AFIPS

CONFERENCE
PROCEEDINGS

VOLUME 29

1966

FALL JOINT
COMPUTER
CONFERENCE

NOVEMBER 7-10
SAN FRANCISCO, CALIFORNIA

The ideas and opinions expressed herein are solely those of the authors
and are not necessarily representative of or endorsed by the 1966 Fall Joint
Computer Conference Committee or the American Federation of Information
Processing Societies.

Library of Congress Catalog Card Number 55-44701
Spartan Books, Div. of
Books, Inc.
1250 Connecticut Avenue N.W.
Washington, D. C.

© 1966 by the American Federation of Information Processing Societies, 211 E.
43rd St., New York, N. Y. 10017. All rights reserved. This book, or parts thereof,
may not be reproduced in any form without permission of the publishers.

Sole distributors in Great Britain, the British
Commonwealth, and the Continent of Europe:

Macmillan Co., Ltd.
4 Little Essex Street
London W.C. 2

CONTENTS

TIME-SHARING PROCESSORS AND EXECUTIVE SYSTEMS

A Conversational System for Incremental Compilation and J. L. RYAN
Execution in a Time-Sharing Environment » R. L. CRANDALL
‘ M. MEDWEDEFF

Performance of a Monitor for a Real-Time Control System E. S. HooveEr
B. J. ECKHART

On-Line Debugging Techniques: A Survey T. G. EvaNns
o D. L. DARLEY

The SDS SIGMA 7: A Real-Time, Time-Sharing Computer M. J. MENDELSON
A. W. ENGLAND

INTEGRATED ELECTRONICS AND THE FUTURE OF COMPUTERS

Technological Foundations and Future Directions of Large- R. L. PETRITZ
Scale Integrated Electronics :

Effects of Large Artrays on Machine Organization and_ L. C. HosBs

Hardware/Software Tradeoffs

A Prospectus on Integrated Electronics and Computer Architecture N M. J. FLYNN
The System/Semiconductor Interface with Complex Integrated ; W. B. SANDER
Circuits '

A Look at Future Costs of Large Integrated Arrays R. Noyce

iii

23

37

51

65

89

97

105

111

iv CONTENTS

COMPUTERS AND PUBLISHING

A Multiprogrammed Teleprocessing System for Computer Typesetting B. E. NEBEL
Integrated Automation in Newspaper and Book Production J. H. PERRY, JR.
A Special Purpose Computer for High-Speed Page Composition C. J. MAKRIs
Computerized Typesetting of Complex Scientific Material ‘ J. H. KUNEY
B. G. LAZORCHAK

S. W. WALCAVICH

D. SHERMAN

A Computer-Assisted Page Composing System V G. Z. KUNKEL

HYBRID COMPUTERS AND RANDOM VARIABLES

A General Method for Producing Random Variables in a G. MARSAGLIA
Computer
A Unified Approach to Deterministic and Random Errors in J. J. VIDAL
Hybrid Loops
Hybrid Computer Solutions of Partial Differential Equations W. D. LITTLE
by Monte Carlo Methods
Parameter Optimization by Random Search Using Hybrid G. A. BEKEY
Computer Techniques M. H. CraN
A. E. SABROFF
A. WonG:
ENGINEERING DESIGN BY MAN/COMPUTER INTERACTION
A Parametric Graphical Display Technique for On-Line Use M. 1. DERTOUZOS
H. L. GRAHAM
A System for Time-Sharing Graphic Consoles | J. R. KENNEDY
The Lincoln Wand L. G. ROBERTS
Using a Graphic Data-Processing System to Design Artwork : J. S. KororD
for Manufacturing Hybrid Integrated Circuits P. R. STRICKLAND
G. A. SPORZYNSKI
E. H. HUBACHER
Automated Logic Design Techniques Applicable to Integrated R. WAXMAN
Circuit Technology M. T. McCMAHON

B. J. CRAWFORD
A. B. DEANDRADE

115

125

137

149

157

169

175

181

191

201

211

223

229

247

CONTENTS

COMPUTER MEMORIES

Cost Performance Analysis of Integrated-Circuit Core Memories

A 200-Nanosecond Thin Film Main Memory System

A Rotationally Switched Rod Memory with a 100-Nanosecond
Cycle Time

A 500-Nanosecond Main Computer Memory Utilizing Plated-Wire
Elements

A High-Speed Integrated Circuit Scratchpad Memory

Sonic Film Memory

NATURAL LANGUAGE

English for the Computer

An Approach Toward Answering English Questions from Text

DEACON: Direct English Access and CONtrol

Computer Assisted Interrogation

D. W. MOORE

S. A. MEDDAUGH
K. L. PEARSON

B. A. KAUFMAN
P. B. ELLINGER
H. J. KuNno

J. P. McCALLISTER
C. F. CHONG

I. CATT
E. C. GARTH
D. E. MURRAY

H. WEINSTEIN
L. ONYSHKEVYCH
K. KARSTAD

R. SHAHBENDER

F. B. THOMPSON .

R. F. SIMMONS
J. F. BURGER
R.E. Long

J. A. CrAIG

S. C. BEREZNER
H. C. CARNEY
C. R. LONGYEAR

C. T. MEADOW
D. W. WauGH

SOME COMMUNICATIONS ASPECTS OF TIME-SHARING SYSTEMS

Some Problems in Data Communications Between the User
and the Computer

Communications Needs of the User for Management Information
Systems

L. A. HitTeL

D. J. DANTINE

267

281

293

305

315

333

349

357

365

381

395

403

vi CONTENTS

Elementary Telephone Switching Theory Applied to the L. STAMBLER
Design of Message Switching Systems

A Proposed Communications Network to Tie Together Existing T. MARILL
Computers L. G. ROBERTS

SCIENTIFIC APPLICATIONS

The Lincoln Reckoner: An Operation-Oriented, On-Line A. N. STOWE

Facility with Distributed Control R. A. WIESEN

D. B. YNTEMA

J. W. FORGIE

Telsim, A User-Oriented Language for Simulating Continuous K. J. BuscH
Systems at a Remote Terminal

Man-Machine Communication in On-Line Mathematical Analysis R. KarLow

J. BRACKETT

S. STRONG

IMPACT OF COMPUTERS ON GOVERNMENT: FEDERAL, STATE, LOCAL

The Check Payment and Reconciliation Program of the U. S. Treasury G. F. STICKNEY
Problems of Information Systems in State Governments D. G. PRICE
Impact of Computers on Local and Regional Government H. H. Isaacs
An Information System for Law Enforcement ‘ L. B. McCABE

L. FARR
The Transfer of Space and Computer Technology to Urban Security R. B. HOFFMAN

THE MAN-MACHINE INTERFACE

Recent Progress on a High-Resolution, Meshless, Direct-View N. H. LEHRER
Storage Tube R.D.KETCHPEL
The Plasma Display Panel—A Digitally Addressable Display D. L. BiTzEr
with Inherent Memory H. G. SLoTTOoW

SELECTED APPLICATIONS USING NUMERICAL ANALYSIS

The Use of Semi-Recursive Polynomials in the Design of Numerical Filters C. B. STALLINGS

Fast Fourier Transforms—For Fun and Profit ‘ W. M. GENTLEMEN

G. SANDE -

413

425

433

445

465

479

501

505

513

523

531

541

549

563

CONTENTS

HIGH QUALITY PAPERS OF GENERAL INTEREST

A System for Automatic Value Exchange S. C. BLUMENTHAL

V. F. HAkoLA
Real-Time Recognition of Handprinted Text G. F. GRONER
Basic Hytran Simulation Language—BHSL ' J. C. STRAUSS

ADVANCES IN PROGRAMMING LANGUAGES

A Processor-Building System for Experimental Programming Language T. W. PrRATT

The Introduction of Definitional Facilities into Higher T. E. CHEATHAM, JR.
Level Programming Languages

Foundations of the Case for Natural-Language Programming M. HALPERN

Explicit Parallel Processing Description and Control in J. A. GOSDEN
Programs for Multi- and Uni-Processor Computers

The Lisp 2 Programming Language and System P. W. ABRAHAMS

APL—A Language for Associative Data Handling in PL/I G. G. Dopp

COMPUTER-ORIENTED DATA ANALYSIS

Automatic Off-Line Multivariate Data Analysis G. SEBESTYEN
Data Analysis and Statistics: An Expository Overview J. TUKEY
M. WILK

TECHNOLOGIES AND SYSTEMS FOR ULTRA-HIGH CAPACITY STORAGE

UNICON Computer Mass Memory System C. H. BECKER

An Electron Optical Technique for Large-Capacity Random-Access S. P. NEWBERRY
Memories

A System of Recording Digital Data on Photographic Film Using ' R. L. LAMBERTS
Superimposed Grating Patterns G. C. HIGGINS

A Photo-Digital Mass Storage System J. D. KUEHLER

H. R. KErRBY

vii

579

591

603

613

- 623

639

651

661

677

685

695

711

717

729

735

viii CONTENTS

HYBRID APPLICATIONS AND TECHNIQUES

Hybrid Computers in the Analysis of Feedback Control Systems

A Hybrid Computer Solution of the Co-Current Flow Heat Exchange
Sturm-Liouville Problem

A General-Purpose Analog Translational Trajectory Program
for Orbiting and Reentry Vehicles

Satellite Lifetime Program
Trajectory Optimization Using Fast-Time Repetitive Computation

COMMITTEE LISTS
List of Exhibitors

Author Index

C. K. SANATHANAN
J. C. CARTER
L. T. BRYANT
L. W. AMIOT

L. T. BRYANT
L. W. AMIoT
R.P. STEIN

A. I. RUBIN
L. SHEPPS

J. L. STRICKER
W. W. MIESSNER

J. S. RaBY
R. C. WINGROVE

743

759

771

789

799

809

817

819

A CONVERSATIONAL SYSTEM FOR INCREMENTAL
COMPILATION AND EXECUTION IN A
TIME-SHARING ENVIRONMENT

James L. Ryan

Tymshare Incorporated, Los Altos, California

Richard L. Crandall

Com-Share, Incorporated, Ann Arbor, Michigan

Marion C. Medwedeff

Scientific Data Systems, Santa Monica, California

BACKGROUND

The Conversational Compiler System described
herein is implemented on the Scientific Data Systems
Model 940 Time-Sharing System. The SDS-940 has,
as its Central Processor, a modified SDS-930, the
modifications for which were developed at the Uni-
versity of California at Berkeley by Melvin Pirtle.
This hardware .includes a paging scheme, a set of
privileged instructions for -monitor as opposed to
user mode of operation, and the ability to perform
input/output operations to secondary memory while
computing.

The internal organization of CCS was motivated
by ideas from Dr. Kenneth Lock 2 of the California
Institute of Technology at Pasadena, California, and
by B. Randell and L. J. Russell in their book,
“ALGOL 60 Implementation.” # CCS operates as a
subsystem of the System Monitor developed for the

SDS-940 by Dr. Wayne Lichtenberger, Butler
Lampson,* Peter Deutsch and Larry Barnes, all of
the University of California at Berkeley. CCS itself
is not involved in the basic management of the
system input/output, physical memory allocation or
scheduling of user programs. It does, however, take
into account the physical restrictions of its environ-
ment such as page size, read only vs read/write
memory, and so forth.

The Berkeley time-sharing system includes almost
all of the service routines and other functions and
controls that were required by the design of CCS.
It was found that certain convenient hardware fea-
tures were missing, but none was a serious hindrance
to the design of the system or its compilers.

The design of CCS is not oriented towards any
particular computer system; however, many of its
features would be difficult to implement or would be
totally ineffective without a favorable environment

2 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

such as that provided by the SDS-940 system and the
Berkeley Monitor.

CCS and its compilers were developed at Tym-
share, Inc. in Los Altos, California, in cooperation
with Com-Share, Inc. of Ann Arbor, Michigan, and
Scientific Data Systems of Santa Monica, California.

SYSTEM OBJECTIVES

The design of the Conversational Compiler Sys-
tem is predicated upon the attainment of several
objectives; specifically:

Conversational Interface. Since CCS will
be used in an on-line time-sharing environ-
ment, a high level of interaction between
the user and the system is imperative for
maintenance of operational efficiency.
Therefore, the primary objective of the
system design becomes that of establish-
ing a practical means for dialogue between
the user and the system.

Multiple Language Capability. 1t has be-
come an accepted axiom in the computing
field that no single programming language
provides the best path to solution of all
problems. Thus, CCS is designed to be
multilingual. The initial implementation,
as described in this paper, includes ex-
tended versions of full ALGOL 60 and
FORTRAN 1V.

Incremental Compilation and Execution.
During the development of a program,
there is likely to be an interleaving of
executions and program modifications. To
cope efficiently with this, compilers should
be incremental and execution should be
controllable. Incremental compilers would
allow for fast turn-around time and mini-
mal work for the system in keeping up
with programmer modifications. Controlled
execution would allow the user to specify
ranges of statements to be executed as well
as single statement step execution.

Language Oriented Program Debugging.
Since the programmer should be ignorant
of the idiosyncratic nature of the computer
itself, the debugging techniques available
should be in terms of the conceptual pro-
gram rather than of the computer upon

which that program is executed. Debugging
information should be provided, therefore,
in a direct relationship to the source lan-
guage statements in the user’s program and
the user should be able to easily obtain
information informing him of the effect of
individual statements. Furthermore, the
programmer should also have explicit con-
trol as to the nature of the debugging.
information provided.

Multiple Mode Execution. Normally, fol-
lowing modification of a program, a trial
execution is wundertaken to determine
whether the modification has the desired
effect on the operation of the program.
During this trial execution, a tight watch
should be maintained and the programmer
informed of any questionable condition
that may arise. It is important to note that
even though a condition may be question-
able, the effect of this condition may not

-be adverse. Therefore, following this trial

execution, if it has been determined -that
the program is in proper operating order,
the programmer should have the capability
of turning off these alarms. This will re-
quire a dual mode execution capability,
one executing mode for program checkout
and a second for production use.

Common Internal Format. The output of
each of the language compilers should be
in a compatible form so that programs may
be comprised of segments written in dif-
ferent languages. This capability would
make it possible, for instance, to use sub-
programs written in ALGOL with a con-
trol program written in FORTRAN.

Multiple Mode Program Storage. The pro-
grammer should have the capability of
creating Save files of a program in either
symbolic or internal forms, or a com-
bined file that preserves both the symbolic
and internal forms, so that program modifi-
cation may be continued at a later time.

Re-Entrant Characteristics. Given the mul-
tiprogramming capability that accompanies
the more advanced time-sharing systems,
heavily used subsystems should be re-
entrant. Time-sharing also introduces the

INCREMENTAL COMPILATION AND EXECUTION 3

capability for several people at different
remote terminals to operate simultaneously,
perhaps sharing a user-written program.
This implies that compilers should generate
re-entrant code allowing the user to write
shareable programs which are not a part
of the computer facility library.

User Aid. A certain degree of self-teach-
ing capability has already been given to
conversational systems via rapid answer-
back of error diagnostics. This ability
should be extended to allow a more
natural question and answer capability.
The user should be able to ask English
language questions about his problems and
get immediate responses from the com-
puter. This would replace the sometimes
lengthy process of referencing a manual
which never seems to be present when
needed.

SYSTEM OPERATION

The Conversational Compiler System consists of a
language independent supervisory program, service
routines, and associated language compilers. CCS,
itself, operates as a subprogram to a system executive.
Upon receipt of the proper language identification
‘command, the system executive activates CCS,
which is then controlled through its own system
command set. k

- CCS System Comrﬁands

Command Recognition. All CCS System Commands
are of the form:

< command identifier >
[, <specification field> . . .]!

- The command identifier may be abbreviated by
including only enough characters to uniquely identify
the desired command from the other commands in
the: command set. Also, as will be shown, the
character content of the command identifier may be
redefined by the user.

Statement Numbers. Every statement in a CCS pro-
gram has a statement number used only for text
manipulation and never for the executing logic of the
program. Statement numbers are assigned either
explicitly by the programmer or implicitly by the

system, as will be shown. Statement numbers are
decimal numbers with a maximum of three integer
and three fractional digits. Insignificant zeroes are not
considered as part of the statement number. The
smallest and largest statement numbers are .001 and
999.999, respectively.

Statement Designators. Most of the CCS System
Commands use statement designators to enable the
user to describe the portion of the program to be
affected by the command.

Statement designators may take the form
of:

e A statement number (4 and — may be
used to symbolically represent the highest .
and lowest existent statement numbers).

e A statement -number with increment
(specifying a statement which precedes
(negative increment) or follows (positive
increment) the numbered statement by the
number of statements indicated.

e An insertion indicator for the COMPILE
command. (A statement number followed
by a + or — sign indicating whether the
insertion precedes or follows the numbered
statement.)

e A statement range indicator (two of the
above separated by a colon.)

Program Text Control.

COMPILE, < statement designator >,
<in-statement >!

Enters the in-statement into the program -
as directed by the statement designator.

The in-statement may be one or more source
language statements separated by the proper source
language delimiters. Statement designators contained
within a parenthetical pair and bounded by the
appropriate statement delimiters may appear in the
in-statement. These statement designators identify
statements in the program that are to be included in

“the text of the in-statement.

A file name, identified by the surrounding quotes,
appearing in an in-statement causes the symbolic
text from the named CCS program file to be in-
cluded in the in-statement.

DELETE, <statement designator> [, <state-
~ ment designator>. . .]!

PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

Removes designated statements from the
program.

RESEQUENCE, (<statement designator>,
< statement designator>>) [(<statement des-
ignator>, < statement designator>...]!

Assigns new statement numbers to the
statements identified by the first statement
designator in the parenthetical pair as di-
rected by the second statement designator
which may specify an allowable statement
number range, or a base number and an
increment.

LOCK, <statement designator> [, < statement
designator>. . .]!

Declares a protected status for the des-
ignated statements. Locked statements can-
not be removed from the program, or be
renumbered. Copying does not affect the
lock status.

UNLOCK, <statement designator> [, <state-
ment designator>...]!

Removes protected status from designated
statements.

OFF, <statement designator> [, <statement des-
ignator>...]!

Temporarily deactivates designated state-
ments, removing them from the execut-
ing logic of the program.
ON, <statement designator> [, <statement des-
ignator>...]!

Reactivates designated statements, restor-
ing them to the executing logic of the pro-
gram.

Program Execution.

EXECUTE [, <statement designator>]
,DIAGNOSTIC 7!
,PRODUCTION

I:,STEP]

Executes the designated statements accord-
ing to the specified mode. (If no mode is
specified, PRODUCTION is assumed.)

DIAGNOSTIC—causes a pause and out-
put of an appropriate message whenever
an error or questionable condition occurs.
PRODUCTION—Aborts program when-

ever an error occurs. Questionable condi-
tions trapped in DIAGNOSTIC mode will
be ignored. ,
STEP—Same as DIAGNOSTIC except
that a pause occurs after completion of
each statement (and its debugging routine)
allowing another system command to be
entered or execution to be resumed (by
entering an exclamation point).

CLEAR!
Destroys internal data storage left after a
partial execution.

PERFORM, <in-statement>!
Executes the in-statement, but does not
enter it into the program. The in-statement
may modify, but not declare, data storage.

Program Debugging.

DEBUG, (<statement designator>>, < statement
designator>) [, (<statement designator >, < state-
ment designator>) ...]!

Declares statements identified by the sec-
ond statement designator within each
parenthetical pair to be used as a debug-
ging procedure for the statements identified
by the corresponding first statement des-
ignator. The debug procedures will be
executed immediately following each state-
ment for which they are declared. It is
possible for more than one debug pro-
cedure to be declared for a given state-
ment.

Program Information.
LIST [, <statement designator> ...]

[, QUICK]!

[, FORMATTED]
[, LOCK]

[, UNLOCK]

[, OFF]

[, ON]

[, DEBUG]

[, ERRORJS]]

QUICK — Prepares
matted listing. ,
FORMATTED — Prepares formatted list-
ing in which statements are indented ac-
cording to program structure.

LOCK, UNLOCK, OFF, ON, DEBUG,

high-speed unfor-

INCREMENTAL COMPILATION AND EXECUTION 5

ERRORJS] — List only statements of the
designated type.

The directives may be used in combinations. If no
directives appear QUICK is assumed.
FIND, <label>!

Lists the first occurrence of the indicated
source language label. Subsequent occur-
rences of the same label may be found by
entering an exclamation point.

File Control.

LOAD, <file-name>!

Loads the specified CCS program file.
SAVE, <file-name> [, SYMBOLIC]!

Saves the program on the designated CCS
program file. If indicated, only the sym-
bolic text will be saved.

System Control.

DEFINE, <old command identifier> = <new
command identifier >!

Specifies new character set to be used for
command identification.

Diagnostics

CCS provides three categories of diagnostic mes-
sages; command, compilation and execution. An
immediate warning that an error has occurred is
given (for the teletype, a bell) so that the current
activity may, at the user’s option, be interrupted
for corrective action. Depending on the nature of
the problem, however, immediate service may not be
required. For instance, during compilation of pro-
gram text, even though a warning occurs upon detec-
tion of each syntactical error, correction of the
errors may be postponed until completion of the
input of the text.

Command Diagnostics. Command diagnostics, given
in the form of a repeated warning, occur whenever
the intent of a command is not understood. In these
instances, the command should be re-entered.

Compilation Diagnostics. Whenever syntax errors in
program text are detected, an immediate warning is
given. Upon the completion of the processing of all
statements in the in-statement, the diagnostic infor-
mation is returned as illustrated below:

User:
COMPILE, 5:10,A: =B + C; X : =
Y*/Z;P=Q+ R!
System: 2 SYNTAX ERRORS
User: LIST, ERRORS!

System: 7, X :=Y*/Z;
1
*9. P=Q+R;
T

The asterisk preceding the statement number in-
dicates the statement is a part of an in-statement not
yet structured into the program. The position of the
upward arrow locates the position in the statement
where the error was detected. No further syntax scan
was made of the erroneous statement. If this is an
insufficient description of the error, the query WHY
may be used to obtain a detailed explanation as
follows:

User: WHY, *7!

System: *7. BINARY OPERATOR NOT
PRECEDED BY VARIABLE OR CON-
STANT.

If errors occur in an in-statement, corrective action
must be taken in the form of statement deletion or
replacement. New statements will not become part of
the program until all errors in the in-statement have
been removed. COMPILE and DELETE commands
may be used to modify the in-statement.

In the above example, statements *7.and *9.were
in error. The commands:

COMPILE, *7 : *9, X : =Y *5 / Z;
P:=Q+R!

COMPILE, *5: *10, (6); (1); X: =
Y* 5/Z; (*5)!

DELETE, *7 : *9!

would all be valid corrections. These commands
modify the in-statement group. Note, in the second
example above, that statements previously compiled,
either within or without the in-statement designator
range, may be copied into the in-statement. This
modified in-statement replaces the original in-state-
ment. Since it is possible that other errors still exist
or new errors have been introduced, the error search
is repeated. Error correction proceeds until the entire
in-statement is free of errors. The in-statement is
then placed into the program as indicated by the

6 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

statement designator of the original COMPILE com-
mand.

Execution Diagnostics. There are two forms of exe-
cution diagnostics. Those that occur only when the
program is being run in DIAGNOSTIC mode and
those that occur regardless of the mode of execution.
If an execution diagnostic appears and the program
is in DIAGNOSTIC mode, a pause occurs. If the
diagnostic condition is to be ignored, execution may
be continued. Execution diagnostics appearing while
the program is in PRODUCTION mode terminate
the program.

CCS User Aid

Provided with CCS is an on-line question answer-
ing service called HELP.* HELP accepts English
language questions about CCS, ALGOL, or FORT-
RAN. The questions are analyzed by a key word
search; various common endings on key words being
viewed interchangeably (e.g., the word COMPILING
looks the same as the word COMPILE). The best
answer is chosen for the question and is printed out.

To use HELP, the user merely types: HELP!

as a command to CCS. The system is then set to
accept questions.

For example:

User: HELP!

User: WHAT IS A STRING LITERAL?

System: A STRING IS A SERIES OF CHARAC-
TERS PRECEDED BY A PRIME ()
AND FOLLOWED BY A QUOTE ().
E.G., 'STRING”

User: HOW DO I GET A PRIME IN A
STRING?

System: STRINGS MAY BE NESTED WITH
THE CONVENTION THAT ANY
STRING NESTED WITHIN ANOTHER
STRING HAS ITS SURROUNDING
PRIME AND QUOTE INCLUDED IN
THE SURROUNDING STRING. E.G.,
‘A’B”C” HAS THE CONTENTS A’B”C.

User: - HOW DO I GET ONLY A PRIME
WITHOUT A QUOTE IN A STRING?

System: USE NESTING AND THEN EXTRAC-
TION.

" # Actually the HELP system for CCS is an extension of
the Question Answering System (QAS) developed at the
University of California, Berkeley.?

User: HOW DO I EXTRACT CHARACTERS
FROM A STRING?

System: THE SYSTEM ROUTINE LEFT (N, S)
RETURNS THE STRING WHICH IS
THE LEFT N CHARACTERS OF
STRING S. THE SYSTEM ROUTINE
RIGHT (N, S) RETURNS THE RIGHT
N CHARACTERS OF 8.

Edit Features During Text Input

Editing features are available to the user while
entering program text.

The symbol # deletes the preceding character.
This may be used 1terat1vely but applies only to the
current statement of input text.

The symbol « deletes the current statement.

A string of characters between two statement
delimiters may be considered to be a text segment.

The formation:

—n:

appearing at the beginning of a segment replaces
the text segment n segments previous with the text
segment following the colon. If a statement delimiter
immediately follows the colon the nth previous seg-
ment is deleted. If n refers to a segment not in the
in-statement, the text segment following the colon is
inserted at the beginning of the in-statement. n may
not be zero.

Example:

COMPILE, 1:3,A: =B+*CH##C;Q: =
E/*,C: =Q—F;—2:Q: =E/N;!

LIST, 1:3!
1. A: =B+C;
2. Q: =E/N;
3. C: =Q—-F;

SYSTEM- ORGANIZATION

System Executive. The Conversational Compiler Sys-
tem consists of a group of programs which operate
as a subsystem to a System Executive. Control is
given to CCS by the System Executive upon receipt
of an appropriate command, there being an entry
for each implemented programming language.
Although CCS is intended for use in a time-sharing
environment, most time-sharing attributes are pri-
marily a function of the System Executive, which of
itself is not a topic of this paper.

INCREMENTAL COMPILATION AND EXECUTION 7

Command Dispatcher. CCS operations are controlled
through a Command Dispatcher which interprets
all system commands. Upon command identification,
control is transferred to an appropriate system
routine.

Source Language Compilers. The initial implementa-
tion of CCS has two language compilers; extended
versions of ASA FORTRAN IV and ALGOL 60.
The compilers are entered from the Command Dis-
patcher, and produce independent relocatable pro-
gram elements for each segment of source language.

Source Language Structuring Routines. Upon the
completion of the compilation of a group of source
language statements, control transfers from the com-
piler to the appropriate language structuring routine.
Whereas the compilers operate incrementally, the
structuring routine interacts with all of the elements
produced during a compilation phase, linking these
elements into a meaningful “structure” and enter-
ing it into the program. Upon completion of this task,
control returns to the Command Dispatcher.

Source Language Definition Search Routines.
Although the structuring routines link statements
into a program, they do not supply operating defini-
tions needed for execution. These definitions are
supplied by the appropriate language structuring
routine which is called from the Execution Monitor
upon recognizance that a particular program element

has not been previously executed. After definitions
have been supplied for this element, execution
proceeds in a normal fashion.

Execution Monitor. The Execution Monitor controls
program execution, its action being determined by
the specified execution mode, i.e., PRODUCTION,
DIAGNOSTIC, or STEP. The Execution Monitor
may interrupt the program upon the completion of a
statement; pausing or terminating the execution if
ordered. Upon completion of the execution of a pro-
gram statement, the Execution Monitor will execute
any debugging routines active for the respective
statement.

Service Routines. These routines perform the neces-
sary functions of preparing program listings, chang-
ing program statement status, destroying data follow-
ing partial execution, deleting program text, preparing
program files, and defining debugging routines.

SYSTEM MECHANICS
Memory Organization

The total computer memory allocation for each
CCS user can be divided into two general classifica-
tions; System Memory, which is shared by all users,
and User Memory, which is unique in content for
each user. '

ONE SET FOR EACH LANGUAGE

SYSTEM
EXECUTIVE
PARENT SYSTEM
ccs
COMMAND
DISPATCHER
[
: |
\I/ |
|
LANGUAGE ! EXECUTION SERVICE
COMPILER | MONITOR ROUTINES
|
I (S .
|
LANGUAGE LANGUAGE :
STRUCTURE DEFINITION SEARCH |1
g |
|

Figure 1. CCS system organization.

8 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

EXECUTION
AVAILABLE FOR SYSTEM MEMORY — SYSTEM MEMORY
SYSTEM WHEN n
PROGRAM NOT]
EXECUTING DATA REGION
I — | USER MEMORY
(UNIQUE FOR
PROGRAM REGION EACH USER)

Figure 2. Memory organization scheme for CCS user.

System Memory. The proportion of the total memory
commitment given to system use varies with the
specific task being undertaken. Even though CCS is
comprised of many routines, only those needed to
perform current functions are included in the user’s
allocation.

User Memory. User Memory is always separated into
two sections; the program region, and the data region.
The program region is used to store the program
itself, and acts as a de-facto communication buffer
between the compilation, structuring, and definition
search routines.

The data region is used during program execution
as the working area for data manipulation and stor-
age. During a non-executing phase, the data region
may be swapped for system memory allowing more
efficient use of the total memory commitment.

From Source Language to Object Program

Compilation. All output from the CCS Language
Compilers is placed into the program area of user
memory. This output consists of a threaded list of
“elements,” where the actual placement of each ele-
ment is determined by the compiler upon inspection
of a “hole” list. Each of these elements contains the
encoded representation of a source language state-
ment, directive information for the structuring
routine, or diagnostic information describing a syntax
error.

Structuring. Upon the completion of the compilation
of a given in-statement, the threaded list of elements
produced become, in effect, “data” for the appro-

priate language structuring routine. The first task is
to process elements indicating that other elements
from the original program are to be “copied” into the
element list. Following this task, the elements are
counted in order to determine the increment to be
used for calculating statement numbers. The list is
then searched for diagnostic elements and if any are
found an appropriate message is output and action
taken which causes the system to expect corrective
measures from the user. These corrective measures
modify the element string. Following modification,
the diagnostic search is again undertaken.

When no more diagnostic elements remain in the
element list, the formal structuring process begins.
Each element in the list is, in turn, checked for type
and it is determined if the statement has a proper
relationship to the other statements in the list. If an
illegality is detected, the action taken is the same
as that taken for syntax errors. If no errors are de-
tected, a new header is created for each element
containing the “structure pointers” which define
the relationships between the different elements.

As part of the structuring process, modifications
are made to the Symbolic Text Dictionary which con-
tains one entry for each statement in the program.
Dictionary entries are threaded in the order in which
the statements appear in the text of the program.
Each entry contains a pointer to the corresponding
text on the Symbolic Text File and the core location
of the element representing the statement.

First Execution. Even though the structuring routines
connected elements into the program, complete def-
initions for the program variables were not yet

INCREMENTAL COMPILATION AND EXECUTION 9

supplied. This task is undertaken by a ‘“‘definition
search” routine. Upon encountering an element
which has not been previously executed, the Execu-
tion Monitor causes a definition search to - be

activated which traces through the program seeking -

definitions for the undefined variables. If a definition
is not found, depending on the conditions and the
source language used, one of two actions will be
taken. An execution diagnostic will be output, or an
implicit declaration for the variable will be entered
into the program.

Subsequent Execution. Once definitions are supplied
via the first execution, an element may be executed
any number of times without further ado. Changes
to the data definitions or placement of the state-
ment in the program may, however, require another
definition search.

Pseudo Machine Code

The encodation produced by CCS translators is in
the form of a quasi-interpretive language referred to
as “Pseudo Machine Code” or PMC. The net effect
of PMC is the expansion of the “hardware” ca-
pabilities of the computer, thereby simplifying the
task of the compiler and enhancing the capabilities
of the system.

Data Formats. The PMC allows internal data to as-
sume one of seven formats:

Integer

Real

Boolean

Expanded Precision Real

Complex

String

Text

Text and string variables have identical functions,
the difference being that while the storage for string
variables is taken from the user’s memory, the stor-
age for text variables will be taken from secondary
memory. The string and text variables are unique in
that they store character strings of indefinite length.
The amount of storage used is not fixed, but rather, is
a product of the number of characters actually con-
tained in the string. Therefore the storage used by
string or text variables will possibly change during
program execution.
Any of the PMC data types may be dimensioned

to be arrays. Also, PMC provides the capability for

function subroutines to be defined in terms of any
of the above data types.

Instruction Set. PMC operations may be grouped into
three categories:

Data Operations

Storage Declaration

Procedure Control

Data Operations. PMC data manipulating instruc-
tions are provided for arithmetic, relational and
Boolean operations. These instructions function in-
dependently of data types.

Depending on.the mode of execution, illegal data
operations produce either an undefined result or an
execution diagnostic.

Storage Declaration. PMC storage declarations take
the form of a subroutine call with argument list.
When encountered during program execution, ap-
propriate modifications are made to the data base
conforming with the intent of the declaration.

Procedural Control. Within the PMC instruction set,
operators are supplied for the following procedural
control capabilities:

Transfer of Control
Subprogram Call with Parameters
Loop Control

Transfers of control may be either conditional, un-
conditional, or selective. A conditional branch is
made or not made depending upon the content of a
Boolean variable. Selective branches may be made
to one of many locations depending on the resultant
value of an expression.

PMC provides a complete mechanism for sub-
program calls. Parameters may or may not be
present, and the parameters themselves may effect the
transfer of a value or identifier into the subprograms.
The parameters may, if desired, be expressions, and
it is possible to indicate whether the expression
should be reevaluated upon each use of the corre-
sponding entry in the subprogram, or whether the
expression evaluation is undertaken only upon trans-
fer of control to the subprogram.

The mechanism for programmed loops has been
provided in the Pseudo Machine Code. This mech-
anism is flexible enough in scope to be capable of
proper performance of all variations of ALGOL
“for” statements and FORTRAN “do” statements.

Data Stack. The executing logic of the PMC assumes
a data stack. At the beginning of program execution,

10 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

the stack is empty. Data storage -declarations cause
the necessary space to be placed on the top of the
stack (the PMC includes operations for subsequent
alteration of the size of the storage area). The top of
the stack is used as a scratch pad by the PMC rep-
resenting a given statement. The executing PMC
access data on the stack through a network of dy-
namically maintained ~indirection pointers. This
mechanism allows data definitions to be recursive
since the obscured definitions can be restored when
needed.

CCS INPUT/OUTPUT PACKAGE

A flexible and easy to use I/O package is avail-
able for CCS wusers. Implicitly formatted I/O ca-
pability is offered for easy data transfer to and from
a character oriented remote terminal. Explicitly
formatted I/0 is available for more elaborate data
input and output to and from any storage media.
Formatted 1/0 is not device oriented, and only a
file designator (a system assigned number) is needed
to reference the file.

Format specifiers are designed for both business
and scientific applications. Additional flexibility is
obtained by using string data for formats. Through
the use of powerful string handling capability avail-
able to the CCS user, formats can be constructed, or
modified, during program execution.

In order for all CCS languages to have ready
access to the I/O package, commands take the form
of system subroutine calls.

Implicitly Formatted 1/0

The subroutine:
ACCEPT (vi)
(where vl is a list of variables, possibly subscripted,
separated by commas) will input data from the tele-
type. A space, comma, or carriage return serves to
separate data. Data is input until the v/ is exhausted.
Strings as well as numbers may be input in this
fashion using the prime and quote as string delim-
iters.
The subroutine:
DISPLAY (el)
(where el is a list of general expressions separated by
commas) will output data to the teletype. Each value
that is printed is followed by three spaces. If a
string is printed, these spaces are suppressed. No
carriage return is issued until the el is exhausted, or
an output line is filled, at which time a carriage return

and line feed are automatically given. The terminat-
ing carriage return may be suppressed by including
the system defined symbol “$” as the last element

in the el. “%” may be used to obtain intermediate

carriage returns; e.g., ("A=", %, 3) would print:
A=
3
Implicitly formatted 1/0 is intended to be a painless
way for novices and impatient experts to communi-
cate rapidly with their programs.

Explicitly Formatted 1/0

The subroutine:
READ (n, f, vl)
inputs data from the file n according to the format
f into the variables listed in vl. f may be either a
string literal or variable.
The subroutine:
WRITE (n, f, el)
outputs the values of the expressions in el to file n
according to format f.

Formats

A format is a string which is either in literal form
or addressed by a string variable. Each element in the
I/0 list (i.e., vl or el) for the READ and WRITE
routines is described by a format part. Parts are
separated from each other by a colon (e.g., ‘part :
part : part”).

A part consists of special characters which de-
scribe input and output fields.

A string of duplicate characters may be expressed
also with the number n preceding the repeated
character; e.g., DDDD is equivalent to 4D.

Any part may be enclosed within parentheses and
preceded by a number r indicating a concatenation
of the part; e.g.,, 2(DD.D:)” is equivalent to
'DD.D : DD.D”.

When a format string is exhausted before the 1/0
list has been completely processed, the format is re-
scanned.

All CCS I/0 routines count lines and space out
pages on teletype I/0. Symbolic files have the neces-
sary line feeds such that if they are ever printed,
spaced pages result. o

When a specific field size is exceeded by trying to
output too large a number, an asterisk prints in the
leftmost position of the field along with the remain-
ing part of the number that will fit.

INCREMENTAL COMPILATION AND EXECUTION 11

Any string literal appearing within a format is
printed verbatim excluding the surrounding primes.
String literals appearing in a format are ignored when
input, allowing an output format in many instances to
be used for input.

If a real (integer) datum is input and the receiving
variable is integer (real), the necessary conversion to
real (integer) takes place. This implicit conversion
feature extends to strings.

Boolean values are printed as a “T” or “F” right
justified in the field. Any format character specifying
digit may be used for Boolean output.

Whenever an I/O list is exhausted, a carriage re-
turn and line feed are automatically given. A special
character described below may be used to suppress
this action.

Special characters:

D : Specifies a digit for the corresponding
position in the I/0 field. Insignificant
zeroes are printed and the sign is
suppressed,;

e.g., the Format: 'DDD”
"~ used with: Write: 3
will Print: 003
used with: Write: —3
will Print: 003

+ : Same as D except the sign “floats”
into the rightmost “+” which is not
needed for a significant digit;

e.g., Format: "+ +4+D”
Write: : 5
Prints: A+S
Write: -5
Prints: A—5

— : Same as “+” except that a plus sign
is never printed,; .
'_____D”

e.g., Format:
Write: 5
Prints: ANS
Write: —5
Prints: A—5

Z : Same as “D” except leading zeroes are
not printed,; . '

e.g., Format: 777
Write: 6
Prints: A N6
Write: —6
Prints: © ANG

,. May appear anywhere in a part and
causes the printing of a comma. The
comma is not printed with an adjacent

space;
e.g., Format: 'ZZZ7,777,777.DDD”
Write: 532468.29

Prints: ZZZ7ZZ7 532,468.290

The symbols “D”, “+7, “—", “Z”, and “,” may be
used for input of integer data. The datum must be
such that it could have been created via a WRITE
using an identical part specification.

The decimal point indicates a real
number is to be output. The special
characters to the left of the decimal
point describe the integer portion of
the datum while the fractional portion
is described by the characters to the
right. The decimal point prints in all
cases except when surrounded by
blanks. The definitions for “+7, “—”
and “Z” are mirrored when to the
right of the decimal point;

e.g., Format: "772.77”
Write: 48.7
Prints: N48.7.
Format: "2ZZ.D+ +”
Write: 63.4
Prints: N63.4+.

Represents base 10 exponentiation.
The coefficient ‘is described by the
characters to the left of the @ or E
symbol and the exponent is described
by the format characters to the right;

T ®

e.g., Format: "277.Z@DD”
Write: 463.2
Prints: 463.2@01

Real numbers are input by specifying their field
with the “D”, “Z”, “47, “=7, “”, “” “@".
The number is automatically converted to the
mode of the corresponding variable in the input
list;

S: Specifies a scale factor to be used after
input or before output of numeric
data.

The formation:
S[n]
appearing at the beginning of a format

12

%

PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

part (n is an integer, possibly signed)
scales the number by 10 to the power
n; .

e.g., Format: ’S[—2]DD”
Write: 3000
Prints: 30
Format: ’S[2]DDD”
Write: 4
Prints: 400

: Acts as a skip on input and as a space

on output. The “X” may occur any-
where in a format part;

e.g., Format: ‘DD : XX : DD”
Write: 23,22
Prints: 23 AN22
Format: "IXZ7”
Write: 468
Prints: 4 N68

Skips to the next line on output;
ignored on input.

Skips to the next page on output;
ignored on input. After the page skip,
“L” is implied.

Specifies alphanumeric input or out-
put;

e.g., Format: 'AAA : ZZ”
Write: "AA=",2
Prints: AN=AN2

Specifies implicit formatting; causing
READ to function as an accept and
WRITE to function as a DISPLAY.
The symbol “I” may not be used in
conjunction with any other special
characters other than “S”.

The format specifier “I” is useful
for input of strings of unknown length.
Strings input must have primes as
delimiters. Output strings will be
printed with a special “invisible delim-
iter” which will not print, but will
appear on a paper tape or file, allow-
ing these strings to be input without
apparent primes.

Indicates a binary file is to be input
from or output to. No other specifica-
tion characters may appear in the
format.

B : Suppresses the carriage return when

' the I/O list is exhausted, allowing
more than one output statement to
print on a given line.

CCS-ALGOL

The motivation for creating CCS-ALGOL stems
from the desire to create, in conversational form, an
ALGOL 60 that adhered to the specifications of the
1962 Revised Report.

Much has already been said about the effects. of
time-sharing on software. The one very important
effect of time-sharing is the fact that it enables the
user to operate a computer on-line. He therefore
expects things to happen very rapidly. He also ex-
pects to have reasomable conversations with the
machine in order to debug programs and operate
them successfully. This necessitates a responsiveness
to the user’s commands in terms of seconds rather
than minutes (or hours) as in batch processing ori-
ented compilers. CCS-ALGOL has, in large measure,
achieved this goal by compiling input text in an
incremental fashion. A high degree of interaction
between CCS-ALGOL and the CCS Execution Moni-
tor allows rapid repair of bug-infested programs.

Another goal was to have the object code pro-
duced by the compiler, operate in a reentrant
fashion, allowing users to write programs and sub-
sequently share them simultaneously with other users.

Finally, some rules defined under ALGOL 60
having to do with expression formation, name forma-
tion and the use of strings were thought to be too
restrictive and were somewhat relaxed.

The philosophy adopted during the development of
the compiler, whenever a choice existed between
different methods of implementation, was to choose
that which allowed the greatest syntactic flexibility
and ease of programming.

The above goals have been attained in the im-
plementation of CCS-ALGOL. CCS-ALGOL is a
fast, incremental, one-pass -reentrant compiler pro-
ducing reentrant object code.

A review of the more important capabilities and
extensions of CCS-ALGOL follows. The general
manner in which the compiler works is subsequently
described. It is assumed that the reader is familiar
with ALGOL 60.

INCREMENTAL COMPILATION AND EXECUTION 13

Definitions

Identifiers. An identifier is a programmer-defined
name used to represent variables, arrays, procedures,
switches and possibly labels. An identifier is defined
to be any string of alphanumeric characters of
arbitrary length, containing at least one alphabetic
character.. Since blanks are ignored, the name
“ARRAY BETA” is the same as the name “AR-
RAYBETA.”

Examples: ABC, VARIABLEI,

THIS IS A NAME, 12304

Labels. A statement label may take either the form
of an identifier or of an integer numeric. Insignificant
zeroes on numeric labels are ignored; e.g., 0068 =
68.

Examples: 12345, AB1, 015,
THIS IS A LEGAL LABEL,

43687, 236

Delimiters. ALGOL 60 requires certain words which
have special meaning such as “GO TO” to be used
as unique symbols in the character set. These special
symbols and other single character symbols such as
arithmetic operators, are called delimiters. While
delimiters such as =, +, 1, >, have unique rep-
resentations on currently available input equipment,
delimiters such as “IF” and “GO TO” do not, and in
order to set them apart from identifiers (e.g., a
variable called “IF”) CCS-ALGOL requires a single
dot (.) to precede an alphabetic delimiter. Examples
are: .IF, .GO TO, .ARRAY, etc.

In order to save typing, any delimiter comprised
of five or more characters may be contracted by
typing the dot, the first letter, a prime, and the last
letter. The only exception to this rule is .BEGIN
which has no abbreviation. For example, .PROCE-
DURE looks like .P’E and .BOOLEAN looks like
.B'N. ‘

Variables and Constants. Variables may be any of
five types: text, string, Boolean, integer or real. A
variable or array element not containing data of one
of these types is considered undefined.

The Boolean constants are: . TRUE, and .FALSE,
and are the only values to which Boolean variables
or array elements may be set.

Integer constants have the appearance of a nu-
meric string.

Real constants have the form:
X.y or a.b@c.
x, ¥, a, b and ¢ are integers. x, a and ¢ may be
signed. @ symbolizes “ten to the power”. If a.b. is
missing, 1.0 is assumed.

String constants have the form:
’STRING OF CHARACTERS”

Strings. Several string management features have
been included in CCS-ALGOL. In addition to those
described in ALGOL 60 specifications, a variable
may be declared to be of type “string” by the new
delimiter .STRING.

The declaration form:
.STRING .ARRAY x[a;:b;,..... ,a,:b,]

declares x to be an “n” dimensional array of strings.
String array elements can contain strings of arbitrary
length and, therefore, may be thought of as extending
into the n + 1st dimension.

Procedures may also be of string type in which
case they are expected to return a string when called
upon.

The relational operators (>, > =, < =, <, +,
< >)may have string variables as both operands
with the obvious meaning.

A string conversion capability is built into the
replacement operator. Just as ALGOL 60 converts a
value of real (integer) type to a value of integer (real)
type across the : = operator, a string may be con-
verted to a real or integer number or vice versa.

Example: .STRING S; .REAL R;

.INTEGER I.
S: =7463.297;
R:=1:=S8§

results in the real value 463.29 being placed in R
and the integer 463 being placed in L.

Concatenation of two strings is performed by the
system subroutine “JOIN” as follows:

a: = JOIN (sl1, s2) .
where a, sI, s2 are string variables; s2 is appended to
sl and placed in a.

Extraction from strings is performed by the two
system subroutines “LEFT” and “RIGHT” as fol-
lows: » :

a: = RIGHT (e, sl)

Here the rightmost e characters of s/ will be placed
in a.

14 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

Examples:

1. Ifsl: = ’ABCDE”
Then: a: = RIGHT (3, LEFT (4
s1))
Results in: ‘BCD” = contents of a.
2. If s1:="'ABCD”
Then: a: = JOIN (LEFT (2, sl),
RIGHT (1, 'EFH”))
Results in: "ABH” = contents of a.

NOTE: with proper comments, these subroutines are
readable:

a: =LEFT (3) CHARACTERS OF:
(STRING 1)

g : = JOIN (STRING 1) WITH: (STRING
2)

Program Structure

CCS-ALGOL treats compound statements and
blocks in an identical manner. Blocks may be nested
to a depth of 64 levels.

Storage allocation is performed dynamically and,
therefore, storage for identifiers declared in a partic-
ular block exists only during the execution of that
block. Upon entrance to a block, storage is created
for variables and arrays after evaluating subscript
bounds for array declarations. Storage is released
upon exiting the block within which it is defined.

Own variables and arrays have the special property
that their storage is not released. However, storage
for own arrays is dynamically allocated and array
bounds may-be reset by re-entering the block con-
taining the declaration. If the new bounds are dif-
ferent than the previous bounds, elements of the
previous array within the new bounds retain their
previous values and subscripts. Array element values
outside of the new bounds are permanently lost, wh11e
new clements have undefined values

Statements and Expressions

The formation and meaning of all statements and
expressions in CCS-ALGOL patterns that of the
1962 revised ALGOL Report, except for the follow-
ing generalizations:

The IF Clause. ALGOL 60 specifies no .IF clause
is to follow directly a . THEN delimiter because of
parenthetical ambiguity. CCS-ALGOL adopts the
convention that any .ELSE delimiter appearing in
the text is associated with the nearest previous .IF
delimiter that is not already matched with a . THEN.

Parentheses may be used to alter this precedence
rule.
Example:
The statement:
.IF A .THEN .IF B .THEN .GO TO
L1 .ELSE .GO TO L2 is equivalent to:
.IF A .THEN (.IF B .THEN .GO
TO L1 .ELSE .GO TO L2) and to obtain
the alternate meaning, parentheses must
be used as follows: »
.IF A.THEN (.IF B.THEN .GO TO
L1) .ELSE .GO to L2 ’

The Unary Operators. ALGOL 60 specifies that:
A .AND .NOT B
is a legal expression, whereas:
A*—B
is not. Since this is felt to be an unnecessary restric-
tion, CCS-ALGOL allows all unary operators to
appear without preceding parentheses. Unary opera-
tors may be repeated without ambiguity, although
there appears to be no reason for doing this under
normal programming conditions.

Example:
The expression:
A¥* —B 4+ ——C

is equivalent to:

A*¥ (—B) + (—(—=C))
The Replacement Operator. The replacement opera-
tor “: =” may be used more than once in an
expression to set more than one variable to an
expressed value. The ALGOL 60 restriction that all
identifiers in the left part of an expression be of the
same type has been removed. If a mixture of variable
types appear in the left part list appropriate mode
conversions will be made.

Procedures. CCS-ALGOL allows a varying number
of parameters to be furnished in different calls to the
same procedure through the use of the new .LIST
declarator which applies to the last- parameter in the
formal parameter list of a procedure definition.

Example:

.PROCEDURE PROC (A,B);

.INTEGER A; .LIST B;

B defines a list, references to which must be sub-
scripted. The convention is that B[n] in the proce-
dure body references the n-1st element beyond the
element corresponding to B in the calling sequence.
If B[n] references an element which is not present
(i.e., n too large in the call), B[n] becomes undefined.

INCREMENTAL COMPILATION AND EXECUTION 15

Example:

Given the procedure definition:
.PROCEDURE PROC (A,B);
.INTEGER A; .LIST B;

B[A—1]: = B[A];

The call:

PROC (2,Q,2)

would result in the following action: “A”

has the value 2, therefore, BIA—17] or B[1]

refers to Q, and B[A] refers to 2. PROC

will, therefore, store 2 into Q.

For an array passed through a call in this

manner, the following, rather awkward,

notation results:
ARRAY [<list index>] [<array
subscripts >]

Procedures may recur, formal parameters being
saved and restored accordingly.

When an expression appears as a parameter in a
procedure call, references to the corresponding
formal parameter in the procedure cause re-evalua-
tion of the expression at the level in which the call
appeared. The expression takes the form of an im-
plicit subroutine eliminating duplication of in-line
code in the procedure body.

Passing a procedure name through a procedure
call, mentioning the corresponding formal param-
eter is tantamount to a call to that procedure.

Example:

Given the code:
.PROCEDURE PROC 1(A,B,C);
A(B,C);
.PROCEDURE PROC 2(M,N)
M:=N;

and issue the statement:
PROC1 (PROC2,Z,3);

The call to PROCI causes the execution of the
statement A(B,C) and, since PROC2 corresponds to
the formal parameter A, a call to PROC2 results.
PROC2 sets M: =N or B: =C, or Z: =3 and
returns. PROCI1 then returns completing the process.
A procedure name appearing in a calling sequence
to another procedure will be executed every time the
corresponding formal parameter is mentioned.

Example:
To perform the same action as the above:
Given the code:

.PROCEDURE PROC1(A);

A;

.PROCEDURE PROC2(M,N);
M:=N;

and issue:
PROCI1(PROC2 (Z,3));

The parameters supplied to PROC2 are supplied
directly in this case.

When a statement label is furnished in a calling
sequence, a transfer to the corresponding formal
parameter effects transfer to the label.

Note that CCS-ALGOL allows numeric labels.
The ambiguity problem posed by having labels which
look like constants is solved by introducing the
capability of maintaining doubly defined symbols
using machinery transparent to the user. Suppose the
constant 11 were used in a program in which there
existed a label 11. Passing this numeric through a
procedure call causes no difficulty in interpretation
to CCS-ALGOL. A subsequent use of the corre-
sponding formal parameter in an expression causes
the value 11 to be used. However, a transfer to the
formal parameter properly causes a transfer to the
statement labeled 11.

External procedures may be coded in CCS-
ALGOL or some other language translated separately
—perhaps, not even under CCS. The only restric-
tions imposed are: (a) that communication with the
call is through the formal parameters and, (b) these
parameters ‘may not include implicit subroutine
calls.

All the standard system procedures specified by
the report are available in addition to the previously
mentioned I/O and string routines. These system
routines have the property that if their name appears
in a declaration, the name loses its system meaning
and adheres to the user definition for the duration
of that block. Upon exit from the block, the name
regains its system meaning. There are, therefore,
no names off limits to the user in CCS-ALGOL.

Implementation

The ALGOL Compiler is implemented.in a time-
sharing environment and has therefore been made to
be modular and flexible. Full advantage is taken of
the time-slice and paging characteristics which are
becoming typlcal of time-sharing systems.

The compiler is comprised of two parts. The Text
Scanner performs on-line editing and text manipula-
tion. The Syntax Analyzer generates code on: the
basis of the meaning of the incoming program text.

16 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

The Text Scanner. The edit capabilities during text
input have been described previously. A special pass
must be made over the text to perform the edit func-
tions, expand abbreviations and replace names and
delimiters with their assigned internal codes.

The scanner operates on a line of text at a time.
The text is scanned interpretively for edit characters
until the line is clean. Text is then divided into seg-
ments to be written on the symbolic file according to
a few rules. The rules are needed because the user
is given the capability of deleting and changing
“statements” as described under the CCS-command
set. For instance, in ALGOL, a large block of code
may comprise one compound statement which is
normally looked upon as the same entity as a simple
statement. However, the user would like not to have
to delete the whole block (as a statement) in order
to delete a single statement within the compound
statement.

The rules that are followed are:

1. Simple statements terminate with a
semicolon.

2. Statements within blocks terminate with
either a semicolon or . END.

3. Statements within .IF
terminate with .ELSE.

4. A .BEGIN terminates the preceding
portion of the statement.

statements

A statement such as: .IF B . THEN .BEGIN A
:=C; Q:=D .END .ELSE G : = F; would be
broken down into the following text segments.

Terminating
Delimiter
1. .IF B .THEN BEGIN
2. A:=C ;
3.0:=D .END .ELSE
4, G:=F ;

The terminating delimiters are not included with
the text. Instead a code is carried along indicating
the terminating delimiter.

The above procedure has been adopted to make
the DELETE work on meaningful statements in
ALGOL. Actually, by noting the text segments
above, it is seen that this entire process is trans-
parent to the user. He merely treats blocks as a
conglomerate of statements, and .IF statements as a
triumvirate of statements.

The text segments are written into a symbolic file
on secondary memory and are pointed to by elements
in the text dictionary. ‘

The text is then broken down into sections with-
out regard as to where a statement begins or ends.
A section is called an Identifier-Delimiter pair (I-D
pair) and consists of either a delimiter or an identifier
and a delimiter.

Example:
Text: |A :=| .IF| Q>|B. THEN| C
.ELSE| D; | Q : = | M; |
I=D Pairs: A T =
v IF
Q >
B .THEN
C .ELSE
D ;
Q t=
M ;

Each identifier is searched for in a name table.
If found, its position number is returned. If not, a
new entry is made and a new position number is
created and returned. Delimiters are looked up in a
delimiter table and replaced by their corresponding
codes. A zero is used to fill the identifier position
for those I-D pairs which contain only a delimiter.
The I-D pairs are then loaded into a ring buffer in a
buffer page.

The name table resides in the same memory page
as does all buffer storage. This coexistence will work
if the number of user defined names stays under 100.
For larger programs, more memory is automatically
obtained and used.

The Syntax Analyzer. The Syntax Analyzer is built
to operate on one I-D pair at a time. It is this
characteristic that allows the compiler to never be
more than one line of text behind the user input.
Part of a statement may already be “compiled” while
another part may not yet have been input.

A control routine selects which part of the analyzer
is to be called. The selection is made entirely on the
basis of the delimiter in the I-D pair. Each delimiter
has a small piece of analyzer code that knows what
to do with the delimiter and its paired identifier.

The delimiter routines break down the statements
in reverse Polish form. This type of scan has the
property that it can be completed in one left-to-right
pass. An I-D pair is, therefore, looked at only once,

INCREMENTAL COMPILATION AND EXECUTION

another characteristic which is necessary for con-
tinuous compiling.
A reverse Polish string has the form:
< operand, operand, operator >
where an operand is either an identifier or another
Polish string.

17

the string and is basically in the form necessary for
execution.

A push down stack is used to queue up delimiters
appearing in a statement until a delimiter of low
enough precedence is found that will permit the de-
limiters in the stack to be inserted into the string.
This process is repeated until the end of the state-

Example: :
. ment is reached.
The Expression: A+B A simple example is offered of the basic steps
In reverse Polishis: A, B, + performed during translation:
The Expression: A+B*C The Expression: A : = B+C*D;
In reverse Polish is: A, B, G, *, + 1. is first broken down into I-D pairs.
The order in which the operators appear in the IDENTIFIER DELIMITER
string is governed by the assigned precedence of the A =
operators. All delimiters have precedences and enter B -+
into the Polish string. Actually the Pseudo Machine C *
Code corresponding to the delimiters is inserted into D ;
1I-D PAIR
(PRECEDENCE) STACK CODE PERFORM
a) A =)] empty empty 1) Generate: “A”
2) Stack : = (1)
b) B + 2) = (1) A 1) Generate “B”
2) Stack + (2)
c) C * 3) = (1) A 1) Generate “C”
+ () B 2) Stack * (3)
d D ; ©) c= (D A * 1) Generate “D”
+ () B 2) Unstack * (3)
* (3) C 3) Generate “*”
e D ; (0)** c= (D) A 1) Unstack + (2)
+ (2) B 2) Generate “+”
C
*
f) D ; (0) c= (1) A 1) Unstack : = (1)
B 2) Generate “: ="
C
%
+
g D ; V) empty A 1) Generate;
B f
C
%
+

Il

Resultant Code: A,B,C,*, : =

T >

** For steps e through g, the same delimiter (;) is being processed. This is because unstacking action is taking place.

18 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

2. Precedences of delimiters are found
during the table lookup phase.

DELIMITER v PRECEDENCE
= 1
+ 2
* 3
; ‘ 0

- 3. I-D pairs are processed one at a time.
The stacking algorithm is basically as
follows: '

If the precedence of the current delimiter
being examined is less than or equal to the
precedence of the entry at the top of the
stack (=0 if stack is empty), then take the
entry off the stack and generate the proper
PMC for it. If the above condition is not
true, then put the current delimiter with its
precedence onto the top of the stack.

4. At this point, an element is formed and
a compiled statement emerges. The re-
sulting code that has been depicted here
is but a symbolic representation of the
PMC that are actually generated.

The scanner and analyzer portions of the
compiler are built to operate in parallel in a time-
sharing system. The scanner must issue text writes to
secondary storage and is, therefore, swapped from
core periodically. Previous to write, the text to be
written has been broken down into I-D pairs which

SCANNER PHASE

TEXT
PAGE O DICTIONARY
| PMC
2 PMC
3 | PMC
BUFFERS
6 _____ —_
NAME TABLE
- SCANNER
CODE

SAME

have been loaded into a ring buffer. Hence, the
analyzer may be started up as a separate program
to process the pairs and, therefore, complete the
translation process. The analyzer is dismissed from
operation when its job is done. '

The core layout for this operation looks typically
like the diagram in Fig. 3. Core is depicted in pages
of 2048 words. A typical configuration might have,
say, three pages of PMC.

The text dictionary is a table of pointers to sym-
bolic text on secondary storage. Since all code is re-
entrant ALGOL never takes more than three pages
for any number of users on the system. An addi-
tional two pages unique to each user are required
for table storage.

CCS FORTRAN IV

The FORTRAN Language specified by the Sub-
committee of the American Standards Association,
Sectional Committee X3, is a subset of CCS FORT-
RAN IV.

Compiler Description

The compiler incrementally translates each source
statement into an element consisting of pseudo
machine code and program structuring parameters.
Modifications to the source program can be made at
the statement level without recompiling the entire
program.

ANALYZER PHASE

ANALYZER
HODE PAGE O
PMC |
PMC 2
PMC 3

BUFFERS

—————— 6

NAME TABLE

ANALYZER 2

CODE

Figure 3. Core layouts during compile.

INCREMENTAL COMPILATION AND EXECUTION 19

Text Input. The Input/Edit consists of a collection
of primary subroutines that perform the following
functions:

GET transfers the current character to the
higher level program making the request.
Successive GET’s obtain the same charac-
ter.

ADV transfers the next character to the
higher level program and advances its
character pointer.

MRK places a pointer to the current
character in a table.

RST resets the current character pointer
according to the last entry in the table and
removes the last entry from the table.
Execution of more RST’s than MRK’s
constitutes an error.

CLR clears all entries from the table.

These subroutines are actually programmed op-
erators or POPS that are a unique hardware feature
of the SDS computers. The GET and ADV requests
initially cause an entire line to be input to a text
buffer and the required editing performed. When the
current character pointer advances to the last input
character, a new line is read in. Lines that terminate
with a carriage return cause the entire mechanism to
be re-initiallized when the calling programs have ad-
vanced the current character pointer to the carriage
return character. '

Syntax Analysis. The Syntax Analyzer scans the first
alphanumeric string in a statement image. If a
special quote such as COMMON, DIMENSION,
etc., is recognized the corresponding statement type
is assumed and the appropriate syntax subroutine is
called. Failure to identify a special quote will cause
transfer to the arithmetic statement subroutine which
resets the scan to the beginning of the statement and
performs arithmetic replacement statement. analysis.
Subsequent failures cause a diagnostic element to be
generated.

The Syntax Analyzer makes one left-to-right scan
to generate Pseudo Machine Code. The technique
is similar to that described for ALGOL in that the
analyzer operates on identifier delimiter pairs and
that statements are broken down in reverse Polish
form. Operators and delimiters are assigned prece-
dence values and a push down stack is created.
During the stacking, delimiters or operators of lower
precedence cause previous delimiters and operators

in the stack to be unstacked and used for the gen-
eration of Pseudo Machine Code.

Uncertainties that exist for a FORTRAN IV state-
ment taken out of context, such as implicit versus
explicit declaration of variables, are resolved by the
structuring routine prior to the execution of the pro-
gram.

Conventional FORTRAN compilers often resolve
syntax ambiguities created by statements considered
out of context by requiring some types of statements
to precede others. An example is the statement func-
tion vs. subscripted variable name, resolved by re-
quiring dimension statements and statement function
definitions to precede the use of the corresponding
identifiers.

However, this technique is not appropriate for
incremental compilation. Therefore the convention
of brackets “[]’ enclosing parameters of function
calls is adopted, thus, enabling the compiler to
produce the correct object code without reference to
other parts of the program. This removes odious
precedence relationships and creates a more under-
standable syntax. :

Elements generated for storage allocation state-
ments are placed by the structuring routine at the
beginning of the program or subprogram in which
they appear. At execution time, a definition search
routine -establishes pointers to variable storage ac-
cording to the rules governing COMMON and
EQUIVALENCE interaction. The definition search
routine establishes a unique data reference for each
of several uses which might be defined for an
identifier within program and subprogram relation-
ships. ‘

Because CCS permits the interfacing of assembly
language written programs, it is possible to use exist-
ing programs ¢ for intrinsic and basic external func-
tions, conversion and editing of variable width
formatted input/output and memory to memory data
conversion. '

The input to the compiler consists of free form
FORTRAN IV source text images from a type-
writer console or the system file storage. A semi-
colon or carriage return separates statements. A line-
feed continues a statement to the next line.

Identifier Mechanics. A name table entry is created
by the compiler for each identifier encountered. The
associated table entry number is used for structural
references to the identifier.

20 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

In conjunction with the name table a bit table is
maintained which enables the definition search
routine to resolve implicit definitions. Each bit of the
table corresponds to an associated name table entry
and is set depending on the first letter of an identifier
name. Explicit definitions will override implicit
definitions during the structuring phase, however,
the bit table is preserved to provide for implicit
definition should the explicit definition be deleted.

Diagnostics. When the compiler. encounters a syn-
tactical error during a statement scan, a diagnostic
element is generated which describes the nature of
the error and locates the symbolic text for the
erroneous statement.

Extended Features of CCS FORTRAN IV

Many powerful extensions have been included in
CCS FORTRAN 1V. These extensions are a natural
consequence of the structural environment created
by the design of CCS in response to the multipro-
gramming demands of a time-sharing system. Some of
these extensions are listed below.

Statements may be written in free format and are
not affected by card boundaries. The semicolon or
carriage return is used to separate statements.

Alphanumeric data handling capability has been
extended with the inclusion of string variables and
string arrays. These declarators, in conjunction with
the string manipulating functions included in the
system library, provide a powerful string processing
capability. This capability encompasses extraction
and concatenation of strings as well as the obvious
uses of relational operators and input/output of
“messages,” etc. As mentioned previously, string array
elements and string variables are of arbitrary length,
removing all considerations of machine dependency
with respect to the treatment of alphanumeric data.

Arithmetic expressions may be used in all cases
where a single variable is allowed, including sub-
scripts. All expressions may be of mixed modes.

There are no limits to the number of subscripts
which may be declared for a dimensioned variable
and both upper and lower bounds may be defined
via variables, expressions or constants.

Internal subprograms are provided which may
refer to variables defined in the parent program with-
out the use of argument lists or COMMON.

Storage allocation may be regulated so that stor-
age is assigned only when required by the execut-

ing. program. Programs debugged under other
compilers will result in the DIMENSION statement
being executed once at the beginning of the program
or subprogram in which it appears. However, a dy-
namic dimension statement of the following form
may appear anywhere in the program

DYMENSION v (e,,:€5,65:€4)

where e, e;, ¢; and e, are expressions for evaluat-
ing the general bounds of a two dimension array.
Note that storage no longer required may be effec-
tively erased by executing DYMENSION v(o0,0).

Using features provided by the Pseudo Machine
Code, CCS FORTRAN 1V includes matrix logic
features similar to PL/I. For example, in the state-
ment,

A = B+C

if A and B are arrays with corresponding subscript
bounds and C is a variable, each element in A is set
to the corresponding value in B added to the value C.

In addition, the programmer may specify “array
structures” which are components of arrays. For
example, the statement,

A(2,%) = B(2,%)

causes each element in A with value 2 in the first
subscript position to be set to the corresponding
value in the array B.

The arithmetic operators +, —, *, ** / are
permissible in matrix operations with the obvious
meanings.

Dynamic Data Storage. As has been indicated, CCS
FORTRAN 1V includes extensions to the syntax
for using dynamic data storage. The following cod-
ing example illustrates some of the capabilities pro-
vided with dynamic storage:

DATA K = DATA AREA SIZE
DIMENSION X(DATA SIZE 1), Y
(DATA SIZE 2)

DO100I =1,F
100 ACCEPT [X(1)]

DO200I=1,8
200 ACCEPT [Y(I)]

SCRATCH PAD = K — (F+5)

INCREMENTAL COMPILATION AND EXECUTION 21

IF (SCRATCH PAD .GT. 0) DYMEN-
SION Z (SCRATCH PAD)
DYMENSION Z(0), SSCRATCH PAD/
2), T(SCRATCH PAD/2)

FUNCTION DATA AREA SIZE
DISPLAY [ENTER SIZE OF DATA
AREA”,$]

DATA AREA SIZE = INPUT
FUNCTION DATA SIZE 1

DISPLAY [ENTER SIZE OF IST
DATA GROUP”,$]

DATA SIZE 1 = F = INPUT
FUNCTION DATA SIZE 2

DISPLAY [/ENTER SIZE OF 2ND
DATA GROUP”,$]

DATA SIZE 2 = S = INPUT
FUNCTION INPUT

ACCEPT [INPUT]

END

CONCLUSIONS

It is our hope that the Conversational Compiler
System will prove to be a meaningful contribution
towards the achievement of effective man-machine
interaction.

CCS takes advantage of the concept of time-shar-
ing to permit a rapid dialogue between the problem
solver and the computer in terms of the language
used to describe the problem or process. This is ac-
complished by raising the debugging facilities to the
level at which the problem was defined.

Furthermore, since the programming language is
itself critical to the definition and solution of a

problem, CCS has been designed to facilitate the im-
plementation of additional languages and, hope-
fully, to allow each language implemented to take
a form which is much more general and flexible than
its existing counterpart, if any. In fact, the inclusion
of features in a language on the system found in any
other language on the system, merely involves the
design of a suitable syntax to express that feature.

In final analysis, only extensive testing and ac-
cumulation of experience will show whether these
efforts will help close the communication gap between
man and machine.

REFERENCES

1. M. Pirtle, “Modifications to the SDS 930 Com-
puter for the Implementation of Time Sharing,”
Document No. 30.10.10, Department of Defense
Contract SD-185, U.S. Printing Office, 1966.

2. K. Lock, “Structuring Programs for Multipro-
gram Time-Sharing On-Line Applications,” Cali-
fornia Institute of Technology, Pasadena, Calif.

3. B. Randell, and L. J. Russell, ALGOL 60
Implementation, Academic Press, London, 1964.

4. B. W. Lampson, “Time-Sharing System Ref-
erence Manual,” Document No. 30.10.30, Depart-
ment of Defense Contract SD-185, U.S. Printing
Office, 1966.

5. C. S. Carr, “Question Answering System,”
Document No. 30.60.40, Department of Defense
Contract SD-185, U.S. Printing Office, 1966,

6. P. Naur, ed. (with amendments by Woodger,
M.) “Revised Report on the Algorithmic Language
ALGOL 60,” International Federation of Informa-
tion Processing, 1962. (Also in Communications of
A.CM., Vol. 6, No. 1, pp. 1-17, 1963.)

7. Specifications for FORTRAN established by
the Subcommittee of the American Standards As-
sociation Sectional Committee X3, as reported in the
Communications of A.CM., vol. 7, no. 10, pp.
590-625, 1966.

8. Scientific Data System, SDS FORTRAN IV
Reference Manual 90 11 07A, January, 1966.

PERFORMANCE OF A MONITOR
FOR A REAL-TIME CONTROL SYSTEM

Erna S. Hoover

Bell Telephone Laboratories, Holmdel, New Jersey

and

Barry J. Eckhart

Bell Telephone Company of Canada, Montreal, Canada*

INTRODUCTION

In planning the program design for a real-time
control system, it is essential that the monitor pro-
gram use an appropriate policy for scheduling work.
The performance of the system will depend upon a
number of .things; but a wise choice of scheduling
algorithm is essential.

If the system to be controlled is complicated
enough, the advantages and disadvantages of par-
ticular scheduling methods become apparent only
after the performance of the system has been ex-
tensively studied. Frequently it is not possible in
early stages of program design to predict the be-
havior of a system satisfactorily; in such cases simu-
lation is a help to understanding, which in turn leads
to informed choices in the design and manner of
deployment of the system.

The use of simulation is well suited to the study of
large real-time control systems and of computers op-
erated in a multiprogramming mode. Such systems
usually have the following properties:

* Mr. Eckhart contributed to this work during an assign-
ment at Bell Telephone Laboratories, Holmdel, N.J.

23

e Demands for control action arrive in a
random manner.

e Different kinds of demands have a dif-
ferent tolerance for system delays.

® These tolerances must be met under all
load conditions.

In order to use the system efficiently, the sched-
uling routine itself should use a minimum of system
time and arrange the order of processing for the rest
of the work so that the system employs its time in
an efficient manner. This is especially important when
the system is operating under heavy demand.

A study of such a system has been made. By re-
lying heavily on simulation, the suitability of a par-
ticular scheduling algorithm has been determined.
The method chosen for scheduling machine time
affects the delay to jobs of different urgency by
checking relatively more frequently to see whether
jobs of higher urgency are waiting. Unlike the more
familiar priority allocator, the relative frequency al-
locator serves jobs of a lower urgency when their
turn comes, no matter what more urgent job is wait-
ing. As a result, even in very busy periods, the ratio
of delays experienced by jobs of two given urgencies

24 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

is likely to change less than would be the case under
a priority system. No job is put off indefinitely.
During periods of very heavy demand for machine
time, this kind of monitor exhibits a “snowballing”
effect; once encountering an unusual amount of
work, it goes through its fixed order of service at an
unusually slow rate, processing all the work it finds.
Since work is likely to be waiting for it on the next
cycle, one slow cycle is likely to lead to another.
Most of the delays to jobs occur in these slow pe-
riods. By means of simulation, it was discovered that
the same volume of work can be served with less
delay if the work is organized in a suitable way. The
fixed order of serving work must be arranged so that
the monitor is not likely to try to serve extremely
large amounts of work of a given urgency before go-
ing on to the next class of work. Such an arrange-

ment was found, and it was shown by simulation to

improve the grade of service to various jobs.

DESCRIPTION OF THE SYSTEM TO
BE SIMULATED

In certain communities, Bell System customers are
currently served by a new kind of automatic switch-
ing system: A stored program of over 100,000 words
controls the telephone equipment and responds to
the customers’ demands for service. This electronic
switching system must serve thousands of telephone
customers in a given exchange area and respond to
their demands for service without undue delay.* The
system has a monitor program which allocates the
processing time of the machine among the many
tasks which an automatic switching system must
perform. Like many real-time control systems, the
basic requests for service arrive at random and are
not under the control of the system. The system can
be considered as a single server processing multiple
queues where the service discipline is given by the
monitor.

Types of Tasks

The stored program control of the Electronic
Switching System, or ESS, spends the major portion
of its time processing telephone calls.? There are,
however, other tasks which must be done. In order to
permit the telephone companies to determine the
volume of calling and to provide sufficient equip-
ment for it, the program measures the amount of
traffic and periodically reports the results for these
administrative purposes.

The program also makes routine tests of the
equipment to check that all is working well.> When-
ever a fault is found in a particular piece of equip-
ment, it is immediately switched out of service. The
program then diagnoses the fault and prints out the
results of the investigation so that a repairman can
readily replace the portion of the equipment which
has gone bad. The monitor program must assign suf-
ficient machine time at appropriate times so that all
these tasks, call processing, administration, and
maintenance, are properly performed.

The problems of real-time control encountered in
this system are similar but not identical to those in-
volved when a multiprogramming monitor operates
a computation center. In both cases a model of the
manner in which the processing jobs are done and
of the monitor scheme can be constructed. Fortu-
nately, in the case of the telephone system, much is
known about the nature of telephone traffic so that
the demands made upon the system can be realisti-
cally simulated, whereas much less is currently
known about the demands placed on a multipro-
grammed computation center.

System Delays

If the monitor system allows excessive delays the
following two general types of penalties can occur:

1. Equipment will be inefficiently used.
In a telephone switching machine there
are many groups of equipment items
supplied in quantities based on the ex-
pected traffic. If the system organiza-
tion causes excessive delays between
the occurrence of an event which
makes available one of these equip-
ment items and the actual releasing of
the equipment item by the system, the
system monitor is in effect keeping that
equipment item busy. This applies to -
both hardware equipment items and
temporary memory registers. This arti-
ficial holding of items within a group
results in decreasing the capacity of the
group to carry traffic.

2. Service delays are increased. The sum
of the delays imposed by the monitor
form a component of the service delays
experienced by the customer. In this
way the system organization directly
affects the service given the customer.

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 25

Fortunately jobs vary enormously in the amount
of delay they can tolerate. Delays on the order of
tens of milliseconds, which seem long when meas-
ured on the microsecond scale of machine instruc-
tions, will barely be noticed by telephone customers.
Permissible delays for different types of work vary
from tens of milliseconds to a second or so. The pro-
gram also deals with input/output signals where the
system must sample the state of certain circuits every
11.5 milliseconds or risk the loss of accurate infor-
mation. The monitor takes advantage of this differ-
ence in the tolerance of delay for different jobs when
it organizes its work.

Statistical Nature of the Major
Demands on the System

The system is arranged so that it can devote the
bulk of its time during the busiest hours of the day
to processing traffic. Even at these times, a certain
minimum, on the order of 1 or 2% of system time,
must be spent in routine checks of the entire system,
including the data stored in memory, the circuits of
the memory and processor, and the circuits con-
trolled by the system. Occasionally the equipment
will malfunction. This requires the attention of the
diagnostic programs which may wholly occupy the
system for a brief time. Since the hardware is de-
signed to provide reliable telephone service day in
and day out, the occurrence of faults is very rare;
consequently a negligible amount of the total time of
the system is spent in diagnosing actual troubles.

The work of the machine in processing a tele-
phone call is broken into a series of discrete tasks,
ranging in number from 2 to over 20, depending on
the complexity of the call. For example, when a cus-
tomer dials, the machine spends a small fraction of
a millisecond to see whether dialing is complete. The
call can proceed either by ringing the desired party,
returning busy tone, or by routing the call to another
central office. These tasks are more complicated and
typically may. take from 1 to 20 milliseconds to
complete. Thus some tasks place a demand on the
system which is 20 times or more the demand of
other tasks.

Not only does demand for call processing time -

vary with the type of input, but the number of in-
puts also varies. Studies made over the ‘years on the
behavior of telephone customers indicate that the
number of requests for service arriving in a given
small period of time can be expressed as a Poisson

distribution. Similarly, conversation times are ex-
ponentially distributed.

In order to accord each type of job the service
appropriate to it, jobs are divided into two groups;
those which have a tolerance for delay of less than
.2 of a second and those which have more than .2 of
a second. Many of the jobs in the first group must be
performed within a tolerance of 5 milliseconds, some
within a few microseconds. These jobs are subdi-
vided accordingly.

Many of the jobs in the second group can tolerate
delays of over a second in a small fraction of cases.
However it is desirable that the average delay should
be less than .2 of a second for most types of jobs
and considerably less for some. Accordingly, these
jobs are also subdivided into types according to the
relative amount of delay which was judged tolerable.

Meeting Small Timing Tolerances

When the system was designed, two methods for
processing the more urgent jobs were known to the
designers. One method would require that all proc-
essing sequences be broken into very short runs, on
the order of 100 microseconds. Between each run,
the monitor would check to see if any of the urgent
jobs were waiting.

The other method would provide an interrupt cir-
cuit which would interrupt the program in control of
the machine and cause a transfer to the urgent job.*
Data pertaining to the interrupted program would be
transferred from the flip-flop registers of the ma-
chine, preserved in memory, and restored when the
interruption is over. Therefore the interrupted pro-
gram would not be aware the interruption had oc-
cured.

The second method was chosen for several rea-
sons. To require that programmers break their
programs into such short sequences is at best bur-
densome and at worst impossible. Large control pro-
grams perforce make extensive use of subroutines.
If the subroutines themselves transfer to other sub-
routines conditionally, the program which calls the

first subroutine cannot control the running time.

Hence, either severe requirements must be placed on
the structure of subroutines, or such a restriction
cannot be met at all. But to meet such severe re-
quirements would be burdensome for the program-
mers. Also, such an arrangement would undoubtedly
result in the machine’s spending much of its time in
overhead. Furthermore, on the rare occasion when a

26 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

malfunction occurs, it is desirable to transfer to the
maintenance programs as soon as possible. The in-
terrupt method permits the transfer within a few tens
of microseconds.

Figure 1 ° illustrates the time-sharing between the
jobs performed during an interruption and the base
level jobs. During normal operating conditions the
urgent jobs are mainly of an input/output character.
To meet their service requirements, the machine is
equipped with an interrupt circuit which acts every
5 milliseconds. During each 5-millisecond interrup-
tion a number of these urgent jobs are scheduled in
the order from least to greatest tolerance for delays.
First in the list is the most sensitive job which has a
tolerance of 1.5 milliseconds. Obviously these pro-
grams must be short.

Very rarely, a hardware fault will occur. The in-
terrupt circuit will then break in and pass control of
the machine to a program that will pinpoint the de-
fective unit and switch it out of service. A hierarchy
of interrupt levels for maintenance exist so that the
occurrence of more serious faults may interrupt the
input/output tasks and the programs which analyze
less serious faults.

When a higher level interrupt program is finished,
control is passed to the program which was inter-
rupted. Control then continues down the levels of
interruptions. At each level the data which the in-
terrupted program had held in the flip-flop registers

TIME IN BASE INTERRUPT
MILLISECONDS LEVEL LEVEL

CLOCK I
+0 INTERRUPT

——

PRINT TO TELETYPEWRITER
WRITE CHARGING DATA ON TAPE

.l LOOK FOR NEW DIGITS

| TRANSMIT DIGITS TO OTHER OFFICES
| LOOK FOR ANSWERS

t2 LOOK FOR HANGUPS
PROGRAMS
PROCESSING
+3 WORK FOUND
IN HOPPERS
AND QUEUES
+4
s CLOCK . .
INTERRUPT PRINT TO TELETYPEWRITER
WRITE CHARGING DATA ON TAPE
- 77 1INPUT NEW DIGITS
+6 TRANSMIT DIGITS TO OTHER OFFICES
OUTPUT ORDERS
TO
+7 NE TWORK
+8

Figure 1. Time sharing between base level and input/output
programs.)

of the machine are replaced before control of the
machine is returned to that program. The mainte-
nance programs that run during an interrupt are also
designed to run only as long as necessary. Once the
faulty unit is recognized and is switched out of serv-
ice, the program stores its findings for another pro-
gram which will operate in the base level to find the
exact cause of the fault.

The Hopper-Queue System

In order to be able to serve the different types of
work in the base level appropriately, the various
types of work must be identified. Usually these base
level programs are initiated by an input/output pro-
gram which runs during an interruption. Fortunately,
a given input/output program usually initiates jobs
which can tolerate a uniform amount of delay.
Therefore a given input/output program will file all
its work in a specified area of memory called a
“hopper”. The monitor then has the problem of
serving the hoppers, each of which contain work
with a certain service requirement.

At several stages in the processing of a given call,
the program will require the use of an item of mem-
ory or equipment from some group of items. There
is a small probability that such an item will not be
immediately available. For example, each installation
is supplied with a generous set of ringing circuits. On
the rare occasions when a call requires a ringing cir-
cuit and none is available, that call is placed in a
queue to wait for a circuit to become free. The moni-
tor thus serves a set of queues for items of equipment
and a set of hoppers for work recently found by the
programs that operate on the interrupt level.

Choosing the Algorithm for Serving
the Hoppers and Queues

In choosing the monitor algorithm the designers
of the system were chiefly concerned with the nature
of the distribution of delay that each type of job
should experience. The precise form of the distribu-
tion of delay for each type of job and the exact value
of the average delay which is tolerable could not be
specified at that early stage in planning the system.
Usually the average delays to serving jobs affected
the use of equipment and hence affected economic
tradeoffs. The exact values of these tradeoffs were
not known at that early stage in planning. It was
easier to specify the limits on the tails. of the delay
distributions because extreme delays interfere with

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 27

the proper processing of calls. The designers were
able to form a rough judgment about the ratios be-
tween the average delays which each type of job
could tolerate. Accordingly, they assigned each type
of job to one of five classes, designated “A”, “B”,
“C”, “D”, and “E”, according to the delay which
would be tolerable. They felt that during typical
busy periods in a large installation the B class of
jobs ought to experience about twice the delay of
the A class of jobs, the C jobs about twice the delay
of the B class of jobs, and so on. E jobs had a some-
what different character because they consist of rou-
tine maintenance and administrative jobs, whereas
the other classes consist of the call processing jobs.
In most cases the worst delay experienced by an in-
dividual job of a given type could be four or five
times the average delay for a job of that type. As the
system became busier, the delays to each type of job
could be expected to increase. However, the design-
ers decided that even during the busiest period which
an installation might encounter, the ratios between
the delays to jobs of different classes ought not to
change by more than a factor of 10 from the ratios
encountered during a more typical busy period.

Many aspects of a system influence the delay to
jobs. The average level of demand for machine time,
the statistical variations of the demand, the distribu-
tion of the running times of jobs, and the proportion
of machine time used by jobs of each class all have
an effect on the delay in addition to the effect of the
particular monitor algorithm used. Some of these
characteristics of the system were known when the
monitor was chosen, but their exact effect on delays
could not be determined without a simulation.

However, the designers were aware of the general
effect of certain of the system characteristics. The
machine was likely to experience large fluctuations
in demand for machine time, which would tend to in-
crease delays. Most jobs were short, 15 milliseconds
or less, which tends to reduce delays. One inevitable
portion of the delay is the time spent waiting for the
current job, including interruptions, to finish running.
The other portion, of course, consists of the time
spent in serving other jobs before the particular job
is served. This will depend on the choice of the moni-
tor algorithm and on the amount of total machine
time required for each class of jobs. The latter fact
could not be known when the monitor was chosen.

In the light of the considerations known to them,
the designers chose the algorithm illustrated in Fig. 2
for serving the bulk of the base level work. The

OR QUEUES
TO SERVE
CLASS LIST
OF HOPPERS
AND QUEUES
NO
Yi NTRIES
FES N THE e ,
HOPPER
CALL
PROCESSING
PROGRAM
Y
HOPPERS
QUEUES

Figure 2. Organization of base level work.

monitor goes to each hopper in turn, looks to see if
there is work waiting, takes each waiting job from
the hopper in the order of first come, first served, and
turns control of the machine over to the appropriate
processing program. This program may be inter-
rupted for input/output work, but control is returned
to it, and it is allowed to finish before any other base
level program is started. When the job in a hopper is
finished, the next job is taken. This continues until
the hopper is empty. Then the monitor goes on to the
next hopper or queue in the particular class being
served. Entries are taken from queues only if there
is an appropriate equipment item available. When
the monitor has served all the hoppers and queues in
a given class it then goes on to the next class indi-
cated by the work cycle. The monitor cycles through
the five classes in the manner shown in Fig. 3.

This type of monitor gives different grades of serv-
ice to the different classes of jobs by serving the more
urgent jobs relatively more often than the less urgent
ones. If there is no call processing work to do at all,
the monitor cycles through all the hoppers and
queues of Classes A through D looking for work and
finding none. Since the work in E is routinely sched-
uled, the monitor will allocate a large portion of the
entire machine time to routine maintenance.

28 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

A B A
c BA
A C
B A
A B
D
B A
A B
c A
A c
B A
A g A B

Figure 3. Monitor work cycle.

When the call processing work builds up, the time
it takes to come full cycle lengthens; but the machine
devotes less of its time percentagewise to Class E
work when demand for machine time is great. It is
desirable to reduce the proportion of time spent on
routine matters when call processing demand is great,
but to perform some minimum amount even when
the machine is very busy.

A monitor of this kind can be characterized as a
relative frequency allocator of system time in con-
trast to the more familiar priority allocator. A rela-
tive frequency allocator obtains different grades of
service for different types of work by giving the more
urgent work relatively more chances to be served.
However, when the place in the frequency table is
reached where a class of less urgent jobs are sched-
uled, such a relative frequency allocator does not
check to see whether urgent jobs are waiting. It proc-
esses the less urgent class of jobs. It is for this reason
that even low priority jobs receive a minimum grade
of service. No job is delayed indefinitely.

A priority allocator was also considered. When a
priority allocator is used, the queues and hoppers
which hold jobs of all the higher priorities are
checked before any job of the next lower priority is
begun. Under such an arrangement, when the ma-
chine gets very busy, the ratio of the delays of the
lower priorities to the higher lengthen appreciably.
Sometimes the lower priority jobs are put off in-
definitely while the machine occupies itself with the
higher priority tasks.

A strong form of the priority method is used in
ESS in the levels of interrupt jobs. In addition, a
weaker form is used for a small fraction of the base
level jobs. A few of these jobs are required to wait
only as long as the machine takes to finish its current
base level jobs including interruptions. The machine
checks to see if such a priority job is waiting when-
ever a current job finishes. If so, it turns control over
to the priority job immediately. Fortunately, these
base level priority jobs constitute a small fraction of
machine time. If they occupied a large portion of
machine time, the delay they experience would con-
sist to a significant degree in time spent waiting for
another priority job to finish. Thus, both the priority
method and the relative frequency methods are used
in ESS, but the bulk of the time used by base level
work is allocated by a relative frequency method.

Because exact delay requirements were not avail-
able when the monitor was programmed, the assign-
ment of jobs to frequency classes and the composi-
tion of the frequency table were arranged so that a
simple change in the data consulted by the program
can alter the grade of service to the various hoppers
and queues. The monitor program which was written
has the additional advantage that the check for the
priority jobs and the check for the next job in the
schedule together consume relatively little overhead
time in the machine.

DESCRIPTION OF THE
SIMULATION PROGRAM

In order to obtain the delay distributions for the
various kinds of jobs, it was necessary to simulate
the behavior of the machine. This simulation uses a
fairly detailed model of the operating system itself
and an almost exact model of the monitor.

The behavior of telephone customers is simulated
according to the known characteristics of telephone
traffic. Calls arrive according to a Poisson distribu-
tion; the lengths of conversations are distributed ex-
ponentially. The distribution of times which users
take to dial and also to answer a ringing telephone
are closely approximated.

As is usual in studying complicated systems, a
simplified model of the system was used to reduce
the burden of programming the simulation. Judgment
must be used in choosing the features to be elimi-
nated lest important characteristics of the true sys-
tem be omitted from the model. In the case of the
ESS, most of the program sequences are entered

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 29

very infrequently and do not make a large demand
on system time. Hence, it is possible to omit these
aspects of the real system from the simulation with-
out affecting the ability of the model to accurately re-
flect the performance of the real system.

Six main types of simplification were made:

1. Since maintenance interruptions which report
errors are very infrequent, only the interruptions
which represent the input/output tasks are per-
formed in simulating the processing of telephone
calls.

2. Only the most common types of telephone
calls, which in fact make the predominant demand
on system time, were simulated.

3. Routine maintenance and administrative tasks,
which are performed during frequency Class E, are
simulated at first as if they always took a constant
amount of time to run. Later runs were made which
included the variation in running time. The most sig-
nificant difference between the routine maintenance
and call processing programs lies in the fact that the
machine will always encounter at least 10 millisec-
onds of work when it enters the E class. It may find
no work at all when it enters frequency classes con-
taining call processing jobs.

4. The fault recognition and diagnostic programs
which are triggered when a hardware trouble occurs
were not simulated for two reasons. They occur so
infrequently that they are not a typical hourly experi-
ence for the machine. When they do occur, their ef-
fect is analogous to effects already simulated by the
interruptions caused by input/output and the base
level call processing programs.

5. The interrupt level of priority jobs were not
simulated in exact detail. In a large installation, it is
usual for the interruption triggered by the S-milli-
second clock to take, on the average, about 50% of
the 5 milliseconds. But the actual times will vary de-
pending on the work which the input/output pro-
grams find to do. These interruptions have the effect
of stretching out the time to do call processing work
by a variable amount. The variation in interruption
times and its effect on the call processing delays were
simulated. However, in the real system, longer than
~ average interruptions are caused when unusual
amounts of work for the base level programs were
found. Although the simulation imitates the varia-
tions in finding jobs for the base level work, it uses
separate programs to generate the length of the 5-
millisecond interruption and the new inputs to the
hoppers. Hence the occurrence of long interruptions

is not correlated in the simulation with unusually
large amounts of work found for the hoppers. Since
the S-millisecond interruptions generally varied from
1 to 4 milliseconds and since most delays will include
at least five such intervals and usually many more,
it was judged that the simplified manner in which the
interruption intervals and the work to the hoppers
was generated would not distort the results appre-
ciably.

6. Of the priority types of jobs which are per-
formed in the base level on a priority above the fre-
quency classes, only one type was simulated. When
an input program can find no space in the memory
allotted for its hopper, it puts in a request to the
monitor to empty that hopper as soon as it finishes
the base level job it is doing. It was judged to be de-
sirable to provide ample space in hoppers, and con-
sequently this situation in fact was never met. The
other priority jobs were ignored because they consti-
tute a small fraction of total demand on the time of
the machine.

The simulation program generates the traffic to be
offered to the system and then simulates the per-
formance of the system as it processes the traffic.
Finally, as output, it prints a number of tables show-
ing the distribution of times taken by visits to each
hopper, the distribution of times spent in processing
the work of each hopper, the delays encountered by
the various types of jobs, and the overall delays ac-
cumulated by each call. The time taken to complete
each cycle of the frequency classes is printed in se-
quence as the simulation runs.

The program will realistically simulate installa-
tions which vary widely in equipment configuration
and also in traffic patterns. By changing data cards,
the description of the equipment and traffic to be
simulated can easily be changed. Thus one can simu-
late conditions not yet encountered in actual opera-
tion.

The simulation was coded in FAP, the assembly
language of the IBM 7094 computer. Assembly lan-
guage was chosen because it permits more efficient
packing of data in memory. Both the program and
large amounts of data must be kept in the core mem-
ory of the IBM machine at the same time. Hence a
high packing efficiency was needed to insure that the
32,000 words of 7094 core memory would not
be exceeded. Even though subroutines were used
wherever possible, the program consists of 11,300
words. Of these, 20% constitute the representation
of the logic of call processing sequences of ESS.

30 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

Flow charts were drawn of those ESS program se-
quences which constitute the bulk of the demand for
machine time. Blocks on these flow charts were rep-
resented in the simulation program by subroutines
which simulated the appropriate action. The flow
charts themselves are represented by a series of call-
ing sequences to these subroutines. Although much
simplified, the remaining model is still a complicated
logical structure.

An important element of realism in the simulation
is provided by the method for simulating the number
of instruction cycles which the ESS machine requires
to do each job. These cycles are entered as data to
the simulation. Before the ESS programs were fin-
ished, estimates were made of the cycles which the
program used for each one of its tasks. As the actual
program became available, measurements were made
on the machine itself, and the appropriate program
sequences were examined in detail, so that accurate
cycle counts were used in the simulation. In spite of
efforts to simplify the tasks, the formulation of the
model of the ESS logic, the determination of realistic
cycle counts, and the design and writing of the simu-
lation program all required considerable effort.

PROCESSING DEMAND AND
MONITOR INTERACTION

Certain characteristics of system behavior can be
predicted from a consideration of the monitor algo-
rithm itself; other characteristics require simulation.
First let us consider what can be concluded by con-
sidering the monitor algorithm.

Analysis of Monitor Algorithm

Processor Occupancy. The tasks which comprise in-
put/output functions and call processing in the base
level represent the real-time demand on the system.
The other types of tasks, routine maintenance and
administration, together with the time taken to cycle
through the hoppers and queues, are not dependent
on the real time but are a function of the way the
monitor schedules its work. These latter tasks, al-
though necessary, constitute overhead. Therefore, the
occupancy of the processor is defined as the fraction
of time it spends on input/output and base level call
processing. If there is no call processing to do the
system simply performs more maintenance and
spends a higher percentage of its time looking
through hoppers that are empty. Together, the time

spent in overhead tasks plus the time spent in proc-
essing real-time demands account for all of system
time.

Effect of Processor Occupancy on Work Cycle Time.
As more telephone calls are processed, the occu-
pancy of the system increases and there will be more
input/output work. Thus interruptions also take
more total time. As the monitor cycle goes through
the hoppers and queues it will find work and transfer
control of the processor to the appropriate processing
programs. Since the processor now takes time to
process the work, the total time taken to get through
the cycle of work increases. The length of a complete
cycle, including routine maintenance work in Class
E, will be called the Class E revisit time.

Let V = average E revisit time,

K = a constant time to cycle through the
hoppers and queues including routine
maintenance, and

x = machine occupancy, i.e., call process-
ing and input/output.

Then V =K + xV, or

K
V =

1 —x

The curves shown in Fig. 4 show the length of
time to revisit E as a function of occupancy for sev-
eral different amounts of system overhead. In all the
curves shown, the time to go through the hoppers
and queues looking for work was held constant. The
period of time spent in Class E doing routine main-
tenance and administration was chosen as 30, 10,
and 1 milliseconds respectively, on the three curves

400

300

200

100

LENGTH OF CLASS E REVISIT INTERVAL
IN MILLISECONDS

I 1 1
[o] 20 40 60 80 100
PER CENT OF CALL PROCESSING OCCUPANCY

Figure 4. Length of Class E revisit interval vs system
occupancy for various Class E constants.

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 31

presented. The middle curve shows the theoretical
plot, together with points derived from running the
simulation. The other two curves show theoretical
plots only.

The above expression is, of course, for the aver-
age Class E revisit time. The average revisit time for
any other class can also be derived. For any class,
the revisit time is defined as the time from the start
of processing that class to the next start on the same
class.

Given a particular order for cycling through the
classes of work, let:

M, = the number of times Class y appears in
the list,
V = the time to cycle through the list once,
and
V, = the average time between visits to Class y.
Then

As a result, in the case of the ESS list, the aver-
age Class C revisit time is ¥4 of the Class E revisit
time at any given occupancy, since C occurs in the
list 4 times, E once.

If the demand in some system is uniformly dis-
tributed, the frequency of processing work ought to
have a major effect on the delay characteristics of
the system. If the demand varies greatly, because the
number of inputs per given unit of time vary, be-
cause the input programs bunch them together in dif-
ferent ways, and because the amount of machine
time demanded by different types of input vary, the
time to process each class of work will vary. As a re-
sult the time to revisit a given class will also vary.
Under these circumstances the average delay to jobs
of a given type will be affected by the revisit times
when jobs are waiting, which is not under the con-
trol of the monitor. One might therefore expect the
average delay to jobs of a given class to be about
half the average revisit time weighted for the number
of jobs found waiting.

Since the input programs bunch work and since
some types of urgent jobs take up a great deal of
system time, one could not expect these estimates of
the average delays to be exact. Furthermore, al-
though one confidently might expect that the distri-
bution of delays to a given class would be no worse
than the distribution of revisit intervals when work
was found waiting, it was necessary to simulate to
obtain both of these distributions.

Table 1. Revisit Behavior of the Monitor for
Jobs of Different Classes, Machine
at 96.5% Occupancy

Ratio of Revisit
Time of Class D to

AYe.rage' Re- Class Shown
visit Time
Class milliseconds Predicted Simulated
A 38 7.5 7.1
B 70 4. 3.9
C 138 2 1.9
D 272 1 1.0
E 544 0.5 0.5

Simulation Study of Monitor Characteristics

Delay and Revisit Data Obtained from Simulation.
Tables 1 and 2 show the kinds of data pertaining to
delay characteristics.

As shown in Table 1, the average revisit times to
various classes fairly closely approximate the times
expected from the frequency of occurrence of each
class. However, if one omits the times when no work
was found waiting, the average revisit intervals for
typical jobs in each frequency class weighted accord-
ing to the number of jobs found waiting are shown
in Table 2a. They are substantially higher than the
revisit intervals which include the occasions when no
jobs are waiting. Table 2a also shows the average
delay for the same types of jobs. As expected, they
are only. very roughtly half of the weighted revisit
intervals. The ratio of the average delays in each
class is not quite the same as the ratio of the revisit
intervals shown in Table 1. The standard deviadtions
are large, but acceptable to the designers of the sys-
tem. '

Table 2b shows the same data as shown in Table
2a for a machine which is very busy but not so ex-
tremely loaded as the machine for which data is
shown in Table 2a. As was to be expected, the aver-
age delays and average revisit intervals weighted by
the number of jobs found waiting are markedly less.
The ratio of average delays to weighted revisit in-
tervals approximates 0.5 more closely. '

In this case, although the difference in delays to
the different classes is still significant, it is not as
pronounced as in the earlier case. The ratio of the
delays have changed but not by as large a factor as
10.

Assignment of a job to a particular class has a
strong effect upon the delay which it will experience,
but other characteristics of the system also affect the

32 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

Table 2. Data Pertaining to Delays and Weighted Revisit
Times for Jobs of Different Classes

Ratio of
Typical Type (1) (2) Average Standard
of Job of Average Weighted Average Delay of Deviation
Frequency Revisit Interval Delay Ratio of Class D of Delay
Class X milliseconds milliseconds (2) to (1) to Class X milliseconds
a. Machine Running at 96.5% Occupancy ‘
A 81 38 46 6.1 31
B 146 60 42 3.9 60
C 237 121 S1 1.9 105
D 376 233 .62 1.0 165
_ b. Machine Running at 88.2% Occupancy
A 37.9 20.6 .54 33 17.3
B 61.5 342 .55 2.0 . 278
C 101.5 49.1 49 1.4 454
D 135.9 67.0 .49 1.0 60.5

delays experienced. Because both the average
amount of delay and the standard deviations increase
markedly as the system becomes very busy, the man-
ner in which the monitor behaved at very high loads
was investigated.

Figure 5 shows a distribution of Class E revisit
times for an ESS running at an occupancy of well
over 90% . The very short visits occur when the sys-
tem happens to find little to do, the very long ones
when a large amount of work happens to come into
the hoppers. Most of the system delays, especially
those which may exceed tolerances, result from these
long visits. Both the effect of monitor constants in
Class E and the effects of assignment of call proc-
essing jobs to Classes A through D were investigated.

Effect of Monitor Constants on Long Delays. We
have seen that the constants which represent over-
oo}
75}

- 50|

25k

PER CENT OF CLASS E REVISIT INTERVALS
EXCEEDING "X" MILLISECONDS

1 1 1
250 500 750 1000 1250
"X" MILLISECONDS

Figure 5. Distribution of Class E revisit intervals when
ESS is operating at a high occupancy.

head determine the average Class E revisit time when
the system runs at a given occupancy. However, the
choice of overhead constants does not strongly influ-
ence the occurrence of long visits and long delays, as
the following results indicate.

Figure 6 shows results obtained from the simula-
tion giving the distribution of Class E revisit times
for three different values for the monitor overhead
constants. In each case the system was offered and
carried the same traffic load. This load caused the
simulated system to run at an occupancy of 93 per-
cent in each case. The three cases represent different
arrangements of the overhead constants. The A curve
shows the arrangement whereby the lumped constant
in Class E is set to 10 milliseconds, whereas the dis-
tributed constant required to look through all the

100 |

AVERAGE CLASS E

REVISIT INTERVALS VALUE OF CONSTANTS
A=244 NS A=NORMAL ESS DISTRIBUTED
CONSTANT—CLASS E 10 MS/VISIT

8=DISTRIBUTED CONSTANT DOUBLED
CLASS E 10 MS/VISIT

C=NORMAL DISTRIBUTED CONSTANT-
CLASS E | MS/VISIT

~
wn

B354 NS

C=143 MS

EXCEED "X" MILLISECONDS
o 3
T T

PER CENT OF REVISIT INTERVALS THAT

ol— R
-0 250 500 - 750 1000 1250
"X" MILLISECONDS

Figure 6. Effect of changes in monitor constants on Class
E revisit intervals.

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 33

classes of hoppers and queues is somewhat less than
10 milliseconds. The B curve shows the effect of
doubling the distributed constant, leaving the lumped
constant as in Curve A. The C curve shows the
effect of reducing the lumped constant from 10 milli-
seconds to 1 millisecond, leaving the distributed con-
stant as in Curve A.

As predicted, the average Class E revisit times
were proportional to the monitor constant, since the
simulated system ran at the same occupancy. How-
ever, as can be seen from the curves, the different
choices of constant did not have a strong effect on
the percentage of long Class E revisit times.

Figure 7 shows, for the same length of run, the
actual number of long visits for each of these cases.

For comparison, we show in Fig. 8 a distribution
of the delays to the work performed in Class A. It
will be seen that the differences between the three
versions of the monitor are slight indeed.

We therefore conclude that long revisit times and
long delays are primarily a result of the way the
monitor serves the highly variable demand for call
processing.

Effects of Variable Demand. a) Correlation of
Lengths of Class E Revisits. As mentioned earlier,
inputs to the system arrive at random. Furthermore,
different types of input vary in the amount of work
which they demand of the system. As a result, over
periods of time on the order of tens of milliseconds,
the system may find very little or very much to do.
A look at the sequence of Class E visits, as furnished
by the simulation indicates that the length of succes-
sive Class E revisit times experienced by the system
as it processes this random demand on its services

VALUE OF MONITOR CONSTANTS

100
’- A= NORMAL ESS DISTRIBUTED CONSTANT —
» CLASS E 10 MS/VISIT
2 8= DISTRIBUTED CONSTANT DOUBLED -
; CLASS E 10 MS/VISIT
B 8o C= NORMAL DISTRIBUTED CONSTANT-
CLASS E 1 MS/VISIT
Z
=
O
S3
B 60
x2
wo
w
a4
28 4ot
S
o
['4 20
]
©
=
5
z
o i 1 1 1
0 250 500 750 1000 1250

"X" MILLISECONDS

Figure 7. Effect of changes in monitor constants on number

of long Class E revisit intervals.

100

T

VALUE OF MONITOR CONSTANTS

A NORMAL ESS DISTRIBUTED CONSTANT-
CLASS E 10 MS/VISIT

B= DISTRIBUTED CONSTANT DOUBLED-
CLASS E 10 MS/VISIT

C= NORMAL DISTRIBUTED CONSTANT -
CLASS E | MS/VISIT

~
wn
T

o
(o]
T

n
w
T

1. 1
0 100 150 200
"X" MILLISECONDS

o

PERCENT OF ENTRIES DELAYED MORE THAN "X
(o)
23

Figure 8. Effect of changes in monitor constants on distribu-
tion of Class A hopper entry delays.

are not independent. Unusually long visits tend to be
followed by other unusually long visits. Figure 9 il-
lustrates this phenomenon.

Effects of Variable Demand. b) Explanation of Cor-
relation. When an unusually large amount of work
arrives, the system stores the work in its hoppers and
queues and takes more time to get around to the dif-
ferent classes. When the delay to serving a given
class is long, more work can be expected to arrive in
the hopper during this long delay, .since the work

2475
2229)
1983
1737

1491

1245

MILLISECONDS

AVERAGE CLASS E

753
REVISIT INTERVAL
507

EENAREERY,

5 10 15 20 25 30 35 40 45

LENGTH OF SUCCESSIVE CLASS E REVISIT INTERVALS
ESS AT 95% OCCUPANCY

Figure 9. Representative sequence of Class E revisit in-
tervals.

34 PROCEEDINGS—FALL JOINT COMPUTER CONF ERENCE, 1966

which arrives during this longer period of time will
now be stored in the hopper. Consequently when the
system finally serves a given hopper it is likely to
find more than the usual amount of work and spend
more than the usual amount of time in processing
this work. When this occurs, the delay in processing
the next hopper will therefore be longer than usual.
While the system processes this next hopper, work
continues to arrive in the remaining hoppers. This
leads to a general slowing up of the system in going
through its work cycle. Once the system experiences
an unexpectedly long interval in any class, it will take
some time for it to regain its normal cycling rate.
When the system is running at high occupancy, first,
the probability of experiencing an unexpectedly long
class interval increases, and second, the time taken
to recover from such an event is longer.

A brief shortage of work in a class can similarly
lead to a series of very short Class E revisit times.

Figure 10 illustrates the system behavior in such
a long visit. The scale of time is in milliseconds. The
length of time which the system spends serving each
class of hoppers is plotted against the horizontal axis.
In the upper plot the system revisited Class E very
quickly; the next revisit was very long. At the start
of the long interval an unusually large amount of
work came in. As the system continued to process
this work, more than the usual amount continued to
enter the system, resulting in a very long cycle. This
one long cycle is likely to be followed by another.
We concluded that this “snowballing” effect can be
controlled if the number of unusually long visits to
different classes can somehow be reduced.

|‘—— LONGEST CLASS E REVISIT INTERVAL—"I
CLASS D UNRESTRICTED

>PmOoOmMm

AL

T T T
250 500 1000 1500
MILLISECONDS

l‘—LONGEST CLASS E REVISIT INTERVAL
CLASS D RESTRICTED

rpDOOM

T T T ——
250 500 1000 1500
MILLISECONDS

Figure 10. Sequence of time spent in processing work of
each class in the monitor work cycle.

In order to verify this inference, it was decided to
simulate a monitor which limits the length of time
spent in a particular class in the work cycle on any
given visit. Although inputs to this class enter at
random, only a fixed number will be served on any
given visit. This limit does not affect the average rate
of serving that hopper; that is, the amount of the
traffic previously offered to the system and proc-
essed by it is unchanged. Inputs to this one class may
encounter a slightly higher delay, but it was expected
that they will be served in a reasonable time and not
put off indefinitely. Since these inputs constitute a
significant portion of the demand on the system, the
system could not be operating under the same de-
mand unless these inputs were being accepted at the
same average rate as before. Results from the simu-
lation showed this to be the case.

A look at the upper plot in Fig. 10 indicates that
long visits occur in a number of classes, among them
Class D. It was decided to limit the amount of time
spent in some class on any given visit by limiting the
number of entries taken from the hoppers of that
class on any single visit. Since Class D by definition
contains work which can tolerate the most delay,
Class D was chosen in preference to Class A.

To study the effect of this limitation, the simula-
tion was run twice with the same input traffic, once
without, and then with the limitation in effect. In
Fig. 10, the upper and lower plots represent the
longest Class E revisit in these respective runs. Al-
lowing the monitor the ability to limit the call proc-
essing work served in a particular visit does not
change the average E revisit time over a number of
minutes. It does, however, eliminate some of the very
long and very short visit times and thus reduce the
variance on the distribution of the Class E revisit
times. Since most of the delays which are likely to
exceed the allowable tolerances occur during very
long visits, eliminating these very long visits elimi-
nates these intolerable delays.

Figure 11 shows the effect of this limitation on
the entire set of Class E revisit times for the two
simulation runs previously mentioned. Curves A and
A’ respectively show the distribution of Class E
revisits plotted against the length of visit time for the
unrestricted and restricted monitor versions respec-
tively. Curves B and B’ show the corresponding per-
centages of system time which is spent in visits ex-
ceeding a certain length. Since the arrival of work
is distributed in time, rather than per visit, the second
pair of curves permits a better comparison of the

A MONITOR FOR A REAL-TIME CONTROL SYSTEM 35

100~ A 8 B UNRESTRICTED CLASS D INTERVALS
A 8 B' RESTRICTED CLASS D INTERVALS

8

75 ’-
[
z
w
o
& 50| -—-—-
g

251

~ -
il SN
0 1 1 1 e
(o] 250 500 750 1000 1260

“X" MILLISECONDS

Figure 11, Effects of restricted Class D intervals on system
performance.

relative performance of the two versions of the moni-
tor.

In the unrestricted case the system spent half its
time experiencing E-E revisit times in excess of 730
milliseconds, while in the restricted case half the
time was spent in visit times in excess of 500 milli-
seconds. Small modifications such as these can ma-
terially improve the system performance of the moni-
tor.

An abnormally long time spent on any job or class
of jobs will lengthen the delays to other jobs much
more than the time used by the job itself. An un-
usually long period spent on one or a few tasks is
likely to result in a series of long processing intervals
especially if the average occupancy of the system is
high. If a given delay is to be held below some maxi-
mum, either the system monitor must exercise some
control over the demand on the system, or the system
must be operated at a comparatively low occupancy.
This implied that both the segmentation of the proc-
essing programs and the variations in the input are
controlled. If these measures are taken, use of a
monitor of the type discussed will permit the system
to operate at a comparatively high occupancy and
yet meet all delay tolerances.

CONCLUSION

The purpose of the study discussed here was to
evaluate and possibly improve a real-time control

monitor. In order to make improvements it was
necessary to gain an understanding of the mechanism
governing system behavior. Since the system was ex-
tremely complex, a detailed simulation of the system
was made. This approach has permitted an evalua-
tion of a particular monitor algorithm and has shown
how it can be improved. The study has shown this
monitor algorithm to be well suited to certain real-
time control systems.

ACKNOWLEDGMENTS

In the course of this study most helpful sugges-
tions were made by W. S. Hayward, Jr., J. B. Kru-
skal, and E. Wolman. G. R. Faulhaber determined
the model of the No. 1 ESS which was simulated and
suggested the expression for the average Class E
revisit time. Miss L. Sadaka planned and wrote most
of the simulation program. Miss F. L. Dermond ob-
tained from the ESS program the counts of machine
instructions needed to perform various actions. A
number of ideas basic to the ESS monitor itself, as
well as the implementation of the monitor program
in the ESS were contributed by R. B. Smith and S.
Silber.

REFERENCES

The September 1964 issue of The Bell System
Technical Journal is devoted to various aspects of
ESS. It includes the following papers, which are
referred to in the text:

1. W. Keister, R. W. Ketchledge and H. E.
Vaughan, “No. 1 ESS: System Organization and Ob-
jectives,” Bell System Technical Journal, Sept. 1964,
pt. 1.

2. D. H. Carbaugh et al, “No. 1 ESS Call Proc-
essing,” Bell System Technical Journal, Sept. 1964,
pt. 2.

3. R. W. Downing, J. S. Nowak and L. S. Tuo-
menoksa, “No. 1 ESS Maintenance Plan,” Bell Sys-
tem Technical Journal, Sept. 1964, pt. 1.

4. 1. A. Harr, F. F. Taylor with W. Ulrich, “Or-
ganization of No. 1 ESS Central Processor,” ibid.

5. , Mrs. E. S. Hoover and R. B. Smith,

“Organization of the No. 1 ESS Stored Program,”
ibid.

ON-LINE DEBUGGING TECHNIQUES: A SURVEY

Thomas G. Evans

Air Force Cambridge Research Laboratories, Bedford, Massachusetts

and

D. Lucille Darley

Bolt, Beranek, and Newman, Inc., Cambridge, Massachusetts

INTRODUCTION

One consequence of recent interest in the devel-
opment of large-scale time-sharing systems to provide
on-line computer access to a large number of users
has been the widespread realization that the useful-
ness of such a system is critically dependent on the
quality of the software provided to facilitate the inter-
action between user and machine. In particular, one
area of critical importance for effective utilization of
such a system is that of facilities for program debug-
ging. In view of the important role they play, sur-
prisingly little attention has been paid to the develop-
ment of facilities to aid in the process of on-line
program debugging. Furthermore, much of the work
in this field has been described only in unpublished
reports or passed on through the oral tradition, rather
than in the published literature. The purpose of this
paper is to survey the existing work in this area and
discuss some possible extensions to it, with the dual
goal of acquainting a wider public with currently-
existing techniques and of stimulating further devel-
opments.

What, precisely, is the intended scope of this
paper? First, we are concerned here only with de-
bugging activities taking place in an on-line environ-

37

ment, with the user communicating “conversation-
ally” with his computer by means of, typically, a
keyboard (or perhaps a display device and light-
pen). Inevitably, there exists overlap between on-line
and batch-processing debugging techniques, but our
concern here is with the former. Second, we are con-
cerned with program debugging; one can, of course,
view a wide range of computer use as the debugging
of something or other; for example, a numerical
method or a physical or economic model. On occa-
sion, of course, this line can be difficult to draw, but
we intend to restrict ourselves to activities concerned
with the discovery and elimination of program
“bugs,” in the usual sense, from programs written in
typical assembly and higher-level languages and to
the “subject-matter-independent” facilities provided
to an on-line user to assist in this process.

Why do we place such stress on on-line debugging?
Is there really so much difference from debugging in
a batch-processing mode? Yes, we think so. One can,
of course, ignore the conversational aspect of a time-
sharing system and treat it as simply a remote-console
job-initiation system. However, in doing this, one is
neglecting a potentially very powerful tool—the capa-
bility (mediated through suitable debugging aids)
for a very selective and close control over the exe-

38 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

cution of portions of one’s program and for the
examination of intermediate results, together with
the possibility of making on-the-spot changes based
on them, as desired. These virtues of on-line access
have been praised many times, of course (and debug-
ging is only one activity aided by such access—some
on-line uses are so dependent on this type of inter-
action that they simply have no batch-processing
counterparts). We merely wish to add that these
benefits for debugging are not automatic results of
providing on-line access; as in other aspects of the
appearance of on-line systems to their users, careful
design of the facilities provided and the conventions
for their use pays immense dividends in usability.

Console debugging was common before batch-
processing monitors were ever heard of. What’s so
new about on-line debugging? Nothing, really; cur-
rent on-line debugging techniques are the result of
a gradual development from the days when debug-
ging at the computer console was the norm, as it has
remained for small computers over the years. De-
bugging methods based on single-stepping through
parts of a program and on examination and modi-
fication of memory registers by means of console
lights and switches were the natural precursors of
today’s more sophisticated techniques, and there is
no sharp dividing line at any stage of the progression.
Perhaps the critical step was the replacement of con-
sole lights and switches by some typewriter-like
device as the principal means of communication be-
tween user and machine. This permitted the con-
venient interposition of suitable system programs to
facilitate communication between the user and his
program. At first they permitted him to examine and
modify register contents in typed octal instead of the
binary of lights and switches. At a later stage in the
development they allowed him to associate symbols
with locations in his program and to debug in terms
of them, and still later to debug entirely in terms of
the original symbols of his assembly-language or
higher-level-language programs. The capabilities in
this area of current debugging programs will be dis-
cussed below. Similarly, a development toward in-
~ creasing sophistication in the user’s control of the
flow of his program, as well as in other areas, has
taken place and will also be discussed later.

What is the relationship of on-line debugging to
time-sharing? On-line debugging (and on-line use of
computers in general) is related to time-sharing only
in the sense that provision for on-line access to a
machine powerful enough for certain classes of

problems may be economically feasible only in a
time-sharing environment. Furthermore, it is reason-
able to expect that many advances in on-line debug-
ging will arise from the communities of users that
have already begun to assemble about the currently-
existing large-scale time-sharing systems, as well as
from the expenditure on system programming that
the existence of such communities makes economi-
cally justifiable. However, many of the debugging
features we shall be discussing had their origins in
work with small machines before the advent of time-
sharing systems.

In a survey of on-line debugging, a problem of
emphasis arises: one might try to convey some of
the flavor of the use of typical currently-available
techniques to the reader unfamiliar with any existing
on-line debugging system; alternatively, one might
try to examine and compare in some detail the most
important features of the existing systems. We have
resolved the problem by attempting both.

The second section of this paper is devoted to a
consideration of the principal features of past and
present on-line debugging systems known to us, to-
gether with some remarks on implementation, on use
of displays, and on some implications of the require-
ments of debugging systems for compiler construction
and for hardware. We make no claim of exhaustive
coverage. We have discussed those systems which
incorporated features which seem to us to have been
interesting or significant contributions to the present
state of development of on-line debugging.

The third section attempts to impart some “feel”
for current on-line debugging methods through two
annotated examples. One represents a session devoted
to debugging a program written in a typical (but
nonexistent) assembly language; the other, a pro-
gram written in a representative (also nonexistent)
algebraic-type language. The examples are idealized
in that no one present system contains all of the
capabilities illustrated (or uses precisely the set of
communication conventions we have adopted), but
every feature shown is present in some existing sys-
tem.

The concluding section contains a few final com-
ments of a general nature.

SURVEY OF EXISTING SYSTEMS
Assembly-Language Debugging

We shall first consider facilities to aid in the de-
bugging of programs written in assembly language.

* ON-LINE DEBUGGING TECHNIQUES: A SURVEY 39

We have made no extensive effort to disentangle all
the threads of the earliest efforts at developing type-
writer-based debugging programs. However, the
early program which had the greatest influence on
subsequent developments was that of Gilmore * for
the TX-O computer at Lincoln Laboratory in 1957.
It was the first in a series of closely-related and suc-
cessively more elaborate debugging programs, in-
cluding UT-3 2 and FLIT? for the TX-O (after it
was moved to MIT), and DDT +5 for the PDP-1 at
MIT. FLIT, in particular, was a notable accomplish-
ment, embodying capabilities on which much sub-
sequent work with on-line assembly-language de-
bugging has been based. With FLIT, for the first
time, it was possible for the user to examine and
modify his program in terms of the symbols used in
his source program and, in fact, to examine and
change the contents of registers in a form almost
identical to that used in the corresponding assembly
language. Furthermore, while some earlier type-
writer programs had permitted one-instruction-at-a-
time tracing of a program, by analogy to the console
single-step switch familiar to their creators, FLIT
introduced what is perhaps the central notion of
interactive debugging, that of a user-controlled
breakpoint. This technique, which we shall see illus-
trated in both assembly-language and algebraic-
language debugging in a later section (“Examples—
Two Debugging Sessions™), consists of permitting
the user to specify (symbolically, typically) a point
or points in his program at which he wishes to inter-
rupt its flow and return to the debugging routine,
which at entry stores the state of the live registers to
permit subsequent continuation from the breakpoint,
then permits the user to examine the state of his
program at that point and make changes, if he
wishes, before continuing. All that is required is that
the debugging program save the user’s instruction at
the desired breakpoint location and plant in its place
a suitable transfer to itself. The effectiveness of the
technique is dependent, of course, on the ease to the
user of placing and removing breakpoints and on the
quality of the facilities for examination and modifica-
tion available to him while at a breakpoint. With
judicious use, the breakpoint can be a very flexible
tool, giving the user great selectivity in the degree of
fineness of his examination of a portion of a program.
In the hands of an experienced user, it can permit
quite rapid isolation of many types of program error.
Here, as in other aspects of on-line work, conven-
ience is critical. The user with only “examine and

modify” capabilities available to him could, of
course, get the effect of breakpoints by inserting
transfer instructions to appropriate inserted code,
but the convenience and freedom from elaborate
bookkeeping so important to the “iterative” use of
breakpoints described above are lost.

FLIT was a program for a one-of-a-kind machine,
the TX-O. Consequently, it never became well-
known outside its user community at MIT. It was
through DDT (written at MIT soon after FLIT
as its counterpart on the PDP-1 and embodying
much the same set of capabilities, including those
sketched above) that these notions were extensively
spread about as the PDP-1 became a relatively
widely used machine. In this way, FLIT and DDT
became the acknowledged source of a large portion
of the assembly language debugging programs in the
major currently operating time-sharing systems pos-
sessing such facilities.

One of the most important characteristics of FLIT
and DDT was the care devoted to the design of the
typing conventions. Single-letter commands and a
structure in which frequently desired states could be
reached easily from the present one (e.g., look at the
contents of the current register =1, look at the con-
tents of the register addressed in the current register)
minimized typing and aided rapid interaction. Simi-
larly, convenient ways of typing the contents of a
given register in alternate formats (e.g., symbolic,
decimal, octal) were provided.

Starting with these capabilities, extensions have
been made in a number of directions in more recent
work. We shall discuss some of these. With the capa-
bility for input of machine instructions in symbolic
assembly-language form, DDT is already nearly an
“on-line assembler,” suitable as the sole tool for on-
line writing and testing of small programs. With this
use in mind, Edwards and Minsky ¢ added an “un-
defined symbol” capability to DDT. In conventional
DDT, input of a line of code involving a symbol not
already defined by the user results in an error mes-
sage. In their version, it results in a special symbol
table entry. Such entries are linked together, and
when the symbol is ultimately defined by the user
its previous occurrences are filled in appropriately.
This capability has also been included in the assem-
bly-language system ” of the Berkeley time-sharing
system (SDS 940).

DDT permits the user unlimited freedom to patch
his program arbitrarily by inserting whatever he likes
in some available space, then planting a transfer to

40 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

this insertion in his program wherever he desires.
This very freedom, unfortunately, can lead to situa-
tions in which debugging of complex programs ulti-
mately bogs down in a morass of patches on patches.
Furthermore, even when a highly patched program
has finally been made to perform satisfactorily, the
road to a corresponding “cleaned-up” symbolic ver-
sion of the program can still be a very long and
error-susceptible one. We know of two efforts to
incorporate at least partial solutions to these book-
keeping problems into assembly-language debugging
systems. In one approach, followed by Lampson ® in
the design of one version of the assembly-language
debugging facilities in the Berkeley system, the user
requests the insertion of a specified piece of sym-
bolic code starting at a specified symbolic location
in his program (or deletion of a portion of the exist-
ing program, or both). In response to this request,
the debugging program performs two distinct
activities:

1. It edits the user’s changes into his sym-
bolic program stored on the drum.

2. It assembles the user’s addition into a
“patch area” of core and automatically
links the resulting code to the user’s pro-
gram in a straightforward way by copying
instructions and inserting transfers, as nec-
essary.

Thus, at each stage of the debugging process, the
user’s patched binary program in core is “computa-
tionally equivalent” to the edited version of his
symbolic on drum. At the completion of the debug-
ging session, the user’s updated symbolic is stored
again among his files.

An earlier approach ? to the same problem, taken
by the present authors in work with an assembly-
language debugging system for the M-460 computer
at Air Force Cambridge Research Laboratories, is
quite different in implementation. Once again, the
on-line user presents insertions, deletions, or a mix-
ture of both (again in symbolic assembly language)
to the debugging program, using a quite similar set
of conventions. Once again two actions are taken:

1. The symbolic changes are stored in a form
suitable for entry, along with the original symbolic
program, to an editing program at the end of the
debugging session. This is automatically done and
the user provided with an updated symbolic file.
This difference—saving the corrections to do all the
editing at one time vs editing for each correction,

as in the system discussed previously—is a thorough-
ly trivial and inessential one.

2. Instead of a patch being made corresponding
to the user’s change, the part of the program affected
by the change is relocated appropriately in core. If
the change is an insertion, for example, the new code
is assembled into the space left vacant by the reloca-
tion of the program from that point on. This reloca-
tion process is possible only because the relocation
information resulting from the assembly of the user’s
program, in addition to being used by the relocating
loader, is collected by it into a list structure which is
used by the debugging program each time a program
change is called for by the user, then updated accord-
ingly. The symbol table passed by the assembler to
the debugging program must also be updated each
time. Thus the idea of “patching” disappears com-
pletely. This relocation process can be rather time-
consuming on large programs, but has certain
compensating advantages over the (quite fast)
“automatic patching” approach of Ref. 8. In particu-
lar, it avoids the two drawbacks of his system listed
by Lampson:

Yot

a. In situations in which location of words
in core relative to each other is important
(for example, subroutine calls picking up
arguments from following locations), the
patched binary and the edited symbolic
may behave differently.

b. The automatic patching process leaves
core in a rather confusing state, which may
require relatively frequent reassembly for
readability. For example, the user who
wishes to insert a breakpoint at an instruc-
tion inserted during one of his previous
modifications must track down the present
location of that instruction by finding and
following out the patching. Thus, much of
the advantage of automatic patch inser-
tion could well be nullified.

Any evaluation of the two approaches must bal-
ance the added program complexity and computa-
tion time required by the relocation approach against
the possible cost in inconvenience to the user of the
above difficulties (or, alternatively, the cost in com-
putation time of the additional assemblies that may
be required to preserve sufficient readability).

One further extension to DDT in more recent
work pertains to the use of breakpoints. In addition
to the flexibility in the placement and moving of

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 41

breakpoints which is already present in DDT, a
facility has been added in a number of debugging
programs (including those for the SDC time-sharing
system,'* the DEC PDP-6,"" and the M-460 at
AFCRL) permitting the user to make the break-
points conditional; when the breakpoint location is
reached, some test previously supplied on-line by
the user is executed to determine whether the break
is to be made (that is, control turned over to the
user) or whether execution of the user’s program
should continue. This technique permits still greater
selectivity; the user can run his program till some
specified condition prevails at a specified point, then
examine the program state in whatever detail he
wishes. The SDC system gives the user a choice of
a number of built-in conditions; the other two permit
the user to insert an arbitrary piece of assembly-
language code as the break test associated with each
breakpoint. Ideally one would like to combine
“canned,” easily specifiable tests for certain com-
mon situations with the capability of writing arbi-
trary tests when desired. DDT, incidentally, had a
rudimentary but often useful form of the conditional
breakpoint which has been preserved in several later
systems; upon insertion of a breakpoint, the user may
specify (simply by preceding the command with a
number »n) that the break is not to occur until the
nth time that that point is reached in the execution
of the program.

A possibility we have not yet examined, but which
forms a basic tool of some early on-line debugging
programs, is that of instruction-by-instruction trac-
ing. More sophisticated versions of such tracing, with
considerable flexibility available to the user, have
been incorporated in debugging packages for batch-
processing use, but such tracing features have
typically been omitted from more recent on-line
systems in favor of the breakpoint, on the grounds
that tracing represents a failure to make the most
of the capability for intensive interaction pos-
sible in such a system and, at best, tends to pro-
duce considerable irrelevant printout, a serious
consideration for an on-line user. However, it
seems to us reasonable to provide some tracing
capabilities in an on-line system, especially since
they can share much of the machinery already
provided for breakpoints. The user should be able
to specify a location in his program and ask either
for the printing of certain information, for control,
or for a combination of both whenever that program
point is reached (and a specified condition is satis-

fied). Currently no assembly-language debugging
system appears to have'quite this full capability,
though PDP-6 DDT '* and the SDC DBUG pack-
age '° are close. Both are limited in the amount of
information that can be specified in advance to be
printed at a break—in the PDP-6 DDT to one regis-
ter and in DBUG to one register or a live register
dump or a dump of some block of registers. Further-
more, as mentioned above, DBUG does not permit
the composition of elaborate conditions for a break
to occur.

Another desirable feature not widely found in cur-
rent assembly-language debugging systems is exten-
sibility, in the sense of the capability for conveniently
defining complex debugging operations in terms of
the available primitives. The most general existing
facility of this type appears to be that described in
Ref. 8, where the macro-expansion capability of the
assembler used to process input to the DDT lends
itself quite naturally to this purpose.

Programs of the DDT family have many useful
features in addition to the ones we have described.
As one example, it is typically possible to conduct
a search between specified limits in core for all words
matching a given word in the bits specified by a
given mask.

Higher-Level-Language Debugging

When we turn to the examination of on-line de-
bugging facilities for programs written in higher-
level languages comparable to those we have con-
sidered for assembly-language programs, we find
that, broadly speaking, a close analog of almost every
principal assembly-language debugging technique
exists in at least one debugging system pertaining to
some higher-level language. However, on-line de-
bugging facilities for higher-level languages are in
general less well-developed and less widely used (rel-
ative to the use of the languages) than their assembly-
language counterparts. In part, this situation is prob-
ably a consequence of the wide diversity of languages
in this class; probably it is still more a result of the
fact that the small machines on which the assembly-
language techniques originated and were cultivated
were typically considered too small to support higher-
level language compiling systems and were pro-
grammed almost exclusively in assembly language.
Thus work in on-line debugging of higher-level
languages is of comparatively recent origin. We shall
be examining debugging systems for relatively few

42 PROCEEDINGS-—FALL JOINT COMPUTER CONFERENCE, 1966

languages in relatively few on-line computing sys-
tems. This is not to say that much more on-line
debugging (in the sense that the user at a remote
console starts his program, examines the final results
or diagnostics in essentially the manner of batch
processing, edits his program, and: tries again) is not
taking place in these and other systems with these
and other higher-level languages. However, we are
concerned especially with efforts to obtain systems
which permit the on-line user something like the
flexible control over the execution of his program
and the capability of examining and modifying it that
are available to the one-line user of the assembly-
language debugging aids we have discussed.

The language for which perhaps the most effort
has been expended in the development of on-line
debugging aids is the list-processing language LISP
1.5. However, no discussion of these debugging fea-
tures has appeared in the literature; they are far from
completely described even in internal memoranda.
The first two full-scale on-line implementations of
LISP were those for the MAC system 22 (a modifi-
cation of the batch-processing LISP system for the
IBM 7094 to run under the MAC time-sharing sys-
tem) and for the M-460 computer at AFCRL. Sub-
sequently, on-line LISP 1.5 systems have been cre-
ated for the SDC time-sharing system,'* the Berkeley
system,*® the DEC PDP-6,¢ and the DEC PDP-1
at Bolt, Beranek, and Newman, Inc.” We shall dis-
cuss only the debugging features of the MAC and
M-460 systems, as the later systems contain essen-
tially no debugging aids not already present in these.

First, the extensive tracing facilities of the LISP
system were made accessible to the on-line user.
Later, they were extended and made conditional in
both systems. An editing program—not a conven-
tional text editor but a program permitting the user
“to modify the list structure in which LISP functions
are stored for interpretation—was introduced by
Martin into the MAC LISP system and soon modi-
fied for use in M-460 LISP. This editor proved to
be a powerful tool, permitting quite easy program
modification in many cases. Conditional breakpoints
(insertible at any point in a LISP function defini-
tion) were introduced into the M-460 LISP system
by one of the present authors—apparently, along
with the introduction of breakpoints into the SDC
IPL-V system by Weissman,'® their first use in
higher-level language debugging—and soon after in-
corporated in MAC LISP. Conditional breakpointing
and tracing have proved quite powerful for LISP

debugging, as it is possible to use the full capability
of the LISP language for the on-line composition of
the conditions. Thus one can easily express an
elaborate logical condition for which the counter--
part in assembly language might be quite complex.
Furthermore, by “canning” a few useful special pred-
icates for use in writing conditions, even more
selectivity in suppressing irrelevant - tracing and
breakpoints can be attained. For example, in M-460
LISP there is a machine-language LISP function
which examines the interpreter’s pushdown list to
answer the question: “At this point in the execution
of the program are we inside a call to function X?”
Incidentally, the ability of LISP to handle recursion
has proved very useful in debugging—the full capa-
bility of the LISP system is available at a breakpoint
inside a function being executed. With some care,
it has been possible, for example, to find a bug while
at a breakpoint in running a test case, call the editor
to make a correction, run the program on a simpler
test case to verify the correctness of the change, then
resume execution of the original test case from the
breakpoint (without the addition of any special ma-
chinery to the system for saving and restoring a pro-
gram state, etc.).

At this point, it should be mentioned that both
LISP systems mentioned contain both an interpreter
(of LISP functions stored as list structures) and a
compiler (of LISP functions into machine code),
and that interpreted and compiled functions may be
quite freely intermixed. The existence of the inter-
preter made the implementation of the debugging
facilities described above relatively simple. For ex-
ample, insertion of breakpoints at arbitrary locations
in a LISP program is readily implemented by modi-
fying the list structure corresponding to the program
so as to call the breakpoint-handling routine appro-
priately. In addition, interpretation has the advan-
tage that various types of user errors may be con-
veniently detected at run time. A further advantage
in this case is that LISP is precisely a language for
manipulation of list structures so the breakpoint
insertion routine, among others, could itself be writ-
ten entirely in LISP. On the other hand, the feature
in LISP that permits tracing of entries (with printing
of arguments) and exits (with printing of values)
of specified routines applies to both compiled and
interpreted routines. However, the usual mode of
operation in the systems mentioned has been to de-
bug interpretively, then compile the debugged pro-
grams in cases where the great speed advantage to

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 43

be gained by compiling is important. In general,
interpretation presents similar advantages for other
higher-level languages, and we shall see below that
it has furnished the basis for on-line debugging sys-
tems for other languages, as well. We shall also
mention two systems which work with a compiled
program. Then we shall consider one effort to de-
sign a system combining interpretation and compila-
tion, with the intention of combining the speed
advantage of compiled programs with the ease of
modification that comes with interpretation.

The well-known QUIKTRAN system *° is based
on interpretation of FORTRAN statements. The
FORTRAN program under debugging may be modi-
fied freely by insertion and deletion of statements. A
form of nonconditional breakpoint capability is in-
cluded in the sense that a statement can be inserted
at any point in the program which, when reached, has
the effect of transferring control to the user. Capa-
bility for examining and modifying variables is
present, as well as a variety of modes of tracing
(print all assignments to variables in a given portion
of the program, all assignments to selected variables,
all control transfers within a specified region, etc.).
Furthermore, extensive run-time diagnostics made
possible by the interpretive mode are provided, and
several unusual “bookkeeping” features, similarly
based on interpretation, are available, such as the
AUDIT command, which generates information as
to which portions of the program were never exe-
cuted, which variables were never set, or set but
never used, during a given execution of the program.

Another on-line debugging system based on inter-
pretation is that for IPL-V in the SDC time-sharing
system.'® It contains (nonconditional) breakpoint
and tracing capabilities similar to those sketched
above for LISP.

The FORTRAN debugging system 2° for the
Berkeley time-sharing system and the MADBUG
system ** for the debugging of MAD language pro-
grams are very similar in their debugging capabili-
ties, though different in overall scope: MADBUG
contains a set of editing facilities as well, while
editing of FORTRAN symbolic programs is carried
out in the Berkeley system by use of a general-
purpose editing routine present in the time-sharing
system. In both cases debugging is performed on a
compiled version of the program, and the user can
readily ask for the values of variables and change
them. Breakpoints (nonconditional, as it happens)
at any specified statement (in the Berkeley FOR-

TRAN, labeled statement) may be inserted and de-
leted. However, no facility is provided to modify
portions of the user’s program (in both systems, a
user familiar with the code produced by the com-
piler could, of course, use the available assembly-
language debugging facilities to make such local
modifications). The only way to make program
changes is to edit the symbolic version and recom-
pile the whole program.

The notion of an “incremental” compiler, in
which only those portions of a program to be
changed need to be recompiled, has been frequently
discussed; Lock 22 at California Institute of Tech-
nology has given a detailed sketch of the design of
a system with such capabilities. The notion is to
compile each program statement separately and
place the resulting code, together with a copy of the
symbolic form of the statement and certain pointers
and other information, depending on the type of
statement, in a contiguous block of core. These
blocks would be linked together in lists. Since the
language in question is ALGOL, in which “state-
ment” is a recursively defined concept, one has a
list structure (lists with elements which are lists,
etc.) instead of the one-level list of statements one
would have with, for example, FORTRAN. Inser-
tion and deletion at the statement level proceed
straightforwardly by modification of this list struc-
ture. Control is returned to a monitor between state-
ments (this is a property of the code generated for
each statement) permitting, among other things,
breakpoint capability at the statement level (though
the author proposes simply a single-statement mode
of operation modeled, apparently, on single-step-
switch machine-language debugging). The scheme is
interesting and quite ambitious. It remains to be seen
whether the organization based on compiled state-
ments with interpreted flow of control between them
leads to significantly faster execution times than pure
interpretation with a well-designed internal repre-
sentation such as that of QUIKTRAN. One possible
modification in the scheme would be to arrange
things so that the code in the block corresponding
to a statement transfers, not back to the executive,
but to what at that point is the correct next state-
ment. The executive would maintain a table of these
transfer locations and “breakpoint” them, so to
speak, whenever this was called for (as a result, for
example, of a breakpoint request by the user). Thus,
at the cost of some additional complexity in the
executive, almost all the speed advantage of full

44 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

compilation would be realized with no loss in the
capabilities available to the user.

It seems appropriate to mention at this point a
class of languages of which JOSS, BASIC, and
TINT are the best-known examples, even though a
principal characteristic of these languages, especially
the first two, is their lack of anything which looks
like the tracing or breakpoint. features we have dis-
cussed. These are “small” languages designed pre-
cisely for easy learning and convenient on-line use
for problems requiring a numerical computing ca-
pacity somewhere between a desk calculator and the
typical “FORTRAN + large computer” installation.
In all three languages, insertion, deletion, and modi-
fication of statements is extremely easy; since this is
so, the effect of tracing and breakpoints can be
achieved for the small, relatively simple programs in
question by insertion of print and halt statements
respectively. Thus, at the borderline of the class of
languages and associated debugging tools that we
have discussed earlier we find a class of languages
that have rather effectively transcended the need for
such tools by careful design and ruthless simplifica-
tion of language structure corresponding to the set-
ting of limited objectives for the range of usefulness
of the language.

Hardware Aspects

There are many points of interaction between
computer hardware design and the design of soft-
ware debugging facilities. We shall mention just two:

1. The capabilities of user consoles have a great
impact on the range of debugging facilities. Suppose
the user is provided with a display device in addi-
tion to (or instead of) his keyboard. One may use
this added capability relatively conservatively as an
extension of facilities already present. For example,
the Edwards-Minsky version of DDT already men-
tioned © used a display to permit the user much more
rapid and convenient examination (in symbolic and
octal) of his program in core than would have been
feasible with a typewriter alone. Programs to display
core in octal already existed more than 10 years
ago.?® Other, more radical uses of display devices in
debugging are now being investigated. Flow-chart
languages, where programs are created on-line by
generating a flow chart with a light-pen, are being
studied at Lincoln Laboratory 2* and at RAND.?* A
dynamic display of the program state at any point
in terms of the flow chart is expected to be a useful

debugging tool. Other work at Lincoln Laboratory 2*
is- directed toward dynamically mapping out on a
display device the behavior of a more convention-
ally-constructed program by means of a flow dia-
gram, which is again expected to be a useful de-
bugging aid.

2. -Another area of contact between hardware and
debugging is involved with trapping. Program-con-
trollable facilities for trapping on certain machine
conditions give promise of being a very important
debugging aid. The TX-2 computer at Lincoln Lab-
oratory, for example, has recently been provided
with a quite powerful interrupt system of this nature,
which has been made accessible to the on-line user
through commands to a DDT-like program.?® The
user may ask for a trap on any combination of a
number of conditions, such as a store into a specified
register, execution of an instruction at a specified
location, or execution of any skip or jump instruc-
tion. The debugging program handles the interrupt
and reports the relevant information to the user.

EXAMPLES: TWO DEBUGGING SESSIONS
Assembly Language Debugging

Assume we wish to debug the following program
(written in a typical—but mythical—assembly lan-
guage), which is meant to perform a simpleminded
exchange sort on a table of five numbers.

sort . pze
call readf
bei datal
pze table
lix nm?2,1
loop Ida table+1,1
sub table,1
sma
jmp ok
Ida table, 1

1dq table 41,1
sta table+1,1

stq table,1
ok tiz 42,1
jmp loop
ret sort
nm?2 pze
table bss 5
end

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 45

(This is admittedly a trivial program which should
not need the elaborate debugging facilities we have
discussed; however, it should serve to illustrate the
application of these techniques in an otherwise rea-
sonably realistic context.)

We assume that, previous to this debugging ses-
sion, we have stored our symbolic program as a
file, either by reading in cards or paper tape, or by
typing the program in directly from our console. We
then assembled our program from the file and
created a new file containing the loadable form of
the program as well as the symbol table. We omit
describing these procedures in detail, for the process
of controlling an assembly on-line and the error
diagnostics received are much the same as assem-
bling off-line (with, however, the advantage that any
errors detected by the assembler can be corrected
immediately). We also assume that a test case file
called datal (which will be read by our program)
has been written. For definiteness, assume it consists
of the numbers 3, 5, 2, 1, 4 in that order.

The loading system has brought our program into
core and has left us in contact with the debugging
system, which it has supplied with the symbol table
for our program. We immediately attempt to execute
the program by typing:

G sort

(This calls sort, which is written as a subroutine.)
The debug system responds with a carriage return,
indicating completion of our program. We type:

P table; table4-4
which prints:
table 3
5
2
1
4

That is, the table we input is unchanged. Examining
our program, we note that the instruction at ok per-
forms a test for the end of a pass through the table.
It seems a plausible instruction to monitor, so we
insert a breakpoint (number 1) there:

B1 ok

and then execute the program again. The computer
responds with:

ok

indicating that it has reached the breakpoint. At this
point we can examine whatever registers we wish,

including live registers, by typing the symbolic name
plus a tab. The computer will respond with the con-
tents of the register in symbolic format, tab, and
wait for us to modify the contents of the register.
If we don’t wish to, a carriage return signifies this.
Index register 1 is important in our program, so we
examine it:

11 0

We see that this value is incorrect. The instruction
at loop-1 supposedly loads index register 1. We
check it:

loop-1 lix nm2,1

This is apparently correct, so we check nm?2:
nm?2 0

This is our error. We neglected to initialize nm2. We
give the following command:

C nm2

nm?2 oct 3

which says to change the contents of the register
labeled nm2 to whatever follows; in this case, the
register is to carry the same label but contain the
number 3, the length of our table minus 2. Our pro-
gram is physically changed in core, and the neces-
sary information concerning this change is saved so
it can be given to an editing program at the conclu-
sion of our debugging session. We remove the break-
point inserted earlier by typing:

B1

and then start the program again. Again the debug
system carriage returns. We now check the contents
of the table, as before:

table

1
3
5
2
4

Obviously not all of the ordering is correct. Perhaps
it would be useful to reinsert the breakpoint at ok,
since it is the instruction immediately following the
instructions that switch the contents of registers.
However, we would like to break here only if an
exchange did occur, and at the break we would like
to print the contents of the two registers in the table
that were switched. This allows us to monitor the
successive changes in the table, so we can see at

46 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

what point something goes wrong. We insert this
type of breakpoint by:

B1 ok: P table,1;table+1,1: C

B1C

lda table+1,1
sub table, 1
spa

end

The first line indicates that breakpoint 1 should be
inserted at ok and when that point is reached two
things should be printed out: the contents of the
register at (table + the contents of index register 1),
and the register at (table+1 + the contents of index
register 1). C means to continue after the printing
without transferring control to the user. The second
line indicates that we are going to give a condition
for breakpoint 1, and the next three lines are the
condition, with the instruction following the spa
(skip on positive AC) the break branch and the
instruction following that the proceed branch. With
each breakpoint the debug program associates three
registers that are used in determining if a break
should occur when the breakpoint has been reached.
Initially, and each time a breakpoint is removed, the
three registers appear as:

nop (no operation)
(return for break to occur)
(return for no break to occur)

With this arrangement, a break occurs each time the
breakpoint is reached. When a condition (other than
a single skip instruction) for a break is entered, as
we did above, the nop instruction is automatically
changed to a jump to a patch region where the code
we supply is inserted. The first register following this
code is assumed to be the break condition and a
jump is inserted there to the first return. The second
instruction following the code is set up as a jump
to the second return.

We now execute our program again and get the
following results:

ok

table+2 1
table+3 2
ok

table+1 1
table+2

ok
table 1
table+1 3

which is correct as far as it goes, but after the above
printout the debug system carriage returns, again
indicating that our program has returned. Looking at
our program again, we see that we left out the outer
loop in our coding and are making only one pass
through the table. We make the following changes:

Isort+3
loop2 stz switch
Iloop+3
idx switch
Iok+1
Ida switch
sza
jmp loop2
I nm2
switch pze

The first change inserts an instruction labeled loop2
after sort+3 to initialize the register labeled switch,
which is at this point undefined. The second change

- inserts an instruction after loop+3 to increment the

contents of switch. The third change is to insert
three instructions after ok+1. They again refer to
switch and also to loop2, which was defined in the
first change. The fourth change defines switch, and
at this point all references to it are automatically
filled in.

We now run our program again after removing
the breakpoint and type out the results as above.
This time the table is fully sorted. At this point in
our debugging session we decide that we now have
a working program in core. To get a clean symbolic
version, we give a command to the debug system to
supply the changes which we have made (and it has
kept) to an editing program, along with our original
file. The editing process takes place and the new
file is written and given whatever name we have
specified. Our final (purportedly debugged) program
looks like this:

sort pze

call .readf

bei datal

pze table
loop2 stz switch

lix nm?2,1
loop 1da table+ 1,1

sub table,1

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 47

sma
jmp ok
idx switch

Ida table,1
ldq table+1,1
sta table+1,1

stq table, 1
ok tiz 42,1
jmp loop
Ida switch
sza
jmp loop2
ret sort
nm2 oct 3
switch pze
table Dbss 5
end

Higher-Level-Language Debugging

Our example of on-line debugging of a higher-level-
language program will be shorter than the preceding
assembly-language example, since we simply wish to
show that the facilities exhibited there for control of
program flow and for examination and modification
of program and data have their counterparts at other
levels of language as well. Correspondingly, our pro-
gram example is even more trivial; it is the same
exchange sort programmed in a typical (but again
mythical) algebraic language with the same sort of
(admittedly implausible for a program of this sim-
plicity) errors.

Again we assume our program has previously been
made into a symbolic file, then compiled and loaded.
We shall test it on the same file (datal) as we used
in the previous example. Our program reads as fol-
lows:

program sort;
array table (5);
readfile (datal,table);

loop: forie«1 step 1 unit 4 do through last;
if—_table(i—)ZtabF(i+ 1) go to last;
'_b_egin table (i) «table(i+1);
table(i+ 1) «table(i)
end;
last: Etinue;

go to loop;

finish

(readfile is a system routine that we call to fill the
array named table from the file named datal). We

run our program (named sort) by typing G sort,
as before. In this case, we conclude after a re-
spectable interval that our program is looping. By
striking the interrupt key, we return to the debugging
program. We realize that we have failed to provide
a test to escape from the program after a pass
through the table generates no exchanges. We there-
fore make several additions to our program, as fol-
lows:

Iloop —1
;init: switch<«false;
(which means insert the labeled statement setting the

Boolean variable switch to false after statement
loop —1, that is, then “readfile” statement).

Clast+1
;if switch then go to init else exit;

(which means insert the statement testing the vari-
able switch instead of the statement last+ 1, that is,
“go to loop”). And finally:
Iloop+2,2
;switche&;
(which means insert the statement setting the vari-
able switch to true after the second statement of the
compound statement at location loop+2).
To verify the last change, for example, we can
type
E loop+2
which prints:
begin table (i) «table(i+1);
table(i+ 1) «table(i);
switch«true

end

Now we try running our program again. This time it
terminates and returns control to the debugging pro-
gram. However, when we examine the results by

typing:

P table(1);table(5)
we get:

table(1)=1

table(2) =1

At this point we interrupt the printout, since our
answers are clearly in error. We insert a breakpoint
at the statement labeled last and add the condition
that we break only if switch has been set to true, by

typing:
B1 last
B1C switch

48 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

We run the program again and get the breakpoint
printout:

last
We examine the indexing variable:
i 2
So we look at:
table(2) 1
table(3) 1

This tells us we’re doing the exchange wrong. We
see that we are destroying table(i) too soon, and
correct this by typing:

I'loop+2,0

steme—table(i);
and

Cloop+2,3

stable (i+ 1) «tem;
and rerun our program. This time, when we examine
table, it is properly ordered. We terminate the ses-
sion, as before, by passing the accumulated correc-
tions to the editing program, which updates our

symbolic. The final version of our program looks
like:

program sort;
array table(5);
readfile (datal,table); .
init: switche«false;
loop: forie-1 El until 4 do through last;
ﬁable(i)—gtable(i+ 1) go to last;

Eegin teme<—table(i);

" table(i) «table(i+1);
table(i+ 1) «tem;
switche-true

end; o

last: Efltinue;
if switch then go to init else exit;

finish

Once again, in conclusion, we stress that the pro-
grams used in the examples of this section were not
intended as representative of those for which such
on-line debugging facilities are necessary or even
appropriate, but rather as uncluttered vehicles for
some simple illustrations of the use of these facilities.

SOME FINAL REMARKS

Very little data seems to exist on the relative
efficiency of on-line program debugging versus de-

bugging in a batch-processing mode, though Ref. 27
represents a first effort in this direction and will
presumably be followed by others. Meanwhile, we
can only record our subjective impressions of a
quite widespread enthusiasm for the utility of on-line
debugging facilities among those with whom we have
discussed the subject. ‘

What are some criteria for a good interactive de-
bugging system (for an experienced user)? We shall
try to abstract some (perhaps platitudinous) prin-
ciples from the wide variety of systems considered
above:

1. The user must have flexible control
over the execution of his program. He
must be able to specify this control in
terms of the natural units, small and
large, of the language in question and
be able to carry this control down to
the finest level of detail, if required (a
single instruction in assembly language,
or single noncompound statement in an
ALGOL-type language).

2. The user must be able to examine and
“incrementally” modify both data and
program at any time and do so in
terms of the notation of the language
of the program.

3. The conventions of the debugging con-
trol language should be designed to
minimize typing and should convey in-
formation to the user as concisely as is
compatible with rapid comprehension.

4. Automatic updating of a user’s sym-
bolic file “in parallel” with modifica-
tion of the in-core representation of his
program should be possible, to elimi-
nate a distinct separate phase of
cleanup of the symbolic and re-
debugging.

Each of these capabilities is now present, as we
have seen, to some degree in some current systems.
With feasibility thus demonstrated, in the near future
we shall presumably see the integration of features
taken from these systems into comprehensive on-line
debugging systems possessing all the desirable char-
acteristics listed above. Incidentally, this seems to
present an opportunity for some valuable voluntary
standardization; if the appearance to the user of the
debugging system for a given language could be
made the same over a number of future time-sharing

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 49

systems (at least to the degree that the language in
question is itself standardized), considerable savings
could well be realized. At any rate, this would seem
to be an opportune time to consider the possibility.

In addition to consolidation of known techniques
into comprehensive, widely available systems, one
can also expect the development of a variety of new
approaches; in particular, we have mentioned re-
search which seeks to exploit the full capabilities of
displays for debugging, as well as the potential value
for debugging of flexible programmable interrupt
capabilities in computer hardware.

Considerable interest has been shown in recent
years in the development of methods for proving
that a given computer program has certain proper-
ties. If this avenue of research proves successful, we
may one day see the virtual elimination or at least
diminution in importance of the program debugging
process. Until then, debugging will remain a critical
phase and potential bottleneck in the effective utili-
zation of computers. It has been suggested 2® that,
from a period in which the limitations on computer
use were in core size and in sheer lack of enough
processor cycles to go around, followed by one of
lack of adequate languages, we are now entering an
era in which computer use is “debugging-limited.”
If this is so, the development of improved on-line
debugging facilities would seem to be a particularly
fruitful and valuable endeavor, as well as a quite
fascinating one.

REFERENCES

1. J. T. Gilmore, “TX-O Direct Input Utility Sys-
tem,” Memo 6M-5097, Lincoln Laboratory, MIT
(Apr. 1957).

2. C. Woodward, “UT-3: A Direct Input Routine
for TX-O,” Memo M-5001-1, Dept. of Elect. Eng’g.,
MIT (July 1958).

3. T. G. Stockham and J. B. Dennis, “FLIT—
Flexowriter Interrogation Tape: A Symbolic Utility
Program for TX-0O,” Memo 5001-23, Dept. of Elect.
Eng’g., MIT (July 1960).

4. R. Saunders and R. Wagner, “On-Line De-
bugging Systems,” Proc. IFIP Congress, 1956, Vol.
2, Spartan Books, Washington, D.C.

5. A. Kotok, “DEC Debugging Tape,” Memo
MIT-1 (rev.), MIT (Dec. 1961).

6. D. J. Edwards and M. L. Minsky, “Recent Im-
provements in DDT,” AI Memo #60, MIT (Nov.
1963).

7. L. P. Deutsch and B. W. Lampson, “DDT
Time Sharing Debugging System Reference Man-
ual,” Document #30.40.10 (rev.), Univ. of Calif.,
Berkeley (May 1965).

8. B. W. Lampson, “Interactive Machine Lan-
guage Programming,” Proc. FICC, 1965.

9. T. G. Evans and D. L. Darley, “DEBUG—An
Extension to Current Online Debugging Tech-
niques,” Comm. of the ACM, vol. 8, no. 5 (May
1965).

10. R. R. Linde, “Q-32 Time-Sharing System
User’'s Guide Executive Service: Debugging
(DBUG),” TM-2708/390/00, Syst. Devel. Corp.
(Apr. 1966).

11. “PDP-6 DDT Manual,” Digital Equipment
Corp., 1965.

12. W. Martin and T. Hart, “Time-Sharing
LISP,” Memo MAC-M-153 (rev. 1964).

13. W. Teitelman, “EDIT and BREAK Func-
tions for LISP,” Memo MAC-M-264, MIT (1965).

14. S. L. Kameny, “LISP 1.5 Reference Manual
for Q-32,” TM-2337/101/00, Syst. Devel. Corp.
(Aug. 1965).

15. L. P. Deutsch and B. W. Lampson, “Refer-
ence Manual—930 LISP,” Document #30.50.40
(rev.), Univ. of Calif., Berkeley (Nov. 1965).

16. P. Samson, “PDP-6 LISP,” Memo MAC-M-
313, MIT (June 1966).

17. D. G. Bobrow et al, “The BBN-LISP Sys-
tem,” AFCRL-66-180, Bolt, Beranek, and Newman,
Inc., Cambridge, Mass. (Feb. 1966).

18. I. E. Schwartz, E. G. Coffman, and C. Weiss-
man, “A General-Purpose Time-Sharing System,”
Proc. SICC, 1964.

19. T. M. Dunn and J. H. Morrissey, “Remote
Computing—An Experimental System,” ibid.

20. C. S. Carr, “FORTRAN II Reference Man-
ual,” Document #30.50.50, Univ. of Calif., Berke-
ley (Feb. 1966).

21. R. S. Fabry, “MADBUG—A MAD Debug-
ging System,” in The Compatible Time-Sharing Sys-
tem, A Programmer’s Guide, 2d ed., MIT Press,
Cambridge, Mass., 1965.

22. K. Lock, “Structuring Programs for Multi-
program Time-Sharing On-Line Applications,” Proc.
FICC, 1965.

23. T. G. Stockham, “Some Methods of Graphi-
cal Debugging,” to appear in Proc. IBM Scientific
Computing Symposium on Man-Machine Communi-
cation (held May 1965).

50 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

24. W. R. Sutherland, “On-Line Graphical Speci-
fication of Procedures,” presented at SJCC, Boston,
Mass., 1966 (unpublished).

25. T. O. Ellis and W. L. Sibley, “The Grail
Project,” ibid. (unpublished).

26. T. G. Stockham (personal communication).

27. E. E. Grant, “An Empirical Comparison of
On-Line and Off-Line Debugging,” SP-2441, Syst.
Devel. Corp. (May 1966).

28. M. Halpern, “Computer Programming: The
Debugging Epoch Opens,” Computers and Automa-
tion, Nov. 1965.

THE SDS SIGMA 7: A REAL-TIME
TIME-SHARING COMPUTER

Myron J. Mendelson and A. W. England

Scientific Data Systems, Santa Monica, California

INTRODUCTION Real-Time Operation. A true real-time operation
is one in which the response time requirements of

The SDS SIGMA 7 Computer system (Fig. 1) is the system are imposed by the time sensitive de-
unique among new computer designs in that it is the .

only system which has seriously considered and
solved the problem of achieving true real-time re-
sponse hardware and software capability while oper-
ating in a multiprogramming, multiprocessing,
space-sharing, and time-sharing environment. This
paper presents an overview of the system’s architec-
ture and describes in some detail those of its fea-
tures which provide its unique capabilities.

The paper is divided into two major portions. The
first part presents a succinct description of the archi-
tecture of the system. Its purpose is to acquaint the
reader with the fundamental -characteristics of
SIGMA 7 and to provide a meaningful framework
for the second section. The second section delineates
seven major problems which were considered critical
in the design of SIGMA 7 and presents the details of
their solution.

s

DEFINITIONS
Multiusage

We will use the generic term ‘“multiusage” to
cover the spectrum of multiprogramming, multipro-
cessing, space-sharing, and time-sharing operations.
These, together with the term “real time,” will have
the following meanings: ' Figure 1. SIGMA 7 computer system.

51

52 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

mands of events external to the computer and its
conventional peripheral equipment. Failure to meet
this response time requirement results in true failure
of the real-time system, not just degraded perform-
ance. The responsiveness of such a system is meas-
ured by the time interval between the arrival of an
interrupt trigger signal and the execution of the first
useful instruction in response to it. In the extreme
case the maximum acceptable length for this interval
may be measured in microseconds.

Multiprogramming. Multiprogramming is the con-
current operation of two or more independent pro-
grams in a single computing system, control being
switched among programs through the actions of
some central control program.

Multiprocessing. Multiprocessing is the simultane-
ous execution of one or more programs in a single
computing system containing two or more proces-
sors, preferably sharing a common memory pool.

Space Sharing. Space sharing is the simultaneous
residency in a common central memory of a number
of independent (and perhaps concurrently operat-
ing) programs.

Time Sharing. Time sharing is a special case of
multiprogramming in which a multiplicity of sepa-
rate users have on-line, interactive use of a common
system. It should be noted that neither multipro-
gramming nor time sharing imply space sharing but
that space sharing is an essential ingredient in
achieving true efficiency in these operations.

SYSTEM ORGANIZATION
Introduction

The following brief description of the SIGMA 7
system is presented in order to provide a meaningful
framework within which to describe the specialized
features which provide the system with a unique ca-
pability to meet its design goals. The SIGMA 7 is a
modularly organized system which is configured out
of a combination of Central Processing Units
(CPU) (which contain Priority Interrupt Systems),
Memory Modules, Fast Memory Units, Multiplexing
Input/Output Processors (MIOP), Selector
Input/Output Processors (SIOP), peripheral equip-
ment Device Controllers. (DC), peripheral Devices
(D), and specialized real-time interfaces such as
Analog-to-Digital Converters, Digital-to-Analog
Converters, and Multiplexers (Fig. 2). This paper

will concentrate on the characteristics and structures
of the CPU, IOP’s and memory systems and their
organization to meet the requirements of a broad
range of operating environments.

Memory Organization

Core Memory Modules. The SIGMA 7 core
memory is a 32 bit plus parity bit, word organized,
850 nanosecond cycle time unit which is available in
module sizes of 4K, 8K, 12K, and 16K words
(K=1024). The system architecture permits the in-
clusion and direct addressing of any size memory
which can be configured within eight memory mod-
ules. This permits the structuring of 32 different
memory sizes ranging from 4K words (16K bytes)
to 128K words (512K bytes). Although the memo-
ry is word organized and word parity checked it is
capable of altering less than a full word on a write
operation. From 1 to 3 bytes may be written with-
out altering the remaining bytes.

Multiple Ports. The processor/memory system
complex is a bus-organized asynchronously operat-
ing system with each processor having its own pri-
vate bus. The standard memory module is equipped
with two independent access paths (called ports)
and an optional third port may be added. Subse-
quent to the addition of a third port a memory port
expander provides for the four way expansion of
any single port so that a maximum of six independ-
ent buses may be connected to any memory module.
The ports have a fixed priority relationship with re-
spect to each other so that access request conflicts
are automatically resolved.

Asynchronous, Overlapped Operation and Memo-
ry Interleaving. Memory operations may be initiated
at any time and are not synchronized to any central
clocking source. Memory operations are self-sustain-
ing so that processor release occurs upon data ac-
ceptance (by the memory) on a write operation,
and processor ‘‘go-ahead” occurs upon data availa-
bility on a read operation. This permits maximum
utilization of CPU time and the overlapping of
memory cycles with respect to a single processor or
multiple processors in multiple-module memory
configurations. To insure memory overlapping under
any circumstances, address interleaving among sev-
eral memory modules is provided on a two-way or
four-way basis.

Fast Memory. Units. An integrated circuit, non-
destructively read fast memory unit with a read cy-

SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 53

Core Memory Core Memory . Core Memory Core Memory
Module Module Module Module
[y A
SIGMA 7
Central Processing Unit
\i

Multiplexort Selector '
1/O Processor I/O Processor
_1t

Device

Z:Controller::
> 1/O (l))evice /O Device 1/O Device 1/O Device — /0 (I)Device 1/O Device
Ly /O Device — 1/O Device
15 15
L———— Standard-Speed Peripheral Devices] | High-Speed Peripheral Devices —I
t Multiplexor IOP allows up to 32 devices (one per device tt Selector IOP allows one device at a time to operate at
controller) to operate simultaneously with a combined a transfer rate of up to 3 million bytes per second. A
transfer rate of 500, 000 bytes per second. selector IOP may service up to 32 high-speed devices,

and two selector IOPs may share a single memory bus.

Figure 2. A typical SIGMA 7 system.

cle time of 60 nanoseconds and a write cycle time of stored in a sixteen word fast memory unit which is

90 nanoseconds is used to implement a number of designated as a “register block.”

special functions within the SIGMA 7 system. The In general, the SIGMA 7 register block can be

basic building block fast memory module provides used to provide:

16 bytes of operating storage. Four such modules 1. 16 separate single precision arithmetic

are combined to provide 16 words of scratchpad registers for fixed point word opera-

memory which serves as register storage for the tions or short floating point operations.

CPU. Other combinations of this single module type 2. 16 separate double precision arith-

are used for the implementation of memory protec- metic registers for fixed point half-

tion systems, fragmentation and dynamic program word operations.

relocation techniques, IOP channel control func- 3. 8 separate double precision arithmetic

tiOIlS, and device buffering systems. registers for fixed point double preci_
Every instruction makes one or more references sion operations or long floating point

to a set of sixteen registers. These registers are operations.

54 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

7 separate index registers.

A decimal accumulator with a maxi-

mum capacity of 31 digits plus sign.

6. A significance position marking register
for the EDIT instruction. ‘

7. Control registers for byte string in-

struction implementation.

S

A unique design feature of the SIGMA 7 is that it
may contain up to 32 blocks of registers. A 5-bit
register pointer designates which of the 32 is cur-
rently active. The provision of multiple blocks
makes it possible to preserve one register set and
establish a new one within the 6 microsecond execu-
tion period of a single environment preserving and
switching instruction.

Central Processing Unit

The CPU (Fig. 3) is a 32-bit, word-oriented,
parallel-operating unit employing multiple registers
in its instruction implementation. Its extensive in-
struction set provides for operations on 8 bit-bytes,
16-bit halfwords, 20-bit immediate operands, 32-bit
words, and 64-bit doublewords.

Instruction Format. SIGMA 7 provides 106 ma-
jor instructions, many of which have multiple modes
of operation, all contained within a single instruction
format. The Basic' instruction is 32 bits in length
and has the structure shown in Fig. 4. For a special
class of immediate operand instructions the X and
M fields are combined into a single 20-bit value
which is sign extended and used immediately for
computation. with no further reference to memory
for an operand.

Direct Memory Word Addressing. The 17-bit
word address field in the primary instruction word
permits the direct addressing of the maximum sized
128K word memory system. A memory address in
the range 0-15 is used to designate the corre-
spondingly numbered register and does not result in
access to core memory. Hence, the full power of the
instruction set may be applied to register-to-register
operations- as well as to register-and-memory opera-
tions.

Indirect Addressing. Indirect addressing is includ-
ed for all instructions except those of the immediate
operand class. If both indirect addressing and index-
ing are invoked, the indirect address operation is
executed prior to the indexing operation.

Indexing. The indexing operation employed in

SIGMA 7 is unique. The indexing operation as-
sumes that a list of either bytes, halfwords, words, or
doublewords is stored beginning at the word address
contained in the primary instruction word. If the

- designated index register is considered to contain the

value K, the indexing operation, under control of
the operation code (which establishes the operand
length), produces the address of the byte, halfword,
word, or doubleword displaced K units from this

--word location. Thus, the same index register may be

used to locate the K operand of a list independent
of the operand length (Fig. 5).

Instruction Set. The SIGMA 7 instruction set is
comprehensive. It includes fixed point load, store,
arithmetic, logical, and comparison operations for
bytes, halfwords, 20-bit immediate operands, words,
and doublewords. Optional floating point instructions
provide full floating point arithmetic capability for
both short (32-bit) and long (64-bit) formats. An
optional set of decimal instructions includes full dec-
imal arithmetic capability, plus Pack, Unpack, and
Edit. Standard instructions are provided for manipu-
lating byte strings up to 255 bytes in length. Single
instructions are provided for moving a string; for
comparing two strings, for the translation of a string
from one character code to another, and for the
scanning of a string for a specified set of characteris-
tics. Push-down stack instructions provide for the
efficient manipulation (including - automatic stack
limit checking) of arbitrary size stacks in core mem-
ory. Two generalized conversion instructions pro-
vide for the high speed conversion between any
weighted binary information representation used ex-
ternal to the computer and its equivalent internal
binary representation. Read Direct and Write Direct
instructions provide for the direct communication
between the CPU and external equipment without
the use of an 1/O channel. A comprehensive set of
branch and system control instructions complete the
instruction repertoire.

Typical instruction execution times (including in-
dexing and mapping and excluding any memory
overlap) are:

Fixed Point

Add/Subtract 2.26 microseconds
Fixed Point

Multiply 4.9 microseconds

Fixed Point Divide

Floating Point
Add/Subtract
(short)

12.5 microseconds

3.9 microseconds

SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER

Floating Point
Add/Subtract
(long) 4.5 microseconds

Floating Point

Multiply (short) 5.4 microseconds

CPU PRIVATE MEMORY

Floating Point
Multiply (long)

Floating Point
Divide (short)

Floating Point
Divide (long)

ARITHMETIC AND CONTROL UNIT

8.0 microseconds

12.3 microseconds

24.5 microseconds

GENERAL REGISTER BLOCK (TYPICAL) INSTRUCTION REGISTER
0 [:] D Indirect Address Flag
°
1) [ITTITT] orperation Code Field
1 7
G I Regi Desi
2 EJ:]:D eneral Register eﬂgnotqr
3 Index Register Designotor.
' ’INd(?X 12 4 '
4 Registers Reference Address Field
5 LTI
5 ' 3 To/From
6 em——— Core Memory
To/F .
7 I/OO Fr:::cessorsl
s Read/Write
8 [I Direct
Interrupts
? I 1 Priority Interrupt System I
10 I] t\/\{rife Direct
1| '} PROGRAM STATUS DOU BLEWORD
12 l J w D:[D Condition Code
s 3
13 l J [SL'C‘?;E;I SD]J Floating-point Mode Control
14 [j f;;::mu- D Master/Slave Mode Control
15| | :
0 i D Memory Map Control
?
Memor:‘i:\ﬂ::)RY CONTROL STORAGE [D Arithmetic Trap Masks
0N
l ' l l l < g] Instruction Address
|<—2568-bifpageaddresses—>l HH]H]HHHHH
Memorz/ Access Protection I o
TR — |) v
[=—— 256 2-bit access.codes _,.' .
Memory Write Protection g];' Inferrupf Inhibits
I_LI] l l l l l] i gg] l [] D:[D:l Register Block Pointer
|—— 256 2-bit write locks ——] T ‘

Figure 3. SIGMA 7 central processing unit.

56 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

Mo TrTx] M] ("| REGISTER O
1 “EDIT MARK"
2 REGISTER
3
n 7 INDEX
5 REGISTERS
16 GENERAL~PURPOSE L)
REGISTERS 7
—»>
8
9
I : Indirect Address Bit (1 bit)
O : Operation Code (7 bits) 10
R : Register Designator Field (4 bits) - 11
X : Index Register Designator Field (3 bits) 12
M : Memory Word Address (17 bits)

13 | | DECIMAL
4| |ACCUMULATOR

" 15

Figure 4. Register and instruction format.

Priority Interrupt System. The SIGMA 7 is
equipped with the most powerful and flexible prior-
ity interrupt system currently available. Since this
system constitutes one of the major elements con-
tributing to the real-time responsiveness of the SIG-
MA 7 its description will be deferred to a later point
in this paper.

Input/Output Organization

Multiplexing and Selector Type Input/Qutput
Processors. The Multiplexer Input/Output proces-
sor (MIOP) is designed to service a large number
of slow to medium speed peripheral devices simulta-
neously. A single MIOP can provide concurrent
service to as many as 32 devices having a total
bandwidth of approximately 500,000 8-bit bytes per
second. A single Selector Input/Output Processor
(SIOP), with the capability of operating at rates up
to 3 million bytes per second is designed to service
any one of as many as 128 high speed devices which
may be attached to it. SIOPs may have private buses
or two may share a common bus. As many as eight
IOP’s may be attached to a single CPU. Each oper-
ates independently of the CPU under control of a
stored program which is held in core memory. The
CPU activates and monitors the 1/O operations
through the use of a set of five I/O instructions.
Once activated the sequencing of the stored I/0

(@]

Instruction in memory:

Operation R X

Reference address

0 v 2 3i4 5 6 7718 9 101)2!3]415%16!7IB‘920212223742526’72829303!

Instruction in instruction register: O Operation: R X

Reference address 100

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 32 33

Byte operation indexing alignment:

Halfword operation indexing alignment :

Word operation indexing alignment :

Shift operation indexing alignment:

Doubleword operation
indexing alignment:

Effective virtual address:

]
19-bit displacement value

25.26 27128 29 30|31

18-bit displacement value - |0

(=]
O.

16-bit displacement value [0/0|0

16 17 18 19120 21 22 23124 25 26 27128 29 30 31

19-bit virtual address value

15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 32 33

Figure 5. Index displacement alignment.

SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 57

program is under control of the appropriate IOP
with no further operations required by the CPU.
CPU-I/0 interaction is accomplished through 1/0
interrupts, the conditions for which are specified by
the CPU in the 1/0 command list.

The IOP system operation is structured so that
low cost, multiple channel, concurrent I/O opera-
tions which demand little CPU time for their execu-
tion are readily incorporated in the SIGMA 7 sys-
tem.

Device Controllers and Devices. A wide range
of 8-bit oriented peripheral equipment is avail-
able for attachment to IOPs. These include
keyboard/printers high and low-speed paper tape
input and output, punched card input and output,
IBM compatible 7-channel multiple density magnet-
ic tape units and single density 9-channel magnetic
tape units, high speed line printers, fixed head rapid
access disc storage units, communications equip-
ment, and keyboard/display equipment. All such
units are controlled by individualized Device Con-
trollers which communicate with the IOPs through a
common, simplified, electrical interface using a com-
mon method for control and information exchange.

Real-Time Interface Units. A full range of special
systems equipment including such devices as Ana-
log-to-Digital Converters, Digital-to-Analog Con-
verters, and Multiplexers together with Device Con-
trollers which interface them either with the direct
input/output system of the CPU or with the stand-
ard IOP interface are also available.

SEVEN CRITICAL DESIGN PROBLEMS AND
THEIR SOLUTION

General

This brief exposition of the SIGMA 7 system pro-
vides an over-all view of its principal features as a
computing system, but it gives little insight into the
special characteristics which uniquely permit it to
carry out real-time tasks embedded in a multi-usage
environment. Such an environment must be con-
trolled by an executive program which allocates sys-
tem resources; schedules operating intervals; pro-
vides services such as trap and interrupt response
control, editing, compiling, assembling, and debug-
ging; controls and executes I/O operations; swaps
active programs between core and rapid access mass
storage units; and guarantees the integrity, privacy,

and non-interference of all active programs and
their associated data bases.

If a real-time operation is to be maintained in a
multi-usage environment, it must have guaranteed
dedication and protection of the system resources
which it requires. Core and disk space must be as-
signed to it and protected from access by other pro-
grams. I/O channels, peripheral devices, and inter-
rupt levels must be assigned, dedicated, and
protected from outside interference. The establish-
ment of a real-time operation and the dedication of
resources to it should be dynamically available
through the operating system. These tasks must be
accomplished in such a way as to permit full free-
dom and capability to the non-real-time operations
while in no way degrading the responsiveness of the
system to the time-sensitive demands of the real-
time program. In the following section we will de-
scribe the design problems which were faced in
meeting these requirements and present the SIGMA
7 structures which provide for their solution.

The Problem of Priority Interrupts

The system must be equipped with a true priority
interrupt system which is flexibly structured and
controlled and whose operation in establishing
priorities and recording and sequencing interrupt re-
quests is essentially instantaneous and independent
of CPU action. Interrupts of higher priority must be
permitted to interrupt partially completed responses
to those of lower priority. To maintain fast re-
sponse, interrupt requests should require no decod-
ing action on the part of the CPU to determine their
source or nature. Capability for dynamically varying
the priority sequence to meet the demands of a
changing environment must be available. No other
system element may be designed such that its proper
operation requires the inhibition of the priority in-
terrupt system for any period of time.

The SIGMA 7 Priority Interrupt System. The
SIGMA 7 interrupt system is best described from
the ground up. The basic interrupt level has four
mutually exclusive states which are designated as
Disarmed, Armed, Waiting, and Active. A separate
flip-flop is used to disable or enable the level (Fig.
6).

In the Disarmed state the interrupt level rejects
all incoming interrupt trigger signals. In the Armed
state the interrupt level will accept a trigger signal
from an outside source, or from the CPU, and will

58 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

INTERRUPT LEVEL SOURCE OF
STATE FF CONFIGURATION ENABLE CHANGE SIGNAL
oo [T [

CPU
ARMED I 0 I | 1 |

CPU or

External Signal

wamnne (1] | tJ

|

| 1

|

|

| INTERRUPT

- TIMING

| ~-——————— GROUP INHIBIT

m EE NO HIGHER-PRIORITY
LEVEL ACTIVE, OR

WAITING AND ENABLED

ACTIVE

Figure 6. Interrupt level operations.

move to the Waiting state, where it will remain until
the level is acknowledged by the CPU. If the level is
disabled any Waiting condition is held in abeyance,
preventing it from entering the priority chain of re-
quests for CPU action. All Enabled and Waiting in-
terrupt levels are permitted to enter the priority
chain of requests awaiting computer interrupt re-
sponse action.

Interrupt levels are organized into four classes
which are designated as the Over-ride Class, the
Counter Class, the I/0 Class, and the External
Class. The Over-ride class can never be Inhibited,
Disarmed, or Disabled. A separate inhibit flip-flop is
provided in the CPU for each of the other three
classes, so that the CPU can prevent an entire class
from entering the priority request queue. In effect
this inhibit flip-flop disables the class regardless of
the Enable-Disable states of the individual levels
within it. The External Class is further divided into
14 groups each containing 16 interrupt levels. The
priority request queue starts at the Over-ride Class
and then may be threaded through the remaining
Classes (and Groups of the External Class) in any
order which the customer may desire. Thus, external
interrupts may be given priority positions above, be-
low, or in between those allocated to the Counter
Class and the I/0 Class (Fig. 7).

Each interrupt level has a unique location in low
order memory dedicated to it. Control of the CPU is
automatically forced to this location when the inter-
rupt is acknowledged and permitted to move to the
Active state. This action occurs whenever the high-
est priority Waiting, Enabled, and Uninhibited inter-
rupt level is of higher priority than the highest
priority currently Active interrupt level.

The CPU can control the states of the interrupt
system. A group of sixteen interrupt levels are oper-
ated upon simultaneously under control of a sixteen
bit mask which selects the subset of the sixteen to be
modified. Operations which may be performed upon
the mask-selected levels include Disarm, Arm and
Enable, Arm and Disable, Enable, Disable, Load
Enables, and Trigger. The Trigger function permits
the CPU to apply an interrupt signal to its own in-
terrupt system. This feature can be used to simulate
an external interrupt environment for purpose of
system checkout. It also permits the CPU to carry
out the highly time sensitive portion of an interrupt
response and then to create for itself a low priority
interrupt to call for the deferred servicing of the less
time sensitive portion at a less pressing time.

Ist Priority 2nd Priority

Override
Interrupts

Counter
Interrupts

3rd Priority

Lp External Interrupts Group 2 —

4th Priority

Input/Output
Interrupts

‘ 5th Priority
External Interrupts Group 3 —

6th Priority

y

v]

External Interrupts Group 4 ——

{ 7th Priority
External Interrupts Group 5 —»

Figure 7. Typical interrupt priority chain.

SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 59

The Problem of the Duration of Uninterruptible In-
tervals

Such an interrupt system is of little value if the
CPU can remain for any significant period of time
in an uninterruptible state. Under normal operating
conditions, the longest uninterruptible interval must
be kept short, and under abnormal conditions no
malfunctioning peripheral hardware or software may
be allowed to “hang up” the CPU in a noninterrupt-
ible state.

SIGMA 7 Interruptible Instructions and the
Watchdog Timer. To insure that the longest uninter-
ruptible interval which the CPU may experience in
normal operation is short, all long instructions have
been designed so that they may be interrupted dur-
ing the course of their execution. Registers are held
in fast memory, but instruction execution occurs in
hardware elements. Since the original operands are
retained in fast storage until instruction execution is
completed, instruction aborting occurs without loss
of information. Instructions whose duration is less
than 10 microseconds are never aborted. Instruc-
tions in the 10-30 microsecond range are designed
so that they may be aborted and subsequently re-
started upon return from the interrupt. Instructions
whose execution time exceeds 30 microseconds are
designed so that they may be aborted and subse-
quently have their execution resumed from their
point of interruption upon return from an interrupt
process.

An instruction “watchdog timer,” included in the
standard SIGMA 7 configuration, guarantees against
hardware hang-up by insuring that the time interval
between interruptible points never exceeds 40 mi-
croseconds.

The Problem of Red Tape Time

Mere capability to initiate action in response to
an interrupt is of little use to a real-time situation if
it requires an inordinate amount of time to preserve
the operating environment which exists at the time
of the interrupt and to establish the new environ-
ment required for the processing of the interrupt.
Hence, an extremely rapid context preservation and
switching system must be provided in order to as-
sure that minimum time lapse exists from the initia-
tion of interrupt response to the execution of opera-
tions which are truly pertinent to the demands of the
interrupt situation. Such a switching system must be
repeatable to any number of levels in order to ac-
commodate interrupts of interrupts.

SIGMA 7 Context Switching. A single in-
struction, Exchange Program Status Doubleword
(XPSD) results in the collection of all of the active
control states of the CPU and their storage in an
arbitrarily designated doubleword location in core
memory. This instruction execution then proceeds
by loading the active control states with corre-
spondingly structured information contained in the
following two words in memory. Thus, the entire
control environment of the CPU is stored and re-
loaded in six microseconds with the execution of a
single instruction. A return to a prior control state is
accomplished through the execution of another sin-
gle instruction, Load Program Status Doubleword
(LPSD), which also provides for clearing and arm-
ing or disarming the highest level active interrupt.
An XPSD at the interrupt location saves the old
environment and establishes the new one for the in-
terrupt response. An LPSD at the conclusion of the
interrupt process returns the CPU to its state prior
to the interrupt. Since the storage and access loca-
tions designated by the XPSD and LPSD instruc-
tions are arbitrarily located in memory, nested.
chains of interrupted interrupt routines may occur to
any level without loss of control and with automatic
denesting as interrupt processes complete.

A second major element of context saving is the
preservation of register states. Registers may be pre-
served in memory and restored through the use of
multiple register load and store instructions or may
be preserved in core implemented stacks through the
use of multiple register push and pull instructions.
Even the high speeds of these operations may result
in too great an overhead time for some real-time
processes; hence, a register storing and loading tech-
nique which is accomplished during the execution
time of an XPSD instruction is provided. This tech-
nique is available whenever the CPU is equipped
with one or more of the optional additional register
blocks. The 5-bit Register Pointer is a portion of the
contents of the Program Status Doubleword which is
stored and loaded with the XPSD instruction.
Hence, if a register block is available and dedicated
to a real-time process the execution of the XPSD
instruction which initiates the process automatically
preserves the control context and the register con-
text of the interrupted routine and automatically es-
tablishes the corresponding contexts for the inter-
rupt process. Under these circumstances, the
equivalents of register preservation, loading, and re-
storing are all accomplished within the execution

60 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

times of the XPSD and LPSD instructions which
initiate and terminate the interrupt routine (Fig. 8).

The Problem of System Integrity

Some means must be provided to guarantee the
integrity of the executive system and for it, in turn,
to establish and guarantee the integrity of all other
programs.

Master/Slave States and Privileged Operations.
The SIGMA 7 CPU can operate in either a Master
or Slave state. In the Master state all instructions
can be executed normally. In the Slave state instruc-
tions whose execution are critical to the integrity of
system resources are illegal. Such instructions are
designated as Privileged Operations and are reserved
to programs operating in the Master state. Privileged
operations include all instructions which affect
Input/Output operations through the Input/Output
system, Input/Output operations direct to memory,
the memory protection systems, the interrupt sys-
tem, the operating state of the CPU (e.g. a Slave
state program cannot switch itself to the Master
state), or the continuation of system operation.

Memory protection, the other aspect of guaran-
teeing system integrity, is presented in the following
section.

The Problem of Space Sharing

Efficiency in multiusage implies the simultaneous
residency of many programs, or portions of pro-
grams, so that when conditions require that control
be given to a new program it is resident and such
action can occur immediately. Thus, under control
of the executive system, partially executed programs
must be permitted either to space share or to be
swapped out of memory and later returned, prefera-
bly to whatever space is available. When a program
is held up for I/O operations, only its I/O buffer
region should be retained in core with the remainder
of the program dumped to disk so that its space in
core may be available for other usage. As such ac-
tions take place, the available memory space rapidly
becomes fragmented into discontiguous regions
which should be directly usable without having to
repack the memory in order to achieve contiguity.
Thus, a system should be provided for the execution
of programs which have been dynamically relocated
into discontiguous memory regions.

REGISTER BLOCK #0
(STANDARD)

REGISTER BLOCK 1

(OPTIONAL)
0
. 1 SIGMA 7
CENTRAL
‘ PROCESSOR
. 31

(AUTOMATICALLY, THE BLOCK POINTER
LOGICALLY CONNECTS ONE OF THE 32
POSSIBLE BLOCKS TO THE CPU)

REGISTER BLOCK #31
(OPTIONAL)

Figure 8. Block pointer and register selection shown with a
block pointer value of 1-(00001).

The SIGMA 7 Memory Map. Dynamic program
relocation into discontiguous fragments of memory
is provided through the incorporation of an optional
feature, the memory map. If the map option is in-
stalled, any program may be broken into 512-word
pages and distributed throughout the implemented
core memory in whatever 512-word pages of space
are available. The memory map then permits the
program to be executed as though it were located in
the contiguous region of memory for which its ad-
dresses have been established. Clearly, the map pro-
vides the transformation of Virtual Addresses (i.e.,
addresses generated within a program such as in-
struction addresses, operand addresses, and indirect
addresses) into Real Addresses (i.e., the physical
core addresses where program-designated values are
actually located).

The memory map employs a 256-byte, integrated
circuit memory in its implementation, and thus pro-
vides for the mapping of a full 128K Virtual Ad-
dress space. A mode flip-flop designates whether a
program is to operate in a mapping or non-mapping
mode. When mapping is invoked, the following
events occur every time an actual reference to mem-
ory is to be made (Fig. 9):

1. The 17-bit address generated by the
program is broken down into a 9-bit
word address and an 8-bit page ad-
dress.

2. The 8-bit page address is used to
access one of the 256-byte map mem-
ory locations.

3. The 8-bit page address stored at that
location replaces the 8-bit page address
portion of the Virtual Address to form
a Real Address.

4. The Real Address is used to access the
memory.

SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 61

Because of the speed of the integrated circuit memo-
ry, these actions add only 60 nanoseconds to each
Memory access.

A special instruction, Move to Memory Control,
provides for rapid changing of the memory map.

With the map option, a program can be brought
in and distributed to any set of 512-word pages
which may be available in memory. The Move to
Memory Control instruction is then used to write
the map so that the proper address transformation
will be made. The mapping mode is then entered
and control is turned over to the program, which

then operates as though it were located in the con-
tiguous region of memory for which it was designed.
The operation of such a program may be halted at
any time, the program subsequently relocated to any
other set of 512-word pages, the map rewritten, and
the program operation resumed with no adverse
effects.

Programs whose addresses range over the 128K
Virtual Address space may be executed on a ma-
chine with far less than 128K words of implemented
core. The map permits portions of such programs to
be resident and operate in available core space. Pro-

Instruction in memory: 1 LH R X Word address 1
0 QTTA 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}
P . . Word address 1
Instruction in instruction register: 1 LH R X xxxxxxxg a y)?;;yyyyy 00
[3i4 5 6 718 9 10 11112 13 14 15i|6 17 18 19120 21 22 23?24775 2mﬁ 30731 32 3
The 8 high-order bits of the reference address are Page Z
replaced with page address Z from memory map: ZZZZ[ZZZZ
0 v 2 30 5 6 7
Actual address of memory location 19-bit actual address
that contains the direct address: 22222227 YYYYYyyyy 00

5116 17 18 19120 21 22 23124 25 26 27128 29 30 31 32 3

&)

Direct address in memory:

0 1 2 314 5 6 718 9 10 111213 14 15116 17 18 19120 21 22 23124 25 26 27125 29 30 31

Word address 2

1

Indirect addressing replaces reference] LH
address with direct address:

R X Word address 2 00

0 1 2 314 5 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 27 26 27128 29 30 31 32 33

i

Halfword operation indexing alignment:

18-bit displacement

0 1 2 314 5

Effective virtua! address:

The 8 high-order bits of the effective address are
replaced with page address N from memory map:

Final memory address, which is the actual address of
halfword location containing the effective halfword:

; . — s
& 718 9 10 112 1274 15110 17 1€ '9120 21 22 23124 25 26 27128 29 30 31

)19-bif virtual halfword address
kkkkkkkk mmmmmmmmm ImO

15116 17 18 19120 21 22 23124 25 26 270128 29 30 31 32 33

Page iN
nnnnnnnn
0 1 2 314 5 & 7

19-bit actual halfword address
nnnnnnnn | mmmmmmmmm | m 0|
15116 17 18 19120 2V 22 23124 25 26 27128 29 30 31 32 33

Figure 9. Example of generation of actual memory addresses; indirectly addressed, halfword operation.

62 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

gram references to blocks which are not resident are
automatically trapped so that a page-turning system
may be readily implemented.

A number of design compromises were made in
the incorporation of the map in SIGMA. The most
important of these was the decision not to incorpo-
rate a two-level (segment and page) mapping struc-
ture. Consequently, all programs which must direct-
ly communicate with each other, without the
intervention of the executive system, must share a
common Virtual Address space since they must
share a common map. This includes the executive
system itself which must provide services to user
programs. When doing so, the executive system
must operate in the mapping mode since no unique
bit was available in each instruction word to desig-
nate whether or not to employ mapping on an indi-
vidual instruction execution basis. Thus, in the inter-
ests of simplicity and limitation of costs, the map
system has been deliberately incorporated in such a
way that a user’s Virtual Address space is curtailed
by the size of the executive system and the public
routines and services to which the user’s program
desires to have access. Further, these latter pro-
grams must have dedicated space in the Virtual Ad-
dress space of all users who desire to use them so
that they may maintain constant residency in all
users’ maps. While these limitations were recognized
it was felt that it was worth far more to achieve the
powers of the mapping operation at a price which
would bring them to a large segment of the market,
than it was to achieve full segmentation for a much
smaller portion of the market.

The Problem of Memory Protection

An additional aspect of guaranteeing the integrity,
privacy and non-interference of all active programs
is that of memory protection. Early implementations
of memory protection were aimed almost exclusively
at providing the write protection function which is
essential for guaranteeing that one program cannot
destroy another. The multi-usage environment adds
further dimensions to memory protection require-
ments. Privacy considerations of privileged informa-
tion (such as payroll data) require that portions of
memory be protected from unauthorized reading as
well as writing. The complexity of the operating en-
vironment makes it highly desirable to catch errant
programs at the earliest possible time. This desire
leads to the concept of instruction protection which
prevents a program from executing an instruction

taken from an instruction-protected region of memo-
ry.

Access Protection. An additional 512 bits of fast
memory are supplied with the map option. These
provide storage for two Access Protection bits
which are associated with each of the 256 Virtual
Address pages. These bits are accessed during the
mapping operation whenever the CPU is in the
Slave state. They are used to impose inhibitions on a
slave program’s use of the information in the page
which it is attempting to access. These inhibitions
are designated in the following table:

Access
Protection Inhibition/Permission
Value Control
00 Permit slave access to this
page for any purpose
01 Inhibit slave access for writ-

ing, but permit instruction or
operand read access
10 Inhibit slave access for writing
and instruction execution, but
permit operand read access
11 Inhibit slave access for any
purpose

Note that these inhibitions are imposed on slave
Virtual Addresses and are in effect no matter where
the slave program may be located physically in core.

The Access Protection bits are used to restrict the
operation of a slave program to its allocated ad-
dressing domain, and within that domain to permit
the establishment of read-only or read-and-execute
only pages of information. Thus, provision is made
to guarantee secrecy and preservation of sensitive
information, for common use of non-destructible da-
ta bases and public subroutines, and for the trapping
of run-away program attempts to execute data.

The 64-byte Access Protection fast storage area is
loaded with a Move to Memory Control instruction.
Because of the existence of this form of program
inhibition, the memory map need only be loaded
for the address domain over which a slave program
is expected to operate. The Access Protection bits
are loaded for the full 128K Virtual Address do-
main and thus are guaranteed to protect against
slave program operations in pages outside their pre-
scribed domain. This fact reduces overhead time in-
volved in map loading for slave programs with re-
stricted addressing ranges.

SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 63

Memory Write Protection. The Access Protection
bits operate over the Virtual Address domain, are
effective only for slave programs, and are not availa-
ble unless the Memory Map option is installed.
Consequently, an optional memory write protection
feature which operates independent of the Access
Protection bits is also available. The memory write
protection feature operates in both the Master and
Slave states. This feature is implemented with a
512-bit fast memory unit which stores a 2-bit write
protection “lock™ for each 512-word page. Every
operating program is given a 2-bit “key” which, in
conjunction with the locks, controls its write access
to a page in the memory according to the following
rules:

1. If the lock value for the page is 00,
writing is unconditionally permitted.
That is, the page is “unlocked.”

2. If the key value for the program is
00, writing is unconditionally permitted.
That is, the program has been given a
“skeleton key.”

3. If the lock and key values are both
non-zero, then writing is permitted if,
and only if, the lock and key values
are identical.

Note that this feature is associated with. the use of
Real Addresses and, therefore, supplies write pro-
tection for physical memory. If the map option is
installed, both forms of memory protection are
operative, the Access Protection bits operating on
the Virtual Address space of the program and the
locks and keys on the physical memory space, after
mapping. Locks are installed through the use of the
Move to Memory Control instruction. The memory
write protection system makes it possible to provide
memory protection in the absence of the Memory
Map. It also provides memory protection for simul-
taneously resident Master mode programs, thereby
guaranteeing their integrity and the integrity of pub-
licly available, reentrant, pure procedures which
service users of both classes. This form of memory
protection also provides a powerful tool for the de-
velopment or revision of portions of the executive
system. Such a development can occur on-line, while
the system is operating, since the unchecked portion
can operate under a write protection constraint
which guarantees the memory integrity of the sys-
tem.

The Problem of Recursive and Reentrant Routines

Efficient operation in a multi-usage environment
requires efficient utilization of memory and minimi-
zation of program swapping time. The provision of
single, public copies of routines which are used in
common by many concurrently operating programs
is an essential ingredient in optimizing both of these
functions. Public routines avoid multiple copies, one
for each user, and eliminate the swapping time asso-
ciated with their transmission between core and rap-
id access disk. (Indeed, swapping out time is always
avoided for all pure procedures.) Public routines
must be pure procedures which operate on a desig-
nated context. When the context and working space
are provided by the calling program and several
such programs may be concurrently using the rou-
tine it is said to be reentrant. When such a routine
may repeatedly call itself, and, therefore, be re-
quired to provide its own nested context and work-
ing space, it is said to be recursive. A single routine
may be both recursive, i.e., capable of calling itself,
and reentrant, i.e., capable of being called by many
different programs prior to its completion of opera- -
tions for any single one of them. Of primary impor-
tance is the requirement that public routines must
operate in an interrupting environment in which
they may be invoked by one or more programs be-
fore completing their operations for another. The
primary SIGMA 7 design constraint that no soft-
ware may be designed so that it must turn off the
interrupt system in order to be guaranteed to oper-
ate properly is particularly difficult to meet in this
environment. These requirements place demands on
the hardware to provide entry and context establish-
ing methods which provide for efficient and dynamic
utilization of space and guard against loss of infor-
mation or control under all operating conditions.

SIGMA 7 Hardware Features for Reentrance and
Recursion. Both reentrance and recursion require an

“efficient means for guaranteed preservation of the

context of a partially completed process, including
the 16 general registers and the link address, and for
the institution of the corresponding context for a
new user. A Branch and Link instruction which pre-
serves the program address in a designated register
provides a simple and effective linking mechanism
for both reentrant and recursive routines. The indi-
rect addressing and indexing mechanisms provide one
of the means for context designation in the reentrant
case. Multiple register blocks provide a rapid means

64 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

for context switching. The memory map provides
the most direct and effective method for both con-
text designation and context switching since it per-
mits the reentrant routine to directly address its des-
ignated context. Switching from context to context
then merely requires a map change.

Both types of programs require register preserva-
tion. The Load Multipie and Store Multiple instruc-
tions provide a ready solution for the reentrant case
since the calling programs must provide storage
space within their context regions. The recursive
case is more complex since the recursive program
must provide its own storage. In this case, however,
such storage is always used in a nested fashion on a
last-in-first-out basis. The SIGMA 7 pushdown
stack manipulating instructions provide the ideal so-
Iution for this situation. There are five instructions
in this set, PUSH, PULL, PUSH MULTIPLE,
PULL MULTIPLE, and MODIFY STACK
POINTER. These stack manipulating instructions
provide an efficient means for moving information
between single or multiple registers and core loca-
tions which are contained within a pushdown stack
which is under control. of a doubleword stack
pointer (Fig. 10).

The stack pointer contains the address of the top
of the stack, a count of the words in the stack, a
count of the number of spaces currently available in
the stack, and stack underflow and overflow trap
mask bits. With such a mechanism, recursive entry
to a routine merely requires the execution of a single
PUSH MULTIPLE instruction to preserve the cur-
rent context in a stack for which space is provided
within the routine itself. A routine which is both
reentrant and recursive merely uses pushdown
stacks which are stored within the context regions of
the various calling programs.

In general, the pushdown stack mechanism pro-
vides a powerful tool for any dynamic space alloca-
tion situation in which a last-in-first-out nesting of
information is guaranteed.

Other Multiusage Features. The limitations of
space do not permit the description of many of the
details of the SIGMA 7 which make for efficiency of
operation in a multinsage environment. A few addi-
tional features are worthy of mention, however. A

Top of stack address I

0 1415 31
EI Space count IJVI Word count |
3233 47 4849 63

Figure 10. Stack pointer.

set of four Call instructions, each providing sixteen
independent branches, generate a total of 64 gener-
alized operator or subsystem entrances. The Call,
operating through the Sigma Trap system and the
use of XPSD instructions, provides a mechanism for
accessing generalized, re-entrant service routines.
The Call mechanism provides the proper control
states for these routines and establishes the means
for returning to the control state of the calling rou-
tine, without going through the executive program
and without using the address portion of the Call
instruction itself. Consequently, the address portion
of the Call instruction is available for the designa-
tion of operand(s) to the called routine. Calls thus
can be considered a generalization of the SDS Pro-
grammed Operator concept.

The SIGMA 7 CPU is equipped with two real-
time counters, and 60 cycle, 1KC, 2KC, 4KC, and
8KC clock sources, any of which may serve as in-
puts to the counters. Optionally, it may be equipped
with two additional counters. Clock pulse counting
is handled by single instruction interrupts which
cause counts to be accumulated in arbitrarily desig-
nated memory cells. Overflows from these locations
cause a second interrupt, unique to each counter, to
occur. Hence, real-time synchronization may be
maintained, elapsed time intervals may be measured,
and arbitrary length count down timers may be es-
tablished, all without recourse to elaborate, soft-
ware-derived timing routines.

An extensive error-trapping system provides for
automatic error detection and recovery from situa-
tions which would otherwise eliminate all possibility
of interrupt responsiveness.

An optional power fail-safe system provides for
the detection of incipient power failure and the or-
derly shut-down of the system so as to preserve its
operating state. An automatic start-up procedure is
initiated upon restoration of power.

TECHNOLOGICAL FOUNDATIONS AND FUTURE DIRECTIONS
OF LARGE-SCALE INTEGRATED ELECTRONICS

Richard L. Petritz

Texas Instruments Incorporated
Dallas, Texas

INTRODUCTION

The technological base of the electronics industry
has undergone dramatic change in the past 20 years,
largely related to the expansion of the use of mate-
rials technology. With the invention of the transistor
in 1948, semiconductor materials processing provided
the technology for an entirely new class of electronic
devices. The invention of the monolithic integrated
circuit in 1958 extended the use of materials tech-
nology to the formation of complete circuit functions
on chips of semiconductor. We are now entering
another phase of the expansion of materials tech-
nology, in which complete equipment components
will be processed on slices of semiconductor.

It is the purpose of this paper to discuss the tech-
nological foundations and future directions of this
latter phase.

This phase has already been given several names,
some of which are “large-scale integration” (LSI),
“computer on a slice,” and “array technology.” The
term “large-scale integration” is close to being the
most descriptive, although at times the syntax is
awkward. A somewhat more precise term is “large-
scale integrated electronics.” We will use LSI to ab-
breviate both “large-scale integrated electronics” and
“large-scale integration.”

65

The products of large scale integrated electronics
will be called Integrated Equipment Components
(IEC’s) to distinguish from integration to the cir-
cuit function (Integrated Circuits, IC’s).

In order to set the stage for the discussion of large-
scale integrated electronics technology, Fig. 1 is in-
cluded for review of the technologies of discrete
semiconductor devices and monolithic integrated
circuits. The reader is referred to the December 1964
issue of Proceedings of IEEE * for a comprehensive
review of integrated electronics. The article by Jay
Lathrop 2 is an excellent discussion of integrated
circuits technology. A discussion of the history of
semiconductor technology is contained in Ref. 3, and
the status of large-scale integration technology in
1965 is reviewed in Ref. 4. Recent published reports
of meetings concerning LSI are listed in Ref. 5.

An important conclusion of Fig. 1 is that there
are potentially 40,000 gates per 1l-inch slice of
silicon. The use of a 1” slice of silicon is arbitrary—
the industry is moving to larger slices. Today 114"
is widely used and 3” diameter is forecast by 1976.
A principal goal of LSI technology will be to utilize
this logical power in slice form; that is, inter-
connect the gates such that powerful logic and
memory functions are formed on single slices of
semiconductor material.

66 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

DISCRETE DEVICE PROCESS

Scribe into
chips of
15 mils
on side

Process
separate
slices for
transistors,
diodes, ooo
resistors, oaag

etc. Spec each
discrete
device
separately

1" slice
of silicon

Transistors

Diodes

Reconnect
to circuit
and Elec-
tronic Func~
tion

Circuit
Function
specs are
derived
largely from
device specs

Number of

transistors

_n(n)4 =
15x15x10~6

4000
transistors
per slice

N

Potential
Number of
Transistors

1.5 mils on
side

Np =400, 000

transistors
per slice

" INTEGRATED CIRCUIT PROCESS

Interconnect
devices in

evaporation
step for cir=-

Process
transistors,
diodes, resis=~
tors, etc. on
same slice cuit or elec~
grouped to do tronic func-
circuit function tion

1" slice
of silicon

Integrated
Circuit

Interconnections Required to Construct
Equipment Components

Before going further in our discussion of the tech-
nological foundations of large-scale integrated elec-
tronics, let us discuss the problem of building an
equipment component, such as a memory or central
processor unit, requiring the logical power of, for
example, 10,000 gates.

In Fig. 2 it is shown that the construction of an
equipment component of 10 K gates from discrete
devices requires about 150 K mechanical connec-
tions. We have assumed each gate has 10 internal
and 5 external connections. Since each gate is con-
nected to something else, a linear slope brings us to
150 K for an equipment component of logical power
of 10 K gates.

Scribe into
chips which
contain com-
plete circuit
or electronic
function
ooo

ooo

Spec circuit
function, not
each device
in circuit

Figure 1. Discrete device and integrated circuit processes.

Number of
gates on

Apollo SCN

N = 1400
gates per
slice

Potential
number

N = 40,000
gates per
slice

For multifunction integrated circuits, the 10 me-

chanical connections needed to interconnect the
discrete devices to form gates are made by materials
processing (evaporation of metal). Thus a single gate
has five terminal connections, and 50 K mechanical
connections must be made to achieve an equipment
component complexity of 10 K gates (Fig. 2).

We thus conclude that while integration to the
circuit function level of complexity has reduced the
mechanical interconnection problem (from 150 K to
50 K in this example), there are still a great many
mechanical interconnections to be made in order to
construct an equipment component.

It is of interest to observe that the use of equip-
ment components as black boxes requires orders of
magnitude less external connections, that is, most

FUNCTIONAL
CONNECTIONS

LARGE-SCALE INTEGRATED ELECTRONICS 67

8
=

10K

/\{
INTEGRATED EQUIPMENT COMPONENTS

1 10 100 103 10
NUMBER OF GATES

%

NUMBER OF MECHANICAL CONNECTIONS
FOR CONSTRUCTION OF EQUIPMENT COMPONENTS
g
T TTTT LILBLRLALLLL LI LA T T
AN Nl

—
(=]

0°

Figure 2. Number of mechanical connections for equip-
ment components vs number of gates.

of the 50 K connections are internal. In Fig. 3,
bottom left hand corner, it is shown that a typical
ALU of a computer requires 85 external connections
to add two 25-bit words.

Defining R as the number of functional connec-
tions per bit of processed data,

R = § =34
25

We note that the other equipment components
shown in Fig. 3 have R values in the range of 1-10,
relatively independent of the number of gates per
equipment component. The shaded area on Fig. 2
will contain the number of functional connections per
bit for equipment components. Comparison of the
shaded region with the lines for discrete devices and
multifunction integrated circuits shows that most of
the mechanical connections are internal. Essentially
all connections above the shaded area are internal.

As will be developed in detail below, a principal
goal of large-scale integration technology is to make
these internal connections a part of the materials
processing technology (e.g., by evaporation).

Those equipment components in which most of the
internal connections are made by materials process-
ing technology we shall call Integrated Equipment
Components (IEC’s), to distinguish them from
Integrated Circuits (IC’s) and from equipment com-
ponents fabricated principally by mechanical tech-

niques. Figure 4 illustrates these definitions
qualitatively.
Technologies Suitable for Integrated

Equipment Components

The essential requirements of a basic technology
are two:

1. It must be capable of forming thousands
or more of both active and passive
devices in or on a common substrate.

2. It must be capable of interconnecting
thousands of active and passive devices
into IEC’s by a materials process such
as evaporation without separate me-
chanical handling of devices.

Clearly monolithic semiconductor integrated cir-
cuit technology has the potential of meeting both of
these requirements as shown in Figs. 1 and 4. This
paper will be concerned principally with semiconduc-
tor technology, but before developing this further, let
us consider what other technologies may also be
suitable for large-scale integrated electronics. The
consideration that the technelogy must be capable
of forming complete electronic functions without in-
termediate steps of dicing and mechanical handling
eliminates the hybrid technologies as we know them
today (e.g., thick or thin films, with chip transistors).
However, hybrid and discrete device technology, in
combination with monolithic semiconductor tech-
nology, will add to the flexibility of LSI.

Technologies in addition to. silicon that appear to
have promise include: thin films, where the TFT

CONTROL 10
1
DATA SIGNAL
oA | ok | T sioud e L S
) Q- cATes|~ T N1 Jea. Gates| T
MEMORY RECEIVER
.60, 2.
R-92-24 R-2-2
CoNTROL 10 CovTRoL 1
ra DATA 1-VOLTAGE/
: 000 |, MR power | 50 | "current
oaTA | GATES UT N1 e oaTes| T AT
IN. 25 : out
ARITHMETIC POWER
UNIT SUPPLY
85 3
R=32-34 R=3-3

Figure 3. Ratio of functional connections to bits of output
data for equipment components.

68 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

Figure 4. Pictorial view of integrated equipment component
(IEC), integrated circuit (IC), and semiconductor
device.

(thin film transistor) now offers a method for achiev-
ing an active element as an integral part of thin film
technology; cryoelectronics, where logic, control, and
memory functions are processed in compatible steps;
and compound-materials technology, where more
than one material may be involved in the processing.

Applicability of LSI Technology to Linear
as Well as Digital Functions

It is clear that LSI technology is directly applicable
to digital functions; the impact on linear functions is
not so clear. A chief characteristic of digital func-
tions is that signals are propagated through many
levels of logic with no basic change in the signal level.
The power gain supplied by the active element com-
pensates for losses in the system. However, the signal
level stays at the same amplitude (generally about 1
V for silicon circuits). Thus, long chains of logic
functions can connect together with a high degree of
repeatability of the basic logic circuit (normally a
NAND or NOR gate). Consequently, digital func-
tions lend themselves rather naturally to LSI tech-
nology.

Linear functions are generally concerned with
changing the level of the signal function. For ex-
ample, in a low-noise amplifier the signal level is
amplified from a few microvolts to a level of a few
volts. Since there is a finite lower level (set by noise)
and a finite upper level (set by the particular ap-
plication) over which amplification must occur, a
finite number of stages is required for linear applica-
tions. An initial judgment is that array technology
will not have a major impact on linear functions.

However, one must temper this conclusion because
there is a large class of linear functions that re-
quires a number of parallel channels, each identical.
Consider as an example a solid-state replacement for
a vidicon. With an array of photodetectors, it would
be desirable to place a linear amplifier at each detec-
tion point in order to build up the signal level before
it is multiplexed into a single channel. Thus, an
array of photodetectors, combined with linear ampli-
fiers, is an example of array technology impacting
linear functions.® Arrays of compound semiconduc-
tors, consisting of photodetectors and linear ampli-
fiers, offer a possibility of vidicon-like sensors operat-
ing in the infrared spectrum. There are other
examples, including sense amplifiers for memories
and light displays.

General Aspects of Large-Scale Integration
Technology in Semiconductors

The calculations of Fig. 1 suggest that silicon

slice processing has the potential of fabricating com-
plete equipment components (IEC’s) on a slice of
silicon. Let us now outline the basic technological ap-
proaches being pursued for accomplishing this end.
With the semiconductor approach, two broad areas
of effort can be identified as discussed below and
shown in Fig. 5 and 6.
Device=Based Design. The left side of Fig. 5 shows
the approach which seeks to achieve complete equip-
ment components by incorporating a relatively large
number of devices within an area of silicon. This type
of IEC is designed directly from devices and no
particular effort is made to define unit circuits. The
important distinction between this approach and the
multifunction integrated circuit is that IEC’s are
achieved by incorporating many more interconnec-
tions on the chip. A typical example of an IEC made
by this approach is a 50-bit MOS shift register.

Circuit-Based Design. The second broad approach to
large-scale integrated electronics is shown schemati-

LARGE-SCALE INTEGRATED ELECTRONICS 69

DEVICE BASED IEC

MULTI-FUNCTION ~ CIRCUIT BASED
INTEGRATED CIRCUIT | :

(ARRAY) 1EC.

Figure 5. Evolution of integrated electronics.

cally on the right side of Fig. 5. Here, unit cells
consisting of circuit functions such as NAND gates
or flip-flops are the basic building blocks. This type
of IEC is formed by interconnecting an array of unit
circuit cells. We will use the term array for this ap-
proach.

The unit cell may be a simple NAND-NOR gate,
occupying, for example, an area 10 by 10 mils. More
than a single unit cell may be used and they may be
intermixed. The step-and-repeat optical process
allows for repetition and intermixing of the unit cells
over the entire slice of silicon.

The distinctions between the device-based and
circuit-based (or array) approach to large-scale in-
tegrated electronics will be developed in more detail
in a later section of this paper (‘“Discussion of Selected
Aspects”). Before doing this, we will discuss basic
devices for use in large-scale integrated electronics.

r LARGE SCALE INTEGRATED ELECTRONICS J

[|

DEVICE BASED [EC CIRCUIT BASED [EC

BIPOLAR I MOS BIPOLAR MOS

Figure 6. Large-scale integrated electronics.

BASIC DEVICES FOR USE IN LARGE-
SCALE INTEGRATED ELECTRONICS

Two active device structures that will be con-
sidered for LSI application are the bipolar transistor
and the MOS transistor.

70 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

BASED ON A 3 INPUT GATE WITH 6 XTRS, 3 RESISTORS

Numerous techniques have evolved, from triple

— = diffusion to dielectric isolation, for processing one-
[NOOF caTes TRMS:ET;:T;‘:EA O s sided transistors of high performance. The area re-
L | @ . . .
WIDTH 20 quirements for transistors have decreased consistently
— — < .
| 4w over the past five years. Fig. 7. shows that 10,000 to
/0000 o] E 5'°: 50,000 gates can be fabricated in a l-inch slice of
= =] o .y .
§ = os |2 = g silicon by providing transistors of smaller collector
& — o [5 — 4 area along with smaller resistors. Thus, bipolar
E — 0.25 Q — al
a o S transistors can provide for the high density packing
100% YIELD — .
5 L _ ‘é required for large arrays.
1,000{— maximom Lmt —{' 2
[~ 90% OF SLICE AREA I =z MOS Transistor
USEFUL 0 &
60% OF USEFUL AREA USED —1 ¥k
— E‘éfi,s‘;g;'ggﬁﬁyfgg USED FOR — The MOS transistor is outlined in Fig. 8 and some
— — of its key properties are summarized in Fig. 9. It is
O I I O W R [A B R inherently a single-sided device, self-isolating, and
10 100 23 1,000 10,000

occupies a small area. The MOS device can be con-
nected to form a load resistor as shown in Fig. 10,

AREA USED FOR GATE - SQ. MILS

Figure 7. Bipolar transistor and gate densities for 1-inch

slice diameter. - and in Fig. 11 the area is plotted that is required
to achieve values of resistance by MOS, diffused and
Bipolar Transistor thin film technology. Figure 11 shows that the
MOS device is a convenient way to achieve imped-
The bipolar transistor has made the transition ance levels of 100 kQ in a small area. The ability to
from a two-sided device to a one-sided device suit- fabricate low-power, medium-speed circuits in a
able for integrated circuits in an effective way. small area using MOS active devices and MOS load
) GATE DRAIN GATE DRAIN
5102
OXIDE INSULATOR
Sio
2
SOURCE OXIDE
INSULATOR
SOURCE

lP—ICHANNELl.P_I : _P_J N |_P_|

N)
DEPLETION MOS FET ENHANCEMENT MOS FET
SOURCE GATE SOURCE GATE

VS =0 T T
OXIDE

Ve
DRAIN
T%
L e | Le | p P

N

DEPLETION REGION TRANSVERSE EFFECTS

Figure 8. MOS enhancement and depletion models.

LARGE-SCALE INTEGRATED ELECTRONICS 71

EQUATIONS
FOR TRIODE REGION
) 2
=8 [(vG-vD) Vo- 12 vDJ

FOR SATURATION REGION

DRAIN CURRENT (1)
DRAIN CURRENT (1)

=B _v)?
Ip=7 Vg - Vp)
p‘oxW

WHERE =
ox

DRAIN VOLTAGE (Vps)
DEPLETION

A

CURRENT (1))

DRAIN

0
GATE VOLTAGE (V5 o)
DEPLETION

9m=B(vg-vP)

DRAIN VOLTAGE (Vps)
ENHANCEMENT

A

o DRAIN CURRENT (ID)

—>

GATE VOLTAGE (VGS)
ENHANCEMENT

Figure 9. Characteristic curves for MOS transistor.

resistors is an attractive application of MOS tech-
nology.

Another promising application of MOS tech-
nology is in the use of N-channel and P-channel MOS
devices in complementary circuits as shown in Fig.
12. This configuration will provide switching speeds
in the 25-50 nsec region, with extremely low DC
power drain (0.01 xW). However, it does not have
the processing simplicity of the single-polarity MOS
structures.

T

Saturation-triode region boundary

VD ZVG-VP

VD 2VD -VP

Oz-VP

Figure 10. MOS connected as a load resistor.

Applicability of Bipolar and MOS
Transistor for LSIE

With these general characteristics of both MOS
and bipolar at hand, let us now attempt to assess the
merits of each for specific LSI applications. A first
consideration is the device densities that can be
achieved, leaving aside for the moment the question
of yield. Figures 13, 14 and 15 show the areas re-
quired in terms of a fundamental width W for the
bipolar device with load resistor, the MOS device
(assuming it also is used as the load), and the basic
inverters using the two devices. From these con-
siderations device densities are forecast as shown in
Fig. 16. This figure shows that single-polarity MOS
is capable of higher device densities than bipolar by
at least a factor of two. A principal reason for this is
that no isolation diffusion is needed .for MOS; it is
inherently self-isolating. The figure also shows that
today we are working with MOS device densities of
100,000/in 2 and bipolars of 50,000/in.?> The figure
also forecasts a density limit of about 10 ¢ devices/
in 2 because of interconnection area requirements.

72 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

10 meg
MOS active load

tox=1S00A

| megp

100K

R (ohms)

FFUSED
10K

o

100
(o]} 10 100 100

Gross Area(mil)2

Figure 11. Load resistance vs slice area for MOS active
load, thin film, and diffused resistors.

{.,.w_.,. eww,ﬁs»—w—«ﬂ

The lower density of the discretionary curve is be-
cause of the area used by redundant devices.

A second consideration between MOS and bipolar
is the speed-power relationship per unit of silicon
surface area. Analysis? results in Fig. 17, which
shows a clear superiority in bipolar where speed

+v

;_T Vin I ‘
p=channel H |'
BTOOMPUO H !
/1

L TC v

= . out

Input

n=-channel

(@) Circuit

(b) Waveforms

Gate Dielectric

Gate Dielectric

p-channel Gate

Source Drain
Substrate Drain Source

" p-channel \
Connection N Substrate n-c:pannc P-type
isolation
) vapor etch
+v and regrowth
region

(c) Structure

Figure 12. Complementary MOS structures and circuits.

e

_TRANSISTOR

| RESISTOR

Figure 13. Area for bipolar transistor and load resistor as function of resolution width W.

LARGE-SCALE INTEGRATED ELECTRONICS

and/or power is required. This superiority relates
to the inherently higher gain (transconductance) of
bipolar over MOS. The importance of g, is that it
is a measure of a devices’ ability to charge capacities,
which in turn is a measure of a device’s switching
speed. Figure 17 shows that at 1A, for the same
area A and capacity C, the g, of a bipolar transistor
is 40 pmbhos, while that of an MOS transistor is 4.5
pmhos. To achieve a g, of 40 for the MOS requires
an area and capacity increase of 100 times. At higher
currents the superiority of the bipolar over the MOS
transistor is even greater.

From the two comparisons developed above, de-
vice densities and speed-power relations, we can
reach some general conclusions as to the applicability
of MOS and bipolar technologies. For those applica-
tions where MOS has sufficient speed and current
handling capability, it should win out on the basis
of achieving higher complexity per unit of chip area.

73

megacycle speed range where the capacity loading of
devices is small because the fan-out is basically one.
Some remarkable achievements have already been
made in employing serial logic using MOS for small
processors such as desk calculators.

On the other hand, bipolar will be the choice for
parallel logic organization, particularly if speed is a
factor. The basic advantage of the bipolar is its in-
herently high transconductance (g,,); therefore, it is
superior where appreciable capacitance must be
charged as in parallel logic.

We forecast a large applications area for both
technologies, and as our technological capability in-
creases to where both kinds of devices are processed
together on the same slice in monolithic structures,
another very large area of application. Finally, while
our discussion has been limited to bipolar and MOS
device structures, many other device types, e.g.,
Schottky-barriers, will be integrated into LSI struc-

Examples today include shift registers in the tures.
! N -~
([V7 A
| |
THIS : !
DIMENSION | 1
ADJUSTED N I g s— —~— ——
ACCORDING - T 1 |
TO CIRCUIT : :
NEED i !
1 |
p ! ! p
1 _ PN J
n n
lq 612W »
I‘—l 12 w_.>|
W
e J—
| — | e —
o .

S

Figure 14. Area for MOS transistor and MOS resistor as function of resolution width W.

74 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

MOS INVERTER

BIPOLAR INVERTER

Figure 15. Basic inverters for MOS and bipolar.

DISCUSSION OF SELECTED ASPECTS
OF LARGE-SCALE INTEGRATED
ELECTRONICS

We now discuss key aspects of LSI, including more
detail on the device-based and circuit-based ap-
proaches, discretionary wiring, forecast of level of
integration to be achieved over the next 10 years,
design by computer, standard products versus flexi-
bility to custom requirements, and special require-
ments for subnanosecond arrays.

Device-Based Approach to LSI

The device-based approach is the natural extension
of multifunction integrated circuit design and differs
from the latter in that equipment components are
designed and processed rather than circuit functions.
Consider for example the design and processing of a
50-bit MOS shift register. The design is worked out
using MOS active devices and MOS load resistors
in an optimum fashion, without any attempt to
partition the shift register into circuit building blocks.

The chief advantage to this approach is that one
can achieve a very high density of devices, or con-
versely, achieve an IEC in a small area. Table 1 and
Figures 18a and 18b show typical IEC’s made from
bipolar and MOS devices: MOS achieves higher
device density, but at lower speed as discussed above.

The entire IEC, or at least a major part of it,
is achieved within a relatively small chip size. A
characteristic of this approach is that 100% yield is
required over the chip area (e.g., 100 X 100 mil),
but not over the entire slice. Consider for example
a 1.50-inch diameter slice where

li -
Number of chips = Suce area
: area/chip

= 9/16

100 X 100 X 10

If 50 of these 175 chips are good, the overall mate-
rial yield is 35%.

While discretionary wiring techniques are not used
within the chip areas (100% yield is demanded here)
it is possible that discretionary wiring will be used

= 175

LARGE-SCALE INTEGRATED ELECTRONICS 75

DEVICE DENSITY
10 T T T T T LI

106 INTERCONNECTION PROCESS LIMIT

ISOLATION

REDUNDANCY

BIPOLAR
¢ TEST
/VEHICLE

DEVICE DENSITY (DEVICES/SQ- INCH)
=)

0t

@ FIXED SERIES 53

1 i 1 TR N B
1966 67 68
YEAR

Figure 16. Ten-year forecast of device density.

DISCRETIONARY SERIES 53
3
10

to wire together N good chips in a slice to form a
more powerful function. In the example above, the
50 good chips might be connected together without
scribing the slice into individual chips. One reason
for doing this is that the oxidized silicon surface
provides an excellent surface on which metallic
transmission lines can be deposited.

What are the chief handicaps or limitations of the
device-based design approach to LSI? Probably the
' most important limitations are its lack of adaptation
to change and long-time cycle for implementation.
Each IEC design requires a complete set of masks,
including diffusion and metallization. While some
flexibility can be attained at the metallization level by
providing extra devices in the chip (master slice con-
cept), the approach is most suitable for standard
products where relatively large production runs
occur, or for custom designs of high volume.

In summary, the device-based approach to large-
scale integrated electronics is already off to a fast
start. For the case of bipolar technology, the IEC’s
are being designed to give added logical power and
capability to existing IC product lines, as for ex-
ample, three of the TI units listed in Table 1
augment the Series 54 line. For the case of MOS, the

leading edge of this technology has aimed towards
serial logic systems designed around shift registers.

Array or Circuii-Based Approach to LSI

In this approach circuits are used as the basic
building blocks for designing and processing the
IEC’s. A number of advantages occur when one
moves the building block level from the device to the
circuit function. A key advantage is that Boolean
logic equations are readily expressible in terms of
NAND, NOR and related logical decision circuits.
These equations, which are basic to the design of
computers, are independent of the devices underlying
the Boolean circuit element.

Another advantage is that it is possible to in-
corporate a high degree of flexibility into the process
technology. Consider the problem of an IEC manu-
facturer responding to a customer’s request for a
specific IEC. Assume that the customer presents the
IEC manufacturer with Boolean equations and
specifications. Let us examine the different methods
(see Table 2) by which the manufacturer may
respond. We will assume that silicon slices are

E uop w
- Mos In &/ 7T
“ I <
- BIPOLAR g =~ L&
gm kT Vg
Q
10,000 - /
i &
&
1,000 | X/ . 7
g Y
S’y

g, (B0
“
s \5
kd
2
z \&
&
2

100 / c
/ o
W
L *'Lf’
r %)
N
) /W
1 10 100 1000

I (pA)
Figure 17. Transconductance g,, of bipolar and MOS
: transistors vs current and device area.

76 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

Table 1. Integrated Equipment Components—1966

Area No. of Device Dens. Speed Power

Mfr. Component Device in2 Devices devices/in ® nsec mw Pads

1~ Series 33 Bipolar 0.7 1,200 1,720 35 1200 60
Array g

TI 8-Bit Bipolar 0.006 160 26,500 15 mHz 190 6
Shift Reg P : ,

TI Honeywell Bipolar 0.0071 100 14,000 25 250 14
Memory
Parallel Load .

TI Serial Shift Bipolar 0.01 150 15,000 25 270 22

GME A'.C 100-Bit MOS 0.0065 613 94,500 1 mHz 200 12
Shift Reg

GI D-? 21-Bit MOS 0.0042 158 37,600 500 kHz 150 11
Shift Reg .
22-Bit .

TI Shift Reg Bipolar 0.0126 350 27,800 3 mHz 35 8
BtoD

TI MOS 0.0057 152 26,700 200 kHz 25 26
Decoder

processed with 100% yield of unit cells—the ques-
tion of dealing with cells on the slice that are not
good will be discussed below, under “Discretionary
Wiring.”

For those requirements where the logical function
(IEC) can be built by connecting together identical
unit cells (e.g. NAND gates), the manufacturer need
only make masks which provide for interconnecting
gates in a specific pattern. Processed slices would be
on hand which have a large number of NAND gates.
Such slices would have a first level of metallization
on them as indicated in Category I, Table 2. Only
new masks for 2nd and 3rd level metallization are
required to meet a customer’s specific request. More
flexibility can be incorporated into this approach by
providing more than one kind of unit cell on the
slice. For example, a slice with a mixture of gates
and flip-flops will meet a large proportion of com-
puter requirements. This approach provides very fast
response to customer’s needs.

A second approach, Category II, involves process-
ing slices which have a common master unit cell
through the diffusion and third oxide removal opera-
tions. This master unit cell would have sufficient
devices such that 10 to 15 different logical circuits
could be attained by variations of the first level of
metallization. Coupling this with the ability to inter-
connect the unit cells together in specific ways pro-
vides a high degree of flexibility. However, this
requires a first-level metallization mask as well as a
second (third if necessary) level mask.

The third approach is to generate a complete set
of masks for each order, as in Category 111, Table 2.
A complete set of diffusion masks are required, along
with first level metallization masks (second and third
if necessary). This is the most expensive approach

Table 2. Categories of Array Approach to LSI

Definition Category
Proc
I I hits
1st Oxide
i 1st OR [6)
Oxidation Removal (OR) s 1st OR
Collector
2nd OR 2nd OR
Diffusion 2nd OR &
Base
3 srd OR 3rd OR
Diffusion srd OR
Emitter
+th OR 4th OR
Diffusion #th OR
Metal 1st Level 1st Level 1st Level
Deposition Leads Leads Leads
Insulation 2nd Level 2nd Level
Deposition Insulation Insulation
Mctal 2nd Level 2nd Level
Deposition Leads Leads
Insulation 3rd Level
Deposition Insulation
Metal 3rd Level
Deposition Leads

Operations in boxes permit component variability.

LARGE-SCALE INTEGRATED ELECTRONICS

Figure 18. Examples of device-based IEC’s—characteristics in Table 1. (a) Eight-bit bipolar
Binary-decimal decoder MOS IEC.

IEC. (b)

77

78 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

from the initial design phase and the most time con-
suming, but it can provide savings in materials
usage and therefore may be favored for longer pro-
duction runs.

A comparison of the approaches of Table 2 reveals
that Category I provides the fastest turn-around time
and lowest initial cost but has the poorest utilization
of unit cells in the slice. Category III provides the
best usage of area in the slice because it has no cells
or devices that are not used, but is the slowest in
turn-around time and has the highest initial expense.
Category II is midway between I and III in all
respects.

All three categories are under development in the
semiconductor industry. Prediction of the relative
costs and degree of usefulness of these approaches is
difficult at this time because of the embryonic state
of the technology.

Discretionary Wiring

The goal of processing technology is 100% yield
of unit cells over the slice. For the same reason that
integrated circuit yields are much higher than were
expected, considering arguments based on discrete
device extrapolations, array yields will be much
higher than predicted from simple extrapolations of
integrated circuit yields. However, at some array size
one can expect that defective unit cells will become a
problem which will affect overall array yield. It is
desirable then to develop a system whereby defective
cells can be omitted from the interconnected array.

The problem of achieving discretionary wiring at
low cost relates to testing, automatic mask making,
and computer programming of interconnection sys-
tems. It should be emphasized that successful im-
plementation of the discretionary approach demands
a rapid, low-cost mask-making procedure since each
slice may require a different interconnection pattern
because the “good” cells will occur in different loca-
tions. Figure 19 shows an approach to discretionary
wiring which is being developed at Texas Instru-
ments Incorporated under sponsorship of the Air
Force Systems Command, Wright-Patterson Air
Force Base.® At the top left of the figure a silicon
slice is shown which has an array of unit cells. The
unit cells consist either entirely of NAND gates and
flip-flops, or a mixture of the two. A first level of
metallization is provided on these cells so that they
can be probed by multiprobe test equipment. The

[Multiprobe
1-C Yield (Good and Bad
Tester Networks) Information
Provide to computer

A

Computer Computer Controller
Control and

V4 D/A

Converter

Computer Controls Deflection
of 1 mil Electron Beam

Figure 19. Discretionary wiring system being developed by
Texas Instruments under Air Force sponsorship.

information concerning location of good and bad
cells is fed into the computer, which generates an
interconnection pattern. The control for each pattern
is fed to the high-resolution CRT, and a pattern is
generated on the face of the CRT. This pattern is
projected on photosensitive material to form a photo-
mask. Finally the set of masks is used to process
interconnection patterns on the semiconductor slice.

All elements of this system are under active de-
velopment. It is planned to have the system in opera-
tion during the last half of 1966.

To illustrate the discretionary wiring approach the
series of pictures in Fig. 20 are given. Figure 20a
shows a slice where the “good” gates to be used in
the array have the first level of metallization applied.
Each rectangular area contains four Series 53 gates,
and the full array consists of 120 “good” gates. The
slice with a layer of insulation applied and holes
etched through to the first level metal are shown in
Fig. 20b. Horizontal interconnections which were
designed by the computer are shown in Fig. 20c.
Figure 20d shows another level of insulation applied
and holes etched through to the second level of
metal. Figure 20e shows the third and final level of
metallization which completes the interconnection of
the 120 gates.

79

LARGE-SCALE INTEGRATED ELECTRONICS

text).

tion in

ip

ies 53 array of 120 gates (process descr:

Ser

20

igure

F

80

joo
SEmE R
e

i

PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

e
L %
Sy

Figure 20. continued

LARGE-SCALE INTEGRATED ELECTRONICS 81

G

2

i
whes
e

-

Figure 20. continued

While the masks for the above example were cut
by normal techniques, the system shown in Fig. 19
will make this an on-line process of short-time re-
sponse. Characteristics of this array (the Series 53
array) are shown in Table 1. Comparison shows that
this array has nearly 10 times the number of bipolar
devices than the other bipolar IEC’s, which are of the
100% yield category.

An important aspect of the discretionary approach
is that it will allow for integrating to higher levels
of complexity at any given time than will the 100%
yield approach. For example, the aforementioned
program has a minimum goal of 250 gates per slice
or 2500 devices per slice, and a maximum goal of
1000 gates per slice or 10,000 devices per slice;
furthermore, the arrays will be ready for production
by the end of 1967. It is believed that this is an order
of magnitude higher performance than will be
achieved by 100% yield methods in the same time
period. ,

We note that this approach to discretionary wiring
has much in common with the process of Category I
in Table 2. The interconnection pattern generator can
be used to generate the second and third level masks
required in Category 1. If one has 100% yield over

the area of the slice to be used, the probing step is
eliminated. Also, the computer programs for pattern
generation will be somewhat simpler because the
location of gates is known. ‘

Forecast of Degree of Integration of IEC’s

Our forecast of device density in Fig. 16 over the
next 10 years was relatively simple to- make since it
was derived from reasonably well-defined param-
eters. In contrast, the forecasting of the level of
integration of IEC’s over the next 10 years is a much
more complicated and less precise task. Subjective
as well as objective points must be considered. How-
ever, it seems worthwhile to discuss some of the
aspects of the problem and to arrive at a “forecast,”
even though admittedly it is unprecise.

Let us first define what we mean by level of inte-
gration. By this we mean the total number of good
devices that will be interconnected on a single
monolithic chip of semiconductor material (presum-
ably silicon). We will not discuss the “chipping within
a package” approach.

A first consideration is the theoretical device
density, shown in Fig. 16. The MOS and Bipolar

82 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

Fixed curves imply 100% yield or fixed interconnec-
tion pattern (FIP). The Discretionary curve indicates
a lower density because of the area required for
redundant devices.

A next consideration is the chip size itself. Here
we must consider a number of factors including single
field of view optical limitations, step-and-repeat
optical techniques, crystal size, and process yield
limitations. '

Optical problems limit the area over which high
resolution can be achieved in a single field of view.
Figure 21 shows the capability of the best of today’s
lenses, and the 10-year forecast. A 100 X 100 mil
area with 0.2 mil lines is representative of today’s
integrated circuits production. The area will increase
to 300 X 300 mil and resolution should approach
the wavelength of light. New techniques such as
electron beam will be required to achieve further
improvements, but we will not consider these pos-
sibilities in the discussion.

Step-and-repeat techniques allow for the stepping
of a fixed field of view over much larger areas. This
process is used in today’s production technology such
that 100 X 100 mil or smaller patterns are stepped
over slices 114 inches in diameter.

From these considerations Fig. 22 has been con-
structed. The area labeled Fixed Field Pattern fore-
casts that fixed pattern IEC’s will increase from the
present 100 X 100 mil size to 300 X 300 mil size.

1000 X 1000 [~ T UL L=
- CAMERA .
- /| tens .
IMAGE [B
AREA - / 7
(MILS X MILS) |- [&]
3 /
- MOS
g / .
- 64-Bit
& / 3 Ser 53
) _é er
100X 100 £ %u/ B vos
C N JBtoD
L §/ —~ Decoder
- < -
| 5 MICROSCOPE o 4
i cn/ OBJECTIVES Sers4 |
é’r_
10X10 | / —
C /' byt L1
0.01 0.05 0.1 0.5

LINE RESOLUTION (MILS)

Figure 21. Optical image dimension as a function of resolu-
tion.

< 75 \\N\\‘

DISCRETIONARY ARRAY

10° 1~

CHIP SI1ZE IN SQUARE INCHES

10 TR SR N TN TN NN N B B
1966 1968 1970 1572 1974 1976
YEAR

Figure 22. Chip size forecast.

The smoothness of the curves relates to the gradual
increase in area over which 100% yield is achieved.

The upper shaded area is based on step-and-repeat
optical techniques and discretionary wiring. The
upper line shows the increase in crystal size from 1-
inch diameter to 3-inch diameter material. The lower
line suggests that interconnection and yield improve-
ment will allow for smaller chips to be used because
of less area required for redundancy.

Finally Fig. 23 shows the author’s best judgement
as to the number of devices per chip that will actually
be used over the next 10 years. These curves have
been developed by consideration of the factors of
Figs. 16, 21, 22, and 23, by knowledge of today’s
capabilities (1966 data points of Fig. 23), and by the
subjective consideration that 100,000 devices per
chip, which will provide logic power of 10 K to 20 K
gates, is a practical requirement limit. One argues
that 10 K to 20 K gates provide suitable basic build-
ing blocks for computer systems.

Note that the distinction between discretionary and
fixed patterns disappears in the 10-year period. It is
reasonable to forecast that 100% yield will be
achieved for this complexity in this period. This con-
clusion does not invalidate the present program on
discretionary wiring. As Fig. 23 shows, discretionary
wiring technology will provide for the more rapid

LARGE-SCALE INTEGRATED ELECTRONICS 83

10

10

NUMBER OF DEVICES

10

2
10 1966 67 68 69 70 71 72 713 74 15 16
YEAR

Figure 23. Forecast of number of devices per chip—IEC
complexity.)

development of the high-complexity IEC’s that are
vital for the industry.

The merging of bipolar and MOS techniques does
not invalidate our previous discussion—the 100 K
MOS devices will be achieved in a smaller area than
that required for the bipolar devices (Fig. 22).

Our rather arbitrary limit of 100 K devices per
chip does not imply a technological limit so much as
a practical limit. The direction of digital system re-
quirements, which we shall not attempt to forecast,
could generate motivation to increase this limit
markedly.

Design by Computer

At the levels of complexity that are forecasted for
IEC’s, the problem of design is a formidable one.
For this and other reasons we can expect that com-
puter-aided design will be developed. One approach
is to use computer-aided design directly at the
device level; that is, design IEC’s by computer
directly from device parameters. This is what the
human does today when approaching LSI through
device-based design.

However, it is likely that a more useful approach
will be to use computer design at the circuit func-

tion level. Here one defines a set of logical circuits
such as NAND gates, shift registers, flip-flops, etc.,
and utilizes a computer to design layouts which
minimize crossovers, area, etc.

An important benefit of design by computer in
terms of circuit building blocks is that it will shorten
the reaction time of IEC manufacturers to system
requirements. The systems manufacturer will state
his requirements to the IEC manufacturer in terms
of Boolean logic equations. The IEC manufacturer
will translate these requirements to process steps in
the factory using computer-aided design.

Another reason for emphasizing design by com-
puter is that in some cases, normal breadboarding
techniques will not simulate sufficiently well the
actual conditions on the silicon slice. For example,
MOS devices, if breadboarded as discrete devices,
would be so heavily loaded down with capacity that
their performance would bear little relation to that
in a monolithic structure. Subnanosecond bipolar
transistors, if breadboarded as discrete devices, would
have such large delays between devices as compared
to the monolithic case, that information gained by
breadboarding would have little value.

Finally, we note that back panel “patching” tech-
niques are not available in highly integrated struc-
tures, and so the elimination of human errors
becomes especially important. '

Standard Products vs Flexibility
to Customer’s Requirements

A key question of large-scale integrated elec-
tronics is—To what degree will standard product
lines of IEC’s be accepted by the equipment and
systems manufacturers, or conversely, to what degree
will they demand custom IEC’s? Before attempting
to answer this, it is perhaps worth examining what
has happened in integrated circuits.

In the early days of integrated circuits considerable
resistance was given to accepting the idea of standard -
circuits. Important custom designs have been and are
continuing to be developed, and often these
become the technological base for standard lines:
introduced at a later date. However, it is clear today
that there has been far greater acceptance of stand--
ard lines by the industry as a whole than was
originally predicted.

Today one hears similar arguments. For example;
because integration to the equipment component level
necessarily involves the computer logic, some pro-

84 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

ponents claim that IEC’s will be entirely a custom
business. It is the author’s opinion that this will not
be the case. There certainly will be considerable
custom design work, particularly in the early stages
of the development of the technology. However, as
time goes on, the author forecasts that standard
IEC’s will be developed and produced that will be
basic building blocks of systems. Furthermore, it is
the author’s forecast that we will see an even greater
acceptance of standard products at the IEC level of
integration than at the IC level of integration.

Special Considerations for Ultra-High Speed
(Subnanosecond) Arrays

Designers of high-speed computers are faced with
two fundamental problems in making computers that
switch appreciably faster than about 5 nsec. The first
problem is that of the transmission time between
discrete components. Remembering that electro-
magnetic signals travel 6 inches in one nsec, one
recognizes that packing densities achievable by
discrete devices run into phasing problems at about
5 nsec. Multifunction circuits provide some gain
here because of the increased packing density. How-
ever, the improvement gained is marginal because
each gate must be capable of communication with
any other gate, at least on a single multilayered
board.

The second computer design problem is also very
fundamental: terminated transmission line structures
of low impedance (= 50 Q) are needed in order to
interconnect gates operating in the few nsec range.
This configuration is required to prevent false reflec-
tions. Devices of substantial current handling ca-
pability are thus required which, in turn, limits the
density to which circuits can be packaged together.

Array technology provides solutions to both
problems. By interconnecting on the slice, several
hundred gates can be located within one inch of
each other. Thus, phasing problems will not be
encountered on the slice, at least for speeds in the
range down to 0.1 nsec. For devices 10 mils apart,
the transmission time will only be of the order of
picoseconds.

The second point is that the proximity of gates to
one another (tens of mils) makes it unnecessary to
provide low transmission line impedances between
gates. Instead, the interconnections on the slice can
be viewed as simple capacitors, ranging in the 1/10
pF and less range. Thus, current drive capability for

the active devices is reduced. This in turn allows for
the appreciably higher packing densities required to
minimize transmission delays.

This subject is further developed in Ref. 4. The
conclusion is that LSI technology will make it pos-
sible to build computers which operate at decision
switching speeds well below one nsec.

IMPACT OF LARGE-SCALE
INTEGRATED ELECTRONICS

This technology promises major impact in many
areas of electronics. A few of these are:

Lower cost data processing systems.
Higher reliability processing systems.
More powerful processing systems.
Incorporation of software into hard-
ware, with subsequent simplification of
software.

o=

Pervasiveness of Electronics

A more general, very important result has been
discussed by Patrick E. Haggerty in his keynote
article ° in the Special Issue of the Proceedings of the
[EEE on Integrated Electronics. Mr. Haggerty em-
phasizes that Integrated Electronics will result in
electronics pervading our entire social structure.
Quoting from Mr. Haggerty’s article:

To say with Dr. Noble that electronics is a
generic art, or for this author that electronics is
inherently pervasive, is simply to say that the basic
knowledge and the tools of electronics are so perti-
nent to the needs of our kind of society that the
products and services which are the result of the
knowledge and tools have nearly unlimited useful-
ness and can contribute in a major way across our
entire social structure.

Yet, in spite of the pertinence of the knowledge
and tools, there have been very fundamental limita-
tions to our applying this knowledge and these
tools as broadly as they justify and realizing the
inherent power and full pervasiveness of elec-
tronics. Some of the most harassing have been:

1) The limitation of reliability

2) The limitation of cost

3) The limitation of complexity

4) The limitation imposed by the specialized

character of and relative sophistication of
the science, engineering and art of elec-
tronics.
The limitations are, of course, interrelated. Cost is
obviously affected by the need for high reliability
and necessarily complex solutions. Conversely, the

LARGE-SCALE INTEGRATED ELECTRONICS 85

more complex the solution required, the greater the
likelihood that reliability and/or cost will become
a controlling limitation. Such solid-state devices as
transistors and diodes have certainly led the way to
marked improvement in reliability, but they have
hardly eliminated complexity. The solutions we
have achieved still have a relatively high enough
cost to inhibit the application of electronics in
those broad areas which we customarily describe
as the industrial and consumer sectors of our
economy. So far as the fourth limitation is con-
cerned, electronics is indeed a sophisticated branch
of engineering and as such it has required highly
skilled practitioners. Yet the very sophistication
called for inevitably limits the rate at which elec-
tronics can pervade our society. For electronics to
be truly pervasive, it must be readily and com-
monly used by the mechanical engineer, the chemi-
cal engineer, the civil engineer, the physicist, the
medical doctor, the dentist, the banker, the retail
merchant, and by the average citizen in broader
ways than just for bringing entertainment to his
home. Electronics cannot be truly pervasive unless
such persons whose needs call for the powerful
tools of electronics are capable of using them. It
hardly seems feasible to suggest that all these
highly skilled practitioners in other professions
must also become skilled in the internal com-
plexities of ours. The problem is considerably
simplified, however, if the electronics skills which
they require are limited to the comprehension and
specification of the input and output parameters of
the electronic functions they need. And, it is
exactly here that integrated electronics may prove
to remove a large percentage of these communica-
tion limitations. The contributions integrated
electronics is likely to make in removing limita-
tions in the categories of reliability, cost, and
complexity are also impressive. Indeed, because
integrated electronics seems to have a high proba-
bility of removing an appreciable percentage of the
limitations in all four categories, I believe it may
bring the total of these limitations to a critical
level. Subsequently, it may initiate the terminal
phase in which electronics contributes in truly vital
ways to all segments of our society.

Expanding upon the fourth limitation, large-scale
integrated electronics, does indeed offer the promise
of placing most of the problems associated with the
specialized character of electronics in the hands of
the materials technologist. The technologies described
above should result in processed slices of semicon-
ductor material; wherein the great majority of
devices and internal connections are made by mate-
rial processing. The terminals brought out of the
packages will be functional in nature and relatively
easy to work with. The inherently low cost and high
reliability of Integrated Equipment Components
should, along with the elimination of complexity and
specialized “character of -...,” result in electronics
pervading our entire social structure.

Table 3. Generations of Electronics

Limitations
Generation Basic Product of Electronics
First Tubes Cost
Second Transistors Reliability
Third Integrated Circuits Complexity
Fourth Integrated Specialized
Character of . . .
Components
Equipment

Fourth Generation of Electronics

Because of the dramatic nature of large scale
integrated electronics it seems appropriate to define
it as the fourth generation of electronics. Table 3
suggests that the first generation of electronics,
namely tubes, made a major contribution because it
was possible to manufacture them at relatively low
cost. This opened up the radio market in the 1920’s
and 30’s and was the beginning of electronics.

The transistor can be identified as defining the
second generation of electronics. Reliability was its
principal early contribution, with low cost soon
following. A key aspect of the transistor is that it is
fabricated by materials processing rather than by the
mechanical techniques used to build vacuum tubes.

Integrated circuits identified a third generation of
electronics; here materials processing has been ex-
panded to where complete circuits are fabricated on
a chip of silicon. Another mechanical operation,
namely that of connecting together discrete devices
into circuits, has been eliminated.

As we move into the fourth generation of elec-
tronics, namely that of Integrated Equipment Com-
ponents (IEC’s), it is clear that a key technological
result will be the use of materials processing in place
of the mechanical operations of interconnecting
thousands of circuits. This will result in IEC’s which
are easy to use and should result in electronics
becoming truly pervasive.

Structure of the Electronics Industry

Such a radical change in the technological base of
electronics can be expected to have a dramatic im-
pact on the structure of the electronics industry.
Figure 24 shows the author’s view as to what will
happen to the electronics industry.

86 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

FIRST SECOND THIRD FOURTH
GENERATION GENERATION GENERATION GENERATION

SYSTEMS SYSTEMS

EQUIPMENTS EQUIPMENTS EQUIPMENTS

MECHANICAL TECHNOLOGY

W
lmzbkﬁi‘i\\}\

| EQUIPMENT
$ NCOMPONENTS:

EQUIPMENT EQUIPMENT EQUIPMENT
COMPONENTS

COMPONENTS COMPONENTS

NN

7

CIRCUITS CIRCUITS

VACUUM
TUBE
DEVICES

oy oevices N

Figure 24. Structure of electronics industry.

~¢——— Electronic Materials Industry

This figure forecasts that expansion of materials
technology to the IEC level will result in the in-
tegration of the device, circuit, and equipment
businesses into a single business . . . segment. Those
companies which will make up this business segment
will integrate from materials up through equipment
components. In order to do this, those companies
must provide not only for materials technology, but
also for device, circuit, and equipment design and
fabrication capabilities. Because of the magnitude of
this total problem, it seems likely that four or five
large integrated ° electronics suppliers will provide
“electronic material,” i.e., IEC’s, IC’s and devices on
a very broad base to a much larger applications-
oriented electronics industry.

Because of the tremendous expansion of the use
of electronics which will result from the overcoming
of the four limitations of electronics discussed above,
the applications side of the electronics industry will
expand in an unprecedented manner. While making
tkis expansion, we forecast in Fig. 24 that much
more emphasis will be given to the “software” as-
pect of electronics by this applications-oriented indus-
try. By software we do not mean simply program-
ming, but rather use the term in the broad sense

where the customers’ total problem is considered
and solved.

The applications-oriented companies will use
IEC’s and other peripheral equipment components
to provide a total solution to a customer’s problem.
It can be expected that this will be a very broad and
diverse business consisting of many companies, a
number of which are relatively small and specialize
in a particular area of application. The materials-
based integrated equipment component companies
will relate to these applications-oriented companies
much the same way as the chemical industry pro-
vides processed chemicals to a very large applica-
tions-oriented industry such as the clothing industry.

Another possible structure of the electronics in-
dustry is one that is highly integrated vertically such
that systems houses provide their own IEC’s. While
this may happen to some degree, it is forecast that a
very large materials-based integrated electronics
business will still develop which supplies IEC’s, IC’s
and devices on a very broad base to industry. The
principal reason for this is the very pervasiveness
that electronics will achieve. Compared to the very
large number of companies which will use electronics,
only relatively few companies will find it profitable to
fabricate their own IEC’s. Those companies whose
internal requirements make it profitable for them to
supply a part of their own IEC requirements will also
depend upon the IEC suppliers for a significant part
of their requirements. The sheer size of their needs,
which is what makes it profitable for them to operate
an internal facility, is also what makes it impossible
for an internal operation to satisfy all of their needs.

Finally, it is forecast that the IEC suppliers will
vertically integrate in selected areas of equipments,
systems and services. For example, the author’s own
company has interest in providing geophysical equip-
ment, systems and services to the oil and related in-
dustries. Such vertical integration will be a small
fraction of the total application area of electronics.

It is concluded that the expansion of materials
technology to the level where Integrated Equipment
Components are achieved on slices of semiconductor
will result in an electronics industry consisting of two
major segments, one based on materials technology,
the other based on software technology. Materials
technology will provide the technological base for a
concentrated Integrated Electronics industry which
will supply IEC’s, IC’s and devices on a very broad
base to a much larger application-oriented electronics .

LARGE-SCALE INTEGRATED ELECTRONICS 87

industry whose principal technology is software.
Vertical integration will occur selectively, but will
have no major effect on the overall division of the
industry into these two major segments.

ACKNOWLEDGMENTS

The author is indebted to his colleagues at Texas
Instruments for many stimulating discussions and
helpful work on the subject of LSI: in particular, to
Jay Lathrop for discussions of the overall aspect of
the technology of LSI; to Jack Kilby for his personal
leadership of the discretionary wiring approach to
LSI; to Ray Warner for the forecasts and insight
into the MOS technology.

With respect to more general aspects of LSI, dis-
cussions with Richard J. Hanschen, Cecil Dotson,
Willis Adcock and Jack Kilby have been most help-
ful. And finally, the farsighted vision of Patrick E.
Haggerty on the pervasiveness and general impact
of Integrated Electronics has provided stimulus to the
author’s thinking.

REFERENCES

1. Proc. IEEE, vol. 52, Dec. 1964, Integrated
Electronics Issue.

2. J. W. Lathrop, Proc. IEEE, vol. 52, pp. 1430—
43 (Dec. 1964).

3. Richard L. Petritz, ibid, vol. 50, no. 5, pp.
1025-38 (May 1962).

4. ——, Trans. Met. Soc. AIME, vol. 236, pp.
235-49 (1966).

5. Inter. Solid-State Circuits Conference, Feb. 9—
11, 1966, Philadelphia; Western Electronics Show
and Convention, Aug. 23-26, 1966, Los Angeles.

6. P. K. Weimer, Trans. Met. Soc. AIME, vol.
236, pp. 250-56 (1966).

7. H. C. Josephs, “A Figure of Merit for Digital
Systems,” Microelectronics and Reliability, vol. 4,
pp. 345-50 (1965).

8. J. W. Lathrop, “Discretionary Wiring Ap-
proach to Large Scale Integration,” Western Elec-
tronics Show and Convention, Aug. 23-26, 1966,
Los Angeles.

9. P. E. Haggerty, “Integrated Electronics—A
Perspective,” Proc. IEEE, vol. 52, pp. 1400-5 (Dec.
1964).

EFFECTS OF LARGE ARRAYS ON MACHINE ORGANIZATION
AND HARDWARE/SOFTWARE TRADEOFFS

L. C. Hobbs

Hobbs Associates, Inc.
Corona del Mar, California

INTRODUCTION

From the early days of electronic computers until
the present, a period of over 20 years, electronic
and magnetic hardware for mechanizing logical
functions and storage in the central processor por-
tion of a computer system have been extremely ex-
pensive. Although these costs have been dropping
steadily in terms of the cost per component, in-
creases in the complexity and capacity of central
processors have tended to keep pace with decreases
in hardware costs. Hence, reductions in hardware
costs to date have been reflected primarily in in-
creased performance and capability rather than re-
duced cost. However, developments presently under-
way in batch-fabricated technologies will provide
such significantly lower hardware costs in the central
processor that it will not be possible to maintain a
system balance from the standpoint of cost and re-
liability. If properly used, large-scale integrated-cir-
cuit arrays in particular will provide digital logic and
control functions at such sharply reduced costs and
increased reliability that the central processor will
tend to become an almost negligible part of the sys-
tem from the standpoint of both cost and reliability.
The dominant factors in ‘systems cost will be soft-
ware and electromechanical mass storage and in-
put/output devices.

&9

As a result of these technological advances in
batch-fabricated hardware, the three major problems
facing designers of future computer systems will be:

1. The necessity. of developing machine
organization techniques that will per-
mit the efficient utilization of large
arrays to achieve their true potential in
terms of cost, reliability, and maintain-
ability.

2. An urgent need to minimize the num-
ber of electromechanical mass storage
and input/output devices required in
a system in order to reduce systems
cost and increase systems reliability
and an accompanying need for devel-
oping new and improved types of such
peripheral equipments.

3. An equally urgent need for minimizing
the cost of providing software, includ-
ing both operating systems and user
programs, even if this requires signifi-
cant increases in the logical and stor-
age hardware in the central processor.

MACHINE ORGANIZATION IMPLICATIONS

In considering the advantages of large arrays it
seems apparent that the larger the array that can be

90 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

effectively utilized the better the economics and re-
liability up to the limit that can be achieved techni-
cally in terms of the number of components per
chip.* The use of very large arrays will reduce the
initial fabrication costs and improve reliability and
maintainability, but they will also present a serious
problem. As the module becomes larger it becomes
increasingly difficult to use it for more than one
function within a single computer. Each packaged
unit tends to become unique with only a single one
of each type used in a given computer. Dr. R. N.
Noyce called attention to this last year and indicated
the anticipated progress in array size when he stat-
ed: :

However, from a point on the complexity scale
now where 50 components is the cheapest level
for an integrated circuit, I expect to move to 1000
by 1970. . . . At the same time there will be new
problems where it takes only 10 chips to make a
computer and almost every circuit made will be
different.2

This decreased “commonality” increases fabrication
costs because of the low production volume of each
type of module. It also increases the cost of the
spares inventory, but the cost of spares usage will
decrease as a result of significantly higher reliability.
In fact, the low rate of usage of spares coupled with
the difficulty of repairing large arrays should lead to
adoption of a ‘“throw-away” maintenance concept
where major portions of the computer are replaced
but not repaired in event of failure. This will have
significant effects on maintenance procedures and
costs—particularly in military systems.

The lack of flexibility in large arrays which tends
to make each array within a system unique and the
possible need for eliminating bad or substandard cir-
cuits from the array to achieve a reasonable yield
are two of the major problems in utilizing large ar-
rays in computers. At least three different ap-
proaches to fabricating large interconnected arrays
to overcome these obstacles to their utilization are
under consideration. The first is cellular logic in
which large arrays of identical circuits are fabricated
with a standard interconnection pattern (e.g., con-
necting each circuit only to its four adjacent neigh-
bors) with the ability to modify the function of the
circuit by changing something in the circuit subse-
quent to fabrication.® For example, one approach of
this type uses a circuit with four cut-points which
can be cut in different combinations to alter the
function of the circuit. -

In the second approach, a large array of circuits

is fabricated and each circuit is individually tested.
The test results are put in a computer which is also
storing logical equations of the function to be imple-
mented. The computer then generates the proper
interconnection pattern to interconnect available
good elements (skipping the bad ones) to perform
the required logical function.* In this approach, a
separate mask must be prepared for each array
fabricated; hence, this is an expensive operation
unless cheap methods can be developed for pro-
ducing interconnection masks under computer con-
trol. On the other hand this approach offers a major
advantage in that it is easy to vary the function
performed by the array by changing the logical
equations supplied to the computer that is controlling
the interconnections. If each interconnection mask
for each array is generated individually, there is little
incentive for rigidly standardized functions.

The third approach is advocated by those who
believe that in the future it will be technically feasi-
ble to achieve high yields of large integrated circuit
arrays in which all circuits are good. This would
permit a standardized interconnect pattern to be
used for each specific logical function. This has the
advantage that only one mask need be made for a
particular function. This mask can then be used to
interconnect the circuits in many arrays of that type.
On the other hand, it is more difficult to change the
function to be performed by the interconnected cir-
cuit array since this requires making a different
mask.

In the future both of the last two fabrication tech-
niques discussed above will probably be used. Pro-
grammed control of the interconnection pattern will
likely be used for small production volumes and
unique or infrequently used functional modules.
However, there is strong evidence that the semicon-
ductor industry will produce large arrays with yields
sufficiently high to permit the use of standardized
interconnection patterns for functional modules that
are used in large quantities.

As semiconductor and batch-fabrication tech-
nologies advance, the major physical limitation on
the size of the functional unit will be the number of
external leads that can be provided on a package.
Although packages with larger numbers of leads (in
the order of 100) are being developed, additional
research in machine organization is urgently néeded
to develop functional organizational concepts that
will maximize the interconnections within a replace-
able package and minimize the interconnections- be-

EFFECTS OF LARGE ARRAYS 91

tween packages. The way in which the computer is
divided into functional modules can greatly increase
or decrease the number of connections needed be-
tween such modules.”

It will be necessary to use different criteria for
design efficiency in batch-fabricated systems. In the
past, minimizing the number of logical elements has
been a major goal of most logical design efforts. In
future systems, logical elements should be used
inefficiently in order to minimize the number of in-
terconnections needed between functional modules.
For example, frequently in present computers a
given gate or flip-flop supplies inputs to a number of
logical elements in different parts of the machine;
but in future systems the logical gate or flip-flop
may be duplicated many times in different parts of
the system to minimize the signals transferred from
one module to another. Emphasis must be placed on
reducing the number of packages and the number of
interconnections between packages—even at the ex-
pense of increasing the logical complexity of each
package significantly. Perhaps an even more difficult
problem will be motivating logical designers and sys-
tems planners to use standard or predetermined
functional modules. It is hoped that Dr. E. A. Sack’s
optimism was justified when he stated: “It is the
author’s opinion that the drastic reduction in cost
per gate available in multi-gate arrays will overcome
the system designer’s natural reluctance to employ
prefabricated digital functions.” ¢ ‘

In order to achieve the cost and maintenance ad-
vantages offered by the use of large batch-fabricated
arrays, it is necessary to develop machine organiza-
tion and system design techniques that permit repet-
itive use of packages containing very large arrays of
circuits. One approach is to change the internal or-
ganization and logical design of the large computer
so that large functional arrays can be used repeti-
tively even if this means that each array is relatively
inefficient in terms of the utilization of circuits with-
in the array.”

Another approach is to use very small standard
modular computers designed to be used either indi-
vidually or in multicomputer systems. In this case,
the uniqueness of large functional arrays within a
given computer is accepted. Such a small standard
modular computer can be fabricated with a very
limited number of circuit arrays each of which is
used only once within that computer. For example,
the complete program control unit and all of its in-
ternal interconnections may be fabricated in a single

package, the complete arithmetic unit in a second
package, the complete input/output control and
buffering section in a third package, and storage mod-
ules in additional packages containing 2000 words
each. Economies in fabrication and spares inventory
would be achieved as a result of the volume usage
of each type of module made possible by the use of
a large number of these standardized computers
rather than by the use of a large number of identical
packages within a single computer. When additional
computing speed and capability is required the
standardized computer would be used in a multi-
computer configuration.

A third approach is to develop parallel processing
systems conceptually similar to those that have been
discussed extensively in the literature.®® In this ap-
proach, large arrays are used effectively by organiz-
ing the machine on the basis of a relatively large
number of identical processing modules.

INPUT/OUTPUT IMBALANCE

There are three major approaches to the
input/output problem:

1. Improvements in the performance of
present types of input/output equip-
ment.

2. Development of new types of input/
output equipment that are not in wide-
spread use at present.

3. System organization approaches that
minimize the need for conventional
input/output equipment.

Each of these approaches will play a part in provid-
ing better balance in future systems. However, un-
less much greater effort is placed upon the develop-
ment of nonmechanical input/output equipment, the
best hope for future systems probably lies in devel-
oping system techniques that minimize the need for
input/output equipment. Although a problem of
major importance, these have been discussed pre-
viously and will not be considered further here.*®

HARDWARE/SOFTWARE TRADEOFFS

The memory capacity of early computers was so
limited that programming costs were not a
significant part of the total cost-of-ownership of a
computer system. However, reductions in hardware
costs have been accompanied by greatly increased
memory capacities which have permitted the storage

92 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

and operation of larger and more complex pro-
grams. The cost of hardware and the cost of engi-

neering design required to efficiently use expensive-

logical components have exerted a strong pressure in
the direction of very general-purpose computers
which can be adapted to a large number of different
operations so that design and production costs can
be amortized over a relatively larger number of
units, It has been recognized that a special-purpose
computer can perform a particular task more
efficiently than a general-purpose computer in terms
of the amount of hardware required, but the cost of
small volume production and specialized design have
favored general-purpose computers.

Under these circumstances, the tasks of specializ-
ing the capabilities of a general-purpose computer to
a specific job and adapting it to the control of a
large number of different types of input/output and
peripheral devices have been left to the programmer.
However, the increased performance and capability
of computers that have accompanied the reductions
in basic hardware costs in recent years have placed
greater and greater requirements on the program-
ming necessary to adapt more sophisticated general-
purpose machines to more complex operations in
specific kinds of problems.

While hardware costs have been decreasing, pro-
gramming costs have been increasing significantly to
the point that they now represent at least 50% of
the initial cost of a new computer system and per-
haps as much as 80% of the total systems opera-
tional cost over a 10-year period. This problem is
now magnified by new batch-fabrication tech-
nologies, such as large-scale integrated circuits and
plated-wire or thin film memories, which are expect-
ed to reduce the cost of logic circuits and storage
elements by one to two orders of magnitude. How-
ever, the effect of these hardware cost reductions on
the cost-of-ownership (initial procurement cost and
systems operational cost over the lifetime of the sys-
tem) is limited by the overwhelming software costs
which will not be affected by these advances in
hardware technology unless machine organization
and system design concepts are changed.

Fortunately, the significant reductions that are be-
ing achieved in the cost of logi