New York State for example 
the Division of the Budget has developed this con
trol and guidance along several lines to assist line 
departments in all aspects of computer acquisition 
and use-for example, in the areas of information 
studies, issuance of specifications, realistic evalua
tion procedures, monitoring installations, develop
ment of a central computer, etc. Similar develop
ments have. taken place in such states as Texas, 
Hawaii, Michigan, Wisconsin, and Ohio, and we 
have already mentioned the work of California, 
which is now proceeding apace. 

In our own state, we have recently developed a 
statewide master plan for data processing develop
ment, which includes a data element inventory for 
all-important master files, either mechanized or not, 
throughout the state. This inventory will be circulat
ed to all potential users, and we shall soon be imple
menting a much more effective interagency use of 
data with the accompanying standardization of data 
which this entails. The plan also encompasses the 
development of new computer applications for the 
next five years for state departments, and as such 
plots out their development in the data processing 
area. 

It is hoped that with such developments as these 
by leading states in the country, and with the leader
ship provided by the federal authorities, we shall 
within the next decade approach a position where 
the important data which flows among governments 
will have been standardized, and we will at last be in 
a position to "talk" to one another by computers
as has been the dream of practitioners for the last 
decade. 



THE IMPACT OF COMPUTERS ON 
LOCAL AND REGIONAL GOVERNMENT 

Herbert H. Isaacs 

Isaacs Research and Consulting, Inc. 
Los Angeles, California 

INTRODUCTION 

Whenever we talk of the "impact of computers" 
on a given area of applications, we usually become 
concerned with the technical character of the appli
cations and how they might be supported with com
puter systems and/ or other advanced information 
processing devices. Thus, in viewing the computer's 
impact on local and regional government, we could 
easily focus our discussion here on techniques of 
water billing, crime information retrieval or regional 
economic data analysis. And, indeed, some attention 
must be given to matters of this sort. 

We have observed, however, that whatever the 
potential impact of the computer on local and re
gional government might be, that impact has been 
somewhat retarded up to this point. In looking for 
reasons for this retardation, two major problems are 
apparent. First, the information specialist is usually 
not familiar with the nontechnical influences on the 
successful introduction of new technology. And sec
ond, both specialist and administrator tend to focus 
on limited individual applications instead of dealing 
with broad functional areas where more sophisticat
ed techniques and devices might be applicable. 

This paper is an attempt to explore the present 
·and future impact of the computer on local and re
gional government. Such an objective certainly re
quires a look at the history of computer uses in local 

505 

governments and a projection of new technology's 
future applications. But considering the two prob
lems described above, it would appear desirable to 
first explore the organizational and functional con
texts in which computer applications must fit. 

Accordingly, the paper is organized as fQllows. 
The first section provides some background informa
tion on the organization of government in local 
areas, and the intergovernmental relations among 
state, federal and local agencies and political juris
dictions. These factors have a great influence on 
what projects are funded, and often dictate the tech
nical content of those projects. 

The second section describes the major functional 
areas of local and regional government. It is within 
and across these areas that particular computer
oriented projects apply. 

In the next section, we describe the past introduc
tion of computers into local government, and give 
some examples of more current projects of a 
demonstration or developmental character. 

In the final section we provide some projections 
for the future. We describe there some of the poten
tial impact of new computer hardware and software 
on the technical administrative and political factors , 
that have heretofore impeded rapid progress. We 
conclude with some considerations concerning need
ed software developments. 



506 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

ORGANIZATION AND INTER
GOVERNMENTAL RELATIONS 

The functional responsibilities of local govern
ment are essentially delegated by the state govern
ment. The U.S. Constitution provides specifically for 
the states to undertake those functions necessary for 
the general safety and welfare of its citizens. Each 
state deals slightly differently with this problem but, 
in most states, local governments are franchised by 
the state, either through charters or other state con
stitutional provisions. 

These considerations of responsibility are impor
tant in dictating how overall programs are initiated, 
decisions made, and funding administered. For ex
ample, the California Statewide Federated Informa
tion System proposed in the Lockheed study 1 was 
specifically designed to support the concept of 
"home rule," implicit in California's local govern
ment and state relations. Other states may exhibit 
more state-centralized control of functional areas, 
but in general, the basic operating functions of a city 
(such as public works, police, fire protection, health, 
sanitation) are provided by some form of local gov
ernment. 

These on-going services and functions are usually 
supported by local taxeS, particularly the tax on real 
property. Some local and regional programs cross 
local jurisdictional boundaries; for example, educa
tion, highway projects, and certain welfare pro
grams. Funding for these kinds of programs is pro
vided from a combination of local and statewide 
sources, with state funds being allocated back to the 
local areas according to some agreed-upon formula. 

Federal programs concerned with problems of the 
metropolitan area can be channeled through both lo
cal government and statewide agencies, depending 
upon the enabling legislation. Most Federal pro
grams, however, involve some tacit consent of the 
state executive, even for programs administered di
rectly at the local level. 

Before we leave the subject of organization, it is 
important to note that the concept of regional gov
ernment is in most cases just that-a concept. 
Strong support for regional government in metropol
itan areas is reflected in public administration and 
political science literature. 2 Nevertheless, in actual 
fact, existing centers of local political power tend to 
resist any form of more centralized control which 
would reduce the power of a particular local juris
diction. As a result, regional planning organizations 

tend to exist on a cooperative basis, with authority 
only to set standards. They do not usually possess 
the power to enforce those standards. 

The issue of whether or not regional government 
would be more effective in dealing with metropolitan 
problems is quite controversial. Differing technical 
as well as political views on this subject may be 
found. One point is clear, however. The introduction 
of technology, and particularly information technol
ogy, into metropolitan government is greatly inhibit
ed by the multiplicity of decision points involved in 
getting a program approved and operating success
fully. 

FUNCTIONAL APPLICATION AREAS 

The following is a brief summary of the different 
application areas in local government. A thorough 
treatment of all the activities of each agency and 
department serving functions in metropolitan gov
ernment would and, in fact, does take volumes (of 
organizational manuals and procedures). Neverthe
less, even this surface description will give some 
idea of the great diversity of activities being carried 
on by local government. 

For purposes of presentation, the activities are 
grouped in seven general categories: agencies that 
are facilities-oriented; those that are people-orient
ed; agencies concerned with safety; with planning; 
with administration, tax and fiscal matters; individ
uals and groups concerned with policy-making; and, 
certain other nonlocal government agencies that 
have functions bearing on the local government 
problem (and may even occupy offices in local 
areas) . 

The scope of this paper does not permit a de
tailed description of the information processing sup
port required for each operational function. How
ever, certain areas have been emphasized as 
examples of typical requirements. 

Facilities-Oriented 

In this group we include: (1) the public works 
departments concerned with major plant facilities, 
buildings, streets, water and sewage networks, as 
well as supporting services such as engineering to 
maintain and expand those facilities as necessary; 
(2) the building and safety departments concerned 
with the approval and inspection of private facilities 
and property; (3) the utilities, such as water and 
power, either publicly or privately owned; (4) 



IMPACT OF COMPUTERS ON LOCAL AND REGIONAL GOVERNMENT 507 

recreation and parks departments; (5) public trans
portation agencies; and (6) traffic departments con
cerned with the flow of vehicular traffic, its control 
and safety. 

People-Oriented 

The people-oriented agencies include: ( 1 ) the 
public schools; and (2) various community service 
agencies and welfare departments. Activities of the 
schools are not confined merely to the employment 
of teachers and setting of curricula. The administra
tion of a school system includes such complex activ
ities as areawide facilities planning and specific 
building construction. Similarly, the community 
service and welfare agencies are engaged in large 
scale field activities, as well as interviewing and 
screening in field and central offices. 

Safety, 

The traditional agencies concerned with safety in
clude: (1) police; (2) fire; and (3) health depart
ments. The police are engaged in a multitude of pa
trol and investigative functions under an ever
increasing crime and traffic load in the metro
politan areas. To support this patrol and investiga
tion, large volumes of records are kept concerning 
specific events and people connected with those 
events. A major communications and dispatching 
function is also required. Supporting the overall 
operations are the logistics and management infor
mation needed to monitor and allocate scarce re
sources. 

The fire department has a similar on-line dis
patching requirement. Current information is also 
maintained on the building characteristics of large 
businesses and industrial plants so that rapid, effec
tive action can be taken in the event of a fire. Fur
thermore, the incidence of fires across the city must 
be evaluated in order to allocate equipment and per
sonnel resources and to plan for the construction of 
new facilities. 

The health department has a similar dual need for 
both operations and planning. It is particularly im
portant that the health department be able to isolate 
disease trends before they reach epidemic propor
tions. 

All the safety agencies, including the civil defense 
staff and responsible city executives, encounter an 
especially complicated problem in dealing with 
emergency situations, such as natural disasters, fires, 

train wrecks, civil disturbances, and civil defense 
emergencies. The information specialist cannot help 
but note the analogies between this requirement and 
the defense requirements of the military. The mili
tary have, of course, made large scale investments in 
information technology and communications, where
as the local agencies have, up to this time, tended to 
rely on basically manual systems. 

Planning 

The planning requirements of local and regional 
government range from broad area considerations to 
specific zoning variances on particular properties. 
The broad planning includes the general question of 
transportation and its interaction with commercial, 
industrial and residential land use. Planning for the 
development of undeveloped areas is one of the 
most important functions of a local and/or regional 
planning group. Maintaining the proper balance be
tween residential and industrial usage is extremely 
important in the economic development of an area 
because it affects the attractiveness of the area, both 
to industry and to the work force required for in
dustry. 

Following from these needs is the assumption that 
a regional master plan is essential. This implies a 
monitoring system of existing land use and other 
conditions, and a measurement of the conformance 
of the existing conditions to the proposed plans 
and/or zoning regulations. This leads to more de
tailed questions on smaller areas, particularly the 
question of urban rehabilitation or renewal. Of con
cern here are the identification of trends toward de
terioration in a specific local area and the problem 
of administering zoning regulations and variances 
for individual parcels. All of these' planning func
tions obviously imply a sophisticated information 
system on the characteristics of public and private 
facilities in a local area. 

Administration and Fiscal 

The administration of a local government includes 
the proper accounting for tax revenues and outlays, 
the preparation of budgets, including the budget anal
ysis and control function in support of the policy
making officials, the maintenance of required 
records by the city or county clerks, the assessment 
of taxes and the treasurer and controller functions 
typical ~f any large organization. In addition to the 
functional needs for information in government ad-



508 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

ministration itself, there is a further provision for 
serving the public with respect to certain informa
tion requirements. Such data as land boundaries, 
and ownership records, must be available to the 
public on demand. 

Policy-Making 

Policy-making officials include mayors, city man
agers and legislative bodies such as city councils or 
county supervisors. The executive officials have typi
cal top management functions to perform, including 
overall planning, resource allocation, and monitoring 
and control of functional activities. In so doing, they 
need summarizations of specific data, predictions of 
population and economic trends. Occasionally, they 
also need certain facts to counter or support criti
cisms from constituents of particular behavior on 
the part of the government. Generally speaking, 
these are not standard or fixed requirements but 
vary rapidly over time. 

The legislative policy bodies have need for similar 
information. In particular, they require an accurate 
insight into the historical development of a given is
sue. Thus, in some cities, the actions of the city 
council are recorded and maintained by the city 
clerk in various types of file systems. 

Other Agencies 

In addition to the agencies that are directly a part 
of the city or county government, there are certain 
agencies concerned with local government problems 
who maintain field offices in the local areas. These 
include such organizations as the state board of 
equalization, dealing with the equalization of tax as
sessments; federal agencies, such as the Urban Re
newal Administration, or the Office of Economic 
Opportunity; and certain commercial agencies, such 
as land title companies, who have the responsibility 
of insuring title on particular parcels in the local 
area. Most of these groups utilize information from 
local government sources. However, some maintain 
their own systems and have specialized requirements 
for which the local governments cannot and do not 
respond. 

EXAMPLES OF COMPUTER USAGE IN 
LOCAL AND REGIONAL GOVERNMENT 

The introduction of computers into city and 
county government followed closely along the pat-

tern established in the early business use of com
puters. Agencies which had introduced tabulating 
equipment for large-scale accounting and billing 
operations were urged by machine manufacturers to 
make the transfer directly to computer processing. 
Thus, it is typical to find the computer in most cities 
under the administrative authority of the controller. 
Types of applications for the medium- to large-scale 
cities and counties include payroll, appropriation ac
counting for revenues and disbursements, utility bill
ing, business tax billing, and, more recently, tax as
sessment mailings. 

Another branch of computer applications devel
oped quite early in making the transfer from univer
sity and government uses of computers for scientific 
calculations to the requirements of engineering de
partments of large municipal agencies. Thus, it is 
not unusual to discover that in a particular local 
government, the engineering department was an ear
ly computer user. 

Most of the cities' business-type applications have 
tended to utilize the computer in a scheduled, se
quenced manner, with large quantities of data being 
repetitively processed on punched cards or magnetic 
tape. Furthermore, the introduction of computers in
to municipal government was usually limited to fair
ly large jurisdictions which could demonstrate vol
ume and input rates that appeared to justify the 
computer on a purely economic basis. 

Some smaller jurisdictions began, at the same 
time, to contract with service bureau tabulating sys
tems, and the service bureaus eventually found it 
economically feasible to phase their operations into 
a card-processing small computer. Thus, it is not 
unusual for a small city, of perhaps 50,000 popula
tion, to still maintain particular applications through 
a service bureau. 

Take utility billing, for example. The contractor 
takes all the input data (e.g., cash payments, utility 
consumption, etc.) and converts it to card form, 
processing the debits and credits to each account 
and producing the bills for mailing, as well as pro
viding reconciliation statements for the city's finan
cial officer. Services of this type are usually billed on 
a special rate for each application. A city of this size 
may have several applications totaling, perhaps, 
$1,500 per month of contract services, supplement
ed by the staff personnel required by the small city 
to maintain the operation. 

The larger cities, of course, gain certain econo
mies of scale by having sufficient applications and 



IMPACT OF COMPUTERS ON LOCAL AND REGIONAL GOVERNMENT 509 

volumes to justify their own machine. Depending on 
the size of the city and its computer installation, 
they may spend between $5,000 and $20,000 per 
month on equipment rental and between 50 and 
100% of that amount for operating staff and pro
gramming. 

It is emphasized here that the amounts budgeted 
for data processing are very carefully reviewed by 
the policy-making bodies, and each addition of capi
tal or staff must usually be justified on a purely cost 
basis. Although this is not unique to the develop
ment of new applications and markets, the particular 
proximity of the policy body to the operational 
agency in local government tends to produce an 
oversensitivity to this cost problem based, primarily, 
on political grounds. That is, in asking himself if he 
should vote for a particular new appropriation, a 
councilman must always consider whether some er
ror, to be investigated at a later date, will cost him 
his political office. There does not exist the insula
tion of many layers of intermediate management 
which protect the federal policymaker somewhat in 
this regard and, to a lesser extent, the state policy
maker. 

We have described thus far the early introduction 
of computers at the local level. More recently, a 
combination of (1) technological and (2) intergov
ernmental developments have produced several 
new areas of interest and resulted in specific demon
stration programs. 

Technologically, the computers have become 
more sophisticated and powerful while, at the same 
time, exhibiting a marked decrease in cost. In par
ticular, the decrease in cost of random-access auxil
iary memory, and the availability of inexpensive re
mote terminal equipment and data communications 
have led to some new possibilities at the local and 
regional level. Coupled with this have been the re
cent developments in software. In particular, the 
availability of high-level compilers and executive 
systems, and the projected availability of generalized 
data management tools, have strongly influenced the 
interest in computer systems on the part of less 
mathematically sophisticated users. It has also made 
the job of indoctrination and demonstration for 
policy-makers easier. 

The developments in intergovernmental relations 
stem primarily from a growing awareness at the fed
eral level of the increasing metropolitan problems, 
and local governments' financial inability to deal 
with those problems. Because of budgetary limit a-

tions there is very little opportunity for research 
and development financed by local and regional gov
ernments. Even the state governments have difficulty 
selling such nonoperational activities to the policy 
bodies. Agencies such as the Bureau of Public 
Roads, the Urban Renewal Administration, and 
other branches of the old Housing and Home Fi
nance Agency, the Department of Labor, and the 
newly formed Housing and Urban Affairs Depart
ment (which incorporates several of the agencies 
previously noted), all have programs bearing on the 
problems of local and regional government. In the 
last four to five years, there has been a growing 
awareness in many of these federal agencies that in
formation problems have needed to be solved before 
many of the substantive problems of the urban area 
could be attacked. Federal legislation was provided 
under which various demonstration programs could 
be initiated at the local level. We will briefly de
scribe some of these programs below. 

Metropolitan Information Systems 

One of the early projects sponsored by the Urban 
Renewal Administration was the Metropolitan Data 
Center (MDC) .3 Supported by a demonstration 
grant, the project had the task of testing the feasibil
ity of electronic data processing equipment in estab
lishing a Metropolitan Data Center. This Center 
would provide for storage and analysis of informa
tion concerning land use, housing conditions and oc
cupancy, and related environmental factors. An ob
jective of such a center is to maintain the 
information on a current basis so that it is readily 
available to assist local agencies in making urban 
planning and urban renewal decisions. 

Five local government agencies were involved in 
the joint project from five different states: The Plan
ning Office of Denver, Colorado; the City of Fort 
Worth, Texas; the Metropolitan Area Planning 
Commission of Pulaski County (Little Rock), Ar
kansas; the Tulsa Metropolitan Area Planning Com
mission; and the Wichita-Sedgwick County Metro
politan Area Planning Commission. The Project was 
coordinated by a central staff located in Tulsa. Sepa
rate centers in each city provided data processing 
services for the local planning agency. Interagency 
arrangements and central staff were employed only 
in relation to project development. 

Applications developed included a comprehensive 
land use plan for Denver; the capital improvement 
program in Wichita; community renewal program in 



510 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Tulsa; a central business district plan in Fort Worth; 
and a school facility plan in Little Rock. 

Benefiting from some experience gained by the 
Metropolitan Data Center Project, Alexandria, Vir
ginia, has instituted what is called a "data bank". 4 A 
master file has been created on magnetic tape of 
every parcel of land in the city, approximately 
20,000 parcels. Each record contains the informa
tion concerning the parcel, land use and space use. 
The data bank is utilized by every major department 
and agency in the city, although it is a relatively 
small operation in a batch process form. 

Another major effort of this type was undertaken 
in the City of Pittsburgh, some time earlier. A com
puter-processed land record system was developed 
which provides retrieval of various items concerning 
parcels in the city. 

Another significant early development was the 
PENJERDEL study.5 This was a joint Pennsylvania, 
New Jersey and Delaware Metropolitan Data Study, 
which was exploring feasibility rather than actual 
development. A contract with the University of 
Pennsylvania resulted in an area statistical project. 
Five types of area data service were to include a 
data utilization center, a land use and parcel inven
tory, traffic information, regional accounts, and cap
ital expenditure evaluation. 

The concept of a metropolitan area information 
system is growing in acceptance, but as yet there is 
no system on a broad area basis that one might call 
operational. The feasibility of the concept is being 
explored in several places across the country. In the 
City of Los Angeles, a study was recently completed 
by System Development Corporation of an Auto
mated Planning and Operations File, called APOF.6 
The conceptualization of the APOF system included 
a basic random access file of all 900,000 parcels in 
the entire city of Los Angeles. The information 
would be accessible to all city departments and 
would include data by both city and noncity agen
cies. This is undoubtedly one of the largest systems 
ever conceived for a metropolitan area. A specific 
plan for implementation of that system was present
ed in the study, and methods of financing are now 
being considered. 

Another major project in the Southern California 
area is funded with a federal grant. This is the South 
Gate Municipal Management Information System 
(SOGAMIS).7 This project has the twofold purpose 
of developing a computer management program for 
South Gate, California, a city of slightly over 58,000 

population, and to prepare a model plan for any city 
between 30,000 and 300,000. The project is being 
conducted by the University of Southern California. 
Specific goals of the project are: master zoning 
plans based on population density and new con
struction; scheduling of police patrols, using infor
mation of types and frequency of crime throughout 
the city; planning new fire stations and optimal dis
tribution of equipment; handling traffic problems, 
using accident flow and accident patterns; and plan
ning of school, park and playground sites. This 
project is now in the early development stage. 

Operational City Systems 

Some operational systems of a more modern vari
ety may be seen in several cities and counties across 
the country. In the Bay Area of California, the 
Alameda County Computer Center provides a ran
dom-access system for welfare information for its 
various social agency departments. Alameda County 
is also providing real-time retrieval of warrant infor
mation for several law enforcement agencies in the 
Bay Area. 

Other police systems of an operational support 
nature exist in the cities of St. Louis, Chicago and 
New York. In Los Angeles, large scale experimenta
tion was undertaken in the Police Department on 
the use of computers to process crime information 
in naturallanguage.8 Incorporating those concepts, a 
system design study 9 was recently completed by 
System Development Corporation recommending an 
operational system to process crime and arrest data, 
providing outputs to field patrol and investigation, 
as well as providing management information. 

One of the most interesting recent developments 
is a proposal by 19 cities in the San Gabriel Valley, 
Los Angeles County, to cooperate on a central data 
service for the entire Valley. A feasibility study is 
under way as of August 15, 1966, and results 
should be available for discussion at the AFIPS 
meeting in November. It is expected that the feasi
bility study will concentrate on certain "bread and 
butter" applications, such as utility billing, appropri
ation accounting, payroll, and police statistics. More 
complicated functions such as land use records and 
managerial and policy decision support will also be 
considered. The study will examine several alterna
tive ways of providing a central service, including 
the possibility of a central time-shared facility, either 
operated by a central agency or provided by some 



IMPACT OF COMPUTERS ON LOCAL AND REGIONAL GOVERNMENT 511 

service bureau. Methods of cost-sharing, scheduling 
and priorities will also be derived so that . each city 
can expect the service to meet its functional require
ments. 

A rea Transportation Studies 

Some of the largest regional planning functions 
have been accomplished under the aegis of area 
transportation studies. Significant projects have in
cluded the Chicago Area Transportation Study; the 
Tri-State Transportation Study, covering New York, 
New Jersey, and Connecticut; the Penn-Jersey 
Transportation Study;lO and more recently the Bay 
Area Transportation Study 11 in California. In all of 
these efforts, large field data collection activities 
were undertaken concerning the characteristics of 
commuter travel and projected trip requirements. 
Models of regional economic growth were construct
ed and the data used to project effects of alternative 
transportation facilities. As might be expected, it 
was usually found that the interaction between the 
transportation planning and the land use and eco
nomic planning was quite significant. As a result, it 
has become increasingly clear -that one of the func
tions regional organization must provide is a mecha
nism for maintaining current area-wide information. 
Periodic studies are not adequate; the data base 
must be continually updated if planning information 
is to be at all valuable. The information system im
plications of this approach are rather significant. 

SOME PROJECTIONS FOR THE FUTURE 

There is no question but that the population in 
the urban areas will continue to increase. The serv
ice functions of government will even more strongly 
reflect this trend. This means that the information 
generated and processed in local and regional gov
ernment will increase in volume at an even higher 
rate. When we consider the increasing labor rates, 
and the decreasing cost per unit of information 
processed by computers, it seems clear that local 
and regional government will provide ever-increas
ing opportunities to introduce advanced technology. 
The question is, how can the local governments 
overcome the budgetary and political limitations that 
tend to retard the introduction of new concepts? 

One trend that we believe is unmistakable is the 
movement toward sharing of central computer facili
ties. So far, this has mostly been exhibited in the 
administrative functions, based on the argument that 

centralization of data processing brings economies in 
government. In the past, the decentralized user has 
usually suffered in service when centralization has 
taken place. This is why the individual city agencies 
that have their own machines fight centralization so 
energetically, and yet, so unsuccessfully. It is cer
tainly true that by centralizing facilities, and systems 
and programming staff, the consistency of program
ming is improved and the fixed investment is mini
mized. However, the result of this approach has 
usually been to frustrate individual departments and 
agencies who wish to experiment with new ap
proaches, or who have special requirements that are 
not served as well as if they operated their own fa
cility. How can we solve this dilemma? 

We believe that the trend will continue toward 
centralization of facilities, so that the city can 
achieve the economies of scale available. However, 
the difference in the future will be the decentral
ization of input and output of data, plus the time
sharing concept of different users operating their 
own programs, built with generalized data manage
ment systems and high level compilers. Certainly 
some efficiency of operation on repetitive fuc.ctions 
will be sacrificed, but the overriding consideration 
will be the availability of computer power to a much 
wider range of users and applications than is pres
ently possible with central programming staffs and 
equipment. 

In the larger metropolitan governments, this will 
mean that more operational, planning, and adminis
trative functions will be serviced. In the smaller cit
ies, the time-shared concept will mean that jurisdic
tions who cannot afford large powerful computers 
by themselves will be able to get the processing ad
vantages of such systems, with expenditures equ~l to 
or less than what they currently spend. This will be 
accomplished either through service bureaus provid
ing time-shared capability, or through the kind of 
regional arrangements implicit in the San Gabriel 
Valley project. 

. From the functional and political standpoints, this 
trend will have many salutary effects. The present 
resistance of individual jurisdictions to join in re
gional associations is based primarily on the fear 
that centralized government would result. By decen
tralizing the user of regional information through the 
kind of network implied in the time-shared facility, 
the threat of centralized control is reduced, yet the 
value of information sharing for planning purposes 
is retained. Furthermore, specific functional areas 



512 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

such as the administration of justice, or area trans
portation, can be served by specific subsystems de
voted to that function alone. Those subsystems 
would be tied to the overall regional or statewide 
network for purposes of sharing nonsensitive data. 

Although these long-range goals are certainly de
sirable, and although we do believe them to be inev
itable (given the present movement of technology 
and government), there are some serious problems 
in making a smooth transition from the present 
state. For one thing, the process of introducing inno
vation in government is fraught with costly discon
tinuities in funding, and nontechnical influences on 
content which severely constrain any real progress. 
This is partly the fault of the information specialists, 
who have tended to ignore the requirement for com
municating effectively to nontechnical executives 
and policy officials. The information specialist must 
take some pains to learn other languages besides 
PL-l, COBOL and FORTRAN, and deal with po
litical and administrative loops as well as those he 
normally encounters. 

Finally, there is the problem of software develop
ment. The local governments have a serious prob
lem, undoubtedly of their own making, in attracting 
and keeping trained programmers. It is not even 
clear that raising present salaries would be effective, 
because industry tends to keep ahead of government 
in this area~ and can do so more easily because they 
do not suffer from the same legislative time lag. As 
a result, the local governments cannot maintain con
tinuity of staff. This produces error-prone applica
tion programming, or just plain schedule slippage. 
Contracting for software isn't a solution for two rea
sons. First, because the higher cost per man-hour of 
contract services reduces the total output possible 
for the same dollar (assuming a well-paid internal 
staff could produce the same output), and, second, 
because the maintenance function must be accom
plished internally anyway. This means that the inter
nal staff must be involved somehow in the initial 
program preparation in order to fully understand 
what is going on. 

The long-range answer to the software problem in 
government lies, we believe, in the development of 

generalized program systems, either specific applica
tions (e.g., water billing, payroll, statistical process
ing) or data management tools that can be used for 
general information storage, retrieval, analysis and 
reporting. The funding of such developments must 
come from outside the local or regional govern
ments, and probably from outside the states. Only 
with the advent of these types of systems will the 
impact of computers on local and regional govern
ment reach the potential possible. 

REFERENCES 

1. Lockheed Missiles and Space Co., "California 
Statewide Information System Study-Final Re
port," July 30, 1965. 

2. H. H. Isaacs, "The Metropolitan Problem: 
Some Facts in Summary," System Development 
Corp. SP-1941 (Jan. 20, 1965). 

3. MDC Project Report, Feb. 1966. 
4. John K. Parker, "Operating a City Databank," 

Public Automation, June 1965. 
5. w. Alderson and S. J. Shapiro, "A Metropoli

tan Data Bank for the Business Community," Busi
ness Horizons, summer 1963. 

6. H. H. Isaacs, W. O. Crossley, and D. R. Pas
cale, "Final Report of the APOF Conceptualization 
Study," System Development Corp. TM-(L)-2905 
(Mar. 31,1966). 

7. W. H. Mitchel, 'SOGAMIS-A System Ap
proach to City Administration," Public Automation, 
Apr. 1966. 

8. H. H. Isaacs and W. W. Herrmann, "A Com
puter-Based System for Processing Crime Informa
tion," Industrial Security, Feb. 1966. 

9. L. B. McCabe et aI, "Los Angeles Police De
partment Phase I Operating System Description," 
System Development Corp. TM-(L)-2506 (Dec. 
31,1965). 

10. R. M. Zettel and R. R. Carroll, "Summary 
Review of Major Metropolitan Area Transportation 
Studies in the U.S.," University of California, Berke
ley, Institute of Transportation and Traffic Engi
neering, Special Report, Nov. 1962. 

11. Bay Area Transportation Committee, Progress 
Report, Mar. 1, 1965. 



AN INFORMATION SYSTEM FOR 
LAW ENFORCEMENT 

LeRoy B. McCabe and Leonard Farr 

System Development Corporation, Santa Monica, 
California 

INTRODUCTION 

The System Development Corporation (SDC), in 
conjunction with the Los Angeles Police Depart
ment (LAPD), conducted a System Design Study 
for Phase I of the LAPD Information System during 
the period of June, 1965, to January, 1966. The 
System Design Study was organized into two major 
activities-a System Analysis and a Phase I System 
Design. Each of these activities was further divided 
into major tasks which were performed by SDC and 
LAPD personnel working in close harmony. 

The major product of the Systems Design Study 
was the documentation of a concept for the design 
and operation of an automated information system. 
This concept is detailed in the Operating System De
scription 1 for Phase I of the LAPD System. In sup
port of this concept, other documented products re
sulting from the Study were the System Analysis, the 
Equipment Specifications,2 a System Development 
Plan,s and a Glossary 4 of terms used in law en
forcement and information processing. The evolu
tionary approach to system development was adopt
ed; i.e., the System is to be designed and built in 
blocks or phases concentrating first on the most 
pressing operational needs. 

The Phase I System was limited at the outset of 
the Study to the following applications: 

513 

Crime and related reports. 
Want and warrant information. 
Field Interview information. 

However, it was also possible for the designers to 
consider certain aspects of the arrest, booking, and 
jailing operations. Other critical operations such as 
personnel deployment and traffic enforcement were 
deferred to a Phase II effort. 

This paper summarizes the results of the analysis 
and design activities by describing the most salient 
features of each. It discusses the implications for 
the Phase I System as a regional system and provides 
directions in which the LAPD System can expand to 
develop, ultimately, into a total law enforcement 
command and control system. 

SYSTEM ANALYSIS 

A System Analysis, ideally, is performed on the 
"entire" system and not a portion of the system. If 
allowed to proceed ideally, the analysis would en
compass every aspect of a law enforcement opera
tion. In adhering to the evolutionary approach, how
ever, the System Analysis concentrated primarily on 
those Department operations within the bounds of 
the Phase I System, but also considered, in general, 
other operations with a view towards future applica-' 
tions. 



514 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

The activities and documentation of the results of 
the System Analysis * were divided into four parts: 
a Configuration Analysis, a Report Forms Analysis, 
a Functional Analysis, and a Requirements Analy
sis. This documentation is quite extensive (some 
800 pages) and is intended to establish a detailed 
and comprehensive understanding of the present 
LAPD information processing procedures. Under
standing of current operations is essential to the suc
cess of subsequent design tasks. 

All of these analyses were conducted jointly by 
SDCand LAPD personnel under the guidance and 
direction of SDC personnel. In preparation for each 
of the four separate analyses, a "Guide" was pub
lished for the benefit of LAPD personnel to ac
quaint them with the objectives and procedures in
volved in that particular analysis. These Guides and 
a three-day orientation period constituted the only 
formal training of LAPD personnel prior to their 
participation in the analysis activity. 

Current LAPD Operations 

The operations of the Los Angeles Police Depart
ment are typical of those of a large metropolitan 
department. The Department is organized primarily 
in decentralized field commands, housed in buildings 
located throughout the entire city. Responsibility for 
patrol effectiveness against the crime problem rests 
with the field division commander. Not all of his 
responsibilities, however, are confined to patrolling 
against known patterns of activity. Many of the ac
tions of the individual patrol unit occur in response 
to requests for service through the central com
munications system. When an event occurs, in most 
cases, the central communications system receives a 
telephone call from a citizen. The officer receiving 
the telephone call decides that some action on the 
part of a field unit is necessary and a dispatcher 
selects the appropriate field unit and relays the call 
number and message to a radiotelephone operator. 

The field officer often requests information on in
dividuals or vehicles which he needs for his imme
diate decisions on action to be taken. * The central 

* Los Angeles Police Department System Analysis, 
TM(L)-2497, Volumes 0 through 4, System Development 
Corporation, December 31, 1965. This document is releas
able only through the Los Angeles Police Department. 

* For example, in the City of Los Angeles alone there 
are over 600,000 inquiries from field officers each year 
relevant to. possible stolen vehicles, with an additional 
600,000 inquiries from field personnel relevant to individuals 
for whom warrants of arrest may be outstanding. 

communications facility must be in constant contact 
with the information files of the Department. These 
files include both the kinds of information required 
in real time, such as warrants or wants for individ
uals; and the type of information with less critical 
time requirements, such as criminal records, crime 
reports, and investigator's follow-up reports. 

The crime reporting process usually begins with 
the field officer. When an event occurs and the field 
unit arrives at the scene, the field officer will make a 
report of the crime. That report is then reviewed by 
his supervisor in the field division headquarters. The 
crime report becomes the basic information upon 
which detective follow-up is based. It is also used to 
prepare statistics for command and management 
purposes. 

Investigative activities with respect to crime are 
also generally decentralized at the division level with 
the exception of a number of specialized details such 
as narcotics and abortion. Investigative activities in
volve the patrol, supervisory, and detective force in 
a significant information processing effort, especially 
to support crime pattern recognition. When a new 
crime occurs, the patrol commander would like to 
know if this crime is linked to previous crimes in his 
area or if, in fact, it is related to crimes that have 
occurred outside his area of cognizance. Patterns are 
maintained at the divisions by analytical officers 
with the aid of pin maps. 

The investigator relies heavily on the crime re
porting process, especially when he is attempting to 
link up a series of cases in order to develop addi
tional leads or suspects. When a suspect is appre
hended for one particular offense, the investigator 
needs to be able to search his file for uncleared 
crimes that the suspect may possibly have commit
ted. All these activities depend on an effective infor
mation system that can aid the processes of re
trieval, analysis, correlation and dissemination. 

Current LAPD Operational Problems 

The Los Angeles Police Department, as do most 
metropolitan police departments, faces crime loads 
which are increasing at a faster rate than population 
in the urban areas. For example, during the period 
from 1954 to 1964, the City of Los Angeles experi
enced an increase in population of slightly over 23 
percent while the total of all crimes reported to the 
Police Department, during the same period, in
creased over 120 percent. 



AN INFORMATION SYSTEM FOR LAW ENFORCEMENT 515 

The growing operational load carries with it a 
significant requirement for processing of information 
concerning each event. The costs of the processing 
required to keep up this volume generally far exceed 
the limited financial resources of the metropolitan 
community. The inevitable result is that many types 
of information that would otherwise have operation
al value are not readily accessible to the Department. 

The problems of sheer volume of information to 
be processed do not adequately describe the scope 
of the problems facing police departments. The pat
terns of crime have become more complex in type of 
event, modus operandi of the criminal, and the 
difficulties in matching a suspect with a given crime. 

The greater mobility of the criminal, brought on 
by the increase in motor vehicles and freeways, has 
had serious impact on the nature of field operations. 
It is no longer possible to concentrate crime pattern 
recognition in a given field division. The criminal 
does not respect divisional boundaries. In fact, it is 
no longer feasible to attempt crime pattern analysis 
purely within the bounds of any single political en
tity. An obvious corollary of this problem is the 
effect on interagency communications and informa
tion processing within a given region. The police de
partments interacting with the Los Angeles Police 
Department· need to have access to information con
tained in LAPD files, since they use those files for 
much of their information support. Similarly, the 
Los Angeles Police Department must have imme
diate access to information collected in neighboring 
police departments and in its large sister agency, the 
Los Angeles County Sheriff's Department. This re
quirement for interagency cooperation has been con
sidered in the system design activity and is discussed 
later. 

The general problems described above lead to 
specific needs of the Los Angeles Police Depart
ment. First, with respect to the processing of crime 
information, the essentially manual information han
dling techniques presently employed encourage du
plication of files in an attempt to minimize informa
tion response time and do not contribute to effective 
correlation and retrieval of stored information. 
When compared to available electronic data process
ing capabilities, these manual techniques are outdat
ed and stressed to a point that precludes accommo
dation of any increase in demands. 

The general deployment of patrol forces is based 
on outdated statistics, weighing factors, and analyti
cal techniques, many of which, due to lack of avail a-

ble advanced technological means, have not been 
adequately tested. It is highly desirable to deploy 
forces by means of immediate analysis of statistics 
that are current at the moment of deployment. This 
cannot be done utilizing present techniques, equip
ment and procedures. 

Although these problems are expressed here in 
terms of the Los Angeles Police Department, they 
are also typical of every large metropolitan law en
forcement agency and representative of problems 
encountered in those suburban areas which depend 
on the aggregation of services of many small police 
agencies. 

SYSTEM DESIGN 

Background and Objectives 

The law enforcement needs in Los Angeles, espe
cially with respect to information problems related 
to crime, were recognized several years ago. In 
1963, the City undertook jointly with System Devel
opment Corporation a program of research and 'ex
perimentation in the application· of advanced com
puter techniques to the processing of crime data. 
The approach undertaken at that time emphasized 
"natural language processing." Rather than extend 
the errors and ambiguities of numerically coded 
crime data (as currently processed on punched 
cards), the computer was used experimentally to 
process . and retrieve crime report information in its 
original English language form. A research and de
velopment program, conducted over an eighteen
month period, validated the concept that the com
puter could assist the investigator in crime pattern 
recognition, using this advanced approach. 

It was also recognized that a future operational 
system for the LAPD and/or a regional law en
forcement complex would envision inputs and in
quiries to a central area-wide file from remote sta
tions in field locations. Therefore, in addition to 
exploring natural language retrieval, this early SDC
LAPD Project also tested the concept of computer 
time-sharing. The term "time-sharing" is used here 
to denote the concept of the simultaneous use of a 
central computer by multiple users, each operating a 
different computer program, communicating data 
and instructions to the machine from remote loca
tions, and receiving on-line responses. Each user has 
his own input/output device such as a teletypewriter 
or graphic display on television-type cathode ray 
tubes. 



516 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

In June, 1965, after this early experimentation 
the City of Los Angeles contracted with System De
velopment Corporation to undertake a design effort, 
applying these concepts and research results to the 
first phase of an information system to serve the Los 
Angeles Police Department. This system design 
effort concluded in January, 1966. 

A summary statement of the initial objectives of 
the system design effort, in light of the problems 
previously outlined, inciudes: 

( 1) Achievement of more financially eco
nomical means of processing increas
ingly larger amounts of information 
presently associated with crime and 
related reports, wants and warrants, 
and field interviews. 

(2) Minimizing the time required to proc
ess and communicate the information 
relevant to crime and related reports, 
wants and warrants, and field inter
views. 

(3) Maximizing the accuracy, relevancy, 
availability and effective utilization of 
crime, wants and warrants, and field 
interview information. 

The Phase I System is described below in terms of 
the inputs, processing, and outputs available to sys
tem users. However, the following are some of the 
Sy~tem's key characteristics: 

( 1) The System is based on the operation 
of a general purpose digital computer. 

(2) Information input to the computer 
will be entered by telephone through 
a centralized conversion pool. 

(3) All information will be reviewed first 
on a division level, and then by a 
command inspection activity that will 
provide centralized control over in
puts to the System. 

(4) Access to the System will be time
shared by means of keyed display 
devices. 

Phase I System Applications 

Figure 1 and the following discussion summarize 
the applications encompassed by the Phase I Sys
tem: 

( 1) The processing of crime data on a 
City-wide basis, including field report-

ing of events in remote locations; 
entry into a central computer file for 
correlation with similar data; dissemi
nation of abstracts back to the field 
location both automatically and upon 
demand; the production of the man
agement reports to be used for evalu
ation and deployment of manpower; 
assistance to the investigator in re
trieving relevant crime data; and the 
automatic dissemination of informa
tion to concerned county and state 
agencies about the crime activities, 
stolen property, individuals and ve
hicles involved. 

(2) The maintenance of a real-time in
quiry system for warrants and other 
wanted individuals. 

(3) A total inventory and processing of 
arrest and booking information, 
maintaining up-to-date information 
on individuals who have been arrested 
by the Los Angeles Police Depart
ment. This system will be compatible 
and communicate directly with the 
arrest and jail system of the Los 
Angeles County Sheriff. 

( 4) The incorporation of data on persons 
contacted in the field and the correla
tion of these data with possible crime 
occurrences in the same area. These 
field interview data are currently col
lected by patrol officers throughout 
the City, but have limited application 
because of the difficulty of correlat
ing and retrieving information from 
the manual system. With the new sys
tem, these data would be available, 
on either automatic or request basis, 
for computer retrieval and matching 
with selected crimes. This will be ac
complished within the system by a 
series of computer programs referred 
to as P A TRIC (Pattern Recognition 
and Information Correlation). As in
formation from the various System 
inputs is stored in the P ATRIC In
dex, the PATRIC retrieval and corre
lation function will automatically 
operate upon, correlate and output 
those particularly similar events that 



AN INFORMATION SYSTEM FOR LAW ENFORCEMENT 

EVENT 
REPORT 

FIELD 
INTERVIEW 

EVENT 
INFORMATION 
FROM ARREST 

DETECTIVE 
FOUOW·UP 

WANT AND 
WARRANT 
SERVICE 

WARRANT 
RECALL 

BOOKING 
AND RELEASE 
INFORMATION 

JAIL RELEASE 
INFORMATION 

Figure 1. LAPD System Phase I applications and processing. 

appear to be related. The results can 
be dispatched automatically to the 
concerned investigators at the begin
ning of each day for their evaluation. 

Inputs, Conversion and Review 

The primary information accepted by the Phase I 
System will include: 

(1) Event Reports and related follow-up 
reports (all crime information). 

(2) Contact information derived from 
field interviews and arrests. 

(3) Booking and release information 
within the City Jail System. 

( 4) Want and warrant information de
rived from the receipt, registration 
and processing by the Department of 

517 



518 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

all parking warrants, felony and mis
demeanor warrants, and felony wants. 
Included in this category are all local 
and other agency wants and warrants. 
In all instances, however, a copy of 
the warrant must be. physically in the 
possession of the Department or a 
reasonable justification for a want 
from another agency must be present. 

With the exception of hard-copy want and war
rant information, the primary mode of reporting will 
be by telephone to the Conversion Center. A Cue 
Sheet will be used by the reporting officer to assist 
him in organizing and specifically noting information 
collected at the scene of an event, during a contact 
(field interview or arrest), or in the booking proc
ess. The objective of the Cue Sheet is to systemize 
and reduce the amount of reporting without degrad
ing the quality of information. 

Information reported by telephone will be record
ed at the Conversion Center in the Department by a 
device controllable from any telephone. Hard-copy 
information (e.g., wants) will be converted directly. 
Event and Contact Reports will be converted with
out delay by transcription personnel situated at 
keyed display consoles in the Conversion Center. 
The use of the keyed display consoles will allow 
conversion personnel to edit the data (for conver
sion and format errors) prior to the insertion of the 
data into the appropriate System storage area. Cor
rections and other similar modifications will be 
made at the console. The reports are then passed by 
the System to the Division Reviewer for correction 
or modification, and approval prior to their entry 
and availability in the System. Arrest and crime re
ports (i.e., event reports) concerning individuals 
and crimes in the City but prepared by other law 
enforcement agencies will be processed into the Sys
tem in the same manner as LAPD-collected infor
mation. 

Booking information will be transmitted by either 
teletype or telephone at the point of booking to the 
central transcription pool in the Conversion Center. 
Booking and release information will be converted 
immediately for dissemination. The System will re
spond by printing the booking (or release) informa
tion at the appropriate points (division of booking, 
Central Jail) on the Department Teletype system in 
a sufficient number of copies for the booking proc
ess. Multiple copies may be produced on formsets, 
depending on the eventual use of the printed book-

ing report. Figure 2 depicts the major equipment 
components in the Phase I system. 

Information concerning the service or attempted 
service of warrants will also be in~erted into the Sys
tem. If a warrant has actually been served, this ac
tion will be reflected through the booking process. If 
an attempt has been made to serve a warrant but it 
was not served, the reasons for non-service will also 
be entered into the System. As each attempt is 
made, the reason for non-service and the number of 
attempts will be recorded in the want and warrant 
file. 

As Event and follow-up reports are reviewed and 
approved at the field division level, they will be au
tomatically displayed (by type of crime) on one or 
more of the keyed display consoles in the Command 
Inspection area (Figs. 1 and 2). The report of each 
type of crime is then inspected by Command Inspec
tion specialists who will make appropriate correc
tions or modifications and request additional infor
mation from the concerned divisional personnel 
when necessary. Command Inspection specialists 
will review the report contents to derive the appro
priate MO when necessary, make investigation as
signments when required, evaluate the completeness 
of information, and assign the principal crime in 
those Event Reports describing multiple crimes. 
When satisfied that all Event Report requirements 
have been met, Command Inspection will release the 
information into the System. 

Outputs for Line and Management 

The retrieval function will provide the user with a 
means for searching the total collection of crime and 
related information contained in the system and 
present him with organized responses. The correla
tion of information, such as peoples' names and de
scriptions, locations of crimes, descriptions of vehi
cles and methods of operation, will be a prime 
capability of the retrieval function. A copy of any 
specific report based on its identification number can 
also be obtained by the user if he desires. 

For example, if a user is looking· for a certain 
type of crime report, he might include in his request 
a description of a suspect (with or without a specific 
name), the specific MO known to be associated with 
the suspect and, perhaps, a partial vehicle descrip
tion. The computer would then search its total data 
base and refer to all reports (whether derived from 



AN INFORMATION SYSTEM FOR LAW ENFORCEMENT 519 

ROBBERY ~ TRAINING ".Q 

HOMICIDE ~ 

OTHER 
CENTRAL 

PROCESSOR 

DIVISIONS SPEClAlIZE~Q 

~.I 
~ 

BURGLARY ~ 

PRINTER RANDOM ACCESS 
STORAGE 

Figure 2. LAPD System Phase I equipment configuration. 

events or field interviews or from other reports) that 
contain any of the information the user has request
ed. 

Another capability of the retrieval function will 
be the automatic correlation of information in older 
reports with that included in selected new event re
ports. In addition, if desired by a particular investi
gating officer, a check can be made against contact 
reports based on time and location (as well as sus-

pect description) to determine if any field interviews 
were conducted at approximately the same time and 
in the same general location. Thus, each investigat
ing officer can be provided with all possible relevant 
information on the crime or crimes he is investigat
ing. 

The overall retrieval function, including both the 
automatic and special request modes, is referred to 
as P ATRIC (Pattern Recognition and Information 



520 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Correlation). The following hypothetical situation is 
an example of the PATRIC operation: 

• A "window smash" burglary occurs at 
1: 00 a.m. at Wilshire and Fairfax. Wit
nesses describe the perpetrator as a male 
caucasian, 5"9" tall, wearing light cloth
ing. The field officer completes the re
port and the information is entered into 
the System. 

• Approximately an hour later at 2: 00 
a~m. at Westwood and Pico, in an ad
jacent division, a person fitting the same 
description is stopped and interviewed 
by other field officers. A Contact Report 
(field interview) is completed and en
tered into the System. The additional 
name and address information is now 
on file. 

• At 2: 30 a.m. the same suspect, in the 
Venice Division, is arrested and booked 
for being intoxicated. His name, physi
cal description and other pertinent data 
are inserted into the System. 

From the time the Event Report entered the Sys
tem, P A TRIC has been automatically correlating it 
with other similar events in the System files. The 
results will arrive on the concerned investigator's 
desk the next day and may include the following 
correlated information: 

( 1) A window smash occurred at 1: 00 
a.m. at Wilshire and Fairfax; the sus
pect was a male caucasian, 5'9" tall, 
wearing light clothing; 

(2) At 2:00 a.m., at Westwood and Pico, 
a male caucasian, 5'9" tall, wearing 
light clothing, and named John A.· 
Doe was interviewed and released; 

(3) The Warrant File has been auto
matically searched, and there is no 
want or warrant on file in that name 
for the stated date of birth; 

( 4) John A. Doe has had several Contact 
Reports made on him at various loca
tions within the last three months; 

(5) John A. Doe has been arrested and 
booked before; 

(6) All these events took place within a 
2 to 3 hour time period and within a 
radius of 10 miles from the initial 
event; 

(7) A John A. Doe is now in custody at 
Venice Division jail awaiting arraign
ment on a drunk charge. 

The rest is left to the investigator. He may make 
additional requests of the System for clarification of 
certain data or he may disregard the information. 

Statistical summaries of crime activities for the 
City will be available periodically or on demand. 
Because Event Reports will be processed into the 
System shortly after the collection of the informa
tion, the current status of criminal activity will be 
available almost immediately. A major function of 
the Command Inspection operation is to assure the 
Department's current awareness of the citywide 
crime situation. Event Reports concerning special 
occurrences (such as reports involving a shooting) 
will be brought not only to the immediate attention 
of the Command Inspection personnel, but also to 
other Department personnel whose action is re
quired. Special listings of abstracts or reports will be 
provided either in response to a standing request or 
by special query. By using the statistical analysis 
function in the System, requests can be made for 
special summaries or even more involved statistical 
analysis of information contained in the various files 
of the System. In most instances, statistical sum
maries presently prepared for or by the various di
visions will be produced by the System automatical
ly or on request. Aside from the major reports 
(Event and Contact) resulting from the collection of 
crime and related information, the System will de
rive and produce numerous other reports and sum
maries such as the Jail Population and Crime Ab
stracts. Information will be as current as the most 
recently inserted data. 

THE PHASE I SYSTEM AS A REGIONAL 
SYSTEM 

The expansion of the Phase I System for use as a 
regional information system for law enforcement 
agencies in the greater Los Angeles area is not only 
feasible, but reasonable. Some requirements for the 
implementation of such a concept include: 

( 1) The need for increased random access 
computer storage capacity. 

(2) The requirement for at least one 
keyed display console or teletype
writer to be located at each participat
ing agency. Additional input-output 



AN INFORMATION SYSTEM FOR LAW ENFORCEMENT 521 

equipment may be required depending 
on input volume and query rate. 

(3) The need to establish efficient data 
conversion procedures on the part of 
the participating agencies. 

( 4) The requirement to specify the degree 
of interagency access to information 
in the data base. 

The most immediate question is that of wants and 
warrants. The Municipal Court and the Los Angeles 
County Sheriff's Department, as well as LAPD, have 
been considering warrant processing requirements. 
Additional interactions among concerned agencies 
will be required to determine the ultimate regional 
system configuration. 

Provision has been made in the design for the 
interaction of the LAPD System with other City, 
County, and State information systems. When the 
LAPD System becomes operational, an interface 
will occur with the Police Information Network 
(PIN) of Alameda County and the AUTO STATIS 
(Automatic Statewide Auto Theft Information Sys
tem) operation of the California Highway Patrol. 
Contemplated systems of other agencies, with which 
the LAPD System may have to interface, include the 
National Crime Information Center, the Department 
of Motor Vehicles, the Bureau of Criminal 
Identification and Investigation, and other agencies 
such as the Municipal Court and the Los Angeles 
County Sheriff's Department. 

Regardless of whether a regional system is devel
oped, agencies presently receiving information from 
the LAPD will receive that information in the form 
of automatically produced reports in a format ac
ceptable to them, or if desired, in the form of mag
netic tape containing the information. 

FUTURE ANALYSIS, DESIGN, AND 
DEVELOPMENT 

The ultimate goal of the joint LAPD-SDC study 
team is to analyze all information processing tasks 
now being performed in the LAPD. The evolution
ary development of the system will insure the LAPD 
of an early operational capability that will solve 
some of its immediate problems while analysis and 
design activities continue on future phases of the 
system. This approach also allows for the gradual 
phase-out and transition from the existing manual 
system, thus helping to introduce features of the au-

tomated system to operating personnel. Most impor
tant, the capability for responding to new or chang
ing operational requirements will be maintained. 

Problems in implementation and operations will 
also be somewhat minimized by the evolutionary 
approach. By automating only a few elements at a 
time, for example, training for and transition to the 
new system will be eased. However, there are also 
some problems associated with this evolutionary de
velopment. They stem from the faulty assumption 
that succeeding phases are independent and can be 
dealt with separately when, in fact, each of the 
phases must be analyzed and designed with the ob
jectives of the entire system at the forefront of the 
activity. 

Management must select the elements to be in
cluded in each phase, basing its decision on such 
factors as cost, ease of implementation, resulting 
cost savings, increased effectiveness and general de
sirability, just as it did for Phase I. 

Although the full range of capabilities has not as 
yet been determined-special studies are required 
before specific applications can be selected-there 
are a number of suggested applications to be includ
ed in succeeding phases. 

It is expected that Phase II will computerize addi
tional arrest report activities, daily field activity re
ports, traffic accident reports, traffic enforcement se
lective deployment, officer deployment and car plan 
generation. 

A capability offering great promise-fingerprint 
identification, storage and retrieval-will be includ
ed in Phase III together with property reports and a 
pawnbroker cards file. 

Finally, during Phase IV, personnel, training, mo
tor transport, and supply and equipment records can 
be processed and maintained by the automated sys
tem. These non-law-enforcement applications can be 
considered independently of the information system 
described here, but they are included for the sake of 
completeness in the system analysis and design. 

REFERENCES 

1. L. B .. McCabe et al (SDC) and Sgt. H. H. 
Ebersole et al (LAPD), "Los Angeles Police De
partment Phase I Operating System Description," 
SDC Document TM(L)-2506, December 31, 1965. 

2. 1. T. Wagliardo, "Los Angeles Police Depart
ment Phase I Equipment Specifications," SDC Doc
ument TM(L)-2504/000/01, December 31, 1965. 



522 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

3. L. Farr, "Los Angeles Police Department 
System Development Plan," SDC Document 
TM(L)-2502jOOOj01, December 31, 1965. 

4. SDC-LAPD Joint Study Team, "Los Angeles 
Police Department System Design Study Glossary," 
SDC Document TM(L)-2498, December 31, 1965. 



THE TRANSFER OF SPACE AND COMPUTER TECHNOLOGY 
TO URBAN SECURITY 

Richard B. Hoffman 

Center for Planning & Development Research 
University of California, Berkeley 

INTRODUCTION 

The case for the application of systems analysis 
and computer technology to the problems of urban 
management has been a "timely" and important 
subject for the past five years. The automation of 
administrative procedures appears to have been suc
cessful in the Chicago Police Department, whe're 
crime statistics, operations reports, traffic accident 
and citation reports, payroll, financial accounting, 
and automotive cost accounting are presently work
ing components of the Chicago Police Department's 
data processing system. 

A similar rather extensive effort is presently taking 
place in Los Angeles, but the study group's propos
als are based on the existing organization, which 
very well may not make the best of the' available 
computer technology. 

The Chicago system, which utilizes an 80K IBM 
1411 CPU with a wide range of peripheral equip
ment including a disk storage unit and accompany
ing remote inquiry units, has capabilities and appli
cations well beyond its old system; this, however, 
should be attributed to the reorganization of the de
partment accompanying the appointment of Superin
tendent O. W. Wilson, formerly Dean of Berkeley's 
School of Criminology, which allowed Chicago's 
computer system to be implemented in a climate of 
change. 

523 

These cities have sufficient resources to justify 
large-scale computer installations which merely au
tomate the existing systems. The smaller public units 
will require either regional installations * or the 
broad application of systems analysis to take the 
greatest possible advantage of today's computer 
technology. This latter course is perhaps the only 
economically feasible alternative for the medium 
large city with a population of 100,000 to 300,000. 
However, the problems the systems analyst faced 
with the industrial manager in attempting to recast 
missions and question "basic objective" are but a 
small indication of the resistance to be met in work
ing with the public manager whose natural aversion 
to change is reinforced by statute, code, and ad
ministrative and civil service regulations. Recent 
work in a San Francisco Bay Area city has particu
larly highlighted this problem, even though the study 
city does have an unusually cooperative administra
tion. 

* The financial support of the county of Alameda was 
necessary to implement PIN (Police Information Network) 
in the San Francisco Bay Area. However, the willingness of 
the Supervisors of Alameda County to support PIN was 
based upon the system's eventual ability to be self-support
ing by performing adequately a task which was being per
formed inadequately. That, in fact, some important costs, 
namely, that of bringing the offender (individual with open 
warrants) into jail, were neglected is an indication of the 
existing "systems approach." County of Alameda-1964. 



524 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

The other side of the problem is reflected in aber
rations in performance to control standards. The 
original intention of any set of controls is to assure 
that the organizational objectives are fulfilled. How
ever, most operating controls reflect only a portion 
of any multiple-objective criterion function * and 
therefore we can expect to find numerous instances 
of aberration 1 and suboptimization.2 However, we 
must caution those who seek to use naively the com
puter system to strengthen the existing control sys
tem to reduce the "aberrant effects." They should 
remember that the controls are only an approxima
tion of the firm's objectives. And, if controls are 
followed blindly, whether through a lack of aware
ness, coercion, or for personal gain, the effect upon 
organizational performance can be equally detrimen
tal. 

It appears that the problem of implementing an 
effective systems analysis into the urban manage
ment context will be two-fold; (l) to obtain cooper
ation for a full, rather than a piece-meal systems 
effort; and (2) to devise and communicate a control 
system that adequately reflects organization objec
tives. 

It is necessary to first look at the primary mis
sions of the security function to determine what the 
police department organization believes it is doing, 
so that it is then possible to evaluate how well the 
department is performing against its announced ob
jectives. Happily, there appears to be considerable 
agreement among writers in the field of law enforce
ment, at least at this level. 

Table I. Function (Missions) of the Law Enforce
mentAgency 

1. Prevention 1. Crime Preven- 1. Prevention 
tion 

2. Repression 2. Patrol 2. Surveillance 
3. Arrest, recovery 3. Detective and 3. Apprehension 

of stolen prop- Vice 
erty and prepa-
ration of cases 

4. Regulation of 4. Traffic 4 

people in non-
criminal activi-
ties (traffic, 
crowds) 3 

4. Traffic 5 

* Even if the control system is designed to measure per
formance to each of the multiple-objectives, there exists the 
problem of determining the weighting (mapping) of the 
individual objectives and the communication of this weight
ing to the operating group. 

There exists the problem of determining which of 
these areas will yield the greatest possible pay-off 
for a given level of effort in applying systems analy
sis. Although it is realized that the entire urban sys
tem must be studied to yield the maximum benefit 
from the analysis, separation into the various sub
functions can yield tangible results provided one is 
willing and capable of evaluating the effects of the 
functional interrelationships when these effects are 
"critically" relevant. 

APPLICATION OF SPACE AND DEFENSE 
DEVELOPED TECHNOLOGY TO THE 
PRIMARY MISSIONS 

Although each of the primary mISSIOns will be 
evaluated separately, this approach does not in itself 
preclude technological applications which pertain to 
more than one of the primary missions, or which 
have interrelationships with parts of the urban sys
tem other than the security function. 

Traffic 

The problem of traffic or the regulation of the 
public in non-criminal activities can be viewed as 
the regulation of the flow of vehicles and pedes
trians. It would then appear that the traffic mission 
would best be performed by minimizing the number 
(N) and duration (D) of interruptions to the flow 
of traffic moved per unit of time. This problem can 
be viewed as 

f ( ) - {F(Vo, N) 
Xo - F(V, No) 

where f (xo) may represent a point or a solution set 
as is likely in this case. The solution set is described 
as that set in which improvements in one variable 
can only be gained at expense of the other variable. 
This is similar to Markowitz's efficient set. 6 Also see 
Geoffrion 7 and Charnes and Cooper 8 on the analysis 
of non-solvable problems, "goal-attainment", as a 
safeguard to ensure that long-run or broader objec
tives are not obscured by immediately attainable ob
jectives. 

However, given the existing organization of the 
urban system, much of the systems analysis efforts 
with regard to traffic would take place outside of the 
police department. The possible technological spin
offs to the problem of traffic would be in the area of 
queuing and simulation models, the advent of the 
third generation series of computers now makes 



SPACE AND COMPUTER TECHNOLOGY AND URBAN SECURITY 525 

many of these models economically feasible; a 
means of varying the length and sequencing of 
traffic signals in response to changes in the volume 
of traffic, through either a central control system or 
a device which responds to local conditions, and 
perhaps a simple information gathering system 
wherein the police officer on patrol reported possible 
future problems. Some examples might be trees or 
bushes growing in front of stop signs, or increased 
traffic due to a new factory or office. This informa
tion could form the inputs for work scheduling pro
grams for both engineering studies and road mainte
nance. 

Apprehension 

It is in an evaluation of the effects of improving 
our ability to apprehend criminals that the broad 
ou~look of the "true" systems approach is most re
vealing. It is assumed that the objectives of a police 
department ought to be based upon maximizing the 
safety of the individual and his property from harm 
by other individuals through either criminal or non
criminal means while attempting to minimize the 
quantity of interference with the public as it goes 
about its daily routine. Quantity in this case should 
be defined in terms of a combination of the number 
and duration of the interferences. The existence of 
multiple criteria implies a mapping of the criteria 
onto some function which represents the respective 
urban society's values. The previous comment re
garding multiple goal-attainment again applies. 

Although it appears that computer technology 
may be best suited for implementation in this func
tion, without a careful analysis and evaluation of all 
the effects, many of the problems encountered in 
implementing computers into the production and in
ventory control functions in business may be repeat
ed. And the results from "obvious" computer appli
cations may cause a considerable delay in the 
development of this market. 

Apprehension serves two purposes-to recover 
property, and to deter criminal activity through a 
high probability that the criminal will have to make 
some contribution to society in return for commit
ting the crime. If, in fact, deterrence is the primary 
objective of apprehension, it is necessary that the 
detective division prepare the case; the judge, given 
the legal constraints set by the legislature or other 
appropriate set of elected officials, pass a long 
enough sentence to serve as a deterrent; prison 

officials provide an internship which reinforces the 
deterrent effect without producing hardened crimi
nals;4 and the probation officials' supervision of pa
rolees be such that they, the parolees, have both the 
legitimate alternative activities to pursue, and the 
motivation not to return to criminal activities. 

With the exception of murder and other crimes of 
passion, the criminal seems to be fairly successful in 
avoiding apprehension and subsequent conviction 
(see Table II). 

The other problems of increasing our ability to 
apprehend are of two varieties. One, when those ac
tivities that are engaged in by the professional crimi
nal are made less desirable, the criminal typically 
searches for new forms of criminal activity. Two, 
the cost to society of removing an individual is ex
ceptionally high. This cost is composed of the fol
lowing: 

1. The cost of apprehension (this activity 
has the highest cost per assignment 
of all police department activities). 9 

2. Cost of preparation of cases, court 
appearances of both civil servants and 
citizens, and the maintenance and op
eration of the judicial system. 

3. Cost of incarceration.10 

4. Loss of income to the economy. 
5. Possibility of family becoming a bur

den to the state. 

Table II. 

Crimes against the person 
Not Cleared 

9.8% 

14.5% 

25.7% 

33.1% 

Murder 

Negligent Mansla,ughter 

Aggravated Assault 

Forcible Rape 

Crimes against property 

63.0% Robbery 

74.9% Burglary 

73.7% Auto Theft 

80.6% Larceny 

Cleared 

90.2% 

85.5% 

74.3% 

66.9% 

37.0% 
25.1% 

26.3% 

19.4% 

Crimes Cleared by Arrest, 1964. Although, in actual num
bers of occurrence, crimes against the person are infrequent, 
a high proportion of them lead to arrest. In cases of assault 
and rape, the victim may be able to identify the offender: 
murder and manslaughter, usually unplanned in advance, 
may have been witnessed by others. Also, the police exert 
great effort to solve these crimes. Based on Federal Bureau 
of Investigation, Uniform Crime Reports for the United 
States, 1964. 



526 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Naturally the cost to society of the criminal activ
ity must be balanced against the above costs. I think 
the implicit hypothesis is that improved methods of 
apprehension would lead to a disproportionate 
number of convictions of the non-professional who 
commits the lesser crimes against society, and an 
even greater degree of control by government over 
individuals engaging in private, non-criminal pur
suits. A further implication is that the professional 
criminal becomes rapidly aware of the improve
ments in the methods of detection and takes appro
priate countermeasures or undertakes criminal activ
ities in new forms of crime or in new geographical 
areas. If we are able to find improvements in the 
methods of apprehension that do not contribute 
greatly to the above, then it would seem that this 
would be a justifiable area of study. 

Surveillance (Patrol) 

The officer on patrol is a unique organizational 
entity. He can be considered to be a manager, if one 
defines managers as individuals whose primary func
tion is decision-making, and yet, he is the lowest 
level operational member of the police department. 
He is required in any given day to make a large 
number of immediate decisions on what are, in fact, 
exceedingly complex questions. He has very little re
course to outside assistance to evaluate the conse
quences of his decisions, and he must make these 
decisions on the basis of highly uncertain and in
complete information and assertions. Bristow 11 

notes at least four criteria on which the patrolman 
decision-maker must evaluate his alternatives: ( 1 ) 
legal, (2) precedent, both judicial and public policy, 
(3) press and public relations, and (4) internal 
(police department) relations. 

It would appear, if we assume that it is possible 
to assign officers to patrol activities which tend to 
accomplish the derivative objectives of the public 
safety objective, that one way to improve the 
efficiency of the patrolman, decision-maker in the 
field, is to increase his ability to rapidly determine 
the consequences of the various alternatives in rela
tion to any given decision or decision process. 

To effectively provide the officer on patrol with 
information concerning consequences, we need both 
an information system capable of storing and re
ceiving a large variety of information rapidly and 
making series of calculations for the field decision-

maker, and an efficient means by which the patrol 
officer can communicate with the system. 

The NASA and DOD developed computer sys
tems for automatic checkout and spaceflight control 
systems should provide the means of acquisition, re
duction, and analysis of the inputs for the former, 
and for the latter, the devices which the astronauts 
use to both transmit and receive information as 
well as those sensing devices which automatically re
port changes in the ship's external and internal envi
ronment would seem to be especially applicable. 

A typical inquiry made by an officer of the system 
might be to request the precedents, given some set 
of conditions of arrest and/or search of a suspicious 
individual when the officer did not have a search 
warrant and the effects upon later acceptability of 
the evidence. If the system indicated that it would 
not be advisable to enter without a warrant, it could 
indicate the most efficient means to obtain same and 
an estimate of· how long it would take to obtain a 
warrant. As a longer range proposal, given appro
priate revision of existing law, it might be possible 
to transmit the circumstances to a judge and to re
ceive a facsimile warrant through equipment in the 
patrol vehicle. 

Prevention 

"Certain offenses may be considered as 'Preventa
ble' while others may not. Crimes such as homicide, 
rape, aggravated assault, and others because of the 
passions (as opposed to reasons) usually motivating 
them, are not responsive to the mere knowledge that 
the police are present and will take steps to prevent 
them. Offenses in the general group containing 
crimes of stealth such as burglary, theft, auto theft, 
etc., on the other hand, do seem to respond to in
creased preventive effort." * (See Table II). 

It is the very nature of crimes of stealth which 
makes efforts of apprehension relatively ineffective. 
The criminal who operates in this area carefully se
lects those places, situations, time and types of 
property in which the probability of apprehension is 
at a minimum. It would seem to be particularly rele
vant for a systems analysis effort to focus on the 
conditions under which this type of crime is most 
likely to occur. 

* Quoted from R. Smith-1961, pp. 35-36. Also, Smith 
cites a study which indicates that " ... special indirect tech
niques seem to have a fair amount of success in reducing 
the frequency of certain crimes related to vice." from Nar
cotics, Addiction and Nalline, Oakland, Calif. Police Dept., 
1958, p. 10, (R. Smith, p. 36). 



SPACE AND COMPUTER TECHNOLOGY AND URBAN SECURITY 527 

The recommendations as to the means of prevent
ing crimes of stealth could take a number of forms: 

1. Provide additional police protection 
in areas with a high likelihood of 
crime. This may very well require a re
source allocation system with an ex
ceedingly short reaction time and an 
accompanying system capable of rapid
ly recognizing changes in aggregate 
crime patterns. . \ 

2. Changes in the penalties for conviction 
of crimes of stealth. It has been in this 
area of prevention that much of the 
effort of law enforcement officials has 
already been applied. 

3. Reduce the ability of criminals to 
utilize or dispose of stolen merchan
dise. 

4. Statistical studies to indicate the causal 
conditions in which this group of 
crimes occur. The effect of street light
ing and other physical attributes on 
crime levels is presently known. Cost 
effectiveness analyses would indicate 
the value of additional lighting par
ticularly in areas and locations having 
an abnormally high incidence of crime. 
The use of direct warning systems in 
armored trucks, liquor stores, service 
stations and supermarkets would be a 
considerable deterrent from the sub
stantially increased probability of ap
prehension. 

All of the above with the exception of the 
changes in penalties for conviction would appear to 
have a good probability of success and significant 
applications of technological spin-off. 

The suggestion for a resource allocation system 
could be accomplished through systems similar to 
the Defense Department-developed command and 
control systems. The system could use computer 
graphics to display the existing deployment of 
forces, both professional and equipment; geograph
ical areas with increased intensity of crimes; and the 
number and present assignment of officers who 
could be relocated to help combat crime in the areas 
of increased intensity. 

The system could also present a periodic (hour
ly, daily, weekly, etc.) allocation of departmental re
sources by area; e.g., beat. This might be used to 

re-allocate officers to new beats, other divisions, 
etc., in the face of changing requirements. The peri
odic requirements information (based upon varia
tions in the level of crime, as an example) could be 
fed into the system and an alternate resource alloca
tion could be proposed which would reduce the 
"average gap between resources and requirements 
for each beat on division." Such an allocation could 
indicate the sources and destinations of the re
sources to be transferred, so that the administrative 
and supervisory units could determine the feasibility 
of the allocation. The process could conceivably be 
an iterative process wherein the supervisory officers 
constrained the system from allocations which they 
felt were not practical. 

This sytem critically depends upon a means of 
measuring "normal" levels of activity, wherein the 
normal is defined in dynamic rather than static 
terms. 

The design of systems with similar capabilities has 
been accomplished by DOD in its SAGE system and 
its tactical command and control systems, and NASA 
in its space flight control systems so that the prob~ 
lem would appear to be one of implementing exist
ing technology into a civilian use. 

The suggestion to reduce the ability of criminals 
to dispose of stolen goods could be accomplished 
through at least two means: 

1. By marking easily disposable items with the . 
owner's name and city. The methods of marking 
part numbers on components of space vehicles 
should provide the technology to develop inexpen
sive and innocuous means of identifying personal 
property either at point of sale or at police depart
ment approved locations. 

2. By requiring better identification of sellers of 
expensive goods and requiring transfer of identifying 
information or original seller to future bills of sale. 
The knowledge, by criminals and "fences", that this, 
information would be periodically processed and 
analyzed to check on multiple sales by individuals 
not normally engaged in buying and selling these 
items, and types of purchases made by pawnbrokers, 
jewelers, and other "legitimate" sources, might serve 
as a significant deterrent to this type of crime. In the 
opinion of many operatives and authorities in the 
field, it is the relative inability of the police to ana
lyze and trace through economically, the massive 
amount of data on these items which makes appre
hension so unlikely. 



528 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

The direct warning system could be required by 
law of establishments under existing licensing re
quirements, in much the way owners of attractive 
nuisances are required to take precautions. The 
means to communicate the basic information to field 
(patrol car) could be accomplished through a local
ized real-time application of the suggested command 
and control system. Also, variations of missile auto
matic check-out systems could be used to perform 
many of the existing routine patrol activities, there
by releasing patrol officers to perform other func
tions. Another. type of warning system which could 
directly use space effort developed technology would 
be a burglar alarm with a self-contained power 
source which could be charged daily during working 
hours. The. device could be much like the meteor 
warning devices or a form of moving object radar 
similar to that used in aircraft ground control opera
tions. Rather than transmit the impulse of move
l1lent to a cathode ray tube, as is the case of radar, a 
rqdio or telephone transmission would be initiated. 

It would seem from the alternatives in this rather 
preliminary study, there would be a large number of 
possible applications of space and defense technolo
gy in the area of crime prevention. 

An Example of a Possible Systems Solution to a 
Problem in Public Protection 

Prefessional auto theft, in Southern California at 
least, in response to increased efforts by law en
forcement officials is taking new forms. Typically an 
aute is stolen, stripped of most of its valuable and 
salable items and an attempt at destruction is made. 
Those items which can easily find their way into 
legitimate outlets are, of course, the most desirable. 
(The need for registration certificates for the sale of 
complete autos and engines makes this type of theft 
less desirable with the existing means available to 
check the certificates' validity.) At present the "hot
test" item is a set of bucket seats from top-line 
Chevrolets, Pontiacs and Fords. A front and back 
set ef these seats sells new for approximately 
$800.00 with an eight to ten week wait for delivery 
from the factory. These items have now reached a 
"used" price from salvage dealers of about $500.00 
per set. A survey of the recent issues of the Los 
Angeles and Orange Counties Auto Wreckers News 
indicated that there were approximately three times 
as many seats of this type for sale as autos of same 

make and year. When it is considered that not all 0'f 
the models sold are equipped with the luxury seats, 
the ratio approaches ten to one-rather convincing 
evidence that stolen goods are getting on the "legiti
mate" market. 

At present, the licensed auto wreckers are re
quired to obtain a bill of sale for the items, but they 
are not required to check the identity ef the seller. 
Since the seats may go through two te three auto 
wreckers before reaching the wreckers who special
ize in this type of equipment, it becomes impossible 
to trace the original source. 

After some consideration and further discussion, 
the following possible solution was presented to sev
eral knowledgeable law enforcement officials: 

1. Require that on all automobile parts 
sales by a private party of over 
$100.00 that the seller present a 
driver's license or similar identificati0'n 
at time of sale and that this be listed 0'n 
the bill of sale and any further transfer 
of bill of sale. 

2. If there exist any serial numbers that, 
they be listed en the bill of sale. 

3. The license (registration) of the ve
hicle from which equipment was re
moved be shown on the bill of sale. 
Seller must present proof of ownership 
(i.e., presentation of registration cer
tificate). At this time the buyer would 
be required to ascertain face validity by 
cemparing type of equipment t0' de
scription of auto on the registrati0'n 
certificate. 

4. Buyer of equipment who ultimately 
installed equipment would forward 
copy of bill of sale to Department of 
Motor Vehicles. 

5. Periodically tests could be run using 
batch processing of the relevant in
formation to determine: 
(a) If the equipment could have come 

from auto (run against registra
tion file). 

(b) If the same equipment came out 
of a given auto more than once. 

( c) Comparison of auto demoliti0'n 
records and equipment sales. 

( d) Analysis of original "legitimate" 
buyers. 



SPACE AND COMPUTER TECHNOLOGY AND URBAN SECURITY 529 

Most officials felt, based upon experience with 
pawnbrokers, that the above methods would proba
bly have a considerable deterrent effect if they could 
be implemented! 

The Problems of Implementing Information Systems 

The usual approach of requesting users to report 
their information requirements to the analyst is pri
marily aimed at reducing duplication of efforts in 
collecting and reporting information. This approach 
has a tendency to neglect evaluating the value of the 
information to organization in terms of its con
tribution to the accomplishment of organizational 
objectives. If the studies made by the planning and 
research groups of municipal police agencies are an 
indication,4 any information system developed with 
the above approach will relate primarily to appre
hension, and will be collected to facilitate adminis
tnitive and supervisory needs rather than operation
al requirements (Le., field decision making).12 

Until the analysts are able to adequately under
stand the real problems in trying to assure public 
safety, and are able to suggest more effective alter
native means which are focused on maximizing the 
safety of the inhabitants of the urban environment, 
any information system would most probably rely 
on the user requirements approach. However, the 
steps necessary for the implementation of the tacti
cal control system suggested in the previous section 
on crime prevention would allow the team to view 
the system from a resources and requirements out
look. By approaching the design of an information 
system as a derivative function of a tactical control 
system, it would be practically assured that the in
formational requirements of the operational units 
would receive primary consideration. The ability of 
electronic data processing equipment to rapidly 
compile large quantities of data should be adequate 

to meet administrative, supervisory and statutory re
quirements for information. 

REFERENCES 

1. Renis Likert, New Patterns of Management, 
McGraw-Hill, New York, 1961. 

2. R. A. Johnson, F. A. Kast, and J. E. Rosen
zweig, The Theory and Management of Systems, 
McGraw-Hill, New York, 1963, p. 350. 

3. O. W. Wilson, Police Administration, 2nd Ed., 
McGraw-Hill, New York, 1963. 

4. V. A. Leonard, Police Organization and Man
agement, 2nd Ed., Foundation Press, Brooklyn, 
N.Y., 1964, p. 459. 

5. W. W. Herrmann et aI, "Natural Language 
Computer Processing of Los Angeles Police Depart
ment Crime Information," TM-17931000100 Sys. 
Development Corp., Santa Monica, Calif., 1 April 
1964, p. 66. 

6. H. Markowitz, Portfolio Selection, Wiley, New 
York, 1959. 

7. A. Geoffrion, "On Solving Bi-Criterion Mathe
matical Programs," Working Paper 92, Western 
Management and Science Inst., UCLA, Los An
geles, 1965. 

8. A. Charnes and W. W. Cooper, Management 
Models and Industrial Application of Linear Pro
gramming, Wiley, New York, 1961, pp. 215-233. 

9. R. D. Smith, "Computer Application in Police 
Manpower Distribution," Washington Field Service 
Div., International Assoc. of Chiefs of Police, 1961, 
p.98. 

10. L. Glen Strasburg, Personal discussion with 
regard to his professional work with the Calif. State 
Dept. of Corrections, January 1966. 

11. Allen P. Bristow, "A Preliminary Study of 
Problems and Techniques in Decision-Making for 
the Police Administration," School of Public Ad
ministration, U.S.C., Los Angeles, 1957. 

12. Oscar Speed, "A Report of an Administrative 
Analysis of a Police Car Reporting System," School 
of Public Admin., U.S.C., Los Angeles, 1961. 





RECENT PROGRESS ON A HIGH-RESOLUTION, 
MESHLESS, DIRECT-VIEW STORAGE TUBE * 

Norman H. Lehrer and Richard D. Ketchpel 

Hughes Research Laboratories, 
Malibu, California 

INTRODUCTION 

Photographic film is an excellent display medium, 
with a wide dynamic range, high resolution, and an 
integration capability. It has some limitations, how
ever, because it is not a real-time medium, i.e., the 
signal is not visible immediately upon application 
to the film; at least several seconds must elapse 
before the recorded signal is developed. In addition, 
film is not reusable; consequently, when no perma
nent record is required, the use of film is extremely 
wasteful. 

Development of a device with display capabilities 
which might be described as "real-time reusable pho
tographic film" has long been a goal of display 
research. Several approaches have been investigated 
unsuccessfully. 

PREVIOUS APPROACHES TO REAL-TIME, 
HIGH-RESOLUTION CONTROLLED 
STORAGE AND DISPLAY OF INFORMATION 

The simplest of these approaches is the long per
sistence phosphor screen, such as the P7 or P 14. 
These screens achieve storage by the cascading of 

* The research reported here was partially supported by 
the Research and Technology Division, Air Force Systems 
Command, U.S. Air Force. 

531 

phosphors, so that the cathodoluminescence of a 
short decay blue-emitting phosphor excites the pho
toluminescence of a long decay yellow- or orange
emitting phosphor. The storage characteristic of a 
P7 phosphor is indicated in Fig. 1. Note that the 

105 """-'-""T'""TT,--,.--,-,-,-r-r."..,,-,--rnIT-rT1rrT'TTl:rT-rn:! 

104 

J 
~ 

103 
E 
en 
(f) 

102 w 
z 
I-:c 
(!) 

10' n: m 
z 
w 
w 
oc 
0 
(f) 

10-2 L.i.....l...I..1LL...J...I.J.LL-1..l..Ji.L..I......LJ..JLL......1....J....L:l..J....,..L....l...J.,Ju......L,.-'-Io.J,.J 

10-4 10-3 10-2 10-1- 100 10' 102 103 

TIME AFTER EXCITATION IS REMOVED, sec 

Figure 1. Decay of a long persistence phosphor. 

initial decay of these screens is so rapid that the 
brightness is on the order of millifoot-Lamberts 
only 1 second after excitation ceases, requiring dark 
adaptation for viewing. The resolution is limited by 
the spreading of the emission which excites the sec-



532 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

ond phosphor, and the persistence is not controllable 
because it is a characteristic of the material. The 
limitation of the storage capability of these long
persistence screens can be understood quite simply 
when we consider the energy available forexcita
tion of the phosphor. The only source of energy is 
that imparted to the phosphor during excitation by 
Jhe signal delivered with an electron beam. To 
achieve storage, this relatively large amount of 
energy delivered in a short time must be reemitted 
for much longer periods. Even in the ideal case, this 
can occur only if the stored brightness level is sub
stantially less than that achieved during excitation. 

In direct-view storage tubes an attempt is made 
to overcome these fundamental limitations on bright
ness by utilizing a second source of energy to main
tain the display. The energy delivered by the signal 
is used only to produce a modulation on the second 
source of energy. In such a device, as shown in 
Fig. 2, a second energy source is provided by sepa-

HIGH-ENERGY ERASE 
GUN (-6 KV CATHODE) VIEWING SCREEN 

STORAGE 
DIELECTRIC 

LOW-ENERGY WRITING GUN BACKING ELECTRODE 
(-2 KV CATHODE) (-6 VOLTS) 

Figure 2. Schematic of storage grid tube. 

rating the persistence characteristic from the bright
ness characteristic of the display; i.e., utilizing the 
phosphor only for its brightness. Storage is achieved 
through the addition of a storage mesh. A storage 
dielectric resides on the storage mesh, and signals 
are displayed and stored by the charge pattern which 
exists on the surface of the dielectric. A flooding 
beam which serves as a second source of energy is 
modulated by the charge pattern on the storage 
mesh, creating the stored image on the viewing 
screen. Therefore, in a direct-view storage tube it is 
possible to store information at high brightness levels 
and controllably erase the display. However, the 
nature of the structure which makes possible the 
controlled display of information at high brightness 

levels in the direct-view storage tubes also limits 
the resolution. The geometry of the mesh and front 
end electron optics limits the resolution of a direct
view storage tube to about 120 lines per inch, or 
more than an order of magnitude below that obtain
able with photographic techniques. 

One approach to overcoming this resolution limi
tation is the electroluminescent-photoconductive 
panel, as shown in Fig. 3. In such a device, a layer 

TRANSIENT OPTICAL 
INPUT SIGNALS 

VOLTAGE SOURCES 

Figure 3. Principle of EL-PC storage by feedback. 

of luminescent material is adjacent to a layer of PC 
material; these layers, in tum, are enclosed by two 
transparent electrodes. The pulsed input signal 
increases the conductivity of the photoconductor, 
switching more voltage across the EL layer and caus
ing it to light. The EL layer remains lit after the 
input signal ceases because light from the EL layer 
feeds back to the photoconductor, maintaining its 
high conductivity. In practice, this concept is limited 
in response time and resolution. Conventional photo
conductors respond in milliseconds, compared with 
the microsecond excitation required in many appli
cations. In addition, the spreading of the light which 
feeds back from the EL layer to the photoconductor 
causes a severe degradation in resolution. The reso
lution problem might be solved by the use of a 
mosaic structure of EL-PC elements (Fig. 4), sepa-

TRANSIENT 
OPTICAL 
INPUT 
SIGNALS 

STORED· 
OPTICAL 
OUTPUT 
SIGNALS 

VOLTAGE SOURCES 

Figure 4. Modified EL-PC structure to prevent spreading. 



A HIGH-RESOLUTION, MESHLESS, DIRECT-VIEW STORAGE TUBE 533 

rated from each other by an opaque insulating layer, 
and in series with an output EL phosphor. Such 
complex structures restrict the resolution below that 
obtainable with conventional direct-view storage 
tubes. Thus the essential drawbacks to the EL-PC 
panel may be summarized as a lack of sensitivity, 
because of the nature of photoconductivity, and a 
lack of resolution, because storage is accomplished 
by feedback of light to a photoconductor. 

If the storage capability were an integral charac
teristic of the control layer, it would be possible to 
optically isolate that layer from the EL layer simply 
by inserting an opaque insulating layer between the 
control and EL layers. In such a case, the resolu
tion would be ultimately determined by the inherent 
storage characteristics of the control layer, and it 
would not be degraded by the requirement for opti
cal feedback. Furthermore, if the control layer could 
respond to microsecond electron beam excitation, it 
would be possible to fabricate a device which could 
store and display information in real time with 
high resolution and high sensitivity. Thin dielectric 
films which exhibit sustained electron bombardment 
induced conductivity (SEBIC) appear to satisfy the 
control layer requirements for high sensitivity and 
storage. 

THE SEBIC LA YER 

Thin films of cadmium sulfide which exhIbit 
SEBIC were first developed by the Hughes Research 
Laboratories. The principal phenomenological char
acteristics 1 of these layers can be summarized as 
follows: 

• Pronounced rectification effects are ob
served when an electric field is applied 
without external excitation (Le., light or 
electron beam). Rectification ratios as 
high as 106 are obtained. 

• When the direction of the applied field 
places the layer in the back biased or 
low current condition, external excita
tion produces a substantial increase in 
the conductance of the excited region. 
The amount of the increase depends on 
the integrated excitation energy. 

• When the external excitation is re
moved, but the application of the field 
continues, the high conductivity state is 
substantially maintained in the previ
ously excited region. 

• Momentary reversal or removal of the 
field restores the excited region of the 
layer to its low conductance state. 

• The conductance of the SEBIC layer 
can be varied in two dimensions for 
long periods with no significant loss in 
the stored resolution (which approaches 
that available with photographic tech
niques) . 

• The conductance of the SEBIC layers 
can be substantially increased by bom
bardment with microsecond pulses of 
high energy electron beams. 

A cross section of a typical SEBIC layer is shown 
in Fig. 5. The SEBIC layer consists of a layer of 

SUPPORT 

SULFIDE DIELECTRIC LAYER 

~~~--'-:+ TOP ELECTRODE 

Figure 5. Cross section of SEBIC layer.

evaporated cadmium sulfide sandwiched between
two electrodes. A barrier region is formed adjacent
to one of the electrodes. The electrical characteristics
of the SEBIC layer critically depend upon the for
mation of the barrier region. In the SEBIC layer
shown in cross section in Fig. 5, this barrier region
is formed adjacent to the bottom electrode,but it
can also be made adjacent to the top electrode.

Theoretical concepts of the SEBIC effect are
described elsewhere;1 however, the effect is not yet
understood completely.

SEBIC layers can store information in the form
of two dimensional conductivity modulations with
almost photographic resolution. In addition, they
can be excited with brief pulses of high energy elec
tron beams, and they are reusable because they can
be erased almost instantaneously. In a sense, they
may be thought of as a form of real time photo
graphic film-the principal remaining problem con
cerns the readout of information. One possible tech-

534 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

nique involves utilizing the conductivity modulations
stored in the SEBIC layer to switch on an adjacent
EL layer, or, in other words, replacing the PC layer
in an EL-PC panel with a SEBIC layer. The suc
cessful realization of this concept depends upon
appropriately matching the impedance of the EL and
SEBIC layers. This approach-the EL-SEBIC
panel, or the meshless storage screen-is described
below.

THE MESHLESS STORAGE TUBE

Description

The meshless image storage screen is based on
the use of the phenomenon of SEBIC to control
the brightness of an adjacent EL phosphor. As
shown in Fig. 6, the two layers are sandwiched be-

ELECTRON GUN ./

DELECTION YOKE

THIN CONDUCTIVE
COATING

FACEPLATE

TRANSPARENT
CONDUCTIVE
COATING

VOLTAGE
SOURCES

Figure 6. Schematic of meshless storage screen.

tween two electrodes. A transparent conductive film
deposited on a glass support serves as the electrode
contacting the phosphor; a thin conductive coating
deposited on the SEBIC layer forms the other
electrode. In contrast to the construction of conven
tional PC-EL phosphor panels, optical feedback is
prevented by the use of an opaque insulating layer
between the SEBIC and phosphor layers. The
opaque layer can be omitted if the SEBIC layer
is insensitive to the luminous output of the phosphor
layer.

The switching action is generally similar to that of
PC-EL phosphor panels. When voltage is applied
to the electrodes, most of the voltage drop is across
the SEBIC layer when it is unexcited; the EL layer
is dark if the impedances of the two layers are prop
erly selected. When an elemental region of the
SEBIC layer is excited. by means of a high energy
electron beam, its resistance decreases; more of the
voltage drop is switched across the EL layer, caus-

ing it to light. Because the conductivity of the SEBIC
layer remains high after excitation ceases, the EL
layer remains lit and the signal is stored. The dis
play can be erased instantaneously by a momentary
removal of the applied voltage, which permits the
SEBIC layer to return to its pre-excited high resis
tivity value. The form of the decay can be controlled
by low duty cycle interruptions in the applied voltage.

Analysis

The equivalent circuit of an elemental region of
the meshless storage screen is shown in Fig. 7. The

VOLTAGE V
SOURCES

~ EXCITATION: OPTICAL
OR ELECTRON BEAM

FIELD SUSTAINED
CONDUCTIVITY LAYER

91 = 90+ 90'

ELECTRIC FIELD .
92 MODULATED LIGHT

PRODUCING LAYER
(i. e., EL PHOSPHOR)

Figure 7. Equivalent circuit of meshless storage screen.

SEBIC and EL layers are represented by their ca
pacitive and conductive components. The SEBIC
layer has an elemental capacitance C1 , an unexcited
conductance go, and an excited conductance g' 0

which is much greater than its unexcited con
ductance; the total elemental conductance is gl'
Note that the effect of electron beam excitation is
represented by closing the switch in series with con
ductance g'.o. Because of the nature of the sustained
conductivity in the SEBIC layer, the switch remains
closed after excitation ceases, as long as the applied
field is maintained. The switch is opened by momen
tary removal of the applied field. The elemental ca
pacitance and conductance of the EL layer are
represented by C2 and g2, respectively.

The voltage sources (shown in Fig. 7) for driving
the meshless storage screen are a dc bias in series
with an ac voltage supply. The dc serves to prevent
the ac signal (which excites the EL phosphor) from
reversing the field across the SEBIC layer and
thereby erasing any stored signals.

Control by the SEBIC layer of the voltage drop
across the EL layer implies that most of the voltage
drop initially is across the SEBIC layer; as a result
of excitation, a good part of the drop is switched
across the EL layer. The brightness versus voltage
characteristic of the EL layer will determine how

A HIGH-RESOLUTION, MESHLESS, DIRECT-VIEW STORAGE TUBE 535

much must be switched; a reasonable assumption is
that when the EL layer is dark, two-thirds of the
voltage drop should be across the SEBIC layer and
when two-thirds of the drop is across the EL layer,
it is at highlight or full signal brightness. The prob
lem lies in determining the optimum impedance rela
tionships which will permit the required voltage
switching across the EL layer. The ac switching
problem will be treated first, and then the dc
problem.

If V 1 and V 2 are the ac peak-to-peak voltage
drops across the elemental regions of the SEBIC and
EL layers, cp is the ratio of their absolute values;

(1)

cp can also be expressed as

cp = I V 1 I = I ~ I = I Y2 I
I V 2 I I Z2 I I Y1 I

(2)

where Z1, Z2 and YlJ Y2 are, respectively, the imped
ances and admittances of the two layers.

The elemental admittance Y1 of the SEBIC layer is

(3)

and the elemental admittance Y2 of the EL layer is

(4)

where w is the frequency of the applied ac signal
multiplied by 27T. Therefore,

I V 1 I I Y2 I V g,2
2 + w

2 cl
cp= - = - =-----,

I V 2 I I Y1 I V g1
2 + w2 C1

2
(5)

squaring both sides of (5),

(6)

From (6), the conductance of the EL layer g2 is
typically small compared with its susceptance WC2.

Furthermore, in the off condition, the conductance of
the SEBIC layer g1 is small compared with its sus
ceptance wC1 • In that case, therefore, the voltage divi
sion is inversely proportional to the ratio of the ele
mental capacitance of the two layers:

c2 cp (off) = -.
C1

(7)

Therefore, if most of the voltage drop is to be across
the SEBIC layer in the off condition, the capacitance
of the EL layer must be large compared with that of

the SEBIC layer. SEBIC layers are typically 5 to
lap. thick, reSUlting in a requirement for EL layers
which are 2Yz to 5 p. thick; based on the state of the
art, ac EL layers with this thickness do not appear
practical for application to a device. In addition, the
SEBIC layer does not store well under ac operation
because of the periodic reductions in the field pro
duced by the ac voltage.

The operation of the meshless storage tube can be
analyzed for the dc case by assuming the voltage
source in Fig. 7 is dc. The immediate voltage division
upon application of the dc bias V is determined by
the inverse ratio of the elemental capacitances of the
two layers; the steady state voltage division is deter
mined by the values of the resistances. The time con
stant of the circuit must be measured in milliseconds
(or less) to permit rapid erasure of the display. The
voltage across the EL layer V 2 is given by

where the time constant

T=----- (9)

and
1 1

g1 = -,g2 =-.
r1 r2

It is reasonable to assume that to calculate the
order of magnitude of the time constant T, the capac
itances of the SEBIC and EL layers are approxi
mately equal since their thicknesses and dielectric
constants are comparable. Therefore,

(10)

Similarly, in the erased condition, the resistivity of
the SEBIC layer is of the same order of magnitude as
that of the EL layer:

(11)

Substituting these values in the equation for the
time constant,

r2
2 2c2

T = -- = r2C2

2r2
(12)

The resistance of the EL layer can be expressed as
d

r2 = - P2
A

(13)

where d is the thickness of the layer, A is the area of

536 PROCEEDINGS-FALL JONIT COMPUTER CONFERENCE, 1966

the element, and P2 is its resistivity. The capacitance 10' -~~"""-'-""""""'~--r--r-r-"-rTTT-----'--y-r-r-rrrn

of the EL layer can be expressed as

A
(14)

where e is the dielectric constant and e.o is the permit
tivity of free space.

Substituting (13) and (14) in (12),

d A
(15)

A reasonable value for P2 is 106 O-m, and for e the
value is 10;

T = 10 X 8.85 X 10-12 X 106

T = 88.5 fLsec (16)

Thus, a response time of only 88 fLsec is achieved
when r2 = 106 O-m. r2 can increase by two to three
orders of magnitude before the erase time becomes
excessive.

Control by the SEBIC layer of the voltage drop
across the EL layer implies that most of the voltage
drop initially is across the SEBIC layer; as a result
of excitation, much of the drop is switched across
the EL layer. The brightness versus voltage charac
teristic of the EL layer will determine how much
voltage must be switched. A reasonable assumption
is that when the EL layer is dark, two-thirds of the
voltage drop should be across the SEBIC layer; when
the two-thirds of the drop is across the EL layer, it
is at highlight or full signal brightness. The problem
is to determine the optimum impedance relationships
which will permit the required voltage switching
across the EL layer. If V1 and V 2 are the dc voltage
drops across the elemental regions of the SEBIC
and EL layers, let cf> be the ratio of their values:

VI
cf>=-.

V2

(17)

cf> in the steady state condition can also be expressed

(18)

In such a case, VI changes linearly with r1' Obviously,
if two-thirds of the voltage is to be across the SEBIC
layer, r1 must be twice r2 ; conversely, if the two-thirds
voltage is to be across theEL layer, r1 must be
~ r2 • These impedance relationships are indicated
in Fig. 8.

ERASED VOLTAGE DISTRIBUTION

10~~_,

Figure 8. DC voltage control with the SEBIC layer.

SEBIC and EL Layer Characteristics

Substantial progress has been made in the fabrica
tion of SEBIC and dc EL layers with matching im
pedance characteristics. The current-voltage charac
teristic of a high voltage SEBIC layer is indicated
in Fig. 9; the area of the electrode was 22 mm. 2

104 r-----y---,------.--...---'~-,---r---::J

/

I
I
I
I
I
I
/H

/
I

/
/

/{+l
/

/
/

/
I

/
/

60 80 140
10-1 L-._--'--_--L..._----'-__ '--_-'--_--'-_--'

o 20 40 100 120

APPLIED VOLTAGE, V

Figure 9. High voltage SEBIC layer current-voltage char
acteristic.

Note that operating voltages of 100 V and more have
been achieved with stored current densities approach
ing 1 mA/cm2

•

A HIGH-RESOLUTION, MESHLESS, DIRECT-VIEW STORAGE TUBE 537

DC electroluminescent layers are particularly
promising for use with the SEBIC layer because of
the dc nature of the storage characteristic. The thick
ness of the EL layer is no longer critical because the
capacitance is of minor consideration in the imped
ance match. In addition, dc EL layers operate at
much lower maximum voltages than those required
for equivalent brightness from ac powder layers. For
example, typical brightness for state-of-the-art EL
layers is 10 ft-L at 20 V for dc layers and 100 V
peak to peak for ac excited layers. The life of ac
excited layers appears reasonable, however, while
that of dc layers is highly questionable at present.

Several techniques for preparing evaporated dc
EL films are described in the literature. One tech
nique, described by Thornton? utilizes an evaporated
film of ZnS:Cu, Mn, Cl. Subsequently, the evap
orated film is heat treated in a powder environment
which also contains the appropriate activators. The
second technique, described by Goldberg and Nicker
son,3,4 involves the use of evaporated ZnS: Mn, Cl.
In the following step, a thin copper layer is deposited.
Finally, the composite layers are heat treated in
vacuum to produce the activated film. Another tech
nique described by Cusano involves preparation of
the same ZnS: Mn, CI films through the use of a vapor
phase reaction process, followed by a copper diffu
sion step. In general, the technique of Goldberg and
Nickerson was used as a starting point in our studies.

Operating characteristics for a dc EL layer are
shown in Fig. 10. Voltage, current, and input power

,O,'OL_,:----L-...L..JL.LJLLU,OLL,O----1-.-L-...L.LLliil,O-, -_L-L.L..LLUJJ'02

LUMINANCE, f'-L

Figure 10. Luminance of a dc EL layer.

are plotted versus brightness on log-log coordinates.
Note that the slope of the power versus brightness
curve does not become equal to 1. until maximum
light output is approached. Luminous efficiency is
defined as brightness (ft-L) divided by input power
(watts) per square foot of area, so that maximum

efficiency is reached as the slope of P versus B ap
proaches 1.

Studies have been conducted which utilize SEBIC
layers to control an equal area dc EL cell. In one
such case, the potential applied to the series circuit
of the dc EL layer and the SEBIC layer was 60 V.
The induced brightness (or brightness during excita
tion) was 35 ft-L. The stored brightness 5 seconds
after excitation ceased was 7 ft-L, and the erased
brightness was 0.001 ft-L. This controlled storage of
a dc EL layer for a 7000: 1 brightness range obvi
ously implies that a practical display can be pro
duced.

APPLICATIONS

The applications of the meshless storage tube will
ultimately depend on its performance. Based on the
progress to date, it seems reasonable to assume that
a meshless storage tube eventually will be fabricated
which will store for several minutes with a resolution
of up to 1000 lines/in. over screen diameters as
large as 21 inches. Writing speeds of 1,000,000 in./
sec appear feasible. Erasure can be instantaneous or
slow over a controllable time period. The maximum
light output might be 40 ft -L, with a high contrast
screen permitting observation in high ambients.

Before examining the various applications, we
should consider how much resolution the eye can
utilize. It is frequently accepted that the eye can re
solve elements about 1 mm apart. At a viewing dis
tance of 10 inches, this is equivalent to about 200
to 300 lines/in. Therefore, a display device capa
ble of producing an image with 300 lines/in. is re
quired to match the resolution of the unaided eye.
(This is more than twice the resolution which is
realizable in the best mesh-structured direct-view
storage tubes.)

With the aid of simple optical devices, magnifica
tions of up to five times are practical. Therefore, a
display resolution of 1000 to 1500 lines could be
seen with such devices. (It should be noted that very
high resolution systems frequently will have long
frame times, permitting adequate time for close in
spection with optical devices.)

The applications of the meshless storage tube can
be arbitrarily divided into two broad areas, based on
the nature of the information to be displayed.

Long Frame Time Systems

In these systems, the information becomes avail-

538 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

able and is serially delivered during frame times
which exceed the storage time of the eye. Since the
retention time of the eye is usually taken as 0.1 sec
ond, in these systems the rate is less than 10 frames /
sec. Typical examples of such low frame rate systems
are commercial and military ground-to-air radars. In
these systems, the information is generated by the
scanning radar and the frame time may range from
several seconds to a minute. The resolution is usually
more than 1 000 lines. These radars normally utilize
long persistence· phosphor screens for the display.
Therefore, the storage is at very low brightness levels
and is not controllable. A substantial improvement in
this display could be achieved by use of the meshless
storage tube. The information would be written on
the screen by a high energy electron beam, as in the
case· of an ordinary cathode ray tube. The informa
tion could be stored at a level close to its initial
brightness over the entire frame, or could be made
to decay in accordance with the frame time. This
would result in a three order of magnitude increase
in the stored brightness over that obtained with long
persistence phosphor screens.

Bandwidth Compression Systems

These systems are characterized by the immediate
availability of large amounts of information at a
given location. The problem is to transmit this infor
mation to a remote location for display. If the trans
mission is over a phone line, the bandwidth limita
tion is approximately 4 kc; this means that the
transmission of a television picture frame with 500
line resolution which normally occurs in a 1/30 sec
takes place over Vi min. The conventional mesh
structured storage tube is capable of this type of
resolution. However, the meshless tube offers ad
vantages in simplicity of operation and (potentially)
substantially lower cost.

The transmission of the typewritten page or high
quality pictures requires display resolutions of 1000
lines or more. The unique resolution capabilities of
the meshless storage tube permit applications which
are impossible with conventional storage tubes. The
controlled persistence feature would permit extended
viewing and erasure at will.

N arrow band transmission lines between large
centrally located computers and many individual
remote console displays should also be an important
application for this device. The main features of this
application would be the high resolution, flicker-free

picture without the requirement for a local memory
at each console to regenerate a cathode ray television
type of display. A specific use would be in a
"lookup" type of operation where the operator is
perusing typewritten or graphical data in a search
for a particular item. The . high resolution would
allow a large amount of information to be presented
on one format, so that the operator could scan the
contents rapidly and select the portion in which he
was interested. A large library or inventory might
thus be stored in a central computer for examina
tion at remote locations. It should be stressed that
the high resolution capability of the device would per
mit the display of pictorial and graphic information.

An application which appears particularly prom
ising is that which is frequently called "phono
vision." The most important obstacle to the use of
phone lines for a display of information with each
phone has been the unavailability of a low cost, high
resolution storage and display device which must be
used with phone lines. The potential simplicity and
low cost of the meshless storage tube indicate that
such a system should be practical and could well
be the largest application of the device.

CONCLUSIONS

Based on the use of a ·thin film which exhibits
SEBIC to control the voltage drop across an adja
cent dc EL phosphor, a high resolution meshless
storage· tube appears promising. Recent progress in
dicates that it should be possible to electrically con
trol the brightness of the dc EL layer over a wide
brightness range with a maximum stored brightness
of 40 ft-L. Resolutions approaching 2000 lines/in.
may be possible.

Other approaches to the problem of the high
resolution storage and display of information have
included cathode ray tubes with long persistence
display screens, meshless-structure storage screens,
and EL-PC panels. These approaches suffer from
limitations in resolution, response time, or control
of persistence.

The unique display characteristics, as well as the
simplicity and potential low cost, of the meshless
storage tube may lead to a wide variety of important
applications. These include systems where the infor
mation is available· in frame times which are' long
compared with the storage time of the eye (such as
ground based radars). In another class of applica
tions, 'information maybe displayed at a location

A HIGH-RESOLUTION, MESHLESS, DIRECT-VIEW STORAGE TUBE 539

remote from the source of the information (band
width compression). The high resolution capability
of the display would permit a large amount of infor
mation to be stored in a computer and then trans
mitted to a remote location for display. This infor
mation could be pictorial, graphic, or alphanumeric.
The low cost and simplicity of the device could make
phonovision a reality.

REFERENCES

1. N. H. Lehrer and R. D. Ketchpel, "Thin Film
Conductive Memory Effects Applicable to Elec
tron Devices," Optical and Electr~Optical Infor
mation Processing, MIT Press, Cambridge,
Mass., 1965, pp. 419 to 434.

2. W. A. Thornton, 1. Appl. Phys. vol. 33, p. 1602
(1963) .

3. P. Goldberg and J. W. Nickerson, 1. Appl. Phys.
vol. 34, (1963).

4. J. Nickerson and P. Goldberg, Tenth National
Vacuum Transactions, Macmillan, New York,
1963, pp. 475 to 479.

ACKNOWLEDGMENT

The authors wish to express their appreciation to
the Air Force Avionics Laboratory for their interest
and sponsorship of this effort. Mr. William H. Nel
son of that Laboratory deserves special thanks for
his continued suggestions and encouragement.

THE PLASMA DISPLAY PANEL-A DIGITALLY ADDRESSABLE
DISPLAY WITH INHERENT MEMORY *

D. L. Bitzer and H. G. Slottow

Coordinated Science Laboratory
University of Illinois

INTRODUCTION

Despite a growing interest in graphic communica
tion in computer systems and a rapidly developing
computer technology, the cathode ray tube remains
the most useful of available display devices. Its limi
tations, however, are serious, particularly in systems
with many display terminals. Other than phos
phorescence it has no memory. Its images, therefore,
must be regenerated continually, and to avoid flicker
they must be transmitted at video bandwidths. Fur
thermore, as an analog device in a digital environ
ment the cathode ray tube requires signal conversion
circuits that are both complex and expensive. Other
limitations such as high voltage and space require
ments are less serious but are still significant.

The Plasma Display is a new device that, in con
trast to the cathode ray tube, retains its own images
and responds directly to the digital signals from the
computer. Its resolution is comparable to that of
cathode ray tube displays, and in addition it can be
interrogated by the computer. It also seems likely

* Supported in part by the Joint Services Electronics Pro
gram under contract number DA 28 043 AMC00073 (E),
in part by the Advanced Research Projects Agency under
contract number ONR Narr-3985 (08) and in part by the
Syracuse University Research Corporation under contract
number SURC 66124.

541

that images can be drawn directly on the display
panel by means of a light emitting pencil. Although
this device is at an early stage of development some
of its system properties are already known, and
others can be estimated. The purpose of this paper
is to discuss, on the basis of these properties, the
role that the Plasma Display could fill in future
computer systems. A brief description of the display
is also included. More detailed accounts are availa
ble, 1~3 and a discussion of the display from a device
standpoint will be published elsewhere.

DESCRIPTION OF DISPLAY

The display is constructed of three pieces of flat
glass as shown in Fig. 1. Through the center piece a
matrix of small holes is drilled, and on one surface
of each outer piece a grid of transparent gold con
ducting strips is vapor deposited. The glass sheets
are typically 0.006 inch thick and the holes in the
center piece are about 0.015 inches in diameter. In
assembly the grids are on the outer surfaces of the
panel, they are orthogonal to one another, and the
strips are in registration with the holes. Each gas
cell, shown in the section view of Figure 2, is thus
surrounded entirely by glass except at the interfaces
between the glass sheets. Through these thin gaps
air is evacuated and a gas is admitted to the cells.

542 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

To selection~

network

/GIOSS panels

Transparent
conductors

Figure 1. Assembly of plasma display panel.

If an alternating voltage across a cell exceeds the
firing voltage, a discharge is established which devel
ops rapidly to a glow. At the same time the flow of
charges to the insulating walls reduces the voltage
across the cell. When this voltage becomes too low
to maintain the discharge, the glow is diminished
and the discharge itself is quenched. Measurements
of the current in the cell and of light radiated from
the cell have shown that with appropriate gases this
entire process takes place in from 50 to 75 X 10-9

seconds. During the following half cycle' the voltage
caused by the wall charge adds to the voltage due to
the external signal. Once the first discharge has been
established, therefore, the voltage required from the
exciting signal to establish succeeding discharges is

Gas

Transparent conductor

~-"'/Glass panels

Transparent conductor

Figure' 2. Gas discharge cell.

less than that required in the absence of wall charge.
In fact, if the flow of charges to the walls is just
sufficient to neutralize the field that exists within the
cell at the time of firing, the ratio of these two volt
ages is 2: 1. At intermediate voltages, therefore, the
cell is bistable. In the "zero" or' "off" state the peak
cell voltage is insufficient to create a discharge. In
the "one" or "on:' state a brief' discharge occurs
once each half cycle of the sustaining signal. Figure
3 shows a photograph of the light pulses together
with the exciting signal. The time scale is 1
microsecond/ division, and the. sweep is triggered re
peatedly during the 1/25 second exposure time.

The memory actually resides in the wall. charges,

./
,- ~ ~ ..

~
~ :, ...

" -, --
Figure 3. Light pulses and exciting' signals.

THE PLASMA DISPLAY PANEL 543

and it is often convenient to describe the device
processes in terms of the wall voltages associated
with these charges. In the "hff" state,' for example,
the wall voltage is, ideally, .'zero. In the "on" state
the wall voltage alternates at the exciting frequency,
combining once each '.' half cycle with the external
voltage to fire the cell. Changing the state of a cell is
essentially a matter of· controlling the changes in the
wall voltage.

Except when the pattern on the display is
changed a balanced alternating signal, either sinusoi
dal or pulsed, is always applied across the two grids.
This sustaining voltage is in Jhe bistable range, and
the voltages on all lines in a grid are equal. During
this tim.e·· the pattern remains on- the display and
there is no communication between the computer
and the display. When the state of a cell is changed
an appropriate balanced voltage is' applied across
the two' .electrodes that intersect at that cell. Across
the remaining cells affected bY,.these electrodes only
one half the voltage appears. This reduced voltage is
within the. bistable range and does not change the
states o{·these cells. Write .signals fn)m the computer
cause the states of selected cells to be changed in
sequence from "off" to "qn." Erase signals which
change states from "on"t6 "off" control either sin
gle cells in . sequence or rectangular blocks simulta
neously;

If the. pea~ voltage across two c?~ductors that in~
tersect at an "off" cell is raised above the firing po
tential the cell will be driv~n to the· "on" state. In'
the process the wall voltage, starting at essentially
zero, oscillates between two·· changing positive and
negative values until after several cycles these limit
ing voltages reach stable values. The external volt
age, however, need only exceed the firing voltage
once to initiate the process.

The short transition time cannot be attributed to
charge leakage. (llong the glass surfaces. In fact
charge can remain on the walls .fqr many millisec
onds. We have observed, however, that both the
intensity pf, .~he discharge and the amount of wall
charging .increase when the slope, of the exciting sig
nal increase~.The differential charging during the
first few discharges after the state is changed drives
the process to equilibrium.

The state of a cell can also be changed from "off"
to "on" by combining a slowly varying control sig
nal with·'the sustaining signal. This slow write proce
dure allows the use of high impedance switching' cir-

cuits, and is appropriate to several important uses of
the display.

Several procedures, both fast and slow, have been
used to.· change the state of a cell from "on" to
"off."

The computer not only can write and erase pat
terns on the display, but it can also test the state of
any cell by applying the sustaining signal to only the
electrodes that intersect at that cell. If the sustaining
signal is applied to only one pair of intersecting con
ductors only that cell responds to the signal. If the
cell is "on" it emits light pulses that are detected by
a'single photocell at the back of the display panel. If
the cell is "off" it does not emit light. The states of
all other.' cells remain unchanged since the wall volt
ages do not change appreciably in this. time interval.
If the sustaining signal is pulsed rather than sinusoi
dalthe read signal is timed to appear between
pulses. By sequentially testing selected cells the
computer can read information from the display.

The initiation of a gas discharge requires both a
sufficiently high voltage and the participation of
charged particles. In normal operation electrons are
provided as slowly diffusing metastable atoms hit the
walls. In "on" cells large numbers of metastables are
created during each discharge. In "off" cells they
can be created by conditioning pulses that cause dis
charges about one hundred times less frequently
than in the "on'" state. If these conditioning pulses
are removed and if the exciting voltage across· both
grids is raised above the firing potential, . the ob
server can, in principle, write directly on the display
by means of alight emitting pencil. If he illuminates
a group of cells, photoelectrons released from the
walls initiate the discharges that turn the cells "on."
The procedure works very well for a single cell. It
has not, however, been tested forthe important case
when selected series of cells are to be turned on in
the neighborhood of many cells that are to stay off.
Unless each cell is well shielded optically from its
neighbors the first cell to turn on may initiate a
wave of state changes that will quickly turn on the
entire display.

Weare at present studying the properties of small
displays with a linear cell density of 40 cells/inch.
The photograph, Fig. 4, shows one of these displays
in' which the sustaining signal is connected to a 3 X
4 matrix. In the pattern seven cells are in the "on"
state and five are in the "off" state. The actual dis
tance between adjacent cell~ is 0.025 inch. We have
also constructed single cell~ as small as 0.006 inch

544 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Figure 4. Experimental plasma display.

and we believe that linear densities in excess of 100
cells/inch (104 cells/inch2

) can be achieved.

To the authors' knowledge no earlier memory dis
plays have utilized pulsed discharges and their asso
ciated wall charges. These discharges in larger cells,
however, have been observed by a number of inves
tigators, and the influence· of the wall charges on the
development of these discharges has been under
stood for many years.4

-
6 Loeb and E1 Bakkal in

particular. have observed that with argon in large
cells (diameter = 8 cm) a sequence of pulse dis
charges could be maintained at 60 cycles/second by
a voltage less than that required to initiate the se
quence. 6

SYSTEM PROPERTIES

The development of the Plasma Display Panel
was motivated by the anticipated needs of the PLA
TO computer-based education program at the Coor
dinated Science Laboratory of the University of Il
linois.7 The experimental classroom which has been
developed as part of this program consists, at
present, of twenty student stations, each with a tele
vision display and a keyset connected to a central
computer (CDC 1604). In addition t~elve termi
nals are available for use at remote locations. For
each station the computer transmits signals to a
storage tube memory and selects a photographic
slide that contains the appropriate text for that stu-

THE PLASMA DISPLAY PANEL 545

dent. The storage tube and the slide are then
scanned simultaneously and the superimposed sig
nals are transmitted to the cathode ray tube.

Within several years there may be similar systems
with several hundred stations, and it is not unrea
sonable to predict that in the future thousands of
people in classrooms and even in homes will com
municate simultaneously with a central computing
facility.

Advances in computer technology have been so
rapid that present computers with their high speed,
large memory, and steadily decreasing cost per unit
operation, are adequate for this kind of service. Dis
play technology, however, has not kept pace with
these advances. The TV -storage tube displays, of
course, perform well in the PLATO system, and
other CR Tdevices are used successfully in informa
tion retrieval systems. However, no display device is
now available that performs well, and is sufficiently
inexpensive for use in these large systems. If efforts
to develop the Plasma Display are successful, this
device should meet both performance and cost re
quirements.

Admittedly, the specific needs of a teaching sys
tem emphasize the importance of some properties of
a display, and are less demanding of others. Never
theless, we believe that these needs are similar to the
large systems bei~g developed for banks, air line
reservations control, and for corporate and univer
~ity administratioIl. In all of these systems the reso
lution requirements are at most those met by stand
ard television, information rates are low, and low
display cost is imperative. In the remainder of this
section we discuss the properties of the Plasma Dis
play (Table I) particularly as they govern the use of
this display in these systems. We also discuss
briefly its use in the more specialized systems where
both high resolution and high data rates are impor
tant.

For its use in the display terminals of a teaching
system the property of the Plasma Display that most
simplifies system design is its inherent memory. Be
cause its images do not need regeneration from an
auxiliary memory, information flows from the com
puter to the display only when the images are
changed and then at rates dictated by the uses of the
display. Transmission lines can be specified to match
these rates, which are much less than the limiting
rates acceptable to the display itself.

Experience' dictates that in this service a' character
writing rate of 140 characters/second is completely

satisfactory. This corresponds to a point writing
time of 358 microseconds/point, hardly taxing even
the slow writing rate on the display. At 30
characters/line and 20 lines/page, an entire page
can be written in about four seconds. If the display
is equipped with a character generator that se
quences the selection of points according to a seven
bit code, the corresponding information rate is 1000
bits/second, a rate that is easily accommodated by
voice grade telephone lines. Point plotting for maps,
graphs, and diagrams is slower. If, for example, we
assume a 512 X 512 raster and specify each point
independently by 18 bits, only 55 points are plotted
each second. Useful curves, however, can still be
plotted in a few seconds. Furthermore with the addi
tion of mode detecting hardware these rates can be
increased by a factor of two or three.

Let us assume that each of 3000 remote displays
simultaneously receives information at 1000 bits/sec
ond from the computer. The information rate on
all lines together is then 3 X 106 bits/second, which
for a computer with a 48 bit word length calls for
one word of output every 16 microseconds, well
within the capability of a modern computer. If these'
3000 stations are in a single community, each one
can be connected over a telephone line to a central
distribution point which is in turn connected through
a video channel to the computer.

In a teaching system some of the information on
the display represents comments or numerical
answers entered directly by the student. In some
cases he wishes to rewrite all of the information on

Table I

System Properties of Plasma Display Panel

Property

Cell Density
Memory

Addressing Mode
Erase Modes

Writing and Erase Rate
Slow Mode

Writing and Erase Rate
Fast Mode

Full Screen Erase Time
Brightness

Power Input

Performance

40-100 cells per inch
self contained, charge stor

age on walls
digitally addressed
complete erase, character

erase, point erase

104 points per second

106 points per second
5 microseconds
comparable to cathode ray

tube
100 microwatts per point lit

546 PROCEEDINGS~FALL JOINT COMPUTER CONFERENCE, 1966

the screen; in other cases he wishes to rewrite only
part of the information. Two erase processes have
therefore been provided in the PLATO system. One
erases the entire screen. The second selectively
erases a single character. It would be desirable to
extend selective erase to specified points but be
cause of the interaction in the storage tube between
the electron beam and the stored charge this cannot
now be accomplished .. In the Plasma Display every
point is addressable. Full erase, and both character
and point selective erase, can therefore be imple
mented.

The resolution requirements of a teaching system
are easily met by the Plasma Display. With a cell
density of 1600 cells/inch2 , a 512 X 512 raster cor
responds to a display that is 13.8 inches on each
side. This provides both adequate viewing area and
resolution better than that provided by the television
display in the PLATO system.

Although information rates and resolution re
quirements may be the same in many of these sys
tems, this may not be true for display size and
shape. A bank teller, for example, may want to see
the name, code number, and account balance of a
depositor. Or a purchasing agent may request the
name of a company, its quotation on a bid, and
perhaps a record of previous business transactions.
A strip display with 512 columns but only 64 rows
might be entirely appropriate for these applications.
For the corporate board room, or for the military
command room, much larger displays are indicated.

In this connection it is important to draw another
comparison between the Plasma Display and the
cathode ray tube. The density of points on a cath
ode ray tube varies roughly with the size of the tube
and the number of resolvable points remain about
the same. On the other hand, the number of resolva
ble points in the Plasma Display can be increased
simply by adding more cells. The cell size can also
be varied over a range of at least ten to one, but the
limits are not yet known. These properties of the
display allow considerable freedom in planning large
wall displays.

An additional property of the display that may be
useful in special applications is that it can be fabri
cated with curved surfaces.

There are, today, an increasing number of appli
cations that will fully exploit the resolution and fast
writing properties of the Plasma Display. The dis
play of dynamic processes, for example, requires
video signals, and for the production of high quality

still photographs and motion picture films high reso
lution is a necessity. Since this service is usually pro
vided by high quality cathode ray tubes whose
images are regenerated from magnetic core memo
ries, we compare. the appropriate properties of the
Plasma Display directly with those of the cathode
ray tube.

The maximum writing rate of commercial elec
trostatic CRT display systems is about 200,000
points/second. This limit is set by the settling time
of the digital to analog converters and of the circuits
that position the electron beam. If, to avoid flicker,
we stipulate 20 frames/second as the minimum
frame rate, 10,000 points can be displayed. If the
pattern on the screen represents a dynamic process,
such as wave motion, and if it changes every frame
these rates are actual information flow rates. If, on
the other hand, the pattern is stationary these rates
are used only to provide the greatest detail possible
in a flicker free display.

The storage tube television display of the PLATO
system has no flicker problem but its resolution is
not as great as the directly addressed electrostatic
tube. Magnetically focussed and directly addressed
cathode ray tubes offer greater resolution, but at the
expense of writing speed.

Because of the inherent memory of the Plasma
Display, the number of points in a stationary pattern
is limited only by the number of cells in the raster.
The limit is much lower when dynamic processes are
represented by rapidly changing patterns. If a writ
ing rate of one point/microsecond can be main
tained on large displays, a pattern containing 50,000
points can be completely changed at the rate of 20
frames / second.

. Two useful features of present cathode ray tube
display systems are that information on the display
is available to the computer, and that by means of a
light pen a programmer can manipulate patterns on
the display. These features are also present in the
Plasma Display, but it appears that each can be ex
tended. The display itself functions as an auxiliary
memory that can be consulted by the computer, and
to the ability to manipulate patterns may be added
the ability to draw patterns directly on the screen.

A comparison of quality in the two kinds of dis
plays is difficult because the character of the dis
plays is different. In the Plasma Display the nu~ber
of addressable points and the number of resolvable
points are the same. This is not true in the cathode
ray tube. It is now possible to address a raster of

THE PLASMA DISPLAY PANEL 547

4096 X 4096 points, but the number of resolvable
points is at best about 2000 X 2000.

At present we cannot realistically consider cell
densities greater than 100 cells/inch for the Plasma
Display. Thus, the display must be 20 inches wide
to match the best cathode ray tube resolution and
40 inches wide to provide 4000 resolvable lines. Ex
cept for large displays, the cathode ray tube can
provide a picture of higher quality. Furthermore, it
is possible to draw continuous lines on the cathode
ray tube, and in photographic work this is some
times important.

In the preceding discussion we have not consid
ered any of the very active research on electrolu
minescence, or on electron-hole recombination in
semiconductors. We believe, however, that it is
appropriate to call attention to a different type of
gaseous discharge display in which the basic cells
are direct current discharges. 8

,9 This display has
some of the same advantages as the Plasma Display.
To remove addressing ambiguities, however, it
seems necessary to isolate the cells from one another
by inserting a resistor in the connecting lead to each
cell.9 The resulting fabrication difficulties appear to
limit the achievable cell densities.

CONCLUSIONS

We must emphasize again that the Plasma Dis
play is in an early stage of development. Weare
working with small matrices, and we have only re
cently transmitted signals from the computer to
change cell states. Nevertheless we know of no fun
damental obstacles that will frustrate this develop
ment, and if the development is successful the Plas
ma Display will fill an important role in the
computer technology of the near future.

ACKNOWLEDGMENTS

The progress in the development of the Plasma
Display depends and will continue to depend on the
consultation and assistance of many members of the
staff of the Coordinated Science Laboratory. In par
ticular, the authors wish to thank Mr. Brij Arora
and Dr. Robert Willson who have contributed on a
day by day basis.

REFERENCES

1. D. L. Bitzer, H. G. Slottow, and R. H. Will
son, "A Preliminary Description of the C.S.L. Plas
ma Display," Internal Report-Coordinated Science
Laboratory, Univ. of Ill., Urbana, Ill.

2. , "Gaseous Display and Memory Ap-
paratus," Application for United States Letters Pat
ent #521,357 dated Jan. 1966.

3. R. H. Willson, "A Capacitively Coupled Bista
ble Gas Discharge Cell for Computer Controlled
Displays," Report ~-303, Coordinated Science Lab
oratory, Univ. of Ill., June 1966.

4. S. Whitehead, Dielectric Phenomena of Solids,
Clarendon Press, Oxford, 1951, Chap. 4, pp. 171 ff.

5. G. Francis, Ionization Phenomena in Gases,
Butterworth Publication, London, 1960, Chap. 4.

6. J. M. EI Bakkal and L. B. Loeb, "Electrical
Breakdown of Argon in Glass Cells with External
Electrodes at Constant and at 60-Cycle Alternating
Potential," 1. Appl. Physics, vol. 33, no. 4, (1962).

7. D. L. Bitzer and P. G. Braunfeld, "Description
and Use of a Computer Controlled Teaching Sys
tern," Proc. National Electronics Conference, Oct.
1962, pp. 787-792.

8. Jess J. Josephs, "A Review of Panel-Type Dis
play Devices," Proc. LR.E. vol. 48, no. 8, (1960).

9. Lear Siegler, Inc., Q.P.R., 2, 3, 4, 5, 6, and 7
"Development of Experimental Gas Discharge Dis
play," Contract Nobsr-89201 Bu Ships, August,
1963-June 1965.

THE USE OF SEMI-RECURSIVE POLYNOMIALS
IN THE DESIGN OF NUMERICAL FILTERS

Charles B. Stallings

Computer Applications Department,
Martin Company, Orlando, Florida

INTRODUCTION

Numerical filtering, as it applies to processing dis
crete time. series representing missile trajectory data,
is usually concerned with the problems of: (1)
smoothing; (2) interpolation; and (3) prediction.
This paper will be concerned only with the first two
of these problems.

The process of smoothing is based on the assump
tion that the desired information can be separated
from the unwanted "noise" on the basis of frequency
discrimination. Since the information is assumed to
be composed primarily of the low frequency com
ponents of the recorded signal, and the "noise" is
contrarily composed of the high frequency com
ponents of the signal, smoothing becomes a problem
of developing an adequate low frequency pass filter.

It is not enough that the output time series of a
smoothing filter "look" smooth. If, for example, the
output time series represents position data and it
needs to be differentiated to obtain velocities and
accelerations, the differentiating process acts to am
plify the high frequency noise. The result is that the
accelerations obtained from doubly differentiating an
apparently "smooth" position time series might be
very noisy. Therefore, if the resulting accelerations
are to be smooth, the filter which smooths the posi
tion data must severely attenuate the high frequency
noise. An additional requirement of the filter, how-

549

ever, is that while it severely attenuates the high fre
quency noise, it must do so without flattening the low
frequency information.

This paper will describe a simple method of de
veloping numerical filters which will: (1) preserve
all information below a given cut-off frequency; (2)
provide a roll-off in the intermediate frequencies of
practically any desired steepness; and (3) severely
attenuate all high frequency components of a given
discrete time series.

THE SEMI-RECURSIVE PARABLOA.

In the discussion immediately following, the letter
X will represent the "unsmoothed" or input time
series and the letter Y will represent the smoothed
or output time series.

Consider Equation (1)

yet + ,b.t) = W1Y(t '- b.t) + W 2Y(t) +
W 3X(t + Mb.t) (1)

where yet + b.t) = the next smooth value to be
obtained at time t + At,
Y (t) = the last smooth value obtained at
time t,
Y(t - b.t) = the smooth value obtained
immediately previous to Y (t) at time
t - b.t,
X (t + M b.t) = the unsmoothed "look
ahead" value located at time t + M b.t

550 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

(M is a parameter describing how "far" the process
"looks ahead" into the un smoothed data.)

W 1, W'2, W 3 are the weights chosen such that Eq.
(1) is the equivalent of fitting y (t - b.t), Y (t) and
X (t + M b.t) to a parabola with respect to time and
then reading the value Y (t + b.t) off of that parab
ola. Specifically these weights are

I-M

1 + M

M-l
W 2 = 2---

M

2
W3=----

M(M + 1)

,M~ 1

The value M is not restricted to integers. If M is
not an integer, the value X(t + M b.t) represents
some type of average of two (or more) points in the
unsmoothed "look -ahead" region.

Using Eq. (1) the process starts at the beginning
of the time series with two smooth values (how these
"end points" might be chosen will be discussed be
low under the heading "Considerations Involved in
Applications," although it should be pointed out here
that, using the techniques described in this paper, it
is necessary to obtain only two initial points and
two terminal points to solve the end point problem.)
Then beginning with the third point, the smoothing
process continues through the data series with a

1.0r--_~

0.9

point by point application of Eq. (1), with the value
Y (t + 1:::.t) determined at one point becoming the
value Y (t) used in determining the next smooth
value. It is in the use of the two previously smoothed
values in conjunction with one unsmoothed value in
obtaining yet + b.t) that Eq. (1) is called a semi
recursive parabolic equation.

It can be said that the smoothing process so de
scribed is pursuing the noisy data as represented by
the "look-ahead" point X(t + M 1:::.t).

The complex transfer function, P (U)), of the proc
ess represented by Eq. (1) is given by

Since (2) is a complex transfer function, there is
associated with this process not only an amplitude
response, R (U)), as a function of the frequency, U),
but an unwanted phase shift 0 (U)). Figures 1 and 2
are plots of R (U)) vs. (D and 0 (U)) vs. U) respectively.

The simplest method of eliminating this phase shift
is to run the smooth time series resulting from the
use of Eq. (1) through the same process, only
"backwards" with respect to time using the equation,

yet - b.t) = W 1Y(t + b.t) + W 2Y(t) +
W 3X(t- Mb.t) (3)

where here the letter X represents the output data
series resulting from the use of Eq. (1).

w 0.8 (f) M =20 ~t = 0.05 SECOND
z
0 a.. 0.7 (f)
w
0:

w 0.6
0
=> 0.5 r
:J
a.. 0.4 ~
<{
I 0.3 -~

0: 0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.1
w- CYCLES PER SECOND

Figure 1. Amplitude response vs w of recursive parabolic Eqs. (l) and (2).

THE USE OF SEMI-RECURSIVE POLYNOMIALS 551

180

160

140

120
M=20 ~t = 0.05 SECOND

100

80

en
60 w

W
0::
(!) 40 w
0

1 20
I--
u..

0
I
en
w -20
en «
I -40
(l.

I - -60 3 --e- -80

-100

-120

-140

-160

-180
0 0.1 o.a 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 I. I

w - CYCLES PER SECOND

Figure 2. Phase shift vsw of recursive parabolic Eq. (1).

The complex transfer function, P* (w) , of the
process represented by Eq. (3) is obviously the com
plex conjugate of the complex transfer function,
P (w), of the process represented by Eq. (1). There
fore, the transfer function, PI, of the combination of
first processing the original time series by Eq. (1)
and then processing the resulting series by Eq. (3) is

PI = [P(w)] [P*(w)] = 1 P(w) 12 (4)

This is represented in block diagram form in Fig.
3 (a) and since PI is real for all wand has no phase
shift associated with it, the plot of amplitude re
sponse, R (w), vs. w given in Fig. 4 reflects the com
plete nature of this filter arrangement.

The frequency response of the filters discussed
here is determined by the size of the parameter, M,
and the size of the sampling interval, L\ t, in Eqs.

(1) and (3). Since the size of the parameter M
determines how many data points the process "looks
ahead" into the noisy data, it is obvious that if M
is small the process can follow closely the short term
changes in the data-which is the same as saying
that it has a good high frequency response. If, how
ever, M is large, the process will respond primarily
to the longer-term changes, and the higher frequen
cies will be more severely attenuated.

For the purposes of this paper, when using Eqs.
(l) and (3), values of M = 20 and A t = 0.05 sec
ond will be used except when otherwise specified.

While the filter PI (Fig. 3 (a)) has fair smoothing
properties, it is still far from ideal. First, for any cut
off frequency We > 0, arbitrarily chosen, there is as
sociated with it a certain amount of amplitude at
tenuation or information loss. For example, if We =

552 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

e i _ r:-.l _ r.::;*,l e 00 _

~
(0)

(b)

(e)

Figure 3. Sequence of operations to obtain filters from the
basic recursive parabolic Eqs. (1) and (3).

0.15 is arbitrarily chosen as the cut-off frequency,
filter P 1 will cut the signal amplitude at W = We to
approximately 91.5 % of their original value and in
the rest of the low frequency information region,
o ~ W ~ We, there is some degradation of signal. In
the second place, if the resulting smooth data is to
be differentiated, the attenuation of the high fre
quency noise is probably inadequate. A possible so
lution to the second problem is to run the results of
one pass through filter P 1, through P 1 again, making
successive passes in this fashion until the high fre
quency components have been sufficiently attenuated.

1.0

0.9

However, this solution of the high frequency or noise
problem would further attenuate the low frequency
(0 ~ W ~ we) information.

To solve this problem a filter is needed in which
the amplitude response curv~ remains flat at R (w) =
1.0 in the region 0 ~ W ~ We, and then falls off in
the region W > We' Examine the sequence of opera
tions leading to filter P2, block diagramed in Fig.
3 (b). Here, the original time series ei is smoothed
using Eq. (1) to obtain the time series e1. Then we
subtract e l from ei to obtain the residual time series
e2' e2 now contains all the high frequency noise· re
moved from ei in obtaining ,el • Also contained in e2

is the portion of the low frequency information
(0 ~ W ~ we) lost in obtaining el • Since it is only
this low frequency information that we are interested
in, e2 is smoothed by Eq. (1) to obtain the time
series e3 which then contains primarily that part of
the low frequency information which was lost in
obtaining el. By adding e3 to el we obtain the time
series e4 , which contains almost all of the low fre
quency information. However, since there is associ
ated with this process of obtaining e4 an unwanted
phase shift, e4 is now run through the same type of
sequence of operations, only by using Eq. (3) in
stead of Eq. (1) the phase shift is reversed so that
the final output time series eo of filter P2 is in phase
with ei for all w.

lLJ 0.8 (f) M=20 Llt=0.05 SECOND
z
0

0.7 Q.
(f)
lLJ
a: 0.6
lLJ
a
;:) 0.5
~

:J
Q. 0.4
~ «
I 0.3
:!
a: 0.2

0.1

0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

W rv CYCLES PER SECOND

Figure 4. Amplitude response vsw of filter Pl (Fig. 3a).

THE USE OF SEMI-RECURSIVE POLYNOMIALS 553

The resulting real transfer function of the filter
P 2 is given by

P2 = {2P(w) - [P(w)F} {2P*(w) - [P*(w))2} =
!2P(w) - [P(w))2 (5)

Notice that in the sequence of operations used to
obtain filter P2 , subtractions of complex signals which
are in general out of phase with each other are per
formed (first when subtracting el from ei to obtain
e2 and then when subtracting e5 from e4 to obtain
e6). This implies that in general, the absolute mag
nitude of any given frequency component in e2 (or
e6) will be greater than the difference between the
absolute magnitudes of the same frequency com
ponent contained in ei and el (or e4 and e5), or

e2 = ! ei - el ! ~ ! ei ! ,- ! e1 !
and e6=!e4-e5!~!e41'-le51 (6)

(Schwartz's inequality) .

In the low frequency region this increase in signal
amplitude of the residual time series e2 and e6 almost
exactly compensates for the subsequent attenuation
which results, first from the smoothing process used
in obtaining e3 and e7 and, second, from the out-of
phase additions performed in obtaining e4 and ew.
As a result the plot of amplitude response, R (W) ,

vs. W ot filter P 2 is close to the ideal mentioned
above, as can be seen in Fig. 5. Here the value
of R (W) in the region 0 ~ W ~ We is approxi
mately constant at 1.0 and then falls off rather

1.0 ----~

sharply as W increases above We. It should be men
tioned here that for all the low pass filters developed
using these techniques, the amplitude response R (W)

monotonically decreases as W increases in the region
from We to Wn (wn = the folding frequency charac
teristic of the sampling rate = 1/ (2~t). The lack
of such a monotonic decrease of R (w) is one of the
more objectionable properties of many numerical
filters. The maximum distortion from the value
R (w) = 1.0 in the region 0 ~ W ~ We is approxi
mately +0.3%. We the cut-off frequency has an
approximate value of 0.15. As indicated above We

is a function ofM and ~t. A good approximate rela
tionship between We, M and ~t for filter P 2 (and P 3

as developed below) is,

0.15
We=--

M~t
(7)

With a filter such as P 2 it is possible to severely
attenuate the high frequency noise without distorting
the low frequency information excessively. If the
high frequency noise is not attenuated severely
enough by one pass through filter Pz, the output of
the first pass can be fed back through filter P2.
This process can be repeated until the user considers
the high frequency noise adequately attenuated, or
until he considers the low frequency (0 ~ W ~ we)

distortion too severe. (After 10 successive passes
through P'2 the low frequency distortion from the
ideal of R (w) = 1.0 would be approximately 3 %) .

0.9 M = 20 ~ t = 0.05 SECOND

w 0.8 en z
0 0.7 a..
en
w
a: 0.6
w
0 0.5
~

!::
....J 0.4 a..
::!:
« 0.3
l
3 0.2
a:

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

w - CYCLES PER SECOND

Figure 5. Amplitude response vs w of filter Pz (Fig. 3b).

554 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Consider next the sequence of operation used to
obtain filter P 3, Fig. 3 (a). Here filter P 1 is used to
smooth ei and Pz is used to smooth the residual
time series which results from subtracting the
smoothed output of P 1 from ei. The output of P2 is
then added back into the output of P 1 to obtain eo.
The resulting real transfer function of this sequence
of operations is given by

(8)

The plot of amplitude response, R (w), vs. w is
shown in Fig. 6. The maximum distortion of the
amplitude response from R(w) = 1.0 of filter Pi',
in the low frequency (0:::; w :::; we) region is ap
proximately + .03%.

Filter P 3 has been used with a high degree of
success in smoothing noisy radar position data. After
10 successive passes through P 3 the position data
was smooth enough to yield smooth accelerations by
differentiating twice using only 3 point parabolic
differentiation.

For those who are accustomed to the language of
communication engineering, the degradation from
We = 0.15 cps to W = 0.3 cps of 10 passes through
filter P 3 is approximately 36 decibels. Figure 6 also
shows a plot of amplitude response R (w) vs. W of 10
successive passes through filter P 3' The maximum
low frequency distortion from R (w) = 1.0 is ap
proximately = 0.3%.

1.0,.-----~

0.9

w 0.8 M=20
(J)
z
0 0.7
~
(J)
w 0.6 0::

w
0 0.5
::::>
t-
--' 0.4 10 PASSES ~
~ THROUGH FILTER
<t 0.3
1
:! 0.2
0::

0.1

CONSIDERATIONS INVOLVED
IN APPLICATIONS

End points: As pointed out above, the end point
problem using filters developed from Eqs. (1) and
(3) is solved by obtaining two smooth initial values
for Eq. (1) and two smooth terminal values for
Eq. (3). Any of several standard methods can be
used to obtain these four end points. For example,
one method which has proven satisfactory in many
cases is to fit a parabola to the first (or last) K
points (where K is large enough to suppress noise)
of the time series, and then read the first (or last)
two points off of this parabola. In other cases the
first (or last) two points have been chosen by visual
judgment. The important consideration is that these
first (or last) two points are consistent enough with
each other to give a reliable initial (or terminal)
slope for the smooth data. Once good end points are
obtained, they should be retained even fOF subse
quent passes through the filter.

Interpolation: The techniques using Eqs. (l) and
(3) lend themselves very conveniently to interpolat
ing for points to replace missing or bad points. If,
for example, in the first pass through a filter the
"look-ahead" parameter has a nominal value of
M = 20 and there are 5 consecutive bad points in
the area immediately in front of the "look -ahead"
point, the value of M can then be increased to 25,
thereby jumping over the 5 bad points. After pass-

6t=0.05 SECOND

OL----,O~.,I ---r0~.2~--~0~.~3---~0~.4~--~0~.5~--~O~.~6----0~,~7~::~0~.8;===~0~.9;===~1.0~====1=.1=
w-CYCLES PER SECOND

Figure 6. Amplitude response vs w of filter P 3 (Fig. 3c).

THE USE OF SEMI-RECURSIVE POLYNOMIALS 555

ing this area M then resumes its nominal value of 20.
This change in M is necessary for the first pass
through the filter only. The result will be a set of 5
consistent (with respect to the rest of the smooth
data) interpolated values.

Variable frequency response: Since the frequency
response of equations (1) and (3) given a fixed b.t
is a function of the "look-ahead" parameter M,
all that is needed to modify the frequency response
in smoothing a given time series using filter P 3, is to
vary M. Compare Fig. 6 with Fig. 7. Both of these
plots represent a plot of R (w) vs. W of filter P 3. The
difference is that in the case represented by Fig. 6,
M = 20, while in the case represented by Fig. 7,
M=40.

When using a variable frequency response on a
given time series, it is obvious from the nature of
Eqs. (1) and (3) that both position (in the case
when the time series represents position vs. time)
and the velocities obtained from the resulting smooth
time series will be continuous at the junction times
where M changes. However, the second derivatives
or accelerations will tend to be discontinuous at such
junction points. Since these discontinuities in ac
celeration represent short periods of high frequency
distortion, they can be removed by making several
more passes through the filter using a constant small
value of M. In these additional passes M might
assume a value equal to the smallest M used in the
previous variable frequency smoothing passes.

1.0 --~- -- ---- --

Other Filter Design

While the filter P 3 has proven adequate in smooth
ing radar trajectory data, its value might prove
questionable in other applications. In some cases,
such as vibration analysis, a high resolution filter to
separate close frequencies might be needed. If filter
P 3 were used, the many passes through the filter that
would be required to obtain such high resolution
might result not only in too much distortion in the
low frequency pass region (0 ~ W ~ we), but also
might use an excessive amount of machine time.
Examine Fig. 8. This plot shows a high resolution in
separating relatively close frequencies, but it takes
80 passes through filter P 3 to obtain such resolution,
and the maximum distortion in the low pass region is
approximately +2.5%. In view of these inade
quacies, other filter designs must be sought.

Consider the semi-recursive cubic equation pair,
Eqs. (9) and (10),

Y(t + ,b.t) = W1Y(t- Mb.t) + W 2Y(t - b.t) +
W 3Y(t) + W 4X(t + Mb.t) (9)

Y(t -b.t) = W1Y(t + Mb.t) + W'2Y(t -\- b.t) +
W 3Y(t) + w4xCt + Mb.t) (10)

corresponding to the semi-recursive parabolic equa
tion pair, Eqs. (1) and (3) respectively. As in the
case of Eqs. (1) and (3) the last two smoothed
values obtained and an unsmoothed "look-ahead"
value are used to obtain the next smooth value, but

0.9 M=40 ~t = 0.05 SECOND

IJ.I en 0.8
z
0 0.7 Q..
en
IJ.I 0.6 0::

IJ.I
c 0.5 ::>
~

:i
Q..

0.4
::E
« 0.3
\
a 0.2
a:

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
w - CYCLES PER SECOND

Figure 7. Amplitude response vs w of filter P3 (Fig. 3c).

556

1.0&----.....-:::;,..

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

0.9 M = 20 ~ t = 0.05 SECOND

~ 0.8
z
~ 0.7
(J)
w
a: 0.6
w
o
:::) 0.5
I-

~ 0.4
~ «
1 0.3

10.2
a:

0.1

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
w - CYCLES PER SECOND

Figure 8. Figure 8 amplitude response vsw of 80 passes through filter P3.

in Eqs. (9) and (10) an additional smooth "look
back" value is included in the evaluation with WI'
W 2 , W 3, W 4 chosen such that Eq. (9) is the equiva
lent of fitting Y (t - Mb.t) , Y (t ,- _At), Y (t), and
X(t + MAt) to a cubic with respect to time and
then reading the value of Y (t + At) off of this cubic.
Specifically, these weights are:

1
W3 = 2(1--)

M2

1
W 4 =-

M2

The value of yet - At) in Eq. (10) is obtainea
in an analogous manner.

The complex transfer function, T (W) , of the
process represented by Eq. (9) is given by

Yo
T(w) =-

Xo

and the transfer function. T* (w), of the process
represented by Eq. (10) is the complex conjugate of
Eq. (11).

Figure 9 is a plot of R (w) vs. w of this seml
recursive cubic with M = 30 and At = 0.05 second.
Also associated with this semi-recursive cubic is an
unwanted phase shift, 0 (w), but as in the case of
the semi-recursive parabola, this phase shift can be
eliminated by following the first pass across the un
smooth time series using Eq. (9) with a second
pass across the resulting smooth time series, "back
wards" with respect to time using Eq. (10). This
process is represented in block diagram form in
Fig. 10 (a). The real transfer function of the result
ing filter Tl is given by,

Tl = [T(w)] [T*(w)] = 1 T(w) 12 (12)

Figure 11 is a plot of R (w) vs. w of filter T l' Com
pare this curve with the analogous one for filter PI
shown in Fig. 4. (To make the cut-off frequency,
We, of the filters developed from Eqs. (9) and (10)
compatible with the cut-off frequency of the filters
developed from Eqs. (1) and (3), an M = 30 is
used here instead of M = 20). The roll-off in the
region w < We is much sharper, but the distortion in
the region 0 ::;; w ::;; We consists of a resonant peak
of R(w) = 1.10, for a maximum distortion of ap
proximately + 10%. However, by processes already
explained, we can shape this low frequency
(0 ::;; w ::;; we) region to suit our use. In the sequence
of operations shown in Fig. 10 (b), the input time
series, ei, is first smoothed by filter T 1 to obtain
e1. Then el is subtracted from ei to obtain the resid
ual time series e2. Next e2 is smoothed by filter Tl

THE USE OF SEMI-RECURSIVE POLYNOMIALS 557

1.0.

0.9 M=30 ~t = 0.05 SECOND
w
(f)
z 0.8
0
a..
(f)

0.7 w
0::

w 0.6
CI
:;)

.... 0.5 ::::i
a..
:::?! 0.4 ~

?
0.3 }

0::
0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

w rv CYCLES PER SECOND

Figure 9. Amplitude response vsw of recursive cubic equations.

and the resulting time series is added to e1 to {)btain
e,Q' This sequence of operations defines filter T2 and
its real transfer function is given by

(13)

Figure 12 shows the plot of R(w) vs. W of filter T 2 •

The maximum distortion from R(w) = 1.0 in the
low frequency (0 ~ W ~ we) region is approximately
-1.0%.

Now examine Fig. 10 (c). The sequence of opera
tions indicated here is to take the output of filter T2
and feed it back through filter T 2 for 9 more suc
cessive passes (for a total of 10 passes through filter
T 2). Figure 13 is a plot of R (W) vs. W of this
sequence. Notice that the distortion from R(w) =
1.0 in the region, 0 ~ w ~ We has a maximum of
approximately - 10%, and compare this with the
approximate + 10% distortion associated with filter
T l' By taking the output of 10 passes through filter
T 2 , and passing it through T], we not only remove
most of the distortion in the region 0 ~ w ~ We,

but achieve a still sharper roll-off in the region
o ~ w ~ We. This process describes filter T 3 with a
real transfer function given by

(14)

Figure 14 is a plot of R (w) vs~ w of filter T 3' The
maximum distortion from R(w) = 1.0 in the region
o ~ w ~ We is approximately +2.5%.

Lastly, by the sequence of operations indicated in

Fig. 10(d) we obtain filter T4 with a real transfer
function given by

(15)

Figure 15 is a plot of R (w) vs. w of this filter.
Compare this with Fig. 8. The maximum distortion
from R(w) = 1.0 in the region 0 ~ w ~we in Fig. 15
is -0.06% compared to a maximum of 2.5% in
Fig. 8, and the roll-off in the region w < We is

ej eo

~ TI
(a)

ej eo

+

~
(b)

(e)

(d)

Figure 10. Sequence of operations to obtain filters from the
basic recursive cubic Eqs. (9) and (10) .

558 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

M= 30 ~ t = 0.05 SECOND
1.0

0.9

w 0.8 en
z
0 0.7 0..
en
w

0.6 a:::
w
0 0.5 ::::>
I-
-' 0.4
0..
:E
<X 0.3
I - 0.2 3

a:::
0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

w - CYCLES PER SECOND

Figure 11. Amplitude response vs w of filter T 1 (Fig. lOa).

sharper, yet to process a given time series using filter
T 4 takes ~ the machine time that it would take to
process the same time series by the 80 passes
through P 3 that are required to get the frequency
response indicated by Fig. 8.

To give those who are accustomed to the language
of communication engineering an idea of how sharp
this filter T 4 is, the degradation from We = 0.15 cps
to W = 0.3 cps representing one octave is over 244
decibels.

1.0

0.9 ~ t = 0.05 SECOND

LLI
en 0.8 z
0
0.. 0.7 en
w
a:::
w 0.6
0
::::> 0.5 r
...J
0.. 0.4
::E
<X
1 0.3 -a

a::: 0.2

0.1

0 0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
w - CYCLES PER SECOND

Figure 12. Amplitude response vs w of filter T2 (Fig. lOb).

THE USE OF SEMI-RECURSIVE POLYNOMIALS 559

1.0

0.9 M= 30 ~t = 0.05 SECOND

w 0.8 (/)
:z
0 0.7 a..
(/)
w
a:: 0.6
w
0

0.5 ::J
~

...J
0.4 a..

~
«
I 0.3

-~ 0.2
a::

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
w - CYCLES PER SECOND

Figure 13. Amplitude response vs w of 10 passes through filter T2.

Band Pass Filters series e1 is then subtracted from ei to obtain e2 • e2

would then contain all of the frequency components
in ei above approximately w = 0.21. Then e2 is proc
essed by T 4 using an M = 15 to cut-off all fre
quencies above approximately w = 0.31. The result
ing arrangement is filter T 5 , a band pass filter passing
all frequencies in the region 0.21 ~ 0) ~ 0.31. Fig.
17 is a plot of R(w) vs. w of this filter.

Once a sharp cut-off low pass filter such as T4
has been developed it is a small and obvious step
to develop a sharp cut-off band pass filter. Figure 16
shows the sequence of operations needed to develop
such a filter. First the input time series is processed
by filter T4 using an M = 30. The resulting time

1.0 --::;;..;;-..,.,,~- -- -- --
0.9

w
en
z 0.8 M = 30 ~t = 0.05 SECOND
0 a..
en 0.7 w
0::

w 0.6 0
:::>
I- 0.5 :J
a..
~ 0.4 «
2

0.3
:3 -a:: Q2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

W I"V CYCLES PER SECOND

0.8

Figure 14. Amplitude response vs w of filter T3 (Fig. lOe).

0.9 LO 1.1

560 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

w
CJ)
z
0
Q.
en
w
0::

w
Q
:::>
~

...J
Q.

~
«
l

.!
0::

w
en z
0
Q.
en w
0::

w
0
:::>
~

:J
Q.

~
<{

l -:3
a::

1.0 ,....----~--- M=30 At = 0.05 SECOND

0.9

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

w-CYCLES PER SECOND

Figure 15. Amplitude response vs w of filter T4 (Fig. 10d).

Examples of actual application:
Given the signal

X = sin(w, t) + Sin(W2t) + 10 sin (W3t) (16)
where

Filter P 3 was used in an attempt pass the WI = 5
while eliminating the other two components. Since it
is impossible to represent a frequency as high as W3

~
~ WI = 5 cps

W2 = 7.75 cps M=30,15

W3 ,....., 159,150 cps
0.0 second ~t ~ 10.0 second Figure 16. Sequence of operations to obtain a band pass

filter. and t:::.t = 0.01 second

1.0

0.9 M=30,15 At= 0.05 SECOND

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 I. I
w- CYCLES PER SECOND

Figure 17. Amplitude response vs w of filter T5 (Fig. 16).

THE USE OF SEMI-RECURSIVE POLYNOMIALS 561

10 0

0
0

0 0 0 0 0 0

0 0 0 0
0

9

0 0 0

0 0 u
0

8

0 0
0 7

0 0
0

6
0

0

0 0
0

0 n 5

0 0

o = INPUT DATA u 0 0
4

o = OUTPUT DATA 0
0 0

u 3
0

0 0
-" I 0 00 ovo-vo o .. rvo o oVvvo OV 0 oovvo ovvuo 0 0 o 0 o 0 0 o 0 o 0 0 0 o 0

0 0 0 0 0 0", 0 0 0 0 0 0 0 0
0 o

0 0 0 0 0 0 0 0
Os 0

0 0 0 0 0
0 0 o 0 0 0 DO 0 0 0 o 0

I
0".,,0 °nr.oo 0" .. ,,0 0 0 o~.~o 0 o~_"o 0,,_,,0

·v
0

-2
0

0
0

0
-3

0 0
0 0 0

-4 0

0
-5

0 0
0 0

0 n
0 0

-6

0

-7
0 0 0 0 0 0

n
0 -8

0 DO

n n
I 0

u 0 -9
DO 0 0 0 0

0 0 0 0
-10

5.1 /),. 5.2 5.3 /),. 5.4 5.5 /),. 5.6 5.0 6.1 5.9 6.0

Figure 18. Plot of input and output data.

with a at = 0.01 second, this component was in
cluded to simulate high amplitude background "scat
ter." Examine Fig. 18. In this graph we have the
segment of the input signal (Eq. (16)) represented
by a square symbol. (The symbol "a" represents
input points whose amplitudes exceed the graphical
limits). The output of 80 passes through filter P 3

using an M = 3 is given by the symbol "0". This
output is the desired

Y = sin «(I) l t) , (1)1 = 5. cps

What little distortion there is in the output signal

is mostly the result of the low frequency component
induced by the aliasing associated with trying to rep
resent (1)3 by a sampling rate of 100 points per sec
ond.

ACKNOWLEDGMENT

The author would like to acknowledge a great debt
to Mr. Mark Robinson, Numerical Analyst at Martin
Company, both for his encouragement and for the
time he spent in discussions with the author per
taining to the techniques described in this paper.

FAST FOURIER TRANSFORMS-FOR FUN AND PROFIT

W. M. Gentleman

Bell Telephone Laboratories
Murray Hill, New Jersey

and

G. Sande *

Princeton University
Princeton, N ew Jersey

IMPLEMENTING FAST FOURIER
TRANSFORMS

Definition and Elementary Properties 0/ Fourier
Trans/orms

The "Fast Fourier Transform" has now been
widely known for about a year. During that time it
has had a major effect on several areas of computing,
the most striking example being techniques of numer,...
ical convolution, which have been completely revo...;
lutionized. What exactly is the "Fast Fourier
Transform"?

In fact, the Fast Fourier Transform is nothing
more than an algorithm whereby, for appropriate
length sequences, the finite discrete Fourier transform
of the sequence may be computed much more rapidly
than by other available algorithms. The properties
and uses of the finite discrete Fourier transform ,

*This wor~ made l!se of computer .facilities supported in
part by NatIOnal ~clence Foundation grant NSF-GP579.
Research was partIally supported by the Office of Naval
~esearch under contract Nonr 1858(05) and by the Na
tIOnal Research Council of Canada.

563

which become practical when used with the fast
algorithm, make the technique important. Let us
therefore first consider some properties of such
transforms.

The usual infinite Fourier. integral transform is
well known and widely used-the physicist when
solving a partial differeptial equation, the communi,...
cation engineer looking at noise and· the'· statistician
studying distributions may all resort to Fourier
transforms, not only because the mathematics may
be simplified, but because nature itself is often, ea~ier
to understand in terms of frequency. What is less
well known is that many of ,. the properties of the
usual Fourier transform also hold, perhaps with
slight modification, for the Fourier transform defined
on finite, equispaced, discrete sequences.

We see in Table I that the most significant change
required to modify the usual theorems so that they
apply to the finite discrete case is that indexing mu~t
be considered modulo. N. A useful heuristic inter,...
pretation of this is to think of the sequence X (t) as
a function defined at equispacedpoints on a circle.
This interpretation is to be contrasted with what· is

564 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

TABLE I

A Comparison of Usual and Finite Discrete
Fourier Transforms

Usual

Definition

XC!) = J~(t)e2?Tit~dt
-00

Linearity

The Fourier transform is a
linear operator.

Orthogonality

J

OOe2?Tit<1_-;:)dt = ~(t--f')
-00

where Ht- f) is the Dirac
delta function. That is,

h~(;)8(t)d; ~ 1(0) if 0

is in the interval (a,b),
otherwise '

A A A

J
b

a f(t)~(t)dt = o.

Inverse Transform

A A A J
OO

If X(t) = X(t)e2?T ittdt

-00

then

f
'OO

..... A "'"
= X(t)e- 2?Tittdt

-00

X(t)

which we observe can be
considered

as X(t) =

{f-~X(t) }'e""~d;} •
or the complex conjugate of
the Fourier transform of the
complex conjugate of X.

Convolution Theorem

Finite Discrete

A
N-l 2?Titt

A A

~ X(t)e--Y-X(t)

t=o

The Fourier transform is a
linear operator.

"'" N-l 2?Tit(t-t')

~ e-N--= N~N(t--t')
t=o

where ~ N is the Kronecker
delta function with its argu
ment being considered mod
ulo N. That is, ~N(kN)

= 1, for integer k, other
wise ~N = o.

" N-l 2?Titt

If X(f) ~ X(t)e N

t=o

then
A

1 N-l -2?Titt

X(t) = N ~ Xc'!)e-N -

which we observe can be
considered

1
as XU) = - x

N

{
. ~ (X(t))'e ~~'t}*

t=o

or the complex conjugate of
the Fourier transform of the
complex conjugate of X, di
vided by N.

N-l

~
T=O

1

X(r)YU-r) = - x
N

TABLE l-(Continued)

Usual

that is, the inverse Fourier
transform of the product of
the Fourier transforms.

Operational Calculus

An operational calculus can
be defined, based on the
property that

[0: X(t) },..,1dt

-2wft2(h
i.e., the Fourier transform
of the derivative of a func
tion is the Fourier trans
form of the function, mul
tiplied by - 2wit.

Symmetries

If X is real then X is hermi
tian symmetric, i.e., X (I) =

{X(-t)}*; if X is hermi
tian symmetric then X is
real. A-

If Y is imaginary, then Y
is he~mitian antisymm~tric,
i.e., Y (t) = - { y (- t) } *;
if Y is hermitian antisym
metric then Y is imaginary.

Finite Discrete

that is, the inverse Fourier
transform of the product of
the F 0 uri e r transforms.
NOTE: The convolution
here must be considered as
cyclic, i.e., the indices of X
and Y must be interpreted
modulo N.

An operational calculus can
be defined, based on the
property that

'" N-l 2?Titt

~ (~X(t»e N

t=o

= (e -2:i~ -1) X(n
i.e., the Fourier transform
of the (forward) difference
of a function is the Fourier
transform of the function

multiplied by (e -;i1' - 1) .'

NOTE: The difference here
must· be considered cycli
cally, so that ~X(t)

X(t+ 1) - X(t) becomes
~X(N-1) = X(N)
X(N-l) = X(O) -

X(N-1) for the case of
t=N-l.

A

If X is real then X is hermi-
ti~n symmetric, i.e., X (I) =

{X(N-t) }*; if X is her
mitian symmetric, then X is
~al. If Y is imaginary, then
Y is hermitian antisym
met ric, i.e., yO) =

-(Y(N-t»*; if Y is her
mitian antisymmetric then
Y is imaginary.

NOTE: The use of the
terms hermitian symmetric
and hermitian antisymmetric
in the discrete case is con
sistent with that in the usual
case if we interpret indices
modulo N.

N-l

~
t=o

A 2?THt

X(t+h)e N

A
-2?THh

e-N-i(i)

(These results are all readily proved from the definitions.)

FAST FOURIER TRANSFORMS-FOR FUN AND PROFIT 565

often the natural interpretation-as sampled data
from a continuous infinite function.

Basic Algebra of Fast Fourier Transforms

At this point we will define the notation e(X)
e'27riX so that we may write expressions such as those
of Table I in a simpler form. The two most impor
tant properties of e(X) are that

e(X + Y) = e(X)e(Y)

and

e(X) = 1 if X is an integer.

Using this notation, the finite discrete Fourier
transform of the sequence X (t) is

X (I) == ~ X(t)e(~)
Suppose N has factors A and B so that N = AB.

Then writing r = a + bA and t = b + aB where
a,a = 0,1, .. . ,A-1 and b,b = 0,1, .. . ,B-1; we
have
A. '" -'\

X(a+bA) =

== ~ ~ X(b+aB)e({a+bAl~b+aB})

B-1 A-I (ab Qa bb ~) = ~ ~ X(b+aB)e - + - + - + ab
b=o a=O AB A B

= ~ Ai X(b+aB)e (ab) e (aa) e(bb)
b=o a=o AB A B

as ab is integral implies e (ab) = 1

B-1 (bb)l (Ab) A-I (aa)(
== ~ e Ii e :B ~X(b+aB)e A \

If we define the B different sequences

Wb(a) = X(b+aH) a = 0,1, .. . ,A-1

and the A different sequences

Z~(b) = e (tib) ~. X(b+aB)e
AB a=O

b = 0,1, ... ,B-1

we can write the above equation as

c:)
h . A B-1 ·(bb)
X(a+bB) = ~ e - Za(b)

b=o B

where

(
hb) 1 A-I ("'") t ~(b) == e ~B -~ e a~ W,(a) \

We recognize

B-1 (bb) A-I (A) ~ e Ii Z~(b) and ~ e ~: W/J(a)

as Fourier transforms themselves, applied to shorter
sequences. Obtaining a subsequence by starting at
the bth element and taking every Bth element
thereafter, in the manner Wb (a) is obtained from
X(b+aB), is called decimating by B. Observe that
the sequence Z'2 (b) are not quite the sequence of
frequency a values from the transforms of these
decimated sequences, but these values multiplied by

a "twiddle factor" e (~~)-
The Fourier transform of the complete AB point

sequence may thus be accomplished by doing the B

different A point Fourier transforms, multiplying
through by the appropriate twiddle factors, then
doing the A different B point Fourier transforms.
This is a recursive formula which defines the larger
Fourier transform in terms of smaller ones. The
total number of operations is now proportional to
AB(A +B) rather than (ABF as it would be for a
direct implementation of the definition, hence the
name "Fast Fourier Transform".

Associated observations:

l. Attention is drawn to the special ad
vantage of factors 2 or 4, in that since a
Fourier transform of a 2 or 4 point se
quence may be done using only additions
and subtractions, one stage of complex
arithmetic may be avoided.

2. Although the recursive algorithm
above may be implemented directly, it is
much better to simulate the recursion as
described in the following sections, since
one may avoid the unnecessary calculation
of some complex exponentials. With our
programs, for example, the simulating the

recursion takes only 2/5 as long for a 210

point transform. *

* All programs discussed in this paper were implemented
using ALCOR Algol 60 on the IBM 7094 at Princeton
University.

566 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

3. The multi-dimensional finite discrete
Fourier transform

can be computed efficiently by factorizing
in each dimension separately, as above.

4. The algebra presented here is not
quite that appearing in "An Algorithm for
the Machine Calculations of Complex
Fourier Series," by J. W. Cooley and 1. W ..
Tukey.2 The difference can be seen if we
consider N as having three factors, N
ABC.

The Cooley-Tukey algebra then is

A-1 B-1 0-1

X(c+bC+aBC) = ~ ~ ~
a=O b=o c=O

(
CtO +bc +llBC)-{a+bA +CAB))

X(a+bA+cAB)e ABC
A-I B-1 0-1

~ ~ ~
a=O b=o c=O

(
a'(C+bc+aBC))

X(a+bA +cAB)e . ABC

. e(b-(C+bc+aBC)) e (C(C+bc+aBC))
BC C .

A-.1 (a'(C+bc+aBC)) B-1 (b'(C+bC)) = ~e ~ e
~ ABC ~ BC

~ e(~)Xca+bA+CAB)
c=O

If, rather than collecting on the unhatted variables
as above, we choose to collect on the hatted vari
abIes,. we obtain

#(c+bC+GBC)
A-I B-1 a-I

~ ~ ~
a b

XCa+ bA +cAB)e (aoca+b: +CAB))

o e(bOCWt'::+CAB)) e(cca+~~~CAB))

A-I. (aa) B-1. (b'(a+bA)) a-I

=~e- ~e ~
a=o A b=o AB c=o

e(c:(a+bA+cAB)) X(a+bA+cAB)
ABC

In both cases we may factor th:e twiddle factor out
side the summation. If we do this we obtain in the
first case

X(c+bC+aBC) = ~ e(aa) e(a'[C+bC])
a=O A ABC

B-1 (bb) (bC)O-l (CC) ~ e 13 e BC ~ e C X(a+bA+cAB)

(Cooley version)
In the second case we obtain

X(c+bC+aBC) = ~ e(aa) e(ab)~
. a=o A AB b=o

e(bb) e(e'(a+bA))2: e(CC) X(a+bA +cAB)
B ABC c=O C

(Sande version)

The difference between these two versions be
comes important when we come to the details of
implementing the fast Fourier transform. We go on
to this next.

,
Fast Fourier Transforms Using Scratch Storage

Let us consider the Sande version applied to an X
sequence stored in serial order. The summrtion over
c represents a C point Fourier transform of points
spaced AB apart. There is one such transform for
each of the AB values of a + bA. Theresult of one
such transform is a frequency sequence indexed by c.

(
C'(a+bA))

If we look at the twiddle factor e we
ABC

see that it depends upon c and a + bA ina very
convenient manner. To introduce some descriptive
terminology we may call c the frequency for this
analysis and a + bA the displacement for this anal
ysis. At this stage there are no free indices corre
sponding to replications. When· we store the inter
mediate results in the scratch storage area, placing
each of the C point Fourier transforms in contiguous
blocks indexed by the displacement leads to elements
stored at c + C(a+bA). The intermediate sup:1ma
tion over b represents a B point Fourier transform
with points spaced ACapart; one suchtntnsform for
each of the 'AC values ofc, + aC. The result of any

FAST FOURIER TRANSFORMS-FOR FUN AND PROFIT 567

one of these transforms is a frequency sequence in-

..... (ab) dexed by b, The twiddle factor e AB depends

only upon a and b, leaving c as a free index. Here
A

we would call b the frequency for the analysis, a the
displacement for the analysis and c the replication
index. We would store the intermediate results at
c + bC + aBC. In this case the contiguous blocks
are spaced out by the replication factor C. The outer
summation over a represents an A point Fourier
transform with points spaced BC apart; one such
transform for each of the BC values of c + be.' The
result of anyone of these transforms is a frequency
sequence indexed by a. There is no twiddle factor in
this case. Here we would call a the frequency and
c + bC the replication index. There is no displace
ment at this stage. We would store the results at
c + bC + aBC. At this point we see that the results
are stored in serial order of frequency.

When we compute one of the transforms we may
wish to include the twiddle factor in the coefficients
for the values of the replication index before com
puting new coefficients for a different displacement.
If the Fourier transform is on two points there ap
pears to be no advantage to either choice. For four
points it is more economical to do the Fourier trans
form and then multiply by the twiddle factor. In the
other cases it is more efficient if the twiddle factor is
absorbed into the transform coefficients.

If we were to use the Cooley version on a sequence
stored in serial order we would obtain an algorithm
which differs only in minor details. The summation
over, c represents a C point Fourier transform of

(be) points spaced AB apart. The twiddle factor e Be
depends upon the frequency c and displacement b,
leaving a free as a replication index. The elements
are stored at c + aC + bAC;. The intermediate sum
mation over b represents a B point Fourier transform
of points spaced AC apart. The twiddle factor

(
a'(c+bC») , , .

e . . depends upon the combmed fre-
. ABC

quencyc + bC and the displacement a. There is no
free index. The intermediate results are stored at
c.+ bC+ aBC. The outer summation represents an

. A point Fourier transform of' results spaced BC
apart. There is no twiddle factor in this case. The
final results would be stored in serial order at
A A A

C + bC + aBC.
These two reductions are essentially identical from

an algorithmic viewpoint when we use storage in
this manner. We have only reversed the roles of the
hatted and unhatted variables in the formation of the
twiddle factors.

To obtain the general case of more than three
factors we proceed to group our factors in three
groups, for example N= (Pl' . 'P j - 1)Pj (P j +1" .Pn).
If we identify

A Pl' "Pj - 1

B Pj
C P j +1 • • 'Pn

and perform the above reductions we find that· after
two steps with this identification we arrive atexactIy
the same place as after only one step with the
identification

A Pl' . . P j - 2

B P j - 1

C Pj • • 'Pn

. We can think of this as moving factors from the';'Al'
part through the "B" part to the "C',' part.

When we writt(a program to implement this, \ve
set up a triply nested iteration. The outer loop sele~ts
.the current factor being moved and sets up the limits
and indexing parameters for the inner loops. The
intermed~ate loop, in which we would compute the
twiddle factor, corresponds to the displacement. The

'inner 'loop provides indexing over' the replication
variables.

Fast Fourier Transforms in Place

Let us reconsider the storage requirements for
our algorithm. In particular, let us consider one of
the small Fourier transforms' on c for some value' of
a + bA. It is only during this transform that wew~ll
need this set of intermediate results. We have just
vacated the C cells a + bA + cAB (indexed 'by c)
and are looking about for C cells in which to 'store
our answers (indexed by c). Why not use the' cells
that have rust been vacated? ' "

Having made this observation, let us reexam'ine
the algorithm corresponding to the Sande f~doriz;:t
tio,n. The summation on c represents a C point
Fourier transform of points spaced AB apart:' The

. ' , (c(a+bA)) . " ..
tWIddle factor e' depends upon the fre-

ABC
quency c and the displacement a + bA .. There is no
replication index. The intermediate results are' stor~d
at a + bA + cAB. The. summation on b represents a
B point Fourier transform of points~ A ;apart. The

568 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

twiddle factor e (ab) depends upon the frequency
A AB
b and the displacement a. The replication index is c.
We treat each of the blocks of length AB indexed by
~ in an exactly equivalent manner. The summation
over a represents contiguous A point Fourier trans
forms. The frequency is a and the replication index is
.A A

b + cB. There is no displacement. The final answers
are then stored at a + bA + cAB. The use of "dis
placement" and "replication" is now much more
suggestive and natural than when we used these
while describing the use of scratch storage.

The more general case of more than three factors
is again obtained by grouping to obtain "A", "B",
and "C" and then moving factors from the "A" part
to the "C" part; the program being written as a triply
nested iteration loop.

When we reexamine the Cooley factorization for
serially stored data, we will see that it has an un
pleasant feature. The summation over c represents a
C point Fourier transformation of points spaced AB

apart. The twiddle factor. e (be) depends only '.' AB

upon band C, leaving a as a free index. The inter
mediate results are stored at a + bA + cAB. The
summation over- b represents a B point Fourier trans
form of points spaced A apart. The twiddle factor

(
a'(C+bC))

e . . . depends upon the displacement a and
ABC A C

the combined frequency c + bC. For data which
was originally stored serially, this is not convenient
to compute. The intermediate results are stored at
a + bA + cAB. The summation over a represents
contiguous A point Fourier transforms. The final
results are stored at a + bA + cAB. More than
three factors can be' handled in the same manner as
before.

The common unpleasant feature of both of these
algorithms is that _ the Fourier coefficient for fre-

. -'\ A ~ ",.I\..A

quency c + bC + aBC is stored at a+ bA + cAB.
Such a storage scheme may be described as storage
with "digit reversed subscripts." Before we may use
our Fourier coefficients we must uns'cramble them. *
Unscrambling has been found to require only a small
proportion of th~ total time for the (ilgorithm. A very
elegant solution corresponds to running two counters,
one with normal digits (easily obtained by simply

*This problem has nothing to do with the representation
of numbers in any particular machine, and unless the ma
chine has a "reverse digit order" instruction (e.g., "reverse
bit order" for a binary machine), no advantage can be taken
of such representation.

TABLE II

TIME FOR A 1024 POINT TRANSFORM
BY VARIOUS METHODS

Method Time

radix 2 2.0 seconds
radix 4 (also radix 4 + 2 and mixed radices) 1.1 seconds
radix 2 (recursively implemented) 5.2 seconds
Goertzel's method 59.1 seconds

incrementing by one) and one with reversed digits
(easily obtained by nesting loops with the innermost
stepping by the largest increments) and recopying
from one array to another where one counter is used
for each array. If all of the factors are the same, the
required interchanges become pairwise and it is pos
sible to do the unscrambling in place. One may un
scramble the real and imaginary parts separately, so
scratch space could be generated by backing. one or
the other onto auxiliary store. A slower method of
unscrambling is to follow the permutation cycles so
that no scratch storage is needed.

Two implementations, both for serially stored se
quences, have been described. Alternately, two im
plementations, both for data stored with digit re
versed subscripts, may be developed: in this instance
the Cooley factorization has more convenient twiddle
factors. For the last two, the final results are cor
rectly stored-the "unscrambling" having been done
first. Digit reversed subscripts may arise because we
have

1. scrambled serially stored data,
2. not unscrambled after a previous

Fourier transform,
3. generated data in scrambled. order.

We have written various Fourier transform pro
grams in the manner described above. These include
one- and multi-dimensional versions of radix 2 (all
factors equal to 2), radix 4 (all factors equal to 4),
radix 4 + 2 (all factors equal to 4 except perhaps
the last, which may be 2), and mixed radices (N is
factored into as many 4's as possible, a 2 if neces
sary, then any 3's, 5's or other primes). Times re
quired to transform a 1024 point sequence are given
in Table II, including the time required by a recur
sive radix 2 transform and by the pre-fast Fourier
transform "efficient" Goertzel's method 3 (which still
requires order N20perations) for comparis,on.
Our standard tool is the radix 4 + 2 Fourier trans
forlT! which combines the speed of radix 4 with the

FAST FOURIER TRANSFORMS-FOR FUN AND PROFIT 569

flexibility of radix 2. The mixed radices Fourier
transform is used when other factors, for example
10, are desired. The mixed radix is used less as it is
more bulky (requiring scratch storage for unscram
bling as well as being a larger program) and is less
thoroughly optimized than the radix 4 + 2 Fourier
transform.

Fast Fourier Transforms Using Hierarchical Store

As we become interested in doing larger and
larger Fourier transforms, we reach a point where we
may not be able to have all of the data in core simul
taneously, and some must be kept in slower store
such as drum, disk, or tape. At the other end of the
scale, small amounts of very fast memory will be
available with some of the "new generation" com
puters-memory much faster than the rest of core.
Automatic systems for providing "virtual core" ob
scure the distinctions within this hierarchy of mem
ories, but at great loss of efficiency for Fourier trans
forms. On the other hand, we can apply the basic
recursion formula of the section Basic Algebra of
Fast Fourier Transforms to employ hierarchical store
in such a way as to operate on sequences large
enough to require the slower store, yet to run little
slower than if all the memory had the speed of the
faster store.

In particular, when we factor N into the two fac
tors A and B, we choose A as the largest Fourier
transform that can be done in the faster store. We
then compute the transforms (including unscram
bling) of the B subsequences obtained by decimating
the original sequence by B,·We next multiply through
by the appropriate twiddle factors, and do the B
point transforms. Thus, other than decimating and
recopying, which amounts to a matrix transpose, all
the computations are done in the faster store, the
loading and unloading of which can be overlapped.
As an example, consider using a 32K machine with
disk to Fourier transform a quarter million (218

)

point sequence (point here means complex number)
initially on tape, returning the transform to tape. We
will assume that we are willing to do transforms as
large as 4096 points (212) in core.

The first step is to create 64 (26
) files on disk, each

of length 4096. The tape is read into core and the
various decimated sequences read out ontn disk
the zeroth point going into the zeroth file, the first
into the first, etc. up to the sixty-third into the sixty
third, then the sixty-fourth point starting back in the
zeroth file again, etc. Appropriately buffered, this
can run almost at disk transfer speed.

The 64 files are now brought into core one at a
time. When a file comes in, it is Fourier transformed
using a standard in-core transform, then the points
are multiplied by the twiddle factor e(ab/218), where
b is the number of the file (0 through 63) and a is
the frequency index for the particular point. The file
is then written out again. By choosing to use trans
forms of only 4096 points, we can fully buffer these
operations, one file being Fourier transformed while
the previous file is being written out and the succeed
ing file read in.

We now start on the second set of transforms.
Here we make use of the random access feature of
disk to read simultaneously from each of the 64 files,
since there are 4096 subsequences of length 64, ob
tained by taking one element from each file. Each
subsequence is brought in, transformed, and then
returned to its previous position on the disk, that is,
as one number in each of the files 0 through 63,
according to the frequency index. Again we may
completely buffer this operation so that the disk time
comes free.

Finally we output our Fourier transform onto
tape, sequentially writing out each of the files, 0
through 63.

Rough calculations for the IBM 7094 Mod I
show that the initial decimating is limited by disk
speed, and takes about 3 minutes, that the first 64
(4096 point) transforms will take a total of just under
6 minutes and are compute-bound so that disk time
is free, that the last 4096 (64 point) transforms will
take a total of about 3 minutes, again compute
bound so that disk time is free, and the final output
is completely limited by disk speed, and takes about
3 minutes. Thus our quarter-million point Fourier
transform has cost us only about 15 minutes, 9 min
utes of which is computing, the same 9 minutes
which would be required if the machine had enough
core to do the entire problem internally, and 6 min
utes of which is strictly tape to disk or disk to tape
transmission that could be avoided if the sequence
was initially available, and the final answers accept
able, in appropriate form or could at least be over
lapped with other computing.

Roundoff Considerations

So far we have discussed the fast Fourier trans
form as though it could be done with complete ac
curacy. What happens when the algorithm is carried
out in a real fixed word-length computer using float
ing point arithmetic? How does the error in doing

570' PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

this compare with the error from a direct application
of the definition?

We may approach this question two ways-by
strict bounds or by empirical values determined by
experimentation. We shall derive bounds for the
ratio of the Euclidean norm * of the error to the
Euclidean norm of the data sequence, showing that
whereas for direct application of the defining formula
we can only bound this ratio by 1.O'6YN (2N) 3122-b ,

if we factor N into nIn2 ... nk and use the fast
Fourier transform we can bound the ratio by

l.06Y N {~ (2nj) 3/' } 2-'. In particnlar, if all

the nj are the same, so that N = nT", then the ratio is
less than 1.O'6YN k(2n)3/22-b, which isk/n 3 / 2 (k-l)
times that for the direct calculation. (b here is the
number of bits used in the mantissa of the floating
point representation). We shall then see from em
pirical results that the form of the bound is actually
a fairly good description of the form of the observed
errors, although the numerical constant is somewhat
larger than is typical of actual trials.

Theorem: If we use the defining formula to Fourier
transform a sequence X (t) of length N in a machine
using floating point arithmetic and a fixed word
length with a b bit mantissa, then

Ilti(X) - XII E < 1.0'6 yN (2N)3/22-b IIXIIE

Proal: We require the following lemma from Wilk
inson 9 (p. 83):

Lemma: If A is a real p by q matrix and B is a
real q by r matrix and if I (.) denotes the result
of floating point computation then

IIlt(AB) -ABIIE < 1.O'6q2-b 1iA IIEIIBIIE

*The Euclidean norm of a vector or sequence is the
square root of the sum of the squares of the elements.

q is the extent of the summation in the matrix
multiplication.
The definition of the Fourier transform of X (t) is

also the definition of the multiplication of the vector
X(t) by the matrix {e(tt/N) }ft.

Expressing this in real arithmetic, we multiply the
real sequence {Re(X(t», Im(X(t»} by the real

matrix (; -~)

where C = {cos 27r"lt/ NHt and S = {sin 27rtt/ N}tt.
The norm of this 2N X 2N real matrix is

N-I N-I

~ ~ {cos227rtt/N + sin227rft/N +
t=o t=o

cos22-rrtt/N + sin227rtt/N} = y2N2

Since the extent of the summation is 2N, we have

by the lemma that IIf£(i)-xIlE < 1.O'6X2N \/2N2

2-b IIXIIE'
A

The proof is completed by observing that II X liE =
yNIIXIIE'

Theorem: If we use the fast Fourier transform, fac
toring N into nIn2 . .. nk, to transform a sequence
X (t) in a machine using floating point arithmetic
and a fixed word length with a b bit mantissa, then,

k

IItl(X)-XIlE < 1.0'6 yN ~ (2nj)31'22-b IlXIIE
j=1

Proof: Here we represent the transform as a se
quence of matrix multiplies (one for each factor),
and employ the above lemma. Specifically, the
fast Fourier transform is equ}valent to evaluating

yN MkMk-l . .. MIX where M j is a matrix consist
ing of N /nj disjoint nj point Fourier transforms (in
cluding the twiddle factors for the next stage), re
scaled to be orthogonal. Thus

IIli(X)-XIlE = yN II!iMktlMk-l . . . t£MIX - MkMk-1 ... M1XIIE

= yN IIliMdiMk-1 ... t£MIX- M7c1iMk-lfiMk-2' . . t£MIX

k

+ .Mk!lMk-1 . .. t£M1X - MkMk-lt,£Mk-2' . . t£MIX

... + MkMk-1 ... liM1X - MkMk-l . . . M1XIIE

~ ~ y'N IIMk ... Mj+1{/LMdiMj-1 ... tj,MIX - MdiMj-1 . . ·tiMIX)liE
j=1

but since the M j are orthogonal
k

= y'N ~ IIftMj (!iMj-1 . .. tlM1X) - M j (tiMj-l . .. tiM1X) liE
j=1

FAST FOURIER TRANSFORMS-FOR FUN AND PROFIT 571

When we compute the bound for Ilf'£(MjY)
M j Y II E we find that since M j may be partitioned into
N /nj disjoint blocks, we can bound the error from
each block separately, getting, since in real arithme
tic each block is 2n j square, and the norm of the

block is y2nj, a bound of 1.06(2njp/22-bIIYs II E
where Y s is the appropriate part of Y. By using
Pythagoras' theorem this yields

Ilf.l(MjY) - MjYIIE < 1.06(2njp/22-b IIYIIE

Finally we observe that except for error of order
N2-b IlXIIE

IIfiMj-diMj~'2' .. tJ.,MIXIlE = IIMj ... MIXIIE

Immediately w.e have IIMj . .. MIX!!R
cause of the orthogonality, so

k

IIXIIE be-

11t.l (X)-XIIE < 1.06 yiN ~ (2nj) 3/22-b IIXIIE
j=1

Corollary: If a sequence is transformed and then the
inverse transform applied to the result, the norm of
the difference between the initial and final sequences
can be bounded by 2X 1.06 (2NP/22-b IIXIIE if we

use the definition, or 2 X 1. 06 ~ (2nj) 3/22-b II X II E if
j

we use the fast Fourier transform.
With this corollary in mind, an experiment we can

readily do is to take a sequence, transform, inverse
transform, and then compute the norm of the differ
ence between the original and resultant sequences,
dividing this by the norm of the original sequence.
Table III gives these ratios for random Gaussian
sequences of length 2k , k = 1, ... ,12, when the
transforms were computed using: (1) a radix 2 trans
form; (2) a radix 4 + 2 transform; (3) a radix 4 + 2
transform with rounding instead of truncation; (4) a
Goertzel's method transform; and (5) a transform
which directly implemented the definition. The re
sults of three replications of the experiment are
given. Figure 1 is a plot of the average ratio divided
by log2N against log2N to show the essentially linear
dependence (for the factored transforms) of the ratio
on log2N. Attention is drawn to the common scaling
factor of 10-8 and the consistency of the tabled ratios
for the larger transforms.

USING FAST FOURIER TRANSFORMS

Classical Usage with Partial Differential Equations

One of the classical motivations for the study of
Fourier transforms has been the application of find-

TABLE III

OBSERVED RATIOS OF ERROR NORM TO
SEQUENCE NORM FOR THREE RANDOM

SEQUENCES AT EACH LENGTH.

Log2N

2

3

4

5

6

7

8

9

10

11

12

Radix
2

1.03
.53
.57

3.43
2.23
1.89
4.04
5.57
4.51
9.14
8.64
7.76

10.7
12.7
11.9
13.2
14.4
14.0
17.6
16.9
17.3
20.0
20.1
20.7
22.8
22.8
22.9
25.2
25.6
25.8
28.1
28.1
28.5
30.7
30.7
31.1

(in units of 10-8
)

Radix 4+2
Radix with
4 + 2 rounding

(1.03) .46
(.53) .13
(.57) .00
1.09 .92

.92 1.05
1.96 1.07
4.99 2.65
5.58 2.69
5.01 2.39
7.11 2.12
5.92 2.91
6.62 2.71

11.0 4.58
12.2 4.44
11.4 5.40
11.2 3.38
12.0 3.70
10.2 3.59
17.0 6.24
16.3 6.74
16.8 6.78
16.3 4.82
16.6 5.09
16.2 4.66
21.6 7.61
21.4 7.81
21.7 7.91
21.0 5.82
21.0 5.44
21.0 5.44
26.2 8.70
26.1 8.56
26.5 8.53
25.5 6.30
25.5 6.21
25.7 6.21

Goertzel's
method

2.60
3.91
2.73
9.73

12.6
15.8
32.8
16.6
34.4
98.9
91.5

121.
202.
258.
198.
548.
787.
806.

1290.
1990.
1900.
7050.
3490.
5090.

13700.
10700.
11500.
32100.
27600.
29900.

Defining
formula

4.27
1.54
4.14
5.15
3.31
4.14
9.75

13.0
7.83

17.7
18.4
17.1
33.8
36.7
36.2
69.1
75.2
63.8

143.
141.
135.
286.
288.
269.
579.
578.
561.

1170.
1160.
1140.

ing solutions of partial differential equations. Hock
ney 4 gives a discussion of numerical solutions of
partial differential equations. He considers the prob
lem

o 2 <I> (X,y) o 2 <I> (x y)
---+ '

GX2 oy2

o S x sf,
p(x,y)

°sysm
with boundary conditions <I>(x,y) = 0 if x = O,ior
y = O,m. The solution is obtained by discretizing

572 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

18

16

<0
14 I

Q

LL
0

~
z 12
:::>

z
!\I

C>

9
10

~
0 w
0
:;
0 8

~
a::
0 z
a::
0 6 a::
a::
w
w
>
~ « 4 ...J
W a::

2

IX 4'2 A~ORITHM

BOUND FOR RADIX 2 ALGORITHM

o RADIX 2

~ RADIX 4+2

c RADIX 4+ 2 WITH
ROUNDING INSTEAD
OF TRUNCATION

• GOERTZEL'S METHOD

• DEFINING FORMULA

2 3 4 5 6 7 8 9 10 11 12

LOGzN

Figure 1. Observed values of relative error norm/Log2N.

onto an nXn grid (Hockney considers n = 48, one
case of n = 12X2Q

, q = 0,1,2, ...). A Fourier
transform with respect to x reduces the problem to
the solution of a system of equations for the y co
ordinate. By using a 12 point formula from Whit
taker and Robinson,8 Hockney is able to achieve a
Fourier transform in n2/36 operations. * If rather he
were to use a fast Fourier transform for n = 2P,

p = 0,1,2, ... he could achieve a Fourier transform

in approximately ~ n log2n operations. This estimate
2

of operations leads to a net count of 6n210g2n for
Hockney's method. Under this accounting, Hock
ney's method is much superior to the other methods
he considers. It must be cautioned that the factoring

*Operation in this section i means a real operation of a
multiplication and· an addition.

of 12X22 which Hockney uses for his Fourier trans
form will be equivalent to the fast Fourier transform.
The apparent reduction only comes into playas the
size, n, is increased past 48. As Hockney points out,
the calculation of Fourier coefficients has long been
recommended (and avoided because of cost) as a
method of solving partial differential equations.
Perhaps the fast Fourier transform will render the
solution of partial differential equations both more
economical and more straightforward.

Least Squares Approximation by Trigonometric
Polynomials

Often one may want to approximate a given se
quence by a band-limited sequence, that is, a se
quence generated by a low order trigonometric
polynomial. A possible example could be the deter
mination of filter coefficients to approximate a de
sired transfer function. 5 The use of expansions in
terms of orthogonal functions to obtain least square
approximations is well known. The Fourier trans
form of a sequence gives its expansion in terms of
the mutually orthogonal complex exponentials, hence
to obtain the coefficients for the approximation, we
simply retain the low order coefficients from the
Fourier transform. We may compare the approxima
tion to the original by looking at the inverse Fourier
transform of the coefficients after replacing the un
wanted coefficients by zeros.

If we had wanted a positive definite approxima
tion, we could have approximated the square root of
the original sequence. The square of the approxima
tion to the root is then the positive approximation.
Squaring a sequence like this has the effect of con
volving the Fourier coefficients. Other variations in
the approximating problem may be handled by sim
ilar specialized techniques.

A caution: Gibbs phenomenon is a persistent
problem when using least squares, particularly in the
case of trigonometric approximation. In some situa
tions, the problem may be sufficiently bad to warrant
the use of other approximation criteria.

Numerical Convolutions

To date, the most important uses of the fast
Fourier transform have been in connection with the
convolution theorem of Table 1. Some uses of nu
merical convolutions are the following:

Auto- and Cross-Covariances: 1. METHOD AND
TIMING CONSIDERATIONS. In the analysis of time

FAST FOURIER TRANSFORMS-FOR FUN AND PROFIT 573

series by digital spectrum analysis, there are many
computational advantages to the "indirect" method
of spectral estimation by computing the autocovari
ance and then Fourier transforming rather than the
"direct" method by obtaining the periodogram and
then smoothing. l For example, it is more practical to
consider examining a spectrum through several dif
ferent spectral windows by the indirect method. Sim
ilarly, when analyzing a pair of series with co
and quadrature-spectra, we often find the cross
covariance of the two series computationally con
venient.

The first major use of the convolution theorem, by
Sande,6 was to compute the auto-covariance

1
Rxx(T) = - ~ {X(t)}*X(t+T)

N
T = 0,+1,+2, .. . ,+L

and cross-covariance

1
RXY(T) = - ~ {X(t) }*Y(t+T)

N
T = 0,+1,+2, ... -+-L.

where the summations are overall values of t for
which the products are defined. (These are not in the
form of Table I but can be readily put into that
form.) The convolution theorem may lead to im
provements by a factor of 20 in computing time as
compared to the summing of lagged products. The
two major problems are that these are not defined
cyclically and that N may not be convenient for use
of the fast Fourier transform. Appending zeros to
one or both ends of the series solves both problems.

To see this, extend X to length N' ~ N + L by
adding zeros so that

X'(t) = X(t)

X'(t) = °
t = 0,1, .. . ,N-l
t = N, . . . ,N'-1

Extend the Y series similarly. Fourier transform
both new sequences to obtain

X'(n
N'-l X'(t)e(::) ~
t=o

A A N'-l Y'(S){;) ¥'(t) ~
8=0

Inverse transform the sequence formed by the
product of the Y' transform and the complex con
jugate of the X' transform.

1
N'=l

~ t=o 8=0

N'=l

~
N'=l

~
t=o N'

{X'(t) l*Y'(s)e(- ;:) e (- ~:) e (:,)

1 N'-l N'-l

N' ~ ~
t=o 8=0

{X'(t) }*Y'(s) ~i e(t(S-~-:T))
1=0

which by the orthogonality condition of Table I gives

N'-l N'-l

= ~ ~ {X'(t)}*Y'(s)8 N ,(s-t-T)
t=o 8=0

N'-l

= ~ {X'(t) }*Y'(t+T)
t=o

Recall that the indices must be interpreted modulo
N'. For T < N' - N, this expression is just N times
the cross-covariance Rxy because then the extraneous
products are precisely zero.

Note that the auto-covariance is precisely the
cross-covariance of a series with itself, so that the
outline just given also describes how to compute the
auto-covariance. On the other hand, we may take
advantage of the fact that in most time series prob
lems the series are real to compute two auto-covari
ances at one time. We use one series as the real part
and the other series as the imaginary part in forming
the sequence which we Fourier transform, using the
symmetry properties from Table I to separate them
later.

Exactly how much faster the convolution theorem
approach is than the lagged products depends not
only on the length of series. and proportion of the
available lags desired, but also on details of the pro-

(2N-L) (L+l) ,
grams used. There are multiplica-

2
tions and additions, plus associated indexing opera
tions, in summing lagged products. On the other
hand, the number of operations required for the
Fourier transforms (approximately proportional to
N' log N') depends on· our choice of N' which can
vary according to the availability of Fourier trans
form routines, a routine which can handle mixed
factors being much more flexible than a radix 4 + 2
routine which restricts N' to be a power of two. Fig
ure 2 gives a comparison of direct summing and

574 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

175

150

125

100

if)
u w
~ 75

w
~
f: 50

25 BY CONVOLUTION THEOREM

3000

I ! !

0'8 0.9 o 0.1 0.2

Figure 2. Computation times for auto-covariance of a 3000
point series, using convolution theorem or sum
ming lagged products.

convolution theorem times using our radix 4 + 2
transform routine. Figure 3 shows (for this program)
the regions in which either direct summing or the
convolution theorem is more efficient as functions of
Nand L.

2. EXTRA-LONG SERIES. When we have to com
pute auto- or cross-covariances of extra-long series,
we could just continue to use the method of the pre
vious section, doing the oversize Fourier transforms
by the method outlined in the section Fast Fourier
Transforms Using Hierarchical Store. A simpler and
occasionally more efficient method is also available.
What we do instead is to partition the series X and Y
into contiguous disjoint segments, and express the
cross-covariance Rxy in terms of the cross-covari
ances between these various subseries.

A simple diagram will illustrate the method. In
Fig. 4 we have plotted all the products of the ele
ments of series Y against those of series X, the plot
ting position corresponding to the values of the re
spective indices. The cross-covariance Rxy(r) then
corresponds to 1/ N times the sum over all elements
on a line parallel to the main diagonal, but r elements
above it. Such a line is shown on the diagram.

As an example, we consider the problem of com
puting Rxy for r = 0,-+-1, + L, when the largest
cross-covariance we can compute by the method of
the sub-section on Method and Timing Considera-

tions is for series of length N /5. We are thus in
terested in those products in the hatched area of the
diagram. The segments described above are indicated
by the dotted lines; they are labeled X o, Xl, . . ,X4
and Yo,Y}, . .. Y 4 • We now see how Rxy(r) may be
calculated, by summing the appropriate cross-co
variances of Xi with Y j • For instance, for the par
ticular value of r illustrated,

RXY(T) = ~ { Rxy (,) + 5 0 0
Rxy (, _ N)

1 0 5

+ R XlYl (T) + Rx,y, (, ~)
+ R X2Y2 (r) + Rx,Y, (, ~)
+ R X3Y3 (r) + Rxy (, _ N)

4 3 5

+ RX4Y4(r)}

Filtering: DIGITAL FILTERS. Often, when we have a
set of data which is indexed by displacement or time,
we wish to "smooth" our data to reduce the effect of
unwanted "noise". If our original data were repre
sented by {X(t)} then forming

X(t)+X(t+ 1)+X(t+2)
yet) = 3

would represent one method of smoothing our data.
More generally, we could choose to use any arbitrary
weights we pleased so that

200~------~------~--------~------~

150

<f)

o fOO «
--l

50

CONVOLUTION THEOREM FASTER

2000 4000 6000 8000

N

Figure 3. Region where using convolution theorem is faster
than summing lagged products.

FAST FOURIER TRANSFORMS-FOR FUN AND PROFIT 575

0

y4

Y3 7"= -L

<fl
w Yz a:
w
<fl

>-

YI

Yo

Xo XI Xz

X SERIES

Figure 4. Diagram of cross products for computing cross
covariance.

yet) = c(k)X(t) + c(k-1)X(t+ 1) + ...
k

+ c(o)X(t+k) = ~ c(k--j)X(t+j).
j==O

If, rather than smoothing, we had desired to estimate
moving short-term integrals (possibly with a kernel)
we would again be able to express the result as a
summation over the data points weighted by suitable
coefficients. The estimation of derivatives also leads
to a similar expression.

Let us consider the application of such a moving
average to a complex exponential of a fixed fre
quency. Thus our data would be X(t) = eiwt =
e (ft) and the result of the moving average would be

Yet) = c(k)X(t) + ... + c(o)X(t+k)

k

~ c(k-j)X(t+j)
j==o

k

~ c(k-j)e(fx (t+j})
j==o

k

e(t!) ~ c(k-j)e(fj).
j=o

We can thus represent Y(t) as the product of e(ft)
k

and A (f) = ~ c(k-j)e(fj). A (f) is called the
j=o

(complex) gain of the moving average (or filter)
determined by the coefficients c (0) , ... ,c (k). Mov
ing averages are linear in the data, for example, the
moving average of U (t) + V (t) is the same as the
sum of the separate moving averages of U (t) and
V (t). Thus if we consider our data as being com
posed of many Fourier components, we see that the
moving average affects each of the Fourier com
ponents separately.

All of these considerations can be compactly
stated using the terminology we have at hand. Taking
the moving average is a convolution with a set of
weights. The complex gain of the moving average is
the Fourier transform of the coefficients. Filtering
corresponds to multiplying by the complex gain in
the frequency domain.

This has given but a small introduction to the
analysis of linear filters. It does not tell us how to
design a filter to perform a desired task. For this
problem, the reader is referred to general texts such
as Hamming,3 or Blackman and Tukey, 1 or to more
specialized works such as Kaiser.5

2. SECTIONING. After we have chosen the weights
with which we would like to filter, we still must
choose how to implement the filter. A typical situa
tion might be to have 15,000 data points which we
wish to filter with 50 weights. We could do this by
computing the convolution directly. We might also
extend our data to 16K by adding zeros and our
filter to 16K weights by adding zeros and then doing
two Fourier transforms to get our convolution. For
this choice of numbers the decision is not dramati
cally in favor of one or the other method.

Applying a 16K Fourier transform to only 50
weights seems rather extravagant. Perhaps we could
do better if we were to filter only sections of the
original data at anyone time as first suggested by
Stockham. 7 The problem is then to find a sensible
size for the various sections. Let us say that we have
D data points and F filter weights. We want to find N
(the section length) so as to minimize the total time.
This scheme will take about D/(N-F) Fourier trans
forms (transforming two real sequences at one time).

D
The total time will then be t -- cNin(N)

N-F
where c may have a small dependency on N which
we will ignore. By assuming that F < < D and that
N is continuous we may find the minimum of t by
differentiating with respect to N. Thus

576 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

at
De-a (Ni n(N))

aN aN N-F

= Dc {in(N) + ~~_ Nin(N)}
N-F N-F N (N-FP

= Dc {(N-F)in(N) + N - F - Nj,n(N)}
(N-FF

Dc /J = {- F.£n(N) + N - F}
(N-F)2

~ = 0 implies N - F(1 +in(N)) = 0
aN

which yields
N

F =
1 +j,n(N)·

For our case of 50 filter weights, this suggests
using Fourier transforms of length about 300, for a
reduction of the time required by a factor of two.

Interpolation. One of the standard operations in
numerical computing is the interpolation in a table
of function values to obtain approximate values on
a grid at a finer spacing than the original.

1. BAND-LIMITED INTERPOLATION. The most ob
vious application of these ideas is to the case of
band-limited interpolation, sometimes called trigo
nometric or cosine interpolation. This interpolation
is done over the whole interval, by fitting a trigo
nometric polynomial (or complex exponential series)
of sufficiently high order through all the given values,
then evaluating it at the new points. 3 But the first
step of this is exactly the finding of the Fourier trans
form of the original data. And the second step, as we
shall see, can be accomplished by inverse transform
ing the sequence whose low order coefficients are the
same as the coefficients of the transform of the origi
nal data, and whose high order coefficients are zero.

To justify this last statement, consider the case
where the function is given at N equispaced grid
points. We wish to interpolate in this sequence to
obtain values at M times as many points. The origi.!
nal sequence of values, X(t), has a Fourier transform
X(t) such that we have the representation

X(t) = ~ ~ X(1)e(,- tt)
N t=o N

Consider the augmented Fourier transform ie'S)
s = 0,1, ... ,N·m-1 such that

(a) Z(t) == X(!)(- ~)< I< ~
(b) Z(-N /2) = ZeN /2) = 1/2X(N /2) if N even

~ A A

(c) Z(s) = 0 for all other values of s.

When we recall that X (t) has period N and that
Z(s) has period NM we identify

'" A A /\.

X(-t) = X(N-t)
and

Z(-'S) = Z(NM-s)

The construction of Z corresponds to taking the
circle on which the Fourier transform coefficients

A N
of X are defined, breaking it at -, and inserting

2
M(N -1) zeros so that the low frequency Fourier
coefficients of the two sequences match, and the high
frequency coefficients of ZC~) are zero. What is the

AA.

inverse transform of Z(s)?

1
Z(s) =

MN

MN-l

~
"t=o

.A ((S/NM)S) Z(s)e ----

which, we note, is just the band-limited interpolation
1

of X(t), except for a factor -. For example, when

S = Mt,

Z(Mt)
1

MN

M

~ X(t) by the definition of Z(s)
M

Applying this in the case where the original values
are not at equispaced points merely makes the find
ing of the first transform, X (1), more complicated.
Furthermore, the extension of this scheme to multi
ple dimensions is immediate.

We remark that a fundamental fact of band
limited interpolation is that it is periodic, so that the
first points of a sequence influence the values in
terpolated between the last points. This property, and
the long range effects of single values, may mean we
should avoid band-limited interpolations for certain
uses. It may, however, be extremely useful in other
circumstances.

2. GENERAL INTERPOLATION RULES AS CONVO
LUTIONS. Knowing the limitations of band-limited
interpolation, we often prefer to use a local formula
such as Lagrangian polynomial interpolation. Using
any interpolation rule such that the interpolated

FAST FOURIER TRANSFORMS-FOR FUN AND PROFIT 577

values are linear combinations of the adjacent known
values to subtabulate a table of equispaced data may
very conveniently be done by convolutions. If we
denote the value to be interpolated at t + p, 0 ~ p
< 1, by Zit), then the series Zit) is the convolution
of the original series X(t) with an appropriate series
of weights:

(j

Zp(t) = ~ Wp(s)X(t-s)
8=a

It is possible to arrange that the convolutions for
all values of p be done simultaneously, but the com
putational effort may be increased over doing them
separately. Since, typically, the series of weights will
be short compared to the length of the series X(t), it
may be profitable to employ the sectioning described
earlier. When applied to problems in more than one
dimension, additional profit may be made if we use
interpolation rules which are direct products or di
rect sums of lower dimensional rules, for example, a
two dimensional interpolation rule such that the
weights W (r,s) are either a product W' (r)W"(s) or

pq p q

a sum W' (r) + W"(s). The advantage of such rules
p q

is that the higher dimensional convolutions may then
be done as a succession of lower dimensional con
volutions or equivalently that the Fourier transforms
of such sequences are the products or sums, respec
tively, of the Fourier transforms of the constituent
parts.

Cauchy Products for Symbolic Polynomial Manipu
lation. The Cauchy product of two infinite series is a
well-known result of college algebra:

00 00

subject to some convergence criteria. We readily rec
ognize that the {Ck} are convolutions of the {ad and
{ b j} and that we could use our techniques to evalu
ate these discrete convolutions.

We may arrive at this by considering an alternative
viewpoint. Let us write z = e((}) and recognize that
zn = e(n(}). With this notation the Fourier transform
becomes

N-l N-l

XCi) = ~ X(t)e(tf/N) = ~ X(t)zt where
t=o t=o

z = e(t/N)

This is a truncated power series evaluated at points
on the unit circle in the complex plane. Our convo
lution theorem is now a statement about multiplying
polynomials and using a Cauchy product representa
tion. The inverse Fourier transform gives us a way of
evaluating coefficients of polynomials given as values
equispaced on the unit circle.

Of the applications so far suggested, this most
deserves the epithet "fun." It is doubtful if this tech
nique will supplant conventional symbol manipula
tion techniques as it makes no use of special prop
erties of the coefficient sequences. It does, however,
admirably illustrate that maintaining an open mind
may well bring forth new, surprising and occasionally
beneficial applications of finite discrete Fourier
analysis.

Considering Problems in Transform Space

It has long been a fact that some problems of
physics are more tractable in transform space than
they are in the regular coordinates. Our refound
ability to switch from one to the other may mean that
some previously intractable problems will now be
solvable. In electromagnetic problems, the return
signal can often be represented as a convolution with
a kernel. Taking the Fourier transform can change
the form of the non-linearity from convolution to
multiplication and may make the problems more
manageable. In pattern recognition problems, one
may seek measures which are free from the effects
of linear transformations. Taking the Fourier trans
form may greatly reduce the problem of finding such
measures. It has been suggested that quantizing the
Fourier transform of a signal rather than quantizing
the signal itself may result in a higher quality trans
mission for communication.

There are certainly a wealth of problems in which
Fourier analysis arises as a most natural tool to be
employed. Unfortunately it has often been rejected
because of its high computational cost. Perhaps the
application of the fast Fourier transform could swing
the economic balance to make this time-honored
technique again competitive.

ACKNOWLEDGMENT

The authors would like to express their apprecia
tion to those from whose work we have borrowed,
and whose fruitful conversations have helped in the
preparation of this paper. In particular we should

578 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

like to thank C. Bingham, A. B. Langdon, C. L.
Mallows, T. G. Stockham, and J. W. Tukey.

REFERENCES

1. R. B. Blackman and J. W. Tukey, The Meas
urement of Power Spectra, Dover, New York, 1958.

2. J. W. Cooley and J. W. Tukey, "An Algorithm
for the Machine Calculation of Complex Fourier Se
ries," Mathematics of Computation, vol. 19, no. 90,
(1965) pp. 297-301.

3. R. W. Hamming, Numerical Analysis for Sci
entists and Engineers, McGraw-Hill, New York,
1962.

4. R. W. Hockney, "A Fast Direct Solution of
Poisson's Equation Using Fourier Analysis," Journal
of the Association of Computing Machinery, vol. 12,
no. 1, (1965) pp. 95-113.

5. J. F. Kaiser, "Some Practical Considerations
in the Realization of Linear Digital Filters," Pro
ceedings of the Third Allerton Conference on Cir
cuit and System Theory, Monticello, Illinois, Oc
tober 1965.

6. G. Sande, "On an Alternative Method of Cal
culating Covariance Functions," unpublished, Prince
ton University, 1965.

7. T. G. Stockham, "High Speed Convolution and
Correlation," AFIPS, volume 28, 1966 Spring Joint
Computer Conference, Spartan Books, Washington,
1966.

8. Whittaker and Robinson, Calculus of Observa
tions, Blackie & Son, London, 1944.

9. J. H. Wilkinson, Rounding Errors in Algebraic
Processes, Prentice-Hall, Englewood Cliffs, New
Jersey, 1963.

A SYSTEM FOR AUTOMATIC
VALUE EXCHANGE (SAVE)

Vern E. Hakola

Touche, Ross, Bailey and Smart, Los Angeles, California

and

Sherman C. Blumenthal

Union Carbide Corporation, New York, New York

INTRODUCTION

The central theme for a System for Automatic
Value Exchange (SAVE), from which all other key
features of the concept stem, is that the exchange of
money and credit can take place independently of
documentary instruments such as checks and
vouchers. SA VE contemplates substituting an elec
tronic financial clearing process for the major por
tion of these traditional means of exchange in the
consumer economy. The purpose of the system is to
provide rapid and paperless financial settlements
among the parties in buying-selling and debtor-cred
itor relationships, thereby achieving the economies
and the convenience that centralization of major
portions of the credit functions for entire metropoli
tan areas (and eventually the national economy)
would permit. SAVE would integrate the functions
of purchase authorization, credit transfer, bill pay
ment, short-term lending, payroll, budget manage
ment and related elements.

The routine flow of payments for goods and serv
ices within such a system of exchange would become
relatively instantaneous. Thus, verification of the
payer's authorization and ability to pay must occur

579

as first rather than last step in the normal financial
clearing process. Payment would, in fact, take place
simultaneously with the receipt of goods or services.

It is hypothesized that SAVE would achieve a net
economic gain and a dramatic improvement of serv
ice:

1. For associated banking institutions
through increased deposit and loan re
lationships, elimination of float, de
crease in amount of cash and negoti
abIes outside the bank, and the crea
tion of profits from new services.

2. For organizations purveying goods and
services to consuming individuals and
organizations through substantial re
duction of financial data processing
burden, elimination of bad debt losses,
maximization of liquidity, and increase
of credit purchasing activity.

3. For consumers through convenience of
"universal" credit purchasing, budget
management, reduction in total cost
of credit, elimination of bill paying and
check writing, and reduction in costs

580 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

of goods and services through lessen
ing of variable overhead expenses in
connection with their sale.

SA VE assumes that the role of the banking sys
tem will greatly expand in the future as compared to
its role today. A SAVE bank compiex would act as
a buffer between debtor and creditor. Most accounts
payable and receivable would no longer exist as we
know them today. Any excess of receivables over
payables would be reflected instantaneously as addi
tional deposits to the SAVE bank complex; excess
of payables, on the other hand, would represent a
loan. Traditional charge accounts would be .replaced
by demand accounts supplemented by automatic
overdrafts. Loan relationships with retailers of goods
and services would include all forms of commercial
lending.

Thus, the first area of expansion for banks would
be in the area of short-term credit, both personal
and commercial. At the present time, only a small
part of the short-term credit needs of the economy
are met by banks and other financial institutions.
The larger part consists of "internal" credit in the
form of accounts receivable and prepaid expenses,
offset by accounts payable and accrued liabilities.
SAVE visualizes immediate settlement of most rou
tine obligations. Theoretically then, a fully realized
SAVE would neither expand nor contract overall
credit requirements. As it relates to fiduciary enti
ties, SAVE would cause either a gain or loss of cash
as compared to the situation otherwise.

In the field of personal credit, some banks have
already established revolving credit for individuals.
This takes such forms as "Ready Credit" at First
National City Bank in New York, and overdraft
banking exemplified by the "Ready Reserve" system
at Security First National Bank in Los Angeles.
SAVE would involve an expansion in this area, par
ticularly in the latter direction. That is, personal
credit now taking the form of various kinds of
charge accounts at individual retailers would be re
placed by bank overdraft facilities.

SAVE would minimize the preparation, process
ing and movement of documents within the banking
system and the money economy at large, particularly
the retail portions of it. Float, of course, would be
largely if not entirely eliminated. Payer and payee
would know at the time of a sales transaction that
payment had, in fact, been consummated. The func
tions of instantaneous purchase authorization, auto
matic bill payment, automatic credit injection, con-

sumer and retailer budget management, "instant
cash," checkless-cashless payroll, etc., would have
strong economic attractiveness for nearly all sub
scriber groups, as well as providing means of solving
many of the potentially competitive situations posed
by existing credit bureaus, credit plan companies,
existing bank services and retailer credit plans.

The ensuing sections of this paper are devoted to
discussion of feasibility and a technical and func
tional description of SAVE operation. The service
will necessarily involve utilization of a very large ca
pacity communication network, a large number and
wide variety of remote input/output devices grad
uated in complexity from simple push-button tele
phones to satellite computers, a foolproof means of
personal identification, the use of a common "finan
cial" number system, large and fast random access
storages, and computers.

What are some influential factors that have
emerged which account for the trend toward the
emergence of a system such as SAVE?

While the economy has been expanding at a tre
mendous rate, the use of banking services such as
demand deposit accounts is expanding even faster,
as seen in Fig. 1. Indeed at present rates of acceler
ating growth, check clearings will more than double
in 10 years.

Secondly, since World War II, banks have been
under continuing pressure from competing institu
tions and their own customers to provide a variety
of new customer services, both for businesses and

CHECK
CLEARINGS

32

24 900

16 600

300

T T , ! ,

1950 1960 1964 1970

Figure 1. Comparison of check earnings and GNP forecast,
1950-70.

A SYSTEM FOR AUTOMATIC VALUE EXCHANGE 581

individuals. An automatic financial clearing process
such as SAVE can be viewed in part as an extension
of this trend. Moreover, it has so many ramifications
in other parts of the bank's business that it must be
viewed not merely as a new service and a new
source of profit, but as dramatically supporting of
the traditional loan and deposit relationships of the
bank.

A third factor, of course, is the technological fea
sibility of SA VE as a result of major industry ad
vances. The technology involved in SA VE, which
combines computers, communications, and special
terminal devices, is implemented in and familiarly
illustrated by the American Airlines reservation sys
tem known as SABRE.

Fourth, there is the emergence within banks and
the organizations with whom banks deal of profes
sional systems people of a new breed, who are not
limited in their thinking by the traditional bounda
ries of their trade. As business relationships change,
as new techniques come to the fore, these profes
sionals are pressuring their own managements to ex
ploit the opportunities arising from the technological
fallout taking place now almost daily.

A fifth factor is the explosive growth in personal
and installment credit. The growth, universal accept
ance, and use of credit by individuals is well known
to bankers and retailers. Today, there is a growing
need for control in the extension and use of personal
credit. Banks have a major opportunity in the short
term consumer credit area which they are not now
fulfilling. It is often too frequently true that an indi
vidual's multiple credit lines are controlled by noth
ing other than his own good sense. Banks have a
responsibility in this since they ultimately underwrite
the extension of much of this credit, directly and
indirectly. The costs, the number of accounts, the
cards, the statements mailed, credit checks, etc., are
multiplying in a seemingly profligate and unneces
sarily burdensome way.

In summary, we believe that SA VE will emerge
to meet the eventual necessity for improvement in
the value exchange environment which is illustrated
in the above factors. Therefore, it is clear that banks
of all sizes must do everything in their power to
begin to establish themselves more firmly at the
center of the consumer-merchant-vendor communi
cation channels, and thereby strengthen their rela
tionships among these major economic sectors.

These factors have apparently been influential in
helping a number of thoughtful people in the com-

puter professions to reach similar conclusions.1- 3

Influential people in the banking industry, too, are
no less convinced that the SAVE concept should
take its place in the forefront of their future plan
ning.4-9

SYSTEM FUNCTIONS

Balance information in the consumer's demand
deposit account at his bank must be accessible di
rectly to the point of sale in order that the initial
system function-purchase authorization (or
verification of the ability to pay) -can be accom
plished. If there is sufficient balance in the account
to cover the amount of the contemplated transac
tion, authorization would be automatic. If for any
reason the purchase cannot be automatically author
ized, a human decision-maker would enter the loop
in the form of an authorizer who would examine the
consumer's credit history, and discuss the problem
with him on the phone before deciding finally to
authorize or refuse.

In the event there is insufficient balance in the
consumer's account to cover the purchase, credit
may be automatically injected into his account by
his bank on the basis of a prior revolving loan ar
rangement, provided he was not delinquent or over
limit. This would be SAVE's counterpart of the tra
ditional retail revolving or option account. The
source of these overdrafts may be a debit made at
the time of sale, or could arise as a result of other
kinds of transactions the consumer has authorized
SAVE to make payment on; as utility bills, rent
bills, installment loan payments, automatic savings
deposits, etc.

The transfer of money between the accounts of
payers and payees, or between separate accounts of
the customer, or between the bank's lending pools
and its depositors can take place within a single
bank or between separate banks who are partici
pants in SAVE. There would, therefore, no longer
be any handling of foreign items, interbank clearings
as such, no float, NSF's, holds or stops. The transfer
would not generate an accounts receivable, thus
eliminating a major cost to the merchant. A large
portion of what are credit purchases today would be
turned into essentially cash transactions.

It is not, of course, practical to eliminate cash
entirely. When the amount involved is quite small,
buying a newspaper, for example, or where non
SA VE subscribers are involved, it would be difficult

582 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

to avoid using cash. In order for a consumer to ob
tain cash conveniently, especially in view of the
probability that he would no longer make regular
visits to the bank on payday, SAVE would here pro
vide for a means of authorizing the transfer of cash
at prescribed locations. This might be looked upon
as a public service to be performed for the consum
ing public as a means of keeping a small but essen
tial part of the economy operating. Such "instant
cash" locations (if we may call them that) might be
operated at employer's premises, at bank branches,
in transportation terminals, or even at special serv
ice points established for this purpose by SAVE.

Automatic bill payment, unlike an unanticipated
transaction requiring authorization at the point and
time of sale, would require some form of pre-author
ization on the part of the payer. Sometimes such
pre-authorized payments would be for a fixed
amount, like a monthly rent bill; in others, where
the amount would vary as in the case of a utility or
phone bill, payment would be made automatically
on presentation up to a fixed amount. The invoice
need not be a visible document, but could equally as
well be an electronic communication generated at
the payee's premises by his computer system, if
there is one, or by a billing operator seated at the
keyboard of an on-line billing machine interconnect
ed with SAVE. If SAVE, for any reason, was una
ble to make payment upon presentation, notice of
nonpayment would be immediately transmitted to
both parties for appropriate action.

Payroll is a primary source for the generation of
consumer funds, and becomes the basis for essential
ly all consumer activity. Consequently, the payroll
process exerts a key influence over the adequate
functioning of SAVE. If the net pay of a consumer
is automatically credited to his account through the
operation of SAVE, the credit reliability of this indi
vidual will become more firmly established and per
mit the network to forecast the flow of funds into
his account, thus assuring the constancy of a con
sumer's willingness or ability to generate funds to
cover his economic activities. This increased capa
bility of forecasting income against expenses would
enable SA VE to project that flow and to avoid over
limit situations. The system might offer payroll com
putation service to those employers who so desire.
In any event, the employer's account would be deb
ited the total net pay, and each employee's account
credited with his net pay.

Often, the overdraft revolving type loan arrange-

ments to cover short term credit needs of the con
sumer will not be suitable for large purchases such
as automobiles or major appliances. These special
types of consumer loans would be negotiated by the
consumer with the bank as at present, and proceeds
would be credited to his account. SAVE could see
to it that the account was periodically debited for
the installment amount and could utilize the over
draft facility for the purposes of making these in
stallment payments, if necessary.

Other functions that could be performed by
SAVE for its subscribers, once the basic kinds of
services just described were in operation, could be
based on the fact that the system would have availa
ble certain comprehensive and up-to-date financial
data on subscribing merchants, utilities, service or
ganizations, professionals, and others with whom a
consumer would deal, and would also have financial
data on the consumers themselves. It would, in fact,
have· the basis for moving into revenue accounting,
into cash and budget management, and even into tax
services. More speculative perhaps, is the potential
role of SAVE as a source of statistical and con
sumer marketing information.

Figure 2 illustrates how the several functions just
described are integrated in SAVE. Note that the
SA VE computer does not supplant the computers
installed in the several bank participants. It only
supplants the clearing house function as well as the
transit functions now handled in the bank. It acts,
moreover, as an interchange among the banks, re
tailers, employers, public utilities and so on.

The central theme on which this integration is
based is the potential for instantaneous transfer of
credits for the majority of transactions in the com
munity. In order to accomplish this, we have seen
that it is possible and desirable to eliminate the
check, eliminate the deposit and eliminate the docu
mentary processes that underlie the generation of
these pieces of paper. We have seen that automatic
value exchange involving a multitude of small trans
actions requires that verification of the ability to pay
be routinized at the point of sale. Without this facili
ty, the banks participating in SAVE expose them
selves to unacceptable risks.

Of course, this entails other things. For example,
it is difficult to justify the equity in authorizing a
transaction without assuming the responsibility for
collecting the obligation incurred by the consumer
as a consequence of the authorization. The author
izer is, in effect and by implication, the guarantor.

A SYSTEM FOR AUTOMATIC VALUE EXCHANGE

} ,---------c (
CONSUMER

INSTANT
CASH

POINT OF
TRANSACTION

TERMINAL

AUTHORIZER

PUBLIC
UTILITY

COMPUTER

z

7
Purchase

Authorization

LENDING
POOL

Automatic pa? BANK C
COMPUTER

Payroll
Data
7

"-~ ~ ~ ~ ~credit Transfer

BANK A
COMPUTER

CONSUMER
RECORDS

• DEMAND DEPOSIT INQUIRY
• DEMAND DEPOSIT
• LOAN AGREEMENT INQUIRY
• CREDIT STATUS INQUIRY

• DEMAND DEPOSIT DEBIT
• DEMAND DEPOSIT DEBIT

EMPLOYER'S
RECORDS

Figure 2. Diagram of the SAVE system.

o PUBLIC
UTILITY

RECORDS

• DEMAND
DEPOSIT
CREDIT

583

I
EMPLOYER'S
COMPUTER

I

BANK B
COMPUTER

1
MERCHANT
RECORDS I

• DEMAND DEPOSIT
CREDIT

As such, the authorizer (in this case SAVE) is per
forming the equivalent of financing the retailer, by
providing him with immediate credits to his account.
Therefore, we see that these two functions-credit
transfer and purchase authorization-go hand in
hand and cannot be considered independently. Re
volving overdraft loans also fit the requirements of
an essential function. Without this overdraft banking
feature, the whole operation of automatic value ex
change may very well grind to a halt amid a welter

of irritations at its inadequacy in meeting the day-to
day and hour-to-hour needs of the consumer. There
fore, "overdraft banking" as we have described it is
a practical necessity for the operation of the whole
system. It is a type of lending activity that will make
routine consumer activity possible at all times, even
though it may not cover unusual purchases, such as
automobiles and homes.

N ext, for several reasons automatic bill payment
appears to be an essential service ingredient. First,

584 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

because of the sheer volume of payments involved.
Second, these payments consume a major share of
the consumer's income. Third, the payments are al
most always today paid by check or money order
rather than cash. But the overriding reason is that if
checks were continued in use for the purpose of
making bill payments and were tendered for major
amounts of the consumer's account balance, and if
this is the same account balance with which SA VE
operates, then the consumer would somehow have
to be aware at the time of tendering the check that
his balance is adequate. Thus, the consumer would
have to be able to make an inquiry of the system to
obtain current balances and then to subtract out
standing checks not yet presented for payment to
obtain available balance. This is obviously cumber
some and self-defeating. The alternative of a check
ing account separate from his account with SAVE is
even more self-defeating. Thus, we are suggesting
very strongly that the inclusion of automatic bill
payment is an essential feature to the satisfactory
operation of SAVE.

Looking again at Fig. 2, this time at the input side,
it can be seen that the major source of funds sup
porting all consuming activity is the automatic, peri
odic payroll deposit. We have argued that SAVE
would operate more soundly if it were known as a
matter of course that the net pay of its consumers
. was automatically available at given intervals. If, to
the contrary, a consumer might optionally not de
posit his pay, or deposit arbitrary and varying
amounts of his pay at arbitrary and varying periods,
SAVE would obviously have to set a lower limit on
overdraft credit to the consumer. The consumer,
therefore, could retain final authority over his salary
disbursement only at the expense of reduced flexibi
lity in his other financial and consuming activities.

Given the degree to which it is theoretically possi
ble to impose automaticity in the exchange of value
in the consumer economy, there remains the vital
matter of routinely and comprehensively keeping the
individual consumer informed of the personal eco
nomic consequences of his consuming behavior. To
day, information in the form of bank and charge
account statements, telephone bills and the like, are
to some extent confirmatory in nature, and serve to
enable the consumer to reconcile his own records. In
the era of SAVE operation, a much more powerful,
concise and comprehensive message must be gener
ated to keep the consumer informed of the results of

what he has done and its economic implications for
him.

Figure 3 suggests how this information might be
presented to the consumer routinely. It combines
features found in the checking account statement,
the descriptive (rather than "country club") depart
ment store bill, single unit purchase invoices and
loan account take-down and repayment information.
It is weakest in handling multiunit purchases such as
phone calls-the details of which would probably
still have to accompany the SAVE statement as an
attachment. Special notice should be taken on the
SA VE payment on 4-16, the SAVE take-down on
4-26 (lest the account go negative), and the sum
mary of overdraft account status in the lower of the
two top lines.

This, then, is the interplay of the various func
tions that we have described in the operation of
SAVE. They show the intimate interdependence of
these functions, and they together provide SA VE
with the powerful impact of their combined opera
tion.

DESIGN CONSIDERATIONS

Even though community-based SAVE systems
may go into operation over a period of years in
many different localities, these systems should be de
signed in a manner which would permit their even
tual interconnection. Thus, account numbering
schemes, terminal performance specifications, file
record contents, credit scoring procedures, merchant

FIRST IATIOIAL BAlK
St. Froncjsburg, U.S.A.

Edward G. Smith
1421 Adam Ave.
St. Francisburg. U. S. A.

PREVIOUS DDA
BALANCE
281. 05

PREVIOUS SAVE
BALANCE
180.00

DATE

4-11

DEBITS

OVERDRAFTS

50.00

DESCRIPTION

4-11 Univ. Ret. - Appliance Dep't
4-12 ABC Co. - Salary
4-16 SAVE - Payment
4-17 Elec. Co. - Utility Bill
4-17 Bell Co. - Phone Bill
4-18 Acme Elec. - Repair
4-20 Ace Mort. - Mortgage
4-21 A&P - Food Purchase
4-22 M. S. Smith - Ph~ian

4-26 SAVE - Overdraft -
4-28 ABC Co. - Salary
4-30 A&P - Food Purchase
5-3 SAVE - Cash
5-5 Met. Op. - Entertain.
5-7 FNB - Service Chg.

CREDITS

PAYMENTS

60.00

DEBITS

100.00

62.70
24.25
15.30
25.00

151. 75
37.50
10.:J!.0 ...
14.20
20.00
10.00

3.60

HANDLING
CHARGE

3.60

INTEREST
CHARGES

2.70

CREDITS

250.95

ACCT. NO.
312-20-8479

STATEMENT DATE
5-13-69

CURRENT DDA
BALANCE
241.40

CURRENT SAVE
BALANCE

172.70

BALANCE

281.05
181.05
432.00
369.30
345.05
329.75
304.75
153.00
115.50
1~50 _

50.00 - 48.:!"!!'""'""
250.95 299.20

285.00
265.00
245.00
241.40

Figure 3. A possible consumer statement from SAVE.

A SYSTEM FOR AUTOMATIC VALUE EXCHANGE 585

billing fees and schedules, line item descriptors,
input/ output data formats, and numerous other ele
ments of the system design should be standardized
to the fullest extent possible. Such standardization
will ultimately be of benefit to:

• Consumers, who will be assured of uni
form treatment wherever SA VE oper
ates. (An important point of strength in
present-day Diners' Club, American Ex
press and similar national credit card
plans.)

• Merchants, utilities and other business
subscribers, who will be assured of a
reasonably uniform fee structure and
level of service regardless of the locus
of their customers or their branches.

• SA VE itself, from the standpoint of
uniformity and economy of systems de
sign and programming, and ease of op
eration.

These problems of standardization are admittedly
enormous, but cannot be regarded as insuperable.
Standardization pockets have already begun to ap
pear to satisfy needs other than those of SA VE, and
this standardization will undoubtedly broaden in fu
ture years (e.g., one can expect the use of social
security numbers as an identifier to continue to in
crease) .

The magnitude of the standardization task de
pends importantly upon the nature of the controlling
forces behind SAVE. If one agency could specify
uniform equipment and terminal procedures and al
so specify the merchant, banking, and other system
interfaces, this would represent the most straightfor
ward and controllable system design environment.
If, on the other hand, the best that could be
achieved would be a loosely federated network of
local systems, with the equipment and system con
trol specified locally, and without a strong coordi
nating authority, this would constitute the worst-case
condition.

The remainder of this section is based upon tacit
assumption that the systems environment can be
controlled to the extent that a workable degree of
uniformity on a national scale is achievable.

Universal Numbers

With respect to the consumer, there is little doubt
that the social security number (taxpayer identifica
tion number) represents the wave of the future. The

banks, key components in the SA VE system, al
ready possess this number for their savings account
customers for the purpose of reporting interest in
come. Many banks are now seeking, in their new
generation direct access systems, to consolidate all
the account relationships of a single customer under
one number, and the social security number is the
one most readily at hand. Thus, upon input of this
master number, an individual's demand deposit, sav
ings and loan account could all be retrieved from
the bank's direct access data base in real time.

This is not to suggest that the banks will imme
diately abandon their present account numbering
systems or that they can no longer accomplish a
name retrieval. These other customer identifiers
may, however, assume secondary significance, with
possibly a cross-reference to the master social secur
ity number.

Recently, Iowa became the first state to convert
its driver license system to social security numbers.
Now, several other states have decided to, or are
considering following suit. This, coupled with the· al
ready heavy federal government and banks usage,
seems to reinforce a developing trend.

The taxpayer identification number is also availa
ble and applicable to merchant establishments and
other businesses and may for the purposes of SA VB
prove to be most efficacious here as well as with
consumers. The "DUN's" numbering system (devel
oped by Dun & Bradstreet) lacks universality in that
it applies to business organizations only, and does
not extend to municipalities, school districts, chari
table organizations, churches, and the variety of
other institutions which might participate in SAVE.

Consumer Identification

Historically, there have been two divergent sys
tems approaches to the problem of consumer
identification:

1. Issuance of an identification card con
taining descriptive and other identify
ing data which offers prima facie evi
dence that the individual seeking to
use the card is, in fact, the card owner.
Typically, such cards contain signa
ture, physical description, and some
times a photo or fingerprint. The
automobile driver's license is perhaps
the best example of such an approach
to identification.

586 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

2. Issuance of a card which contains no
descriptive information: the identifica
tion being accomplished by means of a
code or number on the face of the
card. The assumption underlying this
type of card is that the bearer, merely
by virtue of his possession, is entitled
to use it. Examples of this approach
can be found in certain gasoline credit
cards and industrial security badges.

The advent of SA VE will introduce a whole new
dimension into the question O'f identification in gen
eral and the use of identification cards in particular.
Heretofore, the card was constituted evidence that
its possessor has passed a credit check and, as a
consequence, has been granted a pre-authorization
to obtain goods and services on a credit basis. The
credit check must necessarily precede the card trans
actions in time and must be structured to' anticipate
the reliability of the card user's purchasing and re
payment proclivities.

Such a situation obviously implies a rather loose
system of controls with an attendant exposure to
loss. Losses can be reduced by more stringent
screening-i.e., raising the approval threshold, but
such action reduces the volume of transactions and
increases the cost of administering the system.
Present day credit card plans endeavor to strike a
balance between risk and profitability in various
ways. Bankamericard, for example, sets an overall
dollar limit for each card holder based upon an
analysis of his disposal income.

Because of the pre-authorized nature of today's
cards, they continue to be "live" enough even
though the owner's credit status may have changed
since the card was issued. For this reason, most
credit cards such as Diners' Club, American Ex
press, and Bankamericard are reissued frequently.
In some of these plans, the expense is incurred each
quarter. Lists of bad or stolen cards must be distrib
uted to the participating merchants, who must en
deavor to screen these out in the course of each
credit transaction.

With SAVE, this entire picture is ~hanged. The
card, if indeed a card is to be used, is nO' longer so
much a "credit" card as a true identification card,
since: a transaction processed through the system
mayor may not involve credit. Depending upon the
nature of the transaction and the user's preference,
the card may simply authorize the system to effect a
transfer of funds and credit transactions when they

do occur, and are no. longer based upon an earlier
credit evaluation since credit status can be reviewed
in real time at the occurrence of each transaction.
System controls are such that there is no particular
reason why every member of a community should
not be issued a card, regardless of their credit status,
thus enabling them to' participate in those facets of
the system for which they may be eligible. In es
sence, the financial status nf the individual under
SA VE resides in the computer files, not in the card.
Therefore, cards need not be reissued and the polic
ing of lost and stolen cards becomes, upon notifica
tion of the system, immediate and absolute.

Among the various machine-sensible cards now in
existence are three major types, each of which can
prove suitable for SAVE:

• Hollerith punch coded card, such as the
18-column cards used with the IBM
1001.

• The Addressograph-Multigraph bar
coded card, presently used in off-line
gasoline card applications.

• A modified version of the telephone
company dialer card. These cards use
a two-out-of-eight code punched with
round holes and have square sprocket
holes on two of their edges. Cost of
cards such as these would vary depend
ing upon material quality, presence of
embossing, color treatment, etc.

Heretofore, there have been two standard sized
cards:

• The "Mister Card" size issued by
Diners', Carte Blanche, Unicard, etc.,
and all the oil companies.

• The "Mrs. Card", a longer, narrower
card issued by retailers.

There is presently a serious standards problem
engendered by the telephone company, whose
roundholed cards offer tremendous potential for use
in conjunction with Touch-TO'ne dialing equipment.
Unfortunately, the telephone company's cards are
slightly larger than a standard credit card. This
means that either the Bell System must redesign its
card or manufacturers of card producing and card
sensing equipment, like Dashew, will have to modify
their equipment.

Numerous other card identification schemes have
been proposed, ranging from Martin Greenberger's

A SYSTEM FOR AUTOMATIC VALUE EXCHANGE 587

"money card" 1 to cards with machine sensible ma
terial, such as magnetic particles, imbedded in them.
The most promising of these ideas need to be care
fully investigated.

Beyond the use of a card for identification-and
it is by no means certain that a card is the most
appropriate means-numerous other approaches
suggest themselves. Among these are:

• Signature recognition, in which the con
sumer's signature is captured and trans
mitted to the computer.

• Fingerprint scanning, in which the finger
is placed on a sensitive pad built into
the terminal device for on-line compari
son by the computer.

• Voice recognition, in which a voice "sig
nature" is transmitted to the computer.

There are numerous problems in the development
of these methods, such that their practical employ
ment is still several years away. Even farther away,
but still conceivable, is true pattern recognition of
the consumer's facial characteristics.

Terminals

According to some theorists,1° the time is ap
proaching when the consumer might pay his bills
and effect other forms of transfers of funds through
use of a touch-tone telephone instrument located in
his home. This prognosis seems doubtful for the for
seeable future, not so much because of the unavaila
bility of touch-tone switching (a touch-tone "pad"
can be attached to any rotary dial instrument) so
much as because of the lack of a hard-copy transac
tion trail, and because of the problem of indubitable
consumer identification at unsupervised locations.

Production of hard-copy output at the location
and time of the transaction appears to be essential
to SAVE from both an operational and a legal
standpoint. This hard-copy capability can be very
primitive, perhaps no more than a computer-actuat
ed "stamp" that would certify for both parties that a
computer-recorded transaction had taken place.
Hard copy so generated would be retained by the
merchant and consumer as a visible record to facili
tate adjustments, to aid in bookkeeping between
statement cycles, and to help the consumer reconcile
his statement when received. This is similar to the
documents produced manually under present-day
credit card plans with the revolutionary exception

that paper generated by SAVE is external to and is
not part of the mainstream of system processing.

One lawyer has gone so far as to suggest that a
printed output at the computer center might have to
be produced; at least in the initial stages of opera
tion, to satisfy the courts that the action taken by
the computer was, in fact, the same as that indicated
by the response produced at the terminal. This is
roughly akin to the journals produced by today's de
mand deposit accounting systems.

SAVE terminals must also have the capability of
sensing and transmitting the customer identification
number from an identification card, assuming that
no more practicable means of identification is devel
oped. Experience at Banker's Trust,6 with their
tellers keying in account numbers for current bal
ance inquiry purposes, indicated such a high degree
of accuracy that it is conceivable that the customer
identification card might not have to be machine
sensible. This is a question to be kept in mind for
subsequent study.

A method of terminal operator identification must
be provided, through hardware, software, or a com
bination of the two. Possibly the identification card
reader could be used to sense a special operator
card used by the operator in a sign-in/sign-out
procedure similar to that employed today in some
airline reservation systems.

Confidentiality and Accountability

There is an. understandable history of sensitivity
on the part of banks about disclosure of account
information, which is one of the reasons for the fail
ure of some organizations'previous attempts to es
tablish an automatic credit mechanism. Some of the
bank's scruples have, in recent years, been overcome
with the development of computer-sharing by the
smaller banks for demand deposit accounting. Here,
the accounts of a bank are maintained either by a
large correspondent or by a cooperatively owned
data processing center. The controls over the confi
dentiality of information by these centers should pro
vide a good point of departure for the design of
SA VE controls.

A potentially more serious aspect of the disclo
sure problem lies not in the area of one bank or
business obtaining information about its competi
tors' accounts, so much as in the area of access i
bility of information to unauthorized persons. Here,
SAVE controls must be unbendingly strict and rigid,

588 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

so much so that, if for no other reason, the idea of a
consumer using his touch-tone phone at home to
communicate with the computer loses much of its
appeal.

And, just as in other areas of potential abuse and
defalcation within the traditional exchange system,
the weakest links are those employees who interface
most closely with the system; in this case the termi
nal operators and others who would have access to
the SAVE files. A point of entry must be provided
to accommodate those customers who do not
present their identification cards. This means that a
procedure to assure accountability to this and simi
lar cases must be established.

There will need to be a set of terminal control
records maintained in the SAVE files for accounta
bility (and probably billing) purposes. The record
for each terminal will identify the accountable
operator and will contain operating standards and
threshold limits which, if violated, will result in
immediate notification of the operator's superior.
Examples of tests on data in the terminal control
records might include:

• Number of high dollar amount transac
tions in a given period.

• High, overall activity rate.
• Large number of cash-paid transac

tions.
• Unusual number of debit/credit rever

sals.
• Several successive transactions against

the same account at the same terminal.

Besides controlling at the terminal level, controls
must also be built into each consumer's record to
identify runaway withdrawals of revolving credit and
other abnormal account activity patterns. Attempts
to maintain float between accounts (even accounts
in different cities) should also be detectable.

CONCLUSION

This has been primarily a technical discussion. As
such the vital issue of economic feasibility has not
been touched upon. One highly knowledgeable pro
ponent of automation in banking 11 has gone so far
as to suggest that the economic rather than the tech
nical issues should be the paramount concern of
those who advocate systems such as SAVE. While
this is a correct view, it fails to acknowledge that
technical breakthroughs and new system conceptual-

izations can radically alter the point of economic
return.

Assuming, if we may, the economic attractiveness
of some more perfect configuration of SAVE ele
ments, a major problem will be entrepreneurial.
Rather than assuming that an automatic credit clear
ing network will be an inevitable, spontaneous de
velopment, it is going to take a whole new order of
enterprise and organization and concentration of re
sources and deliberate planning. This is probably
going to have to stem from some enterprise that is
constituted just for the purpose of bringing this
about.

Who might this be? There are numerous possibili
ties as we have seen. It could be an existing organi
zation such as a national or local credit card plan; it
could be a cooperative of banks formed for this pur
pose; it could be an independent entrepreneur mov
ing into the community; it could be a nationally
based entrepreneur who will franchise this in various
communities and groups around the country; it
could be a computer manufacturer; it could be an
existing local clearing association whose scope of
operations is expanded to encompass the realization
of this kind of network; it could even be the Federal
Reserve System.

Our guess is that the major initiative is likely to
stem from the computer manufacturers. The reason
ing is this: If our computer manufacturer market is
going to change over the next several years from
primarily the sale of hardware to individual users, to
the sale of services in the form of very large infor
mation utilities of various kinds, then it will be vital
to the competitive survival of the computer manu
facturers that they take an active lead in some very
important way in the establishment and operation of
such utilities in order to maintain their income base.
They are also in the best position to accomplish the
technological development, to impose standards,
etc., but even the largest of the computer manufac
turers do not have the financial resources to go into
the banking business on the cosmic scale that would
be necessary to underwrite the cost of short-term
credit of whole regions and whole communities, and
of the whole country. That is why, even if our spec
ulation is correct, the computer manufacturers are
going to be prime movers in this development, they
are going to need the close cooperation of financial
institutions; and among the most logical candidates
for participating with them in a cooperative endeav
or are the commercial banks.

A SYSTEM FOR AUTOMATIC VALUE EXCHANGE 589

REFERENCES

1. _ Martin Greenberger, "Banking and the Infor
mation Utility," Computers and Automation, Apr.
1965.

2. Robert V. Head, "The Checkless Society,"
Datamation, Mar. 1966.

3. Arthur S. Kranzley, "The Bank of the Fu
ture," Datamation, July 1965.

4. Elizabeth M. Fowler, "Personal Finance: Jug
gling Checkbooks," New York Times, Sept. 28,
1964.

5. Merle E. Gilliand, "Banks Can Be Computer
Utility Centers," American Banker, May 25, 1965.

6. Putnam W. Livingston, "The Stopping of

Moving of Checks," Computers and Automation,
Apr. 1965.

7. David C. Melnicoff, "Bank Management and
the Marketing Concept," American Bankers' Asso
ciation, Marketing Research Workshop, Mar. 18,
1965.

8. George W. Mitchell, "The Impact of Automa
tion on Bank Structures and Function," American
Banker, Dec. 30, 1965.

9. Anthony Oettinger, "The Coming Revolution
in Banking," Proceedings of ABA National Auto
mation Conference, New York, 1964.

10. L. Davidson, "A Pushbutton Telephone for
Alphanumeric Input," Datamation, Apr. 1966.

11. A. R. Zipf, "A Practical View of Universal
Credit," Datamation, Mar. 1966.

REAL-TIME RECOGNITION OF HANDP'RINTED TEXT *

Gabriel F. Groner

The RAND Corporation
Santa Monica, California

INTRODUCTION

During the past 10 years, there has been consid
erable interest in the automatic recognition of hand
written and machine-printed symbols. 1--'7 Most of
these studies have involved computer recognition of
an already completed symbol; a few have involved
special electronics for the analysis and recognition of
characters 8 or words 9 as they are being written.

Only recently, with the advent of on-line computer
systems, have computers been used for the real-time
recognition of handprinted symbols.10-13 Aside from
Bernstein's recent work,13 real-time schemes to date
have been concerned only with the recognition of
single, isolated symbols. None of the real-time
schemes (to the author's knowledge) have been used
in a problem-solving environment, or have utilized
contextual information for recognition.

This paper describes a symbol recognition scheme
which allows an on-line computer user to print text
naturally, and have it recognized accurately, as he
prints it. The scheme responds very quickly even
though it recognizes a fairly large set of symbols.
Moreover, it imposes few constraints on style, speed,
or position of writing. It makes use of contextual
information to distinguish symbols which cannot be

* This research is supported and monitored by the Ad
vanced Research Projects Agency under Contract No. SD-
79. Any views or conclusions contained in this paper should
not be interpreted as representing the official opinion or
policy of ARPA or The RAND Corporation.

591

distinguished by shape alone. This scheme has been
used daily at The RAND Corporation for writing
computer code, drawing flow charts, and editing. The
symbol recognition scheme is written in IBM
System/360 Assembly Language and runs on an
IBM System/360 Model 40.

The symbol set consists of the upper-case Latin
alphabet, the numbers, the symbols +, '-, =, /, (,
), [,], *, $, ., " " 1\, >, <, and a scrubbing action
which causes erasure of underlying symbols. The
scheme also recognizes a set of flow-charting sym
bols, but these will not be discussed. When any
other symbol is drawn, it is either identified as one
of the above, or as a "cannot interpret." This sym
bol set is sufficiently large to enable a user to com
municate data and directives to a computer by using
only a pen-like instrument.

The scheme is designed so that the user can con
centrate on his problem, rather than on extraneous
operational mechanics. It therefore accommodates a
variety of printing styles, allows for the printing of
several symbols in quick succession, and responds
quickly. Finally, any errors made by the scheme may
be corrected easily.

USER INTERACTION

A user communicates with the computer via a
RAND tablet 14 in conjunction with a cathode ray
tube (CRT). The tablet hardware consists of a

592 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

horizontal 10-in square writing surfa~e and a pen
like writing instrument. Figure I depicts a user
interacting with this hardware. As the user moves
the pen near the tablet surface, a dot on the CRT
follows the pen motion-this direct feedback helps
him position the pen for pointing or drawing. When
he presses the pen against the tablet writing surface,
a ,switch in the pen closes, thereby notifying the
central processing unit (CPU) of a "pen-down" ac
tion. As he moves the pen across the tablet, the pen's
track is displayed on the CRT-the pen "point" thus
seems to have "ink." When the pen is lifted, the pen
switch is opened, thereby notifying the CPU of a
"pen-up" action, and "inking" ceases. A new user
easily adjusts to watching the pen motion on the
CRT while actually moving the pen off-screen on
the tablet. Furthermore, he finds it convenient to
have no part of the CRT "working surface" covered
by his hand or pen.

The user must print plainly; i.e., not use curls or
scrolls, and not drag the pen between strokes. The
letter 0 must be written with a slash to distinguish
it from the number 0, the letter I with serifs to
distinguish it from I, and the letter Z with a crossbar
to distinguish it from 2 (these conventions are com
monly followed when writing on coding forms). The
user may otherwise print in his normal style. When
the user's "inked" symbol is recognized, it is replaced
by a hardware-generated version. He may change
this symbol at any time, merely by writing over it.

Although the user may write anywhere on the
tablet surface, he must follow some conventions of
size and position just as he would when writing on a
piece of paper. The display format subtly conditions
him by displaying a recognized symbol in a standard
size (full-size symbols are about %6-in high) at the
standard location (one of a possible 3570) nearest to
the center of his "inked" version of the symbol. Since
the user writes next to the standard-size symbols uni
formly spaced along lines, he soon learns to adjust
his printing accordingly. This symbol size and sepa
ration are about the same as those commonly re
quired for printing on coding forms.

ANALYSIS OF THE DATA

The purpose of data analysis is to extract those
features most valuable for discrimination among the
allowable characters; i.e., those features which have
consistent values over variations of a particular sym
bol, yet which have different values for different
symbols. Since a single scheme recognizes the print-

ing of many users, any of whom may print sloppily,
consistency is assured only if a symbol can be de
scribed by a few gross features.

The on-line nature of this recognition scheme
enables processing of the data point-by-point as the
pen is moved across the writing surface. In order to
minimize time and storage requirements, therefore,
the scheme extracts features as the data arrive.

The Data

Pressing the pen against the writing surface acti
vates the symbol recognition scheme by indicating
the start of a stroke. As the pen is moved across the
writing surface, the recognition scheme is notified of
its position every 4 msec. Finally, when the pen is
lifted off the surface, the recognition scheme is noti
fied that the stroke is completed. Each pen position
is accurate to about 0.005 in. The hardware thus
provides a very detailed-about 100 data-points
time-sequential description of each stroke.

Smoothing and Thinning

The scheme smooths the data by averaging a
newly arrived data-point with the previously
smoothed data-point, thus reducing the noise due to

Figure 1. A user interacting with a RAND tablet and CRT.

REAL-TIME RECOGNITION OF HANDPRINTED TEXT 593

the discreteness of the pen location as measured by
the tablet. Smoothing is based on the equations

3 1
X Si = -XSi - 1 + -XR · 4 4 ~

3.nd
3 1

Y Si = -Y Si-1 + -Y Ri
4 4

where X Ri and Y Ri are coordinates of the ith raw
data-point, and X Si and Y Si are coordinates of the
ith smoothed data-point.

Thinning is the process of removing some of the
data-points from the pen track. This is accomplished
by comparing the position of a new smoothed data
point with the position of the last point in a thinned
track. If these points are sufficiently far apart, the
analysis scheme accepts the smoothed point as part
of the thinned track; otherwise, it is discarded.
Thinning eliminates small perturbations in the track,
and reduces the data processing requirements by
drastically reducing (by a factor of seven or so) the
number of data-points. Thinning is described by

if

and/or
/ Y Si Y Tj - 1 / ~ h,.

where X Tj and Y Tj are the coordinates of the jth
thinned data-point, and h,. is a parameter of the
analysis routine. The recognition scheme, which ex
pects symbols to be drawn about %6-in high, uses
h,. = 0.02 in. This value of h,. is large enough to
eliminate insignificant data-points, yet small enough
to maintain the essential characteristics of the track.

Figure 2 is a photograph of a display generated by
a program which did the following: .

1. Replotted without any processing each sam-
pled point of a figure drawn at the tablet.

2. Magnified the original figure eight times.
3. Smoothed the track.
4. Thinned the track with h,. = 0.01 in.

The Curvature Feature

Curvature is the most obvious track characteristic
which is independent·· of position and size, and yet
which describes the track's shape. Freeman 15 has
suggested that a useful approximation to curvature
is the sequence of quantized directional segments
generated by the points in a thinned track. Kuhl 5

y

IO·r-------------------------~
9

8

7

6

51 1 5
.... ;'

"'j u .:
4

3

2

.; .. :

(b)

I
(a)

C·'/ :
(c) (d)

o _x
2 3 4 5 6 7 8 9 10

Inches

Figure 2. Display of a stroke-(a) as drawn, (b) magni
fied, (c) magnified and smoothed, (d) magnified,
smoothed, and thinned.

and Bernstein 10 have .used this approximation in
their character recognition schemes. Bernstein, in
fact, found it unnecessary to use the duration of
each quantized direction but, rather, simply listed
changes in quantized direction. Whereas Kuhl and
Bernstein both used eight possible directions, the
recognition scheme described here uses only four.
Four directions, used in conjunction with other fea
tures, provide sufficient description for recognition,
yet result in fewer symbol variations than do eight
directions.

When a new point (the jth) is accepted in the
thinned track, a quantized direction is computed
using these inequalities: (1) if / X Tj - X Tj - 1 I ~
/ Y Tj - Y Tj - 1 / '

(a) direction is right if X Tj - X Tj - 1 ~ 0
(b) direction is left if X Tj .- X Tj-1 < 0

or (2) if /XTj ·- X Tj - 1 I < I Y Tj - Y Tj - 1 I '
(a) direction is up if Y Tj - Y Tj-1 ~ 0
(b) direction is down if Y Tj - Y Tj - 1 < 0

If the same direction occurs twice in succession and
is not the same as the last direction listed in the
sequence, then it is added to the list; otherwise it is
discarded. This requirement causes further thinning.

Small hysteresis zones (about 16° wide) around
the quantized direction zone borders prevent the
quantized directions in the approximate track de
scription from switching back and forth-say from

594 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

right, to up to right-when part of a track is drawn
along one of these borders. If, for example, the pen
is moving to the right, it must next proceed at an
angle steeper than 53° in order for the direction to
change from right to up.

Applying these rules to the thinned track of Fig. 2
results in the direction sequence left-down-right
down-left-up.

Inking and Corner Detection

The CRT displays the pen track as "ink" con
structed of a sequence of directional segments orig
inating at the pen-down location. Sixteen possible
directions are required to provide the user with
sufficient "ink" detail. A segment is added to the
"ink" each time a new thinned data-point arrives.

This same sequence of directions is used to detect
sharp corners. A corner is detected whenever the pen
moves in the same (+1) 16-direction for at least two
segments, changes direction by at least 90°, and then
proceeds along the new direction C+l) for at least
two segments. The change in direction must take
place either immediately or through a one-segment
turn. Applying this test to the track in Fig. 2 detects
corners in the upper-left and lowermost parts of the
stroke.

Size and Position Features

As a stroke is drawn, its x (horizontal) and y

(vertical) extremes are continuously updated. When
the pen is lifted, thereby indicating the completion of
the stroke, the analysis scheme uses these extremes
to calculate the symbol's height and width in frac
tions-of-an-inch, its aspect ratio (ratio of height to
width), and its center relative to the tablet origin. It
divides the rectangular area defined by the symbol
extremes into a 4 X 4 grid. The starting (pen-down)
and ending (pen-up) points, as well as the corner
locations, are then each encoded as lying in one of
these 16 areas, thereby locating them relative to the
symbol. Figure 3 shows the 4 X 4 grid defined by the
track in Fig. 2. This track has the following descrip
tion:

1. Six 4-direction segments (left-down
right-down-Ieft-up) encoded as 2-3-0-
3-2-1.

2. Corners at positions 7 and 15.
3. Starting point at position O.
4. Ending point at position O.

•
• r-: • • .

• ~ •
3 2 I 0

• • • • . 7 6 5 4
• • • • • • • • • l-

II 10 9 8
• • . .- •

• • . ~. 15 14 13 12

Figure 3. The 4 x 4 grid for the track of Fig. 2.

5. Height = 0.30 in.
6. Width = 0.22 in.
7. Aspect ratio = 1.36.
8. Center at x = 3.15 in., y = 1.75 in.

Computing Requirements

The data analysis described above takes up about
40 % of the available computing time in the limiting
case, where each data-point becomes a member of
the thinned track. Smoothing and thinning requires
about 20% of this analysis time, inking 30%, and
corner detection 16 %. The remainder of analysis
time is for computing quantized directions, updating
x and y extremes, and bookkeeping. The smoothing,
thinning, and inking functions could be handled by
hardware or by an I/O processor. Corner detecting
could be deferred until stroke completion without
requiring further storage (since it is based on the ink
description, which is stored in any case), and without
noticeably increasing the time between stroke com
pletion and recognition. With these changes, a single
user would require only about 15 % of an IBM
System/360 Model 40.

DECISION-MAKING

Several characteristics of the decision-making
scheme should be pointed out before it is described
in detail. When a stroke is completed, its description
is added to those of the other strokes belonging to
the same symbol. The decision-making scheme
identifies the partial symbol corresponding to this set
of strokes but does not display its identification at
this time. Such a partial symbol is considered com
plete when the user pauses, draws a somewhat distant
stroke, or draws a stroke which cannot be combined
with the partial symbol to form one of the 53 allow
able symbols. This symbol is then displayed. The
decision-making scheme therebr separates symbols

REAL-TIME RECOGNITION OF HANDPRINTED TEXT 595

from one another and recognizes them as they are
written.

The identification of a symbol is based on a data
dependent sequence of tests. At each step in the
decision-making process there are several potential
identifications. Some of these are eliminated by test
ing one of the features of the track. The particular
test applied at any step depends on the set of possible
identifications at that step, and on those character
istics of the track which have already been examined.
The decision-making scheme thus has a tree struc
ture. Its original design was based on an examination
of the handwriting of four users. The author changes
its structure, to accommodate additional symbol
variations, as he acquires more experience.

Identification of Single Strokes

The first test groups the single-stroke partial sym
bols according to shape. This is accomplished by
locating a sequence of direction segments in a table.

Only a few segments should be looked up in the
table because each additional segment increases the
table length by a factor of four (recall that there are
four quantized directions). However, if too few are
looked up, the test will not sufficiently reduce the
number of possible stroke identifications in each
shape group. A good compromise is to look up the
first four direction segments of a track. If a track
has fewer than four direction segments, it is encoded
such that the last segment is repeated until there are
a total of four. The table is therefore 256 entries
long-160 (4 + 4 . 3 + 4 . 32 + 4 . 33) of which
correspond to allowable encodings. For this test, the
track of Fig. 2 is encoded as 2-3-0-3 (left-down
right-down). The possible stroke identifications cor
responding to this table entry are S,5,8,9, and
"cannot interpret." Further tests, based on this par-

Figure 4. Some tracks recognized as the symbol 3.

0.30

0.25
~f

0.20

.~
:0 0.15
0

..Q

e
Q.

0.10

0.05

'?i
OL-~~a~--~--~--~~~~~~~~j~--

2 3 4 5 6 7 8

Figure 5. The probability of a number of symbols having
the same first four direction segments.

ticular set of possibilities, result in a single identifi
cation.

The sequence of the first four direction segments
of a track provides good first-level discrimination.
In the present table, 45 of the 160 possible sequence
encodings result in immediate identifications, with
no further testing necessary. Another 50 sequences
result in an immediate "cannot interpret."

To allow for variations in handwriting, each allow
able symbol has many table entries. A track for the
symbol 3- which has one of the most complex and
varied shapes-may be drawn having anyone of 26
different sequences of the first four direction seg
ments. Figure 4 shows some of the tracks identified
as the symbol 3.

Assuming that each of the single stroke partial
symbols is equally likely, and that each four-direction
segment description of any particular symbol is
equally likely, the probability of having a number of
symbols with the same table exit can be calculated.
Figure 5 shows this probability of requiring further
testing to discriminate among a number of symbols
upon exiting from the currently used table. Approxi
mately 30% of the direction sequences require no
further testing. The probability of requiring further
testing to discriminate among as many as four, five,
or six symbols is fairly high, because several symbols
might have the same first four directions in common,
but other features which are different.

After this first test, the stroke is either recognized
or is known to the one of a particular set of two-to
seven symbols. The second test is one which best (in
the author's judgment) discriminates among these

596 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

particular symbols. Depending on the symbols, this
test distinguishes differences in:

• The directions following the first four
(e.g., to distinguish some 2's from some
3's)

• The number of corners (e.g., S vs 5);
• The positions of the starting or ending

points relative to the symbol extremes
(e.g., 0 vs 6);

• The aspect ratio (e.g., C vs ();
• The size (e.g., , vs));
• The position relative to a line of text

(e.g., , vs ').

Testing continues until the number of possible stroke
identifications is reduced to one. Figure 6 shows the
sequence of testing required for the recognition of
the track in Fig. 2. It is identified as the symbol 8.

The number of tests required for recognition is an
interesting parameter because it measures the time
and computer memory required for decision-making.
The probability of requiring some number of tests
for recognition can be calculated if it is assumed that
each allowable single-stroke partial symbol is equally
likely and that each decision tree-exit corresponding
to a particular symbol is equally likely. Figure 7
shows the probability of requiring further testing
after performing a number of tests in the existing
decision tree. In more than half of all stroke recogni
tion sequences, only two tests are required to arrive
at a stroke identification. Figure 7 shows that ambi-

Table Exit Corresponding to
Direction Sequence = 2 - 3 - 0 - 3

Upper half
of symbol

Figure 6. Recognition of the track of Fig. 2.

10 0

\

0.9

0.8 ".
"J.~;

0.7
~:~

0.6 ;t~

.~
t!~i

,>

:0 0.5 c
..a
2

0-

0.4

6

Figure 7. The probability of requiring further testing after
n tests.

guity among several possible stroke identifications is
always resolved after six tests.

Recognition 0/ Multiple-Stroke Symbols

The recognition of a multiple-stroke symbol is
based on the identifications and relative positions of
its constituent strokes, but not on the order in which
they are drawn. This is accomplished by cross-linking
the tree structure. Each symbol has several descrip
tions, and therefore may be drawn in several ways.
For example, a set of three horizontal strokes and
one vertical stroke is recognized as the symbol E
regardless of the writing order. The symbol E may
also be written as an "L-like" stroke and two hori
zontal strokes, a "r-like" stroke and two horizontal
strokes, a "r-like" stroke and one horizontal stroke,
or a single" E -like" stroke.

In many situations, each stroke requires only a
general, rather than a precise, identification. For ex
ample, if a stroke known to be part of a multiple
stroke symbol is drawn vertically downward (-+-45°),
it need only be identified as a vertical stroke, rather
than as aI,), (, or /. This reduces the compounding
of errors that would otherwise result from incorrect
identifications of single strokes, and also simplifies
. the decision-making.

Just as the starting and ending points of a single
stroke symbol are encoded according to their posi
tions relative to the x (horizontal) and y (vertical)

REAL-TIME RECOGNITION OF HANDPRINTED TEXT 597

extremes of that stroke, the starting and ending
points of each stroke in a multiple-stroke symbol are
encoded according to their positions relative to the
x and y extremes of the whole symbol. These en
coded positions differentiate those symbols which
are comprised of the same combination of strokes.
At most, four symbols have the same set of strokes.

A symbol comprised of two strokes identified as
verticals is a K, V, X, or Y. This symbol is recog
nized as a K if one of the strokes has both its starting
point and ending point in the leftmost quarter of the
symbol. It is recognized as a V if both of its ending
points are in the middle part of the lower quarter of
the symbol. It is a Y if it has one ending point which
is neither in the leftmost quarter, nor in the lower
quarter. Otherwise, this symbol is an X. Other ambi
guities among multiple-stroke symbols are similarly
resolved.

Segmentation into Symbols

As the user writes a line of text, the recognition
scheme decides when a partial symbol is completed,
recognizes and displays it, and begins the analysis of
the next symbol as it is being written. The scheme
separates the set of strokes making up a completed
partial symbol from the first stroke in the next sym
bol by considering timing, and the geometric extents
and identifications of the partial symbol and the
following stroke.

If a prespecified time elapses following the end of
the most recent stroke, the corresponding partial
symbol is considered completed regardless of what
follows. This between-symbol time delay must be
greater than the maximum expected time delay be
tween two strokes belonging to the same symbol-
0.3 sec has proven sufficient for experienced users.
A sufficient pause between symbols eliminates the
need to test for geometrical separation. This pro
cedure reduces normal writing speeds by a factor of
about one-half, but results in the most accurate
segmentation.

A partial symbol is considered completed, regard
less of timing or position, if it cannot be combined
with the following stroke to form an allowable sym
bol. The symbols 8, Q, A, and E are examples of
partial symbols which cannot be combined with any
other stroke to form an allowable symbol. If a partial
symbol can be combined with some strokes, but not
with others, then the following stroke is potentially
identified on the basis of its first four quantized direc
tion segments. A test is then made to determine if

the partial symbol can be combined with a stroke
having this particular potential identification to form
an allowable symbol. A partial symbol identified as
a T, for example, may be combined with a vertical
stroke to become an A, H, K, or *, or may be com
bined with a horizontal stroke to become an F or I,
but cannot be combined with a potential C, U, or 2.
In some situations, the following stroke must be
identified more precisely. A circular stroke followed
by a normal size "I-like" stroke, for example, may
be identified as the letter 0; but a circular stroke
followed by a short "I-like" stroke will be identified
as the number 0 followed by a comma.

Strokes which are written in quick succession, and
which can be combined to form an allowable symbol
are tested for geometric separation. Two such
schemes for separating symbols geometrically have
been investigated at RAND. One of these assumes
that the writing surface is an 85 X 42 array of
symbol spaces, and that each symbol is drawn in a
different space. The other scheme assumes that the
strokes in a symbol overlap (or, in some cases, are
close to one another), but do not overlap with strokes
belonging to another symbol.

Fixed Symbol Spaces. This scheme tests to see if the
centers of a partial symbol and that of the next stroke
lie in the same symbol space. If they do not, it sep
arates them unless the partial symbol is a single
vertical stroke lying just to the left of the following
stroke. If they do lie in the same space, it considers
them as part of the same symbol unless the stroke is
a vertical in the rightmost quarter of the symbol
space, and the partial symbol cannot be combined
with a right-hand vertical to form an allowable' sym
bol. These adjustments on the basic test allow for
some misplacement of vertical strokes.

The user must be made aware of the symbol space
positions so that he may space his printing accord
ingly. This is accomplished by displaying a series of
dimly lit vertical bars, each at a border of a symbol
space.

The primary disadvantage of this scheme is that
small displacements of strokes relative to the symbol
spaces cause segmentation errors. Such displace
ments may occur when the user writes quickly, or
when the hardware displaces the "ink" slightly,
thereby misinforming the user as to where he is
writing. A further disadvantage is that the vertical
bars are distracting.

Relative Symbol Positions. This scheme tests for the
overlapping or adjacency of the partial symbol and

598 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

the following stroke. If the horizontal-extent of the
stroke lies within the horizontal-extent of the partial
symbol, it considers them parts of the same symbol.
Partial-overlap causes the partial symbol and the
following stroke to belong to the same symbol, unless
their centers are farther apart than a maximum al
lowable distance. No-overlap separates the partial
symbol and the following stroke, unless one (or both)
is a single vertical stroke and their centers are not
separated by more than a maximum allowable dis
tance. The allowable separation distances are based
on the normally expected symbol size.

The maximum-distance-between-centers test en
ables the separation of two symbols, such as T / or
R2, which happen to overlap because they are writ
ten close together. When symbols having a vertical
stroke are written, the vertical frequently does not
overlap the remainder of the symbol. The position
test in the no-overlap case takes this into considera
tion. It is particularly useful when I I will be made
an H or N by the next stroke, and also when two
parts of the same symbol-e.g., the 1 and 3 of B~
are just slightly disconnected.

The disadvantages of this scheme are that it may
separate two parts of the same symbol which are not
written close enough, and that it may not separate
two different symbols which are written such that
they overlap slightly. Its advantage is that it works
about as well as the fixed-symbol-space scheme, yet
does not require the display of symbol space separa
tors. It uses the displayed symbols to cue the user
about how large to write and about how far apart
to place symbols. Since the symbols are displayed
with fixed spacing, users tend to inadvertently imbed
blank spaces unless they are provided with some
strong indication of the location of the symbol
spaces. This scheme therefore works best when the
vertical bars are displayed.

EVALUATION

One measure of the value of the recognition
scheme is the accuracy with which it recognizes in
dividual symbols. Since the goal of the scheme is to
facilitate man-computer communication, a more di
rect measure of its value is the time required to per
form some writing task on-line.

Three groups of users participated in the follow
ing two experiments. The first group consisted of six
users who have had considerable experience with the
symbol recognition scheme. The design of the de
cision-making scheme was, in fact, based on the

handwriting of four of these users. The second group
consisted of seven engineers and programmers who
have had experience using the RAND tablet, but
have not previously written with the symbol recog
nition scheme. The third group was made up of nine
engineers, programmers, and secretaries who have
had no previous experience with either the tablet or
the recognition scheme.

Accuracy of Recognition

Each user in the second and third groups partici
pated in a half-hour training session prior to the
testing phase of this experiment. The session began
with an explanation of how to use the tablet, what
symbols are recognized, the use of the scrub, etc.
The user was then allowed to write whatever he
wanted for 20 minutes-most users printed words,
phrases, or the alphabet, usually repeating a symbol
until it was recognized correctly. During the next 10
minutes, the user attempted to print each of the sym
bols while the author pointed out how he might
achieve more success. The users in the first group
did not receive any special training, since they were
already familiar with the tablet and recognition
scheme.

Since this experiment was concerned with isolated
symbols, the decision-making scheme was adjusted
(during the testing phase) to separate symbols on the
basis of time only. Each user was instructed to care
fully print the list of symbols five times, waiting for
each symbol to be recognized before printing an
other. (The apostrophe was not included because the
users were given no position cues, and therefore
could not be expected to write an apostrophe differ
ent from a comma.) Each user thus printed each of
52 symbols five times; 53 responses were possible
(including "cannot interpret"). All errors (including
user errors such as writing 0 rather than ~ for the
letter 0) were recorded.

The average recognition rate for the group with
experience in using the symbol recognition scheme
was 93 % correct. The lowest "score" in this group
was 90 %; the highest, 96 %. The average score
am~mg those experienced previously with only the
RAND tablet was 88%, with a low score of 82%
and a high score of 92 % . The average score among
those with no previous experience whatsoever was
87%, with a low of 81 % and a high of 93%. The
recognition rates were not only high, but quite uni
form. In fact, the "scores" for users in the second
and third groups are indistinguishable. The time it

REAL-TIME RECOGNITION OF HANDPRINTED TEXT 599

takes to learn to use the hardware-with its separate
tablet writing surface and CRT working surface
therefore appears to be less than one-half hour. The
users in the first group probably scored somewhat
higher than the others because they were more fa
miliar with the scheme, and because it was designed
to accommodate their writing styles.

Many of the errors were due to the misrecogni
tion of (,), [, and]-(, for example, was frequently
confused with 1, C, or L. The asterisk was also fre
quently missed because its shape is not well defined,
and it therefore has many variations. Some users not
familiar with coding form conventions found it dif
ficult to learn to write the letter a with a slash to
distinguish it from the number 0, yet learned to print
Z with a crossbar, and I with upper and lower bars.
The remainder of the errors were due to confusions
between 7 and >, G and C, 5 and S, + and T, and
a wide variety of other pairs of symbols.

Ease of Operation

Since this recognition scheme is designed for use
in a problem-solving environment, an experiment
was performed in which programmers used the
scheme while solving simple coding problems. A user
was given flow charts (Fig. 8), and was asked to
write the corresponding computer code for one prob
lem directly on-line (using only the recognition
scheme) and that for the other off-line (using pencil
and paper). The times required for solution-a
measure of the usefulness of the recognition scheme
versus pencil and paper-were recorded.

Since time was important, this experiment used the
decision-making scheme which separates symbols ac
cording to identity and relative position as well as
time. Users could therefore print quickly without
pausing between symbols. Vertical bars were dis
played to indicate symbol spacing. Users were al
lowed to make use of all editing facilities-i.e.,
change a symbol by writing over it; erase a symbol,
space, or line with a scrubbing action; use the sym
bol 1\ to insert symbols between others already
printed on a line; and use the symbol > to obtain a
blank line between two printed lines of text.

Eight programmers participated in this experi
ment. Four from the first group (described above)
coded the problems in IBM System/360 Assembly
Language. Each problem required the printing of
approximately 200 symbols in this language. Two
programmers each from the second and third groups
coded the problems in FORTRAN-this required

Table 1. Times to Code the Problems of Figure 8

Coding Form On-Line
Group Problem Time Time

A 8% min 12 min

B 9 911z "
A 7 1211z "

2 & 3
B 4 9

the printing of about 150 symbols for each problem.
Half of the users in each group coded Problem A di
rectly onto a coding form and Problem B directly
on-line, using the tablet hardware and recognition
scheme; the others coded Problem B onto a coding
form and Problem A on-line.

Table 1 summarizes the results of this experiment.
Each entry is an average for two users. The inex
perienced (second and third group) users spent a
large part of their on-line problem-solving time try
ing to communicate with the recognition scheme. The
experienced users, who had harder problems (assem
bly language versus FORTRAN) to solve, were not,
however, slowed down very much by the recognition
scheme.

The subjective findings of this experiment are, per
haps, more important than the numerical results. The
accuracy of recognition here was much lower than
in the previous experiment, partly because the
scheme had to separate symbols geometrically, but
also because the inexperienced users had forgotten
some of what they had learned about the scheme, and
because all of the users were less careful. All users
found it difficult to print symbols as small and as
closely packed as the hardware generated them-85
across a 10-in width. They tended to print oversize
symbols, thus causing the scheme to introduce blank
spaces or to recognize a single multiple-stroke sym
bol as two symbols.

The editing facilities helped to compensate for
the difficulties with symbol recognition. The users
found it convenient to change a symbol by writing
directly over it, or to erase an entire line with a single
scrubbing action-editing procedures which are
much more difficult to do with pencil and paper
than with the tablet hardware. The symbol 1\ was
frequently used to insert one or more symbols be
tween two others. Although the symbol > was used
on only two occasions to insert a new line between
two others, this editing feature is potentially valuable
for composing solutions to more difficult problems.

600 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

A~B

Make A, B, C
positive

Interchange
A and B

Interchange
A and C

Interchange
Band C

OLDYTD L4800

TAX = 0

NEWYTD
= OlDYTD

+ EARN

TAX =
3 5/8%

of EARN

NEWSS =
OLDSS + TAX

NEWYTD L 4800

TAX =
3 5/8% of

(4800 - OLDYTD)

Figure 8. Flow charts of the problems coded in the experiment-(a) Problem A: a procedure for computing
social security tax; (b) Problem B: a method of sorting three numbers into a descending sequence
of their magnitudes.

Thus, this on-line recognition scheme with editing
facilities appears to be a useful problem-solving aid,
particularly as the users become more experienced,
and the problems become more difficult. In a prob
lem-solving situation, the editing facilities give the
user much greater flexibility than pencil and paper.
The accuracy of the recognition scheme is high
enough that it is not distracting and the hardware
is natural to use.

DISCUSSION

This recognition scheme meets its primary objec
tive of enabling any user to communicate naturally

with a computer. A user is not distracted by any op
erational mechanics but, rather, may concentrate on
his problem. All communications are made with a
single device-a pen-like instrument. A user may
write anywhere on a horizontal writing surface. The
recognition scheme has been extended to recognize
such flow-charting symbols as rectangles, circles, tri
angles, and diamonds. Thus, the user may draw free
form flowcharts as well as text, using only a pen.

The recognition program responds quickly and is
efficient in storage. When the time-delay normally
used to separate symbols is set to zero, the lifting of
the pen and the display of a recognized symbol are
apparently simultaneous. The recognition program-

REAL-TIME RECOGNITION OF HANDPRINTED TEXT 601

including the data analysis and decision-making rou
tines and data storage but not display or editing
routines-requires about 2400 32-bit words of
memory.

The major shortcoming of the present scheme is
its difficulty in recognizing quickly written text: it has
difficulty in separating overlapping symbols and in
combining disconnected parts of a single symbol.
Furthermore, since quickly written symbols tend to
be distorted, they are misrecognized more often than
carefully drawn symbols. These problems are due,
in part, to the small size and close packing of the
symbols. They can be relieved by allowing larger
between-symbol spaces.

Another difficulty with the recognition scheme is
that only a person familiar with the computer pro
gram can add a new symbol or new symbol descrip
tion. Such changes are complicated because they
frequently require several coding changes in the
cross-linked tree structure of the decision-making
scheme. A useful variation of this scheme would
therefore be based on a data-dependent sequence of
tests, but would permit automatic changes.

Finally, the advantages and disadvantages of pen
location-by-pen-Iocation feature extraction should be
clarified. This procedure is useful for real-time recog
nition because it minimizes the time delay between
symbol completion and identification, yet produces
a valuable set of features. It may, however, result in
symbol variations not introduced by a scheme which
extracts features after a symbol is completed. Such
variations arise because some symbols may be drawn
either clockwise or counterclockwise, portions of
some symbols mayor may not be retraced, some
symbols may be constructed of various numbers and
sequences of strokes, etc. Perhaps some other set of
dynamically extracted features would prove as useful
for discrimination as the present set without intro
ducing as many variations.

ACKNOWLEDGMENTS

I would like to thank T. O. Ellis, J. F. Heafner,
and W. L. Sibley, all of The RAND Corporation, for
many profitable discussions, and for designing and
implementing the graphical hardware-software with
out which the recognition scheme could not exist.

REFERENCES

1. M. E. Stevens, Automatic Character Recogni
tion-A State-of-the-Art Report, National Bureau of
Standards NBS Tech. Note 112 (May 1961).

2. E. E. David, Jr., and O. B. Selfridge, "Eyes
and Ears for Computers," Proc. IRE, vol. 50, no. 5,
pp. 1093-1101 (May 1962).

3. E. E. Graziano, Automatic Pattern Recogni
tion During the Period 1961-1962: An Annotated
Bibliography, Lockheed Missiles and Space Com
pany, Sunnyvale, Calif. Report 6-90-63-16/SB-63-
13 (May 1963).

4. E. C. Greanias, et aI, "The Recognition of
Handwritten Numerals by Contour Analysis," IBM
l. of Res. and Dev., vol. 7, no. 1, pp. 14-21 (Jan.
1963).

5. F. Kuhl, "Classification and Recognition of
Hand-Printed Characters," IEEE International Con
vention Record, 1963, part 4, pp. 75-93.

6. T. Marill, et aI, "Cyclops-I: A Second-Gen
eration Recognition System," AFIPS Conference
Proceedings (FlCC), vol. 24, Spartan Books, Balti
more, 1963, pp. 27-33.

7. H. A. Glucksman, "A Parapropagation Pattern
Classifier," IEEE Trans. on Elec. Computers, vol.
EC-14, no. 3, pp. 434-43 (June 1965).

8. T. L. Dimond, "Devices for Reading Hand
written Characters," Proc. Eastern loint Computer
Conference, Dec. 1957, pp. 232-37.

9. L. D. Harmon, "Handwriting Reader Recog
nizes Whole Words," Electronics, vol. 35, no. 34,
pp. 29-31 (Aug. 24, 1962).

10. M. I. Bernstein, Computer Recognition of On
Line, Hand-Written Characters, The RAND Cor
poration, Santa Monica, Calif., RM-3753-ARPA
(Oct. 1964).

11. R. M. Brown, "On-Line Computer Recogni
tion of Handprinted Characters," IEEE Trans. on
Elec. Computers, vol. EC-13, no. 6, pp. 750-52
(Dec. 1964).

12. W. Teitelman, "Real-Time Recognition of
Hand-Drawn Characters," AFIPS Conference Pro
ceedings (FlCC) , vol. 26, part 1, Spartan Books,
Baltimore, 1964, pp. 559-75.

13. M. I. Bernstein, An On-Line System for
Utilizing Hand-Printed Input, System Development
Corporation, Santa Monica, Calif., TM-3052, July
11, 1966.

14. M. R. Davis and T. O. Ellis, "The RAND
Tablet: A Man-Machine Graphical Communication
Device," AFIPS Conference Proceedings (FlCC) ,
vol. 26, part 1, Spartan Books, Baltimore, 1964, pp.
325-31; also, The RAND Corporation, Santa Mon
ica, California, RM-4122-ARPA (Aug. 1964).

15. H. Freeman, "On the Encoding of Arbitrary
Geometric Configurations," IRE Trans. on Elec.
Computers, vol. EC-10, no. 2, pp. 260-68 (June
1961) .

BASIC HYTRAN SIMULATION LANGUAGE-BHSL

Jon C. Strauss *

Electronic Associates Inc.
Princeton, N ew Jersey

INTRODUCTION

An appropriate subtitle for this paper might read:
"A Fortran Compatible Dialect of the SCI Continu
ous System Simulation Language." Here the words
"continuous system" t distinguish the application
area of interest from that encompassed by the event
based simulation languages of the genre of GPSS,
SIMSCRIPT, etc. The reference to SCI indicates
that BHSL, while certainly a member of the growing
family of simulation languages,1,2 was designed to
meet standardization guidelines established by the
Simulation Software Committee of Simulation Coun
cils Incorporated.3

The Basic Hytran Simulation Language and the
associated translator and runtime system are a pro
gramming system for the EAI 8400 digital com
puter. It serves as a basis for the complete Hytran
Simulation System on the EAI 8900 Hybrid Com
puting System.

The primary aim of BHSL is to provide a problem
oriented vehicle for the representation (description)
of continuous dynamic systems that can be modelled
by sets of ordinary differential and/ or difference

>I< Presently with Carnegie Institute of Technology, Pitts
burgh, Pa.

t Systems in which the response phenomena occur con
tinuously in one or more independent variables as opposed
to discrete systems in which the response phenomenon
occurs as a sequence of events at discrete, possibly random,
points in an independent variable (nominally time).

603

equations in one or more independent variables. The
language includes a set of control statements which
permit the simulation analyst (programmer) to
exercise control over the solution of the equations
representing his problem. This control can be pro
grammed into a simulation program or introduced
at execution time by use of an associated interactive
command and control language system.4

Design Objectives

The Continuous System Simulation Language
(CSSL) was designed to incorporate the better
features of the previous dynamic system simulation
languages. These features include:

1. Automatic sequencing of operations to
optimum calculational order,

2. Problem oriented operators and diag
nostics,

3. Mnemonic variable and operator nam
ing, and

4. Expression and statement constructions.

The design process was guided by several broad
objectives on CSSL programs. These guidelines indi
cated that CSSL and CSSL programs should be:

1. Easily adapted to various levels of pro
grammer ana problem sophistication,

2. Modular (include user written problem

604 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

oriented operators in the CSSL vocab
ulary),

3. Conversational (provide for exception
only, conversational interaction with a
running CSSL program), and

4. Efficient (contain a variety of user
selected and controlled numerical
methods).

These considerations are discussed in detail in Refer
ence 3.

BHSL includes all the design requirements of
CSSL, but the dependence on a general procedural
language has been particularized to Fortran IV.
Fortran statements are used directly for sophisticated
procedural operations (i.e., formatted I/O, condi
tional logic, and algebraic processing). In addition,
the BHSL processor translates the source program
to a valid Fortran IV program for subsequent com
pilation by the EAI Fortran IV compiler. This
technique not only simplifies the implementation
task, but it provides for more efficient object code
than would be likely in an initial compiler
implementation.

Language Features

BHSL can be used as, and contains the desirable
features of, the block diagram description languages
(e.g. SCADS, MIDAS, etc.). At the next level of
problem description sophistication, an equation
based notation similar to that of Fortran can be
used as in MIMIC and DSL/90. For more sophisti
cated problems (and programmers), a BHSL pro
gram can be expanded to include all the capabilities
of Fortran, still retaining the inherent language fea
tures of integration, special simulation oriented
operators, optimum sequencing of program opera
tions, and problem oriented diagnostic checking.
This feature is termed programmable structure.

As a trivial -example of the flexibility of the rep
resentation aspects of the language, one might
choose to describe the differential equation

d2x dx
-;+a-+bx=f(t)
dt2 dt

dXI = DXO
dt t = to

XI =XO
t = to

in a differential equation oriented form:

DX = INTEG [DXO, F- B*X - A*DX]
X = INTEG [XO, DX]

or in an analog computer equation oriented form:

S = - (-F + 10*POT1+ 10*POT2)
DXM = - INTEG [-DXO, S]
X = - INTEG [XO, DXM]
DX= -DXM
POT1 = (A*DX) /10
POT2 = (B*X) /10

or one might add new operators to BHSL and de
scribe the problem exactly as though programming
an analog computer:

Al = AINT [P3,F",P1,P2]
A2 = AINT [P4,A1]
A3 = INV [A2]
PI = POT [A,A1]
P2 = POT [B,A3]
P3 = POT [DXO, - 10]
P4 = POT [XO, 10]

The most important user feature is the macro.
The macro consists of a named set of prototype
statements that are inserted into the program each
time the name is referenced. During insertion, cer
tain of the variable names are altered in order to
maintain the requisite uniqueness properties. The
macro is inserted into the source program before
the statements are sorted to optimum calculational
order. This preserves the true parallel system de
scription aspect of the language.

The simulation oriented BHSL operators, with
the exception of the integrator, are mechanized as
system macros. The user may also define macros
for individual problems to represent commonly used
sets of descriptive information. These macros are
referenced in his program exactly as though they
were operators of the language. In addition, the
user has the capability of creating his own macro
library which will appear to the system as an exten
sion and/or replacement of the system library.
Thus, each user may completely alter the semantics
of the language while preserving the syntax and the
structure of the operational environment.

The macros defining the problem oriented opera
tors used in the preceding example could be defined
as follows:

BASIC HYTRAN SIMULATION LANGUAGE 605

=1= ANALOG INTEGRATOR $
MACRO [AINT [OV = IC,Al,Bl,Cl, itt
A10, BIO,CIO]]

STANDVAL [IC,Al,Bl,CI,AI0,BI0,""
CI0/0,0,0,0,0,0,0]

OV = -INTEG [IC,AI + HI + Cl*
+ 10*(AI0+BIO + CI0)]

ENDM

=$: POTENTIOMETER =$=

MACRO [POT [OV = A, IV]]
OV = (A*IV)/IO

ENDM

System Organization

The language is designed to augment the capa
bilities of Fortran through the addition of certain
problem oriented simulation operators (e.g., inte
grator), problem oriented syntax (e.g., user defined
macros, free format input, etc.), and implicit orga
nizational features (e.g., sorting of statements into
optimum calculational order). The translator proc
esses a simulation program which consists of a col
lection of BHSL statements and Fortran statements
by translating to a valid Fortran intermediate
program (target program). This program has the
requisite structure for interfacing with the runtime
system. The monitor calls in Fortran to compile the
target program and, under user directive, initiates the
execution of the compiled simulation program.

FUNCTIONAL DESCRIPTION OF
BHSL ENVIRONMENT

The presentation of a problem oriented language is
facilitated by a general discussion of the application
area for which it is designed.

Figure I presents a block diagram of the calcula
tional flow of a general digital simulation program
that involves integration of ordinary differential
equations in a single independent variable. The
various main regions of the program have been
denoted as the Initial Region, the Dynamic Region,
and the Terminal Region. It is convenient for de
scriptive purposes to refer to a single run of a simula
tion program (i.e., solution of the differential equa
tions over the desired independent variable range)
as a case. A set of consecutive runs of the same
program (with altered parameters or I/O) is referred
to as a job.

Job Entry

Case Entry

Job Termination

Dynamic Region

Figure 1. Overall structure of a digital simulation program.

Initial Region

The initial region encompasses all those calcula
tions, input/output operations, and initializing pro
cedures that must be performed prior to one case
of a series of calculations (integration) at discrete
points on the independent variable. Initializing opera
tions of a more permanent nature (e.g., read in of a
particular integration algorithm) would be performed
prior to entering this region.

Figure 2 indicates that the initial region contains
three types of operations: interpretive input/output,
general initial calculations, and integration initializa
tion.

The Interpreter routine facilitates run time inter
action between the simulation analyst and the pro
gram. The analyst enters parameter and system
initialization commands from a console. These com
mands, which are by exception only, are translated
and executed at run time. The following commands
would be helpful in this problem environment.

1. Adjust any name variable in the simu
lation (e.g., a parameter or initial con
dition) .

2. Perform immediate readout of the
value of any addressable variable or
parameter in the simulation.

3. Exercise control over all the adjustable
parameters of the integration algorithm
which would include interval, minimum

606 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

J0b Ternlilla.tiun

Figure 2. Structure of the initial region.

interval, initial and final values of the
independent variable, and error con
trol.

4. Perform simple arithmetic calculations
at the console for computing changes
in problem parameters on the basis of
past results.

5. Provide initiation control of individual
simulation runs (cases) and termina
tion control of a set of runs (job).

Dynamic Region

The dynamic region is that portion of the simula
tion which takes an active part in the interaction be
tween the digital computer and the external world.
It represents all the calculations and I/O operations
performed at each user defined discrete value of the
independent variable.

The basic interval in the independent variable rep
resented by each pass through the dynamic region is
termed the communication interval. This interval is
determined solely by the accuracy requirements on
the communication with the external world. The
interval at which various portions of the calculation
(integration) are being updated is generally smaller
than the communication interval. This calculation
interval is determined strictly by the accuracy re
quirements on the digital calculation (especially the
integration) .

Figure 3 illustrates that the dynamic region can
be described functionally in terms of input/output
and integration.

The input; output subregion constitutes those ac
tions. performed in the basic independent variable
loop other than the integration calculations (if any).

It mechanizes any time dependent algebraic calcula
tions that are not an integral part of the derivative
calculation and also includes all digital input nec
essary in the dynamic loop and testing of program
conditions. These tests might determine whether to:
1) terminate the job or case by transferring control
to the terminal region; 2) terminate the case by trans
ferring control to the initial region; or 3) calculate
new history information and restart the integration.
All output of system variables at the communication
rate is mechanized from this subregion.

The Integration subregion includes all integration
being performed with respect to the independent
variable of the dynamic region. To provide for differ
ent integration rates between sets of state variables
of a simulation, this may be structured by the pro
grammer to allow an arbitrary number of sections.
These sections are generally calls to a system integra
tion routine which integrates a portion of the state
vector over a specified interval in the independent
variable. Certain of the sections, however, might not
involve integration at all. These could be programs
simulating portions of parallel synchronous logic
which need to be clocked at a different rate than
that of the integration.

The specified interval associated with a section is
the section communication interval. It would be set
larger than the system communication interval for
an integration section being updated at a slower
rate than the system communication frequence and
smaller in those cases where it was necessary to
have communication between the variables of differ-

Case
Termination

Integration Subregion

Figure 3. Structure of a dynamic region.

BASIC HYTRAN SIMULATION LANGUAGE 607

ent integration sections at a higher rate than that of
communication. (This would likely be the case when
simulating parallel logic.) The various sections are
separated by procedural (Fortran) coding for both
determining the frequency at which the integration
sections are entered and possibly performing simple
interpolation on those state variables being updated
at a slower rate.

Each section involving integration has associated
with it a subprogram for calculating the derivatives
of the state variables being integrated. Since there is
one such subprogram for each integration section, the
term derivative section is used in the description that
follows to indicate a section involving integration and
its associated derivative subroutine. The system inte
gration package and the various derivative sections
share a common symbol table so that there can be
direct communication between the various variables
and derivatives.

Depending on the integration algorithms employed,
there are various combinations of step size, interval
alteration and corrector iteration algorithms, etc. that
must be specified for each derivative section to assure
accurate numerical integration.

Terminal Region

Figure 1 shows that the terminal region receives
control from the dynamic region and returns control
to the IC (Case) entry. The terminal region contains
calculations and I/O necessary to properly terminate
a single case. In addition, some system bookkeeping
operations such as plot output are performed at this
point in the simulation.

DESCRIPTION OF BHSL

Not surprisingly, the gross structure of a BHSL
Program and its operating environment bear a
marked similarity to the general structure just out
lined. The following discussion delineates the speci
fications for a source program, the resulting object
program, and the runtime system.

BHSL Statements

A program is written as a sequence of statements
structured (either explicitly or implicitly) into func
tional groupings termed blocks. The action state
ments of a block are either representation statements
or procedural statements. The statements that deline
ate the range of a block are structure statements and
the statements that indicate how the block is to be

processed (both for translation and execution) are
control statements.

Although the syntax of each statement type is
basically different, the format of all statements on the
physical records of the input media is identical.
Statements may be started at any position of the
physical record and are continued across physical
records with an explicit continuator character (itt).
Either an end of record or an explicit terminator
character (;) serves to terminate a statement.

Representation Statements describe the physical
(mathematical) system to be simulated (solved).
These statements are the heart of the simulation
language; they are similar to the assignment state
ments of Fortran.

Each statement defines (determines the values of)
one or more unique output variables as the result
of one or more operators operating on a set of
input variables. The variables may be either of type
real or logical. In addition to the conventional arith
metic, logical, and relational operators of Fortran,
a user expandable set of simulation oriented opera
tors is included in the language system.

For example, in the representation statement:

x = INTEG [XO, A*XI + COS (X2)]

X is the output variable, XO, A, Xl, and X2 are the
input variables, and INTEG is a simulation operator.

Procedural Statements are standard Fortran state
ments that have been couched in the format of
BHSL. They are separated physically from the rep
resentation statements by block groupings and the
translator only performs text editing functions.

For example, the procedural block acts externally
as a representation statement, but its actions are
defined by standard Fortran statements. The follow
ing block represents a limiter with the defining
equations:

r a for x ~ a
y = tx for a < x < b

b for x ~ b

PROCEDURAL [Y = A,X,B]
IF (X .LT. A) Y = A
IF ((A .LE. X) .AND. (X .LE. B)) Y = X
IF (X .GT. B) Y = B

END

The above collection of statements is sorted collec
tively as a single representation statement with out
put variable Y and input variables A,X, and B.

608 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Structure Statements delineate explicit structural
groupings of the other statement types. These group
ings are treated in a different fashion by the transla
tor according to type. The first statement of the
preceding example is a structure statement.

Control Statements are utilized to instruct the trans
lator and/or the execution monitor as to how the
program should be processed. Had it been desired
to use conditional transfers to symbolic labels in the
above procedural block, the programmer would
declare the labels be used with a LABEL control
statement as follows:

PROCEDURAL [Y = A,X,B]
LABEL [L1,L2,L3]
IF ((X .LT.A) .OR. (X .GT.B)) GO-Hf

TO L1
Y = X; GO TO L3; L1: IF (X .LT.A)-Ht
GO TO L2;

Y = B; GO TO L3; L2: Y=A;
L3: CONTINUE;

END

Blocks

Blocks are initiated by an appropriate structure
statement and terminated with the END statement.

Regions are the highest level BHSL blocks. The
initial region is a set of procedural and control
statements that act as the functional equivalent of
the initial subregion of Fig. 2. The other functions
indicated in Fig. 2 are provided automatically by the
translator.

The terminal region also contains only procedural
and control statements; it is the functional equiva
lent of the terminal region in Fig. 1.

The dynamic region is the functional equivalent
of Fig. 3 and may contain any of the statement types
of BHSL. In general, the statements of this region
are structured into derivative and parallel sections
separated by procedural and control statements.

Sections contain representation statements and
pseudo sections (which act like representation state
ments, e.g., the procedural block presented above).
Certain control statements which specify the error
control procedures for the execution monitor are also
permitted. Prior to the specification of CSSL,3 digi
tal simulation languages, in general, constituted little
more than the derivative section of BHSL.

The statements ofa section are sorted by the

translator to optimal calculational order prior to
inclusion in the target program. In general, the sort
algorithm requires all the input variables of a state
ment to have been defined before the statement can
be processed (and so define the output,::yariable).
Sort loops are broken implicitly by memory type
operators such as integrators arid time delays and
explicitly by certain algebraic iteration operators.

All integration operators are mechanized by the
centralized integration system which is contained in
the runtime system. The derivative section is trans
lated to a Fortran subroutine which calculates the
state variable derivatives. The execution of the sub
routine is controlled by the integration routines. The
parallel sections are also translated to subroutines,
but the control flow is inserted directly into the
program. Parallel sections contain no integrate oper
ators; they are generally used to represent a collec
tion of parallel logic elements which must be clocked
at a different rate than the integration.

Source Program

A program includes all the statements and/ or
blocks necessary for both the representation of the
simulated system and the control of the simulation
itself. A BHSL program has associated with it a
set of unique output variables and a unique inde
pendent variable. The body of a program may be
structured into three types of regions., If no explicit
structuring is indicated, the translator assumes that
the whole program represents a single derivative sec
tion and it inserts a standard central program.

The BHSL translator operates on the source pro
gram to produce Fortran IV then compiled by the
Fortran IV compiler to yield an object program
which interfaces properly with the runtime system.

Object Program

Certain elements of the CSSL do not appear ex
plicitly in BHSL. These features, which include seg
mentation, multiple independent variables, etc., can
be achieved by making Fortran patches in the target
program.

Runtime System

In addition to the standard monitor functions
(i.e., subroutine loading, priority interrupt schedul
ing, etc.), the simulation system requires two spe-

BASIC HYTRAN SIMULATION LANGUAGE 609

cial execution time routines. These are the integra
tion system and the I/O control system.

The integration system has two entries, one for
initialization and one for integration. In addition to
setting up the initial conditions on the state variables
of the integration, the initialization entry also allo
cates memory for the history information required
by the particular integration algorithms. The integra
tion entry transfers control to the appropriate algo
rithm to integrate the specified derivative section
over its communication interval.

The system includes a variety of algorithms and
error control options which may all be altered at
execution time under interpretive control. The in
tegration algorithms include Euler, Runge-Kutta,
Third, Fifth and Seventh Order Adams Predictors
and Adams Predictor Correctors. Where applicable,
error control options include adaptive quadrature
error control on individual state variables through
iteration and interval alteration.

The I/O control system is a collection of input/
output routines which includes the interpreter, print
plot, and general output formatting routines.

This interpreter is an upwards compatible version
of the Hytran Operations Interpreter. 5 In its most
simple form, it contains algebraic capabilities and is
able to respond to combinations of appropriate
BHSL control statements. The interpreter provides
readout and data alteration by exception only.

Interpretive Command and Control Features

The system is designed such that a program may
be executed under control of a set of interpretive
instructions. In any single program, this set might
be only a simple initiate execution command or it
might include a string of control statements specify
ing alterations to the program and its data. The pro
grammer specifies the point, if any, in his program
at which he wishes to accept interpretive command
and control information with the INTERPRETER
control statement.

EXAMPLES

The examples of this section are concerned with
the nonlinear two point boundary value problem:

y =-(1 + eY)

yeO) = 0, y(tf) = 1.0

This problem was solved as an example in a recent
article describing the MIDAS III simulation lan-

guage. 5 The reader will no doubt find it interesting
to compare the means used to represent the problem
and control the solution in the two languages.

The object of the problem is to determine the un
known initial condition on y such that the terminal
condition is met. This constitutes a solution; given
two initial conditions, it is a trivial matter to inte
grate the equation over the independent variable
range to determine the trajectory y(t}. Questions
of existence and uniqueness of solutions of boundary
value problems, while certainly important, are ig
nored in this discussion.

Implicit Structure Program

The program presented below is designed to be
used in an interactive fashion for the solution of the
boundary value problem. In the sample interactive
dialog, an analyst exercises this program from a
digital I/O station in much the same fashion that he
would interact with an analog computer.

IMPL
=$= IMPLICIT STRUCTURE EXAMPLE =$=
=J= HAND OPTIMIZED SOLUTION *
INTAL [RK4]; COMDEL [0.1]; CALF [10];

TERMVAL [1.0]
TITLE [TWO POINT BOUNDARY VALUE-ftt

PROBLEM-J. C. STRAUSS]
DATA [YO,DYO/O,l]
Y = -INTEG [YO, INTEG [DYO, 1 + EXP

[V]]]
SAVE [Y,T]

END

The first action taken in an implicit structure pro
gram is to transfer control to the interpreter. Since
an initial guess for y ((/)) is supplied to the program
(via a DATA statement), the analyst responds to
interpreter's request for input with:

GO;

This command causes control to be returned to the
program which computes a complete solution for y
on the interval ° S t S 1.

The TERMV AL [1.0] control statement causes
control to be transferred to the interpreter when the
independent variable (T) reaches 1.0. In response to
the interpreter's request, the analyst requests the
terminal value of y with the statement:

Y:

610 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

To which, in this case, the interpreter responds:

Y = -0.08524

Recognizing that this is too low (the desired y(tf) is
1.0) and hoping for a monotonic increasing relation
ship between y(tf) and yeO), the analyst commands
the interpreter:

DYO = 2.0, GO;

This causes another solution to be run. The proc
ess of readout, alteration and run is iterated follow
ing a standard binary search algorithm; it is found
that a y«(/) of 2.472 yields a y(tr) of 1.0001 which
is deemed satisfactory.

The SAVE control statement in the program has
been storing the results (Y,T) of each iteration.
Once the analyst is satisfied with the solution, he
types in:

GRAPH [T,Y],CONTROL;STOP;

which produces a plot of y versus t (from the last
iteration) on the I/O station; the STOP command
terminates the job.

Explicit Structure Program

The preceding program was designed to assist
a human analyst to so~ve a complicated search prob
lem. The immediate reaction is to program the com
plete solution using the same algorithm (i.e. binary
search). If derivative information were available
however (i.e. the dependence of y(tr) on y((/), a
Newton Raphson search algorithm with its associ
ated quadratic convergence could be employed.

As illustrated in Ref. 5, the desired derivative

information (~) is easily obtained by solving
oy(O)

the auxiliary differential equation:

il = - (eY)u

u(O) = 0, u(O) = 1

o(y)t
where u(t) = -

oy(O)

The iterative algorithm employed in the following
program involves repetitively solving the differential
equations in y and u adjusting the initial condition
yk (0) at each iteration k according to the equation:

Yk-1(t) yk-2(t)
yk(O) = yk":l(O) + f - f

Uk- 1(tf)

PROGRAM

=1= EXPLICIT STRUCTURE EXAMPLE =1=
=1= PARAMETER INFLUENCE COEFFI

CIENT ITERATIVE SOLUTION OF III
NONLINEAR TWO POINT BOUNDARY

VALUE PROBLEMS ==
TITLE [EXPLICIT STRUCTURE EXAMPLE =1=

- J.C. STRAUSS]
DATA [YO ,YT,DYK,EPS,KMAX,TF /0,1,1,-ttl-

1E-5,10,1.0]
INITIAL

K =.0; FLAG = .FALSE.
INTERPRETER [Y 0, YT,DYK,EPS,KMAX,-ttl

Y,TF]
YD=YT

1K=K+1
PRINT 10, K
IF (FLAG) PRINT 11

10 FORMAT (l2HQ> ITERATION, 31)
11 FORMAT (30HI T X U)
END
DYNAMIC

IF (FLAG) PRINT 12,T,X,U
IF (FLAG) CALL SAVE (X,T)

12 FORMAT (3E12.5)
IF (T .GT. TF) GO TO 2

DERIVATIVE
COM DEL [0.1]
DEFINE [YO ,DYK]
Y = INTEG [YO,INTEG [DYK,l + FUN]]
FUN = EXP [Y]
U = INTEG [0, INTEG [1.0,FUN*U]]

END
END

TERMINAL
2 DDYO = (Y-YD)/U

YD=Y
DYK = DYK + DDYO
PRINT 13, DDYO,DYK

13 FORMAT (14HO DELTA DYO = ,E11.5,11H
NEWDYO = ,E11.5)

IF (ABS(Y - YT) .GT.EPS) .AND. (K .LT.
KMAX» GO TO 1

IF (FLAG) GO TO 4
IF (K .GE. KMAX) GO TO 3
FLAG = .TRUE.
GO TO 1

3 PRINT 14

BASIC HYTRAN SIMULATION LANGUAGE 611

14 FORMAT (54HO K .GE. KMAX - KMAX
MAY BE INCREASED FROM INTER
PRETER)

GOT05
4 CALL PLOT (T,X)
5 CONTINUE
END

END

This program is designed to be completely auto
matic in operation with the additional feature that
parameters of the problem such as tt, y(tf), yeO)
etc. can be easily varied at runtime. The interpretive
command sequence to run the standard problem
(using the data values supplied by the DATA con
trol statement) is:

GO;
{the problem runs and produces satisfactory output}

STOP;

The program contains a number of organizational
features worthy of more detailed discussion. In par
ticular:

1. In an explicit structure program, the INTER
PRETER control statement indicates the position
in the program from which control is transferred to
the interpreter. The variables specified in the argu
ment list are made available for communication at
runtime. In the case of an implicit structure program,
the whole symbol table of the source program is
passed to the interpreter.
2. The translator automatically closes the control
loop around the dynamic region. Hence it is abso
lutely necessary that the programmer provide explicit
termination logic via a procedural statement (s) .
3. All output is performed with procedural (For
tran) statements although BHSL control statements
could have been used.
4. The iteration logic is programmed such that the
solution trajectory is printed out on an extra iteration
following satisfaction of the convergence test.

5. Should the maximum number of iterations
(KMAX) be exceeded, an error message is printed
and control is returned to the interpreter where the
analyst can take a variety of actions. Barring just
terminating the problem, the simplest action would
be to increase KMAX and continue. He could how
ever change the initial guess on y((/)) (DYK) and
restart the iterative process.
6. The DEFINE statement in the derivative section
names those variables whose values are defined
external to the derivative section. There are two rea
sons for this: 1) The derivative sections are proc
essed first since they determine the storage alloca
tion for the object program. The define statement
must specify those variables which are considered
to be defined for sort purposes. 2) The translator
does not scan the procedural statements and is thus
not aware of any variables whose values are deter
mined by procedural coding.

REFERENCES

1. R. D. Brennan and R. N. Linebarger, "A Sur
vey of Digital Simulation: Digital-Analog Simulator
Programs," Simulation, vol. 3, no. 6 (Dec. 1964),
pp.23-36.

2. J. J. Clancy and M. F. Fineberg, "Digital
Simulation Languages, A Critique and a Guide,"
AFIPS Volume 27, 1965 Fall Joint Computer Con
ference, Spartan Books, Washington, D. C., 1966.

3. "Continuous System Simulation Language,"
Report of the SCI Simulation Software Committee;
J. C. Strauss, Ed., presented at SCI 2nd Annual
Simulation Software Meeting, Minneapolis, Minn.,
June 1966. (to be published inSimulation)

4. M. L. Cramer and J. C. Strauss, "A Hybrid
Oriented Inter-Active Language," 1966 National
ACM Conference, Los Angeles, California, August
1966.

5. G. H. Burgin, "MIDAS III ... A Compiler
Version of MIDAS," Simulation, vol. 6, no. 3
(March 1966).

A PROCESSOR-BUILDING SYSTEM FOR EXPERIMENTAL
PROGRAMMING LANGUAGES

Terrence W. Pratt

Michigan State University, East Lansing, Michigan

and

Robert K. Lindsay

University of Michigan, Ann Arbor, Michigan

INTRODUCTION

Translator-building systems which allow the rapid
construction of translators for programming lan
guages have been in existence for a number of years,
beginning with pioneering efforts by Irons 1 and
Brooker and Morris,2 and more recently in systems
developed by Reynolds,3 McClure,4 and Feldman, 5

among others. With such systems it is possible to
build a translator for a language relatively easily,
although the translator may not be a particularly
efficient one. In this paper, an extension of the no
tion of a translator-building system to the notion of
a processor-building system is considered, and an
operating example of such a processor-building sys
tem is described.

A system which accepts programs written in a
particular programming language as input and then
executes those programs may be termed a processor
for that language. The processing of programs is
commonly divided into two more-or-Iess distinct
phases-translation and execution. In the translation
phase programs written in the input or "source" lan
guage arrive in the form of character strings from

613

some input device. They are translated (by a trans
lator) into an intermediate form, which may be ma
chine code or some "high-level" form. This interme
diate program form serves as the input for the
execution phase, in which this form of the program
is interpreted (by an interpreter) and the operations
on the data specified by the program are executed.

A general form for such a processor is outlined in
somewhat greater detail in Fig. 1. As input we have
programs and data described in the source language.
From this input the translator produces an interme
diate form of the program and an internal form of
the data. We then have an interpreter together with
a set of subroutines called basic processes (which
manipulate data, and programs if considered as da
ta). The interpreter accepts programs in the in
termediate form as input and calls the appropriate
sequence of basic processes to execute the instruc
tions of the program.

To define a processor for a programming lan
guage L, then, one might define: (1) A translator
for L which accepts L programs and data as input
and produces an intermediate form of these pro
grams and data as output; (2) a set of basic proc-

614 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

T RA.I:JSLAT I ON
PHASE

EXECUTIon
PHASE

PROOESSI11G

OUTPUT DATA

Figure 1. A processor for a programming language.

esses for performing· the operations which can be
specified in L programs; and (3) an interpreter
which accepts L programs in the intermediate form
as input and interprets them as indicating the basic
processes to be called, the sequence of these calls,
and the input parameters for each call.

In translator-building systems such as those men
tioned previously, the user may conveniently de
scribe the translation phase of the processing of his
source language. Because the user does not have a
similar ability to build an interpreter for the result
ing output, however, the output from such a system
must be in a form acceptable to an existing inter
preter (such as the machine itself), or it must be
acceptable as input to another existing processing
system (such as an assembler). Restrictions of this
sort on the output form of a translation may
significantly increase the difficulty of building trans
lators for new languages, as there may be no
straightforward way to translate a new language into
one of these relatively fixed forms. To achieve a
rapid implementation of a new language it may be
easier in many cases to use a relatively simple trans
lation from input language into high-level interme
diate form, and then interpret the resulting interme
diate form with a correspondingly "high-level"
interpreter, in preference to performing a complex

translation to one of these fixed output forms before
beginning execution. Thus a processor-building sys
tem with which interpreters as well as translators
may be constructed is a desirable extension of the
notion of a translator-building system.

We are now in a position to describe a processor
building system which does allow the user to build
an entire processor for a programming language
rather than just a translator. The system, called
AMOS, is programmed and running on a Control
Data 3600 computer. The input to the system is in
two parts-a translation phase definition and an
execution phase definition. After the system proc
esses these two sections of input, it is prepared to
process programs in the specified source language,
first translating the programs according to the
specifications of the translation phase definition and
then executing the resulting output according to the
specifications of the execution phase definition. The
translation phase definition, which is discussed in
the next section of this paper, is similar in general
approach to other translator-building systems, al
though the details differ considerably. The execution
phase definition is described in the third section of
the paper.

TRANSLATION PHASE DEFINITION

As the notion of a translator-building system
which produces syntax-directed translators is well
known, it will suffice to merely outline the general
approach here before considering the particulars of
the AMOS system. The general pattern of such sys
tems is the following. The syntax of the source lan
guage to be implemented is described with a gram
mar. With each grammar rule a semantic routine or
"interpretation routine" is associated, which de
scribes the output or intermediate processing which
is to occur should the syntactic construct described
by the grammar rule occur in a source language pro
gram. The grammar rules and interpretation routines
are the initial input to the translator-building system.
The system stores this information in a convenient
form so that it can be used later to allow the system
to translate programs in the user-defined source lan
guage. The basic concepts of translator-building sys
tems are described in a recent paper by Cheatham.6

Rather than proceeding further in describing these
basic ideas, we shall instead concentrate on the dis
tinctive features of the AMOS system. The basic
structure of the translation definition in AMOS is

A PROCESSOR-BUILDING SYSTEM FOR EXPERIMENTAL PROGRAMMING LANGUAGE 615

similar to that described above. The four headings
under which features of this part of the AMOS sys
tem will be discussed are: (l) the initial loader, (2)
the grammar form and the parsing algorithm, (3)
the form of the output from translation, and (4) the
language for writing interpretation routines.

The Initial Loader

All input to AMOS-grammar rules, interpreta
tion routines, processor definitions, and source lan
guage programs-is processed first by the initial
loader, described in detail in Doig 7 and Pratt.S The
loader has two main responsibilities. It must trans
late the character codes used for input on the partic
ular machine configuration being used into a stand
ard set of AMOS character codes. Thus to the rest
of AMOS, the character code for "$," for example,
is fixed, regardless of the original input code used.
By making simple changes in the loader tables, the
system can be adapted to a different set of character
codes in a matter of minutes. The second responsi
bility of the loader is that of editing the input string
while it is being translated into the AMOS character
codes. For the grammar rules, interpretation rou
tines, and the processor definition, this editing
amounts merely to the deletion of spaces from the
input string. For the source language programs sup
plied by the user, however, the editing may be more
significant. The user has control, through use of a
FORMA T statement, of the editing to be performed
on his program. The possible options include: (1)
deletion of all occurrences of a particular character;
(2) reduction of strings of occurrences of a particu
lar character to a single occurrence; (3) deletion of
comments enclosed by a designated "comment delim
iter"; (4) specification of input records of fixed
length; and (5) specification of fields within such
fixed length records.

Options (4) and (5) allow fixed field card for
mats to be used in the source language. The loader
compacts such fixed field formats by: (1) deleting
all characters not within the specified fields, (2)
adding a special "end-of-field" delimiter at the end
of the characters in each field, and (3) adding an
"end-of-record" delimiter at the end of each record.
Thus field and record boundaries are represented by
explicit characters in the edited string. This allows
grammar rules to consider these boundary markers
as syntactic elements of the program.

The user may change editing formats within his

source language program by insertion of a new
FORMAT statement, thus allowing the mixing of
free and fixed formats within the source language. In
addition to making AMOS independent of the input
character codes being used, the main virtue of the
loader to the user is the simplification that it allows
in the syntactic descriptions of the source language
without restricting the actual input format used.

The Grammar Form and Parsing Algorithm

Grammars which are used to describe the syntax
of source languages in AMOS are written in a rec
ognition-oriented form called the tactic grammar
form. A tactic grammar is composed of a finite set
of grammar rules. Each grammar rule has four
fields, written A/B/C/D/, where A is the context
field, B is the left side field, C is the right side field,
and D is the interpretation field. The context field
contains a "context name" (an arbitrary character
string) or it is blank, indicating that the context is
the same as that of the immediately preceding rule
in the list. The left and right sides contain: (1) a
literal character string which may occur in the
source language, (2) a context name enclosed in
quotes, indicating the use of this name as a "syntac
tic type," or (3) the special character <I> , denoting
an arbitrary character. The interpretation field con
tains the interpretation routine for the grammar
rule. This routine is written in the I-language de
scribed in the last part of this section and may con
tain in particular the grammar control statements
CONTEXT and *ASCEND*.

In order to understand how a set of tactic gram
mar rules defines the syntax of a language, it is
necessary to understand the parsing (recognition)
algorithm used as well as the grammar form itself.
An example of a simple BNF grammar for an arith
metic . assignment statement and an equivalent tactic
grammar is given in Table 1. The parsing algorithm
used by AMOS is diagrammed in Fig. 2.

Basic to the notion of parsing with a tactic gram
mar is the notion of the "current context." At all
times during the course of parsing there is a current
context which delimits the set of rules which are
"potentially applicable" at any given moment. A
tactic grammar rule A/B/C/*CONTEXT*D./
may be interpreted as meaning: If A is the current
context, then a B can be followed by a C. If this
construction is found and the rule is "applied" (that
is, if a B is followed by a C in the input string),

616 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Table 1. Equivalent BNF and Tactic Grammars for
an Arithmetic Assignment Statement

<st!!lt): :=<ldent)=<e::pr)

<expr) : :=<term> ! <expr)+ <term)

<term>: :=<tact) I (term) * (tact>

1..~.~

(context l/(lett l/(rlght l/(lnterp. II
STIlT I ¢ I 'ID' I I

I 'ID' I = I I
I = I'EXPR' I*ASCE1TD;'.1

<tact>::::<ldent)!«expr)l 3XPR I ¢ I'TE~;' I I
(ldent) : :=(letter) ! <ldent><letter> I'TERr·;' I + I I

I + I'TLRr·;' I I
I'nru-;'I ¢ li'ASCEHD*·1

TERrI I ¢ I'FACT' I I
I'F.il.CT'1 i't I I
I i, I'FACT' I I
I'FACT'I ¢ li'ASCEl:Di'.1

FAOT I ¢ I 'ID' I*ASCEllD* .1

I ¢ I I I
I (I'EXPR' I I
I'EXP?"'I 1;'ASCEllD* .1

ID I ¢ I 'LET' I I
I'LET' I 'LET' I I
I'LET' I ¢ IUASC3NDif.1

then the current context becomes . D (or stays the
same if no *CONTEXT* statement occurs in the
interpretation field). Thus when A is the current
context and a B has just been recognized in the in
put string, the set of "potentially applicable" rules is
just the set of rules having A in their context field
and B in their left side field. The next rule to be
applied must be chosen from this set.

During parsing the current context may be
changed by applying a rule which has a CONTEXT
or ASCEND statement in its interpretation field. The
CONTEXT statement is used to change the current
context directly to a specified new context. The AS
CEND statement on the other hand is used when a
string of a particular syntactic type has been recog
nized in the input. Execution of this statement re
turns the current context to whatever it was before
"descending" to recognize the syntactic type. The
initial "current context" for a grammar is specified
in an initialization routine preceding the first gram
mar rule. This routine is executed immediately be
fore parsing begins.

The parsing method specified in detail in Fig. 2
involves a single left to right scan of the input string.
Two pushdown stacks are used to allow a simple
type of backtracking. No "parse tree" is constructed,
and there is no rewriting of the input string. The
stacks are used to save the position of the input
string pointer and the location of the current rule

JurCt:·: :-:'8.8 boen cat b~T
ini 'cio.li::::o.tio:c. :::'OJ.t:'.:lC.

1 st cl:,c",-:::,~.ctc:::, :)0::::'. tion 0':: i:lpll·1;
Gtrill.,:-; ______ Ct:' .. r::tr

---0u:-Lc::t

yes

Pushdolln PtrSt:: o.nd ~lcSt;:
OurRllle --RulcStl:
Ourl'tl' --.PtrStl:
Our::U::;ilt ----Ctll'Ct:·:
¢---Cllrlcft

3

~========~~ ____ ~~ ________ ~yes

Is CU1'Rulc :: old 2
C1.'.rot::/Cu:-Left/ - / - /? ;,rcr:;

5

Figure 2. Parsing algorithm for tactic grammars. NOTE:
Any change in CurRule redefines CurCtx, Cur
Left, CurRight, and CurIntp to have the values
of the new rule named in CurRule.

A PROCESSOR-BUILDING SYSTEM FOR EXPERIMENTAL PROGRAMMING LANGUAGE 617

when descending a level in parsing to attempt to
recognize a string of a certain syntactic type. While
at the lower level the input string pointer may be
advanced, but if eventually the type is not recog
nized, then the pointer saved in the pointer stack
replaces the current input string pointer upon return
to the higher level, thus allowing a simple sort of
backtracking. The rules stack is used only to save
the location of the rule with which a match is being
attempted when such descents are made; it is not
used to hold the locations of all rules which have
been applied in the parsing. The parsing scheme is
straightforward, and quite efficient since there is:
(1) only simple backtracking, (2) no storage of in
formation about the course of the parse except what
is absolutely necessary to allow the parse to con
tinue, and (3) only a small set of "potentially appli
cable" rules to be tried at any point. The interpreta
tion routine for each rule used in the parse is
executed at the time the rule is applied. Thus trans
lation proceeds in parallel with parsing.

In a translator-building system, the grammar form
and the parsing algorithm which are used are
significant because they delimit the set of input lan
guages which it is possible to describe to the system
and which may be parsed correctly by it. Thus it
would be more to the point perhaps to describe the
restrictions on the class of possible input languages
imposed by the grammar form and parsing algo
rithm used in AMOS. Unfortunately this is difficult
to do. Beyond the fact that the class of languages
describable by tactic grammars includes the finite
state languages, not much is known about. this class
except that some rather complex languages have
been described with tactic grammars. One of the in
teresting aspects of attempting to characterize the
class of languages describable by tactic grammars in
this form is the fact that the specification of source
language syntax contained in the grammar rules is
not completely independent of the specification of
semantics in the interpretation routines for the rules.
The grammar control statements CONTEXT and
ASCEND appear in the interpretation routines but
are actually a part of the syntactic description of the
source language. The ability to branch in an in
terpretation routine and execute different CON
TEXT or ASCEND statements, depending on se
mantic information available to the interpretation
routines, means that one may make the allowable
syntax of the source language dependent on seman
tic information. One interesting aspect of this fact in

particular is that statements at the first portion of a
source language program may be used to dynamical
ly change the allowable syntax of later portions of
the same program.

In summary, an interesting class of languages is
describable with tactic grammars, although no pre
cise characterization of this class has yet been made;
and in addition interaction between syntax and se
mantics in the translation description is allowed in
what seems to be a novel manner.

Outputs from Translation

The grammar form and parsing algorithm delimit
the class of input languages acceptable by AMOS.
The output from translation is similarly circum
scribed by the type of data structures which can be
produced in AMOS to represent intermediate forms
of programs and data.

The elementary unit of output from the transla
tion phase is termed a record. A record is composed
of a consecutive sequence of bits in memory, logical
ly divided into fields. Each field in a record may be
of arbitrary length, and may be either a simple field,
or an array field. If an array field, then all elements
of the array are the same size. Records may be gen
erated in sequential locations in memory, or they
may be linked together in an arbitrary fashion by
storing the address of one record in a field (termed
a link field) of another record. As records may have
any number of link fields, linked structures may be
built up which correspond to general finite directed
graphs. Besides link fields, records may also have
any number of other fields containing data.

Records are defined by first defining the pattern
of the fields of the particular type of record. This
pattern is named, and the form of each field is
defined by specifying the length of the field in bits,
the name of the field if any, whether or not it is an
array, and if so its dimensions. After having defined
a pattern (and any number of different patterns may
be in existence concurrently), records may be creat
ed which have that pattern. When a record is creat
ed, the number of bits associated with records of the
specified pattern type are reserved in memory. One
may then refer to fields within the record simply by
giving the record name and the name of the desired
field. The statements 'for defining patterns, fields,
and records are described in the next section. One
may also specify that records of a certain type are

618 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

"sequential". This implies that whenever a record of
that type is created, the block of space reserved for
it is to come immediately after the block occupied
by the last record defined of that type. Thus if the
pattern "machine-code-word" is specified as "se
quential", then all records of type "machine-code
word" will be stored in memory in consecutive loca
tions in the order created. Both patterns and records
may be created dynamically during the course of
translation (or execution). The type of data which
may be stored in fields of records includes numbers
(integers or reals), addresses, or character strings.

The output from translation, therefore, is general
enough to allow the user considerable flexibility in
choosing· the sort of translation which he wishes to
make. In the case of input data to be translated, this
makes possible the construction of data structures of
considerable complexity during translation. In the
case of input program, this general output, in con
junction with the ability to describe an interpreter
for programs in arbitrary form described below,
under "Execution Phase Definition," allows the user
considerable flexibility in choosing the simplest
processing method for his language.

The I-Language for Writing
Interpretation Routines

The I-language is a simple programming language
used in writing interpretation routines for tactic
grammar rules as well as writing interpreters and
basic processes in the execution phase definition de
scribed in the next section. Statements in I-language
routines all have the standard form: * operation
name*parameter-list. The operations are called
primitive processes or simply primitives. Table 2
contains a list of the primitives currently being
used in the I-language with a brief description of the
function of each. An I -language routine is just a se
quence of I-language statements written free-field
and ending with a "$." Routines may be named and
called from other routines, statements within rou
tines may be labeled, and branching is allowed.

Table 3 gives an example of a simple translator
definition. The translator accepts an arithmetic as
signment statement as input according to the syntax
described by the grammar of Table 1. The transla
tion is into a simple suffix form composed of a
linked list containing in sequence the operands and
operators of the suffix form with a flag bit in each

Table 2. Brief Descriptions of I-Language Statements
Currently in Use

I-Language Statement Function

*CONTEXT*Pl. Change current context to Pl.
ASCEND. Syntactic type recognized,

ascend a level in parsing.
*TRANSFER *Pl,P2. Copy the contents of PI into

P2.
*PATTERN*PI,P2. Begin definition of a pattern

named Pl.
*FIELD*PI,LENGTH(n), Define a field in the current

ARRAY (P2). pattern under definition.
*DEFINE*Pl,P2,P3. Define a record of pattern

':'TEST*P I ,P2,P3 ,P4.

*GO TO*Pl.
EXIT.
*CALL*Pl.
*ADD*Pl,P2,P3.
*MULT*Pl,P2,P3.
*SUB*PI,P2,P3.
*DIV*Pl,P2,P3.
*DATALIST*Pl, Pn.

type PI, store its address in
P2, and (optionally) name it
P3.

If the contents of P I is positive,
zero, or negative, branch to
P2, P3, or P4 respectively.

1 Seque~ce control in I-language
S routmes.

Execute routine PI.

I Arithmetic operations: Com-

J
l pute Plop P2 and store the

result in P3.

Define PI Pn as house-
keeping lists for temporary
storage.

*POPUP*PI P 1 Popup or pushdown the house

*PUSHDOWN~P'I, ~: ., Pl S ~~e~i.n~ P~.sts designated by

*PRINT*Pl,P2. Print the contents of the field

*FIRSTCHAR *.

*NEXTCHAR *.

*CONVERT*Pl.

P2 according to the format
Pl.

Clear the buffer DATA and be
gin building up a string there
by entering into the buffer
the character in the input
string at the current pointer
position.

Add the character in the input
string at the current pointer
position to the string being
formed in DATA.

Convert the string in the buffer
DATA into internal form for
data of type PI (integer,
real, or address).

cell to distinguish operators from operands. The list
cell pattern is simply:

OP LINK I
where OP and LINK contain addresses and F = 1
implies OP contains the address of an operand,
F=O implies OP is the address of an operator rou-

A PROCESSOR-BUILDING SYSTEM FOR EXPERIMENTAL PROGRAMMING LANGUAGE 619

Table 3. Tactic Grammar of Table 1 with Interpre
tation Routines for Producing Suffix Form Lists

(ini tializ8.tion routine)

*P.lTTERi:*LIST,m. '::'nELD~fF, I311GTTI(1) • ~fFI:ELDi'OP, LEl:GT::r(15) •

*PIELD':fLIlIK, L3HGTiI (1 5) • *PATTERHifDATA:m. *FIELD'''DATUl!, LEl:GTH (48) •

*OOl:TZXT~fSTJ.[T. *DATALISTiI'.rE:·IP, OIA. () I
(gramJ'lar rules)

STHTI ¢ I' ID' I *DEFIlIE·~·LIST:·m, TE:;P(1). !fTRAlfSFERiI'.rEI:P(1),

OIA (1). !'CALL*SUJ32. (if

I 'ID' I = I ~ I
I I'EXJ?R'I i'OALL*SUB1. *TRf.lmFER·:;AS::;IG~l. (TEl·;P(1), OP).

j'ASCElTDif. V
EXJ?RI ¢ I' T~~RI·!' I $ I

I'TEill·:'1 + I ~I I
I + I'TEP:OI'I *CALL*SUB1. ifTRAllSFER!'ADDPROO,(nr:p(l),OP).OI

l'nra:'1 ¢ I i'ASCEIID''}. r;1
T:i:RIc;1 ¢ I'FACT'I ij I

I'FACT'I * I ,j I
I * I' FACT' I "OALLifSUB1. '''TRAlISF:JR;';:ULTPROC, (Tffi·iP{ 1), OP). 01
I' FACT' I ¢ I ;'ASCElm~'. ~I

FACTI ¢ I 'ID' I i'CALL!fSUB1. ·"PALLi'SUB2. lfASCm!D!'. 01
I¢ I(I~~I

I (I'EXJ?E'I $ I
1'3XPR'1) I ;'ASCE~:D·". V

ID I ¢ I' LET' I !'nRST();IAR*. $1
I' LET' I' LET' I ;'HEXTOHAR·l}. :jj

I' L3T' I ¢ I ifCOiiVE::lTi'lll!:·:E. *ASCElm i '. \il

DUiJ·;y1 I I SUB1: i'DEPIlr.;;;*LISTi;n, T3:;P(2) • i''lilil.ilSFER;'TE::?(2),

(Tffi·:P (1) , LIiTIe). ifPOPUP*Tlli:P. ~I

I I I SUB2: *TI!.A11SFER·::·1, (T3:;P(1) ,;,,). *DEFLTE*DATAlm,TEliP(2L

DATA. ·lITllll:SFER·l}Tffi:P(2),(T:al:P(1),OP). 01

NOTES

The blank rules in context DUMMY are never used; this
is merely a device to allow definition of the subroutines
SUB 1 and SUB2.

The names ASSIGN, ADDPROC, and MULTPROC are
names of basic processes defined in Table 4.

References to housekeeping lists of the form "h-k-list
name(n)" are references to the contents of the nth cell on
the designated list (e.g., TEMP(2) refers to the contents of
the second cell on the housekeeping list TEMP).

A reference of the form "(h-k-list-names(n),field-name)"
is an indirect reference to the contents of the designated
field of the record whose address is stored in the designated
housekeeping list location (e.g., "(TEMP(1),OP)" refers
to the contents of the OP field of the record whose address
is stored in TEMP (1)) .

tine. LINK contains the address of the next cell on
the list. In the next section an interpreter for this
output will be constructed.

The basic design philosophy of the I-language has
included two major goals: (1) The I-language
should be as easy to learn and use as possible, and
(2) every effort should be made to make it easy to

add new _ primitive operations to the language. The
combination of these two goals has led to the imple
mentation of a basic set of primitives with provision
for the addition of new primitives when necessary.
For experimental languages it does not seem desira
ble or even possible to develop a rigid I-language
for use in all applications. Thus a simple basic lan
guage has been implemented with provision made

for easy modification later to fit particular types of .
applications. The I-language as specified in Table 2
has proven sufficient for describing a translation
execution processor for a hierarchical-graph-struc
ture manipUlating language of some complexity.
Thus, while simple, the I-language is still quite pow
erful, so that additions to fit particular applications,
if any, will in general be relatively minor.

This completes the description of the translation
phase definition. In summary, to construct a transla
tor with AMOS, the user writes a grammar for his
source language in the form of a tactic grammar and
describes the translation of his source language into
the desired output form with I-language routines
written in the interpretation· field of each grammar
rule. Adding an initialization routine (again written
in the I-language) completes the description of the
translation phase. From this information AMOS
constructs a translator for source language pro
grams. The output from this translation might be
saved for later input to some standard processor,
but in general it would be executed by an interpreter
defined in the execution phase definition described
in the next section.

EXECUTION PHASE DEFINITION

The output from the translation phase of a
processor is an intermediate form of the source lan
guage program and data which was originally input.
In the execution phase of processing, this interme
diate form of the program is interpreted by some
interpretive. routine and the specified operations exe
cuted. Thus the output from the execution phase of
processing is the input data transformed according
to the specifications of the original program. One
way of structuring the execution phase (although
not the only one) is to assume that there are a set of
processes defined which perform the basic opera
tions which can be specified in the source language.
Depending on the type of data and the sort of

620 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

operations possible, these basic processes might cor
respond to arithmetic operations, list operations,
logical operations, tests, searches, etc. The interme
diate form of the program is then an encoded
specification indicating which of these basic proc
esses are to be executed, in what order, and with
what parameters. The function of the interpreter is
to decode the intermediate form of the source lan
guage program and to actually call the designated
sequence of basic processes after setting up their pa
rameters appropriately. Examples of this sort of or
ganization are seen in the hardware of many com
puters, where the machine code may be consi~ered
as the intermediate form of the program, the "wlred
in" basic processes· are the circuits which execute
the basic machine instructions, and the interpreter,
which is also "wired-in," decodes each machine in
struction and calls the appropriate basic process de
pending on the operation code of the instruction.
This organization has been used when working with
high-level intermediate languages as well (e.g., this
is the basic organization of the IPL-V system) .

The execution phase of language processing in
AMOS is organized in this manner. Basic processes
are data manipulation routines with parameters,
while an interpreter is a routine which accepts data
structures representing programs as input, and calls
various of the basic processes in sequence to process
the data. Thus the definition of the execution phase
involves the construction of routines for the inter
preter and basic processes. As the I-language is a
programming language which is already available in
the AMOS system, it is used in writing the routines
for the interpreter and basic processes. An example
is given in Table 4 of a simple execution phase
definition for executing· the suffix form output from
the translator of Table 3. Since the form of routines
in the execution phase definition is the same as the
form of the interpretation routines associated with
grammar rules, the definition of such routines given
in section II also applies to routines in the execution
phase definition.

In summary, to construct a processor for a pro
gramming language with AMOS, the user prepares
input in two parts: (1) The tactic grammar and in
terpretation routines defining the translatiQn phase
and (2) the routines defining the interpreter and
basic processes of the execution phase. After AMOS
has processed this input, it is prepared to process
programs-translate and then execute them-in the

Table 4. Interpreter and Basic Processes for Execu
tion of Suffix Form Lists

(interpreter)

RPINTERP: ifDATALIST*CIA, STACK, TEliP.

LOOP: *TSSTi~(CIA(1) ,F), Oplin, OpTR, OpI:D.

OP~1D: ;~pUSHDOi·.1~·:~STACK. *TRA.lTSF".8R*(CIA(1),01'), STAIY.r.:(1).

ifGO TO*HEXT.

OpTR: *CALL;;(CIA(l),Op).

ID;;XT: *TEST*(CIA(l) ,Lnm:) ,UXT,EHD,llXT.

liLT: ifTaANSFER*(CIA(1), LIIYK) , CIA(1). *GO TOi;LOOp.

END: *pRIliT*n:TEGER,(STAC:C(l),DATUlI). :;

(basic processes)

ADDpROC: ;fD~FIllE;~DAT~WD,TEEp(l). ifADD*(STACK(l) ,DATtm) ,

(STACK(2) ,DATUI!), (T3::p(1) ,DATUl:). *POPUp;;STACK.

*TRA.~:SF:SR*TSl:p(1), STACK(1). (;

IWLTPROC: i~DEFIllE*DATAT;TD,T3:lp(1). *l~LT;f(STACK(l),DATUIl),

(STACK(2) ,DATUn), (TE:I'(1), DATUl:). ;;pOPUpifSTACK.

itTRA!ISF3R*TEl!P(1), STACK(1). ;~

ASSIGn: *TRA.llSFERif(STACK(1) ,DATUI:), (STACK(2), DATUl~). ifPOpup'fs'rACK.

defined source language. Source language programs
would then comprise a third section of input.

CONCLUSION

The construction of AMOS has been motivated
by the desire to find a method to implement a new
language as quickly as possible on a computer which
would also allow changes to be made easily in that
implementation or in the source language. One inher
ent difficulty in systems which allow the user to
specify only the translation phase of processing-a
difficulty that AMOS attempts to circumvent-lies
in the fact that the output from translation must
then be in a form acceptable to an existing process
ing system. It is a basic thesis here that there exists
a significant class of languages for which no simple
translation into such a form exists, but for which
one might invent an output form which could be
easily interpreted and executed. For such languages
it will be simpler to define an entire processor than
to define a translation into a form acceptable to an
existing processor.

In the description of the system presented here,
much has necessarily been omitted. The translator
building portion of the system may be used inde
pendently if desired, and the output from translation
executed by an existing processor. In general all
parts of the system are organized in a flexible man
ner so that changes and additions are easily intro
duced. As the system is intended as an experimental
tool it contains few frills for the user. In addition no
attempt has been made to provide sophisticated 80-

A PROCESSOR-BUILDING SYSTEM FOR EXPERIMENTAL PROGRAMMING LANGUAGE 621

lutions to such problems as storage allocation and
input; output handling.

Forms of the AMOS system have been coded and
running on a Control Data 3600 computer since
about October 1965, although the execution defini
tion section has only been added recently. Experi
ence with the system so far has been limited. The
major language implemented to date with AMOS is
HINT -a language designed by Richard Hart to be
used for manipulating complex hierarchical-graph
structures. In implementing this language, AMOS
was used to build a translator to translate HINT
programs into IPL-V list structures, which were
then interpreted and executed by the IPL-V inter
preter. Experience in teaching the use of AM OS to
students has indicated that it is easy to learn to use,
requiring only a few hours of instruction before one
can begin to write translators. Results from further
experience with the system will be reported at a later
date.

ACKNOWLEDGMENTS

An early version of a translator-building system
known also as AMOS was constructed by Kenneth
M. Shavor and the authors. A number of the ideas
developed in that system have been incorporated in

the AMOS system described here.

REFERENCES

1. E. T. Irons, "A Syntax Directed Compiler for
ALGOL 60," Comm. ACM, vol. 4, no. 1 (1961).

2. S. Rosen, "A Compiler-Building System De
veloped by Brooker and Morris," ibid, vol. 7, no. 7
(1964).

3. J. C. Reynolds, "An Introduction to the CO
GENT Programming System," Proc. ACM 20th
Nat'[Con/., Aug. 1965.

4. R. M. McClure, "TMG-A Syntax Directed
Compiler," ibid.

5. J. A. Feldman, "A Formal Semantics for
Computer Languages and Its Application in a
Compiler-Compiler," Comm. ACM, vol. 9, no. 1
(1966).

6. T. E. Cheatham and K. Sattley, "Syntax-Di
rected Compiling," Proc. AFIPS Spring It. Camp.
Cant., 1964.

7. L. Doig, R. Elliot and T. Pratt, "Load Pro
gram for the MO Compiler," Info. Proc. Report No.
6, Univ. of Tex. Compo Center (Feb. 1964).

8. T. Pratt, "Syntax-Directed Translation for Ex
perimental Programming Languages," Univ. of Tex.
Compo Center, TNN-41 (May 1965).

THE INTRODUCTION OF DEFINITIONAL FACILITIES INTO
HIGHER LEVEL PROGRAMMING LANGUAGES

T. E. Cheatham, Jr.

Massachusetts Computer Associates, Inc.
Wakefield, Massachusetts

INTRODUCTION

The purpose of this paper is to present a scheme
for employing definitional or "macro" features in a
higher level programming language. The emphasis
will not be on defining the syntactic augments and
precise interpretation of such features in any partic
ular programming language and/or operating en
vironment but, rather, on developing the compiler
mechanisms for' handling the definition and call of
such macros and then indicating the kinds of exten
sions one' might propose to current programming
languages in order to usefully employ these kinds of
facilities.

Macro facilities have been incorporated for some
time in most machine language assembly systems.
More recently, macro systems have been developed
for string and text handling both as independent
systems 1,2 as well as within the framework of some
other systems. However, there have been relatively
few attempts to incorporate the ability to extend a
higher level programming language via macro type
facilities. Some exceptions to this are the DEFINE
facility included in the various JOVIAL languages 3

which allowed the substitution of an arbitrary char
acter string upon each occurrence (during lexical
analysis) of an identifier previously DEFINEd. The
PL/I language 4 has a quite elaborate facility for
text-editing type macros which are employed prior

623

to lexical and syntactic analysis of the source text
(and which thus require special lexical and syntactic
analysis machinery to be available as a, pre
processor); further, the PL/I facility for definition
of "arbitrary linear mapping function" is a primitive
macro facility which is employed after syntactic
analysis. The proposal by' Galler and Perlis 5 sug
gests an interesting extension to ALGOL to allow
for user-controlled syntactic and semantic augments
to ALGOL.

One of the reasons for the lack of macro facilities
in higher level programming languages may be that
we can identify at least four distinct kinds of macro
facilities which might be introduced, each with quite
definite advantages and disadvantages. Thus, we sub
mit that to speak of "adding macro facilities" is
merely confusing; one must indicate with some pre
cision just where, when, and how he proposes to add
such facilities. Very briefly, we identify three times
during the compilation process where macros might
be added as follows:

Preceding Lexical Analysis-for editing
text and incorporating filed or otherwise
prepared text into a program prior to any
lexical or syntactic analysis of the pro
gram text.
During Syntactic Analysis-allowing the
introduction of new syntactic structure and

624 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

the corresponding semantic structure into
the language.
Following Syntactic A nalysis--particularly
useful for introducing "open coding" for
various procedures and functions, such as
mapping functions for array elements.

Historically, the schemes and mechanisms we dis
cuss in this paper have arisen out of our experience
in dealing with a variety of compiler-compilers (or,
more properly, compiler-building systems) and using
them to construct translators for a variety of stand
ard ~d special-purpose programming languages, in
cludmg AL90L and PL/I. The compiler-building
system on which most of the ideas developed herein
are based is the TRANGEN system and its compiler
building language TRANDIR.6,7

As indicated above, we are not going to frame
our discussion around any particular programming
~anguage; however, if a focus is desired, our thinking
IS more often than not with respect to languages like .
ALGOL or PL/I. When we need to reference the
programming language being compiled, we shall refer
to it simply as language Lp • The ideas will be de
veloped with reference to a proposed compiler model
and compiling system which are more-or-Iess easily
particularized to most of the current programming
languages. By a compiler model we mean a division
of the compiling task into a collection of concep
tually distinct parts or phases; we are not suggesting
that every compiler must be constructed with these
phases, nor do we regard the phases as corresponding
to "memory loads" or "tape movements." Rather,
~hey ~re conceptual divisions of the compiling task
mto pIeces we choose to distinguish and with respect
to which we will explain the various definitional fa
cilities with which this paper is concerned.

The parts of the compiler model can be repre
sented by the following diagram:

A brief description of the function of each of the
parts follows:

Lexical Analysis-the process of interfac
ing with the source of program text and
identifying, isolating, and disposing of the

terminal symbols and token symbols oc
curring in the program text, and outputting
a sequence of descriptors of these terminal
and token symbols. By terminal symbols
we mean the basic characters and strings
of characters comprising the alphabet of·
the language e g " +" "" "be z· " , .. , " , g n ,
"procedure", and the like; by token sym
bols we have in mind the strings of char
acters comprising individual members of
such (terminal) classes as identifiers and
literals (e.g., "ALPHA", "1.5604E-3",
"true", and the like). By "converting" and
"disposing of" the token symbols we mean
whatever. process is required to provide us
with an entry in a symbol table or a literal
table and produce the resultant descriptor
pointing to that entry.
Syntactic Analysis-the process of identi
·fying the syntactic units (with respect to
some particular syntax) occurring in the
stream of descriptors produced by the lexi
cal analysis process, resulting in a parse of
the program text.
Interpretation of the Parse-the process of
generating that representation of the com
putation which will provide the basis for
whatever optimization and subsequent gen
eration of machine (or other) coding is to
follow. In this paper we will restrict our
selves to a "pseudo-code" or "computa
tion tree" representation of the computa
tion; prefix or suffix representation, direct
machine code representation, and other
variations are possible with the mecha
nisms described, but we shall not here
consider them further.
Optimization-the process of preparing the
pseudo-code representation and gathering
a variety of useful information prior to the
actual generation of machine coding. Such
things as elimination of common sub
expressions, flow analysis, development of
statistics to guide register allocation and so
on are included h~re.
Code Selection--the process of inspecting
the pseudo-code representation of the
computation and, using the information
developed during the optimization phase, '
generating the sequence of machine coding
for carrying out the computation.
Formatting and Output-the process of

DEFINITIONAL FACILITIES INTO HIGHER LEVEL PROGRAMMING LANGUAGES 625

preparing the final machine code repre
sentation (e.g., relocatable binary) and
other information (e.g., some form of sym
bol table) from the machine code as pro-

I duced by the code selection process in the
formats required for punching, running,
filing, or whatever disposition is to be
made of the resultant program.

The compiler for Lp will be represented by means
of "translation programs" in two programming
languages which we' will describe below: the base
language LB and the descriptive language LD. We
shall associate various portions of the translation
programs with the various parts of the compiler
model; the actual compilation will be done by the
compiling system perforniing the set of actions ,or
statements given in LB and LD by whatever means it
may choose to do them (interpretively, from a ma
chine code version resulting from compiling a pro
gram in LB, or whatever); the only assumption we
make is that any LD program (i.e., the part of the
compiler represented in LD) is translated into an
equivalent LB program (by one of the facilities in the
compiling system) prior to the translation of the LB
program into a form which will "run" the compiling
system.

The base language LB is the language in which we
describe all of the manipulations which are per
formed on the data representing the source text to
produce, in the end, the data representing the ma
chine (or other) code result. The data being manipu
lated consists of a collection of tables in which are
recorded the relevant properties or attributes of the
items or symbols being manipulated (identifiers, lit
erals, operations, and the like) and a list of symbol
descriptors. The list of symbol descriptors represents
the program text being compiled in any of its inter
mediate forms: string of source characters, list of
lexical units, syntax tree, sequence of pseudo
instructions, ,sequence of machine instructions, and
so on. Thus during syntactic analysis, an identifier
will be represented by a symbol descriptor which
points to the symbol table entry for the identifier,
plus an. indication of its "current syntactic type"
(primary, term, expression, etc.); a computation may
be represented by a symbol descriptor which points
to a sequence of pseudo-instructions comprising the
computation, again plus an indication of syntactic
type. We may think of a symbol descriptor as a
quadruple of integers: a table code and the line num
ber within the table which contains the properties of

the symbol; a type field containing current syntactic
type; and a single bit indicator which we shall term
larg indicating whether or not the descriptor is the
last argument of some pseudo instruction.

Language -LB can be thought as containing, as a
sub-language, a more-or-Iess standard algebraic
language including assignment statements, relation
als, if-then-else statements, control transfer state
ments, statement labels, a block structure similar to
ALGOL or PL/ 1, and the like. The numbers which
it manipulates are integers which are fields of tables,
fields of descriptors, literals, working variables, and
so on. LB has, in addition to the algebraic sub
language, a language for performing pattern match
ing and replacement over sequences of symbol
descriptors. Much of the syntactic analysis and the
code selection portions of a compiler are written
using the pattern-replacement part of LB; however,
there is a complete algebraic language available when
it is desired-for' handling declarations, determining
fixed point scaling, error recovery, preparing relo
catable binary output, and so on.

The descriptive language LD is a declarative
language in which the syntax of Lp and a certain por
tion of the "semantics" of Lp are given. We might
think of LD as a syntax-describing language such as

'BNF to which we have added facilities for represent
ing various manipulations corresponding to the dif
ferent syntactic constructions.

The compiling system is that collection of pro
grams and data, under an executive system, which
can carry out all the language processing, language
executing, and data handling sketched above. Specif
ically, there will be provisions for:

1. translation of language LD into lan
guage LB, and subsequent editing,
modification, and so on of a language

, LB program;
2. translation of language LB programs

into appropriate table layouts and code
(machine code, interpretive code, some
mix of machine and interpretive, etc.);

3. a means for executing the code result
ing from (2) (e.g., an interpreter);

4. a lexical analyzer which performs as
suggested above; and

5. an executive or operating system which
can attend to all the details of input
ting, filing, allocating, loading, binding,
sequencing, outputting, and the like
which might be required.

626 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

SYNTACTIC ANALYSIS

Before discussing, in the next section, the descrip
tive -language LD in which the syntax and, to some
extent, the semantics of the programming language
Lp are provided, it is important to understand how
the syntactic analysis is accomplished in our com
piler model and how that portion of the language LB
program representing the syntactic analysis may
be derived (mechanically) from syntax rules en
coded in language LD • For the purpose of this section
we can think of the syntax language as BNF with a
few notational changes (to make the representation
of the analysis program in language LB easier) plus a
minor extension. The notational changes are as fol
lows: for syntactic categories we will use simple
identifiers, eliminating the [] brackets * normally used
with BNF; the terminal symbols of the language wilI
be _ singly. quoted. The minor extension is to allow
the declaration of those syntactic categories which
are considered tokens-that is, recognized automat
ically . by lexical analysis. An example including
simple expressions over integers and an assignment
statement is:

TOKENS (IDENT, INTEGER)
PRIMARY::= IDENT I INTEGER
FACTOR:: = PRIMARY I '(' EXPR ')'
TERM::= FACTOR I TERM '*' FACTOR
EXPR::= TERM I EXPR '+' TERM
ASSG::= IDENT '=' EXPR

Syntactic analysis will be accomplished by trans
forming syntax rules such as the above into a reduc
tions analysis program in language LB' We cannot
give a transformation which will work for an arbi
trary grammar; the technique which we will discuss
depends upon the language being a precedence lan
guage. One might ask at this point why we do not
utilize one of the standard "syntax driven" (predic
tive) analyzers to perform the syntactic analysis.s Our
reasons are, basically, that error recovery is much
more easily handled with the scheme proposed here
and that once a language has been verified as being a
precedence language, we are certain that the language
is not ambiguous. Our feeling is that programmers
who are provided with facilities to extend the syntax
of a language should also be given the measure of
protection that guaranteed nonambiguity provides.

* [] have been used in printing this paper in place of
the more conventional < >.

Precedence languages (as distinct from operator
precedence languages 9) were introduced by Wirth
and Weber 10 and include most of the current pro
gramming languages. The basic idea of a simple
precedence language is a language such that each
pair of syntactic categories and/or terminal symbols
enjoy at most one of the three relations: = (equal),
< (yielding), or > (taking) precedence. Any pair of
symbols which appear adjacent in some syntactic
rule have equal precedence; any terminal symbol
appearing left adjacent to a syntactic category sym
bol in some rule yields precedence to all the symbols
which can be leftmost symbols of any construction
of that category, and so on. In the example above
some of the precedence relations are:

'('
TERM

= EXPR
'*'

'*' < PRIMARY
'*' < '('
FACTOR> '*'
etc.

')'
FACTOR

1 since PRIMARY and '(' may be the leftmost
symbols of a FACTOR

2 since FACTOR may be the rightmost symbol of
a TERM

Details are provided in Refs. 10 and 11.

Given a simple precedence language, we can
parse a string (program) in that language, left to
right, as follows: suppose that the given string (of
terminal or token symbols) is 11 , 12 , ••• , 1M and that
at some time during the parse we have reduced this
string to

P1 ••• PN / I j ••• 1M

where P1 ••• PN are terminal or syntactic type sym
bols comprising the "parse stack" and I j ••• 1M are
the input symbols which have not yet entered into
the analysis (except for supplying right context).
Then the next step depends upon whether PN > I j

on the one hand or PN = Ij, or PN < I j on the other
(PN not having any precedence relation with I j indi
cated an error in the input string). That is, if PN > I j

then there exists a phrase Pi ... PN determined by'
Pi - 1 < P i = Pi + 1 = ... = PN , and, by this, we
mean that there exists some syntactic category Rand
syntax rule

DEFINITIONAL FACILITIES INTO HIGHER LEVEL PROGRAMMING LANGUAGES 627

We "reduce" the string by

PI ... P i - 1 Pi ... PN / Ij ... 1M
~ PI ... P i-I R / Ij ... 1M

or

. . . Pi ... PN / ... ~ ... R / ...

and proceed, comparing Rand Ij. In the other case,
P"N" < Ij or PN = I j, we effectively increment Nand
j by one and set PN+I = Ij-i.e. bring the next input
symbol (I j) into our "parsing stack"; the "reduction"
can be depicted:

PI ... PN / I jlj+1 ... 1M
~ PI ... PNlj / I j+1 ... 1M

or

... PN / Ij ... ~ ... PNlj /

A language which is not a simple precedence lan
guage may be a higher order precedence language.
That is, a language in which, in general, the prece
dence relations hold, not between pairs of single
symbols, but between strings of symbols, where the
number of symbols in the left (right) string does not
exceed some constant m(n). For minimal m, n a
language is said to be an (m,n)-precedence language
((I,I)-precedence thus being equivalent to simple
precedence). The parsing scheme sketched above
also works for higher order precedence languages so
long as the proper number of symbols are inspected. *

Now, let us think of the I's and P's as symbol
descriptors. Each I is either a pointer to the terminal
symbol table, or is a pointer to the literal or symbol
table and contains the appropriate syntactic type
code; each P is like an I or is a pointer to a compu
tation and, again, carries the appropriate syntactic
type code. Adding some machinery for disposing of
the p hr ases which are encountered, we might have
replacement rules (almost "statements" in language
LB) such as

... TERM / '*' ... ~ ... TERM '*' /
... EXPR '+' TERM / .. .
~ ... EXPR$EMIT (PLUS, EXPR, TERM) / ...

where EMIT (PLUS, EXPR, TERM) causes
"output" of a PLUS pseudo-operation with two argu
ments, these being whatever descriptors were suc
cessfully typed EXPR, and TERM in the pattern,
and returns as result a descriptor of the output (i.e.,

* Note that m,n are maxima for the entire language; for
"most" symbol pairs it will probably be sufficient to inspect
just those symbol pairs, and not strings of symbols of which
the left (right) is rightmost (leftmost).

one having the table code of the "computation" table
and line being where the PLUS was placed in the
"currerit output area" of the computation table); the
prefix EXPR$ indicates that the result is to be
syntactically typed (i.e., coded in its type field)
EXPR .

It is a straightforward task to generate a set of
such replacements from the syntax rules for a (gen
erally higher order) precedence language. Usually
(see Ref. 11 for details), we have one replacement
corresponding to each alternate construction of each
syntactic type, plus a replacement for each possible
following symbol in order to "move" input into the
parsing stack, all ordered appropriately to insure that
reductions are not made prematurely. If we have the
complete set of rules plus some mechanism to scan
all the patterns to find the one applicable and then
to make the corresponding replacement, we have a
syntactic analyzer. However, it is better to introduce
some control, allowing us to avoid looking at all pat
terns each ·"cycle", by means of the following tech
niques:

1. Grouping (and ordering) all replace
ments with the same symbol "on top
of the parse stack" (i.e., immediately
left of the I);

2. Attaching a label to the first replace
ment rule of each group.

3. Introducing the following "actions"
which can follow a replacement rule:
TRY (label) which indicates that the
pattern indicated is to be tried next;
ERROR which announces an error,
and EXIT, which terminates the proc
ess.

4. Following each rule with TRY(t)
where t is the label corresponding to
the new top of parse stack (resulting
from the replacement), or with
ERROR or with EXIT if an error
condition maintains or the "largest
syntactic type" has been recognized.

Now presuming a control mechanism which,
"pointing" to some replacement, tries the pattern
and, upon success, performs the replacement and
the action(s) following and, upon failure, tries the
next pattern, we have a language LB program for
syntactic analysis. The program .LUr the simple ex
ample given above is (where we have taken a few
liberties to show the kind of program our language
LD to· LB translator would produce):

628

IDENT.T

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

· .. IDENT / '=' ... ~ ... IDENT '=' / . . . TRY(OP. T)
· .. IDENT / ... ~ ... PRIMARY $ IDENT / . . . TRY (PRIMARY. T)

INTEGER.T
PRIMARY.T
RPAR.T

· .. INTEGER / ... ~ ... PRIMARY $ INTEGER / ... TRY (PRIMARY. T)
· .. PRIMARY / ... ~ ... FACTOR $ PRIMARY / ... TRY(FACTOR. T)
'('EXPR')' / ... ~ ... FACTOR $ EXPR/ ... TRY(FACTOR.T)

~ ERROR
FACTOR.T ... TERM '*'FACTOR / ~ ... TERM $ EMIT (TIMES, TRY(TERM.T)

TERM,FACTOR) / .. .
.. . FACTOR / ~ ... TERM $ FACTOR / ... TRY(TERM.T)

TERM.T ... TERM / ,*, ... ~ ... TERM ,*, / ... TRY(OP.T)
... EXPR '+' TERM / ... ~ ... EXPR $ EMIT(PLUS,EXPR, TRY(EXPR. T)

TERM) / ...
... TERM / ... ~ ... EXPR $ TERM / TRY(EXPR. T)

TRY(RPAR. T)
TRY(OP.T)
EXIT,

EXPR.T · .. EXPR / ')' .. . ~ ... EXPR ')' / .. .
... EXPR / '+' .. . ~ ... EXPR '+' / .. .

... IDENT'='EXPR/ ... ~ ... ASSG $ EMIT(STORE,
IDENT,EXPR) / ...

~ ERROR
OP.T ... /IDENT ... ~ ... IDENT / ... TRY (lDENT . T)

TRY(lNTEGER. T)
TRY(OP.T)
ERROR

· .. / INTEGER . .. ~ ... INTEGER / ...
... /'(' ~ ... '('/ ...

SPECIFICATION OF SYNTAX AND
SEMANTICS VIA LANGUAGE LD

~

The BNF-like syntax language introduced in the
previous section is our starting point for language
LD. That is, language LD admits data descriptions of
the various data (tables and the like), declaration of
pseudo-operations, and so on to be included in the
compiler; allows specification of the syntax of lan
guage Lp in the above notation; and has provisions
for the specification of "semantics", the various ac
tions which are to be taken whenever a certain syn
tactic construction is found (Le., the reduction is
performed). The LB program which results from
translation of an LD program contains the LD data
declarations intact plus a reductions analysis pro
gram within which the "semantics" have been im
beded for analysis of language Lp program text. We
will describe LD in this section by presuming a
"basic" LD which allows specification of syntax rules
in a manner similar to that sketched in the previous
section and assume it has provisions for handling
data descriptions and, given this basic LD, we will
motivate and describe a number of "extensions".

The first extension is to allow the attachment of
"semantics" or "interpretation of the parse" to each
syntactic construction. This is accomplished by ad
joining to a construction a bracketed "interpretation"

or "output specification". Using the previous ex
ample we might write:

TOKENS (lDENT, INTEGER)
PRIMARY : : = IDENT I

INTEGER
FACTOR ::= PRIMARY I

'('EXPR')' [EXPR]

TERM :: = FACTOR I
TERM '*' FACTOR
[EMIT(TIMES, TERM,
FACTOR)]

EXPR ::= TERM I
EXPR ,+~ TERM
[EMIT (PLUS,EXPR,
TERM)]

ASSG ::= IDENT '=' EXPR
[EMIT (STORE,IDENT,
EXPR)]

The LD to LB translator will arrange for the ap
propriate prefixing (e.g., EXPR$EMIT(PLUS,
EXPR, TERM) and "type promotion" when no
bracketed interpretation is given (e.g., ... PRI
MARY / ... ~ ... FACTOR$PRIMARY / ...).
We note here that it is not necessary that pseudo
code output be specified; an LD description which
would output a "syntax tree" is given by:

DEFINITIONAL FACILITIES INTO HIGHER LEVEL PROGRAMMING LANGUAGES 629

TOKENS (lDENT, INTEGER)
PRIMARY : : = IDENT [EMIT (lDENT)] I

INTEGER
[EMIT (INTEGER)]

FACTOR ::= PRIMARY
[EMIT (PRIMARY)] I
'('EXPR')' [EMIT (' ("
EXPR, ')')]

TERM ::= FACTOR
[EMIT(FACTOR)] I
TERM ,*, FACTOR
[EMIT(TERM, '*',
FACTOR] and so on.

We now proceed to introduce another extension.
Matching some syntactic construction is not always
enough; that is, there may exist identical construc
tions of several different syntactic types (e.g. [iden
tifier] in ALGOL). We thus allow a predicate to be
attached to a syntactic construction and arrange that
both the matching of the pattern (i.e., recognition of
that construction) and the truth of the predicate are
required in order that the corresponding reduction
be made. A predicate is any Boolean expression in
language LB which involves "and", "or", and "not"
combinations of relationals over the integers, fields
of tables, and working variables which have been
declared. As an example we might have

REALVAR ::= IDENT WHEN DATATYPE
(lDENT) EQ REALTYPE;

INTVAR ::= IDENT WHEN DATATYPE
(lDENT) EQ INTTYPE;

and so on.

Here IDENT in the context DATATYPE
(lDENT) is understood to mean the line field (index
intO' the symbol table) of the descriptor syntactically
typed IDENT; and DATATYPE () has presumably
been previously declared as a field of the symbol
table. *

The next extension is to augment the language by
allowing "computations" (in language LB) to be at
tached to a construction-computations to be carried

* It should be noted that we are not intending to use this
predicate mechanism to discriminate various data types
we are here assuming that lexical analysis assigns the appro
priate data (i.e., syntactic) type automatically from. i~f?r
mation in the symbol table. We also note that the dIVISIOn
of the testing into a determination of structure followed by
application of predicates to certain structura~ elem~nts is
similar to the scheme employed by Femchel In the
FAMOUS System.1.2

out as the corresponding reduction is performed.
Again for example, we might have

DECL ::= 'REAL' IDENT DO DATATYPE
(IDENT) = REALTYPE; I
'INTEGER' IDENT DO DATA
TYPE(lDENT) = INTTYPE;

and so on.
Another extension, this time to the way in which

we can write a syntax rule, will help alleviate some
of the trouble and confusion which recursive syn
tactic constructions sometimes introduce. Consider
for example, the two rules

EXPR ::= EXPR I EXPR '+' TERM
ARGLIST :: = EXPR I ARGLIST ',' EXPR

The first construction may be entirely proper and
desirable; that is, it specifies the left associativity of
the addition operator as well as indicating that '+'
has lower "binding power" tpan the operators (pre
sumably '*' etc.) used to make TERMs. However,
the second construction is generally confusing in that
the expressions making up an argument list are
"equal" = i.e., have neither left nor right grouping.
A preferable syntactic form would be

ARGLIST ::= EXPR {',' EXPR}

where { ... } is interpreted "choose zero, one, tw@'",
etc. occurrences of ... ". We would like the result of
recognition of this construction to be a list of the
EXPRs recognized with which we can transact fur'
ther. We extend LD by admitting such constructions
as

ARGLIST :: = EXPR {',' EXPR} [EMIT
(LIST ,EXPR)]

where LIST is a defined pseudo-operation and
EXPR in the context EMIT(LIST, EXPR) denotes
a (first-in-first-out) queue of the descriptors suc
cessively recognized as EXPRs. Language LB has
facilities for dealing with such lists; counting ele
ments, accessing individual or groups of elements,
and so on.

As another example we might have (for reasons
which will become clear when we discuss computa
tional macros)

REF:: =IDENT [EMIT(IDENT)] I
IDENT 'CEXPR {',' EXPR}')'
[EMIT-(IDENT, EXPR)]

Finally, we require an extension which will help
us to recover from errors detected by the syntactic

630 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

analysis. We note that the language Ln to LB trans
lator will supply rules of the form

~ ERROR

as the last rule of a group which may not otherwise
contain a rule guaranteed to be successful. The ex
tension is to admit statements of the form

OTHER WISE (comp) stuff

where "comp" is any syntactic type or terminal and
"stuff" contains interpretations, predicates, or com
putations similar to any correct construction; the Ln
to LB translator will insure that the "stuff" is done
rather than an error being signalled. An example:

OTHERWISE (EXPR) DO BEGIN
TRY(EXPR.R)

EXPR.R ... 'C EXPR / ...
~ .. , 'C EXPR') / ... TRY(RPAR. T)
~ PRINT ("INCORRECT OPERATOR FOL

LOWING EXPRESSION");
TRY(RECOVER) END

what we are trying to suggest here are several things,
to wit:

1. LB has a facility for printing (error)
comments;

2. replacement rules can be directly pro
grammed as "computations" in LB;

3. a series of "computations" can be
bracketed by BEGIN END brackets;
etc.

A stronger way of putting this is that our "opera
tional expectation" is that much of the syntax and
semantics of an Lp can be provided via Ln and re
sult automatically in an LB program for syntactic
analysis and interpretation of the parse. However,
since the "final" program is in LB we are free to
modify, extend, etc. the LB program to account for
syntactic vagaries (non-precedence situations), error
recovery, and the like either by modifying the LB
program resulting from LD translation or by inserting
this kind of thing into· Ln by the device sketched
above. Thus one could have a more-or-Iess "pure"
Ln description of a language available to a· user 'as a
reference document; the details of error recovery,
handling of special cases, and so on might be repre
sented only in a modified version of the LB program
resulting from translation of the Ln program, and
supplied only to "experts". The point is that both
declarative and imperative versions of the syntactic

analysis and parse interpretation are available in a
similar form, surely an aid to documentation.

ADDITION OF DEFINITIONAL OR
"MACRO" FACILITIES TO A LANGUAGE

With the compiler model and other machinery
outlined above in mind, we now turn to the question
of imbedding the macro definition and call facilities
into a given language Lp. We wil organize our dis
cussion around the time at which the macro facilities
are employed and thus discuss

Text Macros-which are employed prior
to lexical analysis;
Syntactic Macros-which are called during
syntactic analysis; and
Computational Macros-which are called
subsequent to syntactic analysis.

We now proceed to a discussion of each of these
three types.

Text MacrO's

By text macros we mean macro facilities which,
from the point of view of our compiler model, are
contained in the interface which supplies program
text to the lexical analyzer. Indeed, one might take
either TRAC 1 or GPM 2 (they are very similar de
vices) as perfectly satisfactory pre-lexical macro
devices essentially as they stand. In any event, since
these kinds of macros are really outside the scope of
the compiler model we have described and, particu
larly, since two excellent macro systems which are
sufficient for this purpose have been described in the
literature, we shall not discuss this type of macro
further.

Syntactic M acios

What we have in mind here is a facility which
allows one to define what are in effect new syntactic
structures in terms of the given syntactic structures
of the language Lp and previously defined "syntactic
macros". We require three things: a syntactic aug
ment to Lp to allow the definition and call of syntac
tic macros; a mechanism; within our syntactic ana
lyzer, for "recording" the definition of the syntactic
macros; and, a mechanism within our syntactic
analyzer (and lexical analyzer) to handle the call of
these macros.

DEFINITIONAL FACILITIES INTO HIGHER LEVEL PROGRAMMING LANGUAGES 631

The definition of syntactic macros will equate a
"macro form" which is some syntactic structure-a
string of terminal and token symbols mixed with
identifiers, previously declared as formal parameters
bearing a given syntactic type-with a "defining
string" which is a string of characters intermixed
with the formal parameter names. Upon recognition
of the macro form, the syntactic analyzer will submit
the corresponding defining string to the lexical ana
lyzer after placing the actual parameters occurring in
the macro call on an argument list. The lexical ana
lyzer will then lexically analyze the defining string in
a normal fashion with the exception that occurrences
of the formal parameter names (as identifier tokens)
will result in the output of the descriptor correspond
ing to the actual parameter (already processed and
stored on the argument list) rather than a descriptor
for that identifier. This lexical output will precede the
normal lexical output (or previously arranged macro
output, if the macros are defined recursively). Note
that we presume that the lexical analyzer deals only
with a single descriptor of the actual parameter, how
ever complex (syntactically) it might have been in
the macro call, and merely substitutes this descriptor
for the occurrence of the corresponding formal pa
rameter in the defining string, nothing more. The
computation tree or whatever resulted from the anal
ysis of the actual parameter within the macro call is
not touched.

We will assume that syntactic macro definitions
occur at the head of a program (or of a block, if you
want), since the syntactic analyzer may be consid
erably modified (re-constructed) by such definitions
and it might be prudent to restrict such operations to
the beginning of a compiler run. (Clearly, generally
useful syntactic macro extensions to a compiler could
result in the "extended" compiler being filed under
some new name to save the overhead of re-construct
ing the compiler "on the fly" each time it is called.)

Let us now propose an extension of the syntax of
Lp to allow definition and call of two varieties of
syntactic macros. (Each particular Lp would doubt
less be handled somewhat differently; the intention
here is only to propose something we can make
reference to in the sequel). For this we will use the
BNF notation:

[s-macro-parameter-decl] :: = LET [identifier]
BE [syntactic type]
[s-macro-definition] :: = MACRO [macro form]
MEANS '[defining string]' I

SMACRO [macro form] AS [syntactic type]
MEANS '[defining string]'

The [s-macro-parameter-decl] declares the [iden
tifier] to be a formal parameter which may subse
quently appear in a [macro form] and its associated
[defining string]; further, the [identifier] is declared
to be of the given syntactic type. The [syntactic type]
may be either a syntactic type (identifier) already
defined for Lp or may be a new syntactic type. *

The [macro form] may be any sequence of token
and terminal symbols for Lp and will generally in
clude instances of certain of the declared formal pa
rameters ([identifier]s). The assumptions about lexi
cal handling are: (1) it is presumed that in lexically
analyzing the [macro form] the lexical analyzer will
encounter and "normally" treat the tokens and termi
nals; (2) any identifier token which has not been
declared as a formal parameter will, upon processing
of the [s-macro-definition] be so tagged that lexical
analysis will subsequently treat that identifier as a
terminal symbol (i.e., it will have residence in the
symbol table so typed that subsequent lexical analysis
of it will produce a descriptor indicating not symbol
table but terminal symbol table-with "new lines"
in that table generated for such "defined new termi
nals" as necessary); and, (3) the [defining string]
will be stored away as a string of characters. and the
macro form will, in effect, have an associated pointer
to this string (i.e., we are assuming that the quotes
protect the [defining string] from any lexical anal
ysis) .

The calls of the two types of macros (MACRO
and SMACRO) are different. A call of a MACRO
type macro will be of the form

% [macro call]

where % is a special character presumed not hereto
fore used in Lp and [macro call] is an instance of
some MACRO defined [macro form] where the
formal parameter places have actual parameters
which are syntactic units of the declared type. The
successful processing of the [macro form] will result
in the corresponding [defining string] being submitted

* The system will have to insure that an identifier in this
cont~xt is "looked up" in a special table of syntactic types
(or IS handled by some equiv~lent mechanism) and is not
treated as an [identifier] in Lp in order to avoid any conflict
of the (possibly mostly unknown to the user) identifiers
used in Ln to name syntactic types of Lp ; further there will
be a provision for introducing new syntactic types. One
possibl~ scheme is to use ~pecial delimitors to distinguish
syntactIc types from other Identifiers; for example: .EXPR.
.NEWTYPE. etc.

632 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

to the lexical analyzer and the actual parameters with
their associated names being placed on an argument
list. The % [macro call] "phrase" will then be com
pletely wiped off the parse stack and syntactic anal
ysis will continue. Note that % is a special terminal
which takes precedence over any symbol which might
appear immediately to the left of it (to insure that
the macro is expanded to provide the proper right
context for the symbol preceding the % in the Lp
text). Example

LET N BE INTEGER
MACRO MATRIX (N) MEANS 'ARRAY(l:N,
1 :N)' is essentially equivalent to a syntactic defini
tion of the form

MACRO::='%' 'MATRIX' '('INTEGER')'

where the macro syntactic type is handled differently
from other syntactic types in that % takes prece
dence over everything and recognition of the phrase
"% ... " causes elimination of the phrase (after
"interpretation") rather than reduction to a single
descriptor typed MACRO.

A call of the macro of the form

% MATRIX (25)

in most contexts will result in the equivalent of hav
ing written:

ARRAY (1:25, 1:25)

in that context.
Similarly

MACRO A MEANS '+B*C+'

followed by

X = Y %A Z

will result in the equivalent of having written

X = Y+B*C+Z

The definition and use of the MACRO macros
must be done with some care. In particular, the
right-most component of the [macro form] must be
carefully chosen so that the complete [macro form]
will be recognized as a phrase. For example, the
right-most component could be a terminal symbol in
Lp which will take precedence over the symbol fol
lowing the macro call in all contexts in which it
might appear. The use of an identifier which is
treated as a new terminal symbol as right-most com
ponent would eliminate any trouble, since its prece
dence will automatically be taken as greater than any

symbol which may succeed it. Also, one could intro
duce a special right delimiter (matching the % left
delimiter) and insist on both left and right delimita
tion of the MACRO macro call.

We note that the text macros and the MACRO
macros are similar in that both require some sort of
trip character to announce their call. Indeed, in many
situations the choice of one type over the other might
be quite arbitrary. However, there are situations in
which the MACRO macros are clearly preferable.
One situation is when the verification of the correct
syntactic type of the actual parameter is desired prior
to the expansion of the macro, for example to allow
better control in announcing to the user the exact
circumstance in which an error occurred. We note
also that the form of macro call for text macros
would very likely be quite rigid (e.g., # (name,
arg, ... ,arg) in TRAC and § name, arg, ... ,arg;
in GPM) while the form of MACRO macro calls is
not restricted except for the position of the trip char-
acter, %. <

There are many situations in which neither the
text nor the MACRO macros are adequate. In par
ticular, the requirement for a trip character in the
call required to keep the syntactic analysis from go
ing askew may be distasteful in many cases. The
SMACRO form of syntactic macro differs from the
MACRO form in that a syntactic type of the macro
form is provided (AS[syntactic type]) and thus the
call of an SMACRO can be accomplished without
using the special % character. While the declaration
of the MACRO and SMACRO macros and the han
dling of their calls, once they have been recognized,
are very similar, the actual recognition of the two
kinds of macros is quite different. That is, the
MACRO macro call has the % character to trigger
recognitions while with the SMACRO macro calls
the handling of the recognition is just as though the
macro form had been declared (in LD) as another
construction of the given syntactic type and thus
enjoys all the attendant advantages and disadvan
tages. As an example we can write the first example
above as:

LET N BE lNTEGER
SMACRO MATRIX(N) AS ATTRIBUTE
MEANS'ARRAY(1:N, l:N),

and call the macro via, for example:

... MATRIX(25) WALDO ...

so long as the calling string is in an allowed context
for the (presumed previously defined for Lp) syn-

DEFINITIONAL FACILITIES INTO HIGHER LEVEL PROGRAMMING LANGUAGES 633

tactic type ATTRIBUTE. The macro definition in
Ln of the form

ATTRIBUTE:: = 'MATRIX' '('INTEGER')'

and accompanying interpretation or semantics ac
complishing whatever ARRA Y(...) accomplishes.

As another example of the SMACRO form, sup
pose that Lp has arithmetic expressions (EXPR),
relation operators (RELOP), and relations (RELA
TION) as syntactic types, and also allow ANDing
and ORing of relations, where the syntax for RELA
TION was given as

RELATION::= EXPR RELOP EXPR

with appropriate accompanying interpretation. By
the next recognition of the macro form the parse
stack would be

EXPR RELOP EXPR RELOP EXPR
o < B < 0 I ...
J, J,

PLUS A = 1 PLUSC = 1

and so on.
It is clear that some measure of care must be

taken in the use of syntactic macros and it is im
plicitly assumed here that this kind of tool would
probably be placed only in the hands of a reasonably
sophisticated user. We do, however, submit that the
methods incorporated here for syntactic analysis
would allow not only "catching" but more-or-less
reasonably useful "commenting" upon violations to
the given syntax (via Ln) by poor use of the
SMACRO facility.

By virtue of the particular technique which we
propose to utilize for syntactic analysis it appears
possible, by saving an appropriately encoded repre
sentation of the syntax rules and the precedence
relations for Lp, to handle syntactic macros by "in
cremental compiler changes" if the representation of
the LB program which "runs" the reductions analysis
is as appropriately organized coding for an inter
pretive system.

It would, in principle, be possible to allow the
attachment of more "semantics" to a [macro form]
than just the [defining string]. That is, language Ln
(or LB) fragments appropriately delimited could
presumably be handled along with or in place of the
[defining string] by utilizing the presumed facilities of
the compiling system to reconstruct the compiler
even while it is processing Lp programs containing
LB statements. However, this approach seems prac
tically infeasible and we are led to propose some

"built in macros" to accomplish this function for
some of the more "practical" cases; we will discuss
one of these and mention a few others to give the
flavor.

There is one particular facility which would be
extremely useful and which cannot be handled by
the syntactic macros (except by some real trickery
in defining Lp originally) as defined above, namely
the introduction of new data types. The problem is
that these would necessitate the ability to make ap
propriate symbol table (type field) entries. We thus
propose the following "built in" macro, called via

% DEFINETYPE ([identifier], [syntactic typeD

which associates the given syntactic type code (very
likely a new syntactic type rather than one of the
syntactic type given for Lp) with the [identifier] in
the symbol table.

Given this, plus the ability to "talk about" these
type codes via

LET [identifier] BE [syntactic type]
and

SMACRO [macro form] AS [syntactic type]
MEANS '[defining string]'

we can then deal with definition and manipulation of
new data types. Other built in macros would include
some allowing the augmenting of the symbol table by
new fields and subsequent reference to those fields,
access to and provision for manipulation of those
fields of the symbol tables (or other tables) which
contain data allocation information, and so on. Ref.
13 describes an extensible version of ALGOL-60
based on the ideas in this paper and contains several
elaborate examples of the use of the various macro
facilities.

Computational Macros

The idea of computational macros is quite straight
forward and their use within a compiler is quite
cheap (as compared with the manipulations required
to handle syntactic macros). The idea is this: we may
optionally associate with any Identifier a sequence of
pseudo-instructions (actually a computation tree)
which contain, in general, some formal parameters
as arguments. The completed processing of the "ref
erence" (i.e., the identifier and all the expressions
comprising its actual argument list) can then be fol
lowed by the macro expansion, i.e. the replacement
of the reference by a copy of the computation tree
with each formal parameter argument replaced by
the corresponding (completely processed) actual pa-

634 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

rameter. The computation tree, or macro skeleton,
would be defined by associating with the macro name
(the identifier whose occurrence in a reference will
trigger the macro expansion) the result of syntac
tically analyzing and interpreting an expression *
which is the "defining string" for the macro. Note
here that one difference between the syntactic and
the computational macros is that the defining string
for syntactic macros is not touched until a macro call,
at which time it looks (to within parameter substitu
tion) like raw input; on the other hand, the defining
string for a computational macro is analyzed and
interpreted into a series of pseudo-instructions on
first encounter.

Again, we require three things to handle such
macros: a syntactic augment to Lp to allow the defi
nition of the macros; a mechanism within the syn
tactic analyzer for "recording" the definition; and, a
mechanism for recognizing and effecting the call of
the macro. In the above discussion of the presumed
symbol table contents and the handling of references
we left some connections for handling these macros.
First, let us propose the syntactic augments to Lp, to
wit:

[c-macro-parameter-dec] :: = TAKE [identifier]
{AS [syntactic type]};

[c-macro-definition] :: = MAP
[identifier] {([parameter] {,[parameter]})} =
[expression] {UPON [syntactic type]};

Leaving out the optional AS and UPON parts for
the moment, we assume that the "TAKE [identifier];"
declares the identifier to be a formal parameter for
subsequent definition of c-macros. The identifier in
the MAP is assumed to be a variable (optionally
subscripted) which is declared in the Lp program;
the [parameter]s are formal parameters. (We could,
of course, eliminate the actual declaration of the
formal parameters and let their occurrence in the
MAP definition indicate their formal parameter
hood; subsequent remarks on the optional AS syn
tactic type will show why we have not chosen to do
this.) The expression will be presumed to be any
(arithmetic or other) expressi0n allowable in Lp and
will generally contain occurrences of the formal pa
rameters. The mechanisms are then roughly as fol
lows: The [c-macro definition] causes the expression
to be syntactically analyzed and interpreted, resulting

* Or, more generally, a complete procedure so long as
the procedure returns a value and the code selection phase
of the compiler can cope with full procedure calls where a
variable normally appears. .

in a sequence of pseudo-instructions; the only aug
ment required to the syntactic analyzer is to handle
the formal parameter identifiers occurring by re
placing each with some appropriate descriptor, t a
completely trivial matter. Further, the symbol
table entry for the identifier is set to indicate
that it names a macro and a pointer is inserted
to point to the computation tree produced for
the expression. Assume that any reference say
[identifier] {[,expr] {[,expr]}} is then syntactically
analyzed to produce a "pseudo-instruction" where
the [identifier] descriptor is the "pseudo-operation"
and the [expr] descriptors follow it as "arguments".

Then, noting from the symbol table entry for the
[identifier] that it is a macro, the (macro skeleton)
computation pointed to by this entry is copied with
appropriate replacement of formal parameter de
scriptors by the actual parameters in the manner sug
gested above. In the event that references occur with
in the mapping computation, the mechanism will
recursively expand these, and so on.

As an example, suppose that A, B, G are declared
as 2, 1, 0 dimensional arrays; then a computational
macro for the "mapping functions" for B and A
might be given by:

TAKE I;
TAKE J;
MAP B(J) = J * 2 + G;
MAP A(I,J) = 25*1 + B(J + 1);

The result of processing these might result in symbol
table and descriptor table entries as follows:

Identifier Map Type Macro Pointer

G Normal
B Macro 4
A Macro 15

1: TIMES 71"1 = 2
4: PLUS CD G
7: TIMES = 25 '71"1

10: PLUS 71"2 = 1
13: B @
15: PLUS (j) @

Here7l"j stands for a descriptor of formal parameter
j, circled integers refer to previous pseudo-instruc
tions, = 25, etc. indicates the literal 25, etc. A ref
erence to A(X + Y,Z) then might be parsed to yield:

100: PLUS X Y
103: A @ Z

t e.g. presume a "formal parameter table" (without con
tent) and use table code to indicate formal parameter-hood
and line field to indicate which one.

DEFINITIONAL FACILITIES INTO HIGHER LEVEL PROGRAMMING LANGUAGES 635

and then expanded to yield:

106: PLUS @ ~
109: TIMES = 25 ('[QQ)
112: PLUS Z = 1
115: PLUS @ G
118: TIMES Q!P = 2
122: LOCATE B dB @
126: LOCATE A dA @§)

Here the LOCATE pseudo-instructions indicate a
reference to the data element indicated by the first
argument and where the constant and variable parts
of the displacement from the base of the area con
taining the values for that data element are given by
the second and third arguments.

As another example, consider the following map
ping function which provides contiguous storage for
a 4 X 4 (upper left) triangular matrix M ():

TAKE I;
TAKE J;
MAP M(I,J) = (11-1) * 1/2 + J - 6;

This example raises the whole set of issues to do
with storage allocation (presumably the declaration
of M as a 4 X 4 array would have resulted in 16
words being reserved for it rather than the lOwe
desire), providing, filing, and subsequently obtaining
and incorporating into the compiler the description
of "global" data, and so on. While we cannot go into
these issues here, Ref. 14 describes a rather elaborate
data declaration facility which we have added to a
subset of PLI I, using the computational macro tech
niques described above, and Ref. 13 discusses the
handling of such allocation within the framework of
ALGOL-60.

As a final example which illustrates the use of
computational macros for other than data mapping
applications, consider the following:

TAKE X AS EXPR;
MAP F(X) = SIN(X) + COS(X);

Now let us touch briefly upon the use of syntactic
types in declaring the formal parameters for compu
tational macros and in defining the macros them
selves. First, unless the formal parameters are ex
plicitly syntactically typed we will assume that they
are [integer-expression] s (or the equivalent). This
will allow proper syntactic analysis of mapping ex
pressions, generally the most usual use of computa
tionalmacros. In general, however, it is clear that
syntactic type must be given in order that the expres-

sion (which may be a Boolean or string, etc. expres
sion) can be parsed. As to the use of the UPON
[syntactic type] facility, we will assume that any
given identifier may have a number of interpretations
(e.g. as a floating as well as an integer valued variable
or as a label as well as an integer array name) and
there will be a symbol table entry for each interpre
tation (MAP) with the corresponding "mapping re
lease" syntactic type recorded. A unique interpreta
tion is chosen on the basis of the syntactic type of the
reference by matching this "mapping release" syn
tactic type.

If the control of when references are "expanded"
is vested in some LB action which is called at the
statement or some other level, then a computation
tree can be assembled and the mapping expansion of
the whole tree "fired off" allowing the mapping re
lease type to be matched not only against the syn~
tactic type of the reference but against those of its
ancestors, thus allowing reasonably fine contextual
control of different mappings for the same identifier.
The stack example in Ref~rence 13 illuminates this
notion. .

There is another issue which should be mentioned
but which will not be pursued very far in the present
paper. This is the issue of argument types and num
bers of arguments expected of references as they
relate to the question of selection of proper mapping
(i.e., interpretation). We will presume that the sym
bol table entry for an identifier, expected to appear
with arguments, contains a description of each of
these arguments. It would be desirable (it is actually
done in the system implementing the language de
scribed in Ref. 14) to have an argument matching
involved in the searching and decision making to
select the "proper" interpretation of a given refer
ence. It is possible to envision a table of actual
argument type versus desired argument type contain
ing "degradation factors" (per identifier, per block,
per program, or for all the time) to be applied to the
measure of desirability of each interpretation of a
given reference. Such a table, in conjunction with the
mapping release syntactic type, would provide a
quite sophisticated criterion for the selection of one
from a number of possible interpretations, as well as
allow automatic specification of argument conver
sions, and so on.

It should be remarked that to properly handle such
schemes it is desirable to introduce the idea of
syntactic classes into the syntax language· to allow
"grouping" of syntax categories without change of

636 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

syntactic type. For example, using: =: to denote a
syntactic type as, really, a class, we would interpret

EXPR : =: INTEGEREXPR I REALEXPR
I STRINGEXPR I etc.

ARGLIST :: = EXPR {',' EXPR}

as allowing an ARGLIST of different kinds of ex
pressions each retaining their peculiar syntactic
types, in order that subsequent inspection of the ele
ments of the list as arguments would have the
"proper" syntactic type for inspection (to save de
scending into the computation tree to "dig out" the
real type).

CONCLUSION

Let us briefly reiterate the point of view which this
paper has developed. We have proposed a compiler
model, a compiling system, and two programming
languages, LD and LB, with which a particular com
piler should be more-or-less readily constructable
and which result in a program whose efficiency is
determined largely by the trouble we choose to take
in providing an optimized translation * of language
LB' We have further suggested three types of defini
tional facilities which will provide the user with a kit
of tools to extend a given language to more closely
mirror the natural means of exposition in the appli
cation area in which he is involved. We want particu
larly to emphasize that extensions to the user's lan
guage need not be based entirely on exploitation of
the macro facilities. Indeed, we have left two han
dIes: the ability to' add new built in macros and the
ability to fall back to language Ln and rewrite (some
portion of) the compiler. Given that the pseudo
operations available provide adequate primitives for
representing the extensions desired (and that the
optimization and code selection facilities are ade
quate) this latter facility should be useable by users
-not just by compiling system buffs.

As to the status of the various languages, transla
tors, and other facilities discussed in this paper, we
do not, at this time, have in hand a complete system
with a compiler for some user programming lan
guage augmented by all three kinds of macro facili-

* Clearly, the development of more and more optimal
translators for LB given, initially, a reasonably straight for
ward tran~lation into. "coding" for an interpretive system, is
a task WhICh can proceed in parallel with the development
of compilers via programs in LD and LB. The effect on the
user should be no more than the fact that his compilations
may go faster.

ties. On the other hand, these proposals are not
merely represented as flights of our fancy, to wit:

1. A compiling system called TRANGEN,
and a realization of LB, called TRANDIR,
have existed for some years (and gone
through five major language changes and
system implementations) .6,7 The TRAN
DIR/TRANGEN facilities have been used
for a number of compilers (PL/l, AL
GOL, TRANDIR, FORTRAN IV, a data
description language, etc.) on a number
of computers (lBM-7094, CDC-l 604,
GE-635, M-'-49 0, etc.) .
2. A ("reference" language) version of
language LD has existed for some time 11

and has been used to translate, by hand, a
specification of a language LD description
. of an Lp into a reductions analysis pro-
gram in TRANDIR.
3. Text macro facilities are currently avail
able (but not necessarily "hooked in" to a
compiler) .1,2

4. Computational macros have been uti
lized in a number of compilers; indeed we
have developed a number of data descrip
tion languages based on this idea.14

Finally, we ought to remark very briefly on the
relation of the SMACRO macro facilities proposed
herein to the "definitions in ALGOL" proposed by
Perlis and Galler 5 since their proposal is, to our
knowledge, the oilly scheme of any generality de
scribed in the literature for syntactic macros. Our
two approaches would appear to be reasonably simi
lar. The main differences seem to be three: first, they
restrict the syntactic categories which will admit ex
tension to [block head], [type], [assignment state
ment], [arithmetic expression], and [Boolean expres
sion], while we have not adopted such restrictions;
secondly, their [macro forms] (our terminology) are
more powerful than those proposed here in that they
can accommodate multiple instances of the formal'
parameters in the [macro form] (meaning multiple
occurrences of exactly the same structure in the
macro call) because they use a "tree matching"
scheme for recognizing the macro call while we use
matching of (effectively linear) syntactic construc
tions; thirdly, our [ma~ro form] is more powerful
than theirs in that we allow the use of arbitrary syn
tactic types as parameters of [macro forms] and use

DEFINITIONAL FACILITIES INTO HIGHER LEVEL PROGRAMMING LANGUAGES 637

these in recognizing a macro call, while they do not
ascribe syntactic type to their formal parameters.

In conclusion, it is our very strong feeling that
languages with powerful definitional facilities must
be placed in the hands of users. Indeed, the appro
priate representation-something natural to the in
dividual-of a problem (or solution) has more to
do with the issue of solving problems than merely
providing a nicety. To those who question this posi
tion, I suggest the following problem in long di
vision:

XLVI I MCXXIV

REFERENCES

1. C. N. Mooers, "TRAC, A Procedure Describ
ing Language for the Reactive Typewriter," Com
munications of the ACM, March, 1966.

2. C. Strachey, "A General Purpose Macrogen
erator," The Computer Journal, October, 1965.

3. C. J. Shaw, "A Specification of JOVIAL,"
Communications of the ACM, December, 1963.

4. "IBM Operating System/360, PL/l Language
Specifications," IBM Systems Reference Library,
Form C2S-6571-2, January, 1966.

5. B. A. Galler and A. J. Perlis, "A Proposal for
Definitions in ALGOL," to appear in Communica
tions of the A CM.

6. R. Bolduc, et aI, "Preliminary Description of
the TGS-I1 System," Document CA-640S-0111,
Computer Associates, Inc., September, 1964.

7. T. E. Cheatham, Jr., "The TGS-I1 Translator
Generator System," Proceedings of the IFIP Con
gress, 1965, Spartan Books, Washington, D.C.,
1965.

S. T. E. Cheatham, Jr., and K. Sattley, "Syntax
Directed Compiling," AFIPS, volume 25, SJCC,
Spartan Books, Washington, D.C., 1964, pp. 31-57.

9. R. W. Floyd, "Syntactic Analysis and Operator
Precedence," Journal of the ACM, July, 1963.

10. N. Wirth and H. Wieber, "EULER: A Gen
eralization of ALGOL and its Formed Definition:
Part I," Communications of the ACM, January,
1966.

11. T. E. Cheatham, Jr., "The Theory and Con
struction of Compilers," (Notes for AM 219R, Har
vard University, Spring, 1966) Document CA-
6606-0111, Computer Associates, Inc., June, 1966.

12. R. R. Fenichel, "An On-Line System for
Algebraic Manipulation," Ph.D. Dissertation, Har
vard University, July, 1966.

13. T. E. Cheatham, Jr., "ALGOL-E, An Exten
sible Version of ALGOL-60," in preparation.

14. C. H. Christensen and R. W. Mitchell, "Ref
erence Manual for the NICOL 2 Programming Lan
guage," First Edition, Computer Associates, Inc., in
preparation.

FOUNDATIONS OF THE CASE FOR NATURAL-LANGUAGE
PROGRAMMING

Mark Halpern

Lockheed Palo A Ito Research Laboratory
Palo Alto, California

Few things worth saying can at once be said clearly; and
whereof one cannot yet speak clearly, thereof one must
practise speaking.

-Wittgenstein renovated

INTRODUCTION

A running debate, mostly subterranean, has long
been going on over the suitability of natural lan
guage for use as a programming language. From
time to time the debate surfaces in the form of sharp
exchanges at technical conferences and strong letters
to the journals, but these casual encounters have
been insufficient even to make clear to the general
reader what the issues are, let alone to resolve them.
The absence of open and lively debate between
those who favor and those who oppose natural-lan
guage programming has left the problem to be dealt
with by each language designer as best he can, with
out benefit of others' experience and ideas. Two op
posite but equally undesirable ways of handling the
conflict are in common use: one is a mutual turning
of backs by the two parties, as may be seen in the
increasingly wide gulf between research and practice
in the design of programming languages; the other is
a tendency toward superficial, makeshift compro
mise, with the usual result of satisfying no one. The
possibility that the issues underlying the controversy

639

are too fundamental to allow any useful exchange
between the two parties cannot be dismissed, but it
seems worth some effort to find out; the result
should be at least a clearer idea of what we are
disagreeing about.

The root issue may be put roughly this way: one
school believes that a programming language need
not and should not have its form dictated by the fact
that it is in some sense addressed to a machine, but
should be very close to the language its intended
users ordinarily employ in their work, apart from
the computer. The other school believes that the fact
that a programming language is addressed to a ma
chine is the inescapably decisive force in determin
ing its shape, and that such a language will almost
certainly be quite different from those in use be
tween man and man. The first or "natural-language"
school is often considered to be advocating the use
of plain English as a programming language. This
characterization, true so far as it goes, is a
simplification of their position that is liable to seri
ous misinterpretation; it may easily be taken to
mean, for example, advocacy of languages like CO
BOL, which it does not. The second or "calculus"
school (as we shall call them) see programming lan
guages as needing a massive infusion of the rigor,
precision, and economy exhibited by mathematical
notation. Its members often suggest that a language

640 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

with these qualities would amply repay its users for
their trouble even if it were not implemented on a
computer, because it would give them for the first
time a proper representation of their procedures. *

There is no quarrel between the two schools over
how to call for numerical computation; they agree
that the algebraic notation commonly offered by
compilers is right for that purpose. Their agreement
on this point, however, represents no new insight on
either side, but only a happy coincidence of preju
dices: in mathematical (and symbolic-logical) nota
tion we have the one language that is both a natural
language, in the sense defined above, and a calculus.
The dispute over almost all other computer applica
tions continues. In this dispute the writer makes no
pretense to neutrality; this paper, as its title indi
cates, is an attempt to lay the foundation for a case
in favor of natural-language programming. In doing
so, however, we will have almost as much occasion
to take issue with others favoring that cause as with
those opposing it, for we of the natural-language
party have been remiss in developing and presenting
our ideas, and have been guilty of perpetuating a
number of errors.

THE PROBLEM-WHAT IT IS
AND WHAT IT ISN'T

It is of the utmost importance to correctly identify
the problem that natural-language programming is
being proposed to deal with. A number of the pro
posal's critics have pointed out that by far the
greater part of the effort that goes into programming
lies in the analysis of the problem and the design of
the algorithm, making the question of what notation
the algorithm is finally expressed in relatively unim
portant. t This point is not always valid, we suggest,

* Occasionally there are signs that pedagogical and moral
istic considerations enter into the ca1culists' thinking, as
when H. Zemanek says "we do not want the easy applica
tion that a natural language offers because the user would
then not reflect enough on what he instructs the machine
to dO."l There is a hint here of satisfaction at the discipline
imposed by the computer on its users; some suggestion that
easy, natural-language access to it would be a tragic waste
of the opportunity it offers to straighten out the confused,
woolly thinking of nonmathematicians. In other contexts,
of course, the boast of the mathematician is that his nota
tion spares him from thinking about what he is doing,
allowing him to develop his argument by purely formal
manipulation, to avoid the trap of assigning a meaning-a
physical interpretation-to intermediate results, and to ven
ture into realms of abstraction where "meaning" in this
sense has no meaning.

t See, for example, the discussion appended to Ref. 2.

even for professional programmers-in many rou
tine applications, the filling up of the coding form
may take more time and effort than the design of
the algorithm, which may in fact be done in the
programmer's mind as fast as he codes. But even if
the critics' point were always valid, it is irrelevant to
the problem for which natural-language program
ming gives promise of being a remedy. The problem
we have in mind is that very many computer cus
tomers are perfectly capable of performing the hard
part of programming-the analysis of their problem
and the design of an algorithm to deal with it-but
are frustrated as potential programmers by their un
familiarity with the easy part-the exact form of the
currently acceptable programming languages. We
can agree with the critics that this is for professional
programmers often the trivial part of their total
task; all the more intolerable, then, that it should be
for so many thousands of highly-trained (but non
programming) professionals a practically insur
mountable barrier between themselves and the ma
chine. These people find it as a rule impossible to
practice their own demanding disciplines and also
master the myriad details of the programming sys
tems nominally available to them; as a result, they
are dependent on professional programmers. These
latter are growing ever scarcer relative to both avail
able computing power and the number of potential
customers for it. The problem of the programming
language barrier, then, may be a trivial one to [he
professional programmer, but its practical impor
tance to many others would be hard to exaggerate.

ENGLISH, ACTIVE AND PASSIVE

"Natural-language" programming, it cannot be
too strongly emphasized, means programming in
whatever terminology is standard for the application
in question; this is not necessarily the ordinary Eng
lish vocabulary. (As we noted earlier, the natural
language for numerical computation is algebraic no
tation.) These pages are largely devoted to that par
ticular natural-programming language that is ordi
nary English because doing so puts the issues
involved in the sharpest relief.

One reason why it can be dangerously misleading
to talk about "English-language programming" is
that the speaker usually has in mind active English,
while the listener understands him to mean passive
English. The difference between them is critical, and
confusion on this point is fatal to any possibility of

THE CASE FOR NATURAL-LANGUAGE PROGRAMMING 641

understanding. Passive English is a language that
reads sufficiently like English so that almost anyone
with some idea of the application involved can un
derstand a procedure described in it, but only those
trained in its use (and, usually, with ready access to
a manual) can write it. The COBOL language is an
example of passive English. Its "natural" appear
ance to the reader of a listing gives little hint of the
difficulties of writing it, and the misguided reader
who supposed from that appearance that he could
use the language without training and reference to a
manual would soon discover that it had all the trick
iness of any programmers' language.

An active English programming language would
permit the free use of a subset of natural English for
the writing of programs, the subset being open-end
ed and limited only by those constraints inherent in
the application, not by any arbitrary decisions of the
system designer's. This means that users would be
offered not a fixed number of stereotyped statements
to be used exactly as given in the manual except for
the replacement of dummy operand names by actual
ones, but a stock of words that may be used in any
reasonable, straightforward way, and altered or ex
panded as necessary. No example of this facility can
be cited among operational programming systems. *

The distinction is a critical one because the two
kinds of English, similar though their appearance on
a listing may be, are as far apart in suitability for
the role of programming language as can be imag
ined. For passive English there is simply nothing
good to be said. Combining the wordiness and noisi
ness of a natural language with the rigidity and arbi
trariness typical of programming languages, it exhib
its the worst features of both and the virtues of
neither. (The readability of a COBOL listing is val
uable, but has nothing to do with the use of English
as a source language; a processor can easily be
made to produce such documentation regardless of
the input notation.)

English can be justified as a programming lan
guage only if it is active. (We shall mean active
English when we use the term "English" in what
follows.) When it can be used actively, its potential
importance is immense: it could make programming
just enough easier to let many who are now depend
ent on the services of a professional programmer get

* The writer and a group of associates are engaged in an
effort to realize such a system,3 and a few projects reported
on in the literature seem to share our approach, in spirit at
least.4 ,5

at the machine directly. As we noted earlier, the
growth of the computer's· availability to greater
numbers of users is now and for the foreseeable fu
ture communication-limited, and every promising at
tack on this constraint should be energetically
pressed. The number of people able and willing to
make programming their life's work is probably al
ready near its limit; we can no more expect a
professional programmer to be available to everyone
who needs the computer than we can provide a
chauffeur to everyone who needs a car. And even if
programmers were plentiful, there will always be
many for whom no amount of professional help
would be as satisfactory as direct contact. t

TRANSLATION vs COMPREHENSION

The other great distinction that must be made,
just as important as the one between active and pas
sive language, is that between translation and
comprehension of natural language by computer.
Many of the skeptics about natural-language pro
gramming are mistakenly supposing that the proc
essing difficulties it would involve are as formidable
as those that have made fully automatic translation
of (for example) Russian to English so elusive. But
there is a radical difference between translation-the
conversion of one natural language to another-and
comprehension-the execution of a procedure de
scribed in a natural language. Translation systems
treat natural-language statements as data; compre
hension systems treat them as commands. In the
former the user talks to another human through the
computer, which is programmed to perform on
Russian-language input a transformation under
which all information-bearing features of the text
are preserved, only their representation undergoing
change. The difficulties in doing this are too notori
ous to need any discussion here. 6

In a comprehension system the user talks to a
computer in order to generate coding or to parame-

t The suggestion has been made that the programming
problem might be sidestepped by systems that would take
the initiative in the man-machine dialogue, presenting to
the user at each step a number of alternatives from which
he would select one. This technique has its uses, but these
seem to be limited to cases where the number of logical
alternatives is nowhere greater than about six. Its area of
practical application, therefore, is not in the programming
of new procedures, but the parameterization of existing,
general procedures such as the report-program generator.
For broader applications, the CRT screen would have to
show the equivalent of a conventional programming manual
at each step.

642 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

terize existing coding; the required processing of
source statements, as compared with that demanded
by translation, is simple and straightforward. There
are two saving graces in comprehension: one is that
the user painlessly forgoes practically all the natural
language features that offer great difficulty. Users of
such systems do not care to chat idly with the ma
chine; they want to give data and order that certain
procedures be performed on that data. (The proce
dure specifications may be couched as questions or
requests, but are commands nonetheless.) The syn
tactic complexity of the statements they will want to
make is, accordingly, unlikely to be great. Similar
considerations suggest that the vocabulary to be
dealt with should be within the powers of a realiza
ble system. Users will address such a system within
the framework of some particular application, and
this is a powerful force for elimination of ambiguity,
since it is not often that terms are ambiguous within
the vocabulary of a single discipline.

The other saving grace is that the general form of
the target language-machine language-is a fixed
one, independent of that of source-language state
ments, and known in advance to the processor. The
comprehension process is therefore a restricted
many-to-one transformation, not an indefinitely
many-to-indefinitely-many mapping such as transla
tion. The man-machine communication channel
offered the user by a comprehension system may be
thought of as an ear trumpet worn by the computer,
with a wide but well-defined mouth toward the user,
and a rather fine-meshed filter somewhere down
stream of that mouth.

The practical promise of such a system lies in the
indications that the necessary constraints, while
powerful enough to spare the comprehension system
the most formidable of the problems facing a trans
lation system, * are in no way arbitrary; they should
leave the user feeling unimpeded, since they prevent
him from doing only what he is little tempted to do
in any case. The grotesque sentences that are regu-·
larly exhibited in papers on mechanical translation
to show how profoundly ambiguous English can be,
featuring labyrinthine syntax and words with five
meanings (each of which suggests an entirely

* Substantially the same distinction is made by D. M.
MacKay.7 He is chiefly interested in making clear the inade
quacy of what is here called comprehension for completely
general communication with the computer, but agrees with
us that the "nonlinguistic" treatment of linguistic tokens we
propose is sufficient "to enable the computer to accept data
and answer questions in verbal form."

different interpretation of the whole) -these have
no bearing on the present problem. None of these
features is at all likely to appear in a statement com
posed by a serious worker trying to enlist the com
puter's help in solving a problem; if once in a great
while they do, the system will be doing him a favor
by rejecting it.

Further, such a system offers the possibility of a
programming language that includes all the semantic
and syntactic resources that the users of an applica
tion-oriented procedure would naturally employ in
invoking it. The building of such a language would
be largely done by users themselves, the processor
being designed to facilitate the admission of new
functions and notation at any time. The user of such
a system would begin by studying not a manual of a
programming language, but .a comparatively few
pages outlining what the computer must be told
about the location and format of data, the options it
offers in output media and format, the functions al
ready available in the system, and the way in which
further functions and notation may be introduced.
He would then describe the procedure he desires in
terms natural to himself.

The system's ability to immediately comprehend
(i.e., compile correctly from) his description could
be guaranteed only if he restricted himself to those
constructions and that vocabulary already intro
duced to it, and while these conditions will usually
be met without conscious effort by any user who has
had a few earlier contacts with the system, this high
probability of immediate success is not what the sys
tem finally depends on. Its real strength is its perma
nent readiness to be introduced to new notation,
even by ordinary users who are by no means profes
sional programmers. The substitution of linguistic
open-endedness and cumulative improvability for a
fixed notation (whether passive English or a formal
calculus) should go far to relieve many users of dai
ly dependence on professional programmers, and in
doing so generate a new wave of applications.

OBJECTIONS AND COUNTERPROPOSALS

With this understanding of what "natural-lan
guage programming" means, we are prepared to ex
amine the controversy over it. The richest source in
print of arguments against it seems to be the writ
ings of Professor E. W. Dijkstra (of the Mathe
matics Centre, Amsterdam), who has expressed his
opposition vigorously, lucidly, and at substantial

THE CASE FOR NATURAL-LANGUAGE PROGRAMMING 643

length. We will draw heavily for diabolical advocacy
on two publications of his; 8,9 the first of these is a
letter that seizes the occasion of the appearance of a
report on the MIRF AC 10 system to attack the en
tire natural-language concept.

The heart of the case Di jkstra makes against na
tural-language systems is that there is a sharp and
ineradicable contrast between human and mechani
cal response to instructions:

If we instruct an "intelligent" person to do
something for us, we can permit ourselves all
kinds of sloppiness, inaccuracy, incompleteness,
contradiction, etc., appealing to his understand
ing and common sense. He is not expected to. per
fo.rm literally the nonsense he is ordered to. do;
he is expected to. do what we intended to. order
him to do. A human servant is therefore useful by
virtue of his "disobedience." This may be of some
convenience for the master who. dislikes to express
himself clearly; the price paid is the non negligible
risk that the servant performs, on his own account,
something co.mpletely unintended.

If, ho.wever, we instruct a machine to. do some
thing we sho.uld be aware of the fact that for the
first time in the history of mankind, we have a
servant at o.ur disPo.sal who. really does what he
has been told to. do. In man-computer communica
tion there is not only a need to be unusually pre
cise and unambiguous, there is-at last-also. a
point in being so, at least if we wish to obtain the
full benefits of the powerful o.bedient mechanical
servant. Efforts aimed to. conceal this new need for
preciseness-for the supposed benefit of the user
will in fact be harmful; at the same time they will
conceal the equally new possibilities in automatic
co.mputing of having intricate processes under
complete control.

The picture Di jkstra draws of man addressing ma
chine is in fact quite unrealistic, and the oversight
he commits explains much of the misunderstanding
between him and those whose views he is attacking.
(For that matter, the latitude that he thinks permis
sible in giving orders to humans would be astound
ing to an army officer, doctor, or anyone with expe
rience in directing men in the performance. of
complex procedures.)

The nature of machines and their response to in
struction is not properly at issue, because program
mers practically never address machines directly;
they address programming systems, which act as
buffers between them and the less amiable charac
teristics of computers. These systems already permit
many users to disregard for almost all purposes the
particular model of computer on which their pro
grams are to run, and there is every reason to think
them capable of much further development in the
direction of liberating the programmer from concern

with the purely mechanical, should we decide to.
Any appeal to the characteristics of naked machin
ery, then, begs the question; the effective machine,
the machine as it is known to almost all program
mers, is very nearly whatever we want it to be-and
what we should want is a philosophical, not a tech
nical, question.

REDUNDANCY

One of the ways in which the bare computer's
demand for precision and explicitness can be
mollified is through one of the very characteristics of
natural language that calculists most abhor: redun
dancy. In many other technologies, the word "re
dundancy" is an honorable one, standing for a
means to reliability. Electronic circuits, mechanical
structures, communication channels, and hydraulic
lines are made doubly and triply redundant, and
users are rewarded by diminishing failure rates; why
should this technique have been so unsuccessful
when applied to programming? The answer, of
course, is that it has not been unsuccessful, merely
untried. We have long been playing a game that
might be called "But Don't Tell the Computer!", the
point of which apparently is to see how little infor
mation we can give the computer and still get some
output. If we tell the same thing twice to one of the
programming systems designed to play this game, or
tell it something it does not demand to be told, it
not only fails to avail itself of the possibly vital in
formation being offered, but may well gag, stop
compiling, and disgorge a core dump at us. What is
loosely called redundancy in programs is taken sim
ply as noise by today's systems, when they accept it
at all; no system in common use today is capable of
profiting from real redundancy. Programming sys
tems that know how to use redundancy would re
ward programmers with the same resistance to mi
nor failure other redundancy-exploiting systems
exhibit, using the extra information offered it at one
place to compensate for minor omissions and incon
sistencies elsewhere in the program. As a trivial ex
ample for those to whom this notion is utterly for
eign, consider a program unit that contains two
statements implying that the value of X is A, and
one that implies its value is B; the conventional sys
tem either fails to notice the contradiction and
proceeds to compile a faulty program, or notices it
and merely throws the problem back at the pro
grammer. A system capable of using redundancy

644 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

would use majority-decision logic to conclude that
X's value should probably be A (and would, of
course, notify the programmer of its assumption).

Dijkstra's attitude toward redundancy is a mixed,
even a troubled one. He is here as elsewhere more
thoughtful than most of the calculus school in seeing
some positive value in it, but differs sharply from
our position because he judges it solely as a device
for optimizing the object program's use of space or
time, rather than as a means of improving man-ma
chine communication. Judged by the criterion he
employs here, redundancy is clearly a tricky thing,
perhaps better avoided; if it can sometimes improve
the object program, it also complicates the processor
and consumes translation time. He accordingly con
cedes it some value, but warns:

... if the redundant information is to be a vital
part of the language, the defining machine must
take note of it, i.e., it must detect whether the rest
of the program is in accordance with it and this
makes the defining machine considerably more
complicated.

and later adds:

But we can hardly speak of "good use of a com
puter" when the translator spends a considerable
amount of time and trouble in trying to come to
discoveries that the programmer could have told it
as well!

His final position is that redundancy is permissible,
but is to be kept optional; optional not only in that
programmers need not use it, but in the deeper
sense that processors need not use if it offered, and
should not require it to produce good object pro
grams.

Given his premises, Dijkstra's conclusions are un
avoidable-but those premises are questionable, and
Dijkstra himself, as will be shown, questions them
by implication elsewhere in the same paper. The
rule suggested by the second of the above-quoted
remarks, that the processor should be spared any
thing the programmer can do for it, is absurd if tak
en literally; unless checked by some superior princi
ple, it cuts the ground from under all software. But
Dijkstra does not, of course, intend this; he has on
an earlier page rebuked those who by "good use of
a machine" mean simply use that is economical of
time and space, saying:

I have a suspicion, however, that in forming their
judgment they restrict themselves to these two
criteria, not because they are so much more im
portant than other possible criteria, but because
they are so much easier to apply on account of
their quantitative nature. . . . there is sufficient

reason to call for some attention to the more im
ponderable aspects of the quality· of a program
or of a programming system.

He concludes this section of his paper by saying,
in words with which the present writer is thoroughly
in accord: "in the last instance, a machine serves
one of its highest purposes when its activities
significantly contribute to our comfort."

This is the superior principle that provides
justification for the use to which we would put re
dundancy, as it does for the existence of software in
general.

WHA T CALCULUS, AND WHY?

Dijkstra aligns himself with Professor John
McCarthy in calling COBOL "a step up a blind al
ley on account of its orientation towards English
which is not well suited to the formal description of
procedures." It should be noted in passing that we
are in agreement with McCarthy and Dijkstra in
thinking the COBOL language unsatisfactory, but
for reasons diametrically opposed to theirs: what we
see as wrong with it is precisely its lack of "orienta
tion toward English"; the COBOL language, as a
passive subset of English, is as unacceptable from
our point of view as from theirs. Dijkstra says of
such languages that "giving a plausible semantic in
terpretation to a text which one assumes to be cor
rect and meaningful, is one thing; writing down such
a text in accordance with all the syntactical rules
and expressing exactly what one wishes to say, may
be quite a different matter!" 11 His diagnosis of the
trouble with passive systems is astute, but the cure
(insofar as language can offer one) is to make the
program easier to write, not harder to read.

The calculus school would undoubtedly regard ac
tive English as even less suitable for the "formal
description of procedures" than the passive type;
what they strikingly fail to say is what language
would be suitable for that purpose, and what pro
grammers would be capable of using it. It seems
clear that whatever the calculus school has in mind
for programmers, it is something far more rigorous
and succinct than they now use, something much
closer in spirit to mathematical notation-Mc
Carthy's use and Dijkstra's citation of the omi
nous phrase "formal description" is probably
sufficient indication. The belief of the calculists that
mathematical notation constitutes a distinct language
that makes substantive error harder to commit (or

THE CASE FOR NATURAL-LANGUAGE PROGRAMMING 645

easier to find) is simply unfounded, however. The
calculists have overlooked or forgotten the ancestry
of their notation: both historically and logically,
mathematical notation is an encoding of a subset of
natural language, and is not an independent lan
guage. * The elementary operations and operands of
mathematics can only be defined in one of the natu
ral languages; more elaborate operations and oper
ands are defined in terms of the elementary ones
(and, where necessary, further natural-language
definitions) . If English is incorrigibly imprecise,
then all mathematical notation is congenitally infect
ed with that imprecision, for English is the ground
from which it sprang and to which it still returns at
frequent intervals for support.12

Mathematical notation is, in fact, nothing more
than a shorthand t that facilitates the very compact
graphic expression of natural-language statements
belonging to a certain special universe of discourse.

* A language is the direct symbolic representation of an
original and independent an atomization of experience into
objects of interest. As such, it almost certainly will not map
perfectly into any other language-as French, for example,
cannot be mapped element-for-element into English. A code
is a derivative representation, artificially created through
the application of some transformation to a language or
subset of one. This derived representation has a completely
determinate relationship to the language from which it
derives, and neither adds to nor subtracts from it any in
formation. Its practical advantages may be great, but
whether these lie in economy, security, or convenience, they
do not spring from the code's supposed superiority as a
representation of reality, but from its intrinsic properties,
such as brevity, secrecy, or mnemonic power.

t Many mathematicians claim for their notation a con
siderable heuristic power, crediting it with suggesting to
them relationships and developments they might otherwise
have missed. Their notation clearly has such power for
practitioners steeped in its use, but it is hardly unique or
even highly unusual in this. Poets, for example, have testi
fied that they often find a line or word they have just writ
ten suggesting a successor that would not have occurred
to them but for some feature of their "notation"-rhyme,
alliteration, pun, etc. The point is that any notation, indeed
any tool, whose user is saturated in it comes to be so much
a part of his nature that it seems sometimes to work of its
own accord. While there remain better and poorer nota
tions, then, the distinction between them does not hinge on
this common property of seeming to come alive in an
experienced user's hand.

Not only is it useless as a differentiator between good
and bad notations, but its value as a means of arriving at
significant results in mathematics has been questioned at
the highest level. Gauss, for example, had occasion to re
prove his contemporary, Waring, for inordinate emphasis
on the heuristic value of notation: Waring had said of cer
tain theorems that they were very hard to prove because of
the "absence of a notation to express prime numbers."
Gauss, himself the inventor of the standard sign for the
congruence relationship, replied sharply that mathematical
proofs depend on notions, not notations.13

In principle, all mathematical discourse could just as
well be carried on in the ordinary vocabulary of
which that notation is simply a condensed represen
tation. In practice, the notation is indispensable be
cause it permits the expression in graspable form of
propositions that, expressed verbally, would be too
tenuous, too rarefied and linear to be apprehended
as coherent wholes.

But such propositions so expressed do not in
practice form the fabric of mathematical arguments.
The notation as it is actually used in mathematical
papers is more a medium for the presentation of
intermediate results, while the burden of exposition
is invariably carried by a prose narrative typically
starting "Let L1 be a . . ." and ending ". . . which
completes the proof." The equations and other sym
bolic expressions embedded in the prose serve to
record and isolate for possible inspection the impor
tant milestones along the way; their study is seldom
necessary for comprehension of the argument, and
unless the reader suspects an error in formal manip
ulation he will not dwell on them. Supporting this
observation is the fact that a non-Russian-speaking
mathematician will generally be unable to read a
paper in a Russian mathematical journal. That
mathematicians need to learn foreign languages or
employ translation services just ; as much as any
other scientists shows that little of the meaning of
even the most formal mathematical discourse is car
ried by the internationally accepted notation of the
discipline.

Insofar as the call for a programming calculus is a
demand that any programming insights we manage
to achieve should be, as far as possible, incorporated
into our programming tools, it is unexceptionable.
But we must beware of assuming that mathematical
notation is analogous to programming notation when
it is only homologous to it; if we are to compare
things of like function rather than things merely of
like form, the parallel between them breaks down,
since they play different roles in their respective
worlds. Any analogy between programming and
mathematics then, is hazardous (to the extent that
mathematical notation has an analog in program
ming, it would be the "comment" facility offered by
most programming systems) .

Consider, for example, just these two differences:

1. Mathematical objects are imaginary
and arbitrary; programming objects
are, in general, real and given. A
mathematical object is created by fiat,

646 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

and has exactly and only those quali
ties that are given it explicitly (and
those logically implied by them). The
objects of ultimate interest in program
ming, other than the special subset that
are also mathematical, preexist in na
ture, and can neither be altered nor
exhaustively described.

2. Mathematical goals are flexible and
opportunistic; programming goals are
fixed and predetermined. If a mathe
matician trying to prove an intuitively
obvious theorem finds it not merely
impossible to prove true, but in fact
demonstrably untrue, he is far from
disappointed; he has a much more im
portant result than he was trying for.
A programmer unable to reach his
original goal is simply a programmer
defeated.

These differences are so fundamental and far-reach
ing that any argument founded on the resemblance
between a proof and a program should be held sus
pect; it is particularly likely to be specious if it as
sumes that that resemblance implies an identity of
goals, methods, or problems in the procedures that
underlie the two.

These remarks, it should be needless to say, are
not offered as a definitive treatment of the many
problems-linguistic, psychological, metamathemati
cal-that they touch upon. They are intended only
to suggest that there are more and deeper issues in
volved in the notational question than are covered in
the usual easy antithesis between natural sloppiness
and formal precision, and that it is far from clear
that a formalism patterned on mathematical notation
is the answer to any burning problem in practical
programming.

CONSEQUENCES FOR DEBUGGING

Each of the two schools of thought claims that
the adoption of its proposed type of language would
make for a significant advance in debugging,
whether by making errors harder to commit or eas
ier to find. Gawlik, in the paper that incited Dijkstra
to the writing of the letter we have been quoting
from, claimed for MIRFAC that programs written
in it could be checked for correctness by anyone
who understood the problem, even if he knew noth
ing of programming:

MIRF AC has been developed to satisfy the basic
criterion that its problem statements should be in
telligible to nonprogrammers, with the double aim
that the user should not be required to learn any
language that he does not already know and that
the problem statement can be checked for correct
ness by somebody who understands the problem
but who may know nothing of programming.10

Dijkstra, as we have seen (in the preceding sec
tion) , rejects this contention, but says in outlining
his own ideas on language design:

In particular I would require of a programming
language that it should facilitate the work of the
programmer as much as possible, especially in the
most difficult aspects of his task, such as creating
confidence in the correctness of his program.14

Both parties, then, beneath their conflict over nota
tion, agree that a good language would go far in
helping programmers with debugging; both, we
think, are wrong.

There are two kinds of error one can make in
writing a program: the formal and the substantive.
The formal errors result from infractions of rules for
using the language; in another familiar nomencla
ture, they are known as syntactic errors. Substantive
errors are those that prevent the procedure embod
ied in the program from solving the problem-either
because it does not really say what the programmer
intended, or because what the programmer intended
is wrong. It is clear that the debugging advantages
claimed for their language types by Gawlik and
Dijkstra alike must be limited practically exclusively
to the formal errors. Neither claims that a language
of the type he proposes would make it impossible to
mistake the problem or misstate its solution. Even
the weaker claim that they would make the detec
tion of these substantive errors significantly easier
cannot be allowed; it is a common experience
among programmers to desk-check their programs
for hours, only to find that they have repeatedly
passed as correct an error they will later call "ob
vious," recommitting at each iteration the mental
lapse that gave rise to the error originally. The
suggestion that the programmer should have a col
league check his program is unrealistic; it amounts
to nothing less than a demand that each problem be
programmed twice, since an independent checker is
useful only if he is, at least mentally, programming
the problem in parallel as he reads the original.

But the formal or syntactic errors which both par
ties in this controversy promise to eliminate or mini
mize are by far the less important class of errors in
a compiler-language program, and many processors

THE CASE FOR NATURAL-LANGUAGE PROGRAMMING 647

already offer detection of all such errors in the first
compilation of the program, so even if the promised
advantage should materialize, it will not be worth
giving up much to get. Dijkstra's own words support
our position. In a later passage from the paper cited
above, he recognizes the two kinds of error de
scribed here, and grants that only a response from
the party addressed (human or mechanical) can re
veal substantive error, but he then unaccountably
dismisses this genus from consideration as if it were
either negligible or irremediable:

. . . we badly need in speakin.g the feed back,
known as "conversation." (Testing a program is
in a certain sense conversation with a machine,
but for other purposes. We have to test our pro
grams in order to guard ourselves against mis
takes, which is something else than imperfect
knowledge of the machine. If a program error
shows up, one has learnt nothing new about the
machine--as in real conversation-one just says to
oneself, "Stupid!")15

The self-directed cry of "Stupid!" is a familiar one
to programmers; it is traditionally uttered after long
searching of dumps and listings for a clue as to why
a syntactically perfect program ran wild or gave
wrong answers. And it is in finding these substantive
errors, and not those that any compiler will pinpoint
on the first run, that the programmer desperately
needs help. Since no one has shown how a wise
choice of source language offers any help to speak
of in dealing with substantive error, we conclude
that debugging is not an important consideration in
the design of a programming language, or in choos
ing one from among others on the same logical lev
el.

This is not to say that nothing can be done to
help programmers with their debugging problem; we
have elsewhere described what a properly designed
programming system can do in that regard.16 For the
problem of ensuring that the procedure to be exe
cuted is formally correct, without loose ends or in
consistencies, the most attractive solution so far is
the rigorous tabulation of the decision rules implicit
in the procedure. With such a tabulation, the detec
tion of this important subclass of errors can be re
duced to the mechanical checking of a table for
completeness and consistency, and such a repre
sentation of the procedure can even be used directly
as computer input.17 (Whether it is desirable to use
it so is doubtful, since the tabular arrangement
throws a strong light on formal error at the price of
obscuring the practical meaning of the program,
which is better conveyed by a narrative form. It may

well turn out that such decision-rule matrices, like
COBOL-language statements, are not really wanted
as a source language, but as a by-product of compi
lation-in short, as output rather than input.)

SPECIMEN CONFUSIONS

Much of what little literature exists on the topic
of natural-language programming, whether pro or
con, suffers from failure to take account of elemen
tary distinctions of the kind insisted on here. Two
examples, chosen not for their egregiousness but
merely for simplicity and brevity, will suffice as il
lustration. Their author* makes the familiar contrast
between sloppy English and a precise calculus, then
gives what he takes to be supporting evidence:

The written and spoken English of the average
adult is imprecise, often redundant and incom
plete. Compared to mathematics and symbolic
logic it is a poor vehicle for the expression of
thoughts in precise, logical form. In one experi
ment, for example, the subjects were shown the
single logical premise: "What can ypu say about B
if you know that all A are B?" The subjects
tended to continue by concluding that all Bare
A. In other studies it has been demonstrated that
verbal habits operate as a substitute for thought
and often lead to errors in logic. Evidence of this
type might lead one to reject a Near-English lan
guage as a medium for man-computer problem
solving.Is

There are several kinds of error entwined in this
brief passage. The experiment, if correctly reported,
was ill-designed. We are asked to accept its results
as showing that symbolic-logical notation is better
than English for conveying precise notions; what it
does show is merely that some people do not under
stand the idea of set membership. Evidence that
any greater number of them would have understood
the relation between A and B if it has been ex
pressed as "A c B" is not given; common sense
suggests that no such evidence exists. Certainly all
who recognize the expression "A C B" would know
that the relation is not symmetrical-but just as cer
tainly all of them, plus some who are· not familiar
with such notation, would understand this from the
English version. So if the experiment had been run
properly, with a control group, more of those given
the problem in English would have gotten it right
than those given it in technical notation. More strik
ing yet, it is far from clear how the rather complex
question that Van Cott calls a "single logical prem-

* Dr. H. P. Van Cott, Associate Director, Institute for
Research in Organizational Behavior, Washington, D. C.

648 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

ise" could be stated in technical notation; what is
the symbol for "What can you say about ... ?" It
would seem that not only might fewer people have
given the right answer if English had been ruled out,
but that the problem could not even have been put
to them without its use. Insofar as this anecdote sug
gests anything, it would tend to show that English
has some powers that even a symbolic logician
might be unwilling to forgo.

Van Cott offers further evidence against English:

The rationale for the development of Near
English user languages was based on the assump
tion that the human could not adapt to anew,
more formal language easily, rapidly or with any
degree of reliability.

Anecdotal evidence suggests that this assump
tion m~y be false. For example, people rapidly
adapted to the use of the telegraph as a means of
communication-reducing the redundancy and
ambiguity characteristics of normal English in or
der to reduce message lengths, save money and
avoid misunderstanding.19

It is not clear who the "people" are who adapted
to the telegraph: are they the professional telegra
phers who pounded the key all day long, or the cus
tomers who passed their hand-printed messages over
the counter to be transmitted? It is just possible that
VanCott means the former, since it does not appear
that the public had to do any adapting at all (unless
to improve their penmanship), but it hardly seems
warranted to make any broad statement about "peo
ple" if it is only the comparative handful of highly
practiced operators who are the sample group. If he
is referring to the telegraphers, we have here an
other example of the confusion of language and
code that we pointed out in our discussion of mathe
matical notation. All a telegrapher does is to encode
a natural-language message, not translate it into an
other language; the language remains English, but in
a different physical representation, and no conclu
sions about human adaptability to a "new, more for
mal language" are warranted.

But it seems far more likely that Van Cott is re
ferring not to the telegraphers, but to the users and
their resort to "telegraphese," meaning "language
characterized by terseness and elliptical expressions
such as are common in telegrams." If so, one set of
objections is replaced by another, yet more devastat
ing. Before drawing Van Cott's or any conclusion
from this observation, the assertion that "people
rapidly adapted" to this new language must be ex
amined. Of course customers paying by the word
ofte:n tried to minimize the number of words in their

messages, even at the price of taking more care in
their composition. The disproof of their adaptation,
however, is given by their immediate reversion to
customary habits of speech and writing as soon as
this pressure was removed. If this "new language"
had any merits other than that of saving money
under the rate structure fixed by the telegraph com
panies, the general public evidently failed to see
them. But let us waive this objection; the most curi
ous thing about this second count in Van Cott's in
dictment of English is that, like his first, it demon
strates the value of English if it demonstrates
anything. If telegraphese is an example of "a new,
more formal language," then we have some un
looked-for evidence that a subset of English makes a
good vehicle for the economical conveyance of clear
ideas.

CONCLUSION AND SUMMARY

There has been no attempt in this paper to make
a complete case for natural-language programming,
but only to clear away the greatest of the miscon
ceptions and confusions that have long impeded use
ful discussion of the subject. The writer's original
intention of disposing of these incidentally in the
course of illustrating the positive advantages of nat
ural language had to be dropped as it became ap
parent how many and deep-seated these misconcep
tions were, and how much analysis was needed to
show them as such. The more positive side of the
argument has had to be deferred, but should be pub
lished at an early date.

Chief among the points we sought to make here
are:

1. Natural-language programming is an
attempt to put nonprogrammers in di
rect touch with the computer, not to
spare the advanced professional pro
grammer what may be to him an insig
nificant part of his total job.

2. A natural programming language is one
that can be written freely, not just read
freely.

3. The task to be performed by the proc
essor for such a language is quali
tatively different from that of trans
lating one natural language to another.

4. The redundancy of natural language is
one of its greatest potential advantages,
not a prohibitive drawback.

THE CASE FOR NATURAL-LANGUAGE PROGRAMMING 649

5. Finally, the possibility of user-guided
natural-language programming offers a
promise of bridging the man-machine
communication gap that is today's
greatest obstacle to wider enjoyment of
the services of the computer.

ACKNOWLEDGMENTS

Valuable criticism of early drafts of this paper
came from Daniel L. Drew and Allen Reiter of
Lockheed Missiles & Space Company, Edward Theil
of the Department of Mathematics, University of
California at Davis, and Christopher Shaw of Sys
tem Development Corporation. Although these
friendly critics have much improved the presentation
of our argument, it must not be assumed that any of
them subscribe to it.

REFERENCES

1. H. Zemanek, "Semiotics and Programming
Languages," C. ACM, vol. 9, no. 3, pp. 139-43
(Mar. 1966).

2. J. E. Sammet, "The Use of English as a Pro
gramming Language," ibid, pp. 228-30.

3. M. I. Halpern, "A Manual of the XPOP Pro
gramming System," Lockheed Missiles & Space Co.,
Palo Alto Research Laboratory, Oct. 1965.

4. J. Weizenbaum, "ELIZA-A Computer Pro
gram for the Study of Natural Language Communi
cation Between Man and Machine," C. ACM, vol.
9, no. 1, pp. 36-45 (Jan. 1966).

5. A. P. Yersh6v, "One View of Man-Machine
Interaction," 1. ACM, vol. 12, no. 3, pp. 315-25
(July 1965).

6 .. Y. Bar-Hillel, Language and Information,
AddIson-Wesley, Reading, Mass. 1964, pp. 153-84.

7. D. M. MacKay, "Linguistic and Non-Linguis
tic 'Understanding' of Linguistic Tokens" RAND
Corporation, Memorandum RM-3892-'PR (Mar.
1964) .

8. E. W. Dijkstra, "Some Comments on the Aims
of MIRFAC," C. ACM, vol. 7, no. 3, p. 190 (Mar.
1964) .

9. --, "On the Design of Machine Independ
ent Programming Languages," in Annual Review in
Automatic Programming, (R. Goodman ed.), Per
gamon Press, New York, 1963, Vol. III, pp. 27-42.

10. H. J. Gawlik, "MIRFAC: A Compiler Based
on Standard Mathematical Notation and Plain Eng
lish," C. ACM, vol. 6, no. 9, pp. 545-48 (Sept.
1963) .

11. Ref. 9, p. 31.
12. Florian Cajori, A History of Mathematical

Notations, 2 vals., Open Court, Chicago, 1928.
13. Constance Reid, From Zero to Infinity, 3d

ed., Crowell Apollo Editions, New York, 1966, p.
129.

14. Ref. 9, p. 30.
15. Ibid, p. 33.
16. M. I. Halpern, "Computer Programming:

The Debugging Epoch Opens," Computers and Au
tomation, Nov. 1965, pp. 28-31.

17. [Wim Boerdam et all, "DETAB/65 Lan
guage," Working Group 2, SIGPLAN, Los An
geles Chapter, ACM (June 1964).

18. H. P. Van Cott, "Flexible Machine Language
for Commander-Computer Chats May be Key to
Flexible C&C," Armed Forces Management, vol. 11,
p. 95 (July 1965).

19. Ibid, p. 95.

EXPLICIT PARALLEL PROCESSING DESCRIPTION AND
CONTROL IN PROGRAMS FOR MUL 11- AND

UNI-PROCESSOR COMPUTERS

J. A. Gosden

AUERBACH Corporation
Philadelphia, Pennsylvania

This paper discusses the development and current
state of the art in parallel processing. The advan
t~ges and disadvantages of the various approaches
are described from a pragmatic viewpoint. One that
is described and discussed is a natural extension of
the evolutionary approaches. This alternative covers
the problems of locating, describing, controlling, and
scheduling parallel processing. It is a general-pur
pose approach that is applicable to all types of data
processing and computer configuration.

GENERAL APPROACH

The approach is based on the following assump
tions.

1. The specification of potential parallel
activity in processing will depend
largely upon programmer specification.

2. Major benefits will accrue only if a
high degree of parallelism exists; i.e.,
either many parallel paths exist or, if
the parallel paths are few, they must
be long.

3. Programmers will specify parallelism
only if it is easy and straightforward
to do so.

651

4. A simple control scheme is needed to
provide straightforward scheduling.

Programmer Specification

It is obvious that an automatic scheme can be
devised to recognize independent parallel paths
when the paths are at a task or an instruction level.
The latter scheme has been implemented in
STRETCH 9 * and other computers; the former is a
simple matter of comparing the names of the input
and output files of various tasks in a job.

At intermediate levels where subroutines, parame
ters, and many other forms of indirect addressing
exist, the problem is at present unsolved from a
general-purpose practical viewpoint.

Therefore, we must now look to the programmer
to define independent processes.

Degree 0/ Parallelism

Previous experience with simultaneous or over
lapped I/O and multiprogramming suggest that full
potential gains are· never realized because of the

* In this paper the references are combined with an
extensive bibliography and are, therefore, listed in their
alphabetical sequence, rather than in consecutive numerical
order.

652 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

difficult scheduling problems. Therefore, we expect
that scattered parallelism of two or three short paths
may not lead to significant gains; multiple paths
must be sought. If there are two or three long paral
lel paths, it may be more practical to specify them
as separate tasks.

Easy Specification

Experience indicates that any new feature in par
allel processing must be easy to specify; otherwise,
the feature will not be much used or exploited. Both
simultaneous I/O and multiprogramming gained
most when they were made programmer independ
ent. However, our first assuniption implies that in
this case we cannot rely on programmer independ
ence, so we must make the specification of parallel
processing easy and simple to encourage its use.

Good Control Scheme

There are two main requisites of a good control
scheme. First, it must be simple so that the over
heads of implementing it do not seriously erode the
advantages gained. Second, it should be efficient
with simple ad hoc scheduling algorithms. Experi
ence has shown that ad hoc schemes are successful
whereas complex schemes are not only difficult to
implement but disappointing in general perform
ance. 9,13

BACKGROUND

This section discusses some of the existing litera
ture on parallel processing and relates the findings to
the assumptions previously made.

Parallel processing in various forms has produced
interesting developments in the computer field. For
those interested in pursuing the subject, a general
bibliography attached to this paper indicates the
continuing voluminous literature on this general sub
ject and its pervasive influence on computer hard
ware and computer software architecture. It is possi
ble to divide the development into six general
classes:

Class 1 (1953) Simultaneous Input-Output
Class 2 (1957) Fork and Join Statements
Class 3 (1958) Multiprogramming Operating
System
Class 4 (1959) Processor Arrays
Class 5 (1961) Planned Scheduling
Class 6 (1962) Re-entrant On-demand System

The dates are approximate origins of development,
but there has been no attempt to assign single inven
tors because most ideas were developed in several
places more or less concomitantly. These titles are
useful labels for discussion in this paper but are not
intended as formal definitions. The author regrets
that he has not been able to incorporate in this
paper formal definitions for the various labels used.

Class 1, Simultaneous Input-Output (achieved either
by the use of hardware or even programmed time
sharing of the processor) made useful increases of
two- or threefold in computer power by parallel use
of input-output and computation processes.

Class 2, Fork and Join Statements provided a simple
language mechanism for programs to take advantage
of a multiprocessor computer system. The literature
does not show great gains in this area. Examples
given 12,17 have not looked rewarding except one at
tributed to Poyen 48 by Opler 45 which, however, is
somewhat clumsy; it is predicated on a specific
number of processors and requires an exertion on
the part of the programmer that will not in general
be obtained. Opler, however, has recognized what
we shall call "parallel-for" construction; his term is
"do-together. "

Class 3, Multiprogramming Operating System pro
vides a mechanism for a greater degree of simulta
neous input-output by mixing programs and balanc
ing the use of the parts of a computer
configuration,14,26,27,56 which has resulted in useful
gains of some two- to threefold. 42 This subset of
parallel processing maintains independent processes
each of which is part of an independent job. These
systems have enjoyed extensive development in both
large and small computer systems, and in general
their schedulers operate on a queue of tasks using
ad hoc scheduling algorithms. Good results have
been achieved with straightforward general-purpose
approaches.

Class 4, Processor Arrays are computers with repli
cated arrays of processors which are powerful on a
specific range of problems.44 These processors oper
ate on an array of data obeying a common program.
The SOLOMON 54 computer and the structure pro
posed by Holland 28 are the best known although
they have not enjoyed popUlarity, partly because
they depart radically both in architecture and solu
tion techniques from the evolutionary mainstream
(a tendency not likely to succeed as Brooks 7 pre-

EXPLICIT PARALLEL PROCESSING DESCRIPTION AND CONTROL 653

dicts) and partly, in the writer's opinion, because
they shun the qualifier "general-purpose," which has
been the touchstone of the success of the computer.
Associative memories are another special case.

Class 5, Planned Scheduling is a title which covers
schemes that propose to describe parallel-processing
structures and to schedule them using a CPM or job
shop scheduling approach. Typically, each part of a
process is described separately and is· associated
with a set of conditions or inputs which cause it to
be executed instead of being linked in a program
sequence.21,37,41,52 Such schemes are the antithesis of
Class 3 in that they pre-partition the problem into
logical parts rather than apply the somewhat arbi
trary paging of general operating systems. Some of
those schemes attempt (or attempted 13) pre-sched
tiling, relying on expected time and space utiliza
tion estimates. Again this is a major departure from
the mainstream of computer development and has
not enjoyed much popularity.

Class 6, Re-entrant On-demand Systems are an in
teresting mutation of multiprogramming systems
where the process is common to all users but the
data sets may be independent. The classic example
is an airlines reservation application. Since the
queries are independent, a multiprogramming oper
ating system approach can be used. Tile principle of
re-entrant routines was developed to allow sharing
of access to a common set of programs.3,5,49

It is also relevant to point out a class of activity
which has not existed, that is, automatic recognition
of parallel processes. This is a subject which is still
at an early stage of development. At present there
are systems that seek out some overlap at the in
struction level in large-scale processors, but no work
has been done at the subroutine or program level.
Even at the instruction level, as the processor
reshuffles access and attempts parallelism, as in the
look-ahead in STRETCH,9 the problem of inter
rupts and unwinding is formidable. The problems of
finding implicit parallelisms in programs are also
formidable, especially with the use of parameters,
block structures, and late binding. Even if possible,
the compiling overhead in analysis may be consider
able.

The foregoing summary identifies the author as a
mainstream evolutioner rather than a radical innova
tor. This does not mean that he designates classes 4
and 5 as useless but as yet unproved, and agrees

that radical innovation must prove itself by large
gains to offset its disruption whereas evolution can
be justified by more modest gains.

THE PARALLEL FOR

The simple premise of this paper is that all FOR
statements in an ALGOL program, and similar con
structs in other languages, are good potential
sources of parallel activity. FOR statements divide
into two kinds: first, those which are iterative and
second, those which are parallel. The second group
is a large fraction of the total. Two examples may
suffice, one scientific and one commercial.

A typical scientific example is matrix addition in
which the pairwise additions of corresponding ele
ments can be performed independently, and there
fore in parallel. A typical commercial example is the
extension of an invoice where the individual multi
plications of price per unit times quantity for each
item can be performed independently, and therefore
in parallel.

It is easy to see that by using the simple device of
describing each FOR statement as either iterative or
parallel, a large group of parallel paths in programs
can be identified. It is interesting to note that
Opler,45 and later Anderson,2 use a FOR statement
to illustrate their notations.

The FOR statement is a special case of a loop; it
is, therefore, natural to dichotomize loops into those
that are either iterative or parallel in nature. One
simple example shows that parallel loops not only
exist but exist in large numbers. The main loop in a
payroll program (that is, the payslip loop) is inde
pendent for each man. It is, of course, a FOR loop
where the meaning might be "for every record on
the master file "

It may appear unreasonable to distinguish be
tween a PARALLEL FOR and a rewritten loop,
but there are substantial pragmatic differences that
would distinguish them at a programming language
level. .

SUMMARY OF PARALLEL STRUCTURES

We have identified three areas of parallel struc
ture in programs:

1. FO RK to several dissimilar paths and
JOIN

2. PARALLEL FOR statements
3. LOOPS rewritten as PARALLEL

FOR statements

654 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

All of these. structures require some kind of JOIN as
a prelude to subsequent processing. Techniques for
Item 1 have been described elsewhere 12,17 and are
described later for Items 2 and 3. However, there
also exist two other types that should be recorded
for completeness:

4. FORKS without a JOIN
5. Completely independent processes

As an example of Item 4 consider a task that
updates a file and then produces several reports.
After the update there is a FORK to each report
routine with no need to JOIN. PL/1 has a facility to
do this.49

As an example of Item 5 consider an airlines res
ervation system and the individual queries and up
dates made upon it.

ADVANTAGES OF PARALLELISM

The identification of parallelism in programs is
useful only if some advantage is gained thereby. For
both uni- and multiprocessor systems there are ad
vantages.

In general we can note that, whereas program
structures in which FORK statements are used do
not tend to show a high order of parallelism, PAR
ALLEL FORS and PARALLEL LOOPS do natu
rally show a high degree of parallelism; moreover,
because they tend to occur in nested sets, they in
crease the parallelism multiplicatively.

Multiprocessor Advantages

The multiprocessor situation contains four inter
esting cases: First, there is the simple case where
the number of programs to be run is less than the
number of processors. The availability of parallel
paths enables the system to use the otherwise idle
processors. This situation may not seem to occur
frequently· but it can occur often when a system be
gins to run out of peripheral devices, even if the
load on them is not heavy.

Second, there is the case where a mixture of high
and low-priority jobs is being run. If the disparity in
processing is large enough, several processors could
work on the high-priority program and reduce its
turnaround time.

The third and fourth are cases where batch proc
essing response times for large jobs can be improved
if the jobs are run serially rather than in parallel.

The third case is illustrated by the simple (and
over-simplified) example of three jobs that each re
quire one hour's capacity of the system. When run
serially, they would be completed in one, two, and
three hours, respectively, giving an average turn
around time of two hours. When run in parallel, they
would have an average turnaround time of three
hours. Of course, the choices are never as simple as
this example supposes but, in general, serial opera
tion is desirable.

The fourth case considers the savings in internal
system overheads when parallel activity on one task
replaces parallel activity on different tasks. In situa
tions where frequent overlays are made for both da
ta and program segments, the amount of shuffling can
be reduced. In particular, if several processors keep
approximately in step (not necessarily exactly in
step as required in SOLOMON), they can share ac
cess to, and residence of, program segments and
some data segments. Even if they do not share exact
access, but are accessing a disc, cartridge, or other
complex access device, then there is more opportu
nity· to batch and optimize accesses for parts of one
task than with parts of diverse tasks using different
areas of auxiliary storage.

Single Processor Advantages

The single processor system contains two interest
ing cases. First, there is the case of a mix of multi
programmed tasks where one has an outstanding
priority. Suppose it stalls due to some wait for I/O;
then if parallel paths exist, it may be able to proceed
on another path instead of passing control to a
lower priority task. Such cases have been "hand-tai
lored" in the past relying on a complex look-ahead
type of structure or the batching of accesses to aux
iliary storage. If parallel paths were started automat
ically, the batching could adjust itself dynamically.

A typical example would be an operating system
that has two kinds of scheduler, one that allocates
processors and another that batches and queues ac
cess to auxiliary storage. Then parallel paths could
utilize processors while more urgent processes are
awaiting input.

Second, there is the case of reducing overlays.
Particularly in systems where relatively small over
lays are used, the problem of fitting internal loops
within one overlay is difficult and sometimes impos
sible. On a loop that needs two segments, the over
lays needed for x executions could be reduced from

EXPLICIT PARALLEL PROCESSING DESCRIPTION AND CONTROL 655

2x to 2x/n if n parallel paths were used. Both these
cases also apply in the case of multiprocessor sys
tems, and are illustrated in the example given in
the section on Processor Scheduling.

TECHNIQUES

Basic Elements

This section is not a comprehensive treatment of
all cases but a range of examples to show how sim
ple techniques can be used to implement and control
parallel activity. It will be seen that all the tech
niques can be handled by a simple organization of
five simple functions (PREP, AND, ALSO, JOIN,
and IDLE). This provides a uniform mechanism
which can easily be incorporated in processor hard
ware if the economics justify it.

PREP is a function performed before a new set
of parallel paths begins. It causes a variable called
PPC (parallel path counter) to be established. If
other PPC's exist for this process, they are pushed
down, which allows sets of parallel paths to be
nested. PREP sets the new PPC to the value one.
AND (L) is a simple two-way fork; it requests the
controller to start a parallel sequence at L and to
add one to the current PPC for this process. The
processor executing the AND continues to the next
instruction. The controller queues the request for
the AND sequence.
ALSO (L) is a simple two-way fork which is the
same as AND except that no PPC converters are
involved. It is equivalent to TASK in PL/1 49

and is used for divergent paths that do not rejoin.
JOIN is a function used to terminate a set of
parallel paths. When executed, it reduces the cur
rent PPC for the' process by one. If PPC is then
zero, it is popped up and processing continues. If
PPC is not zero, meaning that more paths remain
to be completed, it releases the processor execut
ing the JOIN.
IDLE is a function that ends a parallel path and
releases the processor executing the IDLE.

It should be noted that by associating PPC with a
process rather than the JOIN statement, the proper
ty of re-entrant code is retained. JOIN is used as a
device similar to CLOSE PARENTHESES.

Example 1. Classic FORK and JOIN

The popular form of the FORK statement is:

FORK (SI, S2, S3 ...) (1)

At the execution of this statement the program
divides into parallel paths that commence at state
ments labelled Si, and join at the statement labelled
J.

Al PREP

~
A2 AND (AS)

~
A3 82

•
A4 GO TO

JOIN
if

1

A5 81

•
A6 JOIN

Example 1 shows the implementation of FORK
JOIN for two paths. Al establishes a new PPC
counter and sets the counter to 1. A2 initiates A5 as
a parallel path and increments the PPC counter to
2. A3 executes the second path S2. A4 ends S2 with
a transfer to JOIN. A5 executes the first path S1.
A6 is the join; when one path ends it reduces the
PPC to 1 and frees the processor, when the other
path ends, the PPC goes to zero, the next PPC is
popped up and the processor continues to A 7. The
extension to three or more paths is obvious.

Example 2 shows the implementation of a P AR
ALLEL FOR process. Boxes Bl, B2, B3, and B4
are the translation of the FOR statement. B 1 initial
izes the generation of the values of the parameter of
the FOR statement and establishes the new PPC. B2
is the incrementing or stepping function. B3 is the
end test and transfers to JOIN when all paths have
been started. B4 starts a new parallel path. B5 is a
parallel path. B6 is the JOIN.

In contrast to the examples given by Opler and
Anderson, this scheme is independent of the number
of processors available, and there is no need to state

656 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Example 2. A PARALLEL FOR

Bl INITIALIZE
and

PREP
J
t

B2 STEP TO
NEXT

VALUE

l
B3 IF END

GO TO yes

JOIN

t no

B4 - AND (B2)

_t
B5 DO FOR

THIS
VALUE

I ,
B6 JOIN ~IDLE

~
B7

explicitly the relationship between the FORK and
the JOIN.

This process allows the number of paths to be
data dependent, and even to be zero. Note that the
PPC shows how many parallel paths are active. This
concept has been described and defined in ALGOL
by Wirth.58 He uses the term AND (which he at
tributes to van Wijngaarden, and which we borrow
for consistency) but he does not show how the sys
tem controls the JOIN nor does he provide an ex
plicit PARALLEL FOR. The programmer builds it
himself. Wirth is correct in that a programming lan
guage does not specifically require the JOIN but the
hardware does need a JOIN delimiter.

Example 3 shows how unjoined forks are imple
mented, which is the example discussed in Item 5
under Parallel Structures. Note that PREP is not
used, no PPC counters are involved, and IDLE and
ALSO are used instead of JOIN and AND/.

Example 4 shows how the classic file mainte
nance, or payroll, application can be handled. The
preliminary part is similar to the PARALLEL FOR
but the JOIN structure is different because we take
the case where the output is required to be in the
same sequence as the input. To do this, each record
processed has a link set to point to the following
record. This is set when the following record is es
tablished in D2.

D 1 opens files, sets initial links, and sets data
areas. D2 gets the next record and makes links. D3
ends the loop that produces the parallel paths; D4
produces the parallel paths; and D5 is the parallel
path. The JOIN occurs at D6 and uses a lockout
mechanism to ensure that only one processor exe
cutes output at a time and in proper sequence.
Where parallel processing is allowed, there are some
functions that must be carried out by only one proc-

Example 3. Unjoined Forks

Cl

C2

C3

C4

C5

C6

C7

C8

C9

PERFORM
UPDATES

PRINT
REPORT 1

PRINT
REPORT 2

EXPLICIT PARALLEL PROCESSING DESCRIPTION AND CONTROL 657

Example 4. Serial File Processing

\)1

D2

D4

D5

D6

D7 ~ UNLOCK

D8

D9

DIO

Dll

DIO

IDLE
~

ess at a time, for example, updating a record. Var
ious hardware locks have been developed,3 and even
some complex software locks.22 ,35 Wirth 58 proposed
a term SHARED in ALGOL to denote procedures
that are not to be used in parallel.

Special Points to Note

First, we must note that these techniques presup
pose that all programs use re-entrant code.

Second, we must provide some special protected
functions such as "add to x" so that totals can be
accumulated from each path, or a lock-out feature
to temporarily restrict access to a section of da-
ta. 2,3,22,35,43,59

Third, we must arrange the linkage in Example 4
so that the system can tolerate such situations as the
case of an empty file, and one record being complet
ed before the next is initiated.

This is necessary because the link from one
record to its successor, used to control output, may

not be established if a delay occurs such that a
record is output before its successor is input. One
alternative is to delay output; another is to provide
an interim dummy linkage.

Fourth, we must make box D2 include choosing
an insertion to the file. The full logic for this box
determines whether the next record to be processed
is

1. one record from the master file and a
matching record from the detail file.

2. one record from the master file and no
matching detail record.

3. one record from the detail file and no
matching master record.

PROCESSOR SCHEDULING

Apart from the wish to run certain problems fast
er in a multiprocessor, the most interesting case in
scheduling is the possibility of shared access to pro
gram segments by processors and the subsequent re
duction in overlay overheads. It may seem at first
that this would lead to more complex dynamic stor
age allocation than is desirable. However, it turns
out that shared access arises naturally. There are
three basic advantages that this scheme enjoys:

• Processes generate parallel paths dy
namically one at a time on an "as
needed" basis, which contrasts with the
schemes proposed by Opler 45 and An
derson. 2 It limits scheduling overheads
in that the process generates only rec
ords of parallel processes as they are
encountered. For example, the number
existing for an N -way P ARALLEL
FOR will be only -one plus the number
initiated, however large N may be.

• Distribution of parallel paths among
varying nu~bers of processors is an easy
ad hoc process.

• The same basic data can be used by the
scheduler to exploit any of the alterna
tive advantages of parallel processing.

The following examples illustrate the last two
points. Consider a system with three processors: I,
II, and III. Consider that there are six tasks in the
system. Each task has one or more processes live at
a time. Each process is either active in a processor
or is in one of three queues. A process in queue 'a'
has the segments it needs in core, but no processor.

658 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Table I

An example without priorities.

Five processes exist, Al through El
Four have segments in core, Al through Dl
Three are active, Al through Cl

Al creates :\2 which uses SI, ,md A2
gO(~S into queue 'a'

Al needs next segment 82, Al goes into
queue Ie', Dl obtains processor I

81 needs next segment T2, 81 goes into
queue Ie', A2 obtains processor II

Now a new segn1ent can be called to
overlay T1. WI has waited longest and
El goes into 'b'

A2 needs next segment 82, A2 goes into
queue Ie', A3 obtains processor II

\\,1 arrives and El goes into queue 'a'

C 1 needs next segment V!. C 1 goes into
queue 'c'. El obtains III

Now VI can be overlayed. 82 is chosen
because two processes in queue lei need it.
Al and A2 go into queue 'b'.

STATVS RESVLT

Al Bl Cl Dl El
81 Tl VI VI WI
I II III. a c

Al Bl Cl Dl El A2
81 Tl VI VI \\,1 81
I II III a c a

Al Bl Cl Dl El A2
82 Tl VI VI IVI 81
c II III I

Al Bl Cl Dl El A2
82 T2 Tl VI WI 81
c c III I c II

Al Bl Cl Dl El A2 .\3
82 T2 VI VI IVI 81 81
c c III I b II a

Al Bl Cl Dl El ,\2 A:l
82 T2 VI Dl WI 82 81
c c III I b c II

Al Bl Cl Dl El A2 A:l
82 T2 VI Dl WI 82 81
c c III I b c II

Al Bl Cl Dl El A2 A:l
82 T2 VI Dl IVI 82 81
c c c I III c II

Al Bl Cl Dl El A2 A3
82 T2 VI Dl WI 82 SI
b c c I III b II

A process in queue 'c' does not have all its segments
in core. A process in queue 'b' is awaiting termina
tion of some peripheral I/O, in particular, perhaps
the arrival of its needed segment in core.

The state of the system can be represented by
Table I. The tasks are labelled Al through El.
When they fork into separate processes, numeric
tags are used. For simplicity we assume that any
process needs only one segment at a time and there
is only room for four overlay slots in executable
storage (Le., storage from which processors select
and execute instructions). It is obviously desirable
to have more overlay slots than processors to build
up work for processors. The current segment needed
by a process is shown in line 2. The status of each
process is shown as either the identity of the proces
sor executing it or the queue 'a', 'b', or 'c' where it
is located.

In the case of equal priority processes we assert
that the scheduler (i) prefers to initiate processes in
queue 'a', (ii) prefers to get a segment wanted by
most members of 'b', and (iii) gives chronological
preference.

Table I shows how the system might react with a
set of equal priority processes and how a set of par-

allel paths builds up demand for its segments. Table
II shows how the system reacts for priority classes
and uses low priorities to fill the gaps.

ASSETS OF THIS SCHEME

There are nine significant assets of this way of
considering parallel processing:

1. It indicates profitable sources of
parallelism in conventional program
structures.

2. It enables some parallelism in FOR
statements to be shown in existing pro
grams with trivial changes.

3. It provides an easy, and hopefully
popular, way to express parallelisms in
all conventional programming lan
guages.

4. It provides a simple mechanism to con
trol parallel activities which could also
be incorporated in hardware.

5. It requires only a small expansion to
the bookkeeping required in operating
systems.

Table II

An example with priorities.

Five processes exist, Al through El
Four have segments in core, Al through Dl
Three are active, Al through Cl

Al creates A2, which uses PI and goes
into queue 'a'

A2 preempts C 1 and gets III,
e 1 goes into queue 'a'

Al needs next segment 82 and goes
into queue 'c'. Cl gets I

Priority calls for 82 to be requested
to overwrite VI. Al goes into queue
'b', DI goes into queue 'e'

A2 creates A3 which uses 81 and goes
into queue ' a t

A3 preempts Cl and gets I,
el goes into queue 'a'

82 overwrites VI,
Al goes into queue 'a'

Al preempts Bl and gets II
BI goes into queue 'at

Al Bl Cl Dl El
81 Tl VI VI IVI
I II III a c

Al A2 Bl Cl Dl El
81 81 Tl VI VI WI
I a II III a c

Al A2 Bl Cl Dl El
81 81 Tl VI VI WI
I III II a a c

Al A2 Bl Cl Dl El
82 81 Tl VI VI WI
c III II I a c

Al A2 Bl Cl Dl El
82 81 T1 VI VI WI
b III II Icc

Al A2 A3 Bl Cl Dl El
82 81 81 Tl VI VI WI
bIVaIIIcc

Al A2 A3 Bl Cl Dl El
82 81 81 Tl VI VI IVI
b III I II a c c

Al A2 A3 Bl Cl Dl El
82 81 81 Tl VI VI WI
a III I II a c c

Al A2 A3 Bl Cl Dl El
82 81 81 Tl VI VI WI
II III I a a c c

EXPLICIT PARALLEL PROCESSING DESCRIPTION AND CONTROL 659

6. It is applicable to all types of computer
structures and applications.

7. It permits the dynamic changing of the
number of processors available.

8. It permits the exploiting of are-entrant
code by individual programs.

9. It offers opportunities to reduce heavy
page turning overheads.

REFERENCES-BIBLIOGRAPHY

1. G. M. Amdahl, "New Concepts In Computing
System Design," Proc. IRE, vol. 50, (May 1962)
pp. 1073-1077.

2. J. P. Anderson, "Program Structures for Par
allel Processing," CACM, vol. 8, (December 1965)
pp. 786-788.

3. 1. P. Anderson, et aI, "D 825-A Multiple
Computer System for Command and Control,"
AFIPS, volume 22, Proc. FICC, Spartan Books,
Washington, D.C., 1962, pp. 86-96.

4. J. R. Ball, et aI, "On the Use of the SOLO
MON Parallel-Processing Computer," AFIPS, vol
ume 22, Proc. FICC, Spartan Books, Washington,
D.C., 1962, p. 137.

5. G. P. Bergin, "Method of Control for Re-en
trant Routines," AFIPS, volume 26, Proc. F ICC,
Spartan Books, Washington, D.C., 1964, pp. 45-55.

6. S. Boilen, et aI, "A Time-Sharing Debugging
System for a Small Computer," AFIPS, volume 23,
Proc. SICC, Spartan Books, Washington, D.C.,
1963, p. 51.

7. F. P. Brooks, Jr., "The Future of Computer
Architecture," Proc. IFIP, volume 1, 1965, p. 87.

8. E. Bryan, "The Dynamic Characteristics of
Computer Programs," Rand Corporation, 1964
(Paper to SHARE XXII).

9. W. Buckholz (Ed.), Planning a Computer
System, McGraw-Hill, New York, 1962. .

10. A. W. Burks, The Logic 0/ Fixed and Grow
ing Automata, University of Michigan, Eng. Res.
Inst., Ann Arbor, 1957.

11. Yi. Chang and D. J. Wong, "Analysis of
Real-TIme Programming," lournal ACM, vol. 12,
(1965) p. 581.

12. T. E. Cheatham and G. F. Leonard "An In
troduction to t?e CL-II Programming' System,"
Computer Assoclates-63-7-SD, November 1963.

13. E. F. Codd, "Multiprogram Scheduling,"
CACM, (June & July 1963) pp. 347 and 413.

14. E. F. Codd, "Multiprogramming STRETCH:
Feasibility Considerations," CACM, vol. 2, (No
vember 1959) pp. 13-17.

15. E. G. Coffman, Jr., et aI, "A General-Pur
pose Time-Sharing System," AFIPS, volume 25,

Proc. SICC, Spartan Books, Washington, D.C.,
1964.

16. M. Phyllis Cole, et aI, "Operational Software
in a Disc Oriented System," AFIPS, volume 26,
Proc. FICC, Spartan Books, Washington, D.C.,
1964, p. 351.

17. M. E. Conway, "A Multi-Processor System
Design," AFIPS, volume 24, Proc. FICC, Spartan
Books, Washington, D.C., 1963, pp. 139-146.

18. M. E. Conway, "Design of a Separate Transi
tion Diagram Compiler," CACM, vol. 6, (July
1963) pp. 396-408.

19. F. J. Corbat6, et aI, "An Experimental Time
Sharing System," Proc. SICC, vol. 21, (1962) pp.
335-344.

20. J. B. Dennis, "Segmentation and the Design
of Multi-Programmed Computer Systems," lournal
ACM, vol. 12, (Oct. 1965) p. 589.

21. E. W. Dijkstra, "Solution of a Problem in
Concurrent Programming Control," CACM, vol. 8,
(Sept. 1965) p. 569.

22. Letter: "A Problem in Concurrent Program
ming Control," CACM, vol. 8, (Sept. 1965) p. 569.

23. P. Dreyfus, "System' Design of the Gamma
60," Proc. WICC, 1958, p. 130.

24. S. Fernback, "Computers in the USA-To
day and Tomorrow," Proc. IFIP, vol. 1, 1965, p. 77.

25. D. R. Fitzwater and E. J. Schweppe, "Conse
quent Procedures in Conventional Computers,"
AFIPS, volume 26, Proc. FICC, Spartan Books,
Washington, D.C., 1964, pp. 465-76.

26. S. Gill, "Parallel Programming," Computer
lournal, vol. 1, (1958) p. 2.

27. A.C. D. Haley, "The KDF. 9. Computer
System," AFIPS, volume 22, Proc. FICC, Spartan
Books, Washington, D.C., 1962, p. 108.

28. J. H. Holland, "The Universal Computer Ca
pable of Executing an Arbitrary Number of Sub
Programs Simultaneously," Proc. EICC, 1959, p.
108-113.

29. J. H. Holland, "Iterative Circuit Computers,"
Proc. WICC, 1960, p. 259.

30. T. J. Howarth, et aI, "The Manchester Uni
versity Atlas Operating System, Part II: User's De
scription," Computer lournal, vol. 4, (1961) p. 226.

31. D. J. Howarth, "Experience with the Atlas
Scheduling System," AFIPS, volume 23, Proc.
SICC, Spartan Books, Washington, D.C., 1963, p.
59.

32. E. T. Irons, "A Rapid Turnaround Multi
Programming System," CACM, vol. 8, (March
1965) p. 152-7.

33. T. Kilburn, et aI, "The Manchester University
Atlas Operating System, Part I: Internal Organiza
tion," Computer lournal, vol. 4, (1961) p. 222.

660 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

34. T. Kilburn, et aI, "The Atlas Supervisor,"
Proc. EJCC, vol. 20, 1961, pp. 279-294.

35. D. E. Knuth, Letter: "Additional Comments
on a Problem in Concurrent Programming Control,"
CACM, vol. 9, (May 1966) p. 321.

36.N. Landis, et aI, "Initial Experience with an
Operating Multi-Programming System," CACM, vol.
5, (May, 1962) pp. 282-286.

37. A. L. Leiner, et aI, "Concurrently Operating
CDmputer Systems," ICIP, 1959, B. 12. 17. pp.
353-361.

38. A. L. Leiner, et aI, "Organizing a Network Df
Computers to Meet Deadlines," Proc. EJCC, 1957,
pp. 115-128.

39. G. F. LeDnard and J. R. Goodroe, "An Envi
ronment fDr an Operating System," ACM Proc. 64,
E.2.3-1.

40. F. M. Marcotty, et aI, "Time-Sharing Dn the
Ferranti-Packard F. P. Good Computer System,"
AFIPS, volume 23, Proc. SJCC, Spartan BODks,
Washington, D.C., 1963, p. 29.

41. J. L. McKenney, "Simultaneous Processing
of JDbs Dn an Electronic Computer,'" Management
Sci. VDI. 8, (April, 1962) pp. 344-54.

42. M. R. Mills, "Operational Experience Df
Time Sharing and Parallel Processing," Computer
Journal, vol. 6, (1963) p. 28.

43. M. R. Nekora, "Comment on a Paper Dn
Parallel Processing," CACM, vol. 4, (Feb. 1961) p.
103.

44. J. Nievergelt, "Parallel Methods for Integrat
ing Ordinary Differential Equations," CACM, vol.
7, (Dec. 1964) pp. 731-33.

45. A. Opler, "PrDcedure Oriented Language
Statements to Facilitate Parallel Processing," CACM,
vol. 8, (May 1965) pp. 306-7.

46. G. E. Pickering, et aI, "Multi-Computer Pro
gramming for a Large Scale Real-Time Data Proc
essing System," AFIPS, volume 25, Proc. SJCC,
Spartan Books, WashingtDn, D.C., 1964, p. 445.

47. R. E. Porter, (Title unknown) Parallel Pro
gramming Conference, May 1960.

48. Jeanne Poyen, Private discussion with Opler,
1959.

49. G. Radin and H. P. Rogoway, "NPL: High
lights of a New Programming Language," CACM,
vol. 8, (Jan. 1965) pp. 9-17.

50. M. R. Rosenberg, "Computer-Usage Ac
counting for Generalized Time-Sharing Systems,"
CACM, vol. 7, (May 1964) pp. 304-8.

51. W. F. Schmitt and A. B. Tonik, "Sympathet
ically Programmed Computers," ICIP, 1959, pp.
344-348.

52. E. S. Schwartz, "An Automatic Sequencing
Procedure with Application to Parallel Program
ming," JACM, vol. 8, (April 1961) p. 513.

53. A. B. Shafritz, et aI, "Multi-Level Program
ming for a Real-Time System," Proc. EJCC, vol.
20, 1961, pp. 1-16.

54. D. L. Slotnick, et aI, "The SolDmon Com
puter," AFIPS, volume 22, Proc. FJCC, Spartan
Books, WashingtDn, D.C., 1962, p. 97.

55. J. S. Squire and Sandra M. Palaiss, "Pro
gramming and Design CDnsideration Df a Highly
Parallel CDmputer," AFIPS, volume 23, Proc. SJCC,
Spartan Books, Washington, D.C., 1963, p. 395.

56. E. Strachey, "Time-Sharing in Large Fast
Computers," ICIP, 1959, p. 336 and Computers &
Automation, (Aug. 1959).

57. R. N. Thompson and J. A. Wilkinson, "The
D825 Automatic Operating and Scheduling Sys
tem," AFIPS, volume 23, Proc. SJCC, Spartan
BODks, Washington, D.C., 1963, p. 41.

58. N. Wirth, Letter: "A NDte Dn Program
Structures fDr Parallel Processing," CACM, vol. 9,
(May 1966) p. 320.

59. L. D. Yarborough, "Some Thoughts Dn Par
allel Processing," CACM, vol. 3, (Oct. 1960) p.
539.

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM *

Paul W. Abrahams

Information International, Inc., New York

Jeffrey A. Barnett, Erwin Book, Donna Firth,
Stanley L. Kameny, Clark Weissman

System Development Corporation, Santa Monica, California

and

Lowell Hawkinson, Michael I. Levin, Robert A. Saunders

Information International, Inc., Los Angeles, California

INTRODUCTION

LISP 2 is a new programming language designed
for use in problems that require manipulation of
highly complex data structures as well as lengthy
arithmetic operations. Presently implemented on the
AN/FSQ-32V computer at the System Development
Corporation in Santa Monica, California, LISP 2 has
two components: the language itself, and the pro
gramming system in which it is embedded. The sys
tem programs that define the language are accessible
to and modifiable by the user; thus the user has an
unparalleled ability to shape the language to suit his
own needs and to utilize parts pf the system as build
ing blocks in constructing his own programs.

While it provides these capabilities to the do-it
yourself programmer, LISP 2 also provides the com-

* Produced by SDC and III in performance of contract
AF 19(628)-5166 with the Electronic Systems Division, Air
Force Systems Command, in performance of ARPA Order
773 for the Advanced Research Projects Agency, Informa
tion Processing Techniques Office, and Subcontract 65-107.

661

plete and convenient programming facilities of a
ready-made system. Typical application areas for
LISP 2 include heuristic programming, algebraic ma
nipulation, linguistic analysis and machine transla
tion of natural and artificial languages, analysis of
particle reactions in high-energy physics, artificial in
telligence, pattern recognition, mathematical logic
and automata theory, automatic theorem proving,
game-playing, information retrieval, numerical com
putation, and exploration of new programming tech
nology.

The primary source materials on LISP 2 are the
LISP 2 Primer,! which provides an introduction to
the language for those with little or no programming
experience, and the LISP 2 Reference Manual, 2

which provides a complete specification of the lan
guage.

The LISP 2 programming system provides not
only a compiler, but also a large collection of run
time facilities. These facilities include the library
functions, a monitor for control and on-line interac-

662 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

tion, automatic storage management, and communi
cation with the monitor system of the machine on
which the system is operating.

A particularly important part of the program li
brary is a group of programs for bootstrapping LISP
2 onto a new machine. (Bootstrapping is the standard
method for creating a LISP 2 system on a new ma
chine.) The bootstrapping capability is sufficiently
powerful so that the new machine requires no resi
dent programs other than the standard monitor sys
tem and a binary loader.

LISP 2 includes and extends the capabilities of its
ancestor, LISP 1.5.3 LISP 1.5 has been notable for
its mathematical elegance and symbol-manipulating
capabilities. It is unique among programming lan
guages in the ease with which programs can be
treated as data, in its "garbage collection" approach
to reclaiming unused storage, and in its ability to
represent programs organized as a collection of small,
easily understood function definitions. Full recursion
without special user provisions is a natural outgrowth
of the structure of the language. However, LISP 1.5
lacks a convenient input language and efficiency in
the treatment of purely arithmetic operations.

LISP 2 was designed to maintain the advantages of
LISP 1.5 while remedying its deficiencies. The first
major change has been the introduction of two dis
tinct language levels: Source Language (SL) and In
termediate Language (IL). The two languages have
different syntaxes but the same semantics (in the
sense that for every SL program there is a computa
tionally equivalent IL program). The syntax of SL
resembles that of ALGOL 60,4 while the syntax of
IL resembles that of LISP 1.5. IL is designed to have
the same structure as data, and thus to be capable of
being manipulated easily by user (and system) pro
grams. An advantage of the ALGOL-like source lan
guage is that the ALGOL algorithms can be utilized
with little change.

The second major change has been the' introduc
tion of type declarations andriew data types, includ
ing integer-indexed arrays and character strings. At' a
future time, packed data tables, which can presently
be simulated through programming techniques, will
be added. Type declarations. are necessary to obtain
efficient compiled code, particularly for arithmetic
operations, but by using the default mechanisms, a
programmer may omit type declarations entirely (al
beit at the cost of efficiency).

The third major change has been the introduction
of partial-word extraction and insertion operators.
Further, an IL-Ievel macro expansion capability has

been included, which makes possible the definition of
operations in terms of a basic set of open-coded
primitives. These changes made it possible to write
the entire system in its own language without loss of
efficiency. At the same time, the compilations of user
programs are more economical in time, and to some
extent in space, than they would be without these
facilities. Furthermore, the knowledgeable user can
trade space against time through appropriate re
definition of system functions.

A fourth major change, the introduction of pat
tern-driven data manipulation facilities, along the
lines of COMIT 5 and METEOR,6 is still in the proc
ess of implementation. Because of the open-ended
nature of LISP 2, these facilities can be added with
out disrupting the existing system structure. We men
tion this facility here, despite ,the fact that it does not
yet exist, because it is an integral part of the over-all
design of the language. Since the specifications are
not final as of this writing, however, we shall not dis
cuss them further.

. To orient the reader toward the exposition of the
language, we present a short example at this point.
Further examples will be given later. The following
program 7 is written in SL:

% RANDOM COMPUTES A RANDOM
NUMBER IN THE INTERVAL (A, B)

OWN. INTEGER Y;
REAL FUNCTION RANDOM(A,B);

REAL A,B;
BEGIN Y~3125*Y;

END;

Y ~ Y", 67108864;
RETURN (Y /67108864.0 * (B

A)+A)

The only significant difference between this pro
gram and the ALGOL original is the use of the re
verse slash ""''' to indicate the computation of the
remainder. The corresponding program in IL is:

(DECLARE (Y OWN INTEGER))
(FUNCTION (RANDOM REAL)

((A REAL) (B REAL))
(BLOCK NIL (SET Y (TIMES 3125 Y))

(SET Y (REMAINDER Y 67108864))
(RETURN '(PLUS (TIMES (QUOTIENT

Y 6.7108864000E+ 7)
(DIFFERENCE B A)) A))))

The process of converting SL programs into com
piled code is shown. in Fig. 1.' SL is first translated
into' ILby syntax translator. IL is then translated

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 663

COMPILED
SL SYNTAX IL AL

LISP 2 CODE
COMPILER - ASSEMBLY . TRANSLATOR - PROGRAM DATA

STRUCTURES

Figure 1. System organization. SL = source language; IL = intermediate language; AL assembly language.

into assembly language by a compiler. Finally, the
assembly language is translated into machine lan
guage by an assembly program. The process is en
tirely accessible to the user, in that he can write pro
grams in IL or assembly language if he so chooses.

The remainder of this paper is divided into two
parts, one dealing with the language and the other
with the implementation. Certain aspects of the lan
guage that were intended primarily as implementa
tion tools, e.g., open subroutines, are discussed in
connection with the implementation.

In discussing the language, we shall present simul
taneous discussions of the syntax of SL and IL, ac
companied by discussion of the semantics of both. In
this way the semantic equivalence of SL and IL will
become apparent. It should be borne in mind that the
primary use of SL is for programs written by people,
while the primary use of IL is for programs written
by machines. Thus the syntax of SL is designed for
convenience in writing, while the syntax of IL is
designed to reflect in its form' the structure of the
program that it represents.

THE LISP 2 LANGUAGE

Tokens

Tokens are the smallest units of input or output
data with which LISP 2 programs ordinarily deal and
are significant because of their role in defining the
standard input/output conventions with regard to
both programs and data. The major categories of
tokens are:

1. Delimiters
2. Numbers
3. Simple strings
4. Identifiers
5. Operators

The delimiter tokens are:

()[] cr

Numbers as tokens may be either signed or unsigned
in IL, but must be unsigned in SL since a preceding
sign is interpreted as an operator. Some examples of
unsigned numbers are:

unsigned
integer 1 2 3E5

unsigned
octal 120 1406

unsigned
real .87 12. 4.5E5 2.E~10

Signed numbers are like these, but are preceded by a
sign. Other examples of tokens are:

identifier
operator

AB H21 GO.TO

A string consists of a sequence of characters delim
ited at each end by "#". The character " , " inside a
string causes the character following to be entered in
the string. Some examples of strings are:

#AB(C)D#
#A'#256'##
#ISN' 'T#

An identifier may be created-from a string by preced
ing it with the escape character. This character is
changeable within the system but will usually be
"% ." If "%" is the escape character, the following is
an identifier:

%#AB(C)D#

An identifier created in this way is said to have an
"unusual spelling," since, in general, such identifiers
will be created only when they cannot be written in
any other way unambiguously.

Data

The most general form of a LISP 2 datum is an S
expression, where the S stands for "symbolic." S
expressions are built up from atoms, which may be
numbers, strings, identifiers, function specifiers, and
arrays. As in LISP 1.5, the class of S-expressions is
defined recursively as follows:

1. Every atom is an S-expression.
2. If e1 and e2 are S-expressions, then

(e1 • e2)

664 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

is an S-expression. Thus, for instance,

«A . B) . (C . D»

is an S-expression.
S-expressions of the form:

(el • (e2 • ••• • (en . NIL) . . . »

are known as lists, and can be written in the abbrevi
ated form:

(el e2 ••• en)

The ei are called the elements of the list. The two
notations may be intermixed; thus

«A . 1) (B . 2) ... (Z . 26»

is an S-expression in the form of a list, but the ele
ments of the list are not themselves in the form of
lists. The atom NIL can also be written in the form
(), and designates the empty list.

The LISP functions CAR, CDR, and CONS are
defined by:

CAR applied to (el • e2) yields el

CDR applied to (e1 • e2) yields e2

CONS applied to el and e2 yields (e1 • e2)

In terms of the list notation, CAR finds the first
element of a list and CDR removes the first element
from a list. Thus CAR applied to the list (A BCD)
yields A, and CDR applied to the same list yields the
list (B C D). CDR applied to a list of one element
yields the empty list (). The function NULL has
value TRUE for the empty list () (also represented
as NIL) and value FALSE for anything else. The
function CONS of two arguments can be used to add
an element at the head of a list; thus CONS applied
to the element A and the list (B C D) yields the list
(A BCD). CONS is the basic operator used for
constructing lists.

IL programs are written in the form of S-expres
sions, and therefore can be treated as data. The abil
ity to treat programs as data in a natural way is an
essential feature of LISP. SL programs can also be
treated as data, because of the existence of strings;
however, this is not nearly so natural as it is with IL.

Arrays are atoms because CAR and CDR are not
defined for them. Constant arrays are written by en
closing their elements in brackets. For example:

[2 5 -1 4]

is a one-dimensional array of integers, and:

[[A B C] [AI Bl Cl] [A2 B2 C2] [A3 B3 C3]]
is a two-dimensional array of S-expressions.

Data Types. Although every LISP 2 datum is an
S-expression, it is useful to pick out certain subsets
of the set of all S-expressions and to designate these
subsets by data type names. The data type names and
the subsets they denote are:

BOOLEAN

INTEGER
OCTAL

REAL
FUNCTIONAL
SYMBOL

type ARRAY

Truth value data, represented by
TRUE and FALSE. The empty
list (), the atom NIL, and the
Boolean value FALSE are re
garded as synonymous.
Signed integers.
Another form of integer, basic
ally regarded as unsigned, that
prints in an octal output format.
Floating-point decimals.
LISP 2 function.
The entire set of S-expressions.
Strings and identifiers must be of
this type.
An array whose elements are of
the specified type, where type is
either BOOLEAN, INTEGER,
OCTAL, REAL, FUNCTION
AL, or SYMBOL.

The different data types are not mutually exclu
sive, in that the class of data of type SYMBOL in
cludes all other classes of data. Except for SYM
BoL' all of the data classes include atomic data only.

Expressions

An expression is a designation of a datum. The
datum designated by an expression is the value of
the expression. The elementary components from
which expressions are built up are constants, vari
ables, and operational forms. We shall first discuss
these, and then show how they are combined to form
more complex expressions.

Constants. A constant is a datum appearing in a pro
gram context that denotes itself, i.e., its representa
tion is both its name and its value. Consequently, a
constant cannot change value during the execution
of a program. A symbolic constant is denoted by a
quoted S-expression. In SL, an S-expression is
quoted by preceding it with a prime, e.g., 'ALPHA
or '(L1 L2). In IL, an S-expression is quoted by pre
ceding it with QUOTE in a list, e.g., (QUOTE
ALPHA) or (QUOTE(Ll L2». Quotation is neces
sary for identifiers and lists to prevent them from
being interpreted as variables or operational forms.

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 665

Variables. A variable is also an elementary designa
tion of a datum. However, the value of a variable
may be changed during the execution of a program.
A variable is normally denoted by a single identifier.
Associated with every variable is a collection of bind
ings, each of which is a location containing a value.
Bindings are created by declarations, which may ap
pear in blocks, in functions, or on the supervisor
level (see below). Blocks and functions are the two
different kinds of program units. At execution time,
a program unit may be activated either by the super
visor or by another program unit; thus there is a
hierarchy of active program units.

When execution of a program unit commences, a
binding is created for each variable declared by the
program unit. When execution of the program unit
is completed, these bindings disappear. Thus, each
active program unit has a set of bindings associated
with it, and the hierarchy of bindings corresponds to
the hierarchy of active program units. In general, the
value of a variable is the value attached to the most
recently created and still existing binding of that
variable. It is possible to use an assignment action to
change the value associated with the current binding
of a variable.

Associated with every variable is a type, a storage
mode, and a transmission mode. The type of a vari
able restricts but does not necessarily determine the
types of the data that are its values at different times.
In particular, a variable whose type is SYMBOL
may assume values of any type whatsoever.

There are three storage modes for variables: fluid,
own, and lexical. A fluid variable can be referred to
from outside the program unit that binds it, while a
lexical variable cannot. Thus, fluid variables are
more general but are also more prone to conflicts of
names. Fluid variables are primarily used as a means
of communication among separately compiled pro
grams. An own variable is like a fluid variable except
that only one binding can exist for it, and that bind
ing must be made by a supervisor action. Own vari
ables are designed primarily for communication with
non-LISP 2 programs.

A variable may designate a datum either directly
or indirectly. If the variable designates the datum
directly, then it designates the actual value of the
datum; if the variable designates the datum indi
rectly, then it designates the location in which the
value is stored. This distinction is significant chiefly
when a datum is being passed as an argument to a
function; the transmission mode of the argument

variable indicates whether a value or a location of
a value is being passed. If a location is being passed,
then the transmission mode is said to be locative;
otherwise the transmission mode is said to be by
value.

Operational Forms. An operational form is used to
apply a function to its arguments, to invoke a macro
transformation, to alter the flow of a program, or to
locate an element of an array. An operational form
in SL is written:

where f is the form operator and the ej are its oper
ands. In IL the operational form is written as:

(f e1 e:2 ••• en)

If the form operator designates a function, then to
obtain the value of the operational form, the oper
ands are first evaluated, and then the function is ap
plied to the values so obtained. An array is handled
similarly; the subscripts are treated as arguments of
a function that finds the desired element of the array.

Each function has associated with it a value type
and a set of argument types. Any argument that is
not of the expected type is converted to that type
when the conversion is legal. The value type re
stricts the type of the result of the evaluation in the
same way that the type of a variable restricts the
values that the variable may assume.

In general, the order of evaluation of the operands
of an operational form is not guaranteed. This is a
departure from most other problem-oriented lan
guages, but leads to improved compiled code. Also,
with the advent of parallel processing computers it
may be desirable to have several arguments evalu
ated simultaneously. If evaluating an operand has
any side effect on the evaluation of any other oper
and, then the results of the evaluations will be un
predictable. However, the operator ORDER applied
to an operational form will cause the operands to
be evaluated in order of appearance.

Macros may be used to effect transformations of a
program after it has been translated from SL to IL
and before it has been compiled. When a macro
name appears as a form operator, the effect at com
pile time is to cause the entire operational form to
be replaced by a new form. The new form is calcu
lated by a function associated with the macro; the
argument of this function is the IL version of the op
erational form. Much of the task of compilation is

666 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

achieved through the use of macros that are invisible
to the user; however, the user can alsO' define his own
macros. The use of macros is discussed further in
connection with the user control facilities of the
compiler.

Other Expressions. Elementary expressions (i.e.,
constants, variables, and operational forms) may be
combined in SL by means of prefix and infix O'pera
tors. Thus, all of the usual arithmetic and Boolean
expressions are permitted in the usual algebraic no
tation. The symbolic operators CAR and CDR are
also prefixes, which help to reduce the accumulation
of parentheses. If a, b, and c are any expressions in
SL, the relational expression:

a<b<c

and all similar forms have the same meaning in SL
as they do in mathematics. Any number of relational
operators can be combined in a relational expression,
and different operators can be used in the same ex
pression.

Infix and prefix operators cannot be used in IL,
and must be replaced by corresponding operational
forms. For example:

A*B+3,-ALPHAt2
is written in IL as:

(PLUS (TIMES A B) 3 (MINUS (EXPT
ALPHA 2)))

A similar notation is used for relational expressions.
Conditional expressions in SL have the form:

IF PI THEN el ELSE IF pz THEN ez ELSE
. .. IF pn THEN en ELSE en+1

The final ELSE clause need not be included (unlike
ALGOL). The corresponding form in IL is:

(IF PI el pz ez· .. pn en en+1)

The Pi, which are Boolean expressions, are evaluated
in turn from left to right until a true one is found.
The value of the corresponding ei is then used as the
value of the entire expression. Conditional expres
sions have the useful property that evaluatiO'n pro
ceeds only as far as necessary to determine the out
come.

A block expression is a block (see below) that
appears in a context where an expression is required.
A block expression is used to write a program as a
sequence of statements to be executed and ultimately
to produce a value. The value of a block is ordinarily

specified by a RETURN statement (see below).
LISP 2 differs from ALGOL in permitting a block to
be an expression as well as a statement.

A CASE expression is written in the form:

CASE(s, eI , ez ... , en)

in SL, and in the IL form:

(CASE s el ez ... en)

where s is an integer-valued expression known as the
selector. If the value of the selector s lies in the range
1 S s S n, then the expression es is evaluated and is
the value of the CASE expression. If s < 1 or s >
n, the value is en.

An assignment expression is written in the fO'rm:

v~e

in SL and in the form:

(SET v e)

in IL.
If v is a variable and e is an expression, the as

signment expression has the effect of evaluating the
expression e and assigning its value to v. The value
of the entire expression is the value of e. Assignment
expressions, like all other expressions, can be used
as arguments in operational forms; in particular, they
can be nested to achieve simultaneous assignment of
value to several variables.

The general form of the left side of an assignment
expression is a locative expression. A locative ex
pression designates a part of a data structure or
variable structure. A variable is a particular case of
a locative expression. Locative expressions can be
used to designate the current binding of a variable,
an element of an array, part of a list structure, or
particular bits of a word of memory. Thus, the two
assignments:

A ~ '(MARY DOE) ;
CAR A ~ 'JOHN ;

will cause the value of A to become:

(JOHN DOE)

Blocks and Statements

A block may be either a block expression, a block
statement, or a compound statement. All three of
these are written in the same form and are evaluated
in the same way. Whether a block is a block expres-

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 667

sion, a block statement, or a compound statement
depends on both the context of the block and what is
contained within the block.

In SL, a block is written in the form:

BEGIN d1 ; d2; ... dk ; SI; 82; ... Sn END

where the d i are block declarations and the Si are
statements. Each block declaration specifies one or
more internal parameters, which are variables that
are bound while the block is active. The correspond
ing form in IL is:

(BLOCK(d1 d2 ... dk) SI S2 ... sn)

A statement is an action to be taken. Any expres
sion (other than a variable) can be used as a state
ment, but not every statement can be used as an ex
pression. When. an expression appears in a context
where a statement is expected, the expression is eval
uated, but the value is discarded. A statement may
have one or more labels associated with it; these are
referred to in GO statements (see below) and in
dicate where to transfer control. Variables can not
be statements because of the conflict with labels.

When evaluation of a block begins, bindings are
simultaneously created for each internal parameter
specified by a block declaration. These bindings re
main in existence until the evaluation of the block is
completed, at which time they disappear. Each bind
ing contains a value for the variable that it binds.
The nature of the binding is specified by the block
declaration that creates it. After the bindings have
been made, execution of the statements in the block
begins. The statements are executed in turn unless
the sequence of control is altered by a GO statement
or by a RETURN statement. Execution of the block
is terminated either by executing a RETURN state
ment or by executing the last statement of the block
without a transfer of control.

A block declaration in SL is in the form:

The Pi consist of a type, a storage mode, and a trans
mission mode (in any order). Lexical storage and
transmission by value are specified by omission; if
the type is omitted, a default type is used. If all Pi
are empty, the symbol DECLARE must be used.
Each of the s i is either the name of a variable or in
the form:

v~e

where e is an expression giving an initial value for
the variable v. If no initial value is given, a default

value, depending on the type, is used. A block decla
ration causes all the specified variables to be internal
parameters of the block and to have the properties
specified by the Pi.

In IL, each declaration specifies the properties of
one and only one variable; thus, in the translation
from SL to IL, it is necessary to break up each dec
laration that declares more than one variable into a
sequence of declarations (with appropriate factoring
of properties). An IL declaration is in the form:

(v PI P2 P3 P4)

where one of the properties is the initial value, if any.
The various types of statements and their effects

may be summarized as follows:

1. GO statement-transfers control to the named
statement.

2. RETURN statement-terminates evaluation of
a block and determines the value of a block expres
sion.

3. Compound statement-permits the insertion of
a sequence of statements in a context where only a
single statement is expected. A compound statement
is in the form of a block with no declarations.

4. Conditional statement-selects one of several
possible statements to be executed on the basis of
the truth or falsity of a sequence of Boolean expres
sions.

5. Simple expression-causes the evaluation of
the expression; the value is discarded.

6. FOR statement-causes an iteration to be per
formed for a sequence of values of a named variable.

7. TRY statement-causes control to be returned
to itself if an exit condition is detected during the
execution of a statement within the TRY statement.

S. Block statement-like a compound statement,
except that internal parameters may be declared in
the same manner as in a block expression.

9. CASE statement-selects one of several pos
sible statements to be executed on the basis of the
value of an integer-valued expression.

10. Empty statement-can be used to place a
label; contains nothing and makes no action.

The FOR statement has some unusual features
that merit further discussion. The statement:

FOR v IN x DO s

causes the statement s to be executed for each ele
ment of the list x, with v assuming the successive

668 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

elements as its value in each execution of s. If ON
is used instead of IN, v first assumes as values the
entire list x, then its successive terminal segments
CDR x, CDDR x, etc., until the list x is exhausted.
The clause:

UNLESS b

may be inserted as part of a FOR statement to in
hibit execution of the statement s whenever the
Boolean expression b is TRUE. The UNTIL clause
of ALGOL, used in conjunction with STEP, is re
placed by a relational operator and an expression;
iteration continues until the variable of iteration no
longer satisfies the specified relation. This approach
avoids the need to recompute the sign of the incre
ment for each iteration.

Functions

A function definition is a specification of a com
putational procedure; the procedure itself is a func
tion. A function definition in SL is in the form:

t FUNCTION n (Xl, Xz, ••• , xn); dl , ••. dk; e

where t is the type of the value of the function, n is
the name of the function, the Xi are dummy variables
that stand for its arguments, the d i are declarations
governing the arguments, and e is an expression
whose value is the value of the function.

The corresponding form in IL is:

(FUNCTION (n t) (dl d2 ••• dk) e)

where a declaration is given for each argument. Thus
the declarations not only give the properties of the
arguments but also name them. If the value type of
the function is omitted, then the name n can be writ
ten without parentheses and the default type will be
used.

The argument parameters are used to denote the
values of the actual argulllents within the body of the
function definition. The body of the function defini
tion e is the expression that defines the value of the
function. The argument declarations specify the type,
transmission mode, and storage mode of the argu
ments.

Functional Data. A function may be used in either of
two ways: as an operator or as a datum. We have
already seen how functions can be used as form
operators. An example of the use of a function as a
datum would be the input to a numerical integration

routine; the input is the function to be integrated,
and the output is the integrand. An example oriented
more closely to symbolic data processing would be
the use of the LISP function MAPCAR, whose argu
ments are a list to be transformed and a transforma
tion function. The output of MAPCAR is the trans
formed list. Thus

MAPCAR (,(2 5 4 9), FUNCTION ADDER
(J); INTEGER J; J +2)

would evaluate to the list:
(47611)

Since a function is itself a datum, it can be used
in any context where a datum is expected. Thus,
functions can themselves be used as arguments of
other functions, and functions can be values of vari
ables. A function can be designated by its definition,
by its name, or by a variable having the function as
its value.

There are two contexts in which a function may be
referenced-as a datum, as we have just said, and
as a form operator. When a function is used as a
form operator, it must be designated either by a
functional variable (i.e., a variable whose values are
functions) or by a function name. The effect of using
a function definition as a form operator can be
achieved by assigning the function definition to a
functional variable (which is legitimate, since the
function definition then appears in a data context)
and then by using the functional variable as the form
operator.

Functions of an Indefinite Number of Arguments. It
is possible to define functions that expect an indefi
nite number of arguments. In defining such a func
tion, there is no way to enumerate the names of the
arguments; therefore an argument vector, i.e., a one
dimensional array having a single variable name v,
designates the set of arguments. The length of the
vector is specified by a second variable k. In the
argument list, the argument vector (which must be
the first argument) is designated by writing v(k) in
SL and (v INDEF k) in IL. When the function is
entered, the value of v is the vector of . arguments,
and the value of k is the length of this vector. The
different elements of the argument vector can then
be referred to within the body of the definition by
subscripted occurrences of v.

For example, the function SUMSQUARE might
be written to take the sum of the squares of its argu
ments. We would then define it in SL as follows:

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 669

REAL FUNCTION SUMSQUARE(X(I»;
BEGIN INTEGER J; REAL Y;

FOR J~1 STEP 1 UNTIL> I DO
Y~Y + X(J)j2;

RETURN Y
END

Here X is the argument-vector parameter and I is
its length. The corresponding IL definition is:

(FUNCTION (SUMSQUARE REAL) «X
INDEF I»

(BLOCK «J INTEGER) (Y REAL»)
(FOR J (STEP 1 1 GR I)
(SET Y(PLUS Y (EXPT (X J)2»»)

(RETURN Y)))

An actual use of SUMS QUARE might look like:

SUMSQUARE (2, 7, 4)
in SL, and:

(SUMSQUARE 2 7 4)

in IL.

Sections

A section is a collection of declarations and defini
tions that operate as a unit. Dividing a large program
into sections makes it possible to write different parts
of the program independently without name conflicts.
It also makes it possible for one user to refer to pro
grams written by another user without name con
flicts. A section is designated by its section name,
which is an identifier. Each section is associated with
a set of variables that designate the various entities
defined within the section. At any given time there is
a single active section, which is known as the current
section; all other sections are external sections. A
variable in a particular section, whether current or
not, can be referred to by tailing (often called "quali
fying") e.g., "JOE$SAM" refers to the variable JOE
in section SAM.

The section mechanism permits parts of LISP 2
programs to be written and checked out independ
ently. At merge time, attention need be paid only to
variables used for names of common functions and
communication variables. Since the system programs
are in a special section, the user need not worry
about name conflicts; at the same time, the system
programs are accessible to the user through the tail
ing mechanism. Thus the user can, if he chooses,
treat the system programs as an extension of his own
program rather than as a black box.

Supervisor Level Operations

LISP 2 is controlled by a supervisor program that
is itself named LISP and that can be called as a
function. When the user starts up the LISP system,
the supervisor is called immediately. The supervisor
accepts commands to perform various operations.
The actions taken by the supervisor in response to
these commands are known as top-level operations.
The following top-level operations are possible:

1. Evaluate an expression
2. Establish a current section with given

name and default type
3. Create a fluid or own variable of speci

fied type and transmission mode
4. Define a function
5. Define a dummy function (used to

establish type information in certain
cases)

6. Define a macro
7. Define an instruction sequence to be

used in compilation
8. Define an assembly-language program
9. Declare a variable to be synonymous

with another variable.

The user can specify the input and output devices
to be used; the on-line typewriter is taken as the de
fault case. After each operation the system sends
any necessary output to the output device and pro
ceeds to the next operation.

Input/Output. One of the primary design aims in
LISP 2 I/O has been the maintenance of as much
machine independence as possible. This is accom
plished by distinguishing user interfaces from system
interfaces and insulating the user from the system
interfaces. This effect is achieved by creating ma
chine-independent data aggregates called "files," and
permitting the user to operate with files by means of
LISP 2 functions.

To the user, a file is a source or sink for informa
tion, which is filled on output and emptied on input.
A file itself is both device- and direction-independ
ent. The relationship of a file to an external device
is determined by the user at run time, when he
specifies whether the file is to be an input file, an
output file, or both.

To the system, a file consists of a sequence of
records, represented internally as an array of type
OCTAL if the file is binary, and as a string if the file

670 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

is composed of characters. (ASCII 8-bit characters
are used internally throughout LISP 2.) To reduce
buffer storage overhead, only one record for a given
file can be in main memory at a time. String records
are further structured into lines. The number of char
acters per line and lines per record may be specified
by the user, but must be consistent with the conven
tions used by the external monitor system.

When a record in a file is moved from an external
device into core, it is transformed into a LISP 2
string. The transformation may involve character
code conversions and insertion or deletion of control
characters. The transformation is governed by a col
lection of control words associated with the file.
During output, this transformation, known as "string
post-processing," is reversed.

File Activation and Deactivation. A file may be ei
ther active or inactive; an active file, in turn, may be
either selected or deselected. No record is kept within
LISP 2 of inactive files; however, many files may be
active concurrently.

A file is activated by evaluating the function
OPEN which establishes all necessary communica
tion linkages between LISP 2 and the monitor. The
file is named by an identifier that is its referent
throughout its active life. The user further specifies
the desired file description at this time. This descrip
tion is given only once and consists of a list of file
properties desired by the user, such as the unit (tape,
disc, teletype, CRT, etc.), form (binary, ASCII,
BCD, etc.), format (line and record sizes), and vari
ouS protection and identification parameters.

Deactivation of a file is achieved by evaluating the
function SHUT. SHUT breaks all the communication
linkages and deletes all internal structures such as
arrays, strings, and variables that were dynamically
established by OPEN. The user may specify the dis
position of thefile, e.g., the saving of the tape or the
insertion of the file in disc inventory. The external
monitor is informed of such actions by LISP 2.

File Selection. At any given time, exactly one file is
selected for input and one for output; all other active
files are deselected. The LISP 2 reading functions all
operate on the currently selected input file; the print
ing functions all operate on the currently selected
output file. The functions INPUT and OUTPUT are
used for selecting the input file and the output file,
respectively.

When a new file is selected, the record, line, and
column controls for the deselected (replaced), file are
preserved, and the, new file record, line, and column

controls are reestablished. Once a file is selected, all
I/O primitives act only on that file. Thus it is pos
sible to write a LISP 2 program that is independent
of form, format, and device by supplying the name of
the file as an argument of the program at run time.
This scheme allows a LISP program to be debugged
with files generated on-line and subsequently run
with bulk data from tape or disc files simply by
changing the selected file.

Other I/O Functions. A variety of I/O functions are
available for reading and writing binarY,and symbolic
data. There are character-level primitives that permit
testing, printing, reading, and transforming char
acters. Other functions allow reading and printing at
the token and S-expression levels. Character map
pings permit LISP 2 to communicate with restricted
character-set devices.

Examples

An example is now given of a complete SL pro
gram. The example includes not only the program
itself but also the control actions necessary to test it:

SYMBOL SECTION EXAMPLES, LISP;
% LCS FINDS THE LONGEST COMMON SEG
% MENT OF TWO LISTS Ll AND L2
FUNCTION LCS(Ll,L2); SYMBOL Ll, L2;

BEGIN SYMBOL X, Y, BEST ~ NIL; INTE
GER K~O, N, LX~LENGTH(Ll);

FOR X ON Ll WHILE LX >K DO
BEGIN INTEGER LY ~ LENGTH (L2);

FOR Y ON L2 WHILE LY > K DO
BEGIN N ~ COMSEGL (X,Y);

IF N < =K THEN GO A;
K~N;

BEST ~ COMSEG (X,Y);
A: LY ~ LY- 1
END;
LX~LX-l

END;
RETURN BEST;

END;
% COMSEGL FINDS THE LENGTH OF THE
%' LONGEST INITIAL COMMON SEGMENT
% OF
% TWO LISTS X AND Y.

INTEGER FUNCTION COMSEGL (X,Y);
IF NULL X OR NULL Y OR CAR X /=

CAR Y
THEN 0 ELSE COMSEGL (CDR X,CDR

Y) + 1;

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 671

% COMSEG FINDS THE LONGEST INITIAL
% COMMON SEGMENT OF TWO LISTS X
% AND Y

SYMBOL FUNCTION COMSEG (X, Y);
IF NULL X OR NULL Y OR CAR X /=

CAR Y
THEN NIL ELSE CAR X . COMSEG(CDR

X, CDR V);
% LENGTH COMPUTES THE LENGTH OF L

INTEGER FUNCTION LENGTH (L); SYM
BOLL;

BEGIN INTEGER K ~ 0; SYMBOL Ll;
FORL1INLDOK~K+l;

RETURN K;
END;

LCS (,(A B C BCD E), '(B CD ABC DE F));
STOP

machine: (B C D E)

This example illustrates the use of list processing
capabilities combined with integer arithmetic and
iteration. The operator "< =" means "less than or
equal to," and the operator" / =" means "not equal
to." The LISP operators CAR, CDR, and NULL are
all used as prefix operators without parentheses. The
dot in the third line of COMSEG is an infix operator

PATTERN
DRIVEN

DATA
MANIPULATOR

COMPILER

LISP
ASSEMBLY
PROGRAM

that stands for the LISP function CONS. The state
ment "FOR X ON L1" causes iteration to take
place on the successive terminal segments of Ll.
Thus, if L1 is the list (A BCD), then iteration takes
place successively on (A BCD), (B CD), (C D),
and (D). The function LENGTH, defined here, is
available as a system function and is redefined only
as an illustration.

THE PROGRAMMING SYSTEM

System Overview

A diagram of the LISP 2 system which shows the
relationship among its different components is
shown in Fig. 2. Information enters the system via
the I/O package in either SL or IL. The I/O pack
age transforms the input into a stream of characters
-the input to the finite state machine-which in
turn generates a stream of tokens. Among other
things, the finite state machine performs the task of
linking up a newly received identifier with a previous
copy of the same identifier. The token stream pro
duced by the finite state machine is routed by the
supervisor to either the syntax translator or to a
reading program for IL, depending on whether SL
or IL is expected. In either case, the result is an ex-

IL

S-EXPRESSION

READER

SYNTAX

TRANSLATOR

PRINT

TOKENS

CHARACTERS

FINITE
STATE
MACHINE

DEBUG

FACILITIES
ILIBRARY FUNCTION@

I PRIMITIVES I
(GARBAGE COLLECTOR I
IMETA COMPILER I

TIME
SHARING
MONITOR

Figure 2. System components and information flow paths (unlabeled connections designate control paths).

672 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

pression in IL. The supervisor determines when
co~pilation is to take place, and also handles proc
essmg requests.

The syntax translator takes a stream of SL tokens
and transforms it into an IL expression. This expres
sion can be returned as output, passed to the com
piler, or both. The choice is made by the supervisor
under the control of the user. The syntax translator
consists of parsing and generating programs that are
compiled from a set of syntax equations. These syn
tax equations define SL in terms of IL.

The compiler, which is the most complex compo
nent of the system, converts IL into input for LAP,
the LISP Assembly Program, or for the core image
generator. Both LAP and the core image generator
accept input in assembly language (AL). If LAP is
being used, then the result of assembly is a relocat
able segment of code stored in an area of the ma
chine reserved for binary program. If th'e core image
generator is being used, then the result is a string of
pairs of binary numbers, each consisting of a core
location and the contents of that location, stored on a
magnetic tape or other external medium. The core
image generator is only used when a new system is
being created.

The META compiler, the garbage collector, and
t?e primitives are all implicitly involved in the opera
tIOn of the system. The META compiler is a library
program that generates a syntax translator from a
set of syntax equations. The garbage collector is the
program that collects dead storage when available
storage has been exhausted. The primitives are the
basic library functions in terms of which the entire
system is written.

A1er.nory A1anager.nent

Most of the concepts of memory management
used in LISP 1.5 are also used in LISP 2. Memory
management in LISP 2 is based on several consid
erations:

1. LISP 2 data structures may vary in
size by orders of magnitude at run
time, and storage for such data struc
tures must be allocated automatically.

2. Since recursion is permitted, successive
generations of data structures must be
retained simultaneously.

3. Programs and data structures that are
no longer needed must be purged with
out explicit action on the part of the
user.

4. Numerical data must be stored in such
a way as to permit efficient numerical
calculations.

LISP 2 data structures may be either variable or
fix~d in size. The variable data structures are arrays,
stnngs, and symbolic expressions. Although an array,
once established, does not change in size, the size of
an array is frequently not known until the occasion
arises to create it. In the case of list structures, the
situation is even more complex; a list structure may
be modified in such a way as to increase or decrease
its size.

Arguments of functions and internal parameters of
blocks are stored on a pushdown stack. Since all
temporary storage belonging to LISP 2 functions is
recorded on the pushdown stack, which is main
tained by the LISP 2 system, recursion is permitted
with no special user provisions. Unlike LISP 1.5,
LISP 2 stores numbers directly on the pushdown
stack as single cells. Therefore, it is possible to per
form arithmetic without the loss of efficiency that
would arise from packing and unpacking numbers
referenced indirectly. Symbolic expressions, strings,
and arrays, however, are accessed by means of
pointers stored in the stack. The data structures thus
pointed to are discarded when the function creating
them has completed its execution; however, they do
not disappear, but remain as garbage until the next
garbage collection, the description of which follows.

In LISP 2, data structures are grouped according
to their storage characteristics and a storage area is
set aside for each group. The groups are:

1. Elementary symbolic entities (symbolic
constants, function and variable names,
etc.)

2. Compiled programs
3. List structures
4. Arrays and strings

In addition, a storage area is set aside for the
pushdown stack. These storage areas are arranged in
pairs, where one member of the pair grows from the
bottom up and the other grows from the top down.
Data storage is obtained by taking storage space from
the appropriate area until that area is exhausted
(which occurs when its boundary meets the boundary
of the area that is paired with it). At this point, the
garbage collector is invoked. Garbage collection
erases all inaccessible data structures and reclaims
the emptied space for new structures. For instance,
if a LISP 2 function has been redefined, the program

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 673

corresponding to its old definition is inaccessible and
thus is erased. During garbage collection, the differ
ent areas are compacted, relocating code and/or data
structures, if necessary, so as to eliminate the gaps
left by erased structures.

The different kinds of structures are stored in
different areas because their requirements in terms
of garbage collection are different. For instance, the
elementary symbolic entities cannot be moved, but
other kinds of data can be moved. Similarly, list
structures consist of independent nodes, while arrays
consist of blocks of different sizes.

The Syntax Translator and
the MET A Compiler

The translation from SL to IL is performed by a
syntax translator that was generated by the META
compiler. The META compiler is based upon a pro
gram developed by Special Interest Group for Pro
gramming Languages of the Los Angeles Chapter of
ACM.8 The META compiler takes as input a speci
fication of the syntax of SL, together with. instruc
tions on how each syntactic entity is to be trans
formed to IL. It produces an IL program that
actually carries out the translation from SL to IL.
The description of the syntax of SL is given in an
extended version of Backus-Naur Form.4

The MET A compiler produces top-to-bottom
compilers with a controlled backup feature and an
interface with the finite state machine (see below).
Both the controlled backup and the finite state ma
chine are efficiency features. The controlled backup
allows the designer of a language to specify in the
syntax equations when the state of the machine must
be saved because two or more parsings start with the
same construction.

As it is possible to regenerate the syntax translator
with new syntax equations at any time, the syntax
and semantics of SL are not, in principle, rigidly
fixed. In practice, variants on the syntax translator
will be used in order to translate other languages into
LISP 2 IL. These other languages, unlike SL, will
normally not be semantically equivalent to IL.

Finite State Machine

The finite state machine (FSM) is a token-parsing
program used by the syntax translator and the S
expression reader. Reading LISP 2 entities is ex
pensive, not only in the original creation of the
internal structures, but also in the time spent in

garbage collecting when the structures are discarded.
Consequently, it is desirable to avoid backup at the
character level and its resulting re-creation of dupli
cate structures. Since backup must be used by the
syntax translator, the FSM was imposed between it
and the character stream to eliminate reprocessing of
tokens. Having the bottom-to-top FSM interface with
the top-to-bottom syntax translator eliminates a large
portion of the overhead associated with reading in
the LISP 2 system. The S-expression reader does not
require backup, but since the FSM existed, it was
convenient to use tokens for building S-expressions
also.

The FSM behaves like a Turing machine. It moves
from state to state as it reads characters; when a
terminal state is reached, it "prints" a character from
its output alphabet (tokens) and sets its state to the
initial one. Parsing and manufacture of structures are
done simultaneously as characters are recognized.
No reprocessing of the parsed characters is ever nec
essary, since in a terminal state the token is already
complete (except for a final action, such as combin
ing the parts of a real number).

The LISP 2 Compiler

The LISP 2 compiler is a large, one-pass, optimiz
ing translator whose input is a function definition in
IL and whose output is an assembly-language list of
instructions suitable for input to LAP. Most of the
compiler is independent of the target machine, since
the compilation concepts themselves are machine
independent. The declarations of all fluid variables
appearing within the function are written into the
output listing, since these must agree with fluid vari
able declarations made elsewhere. Checks are made
for both format and semantic errors during compila
tion. The compiler consists of three major sections:
the analyzer, the optimizer, and the user control
functions.

Analyzer. The top-level control of the compiler re
sides in the analyzer, which operates recursively.
Each item to be compiled is passed to the analyzer
either directly or indirectly. If the item is a variable,
an appropriate declaration is found and code for
retrieving the variable is generated; otherwise the
code for a function call is generated, a macro expan
sion is performed and the result compiled, or linkage
to an appropriate code generator is made. A pattem
matching function has been implemented for use in
the LISP 2 compiler. The patterns are written in a
modified form of Backus-Naur Form (not the same

674 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

as the one used in the syntax translator). The pat
terns are matched to an S-expression and the value of
the match is either TRUE or FALSE. The pattern
matching function checks for syntactic correctness
and distinguishes among different forms at the same
time.

Optimizer. Optimization of the code produced by the
LISP 2 compiler is handled by many groups of
routines, each responsible for certain actions. The
communicative mechanisms between these various
parts and the rest of the compiler will be described in
some detail below.

The movers, a highly machine-dependent set of
functions, produce code that alters the state of a
compilation in a specified way, such as moving an
object to an accumulator or converting a datum to a
specific type. Embodied in the movers is a predicate
capability that answers the question, "Is this move
possible under these conditions (say, one machine
instruction)?" The movers are used to build all ad
dress and modifier fields of generated instructions.
Associated with the movers is a post-processor that
rewrites the output code after the main compiler has
produced it. Redundant load-store sequences and
some unnecessary branches are removed from the
listing. Also, certain groups of instructions are re
written to make use of machine-specific instructions.

The arithmetic optimization package handles code
generation for addition and multiplication. The algo
rithm that is used is a standard one, namely, first
sorting the arguments by type and then by priority
sequence within a particular type. The sequence de
pends on whether the arguments are memory or ac
cumulator references. A single set of functions
handles both multiplication and addition, with the
aid of several functional arguments.

A second kind of optimization has to do with the
elimination of unnecessary transfer instructions. This
task is accomplished through the analysis of conflu
ence points, i.e., places in the program at which
several paths of control converge. For instance, con
sider the conditional expression:

(IF Pl· el P2 e2 ••• pn en)

The appearance of this conditional expression
establishes a confluence point at the end of the com
piled code that represents it. After the execution of
any of the ej, control goes to this confluence point.
Moreover, the confluence point is hereditary for each
of the ei, i.e., if one of the ej is a conditional expres
sion, then its confluence point is the same as that of

the entire expression. Analogous considerations hold
for conditional statements. Confluence points are also
hereditary with respect to RETURN statements of
blocks, i.e., the confluence point of a RETURN
statement is the same as that of the block in which it
appears.

When an expression is compiled, the character
istics of the value that is produced must be specified.
These characteristics include type, whether it is in a
special register or in an ordinary memory cell, its
address modifier (direct or indirect), which registers
it may be left in, whether the actual value is needed
or whether the negative or reciprocal of the value is
so described, etc. These characteristics are remem
bered by a set of state variables, which are bound
for each call to the analyzer. As a statement or ex
pression is compiled, a listing is generated and the
state variables set to reflect the state of the compila
tion. The compiler is passive in the sense that a com
pilation produces only the minimum amount of code
necessary to allow the result to be described by the
state variables.

User Control Facilities. The user can give the com
piler explicit instructions to aid in the compilation
process. As in LISP 1.5, macros are an integral part
of the language. Many of the facilities of the lan
guage, e.g., FOR statements, afe implemented by
means of system macros. When a FOR statement (in
IL form) is encountered during compilation, it ap
pears as an operational form whose operator is FOR.
The compiler tests each form operator to see if a
macro is defined for it. In the case of FOR, there is
such a macro. The macro is invoked with the FOR
statement (in the form of an S-expression) as input.
The output is a block containing an equivalent itera
tive loop. This block is then compiled in place of the
FOR statement. Macros may also be defined by the
user, and no distinction is made between system
macros and user macros.

Certain machine-dependent operators are partic
ularly useful as primitives in compilation. CORE is
an operator that acts like an array whose content is
all of the machine memory. Therefore CORE(x) is
the content of location x. BIT is an operator that
specifies a certain contiguous portion of a word.
There are also several operators that permit an ex
pression to be forced to a certain type or permit a
datum of one type to be used as though it were of
another type. Although such mechanisms exist in
most compilers, LISP 2 has made these items avail
able through the language.

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 675

The LISP 2 Assembly Program

The LISP 2 Assembly Program, LAP, is a pro
gram that generates a code segment from a list of
symbolic instructions and labels. LAP also allocates
storage for variables on the pushdown stack, and
insures that references to fluid and own variables are
consistent among different compiled functions. LAP
does more than most assemblers, in that it handles all
aspects of pushdown stack mechanics; consequently,
references to variables are made by naming the vari
able in the appropriate field of any instruction that
references it. Thus, the pushdown stack need never
be referenced explicitly.

LAP includes a number of system macros specifi
cally designed for LISP 2 programming. The pro
logue and epilogue of a function are generated by
BEGIN and RETURN respectively; CALL is used
to generate a call to a LISP 2 function in the stand
ard format. Storage allocation on the pushdown stack
is performed by the BLOCK, DECLARE, and END
macros; FLBIND creates any necessary bindings for
fluid variables. LAP does not have a generalized
macro facility; any effect that could be achieved by
such a facility, however, can also be achieved by
preprocessing.

The address field of an instruction may be used to
allocate, refer to, or release temporary storage on the
pushdown stack. The address fields TOP. and POP.
are normally used with instructions of the "load"
type. Both TOP. and POP. refer to the most recently
allocated pushdown cell, but POP. has the additional
effect of releasing that cell. PUSHA. and PUSHP.
both cause a new pushdown cell to be allocated, and
refer to that cell; PUSHA. and PUSHP. are normally
used in instructions of the "store" type. PUSHA. is
used for absolute quantities and PUSHP. for sym
bolic quantities, so that a map of the pushdown stack
can be maintained.

To illustrate the use of assembly language, as well
as the output code produced by the compiler, we give
the Q32 assembly language version of the program
RANDOM presented as an example earlier in the
paper:

(LAP (FUNCTION (RANDOM REAL)
((A REAL) (B REAL))
(STF TOP.)
(BEGIN)
(LDA Y)
(MUL 3125 (L567.7 R S))
(STB Y)

(ARGS)
(LDA Y)
(STF PUSHA.)
(LDA (NUMBER 67108864) S)
(CALL (REMAINDER. LISP))
(STF Y)
(LDC A)
(FAD B)
(STF PUSHA.)
(LDA Y)
(FLT (ENTRY B48.))
(FDV (NUMBER 6.7108864000E-7))
(FMP POP.) (FAD A) G09017 (END) (RE

TURN))
(((REMAINDER. LISP) FUNCTION (FUNC

TIONAL INTEGER INTEGER INTEGER)
NIL) (Y OWN INTEGER NIL)) USER)

ACKNOWLEDGMENTS

LISP 2 is being developed jointly by Information
International, Inc., and System Development Corpo
ration, with contractual support from the Advanced
Research Projects Agency of the Department of De
fense. Personnel actively participating in this pro
gram include:

Dr. Paul W. Abrahams (III)
Mr. Jeffrey A. Barnett (SDC)
Mr. Erwin Book (SDC)
Mrs. Donna Firth (SDC)
Mr. Lowell Hawkinson (III)
Dr. Stanley L. Kameny (SDC)
Mr. Michael I. Levin (III)
Mr. Robert A. Saunders (III)
Mr. Clark Weissman (SDC)

In addition, we wish to acknowledge the volun
tary support and contributions received from Profes
sor Marvin Minsky and his associates at MIT, Pro
fessor John McCarthy and his associates at Stanford
University, Dr. Daniel G. Bobrow of Bolt, Beranek
and Newman, and many others.

REFERENCES

1. M. Levin, "LISP 2 Primer," SDC Document
TM-2710/101/00 (July 15,1966),

2. T. Abrahams, "LISP 2 Reference Manual,"
SDC document in preparation.

676 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

3. M. I. Levin, LISP 1.5 Programmers Manual,
MIT Press, Cambridge, Mass., 1962.

4. "Revised Report on the Algorithmic Language
ALGOL 60," Comm. ACM, vol. 6, no. 1, pp. 1-17
(1963).

5. V. Yngve, COMIT Reference Manual, MIT
Press, Cambridge, Mass., 1962.

6. D. G. Bobrow, "METEOR, a LISP Interpreter

for String Transformation," in "The Programming
Language LISP," Information International, Inc.,
Cambridge, Mass, 1964, pp. 161-90.

7. "ALGOL algorithm #266," Comm. ACM,
vol. 8, no. 10, p. 605 (1965).

8. D. V. Schorre, "META II, a syntax-directed
compiler writing language," Proc. ACM, p. D1.3-1
(1964).

APL-A LANGUAGE FOR ASSOCIATIVE DATA
HANDLING IN P'L/I

George G. Dodd

Research Laboratories, General Motors Corporation, Warren, Michigan

INTRODUCTION

Engineering design and computer-aided problem
solving occur in an atmosphere in which the relation
ships between the data elements are utilized. For
example, information retrieval/' 2 computer-aided
drawing,3 electrical network. design,4 an9. engineering
design 5 systems are among those whose operation
depends on efficient data manipulation and associa
tion techniques.

Problem solving with a computer should give a
user an opportunity to continually change and re
structure his data. In effect, he should be able to
reach into his data structure and ask questions about
the data: What pieces of data is this one related to?
What is affected if the numeric value attached to the
data element is altered? Likewise, he should be able
to specify operations to be applied to a group of
elements: Collect these things together! To that col
lection of data elements apply algorithm XXX!
Create a new element and put it into a collection!

Algebraice programming languages permit elabo
rate mathematical expressions to be stated in a clear
and direct manner. The user who is uninterested in
assembly language techniques can state a procedure
for arriving at a solution to a problem, in a high
level language.

The solution of many classes of problems, how
ever, requires data handling and here the existing
languages break down. The algebraic languages do

677

not permit the user to treat his data in the same
clear and direct manner as he treats mathematical
formulae. He has to become an expert in two fields
the one, his specialty and the other, data handling.

APL was conceived at the General Motors Re
search Laboratories to satisfy the need for convenient
data association and data handling techniques in a
high-level language. Standing for ASSOCIATIVE
PROGRAMMING LANGUAGE, it is designed to
be embedded in PLjI6 as an aid to the user dealing
with data structures in which associations are ex
pressed.

The language offers facilities for establishing rela
tions between the data elements, developing and re
structuring the data structure as the program pro
ceeds, and manipulating data without programmer
concern about the complicated mechanics used to
establish the data relationships. In addition to a full
PLjI capability, the language provides

a. Symbolic data references.
b. Use of English verbs and phrases in

data manipulation statements.
c. Hierarchy of constituent parts permit

ting orderly formulation of data rela
tionships.

d. N-dimensional data associations.
e. Automatic extension of addressable

memory beyond the confines of high
speed core.

678 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Machine independent implementation is possible
by writing the APL preprocessor in PL/I. However,
the deferred and incomplete pointer features of PL/I
have made this impossible at the moment.

APL contains many of the facilities underlying
such list processors as IPL7, COMIT8, LISp9, SLIplO
but it gives the user a more complete data manipu
lation capability with less effort. Unlimited block
sizes accommodate any PL/I structure and the data
linking techniques offer a full class of forward,
reverse, and n-dimensional associations between the
data structures.

ELEMENTS OF AN ASSOCIATIVE DATA
STRUCTURE

The associative data structure underlying APL can
best be described in terms of the hierarchy of its
elements. The structure is the framework in which
the data items reside. Each structural element is tied
to other elements by means of their relationship,
and can have other elements tied to it. In addition,
each structural element is described by data pertain
ing only to that member.

The basic element of an associative data structure
is an ENTITY. Any identifiable type of element in
a data structure such as a job, a surface, or an auto
mobile is treated as an entity. Entities are described
by ATTRIBUTES (more precisely, the values of at
tributes). For example, an entity which is a Job can
have the attributes Job ID, Job Title, Duration, Fin
ish Date, and Start Data.

Many different types of entities may exist in a data
structure. An engine, frame, tire, windshield are all
types of entities appearing in the data structure of
an automobile. In addition, many copies or instances·
of each entity type may abound.

Related entities may be grouped into a SET. This
SET can be: (1) owned by an entity; or (2) it can
be resident in data space and referenced independ
ently of any entity. An example of the former is the
collection of jobs which must be completed before
a given job is started: here the collection is tied to
an entity and is called a SUBSET of the entity. A
set of type (2) might be the set of all jobs in the
file. This set is not attached to any entity but is
known to all programs using the file.

An entity is depicted as a contiguous block of
addressable memory having one or more of the fol
lowing:

a. References to the subsets belonging to
the entity.

b. References to the one or more sets to
which the entity may belong. These are
known as associative set reference
links.

c. Data attributes associated with the en
tity.

The implementation technique used stores pointers
in the entity block to the subsets of the entity and
to the sets to which the entity belongs. In Fig. 1, this
is portrayed with the X followed by an arrow indi
cating the subset links and the double-ended arrows
indicating the associative reference links.

Entities are linked into a set by means of Roberts'
ring structure. * This structure was chosen because it
permits rapid movement through a set in one direc
tion. At the same time it permits movement through
a set in a backwards fashion or to the entity to which
the set is tied with only a small increase in overhead.
Because of these properties, random addition and
deletion of entities in a set is easily accomplished.

Figure 2 shows entities {B,C,D} connected to a
set belonging to A. This is expressed as {B,C,D} e

A.
An entity can have many subsets belonging to it

and in turn can belong to an indefinite number of
sets. The contiguous entity structure permits subsets
and associative references to be found directly in the
entity rather than moving along a list.

Figure 3 shows D and E belonging to a subset of
B. E is also a member of a subset of C which is a
member of a subset of A. These relationships can
be logically expressed as {D,E} e B, E B C, and C e

A.
The data attributes describing the entities may as

sume one of two forms, direct or associative. A

* Copies of a paper describing this structure can be ob
~ain~d from Dr. Lawrence Roberts, Lincoln Laboratory,
Lexmgton, Mass.

x
X

.. ..

• ..
• ..

} Subset reference links

}
Associative set
reference links

} Data attribute.

Figure 1. General entity.

APL-A LANGUAGE FOR ASSOCIATIVE DATA HANDLING 679

Subset link

t--------1/
.-----.1 x-

Entity A

Entity D

Figure 2. Set of entities.

direct attribute is a PL/I data structure residing in
an entity block and addressable as part of the entity.
Associative attributes are used to express relations
between entities or between an entity and a set of
which it is a member. Direct attributes are illustrated
by the geometric coordinates which describe a point.
However, the distance between that point and some
other point is an attribute value associated with both
points; both points as well as the name of the attri
bute must be known to retrieve its value.

In some cases an entity is a conditional member
of a set. Here, one or more attributes are needed
to fully qualify the membership. In Fig. 4 the line
is a member of the boundary line set for surface 1
between the value Xl and X3 and a member of the
boundary line set of surface 2 between the values of
X2 and X 4 • These associative attributes may be speci
fied and retrieved within APL.

PROGRAMMER TOOLS

Now that the elements of an associative data struc
ture have been described, let us turn our attention
to how it is used. The tools for the data manipulation
can best be described in terms of

a. Data set declarations,
b. Attribute set and entity references,
c. Data structure manipulation state

ments.

Data Set Declaration

The entities, sets, and attributes making up an
associative data structure are specified in a series of
statements preceding the programs to be translated

and compiled. This procedure insures compatibility
across jobs and eliminates repetitive declarations in
the programs compiled within the same job environ
ment. Sufficient information is provided for the
opening of files or initialization need prior to the
execution of the first instruction in the program.

The specification of an entity includes the entity
type, i.e. an alphanumeric designation by which that
type of entity will be referenced,' the names of the
subsets of the entity, the names of the associative sets
linking the entity and the names of the direct and
associative attributes of the entity.

A separate declaration of each set is also required.
In these statements the procedure for the storage
of entities within the set is specified. The storage
procedures can be overriden by a specification from
the programmer any time in his program. (Figure 8,
appearing later, shows the declaration of a JOB
entity having a PRED subset, associative links to
the PRED and ALLJOB sets, and a number of
direct attributes.)

Associative attribute declarations are prefaced
with an ATTRIBUTES* identifier. A point entity
having direct attributes x, y, z and an associative
attribute distance is declared by

DECLARE 1 point ENTITY,

--
D

•
•
•

2 distance ATTRIBUTE* float,
2 x ATTRIBUTE float,
2 y ATTRIBUTE float,
2 z ATTRIBUTE float;

x ___
x ___

-

x--
x---
x ___ !------.
x---

A

'-------.-; --
I--------..l x---

c

--+~-----~

-
Figure 3. Multiple sets of entities.

680 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

SURFACE I [entity - 1, entity - 2].attribute

XI2 x" LINE

Xl Xi3

X_ SURFACE 2

Figure 4. Example of associative attribute.

Attribute, Set, and Entity References

Many instances of each type of entity can appear
in a data structure and it is often necessary to refer
ence several of these instances simultaneously. To do
this a variable of data type ENTITY has been intro
duced in APL. At the time an entity is created or
obtained through a referencing mechanism, an entity
variable is set to identify the correct instance. Figure
5 shows five entities; one being referenced by entity
variable A, one by entity variable B, and three un
referenced.

Sets are referenced through the entity instances to
which they belong by means of the notation

< entity instance > . < set name >
In the figure, the fully qualified name of the PROP
subset is given by A.PROP.

The value of a direct attribute is referenced by
qualifying its name with the names of the relevant
sets and entities. The names are separated by a
period "." in a manner similar to the period qualifier
used in PL/I data structure names. Accompanying
each set name is an integer specifying the ordinal
number of the desired entity. For example, if A cur
rently references an entity whose PROP subset has
a third entity whose X value is desired, the latter is
referenced by A.PROP(3).X (see Fig. 5). The Z
value of A is obtained by A.Z.

In another example, the X'.s of the first three
entities in the subset PROP are added together and
placed in the first Y by the assignment statement

A.PROP(1).Y = A.PROP(1).X +
A.PROP(2).X + A.PROP(3).X

The attribute expression is usable in more than one
level. The attribute COST of entity B may be desig
nated by A.PROP(3).Q3(1).COST. The last en
tities in a set may be referenced by negative integers.
Thus, A.PROP (-1).X is the last X in the subset
and A.PROP (-2).X is next to the last X.

Associative attributes are referenced by the format

or
[entity, set].attribute

depending on whether the associative attribute is
between entities or between an entity and a set. If
the attribute distance existed between entities E1 and
E2, its value could be specified by

[E1, E2] . DISTANCE = 5;

Both direct and associative attribute references
may be used in any APL or PL/I statement where
a value is to be retrieved or assigned.

Data Structure Manipulation Statements

The statements provided by APL for data manipu
lation have a key word syntax. The statements com
plement existing PL/I statements and may be used
anywhere within the source program. The six state
ments and their meaning are:

a. CREATE entity-type CALLED entity
variable;

Space for an entity of the specified type is allo
cated in the users file and the designated entity vari
able is set to reference the new entity.

b. INSER T entity-variable IN set;

The designated entity is made a member of the
designated set.

c. REMOVE entity-variable FROM set;
REMOVE entity-variable FROM ALL;

The entity is either removed from the designated
set or from all sets of which it is a member.

d. DELETE { entity-variable l .
set f '

The first option deletes the specified entity from
the file and its space is returned to the free-space list
for reallocation. The second option removes all en-

(Entity referenced by AI

z
-X

Y

-X

Y

(Entity referenced by BI

-X

Y

-
COST

Figure 5. Attribute references.

APL-A LANGUAGE FOR ASSOCIATIVE DATA HANDLING 681

tities from the specified set and deletes them. The de
lete routine is recursive in that the entities belonging
to subsets of the given entity will also be deleted if
they belong to no other subset.

e. FIND entity-variable = entity specification
[, WITH fj] [, UNTIL fj] [,ELSE statement];

In its basic form the FIND statement sets an entity
variable to reference an entity whose identity is given
by the clauses of the statement.

The entity specification can assume one of two
forms; the specification of an entity which is a mem
ber of a set or the specification of an entity whose
subset contains a designated entity. These can be
illustrated by

FIND el = (3) line C e2.boundary;

which finds the third LINE entity contained in the
BOUNDARY set of E2 and

FIND e2 = boundary::> el;

which finds the entity whose BOUNDARY SET con
tains E 1. Because of the lack of characters in the
PL/I 60 character set, the word IN is substituted for
C and CONTAINS is substituted for ::> in the APL
implementation.

The WITH phrase contains a Boolean expres
sion to be applied to each entity in the set.
If an entity satisfies the expression, a count is in
creased until the correct entity is found. The third
POINT entity having an X value of 3 would be
specified by

FIND pt = (3) point C el .ptset, WITH
x = 3;

The Boolean expression in the UNTIL phrase desig
nates the condition which terminates the search.
Should the search be terminated either by exhausting
the set or by action of the UNTIL phrase the ELSE
clause is executed. The WITH, UNTIL and ELSE
phrases are all optional.

Unless otherwise specified the statement is
executed on a set in the order in which entities are in
serted in the set. The search can be made in a back
wards direction through the set (specification of neg
ative indices) and can be directed to start at some
element in the set (by inserting C FROM entity
variable ::> in the entity specification.

f. FOR EACH entity-variable = entity
specification, [,WITH fj]

[, UNTIL fj];
END;

Simply put, this statement is a FIND statement
in a DO loop. The block of statements between the
FOR EACH and END are executed for each entity
variable meeting the specifications.

The APL manipulation statements also augment
the Boolean capabilities of PL/I with two additional
tests: (1) test a set for emptiness; and (2) test an
entity for membership in a designated set.

CONTROL OF EXTERNAL STORAGE

APL operates on the philosophy that external
storage should merely be treated as a larger ad
dressable memory.12 Therefore, special PUT and
GET, READ and WRITE statements are not neces
sary. The system operates in conjunction with a soft
ware data paging supervisor. * This supervisor inter
cepts all data references and supplies the program
with the correct data items. I

At program initialization time a buffer is estab
lished in core where, upon request, the necessary
data pages are placed. Each 'data page contains a
number of entities. The address of an entity specifies
both the page within which the entity resides and the
physical location of the entity within the page.

Upon intercept of a data request the supervisor
examines its stock of in-memory data pages. If the
correct page is present, the address of the correct
entity or set in the page is returned to the program.
If the data item does not reside in the core buffer, an
unused or old page is transferred out and the correct
page is found in the external storage and read into
the paging buffer. The relocated address of the re
quested set or entity is then returned.

The system can also operate in a non-paging
mode. Here, addresses of all data items are absolute
and no paging or pointer interception occurs. Limita
tions of the non-paging mode are the confines of core
memory for a work space and the external file
manipulations required if the user wishes to save his
data set.

Operation in a time sharing and paging environ
ment is also being anticipated. At this time the
paging supervisor will be lifted out and replaced by
the hardware paging and segmentation functions of
the system.

* The software paging mechanism forces limitations on
the entity size for efficient processing. The entity size must
be less than the page size. This restriction will be removed
when hardware paging and segmentation is implemented.

682 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Example

Project scheduling programs offer some interesting
problems which can be readily solved by program
mingin APL.

Figure 6 is a simplified project schedule. This
schedule shows the activities which must occur in
moving the project from the MASTER PLAN to the
end of TEST PRODUCT. The activities and their
titles are represented by the solid lines in the figure.
The dotted lines show the precedence relationship
between the activities in the project. For example,
MASTER PLAN has no predecessors and can begin
immediately. The activity PRODUCE E has the
immediate predecessors PLAN B and PLAN C and
cannot be started until the predecessor jobs have
been completed. The predecessors, therefore, deter
mine the ordering of the activities.

Each activity also has a duration. This is a
measure of the time required to complete the task
once it has been started. In the example, MASTER
PLAN, PLAN B and PLAN C have respectively 4,
7 and 13 days duration. PRODUCE E has 13 days
duration but cannot be started until both PLAN B
and PLAN C have been completed. This pushes its
start date back to the fourteenth day.

An APL program will be written to read in de
scriptions of activities, establish the required data
structure and compute the start and finish dates for
each activity.

The input to the program is information about
each job (Figure 7). This consists of an ID number
and title by which the job will be identified, the
duration of the job, and a listing of the immediate
predecessors of the job.

The data structure used in this program has one
type of entity called JOB. Each JOB entity has a
subset PRED which is the collection of all immediate
predecessors to the JOB. A JOB may be a prede
cessor of another JOB; if so the association is

MASTER PLAN PLAN TEST TEST PRODUCT
4 '~ - - - - - -1-7- - - - - ,,1 4

PLAN B

7

PLAN C

13

, " I
, " I

" /" I
, " I

" PRODUCE D ,," I
,-: - - - - -' 8

, I

" /
" I

, I
, I

_____ ~, PRODUCE E I

13

Figure 6. Project schedule.

10
TITLE

DURATION

PREDECESSOR (1)

PREDECESSOR (2)

Figure 7. Job information form.

through the PRED associative set member link.
These links are internally expanded so that JOB
can be a predecessor of any number of other JOB
entities. All JOBS are collected together in the set
ALLJOB by means of a second associative reference
link.

Each entity has the attributes duration and title
given in the job information form. In addition, it has
a start and finish date which will be calculated from
the location of the entity in the precedence chart.

Figure 8 is the APL declaration of a JOB entity,
the entity attributes and the sets relating the entities
as outlined above.

The specification further outlines that PRED sets
are a first-in-first-out assignment (FIFO) and that
the ALLJOB set is ordered on the ID of its con
stituent entities.

/*DECLARE THE ENTITY CALLED JOB*/ 1
DECLARE 1 job ENTITY, 2

2 pred SET fifo, 3
2pndMEMBE~ 4
2 alljob MEMBER, 5
2 sw BIT (1), 6
2 title CHAR (20), 7
2 duration FIXED, 8
2 start FIXED, 9
2 finish FIXED, 10
2 id FIXED; 11

12
13

/*DECLARE THE ALLJOB SET*/ 14
DECLARE alljob SET ORDERED INCR ON id; 15

Figure 8.

Figure 9 illustrates a part of the data structure to be
constructed by an APL program operating on the
declarations given in Fig. 8. In the structure JOB C
is expanded to show the attribute and set relation
ships. JOBS A and B are members of the

APL-A LANGUAGE FOR ASSOCIATIVE DATA HANDLING 683

A

(A,B) IC

C(D

PRED I.'

JOB ENTITY
I

ALLJOB LINK
X •

PRED SUBSET HEAD
I

PRED SET LINK

FINISH

START
10

TITLE
DURATION
SW

C

ALLJOB I.'
X_

o

Figure 9. Data structure for scheduling program.

PREDecessor set of C and JOB C is a member of
the PRED set of D. In addition C has the attributes
shown.

Figure 10 shows the APL program. This program,
plus the declaration statements given in Fig. 8, are
what are given to the APL processor.

The program is broken into several parts:

Statements 2-4 -declarations.
Statement 5 -create a file known as

Statement 6

SCHJOB. All future CRE
A TEs are assumed to be
in this file.

-create a subset link in the
file for ALLJOB.

Statements 7-10 -read in the ID of a new
JOB and create the JOB
if this has not already been
done.

Statements 11-15 -place the predecessors of
the new JOB in its PRED
set. If a predecessor has
not been defined, create a
JOB whose duration, title
and predecessors are to be
supplied later.

Statements 16-23 -internal procedure that cre
ates a JOB entity, sets its
ID and SW. SW is a switch
used in statements 25-28
to establish the finish dates
of the activities.

Statement 24 -read in start DATE.
Statements 25-28 -find a JOB whose prede

cessors have been resolved
or which has no prede
cessors.

Statements 29-36 -assign the JOB a start
date.

Statements 37-43 -repeat for all JOBS; when
done check for unassigned
JOBS (these have cycles
caused by inconsistent
data) and print a com
ment.

SCHEDULE:PROCEDURE OPTIONS (MAIN); 1
DECLARE (y,z) ENTITY, 2

(p,date) FIXED, 3
test BIT(1); 4

CALL CRFILE (' schjob'); 5
CREATE alljob; 6

READ:GET LIST (ident); 7
IF ident = (-2) THEN GO TO LINK;/* -2 SIG- 8

NALS END OF INPUT* /
FIND z = (1) job IN a lljob , WITH z.id= ident, 9

ELSE CALL DEFINE (ident,z);
GET LIST (z.titie,z.duration); 10

MORE:GET LIST (p); 11
IF p = (-1) THEN GO TO READ; /* -1 12

MARKS END OF PREDECESSOR LIST* /
FIND y = (1) job IN alljob, WITH y.id = p, 13

ELSE CALL DEFINE(p,y);
INSERT y IN z.pred; 14
GO TO MORE; 15

DEFINE:PROCEDURE (arg1,arg2); 16
DECLARE arg1 FIXED, arg2 ENTITY; 17
CREATE job CALLED arg2; 18
arg2.id = arg1; 19
arg2.sw = 'O'b; 20
INSERT arg2 IN alljob; 21
RETURN; 22
END DEFINE; 23

LINK:GET LIST (date); 24
AGAIN: test = '0' b; 25
END2:FOR EACH z = job IN alljob, WITH 26

z.sw = 'O'b;
FIND y = (l)job IN z.pred, WITH y.sw = 'O'b, 27

ELSE GO TO G01;
GO TO END3; 28

G01 :z.sw = 'l'b; 29
IF z.pred = EMPTY THEN 30

Z.start = date; 31
ELSE DO 32

Z.start = MAXV AL(finish,z.pred) + 1; 33
z.finish = z.start + z.duration; 34
test = 'l'b; 35

END3:END END2; 36
IF test THEN GO TO AGAIN; 37
FIND z = (1) job IN alljob, WITH z.sw = 'O'b, ELSE 38

DO; PUT LIST ('satisfactory run'); 39
RETURN: 40

END; 41
PUT LIST (,incorrect data'); 42

END SCHEDULE; 43

Figure 10.

Observe that some of the statements, such as
CREATE and FIND, require the variable Y or Z to
be the representative of each entity'in the set. This is
an· entity variable described earlier and its declaration
is in Statement 2.

684 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

At times it is convenient to designate an entity as
being the current entity for purposes of attribute
identification. In these cases unqualified attribute
references will be qualified by the current entity. For
example, if the declaration is

DCL Y ENTITY, Z ENTITY CURRENT
(JOB) ...

then Statement 34 could be written

FINISH = START + DURATION;

with the implication that this operation is to be done
in the current job entity.

This is but one example of APL effectiveness. An
extended version of this problem which organized the
activities and printed out a table was written some
time ago in NOMAD.13 The writing of the program
took three weeks and required 500 statements. It is
estimated that a 3 to 1 savings in programming time
and a 5 to 1 savings in number of statements would
have been realized, had the program been written in
APL.

SUMMARY

The writing of programs in which the relation and
dynamic manipulation of data elements is important
can be made much easier with APL, a language
designed at the General Motors Research Labora
tories to fulfill this need. It closes the gap between
algebraic languages and data handling needs with
-statements and defining capability permitting the
description of data relationships. It further provides
a means for efficiently expanding the programming
environment with automatic file handling facilities.

APL statements are embedded in PLjI and are
sifted out by a preprocessor. Thus, the user has a
full PLjI capability in addition to the APL data
handling statements. Output from the preprocessor
is PLjI statements and subroutine calls.

Two new data types are introduced in APL, the
SET and the ENTITY. These have a semantic rela
tionship with the existing data types. This relation
ship is further clarified by the use of SET and
ENTITY variables in the APL statements and con
trol phrases.

The APL preprocessor is not a simple macro ex
pander. The new data types, the entity declarations,
the expanded use of the "." data qualifier and the
expanded Boolean tests call for a processor. The
processor tabulates information from the declarations
and data types and later references the tables to pro
duce an efficient symbolic PLjI output.

One goal of a high level language is to make com
puterized problem solving easier. By using APL
commands the programmer is able to work with the
data in terms of function and not in terms of the
petty details and the pointer manipulations which
actually perform the task.

ACKNOWLEDGMENTS

The design of APL was made possible only
through the efforts of many members of the staff at
the General Motors Research Laboratories. One of
the first evaluations of APL was made by John T.
Murray whose subsequent assistance in defining the
language merits specific mention.

REFERENCES

1. J. F. Nolan and A. E. Armenti, "An Experi
mental On-Line Data Storage and Retrieval System,"
Technical Report 377, Massachusetts Institute of
Technology Lincoln Laboratory, February, 1965.

2. E. Bennett, et aI, "AESOP, A Prototype For
On-Line User Control of Organizational Data Stor
age, Retrieval and Processing," AFIPS, Volume 27,
Proc. FICC, Spartan Books, Washington, D.C.,
1965.

3. I. E. Sutherland, "Sketchpad, A Man-Machine
Communication System," AFIPS, Volume 23, Proc.
SICC, Spartan Books, Washington, D.C., 1963.

4. M. J. Goldberg, "Network Analysis by Com
puter," Instruments and Control Systems, Septem
ber, 1965.

5. E. L. Jacks, "A Laboratory for the Study of
Graphical Man-Machine Communication," AFIPS,
Volume 26, Proc. FICC, Spartan Books, Washing
ton, D.C., 1964.

6. "IBM Operating Systemj360 PLjI: Language
Specifications," IBM Form C28-6571-2, IBM Cor
poration, White Plains, N.Y., 1966.

7. A. Newell, Information Processing Language-V
Manual, Prentice-Hall, Englewood Cliffs, N.J., 1961.

8. COMIT Programmers Reference Manual, MIT
Press, Cambridge, 1961.

9. J. McCarthy, et aI, LISP 1.5 Programmers
Manual, MIT Press, Cambridge, 1962.

10. J. Weizenbaum, "Symmetric List Processor,"
Comm. ACM, vol. 6, no. 9, (1963).

11. L. G. Roberts, "Graphical Communication
and Control Languages," Second Congress on the
Information System Sciences, Spartan Books, Wash
ington, D.C., 1964.

12. J. B. Dennis, "Segmentation and Design of
Multiprogrammed Computer System," lournal ACM,
vol. 15, no. 4, (1965), p. 589.

13. NOMAD Reference Manual, General Motors
Research Laboratories, Warren, Michigan, 1961.

AUTOMATIC OFF-LINE MULTIVARIATE DATA ANALYSIS

George S. Sebestyen

Office of the Secretary of Defense
Washington, D.C.

INTRODUCTION

Many research problems in the social and physical
sciences require the collection of large amounts of
data of the simultaneously measured attributes of a
phenomenon or process under investigation. Pattern
recognition problems, in particular, yield data of
multiple variables for each manifestation of the dif
ferent sources of data. The automatic off-line multi
variate analysis techniques described in this paper
deal with the quantitative description of data of this
type.

There are two principal objectives in undertaking
an off -line analysis of multivariate data. One of these
is the objective of the researcher who studies the data
in order to explain the characteristics of the data
generation process. The study of the ocean as an
acoustic propagation medium (through the analysis
of waveforms received in response to excitations of
known characteristics) exemplifies this research ob
jective.

Another objective is that of the system designer
who wishes to design a detection or pattern recogni
tion system which must partition multivariate data
into sets according to their sources of origin.

In either of the above applications a description
of the nature of the data is necessary.

It is now common practice to regard each mani
festation of a data source (or pattern class) as a

685

vector in a space of many dimensions, to consider
the pattern class described by the joint probability
density of its multiple variables, and the discrimina
tion between pattern classes to require partitioning
the vector space into regions associated with the dif
ferent classes. For all these purposes, therefore, the
principal objective of off-line data analysis is to
describe the properties of the joint probability den
sity of the multiple variables.

Taking the pattern recognition system design prob
lem as the motivating force of this paper, a set of
useful analyses, the reasons for their usefulness, and
the manner in which the results would aid the system
designer will be described.

DESIRABLE OFF-LINE ANALYSES

In the solution of practical pattern recognition
problems the application of statistical analysis tech
niques to casually selected measurements is a poor
substitute for expertise in the application and for
care in the choice of simultaneous measurements.
Even expertise, however, can only lead to a choice of
measurements and hypotheses regarding their distri
butions. The analysis of collected data can be used
to check the validity of hypotheses and to give rise
to new ones.

The descriptors of the joint probability densities
of measurements given below are useful in describing
the data generation processes in terms that facilitate

686 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

the choice of pattern recognition techniques. They
are first listed and then discussed.

1. The dynamic ranges of the variables.
2. The number and location of the modes.
3. The "irreducible" error, describing the

lowest classification error that can be
achieved with any method.

4. The degree of disjointedness of the re
gions occupied by members of different
classes.

5. The size of the "clusters" associated
with different modes.

6. The "distances" between modes.
7. The correlation between variables.
8. Assorted conventional statistics (mean,

variance, etc.).
9. V arious information theoretic measures

(entropy, information gain, diver
gence).

The importance of knowledge of the dynamic
ranges of variables is in providing guidelines for the
resolution requirements of the classification system
and in pointing to differences in resolution require
ments between different variables. The performance
of a classification technique employing the compari
son of Euclidean distance measurements in several
dimensions, for instance, would be completely domi
nated by the variable having the largest dynamic
range, if large differences in dynamic range exist
between different variables. This effect can be com
pensated for by normalizing the dynamic range of
variables either through applying different scale fac
tors to different variables or through the employment
of a more general quadratic form which incorporates
such scale factors.

Knowledge of the number of modes is needed in
the selection of pattern recognition methods to avoid
the use of techniques that assume distributions dif
ferent from those that describe the data. Knowledge
of the multimodal nature of the distributions, for
instance, would tend to rule out the application of
techniques that classify by cross-correlating the input
with a stored reference or by evaluating one Gaus
sian probability density per class.

The "irreducible" error is a term coined to de
scribe the probability of error that would be obtained
if maximum likelihood ratio decisions were made and
the joint densities and a priori probabilities were
known. It represents the lowest error rate that could

be achieved, assuming exact knowledge of densities,
and is thus a measure of the discriminability of the
classes based on the chosen measurement set. If the
irreducible error is not sufficiently low, a new set of
measurements might be indicated. By computing this
error on measurement subsets, a smaller set of
measurements still yielding adequate performance
can be selected.

It is of practical interest to know the amount of
overlap between different classes in the measure
ment space. If the overlap is small, only the regions
occupied by the different classes must be known. If
the overlap is great, the values of the probability
densities must also be correctly estimated to render
the optimum decision.

Knowledge of the size of the clusters and distances
between clusters is important in, determining if sim
ple techniques might be used. If the ratio of distances
between clusters to the diameters of clusters is large,
on the average, partitioning the vector space with a
few linear discriminants may result in as Iowan error
rate as that which would result from the use of
techniques that attempt to approximate the prob
ability densities of classes faithfully.

If several variables are highly correlated, a reduc
tion can often be achieved in the number of variables
needed. This should not be interpreted to imply,
however, that it is necessarily desirable to deal with
uncorrelated variables. The usual statistics of in
terest, means, correlation matrices and covariance
matrices are of interest mostly only if the distribu
tions are known to be gaussian, or at least unimodal.
Their significance is reduced when the distributions
are multimodal.

Information theoretic measures of entropy, infor
mation gain, and divergence are useful in measuring
the spread of the distributions in the vector space,
the value of different variables or sets of variables in
describing the two classes, and in discriminating
between classes.

The statistical measurements described above often
facilitate the narrative description of the data and
the generating processes in terms useful not only in
the characterization of the data sources but also in
the design of systems to discriminate between
sources.

The descriptors of the joint probability densities
listed above in (1), (7), and (8) are well known
and their computation will not be dealt with here.
Work on the determination of the number and loca
tion of modes from estimated joint probability densi-

AUTOMATIC OFF-LINE MULTIVARIATE DATA ANALYSIS 687

ties is in progress and will be reported when the
work is completed. The objective of successive sec
tions of this paper is to describe techniques for ob
taining the descriptors listed in (3), (4), and (9).
With these descriptors the difficulty of the discrimi
nation problem and the usefulness of different meas
urement subsets can be evaluated. Since the compu
tation of all of these descriptors requires knowledge
of the probability densities, first a method of approxi
mating the densities of all data sources from available
data of known classification but arbitrary order will
be described.

PROBABILITY DENSITY ESTIMATION
IN OFF-LINE DATA ANALYSIS

In on-line analysis techniques data must be proc
essed in the sequence in which it is generated. By
contrast, off-line techniques afford the opportunity to
examine the entire data base simultaneously, per
mitting the repeated processing of data without re
gard for the time sequence in which it was collected.

An off-line probability density estimation process
is described below for approximating the densities of
several random processes. (classes) by a single multi
dimensional histogram through the iterative examina
tion of collected data. The technique is a simplified
variant of an on-line "learning" technique described
in Ref. 1. It differs from the latter in that here a
single cell structure is generated to represent the
probability densities of all classes, in the degree of
supervision that can be provided by the analyst dur
ing density estimation, and in the fact that such
supervision is made possible by the regular output of
certain diagnostics with which the program informs
the human analyst of the status of the density esti
mation process. The form of the output makes the
computation of the previously listed descriptors of
the classes particularly easy.

The program described below constructs a cell
structure in the multidimensional space in which the
cell locations, shapes, and sizes adapt to the analyzed
data. The program can analyze data introduced con
secutively or sorted according to a preestablished
code. The number and identity of the variables
analyzed is at the option of the analyst. Certain
quantities useful from a diagnostic standpoint are
printed out in various phases of the program to give
the analyst the means for properly monitoring the
probability density estimation process. The computer
also carries out a limited dialogue with the analyst
to provide the analyst with a printout of his available

options of action and to provide a permanent record
of the course of action he took and the results that
followed.

The program first types headings necessary for
the proper identification of the problem. The analyst
must fill in the blanks before the computer proceeds
to the next step. A typical example of this initializ
ing part of the program is shown in the printout of
Fig. 1. In this example data meeting certain sorting
requirements was to be used. A one in the "identify
ing mask" is used to designate the bit positions of the
"identifying code" used in sorting vectors. The num
ber and choice of variables is identified under the
heading "initial starting cell size". The number of
vectors to be processed and the minimum size of
cells and "guard zones" to be used is chosen by the
analyst according to methods described in Ref. 1.
The significance of these analyst choices and pro
gram parameters will be explained below. The fre
quency of required diagnostic outputs is selected,
and the identification of the data source (punched
paper tape, magnetic tape, electrical signals) as well
as its bit configuration (BCD or binary) is desig.;.
nated.

During the probability density estimation phase of
multivariate data analysis it is assumed that each
input vector contains a class designation and an·
identifying code.

The description of the probability density estima
tion program is illustrated by the flow chart of Fig. 2.

'"'08 NUI-1BER 1
DATE: APRIL 11, 1965
PROBLEM DESCRIPTION 17. - 2 DIMENSIONAL VECTORS

INITIALI ZATION

SHOULD CONSECUTIVE DATA SAMPLES BE USED NO

IDENTIFYING MASK IS U __ USSUg
IDENTIFYING CODE IS 11"."""
IS INPUT BCD YES

NUMBER OF SN1PLES TO BE USED = 17~
THRESHOLD = 3."_

GUARD ZONE = 15._~~
INITIAL STARTING CELL SIZE
DIMENSION

1 2.0
2 2."

NUMBER OF SAMPLES BEFORE CALCULATING DIAGNOSTICS = 25

SET SWI TO ON POSITION TO TYPE DIAGNOSTICS.
LOAD READER OR MAG. TAPE UNIT WITH INPUT DATA.
PRESS START TO BEGIN

Figure 1. Initialization in probability density estimation.

688 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

START

1

INITIALIZE

1
INPUT

STARTING
, PARAMETERS

ON TYPEWRI TER

1
READ FIRST

INPUT
VECTOR

1
GENERATE

A
NEW CELL

1
t

READ NEXT
INPUT

VECTOR

l
FIND MIN. QUAD

FORM (Q min)
AND IT'S CELL m

o

1

POSITION
OUTPVT TAPE

FOR PROCESSING
L2 VECTORS

t

READ L2
VECTOR

FIND MIN QUAD
FORM AND IT'S CELL

FIND NEXT NO r
MINIMUM QUADRATIC I------t\. IS CLASSIF CORRECT?

FORM

I YES r :\
~ IS Q<GUARD ZONE? J

NO

RETURN TO
ORIGINAL CELL

UPDATE
CELL

YES

COMPUTE
DIAGNOSTICS

IS Q min<THRESHOLD ?

! YES

NO ~ NO
IS Q min<GUARD ZONE :J?I---.... --..... HAS LAST L2 VECTOR ~

UPDATE
CELL m o

COMPUTE DIAGN.
QUANTITIES AND

OUTPUT AS REQUIRED

1
HAS LAST INPUT "" YES_!

VECTOR BEEN READ?~

~ DO YOU WANT TO
~ \. REINITALIZE 1 ANO

~

NO

1 YES

TAG VECTOR AS
II CLOSE II AND

OUTPUT FOR LATER
PROCESSING

1

PRINT
DIAGNOSTICS

1

CREATE A
NEW CELL

BEENREAD? ~

YES

PRINT TOTAL NO.OF
CELLS AND PROB.

OF CORR DETECTION
OF L2 VECTORS

STOP

DO YOU WANT TO ' Y_E_S __________ ______________ ~
CONTINUE? I

Figure 2. Simplified flow chart of probability density estimation.

AUTOMATIC OFF-LINE MULTIVARIATE DATA ANALYSIS 689

The first input vector that passes the sorting step
generates the first cell. The vector becomes the cell
center, and the cell dimensions are determined by the
inequality given in Eq. (1), in which the O"n(O)'s
and T (threshold) are obtained from the initializing
information given by the analyst (see Fig. 1). Here
v n is the nth coordinate of an arbitrary point in an
N-dimensional space, and V1 is the nth coordinate
of the first vector. * Contours equidistant from cell
centers are ellipsoidal.

* U1n (0) = Un (0)

N (vn - Vln)2
Q(v,V1) = ~ < T n=l O"ln(O)

(1)

In addition to storing the cell center and cell radii,
an estimate of the density of each class in the cell can
be obtained by keeping track of the number of mem
bers (hits) from each class in each cell, and the
volume of each cell.

After an input vector is introduced to the program
(after it passed the sorting step), it is first treated
as if its classification were unknown. In reality its
classification is known. The input vector is compared
with all stored cell centers by means of their respec
tive quadratic forms; and the smallest quadratic
form, Qm,in, and the corresponding cell center, mo,

are found. Since a histogram in the form of hit
counts from all classes is stored for each cell, the new
input could be classified (if it were of unknown clas
sification) by the class identity of the highest hit
count in the cell containing the new input vector. A
record of the classification is kept for later use as one
of the diagnostic outputs. After the smallest quad
ratic form, Qm,in, is determined, it is compared with
the threshold, T (part of the input information), to
determine how close the new input is to the closest
already established cell center.

If Qm,in is less than T (that is, if the input vector
is contained in an existing cell), then the cell is up
dated. Updating consists of recomputing the vector
mean of inputs falling in the cell, computing their
sample variances at the present time <Tm,n(t) , and
choosing new cell radii to equal, whichever are
larger, the initial cell radii-determined by <Tn (0)
-or the cell radii determined by 0" mn (t). After the
cell has been undated, certain diagnostic quantities
are computed. These will be described later.

If the input vector falls outside any of the existing
cells (Qrnin is greater than T), a check is made to
determine if it falls in an annulus (or shell) sur
rounding the cell to which it is closest. This is done

by comparing Qrnin with a guard zone threshold (see
Fig. 1). If the vector falls in the guard zone, then
the input vector is tagged as "close" to an existing
cell but not within the cell. Tagged vectors are in
cluded in a set L2 which is stored but not processed
until a second pass through the program. The set
L2 contains all vectors set aside for later processing.
In the particular program described here, members
of L.2 are punched on paper tape.

If the input vector falls outside the guard zone, a
new cell is created by storing the vector as the mean
of the new cell, setting the cell hit count for the ap
propriate class to one, and setting the initial cell size
to the initial cell radii, determined by O"n(O).

The analyst, in the meantime, is given the oppor
tunity to observe the progress of the histogram con
struction procedure by a set of optional diagnostic
outputs shown in the printout of Fig. 3. This print
out, updated after every group of input vectors (the
group size is specified during initialization), contains
information described below. Assume, for the sake
of illustration, that a diagnostic output is required
after every 25 input vectors. The number of new
cells (per 25 input vectors) is provided in the first
column of the printout. In the second column the
number of input vectors (per 25 inputs) that fell in
guard zones is indicated. The probability of correct
classification (averaged over the last 25 inputs) is
indicated next. The cumulative number of processed
input vectors is indicated in the last column.

In addition, every time a cell is updated, the serial
number of the cell, the number of hits it now con
tains, and the location of the means and standard
deviations (cell radii), truncated in the printout, are
indicated for all of the vector components. A sum
mary of the number of cells, the number of vectors
in guard zones, and the total number of. vectors
processed is prepared at the end of the first pass
through the data.

At this point the analyst is given an opportunity
to check the diagnostic outputs to determine how to
proceed next. The probability density estimation
process is satisfactory if

1. The number of new cells created· per
diagnostic interval decreases with time.
This indicates that the· existing cell
structure increasingly better represents
the analyzed data.

2. The total number of cells created is a
small fraction of the number of input

690 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

NEW
CELLS.

15

-
~

2

d

2'

L2 PROS. CORR.
VECTORS DETECTION

1" .5598

19 .8799

15 .8799

15 .9199

15 .9660

12 .7998

l'~ d.BSS"
00 YOU WANT TO CONTINUE YES

TOTAL
SAMPLES

25

5'
75

1',
125

IS"

17'

I1f

UPDATED CELLS-LOCATION AND STD. DEVIATIONS
CELL HITS VC S VC S VC 5 VC S

111 2 27 1 11 1
6 2 13 1 55 t

11 2 17

-
38 1

It 3 18 1 58 1

12 2 18 1 9 : 13 2 5 ~ 4'

13 S 5 , 39 1
t 2 42 1 46 II
9 2 32 1 41 : 16 J 11 1 48

9 4 '32 , 42 • 9 5 31 1 42 • 13 6 6 1 38 1

12 5 19 1 9 1
11 5 17 1 58 1

3 2 44 - 9 1

12 7 19 1 9 1
16 4

1_ ~

48 t
Ii 7 26 1 1. 1

POSITION OUTPUT TAPE TO READ L2 VECTOP.S. PRESS START TO CONTINV~

Figure 3. Probability density estimation program printout (Phase 1).

vectors. This indicates that the initial
cell dimensions have probably been
correct, for the cell generation process
did not degenerate to the construction
of a look-up table (by too small a
choice of initial cell radii), and it did
not create a few cells only (by too
large a choice of initial cell radii).

3. The probability of correct detection
(or classification) on inputs treated as
unknowns (prior to their use in the
density estimation process) should in
crease with time (or should have a
sufficiently high absolute value). This
is a measure of the classification per
formance that would be obtained if the
density estimation process were termi
nated at any given time.

4. There should not be, in general, an un
usual growth of anyone cell. This can
be verified by observing that the same
cell number is not updated' too fre
quently and does not contain a number

of hits out of proportion with other
cells. In addition the cell radii (called
standard deviations in Fig. 3) serve as
direct measures of the cell size. *

Note that the above-mentioned desirable proper
ties of the first phase of the probability density
estimation process are reasonably well satisfied by
the example given in Fig. 3. Also note that no sig
nificant cell growth has taken place as yet.

If the analyst is satisfied with the above-mentioned
indicators of satisfactory progress of the estimation
process, he can proceed to the next phase to be
described below. If he is dissatisfied with the results,
the analyst is asked if he wishes to reinitialize and
start anew, perhaps with a different choice of initial
cell dimensions.

If the analyst decides to go on, then vectors that
fell into set L,2 are processed. The purpose of proc
essing is to adapt the shape and size of already exist
ing cells to the local distribution of data without

* Standard deviations in this printout 'were truncated at
integer values.

AUTOMATIC OFF-LINE MULTIVARIATE DATA ANALYSIS 691

increasing the storage requirements. The first Lz
vector is selected and tentatively classified by com
puting the smallest quadratic form relating the input
vector to the stored cell centers and by determining
the class designation of the highest hit count in . the
cell to which the vector is closest. If the tentative
classification is correct (that is, the vector has the
same classification as that associated with the nearest
cell center), then the cell is updated, and the serial
number, hit count, location, and size of the updated
cell are printed out on an optional basis.

If the tentative classification of this vector is in
correct (if the vector is near a cell but the classifica
tion of that cell is not the same as that of the vec
tor), then the search for another cell (second closest
to the input vector) is continued to determine if
it has the correct classification. If so, that cell is
updated; if not, the search is continued for other cells
still close enough to the input vector (determined by
the criterion that the input lies in their guard zone).
If there are none, the cell whose center is closest to
the input vector is updated anyway. The purpose of
this procedure is to stretch existing cells in such di
rections that the probability of correct identification
of inputs should be maximized.

On an optional basis the updated cell numbers,
their hit counts, locations, and dimensions are
printed out. A portion of a printout of Phase 2 of
the probability density estimation program is shown
in Fig. 4. At the end of the printout a brief sum
mary, stating the total number of cells and the
probability of correct recognition of vectors of the
set Lz (treated as unknowns) is given. It is seen
from Fig. 4 that satisfactory performance would be
obtained from the cell structure· created by the data.
The growth of some cells is also evident from this
printout.

The probability density estimation program out
puts a set of stored vectors (centers of M cells in N
dimensions), a set of N "standard deviations" for
each of the M cells (the cell dimensions), and a set
of hit counts for each cell (indicating the number
of members of each class contained in the cell). *

In general it is not possible to determine how good
an approximation of the actual probability densities
the above procedure obtains, for the actual densities
are unknown. In the case of the problem for which
the printouts in Figs. 1, 3, and 4 were given, a com-

* The cell dimensions and hit counts define the probability
density. Storing these quantities, however, takes less memory.

UPDATED CELLS-LOCATION AND
CELL HITS VC 5 VC 5

16 5 " • 47 2
1t 7 17 1 37 1

4 5 24 1 2_ 1
14 7 '35 1 S 1
12 8 19 t l' 2
16 6

"
1 47 2

14 S 54 t 7 1
12 9 10 1 " 2

5 4 22 t 43 1
G 4 11 2 54 1

19 2 4'3 • 58 2
5 5 22 1 41 2 1.. 8 27 2 11 1
3 5 43 1 8 1

l' 7
"

1 47 2
7 2 4,

-
56 2

9 6 32 2 42 -6 5 11 2 35 2
2, 2 17 1 53 t
12 t, 2' 1 9 2

5 6 21 2 4'5 1
3 ... 42 2 9 t

1t 9 26 1 " t
6 6 11, 2 '55 2

TOTAL NUMBER OF CELLS = 2~

STD. OEViATIONS
VC S VC S

PROBe OF CORR. DETECTION OF L2 VECTORS = .9229

LEARNING COMPLETE

Figure 4. Probability density estimation program printout
(Phase 2).

parison of the two-dimensional data, shown in Fig.
S, and the resulting cell structure, shown in Fig. 6
(with cell boundaries shown at the one-standard
deviation contours), reveals that the cell structure
approximates correctly the shapes and densities of
the regions in which the data is contained.

AUTOMATIC ANALYSIS OF
MULTIDIMENSIONAL HISTOGRAMS

When the number of dimensions precludes the
analysis and description of probability densities by
inspection, they may be analyzed by means of the
descriptors listed earlier. The two programs de
scribed below compute the descriptors listed in (3),
(4), and (9), respectively. The purpose of the first
program is to analyze the N-dimensional histogram
obtained by the method described in the preceding
to determine the lowest achievable error probability,
the percentage of the vector space occupied by each
class, the degree of overlap between classes, and
other quantities to be described below;

692 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

60

50

40

y

30

o o~ o

20

10

o ~----~----~--~~--__ ~~ ____ ~ __ ~
10 20 30 40 50 60

x
Figure 5. 170 two-dimensional ve;tors.

The following definitions will aid the description
of the calculations performed.

m = general index or serial number of
a cell. '

M = total number of cells.

Scm
PDCO

PDC
PER
CTmn

= ith cell among those only containing
members of class c.

= ith cell among those whose highest
hit count is from c.

= ith cell among those containing non
zero hit counts from c.

= hit count in cell m from class c.
= probability of detecting class c with

probability of error = O.
= probability of detecting class c.
= probability of error.
= standard deviation of cell m in di

mension n.
= total number of vectors of class c.

The program describes the distribution of the
classes by calculating and Plinting the following
quantities (an illustration of this printout is shown
in Fig. 7):

1. The total number of cells generated, M. This
output is directly obtainable from the probability
density estimation program.

2. The fraction of cells containing only members
of class c (repeated for all c). This output is ob
tained by summing the number of cells which contain
hit counts only from class c.

3. PDCO, the probability of classifying members
of class c with a probability of error equal to zero.
Since the probability of error of a specific decision
is zero if the likelihood ratio is infinite, the fraction
of members of class c which are contained in cells
only containing members of c (and thus having in
finite likelihood ratios) is the quantity PDCO. Thus,
PDCO is given by Eq. (2). This quantity is com
puted for all classes.

PDCO = ~ S 1 [~] L Scm all Xci oXci
m

(2)

4. Probability of detecting class c, PDC, is meas
ured by the sum of hit counts of cells in which the
highest hit count is from class c. Thus P DC is given
by Eq. (3).

PDC = 1 [~SOy]
~ Scm all Yci Ci_

(3)

5. The irreducible error is the probability of error
obtained when maximum likelihood ratio decisions
are made using the best estimate of the probability

60

50

v

30

c=J Class 2

20 [>1 Class 3

10

o
o 10 20 30

X
40

Figure 6. The cell structure.

50 60

AUTOMATIC OFF-LINE MULTIVARIATE DATA ANALYSIS 693

JOB NUt-mER 1
DATE: APRIL 11, 1965
PROBLEM DESCRIPTION 17_ - 2 DIMENSIONAL VECTORS

OUTPUT

TOTAL NUMBER OF CELLS GENERATED = 2_
TOTAL NUMBER OF HITS FOR ALL CLASSES = 17'
PERCENTAGE OF TOTAL VOLUt-tE = • '3 %
NUMBER OF CELLS CONTAINING TIES = _
FRACTION OF CELLS CONTAINING TIES = ,

FRACTION PROBAB I-l I TY
NUMBER OF CELLS OF DETECTING PROBABILITY PROBABILITY \

OF CONTAINING CLASS C OF DETECTING OF OF
CLASS C HITS ONLY CLASS C W/ZERO ERROR CLASS C ERROR VOLUt-1E

1 54 .299 .795 .963 .'37 .g2
2 71 .199 .576 .943 .f57 .Jf2
3 45 .299 .732 I.JfJf~ f.Jf Jf.Jf~

OUTPUT COMPLETE

Figure 7. Description of the distributions.

densities. The probability of error, PE, is given in
Eq. (4).

PE =l-~PDC
c

(4)

6. The fraction of the volume of the space oc
cupied by class c is the ratio of the sum of volumes
of cells containing members of c to the product of
the dynamic ranges of variables. This fractional vol
ume, VOL, is given by Eq. (5). This is computed
for all classes.

VOL = ~ (volume of cell Zed * X

1

-'-I (max-min value of variable n) (5)
n

7. The total fractional volume of the space oc
cupied by all inputs is computed similarly, except
the summation in Eq. (5) is carried out over all
cells.

The information theoretic descriptors of entropy,
information gain, and divergence can be computed
readily from their respective integrals, given in Eqs.

* The volume of cell Zci is proportional to the product of
the cell radii.

(6a, b, and c) with the aid of the cell structure ob
tained from the probability density estimation pro
gram.

00

Entropy of class c = He = - f plv) log plv) dv
-00

(6 a)

00 pc/v)
Information gain Ie = f plv) log -- dl'

-00 p(v)
(6 b)

Divergence J(i, j) = J [pdv) - plv)] log pdv) dv
-00 pdv)

(6 c)

Each integral can be expressed as the sum of
integrals over the M cells of the cell structure, and
each integral over a cell can be expressed approxi
mately in terms of the hit count& and dimensions of
the cell. By this method the three quantities given
above are expressed arithmetically in Eq. (7).

M Sem (Sem/Me) Entropy He = - ~ -loge
m = 1 Me N (7 a)

lT2 (Tmn

n=1

694 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Information Gain Ie = CALCULATION OF ENTROPY, INFORMATION GAIN AND DIVERGEt~CE

JOB NUMBER 1

Scm

M Scm
~ M loge

m = 1 C M

(

Scm)

j 1 ~ "mn

(7 b)

(7 c)

A printout from this program is shown in Fig. 8.
Since the data sorting and computational steps of
both of the above programs follow readily from the
equations given, the flow charts will not be shown
here.

SUMMARY

The set of analyses performed on multivariate data
described in the preceding provide a rudimentary
description of the data generation processes in terms
that forecast the storage requirements (the number
of cells) and the degree of discrimination that can be
achieved between the processes.

The features of the probability density estimation
technique which permit the intervention of the man
in the machine analysis of the data and which pro
vide the man with diagnostic outputs are important

DATE: APRil 11, 1965
PROBLEM DESCRIPTION 17~ - 2 DIMENSIONAL VECTORS

INPUT

CLASS 1,2,3,

CLASSES 1-2,1-3,2-3,

PRESS START FOR OUTPUT

CLASS ENTROPY INFOR~"ATION GAIN

1 3.6169 1. 96~4
2 3.752~ 1.9287
3 3.397j1 1.7358

CLASSES DIVERGENCE
1- 2 5.6.099
1- 3 2.521~
2- 3 4.4587

OUTPUT COI·IPLETE

Figure 8. Printout of entropy, information gain and diver
gence.

when a new application in which nothing is known
about the data generation processes is tackled.

The multidimensional histogram representation of
data simplifies the approximation of many complex
analyses which would require integration over do
mains. The full potential of the multidimensional
histogram representation of data has not been ex
hausted by the analyses described above.

REFERENCE

1.G. Sebestyen and J. Edie, "Pattern Recogni
tion Research", AFCRL Report 64-821 (June 14,
1964) .

DATA ANALYSIS AND STATISTICS:
AN EXPOSITORY OVERVIEW *

J. W. Tukey and M. B. Wilk

Princeton University and
Bell Telephone Laboratories, Inc.

Princeton and Murray Hill, New Jersey

INTRODUCTION

Data analysis is not a new subject. It has accom
panied productive experimentation and observation
for hundreds of years. At times, as in the work of
Kepler, it has produced dramatic results.

As in any other science, what is done in data
analysis is very· much a product of each day's tech
nology. Every technological development of major
relevance-organized tables of functions, knowledge
of the mathematical consequences of the Gaussian
law of error, desk calculators, stored-program elec
tronic computers, graphical display facilities-has
been accompanied by a tendency to rediscover the
importance and to reformulate the nature of data
analysis.

Today, as in the past, data analysis is usually
difficult, cumbersome, and complex-and often very
time-consuming, both in man-hours and in elapsed
time. It is also of mushrooming importance in busi
ness, politics, science and technology.

The basic general intent of data analysis is simply
stated: to seek through a body of data for interest
ing relationships and information and to exhibit the
results in such a way as to make them recognizable

* Prepared in part in connection with research at Prince
ton University sponsored by the Army Research Office
(Durham).

695

to the data analyzer and recordable for posterity. Its
creative task is to be productively descriptive, with
as much attention as possible to previous knowl
edge, and thus to contribute to the mysterious proc
ess called insight.

Four major influences act on data analysis today:

1. The formal theories of statistics.
2. Accelerating developments in com

puters and display devices.
3. The challenge, in many fields, of more

and ever larger bodies of data.
4. The emphasis on quantification in an

ever wider variety of disciplines.

The last few decades have seen the rise of formal
theories of statistics, "legitimizing" variation by
confining it by assumption to random sampling, oft
en assumed to involve tightly specified distributions
(in which a bare minimum of adjustable constants
deny almost all flexibility) and restoring the appear
ance of security by emphasizing narrowly optimized
techniques and claiming to make statements with
"known" probabilities of error. While many of the
influences of statistical theory on data analysis have
been helpful, some have not.

Exposure, the effective laying open of the data to
display the unanticipated, is to us a major portion of
data analysis. Formal statistics has given almost no

696 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

guidance to exposure; indeed, it is not clear how the
informality and flexibility appropriate to the ex
ploratory character of exposure can be fitted into
any of the structures of formal statistics so far pro
posed.

Many bodies of data require routine handling, not
data analysis, and can be rightly approached with
specific narrow questions. In dealing with them,
some facets of formal statistics are more nearly ap··
propriate, and have proved much more useful.

As a discipline, data analysis is a very difficult
field. It must adapt itself to what people can and
need to do with data. In the sense that biology is
more complex than physics, and the behavioral
sciences are more complex than either, it is likely
that the general problems of data analysis are more
complex than those of all three. It is too much to
ask for close and effective guidance for data analysis
from any highly formalized structure, either now or
in the near future.

Data analysis can gain much from formal statis
tics, but only if the connection is kept adequately
loose.

The impact on data analysis of the availability
and capacity of computer hardware and software
has already been substantial, but the full harnessing
of this potential has hardly begun. Slowness in de
velopment of appropriate computing systems reflects
the difficulty of the rethinking and restructuring of
the science and art of data analysis which needs to
be done.

The revolutionary computer and display develop
ments now taking place will inevitably stimulate ma
jor extensions and departures in data analysis,
whose beginnings are already visible. Today's first
task is not to invent wholly new techniques, though
these are needed. Rather we need most vitally to
recognize and reorganize the essentials of old tech
niques, to make easy their assembly in new ways,
and to modify their external appearances to fit the
new opportunities.

Data has typically been easier to gather than to
analyze, though there are outstanding exceptions,
Despite the gains in computation and display-per
haps because of them-this is increasingly true. In
so many fields, the accumulation of large volumes of
data is becoming irresistibly practical and economi
caL As in the past, much, perhaps most, of even
carefully collected data will not be adequately ana
lyzed. In part this is because facts are usually more
complex than the hopes which have led to their ac-

cumulation; in part because the accumulation of da
ta dampens experimental excitement; in part be
cause collecting data simply serves· to keep the
experimenter busy while he designs a more adequate
experimental setup or develops a needed point of
view; but also, in part, because the technology of
data analysis is still unsystematized and many of
those who could put its tools to good use are unable
to do so effectively.

While the data-analysis facilities of the present
and the foreseeable future entirely dwarf those of
even the near past, it is apparent that the challenge
to data analysis is growing instead of receding.
Thirty years ago, many thought that good data-ana
lytical techniques were really needed only when data
was sparse. Today we also recognize that only the
best data analysis will suffice when the data is very
extensive. As bodies of data grow in size, the
number of essentially different ways of approaching
them increases, and the effort involved in their anal
ysis threatens to grow even faster. The analysis of
mass data challenges all of our ingenuity and re
sourcefulness. Meeting this challenge will also help
us to handle small amounts of data more effectively
and thoroughly.

Increasingly, most disciplines are evolving to
wards increased quantification and mathematization.
Many of them (e.g., medicine) have had long his
tories of being descriptive and relatively qualitative
largely because of the complexities of their phenom
ena and systems. In these, the demand on data-anal
ysis techniques is often not only that they function
in some sort of real time, but even that they perform
as well as current expert judgment (which has often
been developed over generations and perhaps is
based on "data" still unrecognized). The resulting
challenges to data analysis are major and increasing.

The wider variety of problems thus brought to
data analysis increases the importance of recogniz
ing general elements in diverse problems and untan
gling these elements from more specific ones. The
need is to recognize and understand the similarities
and differences of data analyses in nuclear physics,
in the physiology of cell nuclei, in cloud-seeding, in
the assay of antiviral agents, in chemical engineer
ing, and in opinion polling, to select but a few.

DATA ANALYSIS IS LIKE
DOING EXPERIMENTS

Far too many people, in the past and even in the
present, have persisted in regarding statistics, and

DATA ANALYSIS AND STATISTICS: AN EXPOSITORY OVERVIEW 697

even data analysis, as a branch of probability
theory, nestled deep within modern mathematics.
Happily this view is increasingly out of favor. Statis
tical data analysis is much more appropriately asso
ciated with the sciences and with the experimental
process in general.

The general purposes of conducting experiments
and analyzing data match, point by point. For ex
perimentation, these purposes include (1) more
adequate description of experience and quantifica
tion of some areas of knowledge; (2) discovery or
invention of new phenomena and relations; (3)
confirmation, or labeling for change, of previous as
sumptions, expectations, and hypotheses; (4) gen
eration of ideas for further useful experiments; and
(5) keeping the experimenter relatively occupied
while he thinks.

Comparable objectives in data analysis are (1) to
achieve more specific description of what is loosely
known or suspected; (2) to find unanticipated
aspects in the data, and to suggest unthought-of mod
els for the data's summarization and exposure; (3)
to employ the data to assess the (always incom
plete) adequacy of a contemplated model; (4) to
provide both incentives and guidance for further
analysis of the data; and (5) to keep the investiga
tor usefully stimulated while he absorbs the feeling
of his data and considers what to do next.

Among the important characteristics shared by
data analysis and the experimental process are
these:

1. Some prior presumed structure, some guid
ance, some objectives, in short some ideas of a mod
el, are virtually essential, yet these must not be tak
en too seriously. Models must be used but must
never be believed. As T. C. Chamberlain 1 said,
"Science is the holding of multiple working hypoth
eses."

2. Our approach needs to be multifaceted and
open-minded. In data analysis as in experimenta
tion, discovery is usually more exciting and some
times much more important than confirmation.

3. It is valuable to construct techniques that are
likely to reveal such complications as assumptions
whose consequences are inappropriate in a specific
instance, numerical inaccuracies, or difficulties of in
terpretation of what is found.

4. In both good data analysis and good experi
mentation, the findings often appear to be obvious
but generally only after the fact.

5. It is often more productive to begin by obtain
ing and trying to explain specific findings, rather
than by attempting to catalog all possible findings
and explanations.

6. While detailed deduction of anticipated conse
quences is likely to be useful when two or more
models are to be compared, it is often more produc
tive to study the results before carrying out these
detailed deductions.

7. There is a great need to do obvious things
quickly and routinely, but with care and thorough
ness.

8. Insightfulness is generally more important than
so-called objectivity. Requirements for specifiable
probabilities of error must not prevent repeated
analysis of data, just as requirements for impossibly
perfect controls are not allowed to bring experimen
tation to a halt.

9. Interaction, feedback, trial and error are all es
sential; convenience is dramatically helpful.

10. There can be great gains from adding sophis
tication and ingenuity-subtle concepts, complicated
experimental setups, robust models, delicate elec
tronic devices, fast or accurate algorithms-to our
kit of tools, just so long as simpler and more ob
vious approaches are not neglected.

11. Finally, most of the work actually done turns
out to be inconsequential, uninteresting, or of no
operational value. Yet it is an essential aspect of
both processes to recognize and accept this feature,
with its momentary embarrassments and disappoint
ments. A broad perspective on objectives and unex
pected difficulties is often required to muster the
necessary persistence.

In summary, data analysis, like experimentation,
must be considered as an open-ended, highly inter
active, iterative process, whose actual steps are se
lected segments of a stubbily branching, tree-like
pattern of possible actions.

DATA ANALYSIS IN RELATION
TO PEOPLE

The science and art of data analysis concerns the
process of learning from quantitative records of ex
perience. By its very nature it exists in relation to
people. Thus, the techniques and the technology of
data analysis must be harnessed to suit human re
quirements and talents. Some implications for effec
tive data analysis are: (1) that it is essential to have
convenience of interaction of people and interme-

698 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

diate results and (2) that at all stages of data analy
sis the nature and detail of output, both actual and
potential, need to be matched to the capabilities of
the people who use it and want it.

Data analysis must be iterative to be effective.
Human judgment is needed at almost every stage.
(We may be able to mechanize an occasional judg
ment.) Unless this judgment is based on good infor
mation about what has been found, and is free to
call next for what is now indicated, there cannot be
really effective progress.

Nothing-not the careful logic of mathematics,
not statistical models and theories, not the awesome
arithmetic power of modern computers-nothing
can substitute here for the flexibility of the informed
human mind. Accordingly, both approaches and
techniques need to be structured so as to facilitate
human involvement and intervention.

It is insufficient to have results produced; they
must be displayed in a manner to satisfy diverse
needs of a broad spectrum of individuals. The gen
eral goals include (1) using a body of data to
answer specific questions, either formulated in ad
vance or developed during the analysis; (2) expos
ing to people information and structure in the data
that is of an unanticipated nature; and (3) com
pressed summarization for record and communica
tion. All three require communication to people.
For each of these purposes, the use of pictures is
invaluable, both for guidance at intermediate stages
and for final communication or summary.

In many instances, a picture is indeed worth a
thousand words. To make this true in more diverse
circumstances, much more creative effort is needed
to pictorialize the output from data analysis. Naive
pictures are often extremely helpful, but more so
phisticated pictures can be both simple and even
more informative.

For humans, the use of appropriate pictures often
offers the possibility of great flexibility all along a
scale from broad summary to fine detail, since pic
tures can be viewed in so many different ways.
Moreover, one can change his approach from sum
mary toward detail with great ease and great speed.

A few people will want to understand as much as
they can about a given body of data. For them, both
numerical detail and many pictures are useful.
Others might like to know so much about many
bodies of data, that they will have to be content with
summarizations, which may often have to be ex
treme and accordingly somewhat misleading. Data

analysis must satisfy needs for both extremes, and,
as well, for intermediate degrees of detail. (Formal
ly, and historically, the emphasis has been too much
on summarization.)

THE KEY TO EFFECTIVE
DATA ANALYSIS

The iterative and interactive interplay of summa
rizing by fit and exposing by residuals is vital to
effective data analysis. Summarizing and exposing
are complementary and pervasive.

If certain aspects of the data have been effectively
summarized by fitting a straight line, then we can
improve exposure by building on this summariza
tion. The plot of y against x is likely to be dominat
ed by what has been summarized by the straight
line. A plot of the residuals from the fit against x
(or other variables) exposes to view only what has
not been summarized, thus avoiding unnecessary
distraction and permitting attention to finer details.

Even when used for confirmation alone, data
analysis is a process of first summarizing according
to the hypothesized model and then exposing what
remains, in a cogent way, as a basis for judging the
adequacy of this model or the precision of this sum
mary, or both.

Techniques for summarizing are, fortunately, of
ten useful for exposing and vice versa. For example,
a half-normal plot 2 of contrasts in a 2n experiment
may serve as an effective summary of the data, with
identification of interesting effects. It may also serve
as an exposing technique in indicating, for instance,
the unanticipated existence of two error terms.

This process of summarizing and exposing is in
trinsically iterative. No step is clearly the last before
it is taken.

Summarizing data is a process of constrained and
partial description-a process that essentially and
inevitably corresponds to some sort of fitting, though
it need not necessarily involve formal criteria or
well-defined computations.

To fit a straight line is to select one of a very
restricted family of formal descriptions (a family in
volving only two constants) and to regard the line,
or some coefficients that specify it, as a partial de
scription of the data. To fit row and column means
to a 2-way table, or to fit 9 main effects and 5 2-fac
tor interactions to the data of a 29

-
2 fractional factor

ial experiment, is to do something entirely similar,

DATA ANALYSIS AND STATISTICS: AN EXPOSITORY OVERVIEW 699

differing mainly in the number of adjustable con
stants.

A process that is closely similar to these examples
is drawing (freehand) a curve that is both increas
ing and "smooth" and that graduates some data rea
sonably well. There is, so far as we know, no finite
set of adjustable constants that describe all
"smooth" curves, but the family of acceptable
curves is surely constrained. There is no precisely
specified way to conduct the fit, but the result must
surely be interpreted as a partial description.

Recognition of the iterative character of the rela
tionship of exposing and summarizing makes it clear
that there is usually much value in fitting, even if
what is fitted is neither believed nor satisfactorily
close. What is left over after the partial description
from fitting can often be more effectively ap
proached and structured because there has . been
some fit, even a poor one.

USING RESIDUALS EFFECTIVELY

When a "fit" has a sufficiently arithmetic char
acter, there is a natural way to express what the fit
has not described. Additive residuals defined by

observation = fit + residual

are widely used.
In other circumstances, it may be appropriate to

express residuals in still other ways. After all, we
are concerned with appropriate measures of devia
tion at each of several or many places, and there are
many reasons why the appropriate way to measure
deviation may vary from place to place, as well as
from example to example. Multiplicative residuals
or residual factors defined by

observation = fit X residual factor

are sometimes useful, but are usually easily reduced
to additive residuals by the taking of logarithms. If
we are concerned with outlines of leaves, it may be
reasonable to measure the deviation of actual out
line from fitted outline at each of a number of
places, probably at right angles to the fitted outline.
And where observation of angles leaves a multiple
of 277" undetermined, residuals are often usefully ex
pressed by the sine of the difference between ob
served and fitted.

Adequate examination of residuals is one of the
truly incisive tools of exposure. Perhaps because of
the blinding effects of unrealistic optimism about as-

sumptions, perhaps because of the difficulties of
computational practice during the era before mod
ern computing evolved, and to an unfortunate de
gree because computer centers have felt that data
output should be compressed, residuals have not re
ceived the attention and use they richly deserve.

There is no substitute for examining the collection
of detailed individual residuals in diverse ways. It is
almost always a sad inadequacy (though far better
than nothing) to try to summarize the exposing in
formation in a body of residuals by a mean square
error. Even the computation of the individual resid
uals and their examination as an unstructured mass
is not enough. Several graphs of residuals are usual
ly in order. Related numerical analyses, which
answer specific questions more stringently but more
general questions hardly at all, can also be useful. 3,4

Kinds of plots of residuals that are very often val
uable include (1) plots against fitted (or observed)
values; (2) plots against variables which were em
ployed in the summarizing fit; (3) plots against var
iables not used in the fit (e.g., time); (4) probabili
ty plots of ordered residuals, particularly plots of
empirical quantiles against quantiles of reference
distributions, such as the unit normal.

The first three kinds of plots are often effective in
showing what changes in style of fit are needed.
Probability plots are particularly helpful in indicat
ing a few peculiar values and in illuminating the
overall success of the fit. They provide quick infor
mation about location, about· spread, about dis
tributional peculiarities, and a palatable summary of
individual residual values. In any residual plot it will
be helpful to identify each individual residual ac
cording to whether or not it comes from an observa
tion which was used in developing the fit. There
should be an effort to identify and make evident
other important qualitative characteristics of individ
ual residuals.

The usefulness of residuals as a means of expo
sure depends on the summarizing model having
identifiable deficiencies. Accordingly, residuals may
fail to reveal deficiencies of a summarizing model
when these are too varied and general, or· when the
data points are few in number or badly distributed.

An example of this is the behavior of residuals
from an additive fit in a two-way/classification table.
If the departure from additivity is due to the exist
ence of just one highly deviant cell in the table, ex
amining the residuals as a whole will tend to expose
this cell. If there are two such deviant values, their

700 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

effects can combine to conceal any obvious pecu
liarities 5 so long as the individual residuals are ex
amined as an unstructured set of numbers.

THE STRATEGY OF DATA ANALYSIS

In addition to the two-pronged use of summariza
tion and exposure, including careful attention to re
siduals, three of the main strategies of data analysis
are:

1. Graphical presentation.
2. Provision of flexibility in viewpoint and

in facilities.
3. Intensive search for parsimony and

simplicity, including careful reforma
tion of variables and bending the data
to fit simple techniques.

Some people are apparently able to absorb broad
information from tables of numbers.6 Most of us can
only appreciate matters with full insight by looking
at graphical representations. For large-scale data
analysis, there is really no alternative to plotting
techniques, properly exploited. A picture is not
merely worth a thousand words, it is much more
likely to be scrutinized than words are to be read.
Wisely used, graphical representation· can be ex
tremely effective in making large amounts of certain
kinds of numerical information rapidly available to
people.

Flexibility in viewpoint and in facilities must be
built into both the general technology and the indi
vidual techniques of data analysis. We must have
flexibility in the choice of a model for summariza
tion, in the selection of the data to be employed in
computing the summary, in choosing the fitting
procedures to be used and in selecting the terms in
which the variables are to be expressed. Flexibility
in assembly and reassembly of techniques is crucial.

Using human judgment in selection, or cleaning
up, of the data by partial or complete suppression of
apparently aberrant values is natural, sensible, and
essential. Data is often dirty. Unless the dirt is either
removed or decolorized, it can hide much that we
would like· to learn. Sometimes, it is true, the dirt is
blue clay, and contains diamonds in the form of new
phenomena and new insights. Whether it is worth
much or little to prospect for diamonds among the
consequences of a particular set of data, we can do
this better after labeling as dirt whatever appears
from analysis to be such. Moreover, whether or not

it is diamond-bearing, clearing out the dirt can do
much to help us learn from the cleaner data.

Suppression may be complete and wholly human,
as when we decide to exclude a particular set of
observations from all computations. Suppression
may be partial and wholly automatic, as when we
use the median of a set of observations, or the mean
of the values in the two center quarters of the em
pirical distribution. In practice, the processes of se
lection and suppression are mixed up, rather com
plex, and for all that quite essential.

Just because values have been suppressed in
fitting is no reason for their residuals from the fit to
be forgotten. Not every suppression will have sup
pressed mere dirt. Some will have suppressed clean
data, others will have suppressed diamonds. We will
never be wholly sure which is which, but calculating,
looking at, and thinking about residuals from sup
pressed data often stimulates the further questions
needed to help clear up the situation.

The importance of parsimony in data analysis can
hardly be overstated. By parsimony we mean both
the use of few numerical constants and also the
avoidance of undue complexity of form in summa
rizing and displaying. The need for parsimony is
both aesthetic and practical.

In general, parsimony and simplicity will be
achieved in the summary description either at the
price of inadequacy of description or at the price of
complexity in the model or in the analysis. Typically
those who . insist on doing only primitive analyses
must often be satisfied with complex-not parsi
monious-summaries which often miss important
points.

An additional value from parsimony is illustrated
in the following idealized example: A cubic in x will
always fit the particular numbers that make up our
body of data somewhat more closely than a quadra
tic. This may easily be more a seeming than a truth.
If y only differs from a quadratic function of x by
fluctuations, independent from one x to another, the
fitted quadratic will fit the average values of y given
x more closely, on the average, than will the fitted
cubic.

One further aspect of great strategic importance
in data analysis involves the transformation, better
called reformation, of variables. Especially insightful
choices of modes of expression underlie much of
physical science. Changing from raw valueS to their
square roots or·· logarithms (or other appropriate
function) before the data is analyzed is often aston-

DATA ANALYSIS AND STATISTICS: AN EXPOSITORY OVERVIEW 701

ishingly effective. Equally important is the evolution
and use of techniques of analysis by which the data
itself may be employed to indicate useful transfor
mations.

As a matter of general strategy we may note here
that it is almost always easier, and usually better, to
"unbend" data to fit known analysis techniques than
to bend the techniques to fit the data. If the square
root, or logarithm, or reciprocal behaves in a sim
pler way than the raw form, it is obviously unwise
to work with the data in the form where its behavior
is more complex. With enough effort we can proba
bly bend any of our techniques of data analysis to
work explicitly and effectively on the data in its raw
form, but this effort is rarely justified.

FITTING, THE WORKHORSE OF
DATA ANALYSIS, HAS
VARIED OBJECTIVES

The single most important process of data analy
sis is fitting. It is helpful in summarizing, exposing
and communicating. Each fit (1) gives a summary
description, (2) provides a basis for exposure based
on the residuals, and (3) may have the parsimony
needed for effective communication.

Fitting inevitably raises questions concerning
classes of models to be used, selection of criteria of
fit, choices of mode of expression for observations,
as well as questions of numerical and logical algo
rithms. The answers to all these questions depend
upon the diversity of the objectives of fitting, their
character, and the differences amongst them.

These objectives include:

1. Pure description, in the sense of drawing, pos
sibly hastily, a curve across the page and saying y

appears to depend on x just about this way. If this is
our only aim, we do want the curve to fit well, but
we do not care at all whether its functional form is
more than an accident. Finding, for instance, that a
cubic polynomial fits our data well enough is not, at
this level, to be thought of as giving any particular
support for a cubic "law."

2. Local prediction, in the sense that, so long as
the situation "remains the same," we should like to
do well by substituting x's into the fit and regarding
the result as predicting the value of y. This amounts
to hoping that our description of the past, however
empirical, will continue to be a good description of
the future.

3. Global prediction of local change, in the sense
that we can use our fit to assess the result (averaged
over fluctuations) of changing one or more x's mod
erately, even when both the start and the finish of
this change are far from the circumstances for which
the fit was developed. If this is to be accomplished
successfully, the general situation must be favorable,
and theory, or insight, or broad experience must
have been responsible for choosing the form of the
fit and the nature of the y variables; the data before
us can rarely be used to narrow things down enough
to provide such good prediction, even of changes,
elsewhere.

4. Global prediction of values, in the sense that
we can use our fit to predict y given x far outside
the range of the data on which it was based. Re
liance upon outside information (including insight)
is now even greater, and the chances of success are
correspondingly diminished.

5. Using a fit depending on several mathematical
variables (some of which may be functions of the
same physical variable) to tell us which variables
have influences and which do not (which can in
clude telling us about the forms of the dependen
cies). This is sometimes possible, but nowhere near
ly as often as is commonly hoped. Very frequently
several alternative sets of variables will each give a
satisfactory fit.

.6. Using the fit to estimate coefficients having the
general character of physical constants. Careful de
scriptions of both what is to be varied and what is
to be held constant are essential before there is any
hope of doing this effectively. "Heat capacity," for
example, is not an adequate name. Heat capacity at
constant volume differs substantially, both in mean
ing and value, from heat capacity at constant pres
sure. In most circumstances, indeed, constants to be
assessed are not even as simply defined as heat ca
pacity, rather they are only defined in terms of
specific, rather complex functional forms.

These six objectives center on what has been
fitted rather than on the other essential ingredient of
fitting, what remains after the fit. Residuals have
two quite distinct sorts of uses. On the one hand,
they can be used as an immediate basis for further
summarization, as in:

7. Providing adjusted values for further study, as
when economic series are seasonally adjusted, or
when the analysis of covariance is applied.

702 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

8. Providing a basis for immediate further fitting,
as when the residuals from an eye-fitted straight line
are fitted by either a further straight line or a quad
ratic. (So-called stepwise regression procedures
operate in this general way, though they tend to
omit the calculation of actual residuals.)

The more usual objectives for residuals emphasize
exposure and include:

9. Examining and exposing with a view to learn
ing about the inadequacy of the fit.

10. Examining and exposing with a view to iden
tifying peculiar values, either for study in their own
right or for suppression, partial or complete, from

,further analysis.

We need not assess the relative value and fre
quency of these specific objectives of fitting-the
real need is to identify and distinguish varied objec
tives (of which these 10 are not all), to recognize
their diversity, their tendency to occur one or a few
at a time, and the consequent great variety of
different demands made upon the fitting process it
self and upon such associated procedures as plotting
of residuals. NO' one fitting-and-residuals procedure
can serve all our purposes.

REFORMATION OF VARIABLES

When is one expression better than another for
analysis? Basically, when the data are more simply
described, since this implies easier and more familiar
manipulations during analysis and, even more to the
point, easier and more thorough understanding of
the results.

The usual goals of better expression include:

1. Additivity of effects
2. Constancy of variance
3. Normality (Gaussianity) of distribution
4. Linearity of relationship

Widespread and clear understanding of the relative
desirability among the first three goals has been im
peded by (a happy fact-one that only appears acci
dental: All three tend to occur together. Where a
choice has to be made among these three, additivity
is to be preferred above all 7 with constancy of var
iance second.

Linearity of relationship is important for both
arithmetic .manipulation and graphical presentation.
If a response needs to be related to only one factor
upon which it depends monotonely, a suitable

change of the expression of either the factor or the
response will make the relationship linear. However,
when as usual, we have to deal with two or more
factors, we may be unable to reach linearity by any
such simple device. In most such circumstances, lin
earity may be achieved if we can attain additivity
since appropriate reexpression of the factors will
then make the dependence of the response on them
linear.

Some ways of seeking out desirable expressions
are:

1. Explicit trial of various alternatives,
whose evaluation is usually best done
in terms of corresponding residuals.3 , 8

2. Use of numerical guides to the next
choice.3,4

3. Use of computer iteration to seek that
monotone change of expression which
produces the greatest amount of addi
tivity.9

All of these approaches work. Which one is de
sirable in a particular case depends upon objectives,
on the amount and shape of the data, and on the
availability of computing and display equipment.

The gains from appropriate reexpressing, trans
forming-more simply reforming-individual varia
bles are likely to be substantial. More major gains
(e.g., gains in efficiency by factors of 2, 3, or often
much more) come· from such efforts than from any
other data-analytic step.

SCALING IN DATA ANALYSIS

Measures of similarity (or dissimilarity), even
when expressed on a rubber scale, can be used to
generate quantitative variables (see Refs. 10-14).
Even starting with several responses, each expressed
on a well-established numerical scale and thus able
to serve as coordinates in a Cartesian space, these
(and related) methods can sometimes generate non
linear transformations of the original responses from
"distances" among the points in the initial space.

NEW LINEAR COMBINATIONS
FOR OLD

Interest in replacing one set of variables with an
other made up of linear combinations of the first
variables arises:

1. in preparation for dropping some of
the new variables;

DATA ANALYSIS AND STATISTICS: AN EXPOSITORY OVERVIEW 703

2. in order to make calculations involving
these variables either simpler or more
understandable;

3. in a search for a more meaningful or
insightful coordinate system.

Canonical Analysis

The computations classically used for calculating
canonical correlation coefficients and canonical var
iates can be used in much more general situations to
provide an ordered family of linear combinations of
the original working variables, guided by the ability
of initial subsets of this family to describe, through
linear regression, the behavior of one or more guide
variables. Principal components are logically, but
probably not computationally, just a particular case.

Orthogonalization

Recognition and elimination of close approxima
tions to linear dependences is almost always impor
tant in three ways: computationally, descriptively,
and conceptually. Direct quantitative description of
amount of dependence upon factors that are sub
stantially correlated with one another still appears
almost hopeless, at least so far as communication to
the human mind is concerned. Computational
difficulties from unrecognized near linear dependen
cies can be very great. Changes of coordinates to
avoid such problems are often very useful.

Complete elimination of correlation-precise
orthogonality-is of little consequence to us, so long
as our arithmetic processes do not assume it. Still, in
practice, we usually seek "orthogonality," mainly
because it is specific, clearly defined, and related to
simple algorithms. In particular, variables made
orthogonal for one set of data are often thoroughly
useful in analyzing another, where they are only ap
proximately orthogonal. This happens most fre
quently, perhaps, when the second set of data is a
subset of the first, or, conversely, when the first set
is a random sample of the second (as may often be
computationally convenient in dealing with large
bodies of data) .

Orthogonal polynomials in other than the usual
order may be useful. Orthogonalization of more gen
eral variables is also often both convenient and use
ful. Notice that canonical variates, pure or modified,
(and thus, in particular, principal components) are
automatically orthogonal.

Rotation

Rotation of an initial coordinate system to a more
useful position can be helpful, but requires quite ex
plicit information about the advantages and disad
vantages of specific choices.

CONCENTRATING ON A SUBSET
OF THE VARIABLES

. Even in the simplest case of naturally or prescrip
tIvely ordered variables, working from limited and
fallible data, as we always do, offers NO hope of
always, or even usually, dividing the variables into
ONLY two classes: those it appears we must keep,
and those surely of no importance.

Since the "middle class" variables should usually
be carried on to further analysis, it will almost al
~a~s NOT be vitally important to be highly precise
In Just how we select a sequence of linear combina
tions, the first k of which we are to carryon to
further analysis.

In the more general problem of choosing any sub
set of variables for retention, we face new problems.
The 11th, 23rd and 47th variables may, for exam
ple, be so highly correlated with each other that any
one can deputize for any other without appreciable
loss. When this is so, no one can be essential since . '
It could be replaced; but neither can we be sure that
anyone of them is not important. Also, it is easy to
produce a situation where either of two variables
alone has negligible descriptive power, yet combined
they are very effective.

Taken as a means of selecting reasonably satisfac
tory subsets and giving some indication of their
comparative performance,. procedures of stepwise,
screening or "steered" regression can prove very
helpful in many situations, particularly if the uncer
tainties and inadequacies of the objectives and the
results are clearly recognized.

The basic idea of steered regression is iterative
use of the following step: Ask how much can be
gained (in the quality of one or more regressions)
by adding each of the remaining variables to the
currently selected subset, and then add to thesubset
that variable which gains the most. It is often, per
haps usually, useful to include another process in
the iteration. Ask how little it costs to exclude from
the subset each of the variables currently in it, and
then, if the cost is low enough, remove the least
costly variable from the subset. There also needs to
be a stopping rule.

704 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Conventionally, gains and costs are assessed in
terms of changes in the residual sum of squares.15

-
11

More complex measures seem more reasonable in
many, if not most, circumstances, however, and the
evolution of steered regression is likely to involve
more varied and insightful choices of steering func
tions.

GENERAL CONSIDERATIONS IN
GRAPHICAL PRESENTATION

Graphical presentation appears to be at the very
heart of insightful data analysis. For most people,
graphs convey more of a message than tables and do
so more persuasively and attractively. Graphical
presentation continues to hold its preeminent place
despite both feeble understanding of the reasons for
its power and appeal and severe limitations on the
variety and character of its techniques, the latter
stemming both from past technological limitations
and from continuing inadequacies of imagination.
Why?

Some reasons are easily found: Graphical dis
plays can be very flexible. The human eye and brain
are speedy and proficient in recognizing certain
types of geometric configurations. "Smoothness"
seems to be very much a geometric concept. The
eye seems much more able to comprehend nonun
derstood graphs than nonunderstood numbers. Quite
large volumes of data can be displayed economically
and comprehensibly. And the same graph can
transfer effectively either a very compressed sum
mary or an extensive amount of detail, as well as
many intermediate packages of information.

Before we discuss some of these reasons in more
detail, one key point must be made. While it is often
most helpful to "plot the data," this is rarely
enough. We need also to "plot the results of analy
sis" as a routine matter. (There is often more analy
sis than there was data.)

The innate flexibility of graphical displays is
many-sided. It is not merely that we can choose to
do many different things graphically. If one expects
(or only contemplates the possibility) that y is ap
proximately linear in x, a simple plot will confirm
this when it is so and be even more instructive when
it is not. If one has no clear anticipation, the same
simple plot is likely to reveal whichever one of many
alternative structures appears to be present, even
though these structures are nowhere collected in a

list. (We may, indeed, even doubt whether it is hu
manly possible to list them all.)

The human eye and brain join easily and speedily
in recognizing straightness and certain kinds of
smoothness, in assessing amounts of local roughness
or local variability (especially when properly aided
by a reference "curve"), and in judging the presence
or absence of systematic deviation (when the refer
ence curve is neither too steep nor too wiggly).
With less precision and more effort, eye and brain
can judge symmetry and circularity moderately well,
and have a fair chance of recognizing that certain
features occur in a roughly periodic way. Further, of
basic importance though more difficult to verbalize,
the human eye and brain can learn to recognize
quite complex and varied configurations with sur
prising effectiveness.

Almost all graphical techniques correspond to one
or more natural reference situations. Graphs are
most effective when these conceptually simple situa
tions produce simple configurations, above all when
reference situations produce straight lines.

"Smoothness" seems to be an essentially geomet
rical concept for which we do not yet seem to have
a reasonable analytical approximation. "Smooth"
extrapolation and interpolation, especially with ir
regularly spaced data, continues to be easier and
more persuasive when conducted and exhibited
graphically rather than numerically.

One great virtue of good graphical representation
is that it can serve to display clearly and effectively
a message carried by quantities whose calculation or
observation is far from simple. Many kinds of spec
tra, analog and numerical, illustrate this principle.

A scatter diagram with 100 or 500 points need
not be more difficult to scan than one with 10 or 50.
The same is often true with 1000 to 5000 points
(possibly with 10,000 or 50,000). Tables of
numbers simply cannot be expanded comparably
without tremendous increases in difficulty of exami
nation and understanding.

Similar problems and advantages occur in the
even simpler case of an unstructured collection of
single-number data. As the volume of data in
creases, it becomes very difficult to appreciate from
a table even the most elementary properties of the
collection, such as location, range or gaps. Yet sim
ple graphical representations, as empirical cumula
tive distribution plots 18 or, perhaps, even as sensibly
constructed histograms, provide rapid, easy and in
sightful indication of many properties, both sum-

DATA ANALYSIS AND STATISTICS: AN EXPOSITORY OVERVIEW 705

mary and detailed, and do so as conveniently for
large bodies of data as for smaller samples.

A common and extremely effective human re
sponse to a scatter plot of y versus x is often to
draft in a smooth "freehand" or "eyeball" curve as
an aid to judging the data. (Doing this is a natural
step toward summarizing and exposing-toward the
complementary processes of fitting and inspection of
residuals.) Despite the apparent ease-and substan
tial agreement-with which humans can do this,
there does not yet exist any automatic procedure
that does it at all satisfactorily.

The issues and problems of graphical presentation
in data analysis need and deserve attention from
many different angles, ranging from profound psy
chological questions to narrow technological ones.
These challenges will be deepened by the evolution
of facilities for graphical real-time interactions.

ONE-VARIABLE GRAPHS

Graphical portrayal of frequency distributions by
bar charts and histograms can be improved in var
ious directions. For comparing with a fitted curve, in
particular, the use of hanging (or suspended) rooto
grams, in which heights are proportional to the
square root of frequency and blocks are attached to
the fitted curve (not the base line), can be a consid
erable improvement. 19

KINDS OF TWO-VARIABLE GRAPHS

Point plots, linked plots, and curve plots are only
three of several distinct styles for two-variable
graphs. Point clouds, scatter displays and progres
sive patterns are associated with useful distinction
among purposes. Regularity of spacing, frequency of
wild observations, absence of changes in variability,
and correlations among fluctuations are also impor
tant considerations.

LINKING-UP POINTS AND
RELATED ISSUES

Whether or not the points of a progressive pattern
are linked together by line (or curve) segments can
significantly influence the usefulness of such a graph.
Linking up is not likely to help unless the points are
reasonably close together (in x) and reasonably uni
formly spaced (in x) and the corresponding "spec
trum" is not too flat.

THE NEED FOR VARIOUS
MENTAL APPROACHES

Given an appropriate plot, we still need an appro
priate attitude or "set" for the brain to take toward
its message. In this regard, the degree and character
of correlations among the fluctuations of the various
points are particularly important.

THREE-VARIABLE GRAPHS

Visual presentation of z = f(x,y) is far from
easy, yet badly needed. Of three classes of possibili
ties--contours, families of cross sections, and iso
metric views-the first seems, so far, most likely to
be effective, though direct-interaction graphical con
soles may offer other possibilities.

GENERAL CHARACTERISTICS
OF DATA ANALYSIS

In productive data analysis:

1. Those who seek are more likely to find.

Tight frameworks of probable inference demand
advance specifications of both a model and a list of
questions to be asked, followed by data collection
and then by analysis intended to answer only the
prechosen questions. A man who lived strictly by
this paradigm would have a hard time in learning
anything new.

Some may be uncomfortable in not having tight
global probability-like measures to calibrate their op
timism and pessimism, yet in thinking about this
difficulty it is vital to remember that science has not
required independent confirmation without reason.
To have clear evidence that something was not
chance in one single circumstance is feeble proof
that it happens in general. The price of losing a
crisp evaluation of the results for a single circum
stance is thus never great.

The price of not looking around, on the other
hand, is the loss of opportunity to have the data
suggest new things. What price would be greater?

In a strictly confirmatory experiment, there is a
clear place for a relatively narrow and constricted
analysis. But even there, there is likely to be a basic
need and responsibility for accompanying such an
analysis with a careful look around for new sugges
tions.

706 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

2. Flexibility in viewpoint and in facilities is essen
tial for good data analysis.

Data analysis is very much a bootstrap exercise.
Our facilities and our attitudes must encourage flexi
bility: use of alternate models, choice of subsets of
the data, choice of subsets of auxiliary or associated
variables, choice of forms of expression of these var
iables, and of the data, choice of alternate criteria,
both in fitting and in evaluating.

3. Both exploration and description are major ob
jectives of data analysis; for both reasons data
analysis is intrinsically iterative.

Both the search for insight and for the unantici
pated require that the available information be dis
played. Description as a preparation to display and
insight is, in a certain sense, the main business of
data analysis. But, equally, adequate insight, how
ever informal or intuitive, is a necessary precursor
for incisive description of the anticipated. Accord
ingly, insightful exploration and description require
an iterative, interactive, complementary process in
volving both summarization and exposure.

SIMPLICITY

Simplicity is in the mind, and it is valuable be
cause it lets the mind work better. Simplicity is often
learned and comes in many forms. To a man who
understands only straight lines, a parabola may seem
complex. As a conic section, however, it has a sim
plicity that has attracted men's minds since the days
of the Greeks.

But, in data analysis, just as in experimentation,
attaining the simple is often a complex task. Head
on collision between two high-velocity atoms or ions
is simple in concept, yet a colliding-rings particle
accelerator is a real complexity. Producing a simply
portrayed description of a body of data may require
a similar complexity both in arithmetic approach
and in display.

Progress in science is a curious mixture: The sim
ple becomes complex as we learn about the ifs and
buts; the complex becomes simple as new genera
tions, using new concepts, learn to regard new
things as simple.

Thus, in data analysis, useful results, including
useful techniques, need to be made simple. This re
quires a broad spectrum of appropriate concepts.

THE LIMITATIONS OF
DATA ANALYSIS

Data analysis cannot make knowledge grow out
of nothing or out of mere numbers, nor can it sal
vage or sanctify poor work. It can only bring to our
attention a combination of the content of the data
with the knowledge and insight about its background
which we must supply. Accordingly, validity and ob
jectivity in data analysis is a dangerous myth.

Developing models of one sort to aid in appre
ciating or assessing the performance of models of an
other sort (perhaps describing methods of analysis)
may indeed be useful to the discipline of data analy
sis. Such theories of inference must, however, be
taken only as a guidance, and kept from becoming
impediments. Assumptions and theory are indispen
sable, but, in use, the focus of data-analysis tech
niques must be on the data and the analysis, with
the theory aiding insight by providing alternative
backdrops.

It seems too easy for some to believe that detailed
assumptions can make the data tell much more,
either qualitatively or quantitatively, than would
otherwise be the case. But if these assumptions are
unwarranted their consequences may be misleading.

For example, combining an unexamined assump
tion of additivity in a two-way table with a classical
test for main effects may indicate the absence of sta
tistical significance, yet an elementary examination
of residuals or interactions may reveal important in
formation.

Both the guidance and the conduct of data analy
sis demand approximation. The combination of indi
vidually useful approximations often fails to be use
ful, either because errors accumulate or because
ranges of adequacy fail to overlap. Thus, when sim
ple, individually useful models or data-analytic steps
are linked together, it is essential, as scientists have
long realized, to think about the scientific problem
as a whole and to make empirical tests of the worth
of the combined chain.

GUIDANCE AND MODELS

Data analysis cannot be effectively conducted
without guidance: implicit and vague or detailed
and explicit. Contemplation of raw observations
with an empty mind, even when it is possible, is
often hardly more beneficial than not studying them
at all.

DATA ANALYSIS AND STATISTICS: AN EXPOSITORY OVERVIEW 707

In the sense in which we here use the word "mod
el" -a means of guidance without implication ot
belief or reality-all the structures that guide data
analysis, however weak and nonspecific, are models
-even when they are not explicitly mathematical.
Without them we are almost certainly lost (and
surely completely primitive); were we to accept
them unquestioningly we would be equally lost in a
different morass; taking them as limited guidance,
we may, however, succeed in finding some of what
the data conceals. As Francis Bacon so well said,
"Truth arises more easily from error than from con
fusion."

Definiteness in detailing objectives and assump
tions in a formal model can simplify mathematical
problems and increase the simplicity and impact of
the results reached. But tightness of detail usually
forces such a formal model unnecessarily far away
from the realities of the data-gathering situation, ob
scuring possibly important phenomena. Looser
structures can often do as well in simplicity and
clarity of results while retaining robustness and
breadth. Both for guidance and the encouragement
of exploration, it is most desirable that models be
loose and noncommittal, thus encouraging diverse
alternative working hypotheses.

Even as simple a problem as comparing the loca
tion of two samples illustrates these points. When
our model includes assumptions of approximate
equality of variance, absence of seriously aberrant
observations, and close normality (Gaussianity) of
distribution, we are likely to calculate Student's t
and halt. If we admit that. any or all of these as
sumptions may be false, we will know that we need
to do much better. (So far as the narrow objective
of location comparison is concerned, it may suffice
to use a more robust modification of Student's t.)

In most circumstances, we will gain by broaden
ing our interests, and supplementing either t-value
by at least inquiring what the sample has to say
about inequality of variances, presence of aberrant
observations, or nonnormality of distribution. Ex
hibiting the two samples on a single normal proba
bility plot will surely open our eyes in these direc
tions and will even, occasionally,. direct our attention
to less anticipated phenomena. The gain from doing
this is likely to be great.

Trying to answer questions concerning the ade
quacyof a model by the use of data may be interest
ing and valuable. In data analysis, however, models
and techniques are to be thought of and developed

as assisting tools with the focus on the data. The
models need not fit perfectly or even adequately to
prove usefully insightful. We must never believe so
deeply in any model as to constrain our insight.

Thus, for example, although the use of half-nor
mal plotting 2 in analysis of 2n experiments was sug
gested by a model combining equally distributed
normal errors, simple factorial effects, and the
"null" hypothesis that these latter effects vanish,
such plots merely use these assumptions to provide
a "backdrop" for exposure and remain both descrip
tive and instructive in most circumstances when the
assumptions fail, even badly. Indeed, the plot itself
may indicate or reveal the inappropriateness of the
assumptions.

BRIEF COMMENTS ABOUT SOME
CLASSICAL STATISTICAL
PROCEDURES

Particularly in textbooks, statistical procedures
are usually described as operational wholes (e.g.,
multiple linear regression), too often in terms of a
fragmentary list of formal objectives (e.g., to esti
mate regression coefficients and/or test hypotheses
about narrow aspects of the model). The main em
phasis in statistical theory and in textbook presenta
tions of methods has been on confirmation and sum
marization (e.g., the basing of multiple regression
methods on linear hypothesis theory).

The development of techniques and concepts use
ful for exposure has had very little guidance from
formal statistical theory. In actual practice, statisti
cal methods embodied in such categories as experi
mental design, analysis of variance, multivariate
analysis, time series analysis, goodness of fit, etc.,
are employed often and productively for purposes
typically very distinct from those used in their text
book derivation and justification. (For example,
multiple regression is typically useful as a generator
of residuals and a producer of empirical analytical
descriptions and summarizations.)

THE TECHNOLOGY OF DATA ANALYSIS

The basic purpose of a technology is to provide
and organize tools and techniques to meet relatively
well-specified, but often very broad, objectives.
Well-organized technologies are usually associated
with better-organized and more basic bodies of
knowledge, conveniently referred to as the corre-

708 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

sponding sciences. Objectives, science, and technolo
gy can only evolve and develop together-and by
means of active mutual interaction.

By the term data analysis we mean to encompass
the techniques, attitudes, interests and concepts
which are relevant to the process of learning from
organized records of experience. This area has al
ways been of fundamental importance. It is quite
apparent that, currently and in the near future,
widespread harnessing of the explosive potential of
organized data analysis depends upon active devel
opment of its technology. The progress of that de
velopment suffers from the fragmentary under
standing of both the science and the proper
objectives of data analysis. Moreover, it seems to be
true that both the mathematical developments of
modern statistical theory and the glamor of com
puter and display hardware have, for different rea
sons and different persons, provided a diversion
from the socially and scientifically important chal
lenges of statistical data analysis. Still, the mush
rooming opportunities of modem computing and
display provide a major stimulus .

. In thinking about data analysis technology, the
antithesis between hardware and software (between
machinery and organized know-how) is important,
not only in the conventional uses of these terms
within a computer system, but also in data analysis
itself. Specific techniques, such as a three-way analy
sis of variance, considered as parts of data analysis,
are really data-analytic hardware. The mystery and
art of when and why to use such techniques make
up the data-analytic software, which is today very
soft indeed.

Our difficulties are twice compounded; we must
develop data-analytic software to harness the power
of our data-analytic hardware and, at the same time,
develop computer software for data analysis that
adequately harnesses the power of our computer and
display hardware.

Flexibility in our objectives must be combined
with easy and effective iteration and combination.
Flexibility, easy iteration, and efficiency all demand
the identification and use of functional components
that can be assembled in many ways. Existing tech
niques need to be decomposed into appropriate
components; new components need to be recognized
and created. Among these functional components we
shall find such diverse things as data structures, out
put formats, algorithms, logical operations, and even
components for the construction of other compo-

nents. Their selection and description needs im
proved guidance from an appropriate appreciation
and structuring of objectives. By the same token,
their definition and creation will stimulate the evolu
tion of broad objectives and sophisticated tech
niques.

As far as numerically carrying out classical statis
tical procedures goes, little has been done, until very
recently indeed,20 to attempt to recognize the com
mon arithmetic and logical operations which under
lie a great many of the techniques of data analysis,
and which may serve as the lowest-level functional
components in a more organized approach to it. The
recognition of these functional components, and the
facility to combine them freely and flexibly, will
greatly increase the power and scope of data-analytic
methods. Side benefits would also accrue in hus
banding programmer effort.

Two considerations are important in implement
ing data analysis: First, that the process of analysis
usually involves a volume of output much greater
than the original body of data. Second, that there is
no clear barrier between output and input in the
overall process of data analysis. The input for analy
sis is always the output from something else
(whether from a previous analysis ·or a data
source). The output from a step of analysis-as for
instance an array of residuals or a covariance matrix
-is likely to be the input to another phase of analy
sis. The resulting requirements upon the technology
of computation for ease and compatibility are of
major importance.

Current facilities for computing, display, and real
time interaction have developed substantially beyond
our understanding of how to use them effectively in
data analysis. Current limitations in data analysis
technology are mainly in explicating and organizing
the science of data analysis and in defining and
implementing the necessary associated computer
software.

From the statistical side of the discipline must
come: broader, more permissive, empirically orient
ed concepts and theories; more inclusive and realis
tic classifications of objectives; more effective and
coherent classifications. of useful techniques; re
search toward more empirically informative tech
niques that will provide both exposure and sum
marization; more understanding and research on
techniques of reforming and reexpressing variables;
deeper insight into the psychology of graphs, pic
tures and output formats in general, both for inter-

DATA ANALYSIS AND STATISTICS: AN EXPOSITORY OVERVIEW 709

action and for communication; progress toward
standardized data structures of great flexibility and
comprehensiveness.

From the computing side of the discipline is re
quired software to provide: convenience with flexi
bility, simple and effective buokkeeping and history
keeping, adequate editing, effective means for treat
ing output as input, more flexible and general graph
ical presentations, and a variety of means to facili
tate real-time interaction.

Though some progress is being made on many of
these needs, the technology of data analysis is still in
its infancy.

ACKNOWLEDGMENTS

W(~ would like to thank G. A. Barnard, D. R.
Cox, R. Gnanadesikan, C. L. Mallows, F. Mosteller,
H. O. Pollak, and D. R. Wallace for their useful
comments on related treatments of the topics con
sidered in this paper.

REFERENCES

1. T. C. Chamberlain, "The Method of Multiple
Working Hypotheses," reprint of 1890 version,
Science, vol. 148, pp. 754-59 (1965).

2. Cuthbert Daniel, "Use of Half-Normal Plots in
Interpreting Factorial Two-Level Experiments,"
Technometrics, vol. 1, pp. 311-42 (1959).

3. F. J. Anscombe and J. W. Tukey, "The Exam
ination and Analysis of Residuals," Technometrics,
vol. 5, pp. 141-60 (1963).

4. G. E. P. Box and D. R. Cox, "An Analysis of
Transformations," Jour. Roy. Stat. Soc., vol. 26, pp.
211-43 (1964).

5. Jane F. Munk and M. B. Wilk, "Detecting
Outliers in a Two-Way Table," unpublished manu
script (1966).

6. E. S. Pearson, "Some Aspects of the Geometry
of Statistics: The Use of Visual Presentation in Un
derstanding the Theory and Application of Mathe
matical Statistics," Jour. Roy. Stat. Soc. (A), vol.
119, pp. 125-49 (1956).

7. R. Duncan Luce and John W. Tukey, "Simul
taneous Conjoint Measurement: A New Type of

Fundamental Measurement," Jour. Math. Psych.
vol. 1, pp. 1-27 (1964).

8. Peter G. Moore and John W. Tukey, "Answer
to Query 112," Biometrika, vol. 10, pp. 562-68
(1954).

9. J. B. Kruskal, "Analysis of Factorial Experi
ments by Estimating Monotone Transformations of
the Data," Jour. Roy. Stat. Soc. (B), vol. 27, pp.
251,-63 (1965).

10. R. N. Shepard, "The Analysis of Proximities:
Multidimensional Scaling with an Unknown Dis
tance Function, I," Psychometrika, vol. 29, pp.
125-40 (1962).

11. --, "Analysis of Proximities," pt. II, ibid,
pp.219-46.

12. '--, "Analysis of Proximities as a Tech
nique for the Study of Information Processing in
Man," Human Factors, vol. 5, pp. 33-48 (1963).

13. J. B. Kruskal, "Multidimensional Scaling by
Optimizing Goodness of Fit to a Non-Metric Hy
pothesis," Psychometrika, vol. 29, pp. 1-27 (1964).

14. --, "Non.,.Metric Multidimensional Scal-
ing: A Numerical Method," ibid, pp. 115-29.

15. M. A. Efroymson, "Multiple Regression
Analysis," in Mathematical Models for Digital Com
puters (Anthony Ralston and Herbert S. Wilf, eds.),
Wiley and Sons, New York, 1960, pp. 191-203.

16. Robert G. Miller, "Statistical Prediction by
Discriminant Analysis," Meteorological Monographs
(Boston, American Meteorological Society), vol. 4,
no. 25 (1962).

17. Norman J. MacDonald and Fred Ward, "The
Prediction of Geomagnetic Disturbance Indices: 1.
The Elimination· of Internally Predictable Varia
tions'" J. Geophys. Res., vol. 68, pp. 3351-73
(1963) .

18. M. B. Wilk and R. Gnanadesikan, "Probabil
ity Plotting Methods for the Analysis of Data," un
published manuscript (1966).

19. John W. Tukey, "The Future of Processes of
Data Analysis," Proceedings of the 10th Conference
on the Design of Experiments in Army Research,
Development and Testing, U. S. Army Research
Office (Durham), 1965, pp. 691-729.

20. Albert G. Beaton, "The Use of Special Ma
trix Operations in Statistical Calculus," Ed.D. thesis,
Grad. School of Education, Harvard University
1964.

UNICON COMPUTER MASS MEMORY SYSTEM

C.H. Becker

Precision Instrument Company
Palo Alto, California

PRINCIPLES

The principle of the UNICON Computer Mass
Memory is derived from the UNICON Coherent
Light Data Processing System to create and detect
(record and reproduce) information elements in two
dimensions by means of signal-modulated coherent
laser radiation. The UNICON Computer Mass Mem
ory System has the following characteristics.

An information bit is represented by a diffraction
limited "hole" within the Unidensity film layer. It
results from the evaporation of the Unidensity
medium by means of imaging the aperture of a laser
to a three-dimensional ellipsoid of revolution (Debye
ellipsoid). During the time required to create one
bit, the vacuum temperature of the laser image of
3 X 104 °K produces a vapor pressure of 1000 at
mospheres within the bit volume, leaving an ellip
soidal hole in the Unidensity layer of the following
dimensions (see Fig. 1).

Large axis (2Zo) in the direction of propagation
of the writing laser beam:

2Zo = 4 X A (~)' (l)

Small axis (2ro) transverse to the direction of
propagation of the writing laser beam:

2r 0 == 2 X 1.22>.. (~) (2)

711

It is assumed that the thickness t of the Unidensity
layer is approximately equal to the length of the large
axis 2Zo.

Transfer of the information to be stored to the
laser beam utilizes electro-optical modulation of the
beam. Primarily, information is presented to the
modulator as frequency modulation or pulsewidth
modulation.

Instantaneous readout of the three-dimensional
information bit, while recording, occurs by detecting
the diffracted laser radiation during evaporation of
the Unidensity medium. Without information, the
logarithm of transmissivity T of the Unidensity layer
is inversely proportional to its optical density s:

1
s = log

T
(3)

After evaporation, this density is practically re
duced to zero, thereby increasing the power of the
laser beam transmitted through the bit area by ap
proximately 70 decibels. Secondary readout of the
information takes place at drastically reduced laser
power to avoid further destruction of the Unidensity
film layer.

Continuous readout of the UNICON system uti
lizes a lightguide surrounding the imaging circle of
the rotating objective, carrying the laser radiation
transmitted through the Unidensity film to a central
photomultiplier. Hence, any coherently illuminated

712 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

i=1O f
0= 1.6 i=20 -t =3.0

f
0=4.0

x

OIRECTlON OF
ONAXIS LIGHT PROPAGATION

Figure. 1. Debye ellipsoid principles.
z

information bit is photoelectrically detected within a
few nanoseconds. This holds true for instantaneous
and secondary readout as well.

In order to establish a two-dimensional pattern of
information bits, the Unidensity layer is helically
carried at slow speed (1 cm per second) around
the imaging circle of the laser aperture, which is
formed by a diffraction-limited objective rotating
with high speed around the helical axis. The velocity
of the laser image is 18.6 meters per second at 1800
rpm of the rotating optical system. The inclination
of the image azimuth against the transport direction
of the Unidensity film is 1 °32 minutes. Hence,
helical unit records of one line length are recorded
at 600,000 bits each, with spacing between indi
vidual unit records of 2 bit diameters. Width of the
information-carrying area of the 16mm Unidensity
film is 8 mm. Information packing density is 6.45
X 108 bits per square inch. Rate of information
processing is in the megabits-per-second range. Total
capacity of one UNICON Memory System is 88 X
109 bits for a 16mm Unidensity film reel of 100 feet.

Compared to the present state of the art, which is
characterized by memory cards, discs and drums, the

helical two-dimensional UNICON memory represents
an entirely new system with several orders of magni
tude higher performance.

This advancement in the state of the art is due
essentially to the basic principle of the UNICON sys
tem, that information storage takes place by moving
the entire storage medium across the ultimately pre
cise imaging circle of the system, continuously and
without spatial intermittence. Hence, the UNICON
Computer Mass Memory is indeed a two-dimensional
memory system which does not require stepping
processing in space to move cards, to change circular
writing and reading positions on discs, or to vary
height positions on drums. In other words, the UNI
CON system provides an imaging circle for recording
and reading of practically invariant radius and fixed
positions in space. The information guidance prob
lem of the UNICON system is therefore reduced
to the kinematics of the continuous helical motion
of the information carrier across the imaging circle.
Due to the unique design principles of the UNICON
system, this guidance is also practically invariant in
space and is inseparably connected to the spatial
characteristics of the imaging circle of the system.

THE UNICON COMPUTER MASS MEMORY SYSTEM 713

COHERENT LIGHT BIT CREATION

Bit creation in the UNICON Computer Mass
Memory takes place by means of evaporating a dif
fraction-limited hole in the special Unidensity
medium, utilizing coherent laser radiation as the
writing power source. In order to accomplish this
operation, certain basic requirements must be met:

1. The information-writing laser beam must be
of zero-order, single-mode (TEMoo) structure; other
wise, the laser image will not be a single ellipsoid of
revolution and of the smallest possible size.

2. The power density of the writing laser beam
must be such that a certain temperature of vaporiza
tion (3 X 104 °K) is established within the ellip
soidal volume of the laser image.

3. The information storage medium (Unidensity
layer) must possess such absorption and reflection
characteristics that a certain vapor pressure (1000
atmospheres) is established in the ellipsoidal volume
of the laser image under the influence of the beam
temperature in this volume.

4. The imaging optics which concentrate the writ
ing laser beam must be free of optical distortion
within the diffraction limits and must possess certain
aperture ratio (f / D) of the focal length f and effec
tive aperture D so that the dimensions of the three
dimensional bit volume (ellipsoid of revolution with
large axis 2Zo, and small axis 2ro) are of the small
est possible size (Fig. 1).

2Z"=4XA(~y (4)

2r 0 = 2 X 1.2n (~) (5)

where A is the laser wavelength.

5. The Unidensity storage medium must be of
such thickness, measured in the direction of propa
gation of the writing laser beam, that the ellipsoidal
volume is properly embedded.

6. The transverse position of the laser Unidensity
film must be so accurate that secondary tracking
from the reading laser beam can be accomplished
within the track width of a helical unit record.
(Track widening of the reading laser image to a slit
transverse to the scanning direction relaxes these re
quirements, for example, by a factor of 3.) A track
widening slit, transverse to the scanning direction,
appreciably decreases the problem of tracking the

reading laser image within the track width of a
helical unit record. The reading laser image is in
creased by a factor of three through this process.

7. The longitudinal positioning of the writing and
reading laser beam must be sufficiently accurate that
azimuth tracking takes place within the track width
of the helical unit record. Due to the very small slope
of the unit record track (1 ° 32'), this requirement
can be met by servo control of the Unidensity film
transport.

Under these conditions, the bit creation of the
UNICON system takes place as follows: The in
trinsic aperture D of the writing laser beam, with its
characteristic divergence a (see Fig. 2) is imaged by
the diffraction limited objective

sin a = 1.22 (~) (6)

Due to the diffraction phenomena, the image of the
laser aperture is not a geometrical point, but an
ellipsoid of revolution (Fig. 1).

From the various possibilities to design the imag
ing structure of the UNICON system, laser beam
cross section and divergence are to be matched to
the numerical aperture of the imaging objective and
its focal length in accordance with the Unidensity
layer thickness t and the required bit size 2ro.

Assuming the imaging objective is completely
"filled" at a certain distance from the laser exit (i.e.,
laser beam diameter equals objective entrance pupil),
another concentration of the power density S occurs,
proportional to the square ratio of laser beam diam
eter and spot diameter:

D2

(7)

where @o is the space angle of laser imaging.

One obtains, for example, with W = .350 watt,
2ro = 1 micrometer, and S = 8 X 1010 watts/meter2

•

Applying Stefan Boltzmann's law to this power
density S

(8)
where

CI = 5.673 X 10-12 watt cm-2 OK (9)

one obtains the resulting vacuum temperature T to be

T = 3 X 104 OK (10)

714 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

INCIDENT COHERENT
LIGHT BEAM OF ZERO
ORDER TEM.. MODE

TRANSVERSE
IMAGE PLANE OF
LASER APERTURE

GEOMETRICAL
IMAGE OF
LASER APERTURE

Z

DIRECTION OF ON-AXIS
LIGHT PROPAGATION

Figure 2. Optical rays for theory of imaging of a laser aperture (principles).

Applying further the Clausius Clapeyron equation
to the Unidensity layer and this temperature:

dp U

dT T6.V

where p = vaporization pressure,
U = latent heat of evaporation,
T = absolute temperature, and
6. V = molar specific volume of the

evaporative Unidensity medium,

one obtains, after integration:

(11)

p = _ (_V_) S (12)
UVap

and, with the evaporation heat per unit mass m and
the thermal velocity V of the evaporated atom:

(
2)"2 V = m ·KT (13)

where K is Boltzmann's constant.

Introducing the various parameters related to bit
creation, the vaporization pressure is of the order of
1000 atmospheres.

COHERENT LIGHT BIT DETECTION

In principle, coherent light bit detection may be
defined as the coherent light illumination of the
created information bits during and after creation,

and the subsequent photoelectric detection of the
transmitted light diffraction pattern. Optimal con
ditions require laser and imaging system to be equal
for storage and readout, except for drastic reduction
of the coherent beam power for detection to avoid
erasing.

Hence, with these requirements in mind, one de
fines the optics for light guidance from information
bits to photoelectric detector. In the UNICON sys
tem, light transmission to the photomultiplier takes
place by means of a plexiglass guide completely sur
rounding the imaging circle of the laser aperture and
guiding the light transmitted through the Unidensity
film to a central photomultiplier.

ACCOMPLISHMENTS

Possible mass memory configurations are the re
suIt of practical accomplishments and experiments
with the prototype UNICON-6. This research pro
gram has accomplished the following goals:

1. Determination and definition of the
physics involved.

2. Experimental recording of 0.7"" spots
and recovery of the data.

3. Construction of a working model.

This working prototype has read-write capability,
instantaneous playback without processing, and is of
archival quality. These accomplishments and experi
mental prototype characteristics allow for a reason-

THE UNICON COMPUTER MASS MEMORY SYSTEM 715

able projection of possible UNICON Mass Memory
Systems.

CHARACTERISTICS OF UNICON
MASS MEMORY FOR TYPICAL
COMPUTER INSTALLATION

The previous discussion described the UNICON-6
prototype Mass Memory System. Let us examine for
a moment several typical UNICON Mass Memory
configurations that might be used in conjunction with
a large computer installation.

While the UNICON-6 uses a 16mm wide record
ing medium, a 35mm width of recording medium
would be more practical, from the standpoint of re
ducing access time. The track layout would be as
illustrated in Fig. 3. The 35mm width in this figure
includes 4 mm in the upper edge track for a binary
file accession number, 1 mm in the lower edge track
for a time track and a 30 mm wide track for record
ing of data. Data tracks 1 mm in length would be
laid transversely along this width, each track provid
ing a file length of 106 bits. The track separation
normal to the direction of recording would be 4
microns. Due to the low incidence angle, we then
have a 167 micrometer track separation distance
along the length of the recording medium. This con
figuration would provide a total information capacity
of 1012 bits in 528 lineal feet of recording informa
tion:

106 bits/record = 60 tracks / cm
167 fL separation X 100 cm

(14)

101'2 total memory size

106 bits/file X 60 tracks/cm X 30.5

= 528 lineal feet of recording medium
for 1012 bits (15)

A desirable configuration to minimize access time
would be to provide one-half of the recording
medium on each of two reels, with the transport
controls set to automatically home in the center posi
tion. Since our average access time would be the
time required to access a file half the distance in
length on a roll of recording medium, we can then
calculate the average access time as follows:

Search velocity = 120 ips (16)

528 X 12 1 1
Average access = X - X - = 13.1 sec

120 2 2
(17)

This average access time is then 13.1 seconds for
the entire 1012-bit memory. The worst-case access
time would, of course, be double this figure, or 26.2
seconds.

A configuration suitable for an application such
as a library retrieval system accessed by many on
line users through a multiprocessing computer might
be as shown in Fig. 4. Note that in this case, 10
transports are provided, each having a capacity of
1011 bits. In this configuration our average access
time would be 1/10 of the former case, or 1.31
seconds, neglecting start/stop time. Each transport
is equipped with a transport controller which will
receive the address of a desired file from the master

4mm BINARY CODE FOR FILE ACCESSION NUMBERS

35mm

Imm TIME TRACK

Figure 3. Track layout.

716 PROCEEDINGS-··FALL JOINT COMPUTER CONFERENCE, 1966

TO CONTROL

.ROCESSOR

MASTER
CONTROLLER

D
D
D
D
D
D
D
D
D

Figure 4. Typicallarge memory system confi&uration.

controller and proceed to search for the file. Upon
locating the desired file, the transport control will
interrupt the master control and dump the entire
contents of the selected file into the master controller
buffer.

The master controller would have the capability of
receiving multiple commands from the computer
and call for files on a first-in first-out basis. By
incorporating a small processor within the master
controller, it would be perfectly feasible to issue file
requests to individual transports in such a manner as

to minimize total access time. This capability would
require the master controller to have knowledge at
all times as to the physical position of the record
ing medium in each transport and issue those com
mands to each tape transport which could be ac
cessed with minimum linear travel from its present
position. This type of operation would, of course,
require some users to wait longer than others to
reach a particular file, but would have the advantage
of maximizing memory system output.

Data Transfer Rate

The data transfer rate can be varied up to the
megabit rate to accommodate the word length and
data transfer rate of the highest speed core memory
systems. This is accomplished by adjusting the
rotational speed of the optical scanner head to scan
the data track at the appropriate rate.

The above two configurations of mass memory
systems show two possible configurations of the
UNICON Mass Memory. With appropriate con
trollers, it is possible to configure the UNICON Mass
Memory to accommodate most multiprocessing and
multiprogrammed computers.

ACKNOWLEDGMENTS

The author wishes to acknowledge the cooperation
of all who contributed to the establishment of the
UNICON Computer Mass Memory at Precision In
strument Company, particularly Messrs. Siegfried
Mohr and Herman Wong. Acknowledgment is also
given to William Bennett, Vice President-Marketing
of Precision Instrument, who contributed the section
of this work on "Computer Characteristics of UNI
CON Mass Memory."

AN ELECTRON OPTICAL TECHNIQUE'
FOR LARGE-CAPACITY RANDOM-ACCESS MEMORIES

Sterling P. Newberry

General Electric Company
Schenectady, New York

INTRODUCTION

Memories of the electron beam recording type
have many desirable features for large capacity ap
plications. At the Wescon Conference of 1958/ the
author proposed a class of electron optical memories
of very high storage density under the title, "Infor
mation Storage in Microspace."

The intent of the microspace approach was to
increase the storage density to a level at which the
entire memory surface could be so small that:

1. The memory could be enclosed in a
convenient-sized, controlled environ
ment, such as a vacuum chamber, free
from dust, stray fields, temperature
excursions, and other extraneous influ
ences.

2. The memory surface would not be
liable to injury from being rolled or
folded upon itself.

3. The mechanical motions could be
drastically reduced or eliminated alto
gether.

4. The difficulty of relocation of the data,
which increases monotonically as the
memory capacity is increased, could be
lessened by organizing the memory in
segments with servo-control of the

717

electron beam to and within a given
segment.

The desirability of completely eliminating me
chanical motion so that rapid random access could
be obtained to any part of the memory soon became
apparent. However, this goal is unattainable with a
single electron lens because of the limitation in field
of view of a single lens. One suggestion for getting
around this limitation, and thus for increasing the
amount of storage surface which can be in focus
simultaneously, was made by the author at the
Fourth Electron Beam Symposium in 1962.2 This
suggestion was for the creation of a matrix of elec
tron lenses resembling in principle the compound
eye of the insect world and thus called a fly's eye
lens. In this matrix of lenses, which may be either
an electrostatic or electromagnetic array, each lens
let will be capable of keeping that part of the memo
ry surface immediately before it in focus at all times,
ready for instant recording or readout.

TYPICAL FLY'S EYE STRUCTURE

A schematic diagram of a cross section of such a
device employing electrostatic lenses of the "Ein
zel" type is shown in Fig. 1. Here the lenslets are
arranged in a rectangular array. The inset, at lower
right of figure, shows one lenslet of the complete

718 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

FLY'S EYE LENS

COARSE
- DEFLECTION

SYSTEM

---~- ELECTRON BEAM

~~~~_"y" DEFLECTION 

• X II DEFLECTION 

..-::-:.- RECORDING MEDIUM 

'~~ 

Figure 1. Schematic diagram of microspace concept em
ploying fly's eye lens. 

lens in greater detail. It may be seen that the lens is 
an array of simple Einzel lenses formed as usual by 
three apertures on a common axis. 

All the center apertures of the lenslets are con
tained in a common metallic plane sheet which is 
maintained at a potential approaching cathode po
tential, or at least negative with respect to the elec
tron beam potential. In like manner the outer aper
tures of all the lenslets are contained in a common 
metallic plane, for each side respectively, and these 
outer planes of apertures are at anode potential, 
which is customarily also the ground potential of the 
system. Thus for the complete matrix of lenslets 
three leads are required, one for each plane of aper
tures. It does not matter that all lenslets are con
nected, since only that lenslet or lenslets to which an 
electron beam is directed will be active. Thus if a 
common electron source is employed with a coarse 
deflection system as shown in Fig. 1, it can be used 
as an electrical switch to activate any required lens
let on command. 

Immediately following each lenslet a set of X and 
Y deflection plates, forming a fine deflection system, 
is shown. From the inset it may be seen that the 
deflection plates for each row of lenslets form a con
tinuous deflection bar. The other set of deflection 
plates form a continuous set of bars for the columns 
of lenslets. Thus, as in the case of the lens plates, a 
few connecting leads serve to supply voltage to all of 
the lenslets' deflection plates since it does not matter 
that a deflection field exists in every lenslet. Only 
the one lenslet to which the electron beam is ad
dressed is activated. The direction of deflection in 
adjacent lenslets is reversed but this is of no special 
consequence for most possible applications. 

This fine deflection system is then followed by the 
recording medium as shown. The precise form of 
the recording plate depends upon the properties of 
the medium, which is beyond the scope of the 
present paper. For purposes of the tests reported 
here Lippmann-type photographic emulsions have 
been employed. The above straightforward arrange
ment has been described in detail because it is the 
form which has received the most extensive testing 
and upon which the results reported here were per
formed. By way of example, a possible variation 
might contain the focus and deflection functions in 
the same structures, or the lenslets might be in hex
agonal array instead of rectilinear array as shown. 

CONSTRUCTION OF A TEST MODEL 

As a first test model, it was decided to build a 
10 by 10. lens matrix on %6" centers (which is 
roughly 11h millimeters). The complete matrix of 
100. lenses was therefore contained in an area of 
2.25 square centimeters although the supporting 
structures extended beyond the lens matrix to a di
ameter of approximately 5 cm. The central aperture 
was chosen to be 0.0.10." (0..25 mm) diameter and 
the spacing between planes the same value. The 
deflection bars were made by simply milling slots in 
metal plates to form four comb-like structures which 
could be interdigitated to give the required two sets 
of deflection plates. A completed assembly is shown 
in Fig. 2. 

EXPERIMENTAL SETUP FOR TEST 

The test of the fly's eye unit was conducted in a 
demountable electron optical bench similar to the 
bench described by Ruska. 3 The test arrangement is 



AN ELECTRON OPTICAL TECHNOLOGY 719 

Figure 2. Completed assembly of 10 by 10 matrix fiy'seye lens. 

shown schematically in Fig. 3. Only the top section 
of the equipment is illustrated. The electron source 
and condenser lens assembly (not shown) were re
spectively a standard hairpin filament source and an 
electrostatic condenser lens described previously by 
the author. 4 This source size has been found to be 
approximately 75 microns in diameter. The image 
and object distances were set to give a demagnifica
tion of 60 times. A fine-grain (vapor reacted) phos-

ph or screen * shown in Fig. 3 is placed at the focal 
position of the fly's eye structure seen immediately 
below the fluorescent screen. Above the screen is a 
light microscope objective contained in the vacuum. 
The objective can be focused from outside by means 
of the bevel gear train. The light microscope viewing 
system is completed by an eyepiece external to the 

* Vapor reacted screen obtained from Liberty Mirror 
Division of Libbey-Owens-Ford. 



720 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

15X MICROSCOPE EYE PIECE 

WINDOW 

FOCUS MECHANISM 

l---J1Z22~~-mWz2!ZlZ~L_~~~~IO X MICROSCOPE OBJ. 

FLUORESCENT SCREEN 
OR RECORDING MATERIAL 

W~~~~s:.--- SPACER FOR BEAM 
FOCAL PLANE 

FLY'S EYE LENS UNIT 

Figure 3. Schematic of test arrangement for fly's eye lens 
evaluation. 

vacuum window. Viewing magnification could be 
varied from 50 X to 400 X by exchanging objectives 
and eyepieces. 

A photograph of the test setup, on the electron 
optical bench, is given in Fig. 4. In the vertical col
umn of electron optical components, the electrons 
proceed from bottom to top. The column is 4" in 
diameter (approximately 100 mm) and is connected 
to the vacuum system by a metal cone seen to the 
lower right of the column. This cone is welded to 
one section of the column and serves also as the 
mechanical support for the column. Just below the 
cone may be seen the insulator for the electron 
source described in Ref. 4. The section immediately 
above the cone houses the electrostatic condenser 
lens of Ref. 4. Centering of the elements is accom
plished by sliding action of the "0" ring seals be
tween sections and is controlled by means of the 
external collars and thumb screws which may be 
seen in the photograph at the junction of some adja
cent sections. The next three short sections house 
the fly's eye lens. The top of these three sections is 
made of lucite plastic to aid in beam current meas
urement and introduction of the focus voltage to the 
lens. The middle section contains six insulators, four 
of which are used to introduce the deflection volt
ages, one for providing ground potential to the top 
lens plate and the last not used since the bottom 
lens plate is fastened to the lowest of the three sec
tions and thus provided with adequate ground con
nection and mechanical support. The fluorescent 

screen or photographic plate is held at the correct 
focal plane for the fly's eye lens by a simple annular, 
ceramic, ring spacer placed to rest on the outer edge 
of the lens .. The fluorescent screen has a conducting 
coating and is connected through the plastic section 
to a lead for either simple ground connection or 
connection to a beam current meter with appropri
ate positive bias to collect secondary electrons and 
obtain a true reading. The photographic plate is ex
changed for the fluorescent screen by breaking vacu
um and lifting off the top two sections. For light 
sensitive materials this operation is conducted with 
the aid of a red cellophane filter in a flashlight. The 
photographic plate is kept from moving during ex
posure by a large-diameter, weak coil spring press
ing down on it. Obviously, the system must maintain 

Figure 4. Photograph of test arrangement for fly's eye 
lens evaluation on electron optical bench. 



AN ELECTRON OPTICAL TECHNOLOGY 721 

alignment and focus through this vacuum cycle. The 
top two sections contain the objective lens assembly 
of the viewing microscope with its planetary gear 
system for external focus control obtained by the 
knob seen on the right. The top section allows space 
for this focus motion. The eyepiece of the viewing 
microscope is external to the vacuum system and 
may be seen at the top of the column. This arrange
ment places the vacuum chamber window between 
the objective and the eyepiece where it introduces 
negligible aberration. To the left of the column ~ne 
may see the polyethylene high voltage leads whIch 
supply condenser lens and fly's eye lens focus volt
ages. Their respective high-voltage plastic bushings 
are on the back side of this view and therefore can
not be seen. These bushings are completely enclosed 
for safety reasons, as are the leads to the electron 
source seen at the bottom of the column. 

TEST OF THE 10 BY 10 MATRIX 

For the first test, the light microscope was re
moved after focusing' and the electron source was 
made to flood all of the lenslets with a 4-ke V beam 
by causing the beam to cross over close to the con
denser lens. The simultaneous focusing action of the 
lenslets with grounded deflection plates, was ob
served on the fluorescent screen. The fluorescent 
screen image was recorded by 35mm photography, 
as shown in the, image sequence in Fig. 5. Subse
quently, the light microscope was reinstalled and the 
fine deflection system of the fly's eye was connected 
to the plates of a type 536 Tektronix oscilloscope, 
which gave a maximum potential of 160 volts in one 
direction and 80 volts in the other. The plates also 
contained a DC bias of approximately 80 volts. A 
simple sawtooth pattern was observed on "the 
fluorescent screen by use of a 16-mm 0.25 NA ob
jective. A photographic plate was then used in place 
of the fluorescent screen by opening the vacuum sys
tem and then exposing the plate without thepossi
bility of reexamining the focus. The sawtooth trace 
approached' 1.5 microns at the narrowest part '·which 
is consistent with a demagnification of about 60: 1 
and a source size of about 75 microns and gave 
encouragement to attempt image recording through 
the lens. 

IMPROVED TEST SETUP 

Before making test recordings the setup shown in 
Fig. 4 was added to and improved in, the following 

Figure 5. Focal sequence of 10 by 10 fly's eye lens. Top: 
.625 x .625 fly's eye electron beam pattern; 
beam entered corner lenslets at an angle. Bottom: 
Two stages of focus through all lenslets. 

manner. A stator type television focus coil * was 
added between the condenser lens and the fly's eye 
unit using a brass tube through the center of the coil 
to keep it outside the vacuum chamber. The brass 
tube had flanges connected to each end by threaded 
joint and "0" ring seal to make it compatible with 
the rest of the sections in the electron optical bench 
column. While this deflection unit permitted the use 
of areas of the fly's eye away from center, it could 
not adequately direct the beam to the outermost 
lenslets because the angle of the beam to the lens 
normal increased with deflection. In the latest ver
sion, described below, this limitation is removed by 
employing double deflection so that a second set of 
coils straightens' the beam back to the lens normal 
just before it reaches the required lenslet opening. 
The simple deflection control from the 536 oscillos
cope was replaced by control from an image orthi
con chain. t Signals are fed,' through appropriate vid
eo amplifiers, from, the chain to the fine deflection 
bars and the grid of the electron source. Deflection 

* Celco Type AY 521-5600 (Constantine Engineering 
Laboratories Co.). 

t General Electric Model URV-200. 



722 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

levels available were '+400 volts and grid swing was 
up to -20 volts coupled to the gun with a .02 Mfd, 
6 kv capacitor. After the first images of a test chart, 
shown in Fig. 6, were recorded the fly's eye unit was 
mounted in a more convenient electron optical 
bench section designed specifically for holding it, 
and a plate holder was added with a linear motion 
feed.:.through so that the fluorescent screen and pho
tographic plate could be interchanged over the fly's 
eye unit without breaking vacuum. It was still neces
sary . to break vacuum to place the photographic 
plate into or out of the system however. An adjusta
ble aperture similar to the one described in Ref. 4 
was· installed between the source and condenser lens 
and a simple mechanical shutter with a Faraday cup 
on its extremity was installed to control exposure and 
measure total beam current. Finally the hairpin fila-

ment of the electron source was given a small point
ed end after the method of Hibi 5 to decrease the 
source size without loss of brightness. For visual fo
cusing the current at the fluorescent screen was 
raised to 10-7 amperes or higher, but for pho
tography the current had to be reduced below 10-9 

amperes to give a convenient time of 1 to 10 sec
onds for mechanical exposure. It is not possible to 
determine by fluorescent screen viewing whether the 
resolution suffers at higher beam current but no de
terioration is expected. This item will be tested when 
single trace photographic control becomes available. 

PHOTOGRAPHIC RESULTS 

Photographic emulsions of Lippmann-type were 
used to test the performance of the fly's eye lens. At 

Figure 6. Portion of RETMA resolution chart by scanning action of one lenslet recorded on photographic 
film. Magnification marker-l00 microns. 



AN ELECTRON OPTICAL TECHNOLOGY 723 

first Kodak high-resolution plates were used but the 
4-kV beam energy was insufficient to reach the silver 
halide grains so that recordings were essentially due 
to changes made in the surface of the gelatin. This 
difficulty was. overcome by making emulsion coat
ings of low gelatin content according to the method 
described by Salpeter and Bachmann. 6 Later on 
Eastman Kodak produced some experimental Lipp
mann-type emulsion of low gelatin content and grain 
diameters around 50 m,u, which was more conven
ient to use. A good description of Lippmann emul
sion is given by Mees and James. 7 This emulsion 
can be spread in thin layers after the method of 
Hamilton and Brady 8 and mounted on a glass slide 
or electron microscope specimen grid. It has been 

supplied to us through courtesy of the Kodak Com
pany on a purely experimental basis and no assur
ance can be given regarding future availability. The 
pictures shown here were made with this emulsion 
on tin-oxide-coated microscope slides. Development 
was for one minute in D-19 developer. Hamilton 
and Brady suggest a developer containing ascorbic 
acid for best resolution, but it is less stable and not 
required at the present resolution level. 

The image shown in the photomicrograph· of Fig. 
6 was produced by scanning action by one lenslet of 
the 10 by 10 matrix of lenslets. The image is of the 
RETMA resolution chart #1956, the photomicro
graph was made with a lOX objective. Figure 7 is 
from the same recording as Fig. 6 but taken with a 

Figure 7. Higher-resolution microphotograph of recording shown in Fig. 6. Magnification marker-lO microns. 



724 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

20X objective. For a restricted field of view, it 
shows the individual scan lines in better detail. Even 
Fig. 6 does not cover the entire. picture. It is unfor
tunate that the optical microscope cannot both re
solve the scan lines and cover the field of view of 
the entire recording although it may display either 
one by itself when the proper objective is used. At 
the border of Fig. 7 is a magnification scale repre
senting la-micron spacing between centers of adja
cent lines. This scale was produced by pho
tographing a la-micron Bausch. & Lomb scale 
immediately after photographing the fly's eye image 
and with the same setting of the microscope except 
that dark field illumination was used to make the 
scale lines more distinct but, of course, reversing 
them from black to white. The Leitz ortholux micro
scope and 35mm orthomat camera were used to take 
the pictures. In both Figs. 6 and 7 the path of the 
electron beam on the printed page is black. We have 
a further check of their identity because the test 
chart bars and numbers appeared black on the 
fluorescent screen prior to recording and therefore 
must be opposite to the electron beam, which glows 
brightly on the fluorescent screen. 

For these pictures electron optical demagnifica
tion was approximately 20: 1, the object and image 
distances being 10" and 0.5" respectively. Assuming 
negligible lens aberration a source size of 20 mi
crons is indicated which is reasonable. Beam cur
rents of up to 1 microampere were observed on the 
fluorescent screen but beam current had to be re
duced to 5 X, 10-10 amperes to give a reasonable 
exposure time for the Kodak experimental emulsions 
and mechanical beam shutter used. Again, the beam 
voltage was 4 kV and the deflection voltage was 
+400 V to give a deflection of %6" to match the. 
lens matrix spacing. 

PRODUCTION OF A 32 BY 32 MATRIX LENS 

After the initial test of the 1 0 by 1 a matrix lens 
and during the time of the later tests, an improved 
version of the fly's eye structure was produced as 
seen in Fig. 8. Its chief differences were improved 
tolerances in centering the plates during assembly, 
production of deflection bars which were anchored 
at both ends and a 10-fold increase in the number of 
lens lets to a 32 by 32 matrix on %2'" centers (ap"" 

, proximately % mm). This lens has given the im
proved pictures shown in Figs. 9 and 10, which 
contain lines less than 1 micron on two micron 

Figure 8. Completed assembly of 32 by 32 matrix fly's eye 
lens. 

centers. Figure 9 shows simulated digital data being 
scanned by four neighboring lenses simultaneously. 
The apparent lack of linearity is chiefly due to the 
signal source. This becomes apparent when it is re
called that adjacent . lenses give mirror images .. The 
distortions are seen to he reproduced identically by 
each lens. Figure lOis included to give some idea of 
gray scale response and shortness of exposure. (Fig
ure. 10 was taken "live" not from a photograph. Al
so, an extra photographic reversal was introduced to 
avoid a negative for the final print.) The improved 
test equipment shown in Fig. 11 has been provided 
and a small electron microscope has been construct
ed to permit focusing the electron beam at submi
cron dimensions. For these proposed tests the 
demagnification may be increased to 50: 1. If the 
lenses were mechanically perfect, the aberration lim
it would be expected to be 0.03 microns. Pho
tographic film has been shown by Salpeter and 

, Bac4mann 6 to be capable of an average grain size 
of 0.05 microns. Thus a resolution of 4000 line 
pairs per millimeter is a worthwhile goal to strive 
for, since we have emulsion capable of recording at 
this level. 



AN ELECTRON OPTICAL TECHNOLOGY 725 

IMPLICATION OF RESULTS 

The full resolution of the available 480 lines of 
the television signal indicates better than 2 X 105 

clearly resolved spots in the field of view of each of 
the 103 lenses. This· result is most encouraging, the 
principal problems ahead for this device now appear 
to be ones of quality control since it has been shown 

that the lens and deflection system can be scaled 
down according to scaling laws. In the process of 
scaling down, the bits resolved per lens and the cur
rent density at the recording plane are constant 
while the bit density decreases as the square of the 
scale factor and the device size decreases by a factor 
between the square and the cube of the scale factor. 
(Obviously, this process cannot be continued 

Figure 9. Image of simulated digital data from four neighboring lenslets of 32 by 32 matrix, illuminated by a single large
diameter beam. Data squares are 10 microns high w bile scan lines are less than one micron on two micron centers. 
Resolution is limited by the optical read-back system rather than the recording. 



726 PROCEEDING~FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 10. Portion of live image recording on photographic film. Scanning beam less than 1 micron 
on 2-micron centers. 



AN ELECTRON OPTlCAL TECHNOLOGY 727 

indefinitely without increasing current density since 
one would eventually reach a limitation due to the 
statistical inadequacy of the electron beam, because 
while current density is maintained at the same lev
el, ampere seconds per spot is reduced. We are well 
removed from that limitation in present considera
tions, however.) Thus each of the 1000 small lenses 
should ultimately be capable of recording the same 
number of bits per field of view as a large lens 
which certainly approaches 108 bits. The advantage 

is that 1000 of these single tube memories are con
tained in one small device with a small number of 
input leads. 

In summary, we have described a novel electron 
optical element which permits the entire memory 
plane to be in focus at one time. The current density 
at the recording plane is maintained and the memo
ry plate size is reduced by the square of the scale 
factor. A packing density of 108 bits per square inch 
has already been demonstrated with 1 micron beam 

Figure 11. Improved test equipment for continued evaluation of 32 by 32 lens in submicron recording 
dimensions. Small electron microscope added at top for focusing electron image. 



728 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

diameter. The next extension of performance will re
quire an electron microscope to judge focus of the 
beam and to display the recording. 

REFERENCES 

1. R. K. Jurgen, "Technical Highlights of ,-58 
Wescon," Electronics, vol. 31, p. 72 (Nov. 7,1958). 

2. S. P. Newberry, "Problems of Microspace In
formation Storage," Proceedings Fourth Symposium 
on Electron Beam Technology (R. Bakish, ed.), Al
loyd Electronics Corporation, Cambridge, Mass., 
1962, p. 81. 

3. E. Ruska, "Experiments with Adjustable 
Magnetostatic Lenses," Electron Physics, National 
Bureau of Standards Circular 527, paper #44, p. 
399 (1954). 

4. S. P. Newberry and S. E. Summers, "The Gen
eral Electric Shadow X-Ray Microscope," Proceed
ings of Third International Conference on Electron 
Microscopy Held at London, July 1954, Royal Mi
croscopical Society London, 1956, paper #64, p. 
305. 

5. T. Hibi, "Pointed Filament and Its Applica
tions," ibid, paper #151, p. 636. 

6. M. M. Salpeter and L. Bachmann, "Autora
diography with the Electron Microscope," J. Cell 
Bioi. vol. 22, p. 469 (1964). 

7. C. E. Mees and T. H. James, Theory of the 
Photographic Process, 3d ed., Macmillan, New 
York, 1966, Chap. 2, p. 36. 

8. J. F. Hamilton and L. E. Brady, J. Appl. 
Phys. vol. 30, p. 1893 (1959). 



A SYSTEM OF RECORDING DIGITAL DATA ON 
PHOTOGRAPHIC FILM USING SUPERIMPOSED 

GRATING PATTERNS 

R. L. Lamberts and G. C. Higgins 

Research Laboratories, Eastman Kodak Company 
Rochester, New York 

The most common method for storing data in a 
binary form on photographic films has been to 
record each bit in terms of the presence or absence 
of a density in an area on the film. While in theory 
high-resolution materials have the inherent capacity 
for recording a tremendous number. of. bits within a 
given area, to a very great extent this has not been 
realizable because of technological difficulties. First 
of all, as the areas corresponding to the bits on the 
film are made smaller, they become more and more 
difficult to locate mechanically. And second, any 
film is bound to pick up a certain amount of dirt, 
and such particles can easily obscure individual bits 
and cause real havoc if high accuracy is required. 

The method to be described represents a new sys
tem for recording such information, which largely 
circumvents both of these difficulties and hopefully 
makes data recording on film a much more practical 
sort of operation. 

The basic principle· of this system is to record a 
bit of information as a small grating pattern on the 
film. As shown in Fig. 1, when such a pattern is 
placed in a simple optical system and the slit is illu
minated with monochromatic light, two first-order 
lines will be formed. We can now place photodetec
tors at these lines and determine whether the grating 
pattern is in the aperture or not. It is interesting and 

729 

important to note that the diffraction lines do not 
move when the grating pattern is moved. 

So far we still do not have a very efficient record
ing method, but we can make it, much more so by 
recording each bit in a .given character as a pattern 
of a given spatial frequency and superposing the 
grating exposures on top of one another. Thus, for a 
character consisting of seven bits, we will now 
record a composite grating pattern consisting of up 
to seven spatial-frequency components. Figure 2 
shows an enlarged composite grating consisting. of 
seven components. The components are sinusoidal 
--or nearly so-in this case. 

When such a pattern is placed into our optical 
system, a pair of first-order lines will be present in 
the focal plane for each component frequency of the 
composite pattern, as shown in Fig. 3. We can 
therefore place a photodetector at the position of 
each first-order component, on one of the sides at 

. 1st order 
Monochromatic Simple ~ 

,"ummatjlon Slit Gratoo·ng Lens I _ O-order 

--------------- -----~;:~'1 

Figure 1. Optical system producing zero-order and first
order lines from a simple grating. 



730 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

Figure 2. Enlarged composite grating pattern cO[lsis1:ing 
seven spatial frequency components. 

least, and determine whether a spatial frequency has 
been recorded or not. 

Figure 4 shows diagramatically the position we 
would want for the first-order lines. On the basis of 
simple grating theory you can show that the distance 
between a given first-order component and the zero
order image will· be directly proportional to the spa
tial frequency, which means that, for an even spac
ing of the lines, we want to have equal increments 
between the spatial-frequency values. Likewise, be
cause there is a possibility that a second-order line 
will be formed, all the spatial frequencies should be 
contained within a single octave. 

Figure 5 shows a series of actual photographs of 
diffraction patterns formed from various composite 
grating patterns. It is obvious that the lines are very 
distinct and that an unambiguous signal is formed. 

Figure 3. Optical system similar to that in Fig. 1, producing 
a number of first-order lines from a composite 
grating. 

I I I I I I I I I : 
O-Order '>0 &0 So 100 110 I<?O 1.30 

- Ist-Order

Figure 4. Diagram showing relative positions of diffraction 
lines. 

The practical limit for the number of spatial fre
quencies within a given area appears to be about 
seven or eight since the line intensities drop off 
rather rapidly as the number is increased beyond 
this point. But with seven frequency components it 
is not uncommon to find that the stronger of the first 
orders have intensities of about 5 % or even as high 
as 10% of the zero order. 

It should be pointed out that if the information of 
seven bits spread uniformly over the area otherwise 
occupied by the seven density areas in the conven
tional system, this system should be less sensitive to 
dirt and scratches because the area for a given bit is 
at least seven times as large. For the same reason, 
the problem of mechanically locating an area is 
much less difficult. This system is similar to the ba
sic approach to holography. In fact, it turns out that 
a composite grating is essentially a Fraunhofer-type 
hologram of a series of bright points. 

1111111 t 1111111 

111111 _ 111111 

III III I 111 III 

111111 I 111111 

All 1 st Ord er Lines 
70-130 c/mm 

Less 120 

Less 100 

Less 80 

Figure 5. Photographs of multiple first-order lines produced 
from various composite grating patterns. The 
composite grating producing the upper illustra
tion contained seven spatial frequencies ranging 
from 70 to 130 cycles/mm. The other illustra
tions were produced from grating patterns where 
one of the frequencies was omitted in each case. 



RECORDING DIGITAL DATA ON PHOTOGRAPHIC FILM 731 

Zero - order 

-W
o 

-

Wo = \ (Focal dist) 
L 

R = 
WI 

Wo 

First - orders 

WI = \,61/' (Focal dist.) 

= L 61/ 

L = Grating dimension 

Figure 6. Zero-order and two adjacent first-order distri
butions illustrating the effect of redundancy. 

While these patterns can be made very small, 
there is a limit to their size; this is illustrated in Fig. 
6. Suppose that the composite grating is in the aper
ture plane of the optical system. There will then be 
a distribution of light at the zero order which is a 
diffraction pattern whose size, wo, will vary inversely 
with L, the size of the aperture, as shown by the 
equation at the left. The equation on the right, ob
tained from grating theory, gives the distance be
tween the centers of two adjacent first-order lines. 
Since for well-formed gratings, the first-order com
ponents will have the same width distributions as for 
the zero order, we can define a redundancy factor R 
as the ratio of Wl to Woo When R is equal to unity the 
two adjacent first-order lines will be just at the limit 
of resolution and W 1 will be equal to Woo This would 
occur, for example, if the pattern dimension were 
1/10 mm and the spatial frequency increment were 
10 cycles per mm. Thus by increasing either L or 
6.v, we are able to increase the resolution of the 
lines. Practical experience as well as calculations 
have shown that obstructions such as dirt particles 
can cause difficulties for small values of R, but as it 

I 
0- Order 

I , , , I , I 
'>0 &0 .90 100110/201.50 

Cycles/mm 

I00f-L ------+ 

Figure 7. Comparison of storage for diffraction and con
ventional photographic systems. 

is increased to five or more, the probability of false 
readings is greatly diminished. 

To give just a little more insight as to how this 
system works, suppose that a set of seven spatial 
frequencies ranging from 70 to 130 cycles/mm was 
recorded as shown in Fig. 7. The basic interval be
tween spatial frequencies would again be 10 
cycles/mm. As has been pointed out, for a redun
dancy of unity the pattern would have to be 1/10 
mm or 100ft long. Suppose now that these same 
bits are recorded using clear and opaque areas in 
this same dimension of 100ft, as shown in the lower 
part of Fig. 7. Then it would be necessary to have 
a resolution of at least 7 lines per 100ft or 70 
lines/mm, which is of the same general magnitude 
as is required by the diffraction system. 

To increase redundancy with the conventional 
system, the clear and opaque areas would be made 
larger, which is essentially throwing away the resolu
tion available in the system. In the diffraction sys
tem, the resolution is used when the pattern is en
larged. Many fine-grained films have a capability of 
resolving many times what has been required for 
most conventional film data-storage systems, but 
with the new system we have means for putting it to 
use. 

One method of forming very good composite 
images is with the use of variable-area composite 
patterns of the type shown in Fig. 8. These can be 
photographed with a camera system using a cylindri
cal lens in front of the objective lens so that the 
image illuminance is made to vary as the composite 
function. 

Both of the patterns shown in the figure are com
posites of the same seven spatial frequencies. The 
difference between the two is that the component 

F(x) = b - [cos7x + Cos8x + Cos9x + Cos lOx + Cos Ilx + Cos 12x + Cos 13x] 

F(x) = b-[Cos7x + Cos8x + Cos9x- Cos lOx - Cos Ilx + Cosl2x - Cos 13~ 

Figure 8. Composite variable-area patterns consisting of 
the same seven sinusoidal components but phased 
to give maximum and·· minimum variation in 
width. 



732 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

spatial frequencies in the lower one have been 
phased to give a minimum overall amplitude while 
this was not done in the upper one. The width as a 
function of distance is given in each case by the 
equation below the patterns. 

It can be seen that the first term in each of these 
is the constant b which represents a "bias" or aver
age light level that is necessary to prevent the func
tion from becoming negative. In the situation shown 
at the bottom of the figure, the bias level can be 
reduced to less than one-half of that shown at the 
top. To a first-order approximation, the intensity of 
the diffracted light that is monitored increases as the 
square of modulation of the component spatial fre
quency, and this would mean that it would increase 
as the square of the reciprocal of the bias level
that is, as (1/ b )2. Therefore, one should be able to 
increase the light approximately by a factor of four 
by properly phasing the patterns and reducing the 
bias level. 

A method more adaptable for recording grating 
patterns is illustrated in Fig. 9. In this system, as the 
spot sweeps across the face of the cathode-ray tube, 
the intensity is modulated by any combination of the 
seven oscillators shown schematically in the figure. 
The temporal frequency of the oscillator, of course, 
will control the spatial frequency of the pattern as it 
appears on the cathode-ray tube. Each oscillator 
then controls one bit of information in a given char-

Image 

Oscillators 

Figure 9. Sketch of cathode-ray system for recording com
posite grating patterns onto film. The oscillators 
serve to modulate the spot intensity as it sweeps 
across the face of the tube. Not shown in the 
figure is a cylindrical lens of comparatively high 
power approximately a focal length away from 
the tube face. Since this serves to increase the 
height of the image, it can be masked for pro
ducing an image of any desired height and of 
uniform intensity in the vertical direction. 

acter and a composite pattern can be made on the 
tube face by summing up the outputs of the oscilla
tors. 

The patterns are then photographed onto the film 
as it moves in a film transport. The height of the 
patterns can be controlled by placing a cylindrical 
lens in front of the tube face to image the line into 
the aperture of the lens. By orienting this cylindrical 
lens so that its refraction is perpendicular to the di
rection of scan line, the whole lens will appear uni
formly bright at the objective lens. The cylinder can 
then be masked to the desired dimension. 

One distinct advantage of this type of read-in sys
tem is that, since the patterns are superimposed as 
electrical signals, the bias can be adjusted to any 
desired value. Experience has shown that the 
strength of the first-order diffraction patterns can be 
increased considerably by first obtaining proper 
phasing of the patterns to reduce the overall ampli
tude of the composite signal itself while not reducing 
the amplitudes of the individual components, and 
then reducing the bias level to as low a value as 
possible, as was shown with the variable area pat
terns. In fact, a certain amount can be gained by 
reducing the bias to the point where a considerable 
amount of clipping takes place at the low intensity 
portion of the image. 

With this sort of apparatus, it has been possible 
to record at a rate of about 15,000 patterns per 
second. The dimensions of each of the patterns were 
500 by 7 fL. The long dimension was in the direction 
perpendicular to the lines. Up to seven spatial fre
quencies ranging from 70 to 130 cycles/mm with a 
10-cycle/mm increment were recorded in a pattern 
area. Thus the redundancy factor was equal to 5-
that is, 10 cycles/mm times 500fL. 

With pattern dimensions of 500 by 7 microns and 
with the characters separated by 7.fL, the packing 
density is about 6 X 105 bits/in2

• 

The narrow dimension of the pattern is essentially 
limited by the resolution of the system, and excellent 
diffraction patterns can still be obtained from very 
narrow grating patterns. However, increasing this di
mension does serve to increase the system redun
dancy. 

A second type of recording technique is illustrat
ed in Fig. 10. With this arrangement of prisms, indi
vidual grating patterns are illuminated from sepa
rately controlled sources, only one of which is 



RECORDING DIGITAL DATA ON PHOTOGRAPHIC FILM 733 

CRT 

Prism network 

~w[l2JWl--Single frequency 
test gratings 

Film ~oscope objective 

Figure 10. Prism array for optical addition of gratings. 
Only one light source is shown. 

shown, and are imaged onto moving film with a sin
gle high-quality lens. Composite gratings can be pro
duced through sequential addition of the individual 
gratings by gating the light sources in synchronism 
with film motion. However, memory and logic de
vices are required to maintain proper relations be
tween coded inputs and photographic characters. 

With emulsions having modulation transfer func
tion characteristics similar to those of Recordak 
Micro-File AHU Film, Type 7459, the number of 
elemental gratings (binary ones) is practically limit
ed to seven per photographic character. However, to 
allow a sufficient number of bits for timing and error 
correction in addition to those required for digital 
information, it is desirable to provide as many as ten 
bits per character. This is readily accomplished by 
means of a dual-track format in which each track 
contains up to five bits. 

Of several possible light sources, the Sylvania 
Modulated Light Source SC4079P-ll has been 
found best suited to the present application. It con
sists essentially of a simple, high-current electron 
gun with electrostatic focusing but without deflection 
electrodes. The phosphor is coated on a metal face 
plate positioned at 45° to the tube axis. By collect
ing radiation from the face of the phosphor on 
which electrons impinge, a considerable increase in 
radiant output over a conventional CRT is obtained. 
Radiation patterns show that in a direction normal 
to the tube axis the intensity is about half that in a 
direction normal to the face plate. For this reason 
the tube axis was generally oriented at 45° to the 
position shown in Fig. 10. 

In other respects the light source exhibits the 
same characteristics as conventional CRT's and a 
compromise must be made between photographic 
speed and the grating quality that can be obtained 
with available optical elements. Phosphor persist
ence is such that modulation rates in excess of 100 
kc are reasonable. However, the variation of effec
tive spot diameter with grid modulation places a 
more severe restriction on recording rates. At low 
and moderate levels of brightness the spot diameter 
is relatively small so that only the central zone of 
the objective lens is illuminated. Image quality is ex
cellent but recording rates are low. As the brightness 
is increased for higher speeds, the spot diameter also 
increases, and the outer zones of the lens, which are 
prone to spherical aberration, are illuminated. The 
problem was minimized by using a 10-mm micro
scope objective operating at about f /1.2 and by re
stricting spatial frequencies to the 50-90 lines/mm 
octave. In this frequency range and at a magnifica
tion of 30: 1, adequate exposure on Micro-File 
AHU Film, Type 7459, was obtained at character 
rates up to 60 kc. 

A system for reading out small pattern areas such 
as these is shown schematically in Fig. 11. This sys
tem makes use of a high-pressure mercury arc. 
While the level of the diffracted light is rather low, it 
is sufficient to operate photomultiplier tubes. A cy
lindrical lens can be used beyond the film to reduce 
the first-order lines into small spots of light. As not
ed, an important feature of this type of reading out 
is that the position of the diffraction lines does not 
move when the grating pattern moves. This greatly 
simplifies tracking since with a 500 micron long 
grating for example, lateral movement of the record 
by as much as 25 microns or one mil can be tolerat
ed without significantly affecting the signal strength. 
The motion simply effectively shortens the grating. 

A much higher light intensity can be obtained by 
using a helium neon laser as a light source, as shown 
in Fig. 12. In this case the diffracted light intensity 
can be used to operate photodiodes without 
difficulty at frequencies approaching 100 kc. 

While it will take considerably more work to 
make systems of this type that are operationally 
foolproof, experience has indicated that the princi
ples of operation are sound and that by using this 
type of system, much of the high-storage potential of 
fine-grained photographic materials can eventually 
be realized. 



734 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

1st Order III 
~II 

Mask Lens Image II 
--==='= =;;;;-E=~ E: =~~~!=-=-~O- Order --------

Image 
of Slit 

Order 

Figure 11. Readout optical system for illuminating a small area of the film. The nearly monochromatic gre~n line of a high
pressure mercury lamp is imaged onto the slit at the left, which, in turn, is imaged by both lenses in succession. 
The mask is imaged by the second lens onto the film and serves to limit the illuminated area. 

BIBLIOGRAPHY 

Lamberts, R. L., and G. C. Higgins, "Digital Data 
Recording on Film By Using Superposed Grat
ing Patterns. I. General Theory and Proce
dures," Photo Sci. Eng., vol. 10, no. 4, pp. 
209-13. 

--, "Digital Data Recording ori Film By Using 

Superposed Grating Patterns. II. Analysis of 
the System," ibid, pp. 213-21 (1966). 

Blackmer, L. L., A. P. VanKerkhove and R. Bald
win, "Digital Data Recording on Film By Us
ing Superposed Grating Patterns. III. Record
ing and Retrieval Techniques," ibid, no. 5 
(1966). 

Laser Line Image Film 

~ at Front 

~o0~::::=::= a-:::::- __ ~~s 
Negative :@ -~. ::.~:.-=--=-T 

Lens P 
Cylindrical 

Lenses Objective 
Lens 

Cylindrical 
Lens 

__ -=-_~.::-",>, ••• ~.~t Order 
""'-.. ..........;,~ 

.... - -==-;~ 0- Order 

...... 
1st Order 

Figure 12. Read-out optical system with a helium-neon laser for illumination. A mask for controlling the width of the 
illuminated area can be placed at the second cylindrical lens. The height of this area can be controlled by the 
I-number of the objective lens and its focus. 



A PHOTO-DIGITAL MASS STORAGE SYSTEM 

J. D. Kuehler 

IBM Corporation, Harrison, New York 

and 

H. R. Kerby 

IBM Corporation, San Jose, California 

INTRODUCTION 

The photo-digital mass storage system . does not 
impinge upon present day direct-access storage de
vices. Rather, it complements them and becomes an
other member in a hierarchy of files, each with its 
own specific capabilities and restrictions. 

On-line ultra-high capacity is the major reason for 
the system's existence. Relatively slow access speeds 
presently make it less attractive in rapid response 
inquiry applications, and the nonerasable medium 
requires new consideration in applications involving 
highly volatile data such as is usually found in ac
counting appliCations. A number of applications are 
just now reaching a sufficiently defined systems ma
turity to warrant total automation, and arecharac
terized by masses of fixed or low-volatility data re
quired on an iterative, random basis. 

In essence, the system is for applications where 
data requirements have been too voluminous to be 
justifiable on presently available direct access stor
age devices, but where activity ratios are so low as 
to negate the serial reading characteristics of mag
netic tape. 

Figure 1 shows the layout of the system.· The sec
tions which follow give a brief description of the 

735 

system, covering components and technology such 
as data storage, the system and data controllers, the 
writer (composed of the electron-beam recorder and 
the chip developer), and the reader. 

DATA STORAGE 

Data is stored on a 1.38 X 2.75-inch silver hal
ide photographic film chip. Thirty-two chips, con
taining a total of approximately 150 million data 
bits, are stored in a small plastic cell. This cell is 
identical to the cell used in the IBM 1350 Photo 
Image Retrieval System. Thus, hardware similar to 
the IBM 1350 cell file, pneumatic transport (Fig. 
2), and computer control processor systems is used 
to store and transport cells automatically to and 
from the data recording and reading stations. 

The first cell file contains 2250 cells and houses 
the pneumatic blowers for cell transport. Additional 
files containing 4500 cells each may be added to 
increase total on-line capacity. A manual entry sta
tion on one or more of the files permits entry and 
removal of cells from the system. Any cell can be 
accessed and delivered through the pneumatic tube 
system to a reader in less than 3 seconds. 



736 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

CONTROL 

-I I 
6---1 
I 
1 
I 
I 
I 
I 

: 1-----' :: 
......----------.1---1 FILE ~=::11 r PROCESSOR L _____ J 

(CONTROL ~ t (INFORMATION 
a STATUS + PERTAINING TO 
MESSAGES) I r ERROR CORRECTION) 4~ FILE = 

HOST 
SYSTEM 

DATA I ERROR 
.. -~- I CIR-

CHANNEL !CUITRY 

DATA i' 
CONTROLLER I r-~------f---

DATA FLOW 

CONTROL OF 
DEVICES BY 
CONTROLLER 

PNEUMATIC 
TRANSPORT 
SYSTEM 

I I READER ~ 

I I ~~----~ 
I I -------I L ... _____ -....J I 

I I READER f== 
~-1 I 

+ -------
I I WRITE,UNIT: 

- RECORDER 1= L_-. _______ DEVELOPER 

Figure 1. System block diagram. 

SYSTEM CONTROL PROCESSOR 

The system control processor serves as a digital 
process control computer with capability for error 
correction. Programs are stored and executed in the 
processor to directly control hardware functions in 
accordance with control and status messages re
ceived from the host computer via data controller. 
This includes input and output of data as requested 
by the host computer and special diagnostic and re
covery programs used within the system. All hard
ware activities are controlled at the sense point and 
control solenoid level via special electronics in each 
hardware box. 

DATA CONTROLLER 

The data controller provides the complete inter
face to the host computer. It receives and transmits 
all control, response, and data messages and in turn 
interfaces with the control processor, recorder and 
reader for proper processing of the information. 
Core buffering and formatting circuitry is provided 

to interface the host to recorder and host to reader. 
Special logic circuits encode error detection and cor
rection bits with the data during recording and de
tect errors in the data during readback. 

A multiple-burst independent character correction 
code is used to provide 6-character detection and 
5-character correction over a 378-bit line. Eleven 
6-bit characters of redundancy are used. 

THE WRITER 

Data is recorded on the silver film by using direct 
electron-beam exposure to produce a chip as shown 
in Fig. 3. Each of the 32 frames on a chip contains 
492 tracks of data (246 track pairs). Each track 
contains 420 bits, serving a variety of functions, as 
shown in Fig. 3. Double-frequency recording is 
used; that is, a "one" is encoded as an "opaque
transparent" mark on the film, and a "zero" as a 
"transparent-opaque" mark. 

Figure 4 shows the mechanical portion of the 
writer which is composed of the recorder and devel
oper. It receives unexposed film, exposes it, and au-



IBM PHOTO DIGITAL MASS STORAGE SYSTEM 737 

~~~ .. ~\ 
\
\

STORAGE TRAY
SHIFTED TO
PERMIT CELL

RETRIEVAL

Figure 2. Cell storage and retrieval.

tomatically develops it in the on-line film processor.
The completed chip is placed in a cell for delivery
to the reader or file.

The writer can record and process 8. X 108 data
bits per hour. A chip is ready for reading approxi
mately 3 minutes after recording begins.

Recorder

Major components in the recorder section of the
writer include: (1) the chip transport; (2) the chip
format station; (3) the electron beam column and
electronics; and (4) the vacuum pump system.

Chip Transport. Figure 4 depicts the transport as
a rotary cantilevered chip-picking mechanism which
removes an unexposed chip from a cell at the cell
handling station, rotates it, and places it in the chip
format station. After recording, the transport places
the chip in the developer, and after development re
turns it to a cell in the cell-handling station.

Chip Format Station. The chip format station
serves to take the chip in and out of the vacuum
system and position it before the electron beam (32
positions) so the data fields can be recorded. Figure
5 illustrates the principle of operation. The transport
moves the chip through the slot in the top plates
into a container attached to the lower plate. The
lower assembly rotates approximately 120 degrees,
and an intermediate vacuum removes most of the air
from the container. Another 120-degree rotation
(approximately) places the container underneath
the slot in the upper plate leading to the high vacu-

um (low 10-4 torr range) recording chamber. The
chip is pushed up into the chamber to 8 positions as
the lower assembly rotates to 4 positions. After re
cording 32 frames, the chip returns to its container
which rotates again, bringing the chip to the
entry / exit slot. Thus, in normal operation, chip
exit/entry, outgassing, and recording proceed simul
taneously on different chips.

The lower plate is separated from the upper plate
by approximately 0.001 inch, to minimize wear and
seal problems. The vacuum system is designed to
accommodate this differential pumping design.

Electron-Beam Column and Electronics System. 1

Figure 6 shows a schematic cross section of the

c::> 0

~~DD ~l§J

~DDD
~DDD
DODD
DODD
DODD
DDDD
-·DDD

FRAME
FORMAT

SYNC
8START BITS

...-DIRECTION OF
READ

BINARY I I 0
~,-A--.~

TRACK~

~TRACK

~
-----------CODE MARKS ARE PAINTED WITH
MODULATED ELECTRON BEAM

Figure 3. Chip and data format.

BIT
FORMAT

738 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

CHIP FORMAT
STATION

ELECTRON BEAM __ -+H~~G~\
COLUMN

FILAMENT TURRET
AND DRIVE

DIFFUSION PUMPS

ROUGHING PUMPS

CHIP TRANSPORT

DEVELOPER TURRET

CELL HANDLING
STATION

DEVELOPING
SUPPLIES

Figure 4. Photo-digital writer, containing the recorder and developer.

electron-beam column which delivers a controlled
electron beam approximately 1.25 microns in diam
eter and 5 X 10,-9 ampere. The beam repeatedly
sweeps across a frame on the chip and "paints" the
bits of information as shown in Fig. 3 at a rate of 5
X 105 bits per second.

The design of the electron-beam column is orient
ed toward unattended operation, minimum mainte
nance time, and ease of serviceability. One feature
which illustrates this is the central. precision tube
(Fig. 6) that serves as a combination vacuum wall,
alignment reference, electrical interconnector, and
maintenance unit. This tube contains the beam-ex
posed parts, including the beam-sensing plates, aper
tures, pole pieces, and beam-blanking plates. Spring
contacts on the internal parts and corresponding
feedthroughs in the wall of the tube furnish the
means for electrical connection to the outside. The
whole pre aligned assembly can easily be removed
and quickly replaced by a new assembly.

Another feature which facilitates unattended
operation and ease of maintenance is the turret of
16 tungsten hairpin filaments (Fig. 7) which quickly
moves a new filament into place as needed. The tur
ret allows a minimum of approximately 3 weeks

continuous operation before filament servicing is re
quired.

To compensate for the differences between indi
vidual filaments and the effects of wire evaporation,
the filament heating current is servo regulated. An
a-c component in the heating current generates a
signal proportional to the slope of the cathode-cur
rent versus heating-current curve. The very small
signal does not produce significant beam current rip
ple or angular beam oscillation. By monitoring the
slope, the filament servo 'corrects the heating current
until the slope value is close to an adjustable refer
ence value (Fig. 8) set for a minimum brightness of
5 X 104 amperes/centimeter2 steradian at 12 kilo
volts.

Four electronic servo systems are used to insure
stable beam parameters:

1. A filament-operating-point control sys
tem provides stable long-life electron
emission from each filament.

2. An alignment control system maintains
the beam on axis to the column.

3. A spot-size control system periodically
checks and minimizes the spot diam
eter in the plane of the film.

IBM PHOTO DIGITAL MASS STORAGE SYSTEM 739

\\\\\1

Figure 5. Format station.

...-
BEAM

4. A spot-current control system checks
and adjusts the beam current arriving
at the film, also on a periodic basis
(between chips or less frequently).

An examination of the operation of the electron
beam system shows that, as the beam comes from
the off-axial gun position, it is first bent by a deflec
tion magnet into the tube axis to prevent filament
light from arriving at the target. Filament emission
is stabilized by the filament-operating-point control
system described above. The beam is then partially
collected by a symmetrical system of four electrical
ly insulated sensing-plate quadrants that monitor the
beam position. These sensing plates, beam heated to
several hundred degrees centigrade to minimize con
tamination, provide the error signal for a servo sys
tem which automatically aligns the beam to the c01-
umn axis via a magnetic alignment system.

Periodically a metal test target is placed in the
recording plane for purposes of automatic spot-size
measurement and adjustment. A solid state detector
collects the beam transmitted through openings in
the target. Using feedback control to an auxiliary
focus control lens, the detector signal rise time, and

thus the spot diameter, is minimized to between 1
and 2 microns. A hold circuit maintains the focus
control lens current constant between the periodic
checks.

In conjunction with the spot-size adjustment
procedure, the spot current arriving at the film is
also adjusted to the desired value. This is accom
plished by deflecting the beam into a Faraday cup
for measurement and providing feedback control to
lens one (nearest the filament). A hold circuit also
maintains this lens current constant between period
ic checks.

The nonmagnetic tube separates the pole pieces
from the external lens. All apertures are heated to a
temperature of about 300°C. This not only reduces
contamination, but, as shown by Wilska,2 also effec
tively and reproducibly renders most contaminants
conductive. Electrical insulation of the apertures al
lows monitoring of the intercepted beam current.

An overall supervisory control system allows the
system controller to monitor the operation of the

TURRET W ITH MULTIPLE
FILAMENT UNITS

LIGHT TRAP
MAGNET

SENSING PLATES

v--------ALIGNMENT
SYSTEM

CENTRAL TUBE

1::&:z:z::2~rll~~~~~-LHEATED APERTURES

FOCUS
CONTROL LENS

BLANKING PLATES

Figure 6. Cross section of the automatically stabilized elec
tron-beam system. (Most supporting structures
have been omitted.)

740 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

1 CM

Figure 7. Filament unit used in the turret gun.

column and detect malfunction. A linear-sweep
electromagnetic-deflection system is used in conjunc
tion with an on/off high-frequency electrostatic
deflection system for painting each line of data.
Line-to-line deflection is performed by using a pre
cision digital-to-analog converter and electro-mag
netic deflection.

Vacuum-Pump System. The basic components of
the vacuum system include mechanical roughing
pumps and diffusion pumps. One 5 cfm pump acts
on the differential sealing slo~ of the chip format
station. The pressure in this slot is 10 to 20 torr. A
4-inch diffusion pump, connected to the chip writing
chamber, maintains a low 10-4 torr pressure. A 2-
inch diffusion pump, connected to the filament tur
ret, maintains a pressure in the low 10-5 torr range.

Pressure sensing is by means of both thermocou
ple (high pressure) and ionization (low pressure)
gauges located in the filament and film-writing
chambers.

Chip Developer

The developer accepts chips from the recorder at
a maximum rate of 1 chip every 18.5 seconds and
automatically processes and returns a dry chip of
archival quality to the chip transport within a total
cycle time of approximately 150. seconds.

Chips are processed individually in a small cavity
(3cc). A set of 8 processor cells containing 1 cavity
each comprises the rotary turret as shown in Fig. 9.
The turret is indexed in 45-degree increments to se
quentially present a processing cavity to a single
fixed load-unload station and 7 individual and fixed
processing stations. The processing cavities are
sealed at each processing station by means of a ver-

100r---------~~~~----~~~~----

t
Z
w
~50

ADJUSTABLE
SERVO

REFERENCE

w
a..

0~~~~~~~~~-~-~-~1~
2.6 2.8 3.0 3.2 3.4

FILAMENT CURRENT, AMP

Figure 8. Various gun parameters as a function of filament
heating current. ("Slope current" is the a':'c com
ponent of the cathode current generated by a
constant a-c component in the filament-heating
current. "Target current" is the current observed
at the target under conditions of constant beam
angle and demagnification. The curves apply for
a new filament and shift to lower heating current
with increasing filament age. By adjusting the
reference of the filament servo system, the op
erating point and consequently the average life
time and brightness can be changed.)

tic ally reciprocaiing f'cymbal" ring and defurmabl~
elastomer seals.

Chemicals are gravity-fed from 3 pairs of replace
able supply containers. After proper heating, air driv
en diaphragm pumps introduce a discrete volume
(up to 5 cc) of chemicals into the processing cavi
ties at the 2 chemical processing stations (develop /
stop and fix/wash). Heated fresh water, introduced
at 2 stations, insures complete washing; heated air,
introduced at the final 3 stations, dries both chip and
cavity and provides a heated cavity to the load-

DEVELOP STOP

1 NO. 1 DRY_~ ..

-;-m~_F~I~X~WASH t
NO.1 WAS~

--.ui~-tr':.- NO. 2 WA SH

DRYING AIR ____ ni.::=::::::"=~

---- FLUID
MANIFOLD

MANIFOLD

FLUID INLET /
DRAIN OUTLET "'TURRET

DRIVE

Figure 9. Rotary turret principle. The chip enters a de
veloper cavity at the load-unload station and is
rotated to the sequence of processor stations.

IBM PHOTO DIGITAL MASS STORAGE SYSTEM 741

~
MOVING HEAD ;))

, ~' :))

\Q
) \)

~ :l

') ')

ROTARY BUFFER
a CELL LOAD

J FIXED HEAD

AIR CELL SHUTTLE-
HEADS CHIP

rr~~~;;;~ar9tfT1 SELE~R MECH.

/

CHIP SELECT'
DRIVE

CHIP SCAN
DIRECTION

"- X-V PICKER DRIVE

tUNE SCAN
DIRECTION

Figure 1 O. Photo-digital reader.

unload station. Individual temperature control is
provided for the 2 chemical stations as well as for
the wash water and drying air.

The developer does not reuse the chemicals. It is
capable of operating under computer control for pe
riods of up to 8 hours without operator intervention.
Valving and level sensing means are provided in
each of the 3 chemical supplies to permit automatic
valving between active and reserve containers. The
reserve supply can be replenished anytime during
the last 4-hour period without interrupting developer
operation.

READER

The reader (Fig. 10) uses a CRT (cathode ray
tube) flying spot scanner to recover data from the
film chip. Data is read at an instantaneous bit rate
of approximately 2.5 X 106 bits per second. Ac
counting for the nondata bits read, the data bit rate
is 2 X 106 bits per second within 1 chip. The multi-

chip sequential maximum read rate. is appfoximately
1.1 X 106 data bits per second.

A cell arrives at the reader through the pneumatic
tube and, via the cell and chip handling mecha
nisms, the chip to be read is addressed. The X -Y
picker drive assembly picks the chip and rapidly
moves it into the optics path between the two air
heads. When the region of a frame at which reading
is to begin is positioned within the "window" of the
air heads, the chip stops and scanning can begin.

The CRT spot is imaged onto the chip by the
objective lens, and the transmitted light is collected
by the data PMT (photomultiplier tube). A line of
data is read during each sweep of the CRT spot
across the tube. Feedback from the data PMT pro
vides CRT X-deflection to "capture" the spot on a
data track. The scanner can loop on a pair of data
tracks to provide reread and error-correction time.
The scanner signals the X-Y drive to increment the
chip for continuous reading of up to a full column
(8 frames) of data.

742 IBM PHOTO DIGITAL MASS STORAGE SYSTEM

A reference PMT is provided for a CRT intensity
control loop and differential signal detection.

The 7-inch electromagnetic deflection CRT uses a
P-16 short persistence phosphor to minimize phos
phor decay time (scan speed approximately 34,000
ips). A spot diameter of less than 0.002 inch is
maintained on the 5.7 X 1.5 inch scan area.

The f/2 objective lens has a magnification of
0.05. It images the flat face CRT to the film ·cl1ip-,

with an image distortion of less than '+0.50/0 and
minimum transmission of 70%.

Air heads provide a means of precisely position
ing the emulsion plane of the chip at the image
plane of the objective. The air bearings have a rec
tangular opening in the center to clear the optical
path. Air is ported to the heads when a column se
lection is started, to provide a pneumatic guide as
the chip enters the gap between the heads. When the
chip reaches column 0, the moving head is pneuma
tically loaded to form a dual-pressurized air bearing,
thereby precisely positioning the emulsion surface of
the chip relative to the fixed air bearing. Positioning
of the chip between the two air heads allows. the
chip to move in the X and Y direction in a plane
perpendicular to the optical axis without scratching
the chip.

The photomultipliers are 11h-inch S-25 tubes,
with 10 stages of gain. Quantum efficiency of S-25
to P-16 phosphor is about 20%, and the tubes oper
ate at a current gain of approximately 0.5 X 106 •

A closed-loop stepping motor system actuates the
X-Y picker drive assembly. The key function of this
system is that of rapidly advancing the film as need
ed during the reading process.

Special circuits developed for the reader provide
the functions of spot deflection, servo control, line
incrementing, spot size, spot brightness, and CRT-

PMT biasing. In addition, special detection and
clocking circuitry accepts the phase modulated sig
nal from the photomultiplier tube and converts it to
clocked binary data. A variable-frequency clock,
phased to the PMT signal, maintains proper opera
tion even if data is lost for several bits or if the
average data frequency varies.

A synchronous rectifier, integrator, and 3-level
synchronous sampling technique produces a binary
erasure channel output. In all, some 30 special solid
logic-technology card types are used.

SUMMARY

The photo-digital storage system, permitting the
storage of great quantities of digital data, employs a

method of data recording and handling which is- new
to the computer world. Basically, the storage unit is
a silver halide film chip which holds about 5 million
data bits. An electron beam records the data on the
chips.

After the chip is recorded, it moves from the vac-
uum chamber to a de'leloping station, and then to a
storage cell. A pneumatic system transports the cell
to a cell file, where it is held for retrieval and read
out.

The entire photo-digital operation is governed by
a module controller. This controller directs the proc
essing steps of the system in a manner similar to the
automatic control of an industrial process.

REFERENCES

1. K. H. Loeffler, Sixth International Congress
on Electron Microscopy, 1966.

2. A. T. Wilska,Fifth International Congress on
Electron Microscopy, 1962, l.D-6.

HYBRID COMPUTERS IN THE ANALYSIS OF FEEDBACK
CONTROL SYSTEMS *

C. K. Sanathanan, J. C. Carter, L. T. Bryant
and L. W. Amiot

Argonne National Laboratory
Argonne, Illinois

INTRODUCTION

In the pursuit of accuracy, speed and economy in
the simulation of mathematical models of physical
systems, analysts are continuously searching for more
sophisticated mathematical techniques and computer
systems. When the complexity of the mathematical
models increases, their simulations on pure analog or
pure digital computers are frequently cumbersome.
~he ~ain reason for this is that some of the opera
tIOns III mathematical model are inherently best
handled either on the digital or the analog computer.

A hybrid computer represents an effort to combine
in one computer system some of the best character
istics of the analog and digital machines.1 ,.2 Gen
erally, the intent in creating a hybrid is to combine
the speed and efficiency of the analog in handling
ordinary differential equations with the proficiency
of the digital computer in performing logi)cal and
arithmetical operations.

The analysis of many physical systems involves the
solution of partial differential equations. The analog
computer cannot be employed to simulate these
equations directly since it is limited to just one inde
pendent variable. Consequently, partial differential
equations are simulated by discretizing all but one

* Work performed under the auspices of the U.S. Atomic
Energy Commission.

743

of the independent variables. Since the number of the
resulting ordinary differential equations increases as
the product of the number of node points into which
each of the independent variables is discretized, and
since the analog is basically a parallel device, the
simulation of models with several partial differential
equations may require a prohibitive amount of ana
log equipment. In cases where sets of differential
equations are similar, multiplexing of (time sharing)
a block of analog circuitry for just one set of equa
tions with the aid of the memory and logic capabili
ties of a digital computer can enhance the effective
capacity of a given amount of computer equipment. 3

In systems with internal feedbacks, however, mul
tiplexing of computer equipment precludes the clos
ing of the loop. This is explained as follows.

Consider the system represented by Fig. 1. Sup
pose the input (or forcing function) x* is given. Let

* The input x and output y may consist of several com
ponents.

_x ---.l1~_B ~y~.
Figure 1. An open loop system.

744 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

B represent a system of equations which may be
solved by multiplexing computer. components. The
output y of B may be obtained as a result of repeated
application of the relevant part of the input x to the
part of B which is actually simulated on a computer.
An excellent example illustrating this approach may
be found in Ref. 3. An important point to note here
is that x is known (given) a priori; and is not af
fected by y.

In a system which has feedback, as shown in Fig.
2, x depends on y.

A simultaneous computation of all of y corre
sponding to x is necessary to close the loop. Multi
plexing, however, results in a sequential solution of
the sets of equations of B. Consequently, multiplex
ing in the simulation prevents the closing of the loop.

An iterative method is found to be effective in ob
taining the closed loop system response.'

The iterative process is illustrated in Fig. 3. It is
initiated by using an arbitrary function yO. (In many
situations yO may be taken as zero.) The convergence
of the sequence, yO, yl, . . . yi, yi+1, . . . yn to the
closed loop response, y, of the system in Fig. 2 de
nenrls nnon characteristics of the eauations in B: and
i~ p~rti~ui~r~ -the~~ boundedness of their variables. It
is advisable to prove the convergence of the sequence
before attempting the simulation.

The principle of contraction mapping is found to
provide a basis for a proof of convergence of the
iterative process. This gives a mathematical rationale
for the extension of the technique of multiplexing
to complex feedback systems.

The system considered in this paper for the pur
pose of illustrating the present approach to hybrid
simulation is that represented by a fast neutron re
actor core composed of ceramic fuel materials such
as U02 • The mathematical model consists of dif
ferential equations describing the space and time
dependent neutron flux density, and the core mate
rial temperatures; and algebraic equations which give
the feedback reactivity as a function of the transient
temperature distributions.

r + X Y
B

+

Figure 2. A system with feedback.

B

Figure 3. Iteration for the closed loop response.

The space dependence of the neutron flux is taken
as invariant during transience. This assumption is
realistic in reactors of moderate size. Consequently,
the present treatment of the neutronics is macro
scopic in nature.

The thermal properties of the ceramic materials
change considerably with temperature,4-6 and the
thermal gradients encountered are large. Due to these
facts and since it is necessary to determine when and
how phase changes (fuel melting, coolant boiling)
occur in the core materials, no simple macroscopic
approach to the determination of the core material
temperatures is found to be realistic. It is therefore
necessary to treat heat flow equations on a micro-
n~~~~~ h~"~"
':'\..<VP.l\..< UU':'.l':'.

The detailed temperature profiles (radial and
axial) in the various representative core regions are
used to compute the feedback of reactivity.

Considering the nonlinearities of the differential
equations of the system, they are simulated efficiently
on analog components, multiplexing the circuitry
wherever possible. Digital components are used for
memory, for logic and for the arithmetic operations
involved in the computation of the feedback re
activity.

The present method of hybrid simulation is prov
ing to be very effective in the analysis and design
studies of nuclear reactors. Since the techniques used
are quite general, the method has wide application
in complex feedback systems.

MATHEMATICAL MODEL

The equations which comprise the model of the
reactor core describe the transient neutron flux den
sity and the concomitant flow of the fission heat in
the core materials. The temperature changes in the
core affect the nuclear properties of the materials.
The variations in the nuclear properties are reflected
in the parameters of the equations for the transient
neutron flux. Thus the model constitutes a feedback
control system.

HYBRID COMPUTERS IN THE ANALYSIS OF FEEDBACK CONTROL SYSTEMS 745

The equations of the model are stated below and
discussed in Appendix 2.

Neutron Kinetics Equations

The neutron flux F is expressed as

F = 1f;(-:) net) (1)

1f;(r), the space-dependent part* of F, is assumed to
be known. n(t) is given by Eq. (2).

dn(t) 1 6 -- = - (p - f3) n(t) + ~ AiCi
dt I ~-1

dCi f3i
- = - net) - AiCi
dt I

(2)

i = 1 - 6

where I = the neutron lifetime,

f3i = the ith delayed neutron fraction,

Ci = the ith precursor concentration,

Ai = the decay constant of Ci

i=l

p = the excess reactivity.

p (t) has two parts: the externally added reactivity,
pext (t) (the forcing function of the system); and
pfb(t) the feedback reactivity.

p (t) = pext (t) + Pfb (t) (3)

The feedback is that due to the temperature changes
in the various materials of the core. The parameters
I, f3, and the A'S are normally constant and so con
sidered herein.

The different components of the feedback reactiv
ity of any representative core region k are computed
typically as:

k I (fl.Pfuel) b Tk Tk Pfb = anI + ---y:;- + fl. fuel + C fl. coolant

(4)

where a is the Doppler coefficient and band C are the
coefficients of reactivity due to thermal expansion.
fl.Tk fuel and fl.Tkcoolant are the changes in the fuel and
coolant average temperatures of the region k. To
is a reference temperature. The overall feedback is
given by

(5)

* Note that r refers to the entire core.

where wk's are the appropriate weights for the re
gions. wk's are known a priori.

The time-dependent part n (t) of the neutron flux
is obtained by solving Eq. (2). This, when multi
plied by the space dependent part 1f; (r), gives the
neutron flux in the reactor. This flux is multiplied by
the fission cross section distribution in the core,
2,/(r), and the energy release per fission, E, to ob
tain the internal heat generation rate.

q(r,t) = [1f;(r) net)] [2,/(r)] E (6)

Transient Heat Flow Equations

The reactor core is an assembly of fuel cells in the
form of a right cylinder with the coolant flowing co
axially.

A typical fuel cell consists of a cylindrical rod of
fissionable material with concentric cylinders of the
bonding material, clad and coolant (Fig. 4).

Axial conduction of heat is neglected. Therefore,
the heat flow equations are coupled in the z-direc
tion, i.e., along the direction of flow, only through
the variation of the coolant temperature along the
z-axis. This temperature variation is dictated by the
energy transport due to the coolant flow. An impor
tant consequence of this is that the equation for the
radial heat flow is the same (in form) at any axial
location.

The z-axis is divided into "small" increments fl.z

(Fig. 4). The radial temperature distribution in the
fuel, bond and clad is considered to be invariant in
the distance ,~z. The coolant temperature, however,
is assumed to vary linearly along fl.z.

The radius is discretized as shown in Fig. 5. The
equation of radial heat flow at any axial segment j is
then t

d 1 fl.r " 3
cp - [(- - --) TJ i - 1 + - Ti j +

dt 8 24ri 4

1 fl.r
(- + --') Tji+1]
8 24ri

1 t::..r Ti+1 - T/ = K i ,i+1 (1 + - -) ----
2 ri (fl.r) 2

1 t::..r Ti j ,- Tji-l -"
- K"-l" (1 - --) + F/n(t) (7)

~ , ~ 2 r i (t::..r) 2

t Note that r in the present context refers to the radial
coordinate of the fuel cell. See Ref. 7 for a detailed deriva
tion of Eq. (7).

746 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Figure 4. Model of a typical fuel cell.

The conductivity at the boundary between the
radial sections i and i + 1 denoted by K i ,i+1 is evalu
ated at the boundary temperature Tj i, i+1' F\ N (t)
represents the heat generation rate in the radial seg
ment at ri and it varies along the z-axis.

The boundary conditions are:

(8)
and

(9)

Te j is the average coolant temperature at the jth
axial segment and h the heat transfer coefficient.

The conservation of energy in the coolant results
in the following equation.

dT/ 2 .. 1\. -- + - G(t) [Tel - Tel-1
] = _ QJ

dt pilZ pc

(10)

where j = 1 ... M,
1\ = the ratio between the circumference of the

clad and the cross section area of the
coolant flow,

G(t) = the mass flow rate of coolant per unit
area, and

T e j - 1 = the inlet coolant temperature to the axial
segment j. Its exit temperature Te i is com
puted from

T/ = 2 T/ - T/-l (11)

The inlet coolant temperature of the core, Teo, is a
known function of time.

TO TI
L. •

...J

...J
\U
0

...J
\U
~,

"-
0
\U
Z
::i

a::
\U
~
Z
\U
0

I·
EQUATION OF HEAT FLOW IN RADIAL DIRECTION

CP(T) :; .. ;a~ [K(T)r :rT] + q(r,t)

Figure 5. Radial nodes.

HYBRID COMPUTERS IN THE ANALYSIS OF FEEDBACK CONTROL SYSTEMS 747

The equations developed thus far define the math
ematical model. With this model, the various phe
nomena are described quantitatively. To summarize,
Eq. (2) gives the time-dependent part net) of the
neutron flux, which, when multiplied by tf; (J), gives
the space time dependent neutron flux. Equation (6)
gives the concomitant fission heat release in the
nuclear fuel. From the knowledge of the internal heat
generation rate in each fuel cell, the corresponding
two-dimensional transient temperature profiles are
obtained by solving Eqs. (7) to (11). Note that
N X M number of equations of the form (7), M
number of equations of the form (10), and the
boundary conditions have to be solved simultane
ously to obtain the detailed temperature profile in
each cell.* Finally, Eqs. (4) and (5) give the tran
sient feedback of reactivity.

The resulting closed loop system may be repre
sented by the block diagram in Fig. 6. The simula
tion of this system may be made on a pure analog
or a pure digital computer. However, it is found
that the simulation on a hybrid computer has some
outstanding advantages in terms of economy in com
puter equipment and programming effort.

HYBRID SIMULATION

From the mathematical model just described, it
is apparent that a major portion of computing is in
the solution of the differential equations of heat flow
(Eqs. (7) to (11), (N + 1) X M in number) to
obtain the two-dimensional temperature profiles in
the fuel cells. Although the analog computer is effi
cient in handling these ordinary differential equa
tions, the computing equipment required is enor
mous. From the nature of these equations, however,
it is clear that the equations for the radial tempera
ture profile are identical in form at any axial incre
ment. This immediately suggests multiplexing of ana
log circuitry.

In the present simulation, therefore, the heat flow
equations are programmed only for one axial seg
ment in one fuel cell. This requires only the simula
tion of N equations of heat conduction (i = 1 '"
N in Eq. (7) for any j) and one equation for the
temperature rise in the coolant in the length Az (Eq.
(10) for any j). Figure 7 gives the detailed analog
circuitry. Since axial conduction of heat is neglected,

* A value of 10 each for M and N is reasonable in many
practical cases. Simulation of 5 representative fuel cells is
considered adequate to describe the entire core.

T(r,Z, t)

Figure 6. Block diagram of the mathematical model.

the successive axial increments are thermally coupled
only through the flowing coolant. The exit coolant
temperature of the axial segment j is the inlet tem
perature of the segment j + 1. Therefore, the ther
mal coupling between axial segments is only through
Eq. (11).

The two-dimensional temperature profile in any
fuel cell is determined as follows. The inlet coolant
temperature, Teo, and the flow rate G are known
functions of time. The radial temperature profile of
the first axial increment, and the coolant temperature
T / at the exit of this increment are computed on
the analog.

Tel is obtained as an analog voltage. This voltage
is sampled at a rapid rate and stored in the memory
of the digital computer unit.

Tel is made available from the digital memory, as
the inlet temperature of the second increment and the
same analog circuitry is used again to compute the
radial temperature profile of the second axial seg
ment.

The above process is continued for all axial incre
ments.

Thus, the incorporation of a memory unit to the
analog computer has made possible a repetitive use
of just one set of the radial heat flow equations to
cover the entire z-axis.

The other fuel cells are treated sequentially in the
same manner.

If axial conduction of heat is not negligible, the
determination of the two dimensional temperature
profile is accomplished by repeating the above com
putational procedure several times. Initially the pro
files are determined for no axial heat flow. From
the axial profile of temperature thus determined the
axial heat flow between segments is computed.
Using this information, new radial and axial profiles
are determined. The process is repeated until con
vergence is achieved.

The simulation is completed by programming Eq.
(2) for the time dependent part of the neutron flux,
n(t), and Eas. (4) and (5) for the temperature
dependent feedback reactivity.

748 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

~b
~---,

...--------;: 0 - A i
L ___ J

Figure 7. Multiplexed analog circuitry.

The analog computer is conveniently used to simu
late the neutron kinetics equations.

Since the equations for the feedback reactivity are
algebraic in nature, and since the various tempera
tures may be conveniently sampled, * and stored in
the digital memory, the digital computer is the logical
choice to handle the feedback equations.

The response of the closed loop system (shown
in Fig. 6) is obtained by means of the iterative proc
ess described in the Introduction and illustrated in
Fig. 3.

The iteration is initiated by using an arbitrary

* A discussion of the sampling procedure is given below
in paragraph beginning "Sampling rates ... "

feedback reactivity (as a function of time). The
corresponding transient neutron flux and the tem
perature profiles are determined using the methods
already described. The digital component now cal
culates a new feedback reactivity concomitant with
these temperature profiles. This feedback reactivity
is used for the next iteration. The iterative process
is continued until the required convergence of the
system variables is achieved. The schematic of the
hybrid computer is given in Fig. 8. The computer
flow chart is presented in Fig. 9.

The neutron kinetics in Eq. (2) are very sensitive
to the net amount of reactivity, p(t), especially in
the case of a fast reactor. Consequently, in cases

HYBRID COMPUTERS IN THE ANALYSIS OF FEEDBACK CONTROL SYSTEMS

I

HYBRID
I

I
ANALOG DIGITAL

- - - - -- -- --r---~

r------,'q I : I
I F () I N I I ~-" 1"'----1 r,zM :---1 M r-- ----,

I L _______ .J I I IT(r,z) I

~ L ____ .J I M L
, ,

~ r----' ~
I r------, q I I I. :
:..---~ F(r,z.)~-~~ 3 ~--..... ----- ..

p (t)
ext +

I I ~ I I I I T() I I L ______ ..J I , r,z I

n(t): L ___ ..J 3 I

r-- - -, I
r-

F
-(- -- -)i Q2' : I I '-_ -"--1 r,z2 r-- i 2 t--

I
- '---

L __ --- __ oJ : : T(r ,Z2)
L ____ .J I AID

I
IT(r,Z,)

__ :J

Figure 8. Schematic of the hybrid computer.

where the feedback is a strong function of tempera
ture, a good initial guess of the feedback is necessary.
This may be made in many cases by the following
simple computational procedure. A closed loop is
formed on the analog considering only one axial
segment of an "average" fuel cell, and the reactivity
feedback is obtained from the average temperatures
of the various materials in this segment. This feed
back reactivity is sampled and used as the initial
guess. If the magnitude of the external reactivity,
I pext (t) I, itself is small, an initial guess of Pfb

to be zero is found to be satisfactory.
A typical example of the process of convergence

is illustrated in Fig. 10, where the time-dependent
part of the neutron flux net) is plotted. It is this
quantity whose variation in time is the most notice
able. The response corresponds to a ramp reactivity
input pext (t) which levels off after a second. The
feedback is negative.

The converged neutron flux n (t), the centerline
temperature of a typical fuel cell, and the feedback
reactivity are shown on Fig. 11.

START

An important aspect of the time dependence of
temperature and feedback reactivity is that it is con
siderably "smoother" than that of n(t). This fact
is particularly significant because it influences the Figure 9. Flow chart.

749

Pi + '(t)
fb

750 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

x 8.0 :::>
...J
LL

Z
7.0

0
a: 6.0
:::>
UJ
z 5.0
0
UJ 4.0 N

...J
«
~

3.0
a:
0 2.0 z

1.0

0 1.0 2.0 3.0 4.0 5.0
TIME, sec

Figure 10. Illustration of convergence.

sampling rate (for AID and DI A conversions as
shown in Fig. 8) and the memory requirements of
the digital computer.

Sampling rates were arrived at by means of the
following experiment. A simple feedback loop (con
sidering space independent temperatures) whose re
sponse is similar to that of the actual system is
simulated on the analog. The closed loop response of
the simple system is atso obtained by the iterative
procedure using progressively higher sampling rates
and compared with the all-analog response. A
sampling rate of 350/sec was found to be satisfactory
for the problems considered.

In the present simulation, the iteration is termi
nated by the following test for the convergence of
Pfb (t).

I Pfb (i) (t) - prb (i-l) I max < E (12)

A satisfactory value for E depends upon the type of
transient considered, and is largely a matter of the
analyst's judgment. Five to six iterations were suffi
cient to achieve convergence in most cases.

Examples

The examples that follow represent typical prob
lems solved using the hybrid simulation of the
system.

Example 1. This example is presented to illustrate
the efficiency of multiplexing in the computation of
detailed temperature profiles.

Consider the transient conditions resulting from
a decreasing coolant flow rate, say due to pump

failure; and the subsequent power shutdown of the
reactor. The two independent forcing functions on
the system now are: the decrease of coolant flow
rate, represented by a decaying exponential, and the
nature of the subsequent power shutdown (this
happens after a certain interval of time determined
by the design of the sensing devices). These forcing
functions are given in Fig. 12.

The axial profile of the coolant temperature (see
Fig. 12) under these circumstances is a highly com
plicated function of time. An accurate knowledge
of this, however, is very necessary in order to ascer
tain the possibility of boiling of the coolant at any
time during transients. This is particularly important
in the case of a ceramic fuel whose temperature re
sponse is sluggish because of its low thermal
diffusivity.

Example 2. The role of internal radiative heat trans
fer in ceramic fuels such as U02 6 is of current inter
est in the design of high-performance, fast-power
breeder reactors. It is well established that internal
radiation improves the thermal conductivity of the

en
CI)
()

NORMALIZED TEMP AND NEUTRON FLUX
N (jJ !'- !J1 (J) -...I

o ~~O~~O~_O~.-O""o-.-.o-._o,--,

N

(JI

o o o
N
(JI

o
o
(JI

FEEDBACK OF REACTIVITY P

Figure 11. Converged variables.

HYBRID COMPUTERS IN THE ANALYSIS OF FEEDBACK CONTROL SYSTEMS 751

1000

900

;'
ILI-

~ 800
I-
«
a::
ILl
a..
~

~ 700

600

t, see

o

3/2

3

G = 250e -O.69t g / em2 see

60 72
Z, em

Figure 12. Axial profile of coolant temperature.

material at high temperatures. However, a para
metric study of the reactor performance using
materials having widely varying thermal properties 7

leads to the solution of a set of quasi-linear parabolic
partial differential equations for heat flow. No simple
approach to the so.lution of these equations success
fully estimates the influence of the differences in the
variation of thermal properties upon the transient
behavior o.f the o.verall reactor system. The present
hybrid approach has been found very efficient for
such problems.

Figure 13 illustrates the transient behavior of the
maximum fuel temperature in a typical fuel cell
when the reactor power increases. In the figure,
Curve A gives the response when the co.ntribution
of internal radiation to thermal conductivity K (T)
is considered and Curve B when the term represent
ing this contribution is artificially remo.ved in the
expression for the temperature dependence of K (T) .
The dependence of K upon temperature for each of
these two. cases is shown in Fig. 14, by Curves Kl
and K2 respectively.

Knowledge of the temperature profiles in the fuel
cell is necessary to estimate thermal stresses and to
determine whether fuel melting occurs during a
power or coolant flo.w transient.

THE PRINCIPLE OF
CONTRACTION MAPPING

The techniques employed to simulate the nuclear
reactor system are applicable to a wide class of feed-

4000 ,-----,-----.-----~----~------~

~
o

w
~ 3000
l-
e::(
n::
w
a..
~

~ 2000

-.J
W
::::>
u..

~ 1000
~

x
e::(

~

o 1.0 2.0 3.0 4.0 5.0
TIME, sec

Figure 13. Effect of internal radiation on maximum fuel
temperature.

back systems. The two important aspects of the
present simulation are the use of the multiplexing
technique and the consequent need for an iterative
procedure.

The success of this method of analyzing the re
sponse of a closed loop system depends essentially
upon the convergence of the iterative process. Also,
a proof of convergence is necessary to provide math
ematical rigor for the present method. It is found
that such a proof is possible thro.ugh the application
of the principle of contraction mapping.

The system in Fig. 8 can be considered as one
that "maps" (or transforms) Pfb di-~) (t) to Pfb (i) (t).

~
~

0.04

E 0.03
..3
"'-
~

~-

0.02

0.01

1000 1500 2000
T, oK

2500 3000

Figure 14. Thermal conductivity with and without· internal
radiation.

752 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Figure 15. Conceptual representation of Fig. 8.

This is represented conceptually in Fig. 15. In the
figure, A is an open loop operator. * For the iteration
process to converge, the operator A has to satisfy
certain conditions.

Consider two arbitrary functions of time, Xl (t)
and X2 (t). Let the operator A map these two func
tions into Y1(t) and Y2(t), respectively (see Fig.
16a). Let ,u(X1,X2) and,u(Yt,Y2) represent a measure
of the "distance" between these functions. If A is
such that

(13)

then the operator A produces a "contraction" in the
"distance". Now suppose that A operates on X1(t)
to produce X2 (t), and in tum operates on X2 (t) to
produce X3 (t) (see Fig. 16b). If A satisfies the
condition in Eq. (13),

,u(X2,X3) < ,u(xt,x2) (14)

If this operation is iterated (n-1) times,

,u(xn,Xn-1) < ,u(Xn-1,Xn~2) < ... < ,u(X1,X2) (15)

Equation (15) implies that there is a continuous re
duction in the "distance" between the successive iter
ations. This is the concept of contraction mapping.
The term "distance" between two functions is used
in a general sense. Distance is a positive quantity and
it satisfies the well-known triangle inequality. The
norm, defined as the least upper bound of the abso
lute value of the difference between two functions,
is a well known example of the distance. 8

The convergence of the iterative process is closely
related to the overall loop gain in the system. The
term gain of an operator is defined as the least upper
bound of the ratio between the norms, IIA (Xi)
A(xj) II and IIxi ;- Xjll, where A denotes anyopera
tor and Xi and Xj any two functions of time.

In general, there are two types of convergence.
The first one is called the geometric convergence, in
which the rate of convergence is independent of the
time interval for which the response is computed.
Geometric convergence occurs only in systems in

* Note that this situation is a consequence of multiplex
ing.

which the loop gain is always less than unity. This
is proved and discussed in Ref. 8. Physical systems
with such a severe restriction on gain are seldom
encountered in practice.

The second type of convergence is called uniform
convergence. Here the rate of convergence, however,
depends upon the time interval for which the re
sponse is required. Systems in which this type of
convergence occur have an integration operator in
the loop as shown in Fig. 17 or a pure delay. The
gain of the rest of the operators A and B need only
be finite in this case. It is noted that the integration
may occur anywhere in the loop, and not necessarily
between A and B. Proofs of convergence and the
uniqueness of the converged response for the case of
systems reducible to this general form are given by
Zames.9 ,10

The following methodology for the proof of con
vergence of the iteration process is found to be effi
cient. First, an attempt is made to prove that the
loop gain is always less than unity. This may be
facilitated by some suitable mathematical transfor
mations of the system variables. If the gain cannot
be shown to be less than unity, as might frequently
be, then the alternative is to prove that the system
can be reduced to the general form in Fig. 17 or
to show that there exists a pure time delay in the
loop. Many times this may be accomplished directly
or by transformation of variables. Since the trans
formed variables may sometimes not be physical
quantities, particular care must be exercised in dem
onstrating the boundedness of the gains of the vari
ous operators present in the general form.

The reactor system under consideration can be
transformed into the general form shown in Fig. 17.
A proof of this statement is given in detail in Appen
dix 1.

It follows, therefore, that the convergence of the
iterative process here is of the second type. Conse
quently, the number of iterations necessary increases
with the time interval for which the response is com
puted. This may be observed in Fig. 10. When the

(a)

x ,;"h X3 (= Y2)

2,; .U~-'"

(b)

Figure 16. Illustration of contraction mapping.

HYBRID COMPUTERS IN THE ANALYSIS OF FEEDBACK CONTROL SYSTEMS 753

FINITE GAIN

Figure 17. Generalized form of the reactor system.

interval is large, a correspondingly large amount of
memory will be required to store the sampled vari
ables. A sizeable economy in the memory units may
be effected if the response is computed sequentially
by subdividing the time interval into two or more
smaller intervals and initializing the system variables
in any of these intervals with their final values of
the preceding interval.

DISCUSSION

The outstanding feature of the present method of
analyzing the response of a closed loop system is
the employment of an iterative procedure. This
allows multiplexing of computer components.

As a result of multiplexing, there is a large saving
in analog circuitry. But for this economy, it would
not have been possible to employ the (limited
amount of) analog components to handle the enor
mous number of differential equations in the mathe
matical model of the reactor core. It is noted that
the simulation of these nonlinear equations on the
analog results in better accuracy than is possible with
existing codes for pure digital computers. *

The success of the present method of analyzing the
response of any closed loop system depends essen
tially upon the convergence of the iterative process.
From a practical standpoint a mathematical proof of
convergence alone is not enough. Simulation of typi
cal transients is necessary to obtain a quantitative
estimate of the necessary number of iterations.

The iterative process has facilitated simulation in
continuous time for rather large intervals of time. t
The length of the time interval is limited only by

* Codes such as FORE, TER 4, and ARGUS give less
accurate results when the parameters (thermal properties)
in the heat flow equations are strongly dependent upon tem
perature. An effort is presently underway to find better
differencing schemes to deal with the nonlinearities of these
parabolic partial differential equations.

t See Ref. 3 for a simulation in which it is necessary to
integrate differential equations by means of the analog for
small time steps.

practical considerations such as the available mem
ory, required sampling rate and necessary number
of iterations for convergence. If the response need
be computed for a long interval, this interval may
be subdivided into smaller intervals (whose length is
compatible with the practical limitations) and the
response computed sequentially. As discussed in the
preceding section, in cases where convergence de
pends upon the response time, a large saving in com
puting time and memory, units is possible by sub
dividing the response time.

One practical aspect of mUltiplexing of analog
circuitry is the frequent re-initialization of the vari
ables and modification of the parameters in the equa
tions. This is accomplished by changing the various
potentiometer settings. From experience, it is found
that the incorporation of an automatic pot setting
equipment is of great help. In a completely auto
mated set up it is suggested that the digital computer
be programmed to effect the necessary changes in pot
settings.

Very few arithmetic operations are done during
sampling intervals in the present simulation. There ..
fore, the speed of the digital computer is not a limit
ing factor. Consequently, high-speed analog equip
ment may be used to advantage.

The hybrid simulation is proving itself to be effec
tive and economical in the analysi& of transience in
normal nuclear reactor operations and in hypotheti
cal accident conditions. It can be particularly useful
in the design studies of fast reactor cores composed
of ceramic fuels whose thermal properties vary sig
nificantly with temperature.

The techniques used in the hybrid simulation are
general enough to be applicable to any feedback
system in which the iteration is a contraction map
ping. The advantages of the techniques increase
with the amount of multiplexing and the degree of
complexity in the equations. It is therefore recom
mended that further effort be made to find applica
tions of this method of simulation to other mathe
matical models composed of nonlinear partial
differential equations.

APPENDIX 1

MATHEMATICAL PROOFS

I: To prove that the overall reactor system repre
sentation in Fig. 6 can be reduced to the form in
Fig. 17.

754 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

The neutron kinetics equations with one set of
delayed neutrons is considered in this section.

dn 1
- = - [p(t) - fi] n + AC
dt I

dc {3
-=-n-AC
dt I

(16)

Let n = no and c= c'o at t = O. Also, let the reactor

dn de) .. 'all h be critical (Le., - = - = 0 1mb y so t at
dt dt

no Al

c'ofi

Define:

C
C:=-

Co

Substituting (17) in (16),

dN 1 fi
-=-fD(t)-B1N+ (-)C dt I ~, " , ~ ., I '

dC
-= AN-AC
dt

at t = 0, N = 1, and C = 1.

Define a second set of new variables:
. n
u:=lnN = In-

and
C

v==-
N

Substituting (19) in (18),

du 1 P - = - [p(t) - fi] + - v
dt I I

dv du
-=A-AV-V-
dt dt

Substituting for du/dt from Eq. (20),

~ 1 f3
- = A - {A +- [p(t) - fin v '- - v2

dt I I

(17)

(18)

(19)

(20)

(21)

Equations (20) and (21) can be represented in the
block diagram in Fig. 18. Observe that Eq. (20)

Figure 18. Block diagram of Eqs. (20) and (21).

represents a pure integration, since the right-hand
side does not involve u.

B 1 is. the operation eU
•

Two more blocks B;2 and B a representing the heat
flow equations and the feedback are added to obtain
the overall loop. Figure 19 is equivalent to Fig. 17
if B 1 , B 2 , Ba are combined to form B.

The iterative process would converge only if the
gain of A, B 1 , B 2 , and Ba are finite. It is, therefore,
necessary to show that if the inputs of A, B 1, B 2 , and
Ba are finite, their outputs would remain bounded.

II: To show that the gain of A is bounded. For
this it is necessary to show that v (t), given by
Eq. (21), is bounded if p(t) is bounded.

Equation (21) may be written as

dv {3 - = A - {(t) v - - V2

dt I (22)

1
where {(t) == A + - [p(t) - 13], and v(O) = 1.

I

Equation (22) is in the form of the famous Ric
cati equation. Let the maximum absolute value of
{(t),

I t (t) I max := tmax

The right-hand side of Eq. (22),

A - {(t) v - : v2 S A + tmax v'- : V2 for all t

Let Vmax be defined as the positive value of v for
which

I.e.,

Vmax :=

"'" I 4{3A
tmax + " {2 max· + -l~

2~
I

(23)

Observation 1: If the initial value v(O) (namely 1)
exceeds Vmax, the right-hand side of Eq. (22) is nega
tive, i.e., dv / dt is negative. Therefore v cannot ex
ceed the initial value, vmax•

HYBRID COMPUTERS IN THE ANALYSIS OF FEEDBACK CONTROL SYSTEMS 755

Figure 19. Block diagram of transformed reactor system.

If yeO) < Vmax, the right-hand side of Eq. (22)
may be positive or negative. But in any case, the
corresponding v (t) cannot exceed Vmax, because
dv / dt is negative for v (t) > vmax•

Observation 2: v shall never be less than zero be
cause when v = 0, dv/dt of Eq. (22) is equal to A,
which is positive, and consequently, v cannot de
crease any further.

From observations 1 and 2 it is obvious that v
remains bounded between 0 and 1 if Vmax < 1, and
between 0 and Vmax if Vmax > 1.

III: To prove that the gain of A is bounded in the
more general case of more than one group of delayed
neutrons.

The kinetics equations now take the following
form:

dn 1 J - = - [pet) - f3]n + ~ Ai Ci
dt I i=l

dCi f3i - = -n-Aici
dt I

i = 1 ... J (24)

J

where 13 = ~ f3i' and J is usually 6.
i=l

The substitutions (25) and (26) are made succes
sively in Eq. (24) to obtain Eqs. (27) and (28)
respectively.

and

n
N==

no

u == InN

Ci
Vi==-

N

du 1 J f3i - = - [pc t) - 131 + ~ - Vi
dt I i=l I

dVi du
- - A" - A" v" - v" -dt -", ",,,, ", dt

(25)

(26)

(27)

Substituting for du/dt given by Eq. (27),

d~ 1 lJ ~ I - = Ai - [Ai + (p(t) - 13)] Vi - Vi ~ -VI.
dt I I.=l I

i = 1 toJ
(28)

The boundedness of the gain of A is shown by
proving that Vi obtained by solving Eq. (28) will
remain bounded if p (t) is bounded. The proof is
similar to that in II.

Equation (28) may be written as

dVi 1 J /31> I - = Ai - 'i(t) Vi - Vi ~ - VI.
dt I.=l I

1
where 'i(t) == Ai + - [pet) - 13]

I

Vi (0) = 1, and

i = 1, ... J.

(29)

Observe that Vi(t) cannot become less than zero
dVi

(for all i) because, when viet) 0, -.- = Ai,
dt

which is positive.

for all i

Let the maximum absolute value of 'i (t) for alJ
i be 'max. I.e.,

(30)

Let Vi max be defined as the positive value of Vi

for which

(31)

Following the arguments in Observation 1 of II,
it is clear that Vi(t) remains bounded between 0
and 1 if v i-max < 1 and between 0 . and Vi max if
Vi-max> 1.

IV: To prove that the gain of Bb Bz and B3 are
finite.

Bl is the operation eU
• Therefore, it is obvious that

if u is bounded, eU is bounded.

756 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

B2 is represented by the heat flow equations.
By definition, the shape factor of neutron flux,

'" (r), the fission cross-section distribution, and en
ergy release per fission are all bounded functions.

Therefore, if~, the input to R2 , is bounded the heat
no

generation rate in the heat flow equations would
remain bounded.

Using the proofs given in Ref. 11 for the existence
of the solution of quasi-linear parabolic partial
differential equations (equations of heat flow) it is
shown that T remains bounded for any arbitrary
length of time.

Therefore, the gain of B 2 is bounded.
The algebraic expressions that give the feedbacks

as a function of T are well behaved. See Eqs. (4)
and (5). I.e., given that T, the input of R 3 , is
bounded the output Pfb will be bounded. Hence, the
gain of R 3 is bounded.

APPENDIX 2

DISCUSSION OF THE
MATHEMATICAL MODEL

Neutron Kinetics Equations

The derivation of the neutron kinetics equations
from the time-dependent transport equation has been
treated in detail by A. F. Henry 12 and E. P.
Gyftapoulos.13 The neutron flux F in general is
considered to be space, r; time, t; energy, E; and
direction, 0 dependent. Without loss of generality
F may be expressed as:

F(r,E,n,t) = ",(r,E,O,t) n(t) (32)

where n (t) is a time-dependent function accounting
for all growth or decay tendencies of the neutron
density while ",(r,E,n,t) is a shape function, which
is bounded at all times.

Several methods have been proposed to obtain the
shape function '" (r,E,n,t). A simultaneous solution
of n(t) and ",(r,E,n,t)has not been successful to
date. However, some of the quasi-static models 12

seem to be computationally feasible. The quasi-static
models essentially neglect the time derivative of '"
in the computation of n (t). This allows the computa
tion of n(t) independent of ",.12,13 '" is computed
periodically during transience. Consequently, the
time dependence of '" is discretized and is implicit in
the changing nuclear properties and physical di
mensions.

In the present analysis, the flux shape, "', is taken
as invariant during transience. Work is in progress
to consider the more realistic case in which '" does
vary with power level. Consequently, the present
treatment of the neutronics is macroscopic in nature.
The neutron flux is represented by the product
",(r) n(t); in which the angular and energy de
pendences of '" are integrated over all nand E.
The equations to solve now reduce to the set of
ordinary differential equations in Eq. (2).

Transient Heat Flow Equations

The heat flow equations are written for a cylindri
cal fuel cell, shown in Fig. 4. The following are the
assumptions.

The internal heat generation rate is symmetric
with respect to the longitudinal axis of the cell, and
the materials are isotropic ..

The axial conduction of heat and the radial varia
tion of the coolant temperature are neglected.

Materials do not have phase changes (fuel melting
and coolant boiling) during transience. Further, there
is no large scale disassembly of the core.

Under these assumptions, the heat conduction
equations are written in one-dimensional space;
namely, r, at any position Z along the axis.

cpr- = - K(T) r- + r q (r,Z,t) oT 0 [:aT]
ot or or

(for fuel) (33)

cpr- = - K(T) r-oTo [OT]
ot or or

(bond or clad) (34)

where T = the temperature,
c = the specific heat,
p = the density,

K = the thermal conductivity, and
q = the internal volumetric heat generation

rate.

q(r,Z,t) is expressed as:

q(r,Z,t) = F(r,Z) net) (35)

where F(r,Z) is a conversion factor to obtain the
fission heat generation rate from the neutron flux
density.

The boundary conditions are:

oT I --.:. 0 (assuming the material to be isotropic)
or r=O

(36)

HYBRID COMPUTERS IN THE ANALYSIS OF FEEDBACK CONTROL SYSTEMS 757

OTI -K(T) - = h(TR - Tc) == Q
or r=R

(37)

where T R is the temperature at the surface of the
clad, and Tc the average coolant temperature.

The surface heat transfer coefficient h is a func
tion of temperature and coolant flow rate. Q repre
sents the heat transferred per second per unit area
of the boundary between the fuel cladding and the
coolant.

The integration of Eqs. (33) or (34) in each
radial increment Ar results in Eq. (7). The tempera
ture between any two node points is assumed to
vary linearly. Note that this assumption is fully pre
served in the integration process.

The rise coolant temperature for any axial incre
ment may be obtained by writing the heat balance
equation. This equation in its differential form may
be stated as:

-a a
- [pc T c] + - [G c T c] = /\ Q (38)
ataz

where p = the density,
c = the specific heat,

T c = the temperature of the coolant,
G = the mass flow rate per unit cross

sectional area of coolant, and
/\ = the ratio between the circumference of

the clad and the cross-sectional area of
coolant flow.

If p and c are constants, * Eq. (38) may be re
written as:

oTc + G(t) -aTc = ~ Q (39)
at paz pc

Equation (39) is integrated along ,AZ, for the ith
increment of the z-axis, to obtain Eq. (10).

ACKNOWLEDGMENTS

The authors wish to thank Professor J. J. Levin of
the University of Wisconsin and Dr. Isaac Kliger of
Argonne National Laboratory for helpful discussions
on the principle of contraction mapping.

* If p and c are functions of temperature, Eq. (38) has
to be solved simultaneously with the mass balance equation.

REFERENCES

1. G. and T. M. Kom, Electronic Analog and
Hybrid Computers, McGraw-Hill, New York, 1964.

2. R. M. Howe, "Hybrid Solution of Partial Dif
ferential Equations," University of Michigan Engi
neering Summer Conferences, Hybrid Computation,
July 1965.

3. R. Ruszkay and E. E. L. Mitchell, "Hybrid
Simulation of a Reacting Distillation Column," 1966
Spring Joint Computer Conference, Spartan Books,
Washington, D.C., pp. 389-99.

4. A. D. Feith, "The Thermal Conductivity of
UQ2 up to 2500°C," J. of Nuclear Materials, vol.
16, p. 231 (1965).

5. J. Belle (ed.), "Uranium Dioxide: Properties
and Nuclear Applications, Naval Reactors," Division
of Reactor Development, U.S. Atomic Energy Com
mission, July 1961.

6. R. Viskanta, "Influence of Internal Thermal
Radiations on Heat Transfer in U02 Fuel Elements",
Nucl. Sci. and Engineering, vol. 21, p. 13 (1965).

7. C. K. Sanathanan et aI, "Transient Tempera
ture Distributions in Fast Reactor Fuels with Widely
Varying Thermal Diffusivity," International Con
ference on Fast Reactors, Argonne National Labora
tory, Oct. 1965.

8. A. N. Kolmogorov and S. V. Fomin, Elements
of the Theory of Functions and Functional Analysis,
Vol. 1, 1st Russian ed. 1954, translated by Leo F.
Boron, Graylock Press, Rochester, N. Y., 1957.

9. G. Zames, "Functional Analysis Applied to
Nonliear Feedback Systems," IEEE Transactions
on Circuit Theory, Sept., 1963, p. 392.

10. --, "Nonlinear Operators for System Anal
ysis," MIT Research Laboratory of Ele.ctTQnics,
Technical Report 370 (Aug. 1960).

11. A. F. Filippov, "Conditions for the ExiSteace
of Solution for a Quasi-Linear Parabolic Equation,"
Soviet Mathematics, DOKLADY, vol. 2, p~. :t517
(1961).

12. A. F~ Henry, "The Application of Reactor
Kinetics to the Analysis of Experiments,."" NNcl., Sci.
and Engineering, vol. 3, pp. 52-70 (1958).

13. E. P. Gyftopoulos, "Point Reactor Kinetics
and Stability Criteria," Third United Nations Int.er
national Conference on the Peaceful Uses of Atomic
Energy, Geneva~ Pj270 (May 1964).

A HYBRID COMPUTER SOLUTION OF THE CO-CURRENT
FLOW HEAT EXCHANGER STURM-LIOUVILLE PROBLEM *

Lawrence T. Bryant, Lawrence W. Amiot and Ralph P. Stein

Argonne National Laboratory
Argonne, Illinois

INTRODUCTION

Analog and digital computers have proven to be
very valuable tools for solving engineering problems.
In order to obtain solutions to some of the problems,
trial-and-error or searching techniques must be em
ployed. Two-point boundary value problems-of
which the classical Sturm-Liouville system is a spe
cial but important case-belong to that class of
problems.

The analog computer is particularly suited for
solving linear or nonlinear differential equations.
However, those problems which require trial-and
error techniques to effect a solution are often quite
time-consuming, particularly if a large number of
solutions is required. This is compounded if a large
number of arithmetic operations must also be per
formed, since the accuracy of an analog computer
when performing a large number of such operations
may not be ideal. Hence, solution by pure analog
computation of problems of this kind can be quite
expensive and can introduce questions concerning
the overall accuracy of the results obtained.

The searching or trial-and-error technique can be
done more economically by programming the proce
dure on a digital computer. Also, the arithmetic op-

* Work performed under the auspices of the U.S. Atomic
Energy Commission.

759

erations can be performed with relatively unlimited
accuracy at very little cost. The solution of the dif
ferential equations, however, can be more time-con
suming on a digital computer when compared with
the speed at which they can be solved on an analog
computer, especially when a large number of differ
ent cases must be considered. Further, the program
ming necessary to solve the equations by digital
computation will often be more expensive under the
same comparison. The use of a hybrid computer,
which employs both analog and digital elements,
provides a means by which the aforementioned dif
ficulties may be overcome.

This paper presents the solution by hybrid com
putation of the boundary value problem which re
sults from an analysis 1,2 of the co-current laminar
flow double-pipe heat exchanger. The analysis leads
to a Sturm-Liouville system consisting of two Sturm
Liouville differential equations coupled at a common
boundary. In addition to the use of an eigenvalue
searching procedure, which must be handled by the
computer operator, solution by analog computation
requires a much larger number of arithmetical opera
tions than with the more familiar two-point bound
ary value problem.

A hybrid computer can perform all of the opera
tions necessary to solve problems of this type auto
matically and economically. The digital elements of

760 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

the hybrid computer perform the arithmetic, trial
and-error, and control operations, as well as input!
output, while the analog elements provide the solu
tions of the Sturm-Liouville differential equations
and the generation of subsidiary functions. Thus, the
entire computing operation is handled by the ma
chine, relieving the computer operator of the tedious
job of "searching," as well as performing the arith
metic operations with improved accuracy.

space variables x and z (see Fig. 1), can be written
as follows:

Formulation of the problem and the method de
vised to effect the solutions are described. Typical
results are shown in tabular form; maximum errors
vary, but generally are less than 0.2 % .

THE MATHEMATICS OF THE
CO-CURRENT FLOW HEAT EXCHANGER

The usual co-current flow double-pipe heat ex
changer consists of two concentric pipes with fluids
flowing in parallel through the annular space and
central tube as illustrated in Fig. 1. The figure also
shows some of the nomenclature to be used below.

Energy conservation, with appropriat~ simplifica
tion, together with Fourier's heat conduction law
leads to partial differential equations for each chan
nel of the exchanger 1-3 with boundary and initial (or
inlet) conditions. The resulting mathematical prob
lem, which determines the temperature distributions
~i (x,z), i= 1,2 as functions of the dimensionless

A

~
I
I

- - x - = gl(X) -1 a (ag1) a~l
x ox ox az

1 a x
1-(I-R)x oX

1
ae2 ~ ag2

[1-(l-R)xJ ox \ = W 2g2(X) az

with gi(X,Z), ° :::;; x :::;; 1, 0 :::;; Z ~ 00, and

R
w

2 = --KH.
I+R

Inlet conditions

gi (x,O) = 0; g2(X,0) = 1

Boundary conditions

t t

ag
i

I = °
ox 0

K ag
1

II + ag2
/ = °

ax 1 ox 1

Kw og, 1 I
oX 1

+ ~1 (l,z) - g2 (l ,Z) = 0

r ~--l

i = 1,2

02 X2

~+~-lC==+--r~~~~~~~~~~~

(la)

(lb)

(2a,b)

(3a,b)

(3c)

(3d)

T
a, --*-- FLUID "111

~x,J-~ --i I -J,
2 r _ p r.--t

3 r.
R: ~

A r3

I X, ___ _ ___ _
---.L_-.---_L-____ _

SECTION A-A

Xi
X=Q.) 1=1,2

I

Figure 1. The double-pipe heat exchanger.

A HYBRID COMPUTER SOLUTION 761

The quantities H, K, and Kw are dimensionless
parameters which, along with the annulus radius
ratio R (see Fig. 1), define the geometry and op
erating conditions of the heat exchanger. The pa
rameter H is the heat capacity mass flow rate ratio
of the two fluids; K is a relative thermal resistance
for heat flow from the fluid in the annular space;
and Kw is the relative thermal resistance of the tube
wall separating the two fluids. The parameters R,
H, and Kw are independent of each other; the pa
rameter K, however, depends on R and the ratio of
the fluid thermal conductivities y, viz:

K = _(1_-_R_)_y

R

Thus, except for the limiting case of a "narrow" an
nular space (R ~ 1), the exchanger geometry and
operating conditions are best defined by the four
independent parameters R, H, y, and Kw. For the
limiting case of a narrow annular space, K is used in
place of y, and R is eliminated as a separate param
eter. Since further knowledge of the mathematical
definitions of these parameters is not important to
the purposes of this paper, they will not be given
here. Instead, the reader interested in more than the
specific topic of computation discussed here is di
rected to the appropriate references.1

- 3

The functions g i (x), i = 1,2, represent the "fully
developed" local fluid velocity divided by the aver
age velocity. For laminar flow through a tube

(4a)

while for laminar flow through an annular space,

g2(X) = 2[I-r(x) + C lnr(x)]
(4b)

1 + R2- 2c
with

rex) = [1 - (l_R)X]2 (4c)
and

1,-R2
(4d) C =-

41nR

These expressions for gi(X) or their equivalents can
be found in most textbooks on fluid mechanics.

As discussed in Refs. 1-3, separation of variables
applied to Eqs. (1) to (3) leads to solutions of the
form

i=I,2

(5a,b)

where the Cn are generalized Fourier coefficients de
termined so that Eqs. (5) satisfy the inlet conditions
given by Eqs. (2), and the Ei,n(x) are eigenfunc
tions corresponding to eigenvalues A!. The eigenfunc
tions, which allow Eqs. (5) to satisfy the boundary
conditions given by Eqs. (3), are defined by the fol
lowing "two-region" Sturm-Liouville system.

d
- {[I
dx

(6a)

(l-R)x] E'2,n}

+ [1 - (l-R)x] g2w2A2E2,n = 0

E'i,n(O) = 0 i=1,2

KE'l,n(l) + E'2,n(1) = 0

KwE'l,n(l) + E 1,n(1) - E 2,n(l) = 0

n

(6b)

(7a,b)

(7c)

(7d)

For reasons which will be apparent later, it is con
venient to define the functions

(8a)
and

G2(x) = [1 - (1-R)x]g2(x) (8b)

The Fourier coefficients Cn are then given by

where

and

B.,n = !ol
G2(X)E.,ndx

= - 2E'1,n(1)/A~

Nn = 2 {I (GIE1,n 2 + ~ G2E2,n2)dX }o l+R

(9)

(lOa)

(lOb)

(11)

The above system of equations and formulas is
analogous to the more familiar "single-region"
Sturm-Liouville problem. For example, the eigen
values A 2 n= 1,2,3, ... are positive and denumer-

n

ably infinite in number with A 2 < A 2 ; and an or-
n n+l

thogonality condition for the Ei,n(x) leads to Eq.
(9) .1-3

For practical applications, the most important in
formation desired from the mathematical solution is
the relationship between the overall, heat' transfer
rate and the exchanger heat transfer area as deter
mined by the parameters R, H, y, and Kw. This re-

762 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

lationship is conveniently expressed as a heat ex
changer efficiency e (0 ~ e ~ 1) as a function of
the dimensionless heat exchanger length z. Use of
the mathematical solution given above results in 1-3

00

e = 1 _ 1 +H ~ B1,n ~
H n=1 N n

which can be written as

with

00 _>..2 z

e = 1 - ~ CPn e n

n=1

(12a)

(12b)

1 +H B 1,n
2

CPn = ----
H N n (13)

Thus, the most important quantities to determine are
cpn and A! as functions of R, H, y, and Kw; or, for
the limiting case of R --7 1, as functions of H, K, and
Kw.

BASIS FOR COMPUTER SOLUTION

Let Yi(X,A), i=I,2, be the solution of Eqs. (6)
which satisfy the "initial" conditions

and

Yi,x(O,A) = 0

for arbitrary values of A. Let

(14a)

(l4b)

F(X,A) = Y1(X,A)Y2,X(X,A) + KY1,X(X,A)Y2(X,A)

(15)

Then it is easily shown 1 that the eigenvalues A 2 are
n

obtained from the positive nonzero roots of F(l,A)
0, and that the eigenfunctions can be expressed

as

(l6a)

and

E2,n(X) = -K Y1,x(l,An) Y2(X,.An) (l6b)

Substitution of Eqs. (16) into Eqs. (lOb) and (11)
gives expressions for B 1,n and N n • These expressions
are then substituted into Eq. (13) to give the fol
lowing relationship for the desired quantities cpn.

R

M 2 (An)]-1
Y~,x(I,An)

(17)

where

and

M,(,\) = 101
G,(x)y:(x,'\)dx

M,(,\) = 101 G2(x)~(x,,\)dx

(18a)

(18b)

The analog portion of the hybrid computer is
wired to generate Yi (X,A), i= 1,2, for arbitrary posi
tive values of A by simultaneous solution of Eqs. (6)
over a time interval equivalent to ° ~ x ~ 1. The
integrals M i (A) are also computed and, along with
values of Yi (l ,A) and Yi,lV (1 ,A), appear as output
voltages at the end of the time interval.

Solution of Eqs. (6) and evaluation of the inte
grals M i (A) require the analog to generate the func
tions Gi(x), i= 1,2. These functions are obtained by
analog solutions of appropriate differential equa
tions for G 1 (x) and g2(X) obtained by successive
differentiation of Eqs. (8a) and (4). Thus, G1 (x)

is generated by solution of

G/"(X) = -12

with the initial conditions: 01"(0) = 0,01'(0) = 2,
and 0 1 (0) = 0.

The function g2 (x) is generated by solution of

p"(x) = 13(R)

and

dg2
[1,- (l-R)x] _. = p(x)

dx

with the initial conditions: p' (0) = 12 (R), p (0)
= 11 (R), and g2(0) = 0, where

8(I-R)3
13=-----

1+ R2 - 2c

2(l-R)2
12 = -12 ------

3(1 +R2,-2c)

2(l-R) (I,-c)
11 =6 ------

3 (1 +R2·-2c)

with c given by Eq. (4d). For the limiting case of
R --7 1; 13 = 0,12 = ·-12, and 11 = 6.

SOLUTION BY HYBRID COMPUTER

Figure 2 shows a flow diagram of the hybrid sys
tem. The hybrid computer employed consists of a

M I ()..)

1'.1 20 ..)
YI(I,)..)

Y 2 (I,)..).

Y I X(I,~)

Y 2 ,X(I,)..)

CHANNEL 10

PACE
ANALOG

COMPUTER

GAIN SETTING

-IOOY

I

~
I

fJ

-IOOY-o-

+IOOY +IOOY

NOTES;
* CT - CONTROL TOGGLE SWITCH_

c1 = 1- R

A HYBRID COMPUTER SOLUTION 763

SET CLOCK
I A-D CLOCK [OPERATE

--

! CONVERT A-D
..

~

,

A-D CONVERTERS

! INTERRUPT - CONVERSION COMPLETED
SET C{OCi<··_- PDP-7

I D-A CLOCK I DIGITAL

1
OPERATE COMPUTER CONVERT D-A

~
)..k OR IOA

k

:
CHANNEL 10

D-A CONVERTERS
INTERRUPT - CONVERSION COMPLETED

o RELAY SET - CLEAR CONTROL

.qJ RELAY

-. ..du RELAY
RELAY SELECT

SPOT RELAYS
RESET, HOLD ,OPERATE CONTROL

Figure 2. Flow diagram of the hybrid system.

I~ '-'
~O.~

-IOOY

-3
(a -eft')g~ x 10

Figure 3. Analog circuit diagram.

C ,
~~DCI

~
IO -1

10

E

764 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

stored program digital computer connected through
a link to the analog computer. 4 Figure 3 shows the
analog computer circuit diagram including the link
age with the digital portion of the hybrid system (i.e.,
ADC and DAC).

The digital computer of the hybrid system is a
Digital Equipment Corporation PDP-7 computer
equipped with an 8K core memory. The duties of the
digital computer can be summarized as fellews:

1. Parameter input
2. Centrel
3. Sterage and memery
4. Arithmetic cemputatien
5. Output

The digital pregram is written in assembly lan
guage. The assembler is run en a CDC 3600 with
eutput ento magnetic tape. The language is essen
tially that which is used in the D.E.C. assembler with
certain mnemenics added to' handle the hybrid cem
municatien. These mnemenics represent micrepre
grammed instructiens, macrO's, er library subreutine
calls. The arithmetic reutines use single precisien
floating peint library subreutines. The cenverted
(A ~ D) fractienal numbers are "floated" befere
cemputatien and "fixed" intO' fractienal binary num
bers before cenversien (D ~ A).

As described in the preceding sectien, veltages
prepertional to' Mi(A), Yi(I,A) and Yi,xCl,A) appear
as eutput frem the analeg cemputer. The veltage out
put prepertional to' equatien variables are indicated
en the analog circuit diagram (Fig. 3) as "primed"
variables. The initial cenditiens Yi (0), Yi,a: (0) and
the initial values ef G i (x) indicated previeusly are the
initialcenditiens ef the analeg cemputer. The digital
cemputer evaluates the eigenvalue equatien F(I,A(k))
(Eq. (15)) with the A(k) the kth appreximatien ef
An and then cheeses the (k + 1) th appreximatien ac
cerding to' the value ebtained fer F (1 ,A (k») as de
scribed later. When A (k) = An, the digital cemputer
evaluates cpn (Eq. (17)) and prints eut values ef n,
An 2 and CPn. Thus the digital portion ef the hybrid
handles mest ef the arithmetical eperatiens, while
the analeg sectien cencentrates en selutiens of the
differential equatiens and evaluatien ef the integrals
defining Mi(A) (Eqs. (18)).

In additien, the analeg cemputer is under centrDI
of the digital computer. This is perhaps the mest im
portant single functien of the hybrid system. The
analog functiens reset, hold, and operate are slaved

to' these ef the link cennecting the analeg and digital
cemputers. Preblem parameters are supplied to' the
analeg by the digital machine via the digital-tD-ana
log cenversien equipment.

When the initial parameters have been entered and
the hybrid system set up, the first iteratien fer An is
activated. The analeg cemputer is placed in the oper
ate mede and a cleck-centrelled cenversien erder
initiated. The digital cemputer is in a wait leop serv
icing A-te-D interrupts as they eccur as a result of
the cleck-centrelled cenversiens. These cenversiens
are used as a means ef ceunting time, t'. The space
variable x is related to' t' by t' = ax, with a = 10
secends. At x = 1 (t' = 10.0 secends), the analog
computer is put intO' "held" and an A-te-D cenver
sien made en the analeg eutputs M i (A), Yi (1 ,A)
and Yi,a: (1 ,A). F (1 ,A (k») is evaluated and a decisien
is made as to' the necessity fer mere iterations.
Hence, the preblem requires net enly input param
eters between cases, but their medificatien between
iterative runs. If en the basis ef the value ef
F (I,A (k») it is determined that nO' further iteratiens
are necessary, an eigenvalue has been determined
and further arithmetic calculatiens are made; other
wise certain input parameters are medified accerding
to' a digitally pregrammed algerithm and further it
eratiens are made. The fellewing summarizes the
methed used.

1. Input censtants K, KtI), R, and H,
which define a particular run.

2. Calculate y = RK/ (l-R).
3. Input starting parameter A. Reset ana

leg.
4. Operate analeg under cleck centrol at

ene secend intervals.
5. Put analeg in "held" at 10 intervals

and calculate F (I,A) frem the data
previded by the analeg cemputer.

6. On the basis ef the value Df F(I,A)
evaluate a new A, reset analeg com
puter and initiate a new iteratien, i.e.,
repeat (4) and (5) until, fer preperly
scaled variables, IF(1,A) 1 < e fer e

small eneugh.
7. Calculate cpn if (6) is satisfied.
8. Increase An ebtained, reset analeg and

repeat (4)-(7) to' ebtain results per
taining to' the next eigenvalue.

A HYBRID COMPUTER SOLUTION 765

For each run results were obtained for n = 1, 2, and
3 only, since these were judged sufficient for the
physical problem. A general flow diagram of the
digital computer program is shown in Fig. 4. Each
value of n is identified as a "case" on this figure. The
memory requirements are about 2K for the program.

Since the digital calculation time is negligible com
pared to the operate time of the analog computer
(10.0 seconds) and the time allowed for the servo
mechanical multipliers to reset (2.0 seconds), the
time for one iteration is approximately 12 seconds.
The number of iterations per case varies from 3 to
10, so the total iteration time per case is from 0.5
to 2.0 minutes. Clearly, the most time-consuming
portion of the program is the repeated searching for
the roots of F(1,A)-i.e., for the eigenvalues. Hence
the searching algorithm is of particular interest.

START
NEW RUN

CONVERT ONE
CHANNEL A-D
UNDER CLOCK
CONTROL AT
ONE SECOND
INTERVALS

COUNT NO
10 INTERVALS

Ftl).)=O

YES

Figure 4. Flow diagram of the digital computer program.

ALGORITHM FOR DETERMINATION
OF EIGENV ALVES

The computer must use some criterion for suc
cessively choosing A (k) until, for properly scaled vari
ables IF (1 ,A (k)) I < e for e small enough (e small de
termines the accuracy to which the boundary condi
tions at x = 1 are satisfied).

Several algorithms 5 can be considered to search
for the succeeding values of A (k). These include (1)
the Newton-Raphson method, (2) Regula Falsi
(method of false position), and (3) an iterative
trial-and-error procedure consisting of decreasing or
increasing A (k) by a fixed percentage of its previous
value (10%,1%,0.1%, ...), determined by the
value and sign of F (1 ,A (k)) •

In most cases the Newton-Raphson method is
the most efficient and converges to the root more
quickly than the other methods. This method, how
ever, requires a knowledge of the derivative of the
function, and this is not available for the case being
considered here. The third method mentioned con
verges slowly and would prove to be extremely time
consuming. Previous knowledge of the function and
its behavior gave rise to the utilization of the method
of Regula Falsi together with a modified iterative
method similar to method 3.

The first trial is made using a starting value of A
and the eigenvalue equation F(1,A) is evaluated. For
o < A < Al it is known from previous experience
that F (1 ,A) < 0 and thus A is increased or decreased
by a fixed percentage, determined by the sign of
F (1 ,A). Figure 5 illustrates the behavior of F (1 ,A) .
Succeeding runs are made in this manner until the
difference in magnitude of F (1 ,A (k» in two succes
sive runs is positive and the difference in magnitude
is greater than the magnitude of the most recent
point; i.e., indicating that the next run may cause a
sign change, or the value of F (1 ,A (k» changes sign
from the previous run. Regula Falsi (the method of
false position) is then employed for all successive
runs until convergence with the next calculation:

F(1,A(k-l» A(k) - F(l,A(k» A(k-I)
y(k+1) = _____________ _

F(1,A(k-I»- F(l,A (k»

The reader is referred to the appropriate reference 5

for a detailed explanation of the method of false po
sition.

In addition to the aforementioned methods, a test
is also made to determine the difference between
A (k) on successive iterations. If the difference is less

766 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

+F(I,A)

X
/

200 \ 300
\

100 400 500 /
/

/

600

\
\

\
\

\
\

\

\
\

\
\

\
\

\ ,
\

\ , ,
\.

.,,/

/
/

/
/

/

,,;x/
,,-

,,-

/

/
/

,X

/
/

/
/

/

Figure 5. Behavior of F(1,A), (F(1,A) vs A (k»)

than 8, for 8 < E, we assume the present value of
A (k) to be the root regardless of the value of
F(1,A (k»). This is particularly useful when the slope
of F (1,A (k») is large at the root and further runs will
not significantly increase the accuracy of A (k). A flow
diagram of the search routine is shown in Fig. 6.

Although the digital computer performs the neces
sary arithmetic operations to calculate F (1 ,A) ,
F(x,.A) is generated on the analog computer. This
allows us to illustrate the convergence of the algo
rithm used in the simulation. A typical F(X,A), for
various iterations, is shown in Fig. 7. Convergence of
F(1,A) (see Fig. 8) is illustrated by plotting the end
points of F(X,A) vs. A(k). F(X,An) is shown in Fig. 9
for three consecutive eigenvalues.

NUMERICAL RESULTS

Table I shows results of the system. Comparison
is made with known eigenvalues as indicated in the
table. The indication is that solutions obtained by the
method presented here are quite adequate.

SUMMARY

It is shown that the difficulties discussed in the in
troduction are· overcome through the utilization of a

hybrid computer. An iterative procedure is formu
lated on the digital elements for the trial-and-error
search together with all necessary arithmetical opera
tions. The differential equations are solved on the

Table 1. Table of Eigenvalues and Comparisons

R K H

1.0. 0..1 0..1
1.0. 1.0. 0.1
1.0. 1.0. 1.0.
1.0. 1.0. 0..5

0..90.90.9 0..5 0..1
0..90.90.9 0..5 1.0.

0..6667 0..5 0..1
0..6667 0.5 1.0.
0..6667 0..1 1.0.
0..6667 2.5 0..1

0..5 1.0. 0..1
0..5 1.0. 0..5

0..3333 2.0. 0..1
0..3333 10..0. 1.0.

Al

11.37
10.'.99
4.129
5.822

11.27
5.0.73

11.30.
5.15
6.10.5

10..34

11.19
6.16

10.91
1.109

A'2 A:J

36.0.5
30..47
16.54
18.40.

34.15 65.27
19.97 47.22

34.53 66.15
20..42 49.17
23.88 58.13
21.79 46.71

31.90 57.90.
19.63 47.75

27.0.4 50..44
8.228 14.26

11.27
10.94
4.134
5.81

No
comparison

available

a R. P. Stein, "The Groetz Problem in Co-Current-Flow
Double Pipe Heat Exchangers," ANL 6889 (Sept. 1964),
p. 31, Table 1.

~k)

A HYBRID COMPUTER SOLUTION 767
ENTER SEARCH

ROUTINE

FIRST
TIME THROUGH

ROUTINE

YES

SAVE

J...1l_Xkl

FI",ti- FIl,Xkl1

NO

Alkl _ A lk - 11

AII<+ll_ Alk)

FII, Alkll _ FII, Alk- 1l1

FII,~k+11 _FII,Alk11

SIGN SAME

/ FII, A
1k

-
Il

I/

-IFI I,Alkll I

+

I F II, AI k-I _F(I).'kl/

-IFI I, Alk\1

CALCULATE USING REGULA FALSI
(kl (k-Il (k-I) (kl

A F(I, A I -A FII,A I _Alk+11

F(I, A(k-ll1_ F(I,A(kI 1

Figure 6. Flow diagram of the search routine.

analog elements of the hybrid system. Control of the
system is left to the digital computer.

A measure of the success of the method is the
speed at which the iterative process converges. The
rate of convergence has been shown to be quite rapid
even when using a "slow" analog computer (EAI
131R). Sampling rate is not a factor in this problem
since we are only interested in the value of F (1 ,A)

i.e., the end point of F(X,A).

REFERENCES

1. R. P. Stein, "The Graetz Problem in Co-Cur
rent Flow Double Pipe Heat Exchanger," Chern.
Eng. Prog. Symp. Series, vol. 61, p. 76 (1965).

2. --, "Liquid Metal Heat Transfer," Advances
in Heat Transfer, Vol. III (T. F. Irvine and J. P.
Hartnett, eds.), Academic Press, New York, 1966,
pp. 101-74. .

3. --, "Mathematical and Practical Aspects of
Heat Transfer in Double Pipe Heat Exchanger,"
Proceedings of Third International Heat Transfer
Conference, Vol. I, A.I.Ch.E., New York, 1966,
p. 139.

4. L. W. Amiot, et aI, "The Argonne Hybrid Com
puter Maintenance Manual," Applied Mathematics
Division Technical Memorandum No. 115 (Nov.
1965).

5. K. S. Kunz, Numerical Analysis, McGraw-Hill,
New York, 1957, Chap. 1.

768

t
-F(X,A)

I

o

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

--x-

0) f2\ ®. NO. OF ITERATION .~ ..

Figure 7. Convergence of F(x,A) for n=2.

t F(I)..l

100

I •
2 3 • •

4 •

150

5 •

200

8 •
Figure 8. Convergence of F(I,A) for n=2.

2

A HYBRID COMPUTER SOLUTION 769

I
-F(X),.j)

I

o

Figure 9. Computer solution of F(X,A), 0 ::;; F(X,A) ::;; 1.

A GENERAL-PURPOSE ANALOG TRANSLATIONAL
TRAJECTORY PROGRAM FOR ORBITING

AND REENTRY VEHICLES

Arthur I. Rubin and Lloyd Shepps

Martin Company
Baltimore, Maryland

INTRODUCTION

Analog computer programs for very complex
flight simulations are well known. As a recent ex
ample, the complete six-degree-of-freedom equations
of motion have been developed by Fogarty and
Howe, l as well as simple two-dimensional, or two
degree-of-freedom, simulation equations. The former
are useful for simulation analyses with a man in the
loop, generally in real time. The latter are useful for
student analyses of trajectories. The engineering
trajectory analyst, however, often appears to be in
terested additionally in intermediate complexity. He
is interested in what we shall call a pseudo-six
degree-of-freedom trajectory program, wherein the
three translational degrees of freedom are handled
exactly, with all terms included,but the rotational
equations of motion are eliminated. In their stead,
the analyst inserts arbitrary functions for three
angles such as alpha (angle of attack), beta (angle
of sideslip), and sigma (roll angle about the velocity
with respect to air vector). Such an analytical pro
gram turns out to be of great interest in the design
phase of an aerospace vehicle, since it permits evalu
ation of many hardware tradeofIs among different
configurations. Such a program, in existence at the
Martin Company in digital form since 1964, is
described by Wagner and Garner. 2

771

The development of an equivalent analog program
was recently undertaken, not as an exercise to show
that an analog computer can do what a digital com
puter can do, but rather to give the analyst a more
efficient tool. One advantage sought was a reduction
in time of several orders of magnitude required to
obtain a complete footprint for a particular vehicle
configuration and assumed reentry conditions. A
second advantage sought, which would follow almost
automatically if the above advantage were obtained,
was to achieve a significant cost reduction in doing
the job on the analog computer rather than the
digital computer. The constraints that were put upon
the "analog program by the analyst were that it must
be able to handle exactly the same inputs as the
digital program, cover the same range of the vari
ables as the digital program, and produce at least
the same output as the digital program.

In order to meet these objectives, an analysis of
the analog program approach as developed by
Fogarty and Howe was made. It was decided that
the existing six-degree-of-freedom program was more
complicated than was needed by the engineering
analyst. Consequently it would be more expensive
to use, and probably more cumbersome. On the
other hand, the simplified version of the program as
derived by Fogarty and Howe was too simplified for

772 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

the analyst. It was therefore necessary to start with
the translational degrees of freedom trajectory equa
tions as derived by Fogarty and Howe, and rederive
the generation of the forces acting on the vehicle,
allowing the analyst to impose arbitrary angles of
attack and sideslip and an arbitrary roll angle about
the velocity vector with respect to the air. The second
addition to the program, as required by the analyst,
was to compute, in addition to the normal output,
which was available from the basic equations of
motion, the "downrange" and "crossrange" variables
as traced on the earth.

As fallout from the development of this analog
program, we can make direct comparisons, because
of the existence of an equivalent digital program,
with digital runs to compare (1) accuracies obtained,
(2) time saved, and (3) costs for obtaining solutions
by each of the two distinctly separate methods. In the
past, the lack of equivalent analog and digital pro
grams for a particular problem has been one of the
drawbacks in obtaining effective comparisons.

THE EQUATIONS OF MOTION

H-Frame and Earth-Frame Axes

The equations of motion are integrated in the
H-frame coordinate system as discussed by Fogarty
and Howe 3 and are the version that they have
developed.

The H-frame is a vehicle-centered coordinate sys
tem whose x-axis is horizontal and points in the
direction of the horizontal component Uk of inertial
vehicle velocity. The z-axis points to the center of
the earth and gives the direction of the vertical com
ponent Wh of inertial vehicle velocity. The Uh, Wit
plane therefore contains the inertial velocity vector
VI. The Uh component of velocity makes an angle
!fh with respect to true north. These relationships are
shown in Fig. 1. The y-axis of the H-frame is
horizontal and perpendicular to the Ul/, Wk plane.
Since it contains no velocity component, it is not
shown on the figure.

A right-handed local earth frame can be defined
which has north as its x-axis, east as its y-axis and
down as its z-axis. This axis system, together with
the components of VI projected on the local earth
frame, namely U e, Ve and We, is also shown in
Fig. 1.

The H-frame is used for the trajectory computa
tions because it has a number of advantages. These
have been discussed by Fogarty and Howe 3 and

Down

t

r--........... ---..... E
// //

/ /

/ /
/ /

U ---- -/--- Uh
/E EA&.------ \

Vehicle /~/ U~ \
location ,,/ \

N' \
<¥h \
~

Figure 1. Right-handed local earth frame (N, E, down;
VI = inertial velocity with component Uh in
horizontal plane, Wh in vertical plane; Uh makes
angle 'lrh with north. E-frame components of
VI are shown as UE, VE, WE. Velocity with re
spect to the air mass Va:ir, also shown, with its
E-frame components UEA, VEA, WEA.

are repeated here for completeness. The first advan
tage is due to the use of the angular momentum
integral as an input to the Uk computation. For out
of-atmosphere studies, this eliminates one integration
from the computation and, therefore, reduces the
principal source of drift for the in-plane motion. The
second advantage lies in the ability to write the
equations of motion in terms ot the deviations of
the variables from their values in a reference orbit,
thereby greatly improving the scaling. These two
advantages taken together greatly improve the com
putational accuracy.

A third advantage, which is true for any coor
dinate system that points toward the center of the
earth and is therefore true for the H-frame, is due
to the fact that the main gravity force term can be
inserted directly into the integration that produces
the downward component of velocity, thereby by
passing any errors that may result from force
transformations. Furthermore, by taking advantage
of the perturbation form in which the equations of
motion are written, the gravity term is analytically
subtracted from the centrifugal force term for the
reference circular orbit, thereby producing an analog
computer program which is extremely precise for
out-of-atmosphere and/or near-orbit conditions.

Direction Cosines, Force Transformations,
Downrange and Crossrange Calculations

The derivations of these equations and/or func
tions are shown in Appendix 1. Nomenclature and
definitions of symbols are given in Appendix 2.

ANALOG TRANSLATIONAL TRAJECTORY PROGRAM 773

CAPABILITIES OF THE PROGRAM

The following problems are examples of those
that can be set up to be solved with the analog pro
gram:

1. Two-body orbital mechanics
2. Reentry from orbit
3. Boost phase
4. Synergetic maneuvers

The orbital problems (no atmosphere) can be
run on one computer console (at half the cost).
Orbit transfers can be accomplished by fitting the
end conditions as viewed on an oscilloscope. Orbit
variation due to "insertion errors" is readily cal
culated. The flow diagram for orbital studies only
is indicated within the dotted line on Fig. 2.

The reentry phase requires two computer consoles
and can be used to analyze a wide variety of prob
lems. Reentry heating data may be obtained using the
modification of Chapman's expression for convective
stagnation heating. Necessary reentry locations for
desired landing sites are very easily obtained by trial
and error processes, optimization of reentry maneu-

q (dynamic' pressure)
(Angle of attack) a

vers can be performed, and control laws can be
added for reentry trajectory improvements.

Future usage may require a third computer con
sole to include the necessary equations for boost
phase and synergetic maneuvers. The additions to
the information flow diagram necessary for synergetic
maneuvers are shown in Fig. 3.

Accuracy

To better understand the quality of the analog
reentry and orbit simulation, a comparison can be
made with the existing digital program, which uses
the IBM 7094 Model II (a high-speed digital).
Though differing forms of the equations are used,
their mathematical equivalence has been verified by
a comparison of output data from the two programs,
a sample of which is shown in Fig. 4. The important
initial oscillations are identical. This is significant
since it determines that the heating rates, dynamic
pressure, and total accelerations are in agreement
when they are most critical. After 3th cycles, devia
tions appear, with the final times for touchdown
differing by 1.5%. Experiment has shown that 1.0%

Wind axes
forces

F Earth frame local horizontal, north Transformation to H-frame

_-----""'--'- ~x ------~ Fxe '; Fnorth :: Fxw 1'1 + Fyw ill l + Fzw n 1 + mgx (L. r) ~ Xh = Fxe cos .ph + Fye sin <PI y h

F = cos a F' - sin a F' :~w F = F = F £2 + F ffi2 + F n2 Fye Yh =-F sin~h + F COs '-Ish h
yw '!W ~w F. ye east xw yw zw ~ xe ye Zh

F zw = sin a FyoV + cos a F zw zw F ze = F down = Fxw 13 + Fyw m3 + F zw "3 + mgz (L~ r) ~.3h = Fte

r 1 '------r-------I

(l\tach No.) M axc~~~~ces I Lift = F~w
(Heynolds No.) Re I-Side force = F yw

- -~>(Sides1ip) 13----.1 r (Roll) u

gx (L, r) gz (L, r)

r-__ -..,---.;D;;.:ir=cc!ion cosines T
rol = - sin (tan-l :EA) ffi2 = cos (tan-l :EA);m3:: 01-__ 1:....1,_12,--' -".13 ______ ---',

u EA u EA

1
1- ___ _

Figure 2. Information flow diagram for pseudo-six-degree-of-freedom analog trajectory program.

1

1

- - _I

774 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Output

i = cos-I (cos <I> sin <i>h)

8 = tan-I Wh Uh

U~ _ G~1e

ha = ~ [1 +~'---l---Q (-2--Q-)-CO-'82;--Y
r
] - RE

hp = 2 ~ Q [1 -~ 1 - Q (2 - Q) C08
2

YI] - RE

VI r

Q = G'\le

F L (add to lift)

F D (add to drag)

F S (add to side force)

i (inclination)

8 (central angle)

ha (apogee)

hp (perigee)

-.

Figure 3. Flow diagram additions for synergetic maneuvers.

alterations to the aerodynamic coefficients will result
in changes to the trajectory which are significantly
greater than 1.5 %. Since the accuracy· is within the
known tolerance on the system inputs, we have a
useful engineering tool.

Solution Time

If anyone feature makes an impression on the
engineering analyst, it is the high-speed solution time
of the analog. With the digital program, solution time
will depend on the complexity of the run. With the
analog, the complexity of a particular type of run
may require more equipment but solution time will
remain unchanged. An average analog solution time
will be approximately 0.3 second using high-speed
repetitive operation. Minimum reentry solution time
for digital is approximately 6 minutes, and in special
cases may be as high as 18 minutes.

When running in repetitive operation, the program
reinitializes immediately after a solution and restarts
automatically. This allows a turnaround time of less
than 100 milliseconds with changes to the program
being automated to alter the solution. Graphical
solution, such as the altitude versus velocity diagram,
can be displayed on the oscilloscope, giving the
analyst instant feedback. This has advantages over
a listing of output in numerical form, since anoma
lous behavior is rapidly detected, and the cause
thereof can be immediately investigated.

Setup Time

We have been assuming above that the analog
program is in the computer, has been checked out,
and is running. If this is not the case, an hour of
checkout time must be allotted. This has been ac
complished effectively in double-shift operation with
a manual pot system. What has reduced checkout
time has been the use of card-programmed DFG's,
which assured repeatability of the aerocoefficients,
which are the most sensitive inputs. If the program
has not been running over an extended period, such
as one month, and is then returned to the computers,
the setup time becomes longer-possibly as long as 8
hours. This is the time necessary for the programmer
to familiarize himself with all the input/output con
trols.

COST

Economics is of prime importance for the often
used orbital and reentry simulation. We find that
an average reentry solution costs from $0.05 to
$1.00 (depending on the time scale used) on the
analog, and a minimum of $50 on the digital.

To the trajectory analyst, the comparison is often
made in terms of cost per footprint. The analog can
be set up to give these footprints directly (with no
off-line plotting or data reduction necessary). A
footprint can be defined by approximately 100 re
entry runs. Analog time per lOa-run footprint is
less than 5 minutes. Digital time is 10 hours. This
results in an analog cost advantage of approximately
1000/1. For example, the analyst can define a land
ing zone for various maneuvers at a cost of about
$5.00 on analog, instead of $5000 on digital. How
ever, because of the extreme times and costs for a
digital footprint, our analysts judiciously select five

~oo

lhgilcd --

\J)cdug ------

i 200

;t,
100

rime (min)

Figure 4. Analogi digital comparison of altitude versus time
for a typical reentry from 400,000 feet.

ANALOG TRANSLATIONAL TRAJECTORY PROGRAM 775

runs to define a digital footprint. This requires
special "fairing in" of the complete footprint curves
by hand (when obtained digitally), but does reduce
the digital cost to $250' per footprint. In this in
stance, analog can only claim a 50'/1 cost advantage,
with a subtle added advantage, since the engineer
need not spend the time "fairing in" the analog
footprint.

INPUT AND OUTPUT DATA

The rapid solution time of the analog requires
that the output information be extracted efficiently
(in a matter of milliseconds) so that computation
time is not lost in obtaining readout. This may be
accomplished by using track-store devices to trap
maximum values, end conditions, and other signifi
cant information which may then be plotted while
the runs are being made.

It has been important to print out maximum
values and final values for use in design considera
tions. The circuitry for these readouts is shown in
Figs. Sa and 5b. In Fig. Sa, the first track store will
follow the problem variable until the computer re
sets, at which time it will hold its value (the final
value) until the second track store can pick it up.
The second will then hold until the next reset period,
at which time it will again trap the new final value.
The output of track store No.2 can now be plotted
continuously and will be the change in the end con
dition resulting from automatically altering the pro
gram's input. Maximum values can be obtained as
in Fig. 5b. The input variable q will be followed until

-Q

+qmax
from A3

+Qmax(final)

(aJ

(b)

Figure 5. Printout or plot-out circuitry tor tootpnnts.

the output has become greater than q. At this time
the large integration rate is removed and the maxi
mum value of q is held. This maximum value can
then act as an input to the track store circuits de
scribed above to obtain the maximum value for a
particular run. Continuous plots of these final and
maximum values can be made while operating the
computer repetitively.

Numerous examples of this type of output are con
tained in Figs. 6 through 9. Among these figures it
can be noted that for the out-of-atmosphere orbiting
case, the entry flight path angle is plotted in Fig. 6
as a function of the necessary deorbit thrust angle
for 28 different thrust magnitudes. The value of y

is trapped when h equals 40'0',0'0'0' feet. This com
plete graph would take approximately 50' hours of
digital running time (0'.0'2 hours for one point on
one curve). By "sweeping" thrusting angle, the ana
log can complete one of these traces in approxi
mately 2 minutes and the complete plot (for 28
values of ,~V) in about 1 hour.

Similar information can be obtained for the re
entry cases. Here rectilinear earth maps may be used
as the plotting surface (as in Fig. 7). Examples are
shown of final latitude versus longitude (Fig. 7),
time for reentering (Fig. 8), and maximum heating
rate (Fig. 9). Each curve represents 320' individual
reentry solutions with maximum roll angle being
"swept" from + 80'° to - 80° (see "Sweep Cir
cuitry" below for a further discussion of this). This
is useful to indicate the degree of maneuverability
for various vehicles. The five separate curves are for
different lift-to-drag ratios.

Time-history recorders have been automated so
that they will record two successive runs after 10'%
change on the input (in this case, roll angle). This
allows additional detailed information as to the time
shape of the trajectories.

Efficient usage of the high-speed analog requires
that inputs be changed automatically. For example,
to locate a landing site in reentering, one might start
with G° latitude, 0° longitude, and reenter. The land
ing site, from this initial condition, may turn out to
be far from the desired location. The iterations re
quired to land at the selected site are both costly and
time consuming to do digitally. But on the analog
they are accomplished in a matter of minutes, even
when making the input changes by hand, because of
the instant feedback to the analyst which is achieved

bO
<l> :s

;>..

~
~
ct!

>,
;..
-;:;
Ii1

776 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

-40

hentry = 400,000 ft

100/500 naut mi orbit
Deorbit 20 0 past perigee

V 0 = 26180 fps

ho = 110.9 naut mi

Yo =0.998 0

40

Thrusting angle, 0v (deorbit) (deg)

Figure 6. Entry angle y vers~s thrusting angle 8v for various values of deorbit thrust producing the velocity change LlV. LlV is
the parameter of thIS figure.

by the use of high-speed repetitive/iterative analog
computation.

Sweep Circuitry tor Changing Roll Angle

To elaborate on what is meant by a "sweep" of
roll angle, Fig., 10 will be useful. With this arrange
ment, Integrator 1 will be integrating at controllable
rate (Pot 1) whenever Switch 1 is positioned for a
roll angle sweep. The output of Integrator 2 will
track Integrator 1 during the problem reset cycle
and will hold during the operate cycle. Integrator 2
will be operating in synchronism with the rest of
the problem integrators in the repetitive operation
mode. Its output will resemble the time history
shown in Fig. 11. The output of Integrator 2 (Fig.
10) is then multiplied by <TP(max), which is the pro
grammed roll angle (generally taken as a function
of velocity) which produces the maximum cross
range. The output <T is then a variable during each
solution but differs from <Tp(max) by the constant per
cent value stored in Integrator 2. If the percent value
is zero, the output roll angle <T will be identically
zero. If the percent value is + 100%, then <T will be
identically equal to <TP(max)'

PROBLEM EQUIPMENT ASSIGNMENT

The fact that the problem can be conveniently
divided between the two computer consoles is of eco
nomical interest. The out-of -atmosphere equations of
motion with the downrange and crossrange calcula
tions and the necessary output circuits can be in
corporated into one 180-amplifier computer (80 un
committed amplifiers), while the second console can
be set up to contain the direction cosines, the wind
axis transformations, and the aerodynamic force
calculations. This allows the out-of-atmosphere prob
lems to be run with one computer. Large volumes of
parametric handbook data have already been gener
ated using only this orbital part of the program. A
third computer might be used for synergetic maneu
vers, more complicated control laws, more sophisti
cated aerodynamics or any combination of these.

COMPUTER SETUP FOR MAXIMUM
ACCURACY

By setting up the analog and comparing it with
digital results, it was discovered that particular care
must be taken in the generation of the lift, drag,

ANALOG TRANSLATIONAL TRAJECTORY PROGRAM 777
90

80

70

60

50
N

40

30

20

10

0

10

20

30

40
S

50

5 r-:----~ f.-~ fr::::> v~ I---.

~
br~ ~~ "-~

p~
~

~ ~ h 1\ ~ 6 ~ ~ ~ -.....,
~L ~ \ V ! t't_ t ~ "'lJ1 -v

~~
~

~
~~

~ .LY' LSI\ ".-

~ ~ - q ~~ If ~~~ ~
"\. V-
~ [q p ((/d' .lIe.

0' --

~ D'Z lJ->.\ ~

~ ;;: ~~ r !
~

r r>

\t\) r ~ ~ .. \) <:1)p \
"""

'\ (rl~ J:': / ~
lJ

~ .~ ~ r\

~
'0""",,

) Roll angle ~
....I. ..l. _\

~~
I\) - ~~ ~ variation ~ 1 . ."".

~~ 1,\ ~ rt -81°0~ c:..J... ~ ~,
., ~ \)

J 1\ ~rY] l~

I "~ \ I ~ ~~ JPfJ :,~ ~\ ,
"

+800 ~ 1"00... ~J ,
\ II

(~ ~~ r- ~ /v / ~ ~
.

(/I

:iD ~{
"

(\ ; I~ ~
r'\

rV \-1 ~ U ~ max

11 L/Dmin I~
\) rJ

\0
60

70

80

11L1 k---t"-~.L Ijt...r-~ ~ ~
~ 1 JV

I"---' ~ tJ ~~
~ V-r-- I'----

90
120 100 80 60 40 20 0 20 40 60 80 100 120 140 160 180 200 220 240

W E

Figure 7. Typical footprint plotted automatically on a rectangular map of the earth. Footprints shown are for different values
of LID. Each footprint represents a fixed value for LID, and the roll angle ¢ is allowed to vary from +80°
to -80°.

side forces, and the atmosphere representation. It
was also found necessary to keep the problem vari
ables (particularly the accelerations) well scaled for
a wide variety of runs.

The aerodynamic force and dynamic pressure are
both calculated, using logarithms to obtain additional
accuracy. The following equations define these vari
ables:

F = qACd

q = 1/2p V2

When p is large, V is small, and vice versa. When
q is large, Cd is small, and vice versa. If these expres
sions are handled with multipliers, one of the inputs
will always be small and the output will not be well
scaled. By taking the log of both sides of these ex
pressions and summing, we can normalize q and F
so the scaling will be optimized. The normalized
computer circuit for generating the lift and drag
forces is shown in Fig. 12. Note that neither CL nor
CD is generated explicitly, but the functional depend-

778 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

60

50
Configuration:

Initial Conditions:
Altitude (ft):

40 Inertial velocity (ips):

'2
]
.§

30

Inertial flight path angle (deg):
Inertial heading angle (deg):
Latitude (deg):
Longitude (deg):

f-<

20

10

q, variation

-2 -1

Lateral Range (naut mi x 103)

Figure 8. Time for reentry plotted as a function of lateral
range for various values of LID (each curve
obtained allowing ¢ to vary from - 80 0 to
+800

).

ence of the log of CD and the log of C L on Mach
number (or angle of attack) are.

The accuracy of the solution was extremely sensi
tive to the scaling on the accelerations. By normal
izing the forces and dynamic pressure, one can keep
the accelerations well scaled for either short-duration
or long-duration reentry trajectories.

Inverse Resolver Circuits

Another improvement to accuracy in our analog
solution for the trajectory problem was obtained by
the use of inverse resolution circuits, instead of
squaring, square root, and, in some instances, divi
sion circuits for the generation of the direction
cosines. An example of such a circuit for ml, m2 and
U' h is shown in Fig. 13. For further discussion of
the direction cosines, see Appendix 1.

200
+80 0 -80

Configuration:

Initial Conditions:
Altitude (ft):
Inertial velocity (ips):
Inertial flight path angle (deg):
Inertial heading angle (deg):
Latitude (deg):
Longitude (deg):

q, variation

-2 -1

Lateral range (naut mi x 10
3

)

Figure 9. Maximum heating rate versus lateral range for
various values of LID (each curve obtained
allowing ¢ to vary from + 89 0 to - 80 0

) •

-'70/100

Operate in phase with
problem integrators

___ Sweep <------11_.
Switch ____ No sweep

+a

(roll angle)

Figure 10. Sweep circuitry for automating change to roll
angle.

Continuous Resolver Circuit

Since maneuvering is permitted, the heading angle
'lrh is not constrained to lie within +180°. Since irh

only feeds back into the information flow via its sine
and cosine, a continuous resolution circuit was used
as in Fig. 14. Here, the input to the circuit is the
true -4rh, as computed by the motion equations, which
is used as is or inverted under control of the flip-flop
(FF) to produce --4rhCR , where the subscript CR
stands for continuous resolution. This output, when
integrated, produces irhCR, which is the input angle
to the sine and cosine generators for the continuous
resolution. Note the sign of the input rate to the
integrator is reversed when the output of the integra
tor reaches 1800 (90 volts) and that the sign of sin
irh is simultaneously inverted at this switching point.
High-speed electronic gates, comparators, and one
digital flip-flop make this circuit practical for high
speed repetitive operation.

Scaling for orbital runs depends upon the orbit's
eccentricity. For reentry running, which ordinarily
begins at an altitude of 400,000 feet, a 200,000-foot
circular orbit is used as a reference.

+100'70

-100'}'0

Figure 11. Sweep integrator output time history.

ANALOG TRANSLATIONAL TRAJECTORY PROGRAM 779
-100 1 1 1

- og2

(velocity) V

(altitude) h

(Mach No. M
(~ of attack)· QI

1 +4" log CL

1 +4" log q

+100

+t log q

1 - 4" log D

>------- (for recording only)

To force
transfor
mation

To force
transfor
mation

Figure 12. Force and dynamic pressure generation using logarithms.

APPENDIX 1

DERIVATION OF EQUATIONS USED
FOR PSEUDO-SIX-DEGREE-OF
FREEDOM TRANSLATIONAL
TRAJECTORY PROGRAMS

The earth frame components of velocity are de
fined from the H-frame variables Uh, 'Yh and Wh in
Eq. (1).

UE = Uh cos 'Yh

V E = Uh sin'Yh

WE = Wh

Velocity with Respect to Air

(1)

For a near-earth satellite moving through the
earth's atmosphere, the velocity with respect to the
air is in general not equal to the inertial velocity,
either in magnitude or direction, because of the fact
that the earth's air mass is moving with the earth's
rotation, with a velocity which is dependent upon the
latitude as given by Eq. (2).

(2)

where r is the distance from the center of the earth
to the vehicle, L. is the latitude, and DEI is the rota
tional rate of the earth. The minus sign indicates that
the observer in the inertial frame thinks he is moving
west with respect to the air mass.

If winds can be superimposed, we can define a
wind from the north as a positive wind W x, and a
wind from the east as a positive wind W y • The com
ponents of velocity with respect to the air, U EA, V EA,

W EA, are shown in Eq. (3).

UE;1 = UE + Wx

V EA = V E - flIEr cos L + W"

WEll = WE = Wh

(3)

These are the three components of the velocity with
respect to the air which is shown as Vail' in Fig. 1.
The components of the vehicle velocity with respect
to the air vector projected on the earth frame are
U EA, V Ef1 and W EA. It is assumed at present that
there is no W z wind (either an updraft or a down
draft) .

780 PROCEEDING~FALL JOINT COMPUTER CONFERENCE, 196()

+

+vEA
-I

+u h

+

±uEA

l~10-l
10

Figure 13. Inverse resolver circuitry for M 1, M 2, and u\, from the inputs ilEA and VEA •

Wind Axes and Aerodynamic Forces

Let us now define a wind axis coordinate system
which has its x-axis vector in the direction of Vair •

Rather than complicating Fig. 1 by drawing the wind
axes superimposed in Fig. 1, we draw the wind axes
separately in Fig. 15 and relate them to the vector
Vail' in the figure, which shows the wind axes for
both the banked and the unbanked cases. The iw and
kw vectors form a vertical plane, but neither iw nor
kw need be horizontal or vertical. Vector jw, since it
is perpendicular to a vertical plane (unbanked
vehicle) , must be parallel to the local horizontal
plane. Sigma is the bank angle from the local vertical
plane, which can be arbitrarily specified by the
analyst. In general, therefore, the analyst, having
specified alpha, beta and the bank angle sigma, has
then specified the wind axis forces F xw (drag), F zw
(lift) and F yw (side force). These three forces will
appear on the iw axis, tl!e kw axis and the jw axis,
respectively, with proper signs to take into account
opposition t6 the motion. For example, drag is oppo
site to Vain and lift is generally opposite to kw. This

is because kw positive is in a downward direction.
The banked wind axis forces F' yw and F' zw must be
resolved through the roll angle sigma into the true
wind axis frame iw, jw, kw. The transformation equa
tions are given in Eq. (4).

Fxw = F'xw
F yw = cos 0' F' yw - sin 0' F' zw (4)
Fzw = sinO' F'yw + cos 0' F'zw

Direction Cosines for Force Resolution

Now all that remains is to resolve the true wind axis
forces Fxw, Fyw, Fzw into the earth-frame coordinate
system. We must therefore derive the direction
cosines, which relate the true wind axis coordinate
system (namely, the iw, jw, kw vector system) to the
E-frame system (the earth-frame system), that sys
tem which has north, east and down as its three
mutually perpendicular directions. If we define in, je
and kd as the unit vectors along the earth-frame
coordinate axes, we then have by definition the
vector iw as shown in Eq. (5).

(5)

ANALOG TRANSLATIONAL TRAJECTORY PROGRAM 781

-100

(from eqs of
motion)

+sin tj;h

(to eqs of
motion)

-cos tj; h
+100 e (to eqs of motion)

Figure 14. Continuous resolution circuit.

The direction cosines 11, 12 and 13 define the direction
of V ai I' with respect to the E frame. By inspection
of Fig. 1, it is obvious that 11 , 12 and 13 are given by
the relations in Eq. (6).

11 = VEA/Vair

12 YEA/Yair

13 = WEA/Vair = Wh/Vair

(6)

Furthermore, the magnitude of Yair is given by
Eq. (7).

The remaining direction cosines are obtained by
resorting to geometry. By definition, we know that
113 is the projection of kw on kd. These two vectors
are contained in the vertical plane, which also con
tains the velocity vector relative to the air, Vail'.

This vertical plane is shown in Fig. 16, from which
it can be seen that the projection of kw on kd is
given by the relation shown in Eq. (8).

V'h
n3 = cos a1 = --

Yair

(8)

In order to obtain the direction cosines n1 and n2,

which are projections of kw upon in and jeJ it is
necessary to first find the projection of kw on the
horizontal plane. This is equal to the projection of
kw upon V'h. Upon inspection of Fig. 16, we find
the projection of kw upon V'h is equal to ,-sin a1

h" h· al -Wh W IC IS equ to --- .
Yair

Now let us draw the horizontal plane which con
tains V'hJ in and je. The horizontal plane is shown
in Fig. 17. By inspection of the figure, we can now
project any vector along V'hJ on both in and V EA.
In particular, if we have the projection of kw upon
V' h and then further projeGt upon inJ we then have n1 •

If we project the component of kw upon V'h to jeJ
we have n2 • By trigonometry, then, the relations
(9) and (10) define the direction cosines 111 and 112 •

782 PROCEEDINGS-FALL· JOINT COMPUTER CONFERENCE, 1966

k~

V air

F F'
xw' xw

Wind axes are i ,J' and k for w w w
the unbanked case (a = 0). For
the banked case, the wind axes

• .f d le' are lW' Jw an .-w.

Figure 15. Wind axes.

(9)

(-Wh) (-Wh)(V
EA

) nz = --. - sin b1 = --. - --,-" - (10)
Van Valr V h

Since iw is parallel to the horizontal plane and per
pendicular to V' h, by inspection of Fig. 17, we can
then find ml, the projection of iw upon in, and mz,
the projection of iw upon ie. Note that m3 is identi
cally equal to zero by definition of the coordinate
system iw, iw, kw CEq. (13». By inspection of Fig.
1 7, then, and from the definitions of m1 and mz we
can write the expressions for ml and mz which are
shown in Eqs. C 11) and (12).

jw comes ,
out of Uh '

Wh plane

(11)

~------------~----~ U'
h

kd

Figure 16. Vertical plane containing Vair, Wh, and U'h (the
projection of Vair on the local horizontal plane).

VEA

Figure 17. Vectors in local horizontal plane.

(12)

(13)

Analog Computer Formulation of Direction Cosines

Because of accuracy considerations, it is unde
sirable to take the square root of the sum of the
squares. Consequently, equivalent trigonometric
forms for the direction cosines will be used. We
found the most accurate form of trigonometric con
versions used the following equivalent forms for V'll
and Vair . These are shown in Eqs. (14) and (15).

V'h = mz V EA - ml V EA (14)

Vair = 13 Wh + n3 V\ (15)

Here ml and m z were obtained from an inverse
resolver using the relations shown in Eqs. (16) and
(17).

(16)

(
VEA) mz = cos tan-1
--

V EA
(17)

In a similar manner, and for similar accuracy con
siderations when performing these calculations via
analog computers, n3 and 13 were calculated using
an inverse resolver, with relations shown in Eqs.
(18) and (19).

(18)

(19)

ANALOG TRANSLATIONAL TRAJECTORY PROGRAM 783

It should also be observed that n1 and n2 are related
to the direction cosines m 2 , 13 and m 1, 13 by expres
sions shown in Eqs. (20) and (21).

(20)

(21)

The two remaining direction cosines 11 and 12 used
the original expressions defined in Eq. (6), which
are repeated here as Eqs. (22) and (23) for com
pleteness.

(22)

(23)

Thus, Eqs. (13) through (23) define the auxiliary
relations and direction cosines which allow us to
project a vector from the iw, jw and kw wind axis
system to the local horizontal earth-frame coordinate
system in, je and k d•

Earth Oblateness Terms and
Transformation to the H -Frame

The contributions to the forces acting in a north
erly and downward direction and due to earth
oblateness can then be incorporated into the analysis
by adding the two oblateness terms to the force
transformations from Fxw, FlIw and Fzw to Fn , Fe
and F d, as shown in the block diagram, Fig. 2. There
is one final transformation of forces from the earth
frame local horizontal coordinate system to the
H-frame coordinate system, as shown in the block
diagram. Thus, having derived the forces acting in
the H-frame coordinate system, it is only necessary
to insert these forces into the H -frame equations of
motion. These equations are shown in the block
diagram of the entire computation (Fig. 2)
under the heading "H-Frame Equations of Motion"
(Fogarty & Howe 3) .

The Energy Integral

We had attempted to use the energy integral as
a correction term to the H -frame equations of mo
tion but, as Fogarty and Howe have found for
reentering vehicles, the amount of this correction is
so small as to be unnoticeable in computation. We
verified that for the scaling used for reentry vehicles,
the energy integral does in fact add nothing to the

accuracy of the computation. Consequently, that
particular aspect of Fogarty and Howe's equations
of motion is not included here. The variables as
shown in the block diagram with bars over them
represent normalized variables, using Fogarty and
Howe's normalization factor. A complete definition
of all symbols and variables used is shown in
Appendix 2.

Initialization and Auxiliary Outputs

Of interest in this set of equations is the method
of initialization. The block showing the initialization
calculations requires as inputs all the input initial
conditions shown to the right of that block. These
are input conditions that the engineering analyst
desires to control and/or to study. Consequently, it
proved best to set up the initialization calculations
directly on the analog computer to allow the analyst
to insert the initial parameters that he has under
his control.

To complete the derivations of the equations used
for the translational study, it is then necessary to
integrate the outputs of the H-frame equations of
motion, namely, Vh, 8Uh and 8r to obtain geocentric
latitude and longitude and, equally important, to
obtain crossrange and downrange as traced on the
earth. Auxiliary outputs are calculated algebraically,
such as the altitude, total velocity in the horizontal
plane, total vertical velocity, the flight path angle y,
the aerodynamic pressure q, the Reynolds number
Re and Mach number M which, of course, are nec
essary for the generation of the aerodynamic forces.

Downrange and Crossrange Equations

The downrange and cross range equations have
not been discussed previously. To calculate the pa
rameters, we must define a new local horizontal
coordinate system n' and e' which we may call
pseudo-north and pseudo-east. Pseudo-north axis,
n', points in the direction of the pole of the original,
undisturbed vehicle orbit plane. Pseudo-east axis,
e', will then lie in the "equator" of the undisturbed
vehicle orbit plane. For an inclined orbit, the geom
etry would appear as shown in Fig. 18 at some
particular time during the orbit. The relationship
between n' and e' and nand e is shown in this· fig
ure. As the orbiting vehicle travels around the
earth, there would be a changing relationship be
tween n' and n, so that at another time, for example,

784 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

N

EI

~I r cos L

Figure 18. Horizontal plane geometry (some vehicle ma
neuver has been assumed so that '[i' h is not
equal to 90 0

•

when the maximum latitude is achieved which
occurs when the vehicle crosses the plane c;ntaining
n' and n, the geometry as seen by an observer in
the vehicle would be as shown in Fig. 19.

Heading angle '!!h will vary greatly for an inclined
orbit; '!!' h (pseudo-heading angle) will vary only
slightly since the "primed" system is the "natural
system" for the particular orbit. The component of
inertial velocity on the horizontal plane is still Uh.
It is, of course, independent of the coordinate sys
tem used. It should be noted that '!!' h is equal to the
rate of change of the H -frame heading angle, except
that it is measured with respect to the pseudo-north,
pseudo-east coordinate system, instead of the true
north-east coordinate system. This would be the dif
feren~e, therefore, between the H-frame angular
~eloclty along kd' which is the same for both -}h and
'!!' h, and the e' -frame angular velocity along kd • Thus,

N, N'

~~-------Z------~------E, E'
U V VI

h' e' e

Figure 19. ~orizontal plane geometry, when orbiting ve
hIcle crosses plane containing N' and N (no
vehicle maneuver assumed so that '[r'h = 90 0

•

Projection of pseudo equator
Figure 20. Vertical plane through vehicle and pseudo

pole p'.

we may write (similar to Eq. (12) of Fogarty and
Howe 1) Eq. (24).

-}'h = rh - w'ez (24)

In Eq. (24), rh is the component of angular velocity
of the H-frame in the kd direction, while W'ez is the
ka component of the n' -, e' -frame angular velocity
vector. Continuing the development of this equation
as in Ref. 1, we may write the vector Eq. (25)
for w'.

...,j"

w = V'e ~ U'e 7,
1 pole - ---'-] e

r COS L r
(25)

The geometrical relationships are shown in Fig. 20.
Note that k' a is identically the same direction as
ka (by definition). L' in the figure represents the
pseudo-latitude of the orbiting vehicle in the pseudo
coordinate system. No earth rotation is included in
L' since we are comparing the inertial coordinate i' p

with coordinates i' nand ka•
Figure 21 shows the geometrical relationships

among i' p, i' nand k' a and the angle L'. From Fig 21,
we may write the vector Eq. (26) for i'p.

~ ~ ...,j,

i'p = cos L' i' n - sin L' k' a (26)

.,
1
n

Figure 21. Detail rearrangement of Fig. 20, showing rela
tionship of i' p to L', i' nand k'd.

ANALOG TRANSLATIONAL TRAJECTORY PROGRAM 785

Therefore Eq. (25) may be rewritten as Eq. (27).

V'e ~ -V'e ~ V'e sin L' k'd
~'= -i'n--i'e - ----

r r r cos L' (27)

The z component of the vector w' is, therefore, as
shown in Eq. (28).

, _ - V' e sin L' - V' e
w ez - ----- = -- tan L'

r cos L' r (28)

Since rh is given in Ref. 1, Eq. (8), as YhlmVh, we
may write Eq. (29).

di!'h Y h V'e -- = -- + -tanL'
dt mVh r (29)

From Fig. 18 we may write the expressions for V' e

and V'e shown in Eqs. (30) and (31).

V'e = Vh sin i!'h

V'e = V h cos i!'h

(30)

(31)

The rate of change of L' is then given as shown in
Eq. (32).

dL' V' h cos i!' h

dt r

V'e
(32)

r

Equations (29) through (32) allow us to solve
for L" and -\[r'}z. The variables L' a.nd i!'h, when com
bined with the earth's rotation, will allow us to
compute the downrange· and crossrange variables as
traced on the earth's surface. To obtain the down
range expressed as equivalent longitude (in radians)
we need merely note that if there were no earth
rotation, the expression for the downrange rate of
change would be as given in Eq. (33).

d).. V'e
(33)

dt r cos L'

If the angle between i' p (pseudo-pole) and ip (the
true earth pole) is angle i as shown in Fig. 20, then
we can see that the component of the earth's rotation
DEI projected on i'p is DEI cos i. Thus, the rate of
change of longitude, including the earth's rotation,
with respect to the original orbit plane (the equiva
lent of downrange including earth rotation) is given
byEq. (34).

dP.R

dt

V'e . V h sin i!'h
---,- DEI cos l = ,- DEI cos i
r cos L' r cos L'

(34)

The initial inclination angle i is a constant, of course,
for any particular orbit chosen. The calculation of

the crossrange or equivalently the rate of change
of the latitude in the pseudo-coordinate system is
somewhat more complicated. We must find the
velocity of an observer located on the earth's surface
immediately below the vehicle. Since the earth ro
tates eastward, an observer on earth would observe
a vehicle as traveling westward, even though its
inertial velocity component in that direction were
zero.

The relative velocity, with respect to an earth
observer, along N' now must be derived. The com
ponent of velocity due to the earth's rotation ob
served by an observer on earth is along the minus
east axis, and has the value DEI r cos L. This is shown
in Fig. 22. Now all that is required is to add this
component of velocity opposite to Ve in Fig. 18. If
we then project this component of velocity onto the
n' axis (V' e vector), we then have the total relative
velocity along the i' n vector in the pseudo-earth
coordinate system. From Fig. 18, it can easily be
seen that the earth's rotational velocity DEI r cos L
along the minus Ve direction has the component
DEI r cos L sin (i!'h- i!h) on the i'n axis. There
fore, the crossrange as seen by an observer on the
earth's surface will be given in radians by the expres
sion shown in Eq. (35).

dVR V' e + DEI r cos L sin (i!' h ,- i!h)

dt r

Vh cos i!" h

---- + DEI cos L sin (i!'h- i!h)
r

(35)

Heating Rate Equation

The stagnation point convective heating rate Qc
as given in Ref. 4 was calculated from

17,600
(Rnose)% Oc = Vair3.15 (pi PSL)% V}:15 A (a)

(36)

~I r cos L

Figure 22. Vertical plane showing the direction and· mag
nitude of velocity due to earth's rotation rate
[lEI, at latitude L, as seen by an observer on
earth.

786 -PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

where Rnose is the radius of the nose of the vehicle,
PSL is the density of air at sea level, V c is an. average
circular orbital velocity, taken as 25,600 ft/ sec, and
A (a) = 1. " .

The total was obtained as the integral of Qc.
Note that in the block diagram (Fig. 2) /LR, VR are
shown in degrees.

Dynamic Pressure, Reynolds Number,
Mach Number

The algebraic calculations for dynamic pressure
q, Reynolds number Re, and Mach number Mare
as shown in the block diagram (Fig. 2). This com
pletes the derivation of the equations.

NORMALIZATION OF EQUATIONS
OF MOTION

Following Fogarty and Howe's practice, normal
ized variables are defined so as to avoid amplitude
and time scale changes in going from one kind of
vehicle to another. The practice is similar to that
used in Ref. 1. Velocities are divided throughout
by the term ygoro, which is the circular orbital
velocity at the reference radial distance roo The
acceleration of gravity at this distance is go =
GMe/r02, where G is the universal gravity constant
and Me is the mass of the earth. The radius r is
normalized by dividing by r 0, the same reference
radial distance. Time is normalized by use of the

time scale factor y go/roo Computer time, T, is then
related to dimensionless time, T, by an arbitrary scale
factor such as 0.01 or 0.001. This indicates that the
analog computer solutions are effectively run much
faster' than real time. Bars over the variables signify
normalization and/or nondimensionalization. In ad
dition to normalization, following the practices of
Fogarty and Howe, l perturbation variables are de
fined such as BUh and Bf. The definitions of all the
variables are given in Appendix 2. Equations defin
ing the normalizations are also given there, where
applicable.

SYMBOLS

APPENDIX 2

Velocity of sound

Identically equivalent to Fxe, Fye
and F ze, respectively

Fxw }
Fyw
Fzw

F'XW}
F'yw
F'zw

G

h

i' n i' e, k'd

.,
1 11

i' w, i' w, k' w

L
L'

External forces of aerodynamic
and thrust origin, plus components
of gravity due to noncentral force
field terms gx and gz, along earth
frame axes in, ie and kd
External forces of aerodynamic
and thrust origin along true wind
axes iw, iw and kw. (Note: iw is
horizontal)
External forces of aerodynamic
and thrust origin along banked
wind axes i' w, j' wand k' w. Bank
angle with respect to horizontal
plane is angle (J"

Universal gravitation constant
Value of gravity, g, at r 0; go =
GM e/r0

2

Altitude of vehicle above surface
of the earth
Apogee
Perigee
Initial altitude of vehicle
Nondimensional angular momen
tum
Initial value of H
Components of gravity acceleration
due to noncentral force field along
in and kd, respectively
Inclination of original orbit plane
with equatorial plane
Unit vectors along the three axes
of the Euler (E) frame, north,
east and down toward the center of
earth, respectively
Unit vectors along the three axes
of the pseudo-Euler frame, pseudo
north, pseudo-east and down -to
ward the center of the earth.
NOTE: k'd = kd
Unit vector from center of earth
through North Pole
Unit vector from center of earth
through pseudo-North Pole
Unit vectors along the three wind
axes, iw along Vai r, iw horizontal
and kw perpendicular to iw and iw
Unit vectors along the banked
wind axes. NOTE: i'tv = itv
Geocentric latitude
Pseudo-latitude without earth's ro
tation

L"

m
M

r

-r

Rnose

t
T
-,
Uh

V EA , VEA , WEA

ANALOG TRANSLATIONAL TRAJECTORY PROGRAM 787

Crossrange variable (with earth's
rotation)
Direction cosines representing the
respective projections of iw upon
in, je and ka
Characteristic length/kinematic
viscosity
Mass of vehicle
Mach number
Mass of the earth
Direction cosines representing the
respective projections of jw upon
in, je and ka
Direction cosines representing the
respective projections of kw upon
in, je and ka
Dynamic pressure
Stagnation point convective heat
rate
Distance of the vehicle from the
center of the earth
Normalized distance of the vehicle
from the center of the earth, F =
r/ro = 1 + 8F
Initial value of r
A convenient constant reference
value for r (e.g., the value of r for
a nominal reference circular orbit)
Reynolds number
Radius of the earth at point at
which altitude is measured
Radius of nose of vehicle
Real time
Computer time
Normalized value of V' h; Ti' h =
V'h/V go ro
Horizontal component of inertial
velocity of vehicle
Horizontal component of velocity
of vehicle relative to air
Total initial inertial velocity =
(Vhi 2 + Wh/)¥.i

Components of vehicle velocity
with respect to the air, Yair, on the
earth-frame axes in, je and ka

Normalized values of V EA , V EA ,

W EA; i.e., all velocity components

are divided by V go ro
Normalized components of velocity

in H-frame; Uk = Vh/ vi go ro, Wh

= Wh/ V go ro or Uh = 1 + 8Uh

a

f3
y

A"
P

PSL

0'

O'P(max)

T

Magnitude of velocity of vehicle
relative to the air
Normalized value of Yair, Vair =

Yair

Vgo ro
Constant average circular orbital
velocity for heating rate calculation
Vertical component of inertial ve
locity of vehicle
Horizontal wind from the north
Horizontal wind from the east
Forces in H-frame
Angle of attack
Angle of sideslip
Inertial flight path angle
Initial value of flight path angle
Normalized perturbation of r from
the nominal value r 0

Initial value of SF
Normalized perturbation of V h

from the nominal value V go ro
Initial value of SUh
The initial velocity change due to
initial thrust impulse for orbit
transfer or retrothrust for reentry
Rocket thrust angle (with respect
to Vai r) iti the plane of the motion
Initial value of 0 v

Geocentric longitude
Pseudo longitude without earth ro
tation
Downrange variable
Density of air
Density of air at sea level
Roll angle about Vai r

Program roll angle to produce
maximum crossrange
Dimensionless time
H-frame heading angle, between
in and V h

Pseudo-heading angle, between i'n

andVh

Earth's rotation rate about ip

Downrange variable (including
earth rotation) = A"
Crossrange variable (inertial, with
out earth rotation = L')
Crossrange variable (with earth ro
tation = L")

788

REFERENCES

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

1. L. E. Fogarty and R. M. Howe, "Flight Simu
lation of Orbital and Re-entry Vehicles," IRE Trans
actions on Electronic Computers, vol. 11, pp. 555-
63 (1962).

2. W. E. Wagner and W. R. Garner, Jr., "Near
Earth Flight Analysis," Martin-Baltimore Report
No. ER 12465 (June 1964).

3. L. E. Fogarty and R. M. Hmyf:!.. "Space Tra
jectory Computation at the University of Michigan,"
Simulation Journal, vol. 6, pp. 220-26 (1966).

4. R. W. Detra, N. H. Kemp and F. R. Riddell,
"Addendum to Heat Transfer to Satellite Vehicles
Re-entering the Atmosphere," Jet Propulsion, vol.
27, pp. 1256-57 (Dec. 1957).

SATELLITE LIFETIME PROGRAM

John L. Stricker

and

Wayne W. Miessner

Martin Company, Baltimore, Maryland

INTRODUCTION

The gravitational forces of the sun, moon, and
oblate earth can cause significant changes in the
orbit of a near-earth satellite. These orbital perturba
tions can cause an early failure of the satellite. The
solar and linear perturbations vary in their effect,
for any given initial orbit, according to the day and
hour of injection. In fact, the change of a fraction
of an hour in injection time may cause a change in
the satellite's lifetime of several months. So for effec
tive planning of a satellite mission, these perturba
tions must be predicted.

The classical methods of celestial mechanics,l in
which the instantaneous position of the satellite is
calculated, are not satisfactory for this problem. On
digital computers, the solution is too slow and too
expensive, thus limiting the amount of information
that can be acquired. On analog computers, such
computations carried on for long intervals of time
produce excessive errors due to drift, and due to the
inherent sensitivity of the solution to small errors.

The development of faster digital methods has
made it possible to make many more predictions
within the constraints of the time and money avail
able. With enough information, a plot referred to
as a "Launch Window" can be made. For a specific
nominal launch, as injection time is changed, the

789

times separating the predicted successful launches
from predicted failures in terms of a minimum ac
ceptable lifetime are marked on a plot of hours Uni
versal Time versus days of the year. By connecting
these points a contour is formed separating success
"areas" from failure "areas." Figure 1 shows an
example of a launch window plot.

Of the various faster digital methods used above,
the simplest methods calculated the mean rate of
change per satellite orbit of the elements of the in
stantaneous osculating elliptical orbit of the satellite
without calculating the satellite's instantaneous posi
tion. The launch window plot was generated by mak
ing preliminary runs covering the "area" of interest

/ with a very coarse mesh, to determine roughly the
location of the launch window boundary, and by
making selected runs with progressively finer meshes
until the boundary was determined with the desired
precision. Because of the great number of runs re
quired and the time required after one series of runs
to select the injection times· for the next series, gen
erating a launch window plot would still require
several months elapsed time.

The development of the modern iterative analog
computer, with parallel digital logic, and high speed
repetitive operation capability, made the automatic
generation of launch windows feasible on the analog
computer.

790 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

24r-----,-----r---.------.-----...----.

20t-----t----+---+-----l------1------l

FA 1 LURE AREA

CD 0

JUN JUL AUG

Figure 1. Launch window.

In 1964, the first such program 2-4 was developed
at the Martin Company by the authors, using a
mathematical model of the type described above de
veloped by M. M. Moe.5 The purpose of the pro
gram was to achieve a significant reduction in the
cost and time required to generate the launch win
dow plots. The program was highly successful in
terms of cost, time and the number of launch win
dows generated. However, use of the Moe method
was not completely satisfactory for analog computer
use, since different reference planes were used for
developing the equations for each disturbing body,
requiring an excessive number of transformations,
which degraded the accuracy of the calculations.

In 1965, the authors started programming the
mathematical model developed by D. E. Smith.6

During the programming it became obvious that
there were some errors in Smith's equations. The cor
rect form of the equations was developed by C.
Bowie, 1. Glazer, and P. Seery of the Martin Com
pany, and they were programmed and run by the
writers as described below.

THE MATHEMATICAL MODEL

The mathematical model uses expressions for cal
culating the mean rate of change per orbit of· the
elements of an instantaneous osculating elliptical
orbit. The orbital elements (see Fig. 2) are:

a = semi-major axis
e = eccentricity
i = inclination to reference plane
n = right ascension of the ascending node
w = argument of perigee.

The instantaneous rates of change of the orbital
elements can be calculated from a form of La
grange's Planetary Equations. 1 From these, equations
for the mean rates of change can be developed with
the following assumptions:

1. since the angular rate of the disturbing
body is small compared to the angular
rate of the satellite, the disturbing body
may be considered fixed for one satel
lite orbit;

2. since the ratio of the distance of the
satellite from earth center to the dis
tance of the disturbing body is small,
terms of a series expansion of the com
ponents of the disturbing body force
may be truncated beyond the first few;

3. since the changes of the satellite orbits
elements are small for each orbit, the
values that they would have in the un
perturbed orbit may be used for calcu
lating the mean rates of change.

Letting to represent any orbital element, the mean
rate of change of the element over one satellite orbit
can be expressed as

DI SlURB ING
BODY

Figure 2. Satellite and disturbing body orbits.

SATELLITE LIFETIME PROGRAM 791

where 0 = true anomaly of the satellite

T = period of satellite orbit

With the above assumptions, we obtain expressions
which are integrable over the true anomaly 0.

By integrating these equations analytically, the
highest frequency, that of the satellite's revolution,
has been eliminated from the calculation of the
satellite orbital perturbations, which makes calcula
tion possible on the analog computer. However, it
is not the frequency reduction that is significant here,
but rather the elimination of the part of the equa
tions which are highly sensitive to small errors.

According to our assumptions, these mean rates
are constant for one satellite period. However, errors
result from the changes of the orbital elements and
the angular position of the disturbing bodies. For
analog computation, with its continuous integration,
we update the values of these variables continuously
and instantaneously, which has the effect of reducing
this error.

THE COMPUTING SYSTEM

The model was mechanized using two PACE
231R-V analog consoles. Each console contains a
Memory and Logic Unit, which contains parallel
digital logic elements, and enables digital control of
all integrators, and highspeed repetitive operation and
control. For additional parallel digital logic, one rack
of Harman-Kardon Facilogic plug-in digital modules
was used.

PROGRAMMING

The computing system was programmed:

1. to calculate, for a near-earth satellite,
the solar, lunar and earth oblateness
perturbations to the orbital elements
for one year after injection;

2. to solve the equations in high-speed
repetitive operation mode, using a
time scale of one year equals .1 sec
onds computer time, and automatically
changing the injection time by .2 hours
before each new solution, for each day
of a four month period;

3. to test continuously for failure of the
satellite, where failure is defined as the
perturbed perigee decreasing to where
atmospheric drag becomes significant
(125 nautical miles);

4. to plot automatically the times during
each day of the unsuccessful launches,
with hours Universal Time as the ordi
nate, and calendar days as the ab
scissa, to produce a launch window
diagram;

5. to enable changing all integrator time
constants simultaneously, under push
button control, to slow the solution
speed by a factor of 100, for plotting
time histories of the orbital elements.

Information flow in the program is shown in
Fig. 3.

INITIALIZATION

The initial values of the orbital elements a, i, w

and e, were considered as constant for one launch
window plot, as functions of the nominal launch
trajectory. The initial value of 0, as well as the argu
ment of latitude of the sun and moon, in an equa
torial plane based inertial reference system, need to
be calculated automatically in the repetitive opera
tion reset time. For this purpose the digital logic was
used to generate three discrete variables.

T AI = count of twenty-eight day periods from
the first injection day

T D = count of days from the end of the last
twenty-eight day period (reset at the end of
each 28-day period)

t D = hours Universal Time

The relative motion of the sun around the earth was
assumed circular, with constant distance and angular
rate. From the ephemeris:

where

0 s = f(Ms)

Ms = kl + k2D + k3D2

O)S = k4+ k5D + k6D2

is = k7 + ksD

Os = 0.0

kt, ks = constants
D = days from reference epoch
0 8 = true anomaly of sun

(1)

(2)

(3)

(4)

(5)

(6)

792 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

MEAN RATES OF CHANGE

da/dl = 0

dl1ldl
3G rn D BD [z + 3e2 5~2 1 3 r r e]2 _

= 1/2 AD (-2 -) -T lAD COS Z(Jj- Co SIN ZW) - zn Jzl-,-z COS I

2r~ n ([- e2) SIN i " a I, - e)

di/dl 3G rn D r 3 Z 5 2 1 3 [r e]
2

5 2 ,--------- (I +..e....) C t"'!" (A SIN 2W+ C COS 2W) + - J --0- (2 - - SIN i)
Zr3 n ([_ eZ) 1/2 L Z D Z D 0 ~ 2 n 2 a ([_ eLI ' Z

D

dl1ldl

di/dl

I dW/dl

~I

ij UJj
1 II'

AUXILIARY EOUAT IONS

e e' -Aq/a

°3
M

~ AM SINW+ CM COSW

°4M
-AMCOSW-CMSINW

R2M
~ - 4 + 502

+ 50
3M 4M

~~----- --

W ---~+-r--------
I

TRANSFORMATIONS

INTEGRATIONS

-{

6q = J' (dq/dtl dT
o

i = j' + S·T(di/dtl dT
o

R3
M

= - 3 + 3002 - 502
3M 4M

R4M = 6 - 70
2

- 50
2

3M 4M

R5
M

= 3 - 1402 + 702
3M 4M

W =0,/ + ((dW/dtl dT
o Xlo = SIN j SIN iD - COS i COS iD COS (.0.0 - HI ~

X2 = COS i SIN iD - SIN j COS iO COS (.0.0 - HI ~_~
D -,

X3
0

= - COS iO SIN (D.D -.0.) ~

Y
IO

,COS i SIN (D.D -.0.)

Y
2D

= - SIN i SIN (.(lD -H)

Y
30

= COS !nD -.0.)

AO = X
ID

SIN UD + Y
ID

COS U
o

BD - X20 SIN Uo + Y
2D

COS Uo

FUNCTIONS

iM = f l (6.o.
MS

)

CD = X3
0

SIN UD + Y
30

COS UD

.o.M =f2("".o.MJ

D SUBSCRIPT REFERS TO DISTURBING BlDY
(EXCEPT IN INITIALIZATION AND DIGITAL
LOGIC SECTIONS) AND INDICATES EX
PRESSIONS WHICH MUST BE COMPUTfD
FOR BOTH SUN AND MOON PERTURBAT ONS.

SUPERSCR I PT IND ICATES IN ITIALIZAfiON
VALUES OR VARIABLES.

INITIALIZATION

Us = KI + 28K2 TM t K2 TD + K21D/24

n = K3 + 28K2 T M + K2 T D + K41D

"".o.~ = 28K5 TM + K5 TO t K5 10/24
S

UM = K6 + (28K7 - 3601 T M + K7 TO + K7 iO/24

I FAILURE I
FAILURE SENSE .I OIGITAL

TEST I l LOG,C

, II'

I
X-'(

PLOnER

Figure 3. Information flow diagram.

M s = mean anomaly of sun
<Vs = argument of perigee of sun
is = inclination of the ecliptic plane
Os = ascension of right ascending node of ecliptic

plane
Us = argument of latitude of sun

First the values were calculated for the day and hour
of the first injection. Then by approximating, com
bining and simplifying, we obtain:

Us = Kl + 28K2TM + K2TD + K2 tD/24 (7)
Os and is are considered constant.

The initial value of satellite n is a function of the
mean rates of the earth's revolution and rotation, and
the nominal launch trajectory.

o = K3 + 28K.2T M + K2TD + K4tD (8)

For the motion of the moon around the earth, we
also assume constant distance and angular rate.
From the ephemeris:

8 M = f(MM)

MM = k9 + klOI} + kpD2

<VMs = k 13 + ki4D + k15D2

(9)

(10)

(11)

SATELLITE LIFETIME PROGRAM 793

iMs = k 16 + k17D + kISD2 (12)

OMs = k 19 + k20D + k2ID2 + k22D3 (13)

UMs=WMs+®M (14)
Where

® M = true anomaly of moon
MM = mean anomaly of moon
WMs = argument of perigee of moon (ecliptic

plane reference)
1Ms = inclination of lunar orbit plane (ecliptic

plane reference)
OMs = ascension of right ascending node (ecliptic

plane reference)
U M s = argument of latitude of moon (ecliptic

plane reference)

Since WM , iM , OM , and U M use an ecliptic plane ref-
s s s s

erence system, and we need these variables in an
equatorial plane reference system, we must perform
the necessary transformations. From Fig. 4, approxi
mating 1M s as a constant, spherical trigonometric re
lationships can be used to show that OM, iM, and
UMI where

U MI = U M - U Ms

and where OM, iM, and U M are the variables trans
formed to equatorial plane reference, are single
valued functions of OMs' An IBM 1620 FORTRAN
program was written which calculated OM, 1M, U M]

and dUM/doMs as function tables for one revolution
of OMs' These tables were used to develop the
approximations. for these variables used in the analog
mechanization. Since OMs varies by only -19.3'0 per
year, it was possible to use linear approximations for
the functions, with a maximum error of .140

, in
OM

iM = 1Mo + KiM ~ OMs

OM ,= OMO + KOM~OMs
aMI = OMIo + KOMI AOMs

(16)

(17)

(18)

(19)

= K6 4- (28 K7 -3600)TM + K7TD +K7tD /24

It is obvious that the initialization variables, espe
ciallyo and MM, will sweep through more than one
cycle during the advance of injection time. Those
variables which may exceed + 1800 are tested con
tinuously with comparators,. which send signals to
the digital logic portion .. The digital logic wilL initiate

EQUATOR IAL
PLANE

Figure 4. Equatorial, ecliptic, and moon orbit planes.

the required stop function of + 3600 to prevent the
variables from increasing or decreasing beyond the
+' 1800 limits. In the case of MM it was necessary
to generate the discrete variable T M which is incre
mented by one each time T D reaches twenty-eight,
and is reset. Since M M increases at slightly more
than 3600 each twenty-eight days, the calculation
may be done by increasing M M by a few degrees each
time T M is incremented.

~OMs . is generated rather than OMs' so that we
can scale the variation in OMs for generating the
functions of OMs'

TRANSFORMATIONS

These transformations are used in the develop
ment of the mathematical model. In the form shown
below, they are convenient collections of terms, and
are useful in calculating checks since

3 3

~ X2j = ~ yZj = (A2+ B2 + C2) = 1
j=l j=l (20)

The transformation equations are:

Xl D = sin i sin 1 D +
cos 1 cos iD cos (OD - 0)

.X 2 D = cos 1 sin i Jj -

sin i cos 1 D cos (0 D - '0)

X 3D = - cos 1D sin (QD - '0)

YID = cosi sin (aD - '0)

Y z D = - sin i sin (aD - 0)

(21)

(22)

(23)

(24)

(25)

794 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Y3D = cos (aD - '0)

AD = X 1D sin UD + Y 1D cos UD

(26)

(27)

BD = X 2D sin UD + Y'2
D

cos UD (28)

CD = X 3D sin UD + Y 3D cos UD (29)

where the subscript D refers to the disturbing body
(sun or moon) and unsubscripted variables refer to
the satellite. Each of the terms with D subscripted
variables must be generated twice, once for each
extraterrestrial gravitational disturbance.

In the generation of X j and Y j , the approximation
for iM developed in the initialization section is used.
Since the variable part of the function iM = iMo+

lliM has a range of less than 40
, we expand the func

tion of iM by the law of sines and the law of cosines,
let sin .b..iM = lliM and let cos l::.iM = O. The resulting
equation for X 1M is:

X 1M = sin i Mo sin i + cos i Mo cos i cos (OM - 0)+

.017453 KiM .b..OM cos iMo sin i-sin iMo cos i cos
(OM - 0) (30)

The equations for X 2 , X3 , Y 1 , Y 2 ,Y3 are
M M M M M

treated in a similar manner.
The generation of X j and Y j is much simpli-

s s

fied since is is constant and as is zero.

MEAN RATES OF CHANGE

The equations for the mean rates of change of the
elements are:

di

da
-=0
dt

do

dt

5e
2

] - 2 (AD cos 2w - CD sin 2w)

- -1.2 cos i 3 [re] 2

2n a (1 - e2
)

3GMD

dt 2rD3 n (1- eZ)

(31)

(32)

[1 + 3 ;' CD + 5; (AD sin", + CD cos 2",)]
+ ~ 1.2 [r

e

] 2 [(2 - ~ sin2 i)]
2n a (1 - e2) 2

(33)

dw . do 3GMo (1 - e2)* - = - cos l-- + -------
dt dt 2 rD3 n

- = - - - 2AD CD cos 2 w + de 15 GMD (1 ,- e2)* [e [

~ 2 ~D~ 2

(A' - C') sin 2", J] (35)

dq de
-=-a-
dt dt (36)

where

G = gravitational constant
M D = mass of disturbing body (sun or moon)
rD = distance from earth center of disturbing body
r e = earth equatorial radius
n = mean angular motion of satellite
J2 = coefficient of the Vinti potential function

Again the terms with a D-subscript must be com-
puted for both solar and lunar perturbations. The
terms in equations (32) and (33) with the factor
3J z/2n are terms for computing the earth oblate
ness.S The effect of earth oblateness is not significant
for a, wand e.

The equations were mechanized. almost as written,
with a few changes. The terms differing for solar and
lunar perturbations were generated first, summed,
and then multiplied by factors common to both, in
order to minimize equipment use. The rate de/dt
was not generated; instead, the equation was used to
generate dq/dt, and e was computed algebraically
after the integration of dq/ dt. The reason for this
was that the generation of q is of prime importance,
since it is used in the success-failure test to produce
the launch window, and integrating for q before
calculating e places q in the feed-back loops of the
mean rate equations. Therefore, any human errors
made in programming the calculations of q would
scarcely go unnoticed.

HIGHER ORDER TERMS

The mean rate equations shown above represent
the model obtained by retaining only the first order

SATELLITE LIFETIME PROGRAM 795

terms of the series expansion of the components of
the perturbing forces. For high altitude satellites, this
approximation is not sufficiently accurate. Therefore,
some higher order terms were added to first mecha
nization.

P. Seery; using an IBM 7094 program developed
from the same model, demonstrated that the higher
order terms produced significant gains in accuracy
only when included in the mean rate equation for
eccentricity. While the additional terms were being
scaled for analog computation, it became apparent
that the higher order terms of the solar perturbation
were of no significance. Therefore, only the terms
for third order expansion of the lunar perturbing
force were retained. The additional terms are:

de

dt

where
(37)

Q3M = AM sin w + eM cos w (38)

Q4M = AM cos w - eM sin w (39)

R2M = - 4 + 5Q23M + 5Q4M (40)

R3M = - 3 + 30Q23
M

+ 5Q4M (41)

R4M = 6 - 7Q23M - 5Q24M (42)

R5M = 3 - 14Q23M + 7Q24M (43)

Comparison of the model, with and without the
addition of the higher orderterms, is shownin Fig. 5.

INTEGRATIONS

The mean rates of the elements were integrated
to obtain the changes from the initial values, b.i, b.w,

LlO, anqLlq; this .allowed better scaling for plotting
time histories' of the elements, and more accurate
multiplication' for many of the products. calculated in
the mean rate equations~ .

The functions sin V s and cos V s were generated
using a constant frequency sine wave generator cir
cuit, with the integrators initialized by an electronic
resolver driven by the initialization variable Vs. b.OM

/ S

was generated by integrating the mean rate (assumed
constant) to produce a ramp function. The functions
sin V M and cos V M . were g~nerated using a continu
ous resolver circuit, integrating the mean (constant)
rate of V M, switching the rate to produce a triangular
wave as the integrator output, driving an electronic

15oor-----.-------,-----,-----,

FIRST ORDER ANALOG ---
DIGITAL 0

THIRD ORDER ANALOG--
DIGITAL l>

%~---+.40~--~8=0---~12~0---~160

DA YS AFTER I NJECT I ON

Figure 5. First and third order models.

resolver with the triangular wave, and using the same
switching signal to select the proper sign of sin V M·

DIGITAL LOGIC

When plotting a launch window, hour of the day
(t D) is used to drive the pen of a standard X -Y
plotter. The response of a plotter is too slow to
follow this signal if tD is reset to zero at the end of
each twenty four hour period. To eliminate this
problem tD was generated as a series of discrete
steps from zero to twenty four hours .and then from
twenty four back to zero. The circuitry used is shown
in Fig. 6. The primary control amplifier in this oper
ation is number 30 since it controls the step size and
the sign of the step. Amplifier 30 is a standard ana
log integrator used as a three level switch. In this
application, the capacitor is not bottle plugged to the
grid, and the grid is used as an input from an
external summing network. During operation, the
output of this integrator will be (tD ,- b.tD) when the
hold relay is de-energized or (tD +b.tD) when the IC
relay is de-energized. If both the hold and IC relays
are energized, the output will be the voltage present
at the IC input, in this case zero. The state of the
mode control relays is controlled by flip flop "B"
and the mode control push buttons. Amplifiers 25
and 26 are standard integrators with electronic mode
control and are used as track and hold amplifiers.
If the computer is in IC by means of the mode
control push buttons, amplifiers 25 and 26 are in
reset an4 are tracking the output of amplifier 30.
Both the IC and hold coil of integrator 30 are

796 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

~---~-----

'~--'II'----
'Nl@I---"'N'--------::-:MO=NTH::-:(J::-:-Y::7EAR::---------

INITIALIZATION

~

--0- -ELECTRONIC COMPARATOR

--,---i>-- - DIGITAL INVERTER

[J.=XJR - FLI P FLOP WITH PULSf GATE
INPUTS AND SfTRESET

I 0 CONTROL

===D- -AND GATE

~-ORGATE

==l}- -PULSfGATE

~E:WSJ - ELECTRONIC TRACK AND HOLD
OR ELECTRONIC SWITCH

C

~ -MULTIVIBRATOREMITS -----u-- CONTINUOUS PULSf STRING AT
MVB A CONTROLLABLE FREQUENCYI

- ONE SHOT MUlTIVIBRATOR
___ r;:::.-L _ EMITS ONE PULSf (J

~ ~~~~~~~~~~~::~
EDGE (J A "I" SIGNAl)

-_-- -DIODE

~4 - ZENER DIODE

---0-- -ELECTRONIC RESOLVER

-----C>- -MODE RELAY DRIVER
MHO

Figure 6. Digitallogic.

energized so that its output is zero at this time.
When the operate button is depressed, amplifiers 25
and 26 are under the control of the rep op counter
so that 25 is in the track mode and 26 in hold dur
ing the operate cycle and the IC relay of integrator
30 is de-energized so that its output is equal to the
output of 25 plus one time step. During the reset
cycle of the "rep on" control, amplifier 25 is in hold
and 26 in track. Operating in this fashion the output
of amplifier 25 will be updated during the reset cycle
by one time increment until amplifier 25 is equal to
twenty four hours plus one time increment. At this
time flip flop "B" is reset by electronic comparator
Oland the IC coil of integrator 30 is energized
and the hold coil de-energized, and the output of· 25
steps back down from twenty-four to zero at which
time comparator 02 again reverses the operation.
The output of amplifier 25 appears as a quantized
triangular Wave until the IC control button is de..;
pressed.

A standard binary up counter was used to count
the days of the month and month of the year (Fig.

6). At the end of each 24 hour period, or when com
parator 01 or 02 was high, flip flop "A" was set so
that on the next reset· cycle of the "rep op" mode
control the day counter would be incremented by
one. When the output of amplifier 3 7 was equal to
the twenty ninth day comparator 03 reset the day
counter and incremented the month counter. The
output of the digital counters was used to control
diode gates on the external gains of pots X 1 through
X9. The external pots were set so that, when they
were turned on, the output of amplifiers 37 and 84
was a D.C. voltage equal to the digital value of the
binary counter. Since the Harman Hardon digital
logic operates on a zero minus twelve volt logic level,
a zener diode was required in the diode switches to
allow the positive voltage to pass when the switch is
turned on.

As previously mentioned, some initial conditions
change greater than -+- 180° during a normal run
ning time, and in order to remain within the normal
operating range of the electronic resolvers, sp~cial

switching logic must be used.

SATELLITE LIFETIME PROGRAM 797

An example of the logic used is shown in Fig. 6 in
generating UM' Each time UM becomes equal to +
180'0 flip flops P or Q will be set and 360'0 sub
tracted from U M. At - 180'0 the flip flops are reset,
and the diode gates turned off. To eliminate the pos
sihility of the logic being in the wrong state. espe
cially when the computer is reset, a multivibrator
operating at about 1 K.C. was used to pulse the flip
flops if U M was greater than + 180'0. Also shown
is the triangular wave generator used for U M and the
switch required to invert the sign of the sine U M each
time U M goes through 180'0. Since the launch window
only reflected whether a particular injection time
resulted in a successful or unsuccessful orbit con
siderable computation time was saved by resetting
the computer immediately upon a failure. In the case
where the failure occurred early in the year several
milliseconds could be saved per computational cycle.
The net result was a savings of several minutes per
launch window.

RESULTS

Launch windows were plotted with the computers
in high-speed . repetitive operation mode, with the
time scale of one year equal to .1 second computer
time. Each plot was made for a period of 120' days
with a mesh of one day by .2 hours, so that each
launch window required 14,40'0' analog runs. The
time required to produce one launch window ranged
between twenty to twenty five minutes. In addition,
time histories of perigee altitude were made for
approximately sixty different injection times, with the
solution speed slowed by a factor of 10'0', as support
ing data for each of several of the launch window
plots.

2500~-~--~--~---r----'--------,

DAYS AFTER INJECTION

Figure 7. Perigee time histories.

24 r-----,------,---,-----.---.-~-~,...,

__ e·0.8734
___ e·0.8923
.._e·0.9061
______ e· 0.9174

20 ~---+-----+------j:------+----+------j

s "
s~

FA ILURE AREA
16~~----l-----+---f-----+---_t_--'"'=~~

121----+----+---=::,~~~:__-_t_--_t_---

29
JUL

Figure 8. Family of launch windows.

The present model showed a significant increase
in accuracy over models previously used at Martin
Baltimore in similar programs; and the comparison
with digital runs made by P. Seery was very good,
as shown in Fig. 5. Figure 7 shows some typical
perigee time histories, illustrating the effect of chang
ing the hour of injection time during the same day.
Figure 8 shows a family of launch windows, com
bining four plots to show the effect of increasing the
semi-major axis and initial eccentricity, while initial
perigee, altitude, inclination, and right ascending
node remain the same. The effect of the lunar peri
odic perturbation can be observed as a slight varia
tion about the general trend of the boundary, with a
period of one half of the lunar period of revolution.
This effect is shown to increase as eccentricity (hence
apogee altitude) increases. Also, it shows the appear
ance of "islands" of failure within the success area
as eccentricity increases, which connect to the peaks
of the boundary variation as eccentricity is increased.
Another trend shown is the widening of the success
area at the upper boundary, indicating the increased
effect of the lunar secular perturbation.

Launch windows, generated by the digital methods
previously used, have required approximately 35
hours of IBM 70'94-11 time and three months elapsed
time for the generation of one plot. Furthermore, it
was customary to cover the region with an extremely
coarse mesh, eliminate large sections of the region
shown not to contain a segment of the principal

798 PROc:a,EDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

boundary, and cover the remaining areas with a
finer mesh. Since the total area is not covered by
a uniform mesh, as it is on the analog program,
there is a possibility that islands of failure within a
large success area may not be discovered.

In contrast, the analog program requires about
three hours to set up and check out, with about one
half hour for each launch window, and about one
hour for each series of time histories.

The present computer program was used to gen
erate twenty-one launch window plots, and eight
series of associated time histories, at a cost of ap
proximately $2500. The estimated cost for acquiring
the same information by digital methods is about
$500,000. The elapsed time for the 21 analog launch
windows was one week; the minimum elapsed time
for 21 digital launch windows would be about one
year.

CONCLUSION

The significance of the cost and elapsed time sav
ings of this method is the increased amount of infor
mation available for the planning of a satellite pro
gram. Using digital methods, only a few such plots
could be generated within the applicable cost and
time constraints, and the choice of those few had to
be made from the many possible before the informa-

tion was acquired. Now it is feasible to investigate a
wide range of nominal orbits, together with statis
tically probable variations in the nominal orbits,
early enough to be useful in the satellite program.

REFERENCES

1. F. R. Moulton, An Introduction to Celestial
Mechanics, Macmillan Company, New York, 1956.

2. J. L. Stricker and W. W. Miessner, "Launch
Window Program," Analog Problem 702, Martin
Baltimore.

3. , "Satellite Orbital Stability Program,"
Proceedings of the IFIP Congress, Volume 2, Spar
tan Books, Washington, D.C., 1966, p. 405.

4. , "Launch Window Program," to be
published in SIMULATlON.

5. M. M. Moe, "Solar Lunar Perturbations. of
the Orbit of an Earth Satellite," American Rocket
Society Journal (May 1960).

6. D. E. Smith, "The Perturbation of Satellite
Orbits by Extraterrestial Gravitation," Planetary
Space Sciences, vol. 9 (1962).

7. J. Glazer and C. Bowie, "Definite Integrals
and Average Changes used in the Application of
Analogue Equipment to Smith's Satellite Equations,"
Martin-Baltimore Inter-Department Communication,
8 September 1965.

8. G. E. Townsend, Jr., et aI, "Orbital Flight
Handbook," Martin-Baltimore.

TRAJECTORY OPTIMIZATION USING FAST-TIME
REPETITIVE COMPUTATION

Rodney C. Wingrove

and

James S. Raby

Ames Research Center, NASA, Moffett Field, Calif.

INTRODUCTION

Space vehicle trajectories must be near optimum
in the sense that some parameter is either a maxi
mum or a minimum; for example, in reentry the
trajectory to desired terminal conditions is near
optimum when the total aerodynamic heating is a
minimum. Several perturbation methods, l such as
the calculus of variations, applications of the maxi
mum principle, and direct steepest descent, have been
considered for determining the time histories of non
linear controls that correspond to optimum trajec
tories.

The computations 2 in these previous optimization
studies involved the dynamic solution of two sets of
equations: (1) nonlinear state equations; and (2)
linear adjoint equations. An alternate perturbation
computation technique-the impulse response meth
od 3-will be discussed here. This method differs
from previous studies in that only the solution of
the nonlinear state equations is used. The response
of given functions (e.g., terminal error or quantity
to be optimized) to a control impulse is determined
along the trajectory by fast-time repetitive computa
tions rather than by a solution of adjoint equations.
This impulse response method enables the investi
gator to retain an intuitive understanding of the

799

optimization process. Furthermore, since adjoint
equations are not required, the state equations or
cost functions need not be amenable to linearization.
The impulse response method does require many
solutions of the state equations; however, the pro
gramming is straightforward and the task of comput
ing a large number of dynamic solutions is ideally
suited to modem high-speed computers.

NOTATION

The following notation is used in the body of the
text. Additional symbols are described as they are
introduced.

LID
n

tf

to
tJ.t
u
tJ.u
cp
tJ.cp (t)

control value of lift-drag ratio
number of storage points in con-

trol time history
time
final time
initial time
time increment of control impulse
control
height of control impulse
cost at final time
change in cost at final time due to

control impulses at time t

800 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

state value at final time
desired state value at final time
change in state value at final time

due to control impulses at time t

GENERAL OUTLINE OF METHOD

The impulse response method, as discussed in this
report, uses the steepest descent optimization proc
ess.4 - 7 The process commences with any nonoptimal
trajectory from which a slightly improved one is
derived. The improved trajectory is then used as a
new nominal trajectory, and the procedure is re
peated until the optimum or nearly optimum trajec
tory is found.

The iterative procedure is: (1) estimate a reason
able nominal control program; (2) determine im
pulse response functions that indicate the best
method of making small changes in the control that
will decrease the cost (the quantity to be minimized) ;
(3) compute a new nominal control by adding this
change in control to the previous nominal control
(this results in a new trajectory with a decreased
cost); (4) repeat step 2. This iterative process con
tinues until the change in cost for each new trajec
tory is very small; the control is then very near a
local optimum. If at any point along the trajectory
a limit value of the control is reached before the
cost is completely minimized, no further optimiza
tion is possible at that point. In this case, the process
continues until at each point on the trajectory either
a local optimum or the control limit is reached.

Computation of Impulse Response Functions

The technique by which the impulse response
function is determined is the most important fea
ture of the impulse response method. Figure 1
illustrates the manner in which the influence of small
control changes on the cost is calculated. The equa
tions of motion are first solved with a positive con
trol impulse at time t superimposed upon the nomi
nal control. During the next solution of the equations
of motion, a negative control impulse of the same
magnitude is inserted at time t. The impulse re
sponse, t::.cp, is derived from these two solutions. In a
similar manner, the impulse response is determined
at successive times along the trajectory. The impulse
response function, I1cp (t), is the complete time his
tory of t::.cp. Its computation for the same control
impulse at different times along the trajectory is
defined as one iteration. This corresponds to previous

-l
o
0::
I
Z
o
u

I
(J')

o
u

MAX

MINL---~-+~--~---L--~--~--~

~
IMPULSE

RESPONSE,
6tf>

T

O~--~~~--~---L---L--~--~

to TIME

Figure 1. Computation of the impulse response.

optimization studies 4-7 that used one iteration of the
adjoint equations to compute essentially the same
impulse response function along the trajectory.

Calculation of Minimum Cost

When the cost is to be minimized and there is no
terminal constraint, the impUlse response function is
used in the steepest descent technique to modify the
control toward the optimum in the following manner:

(
~ ~:inal) = (~~::i~~~) + Kcp ,t::.cp (t) (1)
Control Control

The gain Kcp weights the impulse response function
for the cost; its sign is negative to decrease the cost.
The magnitude of Kcp is determined experimentally
for each problem: too large a gain may cause insta
bility in the convergence procedure, while too small
a gain may extend the time of convergence.

A representative sample of what one may expect
with this type of optimization procedure is sketched
in Fig. 2. During the first iteration, the repetitive
solutions determine the impulse response function,
t::.cp (t). This t::.~ (t) is added to the nominal control
with an appropriate gain Kcp, and the new nominal
control time history, as shown in the center of
Fig. 2, is obtained. The iterative process is repeated
until the optimum control is reached. The optimum
control may take on either or both of the properties
illustrated in the final iteration of Fig. 2. In the
region (A) the impulse response function is, for all
practical purposes, zero. This implies that a small
change in control in this region will· not modify the
cost; thus the control is at a local optimum. In
region (B) the control is at the limiting constraints,

TRAJECTORY OPTIMIZATION 801

I' I st ITERATION _I I_ 2 nd ITERATION_I "I ~INAL ITERATlO~ I

MiW V - (OPTIMUM)

au MINI I I I I I

lLI~gg cn<!
....JILl
~CJ)
a..z
~~
~
It:

I

r

t--.....

I I I ,

_i B A

r--,

tro __________ tf __ to ________ ~tf,,~~----------.tf
I COMPUTING TIME V

Figure 2. Computation of the optimal control.

and the impulse response function indicates that
only control beyond the constraint will decrease the
cost. Thus, on the constraint, the control is at a local
optimum.

Minimum Cost With Terminal Constraint

When a terminal constraint (or destination) is to
be reached, while minimizing the cost, the iteration
procedure is performed as follows:

(~~:inal) = (~;::i~~~)+ Krp D..1fD..(t) + K1f! D..if;(t)
Control Control (2)

where if; denotes the state variable at the final time.
The quantity D..if; (t) represents the change in the
state variable due to control impulses, and is evalu
ated in the same manner as D.1f (t) .

Gains Krp and K1f! are constants for each iteration.
Gain Krp weights the impulse response function for
cost; its sign is negative to decrease the cost. Gain
K1f! must be calculated for each iteration so that the
term K1f! D..if; (t) will account for terminal displace
ment due to the optimizing term, Krp D..1f (t)' and cor
rect any terminal displacement error from the previ
ous iteration.

The equation for Kif; is:

f
t~lf(t)D.if;(t)dt

to if;d - if;

Kif; = -Kcp ft~o/'(t)dt + 21>u I>tft~1f2(t)dt
~ ~
~~ ~~
Steepest descent Terminal error

optimization term correction term
(3)

The derivation of this equation can be found in
Appendix A. D.U is the height of each control im
pulse; D.t is the time interval of each control impulse;
1/1d is the desired end-point value; and 1/1d ,- 1/1 repre
sents any terminal displacement error from each pre
".'iem: iteraticn. This eql1~ti0!! gives the general form
of the steepest descent computations; the computer
mechanization of this method will be discussed next.

COMPUTER MECHANIZATION AND RESULTS

The impulse response method has been mecha
nized on both a hybrid and a digital computer to
determine the optimal time history of the lift-drag
ratio (control LID) that must be flown for a vehicle
returning into the earth's atmosphere. The example
problem requires that:-TIT the cost, -;,-WhICh is the
heat input to the vehicle, be minimized; (2) the
vehicle arrive at a terminal constraint, 1fd, (destina
tion); and (3) the control time history remain within
specified limits. The solution to this particular prob
lem is known a priori to be a bang-bang control;
therefore, the final results can be verified.

The equations of motion are presented in Appen
dix B. The vehicle characteristics and flight condi
tions were those of a manned capsule returning from
earth orbit and having the following parameters:

Initial condi- altitude 250,000 ft
tions: horizontal

velocity 25,000 fps
vertical

velocity 748 fps
range to

destination 1,000 miles
Stopping condi-

tions: altitude 100,000 ft

Control limits: LID o ~ LID ~ 0.5

The computer systems used in the two mechaniza
tions are described in appendix C.

Hybrid Computer Mechanization

The major elements of the hybrid computer con
sisted of: (1) an analog computer to solve the tra
jectory equations; (2) parallel digital logic units to
control the computer program; (3) delay line mem
ories to store the control time history; and (4) D-A
and A-D converters to transfer the control time his
tory between the analog computer and the delay line
memory.

802 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

I.C.
COST,
~

MODIFYING
CONTROL #1 (COUNTER)--7 ANALOG

u SOLUTION OF
SERIAL MEMORY >--~O<}--~(x>--=-... TRAJECTORY STATE

EQUATIONS VALUE,

'" + CONTROL
IMPULSE

CONTROL
IMPULSE

I
I

#2
(START)

---- DOTTED LINES REPRESENT
LOGIC SIGNALS SHOWN IN
FIGURE 4

Figure 3. Hybrid computer flow diagram.

The L / D time history was stored in 64 word serial
delay line memories with a resolution of 13 bits.
The access time of the serial memory was 128 jJ-sec.
To permit a complete solution of the trajectory equa
tions within the 128 .jJ-sec, the analog computer was
time-scaled at 3750 to 1.

The mechanization of this problem on the hybrid
computer is illustrated in Figs. 3 and 4: Figure 3 is
the problem flow chart, and Fig. 4 illustrates the
logic used in controlling the problem. The serial
memory unit is continuously driven by counter pulses
(Logic No.1). The output of the serial memory is
the nominal control time history with n points. This
time history is used, together with the appropriate
control impulse, to solve the trajectory equations.
These equations are started at the specified initial
conditions with Logic No.2, and stopped with Logic
No.3 when the trajectory reaches the specified end
condition on altitude. The final values of the cost
quantity (heat) and the state quantity (range) are
stored at the end of each run as indicated by Logic
Nos. 4 and 5. The positive or negative control im
pulse is added to the nominal control input with
Logic Nos. 6 and 7, respectively. Logic No.8 inserts
the modifying control (Kcp flrp(t) + KtJ; ,flo/(t) into
the serial memory. This procedure runs in essentially
a continuous manner, that is, one point out of the

n points in the nominal control history is updated
after each two repetitive computations. After 2n
repetitive computations (one iteration), every point
in storage has been modified and the process is re
peated. For each iteration, gains Kcp and KtJ; are held
constant. As previously mentioned, gain Kcp deter
mines the relative speed and stability of the con
vergence onto the optimum. The corresponding value
of KtJ; to be used with each new iteration is calculated
by Eq. (3) as a function of the terminal error from
each previous itera~ion (o/a - tf;) and the followjn~

#1
(COUNTER)

#2
(START)

#3
(STOP)

#4
(STORE)

#5
(STORE)

#6
+(CONTROL)

IMPULSE
#7

_(CONTROL)
IMPULSE

#8
(MODIFY)

~~~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

~ n n ~ 

I SOLUTION I 

TIME n ..... ___ --'n n rL 

n n 

n 

I 2n+1 I 
---fl n 

~n I 2n+1 
n L-__________ ~ 

I 2n+1 I 
---1l n 

Figure 4. Hybrid computer program logic. 



TRAJECTORY OPTIMIZATION 803 

two integrated quantities from each previous itera
tion: 

and 

1tf fllf;2(t)dt 

to 

(4) 

(5) 

Time to was represented by a logic signal at the 
first repetitive computation in an iteration cycle and 
time tf was represented by a logic signal at the last 
computation in an iteration cycle. It should be noted 
that during those parts of the trajectory when the 
control was at a constraint limit, no further optimi
zation was possible and the integration of Eqs. (4) 
and (5) was not carried out-during those times. 

Hybrid Computer Results 

The results obtained from the hybrid simulation 
are illustrated in Figs. 5 and 6. Figure 5 shows a 
portion of one iteration, while Fig. 6 shows the 
convergence to the optimum control LID. 

In the upper trace of Fig. 5, the control impulses 
are superimposed upon the initial nominal control. 
Each control impulse had a magnitude of LID = 
+0.25 and a time increment of one clock pulse 
(0.002 sec). This control impulse was chosen be
cause it gave variation in the final range and heat 
load on the order of + 5 percent. The integrated heat 
loads along each of the repetitive trajectories are pre
sented in the next trace. The difference between the 
final quantities for each pair of subsequent runs is 
fl<p, and represents the heat load impulse response. 

In Fig. 6, the first few iterations of the converging 
optimization procedure are illustrated together with 

CONTROL IMPULSE 

I/NOMINAL CONTROL 

~.5 = ~ I 
~ _ ~--------,r----------JII~~--------,r-----.... z -
8 0-

IMPULSE 
RESPONSE, 

~ ~~ 

!~::I/\71/l.f 
~ I I .1 sec OF COMPUTER TIME 

Figure 5. Hybrid repetitive computations. 

ITERATION I-- I +-2 -+-- 3 --+- 4 --+- 5 ---l 
o .5-
'
..J 
..J o 
~ .... 
z 
8 0-

~ -.2-
'-.1-
~ 0 
:! .1-
-&- .2-

:l£ 1---+ 10 sec OF COMPUTER TIME 

Figure 6. Hybrid computation of the optimal control. 

the thirtieth iteration. In the upper trace the nominal 
control is recorded as it is read out of serial memory 
every 128 + 1 counter pulse (with Logic No.8). 
This gives a convenient time history to show the 
manner in which the control has been modified dur
ing each iteration. Notice that the control is limited 
within 0 ~ LID ~ 0.5. This was achieved by simply 
limiting the output of the serial memory to these 
values. The modifying control shown in the lower 
trace of Fig. 6 is the sum, Krp fl<p(t) + Ktf! .fllf;(t). 
For this series of runs, a constant K<p = ·-2.5X 10-31 
Btu/ft2 permitted fairly rapid convergence while pro
gram stability was maintained. The value of Ktf! was 
calculated for each iteration by Eq. (3) to be that 
value which kept the final value of range near 1,000 
miles. 

As can be seen in Fig. 6, the optimum control 
variation for this particular example was a bang-bang 
control. With the steepest descent method, it was 
found that near-optimum control could be achieved 
in the first few iterations, but to "square up the 
corner" and achieve fun optimum control required 
more iterations (20 to 30). 

Digital Computer Mechanization 

The major elements of the digital computer sys
tem consisted of: ( 1) a digital computer to solve 
the trajectory equations, perform the logical control 
of the program, and store the control LID time his
tories; (2) a line printer to print hard copies of the 
results; and (3) D-A converters and a strip chart 
recorder for fast observation of trends. 

The digital program was written in floating point 
symbolic language. Since the optimization technique 
requires repetitive computation of the trajectory, the 
choice of an integration routine was very important. 
A fast, stable, and fairly accurate routine was 



804 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

needed. 1bese requirements conflict to some ex
tent;8,9 however, the fourth-order Adams-Bashford 
integration algorithm gave satisfactory results at a 
step size of 5 seconds, provided a satisfactory starter 
was used. The starter used the lower order Adams
Bashford algorithms with a step size of 1 second. 

The program flow is as follows (see Fig. 7): (1) 
A nominal control time history is used 0 to calculate 
the nominal trajectory; (2) this trajectory is stored 
for use as the initial conditions for the repetitive 
computations of the trajectory; (3) at the initial 
point along the nominal trajectory, the control is 
perturbed with a positive pulse, and a new trajectory 
is calculated; (4) at this same point on the trajec
tory, the control is perturbed with a negative pulse 
and another new trajectory calculated; (5) from 
these two repetitive computations of the trajectory 
the heat impulse response, .b.rp, and the range impulse 
response, D.lj;, are calculated; (6) the program is then 
advanced to new initial conditions along the nominal 
trajectory by the length of the integration step size; 
(7) steps (3) through ( 6 ) are repeated until the 

initial altitude reaches the stopping condition (100,-
000 ft); (8) at this time, a new nominal control 
time history is computed using Eqs. (2) and (3); 
(9) steps (1) through (8) are repeated. This itera
tive computation continues until an optimum trajec
tory is reached. 

Digital Computer Results 

The first five iterations and the twentieth iteration 
of the digital simulation are illustrated in Fig. 8. 
The upper trace of Fig. 8 shows the control LID 
time history. During the first iteration, the control 
LID was a constant 0.25; at the end of this itera
tion it was modified by Eqs. (2) and (3). By the 
fifth iteration the control LID was approaching bang
bang and by the twentieth iteration it was essentially 
bang-bang. The pulse used to perturb the trajectory 
had a height of 0.25 LID and a width equal to one 
integration step size. For this pulse, a constant value 
of Krp =-7.5 Xl 0-2/Btu/ft 2 permitted a fairly rapid 
convergence and the computation remained quite 
stable. 

STORE u(i) 

CALCULATION OF 
NOMINAL TRAJECTORY 

CALCULATE NEW u(i) 

CALCULATION OF 
PERTURBED TRAJECTORY 

STORE INITIAL CONDITIONS 

PERFORM CALCULATION CYCLE 
INCREMENT TIME STORE VARIABLES 

ILiMIT-i, i-O 
CALCULATE INITIAL CONDITIONS 

PERFORM CALCULATION CYCLE 
fNCREMENT TIME 

> 

Figure 7. Digital computer flow chart. 

i- i + I 

i =j + I 
CALCULATE ~" ~ 



TRAJECTORY OPTIMIZATION 805 

ITERATION I. I 2 .1. 3 .50 f-----o~---+-O----:'------~-___+_ __ '--_I I .. 20 ., 

Jl CONTROL 25 --"-_---, LID . ~ 

0-

24-

cp, 23-

10
3 

Btu/ft2 22 -

21 -
f-----I 10 sec OF COMPUTER TIME 

Figure 8. Digital computation of the optimal control. 

The second trace of Fig. 8 shows the variation in 
heat from one iteration to the next. The heat, which 
is the cost in this example, decreases markedly dur
ing the first five iterations and nearly reaches its final 
value by the end of the fifth iteration. Tables I, II, 
and III give the results in tabular form. The range 
is shown to remain near 1,000 miles while the heat 
is reduced from 23,491 Btu/ft2, at the end of itera
tion 1, to 21,517 BtU/ft2 at the end of iteration 5. 
The major change during iterations 5 through 20 
was to "square up" the L/D control and achieve the 
full optimum control. At the end of iteration 20, the 
final range achieved was 999.9 miles and the heat 
20,966 BtU/ft2. During the optimization procedure 
the range varied slightly about the desired value of 
1,000 miles and the heat load was reduced about 
10 percent. 

Discussion O'f Hybrid and Digital Results 

It was interesting to observe that both the hybrid 
and the digital simulations required approximately 

Table I.-Altitude Time Histories 

Altitude, 103 ft 

Time, Iteration 
sec 2 10 20 

0 250 250 250 250 
60 207 206 197 197 

120 180 184 160 160 
180 182 184 212 209 
240 158 165 196 195 
300 125 132 142 142 
360 127 127 
400 104 110 

Table II.-Control Time Histories 

Control L/D 

Time, Iteration 
""' ... ! 2 10 20 

0 0.250 0.212 0 0 
60 .250 .192 0 0 

120 .250 .291 .500 .500 
180 .250 .290 .500 .500 
240 .250 .294 .447 .500 
300 .250 .294 .500 .500 
360 .250 .347 .475 
400 .254 .277 

the same amount of computer time, approximately 
2 minutes to obtain near optimum trajectories and 
approximately 5 minutes to obtain full optimum 
trajectories. However, it should be pointed out that 
no real attempt was made to minimize either of these 
computing times. There are several methods for 
reducing the computer time required to obtain opti
mum trajectories. One method would be to select the 
gain Krp automatically for each iteration instead of 
using a constant value for the entire computing run. 
This would cause the solution to converge to an 
optimum in fewer iterations at the expense of com
plicating the computer program. Another method of 
decreasing the computation time would be to de
crease the number of points used to store the control 
time history which would decrease the number of 
repetitive computations required for each iteration. 

The results obtained by both the hybrid and the 
digital computer appear satisfactory for engineering 
purposes. The final values of range and heat com
puted by the two simulations agree to within ap
proximately one percent and both simulations arrived 
at the same bang-bang control time histories. 

Table ilL-Terminal Conditions 

Iteration 
1 2 5 10 20 

Time, sec 344 358 389 407 414 

Altitude, 
103 ft 99.3 99.9 99.8 99.5 98.8 

Range, miles 997.7 1001.5 1003.7 1002.8 999.9 

Heat, 
Btu/ft2 23491 23197 21517 21025 20966 



806 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

One excellent feature of the digital simulation was 
the program documentation obtained by using the 
on-line typewriter and line printer. The typewriter 
documented every change made during the time the 
program was in the computer, and the line printer 
permitted the analysis of each variable at specific 
points along the trajectory. Equally valuable was 
the strip chart recording normally obtained in hybrid 
computation. It was obtained in the digital program 
by D-A conversion of the digital variables. This 
"quick look" capability made it possible to observe 
trends not readily apparent in numerical printouts. 

The result of this test example was no surprise. 
In simulations that require complicated logic control 
of the program and a moderate amount of storage, 
there is a distinct advantage to using a digital com
puter. It proved reasonable to use a digital computer 
in this simulation because there was only a moderate 
number of simplified equations to be solved. If the 
number of equations were increased, the time to 
solve them on the digital computer would, of course, 
also increase. 

COMPARISON WITH ADJOINT 
STEEPEST DESCENT 

A current reentry optimization study at Ames 
Research Center is using both the impUlse response 
method of this report and the standard adjoint steep
est descent computing method. This study is of inter
est because the two methods have been programmed 
on the same computer (IBM 7094) and their ability 
to solve several identical problems has been com
pared. 

Representative solutions obtained from the two 
methods are illustrated in Fig. 9. This particular 
example is for the same reentry vehicle and initial 
flight conditions used in the previous example of this 
report. However, the cost function is of the form: 

1tf 
If = [Heat rate) + (Drag) 2] dt 

to 

and there is no terminal constraint. This was chosen 
in order to illustrate a problem formulation that does 
not represent a bang-bang optimal control result. 

The results of the twentieth iteration are shown 
in Fig. 9. The upper curve shows that the control 
solutions are almost identical. In the lower curve the 
impulse response function Acp ( t) has been normal
ized 3 for comparison with the corresponding results 

.4-

...Jlo .3-

-- ADJOINT METHOD 
o IMPULSE METHOD 

6 ..... . 
g: .2 - . ' ......... ' .. 
z 
8 .1 - . 

0' ....... 

w 
(/) 

z 
o 
Q. 
(/) 
W 
a::: 
w 
(/) 
....J 
~ 
Q. 

~ 

o ............... . 

L 
5000 

I 

10,000 15,000 20,000 
FLIGHT VELOCITY, f pS 

I 

25,000 

Figure 9. Comparison of the impulse response and adjoint 
steepest descent methods. 

obtained by the adjoint solutions. Figure 9 demon
strates that the two methods arrive at essentially the 
same final solution. 

For reentry problems similar to the one presented 
herein, it has been found that the computing time 
required with the adjoint method is about one order 
of magnitude less than that required by the impulse 
response method. Because the adjoint method uses 
less computer time, it has been the more desirable 
method for production runs that require a large 
number of optimized trajectories. However, because 
the impulse method is straightforward to program 
and because the engineer is able to retain an intuitive 
understanding of the optimization procedure, the 
impulse method has been the more desirable method 
for initial problem mechanization. Furthermore, ad
joint equations require linearization and, therefore, 
cannot be used in some problem formulations. For 
example, in reentry problem formulations with com
plicated heat-balance equations,lO rather than the 
simple· heating expression shown in appendix B, 
the heat rate cannot be linearized. In this type of 
formulation, the impulse response method has pro
vided the only practical solution. * 

* Dynamic programming was also tried for this problem 
but the computer time was found to be excessive, one to 
two orders of magnitude greater than that required with 
the impulse response method. 



TRAJECTORY OPTIMIZATION 807 

CONCLUSIONS 

This paper has described reentry trajectory op
timization using the impulse response method. The 
method requires that the computer perform a large 
number of fast-time repetitive computations in sol'1-
ing the state equations and in determining impulse 
response functions. These repetitive computations are 
readily performed by both hybrid and digital com
puters. 

The mechanization of the impulse response 
method on both hybrid and digital computers was 
found to be straightforward. Near optimum reentry 
trajectories were obtained in approximately 2 minutes 
and full optimum reentry trajectories in approxi
mately 5 minutes of computer time. The solutions 
obtained from either mechanization agreed to within 
approximately one percent. 

The impulse response method has been compared 
with the adjoint steepest descent method. The solu
tions obtained by either method were essentially 
identical. The adjoint method requires less computer 
time; however, the impulse response method does not 
require familiarization with or use of an auxiliary set 
of linear adjoint equations. Furthermore, for problem 
formulations that are not amenable to linearization, 
the impulse response method may be the only prac
tical method. 

APPENDIX A 

DERIVATION OF EQUATION FOR Ktf! 

Along a normal trajectory, small changes, otf;, in 
the terminal state due to small changes, ou(t), in 
control can be approximated by: 

1 1tf otf; = ou(t)iltf;(t)dt 
2 AU ilt to 

(AI) 

where flu is the height of each control impulse and 
ill is the time interval of each control impulse. Sub
stituting Kcp il<p(t) + Ktf! iltf;(t) from Eq. (1) for 
ou(t), we have: 

1 1tf otf; = [Kcp il<p(t)iltf;(t) + Ktf! fltf;2(t)]dt 
2 ,ilu ilt to (A2) 

Solving for Ktf! and letting -otf; = tf;d - tf; (the 
previous terminal error), we obtain: 

~~ 
Steepest descent 

optimization term 

-K<p X 

+ 2 ilu ilt __ tf;_d __ tf; __ 

rtf .". 
J D..tf;;:UJat 

to 
~~ 

Teminal error 
correction term 

(A3) 

APPENDIX B 

REENTRY TRAJECTORY EQUATIONS 

The following simplified equations derived for 
flight within the atmosphere were used for the ex
ample problem herein. The primary assumptions in
clude a spherical nonrotating earth, small flight-path 
angles, and a constant gravity term. The derivation 
of these equations and their applicability have been 
considered in a number of reports.ll 

.. V2 ( C DA ) 1 ( L h ) h = -g + - + -- - pV2 - --
r m 2 D V 

I
tf 

<p = 1.7X 10-8 ypV3 dt 
to 

where 

CDA 

m 
g 

h 
L 
D 
r 
V 
p 

drag loading, 2.0 ft2 I slug 

local gravitational acceleration, 32.2 ftl 
sec2 

altitude, ft 

control value of lift-drag ratio 

radius from earth center, 21.1 X 106 ft 
horizontal velocity, fps 
atmosphere density, 0.00237 e-h

/ 23 ,500 

slug/ft2 
total heat input, Btu/ft2 
final range, ft 



808 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

APPENDIX C 

DESCRIPTION OF COMPUTER SYSTEMS 

In order to make meaningful a comparison of the 
results obtained from the analog and digital simula
tions, it is necessary to very briefly describe the com
puter systems used. 

The analog computer was an EAI 231R-V 
equipped with electronic mode control of the ampli
fiers. The logic element of the hybrid simulation was 
an EAI DOS 350. The DOS 350 has a patchboard 
which permits one to combine logical elements, such 
as AND gates, flip-flops, shift registers, counters, 
etc., into complicated logic systems. It also has sev
eral delay line memories of various lengths as well 
as A-D and D-A converters for communicating be
tween the DOS 350 and the analog computers. 

The digital computer was an EAI 8400 mode 0 
computer which had a 2fJ-sec memory access time, 
an average floating point add time of approximately 
13 ,fJ-sec, an average floating point multiply time of 
approximately 15 fJ-sec, and a floating point word 
size of 32 bits. 

REFERENCES 

1. G. Leitmann, ed., Optimization Techniques, 
Academic Press, 1962. 

2. A. V. Balakrishnan and L. W. Neustadt, eds., 
Computing Methods in Optimization Problems, Aca
demic Press, 1964. 

3. R. C. Wingrove, et al, "A Method of Trajectory 
Optimization by Fast-Time Repetitive Computa
tions," NASA TN D-3404, 1966. 

4. A. E. Bryson and W. F. Denham, "A Steepest
Ascent Method for Solving Optimum Programming 
Problems," Raytheon Rep. BR 1303, 1961. Also 
!. Appl. Mech., vol. 29, no. 2, (June 1962), pp. 
247-257. 

5. H. J. Kelley, "Gradient theory of optimal flight 
paths," ARS !., vol. 30, no. 10, (Oct. 1960), pp. 
947-954. 

6. A. E. Bryson, et aI, "Determination of lift or 
drag programs that minimize reentry heating," !. 
Aerospace Sci., vol. 29, no. 4, (April 1962), pp. 
420-430. 

7. H. Blanton, ed., "Three-Dimensional Trajec
tory Optimization Study, Pt. I-Optimum Program
ming Formulation," NASA CR-57030, 1964. (Su
persedes Aero. Sys. Div. Rep. ASD-TDR-62-295 
and Raytheon Rep. BR-1759-1) 

8. R. W. Hamming, Numerical Methods for Sci
entists and Engineers, McGraw-Hill, 1962. 

9. A. Ralston, A First Course in Numerical Anal
ysis, McGraw-Hill, 1965. 

10. J. H. Lundell, et aI, "Experimental Investiga
tion of a Charring Ablative Material Exposed to 
Combined Convective and Radiative Heating in 
Oxidizing and Nonoxidizing Environments," Proc. 
AIAA Entry Technology Conf., Oct. 1964, pp. 216-
227. 

11. D. R. Chapman, "An Approximate Analytical 
Method for Studying Entry Into Planetary Atmos~ 
pheres," NASA TR R-11, 1959. 



1966 FALL JOINT COMPUTER CONFERENCE 
COMMITTEE 

Chairman 

R. GFORGF GTA~FR, McKin~ey & romI':my, Tnc. 

Vice Chairman 

LOUIS J. LAULER, Lockheed Missiles & Space Company 

Secretary 

JOHN F. MATTHEWS II, International Business Machines 
Corporation 

Treasurer 

JOHN B. SPRING, Price Waterhouse & Co. 

Technical Program 

WILLIAM H. DAVIDOW, Hewlett-Packard Company, Chair
man 

GLENN C. BACON, International Business Machines Cor
poration, Vice Chairman 

LOUIS FELDNER, Lockheed Missiles & Space Company 
MAURICE H. HALSTEAD, Lockheed Missiles & Space Com

pany 
JOHN R. HERNDON, Stanford Research Institute 
GENE M. AMDAHL, International Business Machines Cor-

poration 
DONN B. PARKER, Control Data Corporation 
WILLIAM D. CAMERON, NASA Ames Research Center 
RICHARD C. REYNA, Hewlett-Packard Company 

Exhibits 

RAYMOND D. SMITH, SCM Corporation, Chairman 
RICHARD DORRANCE, URS Corporation, Vice Chairman 

Local Arrangements 

THOMAS C. BIEG, International Business Machines Cor
poration, Chairman 

RALPH R. WHEELER, Lockheed Missiles & Space Com-
pany, Vice Chairman 

MARJORIE F. HILL, Control Data Corporation 
HAROLD O. MARTIN, JR., Friden, Inc. 

ROBERT WHYTE, International Business Machines Cor
poration 

Registration 

THOMAS R. DINES, Control Data Corporation, Chairman 
DAVID KATCH, Control Data Corporation, Vice Chairman 

Printing and Mailing 

A. A. WICKS, Control Data Corporation, Chairman 
JOHN M. GOWAN, Control Data Corporation, Vice Chair

man 
MARJORIE WEST, Control Data Corporation 
VERYL J. MERRITT, Control Data Corporation 

Publications 

ALBERT C. PORTER, California Public Utilities Commis
sion, Chairman 

ROBERT L. BARRINGER, Arthur D. Little, Inc., Vice Chair
man 

MARY TESTA, Arthur D. Little, Inc. 

Public Relations 

MICHAEL J. MCCLUSKEY, International Business Machines 
Corporation, Chairman 

JERRY M. KELLY, Memorex Corporationol. Vice Chairman 
DONALD FLETCHER, URS Corporation 
PATRICK MURPHY, AMPEX Corporation 
JOHN F. SCHEFFEL, International Business Machines Cor

poration 

Ladies' Program 

MRS. MARILYN DE C. RICHARDSON, International Busi
ness Machines Corporation, Chairman 

MISS MARY A. STEWART, International Business Machines 
Corporation, Vice Chairman 

MISS MARY ANN HOTOP, International Business Machines 
Corporation 

MISS SARA TROY, International Business Machines Cor
poration 

MISS EVANGELINE YOUNG, International Business Ma
chines Corporation 

Education Program 

ROBERT J. ANDREWS, International Business Machines 
Corporation, Chairman 

NORTON SALBERG, International Business Machines Cor
poration, Vice Chairman 

ROBERT HASELTINE, Radio Corporation of America 

Science Theater 

THOMAS C. BORRELLI, Lockheed Missiles & Space Com
pany 

Consultant 

WILLIAM C. ESTLER, Public Relations 

Advisors 

809 

CHARLES P. BOURNE, Programming Services, Inc., ADI 
Advisor 

DONN B. PARKER, Control Data Corporation, ACM Ad
visor 

JOHN E. SHERMAN, Lockheed Missiles & Space Company, 
SCI Advisor 

RICHARD I. TANAKA, California Computer Products, Inc., 
IEEE Advisor 

JOHN H. WAHLGREN, University of California, AMTCL 
Advisor 





C. T. Abraham 

E. B. Altman 
G. N. Arnovick 
C. J. Bell 
J. Bliss 
G. Bolton 
R. W. Borneman 
G. Bowlby 
J. R. Brown, J r. 
W. C. Carter 
S. H. Chasen 
T. E. Cheatham, Jr. 
K. Chuang 
C. Clewlow 
A. B. Clymer 
J. B. Cohen 
J. Cunningham 
F. J. Damerau 
C. Dickens 
R. Duda 
E. D. Dwyer 
T. J. Dylewski 
T. S. Eason 
R. Elfant 
B. Elspas 
F. Engel, Jr. 
D. Euglabart 
S. Estes 
J. L. Fick 
W. D. Frazer 
J. Friedman 

C. W.Adams 
P. Armer 
S. H. Chasen 
C.R.DeCarlo 
D. Engelbart 
B. D. Fried 
H. Friedman 
R. Glaser 
D. Hall 

REFEREES PANELISTS, AND SESSION CHAIRMEN 

REFEREES 

R. Furman 
A n r< __ ..l __ _ 

1""'1. • .L.i. ~_JCUUllc;J. 

V. H. Grinich 
H. P. Hartkemeier 
D. B. Hildebrand 
E. L. Jacks 
W. J. Karplus 
R. W. Koepcke 
G. A. Korn 
L. Kovach 
J. H. Kuney 
J. L. Lasser 
P. Lazarus 
D. C. Lincicome 
C. R. Lindholm 
J. T. Lundy 
M.E.McCoy 
W. V. Mansfield 
R. L. Mattson 
C.H. Mays 
E. E. Mitchell 
M. Montalbano 
J. D. Murphy 
I. D. Nehama 
R. Norman 
T. W. Olle 
J. Parsons 
H. Petersen 
S. Petrick 
R. Pinkham 
N. E. Pobanz 
J. H. Pomerene 

PANELISTS 

R.Howe 
C. A. Jones 
D. Keehn 
J. C. R. Licklider 
H. F. Meissinger 
T. J. O'Rourke 
A. Rogers 
J. A. G. Russell 
O. Selfridge 

811 

A. W. Potts 
~ T ~ .. ~ L _ 1 _1 
K. L. r l1ll:Ual U 

A. Ralston 
L. C. Ray 
E. K. Ritter 
L. G. Roberts 
J. Robinson 
C. B. Rosen 
M. Rosenberg 
A. Rubin 
T. R. Savage 
R. J. Shook 
R. Silver 
R. Singleton 
B. Smith 
R. V. Smith 
W. R. Smith 
R. J. Spinrad 
T. B. Steel 
T. Stockham, Jr. 
R. Summit 
W. P. Timlake 
J. F. Traub 
V. Weaver 
D. A. Williams 
W. H. Williams 
P. 'Vilson 
N. Wirth 
J. Wolle 
H. Wolpe 
J. W. Young, Jr. 

R. V. Smith 
T. B. Steel 
A. Taub 
F. V. Wagner 
W. H. Wattenburg 
J. W. Weil 
N. Wirth 
J. Wolle 



L.H.Amaya 
G.M.Amdahl 
J. B. Angell 
G.H. Ball 
P. Baran 
W. Brunner 
S. Brunner 

SESSION CHAIRMEN 

S. Fernbach 
H. R. J. Grosch 
R. W. Hamming 
H. D. Huskey 
J. D. Kuehler 
W.C.McGee 
R. G. Mills 
T. J. Moffett 

812 

W. R. Nugent 
J. A. Rajchman 
N. J. Ream 
R. Rice 
A.C. Soudack 
R. Vichnevetsky 
H; Von Foerster 



AMERICAN FEDERATION OF 
PROCESSING SOCIETIES 

INFORMATION 
(,AFIPS) 

211 E. 43rd Street, New York, New York 10617 

Officers and Board of Directors 

Chairman 

DR. BRUCE GIL(:HRIST* 
IBM Corporation 

Data Processing Division 
112 East Post Road 

White Plains, New York 10601 

Chairman-Elect 

MR. PAUL ARMER* 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

DR. ANTHONY G. OETTINGER 
Harvard Computation Laboratory 
Cambridge, Massachusetts 02138 

DR. ROBERT W. RECTOR* 
Informatics, Inc. 

5430 Van Nuys Boulevard 
Sherman Oaks, California 91401 

MR. SAMUEL LEVINE 
Bunker-Ramo Corporation 

445 Fairfield Avenue 
Stamford, Connecticut 06904 

MR. KEITH W. UNCAPHER 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

Simulation Councils Director 

MR. JOHN E. SHERMAN* 
Lockheed Missiles & Space Co. 

0-59-10, B-151 
P. O. Box 504 

Sunnyvale, California 94088 

Association for Machine Translation 
and Computational Linguistics-Observer 

DR. DAVID G. HAYS 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

* Executive Committee 

A CM Directors 

IEEE Directors 

813 

Secretary 

MR. MAUGHAN S. MASON 
Dept. 210 

IBM Corporation-FSD 
P. O. Box 1250 

Huntsville, Alabama 35805 

Treasurer 

MR. WILLIAM D. ROWE* 
Sylvania Electronics Systems 

189 B. Street 
Needham Heights, Massachusetts 

MR. J. D. MADDEN 
ACM Headquarters 
211 East 43rd Street 

New York, New York 10017 

DR. WALTER HOFFMAN 
Computing Center 

Wayne State University 
Detroit, Michigan 48202 

DR. T. J. WILLIAMS 
Control & Information Systems Laboratory 

Purdue University 
Lafayette, Indiana 47907 

DR. R. 1. TANAKA * 
California Computer Products 

305 North Muller Street 
Anaheim, California 92803 

American Documentation Institute Director 

MR. HAROLD BORKO 
System Development Corporation 

2500 Colorado Avenue 
Santa Monica, California 90406 

Executive Secretary 

MR. H. G. ASMUS 
AFIPS Headquarters 
211 East 43rd Street 

New York, New York 10017 



Abstracting 

DR. DAVID G. HAYS 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

Admissions 

MR. WALTER L. ANDERSON 
General Kinetics Inc. 

2611 Shirlington Road 
Arlington, Virginia 22206 

Awards 

DR. ARNOLD A. COHEN 
UNIVAC 

2276 Highcrest Drive 
Roseville, Minnesota 55113 

Conference 

DR. MORTON M. ASTRAHAN 
IBM Corporation-ASDD 

P. O. Box 66 
Los Gatos, California 95030 

Constitution and By-Laws 

MR. MAUGHAN S. MASON 
Dept. 210 

IBM Corpbration-FSD 
P. O. Box 1250 

Huntsville, Alabama 35805 

Education 

DR. MELVIN SHADER 
IBM Corporation 

100 Westchester Avenue 
Harrison, New York 10528 

Finance 

MR. WALTER M. CARLSON 
Director of Technical Information 
Office of the Director of Defense 

Research and Engineering 
Washington, D. C. 20301 

Harry Goode Memorial A ward 

DR. WILLIS H. WARE 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

IFIP Congress 68 

DR~ DONALD L. THOMSEN, JR. 
IBM Corporation 

Old Orchard Road 
Armonk, New York 10504 

AFIPS Committee Chairmen 

814 

International Relations 

DR. EDWIN L. HARDER 
1204 Milton Avenue 

Pittsburgh, Pennsylvania 15218 

Planning 

DR. JACK MOSHMAN 
CEIR, Inc. 

EBS Management Consultants, Inc. 
1625 I Street, N.W. 

Washington, D. C. 20006 

Public Relations 

MR. ISAAC J. SELIGSOHN 
IBM Corporation 

Old Orchard Road 
Armonk, New York 10504 

Publications 

MR. STANLEY ROGERS 
P. O. Box R 

Del Mar, California 92014 

Publications Task Force 

MR. SOL ROSENTHAL 
HQ USAF 
AFA DAC 
Pentagon 

Washington, D. C. 20330 

Social Implications of Information 
Processing Technology 

MR. PAUL ARMER 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

Technical Program 

MR. JACK ROSEMAN 
2313 Coleridge Drive 

Silver Spring, Maryland 20910 

Newsletter 

MR. DONALD B. HOUGHTON, 15-W 
Westinghouse Electric Corporation 

3 Gateway Center, Box 2278 
Pittsburgh, Pennsylvania 15230 

COSATI Liaison 

MR. GERHARD L. HOLLANDER 
Hollander Associates 

P. O. Box 2276 
Fullerton, California 92633 

Consultant 

MR. HARLAN E. ANDERSON 
Rollingwood Lane 

Concord, Massachusetts 01742 



1966 FlCC 

MR. R. GEORGE GLASER 

McKinsey & Company, Inc. 
1 00 California Street 

San Francisco, California 94111 

1967 SlCC 

MR. BRIAN POLLARD 

Product Planning 
RCA-EDP 

Building 204-2 
Cherry Hill, New Jersey 08101 

lCC General Chairmen 

815 

1967 FlCC 

MR. LINDER C. HOBBS 

Hobbs Associates, Inc. 
P. O. Box 686 

Corona del Mar, California 92625 





1966 FJCC LIST OF EXHIBITORS 

Academic Press, Inc. 
Adage, Inc. 
Addison-Wesley Publishing Co., Inc. 
Advanced Scientific Instruments Div., EMR, Inc. 
Allen-Babcock Computing, Inc. 
Amp,Inc. 
Ampex Corporation 
Anelex Corporation 
Applied Data Research, Inc. 
Applied Dynamics, Inc. 
Auto-trol Corporation 

Bell System, A.T.&T. 
Benson-Lehner Corporation 
Bryant Computer Products Div., Ex-Cell-O Corp. 
Burroughs Corporation, Electronic Components Div. 
Business Information Technology 

California Computer Products, Inc. 
Calma Company 
Comcor, Inc. 
Computer Accessories Corporation 
Computer Design Publishing Corporation 
Computer Products, Inc. 
Computer Sciences Corporation 
Computers and Automation 
Conrac Division of Giannini Controls Corporation 
Consolidated Electrodynamics Corporation 
Control Data Corporation 
Corning Glass Works 
Cybetronics, Inc. 

Data Equipment Company, A Div. of BBN Inc. 
Data Machines, Inc. 
Decision Control, Inc. 
Data Pathing, Inc. 
Datamation 
Data Processing Digest, Inc. 
Data Processing Magazine 
Data Products Corporation 
DI/ AN Controls, Inc. 
Digital Equipment Corporation 
Digitek Corporation 
Digitronics Corp. 

Eastman Kodak Company, Business Systems Markets 
Div. 

E-H Research Laboratories, Inc. 
Elco Corporation 

817 

Electronic Associates, Inc. 
Electronic Memories, Inc. 

Fabri-Tek Incorporated 
Fairchild Semiconductor 
Ferroxcube Corporation 
Friden, Inc. 

General Computers, Inc. 
General Dynamics Corp., Electronics Div. 
General Electric Information Systems Div. 
General Kinetics Incorporated 
General Precision/Librascope Group 
Geo Space Corporation 
The Gerber Scientific Instrument Co. 

Hewlett-Packard Datamec Division 
Hewlett-Packard Dymec Division 
Honeywell, Inc., Computer Control Div. 

Indiana General Corporation 
Information Displays, Inc. 
International Business Machines Corp., DP Div. 
ITT Data Services 
ITT-Industrial Products Div. 

Kennedy Company 
Kleinschmidt, Div. of SCM Corp. 

Lear Siegler, Inc., Data & Controls Div. 
Lockheed Electronics Company 

Magne-Head, A Div. of General Instrument Corp. 
MAl Equipment Corporation 
McGraw-Hill Book Co. 
Memorex Corporation 
Midwestern Instruments, Inc. 
Milgo Electronic Corporation 
3M, Revere-Mincom Div. 
Monroe DATALOG Division of Litton Industries 

The National Cash Register Co. 
Navigation Computer Corporation 
North Atlantic Industries, Inc. 

Photocircuits Corporation 
Potter Instrument Company, Inc. 
Precision Instrument Company 
Prentice Hall, Inc. 



RCA, E.C.&D. Div. 
RCA, EDP Div. 
Raytheon' Computer 
Rheem Electronics 
Rixon Electronics, Inc. 
Rotron Manufacturing Co., Inc. 
Roytron Div., Royal Typewriter Co., Inc. 

Sanders Associates, Inc. 
Scientific Control Systems, Inc. 
Scientific Data Systems, Inc. 
Simulators, Inc. 
Soroban Engineering, Inc. 
Spartan Books 
Stromberg-Carlson Corp., Data Products Div. 
Systron-Donner Corporation 

Tally Corporation 
Tasker Instruments Corporation 
Teletype Corporation 

818 

Texas Instruments Inc., Semiconductor-Components 
Div. 

Texas Instruments Inc., Apparatus Div. 
Thin Film, Inc. 
Thompson Book Company 
Toko N. Y. Inc. 
Transistor Electronics Corporation 
Tymshare, Inc. 

Ultronic Systems Corporation 
UNIVAC Division of Sperry Rand Corporation 
Uptime Corporation 
URS Corporation 
U.S. Magnetic Tape Co. 

Vermont Research Corporation 

Western Union Telegraph Co. 
John Wiley & Sons, Inc. 
Wyle Laboratories 

Zeltex, Inc. 



ABRAHAMS, P., 661 
AMIOT, L. W., 743, 759 
BARNETT, JEFFREY A., 661 
BECKER, C. H., 711 
BEKEY, G. A., 191 
BEREZNER, S. C., 365 
BITZER, D. L., 541 
BLUMENTHAL, S. C., 579 
BOOK, ERWIN, 661 
BRACKETT, J., 465 
BRYANT, L. T., 743, 759 
BURGER, J. F., 357 
BUSCH, K. J., 445 
CARNEY, H. C., 365 
CARTER, J. C., 743 
CATT, I., 315 
CHEATHAM, T. E., JR., 623 
CHONG, C. F., 305 
CRAIG, J. A., 365 
CRAN, M. H., 191 
CRANDALL, R. L., 1 
CRAWFORD, B. J., 247 
DANTINE, D. J., 403 
DARLEY, D. L., 37 
DEANDRADE, A. B., 247 
DERTOUZOS, M. I., 201 
DODD, G. G., 677 
ECKHART, B. J., 23 
ELLINGER, P. B., 293 
ENGLAND, A. W., 51 
EVANS, To G., 37 
FARR, L., 513 
FIRTH, DONNA, 661 
FLYNN, M. J., 97 
FORGIE, I. W., 433 
GARTH, E. C., 315 
GENTLEMEN, Wo M., 563 
GOSDEN, I. A., 651 
GRAHAM, H. L., 201 
GRONER, G. F., 591 
HAKOLA, V. F., 579 
HALPERN, M., 639 
HAWKINSON, LOWELL, 661 

AUTHOR INDEX 

HIGGINS, G. C., 729 
HITTEL, L. A., 395 
HOBBS.L. C., 89 
HOFFMAN, R B., 523 
HOOVER, E. S., 23 
HUBACHER, E. H., 229 
ISAACS, H. H., 505 
KAMENY, STANLEY L., 661 
KAPLOW, R, 465 
KARSTAD, K., 333 
KAUFMAN, B. A., 293 
KENNEDY, J. R, 211 
KERBY, H. R, 735 
KETCHPEL, RD., 531 
KOFORD, J. S., 229 
KUEHLER, J. Do, 735 
KUNEY, J. H., 149 
KUNKEL, G. Z., 157 
KUNO, H. J., 293 
LAMBERTS, R L., 729 
LAZORCHAK, B. G., 149 
LEHRER, N. H., 531 
LEVIN, MICHAEL I., 661 
LITTLE, W. D., 181 
LONG, R E., 357 
LONGYEAR, C. R, 365 
MAKRIS, C. J., 137 
MARILL, T., 425 
MARSAGLIA, G., 169 
MCCABE, L. B., 513 
MCCALLISTER, J. P., 305 
McMAHON, M. T., 247 
MEADOW, C. T., 381 
MEDDAUGH, S. A., 281 
MEDWEDEFF, M., 1 
MENDELSON, M. I., 51 
MIESSNER, W. Wo, 789 
MOORE, D. W., 267 
MURRAY, D. E., 315 
NEBEL, B. E., 115 
NEWBERRY, S. P., 717 
NOYCE, R., 111 
ONYSHKEVYCH, L., 333 

819 

PEARSON, K. L., 281 
PERRY, I. H., Jp .. , 125 
PETRITZ, R. L., 65 
PRATT, T. W., 613 
PRICE, D. G., 501 
RABY, J. S., 799 

ROBERTS, L. G., 223, 425 
RUBIN, A. E., 771 
RYAN, J. L., 1 
SABROFF, A. E., 191 
SANATHANAN, C. K., 743 
SANDE, G., 563 
SANDER, W. B., 105 
SAUNDERS, ROBERT A., 661 
SEBESTYEN, G., 685 
SHAHBENDER, R., 333 
SHEPPS, L., 771 
SHERMAN, D., 149 
SIMMONS, R. F., 357 
SLOTTOW, H. Go, 541 
SPORZYNSKI, G. A., 229 
STALLINGS, Co B., 549 
STAMBLER, L., 413 
STEIN, R P., 759 
STICKNEY, G. Fo, 479 
STOWE, A. N., 433 
STRAUSS, J. C., 603 
STRICKlER, J. L., 789 
STRICKLAND, P. Ro, 229 
STRONG, S., 465 
THOMPSON, F. Bo, 349 
TUKEY, J., 695 
VIDAL, Jo J., 175 
WALCAVICH, So W., 149 
WAUGH, D. W., 381 
WAXMAN, R., 247 
WEINSTEIN, H., 333 
WEISSMAN, CLARK, 661 
WIESEN, R A., 433 
WILK, M., 695 
WINGROVE, R. C., 799 
WONG, A., 191 
YNTEMA, D. B., 433 





Conferences 1 to 19 were sponsored by the National Joint Computer Committee, 
predecessor of AFIPS. Conferences 20 and up are sponsored by AFIPS. Copies 
of volumes 1-28, Part II may be purchased from SPARTAN BOOKS, Scientific 
and. Technical Division of Books, Inc., 432 Park Avenue South, New York, N. Y. 

Volume Part List Price Member Price 

1-3 11.00 11.00 
4-6 9.00 9.00 
7-9 9.00 9.00 
10,11 7.00 7.00 
12,13 7.00 7.00 
14, 15 8.00 8.00 
16,17 6.00 6.00 
18 3.00 3.00 
19 3.00 3.00 
20 12.00 12.00 
21 6.00 6.00 
22 8.00 4.00 
23 10.00 5.00 
24 16.50 8.25 
25 16.00 8.00 
26 I 18.75 9.50 
26 II 4.75 2.50 
27 28.00 14.00 
28 12.15 6.10 

Cumulative Index to Vols. 1-26, Part II $3.00 

Vol. 29. 1966 Fall Joint Computer Conference, 

San Francisco, California, 1966 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821

