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PREFACE 
Volume 26 of the AFIPS Conference Proceedings is a per

manent record of the papers presented at the 1964 Fall Joint Com
puter Conference. Part I, called AFIPS I, was distributed at the 
Conference; this book, which is Part II, hence AFIPS II, includes 
information which, because of its nature and timeliness, could not 
be made available for publication prior to the time of the Confer
ence. 

This departure from the usual pattern of a single volume for 
the Conference Proceedings reflects the unique character of the 
sessions whose papers comprise the maj or portion of this book. In 
recent Conferences, computer systems have been described in bits 
and pieces, -and properly so. The, technical programs were carefully 
organized to avoid inclusion of material which might have hadother 
than technical interest or motivations. Furthermore, since tech
nical sessions are generally organized around particular areas of 
specialization, only those specific features of new computer systems 
which were within the specialty area and which were intrinsically 
of interest could be presented. This approach, it is believed, is 
proper and should be maintained, but it has the effect of eliminating 
overall descriptions of computer systems, as often presented at 
earlier Joint Computer Conferences. 

Consequently, as an experiment, the 1964 F JCC Program 
Committee under David R. Brown, Program Chairman, decided to 
sponsor, on an experimental basis, some sessions devoted to com
puter systems, permitting discussion of an entire system, regardless 
of whether or not each feature under discussion was unique or new. 
Attempts were made to present a complete description of each 
system-the underlying concepts, the hardware, the software, and 
the problems encountered in arriving at a final design. 

The sessions were called Very High Speed Computers, 1964 
-The Manufacturers' Point of View. These' sessions were organ
ized and chaired by Dr. Sidney Fernbach. The major stipulation 
placed on each system to be described was that it should be new and 
that it must be capable of executing approximately one million 
instructions per second. While the manufacturers' point of view is 
represented, it is perhaps more relevant to note that this view is 
shaped predominantly by the designers of each system. 

Publishing a post-Conference volume presented the unusual 
opportunity of including a record of some of the events which trans
pired there. Hence, the Keynote Address by David Sarnoff and the 
Luncheon Address by Gerard Piel are also in this book. The 
opinions advanced by these distinguished individuals should form 
the basis for further discussion and consideration and are repre
sentative of the broadening influence and impact of the information 
processing field. 

Additionally, these pages contain a full account of the back
ground of the Harry Goode Memorial A ward and of its presentation 
to its first recipient, Howard H. Aiken. It is especially fitting that, 
at this stage in its growth, the information processing field should 
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establish the means for honoring those who make notable contribu
tions to it. In that vein, also, a notation of the awarding of the 
1964 F JCC Prize Paper Award is included in this book. 

In keeping with the recently completed effort to index the 
papers presented in earlier Joint Computer Conferences, an index 
of terms applicable to the papers in this book is included at the end. 

As previously noted, AFIPS I is already in publication and 
has been widely distributed. It contains, as do the' other volumes 
in the series, all of the papers presented at the usual technical 
sessions. These papers were carefully selected from the excellent 
material available and cover a wide variety of topics. The Session 
Chairmen, together with the Program Committee, performed an 
outstanding function in coordinating the choice and presentation of 
papers ranging through hardware, software and applications. 

In retrospect, the 1964 FJCC was, in many respects, a stimu
lating experience. Its major permanent contribution, however, is 
represented by the information contained in the two parts of the 
Proceedings, and the contributors to these Proceedings are to be 
commended for their efforts and for the contributions they have 
made to the rapid advance and diversification of the information 
processing sciences. 

General Chairman 
1964 Fall Joint Computer Conference 





KEYNOTE SPEAKER 

Brig. Gen. David Sarnoff was the Keynote Speaker for the 
26th AFIPS Joint Computer Conference. General Sarnoff is 
Chairman of the Board of the Radio Corporation of America. 
His life-long association with science, technology, and indus
try has resulted in a unique and unparalleled record of accom
plishment, and the chronicle of his career is itself representa
tive of many of the significant effects of science on society. 



The Keynote Address 

THE PROMISE AND CHALLENGE 

OF THE COMPUTER 

David Sarnoff 
Chairman of the Board 

Radio Corporation of America 
October 27, 1964 

California has always been synonymous in my mind with 
innovation and progress, and the past year has given me fresh 
reason to think so. 

Seven months ago, at the NBC studios in Burbank, I had 
the pleasure of presiding at the inauguration of a new dimension 
in business communications. By means of two-way, closed-circuit 
color television, two large assemblies of RCA's shareholders-one 
in California and the other in New York-were brought into instant 
visual and verbal communication at our 45th Annual Meeting. De
spite their continent-wide separation, the two groups were as effec
tively unified as though they were meeting under one roof. 

Three months later, the sense of participation was almost 
as direct and immediate with the successful performance of Ranger 
VII. Again, this was an accomplishment that spanned the con
tinent. RCA cameras and transmitters built in New Jersey, aboard 
a spacecraft built in California, completed their. historic mission 
at a third point-the moon. 

Today, I am glad to be in California and to experience again 
this sense of participation in progress. I t is expressed this time 
in a gathering of more than 4,000 scientists and engineers from 
a new and dynamic industry that traces its line of descent directly 
to the beginning of the art and science of electronics. The modern 
electronic computer is the precocious offspring of wireless teleg
raphy and radio telephony, and it is creating a new dimension of 
progress through the high-speed handling of electronic signals. 

Since the birth of RCA in 1919, our principal efforts have 
been concentrated on transmitting, receiving, and recording infor
mation by electronic means. It was natural, therefore, that our 
scientists and engineers were among the first to begin the study 
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of electronic computing techniques, and I believe their contributions 
to this new art have been significant. 

Six years ago, when we entered the computer field com
mercially, it was the logical extension of everything we had been 
doing up to that point. We are making good progress-in tech
nology, programming, service, sales, and revenue-and we will 
soon announce some significant new product developments which 
we believe will contribute to the industry's future growth. Last 
month, we crossed over into the promised land of computer profits. 
While the trip was rugged, we found the new terrain to our liking, 
and we expect to stake out a permanent profit claim. 

THE LESSON OF STANDARDS IN ELECTRONICS 

During my 58 years in electronics, I have seen several 
dynamic industries emerge from conceptual beginnings in the 
laboratory. The most memorable were radio communications, radio 
broadcasting, sound-movies, black-and-white television, and color 
television. While their origins differ.ed in detail, all shared a com
mon experience that has a distinct parallel today in the rise of 
computers as another major member of the electronics family. 

All were intensely competitive from the beginning and have 
remained so. But they began fulfilling their potential only after 
agreement had been achieved for technical standards prescribing 
the kind and quality of service to the public. A pattern for progress 
was thus fashioned without sacrificing the vital stimulus of com
petition in developing newer, better, and more economical equip
ment, and in furnishing more efficient service to the user. 

I am convinced that this same process must occur in the 
computer industry. Even now, the computer is stirring a revolution 
of the brain just as steam power stirred a revolution of the muscle. 
The potential effects are almost incalculable-but their full realiza
tion calls for the same definition of ground rules that permitted 
the growth of the older electronics industries. 

When sight was added to sound with black-and-white tele
vision, the need for technical standards as the basis for orderly 
growth was clearly recognized. The receiver in the home and the 
transmitter in the studio had to be built to operate on the same 
standards. A committee representing all major elements of the 
industry obtained practical unanimity on such standards as a pre
condition to the establishment of a public television service. It was 
on this foundation that black-and-white television grew so phenom
enally in the post-war era. 

Again, in the early 1950s, the industry underwent the 
long and difficult process of reaching agreement on a workable 
service to the public. This time the issue was color television, and 
two sharply different systems and standards were in dispute. One 
was based on a mechanical "color wheel" which could produce color 
images but whose transmissions could not be received by the black
and-white receivers in the nation's homes. It was therefore incom
patible with existing equipment. The other was an all-electronic 
compatible system which could be seen in black-and-white on any 
TV set in the home. 
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It was evident that, if the incompatible mechanical standards 
were to be adopted, the industry would be saddled with an inferior 
system and the public with an inferior, more costly product. To 
adapt the 10 million sets then in existence in order to receive a 
degraded picture in black-and-white would have cost the public 
approximately $500 million. Without an adaptor, the TV screen 
would simply go blank. 

Clearly, there were many inherent advantages in adopting 
an electronic rather than a mechanical system of color television. 
For the industry, the basic issue came to this: should the millions 
of dollars already invested by television set owners be jeopardized 
by an incompatible color television system? 

Once more, an industry group was formed to draft signal 
specifications and standards. The result, after 32 months of work, 
was a complete set of compatible color signal specifications closely 
following those that had been developed through long years of 
laboratory research and engineering. These ultimately became the 
basis for color television in the United States-a business that now 
stands with data processing in the forefront of the nation's indus
trial growth. 

The industry committee did its work so thoroughly that 
every subsequent advance in the color television art has been put 
into service with no change whatever in the original standards. 

THE NEED FOR STANDARDS IN COMPUTERS 

The phenomenal rise of data processing bears certain resem
blances to that of color television. It is' confronted in similar 
fashion by a question of compatibility. The investment of the 
user is again a primary consideration. The issue becomes more 
acute as the growing computer industry intensifies its competitive 
drive for new and more ingenious ways to accommodate the user. 

From the two-score or so machines in existence barely a 
dozen years ago, there are now some 17,000 general-purpose com
puters in the United States alone, and the number is increasing 
at a rate of more than 500 a month. Within the coming decade, 
the computer population can increase enormously. 

Whether it realizes its full growth potential depends in very 
large degree, however, on the measures we undertake now to estab
lish the basis for orderly development. The interests of the industry 
and the needs of the user demand a far greater measure of com
patibility and standardization among the competing makes of com
puters and the means by which they receive and transmit informa
tion. 

Neither the operators nor the machines we have built for 
the processing and transmission of information can yet speak to 
each other in a commonly understood and accepted language. The 
means of preparing data, of forwarding and entering data in the 
machine, and of instructing the machine in its use differ sufficiently 
from one make of equipment to the next so that none can readily 
accept the product of another. 

We function today in a technological "Tower of Babel." 
There are, by conservative count, more than 1,000 programming 
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languages. And there are languages within languages-in one 
instance, 26 dialects, and in another, 35 dialects. There are eight 
computer word-lengths in use. There are hundreds of character 
codes in being, at a ratio of one code for every two machines mar
keted. Four magnetic tape sizes are employed with at least 50 
different tape tracks and codes. 

Standards have not been accepted even for commonly used 
symbols, instruction vocabulary, or program development proce
dures. Words which have currency throughout the industry assume 
different meanings, depending on whether a man has trained in 
Pasadena, Poughkeepsie, or Camden. We have yet to produce a 
universally accepted computer glossary. 

No means have yet been perfected for a program in one basic 
language to be run efficiently into computers of different makes. 
The result has been needless duplication, delay, and waste-both 
to the manufacturer and to the user-in cost, in equipment, in 
operating efficiency, and in manpower and skills. 

Incompatibility has compelled the manufacturer to build 
optional choices into peripheral equipment for the input and output 
of data. It has required him to maintain various types of the same 
equipment, or to build to a customer's specifications on each order. 
It has diverted needed engineering and programming talent from 
the vital work of new product and systems development. 

The burden of incompatibility has been even more onerous 
to the user. I t has meant the extra cost of providing hardware and 
programs to handle the differences between incompatible systems, 
the cost of extra machine time to process data set for another 
computer, the cost of training people to do things differently, the 
cost of not being able to do the job immediately. 

Last year, an estimated $2 billion was spent by American 
business and government for privately developed computer pro
grams, representing thousands of man-years of effort. Yet, when 
a change to new equipment is made, portions of this effort must 
be thrown away because they have no validity to another make of 
machine, or they are retrievable only at further cost. 

I have heard it said that even a degree of standardization 
and compatibility might inhibit· the progress of the art. In my 
judgment, this argument is without substance. The nature of a 
computer is such that its operation is governed far less by its 
internal construction than by the program that is given to it. 

The effort to bring order to the flow of computer intelligence 
need not affect competition either in creating programs or in seek
ing new generations of increasingly efficient machines. On the con
trary, the result could be a greater concentration of effort toward 
this primary goal. 

PRELIMINARY STEPS TOWARD INDUSTRY STANDARDS 

During the past four years, certain essential preliminary 
steps have been taken toward industry standards and compatibility, 
largely under the aegis of the American Standards Association 
and the Business Equipment Manufacturers Association. Repre
sentatives of the industry, of users, and of technical groups have 
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proposed industry-wide standards in such areas as data transmis
sion, information exchange, and character recognition. 

Working with a committee of the International Standards 
Organization representing the computer interests of 13 foreign 
countries, they have recommended world-wide standards which 
would make it possible for a credit card or invoice produced in 
any country to be read by equipment anywhere in the world. 
Another recommendation, for information interchange, would make 
it possible for computers in all countries to talk to each other in 
a common language, when it is adopted and implemented by the 
manufacturers. 

FURTHER ACTION ON STANDARDS IS ESSENTIAL 

That phrase-when adopted and implemented by manufac
turers-is central to the resolution of the problem. For in our coun
try, at least, the action is voluntary, and until these and other 
standards are put into general use they remain little more than 
statements of hope. 

Today, Western Europe is energetically seeking to close the 
computer gap and is moving toward the establishment of standards. 
During the next five years, the use of computers in European indus
try and government is expected to develop at an accelerating rate. 
Ten years from now, the foreign market might well equal that of 
the United States. 

Unless we achieve some coherence in our own ranks, we 
may find ourselves following instead of initiating standards. 

All of us, in computer manufacturing, in communications, 
and among the user groups-at the technical as well as the man
agerial level-share a common interest in the free interchange of 
information, and the media and equipment through which it flows. 

This demands that we give compatibility the urgent con
sideration which it merits but which it has not yet received. It 
requires the wholehearted support by all of us of the standardization 
work that is now going forward, and "implementation of the results 
with all deliberate speed. It will require that we submerge our dif
ferences, through fair and equitable compromise, to achieve greater 
ends. 

I do not suggest that existing systems be discarded. That 
would be unrealistic as well as costly. Even today's computer has 
reached maturity in one basic respect: its average time between 
failures, measured in minutes only a decade ago, is now measured 
in months. This is a level of operating reliability far beyond that 
of either the automobile or the airplane. 

But new generations of systems are coming, and the time 
to bring order into progress is now, before they have fully arrived. 
Standards can be established which, if planned with thought and 
foresight, can guide us in the future, linking our separate efforts 
and facilitating the common evolution of our industry. Such stand
ards are indispensable to continued progress. 

THE COMPUTER'S IMPACT ON THE FUTURE 

As the shape of tomorrow's technology takes form, the 
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volume and accessibiiity of data stored in the computer will playa 
decisive role. All information as to what to do, how to do it, and 
what data to do it with, resides in the memory of the machine. 
With larger and faster memories there are few limits to the tasks 
that can be solved or the speed with which they are completed. 

The time is soon coming when these memories will be capable 
of storing up to 100 million bits of information, retrievable in 
fractional millionths of a second. For external memories, the goal 
is a trillion bits, possibly advancing later to capacities that are many 
times greater. By these means we can hope to store all of the 
information that is presently contained in all the world's libraries. 

Tomorrow's standard computers and their peripheral equip
ment will instantly recognize a handwritten note, a design or draw
ing which they will store and instantly retrieve in original form. 

The computer of the future will respond to commands from 
human voices in different languages and with different vocal inflec
tions. 

Its vocabulary will extend to thousands of basic words in 
the language of its.country of residence, and machines will auto
matically translate the speech of one country into the spoken words 
of another. 

The computer itself will become the hub of a vast network 
of remote data stations and information banks feeding into the 
machine at transmission rates of a billion or more bits of informa
tion a second. 

Laser channels will vastly increase both data capacity and 
the speeds with which it is transmitted. 

Eventually, a global communications network handling voice, 
data, and facsimile will instantly link man to machine-or machine 
to machine-by land, air, underwater, and space circuits. 

We will see computer switchboards in space, similar to those 
presently in operation on the ground, routing in milliseconds any 
communication to and from virtually any point in the world. 

The interlocking world of in~ormation toward which our 
technology leads us is now coming closer to realization. It will be 
possible eventually for any individual sitting in his office, laboratory, 
or home to query a computer on any available subject and within 
seconds to receive an answer-by voice response, in hard copy or 
photographic reproduction, or on a large display screen. 

We will see the eme,rgence of national and global information 
processing utilities, serving tens of thousands of subscribers on a 
time-sharing basis. These utilities will accommodate the specialized 
needs of researchers and engineers, lawyers, medical men, sociolo
gists, or the general needs of the public. 

The ordinary citizen may well carry an individual credit card 
for use anywhere to charge his bank account electronically over a 
worldwide data communications network that would link up with 
the telephone systems of all nations. 

Such an arrangement could employ simple input units located 
in all retail establishments-service stations, restaurants, hotels, 
and other public facUities. These would be in direct and instanta
neous communication with a system of banking computers to permit 
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the transfer of funds without the many- duplicate bookkeeping and 
mailing steps that characterize the present credit card system. 

A scientist will be able to discuss a problem by two-way tele
vision with a colleague anywhere on the globe, and both of them 
will be able to query a computer at another terminal point for 
assistance in finding the solution. 

Private corporations, many of which will be international 
in ownership and operation, will have instant access to production 
and market information from data stations positioned around the 
globe. 

Similar systems will operate on a vastly larger scale for 
government agencies-'-military, diplornatic, and economic. 

The computer will evaluate and offer alternate courses of 
action, taking into account all the known and probable variables 
of a given situation. 

This emerging pattern inevitably will set in motion forces 
of change within the social order, extending far beyond the present 
or presently predictable applications of the computer. It will affect 
man's ways of thinking, his means of education, his relationships 
to his phys,ical and social environment, and it will alter his ways 
of living. 

I believe, for example, that television in a vastly expanded 
form will become our major instrument for communicating general 
or specialized information. The same broadband channels that 
accommodate the TV picture signal can also transmit masses of 
computer data at ultrahigh speed for instant display. 

One day,' we will receive our newspapers and technical pub
lications, photocomposed by a computer, by direct display on a wall 
screen in the horne or office. If we wish to retain any part of 
them for further reading or reference, it can instantly be produced 
in electrophotographic copy. 

As computers become amenable to simple commands, they 
will become as indispensable to education as the reference library. 
Indeed, they will become tomorrow's reference library, used by 
every student from the upper elementary levels through university. 

Far from eliminating the need for intense intellectual effort, 
they will permit young people to undertake mental explorations 
far beyond the boundaries of the present classroom world. 

The computer already is opening areas of knowledge long 
denied us by the sheer magnitude of the mathematics involved. The 
implications are no less fundamental for the social and life sciences 
than for the physical disciplines. 

By correlating vast quantities of data and uncovering new 
relationships we can for the first time obtain significant informa
tion on social and human behavior-from the destructive tendencies 
of some to the learning power of all. 

THE ULTIMATE CHALLENGE POSED BY THE COMPUTER 

The ultimate implication of the computer is that it provides 
a means of releasing the productive powers of the human brain to 
an almost limitless degree. Yet the computer imposes as a precon-
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dition the sternest discipline to which the mind has yet been sub
jected. 

Even to use the machine, we must apply clear and precise 
logic to s,ituations which heretofore were assumed to be beyond 
analysis. We must state precisely what we know or do not know, 
and what we wish to know. 

If we are to develop the computer to its full potential as a 
reference storehouse of human knowledge, we face the immense 
intellectual challenge of researching every major field of human 
activity, of assembling, analyzing, and identifying its documents, 
and reducing the information to acceptable machine form. 

Before the end of the century, I believe that these codification 
efforts will coalesce into what unquestionably will become the 
greatest adventure of the human mind. We shall achieve a far more 
comprehensive understanding than we have today of man and his 
environment. We shall do so through the orderly compilation of 
accumulated knowledge and wisdom, beginning with the days of 
clay tablets and papyrus scrolls. The human horizon will then 
encompass all that man has ever known, and all that his science 
will enable him to know. 

But how swiftly we scale these· heights depends upon the 
steps we take today to bring order and compatibility to our art. 
It is an urgent task to which all of us who bear the responsibility 
for leading this industry into the future must turn our efforts. 

It was Socrates who said: "Let him who would move the 
world move himself." His words have particular pertinence at this 
time and in this place. For we of the computer industry must sur
mount today's challenge before we can advance to tomorrow's 
promise. 

Let me conclude on a personal note. Whether your individual 
role is large or small, the significance and scope of this new science 
and industry are such that in a genuine sense you are making his
tory. The impact of your knowledge and talents will echo down 
the corridors of time. The quality and content of life on this planet 
will be profoundly affected-indeed are already being affected
by your labors. 

I am grateful for the opportunity to have shared a few 
thoughts with you. 





LUNCHEON SPEAKER 

The Conference Luncheon Speaker was Gerard Piel, Publisher 
of Scientific American. As publisher of a magazine with 
broad appeal to the scientific community, Mr. Piel has con
tributed to the difficult task of describing and interpreting 
the sometimes bewildering developments in the fields of 
science and engineering. He has chosen for the title of his 
subject, "The Computer as Sorcerer's Apprentice." Mr. Piel 
is a graduate of Harvard University (magna cum laude) and 
holds honorary doctorates from Lawrence College, Colby Col
lege, Rutgers University, Columbia University, Tuskegee In
stitute, and the University of Bridgeport. Prior to building 
the new Scientific American, he was for six years Science 
Editor of Life magazine. 



The Luncheon Speech 

THE COMPUTER AS SORCERER'S 
APPRENTICE 

Gerard Piel 
Publisher, Scientific American 

October 28, 1964 

The computer is the engine of this latest phase in the 
acceleration of the industrial revolution. The role of the computer 
cannot be measured in the simple terms of the number of com
puters at work in the American economy or even in the extraor
dinary variety of functions in which the computer has found work 
to do-from accounting routines to industrial process control to 
creative enterprise in mathematics itself. More significantly, com
puter technology gathers in and brings to intense focus the most 
diverse discoveries on the frontiers of knowledge-from investiga
tion into the nature of matter to speculations at the foundation of 
knowledge. It is the agency through which the advance of human 
understanding now finds its way to the control of natural forces in 
time intervals that grow,shorter year by year and month by month. 

Because the time lag between invention and application now 
diminishes so swiftly, it becomes possible-and necessary-to fore
cast the ethical, social, and economic implications of this develop
ment. Today in our country and in certain other industrial nations, 
men are compelled to recognize and give assent to a profound 
transformation in human values. Technological change has already 
largely eliminated people from production; it has sundered the 
hitherto socially essential connection of work to consumption. The 
citizens and the institutions of these nations must accommodate 
themselves to the law of material abundance: each individual can 
secure increase in his own well-being only through action that 
secures increase in the well-being of others. 

This novel dispensation stands in contrast to the law of 
scarcity which, jin the words of Alexander Herzen (1812-1870), 
declares: "Slavery is the first step toward civilization. In order to 
develop, it is necessary that things should be much better for some 
and much worse for others; then those who are better off can 
develop at the expense of the others." 

13 
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The iron lavl of scarcity underlies the ethical dilemma of 
political economy which has sought for nearly three centuries to 
discover or to rationalize equity in social institutions long ago 
designed to secure the inequitable distribution of goods in scarce 
supply. Adam Smith, the first great systematizer of economic 
theory, was foremost a moral philosopher. In his Theory of Moral 
Sentiments, published in 1759 and the work which brought him 
his principal contemporary fame, he traced the roots of moral 
action to the "passion of sympathy"-"which leads us into the 
situations of other men and to partake with them in the passions 
which those situations have a tendency to excite." It was later, 
in the Wealth of N atiom published in 1776, that he undertook to 
explore "those political regulations which are founded, not upon 
the principles of justice, but that of expediency, and which are 
calculated to increase the riches, the power and the property of 
the state." Against the princely mercantilism of the autocratic 
continental powers, Smith asserted the labor theory of value: 
"Labour is the real measure of the exchangeable value of all com
modities .. ' .. Equal quantities of labour at all times and places are 
of equal value to the labourer .... Labour alone, therefore, never 
varying in its own value, is alone the ultimate and real standard 
by which the value of all commodities can at all times and places 
be estimated and compared." In the free play of supply and demand 
in the open market, the products of human labor found the just 
and equitable price at which they were to be exchanged. In the 
market, labor, itself a commodity in consequence of the division of 
labor, also found its fair price. Under the sure guidance of the 
"invisible hand" each man could seek his private interest, confident 
in the knowledge that he thereby secured the public weal. 

For the generations that launched the industrial revolution 
in 18th century England, Adam Smith and his successors in political 
economy furnished not only the guidelines to practical action but 
the moral assurance necessary to the taking of action. Before the 
middle of the 19th century, however, it had become impossible to 
conceal-.:in the blight laid upon green England by the carboniferous 
phase of industrialization-the failure of their enterprise. Benjamin 
Jowett, Master of Balliol and translator of Plato, spoke for the 
alienation of the humanities from the sciences when he said: "I have 
always felt a certain horror of political economists since I heard 
one of them say that the famine in Ireland would not kill more 
than a million people, and that would scarcely be enough to do 
much good." 

Even as Jowett wrote, the first phase of the industrial revolu
tion had ,made such computations obsolete as well as patently 
immoral. In 1864, the year of the Emancipation Proclamation, 
mechanical horsepower generated by steam engines in the U.S. 
economy exceeded for the first time the output of biological horse
power by horses and men. As early as 1900, only 75% of the U.S. 
labor force was employed as "producers of goods"; more than half 
of these producers were engaged in farming arid the next largest 
percentage in unskilled labor functions. By 1960, human muscle 
had been all but eliminated from the production process. The census 
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for that year shows that less than half (46 0/0) of the labor force 
was now employed as producers of goods; farmers (7%) and 
unskilled laborers (5 %) were approaching statistically negligible 
percentages of the labor force. More than half of the producers 
were classified as "operatives," that is, human nervous systems 
still interposed in process control feedback loops not yet completely 
closed by electronics. 

In the present phase of acceleration, as is well known, the 
industrial revolution is eliminating nervous systems from the 
production process. Robots-artificial sensory organs and me
chanical controllers linked by feedback circuits-have been taking 
over from human workers in all of the fluid process industries. In 
at least 85 plants in the U.S., computers at the center of control 
networks have transformed the process streams into truly self
regulating systems. The computer and the feedback control loops 
have now begun a corresponding transformation of the discon
tinuous processes of the metalworking industry. The same revolu
tion in technology-for example, transcontinental pipeline trans
portation of fluid commodities under computer and feedback-loop 
controls-is under way or impends in all of the production sectors 
of the economy. 

During the past decade, blue collar employment in American 
manufacturing has actually declined, while the output' of these in
dustries has nearly doubled. The rate of increase in productivity in 
the production sectors of the economy, which has averaged 5.6 % 
over the decade and has been accelerating, is grossly understated 
by productivity figures applied to the entire labor force. These, 
the figures given widest circulation, have shown an annual improve
ment of only about 2.5 to 3 % . 

Until recently, increase in employment in trade and distribu
tion and in the services has compensated for disemployment from 
production. The computer, however, finds application even more 
readily in the functions that employ human beings in these sectors. 
The "white collar" computer, equipped with a typewriter on its input 
and output side, is conceptually a much simpler organism than the 
computer equipped with sensory organs and muscles that displaces 
the blue collar worker. A conservatively estimated million-fold in
crease in the data-processing capacity of organizations equipped 
with computers as compared to organizations manned by human 
beings and assigned to comparable tasks has already been demon
strated in military command and control systems. Although com
puter technology has just begun to find its way into trade and dis
tribution and the services, increase in employment in these sectors 
has already begun to slacken. In the private sector of the economy 
it now barely offsets disemployment from the production industries. 
During the five-year period from 1957 through 1962, the private 
enterprise economy generated less than 300,000 additional new jobs. 

The creation of new jobs in the economy as a whole has now 
lagged the growth of the labor force for more than a decade. This 
is a polite way of saying that the economy is afflicted with a constant 
and insidious increase in unemployment. Ever since 1952, the rate 
of unemployment has been larger at the peak of each ripple or 
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boom!et in the economic cycle, and each recession has left a larger 
percentage of the labor force high on the beach. 

Debate continues as to whether the country's rising unem
ployment is "cyclical" or "structural." Classical economists-and 
nowadays Keynesian economists are "classical"-assure us that the 
unemployment is cyclical. They point to the history of the past 60 
years in stubborn support of the thesis that the labor-saving effect 
of technological progress merely frees labor from one task for em
ployment in another. It is conceded that frictions make for unem
ployment in this turnover of the labor force, especially when prog
ress goes forward rapidly. But sooner or later new jobs, generated 
by ever greater economic activity and an ever-expanding Gross 
National Product, soak up the unemployed. By tried and tested 
and now generally sanctioned counter-cyclical measures-for ex
ample, by the recent Federal tax cut--the fluctuations of the system 
can be damped and the peaks and valleys of unemployment smoothed 
out. When the Kennedy Administration took office, its official econo
mists were arguing that unemployment at the rate of 4% could be 
regarded as normal. Despite the tax cut and the prolongation of 
the present boom, unemployment now ranges above 5 % . 

Increase in unemployment accompanying expansion of eco
nomic activity would seem to indicate that a rising percentage of 
the unemployment is indeed structural-that people, in other words, 
are being displaced from the economic system in ever larger num
bers by mechanization, more specifically by the computer and its 
accessory and allied technologies. Consider, for example, the com
puter industry itself, thus broadly defined. If employment were 
to expand in any industry during this period of intensive mechani
zation, o~e would think first of the payroll of the industry that is 
doing the mechanizing. What is more, the technology of electronics 
that furnishes your hardware has been notably, if paradoxically, 
highly labor-intensive. Until a few years ago, labor would repre
sent up to 60 % of the production cost of a piece of electronic hard
ware. Engineering would constitute the major investment; ma
terials would be a minor cost and capital equipment a negligible 
item on the balance sheet. In these respects electronics was like 
the garment industry: a business anybody could get into, providing 
he had a bright idea and could finance his payroll long enough to 
get his product on the market. Within the last 10 years, as I need 
not tell you, electronics has- gone solid state. The transistor and the 
micromodule are even now yielding to the integrated circuit. With 
this development, acre after acre of work benches at which house
wives and high school girls wield pliers and soldering irons has 
been disappearing. Labor cost is vanishing in the economics of 
electronics. Material costs have now become significant; engineer
ing and plant costs, transcendent. 

In other words, the prevailing relationships among the fac
tors of production in electronics are being turned 180 degrees 
around. With people being exiled from the computer industry as 
rapidly as the computer itself is promoting the disengagement of 
people from jobs in other sectors of the economy, the expansion of 
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this industry will not generate anything approaching a correspond
ing buildup of its payroll. 

It cannot be said, any longer, that the industrial revolution is 
the same old story. The acceleration of technological change, 
driven by the accelerating advance of human understanding, 
reaches to the very heart of the institutions of our society; that 
is, to the value system upon which those institutions rest. 

The unemployment figures present a profoundly misleading 
measure of the degree to which our capacity to produce material 
abundance has outrun the capacity of our institutions to secure the 
distribution of that abundance. It must be reckoned, in the first 
place, that some eight million persons are employed in the war 
economy and contribute nothing whatever to the flow of material 
abundance from the cornucopia of our non-military productive sys
tem. If the production workers in the war economy are subtracted 
from the productive work force, then the percentage employed as 
producers of goods falls below 40 %. But this figure still overstates 
the truth because most of the goods circulating in commerce and 
consumed by American citizens are· produced by the very much 
smaller percentage of the labor force that is employed by our most 
efficient production organizations. 

Consider, for example, our farms. Some 85 % of the food 
that moves from the farms to the markets comes from less than one 
million farms; and the same is true of industry. The few large 
and efficient corporations in each industry, with their relatively 
smaller payrolls, produce the overwhelming percentage of our indus
trial output. If a small minority of our working force is today 
doing most of the production, then, in the future, we c~n expect to 
see an even smaller minority of our working force account for all 
of the production of goods in our economy. The sorcerer's appren
tice has thrown the switch. The great test of our democracy is to 
find ways to distribute or dispose of the mounting flood of abundance. 

Actually, by the kind of improvisations that are so character
istic of democracy, we have had some success in coping with this 
task starting from the turn of the century. In 1900, 40% of the 
adults of our country were not employed; that is to say, they were 
either unemployed or they were not in the labor force. In those good 
old days, 57 % of the adults of the country. were employed in the 
private sector of the economy. Our country still approximated the 
description it gave of itself in the Declaration of Independence, as a 
people engaged in the pursuit of happiness-in the pursuit of private 
interest, either their own or that of their employers. Only 3 % of 
the American people were on the public payroll. In 1960, the same 
40 % of our population was not employed, either unemployed or not 
in the labor force. But only 40 % of the population was now em
ployed in the private sector of the economy. A full 20~:{ of the 
American people found their employment either directly on the 
public payroll or indirectly through the increasingly huge expendi
tures of governmental agencies for the product and services of 
private corpoartions-not only in the war economy but in the con
struction of highways and other major public works ventures. In 
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other words, one-third of the working force now owes its employ
ment to public expenditure. 

Direct employment in the public sector has been increasing 
at five times the rate of increase in the private sector. During the 
past five years the public sector generated more than a million of 
the less-than-1.5 million new jobs in the economy. Since the Fed
eral payroll remained constant during this period, this gain must 
be credited to state and local governments. It can be declared with 
pride, furthermore, that the biggest part of the gain was in the pay
roll of our public education system. This, in turn, may be taken 
as an ,indication of the responsiveness of our value system to the 
evolutionary pressure of abundance. 

The national accounts also indicate, however, that the evolu
tion of our social institutions is falling further and further behind 
the accelerating pace of technological change. It turns out that the 
magnificent industrial apparatus of America has been producing as 
much poverty as wealth. Poverty is now officially acknowledged to 
be the lot of at least 25% of our population. Contemporary Amer
ican poverty is selective, as Michael Harrington has pointed out. It 
tends to settle in places where it disappears from sight-hidden 
away geographically, for example, in Appalachia and in the central 
cities from which more fortunate members of our society have fled 
to set up their new settlements in the suburbs. In New York and 
Chicago, the third generation of families on relief has already begun 
its blighted existence. 

Poverty is selective also with respect to age. Unemployment 
rates, which for the labor force as a whole are officially acknowl
edged to exceed 5%, exceed that rate among the youth by at least 
twice, and among Negro youths it exceeds the rate among white 
youths by more than twice again. In fact, the prevailing rate of 
unemployment among Negro youths in the ghettos of our central 
cities runs from 40 to 50 %. The high-school drop-out may spend 
five years or more in empty limbo between school and his first job. 
Out of such alienation of so many of our young people has come the 
rise in juvenile delinquency, and out of the rejection of our Negro 
youth came the riots in the streets of the north during the past sum
mer. Poverty is equally selective with respect to age at the other 
end of life. The 40% of our adult, population not counted in the 
labor force now includes several million men and women retired to 
live on the pittance of monthly social security checks, under contract 
not to seek gainful employment. 

Such are the shameful facts that confront us in the midst of 
the most prolonged boom since the crash of 1929. Forecasters 
predict the boom will hold up well into the first quarter of the new 
year. Against the expectations of myself as well as a few other 
pessimists, the tax cut has had a strongly stimulating effect on the 
economic system. It has encouraged a remarkably high rate of 
investment by industry in new capital equipment-one-third of the 
investment going to modernization thereby also accelerating the rate 
of mechanization. Through the action of the familiar Keynesian 
multiplier, these expenditures on the capital investment side have 
helped to sustain consumer expenditures at neW highs. The argu-
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ment that fiscal measures may help to reduce unemployment, there
fore, finds support in the current movement of the economy. 
Although these measures and the prolongation of the boom have not 
actually reduced unemployment below the 5 % line, a catastrophic 
increase in unemployment has been forestalled. 

The financial pages all agree, however, that this boom has a 
terminal date; most set it around the end of the first half of 1965. 
As the boom runs out, the application of mere counter-cyclical 
measures-a further cut in Federal taxes, for example-will be of 
no avail. At the same time, responsible citizens and public officials 
must face up to the question of the armaments budget. Even in 
advance of that distant date when we may see some substantial 
measure of disarmament, the military budget must be cut back. 
Our country long since acquired the capability of overkill, counting 
all the targets in China as well as in the U.S.S.R. Yet, with the 
business cycle turning downward, it will take brave men to cope 
with the fact that eight million jobs hang directly upon the size of 
the military budget. 

Plainly, the termination of the present boom will require not 
a tax cut but, on the contrary, a considerable expansion in public 
expenditure. That expansion has got to come, moreover, in the 
Federal budget. It is perfectly plain that the payrolls of local gov
ernments are not equal to short run challenges; they cannot respond 
as flexibly and with the same massive effect as Federal expenditures 
can. The next Administration will be compelled to seek, therefore, 
a vigorous expansion in Federal expenditures on public works and 
public welfare. 

I don't think I betray the security of the present Administra
tion at this point in the national election campaign by telling you 
that task forces in every department in Washington are at work 
on the question of how to spend increased sums on non-military 
undertakings of the Federal Government. The house economists 
of the Kennedy Administration observed some time ago that the 
nation had accumulated a backlog of demand for public works and 
welfare equal in magnitude to the backlog of demand for consumer 
goods and capital goods at the end of World War II. According to 
the National Planning Association, such neglected tasks as urban 
redevelopment, mass transportation, control of environmental pol
lution, and restoration of natural resources could absorb additional 
public investment at a rate of $60 billion per year. The Arms 
Control and Disarmament Agency, which is principally responsible 
for analyzing the prospective impact of disarmament on the econ
omy, predicts an easy transition from huge outlays for warfare to 
huge outlays for welfare-it points to this backlog bf unmet public 
needs. Soviet economists join their American colleagues in assur
ing us that capitalism is equal to the task. 

All of this is cheering to hear. And it is especially con
siderate of the Soviet economists to give us their encouragement. 
But, against a value system that stoutly resists every increase in 
Federal expenditure except those that carry the absolute sanction 
of the. national defense, any effort to increase public expenditures 
for public welfare will encounter heavy political opposition. 
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The backward state of our value system is suggested by the 
following figures describing the condition of our society: America 
has, in fact, the highest rate of unemployment among all the indus
trial nations of the world. If the maintenance of adequate nutrition 
is taken to establish the poverty line, then Department of Agricul
ture studies show that not one-quarter but one-third of our fellow 
citizens remain not only ill-fed but ill-clothed and ill-housed as well. 
Our country has the lowest ratio of public to private expenditures, 
even with our gigantic war budget. In the public sector-in Fed
eral, state and local budgets-our economy turns over 25 % of its 
Gross National Product. The lowest figure you find in any other 
industrial society is 30 %. America has the lowest rate of public 
expenditure on public welfare and public works; it comes to some
thing less than 10% for the country as a whole. The lowest figure 
in any other industrial nation is nearly three times this percentage. 

Last spring, the Johnson Administration took its first tenta
tive steps to meet the impending short-run economic crisis. It 
assembled from already on-going and funded activities of the Fed
eral Government an anti-poverty program. Meanwhile private 
institutions and individuals were attempting to draw the lines of 
long-run perspective. One committee of concerned citizens-the 
self-styled Ad Hoc Committee on the Triple Revolution, which in
cluded political economists, historians, former public officials, labor 
leaders, civil rights workers, and at least two men who have met 
payrolls-looked rather more deeply into the widening gap between 
the productive capacity of our industrial system and the effective 
demand of our consumer economy. In one conclusion to their 
analysis, they envisioned a day when "Society, through its appro
priate legal and governmental institutions, must undertake an 
unqualified commitment to provide every individual and every fam
ily with an adequate income as a matter of right." 

The idea of paying people incomes whether they work or not 
captured attention in newspaper city rooms all across the country. 
It seems scarcely necessary to add that the idea also won a great 
deal of unfavorable comment. Setting aside the ephemeral essays 
of the commentators and pundits who explain the new~ to the rest 
of us, the comments of two distinguished public figures are illumi
nating. The Secretary of Labor, Willard Wirtz, declared: "I think 
the analysis is right but the prognosis and the prescription is 
wrong." He added: "I don't believe the world owes me a living and 
I don't believe it owes anyone else a living." 

The other comment comes from a man who was, at the time, 
candidate for the Republican Presidential nomination. You may 
recognize his voice. He said: "Our job as Republicans is to get rid 
of people who will even listen to people who say we should pay 
people whether they work or not!" 

These two statements, taken together, speak faithfully for 
the austere premises of classical political economy and the tenacity 
of their grip upon the conscience of many members of our society. 
Yet the preposterous notion of a guaranteed annual income (or 
G.A.I., as it has come to be called) has found its way onto the 
agenda of public issues.' 
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Upon deeper reflection over the summer, for example, Life 
mag~zine returned to the subject for the second time on its editorial 
page. This time, Life conceded that there is technological disem
ployment: " ... experts can't agree whether technological unemploy
ment is growing by 4,000 or 40,000 jobs a week. But it is growing 
fast enough to see that the seeming logic of the . . . plan for free 
incomes, or instant socialism, may grow too." 

Having frightened itself with this prospect, Life goes on to 
say that there can be "more than one radical alternative" and puts 
forward one of its own: "It is private capitalism, after all, that has 
brought us to the brink of this daunting affluence, and there is an 
obvious capitalist solution to the problem that the success of cap
italism is creating. It lies in the ownership of the machines and 
the processes that are destroying the old jobs and creating the new 
wealth." Life's proposal is that the ownership be spread-to every
body! Endorsing the analysis set forth in The New Capitalists by 
Mortimer Adler and Louis Kelso, Life would " ... guarantee bank 
loans for new stock acquisitions through a Capital Diffusion Insur-

. ance Corporation modeled on FHA."· 
Let us tarry a moment, here, to contemplate the prospects 

of instant capitalism. The figures indicate that it would be much 
more difficult to achieve Life's worthy purpose by instant capi
talism than by what it calls instant socialism. Consider these 
disparities in the wealth of our citizenry: As is well known, the 
bottom 20% of our population gets only 5% of the national income 
-at the summit of society these percentages are precisely reversed. 
The bottom 20 % thus does poorly enough as income earners. But 
they show up even worse as capitalists: they hold no liquid assets 
whatever, except the cash they may happen to have in their 
jeans. The next 30 % of the population above holds liquid assets 
not exceeding $500 per family. So the bottom 50 % of our society 
holds less than 3 % of our liquid assets. It scarcely need be added 
that these people have no equity or debt interest in the productive 
system of our land; for 87% of the people have rio such stake in 
the system. As for real property, 50 % of our population have an 
equity of less than $1,000 in the homes in which they live. You 
have to go to the top 10% of income earners before you find people 
whose assets begin to equal their annual income; you have to go 
to the top 1 % before you find people whose equity and property 
holdings keep them in the style to which they are accustomed. 
Plainly the proposal that we seek a more equitable distribution of 
affluence through the redistribution of ownership presents a more 
radical alternative than the achievement of that end by the redis
tribution of incomes. 

Life is not alone in its concern with the question of how 
American society might now go about the equitable distribution of 
the abundance that overburdens institutions framed for the oppo
site purpose. That soft-spoken quarterly, The American Scholar, 
the journal of Phi Beta Kappa, devotes most of this quarter's 
pages to a symposium on "the problems that unite us." Out of 
six articles in this symposium, four plainly reflect thoughtful con
sideration of the possibility of guaranteeing incomes to people. 
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I will quote from one author, August Heckscher, a perceptive 
and sensitive student of American life who served the Kennedy 
Administration as the President's special assistant in cultural 
affairs. He begins by saying: "The objections to this approach 
[that is, the guaranteed annual income] are obvious," and declares: 
"The very idea of large populations doing nothing but pleasing 
themselves goes against the American grain." Nonetheless, he 
comes forward with a radical alternative of his own: "Suppose 
the monetary rewards of society went, as now, to those who work 
-and also to those who study. Would this not be a means of 
assuring their being saved from a bored and barren existence?" 

This author then goes on to suggest other ways in which 
the surplus of human capacity might be soaked up: "At the sim
plest level one can readily conceive efforts to organize personal 
or household services more imaginatively so that the work can be 
done more efficiently. Hours can be made regular and wages can 
be more nearly commensurate with those earned in other fields." 
A little later in his analysis, touching on the question of how these 
increased wages to domestics are to be financed, he comes up with 
a truly radical alternative: "The salaries . . . could be supple
mented [from the public treasury] so as to keep the supply 
adequate and yet not put the wage out of reach of those who 
require such services. To supplement in a similar way the rate 
which people are ready to pay handymen or gardeners could sub
stantially cut relief rolls." 

This surely goes beyond either instant socialism or instant 
capitalism; you might call it instant feudalism. In fact the vision 
of instant feudalism comes clearer in this author's next, still "more 
far-reaching" suggestion: "It assumes retirement from the indus
trial work force at a considerably earlier age than now, together 
with pensions and social security which would be clearly conceived 
as 'deferred wages.' ... From such a pool we could draw a host 
of talents and services which would make our common life more 
various, colorful, and pleasant. . . . We can indeed conceive a 
whole second economy-the economy of craftsmanship and service 
-growing up alongside the economy of the machine." 

Probably, this vision could be more swiftly and effectively 
realized in certain of the underdeveloped countries where the econ
omy of craftsmanship still exists and where it is threatened by 
destruction through the infectious spread of the industrial revolu
tion. In America we would have to reconstruct the economy of 
craftsmanship from the ground up. 

Before we start designing Utopias or building the Great 
Society, it seems to me, we ought to turn to a more searching and 
possibly painful re-examination of our inexplicit premises-our 
values. A good way to begin is to ask what we mean by work and 
what we mean by leisure. With these two words we precipitate 
the crisis. The proposal of a guaranteed annual income presses 
the underlying issue in its sharpest and most uncomfortable form. 

The objection to the Heckscher vision of the dual crafts
manship-machine society rests upon its hierarchical character, im
plicit in the compulsion that relates the services of the handyman 
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and the gardener to "us." This defect could, in fact, be cured 
by the guarantee of an annual income, paid as a matter of right 
and not in compensation for services rendered. There would then 
be no reason why the cultures of craftsmanship and machines 
could not flourish side by side in moral parity. And there could 
even be a third culture-of leisure, which would include, I hope, 
dry-fly fishing. 

On the other hand, criticism of the G.A.I. notion from the 
left expresses the dark suspicion that this is a middle class strata
gem to tranquilize the proletariat by putting the poor on the dole. 
Apparently, most people are deeply troubled by the thought of what 
other people might or might not do with their leisure time! 

Except for the attention it has so recently won in public 
discussion, there is nothing very novel or profound about the idea 
of a guaranteed annual income. N or is it so novel in practice. A 
substantial portion of our society is already living not on a guaran
teed and not on a securely annual income but on an income from 
the public treasury. The people get these incomes on the most 
humiliating and degrading terms. They get their dole because 
they present themselves for certification by the appropriate authori
ties as indigents or paupers; or they get their monthly checks from 
Uncle Sam because they take an oath not to go back to work and 
earn more than a stated percentage of their Social Security income. 
In other words, the American society today offers an income with
out work to a large number of its members but makes the offer 
on terms that shame us all. The ugly transactions involved derive 
their ethical justification from the deep unconscious of society
from the institutional memory of the days when the lash drove 
80 % of the population to work in the fields and mines in order 
that the few might get on with the high occupations of making 
history and civilization. The cruelty and inhumanity that persists 
in our system from those days must be extirpated if we are to 
resolve successfully the issues that confront us in the tide of 
abundance set running in America by the present culmination of 
the industrial revolution. 

In my opinion, the issues must be met under two major 
headings. First, we must recognize that economic and social insti
tutions are man-made and so subject to human will. We can't see 
the invisible hand because, in truth, it isn't there! The enormous 
power conferred upon modern societies by industrial technology 
must be brought under the witting and rational control of demo
cratic institutions still to be perfected. 

Second, we must recognize that abundance sets the founda
tions of an entirely new ethical and moral order. The cultural 
deprivation that blights the life of a single child in the racial 
ghettos of our central cities ultimately exacts its cost in the lives 
of every other citizen. The prolongation of the agony of economic 
development threatens to destroy the frail parliamentary insti
tutions of India and bring that poverty-stricken nation into the 
nuclear club under a military dictatorship. 

At this turn in human affairs it is plain that each man's 
well being can increase only to the degree that the well being of 
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all other men is increased. The work of the world still remains 
in large part to be done. But the instruments to accomplish it are 
now in our hands. The work that needs most to be done, especially 
here in America, is :in tasks that enrich society as generously as 
the individuals who undertake them. 
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The presentation of the Harry Goode Memorial A ward to 
Dr. Howard H. Aiken marked the first time the American Federation 
of Information Processing Societies signally honored an outstanding 
contributor to the field of computers and information processing. 
In conjunction with this first presentation, a Silver Medal was 
presented to Mrs. Harry H. Goode in recognition of the late Mr. 
Goode's invaluable contributions to the information processing 
sciences. 

The Medalist 

For more than 25 years Howard H. Aiken has given con
tinuing momentum to the growth of computer technology. As a 
student, he proposed an automatic calculating machine and col
laborated with IBM engineers in the design of Mark I, the first 
large-scale, automatic digital computer, completed in 1944. In the 
following years, Dr. Aiken was instrumental in perfecting com
puters, adapting them to non numerical applications, and in guiding 
students to productive careers in the computer sciences. 

Howard Hathaway Aiken received the S.B. degree in elec
trical engineering from the University of Wisconsin in 1923. From 
1923 to 1932 he was associated with Madison Gas and Electric, 
Westinghouse, and the Line· Material Company, and he studied 
physics at the University of Chicago. He received the S.M. in 
physics in 1937 and the Ph.D. in 1939 from Harvard University. 
In 1941, after two years as instructor in physics, he became an 
associate professor in applied mathematics. 

Following Mark I, Dr. Aike~ built three other machines: 
Mark II, in 1947, largely an electromechanical machine, was oper
able not only as one machine solving one problem but as two 
machines solving two problems simultaneously; Mark III, completed 
in 1950, utilized magnetic tape drives and magnetic drums to store 
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binary-coded decinlal numbers and instructions; :M:ark IV, com
pleted in 1952, relied heavily on solid-state components. It included 
magnetic core storage, selenium rectifiers to perform all arithmetic 
and control functions, index registers, and an encoding device which 
permitted the writing of programs in an algebraic notation quite 
similar to that normally used. 

With the practicality of computers firmly established, Dr. 
Aiken concentrated on establishing sound scientific bases for the 
arts of computing and machine design, investigating nonnumerical 
applications and establishing an educational program in the com
puting field. Dr. Aiken gave his first course in the computer field 
at Harvard University in the academic year 1947-48. Largely 
through his leadership, Harvard became one of the first universities 
to have extensive graduate and undergraduate programs leading 
to degrees in the computer field. 

Dr. Aiken encouraged his students to seek adequate mathe
matical methods for investigating the functional behavior of elec
tronic control circuits and to venture into such fields as control 
systems engineering, data processing, mathematical linguistics, and 
applied discrete mathematics. . 

Dr. Aiken was Director of Harvard University's Computa
tional Laboratory for twelve years. He is presently Professor 
Emeritus of Harvard University and Director of the University 
of Miami's Institute of Informational Science. Dr. Aiken's achieve
ments have received international recognition. He was one of the 
first members of the National Research Council's Committee on 
High-Speed Calculating Machines. He is a Fellow of the American 
Academy of Arts and Sciences, the Association for the Advance
ment of Science, and of the Institute of Radio Engineers, and he is 
a member of the Swedish Ingeniors Vetenskaps Academien. In 
France, he is a Chevalier de la Legion d'Honneur, and in Spain, 
he is a Consejero de Honor del Consejo Superior de Investigaciones 
Cientificas. He received the Testimonial of Eminent Professional 
Services from the University of Wisconsin, his alma mater, and he 
holds an honorary doctorate from Germany's Technische Hoch
schule at Darmstadt. He was awarded Belgium's Officer's Cross of 
the Order of the Crown, the U.S. Navy's Distinguished Public 
Service Award, and the U.S. Air Force's Decoration for Excep
tional Civilian Service. 

The Harry Goode Memorial Award 

Harry H. Goode, born in New York City on July 1, 1909, 
was a pioneer and leader in the field of system engineering. One 
of the first scientists to fully comprehend the powers and abilities 
of computers, he formulated many principles of system engineering 
and developed techniques for the design, analysis and evaluation 
of large-scale systems. He was instrumental in initiating early 
systems projects, including the Typhoon and Whirlwind computers 
at MIT. Among other activities, he participated in the study which 
led to the Bomarc missile, and he conceived and developed the Air 
Defense Integrated System Project. 

In addition to his scientific contributions, Mr. Goode ad-
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vanced the information processing sciences through his teaching 
at the University of Michigan and his many publications on 
statistics, stimulation and modeling, vehicular traffic control, and 
system design. One of his most important achievements was 
coauthoring the first book on Syste1n Engineering which classified 
and regularized systems and their design processes. 

Mr. Goode, statistician, mathematician, electrical and chemi
cal engineer and professor, was a member of the IRE (now IEEE) 
professional group on electronic computers and of the computer 
advisory committee of the Society of Automotive Engineers. As 
chairman of the National Joint Computer Committee, he led this 
group in creating an expanded and strengthened organization, 
AFIPS, to help meet the needs arising from the rapidly growing 
information processing technology. Mr. Goode died in an auto
mobile accident before AFIPS was formally chartered. 

The Harry Goode Memorial A ward has been established in 
recognition and appreciation of Mr. Goode's invaluable contribu
tions to the information processing sciences. Its purposes are to 
encourage further development of the field and to acknowledge and 
honor outstanding contributions to the information processing 
sciences. 

The Scribe Accl'oupi, the famous Egyptian statue in the 
Paris Louvre, inspired the noted European sculptor, Andras Beck, 
in the conception of the Harry Goode Memorial Medal. In the sculp
tor's own words, The Scribe allegorizes man's intellectual effort, 
while the AFIPS emblem symbolizes the machine that aids and 
supports human effort in this field. The arrow is the signature of 
the Hungarian-born sculptor, former Professor of Sculpture at the 
Budapest Academy of Fine Arts, who has resided in France since 
1957. 

The A ward Presentation to Howard Aiken 

E. L. Harder 
Chairman, American Federation of Information Processing 

Societies 

Shortly after the formation of AFIPS from the Joint Com
puter Committee, work started on the creation of an award which 
could be bestowed on the very few individuals who had made the 
greatest contribution to this profession. This award, which now 
exists, and the first presentation of which will be made today, has 
been named the Harry Goode Memorial A ward because of the 
unique part played by the late Harry Goode in the organizing and 
teaching of the computer and system engineering science and 
because of his outstanding leadership in creating this American 
Federation of Information Processing Societies itself. 

Very fittingly, the Committee has selected as the first recipi
ent the one man in the world who earliest, and with great vision 
and foresight and enormous strength of purpose and perseverance, 

" led the way straight to the goal of the computers that we have 
today, This man is Howard Aiken and he is here today, although 
his fame is so great that you might expect he only existed in fairy 
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tales. Also, this is a very special day in that lVlrs. Harry Goode, 
the wife of the man in whose name this medal stands, is here to 
witness this first occasion on which it will be bestowed-on this 
illustrious pioneer of today's computers. 

The nlace that Harry Goode held in the estimation of his 
fellows, his impact on the science of system engineering and of in
formatwn processIng, can hardlY be more forcibly conveyed to you 
than by the fact that his fellows have chosen to engrave, with his 
image, this medal signifying the highest honor that the computer 
societies of America are able to give to any man. 

Now, let me tell you about the man who has been selected. 
As with all legendary characters, you all know something about 
him, but let me put some of the pieces in perspective-something 
which is getting a little easier to do as the years roll on. For now 
we can associate his work not only with an important scientific 
venture but with a great profession and a great industry which he 
played a very leading part in creating. This very association, 
AFIPS, exists for the purpose of exchanging technical information 
upon which the progress of our profession and of our industries 
and scientific institutions depends. It exists for the purposes to 
which Howard Aiken devoted a good part of his life and in which 
he led the way. He set a pattern in visualizing what needed to be 
done and what was possible, in persevering in doing it, and in seeing 
to it, in a very real way, that this technology became available to 
humanity. This he did through organizing the teaching of it in the 
universities and by gathering together groups from all over the 
world at Harvard to work personally with him in the carrying 
through of the Mark I, Mark II, Mark III, and Mark IV programs. 
As you travel the world over today, you encounter leaders in the 
computer profession and in the industries Who got their early start 
through an invitation to come to Harvard and work with Dr. Aiken 
on the development of these machines. This will give you some 
idea of the breadth of the vision and of the force and vigor with 
which it was carried out. 

Dr. Howard Aiken, Professor Emeritus of Harvard Univer
sity, you have been honored by many scientific institutions and by 
nlany countries, including your own. It is now the computer and 
information processing profession itself, which you helped so 
greatly to create, that wishes to do you honor. It is the very great 
privilege of the American Federation of Information Processing 
Societies to bestow upon you, as first recipient, the Harry Goode 
Memorial Award-the citation for which I would now like to read 
in the presence of these several hundred members of this new 
profession-of yoUr' profession. 

The Citation for the award follows: 

To HOWARD HATHAWAY AIKEN 

for his original contribution to the development of 
automatic computers that led to the first large-scale, 
general-purpose, automatic digital computer ever to 
be put into operation; 



1964 HARRY GOODE MEMORIAL A WARD 29 

for his continuous work in the field of digital com
puters as an Engineer; 

and for the knowledge and inspiration imparted to 
many as a Teacher. 

DR. HOWARD AIKEN 

Recipient of the Harry 'Goode Memorial A ward to be made at 
the 1964 Fall Joint Computer Conference in San Francisco. 

The Reply of the Medalist 

Dr. Howard Aiken 

It is difficult for me to convey to you how deeply honored I 
feel at this moment. I would like to say a few words about the 
significance of this event to me. First of all, it is an honor that 
comes to me because of my association in the field which is so dear 
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to each and everyone of us and for which I feel so great an 
affection. Second, it has been a great pleasure to me on this 
occasion to find so many of my friends, former associates, and 
colleagues here and have the opportunity to see them and think of 
old times again. There is, however, still another reason on which 
I wish to spend a few more words. 

Years ago, when the old Air Materiel Command of the 
United States Air Force first discovered the fact that computers 
might be useful in the area of logistics, they called in a number of 
consultants to assist in programming and choosing machines, debat
ing the various techniques which were to be employed and applying 
computational equipment in the supply end of our Air Force. At 
that time, I was a consultant to the United States Air Force and 
spent a great deal of time-perhaps I should say too much time
traveling back and forth from Cambridge up to Dayton to the 
Wright-Patterson Air Force Base. It was, however, a period which 
is very pleasant in my life, and it was at this time that I was 
associated with Harry Goode who was also an associate consultant 
of the Air Force in this problem of making early applications 
of machines to logistic problems. It was here that I met Harry, 
worked with him, came to respect him, his judgment, and his 
influence on the problems in which we were both concerned. It is, 
therefore, especially gratifying to me that the award which I have 
just received bears his name. Thank you. 

Presentation of a Replica Medal to Mrs. Harry Goode 

Isaac L. Auerbach 
Chairman, Harry Goode Award Committee 

The Harry Goode Memorial A ward is the highest recognition 
that can be given to anyone within the computer field. It is an 
award given by the profession itself to one of its own contributors 
for outstanding accomplishments. By our very nature, as scientists 
and engineers, we tend to depreciate our achievements that benefit 
society and mankind. Following the rules for scientific behavior, 
we tend to strip the products of our efforts of all glamour in our 
constant search for the ultimate. Therefore, an award by this 
hypercritical, intensely analytical profession to one of its own 
members is of great significance. There has been no profession 
that has influenced civilization's forward movement more than that 
of science and engineering, and, within our lifetime, the advent of 
the computer is the single most important technical development, 
one that will invade every aspect of our lives. It is, therefore, 
timely that AFIPS, the foremost national society of societies, 
recognize the oustanding contributions made by our colleagues. 

Credit should be given to two men who did most within 
AFIPS in the preparatory work that led up to this award: Mr. 
Claude R. Kagan, first Chairman of the AFIPS A ward Committee, 
and Samuel Levine, present Chairman of the Committee. It was 
under their guidance that the medal itself was prepared, through 
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the assistance of Mortan Astrahan, and they are responsible for 
the folders that are at your seats. 

The Harry Goode Memorial A ward is a tribute to the mem
ory of a man of rare versatility, talent, vigor and vision. He was 
a "regular guy," never elevating himself above his peers or flaunt
ing his accomplishment. He was always concerned about the 
feelings of his associates and went out of his way to recognize and 
promote the contributions and suggestions· of his co-workers.· AH 
a professor at the University of Michigan, he was respected and 
revered by his students, and his advice was constantly sought by 
his colleagues at the University. His contributions to systems 
engineering through his writings and teachings are well known; 
he was the senior author of the first book on systems engineering. 
His participation in many vital defense and government projects 
provided the springboard to some of the most forward thinking 
of those projects. He was frequently consulted by the largest 
corporations in the United States. His leadership provided thp. 
guiding spirit that brought AFIPS into existence, and his example 
has provided the encouragement necessary to accomplish its fulfill
ment and growth. 

This award, named in honor of the man who forged the 
framework of AFIPS, is to recognize outstanding contributions to 
the field of information sciences. The beneficial impact of informa
tion sciences on .mankind will be greater than any other techno
logical development in this half-century. 

It is therefore fitting and proper that this silver replica of 
the Harry Goode Memorial Award, just given to one of the world's 
foremost computer scientists, be presented to Mrs. Harry Goode, 
the worthy partner of this man we all loved so much. Elsie pro
vided the enthusiastic support and encouragement which made her 
husband's achievements possible. She accepted without complaint 
the many sacrifices necessitated by his dedication to his profession 
because she was aware of the importance of his contributions. We 
are indeed happy to honor her today. 

\ Harry Goode Memorial Award Committee 

Isaac L. Auerbach, ChaiT'man 
Samuel N. Alexander John C. McPherson 
Alston Householder Jerre D. Noe 
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PARALLEL OPERATION IN THE CONTROL DATA 6600 
James E. Thornton 

Control Data Corporation 
Minneapolis, Minnesota 

HISTORY 

About four years ago, in the summer of 
1960, Control Data began a project which cul
minated last month in the delivery of the first 
6600 Computer. In 1960 it was apparent that 
brute force circuit performance and parallel 
operation were the two main approaches to 
any advanced computer. 

This paper presents some of the consid
erations having to do with the parallel opera
tions in the 6600. A most important and 
fortunate event coincided with the beginning 
of the 6600 project. This was the appearance 
of the high-speed silicon transistor, which 
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survived early difficulties to become the basis 
for a nice jump in circuit performance. 

SYSTEM ORGANIZATION 

The computing system envisioned in that 
project, and now called the 6600, paid special 
attention to two kinds of use, the very large 
scientific problem and the time sharing of 
smaller problems. For the large problem, a 
high-speed floating point central processor with 
access to a large central memory was obvious. 
Not so obvious, but important to the 6600 
system idea, was the isolation of this central 
arithmetic from any peripheral activity. 
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Figure 1. Control Data 6600. 
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It was from this general line of reasoning 
that the idea Of a multiplicity of peripheral 
processors was formed (FIg. 1). Ten such 
peripheral processors have access to the central 
memory on one side and the peripheral channels 
on the other. The executive control of the 
system is always in one of these peripheral 
processors, with the others operating on as
signed peripheral or control tasks. All ten 
processors have access to twelve input-output 
channels and may "change hands," monitor 
channel activity, and perform other related 
jobs. These processors have access to central 
memory, and may pursue independent transfers 
to and from this memory. 

Each of the ten peripheral processors 
contains its own memory for program and 
buffer areas, thereby isolating and protecting 
the more critical system control operations in 
the separate processors. The central processor 
operates from the central memory with relocat
ing register and file protection for each program 
in central memory. 

PERIPHERAL AND CONTROL PROCESSORS 

The peripheral and control processors 
are housed in one chassis of the main frame. 
Each processor contains 4096 memory words / 
of 12 bits length. There are 12- and 24-bit 
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instruction formats to provide for direct, in
direct, and relative addressing. Instructions 
provide logical, addition, subtraction, shift, and 
conditional branching. Instructions also pro
vide single word or block transfers to and from 
any of twelve peripheral channels, and single 
word or block transfers to and from central 
memory. Central memory words of 60 bits 
length are assembled from five consecutive 
peripheral words. Each processor has instruc
tions to interrupt the central processor and to 
monitor the central program address. 

To get this much processing power with 
reasonable economy and space, a time-sharing 
design was adopted (Fig. 2). This design 
contains a register "barrel" around which is 
moving the dynamic information for all ten 
processors. Such things as program address, 
accumulator contents, and other pieces of in
formation totalling 52 bits are shifted around 
the barrel. Each complete trip around requires 
one major cycle or one thousand nanoseconds. 
A "slot" in the barrel contains adders, assembly 
networks, distribution network, and intercon
nections to perform one step of any peripheral 
instruction. The time, to perform this step or, 
in other words, the time through the slot, is 
one minor cycle o:!'" one hundred nanoseconds. 
Each of the ten processors, therefore, is allowed 
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Figure 2. 6600 Peripheral and Control Processors. 
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one minor cycle of every ten to perform one of 
its steps. A peripheral instruction may require 
one or more of these steps, depending on the 
kind of instruction. 

In effect, the single arithmetic and the 
single' distribution and assembly network are 
made to appear as ten. Only the memories are 
kept truly independent. Incidentally, the 
memory read-write cycle time is equal to one 
complete trip around the barrel, or one thousand 
nanoseconds. 

Input-output channels are bi-directional, 
12-bit paths. One 12-bit word may move in 
one direction every major cycle, or 1000 nano
seconds, on each channel. Therefore, a maxi
mum burst rate of 120 million bits per second 
is possible using all ten peripheral processors. 
A sustained rate of about 50 million bits per 
second can be maintained in a practical operat
ing system. Each channel may service several 
peripheral devices and may interface to other 
systems, such as satellite computers. 

Peripheral and control processors access 
central memory through an assembly network 
and a dis-assembly network. Since five periph
eral memory references are required to make 
up one central memory word, a natural assem
bly network of five levels is used. This allows 
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five references to be "nested" in each network 
during any major cycle. The central memory 
is organized in independent banks with the abil
ity to transfer central words every minor cycle. 
The peripheral processors, therefore, introduce 
at most about 2 % interference at the central 
memory address control. 

A. single real time clock, continuously 
running, is available to all peripheral proces
sors. 

CENTRAL PROCESSOR 

The 6600 central processor may be con
sidered the high-speed arithmetic unit of the 
system (Fig. 3). Its program, operands, and 
results are held in the central memory. It has 
no connection to the peripheral processors ex
cept through memory and except for two single 
controls. These are the exchange jump, which 
starts or interrupts the central processor from 
a peripheral processor, and the central program 
address which can be monitored by a peripheral 
processor. 

A key description of the 6600 central 
processor, as you will see in later discussion, is 
"parallel by function." This means that a num
ber of arithmetic functions may be performed 

CENTRAL PROCESSOR 

24 
OPERATING 
REGISTERS 

Figure 3. Block Diagram of 6600. 
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concurrently. To this end, there are ten func
tional units within the central processor. These 
are the two increment units, floating add unit, 
fixed add unit, shift unit, two multiply units, 
divide unit, boolean unit, and branch unit. In 
a general way, each of these units is a three 
address unit. As an example, the floating add 
unit obtains two 60-bit operands from the cen
tral registers and produces a 60-bit result which 
is returned to a register. Information to and 
from these units is held in the central registers, 
of which there are twenty-four. Eight of these 
are considered index registers, are of 18 bits 
length, and one of which always contains zero. 
Eight are considered address registers, are of 
18 bits length, and serve to address the five read 
central memory trunks and the two store cen
tral memory trunks. Eight are considered float
ing point registers, are of 60 bits length, and 
are the only central registers to access central 
memory during a central prograrn. 

In a sense, just as the whole central proc
essor is hidden behind central memory from 
the peripheral processors, so, too, the ten func
tional units are hidden behind the central regis
ters from central memory. As a consequence, 
a considerable instruction efficiency is obtained 
and an interesting form of concurrency is feasi
ble and practical. The fact that a small number 
of bits can give meaningful definition to any 
function makes it possible to develop forms of 
operand and unit reservations needed for a 
general scheme of concurrent arithmetic. 

Instructions are organized in two for
mats, a 15-bit format and a 30-bit format, and 
may be mixed in an instruction word (Fig. 4). 
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Figure 4. 15-Bit Instruction Format 
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As an example,· a 15-bit instruction may call 
for an ADD, designated by the f and m octal 
digits, from registers designated by the j and k 
octal digits, the result going to the register 
designated by the i octal digit. In this example, 
the addresses of the three-address, floating add 
unit are only three bits in length, each address 
referring to one of the eight floating point regis
ters. The 30-bit format follows this same form 
but substitutes for the k octal digit an 18-bit 
constant K which serves as one of the input 
operands. These two formats provide a highly 
efficient control of concurrent operations. 

As a background, consider the essential 
difference between a general purpose device and 
a special device in which high speeds are re
quired. The designer of the special device can 
generally improve on the traditional general 
purpose device by introducing some form of 
concurrency. For example, some activities of 
a housekeeping nature may be performed sepa
rate from the main sequence of operations in 
separate hardware. The to,tal time to complete 
a job is then optimized to the main sequence 
and excludes the housekeeping. The two cate
gories operate concurrently. 

It would be, of course, most attractive to 
provide in a general purpose device some gen
eralized scheme to do the same kind of thing. 
The organization of the 6600 central processor 
provides just this kind of scheme. With a multi
plicity of functional units, and of operand reg
isters and with a simple and highly efficient 
addressing system, a generalized queue and res
ervation scheme is practical. This is called the 
scoreboard. 

The scoreboard maintains a running file 
of each central register, of each functional unit, 
and of each of the three operand trunks to and 
from each unit. Typically, the scoreboard file 
is made up of two-, three-, and four-bit quan
tities identifying the nature of register and 
unit usage. As each new instruction is brought 
up, the conditions at the instant of issuance are 
set into the scoreboard. A snapshot i~ taken, 
so to speak, of the pertinent conditions. If no 
waiting is required, the execution of the instruc
tion is begun immediately under control of the 
unit itself. If waiting is required (for example, 
an input operand may not yet be available in 
the central registers), the scoreboard controls 
the delay, and when released, allows the unit to 
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begin its execution. Most important, this activ
ity -is accomplished in the scoreboard and the 
functional unit, and does not necessarily limit 
later instructions from being brought up and 
issued. 

In this manner, it is possible to issue a 
series of instructions, some related, some not, 
until no functional units are left free or until 
a specific register is to be assigned more than 
one result. With just those two restrictions 
on issuing (unit free and no double result), 
several independent chains of instructions may 
proceed concurrently. Instructions may issue 
every minor cycle in the absence of the two 
restraints. The instruction executions, in com
parison, range from three minor cycles for fixed 
add, 10 minor cycles for floating multiply, to 
29 minor cycles for floating divide. 

To provide a relatively continuous source 
of instructions, one buffer register of 60 bits is 
located at the bottom of an instruction stack 
capable of holding 32 instructions (Fig. 5). 
Instruction words from memory enter the bot
tom register of the stack pushing up the old 
instruction words. In straight line programs, 
only the bottom two registers are in use, the 
bottom being refilled as quickly as memory con
flicts allow. In programs which branch back 
to an instruction in the upper stack registers, 
no refills are allowed after the branch, thereby 
holding the program loop completely in the 
stack. As a result, memory access or memory 
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conflicts are no longer involved, and a consider
able speed increase can be had. 

Five memory trunks are provided from 
memory into the central processor to five of the 
floating point registers (Fig. 6). One address 
register is assigned to each trunk (and there
fore to the floating point register). Any in
struction calling for address reg-ister result 
implicitly initiates a memory reference on that 
trunk. These instructions are handled through 
the scoreboard and therefore tend to overlap 
memory access with arithmetic. For example, 
a new memory word to be loaded in a floating 
point register can be brought in from memory 
but may not enter the register until all previous 
uses of that register are completed. The central 
registers, therefore, provide all of the data to 
the ten functional units, and receive all of the 
unit results. No storage is maintained in any 
unit. 

Central memory is organized in 32 banks 
of 4096 words. Consecutive addresses call for a 
different bank; therefore, adjacent addresses in 
one bank are in reality separated by 32. Ad
dresses may be issued every 100 nanoseconds. 
A typical central memory information transfer 
rate is about 250 million bits per second. 

As mentioned before, the functional units 
are hidden behind the registers. Although the 
units might appear to increase hardware dupli
cation, a pleasant fact emerges from this design. 
Each unit may be trimmed to perform its func-
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Figure 5. 6600 Instruction Stack Operation. 
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tion without regard to others. Speed increases 
are had from this simplified design. 

As an example of special functional unit 
design, the floating multiply accomplishes the 
coefficient multiplication in nine minor cycles 
plus one minor cycle to put away the result for 
a total of 10 minor cycles, or 1000 nanoseconds. 
The multiply uses layers of carry save adders 
grouped in two halves. Each half concurrently 
forms a partial product, and the two partial 
products finally merge while the long carries 
propagate. Although this is a fairly large com
plex of circuits, the resulting device was suffi
ciently smaller than originally planned to allow 
two multiply units to be included in the final 
design. 

To sum up the characteristics of the 
central processor, remember that the broad
brush description is "concurrent operation." 
In other words, any program operating within 
the central processor utilizes some of the avail-

able concurrency. The program need not be 
written in a particular way, although certainly 
some optimization can be done. The specific 
method of accomplishing this concurrency in
volves issuing as many instructions as possible' 
while handling most of the conflicts during 
execution. Some of the essential requirements 
for such a scheme include: 

1. Many functional units 
2. Units with three address properties 
3. Many transient registers with many 

trunks to and from the units 
4. A simple and efficient instruction set 

CONSTRUCTION 

Circuits in the 6600 computing system 
use all-transistor logic (Fig. 7). The silicon 
transistor operates in saturation when switched 
"on" and averages about five nanoseconds of 
stage delay. Logic' circuits are constructed in 
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Figure 7. 6600 Printed Circuit Module. 

a cordwood plug-in module of about 21/2 inches 
by 2112 inches by 0.8 inch. An average of about 
50 transistors are contained in these modules. 

Memory circuits are constructed in a 
plug-in module of about six inches by six inches 
by 2112 inches (Fig. 8). Each memory module 
contains a coincident current memory of 4096 
12-bit words. All read-write drive circuits and 

Figure 8. 6600 Memory Module. 

bit drive circuits plus address translation are 
contained in the module. One such module is 
used for each peripheral processor, and five 
modules make up one bank of central memory. 

Logic modu12s and memory modules are 
held in upright hinged chassis in an X shaped 
cabinet (Fig. 9). Interconnections between 
modules on the chassis are made with twisted 
pair transmission lines. Interconnections be
tween chassis are made with coaxial cables. 

Both maintenance and operation are ac
complished at a programmed display console 
(Fig. 10). More than one of these consoles may 
be included in a system if desired. Dead start 
facilities bring the ten peripheral processors to 
a condition which allows information to enter 
from any chosen peripheral device. Such loads 
normally bring in an operating system which 
provides a highly sophisticated capability for 
multiple users, maintenance, and so on. 

The 6600 Computer has taken advantage 
of certain technology advances, but more par
ticularly, logic organization advances which now 
appear to be quite successful. Control Data 
is exploring advances in technology upward 
within the same compatible structure, and iden
tical technology downward, also within the 
same compatible structure. 
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Figure 9. 6600 Main Frame Section. 

Figure 10. 6600 Display Console. 



AN OPERATING SYSTEM AND PROGRAMMING SYSTEMS 
FOR THE 6600 

B. B. Clayton, E. K. Dorff, and R. E. Fagen 
Control Data Corporation 
Minneapolis, Minnesota 

1. INTRODUCTION 

As has been seen from the discussion of 
the 6600 organization, the hardware design 
leaves a flexible arrangement, and communi
cation between the 10 peripheral processors 
(PP's) with the 12 I/O channels and with 
central memory has few built-in hardware re
strictions. Similarly, the rules for the central 
processor (CP) are also simple but relatively 
unrestricted, with the CP operation and com-
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OPERA TOR OVERRIDE 

ADD-DElETI' JOBS, 
CHANGE PRIORITY, 

STATUS REQUEST, 
ETC. 

DISPLAY INFORMATION 

munication with central memory subject to 
control of any of the 10 PP's at any time. 
Thus a complete discussion of operation of the 
6600 system is possible only in the context of 
an operating system. There are many ways in 
which an operating system may be organized; 
each different way leads in effect to a different 
overall system when considered in the light of 
the processing of a given work load or problem 
mix. 

This paper describes SIPROS, Control 
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Data Corporation's standard operating system 
for the 6600. Since a complete description 
would fill a number of detailed manuals, this 
discussion is limited to a broad outline of those 
features that influenced the design of the system 
from various points of view. These viewpoints 
are loosely categorized as "what the 6600 hard
ware sees," "what the programmer sees," "what 
the using installation and operator sees," and 
"what a job (or sequence of jobs) sees." While 
these four points of view are interrelated, a 
clear picture of the total system is best pre
sented as though these are four different topics, 
and this description of SIPROS, is organized in 
that order. 

Control Data's standard programming 
system is a single package under SIPROS con
trol consisting of a FORTRAN 66 compiler, 
ASCENT (assembly system for the CP), AS
PER (assembly system for the PP's) and a 
library system of mathematical, utility, and I/O 

POOL PP RESIDENTS 
PICK UP I/O REQUESTS 
LOAD JOBS 
REPORT COMPLETION 

JOB AREA 
PROGRAM ASSEMBLY 
PROGRAM COMPILATION 
PROGRAM EXECUTION 

CM RESIDENT 
COMMUNICATES WITH SYSTEM 
INTERPRETS MACROS 

CONTROL INFORMATION 
RUNNING TIME 
PRIORITY 
EQUIPMENT REQUIREMENTS 

SYSTEM ROUTINES 
BATCH LOADER 
JOB LOADER 
EXECUTIVE OVERLAYS 
RESIDENT OVERLAYS 
PP PACKAGES 

PROGRAMMER SCRATCH AREA 
WORK AREA 

JOB STACK 
JOBS TO BE ASSEMBLED 
JOBS TO BE COMPILED 
JOBS TO BE EXECUTED 

OUTPUT BUFFERS 
PRINT DATA 
PUNCH DATA 

SYSTEM ROUTINES 
ALL ROUTINES 

routines used by all of the systems. A brief 
description of these packages is also included. 
Figure 1 gives a block diagram of the relation
ship of the parts of SIPROS and the program
ming systems. 

Finally, a short discussion of system 
speed and throughput, and a typical example 
is given. These are intended more as an indi
cation of what must be considered in compiling 
or measuring these quantities than as definite 
answers in themselves. The use of super com
puter systems and "multiple processing" are 
now about to pass from paper to hardware; 
existence of running standard hardware in 
actual operational environments will provide 
the necessary "laboratories" in which quantities 
such as throughput can be empirically deter
mined. This in itself will soon lead to more 
meaningful criteria and "problem mixes" than 
now exist for measuring and evaluating super 
computer systems. 
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Figure 2. 
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2. SIPROS-OPERATING SYSTEM FOR 
THE 6600 

Control Data's objectives in its standard 
operating system (SIPROS) have been to pro
vide an efficient and yet widely applicable oper
ating system. In order to do this, and still 
provide the possibility for individual installa
tions to add to and tailor the system to their 
unique problem mixes, considerable attention 
has been given to making the system open
ended, and to leaving as parameters as many of 
the system "trade-offs" as possible. To describe 
these, we have chosen to present the system 
from several points of view. 

From the Hardware Point of View 
During operation, parts of SIPROS ac

tually reside in different portions of the 6600 
system. Figure 2 illustrates where some of these 
parts are normally located and what their func
tions are. The executive and monitoring role 
of SIPROS is actually contained in one of the 
PP's. It is responsible for the control and man
agement of all the other parts of the system, 
including allocation of central memory, tasks 
assigned to the other peripheral processors, and 
allocation of and communication with peripheral 
equipment in the system. It should be under
stood at the outset that the 10 peripheral and 
control processors play exactly that role during 
normal operations; that is to say, although they 
appear to the programmer as independent com
puters in their own right, their normal assign
ments are for control of the system and for 
I/O buffering and processing. Exceptions can 
be made to this, however, in that any of the 
peripheral processors and peripheral equipment 
can actually be removed from direct control 
of SIPROS and assigned to individual jobs. 
Thus, if desired, the peripheral processors can 
share portions of the computational load, and 
this is an easily obtainable programmer's op
tion. However, it is not intended as the normal 
mode to be described here. 

The PP running the system performs 
all of the executive and monitoring functions. 
It watches the status of the job currently in 
execution in central memory and every 200 f1- sec 
checks for changes in status. In addition, it 
keeps track of the status of central memory, 
all the jobs currently in central memory or 'in 
the job stack on the disk, and of the status and 

availability of the other peripheral processors 
and peripheral equipment. When specific sys
tem or I/O operations must be performed such 
as job loading, reading or writing of the disk, 
input or output from the tapes or card equip
ment, etc., it directs one or more of the periph
eral processors to perform this operation and 
re-assumes control of the PP so assigned once 
the task is complete. 

Typical of the tasks performed by the 
peripheral processors are the following: 

1. disk executive and console display driver 
2. card reader to disk 
3. job loader 
4. disk to printer 
5. disk to tape, tape to disk 
6. disk to printer, punch 
7. card to tape, tape to card 

Although any of the PP's may be as
signed to any of the tasks described, normal 
practice is for the executive to watch the work 
load by category of operation and keep individ
ual PP's on the same type of task as long as 
possible to avoid loading and unloading of the 
necessary PP routines. For example, a tape 
handling package may be loaded in an individual 
PP and this PP kept on tape handling tasks for 
some time. Should the number of demands for 
tape operation increase, several PP's may be 
semi-permanently allocated to this task. A very 
important feature of the system is the use of 
the disk which, in normal operation, will be kept 
busy almost all the time. To optimize use of 
the disk, a disk handling system consisting of 
routines for a PP disk executive and two disk 
slaves will normally be loaded into three PP's. 
Finally, such functions as card reading and job 
loading and driving the printer or printers from 
the disk may also be semi-permanently loaded 
in appropriate PP's. The point to remember, 
however, is that these assignments are flexible 
and may be altered dynamically by the system 
as fluctuations in the types of demands occur. 

The disk is used for different functions 
as shown in Fig. 3a. These are: 

1. storage of the library and programming 
systems 

2. buffer area for all output to printer, etc. 
3. scratch area for programmer and system 

use 
4. storage of the job stack 
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Considerable attention has been paid to 
optimizing the use of the disk. A disk executive 
routine, permanently assigned to the same PP 
used for the console display driving package, 
serves to process all requests involving reading 
or writing the disk. Two disk "slave" PP's 
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under control of the disk executive PP then take 
turns, in cooperative communication with each 
other, in writing (or reading) information out 
consecutive sectors of the disk and reading (or 
writing) information into central memory. Also, 
records are organized on the disk in a pre-
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Figure 3a. 
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VARIABLE LENGTH LOGICAL RECORDS ARE BROKEN 
DOWN INTO PHYSICAL RECORDS 

PHYSICAL RECORDS FOR EACH LOGICAL RECORD 
ARE WRITTEN ON BOTH DISKS 

PHYSICAL RECORDS FOR THE FOUR DIFFERENT 
AREAS ARE INTERMIXED ON DISK 

l!'igure 3b. 

scribed manner, and a set of record tables and 
chaining information is stored in directory form 
in central memory and also in certain disk posi
tions. The disk executive uses these tables to 

minimize arm repositioning, and "look ahead" 
through the request lists to allow as much infor
mation, per revolution, to be transferred as pos
sible. The disk executive is written in such a 

, way as to allow for a second disk and automati
cally increase efficiency by overlapping arm 
repositioning and reading of tables from one 
disk with I/O operations on the other. A more 
detailed description of these operations is be
yond the scope of this paper. Figures 3a and 3b 
illustrate the type of organization of physical 
records used. 

In normal operation the system main
tains control of and assigns appropriate periph
eral equipment as required. In addition, it 
notifies the operator of special requests such 
as mounting or dismounting of tapes and assign
ment of physical units to jobs. The system is 
written in a parametric form so that the number, 
of peripheral items is unimportant so long as 
certain minimum requirements are met. For 
example, one disk is necessary, but no assump
tion is needed on the nurnber of tapes present. 
(A minimum of one tape' unit is assumed for 
disk I/O overflow.) Having two disks requires 
no system change, but results in a throughput 
gain. The system can run equally well on the 
131K or 65K central memory versions of the 
6600. Certain nominal values assumed by the 
system are actually parameters left to the dis
cretion of the using installation. For example, 
the allocation of disk space to the four types of 
data mentioned is a parameter. The nominal 
choice of 512 central memory words for disk 
physical records and the size of I/O buffers 
attached to individual jobs in central memory 
is another parameter, as is the amount of space 
in central memory reserved for system tables 
and other status information used by the sys
tem. 

From Programmer's Point of View 

Problem Programming. While the 6600 is a 
multi-processing computer system, the intention 
in the design of SIPROS and the programming 
systems is to make the machine appear to the 
programmer as a traditional serial' machine. 
Normally a programmer who is programming 
in either ASCENT (central processor assembly 
language) or FORTRAN is completely unaware 
of the fact that there are peripheral processors 
performing his I/O, and he does not explicitly 
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program them; neither is he aware of the spe
cific use of disks or tapes in his scratch work, 
and he requests scratch operations in terms of 
macros defining logical records and logical tape 
units. Programming of I/O operations is done 

through system macros which are handled by 
the operating system and these, of course, call 
the appropriate peripheral processor routines 
into play and are of no concern to the program
mer. Similarly, checking channel status and 
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peripheral equipment status is done through the 
use of system macros. 

While a great number of other programs 
will occupy the 6600 system during the execu
tion of a programmer's problem, his own pro
gramming is never concerned with this nor 
the possible interference with or from other 
programs. The system automatically takes care 
of questions of scheduling, loading, allocation 
of memory space and peripheral equipment, 
relocation of programs within central memory, 
and of protection of the various parts of the 
program from conflicts with other programs. 
This is done through operating system use of 
such features as the exchange jump package 
and field length restrictions on central memory 
references. 

The programmer is also presented with 

CASE A, JOB COMPILATION 

CASE C, JOB EXECUTION (NO OPTIONAL CARDS) 

a very simple control card format. Although he 
can specify a large number of conditions, esti
mates, and options for his own convenience (as 
shown in Fig. 4a), he is actually required to 
provide only a job identification card and an 
end-of-job card. The other features he can call 
for are of convenience either to himself (for 
debugging or diagnostic procedures) or for 
system convenience (such as level of priority, 
estimates of memory required, estimates of 
peripheral equipment requirements, etc.), but 
are not required. A simple system for control 
card provision for program segmentation is also 
provided. Figures 4a and 4b summarize the 
various possibilities for job deck organization. 

Special Systems Programming. In program
ming certain jobs, it is necessary to write pro-

CASE B, JOB COMPILATION AND EXECUTION 

CASE D, JOB EXECUTION (OPTIONAL CONTROL CARDS) 

Figure 4b. 
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grams using peripheral processors in conj unc
tion with the central processor. Examples are: 

• real time programming, where on-line 
I/O must be handled. 

• additions to the operating system due to 
novel peripheral additions (multiple re
mote consoles, new peripherals, etc.). 

• programs where timing restrictions 
cause direct coordination between CP ex
ecution and I/O from a peripheral device. 

SIPROS permits such special program-
ming by allowing a programmer's job to consist 
of a mixture of central processor and peripheral 
processor routines. In addition, assembly lan
guages for both machines are provided as one 
package. The programmer organizes his deck 
into CP routines (ASCENT) and PP routines 
(ASPER) through appropriate control cards. 
In assembly, the programming system creates 
the necessary communication links between 
these (since the programmer can use cross
referenced symbols and COMMON areas be
tween the programs) and the SIPROS loader 
will automatically take care of loading the object 
program into allocated central memory space, 
and allocated PP's. The PP's allocated are re
moved from normal SIPROS control, and "be
long" to the job during execution. The "job" 
itself remains under SIPROS control, and the 
monitor watches its status and treats the entire 
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SYSTEM REQUIREMENTS 

OTHER PROGRAMS 

job as any other in the system. In this way, 
SIPROS is "open-ended," and a programmer 
using ASPER programs can actually be "ad
ding" to the system. In many cases, this 
amounts to no more than writing a trivial con
trol or driver routine for the PP with respect 
to a peripheral or I/O device. The mechanislll 
for writing programs in ASPER is similar to 
that for writing ASCENT routines and, except 
for the cross-referencing of symbols, a program
mer is in effect writing traditional programs 
for two separate and traditional machines, and 
the usual programmer and system macros are 
provided in both systems. Figure 5 shows the 
steps involved in real-time job multi-processing. 

From the Operational Point of View 

Oper-ator. During norrrtal operation, the opera
tor communicates with the system through his 
console with keyboard and two CRT's. SIPROS 
(through the PP display driver) provides status 
information on the flow of jobs through the 
system, and also gives certain n1essages con
cerning necessary operator actions, The opera
tor is provided considerable override capability 
in that he can introduce or delete jobs, change 
their priorities, cause equipment reservation, or 
interrogate the system for status information 
not routinely provided. 

The operating system also runs at inter
vals or as an idle routine a high-level diagnostic 
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check of the hardware operation, and reports 
results to the operator; the operator can call 
this job at any time. Features allowing him to 
examine selected portions of memory are also 
included. Figures 6a and 6b give diagrams of 
typical communications. Since most status infor
mation is dynamic, the system keeps a perma-

nent record of job history, which the operator 
can call at any time. 
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Installation. A thorough set of use information, 
broken down by job, is provided for each of 
the parts of the 6600 system used by the job, 
including maximum central memory use, CP 
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elapsed time, and time of peripheral equipment 
usage. 

From installation to installation, the 
actual mix of work or job load will vary con
siderably as could the system throughput. To 
facilitate adjustment, SIPROS allows certain 
of its parameters to be changed by the installa
tion. These parameters relate mostly to the 
trade-offs between time and memory space. 
Figure 7 gives a list of these options and param
eters. 

Another important installation choice is 
the use and regulation of the priority 3ystem. 
This is of particular importance in a multi
input system, where jobs entering the system 
could come in off-line, on-line, or from a number 
of sources with varying priority requirements. 
To provide each installation with a wide range 
of choice, keep the priorities simple, and still 
avoid certain bottlenecks and logical "lockouts" 
possible in any queuing system, SIPROS pro-

vides a priority system which itself is paramet
ric, and which is divided into three distinct 
priority "classes." The first class has a number 
of priority levels; one of these is fixed with the 
job, is part of its loading criteria, and does not 
change so long as the job is in the system. The 
second or intermediate class has an equal num
ber of priority levels. However, these are fur
ther partitioned by the system internally once 
the job enters the system, and the levels are 
increased incrementally at time intervals. The 
time interval is an installation parameter. 
Finally, there is a third class of priority which 
consists of a single priority level higher than 
any possible in the other two classes. This pri
ority is included to handle the case of a job with 
real time requirements; when a job of this pri
ority is in execution, no other job can gain 
central processor control through internal build
up of its own initial priority. Figures 8a, 8b, and 
8c show the relationship between these 'classes. 

LIST OF INSTALLATION PARAMETERS 

1. CENTRAL MEMORY 

A. MEMORY SIZE 131 OR 65K 
B. TOTAL SYSTEM REQUIREMENTS 
C. I/O BUFFER SIZE (512 CM WORD MINIMUM) 
D. SPACE ALLOTTED TO SYSTEM ROUTINES 
E. SPACE ALLOTTED TO TRIAL LOAD OF JOB IF MEMORY ESTIMATE NOT 

SPECIFIED 
F. SIZE OF JOB TABLE AREA 

2. DISK 

A. SPACE ALLOTTED TO LIBRARY FUNCTIONS 
B. SPACE ALLOTTED TO OUTPUT AREA 
C. SPACE ALLOTTED TO JOB STACK 
D. SPACE ALLOTTED TO PROGRAMMER "SCRATCH" AREA 

3. PROGRAMMING SYSTEM 

A. SYMBOL TABLE SIZE 
B. TEMPORARY STORAGE REGION 
C. PROGRAMMER MACRO STORAGE 

4. OPERATION 

A. INSTALLATION PRIORITY STANDARD 
B. CENTRAL PROCESSOR EXECUTION TIME LIMIT 
C. PRINT OUTPUT LIMIT. JOB EXCEEDING THIS LIMIT WILL HAVE ALL PRINT 

OUTPUT ON TAPE 
D. PROGRAMMER DISPLAY TIME LIMIT 
E. SYSTEM BALANCE PARAMETERS. TAILORS PP USAGE TO INSTALLATION 

NEEDS. 

Figure 7. 
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PRIORITY STRUCTURE 
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3. TWO TYPES OF PRIORITIES CAN 
BE SPECIFIED: 

A. Changing - Priority Incremented 
Periodically (Installation 
Parameter) 

B. Unchanging - No Incrementing 

LEVEL 3 
U 
N 

[ 
C 

LEVEL 2 H 
A 
N 

LEVEL I G 
I 

LEVEL 0 N 
G 

2. FINER BREAKDOWN WITHIN EACH 
LEVEL IS PROVIDED -

LEVel 3 
512 SUBLEVelS 

4. FOR CHANGING TYPE ONLY 
INSTALLATION PARAMET'ERSPECIFIES: 

A. Incrementing to Top of level 

~ 
B. Incrementing Across levels 

(But Not inta L"vel 3) 

LEVEL 3 

~ f 
LEVEL 2 

. LEVEL I 

~ 

LEVEL 0 

ACROSS WITHIN 
LEVELS LEVE.L 

Figure 8a. 

Installations are free to use any or all 
three classes of priority, and as many of the 
levels within each class as they choose. Each 
of the classes, and the idea of incrementing 
priorities, was included to allow solution to cer
tain possible problems. The second class guar
antees that a job in the job stack will eventually 
get loaded into central memory and once there 
will eventually get executed. Thus a top level 
priority job with all computation and no I/O 
could not prevent lower priority jobs with little 
computation but considerable I/O to get into 
execution and thereby to contribute to overall 
system utilization. Existence of the lowest class 
allows entry of low priority jobs that at worst 
occupy disk space, but where there is genuinely 
no concern over when they get run. Finally, 
as mentioned, the "real-time" class allows a 
real-time requirement to fit with other high 
priority but non-real time jobs in the system. 
Figures 8a, 8b, and 8c show in more detail the 
relations between priority levels and classes. 

Flow of Jobs Through the System 

Normal Computer Center. During normal oper~-

tions, jobs enter the system either through the 
card reader or from magnetic tape with infor
mation stored in card image format. As soon as 
space becomes available in the section of the 
disk allocated to storage of the job stack, the 
system assigns a peripheral processor to read 
the cards and enter the job onto the disk. 
During this operation the system extracts all 
the necessary information from the control 
cards, enters these pieces of information into its 
own records of job status, and assigns an inter
nal job identification number to the job. Items 
logged at this time include such things as job 
priority, special equipment requirements, esti
mates of memory space requirements, whether 
the job is an execution or requires assembly or 
compilation, etc. The job stack as kept on the 
disk is open-ended, and whenever the system 
notices that disk space is available, it adds to 
the job stack from the card reader. 

As soon as a job in the job stack meets 
certain criteria, the: system, through the job 
loader, causes the, job to be loaded intO' central 
memory. A diagram of the' route from the job 
stack to central me'mory and a list of job load-
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ing criteria is given in F;ig. 9 (parts 1 and 2). 
Jobs with priorities of the second class are 
assured to be loaded eventually since their 
priorities continually build up while in the 
stack, and once' they reach the highest priority, 
the system will automatically reach a point 
where it actually reserves sufficient memory 
space and peripheral equipment to satisfy the 
job's requirement. This reservation feature is 
included to prohibit mutual lock-out situations 
where several high priority jobs could be loaded, 
but due to equipment or memory space require
ments, none meet the criteria. 

The system also keeps as many jobs as 
possible in central memory and dynamically re-

allocates memory space as jobs terminate and 
release space and/or peripheral equipment. The 
system assigns the central processor to execu
tion on the highest priority job in central 
memory. As soon as another job in central 
memory reaches a higher priority, control
through exchange jump-is transferred to this 
job. When the job in execution reaches a 
status change such as a request for an input/ 
output operation, appropriate flags are set in a 
status word in that program's area and the 
system monitor during its normal cycle will 
notice this status change. I/O requests will 
be of one or two kinds as designated by the 
programmer in his system macro. Either the 

PRIORITY 

U2'500 

U 3 ·0 

C 2 ' 470 

SIPROS PRIORITY HANDLING 

1. IN JOB STACK 

LOAD 
JOB SEQUENCE PRIORITY 

A 2 U2·500 

B C2'550 

C 3 U 1 ·300 

U2·0 

~ S 
TIME 0 DURING INTERVAL X 

A. ONLY JOB B LOADED TO CM 
B. JOB C PRIORITY INCREMENTED 

SUCH THAT AT TIME X IT REACHED 
C 2 ·550' 

2. IN CENTRAL MEMORY 

A. JOB RUNNING IS NOT INCREMENTED 
B. CHANGING PRIORiTY JOBS NOT 

RUNNING ARE INCREMENTED 
PERIODICAllY. THIS COULD EFFECT 
SEQUENCE OF JOBS WAITING TO RUN 

3. IN i/O STACKS 

A. I/O TASKS PUT IN STACK ACCORDING 
TO FUNCTION 

B. TASKS NOT IN OPERATION, WITH 
CHANGING PRIORITY, ARE INCREMENTED 
PERIODICALLY. THIS COULD EFFECT 
SEQUENCE OF WAITING TASKS. 

Figure 8b. 

LOAD 
JOB SEQUENCE 

A 2 

C 

D 4 

E 3 

S S 
TIME X 
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FROM PROGRAMMER POINT OF VIEW 

1. PRIORITY SPECIFICATION: 

SUBLEVEL 0-511 

SEPARATOR 

lEVEL 0-3 

TYPE U - UNCHANGING 
C -CHANGING 

Examples: C 2 • 0, U 1 • 200, etc. 

2. PROGRAMMER QPTIONS: 

SPECIFY A. Job Priority and Different I/o Priority 

OR B. Job Priority Only 
(System Sets I/o Priority == Job Priority) 

OR C. No Priority 
(Systems Sets I/O ::: Job::: Installation 
Standard Priority) 

Figure 8e. 

JOB MUST HAVE PROPER PRIORITY 
MUST 8E SUFFICIENT CENTRAL MEMORY 
MUST BE SUffiCIENT DISK SPACE 
MUST BE ENOUGH fREE EQUIPMENT 

CENTRAL MEMORY 

CENTRAL MEMORY 

CENTRAL MEMORY 

programmer has indicated that the I/O opera
tion must be completed before computation can 
resume· (non-buffered mode) or he indicates 
that computation can proceed while the I/O 
operation is taking place (buffered mode). In 
the first case the system will enter the I/O 
request on an I/O request list and will turn 
control, through an exchange jump, to the job 
of next highest priority in the system. In the 
second case the system will enter the I/O 
request in its request list and allow the pro
graln to retain control of the CPo Thus, a pro
granlmer is not really concerned with buffering 
his I/O operations; the system autonlatically 
provides for this. An jobs in central memorY1 
with the exception of the one currently in execu
tion, have their priorities periodically incre
mented. This assures that jobs which are 
mostly computation will not prevent jobs which 
have considerable 1/0 from getting into execu
tion and will assure a more uniform use of the 
different parts of the hardware. As a job in 
execution requests additional memory space, 
disk space or tape units, the system automati-

JOB TABLE 

H U 

PROCESSING STEPS 

I . 8A TCH LOADER 
LOADS J08 INTO JOB STACK ON DISK FROM CARDS OR 
TAPE MAKES ENTRY IN JOB TABLE FOR EACH JOB LOADED 

2. EXECUTIVE 
EXAMINES JOB fAaLE FOR JOBS TO BE LOADED INTO CM 

INSTRUCTS J08 LOADER TO LOAD JOB WITH HIGHEST PRIORITY 
(IF IT MEETS LOADING· REQUIREMENTS) 

MAKES EQUIPMENT ASSiGNMENTS IN EQUIPMENT TABLE 

REQUESTS OPERATOR TO PREPARE EQUIPMENT 

OPERATORS REQUEST 
MOUNT TAPES 

.IOS .E~!a~~NT JOB TABLE '1 

3. EXECUTIVE 
EXCHANGE JUMPS TO JOII TO 8E EXECUTED 

DD - - - . 

EXCHANGE :> JUMP --

~'igure 9, Part 1. 
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cally assigns these. Provision is made, through 
macros, to allow the programmer to spe.cify 
dynamic release of any of these items once no 
longer necessary to execution. 

As a job proceeds in execution, its out
put is collected on the disk; once the job com
pletes in central memory, the task of publishing 
the completed output is commenced as a sepa
rate "off,,:,line" operation; this final operation, 
of course, is automatic and is treated, as an 
I/O request, as one part of the job. 

Since input/output requests can build up 
from a variety of jobs in various states of com
pletion in central memory, the handling of the 
input/ output request queue is performed in a 
completely separate manner, and independent 
priorities may be assigned to these requests 
through control cards by the programmer. The 
system takes care of allocation of the required 
peripheral processors and peripheral equipment 
to satisfy these requests, and attempts to bal-

CENTRAL MEMORY 

ance assignments made to the PP's by class of 
operation as was mentioned previously. 

Multiple Inputs or Controls. In the above, the 
operation at a normal computer installation is 
described, with the operator's console in com
munication with the one allocated PP display 
driver, and with normal job entry to the job 
stack being the card reader or magnetic tape. 
As will be described in the paper on 6600 appli
cations, SIPROS is designed to allow more than 
one station or network of input stations to feed 
jobs into the system. Figure 10 illustrates this 
type of situation. 

The ·normal way of handling another in
put of any sort is to introduce a special job 
into central memory, which has communication 
with and is under control of SIPROS, but which 
has its own PP or PP's assigned and which has 
the appropriate ASPER routines in the PP's. 
These PP's then are assigned to handle the in-

JOB 
'3 

EQ~~~~NT JOB TABLE 
4. EXECUTIVE 

INSTRUCTS JOB LOADER TO LOAD OTHER JOBS INTO 
CENTRAL MEMORY UNTIL IT IS FULL 

=- . ----.-.. -0- LJ---

CENTRAL MEMORY 

JOB JOB 
12 '3 

E~!:s~~NT JOB TABLE 

=--.-- -=-.--EJ-:- --= EJ-=-

CENTRAL MEMORY 

Figure 9, Part 2. 

MULTIPROCESSES JOBS IN CENTRAL MEMORY 

5. EXECUTIVE 
DIRECTS OUTPUT DATA FOR PRINTER AND PUNCH TO 
OUTPUT BUFFER ON DISK 

DIRECTS OUTPUT DATA FOR TAPE TO POOL PP WHICH 
WRITES TAPE 

6. EX~CUTIVE 
SCHEDULES NEW JOB FOR CM WHEN JOB TERMINATES 

INSTRUCTS JOB LOADER TO LOAD NEW JOB FROM JOB 
STACK ON DISK INTO CM 



OPERATING AND PROGRAMMING FOR THE 6600 55 
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SYSTEM. 
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Figure 10. 

put, and perform the necessary operations. 
For example, if the input is a set of jobs from 
a remote site, the PP routine would perform 
the necessary housekeeping to extract the re
quired system information and enter the jobs 
into the job stack along with those originating 
"on site." If the job is a real-time computation, 
the central memory portion of the program will 
control the central processor during the neces
sary time periods. It should be clear from the 
description above that the freedom of allocation 
of the 10 PP's allows SIPROS to accommodate 
a mix of several real-time or remote input net
works on a time-sharing basis. 

3. PROGRAMMING SYSTEMS - FORTRAN 
66, ASCENT, ASPER 

The standard programming system, 
under SIPROS control, is a single integrated 

package consisting of a FORTRAN 66 compiler 
(FORTRAN 63 language, essentially upward 
compatible with FORTRAN IV) and assembly 
systems for the central processor and peripheral 
processors. Figure 11 is a hierarchy diagranl 
of these systems. Since a program for compila
tion may contain a mixture of FORTRAN, 
ASCE.NT, or ASPER, the system treats the 
package as one single entity normally residing 
on the system disk. When a job requiring com
pilation is to be loaded in central memory, the 
loader loads the programming system and treats 
the source program as data to the programming 
system for the first pass of compilation. The 
output of the second pass of compilation is a 
relocatable binary version of the object pro
gram, which is routed to the job stack on the 
disk for later execution if this is specified on 
the control cards. A typical sequence for com-
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pilation and execution is shown on Fig. 11, in
cluding the inputs, outputs, and processes with
in the two passes. 

to intermix FORTRAN and ASCENT on a line
for-line basis, to reference register names in 
ASCENT statements, and to reference FOR
TRAN statement numbers in ASCENT. As a 
matter of fact, coding in ASCENT with inter
mixed FORTRAN statements and coding in 
FORTRAN with intermixed ASCENT state
n1ents are indistinguishable. 

Special FORTRAN Features 

In implementing FORTRAN 66, two fea
tures aiming at flexibility and efficient object 
programs were provided. The first is the ability 
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.... Source 
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Figure 11. 



The secO'nd feature in FORTRAN 66 
that helps explO'it the hardware design is the 
cO'de generatiO'n O'ptimizatiO'n algorithm. This 
algO'rithm scans the sequence O'f instructiO'ns 
to' be generated, and thrO'ugh simulatiO'n O'f the 
multiple functiO'n boxes and operating registers 
makes an attempt to optimize the cO'de sequence 
by minimizing cO'nflicts and delays that would 
O'ccur due to' registe'rs busy, functiO'nal units 
busy, etc. Since this O'ptimization will result 

. in slO'wer cO'mpilation but faster execution of 
O'bject prO'grams, a switch is provided that 
allows bypassing the optimization when com
pilation only (as in debug) is desired. 

ASCENT-ASPER CommunicatiO'n 
As has been mentioned, coding special 

systems that must bring peripheral processors 
into explicit cooperative operation with the 
central prO'cessO'r is facilitated by the communi
catiO'n between ASCENT and ASPER. The 
fO'rmat fO'r a card deck having programs with 
both ASCENT and ASPER programs is given 
in Figures 4 and 4a. 

During the second pass of assembly, 
the programming system produces relocatable 
binary CM or PP programs representing the 
ASCENT program (for CP) and the ASPER. 
routines (for PP). The ASPER programs are 
separated by control cards which represent in
formation to the loader for use at execute time. 
System macros, inserted by the programm.er, 
request the assignment of a PP at execute 
time, and cause the system to assign a PP 
(removing it from the SIPROS pool) and cause 
the ASPER routine to be loaded. At this time, 
the cooperative operation between the routines 
in PP and central memory can proceed, and the 
common reference to symbols is automatically 
achieved by PP routine reference to the appro
priate central memory locations during execu
tion. 

4. ESTIMATES AND EXAMPLES 

The throughput of a system depends on 
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job mix, and is also affected by memory require
ments of the operating system and program
ming system themselves. The latter are actually 
quite complex, since pieces of these reside in 
different parts of the system (as shown in 
Fig. 2) , and also since the actual memory 
requirements are affected by installation 
options, estimates provided by job control cards, 
etc. However, for some rough comparison pur
poses, it can be estimated that the minimum 
central memory requirements for SIPROS itself 
is about 10,000 words, and that the program
ming system (when required for compilation 
or assembly) requires roughly that amount 
also. 

Although the disk space allocation also 
is a variable, some typical figures might be 
100,000 60-hit words for system libraries, 
1,000,000 60-bit words for the job stack, 3,000,-
000 words fO'r job and system output area, and 
the remainder (approximately 3,000,000 60-bit 
words) for programmer scratch area. 

As an illustration of throughput gain, 
consider a problem requiring 10 seconds of CP 
time for compilation, 300 seconds for execution, 
and which has an aggregate total of 100 seconds 
of input-output interspersed with computation, 
during which the program in execution must 
wait for the completion of the I/O. Suppose 
further that the average central memory re
quirement for the job is 20,000 CM words. In 
such a case, the throughput time for a single 
run would be 310 seconds. However, if the 
exact same job is continuously fed, as though 
on an infinite "conveyor," through the 6600 
and SIPROS, an average of five copies of the 
job could be in "execution" in central memory 
at once, and it can easily be seen that the aver
age rate of throughput, per case, is 210 seconds. 
Although this example obviously represents a 
hypothetical problem land even more hypothet
ical mix, it is typical of the type of situation 
that would lead to overall throughput gain due 
to the 6600 multi-processing capability. 
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The Control Data 6600, with its immense 
capability, lends itself readily to several new 
application or problem areas in which computers 
have not previously been fully utilized due to 
either technical or economic considerations. 
Foremost among these is the area of extre·mely 
large problems. In these problems, the size 
either prohibited use of existing computers in 
all generality or in all detail or else could be 
solved only at the expense of a large amount of 
computer time. Examples of situations of this 
type can be found among some nuclear and 
linear programming problems. In particular, 
when problems of this type involve real-time 
inputs or outputs, an extremely large compute·r 
is an absolute necessity. Another variation of 
this problem occurs when a special purpose 
black box or simulation model has to be con
structed to work in conjunction with presently 
existing computers. 

As computers become larger and faster, 
they are also becoming somewhat more expen
sive. However, the rate of increase in capa-

INSTRUCTIONS/ COST/ COST/ 

bility is much greater than the rate of increase 
in cost. For example, let us consider Fig. 1. In 
this figure we consider four machines along 
with instructions per second, cost per second, 
cost per 10,000 executed instructions, cost-per
formance ratio, and finally the cost to compile 
100 FORTRAN statements. We observe that 
while the cost per second generally increases 
as the capability of the machine increases, the 
instructions per second increase at a much 
greater rate. This is particularly evident when 
we look at the cost per 10,000 instructions and 
is further reflected in the cost to compile 100 
FORTRAN statements, although the first entry 
in that column might be tempered somewhat 
by inefficiencies in the compiler. The striking 
point to be brought out here is that computing 

. costs are actually going down. If the 6600 can 
be distributed among a number of users, whose 
work loads are themselves insufficient to justify 
the high cost of the 6·600, the overwhelming 
economic advantages of the 6600 could be' fully 
exploited. Each user would have at his disposal 

COST TO COMPilE 
PERFORMANCE-COST 100 FORTRAN 

MACHINE SECOND SECOND 10,000 INSTRUCTIONS RATIO STATEMENTS 

704 40,000 $.04 $.01. 1 $16.80 

7090 I so, 000 .09 .006 1.6 1.40 

3600 400,000 .08 .002 5 .so 
6600 3,000,000 .16 .0005 20 .10 

PERFORMANCE-COST TABLE 

Figure 1. 
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large machine at a cost approaching that of 
present-day medium-sized systems. 

The purpose of this paper is to describe 
various systems for distributing the computing 
the capabilities and powers of an extremely 
power of the 6600 to a .number of remote users. 
The communications equipment necessary for 
this purpose, and to be described later, is pres
ently available standard equipment. All tech
niques and technologies described are within 
the current state of the art. Also, as mentioned 
in the previous paper, the operating system for 
the 6600 (SIPROS) is organized in such a way 
as to allow a system with distributed inputs 
to operate as though the remote inputs were 
simple extensions of the peripheral facilities 
in the central facility. 

To illustrate the economies inherent in a 
centralized system, let us look at two systems. 
Figure 2 shows three de-centralized facilities 

... LAIIGE 
SCIENTifIC COMPUTERS 

$280, OlIO/MONTH 

$452,OOO/MONTH 

CO.ORATE 
HEADQUARTERS 

• tWGE 
IUSINESS COMPUTER 

• 5SMALL 
BUSINESS COMPUTBS 

$9O,OOO/MONTH 

• I WGE SCIENTIFIC COMPUTER 

• 2 SMAU BUSINESS COMPUTBS 

$82,OOO/MONTH 

CUlIINT SYSTfM 
A 

Figure 2. 

along with monthly lease costs. This might be 
typical of anyone of a number of large users 
of present day electronic data processing equip
ment. Figure 3 indicates a different approach 
to solve the user's needs and provide the same 
or greater capabilities. The several computers 
have now been replaced by a single large-scale 
centralized computer with remote stations. 

These remote stations can be within the same 
building, same area, or up to several hundred 
miles away. The economic advantages are evi-

• HIGH SPEED DATA 
COMMUNICATIONS 

• REMOTE STATION 

$30, OlIO/MONTH 

$t90,OOO/MONTH 

• REMOTE STATION 

$tO,OOO/MONTH 

CENTRALIZED SYSTEM 

• 

Figure 3. 

CORPORATE 
HEADQUARTERS 

• VERY LARGE 
COMPUTER 

$t50,OOO/MONTH 

dent. In this example the communications costs 
are included as a part of the corporate head
quarters facility. 

Let us now be a little more specific and 
look in particular at a 6600 configuration such 
as the one shown in Fig. 4. We will show how 
this computing power can be economically dis
tributed at only comparatively slight incre
ments of cost. Since the prime difference in 
the systems is one of replacing a large computer 
at a remote station, let us begin by looking at 
remote stations. Figure 5 depicts a typical 
remote system having a ,small-scale computer 
with punched cards as the primary input and 
line printers providing the primary output. The 
punched card inputs could be FORTRAN decks, 
COBOL decks, data, information retrieval state
ments, or other commands or requests. The 
capability of this remote station is such that 
the 1200-card-per-minute card reader and at
least two 1,000-line-per-minute line printers 
could be operating simultaneously at full speed. 
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Figure 4. 

Perhaps line printers could be printing out 
results from previous runs while the card reader 
would be reading in a new job for the next run. 
If, for example, the remote station were to be 
an output type only, then three 1,OOO-line-per~ 
minute printers could be kept running at full 
speed. 

If additional input-output capability is 
desired, it can be achieved in several different 
ways. Increasing the memory of the computer 

will allow additional buffer areas and thereby 
allow more peripheral equipment to operate con
currently. Of course, a point is reached where 
the bandwidth of the communications network 
will have to be increased from Telpak A to 
wider bandwidths. The typewriter is included 
in the system to allow communication with the 
operator. For problems of a repetitive nature 
or involving larger amounts of data, magnetic 
tape units might be added. The card to tape 
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function could be performed at the remote 
facility itself without using the central com
puter. 

Other types of remote stations are also 
available (Fig. 6). A much less expensive one 
would be the standard teletype unit such as 
used in Project MAC at MIT. Since these 
devices are very slow by nature, a multiplexor 
could be used to service up to 64 teletype units 
on ~ single computer input-output channel. The 
teletype could be used for low volume informa
tion retrieval, business reports, and for enter
ing and running short programs. An increase 
in capability from this teletype station could 
be achieved by having a low speed card reader 

COMMUNICAT,ONS 
TERMINAL 

I 
TELPAK A 

COMPUTER 

8090 
8K -12 BIT WORDS 

and a low speed line printer at the remote 
facility. At remote stations of this type, it 
would not be necessary to use a computer at 
all. A peripheral adaptor, which in essence 
extends the input-output channel of a computer 
to remote locations via communications lines, is . 
all that would be necessary. This peripheral 
adaptor could not operate as many peripheral 
devices simultaneously, and requires a buffer 
memory in each of the devices. This adaptor 
or channel extender, however, does not make. 
as efficient use of the communications channel 
as a computer would; nevertheless, as you ob
serve, the costs are reduced. 

I 

As can be seen, the number of possible 
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configurations at the remote sites is almost 
endless. The remote computers may be of a 
small 8090 type as illustrated here, or small to 
medium 3100 or 3200 type computers could be 
used to advantage as remote stations in certain 
types of applications. The communications or 
data transfer facilities to handle these remote 
stations are presently available. As has been 
mentioned, Telpak A may be used for communi
cation with several types of remote facilities. 
In addition to this and other common carrier 
facilities, several other methods are used for 
transmitting data. For distances up to several 
miles, a coax cable may be used; for further 
distances, a microwave transmission is avail
able. Both the hard line and microwave trans
mission are extremely fast with rates of up to 
5 million bits per second. 

Now that the remote stations as well as 
communications have been discussed, let us 
look at the other end of the line. Depending 
upon the number and the nature of remote 

stations to be utilized in a centralized computing 
facility, a number of different methods may be 
used to get into the 6600. For example, if the 
number of remote stations is small, a connec
tion may be made directly into an available data 
channel, as shown in Fig. 7. Herewe show both 
microwave facilities directly connected into a 
data channel and· 64 multiplexed teletype ter
minals into another data channel on the 6600. 

As the number of re·mote stations in
creases, other considerations must enter the 
picture. One problem is that of the duty cycle 
of the peripheral processors. If the type of 
problems are of a nature that require little 
input-output activity, then many of the periph
eralprocessors are available to monitor the 
remote stations. However, if problems to be 
run involve a substantial amount of input
output activity, then a suitable solution for 
servicing the communication lines must be 
found. If the data rates are slow, a time
sharing method can be used such as the multi-
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MICROWAVE 

REMOTE STATION 

plexor that handled the 64 teletypewriters. If 
data rates are fast, such as when using Telpak . 
or microwave units, and a large number of 
these must be handled simultaneously, as nor
mally will be the case, additional input-output 
channels must be used. One way of solving 
this problem is to add an additional, but much 
less expensive computer, to the facility to 
handle the ip.creased simultaneous input and 
output. This' IS illustrated in Fig.S, which 

6600 
DATA--.J 

CHANNEL 

T£LPAK 

$SOOO/MONTtt 

, INTER-COMPUTER 
ADAPTER 

., ,fEtefYi>E, 

32QO COMPUTER . 
32 K - 24 BIT WORDS 

COMMUNICATIONS PROCESSOR 

Figure 8. 

MICRqWAVE 

. shows a 32(JO computer serving as a· communica
tions proces.sor:: An additional advantage of 

. this system, is that most of the ordinary house
keeping tasks which are necessary for deaIil)g 

with communications equipment can now be 
handled by the 3200. The additional expense 
of this system is very small considering the 
increased capability. 

Since the 6600 SIPROS operating system 
places all inputs on a stack on the system disks, 
one further consideration is necessary; that is, 
access time to the disk. This 6600 disk access 
time is approximately 200 ms in the worst case. 
The flexibility of the SIPROS operating system 
allows additional disks to be added for stacking 
inputs and outputs to the 6600 system, can 
allow different allocations of storage stacking 
to the multiple disks, and can allow the inputs 
to the job stack to be from a variety of sources, 
both at the center and from remote sites. How
ever, if the number of remote stations is large 
or if the volume of input-output data is sub
stantial, then we must consider the problem of 
accessing the disks for all system input and 

. output. The disk access time can be buffered 
out by transferring long blocks of data to the 
disk, thereby decreasing proportionally the 
number of disk accesses necessary (Fig. 9). 
The buffering occurs in a mass core storage 
placed between the communications processing 
3200 and the centralized 6600 system. All 
,system input-output is stored in blocks of 16,000 
to 32,000 characters. per remote device in this 
mass core store. By the use of this buffering 
technique, effective system transfer rates can 
be achieved. We- have now worked our way up 
toa large-scale centralized system, completely 
illustrated in Fig. 10. 

In. the. typical large-scale system shown 
here we have 12 remote facilities, a dual 3200 
communications processor and the 6600 central 
computer. The peripheral equipment at a 
typjcal remote facility consists of two 1,000-
lir1e-per~minute printers, a 1200-card-per-minute 
reader, and a 250-card-per-minute punch. The 
number and type of input-output equipment, 
however, varies at the different remot~ facil
ities depending on the load at· each individual 
station. . A small-scale 8090 computer is located 
at each remote site to service the input-output 
equipment. The memQry size, however, of the 
8090 varies at the remote stations as according 
to the number of external equipments . 

The communications terminals shown in 
Fig. 10 consist of a Control Data 8529 and a 
301-B Data Terminal. Besides interfacing the 
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parallel computer interface with the serial 
301-B interface, the 8529 units provide for error 
checking and detection. A scheme for encoding 
and decoding blocks of data by generating a 
12-bit cycle code is used. This provides the 
following error detection capabilities: 

1. Any odd number of errors. 

DATA 
CHANNElS 

DATA 

2. All error burst of length 12 or less. 
3. 99.95% of all error bursts of length 13. 
4. 99.98% of all error bursts of length 14 

or greater. 

A burst is defined as any pattern of 
errors for which the number of bits between 
the first and last errors, including these errors, 
is the burst length. The cyclic code is one of 
the most effective and economical error detec
tion techniques for serial transmission pres
ently known. 

Let us now study the data flow in the 
system in greater detail. First let us examine 
the data transfer between the remote stations 
and the communications processor. All such 
transfers are made in blocks of eight-unit rec
ords. This block length is an effective trade
off between maintaining high line efficiency and 
low core requirements in the remote computer. 
The 8090 at the remote site initiates all data 
transfers. This is done by generating an inter
rupt to the communi~ations processor, and is 
followed by a transfer of a triple redundant 
72-bit control word block. The required eight
unit records are now transferred and are fol
lowed by an acknowledgement from the receiv
ing computer (illustrated in Fig. 11 along with 
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1. 

2. 

3. 

4. 

TIME 

ACTION CARD EQUIPMENT PRINTER 

Remote Station to Communications Processor 5 ms 5 ms 
Interrupt and Processing 

Transfer of 72-bit Control Block 7ms 7ms 

Transfer of 8 Unit Records 96 ms 164 ms 

Acknowledgement 7ms 7 ms 

115 ms 183 ms 

COMMUNICATIONS LINK TRANSFER TIME 

Figure 11. 

Typical Input: 

Bulk Core Storage Assignment: 

Time to Transfer fram Core to Input Disk· 

Time to Transfer Input Disk to Central Memory: 

Toto I Disk Time for Transfer fram Core to Central 
Memory: 

600 Cards Require 30 seconds on 1200 Card/ 
Minute Reader 

18 Cord Readers at 1.6K Words each: 

the corresponding times). Here we are assum
ing a propagation delay of 4 ms and data rates 
of Telpak A, 40,800 bits per second. You will 
note that the complete transfer time required 
for eight cards is 115 ms, and for eight lines on 
the printer, is 183 ms. Since it takes a 1200-
card-per-minute reader 400 ms to read the eight 
cards, then this communications link could 
easily handle three 1200-card-per-minute card 
readers simultaneously. Further, since a 1,000-
line-per-minute printer requires 480 ms to out
put eight lines of print, data rates are suffi
ciently fast in order to keep two 1,000-line-per
minute printers and one 1200-card-per-minute 
card reader fully or simultaneously operating. 
From the 3200 communications processor, the 
input data is transferred to the appropriate 
area in the mass core storage. Each input
output device in the system is dynamically as
signed a certain area of this bulk core. Input 
areas are assigned blocks of 16,000 characters 
while output devices are assigned areas of 

600 cards = 48,000 characters 

16K characters/card reader (divided into double buffer 
areas) 

6 x (220 + 6) ms = 1356 ms 

220 ms -+: 36 ms = 256 ms 

1356 ms + 256 ms = 1612 ms 

30 seconds/l.612 seconds = 18 - number of card readers 

28.8K'" 60 Bit Words 

INPUT DISK UTILIZATION TIME 

Figure 12. 

Typical Output: 

Bulk Core Storage Assignment: 

Time to Transfer Central Memory to Output Disk: 

TIme to Transfer Output Disk to Core: 

Total Disk TIme for Tronsfer from Central Memory 
to Core: 

1200 lines Require 72 seconds on 1000 line/ 
Minute Printer 

27 Line Printers at 3.2K words each: 

1200 lines = 160,000 characters 

32K characters/line printer (divided into double buffer 
areas) 

220 ms + 122 ms = 342 ms 

10 x (220 + 12) ms = 2320 ms 

342 ms + 2320 ms = 2662 ms 

72 seconds/2.662 seconds = 27 - number of line printers 

86.4K - 60 bit words 

OUTPUT DISK UTILIZATION TIME 

Figure 13. 
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25 - 1000 LINE/MINUTE PRINTERS AT 3.2 K 80K 

18 - 1200 CARD/MINUTE CARD READERS AT 1.6K 28.8K 

6 - 250 CARD/MINUTE CARD PUNCHERS AT 3.2K 19.2K 

TOTAL STORAGE REQUIREMENTS 128 K 

BULK CORE STORAGE UTILIZATION 

Figure 14. 

32,000 characters. Each of these is divided 
into a double buffer area. 

Let us examine a typical input of, say, 
600 cards or 48,000 characters (Fig. 12). Since 
the purpose of the bulk core store is to buffer 
out the access time to the system input disk, 
we will assume in all further discussions worst 
case timing; that is, 220 ms for access and 
latency time on the disk. Generally speaking, 
however, it will be substantially less than thi'3. 
N ow, since a typical input consists of, for this 
example, 48,000 characters and each input area 
is divided into a double buffer area of 8,000 
characters, it is necessary to make six transfers 
between the bulk core store and the input disk. 
Allowing 220 ms for access and 6 ms for writing 
the disk, then the six transfers as shown will 
not exceed 1356 ms. The time to transfer in
formation from the input disk to the central 
memory is again 220 ms for access, plus 36 ms 
for transferring the 48,000 characters. Thus, 
full disk time required for transfer from core 
to central memory is not greater than 1612 ms; 
in fact, generally it will be considerably less. 
Now, since 600 cards require 30 seconds on a 
1200-card-per-minute reader, 30 seconds divided 
by the input disk time necessary to service one 
reader yields a figure of 18 for the effective 
number of card readers which can be kept 
operating simultaneously by using this tech
nique. If these 18 card readers are operating 
simultaneously and since each requires 1.6 
thousand 60-bit words, a total of 28.8 thousand 
60-bit words in the bulk core store is required 
to handle the system input. 

A similar technique may be employed 
in the output case, assuming in this case typical 

output consisting of 12,000 lines or 160,000 
characters, and bulk core assignment of 32,000 
characters per printer (Fig. 13). The time re
quired to transfer from central memory to the 
output disk is 220 ms (worse case access) plus 
122 ms for the data transfer, yielding a total of 
342 ms. Further, since 16,000 characters are 
transferred between the output disk and the 
bulk core each time, it is necessary to transfer 
10 times for the total of 160,000 characters. 
These 10 transfers each requiring 220 + 12 ms 
yield a total of 2320 ms for the time to transfer 
from the output disk to the bulk core. The 
total disk time thus necessary for transferring 
a typical output from central memory to bulk 
core is 2662 ms. Since this typical output of 
1200 lines requires 72 seconds on a 1,000-line
per-minute printer, dividing 72 seconds by 2.662 
seconds yields 27 as the number of line printers 
which can be simultaneously operated by this 
system. Further, these 27 line printers at 3200 
60-bit words each require a total of 86,400 60-
bit words in the bulk core store whenever they 
are all operating simultaneously. 

Similar consideration for a 250-card-per
minute punch yields a conservative 3 to 1 trade
off between printers and punches; that is, with 
respect to the system, three punches require as 
much activity as one line printer. Thus, trading 
two printers for six punches, as shown in Fig. 
14, we have total storage requirements neces
sary for simultaneously operating 25 1,000-line
per-minute printers, 18 1200-card-per-minute
readers, and 6 250 .. card-per-minute punches. 
Further trade-offs between printers and readers 
can be accomplished by increasing and decreas
ing corresponding storage- areas in the bulk 
core. 

What has been demonstrated here is the 
way in which the large capability of a central
ized computer such as the 6600 can be effec
tively and economically distributed to a number 
of users at a number of remote sites. Further, 
this distribution of computing power is eco
nomically accomplished and uses only existing 
equipment and existing communications facil
ities. Finally, the capability for such distribu
tion and time-sharing is provided by the organ
ization of the 6600 and the flexibilities in the 
design of SIPROS. 





THE MODEL 92 AS A MEMBER OF THE 

SYSTEM/360 FAMILY 

G. M. Amdahl 
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The Model 92 is a full-fledged member 
of the System/360 line of processors. At the 
beginning of the design of System/360, the 
goal was to provide a system capable of satisfy
ing all of the varied computing applications to 
which IBM machines were applied in the past. 
I t was also desired to apply the new system to 
a number of applications for which those older 
machines were somewhat inadequately pre
pared to serve. At that time, the previous lines 
of machines were evaluated to see which ones 
might possibly serve as a base for the start of 
the design. The older commercial processors 
did not form a suitable base for the scientific 
computational capability desired. The scientific 
line was also not elected for use as the base. 

In the particular instance of the 7090, it 
was felt that this was an improper base for 
several reasons. First of all, the word size was 
really somewhat inadequate for a majority of 
the problems that were actually being run in 
that word size. Secondly, the address size was 
insufficient and improperly constructed to 
handle the variable field length processing 
which was important, not only from the stand
point of doing commercial work, but from the 
standpoint of general data processing in the 
scientific area in addition to such things as 
compilation. 

The Model 92 is completely compatible 
with System/360 in every respect except that 
decimal arithmetic is not offered. All of the 
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variable field length handling capabilities for 
compilation and data processing are provided, 
as well as conversion between decimal and 
binary and back again. Compatibility also 
means that the same systems configuration 
flexibility is provided in the Model 92 as in any 
other members of the System/360 line (Fig. 1). 

The Model 92 can efficiently utilize the 
programming support for all of the System/360. 
This requires that the codes which are written 
for the slower members of System/360 will run 
in very nearly optimal fashion on the Model 92. 
This can be done because of the internal logical 
organization of the Model 92 in which the 
optimalization of the execution of code is essen
tially carried out by hardware algorithm rather 
than by programming algorithm. This point 
will be well worth bearing in mind while read
ing Dr. T. C. Chen's description of the internal 
organization of the Model 92. 

The same checking techniques are em
ployed in the Model 92 as in the rest of the 
System/360 processors. The checking not only 
checks the residence of data in memory, but 
checks the actual execution of the arithmetic 
and logical operations on this data. Further, 
the determination of the existence of an error 
provides an interrupt which allows transfer of 
control to a diagnostic routine which can de
termine whether or not the computation can 
be re-entered as well as just determine the 
state of the CPU with this error. 
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Figure 1. Model 92 Circuitry. 

The performance gain of the Model 92 
above its nearest neighbor, the Model 70, is 
markedly greater than the performance gap 
that exists between any other pair of the 
System/360 processors. In part, this is because 
in the search through the possible ways in 
which higher performance machines could be 
realized, a design was found which was believed 

to be the most optimum point on the design 
curve existing above Model 70. There are two 
ways in which this gain is achieved. First of 
all, the use of faster componentry. The memory 
used is two times as fast as the memory in 
the Model 70. The higher performance cir
cuitry used is between 2V2 and 3 times as fast 
(Fig. 2). It is a little hard to get an actual 

Figure 2. Model 92 VS. Model 70 Circuitry. 
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figure for the circuitry itself, since the logic 
circuitry employed in the Model 92, has prop
erties which yield a more efficient realization 
of many of the hardware algorithms. 

However, this factor of 2 to 3 gain from 
memory and circuits only inadequately describes 
the means by which the performance is 
achieved. There is much greater sophistication 
within the CPU, such as better algorithms for 
the arithmetic operations and also non-sequen
tiallook-ahead and multiple' concurrency, which 
makes by far the greatest difference in the 
performance gain. This performance gain is on 
the order of 15 times that of the Model 70. The 
inclusion of the Model 92 in the System/360 
line provides then a family of compatible proc
essors which cover approximately a range of 
three orders of magnitude in performance. 

In the Model 92 memory, one may have 
either eight or sixteen boxes of 8,192 64-bit 
words in each box, with the boxes interleaved. 
Interleaving implies that successive word ad
dresses appear in successive physical boxes. 

In addition to the V2 ""sec memory on the 
Model 92, one may also have' as addressable 
memory the large capacity storage; this is an 
8 ""sec full cycle memory in which up to eight 
boxes can be interleaved. This is somewhat 
in excess of two million 64-bit words. The 

impact of such a large memory array will be 
discussed in Mr. Carl Conti's paper. 

The circuitry employed in the Model 92 
is an off-shoot of the SLT circuitry employed 
in the rest of the System/360 line. Essentially, 
the same ceramic substrate is employed, on 
which the circuit components are mounted. In 
ACPX technology, there is a multiplicity of 
transistors appearing in a single silicon chip; 
in the SLT technology, there were a multiplicity 
of diodes appearing in a single silicon chip. In 
a sense, they are a kind of hybrid between 
individual components and integrated compo
nents. It was indicated earlier that the per
formance of the ACPX circuitry was 21;2 to 3 
times that of the SLT. The circuit delays 
experienced in the ACPX circuitry ranges from 
1.2 nanoseconds to 4 nanoseconds, depending 
on the loading seen by the logic circuits. The 
average in the machine environment appears 
to be about 1.7 nanoseconds per stage. 

The performance of the circu1t in the 
machine environment is, of course, very de
pendent upon the density achieved in the pack
age. In ACPX, densities of something like 6 
times that of the SLT packaging are achieved. 
This is attained by use of both sides of the 
ceramic substrate for placement of the circuit 
components and with two ceramic substrates 
placed one on top of the other to form a module. 

Figure 3. Comparative Card Packaging. 
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The reduced use of area consuming printed 
resistors improves the effective area for active 
elements by about 50 %. The number of con
tacts on this module is increased -from the 12 
which appeared on the SLT to 16 contacts in 
the ACPX. This is done by merely filling in 
the inner parts of the grid, which are on tenths 
of an inch spacing. 

For packaging, a pluggable card is used 
which has three times the capacity of the 
largest SLT card (Fig. 3). These cards plug 
into a board which is about the size of an 81f2 x 
11 sheet of paper, and which is equivalent to 
the back panel wiring (Fig. 4). The density 
achieved by this packaging is about 5,000 cir
cuits per .board. 

Figure 4. Fully Populated Board. 
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1. INTRODUCTION 

The design of the IBM System/360 
Model 92 Central Processing Unit features a 
very high degree of overlap and concurrency 
in processing, and full compatibility with 
other members of the System/360 machine 
family.* t 

Pitfalls in overlap machine designs are 
many. In order to speed up some portions of 
the code, the efficiency of other instructions
indeed sometimes the logical coherence of the 
program itself-may have to be compromised. 
Optimizing techniques frequently have to be 
applied externally to avoid pitfalls and enhance 
efficiency. On the other hand, the machine 
gains speed by internal asynchronism, and the 
resources within are rapidly changing functions 
of time and instruction context. We have, 
therefore, the paradox: the more asynchronism, 
the greater the need to optimize, yet the harder 
it is to perform the optimization externally. 

The Model 92 design is based on a local 
autonomy principle, allowing each of the in
dividual units to optimally allocate its resources 
within its jurisdiction. 

* For· details of IBM System/360 architecture see: 
G .. M. Amdahl, G. A. Blaauw and F. P. Brooks, Jr., 
Archit'!ctU're of the IBM System/i'J60, IBM J. Research 
and Development, 8 (April 1964), pp. 87-92; also IBM 
System/360 Principles of Operation Manual, Form 
A22-6821-1 (1964). 

t For a comprehensive discussion of overlap designs 
the reader is referred to W. Buchholz, Planning a Com
puter System (McGraw-Hill, N. Y., 1962). 
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This local autonomy allows the Model 92 
CPU to handle the full System/360 instruction 
repertoire (except the decimal instructions) 
with no loss of logical coherence, in an optimal 
fashion. The need for external optimization, 
by hand-honing or by compiler action, is thereby 
sharply reduced, and debugging effort is cor
respondingly minimized. 

2. MEMORY HANDLING AND INPUT-OUT
PUT 

High Speed Memory 

The high speed memory of the Model 92 
consists of ferrite core arrays of 0.5 JLsec cycle 
time, 8K long words (each of 64 information 
bits plus eight parity bits) per module, 8 or 16 
modules (64K or 128K long words) per com
puter. Th~ addresses are fully interleaved: 
consecutive long word addresses refer to differ
ent modules. 

Large Capacity Storage 

To supplement this, we have the large 
capacity storage (LCS) consisting of 8 JLsec 
cycle time core arrays, 128K or 256K per 
module, 2, 4, 8 or 16 modules (that is, up to 
more than 2 million fully addressable long 
words) per computer. The LCS modules are 
also interleaved up to eight-fold, leading to a 
maximum effective rate of one long word per 
JLsec. The LCS contents are fully addressable 
down to the eight-bit "byte" level, just like 
the high speed memory. 
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Memory Protection 

The System/360 memory protect mech
anism applies to the entire storage-LCS as 
well as the high speed memory-as adminis
tered by the memory bus control element. For 
any request to store, the latter supervises the 
matching between the storage lock and the key 
of the requestor (CPU or I/O channel); at
tempts at violation are disabled, with an alarm 
signal sent to the CPU. 

Treatment of Memory Conflicts 

Because the decoding time (one cycle, no 
more than 90 nanoseconds) and the effective 
execution time' (close to one cycle per opera
tion) are small relative to the high speed 
memory cycle time of 0.5 p,sec extensive overlap 
is required not only for the CPU, but the 
memory bus as well. Memory interleaving 
reduces the probability of conflicts, but does 
not eliminate them. When an attempt to access 
more than one long word from the same 
memory module is detected, the bus must put 
the conflicting requests in a waiting queue, and 
install the proper delays. 

Further, since each delay can be equal 
to several instruction times, the occurrence of 
a conflict should not put the entire bus in an 
idling state. In the Model 92 there can be eight 
independent concurrent memory operations; 
several of them could be in conflict without 
affecting the remainder. 

I/O Handling 

Input-output operations are fully over
lapped with CPU action, and are handled via 
the memory bus. External devices can com
municate either with the high speed memory, 
or LCS. 

Storage Transfer Channel 

In addition, there is a storage transfer 
channel which 'handles memory-to~memory 
transmittal in a way similar to I/O channel 
operation, with the following major difference: 
a programmable spacing parameter a can be 
specified such that either 

1. consecutive source long words can be 
transmitted to the sink area, each sep
ara ted by a long words; or 

2. long words from the source area sep-

ara ted by a long words can be trans
mitted to the sink area as consecutive 
long words. 

3. INSTRUCTION SEQUENCING CONTROL 

The Model 92 accepts standard System/ 
360 instructions. These come in three sizes: 
16 bits, 32 bits, and 48 bits. In a program some 
of these instructions may overstep the word 
boundaries. 

The design of the instruction sequencing 
control mechanism is to access, decode, and 
perform the indexing functions of the instruc
tions at the rate close to one instruction per 
cycle. Toward this end an instruction buffer 
is provided, consisting of a primary buffer of 
eight long words and an alternate buffer of two 
long words. 

Primary Buffer 

In the normal mode of operations, the 
primary buffer is kept half-full of new instruc
tions, and half-full of past instructions. The 
decoding mechanism extracts instructions from 
the buffer, and an instruction-word fetch is 
initiated when a long-word boundary is crossed. 

The "new instruction" area houses 
roughly 10 instructions. When a branch is 
decoded and executed, the new instructions in 
the primary buffer may have to be rejected. 
"Overfetch" of instructions beyond four long 
words may mean creation of unneeded memory 
conflicts, and is not permitted in the normal 
mode. 

The Gulf of Ignorance 

Because of the slowness of memory 
access, the execution of an instruction may lag 
the decoding by 0.5 ,usec or more (Fig. 1). For a 
given instruction, there is a gulf of ignorance 
between the termination of decoding and the 
termination of execution. Within the gulf of 
ignorance decoding and execution can still pro
ceed normally, but not conditional branch in
structions based on the result of the instruction 
creating the gulf. Such conditional branches 
are undecidable until the gulf is passed. 

Conditional Branches 

A branch conditioned upon the outcome 
of a long-passed instruction is outside the gulf 
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Function 

execute 

Time~------------------------------~ 

Figure 1. Symbolization of an instruction in. an .overlap machine. 9ondition branch 
instruction based on outcome of executIOn IS marked by questIOn mark. 

of ignorance, and is decidable.__ It is handled 
like a simple branch or a NO-OPERATION. 
Most conditional branches in routine System/ 
360 programming tend to fall into the decidable 
category. 

On the other hand, if a conditional 
branch instruction occurs immediately after 
a condition-generating floating point instruc
tion, it is almost· always undecidable. 

Undecidable Branches 

For undecidable conditional branches the 
machine makes the assumption that the con
dition probably will not bernet. The new in
structions in the primary buffer are thus not 
rejected out of hand. However, the assumption 
could prove to be wrong, therefore all instruc
tions handled within the gulf of 'ignorance are 
issued conditionally, not being allowed to alter 
addressable registers. Also, the alternatebuf
fer is made to 'accept two lo:ng words of the 
alternate instruction stream. 

Upon emergence from the gulf of igno
rance, the condition becomes fully known. If 
the branch is not successful, a "proceed nor
mally" signal is sent to all areas. Otherwise the 
tentatively issued instructions are cancelled, 
and the critical instruction-access problem is 
bypassed by having available the contents of 
the alternate buffer. 

Loop Mode 

The Model 92 has a provision for effec
tive handling of short loops. Whenever a suc
cessful branch to a numerically smaller target 
address occurs, and if the address of branch 
instruction and that of the target both fall into 
an eight-long word block (and if the machine 
is not already in loop mode), the machine will 
enter loop mode. 

During loop mode the machine fills the 
primary instruction buffer to full capacity 
(eight long words, or about 20 instructions), 
starting from the word containing the target 
down through the loop-creating branch instruc
tion and beyond. The machine will 

1. utilize the contents of the buffer with
out further instruction fetch; 

2. guard against violations over the eight 
long words in the buffer; 

3. speed up the loop-creating branch. A 
simple branch. will be faster by one 
cycle; a . conditional branch will be 
treated as "probably successful." 

A subset of the primary buffer contents 
during loop mode could be a loop also; the latter 
already benefits from the loop mode and will 
not require additional tre.atment., 

The machine reverts to the normal mode 
if the loop-creating branch becomes unsuccess-
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ful, or if a branch outside the primary buffer 
is executed. 

4. STEP-BY-STEP BUILDUP OF CPU 

The design and purpose of the remainder 
of the CPU can best be shown via a step-by
step procedure. 

Thus far we have discussed the memory, 
the memory bus, and the instruction buffers. 
In conformity with System/360 specifications; 

there are 16 general purpose registers (GPR's), 
and four floating-point registers. Because the 
GPR's serve as index registers as well as base 
registers, aside from being fixed-point accumu
lators, they are put in close proximity of the 
decording portion of the machine, forming the 
Instruction Unit, or the I-Box. 

The floating-point accumulators and the 
floating-point arithmetic units are the basis, 
for the Execution Unit, or the E-Box. 

Figure 2a. Step-by-step CPU buildup. 

Figure 2b~ . Floating Point Instruction Stack added. 



OVERLAP DESIGN OF THE CENTRAL PROCESSING UNIT 77 

A sketch of the design thus far is seen in 
Fig. 2a. The floating-point arithmetic organs 
include two floating-point adders and a multi
plier-divider.The speeds are as follows: 

• normalized floating add: 
• normalized floating multiply: 
• normalized floating divide: 

Floating-Point RR Instructions 

2 cycles 
3 cycles 

10 cycles 

A typical floating-point RR instruction 
is the following: 

ADR 2,4 'ADD DOUBLE NORMALIZED 
RR 

which means 

C (R2) + C (R4) C(R2) 

where the + symbolizes a floating-point nor
malized add involving 56-bit hexadecimal frac
tions with corresponding exponent adjustment. 

It is noticed that the capability for the 
execution of such instructions resides in the 
E-Box. It is, therefore, desirable to put the E
Box RR instructions in the E-Box as well. 

This is accomplished by the installment 
of an eight-level E-Box instruction stack, which 
converts the E-Box into a stored program com
puter (Fig. 2b). 

The decoding mechanism, upon encoun
tering a floating-point RR instruction, merely 
puts the partially decoded instruction in the 
next available position in the E-instruction 
stack. The E-Box from this point on takes 
care of the optimized execution; 

Floating-Point RX Instructions 

The.other class ·of floating-point instruc
tions are the RX instructions, typified by the 
following: 

AD 2, DOG (14, 15) 'ADD DOUBLE NOR:.. 
MALIZED RX 

which has the following meaning: 

C(X14) + C(B15) + DOG]z4 = m 
C(R2) + C(m) C(R2) . 

(X 14 is GPR 14, being used as an index reg
ister; B 15 is GPR 15, being used as a base 
register; J:!4' means truncation to 24 bits to yield 
th&effective address m.) 

Upon. careful study it becomes evident 
that "mathematician's reasoning." can be gain-

fully employed to reduce the new problem to a 
previously solved one. 

We note the first equation refers to the 
I-box. To handle it properly we need rapid 
accessing of the contents of GPR 14, GPR 15, 
which should combine with DOG to form the 
24-bit effective address in one cycle. A three
input adder is used towards this end. 

The second equation can be further 
broken into two parts: 

C(m) C(R13) 
C(R2) + C(R13) C(R2) 

The first part belongs to the memory bus, and 
the second part is a standard (in appearance, 
at least) RR instruction.. To accomplish this 
it is necessary to have an E-Box operand stack, 
with an addressing. scheme similar to that of 
the floating-point accumulators (Fig. 2c). 

The floating-point RX ADD instruction 
is handled this way: 

a) Upon dec.oding, the instruction is dis
covered to be a floating RX fetch-type 
instruction. 

b) A triple-add is performed to yield m, 
the effective address. R13 in the 6-
level E-operand stack is known to be 
vacant. 

c) m is presented to the memory bus with 
R13 as return address. 

d) The RX instruction is disguised as an 
RR instruction involving R13, and sent 
to the E-instruction stack. 

e) When R13 becomes full, the treatment 
of the pseudo-RR instruction is indis
tinguishable from the "true" RR in
struction. 

Fixed-Point Arithmetic 

The scheme adopted for, the E-Box is 
quite applicable for the fixed-point instructions, 
and there is an I-Box instru~tion stack (6 
levels), an I-Box operand stack (6 levels), and 
a separate fixed-point arithmetic unit. The 
protection against logical coherence violation 
is, however, different,since the GPR's serve 
also as index registers and base registers. 

There is a two...;level store 'operand buffer 
to handle to-memory instructions from either 
I-Box or E-Box, and eight address registers to 
guard against logical conflicts involving fetch-
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Figure 2c. Floating Point R-X handling. 3-Input Adder and Floating Point Operand 
Stack added. 

store sequencing. The design now has the ap
pearance of Fig. 2d. 

In the handling of System/360 variable
field length instructions, the I-Box and the E
Box pool their buffer resources together to 
speed up the processing. 

STRETCH design, namely, internal data for
warding. Consider the following floating-point 
instructions: 

5. INTERNAL FORWARDING 

An interesting feature in the System/ 
360 Model 92 CPU is adapted from the IBM 

A 
B 
C 

meaning 

A 

Figure 2d. Complete CPU. 

LD O,P 
DD O,Q 
ADR 0,2 

C(P) C(RO) 
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B 
C 

C(RO)/C(Q) 
C(RO) + C(R2) 

C(RO) 
C(RO) 

Since the Model 92 has four floating
point accumulators, the fixation on one accumu
lator could be construed as bad programming. 
However, we adopt the point of view that such 
programming is not necessarily bad; there are 
many situations in which it would be unnatural 
to do otherwise. An attempt is therefore made 
to run these sequences quite efficiently. 

The three instructions lead to the linear 
graphs in Fig. 3a. It is assumed that adder A2 
is employed for C. The combination has a 
double loop. We note that the act of putting 
an operand into RO and subsequently removing 
it has a high cost for the Model 92. 

However, the three instructions can be 
synthesized into one macro-instruction, using 
cancellation techniques reminiscent of fresh
man chemistry: 

A 
B 
C 

yielding 

C(P) 
C(RO)/C(Q) 
C(RO) + C(R2) 

ABC C(P)/C(Q) + C(R2) 

C(RO) 
C(RO) 
C(RO), 

C(RO) 

and the greatly simplified linear graph in Fig. 
3b results. The simpler graph is handled vastly 
more efficiently than the complicated one, and 
the E-Box has the ability to perform the "topo-

logical" path distortion, yielding paths equal 
in outcome but enhanced in efficiency. 

The situation is even more striking if 
two more instructions are added: 

D 
E 

STD 
LD 

O,R 
O,S 

The store will be gated directly from the 
output of the adder, and instruction E signals 
to the E-Box that RO need never be referenced 
in handling instructions ABCD at all. Thus, 
E begins an independent string of instructions, 
capable of being handled concurrently with the 
ABCD string, and may even finish before 
ABCD. 

6. HARDWARE OPTIMIZATION 

The System/360 Model 92 decodes in
structions in sequence; the decoding action 
distributes the work load to various autonomous 
units. From that point on, strict sequence is 
no longer adhered to, but is frequently upset. 

To the uninformed bystander, the ma
chine seems to replace the orderliness of the 
given code by chaos. 

This apparent chaos actually results 
from the local reorganization of the available 
resources. The memory bus concentrates on 
the optimum handling of memory requests. 
The fixed-point, floating-point units concentrate 
on optimum execution of corresponding instruc-

Figure 3a. Linear graph for three instructions A, Band C. 
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Figure 3b. Optimization through internal forwarding. 

tions. The instruction sequenc\ng mechanism 
meanwhile optimizes instruction-fetch and 
branching. Within each unit, sub-units fre
quently also possess autonomous behavior. The 
degree of parallelism is extremely high within 
the CPU. 

The asynchronism makes it impossible 
strictly to predict the detailed behavior within 
the CPU, short of a full-fledged simulator. It 
is not possible, for instance, to predict conflicts 

between an instruction-fetch and a floating
point store. Consequently, it is extremely diffi
cult to optimize a program by external mean3. 

However, this external optimizing is not 
really necessary. No one is in a better posi
tion to examine the available resources· and 
detect bottlenecks in data flow within a given 
unit than the very unit itself. It is, therefore, 
also provided with hardware tools to seek and 
adopt optimizing alternatives. 
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In the papers by Dr. Amdahl * and Dr. 
Chent an extremely powerful CPU was de
scribed. I would like to illustrate on some 
problems just how powerful it is, in order to 
better pinpoint its actual performance. With 
a CPU of this sort, we had a few problems in 
the actual design: to be able to get problems 
or applications in and out of the CPU, and to 

* The Model 92 as a Member of the System/360 
Family. 

t The Overlap Design of the IBM System/360 Model 
92 Central Processing Unit. 

put the processor into an environment where 
it is useful. 

Unfortunately, when considering high 
performance, it is not possible to support the 
CPU with conventional I/O used in a conven
tional way. Several unique pieces of equip
mentare available with the 92 to provide the 
capability to process problems at the rates we 
can achieve in internal CPU performance. 
Before these are described, 'let us look at in
ternal performance in a little more detail. 

Figure 1 is an extremely simple example 

Figure· 1. 

81 
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of cQding. This is, in fact, the inner IQQP Qf a 
matrix multiply, where Qne matrix is stQred in 
its transpose. We have an RX IQad, an RX 
multiply-that is frQm memory to' register, 
fQllQwed by a register to' register add to' accu
mulate the sum; finally, we have an indexing 
branch (branch Qn index IQW Qr equal) which 
is analQgQus to' a DO statement in FORTRAN. 

We can IQQk at hQW this particular prQ
gram will prQceed through the CPU by first 
observing a single iteratiQn Qf thO'se fQur in
structiQns. This is illustrated in Fig. 2. 

On the left, we have the instructiQn de
cQde and memory address generatiQn time. The 
instructiQn de cO' de is overlapped in the I bQX 
with the memQry address generatiQn Qf each 
previQus instructiO'n. There is Qverlap here 
Qn a purely functiQnal basis. Next is the mem
Qry fetch time fQr Qperands. At the right is 
the executiQn time shQwing the IQad abQve 
fQIIQwed by the multiply, then by the Add 
Register to' Register. 

NQw, clearly in a cQde Qf that sQrt, IQQk
ing at a single iteration, yQU have a completely 
dependent series Qf QperatiQns in the IQad mul
tiply add. They have to' prQceed in sequence 
sO' that if yQU IQoked at this as Qne iteratiQn Qf 
the IQQP, it IQQks like a fairly IQng time to' 
prQcess. Because Qf the internal fQrwarding 
structure in the' 92, however, when we get intO' 

the secQnd iteratiQn SQme interesting things 
happen. In Fig. 3, we have instructiQns 1, 2, 3, 
and 4 repeated again, shQwing the secQnd itera
tiQn Qf that IQQP. We have a cQmpletely smQQth 
flQW in this case, and fQr this reaSQn I have 
chQsen this example. This is the kind Qf prQb
lem where things gO' very well. It is executing 
cQmpletely in IQQP mQde; therefQre, there are 
nO' instructiQn fetches shQwn here. The index
ing branch, the BXLE, requires Qnly three 
cycles, at which PQint the first instructiQn fQr 
the secQnd iteratiQn IQQP is fetched Qut Qf the 
instructiQn buffer dQwn to' the decQder and is 
begun in executiQn immediately. YQU will 
nQtice these three QperatiQns fQr IQad, multiply, 
and add fQr iteratiQn 1 are sQmewhat Qverlapped 
with a IQad, multiply, add fQr iteratiQn 2, even 
thQugh, because this is a simple rQutine, bQth 
sets of sequential QperatiQns require the same 
flQating register zerO'. SO' again, this is nQt 
PQQr cQde even thQugh it dQes use Qnly Qne 
register in that particular PQrtiQn. 

There are, hQwever, Qther cases Qf code 
that dO' nQt run quite that well. Figure 4 repre
sents a general range Qf CPU perfQrmance. 

We have fQund in the prQblems we have 
IQQked at that we range from apprQximately 15 
to' 120 times an IBM 7090. We rQse frQm as IQW 
as 15 times 7090, where the 92, and fQr that 
matter any Qther parallel machine, cannQt take 

Figure 2. 
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Figure· 3. 

Figure 4. 

advantage of the parallelism in the processor, 
up to approximately 120 times 7090 for the 
partial differential equations type of jobs, the 
matrix problems, etc., where things proceed in 
a very orderly manner. 

The list processing class here is char
acterized by a dependence on memory access 
time, and as one moves through a threaded list, 
it is impossible to get the data for the next 

piece of information until a previous piece of 
information has been obtained. All of the 
parallelism we can possibly design into a ma
chine does not do much good when prograrn
ming is done in that way. Compile falls at 
about the 80 mark, which is around the middle~ 

, Compilation takes advantage of the VFL and 
other instructions which aid scanning. 

So far, we might say we are looking at 
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the extremely large problems that are found in 
a fairly limited number of installations. We have 
to worry about applying an extremely huge 
capability, or large piece of hardware, to per
form small jobs as well as large ones. When 
we begin to consider this class' of jobs which 
might be characterized by more I/O relative 
to compute than one might like for the high 
performance machine, we can go back to the 

7090 and look at a typical-and I wince a little 
at my choice of the word typical, because I do 
not really think there is one-IBM 7090 small 
job. 

CPU 

In Fig. 5, in fact, there is a fairly well 
coded example of such a problem. Observe the 
overlap of the computer with the CPU time. 
This job prob~bly came into the system com
plete with a program followed by its data, prob-

Figure 5. 

Typical Short Job-
IBM System/360 Model 92 

(Well Organized) 
(Same I/O) 

I Data 
~Move 
I -------------,~ 

CPU 
I Data 

~ 

Total Time = 0.9 Units 
Performance Improved by 10% 

Figure 6. 

CPU 

I 

etc. 
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Figure 7. 

ably Qriginating in cards. It was converted 
off-line to tape, placed on an IBM 7090 on a 
tape containing program and the data with 
about 5 to 10 words per record in the data 
portion of the tape. We essentially have a 
situation where we do. a little computing, and 
before finishing, begin the request for I/O for 
the next bit of computing we want to do,' thus 
overlapping. We have here a minimum start 
time of about seven milliseconds followed by 
about a millisecond of data move before we 
can begin the next piece of computation, and 
we continue in' this particular fashion. 

Let us assume the user who has this 
program and this hardware buys a Model 92 
and uses it exactly the same way. Then we 
have the picture in Fig. 6, where the CPU time 
is shrunk so. that it's not even visible, but the 
I/O time has stayed the same. In that par
ticular problem, we have shown one could run 
at about 10% faster than the 7090. 

This is one way of increasing the amount 
of hardware in the field, but not, apparently, 
a very good way of making many people happy. 
It is necessary to solve these problems differ
ently, and with much different I/O devices. In 
fact, we have proposed a number of alternate 
methods. 

Let's look at a system organization as 
shown in Fig. 7. The key to support on a 92 

is drawn in the center of this picture, which is 
LCS (large capacity storage.) This is a basic 
eight microsecond box of storage in which one 
can provide up to 2 million 64-bit words, on 
the Model 92. The storage shown is surrounded 
by other elements of the computer system, in
cluding CPU, I/O channels, and main working 
storage. The broken vertical line separates 
functionally the things one is planning to do 
when solving a problem in the system. To 
the right, we have the front end which we will 
assign at this point to basic dealings with the 
outside world-referring to the basic input of 
that little program that we were worried about 
earlier, and such. So, we have I/O devices on 
the front end; to the left, or back end, we will 
assign the functions of problem solving. 

I am not necessarily implying a two 
computer or an (n) computer organization. 
Both of the CPU's indicated here may be the 
same computer; there is no necessary reason 
that they be separate. In fact, we allow both 
kinds of system configuration. The actual ad
vantage of one over the other depends on ap
plication, so there isn't a single system which 
is right. There are a number of them, since 
there are a variety of uses they will be put to. 

The characteristics of the CPU relative 
to LCS are identical to the characteristics of 
main working storage and the CPU. That is, 
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the large capacity storage (all 2 million words 
of it) are directly addressable, so that one 
could execute programs out of large capacity 
storage or one could fetch data in the inner loop 
of the matrix multiply out of large capacity 
storage. Clearly there are cases-even with 
the interleaving of large capacity storage since 
it is a basic eight microsecond cycle-where one 
must pay very dearly for using it that way for / 

the access time. We have found, however, espe
cially in the list processing end of that perform
ance chart, that the availability of extremely 
large storage is as important to system per
formance as is the speed at which things can be 
put in and out of that storage. 

In addition, the channels also have inter
face with LCS identical to the interface of the 
channels to main working s,torage. Thus, you 

Figure 8. 

Figure 9. 
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Figure 10. 

can move from I/O devices directly into LCS 
or directly into the main working memory and 
from memory back to I/O devices through the 
channels. 

If we get back to that short job, let's 
envision that through this functional part of 
the system w~ place that job, its progrgm, and 
all of the data in an extremely small corner of 
LCS. In solving the job, we then treat LCS by 
the back end CPU just like the tape device 
that the" 7090 programmer was moving when 
he wrote his code. With all of the program
ming data here, we first move the program to 
main working storage, then operate identically 
to the mode we had for the IBM 7090, pulling 
the 5- or 10-word records of LCS into the main 
storage. 

In the same operation, but using the 
storage channel whi~h was announced with the 
Model 92, we can have rapid sequential trans
fers and somewhat non.;,sequential transfers of 
information from o1)e area of storage to 
another. Transfers can be made ~n the storage 
channel for LCS to main storage and the re
verse, and information can be moved between 
areas of the same storage. 

A study of the characteristics of that 
storage channel reveal that it has some other 
interesting aspects. First, it operates like an 
I/O channel in that it is put into action with 

a start I/O operation. It proceeds to the con
clusion of its particular operation independent 
of the CPU, save for the very small amount of 
memory interference, and causes an interrupt 
at the completion of the transfer. This par
ticular transfer at a maximum rate of one 
microsecond per 64-bit word is accomplished 
just like an I/O transfer. Further, as illus
trated in Fig. 8, there isa scatter-gather capa
bility such that in the· scatter mode one can go 
"from sequential words in one area of storage 
to non-sequential words in another area of stor
age separated by . a· constant delta specified in 
the operation by the programmer. The opposite 
or gather case would be the ·transfer in this 
direction in which the delta quantity is applied 
to the source rather than the sync. An inter
esting aspect of this is that the matrix trans
pose can, in effect, be accomplished on the fly 
while bringing the matrix in from large ca
pacity . storage. 

We can compare I/O moved this way 
with the tape device we had on the 7090. Note 
in Fig. 9 the seven millisecond start time, which 
is the access time of the tape, and one milli
second data move compared, for LCS, with a 
four microsecond analogous start time or access 
time and, with only four-way interleaving, a 
20 microsecond transfer time, or a ratio of 333 
times that on the 7090. In order to accomplish 
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Figure 11. 

Figure 12. 

this, the information must be gotten into LeS 
initially and, alternately, back out. Hence, the 
system must be expanded from that point, and 
there are several interesting phenomena that 
occur when this is done. 

First, if we take a very simple approach, 
the original source of information has to be 
expanded considerably, i.e., in terms of number 

of card readers and such, over what the 7090 
needs for a basic support. Next, to avoid mak
ing the numbers in this expansion become ridic
ulously high, new approaches to techniques of 
solving problems are also required. Let us just 
look at a few possible further system organiza
tions. If we start in a circle (Fig. 10) with 
what has been described in the kite diagram as 



the Model 92 main system, then we can begin 
to add some of the things we need in support 
of this system. 

As illustrated in Fig. 11, approximately 
60 printers are required in order to handle the 
output information. Assuming for the moment 
that this is acceptable to "everyone and proceed
ing with the design of the system, one then adds 
from here. Of course a warehouse will be needed 
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to store the paper that is going to input to the 
printer (Fig. 12). Since warehouses are easy 
to build, this step is acceptable and the process 
can go on. Then the paper itself is needed 
(Fig. 13)-and this step might result in a 
lumberjack population increase of about 200%. 
As it has already been decided to build one 
warehouse, it will not be particularly difficult 
to build the second warehouse for the output 

Figure 13. 

Figure 14. 
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Figure 15. 

Figure 16. 

paper (Fig. 14.). But, what is most disturbing 
in this situation is what happens when the 
programmer enters the picture (Fig. 15.). He 
first examines this paper. An incinerator, for 
him to burn it, is added, since he doesn't use 
it anyway, and he further makes the situation 
worse by being very nasty . and re-inputting 
another job or that particular job which hasn't 
been debugged yet anyway. Things get. even 

worse, because the net effect of that program
mer-and only one is being considel'ed here
continues to build up the cycle. 

We are providing the equipment and a 
possible solution to this probleII.1. The main 

. piece . of hardware that can help here is the 
IBM Datacell which will store 400 million char
acters of information in a tape strip fashion 
with individual portions, actually 40 million 



per portion, removable and storable on a shelf. 
A reasonable mode of operation for a system 
of this sort to avoid the massive print require
ments is to store dumps on the data cell (Fig. 
16). Rather than dumping memory dumps to 
a printer for the programmer, which usually 
represents most of the print load, we place it 
in the data cell. We then send to the pr()gram
mer the summary information that he specifi
cally requires with either very conventional 
devices such as on line printers or tapes that 
will be printed off line, or more sophisticated 
devices such as optical displays and very fancy 
terminals. This is to know whether the run 
is go or no go. 

Re then has at his disposal in the data 
cell the detailed information which he can re
quest, let us say through the front end portion 
of the system. Again, I want to emphasize 
that the front end is not necessarily a separate 
processor; this concept is not particularly new, 
nor is it complete. There is a great deal of 
work to be done before we can solve all of the 
associa ted programming problems as well as 
the language problems. We have the hardware 
and a very good start on the programming, but 
as hardware designers we recognize that we 
are completely at the mercy of the program
mers, both systems and users. 

As we proceed down our design path, 
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our next question is how good is the system or 
any other that we might build in a real systems 
sense. This is the subject of system evalua
tion. When starting out to evaluate systems, 
I think, historically we have looked simply 
perhaps at the floating multiply time or the 
floating add time, which if we did here, would 
look very fine for the Model 92, but it is not a 
true measure of system performance. As we 
have shown, it is not even a true measure of 
CPU performance. 

Togo further, I think we have passed a 
phase in which we have looked at instruc
tion _ mixes. To calculate average instruction 
times, we have reams of data on 7090, etc., as 
to what instructions we execute and how often. 
The theory then is that one can somehow relate 
that instruction mix to another machine, 
perhaps get some alternate mix number which 
is the millions of instructions per second and 
relates the power of one machine to another. 

Not all instructions in all machines ac
complish the same actual quantity of useful 
work, however. The pure use of instruction 
mixes without very sophisticated translations 
from one machine to another is completely 
useless. The mere quoting of instruction rates 
is not very exciting because we can get factors 
of three or four differences in performance 
between machines that have the same identical 

Figure 17. 
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Figure 18. 

mix rates. Therefore, we do not intend to con
tinue on this particular path. An example here 
was the matrix' multiply loop which took only 
four instructions on the Model 92. With the 
7090 this would be perhaps twice as many in
structions. There is no simple instruction ratio 
that can tell you anything about performance. 
Instead, there is the rate at which you can 
actually solve problems in a system environ
ment. This is a meaningful number. 

This is what we have a fairly elaborate 
scheme for doing. As it happens here, of 
course, there are many ways of looking at a 
problem. One way that we propose is again 
through the experience with a 7090 ,class of 
system. We can look at problems already 
solved-although this is not an ~deal procedure 
because we are talking about problems of the 
past, not the future-and the way they were 
solved on a 7090. In Fig. 17, FORTRAN is sepa
rated from the machine language, since it is 
somewhat machine independent. 

Looking mainly at problems run on a 
7090 now and in the past, we have built a 
hardware device, called POEM, which we at
tached to the 7090 giving us a dynamic trace. 
of the actual system performance on a prob
lem for the 7090. Let us look at some of the 
characteristics of POEM in Fig. 18. It gives us 
a. dynamic 7090 profile; it attaches into the 

hardware monitor interface on IBM 7090/94 
type equipment and produces a self-contained 
tape record of what went on in the IBM 7090 
during the solution of the problem. For each 
individual portion of CPU time and each in
dividual I/O time there is a specification on the 
tape. There are further dependencies shown 
here as evidenced by the dotted lines that dem
onstrate that a particular I/O action did not 
proceed on the 7090 until the CPU had gotten 
so far. I have shown two channels here, since 
this is fairly normal. 

We then get a very long tape with in
formation of this sort on it related purely to 
the 7090. That information as such is not 
directly usable to analyze the performance of 
any other system other than the 7090, for 
which we have many numbers, anyway. 

We have developed a set of conversion 
programs called POEM conversion programs 
that simplify and purify the picture that POEM 
produces. It does not end up in a completely 
pure picture but a less impure picture than it 
started with. Let us look at Fig. 19 and see 
what the POEM conversion program does. It 
simply makes an attempt to subt~act from the 
CPU portion of the 7090 time the 10CS over
head, since we are not interested in that 10CS. 
It subtracts from the compute time that amount 
which was added to the pure compute time be-



cause of interference by I/O devices in memory 
with the computation. Again, this tends to 
shrink the 90 CPU time and convert the I/O 
time as indicated on the POEM tape to a trans
fer of (n) characters, for instance, rather than 
time to transfer the characters. This makes 
this particular line device independent so that 
when we look at that particular tape in respect 
to a 360 system ~uch as a 92, we can plug in 
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lots of different devices and experiment as to 
just how things go. 

The net intent here is to provide through 
the POEM conversion program an input to 
what we call a COMPASS simulator. We can 
then put the information on the work that was 
done on a 7090 through this path to a systems 
simulator for System/360 including the 92 
(Fig. 20). We set as parameters to the simu-

Figure 19. 

Figure 20. 
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lator the specific hardware configuration that 
we are currently looking at in the simulation 
run. We allow all of the flexibility in the simu
lation that is allowed in the hardware connec
tions themselves, i.e., in all of the shared mem
ories between CPU's, shared I/O devices on 
channels, pooled devices, etc. 

We also specify -and there is another 
simulator involved here-the programming sys
tems parameters such as compile speeds, algo
rithms employed in the control section, etc. 
And we get out hopefully accurate information 
on thruput which is a little. bit of an un
definable number, but represents essentially the 
amount of work done in a given time, turn 
around time from input of the job to output 
conclusion, then of course both of these in, 
statistical form as well as individual form. It 
will also indicate equipment utilizations and 
queue lengths: how much of the time of the 
CPU will be actually used, how much of the 
time with each I/O device, and so on. It will 
indicate queue lengths and queue times on each 
device. ' 

What we have done with this program 
to calibrate it is to take that complete path 
from the 7090 and to plug in hardware con
figuration parameters such that we make the 
hardware we are looking at look exactly like a 
7090. Now, we have run problems on the 7090, 

then passed them through our set of programs 
with th,e hope that we will get a number simu
lated which is identical to what we measured 
with a stop watch on the 7090. In fact, on the 
jobs we have done in this way we've been within 
8% of being identical in simulated time to 7090. 

The basic use of this is to explore various 
hardware and software configurations for ma
chines like the 92 so that we can hope to 
optimize them. There are other ways of getting 
information into the simulator and Fig. 21 es
sentially represents a fairly complete picture 
of some of the other things we are doing to 
evaluate systems. Among them are counters, 
one of which is a modification of the direct 
couple system that we have in Poughkeepsie 
available to us which allows a front end IBM 
7044 (instead of oper~ting as a direct couple 
system) simply to monitor the back end IBM 
7094 operating in stand alone fashion. Then 
we just use the 7044 as a big counter and get 
very elaborate statistics on instructions proc
essed in the 7094. We have a program called 
the MAP timer which can take a 7090 instruc
tion mix and convert it through a comparison 
to 20 other programs we hand-coded to a 
System/360. 

There is some meaning to instruction 
mixes if you have a reasonable conversion pro
cedure. In MAP, a conversion procedure ac-

Figure· 21. 



tually works on a linear combination principle 
of the instruction mixes and the performances, 
etc. From this program we can get for things 
run on the 7090 actual CPU times for 360 
machines and instruction mixes which we can 
input after some hand massaging to the system 
simulator compass. 

We also can go through a simi!ar pass 
on 7030 where we have a fairly elaborate in
struction counter device attached to give us 
these instruction counts. The original scheme 
described has in it a number of constraints on 
the 7090 (Fig. 21) that we are measuring; but 
they may not necessarily be true constraints on 
the system under evaluation. 

For instance, the fact that you've got 
two channels means you have only two channel 
actions going on at once, so there are artificial 
dependencies there. What we will get out of 
the final information here is a lower limit on 
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the 360 performance, although we're not too 
concerned with this fact since we feel that the 
relative value of different systems is still quite 
accurate and not necessarily lower limit. 

As we move to the right and do a little 
more work we are getting more accurate in
formation for the 360 system, such as the 
Model 92. Now as we go clear over to where 
the problem is coded and perhaps run it on 
some models of 360, or simulate it, then you 
have the completely accurate time. However, 
you have also done a lot more work since you 
must code the problem. The answer, then, to 
what the system performance is, is that there 
is no single number; it is going to depend on 
what is done with the system, but it is our 
design obj ective to handle large problems. We 
also intend to handle lots of small problems, 
and it is our design principle to handle a com
bination of the two. 
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INTRODUCTION 

Although the purpose of this paper is to 
describe the Philco Advanced System and the 
design and application considerations that gave 
rise to it, it will be necessary to review in some 
detail the Philco 213 System. The two systems 
are quite similar in concept and organization, 
and differ only in three respects: 

1. Speed-The 213 System operates in the 
vicinity of one million single-address 
instructions per second for each of one 
to four processors; the objective for the 
Advanced System will be at least four 
times that speed. 

2. Technology-The 213 uses present-pro
duction discrete-component circuits, and 
ferrite cores for both main memory and 
bulk memory; the Advanced System will 
use integrated circuits, thin-film main 
memory, and ferrite core bulk memory. 

3. Vocabulary and Unit Organization-
The Advanced System will be totally up
ward-program-compatible from the 213, 
but will contain additional facilities both 
in machine language and in internal or
ganization of system units. 

In order to explain the reasoning that 
has led to many of the new characteristics of 
these systems, this paper will review, at an 
elementary level, the characteristics of, and 
several problems associated with, multipro
gramming and multiprocessing. 
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1. OBJECTIVES 

This section discusses, not in any order 
of importance or urgency, the objectives Philco 
seeks in defining the Advanced System to fol
low the recently announced 213. 

Definitions: Two terms that will be ex
tensively used in this paper are defined as 
follows: 

• Multiprogramming is the time-sharing 
of processor(s) by a number of not nec
essarily related programs simultaneously 
present in main memory; the number of 
programs may be larger than the num
ber of processors. 

• Multiprocessing is the use of two or 
more self-sufficient processor units with 
a single, logically continuous and jointly 
addressable main memory. 

1.1 Numeric Computation Power Growth 

The demand continues for greater and 
greater speed and flexibility in performance of 
numerical calculations. Experience with lower
powered computers has given rise to descrip
tions of large physical problems that justify 
more detailed solutions of more realistic numer
ical models, which are potentially capable of 
saving substantial calendar time and of pro
ducing more accurate physical analyses and 
better engineering designs. 

With the advent of general-purpose 
"computational colloquy" time-sharing systems 
for large machines, it seems clear that the great 
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efficiency, flexibility, and generality of even 
higher-powered hardware and software can be 
applied to small problems conveniently and 
eConomically. The awesome reserve power of 
the multimillion-operations-per-second numeric 
engine is on reserve as required. 

1.2 Non-Numeric Computation Power Growth 

Even in scientific laboratories devoted to 
large numerical calculations, the workload -of 
processing non-numeric tasks (program com .. 
pilation, natural language analysis, complex 
problems in mathematical logic) grows steadily 
and in many installations has already -pre
empted several hours' machine time per day. 
This work is characterized by a relatively small 
number of macro-operations that are compiled 
into many programs, are composed of a rela
tively large amount of character moving and 
testing, and are executed with high frequency. 

The 213 adds to the 212's vocabulary a 
number of character-string testing and manipu
lating hardware macro-commands, which pro
vide modest improvement in program space 
and dramatic improvement (in significant cases, 
up to 40:1) * in speed of execution of some im
portant functions. The Advanced Syste~ will 
extend the 213's vocabulary as indicated by 
analysis of actual 213 program workloads. 

1.3 Computation Economy Improvement 

The 2101 offered a few-hundred-percent 
increase in computation capability, as compared 
with the highest-powered and most economical 
vacuum-tube computers of the preceding gen
eration, at an operating cost increase on the 
order of only 10%. The 211 doubled the 210's 
capability at another 10 % cost increase. The 
212 offered a fivefold increase in power over the 
211, at only another 20% cost. With each of 
these machines, problems that had been handled 
on earlier computers could be solved at substan
tial cost reduction per unit workload. In addi
tion, the effective buffering of data flow between 
main magnetic -core memory and magnetic tape 
used as auxiliary memory permitted efficient 

* As an example, the 213's Move-Break instruction 
performs, in about 15 microseconds for the first 8 char
acters and 2.4 microseconds per 8 additional characters, 
logical operations that require about 380 microseconds 
per 8 characters on the 212. This instruction will be 
explained in Section 3;2. 

solution of large problems; in the earlier ma
chines, such problems would have been Un
reasonably inefficient unless limited in size by' 
core memory . 

. The 213 provides new kinds of problem
solution power and flexibility, in addition to 
further reduction in the cost per unit of com
putation workload. 

The Advanced System will continue the 
trend, with a capacity increase of at least a 
decade, at a much smaller increase in total 
system operating cost. 

Highly generalized multiprogramming 
capability has, within the past two years, come 
to be recognized as a potentially valuable tool 
for solving a frustrating problem, viz., the- low 
effective speeds of large computers on existing 
workloads as compared to the instantaneous or 
internal speeds of which the machines are 
capable. Even the most highly refined types 
of programs seldom utilize more than 70 % of 
system capability; i.e., the central processor is 
computing effectively less than 70 % of its ob
served productive time. Careful observations 
on large working systems by sophisticated 
users have disclosed effective utilization of CP 
time, averaged over the computing day, between 
30% and 50%; hence, a throughput improve
ment by a factor of 2 or more may be available 
through highly efficient utilization techniques 
without increasing processor internal speed. 

For time-sharing users, the continuing 
improvement in unit economy of computation 
service from super-powered computing systems 
is coupled with another kind of computation 
service economy: while each user may be com
mitted only to input/output facilities as needed 
and to average workload cost, he has available 
upon demand the huge power of the high- -
powered system to satisfy his peak require
ments. In many cases, this could avoid the 
need for a user with sharply peaked workload 
to acquire peak-capacity equipment; in others, 
it could permit the economy of specifying an 
occasional large problem in optimal fashion 
rather than as constrained by small- or medium
scale on-site equipment. 

1.4 Turnaround Time Improvement 

The values and the problems associated 
with improvement of service delay for conven
tional computation jobs in a batch-monitor en-



vironment have been discussed at length in a 
previous paper.s 

A detailed report on an actual installa
tion workload, and its service delays before. and 
after a tape-to-tape monitor system (with off
line device operation) was replaced by an all-on
line dynamic-rescheduling system, was given 
by Kory and Berning.4 This system created 
queues that were either at least fifteen minutes 
duration or comprised at least five jobs, select
ing from among queues not yet executed by 
consideration of priority class, arrival sequence, 
estimated running time, and estimated output 
volume, qualifying run sequence by checking 
available tape units and tape requirements. 

Kory and Berning observed an average 
reduction in turnaround time from 4.1 hours to 
1.6 hours. (It may be noted that this service 
improvement in a short queue rescheduling sys
temwas not, contrary to the prediction by Pat.,. 
rick,6 achieved at the cost of lower system 
efficiency:) Kory and Berning observed an aver
age reduction of setup time from 1.3 to 0.5 
minutes per job, resulting in an overall reduc
tion in machine time required to handle the· 
same volume of workload. 

With regard to I/O tanking space, a sim
ulation of their proposed system prior to its 
installation, using previously-recorded dual-
7090 workload data, predicted that " ... the 
maximum backlog (cards plus print) on disc 
would not exceed 2.4 million (six-character) 
words." This conclusion supports reasonably 
well the original design decision by Lavine" 
(discussed in Section 5) for the Philco monitor 
212SYS, to allow a minimum I/O tanking space 
of 1.5 million (eight-character) words. 

We found the Kory-Berning paper to be 
particularly significant in that it seems to be 
the first occurrenC8 in generally available pub
lished form of a before-and-after study of a 
dynamic rescheduling system installation, sup
ported by meaningful empirical data taken 
from comprehensive records of an actual work
load. 

It demonstrated neatly that significant 
improvement in both turnaround time and sys
tem efficiency can be achieved at the same time 
merely by optimizing over a few workload pa
rameters the sequence in which short job queues 
are executed. We feel that the results are con-
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servative, since none of the compilers were re
written to utilize disc files. 

The proposed system will extend the 
method by optimizing run sequence over more 
parameters and by subdividing unit runs two 
levels deeper, to segments of individual jobs. 
By means of multiprogramming, the system will 
switch a processor to another task when one 
job sequence encounters a delay such as an 
I/O request or in response to a priority change. 
Not only will system efficiency be considerably 
higher, but the effectiveness of job segment run 
sequence optimization should be improved sub
stantially. Thus this system should attain an 
even greater improvement in turnaround time, 
as compared with a conventional modern tape
to-tape monitor, than have the first-generation 
dynamic reschedulers. 

1.5 Computational Colloquy by Time-Sharing 
from Multiple Consoles 

Bauer proposed a concept that has re
ceived wide acceptance: computer service should 
be available as a public utility, in the image of 
electric and telephone service, with each user 
able to command almost arbitrary amounts of 
service. Bauer perceived that it would be neces
sary to provide for automatic assignment, by a 
powerful executive system, of memory space 
and of a multiplicity of central processors. The 
central theme of the present paper seems almost 
to be a specific answer to Bauer's challenge of 
six years ago. 

It has been demonstrated at several 
pioneer installations, including Massachusetts 
Institute of Technology, Carnegie Institute of 
Technology, RAND Corporation, and System 
Development Corporation, that prompt-response 
dialogue between several concurrent users and 
a single computing system can result in sharp 
increases in speed of program checkout and in 
progress rate on research projects. Such man
machine comm unica tion also makes practicable 
concurrent access to large files by many re
questors for very small data manipulation tasks, 
which may be coordinated with generalized file 
maintenance. The status of the MIT and SDC 
projects as of mid-1964 has been summarized 
by Fano1 and Schwartz8 • 

This concept of computer utilization is 
different in principle from the now-conventional 
automatic monitoring of "jobs" as submitted to 
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a modern computing center. Instead of an en
tire computer request-for-service being pre
pared in advance and submitted as a unit, a 
colloquial user communicates with the system 
through a two-way console, entering ele'ments 
of his request in serial fashion and with system 
response possible at many points during the 
communication. For instance, a small program 
could be keyed into a console in source language, 
one character at a time; compilation could be 
requested from the console; compilation diag
nostic comments may be presented to the re
questor via the console; execution may be 
requested; results may be presented ; another 
program may be requested to be brought into 
active status from quiescent status in on-line 
mass memory; conventional debugging opera
tions may be requested and results observed 
either in whole or in selected parts; all by user 
activation of a keyboard or other input means 
and by system response to the user through 
typeout or other visual display. 

The distinguishing difference between 
the two modes of machine use is that in "job" 
mode, a machine run is prepared and submitted 
as a single entity, and results are returned in a 
single printed report after run completion; in 
"colloquy" mode, preparation, request, and re
turn of results occur as a continuing chain of 
events with elements of each interspersed 
among the others without any predetermined 
sequence.2 

This type of operation becomes particu
larly effective if a high-powered hardware-soft
ware complex is accessible through a user's 
console. Since much of the user's time is spent 
in manual or mental operations when accessing 
a fast machine for short bursts of computation 
service, it is desirable to serialize or "time
share" the central system. 

Early time-sharing experiments were 
performed using multiprogramming techniques 
to permit a few users to memory-space-share 
as well as to time-share the system. Hardware 
then available, was inadequate to permit ac
commodation of a large number of users with 
reasonable efficiency and response speed. The 
first relatively large-scale experiment2 made 
use of a brute-force scheme of memory 
swapping from on-line mass memory.3 It 
achieved reasonable system efficiency, with frac
tional second keyboard response and fractional 

minute service request response, for up to a 
few dozen concurrent "foreground" colloquy 
users, with any available central machine time 
made available to service a "background" job
mode workload. 

At the present time, several time-sharing 
systems are being planned, to accommodate 
from a few dozen to a few hundred concurrent 
on-line users. Different approaches are being 
taken to several aspects of system planning: 
some provide console multiplexing under direct 
control of central processor(s), while others 
use auxiliary communication processors. Some 
use dialed-up connections from a large number 
of remote locations, permitting only a fraction 
of the stations to be on line at a time; others 
have all stations connected full-time. Some 
retain active information in core memory and 
attempt to minimize communication with user 
files in disc or drum; others process all informa
tion from the rotating machinery, using core 
memory primarily as a buffer, as regards proc
essing of user files. 

The 213' and Advanced Systems have 
adequate flexibility and power to handle con
ventional I/O devices as well as multiple remote 
keyboards directly from the central proces
sor(s), although present plans call for use of 
one or two Philco Type 170 Communications 
Processors to handle the remotes. 

1.6 Full Generality 

Of central importance is that the new 
system must be applicable to all classes of com
putation work for which conventional serial 
single-processor computers have become useful. 
Its utility must not be dependent upon develop
ment of new mathematical or programming 
methods. 

One way to meet these requirements, 
and the way chosen for these machines, is to 
have a processor execute a program segment 
seriatim in the manner of a classical Von N eu
mann computer; i.e., instructions are executed 
serially and in an order that is completely de
pendent upon each program 'and the data sup
plied to it. 

1.7 Efficiency with Procedural Languages 

For predictable system economy it is im
portant that the machines be capable of per
forming calculations by executing object lan-



guage programs compiled from source language 
programs written in existing procedural lan
guages at "full efficiency," i.e., it must be fea
sible to construct fully automatic compilers that 
produce object coding comparable in compact
ness and in execution speed to hand-optimized 
machine language coding. 

We have rejected, on the basis of inade
quate generality, schemes that achieve full 
speedup only for short instruction loops, requir
ing that those loops be executed from a finite
length string of special registers. 

1.8 Graceful Degradation 

A large system requirement that has 
been given close attention in the past by mili
tary users is now assuming significance in the 
plans of advanced engineering-scientific and 
commercial computer users; the system should 
not go out of service in the event of failure of 
any unit, even a central processor. A fault 
indication should evoke automatic test proce
dures. If found defective, a unit should be 
withdrawn from service and the system should 
continue in operation with reduced capacity. 
The executive function should not assign 
further tasks to the defective unit until that 
unit has been returned to the system by main
tenance personnel and has been found, by tests 
performed under executive control, to be fully 
operational. 

Such testing, withdrawal of equipment 
from assignment to system tasks, proof-testing 
after repair, and re-integration of equipment 
into the workload pattern, ideally should be per
formed without manual intervention. 

This resilient performance under equip
ment fault conditions, sometimes called "crip
pled mode capability," requires that the system 
be highly modular in organization and opera
tion and that more than the operational mini
mum number of each type of unit be present. 
There must be at least two central processor 
units that must operate cooperatively and anon
ymously. Memory must be organized so that 
at least one major unit of main memory and 
one of mass memory may be withdrawn from 
service while the operation continues. Similarly, 
the system must be capable of continuing oper
ation with at least one of each type of input/ 
output device out of service. Finally, at once 
the most difficult and the most important con-
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sideration is that switching redundancy must 
be built into the system so that no single fault, 
however severe, can prevent a successful recon
figuring under program control into an opera
tional crippled-mode system. 

In view of its potential importance in 
large-scale computing systems of all types, the 
concept of crippled-mode operation has received 
surprisingly little attention in recent litera
ture. The concept was considered briefly by 
Shafritz and others10 in the context of a discus
sion of stored - program - computer - controlled 
communication switching systems. 

A related but separate consideration, 
which becomes significant in the case of a sys
tem fault (such as loss of an area of memory 
containing active-status-list information) that 
cripples the executive function itself, is that of 
system rollback and restart. 

In order to guarantee restart capability 
after an unscheduled and perhaps disastrous 
interruption of operation, it is desirable to per
form periodically a total dump of main fast 
memory, critical tables in main slow memory, 
and all processor registers. I t is also necessary 
to enforce system conventions that avoid the 
possibility of irrecoverable faults; thus, for 
example, a previous-state copy of a file being 
updated must be preserved, together with 
source data for the updating, until a later 
reserve-master file has been confirmed as cor
rect and has been placed in protected storage. 

In the past, system dumps to conven
tional types of tape or disc equipment have 
been inordinately expensive because of the ex
cessive time required. The Advanced System 
will use the High-Speed Drum for system 
dumps, requiring only one drum revolution 
(just under 35 milliseconds) per 32,768 words 
of fast memory; thus, a typical 131K system 
with up to four processors could be dumped in 
less than 1/7 second, and dumping once per 
minute would consume less than 1/4% of sys
tem time. (The Executive will minimize col
lateral time losses by taking such steps as 
choosing, if possible, dump times to occur when 
no I/O is waiting.) 

In both the 213 and the Advanced Sys
tem, Memory Control is decentralized for two 
reasons: 

a) Sections of Memory Control are placed in 
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clO'se prO'ximity to' prO'cessO'rs in O'rder to' 
minimize cable delays, especially fO'r those 
signals requiring response and hence sub
ject to' rO'und-trip delays. 

b) DecentralizatiO'n limits the memO'ry area 
that can be disabled by any O'ne fault, 
even in memO'ry switching; in a tWO'
processO'r 213 system with tO'tal memory 
size an integral PO'wer O'f 2, fO'r example, 
nO' more than half O'f memO'ry can be dis
abled by any O'ne fault, including lO'SS O'f 
memory switching O'r loss O'f PO'wer supply 
to any unit. 

One O'f the mO'st comprehensive systems 
O'f the resilient type that has been specified to' 
date is the secO'nd phase of the AUTODIN 
(AUTOmatic DIgital NetwO'rk) System. Philco 
is now designing this system15 and is studying 
the applicability O'f the cO'ncept to' a broad 
range O'f cO'mputer systems. 

The Advanced Syste-m is intended to' be 
capable O'f O'perating as O'utlined abO've, with 
hands-off system reSPO'nse to' unit-disabling 
faults by cO'nversion under program cO'ntrO'I to 
crippled-mode O'peratiO'n and with limited lO'SS 
of infO'rmation even under loss O'f current ex
ecu ti ve data. 

1.9 NO'ReprO'gramming 

A frequent gO'al in the development O'f 
cO'mputers has been that prO'grams O'peratiO'nal 
O'n O'ne type O'f machine- shall O'perate, withO'ut 
any conversiO'n effO'rt, O'n a later type O'f 
machine. 

This absO'lute upward cO'mpatibility was 
achieved literally with the Philco 211 fO'llO'wing 
the 210, and again with the 212 fO'llO'wing the 
211. 212 prO'grams will be O'peratiO'nal withO'ut 
change O'n the 213, and 213 prO'grams on the 
Advanced System. 

In each case where a prO'gram is to be 
O'perated in a machine O'ther than that fO'r 
which written, not O'nly the hardware envirO'n
ment but the sO'ftware envirO'nment must be 
cO'mpatible. Thus either the same executive
mO'nitO'r system must be used in both machines, 
O'r apprO'priate steps must be taken to' adapt to' 
the secO'nd executive the prO'gram under con
sideratiO'n and its system and' library rO'utine 
calls. 

In O'rder fO'r upward compatibility for 

prO'grams to be realized, it is necessary that 
a new machine nO't O'nly IO'gically cO'ntain the 
previO'us machine, but that all I/O O'perations 
be absO'lutely program-compatible. (It is nO't 
necessary, except fO'r file-handling cO'nvenience, 
that they be device-compatible. Thus PhilcO' 
90K ch/s and 240K ch/s magnetic tape trans
ports use different physical tape, and PhilcO' 
120K ch/s IBM-cO'mpatible magnetic tape 
transports use not only a different type O'f 
tape, but a different reel O'f a different width; 
yet the same program will O'perate without any 
change O'n Philco 212 O'r 213 cO'mputers using 
any O'f the three types O'f transPO'rts with ap
prO'priate tape, provided the prO'grams use the 
fixed blO'ck size (1024 characters) that is re
quired fO'r the 90K ch/s transports, O'r O'n either 
the 240K ch/s or the 120K ch/s transPO'rts with 
any chO'sen blO'ck size.) 

A plan nO'w under study in this O'rganiza
tion WO'uid O'bviate O'r greatly reduce the magni
tude O'f prO'gram adaptation to' a new executive. 
This plan WO'uid place the O'riginal executive 
system under cO'ntrO'I O'f the new executive, 
which WO'uld utilize the O'riginal library and 
system routines. If successful, this will permit 
212SYS .and prO'grams running under it to' O'per
ate as a single jO'b under cO'ntrO'I O'f 213SYS, a 
new executive with multiprO'gramming and 
multiprO'cessing capability. 

1.10 "CO'mmO'n-Access" to' RO'utines and Data 

This O'bjective, and our means fO'r attain
ing it, are discussed in SectiO'ns 4.1, 4.2, and 
4.3 belO'w. 

2. SYSTEM PLANNING FOR MULTIPRO
GRAMMING AND MULTIPROCESSING 

2.1 IntrO'ductO'ry Remarks O'n Multiprogram
ming 

In the cO'ntext O'f the present paper, the 
primary purpO'se O'f multiprO'gramming is to' 
keep the central processO'r O'r processO'rs oc
cupied with useful wO'rk as nearly cO'ntinuO'usly 
as possible. 

ThO'ughtful users realize that a typical 
cO'mputer jO'b includes substantial central proc
essO'r wait time. If input/O'utput is nO't well
bufferred, as is surprisingly often the case, 
IO'st mainframe time may even be visually 
nO'ticeable (at a maintenance cO'nsO'le) ; such a 



circumstance in a high-powered system is, and 
rightfully so, abhorrent to the cost-conscious 
user. The magnitude of central processor time -
wasted through I/O waiting alone may, in even 
a well-managed installation~ exceed 50% for 
significant periods of time. Hardware micro
timing analysis of operational environments by 
several computer manufacturers on behalf of 
individual customers during the past two years 
has provided (privately) considerable evidence 
on this topic. 

Even programs of the kinds that typ
ically are tuned to a high order of performance 
encounter significant unavoidable delays. Ex
amples of such programs are sorts and matrix 
manipulations. 

After an initial- startup delay to load 
memory with data to get the first string gen
eration process started, internal sorting typ
ically uses all available processor time. The 
merge phase, however, which takes most of the 
total time, is typically severely limited by 
input/output speed. If there are only a limited 
number of channels; if the system has a fixed 
relationship between particular I/O devices 
such as tape units and particular channel num
bers; or if the tape units cannot read back
ward, the processor idles a substantial part of 
the time. Thirty per cent or more lost time 
averaged over an entire sort-merge would not 
be unusual. 

In matrix operations, startup delays oc
cur as in sorts. For large problems additional 
inefficiencies may exist in that manipUlations are 
too complex to be handled with real efficiency 
on the number of tape units available, or it 
may not be appropriate to adjust the balance 
between compute time and tape time to use the 
CP at full efficiency. Again, 30 % or more lost 
time is not unusual. 

When effective processor utilization is 
considered as averaged over entire workloads, 
the situation looks considerably worse. As re
marked in Section 1.3 above,during the past 
we have learned of careful timing results show
ing that indicated net operational time of cen
tral processors lower than 30 '10 of total "pro
ductive" time was not unusual; net CP time was 
less than 50 % in all of the test results we have 
seen. 

Use of random-block-addressable mass 
memory instead of tape, and addition of large-
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capaci ty Slow Core memory, can lessen those 
difficulties associated with the serial-access 
nature of magnetic tape. 

If system net CP time of 30 % can be 
raised to, say 75%, by multiprogramming at an 
added system time cost of no more than 15 % 
of total processor time, system throughput for 
a given processor speed can be doubled. 

Of course this improvement in duty 
factor of the CP does not come free of dollar 
cost. The most obvious additional hardware 
cost is for more memory; in the past large 
programs tended to be planned around the 
size of usable main memory space, and pro
grams that leave little available memory space 
for other programs will vitiate a multiprogram
ming system. 

There are several conflicting factors at 
work affecting the memory size that is optimal 
for a given system in its workload environ
ment: 

a) Several techniques discussed in this 
paper increase the effectiveness of main 
memory utilization in a system. 

b) The growing power of mass memory 
facilities; their effective use instead of 
tape for system service functions not to 
be kept in main memory; and the fact 
that multiprogramming permits reload
ing of service routines to be overlapped 
effectively with other work, now permit 
some functions that have typically been 
retained in "hard core"* to be brought 
in as required from mass memory. 

c) The increasingly complex nature of ex
ecutive systems and the many addi
tional buffer spaces needed for I/O in 
all-devices-on-line systems are now, de
spite factors a) and b), inexorably 
driving upward the amount of memory 
space needed for executive functions. 

d) The increasing use of mathematical and 
data processing techniques that use 
(very effectively) large memory space, 
and the solution of more and more 
complex (i.e., large) problems, are 
tending to increase the memory space 
demands of important programs. 

* Memory space permanently assigned to executive 
functions. 
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e) Multiprogramming systems, in order 
to perform effectively their task of im
proving processor utilization, need con
current access to many cohabiting jobs 
in main memory. 

f) The cost of high-performance memory 
is decreasing relative to the cost of 
processors and other parts of large sys
tems. 

Factors a) and b) tend to reduce main 
memory space demands; factors c), d), e), and 
f) tend to make larger main memories desirable 
and practicable. We feel that the net result of 
these several factors will be substantial increase 
in the typical size of memory in large multi
programmed systems, whether single or mul
tiple processors are used. While this will in
crease the total typical cost per system, the 
net effect will be to decrease the unit cost of 
computation. 

So much for the motivation for multi
programming; it is largely economic in nature, 
as what significant considerations· in heavy
computing-machinery operations are not? 
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Let us' now examine some aspects of 
multiprogramming operation of a system. 

Figure 1 shows a memory map of an 
elementary multiprogramming system shortly 
after startup. Initial core loads for the first 
4 jobs have been loaded and Job 2 is active; 
Le., the processor is at the instant of the picture 
executing Job 2. 

As in conventional one-job-at-a-time 
processing, the processor spends some of its 
time as needed in the executive program that 
provides for system control and job sequencing. 

When Job 2 encounters its first delay, or 
when another consideration such as priority 
causes another job to get precedence, the proc
essor switches to a job selected by the executive. 

A frequently-used signal for the proces
sor to check job segment sequence is the initia
tion of any input/output order. 

Figure 2 shows five subsequent memory 
maps of this system as some jobs complete, 
others come in, and some get moved as needed 
to coalesce space for a wa~ting job. Concern 
with the time-cost of the moving process has 
given rise to considerable interest in hardware 
means for making the moving unnecessary. 

We are convinced that there are two 
serious concerns associated with program and 
data moving at job-load time in high-powered 
multiprogramming systems: 

a) Program modification required pref
atory to the actual move can be un
acceptably time consuming. 

b) In general, programmed relocation of 
significant areas of memory content in 
a multiprogramming system requires 
that all currently active and outstand
ing input/ output orders be permitted 

I to terminate. In a large system this 
can be a prohibitive requirement, again 
because of the large potential time loss 
associated with .each relocation. 

In machines of modern type in the mil
lion-instructions-per-second range, the moving 
of memory contents does not appear to be a 
significantly costly process. As an example, let 
us consider the time to perform a typical move 
of memory contents, assuming no special hard
ware for relocation. 

Assume main fast memory is 131K 
words; half of all jobs entering the system 
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cause moving of one fourth the contents of 
main memory; the time to move one word 
(memory read-write under some kind of repeat 
control) averages 1.8 microseconds.' Then the 
moving time per job is: 

0.131 X 106 words X 0.5 X 0.25 X 1.8 X 10-6 

second 

word 
= 0.029 second. 

With these assumptions, which we feel 
are conservative, average total job time would 
have to go down to 3 seconds before moving 
time consumed 1 % of machine time. Under 
such circumstances we do not foresee an imme
diate justifiability for hardware for removing 
the need to move the contents of memory. 

For some advanced applications, how
ever, in "computational colloquy" operation, as 

mentioned in Section 1.5 above, and as an Ad
vanced System approaches full-scale expansion 
with four procersors, we conclude that it will 
be necessary to 'Provide for reasonably efficient 
execution of job segments as short as 1milli
second. 

Paging hardware (not in the basic 213), 
in addition to drastically reducing moving time, 
provides a convenient way to apply hardware 
memory protection to scattered areas of mem
ory by association with particular users in 
several different ways. Some kind of applica
tions inherently require greater inter-job se
curity than is required in a typical closed- or 
open-shop job-oriented facility or even in a 
time-sharing system; in such cases, redundancy 
of protection (in addition to that supplied 
through !job area assignment by the Executive) 
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is mandatory. Paging can provide such re
dundant protection, establishing positive hard
ware identification of small memory blocks with 
particular jobs or even with particular users. 

For Use in the circumstances described 
in the preceding paragraph, we have concluded 
that "paging" or "block symbolic" addressing 
capability should be planned as a standard hard
ware option for the Advanced System and per
haps as a special hardware modification of the 
213, but it will not be used by the software 
presently under construction. The paging hard
ware plans will be described in Section 7. 

For the basic 213 and Advanced System 
we have defined Implicit Base and Limit Regis
ter Selection hardware that permits dynamic 
relocation to be performed without interference 
with currently-active input/output orders. This 
hardware and its application will be described 
in Section 3.6. 

An ingenious method of displaying the 
dynamic memory map of a time-sharing system 
in actual operation, showing information that 
would be of value in monitoring a multipro
gramming system, was used by H. A. Kinslow:.!! 
in his oral presentation. This display repre
sented the contents of each logical block of 
memory addresses (in Kinslow's case, 256 
words per block) as a character position in 
a line of print, with each of several classes of 
activity indicated by the identity of the char
acter representing that memory block at that 
instant; e.g., X for program now in Execution, 
+ for program moving from disc to core, ~ 
for program in core, not being executed, (blank) 
for core space available, • for program going to 
drum, - for program going to disc, S for core 
space assigned but not yet filled. Each line also 
carried other coded information about system 
status at that instant of time. 

By use of the Kinslow-Johnson dynamic 
memory map, the kind of information that was 
shown in Fig. 2 merely as an abstraction can 
be displayed for a running system on a live 
workload. 

A cautionary remark must be made here 
about the extent to which multiprogramming 
can provide calking, as it were, for chinks in 
system workload. A suitable supply of sub
dividable tasks must, in fact, exist in order to 
be handled in this way. 

Some classes of engineering calculations, 

notably "nuclear design codes," traditionally 
have taxed the capacities of the most powerful 
machines available. These programs have been 
planned to use available hardware to the utmost, 
although this utmost, as mentioned in 1.3, may 
be constrained to half-time usage of central 
processor time. Such users may have only 
incidental amounts of small-problem workload. 

For this type workload, three avenues 
to greater system throughput seem to be open: 

1. Better system balance, with use of 
faster mass memory devices, can make 
possible higher internal efficiency of the 
large programs running alone. 

2. Versions of each of several of the larg
est pro grains might be produced that 
would operate with less than full
machine facilities, and that complement, 
to a significant extent, each other's 
limiting demands upon the total system; 
two or more such programs, not related 
to each other, could then be run concur
rently in a multiprogramming-multi
processing environment. 

3. For a multiprocessor system, some large 
tasks will justify efforts to apply more 
than one processor in some parts of 
large· programs, i.e., to solve the single
task multiprocessing problem. 

2.2 The Anonymous-Processor-Pool Concept 

In this type of system, a generalization 
of the single~processor system, any number of 
fully independent processors up to a design 
limit can operate within a single, jointly-ad
dressable memory. 

Each processor may assume the execu
tive function, and must do so in order to obtain 
system service', to write in memory areas re
served for executive purposes, or to obtain re
served information. Thus, each processor must 
be able to operate in two somewhat different 
modes, which we call executive mode (E) and 
job mode (J).* 

An important executive function is that 
of sequencing or· determining what computa
tion job or job segment is to be performed next, 

* A third mode, Common Routine (CR), will be 
described later. 
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following a change such as completion of one 
job. 

In this system all input/ output is InI
tiated by an E processor. Any I/O request 
from a program in operational status is used 
as a signal that the basic sequencing algorithm 
is to be executed. 

Processors enter and leave E mode fre
quently; hence, little time can be used in ex
ecuting the standard interrupt procedure. A 
processor in requesting executive service always 
makes itself available to be assigned to it; like
wise, in assigning a job, the processor perform
ing the assignment subsequently becomes the 
one most available for assignment. Transfers 
of control to and from the executive program 
are always carried out by the processor making 
the request; thus, some transient status in
formation can be, and in fact is, passed back 
and forth in a processor's own registers. For 
security purposes as well as for operational effi
ciency, status information on all programs cur
rently in the system is maintained in lists in 
the executive area of memory, and complete 
information on each job is carried in lists in 
that job's assigned memory area. In J mode, 
a processor cannot initiate input/output and has 
read and write access only to the memory areas 
assigned to the particular job on which the 
processor is currently working. 

Figure 4 illustrates the basic operating 
situation in main memory with only one active 
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assigned job for each processor, i.e., without 
multiprogramming. Local job functions are 
performed by Processor A for its currently as
signed job, which is Job 2, and by Processor B, 
for Job 1. 

In general more than· one, and in the 
extreme all, processors can operate within the 
executive program at the same time, although 
some critical executive functions such as se
quencing must be performed by only one proc
essor at a time. 

Thus, in Fig. 4 it is possible that the 
physical processor that had been performing 
Job 2, upon exiting from E mode, may become 
from the executive program's point of view 
Processor B and be assigned to (that is, assign 
itself to) Job 1, provided Processor B has mean
while been assigned an Executive function. 
Thus, the processors themselves are truly 
anonymous, assuming identities only for execu
tive job assignment purposes and retaining 
them only until returning toE mode. 

Figure 5 is a generalization of Fig .. 4 to 
include more than one job per processor, i.e., 
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multiprogramming. At the instant portrayed, 
Processor A is in J mode executing Job 13, 
while Processor B is in E mode, performing 
an executive function. With two sizeable re
leased areas of memory, the system will pre
sumably load at least one more job (perhaps 
moving Job 11 to coalesce the available space 
if necessary) if a job in the input tanking area 
(in this system, on drum) has been found by 
the Executive to need little enough memory 
space and otherwise to qualify for active status 
at this time. 

For clarity, this map of physical memory 
addresses has been drawn for a traditional-type 
main memory system without paging. In a 
memory control scheme having hardware pag
ing capability, as described Section 7, available 
space as well as assigned single job areas are 
scattered throughout the (physical or actual) 
memory addresses in sections most of which are 
one page in size. Logical address allocations, 
as they appear to processors, more closely re
semble the simple map shown in Fig. 5. 

2.3 Planning Considerations for Memory Con
trol Hardware 

In the 213, which was intended from the 
outset to be applied in a multiprogramming
multiprocessing environment, several new hard
ware requirements had to be met. Some of 
these (a-fbelow) were evidently mandatory if 
good efficiency was to be achieved, and were 
included in the basic 213 System. Others (g 
and h), while they appeared to be realistic for 
typical Advanced System applications, were 
considered to be required only in specialized 
installations of the 213; hence, g and hare 
not in the basic 213 hardware and are not used 
in the basic 213 software. 

a) Direct addressing of large memory (by 
character in the case of character
string-manipulation instructions). 

b) Processor status information trans
ferred by hardware. 

c) Positive memory protect for each job 
with respect to its currently-assigned 
memory .area. 

d) Dynamic relocation of programs and 
data without significant loss of proc
essor speed. 

e) Automatic access to (Read-Only) Com
mon Routines (one copy of each) and 
to Common Data from any number of 
calling programs. 

f) Ability to utilize conveniently a hier
archy of main memories. 

g) Memory remapping (paging) with in
dividual-job number memory protect 
assigned to individual "pages" of mem
ory. 

h) Three different modes of memory pro
tect, each different in behavior with 
respect to each processor and individual 
memory pages in accordance with each, 
processor's currently-assigned mode 
(Executive, Job, Common-Routine). 

Our decision has been to specify the 
hardware for dynamic-re~apping and page
oriented memory-protect and the manner in 
which software will use them in order to assure 
the upward-compatible growth potential of the 
213 hardware and software, but to make these 
memory control features optional pending de
tailed hardware monitor studies of operational 
213's in customer environments. The proposed 



paging hardware, and its use, are discussed in 
Section 7. 

One concern, hitherto unmentioned in 
the present paper, has seemed to u~ from the 
outset of the 213 system planning work to be a 
serious one: There has been growing evidence 
of the potentially high value-to-cost ratio of 
slow ferrite core memory in large capacities 
(hundreds of thousands of words), and hence 
of its potentially great importance in high
powered machines. This has brought us to the 
conclusion that positive control should be pro
vided over access to a hierarchy of main 
( directly -addressable) memories, in flexible and 
convenient, preferably automatic, fashion. 

By "automatic," we mean the following: 
A particular information area, once designated 
to the Executive System by a user' as being 
suitable (most likely because of low frequency 
of access) for assignment to what we will call 
"Slow Core," should have symbolic addresses so 
assigned by the Executive. It should be ac
cessible, thenceforth, by a program merely 
through use of appropriate locally relative-to
zero address references initiated by the as
signed processor .. It should not require that 
special control information (such as a bit' in 
the instruction or in the address) be supplied 
by the program to designate the reference as 
being made to Slow Core. Although all Slow 
Core assignment to a given job may be re
stricted to a continuous string of physical ad
dresses, this string should be assignable un
related to Fast Core assignment to the same 
job. 

It will be explained in Section 3.6 how 
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this is accomplished l>Y means of ImpJi.cit Selec
tion of Base and Limit Registers. 

3. BASIC 213 HARDWARE EXTENSIONS 
BEYOND THE 212 

3.1 Large Memory Addressing (Fig. 6) 

The basic address field length in the 
213 and in the Advanced System is 24 bits. 
We shall refer to this field as bits numbered 0 
through 23 although the actual location of 
the 24-bit string may be in Bits 24-47 of a 
computer word. Bits 0-20 specify word num
ber over an absolute range of zero through 
2,097, 151. 

Only the word address is relevant for 
full-word-operand-:manipulation instructions. 

Bit 21, the upper bit of the character 
field, is relevant for some half-word-referenc
ing instructions such as jumps and compound 
instructions that use (variable-length) arrays 
of half-words to contain jump vectors for 
many-way branching functions. 

Bits 21-23 specify, for character-string
manipulation instructions only, character num
ber within a word. For the initial 213 machines 
only 6-bit characters are handled explicity. The 
basic 210-211-212-213 64-character alphabet* 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
1234567890+-* / =.,$ () 'blank 
><#&% LJ, ;:?null"@end18 

* The subset consisting of the first 48 characters 
listed above ("A" through "blank") arc identical, both 
in graphics and in coded representation, with the 
SHARE 709-7090 alphabet. 
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is capable of representing explicitly all cur
rently active procedural compiler source lan
guages [including FORTRAN IV, NPL, CO
BOL, and ALGOL (with shifting instead of 
separate lower-case letters)], and also the 
information-content subset of the 8-bit ASCII 
character code,1u Fig. 7. For these characters 
and in instructions that manipulate them, word 
content is 8 characters per word and Bits 21-
23 represent an octal number 0-7. 

In the future, as other characters of the 
ASCII set become defined and as explicit han
dling within general-purpose machines of the 
full 8-bit-specified character set becomes neces
sary, as already implemented within modern 
communication-processors such as the large
scale Philco 170 AUTODIN computer, an 
8-bit-character-set-handling instruction group 

will be defined and added to the 213; it is now 
planned to be included in the initial Advanced 
Systems. For the alphabet of 8-bit characters 
stored 6 to a word, Bits 21-23 will represent a 
base-6 number; and control counters used by 
the 8-bit-character-string-manipulation instruc
tions will carry from Bit 21 into Bit 20 on 
count of 6, rather than on count of 8 as in the 
6-bit present 213 instructions. 

Consideration is also being given to in
cluding as an option in the 213, and as stand
ard in the Advanced System, a set of4-bit 
(binary-coded decimal) character string ma
nipulation commands, primarily to meet the 
needs of very-large-scale commerical applica
tions. The ASCII 4-bitsubset is the one con
sidered. 

Each of the 8 index registers in the 213 
(each of the 15 in the Advanced System) * 
contains 24 numeric bits numbered 0-23. For 
word-oriented instructions, only Bits 0-20 are 
relevant. There are also two control bits des
ignated C and Y. As in the 210 and 211, a 
"one" value of the C bit causes designated index 
register contents to be counted (increased by 
one word after each reference to it) when C 
is set to 1, and to remain unchanged when C 
is zero. As in the 212, the C and Y bits taken 
together provide decrementing as well as in
crementing from the address field. Counting 
and incrementing/decrementing operate ac
cording to this scheme: 

C Y Contents of Selected Index Register 
After Reference to It 

o 0 lJ ncllanged 
1 0 Increased by unity in word address 

value 
o 1 Previous contents plus value of 

instruction word-address field 
1 1 Previous contents less value of 

instruction word-address field 

The word-oriented index register stor-

* In the 210, 211, 212, and 213, eight index registers 
are selected by a 4-bit field with binary numbers 1000-
1111 inclusive. In the Advanced System, the additional 
bit combinations 0001-0111 inclusive will be activated by 
the new format half-word instructions and for all full
word instructions, to designate seven more index regis
ters, with 0000 designating a pseudo-register containing 
the constant zero. 



age and loading instructions of the basic 213 
System treat the index register contents of a 
24-hit string, with Bits 0-20 representing their 
functions as described above; Bit 21 contain
ing the C bit; Bit 22, the Y bit; and Bit 23, 
at present irrelevant. These instructions thus 
pack index register contents in computer half
words, two to a word. 

3.2 Character Manipulation Instructions 

. The guiding principle in the choice of 
character-oriented hardware macros was that 
program functions must be frequently written 
and executed to justify inclusion as explicit 
hardware. Furthermore, although the hard- , 
ware macros need not save memory space, they 
must save substational processor time if they 
are to justify their existence. 

An example of the type of function con
sidered is the scan of an input character string 
for break characters as is commonly performed 
in compiler source language analysis. Each 
character in sequence is checked to determine 
whether it is one of a set that causes action 
to be taken; if it is one of these, control transfer 
occurs and the scan pauses or terminates. 

Using the word~oriented vocabulary of 
the 210-211"':212, a typical scan involves a pro
gram sequence of 33 half-words and from 4 
to 12 full-word constants. On the 212, such a 
scan requires 400 . microseconds for the first 
eight characters in a string and 370 micro
seconds for each additional eight characters. 

As Move-Break is implemented in the 
213, a mask in the A and Q register~ defines 
which of the 64 character configurations are 
members of the set of break characters. A 
single hardware macro scans (and moves) a 
string until a break character is encountered; 
a jump is then executed to the address asso
ciated with the specified break character. 
An instruction option, Move-Break-Squeeze, 
squeezes out blanks en route. 

Total space for using this instruction 
(including pre-setting of registers) is six full 
words plus one half-word for each break char
acter. Total execute time is about 15 micro
seconds for the first 8 characters plus 2.4 
microseconds for each succeeding 8 characters. 
For a typical scan of up to 62 characters, 
averaging 22 characters, the maximum and 
average times are 31 and 22 microseconds~ 
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respectively, as compared with 2.99 and 1.14 
milliseconds for the programmed equivalent 
sequence on the 212.* The speedup factor for 
the average case in this example is 52:1. 

In the Advanced System, because of the 
facility and economy with which the integrated 
circuitry can be used to implement complicated 
logic functions, this particular instruction will 
lend itself well to parallel instead of serial 
processing. Thus, as in the case of other fre
quently executed commands, the speedup over 
the 213 will be greater than the "minimum 
10 :1." 

Because of rapidly developing interest in 
non-numeric data processing, the basic 213 
character manipulation instructions, which 
constitute the core of the set that will be built 
into the Advanced System, will now be de
scribed more formally. 

3.2.1 . Format1H Character-oriented instructions 
that reference character strings do so via index 
registers. The conventions are: 

Xl-specifies the character address in 
memory from which the first of a 
string of characters is obtained. 

X:!-specifies the character address in 
memory into which the first of a 
string of characters is stored. 

Xa-specifies the (maximum) length of 
the character string. 

Note that the character count in Xa is i>osi
tioned in the low-order character- position of 
the register. 

Character-oriented instructions that ref
erence a single character specify the address 
in the address. field, with the usual indexing 
and indirection options. 

3.2.2 Notation1\) The following notation is intro
duced to simplify further discussion: 

* In order to give those unfamiliar with the 212 a 
feeling for its speed on typical tasks, we offer this 
yardstick: The 212· executes about 0.75 million instruc
tions per second on typical object coding, including 
floating arithmetic instructions, compiled from FOR
TRAN source language. The fastest 212 operation 
we have seen in any program is one sequence of in
structions executed from memory on operands in reg
isters, for which the 212's speed is 1.62 million instruc
tions executed per second. 
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Xs-the content of Xl at the start of a 
character-ori~nted instruction (start
ing address). 

Xr-the content of X2 at the start of a 
character-oriented instruction (receiv
ing address). 

K -the content of Xa at the start of a 
character-oriented instruction (maxi
mum string length). 

N -the number of characters stored at 
the conclusion of a character-oriented 
instruction. 

P -the number of space characters (60R) 

encountered during a transmission. 
rA-register A, whose bits are numbered 

0-47 from left to right. 
rQ-register Q, whose bits are numbered 

0-47 from left to right. 

3.2.3 Instruction Catalogl9 

MOVE -a) copies a character string 
of length K from Xs to 
Xr • 

b) if any character in the 
string is numeric (0-9), 
bit 45 of rQ is set to one; 
if any character is alpha
betic, bit 46 of rQ is set 
to one; if any character 
is special, bit 47 of rQ is 
set to one. Note that this 
determination is made as 
a character is stored. 

c) the final register contents 
are as follows: 

XI=Xs + K 
X2 =Xr + K 
Xa=O 

MVBRK -a) performs the functions 
described under a) and 
b) for MOVE. 

b) each character leads to 
examination of that bit 
of r A, rQ corresponding 
to the numeric value of 
the character. If the bit 
is one, transmission 
stops; otherwise, the 
character is transmitted. 

c) if no one bits are found 
in rA, rQ (Le., no break 

characters are encoun
tered), the instruction 
terminates after K char
acters have been trans
mitted. The processor 
then performs a jump to 
the address specified in 
the half-word following 
the MVBRK instruction. 
The final register con
tents are the same as c) 
under MOVE. 

c) if no one bits are found 
rA, rQ (Le., a break 
character is encoun
tered) , the instruction 
terminates. The proces
sor counts the number of 
one bits, b, to the left 
of the bit on which a 
"match" occurred. The 
processor performs a 
jump to the address spec
ified in the (b + 2) nd 
half-word following the 
MVBRK instruction. The 
final register contents 
are: 

XI=Xs + N 
X2 =Xr +N 
Xa=K-N 

MVBRKSQ-a) performs all the func
t ion s lis ted under 
MVBRK. 

FILL 

b) all characters equal to 
60 s (space) are not 
transmitted. 

c) if no break characters 
are encountered, the final 
register contents are: 

XI=Xs + K 
X2 =Xr +K-P 
Xa=O 

d) if a break character is 
encoun teredO, the final 
register contents are: 

XI=Xs+N +P 
X2 =Xr +N 
Xa=K-N-P 

-a) copies the character in 
hits 42-47 of rQ into K 



cO'nsecutive character 10'
catiO'ns starting at X r • 

b) the final register cO'n-
tents are: 

Xl = Xs (unaltered) 
X 2 =Xr + K 
Xg=O 

TCHQR -transfer the character speci-
fied in the address field to' 
bits 42-47 O'f rQ. 

TCHQL -transfer the character speci-
fied in the address field to' 
bits 0-5 O'f rQ. 

TQRCH -transfer the character in bits 

TQLCH 

COMP 

42-47 O'f rQ to the specified 
character address. 

-transfer the character in bits 
0-5 of rQ to' the specified 
character address. 

-a) alphanumeric - cO'mpare 
the character strings of 
length K starting at X" 
and Xl" 

b) perfO'rm jump to' the ad
dress cO'ntained at one O'f 
three half-wO'rds follO'w
ing the COMP A instruc
tion accO'rding to the fol
lowing: 

string X" < string XI' 
string Xs = string XI' 
string XI> > string Xl' 

SCANOT -a) scan the character field 
O'f length K starting at 
Xl;' 
Compare each character 
with the character at bits 
42-47 O'f rQ. StO'P scan
ning on the first O'ccur
rence O'f a failure to' 
match. 

b) if the first M characters 
did match, then the final 
register cO'ntents are: 

X 1 =XS + M 
X2 = Xl' (unaltered) 
X3=K-M 
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3.3 PrO'cessor Status InfO'rmatiO'n AutO'mat
ically Transferred By Hardware 

All reassignments O'f processO'rs, input
output requests, and calls O'n CO'mmO'n RO'utines 
are perfO'rmed under Executive cO'ntrO'l. Since 
cO'nsiderable generality is required in cO'ntrO'I 
transfer and in interrupt capability in O'rder 
that interrupt reSPO'nse time be shO'rt, cO'mplete 
infO'rmatiO'n on processO'r status is stO'red rela
tive to' the base of the program segment frO'm 
which a particular prO'cessor jumps. If O'ne O'r 
mO're proceSsO'rs were in a CO'mmO'n RO'utine 
when one or mO're O'f them were interrupted, 
status infO'rmation is stored relative to the base 
O'f the O'~iginal calling prO'gram (s). Automat
ically transferred status infO'rmatiO'n O'ccupies 
a string of three words in a fixed positiO'n rela
tive to' the base of each prO'gram, and includes: 

FUNCTION STATUS BITS 
Control· Registers 

V field 24 
Repeat MO'de 1 
Repeat Counter 16 
Overflow 1 
Inhibit Clear Overflow 1 
Double PecisiO'n MO'de 4 
PrO'cessO'r Number 2 
Processor Mode 2 

(Executive, CO'mmon 
RO'utine, JO'b) 

Trap Reasons 
Machine Errors 

Operand Parity Error 1 
Input/Output Parity 1 

ErrO'r 
Indirect Address 1 

Parity Error 
Store Parity Error 1 
Instruction Parity 1 

ErrO'r 
Program ErrO'rs 

Executive CO'mmand 1 
(in CR or J Mode) 

Address Limit 1 
ViolatiO'n 

CO'mmand Fault 1 
Trapped Instructions 

Halt 1 
Breakpoint Jump 1 
TO'ggle~ to' D Register 1 
Typewriter to' MemO'ry 1 



114 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

D Register to Typewriter 1 
Input/Output 1 

Intentional Trap 
Jump to Executive 1 

Interval Timer 
Time is Up 1 

Interrupts 
External 1 
Executive 1 

All other processor registers are address
able and are handled under program control.* 

3.4 Inter-Processor Control Communication 

In order to perform processor assign
ment, the Executive program must keep cur
rent in its own active lists information on each 
processor's status at the time of most recent 
execution of the assignment algorithm. In 
order to permit selective interruption of proces
sors in consideration of their current status 
between points of communication with the 
Executive, however, it is necessary that a proc
essor currently in Executive Mode be able to 
query and, if necessary, interrupt all other 
processors. 

Nine basic inter-processor communica
tion commands ha vebeen specified. The first 
seven of these are present in the 213 and are 
used by its basic software; the other two relate 
more particularly to the single-task multiproc
essor problem and are to be included only in 
the Advanced System. 

It was explained in Section 2.2 how all 
processors are anonymous in that any of them 
can and does perform Executive functions upon 
demand, usually in response to a request issued 
by that same processor in a task previously 

* At an earlier date, it was planned to include one 
pair of hardware macros, SAVE and UNSA VE, for 
saving and restoring all index registers and a second 
pair, SNAP and UNSNAP, for saving all processor 
registers (including ind~x registers). While each of 
these macros would have required only a few memory 
cycles for execution, subsequent program analysis dis
clos=d that frequency of usage probably would not 
justify their inclusion. The SA VE/UNSAVE and 
SNAP/UNSNAP instructions have consequently been 
deleted from basic machine specifications, will b~ made 
available only as machine modifications on 213 and Ad
vanced Systems and, at least initially, will not be used 
in standard software. 

assigned; and assignments made by a proces
sor while in Executive Mode typically are car
ried out by that same processor as soon as it 
has changed back to Job or Common Routine 
Mode. This anonymity is limited only on one 
respect: each processor contains a 2-bit Proc
essor Number (assigned by manual switch 
setting while out of service) so that it can be 
identified explicitly in connection with task 
assignment. The parameter N in the first three 
commands below is this number. 

STAY Processor N 
RESUME Processor N 
TRAP Processor N 
ENTER EXEC 
ENTER JOB 
ENTER COMMON ROUTINE 
RDCLR 
TRAP Processor(s) in Mode M1!n Advanced 
TRAP Processor(s) not in Mode M[ System only 

The commands ENTER EXEC, ENT'ER 
JOB, and ENTER COMMON ROUTINE pro
vide for automatic transfer of a significant 
amount of processor information, as listed in 
Section 3.3, to fixed memory areas related to 
the base locations of programs being entered 
and left, as well as expediting storage and 
retrieval of the programmable-access regis
ters.These commands provide for efficient 
control transfer between processors to be per
formed by the Executive. 

The READCLEAR command, applica
tion of which is discussed in Section 4, is 
apparently trivial in function but is profound 
in significance. Consisting of a memory-read 
subcycle only, it transfers the contents of a 
specified memory location to the A Register 
and stores zeroes in that memory location, 
requiring only the first part of a memory cycle 
for total execution. Use of this command pro
vides for resolution of race conditions when 
more than one processor simultaneously at
tempt to access the same data or program; for 
enforcing the convention, necessary in parts 
of the Executive Program, that only one proc
essor can be in a particular program segment 
at a time,; and for providing information, 
through the use of "read-tally" and "write
indicator" words, to make possible Common 
Data access as explained in Section 4.3. This in
forms any processor that may inquire what 



other activity may be under way in a particular 
commonly-accessible data string. 

3.5 Basic Single-Segment Dynamic Relocation 
and Memory-Protect 

In both the 213 and the Advanced Sys
tem, provision is made for all programs to be 
loaded relative to local-address-zero; all mem
ory accesses by a processor are offset from 
System Zero (Le., physical address zero) by 
being added to a relocation register associated 
with that processor. 

All memory references are checked, in 
the course of being issued, by the memory 
control hardware in the processor to determine 
that they fall between the relocation base and 
a limit value (absolute address, not relative to 
the base) stored in a limit register also asso
ciated with that same processor. 

The base and limit registers are auto
matically loaded under Executive control with 
address values designating appropriate mem
ory areas at the time a processor is assigned to 
execute a particular job. 

Any attempt to reference addresses out
side the assigned range for a particular job 
causes a trap to the Executive. 

Note two nuances of wording in the 
third and second paragraphs back: address 
references are checked in the course oj, not 
prior to, being issued; and memory areas, not 
area, are assigned to a processor in connection 
with a task. 

Checking address references before 
issue would slow down the machine; hence, 
they are checked while being issued. Read 
references may actually complete before an out
of-range trap is initiated by the hardware; 
in that event, the trap win be executed before 
the user can use the forbidden information. 

W rite references do not cause modifica
tion of memory contents until completion of the 
memory-read subcycle; by that time range
checking has been completed; and the previous 
contents of a particular location is written 
back into it in the event of an out-of-range 
Write trap. 

The fact that several memory areas, 
rather than merely a single string of memory 
locations, can be assigned to a processor along 
with a job to be executed, will be explained in 
the next section. Briefly, it· is because several 
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base-limit register pairs exist in each processor 
and can be assigned separately by the Execu
tive. 

Dynamic memory allocation is per
formed as follows: If a memory area assigned 
to a processor for a job is to be changed, the 
Executive loads into the appropriate base and 
limit registers new address data commen
surate with the new assignment. Subsequent 
accesses are relocated and checked in accord
ance with the new assignment. 

All input/output, as well as Common 
Routine calls, are performed via the Executive. 

3.6 Multiple-Segment Dynamic Relocation and 
Memory-Protect by Implicitly Selected 
Base and Limit Registers1

!) 

There are several purposes for which 
it is desirable to have a multiplicity of reloca
tion (address base) and address-range-limiting 
registers, as opposed to single relocation and 
range registers, in each processor. These in
clude facility for: 

a) Partitioning of a single program into 
non-contiguous areas of memory. 

b) Designation that certain infrequently 
referenced arrays may be stored in 
"slow" main memory when a hier
archy of directly-addressable memory 
exists. 

c) Access to Common Routines (a single 
copy of), which may be executed con
currently by more than one program, 
and/or simultaneously by more than 
one processor. 

d) Common Data access by multiple pro
grams to an arbitrary number of sep
arate tables, with no restriction on 
simultaneous read-access (by several 
processors) unless one processor is 
writing into a particular table, in which 
case all others must be automatically 
prevented from either writing infQ or 
reading that table only. 

e) Ability to handle the' single task multi
processor problem. 

To this end, each 213 processor contains 
two base registers (designated Bo, B1 ) and two 
associated limit registers (designated as Lo, 
L1 ) ; the basic Advanced System will have eight 
each Band L registers. The programmer, how-
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ever, has no need to know of the existence of 
these registers nor can he address or alter 
them.· 

The base and limit register operation 
may be defined formally: let bi and Ii designate 
the contents of Bi and Lh respectively, and Sh 
an address. Define the sequence of addresses Si 
by 

Si = Si-l - li-l + bh i = 1, 2, ... , n 

with 
So = A + bo, 

where A is an effective address. * At each 
stage, compare Si with Ii' If Si < lh then a 
legitimate memory request exists for physical 
location Si' Otherwise, form Si+l and repeat the 
process. Either Si < lh for some i, or a request 
has been made outside the jurisdiction of this 
program. 

The effect of the Implicitly Selected Base 
Register hardware is to permit execution, dy
namic relocation, memory protect, Common 
Routine calls, and Common Data access, as 
though every job (program and data, both 
shared with other jobs as well as private) 
had been loaded into a single, continuously
addressed string of memory locations, ad
dressed via a single relocation register and pro
tected by a single range register. In fact, the 
memory allocation may be split into two sepa
rated strings in the 213 and into up to eight, 
in the Advanced System. Allocation by the 
Executive will take into account that: 

a) Several scattered strings of locations 
may be available, which together are 
sufficient for this job on this run. 
(Moving will not occur unless an ade
quate total allocation cannot be patched 
together by the Executive for the job 
that the sequencing algorithm has 
scheduled next.) 

b) Some of the space requirements (e.g., 
program, scratch, live data) call for 
Slow Core memory. The Executive will 
assign strings of fast and, slow memory 
as specified by run control information. 

c) Some references will be to Common 
Routine or to Common File areas; for 

* An effective address is the result of indexing and! or 
indirect addressing, if used; if not, the effective address 
is the instruction address field. 

a processor in Job Mode, such refer
ences should be Read-Only protected, 
although a processor in Executive Mode 
should be able to write into those areas. 

The time penalty paid for the automatic
by-hardware selection of base and limit regis
ters is surprisingly small: In the 213, no delay 
occurs if a reference is via Bo, Lo, because 
multiple-input address arithmetic hardware 
handles the entire sequence during normal in
dexing. If the second pair of registers is se
lected, effective instruction execute time, on the 
average, increases about 80 nanoseconds. In 
the Advanced System these delays will be more 
nearly completely covered in address preproc
essing, and the maximum delay, for the eighth 
pair of registers, will be less than 15 nano
seconds. 

To illustrate the manner in which the 
registers operate, let us consider a program 
(that, of course, is compiled relative to zero 
and) is loaded into memory. 

PHYSICAL MEMORY 

ADDRESS 

1000 

• 
• 
• 

1999 

5000 

• 
• 
• 

5499 

COMPILED 
ADDRESS 

o 

• 
• 
• 

999 

1000 

• 
• 
• 

1499 

SPLIT RANGE PROGRAM EXAMPLE 

Figure 8 

Figure 8 represents a program requIrIng a 
total of 1500 words of memory that has been 
loaded, at the convenience of the Executive's 
memory allocator, into distinct, non-contiguous 
areas: physical locations 1000-1999 and 5000-



5499. Note that the program contains legiti
mate references to locations 0-1499. 

Before entering the program, the Execu
tive sets the base and limit registers as follows: 

Bo == 1000 
B1 == 5000 

Lo == 2000 
L1 == 5500 

When the program references location 1200, 
the computer forms 

So == 1200 + (Bo) == 1200 + 1000 == 2200 

and compares with (Lo) == 2000. Since So > 
2000, the computer forms 

Sl == So - (Lo) + (Bd == 
2200 - 2000 + 5000 == 5200 

and compares with (L1 ) = 5500. Since Sl < Lb 
a legitimate memory request exists for physical 
location 5200. 

In the basic 213 the following restriction 
exists: I/O buffer cannot be split between the 
two non-contiguous regions Bo, Lo and B1 , L1 • 

A later version of the machine, and the Ad
vanced System, will provide facilities in the 
I/O control hardware for handling split buffers. 
Since large buffers will usually be assigned 
(entirely) in Slow Core, we do not feel that 
this restriction is a serious one. 

4. COMMON-ACCESS PROBLEMS AND A 
PROPOSED SOLUTION 

4.1 Common Routines 

4.1.1 Introduction. We shall discuss in this 
Section, and present our first version of a hard
ware-software answer to, a multiprogramming 
problem that we believe will assume crucial 
importance as systems get more powerful and 
with increase in the number of users-especially 
computational-colloquy -by -time-sharing users 
-concurrently active in a general-purpose 
facility. 

Comm,?ll Routines as here described 
have also been called Pure Procedures,ll Com
mon Procedures,9 Re-Entrant Routines,12 Sin
gle-Copy Routines,13 and various less-polite 
names. 

The objective is that subroutines, to 
arbitrary nesting depth, and large routines 
such as compilers and executive routines that 
are called upon to perform service for many 
users, should be accessible to any number of 
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calling routines in memory, whether or not they 
are currently being executed by other proces
sors in a multiprocessing system. Execution of 
a Common Routine may be· interrupted before 
normal exit, and the calling program may re
quest proper continuation of the calculation 
even though both calling program and Common 
Routine may have moved meanwhile. 

We accept as a present restriction the 
requirement that subroutine nests must always 
be retraced in the reverse order in which they 
were called, although entry may be made at 
any level in the nest. 

Figure 9 shows a much-oversimplified 
linkage path from two routines through a 
three-level subroutine nest. The subroutines 
are shown fixed in location, while each of the 
two calling programs moves from time to time. 
Program B accesses Subroutine 3 through Sub
routine 2; Program A accesses Subroutine 3 
through both Subroutine 1 and Subroutine 2, 
in that order. 

If the linkages are spread out in time, 
they might occur as shown in numerical se
quence. The link 1-2 from Program B in its 
Location 1 to Subroutine 2 and return is shown 
dotted to denote that B's execution of SR2 was 
interrupted before completion. 

4.1.2 Com'mon Routine Access.19 Common Rou
tines may be executed simultaneously by more 
than one processor. Such routines: 

a) Cannot alter themselves or be altered 
by calling programs; i.e., must be in a 
memory area that is protected as Read
Only (except by the Executive). 

b) Must have access to parameters, ar
rays, and scratch areas within the 
memory areas assigned to each calling 
routine. 

c) Must be compiled relative to zero. 
d) Require base and limit registers to be 

set before entrance. 

The design considerations of the 213 and 
the Advanced System satisfy the above require
ments of Common Routines. Condition c) is 
trivial, since all 213 programs are normally 
compiled relative to zero. Condition a) must 
be satisfied by the programmer; however, cer
tain processor hardware (discussed below) de-
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PROGRAM 
A 

LOCATION 
I 

SUBROUTINE 

I 

COMMON SUBROUTINE LINKAGES 

PROGRAM 
B 

LOCATION 

2 

~\ 
I \ 

I I 2~ 3 

\ , 
PROGRAM 

B 
LOCATION 

I 

SUBROUTINE 
3 

Figure 9 

tects and prntects against attempts to. write 
into. Cnmmnn Rnutines. 

Cnnditinns b) and d) require elabnra
tinn, since they lead to annther kind nf utiliza
tinn nf base registers. We shall assume that 
a subrnuntine is called by a jump instructinn 
fnllnwed by a list nf parameters cnnsisting nf 
the addresses nf variables and arrays. * In the 
case nf a call nn a Cnmmnn Rnutine, the jump 
will be directed to. the Executive System. The 
Executive will then perfnrm the fnllnwing 
changes in the cnntents nf the hase registers 
(nntatinn as in Sectinn 3.6) : 

bo ~ Bl 
10 ~ Ll 

Start nf Cnmmnn Rnutine ~ Bo 
Upper limit nf Cnmmnn Rnutine ~ Lo 

* This is consistent with the form used in Philco 
FORTRAN IV. 

Further, a prncessnr is set to. Cnmmnn Rnutine 
Mode, dennting that memnry references rela
tive to. Bo are "Read-Only," prnviding the extra 
prntectinn prnmised in the discussinn nf cnndi
tinn (a) above. 

The Executive nnw enters the Cnmmnn 
Rnutine and supplies it with the address nf the 
first parameter (relative to. the base nf the 
calling prngram). The Cnmmnn Rnutine may 
nnw reference itself (via Bo, in "Read-Only" 
mnde) and may reference any parameters and 
arrays in the calling rnutine. ** Tn reference 
lncatinn X in the calling routine, the Cnmmnn 
Rnutine simply refers to. its nwn upper limit 
+X. 

** The reader will have noted that the Common Rou
tine cannot reference any portion of memory specified 
by (Bl Ll) in the 213 ({ B7, L7 ) in the Advanced System) 
prior to the subroutine call. 



Note that this scheme permits nesting of 
Common Routines. For this case, the Execu
tive at the time of each call alters Bo and Lo to 
contain the starting and ending addresses of the 
nested subroutine. Further, the Executive 
makes space provision in the calling program 
for the required parameter tables to be used 
and generated by the Common Subroutines, as 
well as scratch areas, at all levels of nesting. 

4.2 Exclusive-Occupancy Routines19 

To complete our discussion of routine 
access control, let us consider the antithesis of 
the Common Routine: the routine that cannot 
be allowed to be executed simultaneously by 
more than one processor, or even concurrently 
by more than one program. We shall describe 
a scheme by which any program can determine 
whether another program has entered an Ex
clusive-Occupancy Routine and. either is still in 
it or has been interrupted and has hence exited 
prior to normal completion. 

The RDCLR (Read/Clear) instruction 
was introduced to provide a means by which 
race conditions involving subroutines and Com
mon Data can be avoided. This instruction 
transfers the contents of a specified memory 
location to register A and stores zeros in that 
memory location. It consists merely of a mem
ory-read subcycle. 

RDCLR can also be used to protect 
Exclusive-Occupancy Routines. Consider a 
subroutine in the Executive that must not be 
executed by more than one caller at a time. 
By convention, the first word of the subroutine 
is used as an "entry word." Before entering 
the subroutine, any program must check the 
entry word by issuing a RDCLR. If the con
tent of register A is then non-zero, entry is 
permissible; further, all other programs are 
now alerted to avoid entry since the entry word 
is zero. The convention for normal exit from 
the subroutine must include as a final gesture 
the setting to non-zero of the entry word. 

4.3 Common Data Access!!) 

It is desirable for an arbitrary number 
of calling programs to have access to a com
monly-available memory area while each pro
gram is located in its own job area. Further, 
if one program is altering a table in Common 
Data, it should be possible to lock out access 
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to that particular table by all other programs. 
Access to Common Data is provided 

through use of the base registers. Bo, Lo are 
used to reference the program proper; the 
pair Br, Ll are assigned to the Common Data 
area. 

The RDCLR instruction (defined in 4.2 
above), in conjunction with a "write-indicator" 
and a "read-tally" word is used to provide for 
protected reading and updating of Common 
Data tables. A zero write-indicator word con
notes that some program is currently altering 
a table entry or is altering the read-tally word; 
a non-zero read-tally word connotes that one 
or more programs are accessing for "Read
Only" purposes. A program desiring access 
to alter the table must ensure that the write
indicator word is non-zero and the read-tally 
word is zero. A program desiring to read the 
table must perform the following in the indi
cated sequence: ensure that the write-indicator 
word is currently non-zero and force its con
tent to be zero (all by a RDCLR instruction) ; 
increase the tally in the read-tally word by 
unity; reset the write-indicator word to non.., 
zero; decrement the tally in the read-tally word 
by unity when no further access to the table 
is desired. 

The method outlined above permits an 
arbitrary number of programs to read a Com
mon Data table and provides a tally of the 
number of such programs currently reading 
the table. A program desiring·· to alter the 
table first prevents access by any additional pro
grams and then alters the table only after en
suring that all programs have relinquished 
access to the table. 

5. JOB SEGMENT SEQUENCING 

Lavine 5 discussed dynamic rescheduling 
by macro-segmentation; i.e., the treatment of 
input processing as one segment, execution (in
cluding scratch I/O) as a second segment, and 
output preparation as a third segment, opti
mum sequence of all such job segments to be 
determined by a set of algorithms. Input read
ing from cards (not processing) would occur 
whenever any unread cards were in any reader, 
unless halted by exhaustion of available input 
tanking space on drum. Sequencing considered 
quantitative factors including time since sub-
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mission, estimated execute time, estimated 
printing volume, priority rating, and time of 
day. The sequence determination also consid
ered such imperative factors as number of tape 
units needed and available and amount of drum 
space assignable for I/O tanking, and the op
tional factor of which form is on which printer 
at which time. 

He pointed out that the nature of the 
sequencing algorithm needed was heavily de
pendent upon user installation management 
policies, and suggested that a manufacturer 
should supply a simple, fast one that is easily 
modified as required. 

The multiprogramming task as discussed 
in the present paper may be seen to be a 
generalization of the dynamic rescheduling 
concept discussed by Lavine. We feel that all 
of his observations are valid and that the se
quencing considerations he outlined must be 
taken into account in a realistic multiprogram
ming system planned for general application 
in a job-shop environment. 

6. MULTIPLE-PROCESSOR ASSIGNMENT 

The three levels in assignment of mul
tiple processors will be listed in ascending order 
of difficulty. 

a) Independent Tasks 
The basic sequencing algorithm is in
sensitive to whether there is more than 
one processor in the system; hence, the 
handling of independent tasks changes 
little as the system configuration 
changes. Truly independent jobs are 
merely stacked and sequenced. 

b) Interdependent Tasks 
Some jobs depend upon prior comple
tion of others for input data. In these 
cases the required prior run (s) are 
specified to the executive system by 
control card, and the executive checks 
for their completion and for the on-line 
availability of earlier results before per
mitting the follow-on run. 

c) Single Task 
We have looked at several aspects of 
the problem having several processors 
work simultaneously on a single task, 
and feel intuitively that this must be 
planned in detail by a user who under-

stands a particular application. For 
this reason we are supplying some 
basic tools for the use of application 
programmers, but feel that the serious 
problems of single-task multiprocessing 
are theirs. Three types of problems, 
two of which are similar in nature, ap
pear to be clearly practicable for single
task multiprocessing: 
1. In relaxation schemes for manipu

lation of large matrices, mesh 
sweeps can be 'started by two proc
essors at opposite boundaries and 
can proceed independently toward 
the center until two adjoining rows 
must be relaxed; the processors then 
must check each other at each mesh 
point. This amount of inter-proces
sor communication is relatively triv
ial. 

2. In Monte Carlo calculations, a large 
number' of completely independent 
histories of problem elements are 
developed. Statistics can be accumu
lated by any number of processors 
working essentially independently, 
although final results must be ana
lyzed (presumably by one proces
sor). 

3. We have seen a number of examples 
of large data processing and data 
reduction problems in\ which indi
vidual items were essentially inde
pendent and could be examined in 
parallel. As in the case of the ran
dom-shot technique mentioned in the 
previous paragraph, only the final 
summing-up of results need be han
dled as a one-machine task. 

7. MEMORY REMAPPING (PAGING) AND 
PAGE PROTECT HARDWARE PLANS 

This function was introduced in Sections 
2.2 and 2.3 and will be discussed in this section. 

Figure 10 shows the relationship be
tween some of the hardware elements. * 

The 24-bit (non-overlapped) addresses 
present in all full-word instructions, in all index 

* Present tense will be used in this Section for the 
sake of brevity; it should he understood that future 
tense is implied. 
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registers, and in all indirect addresses are com
bined to form an Effective Address in the Mem
ory Address Register of each processor. This 
24-bit field is treated as consisting of three 
parts: 

Bits 0-10 identify anyone of the 2,048 
1024-word logical pages of main memory. Bits 
11-20 identify the word number in a page. 
Bits 21-23 constitute character number within 
a word for character-string commands; Bit 21 

specifies half-word for jumps and indirect ad
dress locations; and these bits are irrelevant 
in instructions that reference full-word oper
ands. The three fields are treated in different 
ways. 

Bits 0-10 select individual 24-bit words 
in Control Memory, and may be looked upon as 
being one level of indirection (in addition to 
indirection that may have been inserted by a 
processor) in all full word instructions. Bits 
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11-20 are used directly, adjoined to the physi
cal block number contained in the CM word 
selected by Bits 0-10. Bits 21-23 are used to 
delineate character string boundaries. 

Individual memory banks (32K in main 
memory or 262K in bulk memory) receive ad
dress information through Memory Control in 
two fields, which are adjoined to identify single 
words: In both cases the 10-bit Word Number 
(within a page) field is transmitted unaltered 
from a processor through Memory Control; 
each memory bank receives the Physical Block 
Number field (bits 6-10 for main memory, Bits 
3-10 for bulk memory) from the Page Num
ber section of Control Memory. 

For the Advanced System, thin-film 
main memory is organized in word pairs; Bit 
20 is consequently adjoined to Bits 21-23 in 
selecting the field to be presented to the proces
sor's Memory Data Register. 

Added to other control signals to the 
memory banks, the "Access ok" line signals 
that the requested access is acceptable to mem
ory-protect, and permits the access to take 
place. 

Memory Control contains, in addition to 
switching and race-resolution facilitie's, the 
Control Memory and circuitry for the memory
protect function. 

Control Memory is a 1024-word, 48-bit, 
half-word-addressable module using the 'same 
technology as used for Main Fast Memory; 
for the 213, this is 1.15 microsecond nominal 
cycle time magnetic cores; for the Advanced 
System, 250 nanosecond nominal cycle time thin 
film. Because of the small size of this unit, 
actual operating speeds will be somewhat 
higher; it will be shown below that the speed 
of Control Memory is not a critical determining 
factor in system speed. 

As pointed out by B. Arden,12 it is 
desirable in a remapping (paging) system that 
all possible logical addresses exist in the hard
ware, . irrespective of the actual size of physical 
memory. In those 213's that are provided with 
paging and in all Advanced Machines, all loca
tions from 0 to 2,097,15110 will exist as valid log
ical addresses. The leftmost 11 bits of each logi
cal address select a "logical page number" in 
Control Memory, which contains, in addition to 
13 bits of memory-protect information appli
cable to the associated 102410-word block of 

physical memory addresses, the 11-bit number 
identifying that particular physical block num
ber as assigned by the Executive'. 

A typical program being executed oper
ates for significant periods of time with two 
pages of memory being accessed repetitively; 
strings of instructions (most of them half-word 
in space occupied) are executed in address
number sequence until a jump occurs, and many 
jumps are to other instruction strings within 
the same thousand-word page; most instruc
tions contain one address and reference one 
operand location, many successive instances of 
which either will be in unbroken sequence or 
will be in other locations within the same thou
sand-word page. Thus, a page number is likely 
to be repeated many times in succession, so 
that most references for either program or 
data to Control Memory would be redundant 
with the previous reference of the same type. 

In order to avoid repetitious translation 
of page numbers (i.e., evocation of block num
bers and of memory-protect data currently ap
plicable to each), the currently-most-active 16 
half-words of Control Memory will be retained 
in registers in Memory Control. Reference to 
these registers, when appropriate, is auto
matic, * as follows: 

Each Active Page Register is 35 bits in 
length, consisting of an 11-bit Logical Page 
Number and a 24-bit string containing the con
tents of a half-word of Control Memory. 

Every memory access request to Mem
ory Control causes all 16 of the 11-bit fields to 
be checked simultaneously. An exact match 
causes the Control Memory reference to be 
bypassed, since the desired paging information 
exists in the 24-bit string representing the 
desired half-word in Control Memory. 

If no match is found, a normal Control 
Memory access is performed. The 24-bit string 
of information about that page number, in 
addition to being applied to the processes of 
block selection and memory protect, is then 
inserted to replace the previous contents of that 
Active Page Register that has been least active 
during a fixed previous time period (6 milli-

* We have been unable to determine the author of 
this concept; we believe he was a student associated 
with one of the university computing centers. 



seconds in the 213, 1 ms in the Advanced Sys
tem) as determined by simple digital hardware. 

Preliminary examination of samples of 
compiled coding from various types of pro
grams has convinced us that, at the thousand
word page size and with two processors active 
in either a 213 or an Advanced System, the 
probability of a page number currently stand
ing in one of the Active Page Registers is be
tween 0.97 and 0.99; Le., from 97% to 99% of 
page translations will not access Control Mem
ory. 

Control Memory access times (worst 
cases will be about 800 nanoseconds in the 213 
and 140 nanoseconds in the Advanced System) 
will be covered by other logical operations in 
about 30% of the instances in the 213, and 
about 80% in the Advanced System; Active 
Page Register access times (about 90 and 12 
nanoseconds for the two systems) will be cov
ered in about 60 % and 80 % of the instances 
respectively. 

Thus, the typical time costs of paging 
will be as follows: 

213: For perhaps one-fiftieth of the in
stances, an average of 550 nanosec
onds; for other instances, an average 
of 36 nanoseconds; effective increase 
in instruction execution time, about 
45 nanoseconds. 

Advanced System: For perhaps one-fiftieth 
of the instances, 28 nanoseconds; for 
others, slightly less than 10 nano
seconds; effective instruction time in
crease, about 10 nanoseconds. 

A remark on page size: The dollar cost 
of paging hardware and the time cost of its 
use both increase rapidly as page size is re
duced. Smaller page sizes permit memory 
assignments by the Executive to be performed 
with greater precision (Le., with less unassign
able memory within pages) and hence reduce 
the· probability that a particular job initiation 
will require repaging of all active jobs. Our 
earlier thinking tended toward 256 words as 
the size of a page; development of the Implicit 
Base Register Selection mechanization shifted 
the optimum page size to 512 words for the 213 
and 1024 words for the Advanced System. The 
size chosen is, as noted above, 1024 words for 
both systems. 
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With regard to the type of Control Mem
ory, our earlier thinking centered on very fast 
nondestructive-read memory, which is pres
ently designable with about 80 nanosecond 
read-access time and about 5 microsecond write 
time. The combination of medium-speed Con
trol Memory plus Active Page Registers is 
slightly cheaper and considerably faster at the 
present time, and we do not anticipate a rela
tive change in these factors by the time of 
manufacture of the first Advanced Systems; 
hence, the latter scheme was chosen. 

For the remainder of this Section we 
shall, for the sake of brevity, refer to page 
number accesses as though all were to Control 
Memory; as explained above, while they may 
be so considered for program planning pur
poses, most memory accesses in fact use only 
t~e Active Page Registers. 

The second Control Memory field we 
shall discuss is Memory Protect Mode, which 
contains 2 bits and which is used together with 
the 2-hit Processor Mode field and the 2-bit 
Instruction Class field to establish the permit
reject decision prior to checking of the proc
essor's numerical key against the memory 
page's numerical lock. 

Figure 11 displays the results of appli
cation of these four items of information. "I" 
indicates that the action is permitted if the key 
fits; "0" indicates that an error trap will occur 
irrespective of key-lock relationship. 

We shall refer to processors in Executive 
Mode, Job Mode, and Common Routine Mode 

PROCESSOR M.P. READ WRITE I/O JUMP 
MODE MODE 

EXECUTIVE{ 

00 00 

00 01 

00 10 0 

r 01 00 0 0 0 

JOB l 01 01 0 

01 10 0 0 0 

{ 
10 00 

COMMON 
ROUTINE 10 01 0 I 

10 10 0 0 

MEMORY PROTECT MODES 

Figure 11 



124 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

as E processors, J processors, and CR proces
sors, respectively. 

Memory Protect Mode 0 is used only for 
the executive program and for data reserved 
to it. All actions-Read, Write, I/O, Jump
are permitted to E and CR processors; none, to 
a J processor. 

Memory Protect Mode 1 is used for the 
normal job-assigned memory area, for program 
and data alike. All actions-Read, Write, I/O, 
Jump-again are permitted to E processors; 
Read, Write, Jump, to J processors; Read, I/O, 
Jump, to CR processors. 

Memory Protect Mode 2 is used for Com
mon Routines by E and CR processors, both 
of which can Read and Jump to Mode 2 pages; 
E processors can Write into them. It is also 
used for Common Data by J processors, which, 
as explained in Section 4.2, can Write into them 
under hardware-controlled protection against 
writing into a Common Data area when any 
other processor is either Reading or Writing 
into that same Common Data area. The latter 
(separate) protection scheme is not restricted 
to full-page delineation, but may be assigned 
under program control to continuous-address 
strings of any number of full words for each 
Common Data area, within which two words 
are required to hold a Read-tally word and a 
Write-indicator word. 

A Memory Lock Number of 11 bits is 
stored in the Control Memory half-word for 
each page of memory. A Key Number is placed 
in the 11-bit Key Number Register in a proces
sor each time it embarks on a task, whether in 
E, J, or CR Mode, and the same nUlnber is as
signed to all memory pages permitted to be 
accessed for that task. 

The ability to assign different key num
bers for various kinds of executive functions 
was provided as a debugging aid, primarily for 
the circumstance in which more than one proc
essor is in E Mode at the time of a trap brought 
on by a program fault within the Executive 
program itself. 

In this paging scheme, the actual mov
ing of information in connection with memory 
reallocation or job relocation is replaced by 
the process of renumbering memory pages, 
which in the 213 takes about 2.1 microseconds 
per two pages. This corresponds to a move 
speed of about 1000 words per microsecond. 

It may be remarked that the page
renumbering concept in memory allocation is 
analogous to the register-renaming process 
used within many of the algorithms in the 212 
and the 213 to save the time that would other
wise be required to move data from register 
to register. 

The paging concept described here is a 
particularization of the Adjoint Addressing 
scheme proposed by Cheydleur.17 

8. CONTROL OF INPUT/OUTPUT 
DEVICES BY CENTRAL VS. 
AUXILIARY PROCESSORS 

Several factors affect the decision as to 
the kind of processors to be used for I/O device 
control. 

At the present time, both total economy 
and modularity favor the use of one or more 
auxiliary processors. This assertion requires 
defense, since a first loqk would lead one to the 
reverse conclusion in each case. 

As for economy, the auxiliary processor 
makes excellent use of automatically-assigned 
buffer memory that is no faster than it needs 
to be, and is consequently economical. If the 
processo'r itself, which is a very-low-cost part 
of th~ system, were omitted, most of the I/O 
cost would remain: passive switches, unit-rec
ord buffers, and the I/O devices themselves. 
Economy is affected by the speed with which 
the devices can be operated. As an indication 
of observed performance in this area, consider 
the operation of the type 101 Processor when 
used with our R I N G MAS T E R (multipro
grammed) program to control the flow of data 
between magnetic tape and an arbitrary (limited 
by memory size because of buffer space require
ments, but not less than eight for a 32,768-
character-memory single processor) number of 
I/O devices. When operating with one 600 cards
per-minute reader, one 200-cards-per-minute 
punch, and two 900-lines-per-minute printers, 
the printers operate at 96 % of rated speed. 
Initiation of a third printer function does not 
interrupt other operations, and each of the 
three printers operates at about 94% of rated 
speed. We have concluded that economy alone 
does not justify elimination of the auxiliary 
processor. 

As for modularity, the auxiliary proces-



sor takes its output data from, and sends input 
data to, the mass memory (jointly-accessible 
drum), and receives its assignment to individ
ual I/O tasks from the Executive. A change in 
the number of I/O device channels to more 
than eight requires addition of another aux
iliary processor and buffer memory connected 
through the existing mass memory controller. 
There is no question of a housekeeping load 
beginning to affect the speed of the central 
processor (s), because all I/O devices are on-line 
with the auxiliary processor (s), and control 
communication is required only for few-milli
second periods at the initiation and termination 
of I/O tasks or in response to error conditions. 

For computational - colloquy - by - time -
sharing operation, the above comments are 
even more appropriate than for job-oriented 
operation. Operation of up to a thousand or 
so keyboard consoles, or several hundred such 
consoles plus a few dozen high-data-rate CRT
equipped consoles, requires the full resources 
of a reasonably high-powered special-purpose 
switching computer. The Type 170, as used 
in the 212 Time Sharing System now under 
development and as used in the second phase 
of the AUTODIN project, provides such power 
at a fraction of the cost of similar tasks per
formed by a general-purpose processor. As an 
example of the kind of power required, consider 
that line monitoring and buffer-full checking 
alone, for a thousand 10-characters-per-second 

"channels, would overtax the full-time capabili
ties of some machines that until recently would 
have been considered to be high-powered com
puters! 

Another CCTS consideration is that of 
remote-service graceful degradation, discussed 
in Section 1.8. As the number of on-line users 
goes up, the likelihood grows that it will become 
utterly unacceptable to shut everyone down 
because of a system hardware fault. Re
dundancy of processors, main and auxiliary 
memories, system switching, and I/O devices 
required for successful support to remote con
soles, together with appropriate system plan
ning and executive programming, will permit 
remote service to go on, if at reduced-service 
level, while hardware is being repaired. A 
reduced-scale version of a single station AUTO
DIN second-phase system would provide the 
"foreground" (remote user) assured-continuity 
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capability for a thousand keyboard remotes. 
Even if the system is not made redundant in 
central facility as regards foreground users, 
isolation (by a separate processor) of remote 
users from direct access to the central facility 
reduces the amount of central system time that 
can be lost because of faults in lines or remote 
units. 

The need for over-all system graceful 
degradation, however, now seems to favor the 
use of the central system for control of the on
line I/O devices. 

For that reason, even though raw sys
tem economy is not quite as good as with the 
special-purpose stored-program I/O controller, 
we intend, for later 213's and for all Advanced 
System installations, to provide the option of 
central processor control of all local I/O de ... 
vices. Initial 213 installations will use one 101 
processor for up to eight I/O devices, with 
additional 101's as may be required with a 
larger number of local or remote card/printer 
stations. 

Remote CCTS consoles, also, could be 
controlled by the central processor (s), but our 
present plans call for full-time use of one or 
two communications switching stored-program 
processors, Philco Type 170, for this purpose. 
This choice was made as a result of preliminary 
calculations indicating that use of central proc
essor (s) for control of remotes, would add 
significant CPU workload if sufficiently-rapid 
(100 millisecond) response is to be assured to 
an on-line population at the level of 100 con
currently-active users in a 213 system (400 in 
an Advanced System). This question will be 
given further study by means of system simu
lation. 

9. COMMENTS ON AN UNSOLVED PROB
LEM-MEMORY SCAVENGING 

Certain basic logical problems, which 
must be solved in at least a crude way if we 
are to achieve fully automatic job segment 
control at a performance level approaching the 
optirnum, do not yet seem to have been even 
discussed constructively, much less ,solved. As 
an example we will mention one simple prob
lem, that of determining optimum time to re
lease memory space, that is frequently men
tioned among sophisticated users but that, to 
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the best of our knowledge, has not yet been 
seriously worked upon. 

How is the system to determine when 
main memory space should be released for 
reassignment? 

For lack of a rational approach to this 
problem, we have been forced to avoid it; hence, 
in the present 213 Executive, main memory 
space is released only when: 

a) Control information has been supplied 
by the user that specifies when final 
use of specified memory areas has been 
made, or 

b) A job segment terminates. 

Common Routine (with which, in this 
section, we include Common Subroutine) capa
bility, in order to be used effectively, must be 
supported by features in the Executive that 
provide for automatic loading of Common Rou
tines when and only when they are needed but 
not already in Main Memory and for the auto
matic release of space occupied by them as soon 
as they are no longer needed. 

As with any job to be loaded, each job 
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identify at load time those routines in its control 
prescript. The special designator signals that 
each routine so designated must be treated dif
ferently, as outlined below. 

The Executive maintains two lists to 
identify the two way association between pres
ently-loaded Common Routines and the pro
grams that call them. 

List A, which is in the Executive area, 
consists of two-word items: the first word of 
each item is the name of a presently loaded 
Common Routine, and the other· word is the 
current count of calling programs requiring 
that routine to be resident in Main Memory. 

List B, which is stored in each calling 
routine's area, consists of variable-length items: 
each item's first word is the designation of a 
calling program, and subsequent words of the 
item identify all Common Routines that it may 
require. 

Usage of these, lists will now be evident: 
as each calling program having Common Rou
tine requirements is scanned for call informa
tion, its Common Routine requirements are 
used to create an item in List B. List A is then 

searched to determine whether needed Common 
Routines are alre'ady loaded. As each required 
Common Routine not yet present is loaded, an 
item is added to List A: the first word is the 
Common Routine's name', and the second word 
contains unity. For each called-for Common 
Routine, that is already loaded, the second word 
of ' its item on List A is incremented by unity. 

As a job segment terminates, its List B 
is scanned and the second words of all entries 
of List A corresponding to its Common Routine 
requirements are decremented by unity and 
checked for zero value. Those found to be zero 
are deleted from List A and the space assigned 
to each corresponding Common Routine is re
leased for reassignment. 

While the Common Routine loading con
trol problem as outlined above is relatively 
trivial, there is another memory allocation 
problem that is not: we must provide for grow
ing and shrinking memory allocations during 
a job. The classic example that demonstrates 
this need is sorting with magnetic tape as the 
scratch medium. During the Sort phase, high 
speed requires large memory allocation; during 
the Merge phase~ data space requirements are 
minimal. Clearly, it is desirable to release much 
of the original allocation at the end of the Sort 
phase. In the case of the ubiquitous compile
and-go-user, memory space requirements after 
compile may go either up or down, and subse
quent executions may have data-dependent run
time space needs. With some restrictions, we 
shall meet the growing-shrinking space chal
lenge. 

These restrictions relate to the levels of 
source language at which dynamism is per
mitted in memory allocation and release. Our 
present procedural higher-language processors, 
for publicly-recognized versions of FORTRAN 
and COBOL, are perforce language-limited to 
memory allocation that is fixed at load time. 
Having developed hardware with facile provi
sion for dynamic memory allocation, we are at
tracted by the ALGOL concept of automatic 
allocation of memory upon entry to a program 
block and automatic release upon exit from a 
block. We find unappealing a current trend 
toward inclusion in higher-language processors 
themselves the direct user-specified control of 
memory allocation; we feel that this places a 
premium upon attention to hardware considera-



tions, which is appropriate only at the hard
ware-oriented language level. 

For "job mode" operation as defined in 
Section 1.5, release determination based upon 
either a) or b), i.e., at user-signified option, is 
probably adequate. The job-oriented user can 
realistically be expected to pay some attention 
to memory space-time strategy, even if he 
works in a language that permits some degree 
of spiritual detachment from the hardware. 

In the computational-colloquy time-shar
ing (CeTS) mode, however, with continually
increasing emphasis upon the user goal 
(answer to problem) as opposed to our tradi
tional preoccupation with user means (proce
dure for problem solving), the user/hardware 
detachment becomes quite real. In such an 
environment, we should have a more realistic 
strategy for scavenging memory space than 
our present technique of awaiting its evident 
abandonment by the user. We shall continue 
to seek such a strategy. 

10. SYSTEM GROWTH AND 
COMP ATIBILITY 

10.1 212-213 

The 213 logically includes the 212 and 
utilizes much of the same hardware technology. 
Consequently, some of the 213's operations 
occur at about the same speed as those of the 
212, although in some (such as multiplication) 
the 213 is at least twice as fast and others, 
constituting 213 hardware macro-operations, 
are carried out at much higher speeds than the 
same macro-operations carried out as pro
grammed sequences in the 212. 

The outstanding differences between 
these systems, as to both hardware and soft
ware, are the increased flexibility and general
ity of the 213 together with its applicability in 
large multiprocessor installations. 

The 213 will serve as a live test facility 
-alive in that it will be applied to advanced 
problems by sophisticated user organizations 
as well as by Philco Programming Research & 
Development-for development of solutions to 
the operational problems outlined in Section 3. 

New hardware capabilities will handle 
efficiently some economically crucial aspects of 
the address-manipUlation and program-linkage 
problems and will provide significant improve-
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ment over earlier machines in such functions 
as memory protection. General answers to some 
aspects of multiprogramming problems, how
ever, require further study. 

For example, it appears that a com
pletely unrestricted general solution to the 
Common Routine problem, permitting arbitrary 
linkages to be established among subroutines, 
may require, even in a system with paging 
hardware, manipulation of both logical and 
physical memory page numbers. Approaches 
to this problem now under study would require 
use of either content-addressed or associative 
memory of medium speed in the memory alloca
tionprocess. 

Initial 213 hardware and software fairly 
frequently will perform relocation of currently 
resident routines when job segments are loaded 
or reloaded, accepting relatively minor ineffi
ciency, and limitations of the extent to which 
automatic micro-segmentation will be econom
ically practicable, for the sake of generality. 

10.2 Advanced System 

The Advanced System will contain the 
213 and like it, will be capable of executing
unchanged-routines written for earlier 2000 
systems. In addition to using advanced hard
ware technology, including a number of new 
mass memory and input/output devices, and 
operating at considerably greater speeds, the 
Advanced System will differ from the 213 in 
the following respects: 

a) Certain engineering design decisions, 
such as the optimum organization of 
the (automatic-in-hardware) look
ahead and look-aside portions of proc
essor control and the extent of over
iapping of control memory and main 
memory access, will be different from 
those in the 213 because of the different 
relative speeds of some hardware ele
ments and because of the greater oper
ational flexibility that will be required 
in the Advanced System. Some design 
decisions must await detailed analysis 
of actual running programs in user 
installations in a multi programmed op
erating mode. These engineering 
choices will be deferred until the needed 
data are on hand. 
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b) The extent of vocabulary extension 
that is economically justifiable beyond 
that of the 213, will likewise depend 
upon 213 experience and dynamic anal
ysis of running programs and, in addi
tion, will be affected by programming 
language developments over the next 
two years. 

c) Software scope for the Advanced Sys
tem will be considerably greater than 
that for the 213, although several majo:r; 
items will carryover unchanged and; all 
213 software will be usable. 

11. MASS (BLOCK ACCESS) MEMORY 

11.1 In 213 

With the 210 and 211, only magnetic 
tape (90K chis data rate) was provided for 
on-line-accessible program and data files. With 
the 212, either 90K chis or 240K chis tape and 
a high-data-rate (960K chis) but slow access 
(140-240 milliseconds) disc file of 5.2 million 
words per unit was provided. With the 213, 
additional flexibility was required. 

'The 213's Mass Memory Controller pro
vides for up to eight program-compatible units 
per controller. The units differ in data rate, 
access time, and in capacity per unit; they con
sist of an updated verson of the 212's moving
head disc and two (different-data-rate) ver
sionsof the same drum unit: 

a) Disc-10,485,760 (5 X 221) words ca
pacity, 140-240 milliseconds ac
cess time, 960K chis data rate, 
8,192 words per revolution, lim
ited to one access at a time for 
each unit, 3 milliseconds maxi
mum access time for 8,192-word 
transfer if prepositioned. 

b) Fast Drum-2,097,152 (221) words per 
unit, 50 milliseconds worst-case 
access time, 0.6 milliseconds 
maximum initiation time for 
8,192-word transfer, data rate 
1.32 million chis, single-chan
nel. 

c) Multi-Channel Drum - 1,835,008(7 X 
218 ) word per unit, 50 millisec
onds worst-case access time, 4 
milliseconds maximum initiation 

time for 2,048-word transfer, 
data rate 320K chis on each of 
4 unrestricted channels. 

We use the moving-head disc for low
access-rate (less than three accesses per sec
ond) large-volume files. It will for some time be 
the most economical unit when considering ca
pacity and cost alone. 

The fast drum will be used for job-swap
ping when numbers of users in a time-sharing 
system rises to a point that crowds the access
rate capacity of the moving-head disc; the fast 
drum is practicable for access rates up to 15 
per second, using transfers as large as 8,192 
words per message. 

The multiple-channel drum is used for 
system program files and for inputloutput 
tanking. When used with short messages (typi
cal: 128 words [8 unit records for 1/0]), and 
with sequence-sorting of messages, access rate 
can be up to several hundred per second; with 
messages read or written in first-come, first
served sequence, practicable access rate is up to 
60 per second. For 2,048-word fixed-size mes
sages, highest practicable access rate is 75 per 
second. 

One of the drawbacks of high-rate rotat
ing magnetic storage devices has been the large 
buffer areas needed for efficient data handling. 
The advent of large capacity Slow Core has 
changed all that; the fastest device can be 
buffered by a Slow Core memory installation 
provided only that at least 2 of the quarter
million-word modules are used, and even 8,192-
word buffers pose no problems with directly
addressable main memory that includes at least 
half-million-word capacity Slow Core in addi
tion to the Fast Core memory. 

11.2 Mass Memory in the Advanced System 

In the past, magnetic tape has served 
well as the only mass memory device, and it may 
continue for a long time as the most economical 
carry-away medium. It should continue as the 
indicated choice for file processing medium 
where data files are to be processed in orderly 
sequence and where files are limited to the order 
of 100 million characters so that they do not 
require multiple reels of tape. In general, how
ever, the several-minute access time and the 
mandatory . requirement for handling of reels 



or cartridges (because total capacity is too 
small to justify leaving files on-line) will, we 
believe, limit tape usage primarily to carry
away and ordered-file-processing applications. 

While the 213's rotating machinery is 
relatively powerful by comparison with other 
mass-memory equipment that has been made 
available with general-purpose computing sys
tems, a little arithmetic quickly brings one to 
the conclusion that the system would be ham
pered in several ways if some limiting param
eters were not changed. The critical variables 
are capacity, access time (Read and Write), 
data rate, and whether or not carry-away capa
bility exits. 

From the standpoint of data rate, the 
moving magnetic surface performs well. For 
the high-data-rate problem, the Fast Drum 
seems likely to continue as the preferred device. 
The Advanced System version will have the 
same capacity as the 213 version (2 million 
words per unit), and the same ability to initiate 
a one-revolution order promptly. It will rotate 
slightly faster (35 milliseconds per revolution) 
and will store 32,768 words per revolution (vs. 
8,192 in the 213). It will be capable of one'Read 
and one Write operation concurrently at a data 
rate of 7.5 million characters per second for 
each. 

Like other organizations, we are exam
ining the available technologies in search of sig
nificantly better characteristics for three mass 
memory functions: (a) Fast Access, implying 
up to several thousand accesses per second, for 
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blocks of a few hundred characters, are possi
ble; (b) Large Capacity, providing on-line ac
cess in no more than one second to data files 
as large as present-day shelf libraries (10,000 
reels of magnetic tape) ; and (c) Carry-Away 
cartridge-type files at least as large in capacity 
as magnetic tape reels but having access times 
of less than one second. 

For the Fast Access function, modern 
high-resolution slow.:.decay magnetic-deflection 
electrostatic storage tubes under development 
for military applications look interesting. A 
single tube can store a few thousand lines of a 
few thousand bits each, to be written or read 
by slow servo-controlled sweep techniques in a 
nlillisecond. The combination of access time, 
economy, and "militarizability" offered by such 
a device now appears promising; and for this 
reason development is being carried forward. 

For the Large Capacity function, the 
same CRT sweep and encoding technology com
bined with mechanical page-changing in a pho
tographic storage scheme now looks promising; 
and this, too, is being studied here. 

For the Carry-Away function, car
tridge-mounted multiple magnetic tape strip 
devices meet basic requirements. A proposed 
tape strip scheme, for example, offers access 
time of less than one second to any word in a 
cartridge having the capacity of several reels 
of magnetic tape. 

The characteristics of these three devel
opmental devices are summarized in Table 1. 

As a hedge on the development of the 

Electronic 
Mass Store 

Photo Optical 
Mass Store 

Tape Strip 
Mass Store 

Capacity, Millions 
of Words 

Max. Access, milliseconds, 
Any Word 

Max. Access, milliseconds, 
Within Page 

Basic 
Advantage 

fTotal 
{Page 
fRead 
(Write 
fRead 
(Write 

Quick 
Access 

4. 
.065 
.1 
.2 
.1 
. 2 

Large Capacity 

16,000. 
1. 

1,000. 
3.6. million (1 hour) 

. 1 

.3* 
* (Assumes 1 million 
word EMS Buffer) 

Carry-Away 

66. 
.016 

600. 
600. 
35 . 
35 . 

Data Rate, Thousands of fRead 2500. 100. 120. 
120. qhar./second {Write 1700. 50. 

CHARACTERISTICS OF THREE NEW MASS MEMORY UNITS 

Table 1 
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electrostatic block-storage device, we have de
signed a drum control hardware scheme for 
optimizing the sequence of issuance of short
message read and write orders. This will per
mit fixed-block-size messages (128 words) to 
be issued at a rate of up to 2,000 per second, 
to or from any block addresses within a group 
of our present 1.85 million-word multi-channel 
drum units. 

12. SYSTEM CONFIGURATIONS 

12.1 Minimum System Requirements 

The standard 213 and Advanced System 
software will require the following minimum 
hardware configuration: 

One Central Processing Unit 
32K Fast Core 
One I/O Switch 
One Mass Memory Control 
One 1.85M Multi-Channel Drum 
One 101 I/O Device Control with 

One Card Reader 
One Card Punch 
One Printer 
One Magnetic Tape Unit 

Or' Tape Strip Unit 

Note that the software is insensitive in 
particular to the number of, processors in a 

I/O 
CONTROL 

NO.1 

DEVICES 

I/O 
CONTROL 

NO.2 

DEVICES 

MASS 
MEMORY 
CONTROL 

NO.1 

MASS 
MEMORY 
UNITS 

system (up to the design limit of four) ; that 
fast and slow directly addressable memory can 
be mixed in any combination up to the design 
maximum of 2 million words; and that mag
netic tape or TapeStrip is used by the software 
only for system loading or carry-away pur
poses. 

12.2 Switching Redundancy 

The configuration diagrams below will, 
for simplicity in discussion, show Memory 
Switch and Input/Output Switch hardware as 
though it were centralized in two separate 
units. In fact, for the sake of Graceful Degra
dation (Section 1.8) as well as for performance 
and cost considerations, active electronics of 
the switching hardware is physically distrib
uted among the Central Processors, as shown in 
Fig. 12. It may be seen that every major physi
cal unit (32K units of fast memory, 262K units 
of slow memory, each I/O Control and Memory 
Control, and each Communications Processor) 
is physically connected to each Central Proces
sor Unit with its associated (redundant) Mem
ory Switch and I/O Switch hardware. Thus, 
no single fault, including one in the areas of 
systelYl switching, can shut down nl0re than 
half the system. 

The arrangement shown in Fig. 12 does 
not provide within the system for redundancy 
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in access to remote consoles. The dialed-up 
remotes have protection in that initiation of a 
remote connection through the common-carrier 
network will encounter "busy" signals from 
all lines into a 170 that is down and conse
quently will be directed through the other 170. 
Connections that are active when a 170 fails, 
however, may be vulnerable; and each full-time 
remote is shown associated with a particular 
170 so that half of them will go down if one 
170 fails. 

Both of these restrictions can, if desired, 
be removed by providing, as mentioned in Sec
tion 12.4, switching redundancy between the 
170's and their remote lines. 

12.3 213 Systems 

A typical medium-size 213 installation 
that will use magnetic tape for file processing 
is shown in Fig. 13. This particular system 
uses four 32K Fast Core memory modules and 
two 262K Slow Core memory modules. 

A 213 system that does not use magnetic 
tape on-line (tape is used only for auxiliary 
input/output through each 101 I/O Control) is 
shown in Fig. 14. In this system, the CRT 
Printer-Plotter is associated only with one 101, 
and its service continuity, together with that of 
the other I/O devices associated with that 101, 
is thus vulnerable. Likewise, the Data Link 
interface and the remainder of the I/O devices 
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are associated only with the second 101, so that 
those devices together with all of the remote 
card/printer stations will go down if the sec
ond 101 fails. 

12.4 Advanced Systems 

An Advanced System configuration in
cluding a single-processor CCTS Time Sharing 
facility is shown in Fig. 15. The particular sys-

65KPI 
MEMORY 

tern shown is intended as a growth replacement 
for the system of Fig. 14, with the addition of 
CCTS. At this stage, the system will provide 
"graceful degradation" as described in Section 
1.8 for only job-oriented work; a major failure 
in the Type 170 Communications Processor sys
tem could shut down the time-sharing capa
bility until repair has been performed. Note 
that only the central processors, high-speed 

MEMORY swtTCH 

MEM. 
32K 

CHAR. 

CARD READER 41 

CARD READER #2 

CARD PUNCH #1 

PRINTER #1 

CRT-FILM 
PRI NTER-PLOTTER 

TAPE 
UNIT 

CONTROL 

101#1 
1/0 

CONTROL 

INPUT/OUTPUT SWITCH 

MEM. 
32K 

CHAR 

CARD READER *3 

CARD PUNCH.2 

PRINTER #2 

DATA LINK 

TAPESTRIP 
CONTROL 

#1 
MULTI

CHANNEL 
DRUM 
1.85M 

HIGH 
SPEED 
DRUM 

2M 

213 INSTALLAT.ION WITHOUT ON-LINE TAPE 

Figure 14 

MULTI
CHANNEL 

DRUM 
I.S5M 

HIGH 
SPEED 
DRUM 

2M 



A PHILCO MULTIPROCESSING SYSTEM 133 

I 65 KTF J 
MEMORY 

r---- - ---I 
I 1049 KP8 : 
I MEMORY I 
L_ --r----~ 

I MEMORY SWITCH 1 

I 21N 1 
CPU r 

21N I 
CPU 

r INPUT/OUTPUT SWITCH 

-- -------- ------- ~-------- ---, r 101#1 101~2 MASS MASS I 
I AND AND MEMORY MEMORY I 
I I/O 1/0 CONTROL 'WI CONTROL *2 : 

170 

COMMUNICATIONS 

PROCESSOR 

(1024 LINES) : DEVICES DEVICES AND AND I 
, M. M. UNITS M. M. UNITS I 
L __________________________ -.J 

,--, INDICATES EQUIPMENT RETAINED 

I I AFTER 213 REPLACEMENT L __ ...J 

ADVANCED SYSTEM WITH SINGLE 170 

TO 
COMMON 
CARRIER 
TEL./TEL. 

LINES 

TO 
FULL
TIME 

REMOTES 

Figure 15 

memory, and memory switch need be changed 
when upgrading from the 213; the 213 equip
ment retained is in the dotted boxes. 

A more comprehensive system providing 
for graceful degradation in both job-oriented 
and CCTS capabilities is shown in Fig. 16. 
This duplex-170 installation, with distri.buted
switching reconfiguration facilities, is modeled 
on the pattern of the A UTODIN second-phase 
system as mentioned in Section 1.8. Note also 
that passive-switch IOCU's have been used for 
I/O device control, operated under direct con
trol of the central processors an~' arranged so 

that loss of a single IOCU will not cause loss of 
any I/O devices (including Data Links to re
mote card/printer stations). Also, redundant
switching Mass Memory Controls have been 
used, so that failure of one control unit does 
not result in loss of mass memory units. 

13. ADVANCED SYSTEM TECHNOLOGY 
AND DESIGN20 

13.1 Circuits20 

To achieve the performance goals of this 
advanced system, significant gains are required 
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iIi the effective circuit speed. The effective cir
cuit speed relates to the speed of the circuitry 
as a function of inherent delay, method of inter
connection, complexity of logic performed, and 
method of packaging. 

The advanced processor, unlike that of 
previous computers, requires an extensive inte
gration of circuit logic, and packaging tech
nology. 

It is also apparent that unless the system 
performance requirements are recognized at 
the most fundamental level, namely, the basic 
circuit, performance requirements will not be 
achieved. The new machine will use circuits 

which take full advantage of the advances in 
technology yet allow utilization of prior expe
rience in producing large-scale reliable equip
ment. 

The system requires circuits capable of 
handling nanosecond pulses with minimal dis
tortion. Anti-saturation circuit techniques, 
double level logic and smaller geometries are 
used to achieve this circuit speed. Particular 
emphasis in development has been placed on 
those circuit forms which permit total integra
tion. 

The advanced system will use a high
speed, anti-saturated, readily integrable diode 
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transistor logic element. Typical circuit delays 
of 4-6 nanoseconds have been demonstrated 
for fanouts up to 6. This circuit features min
imal design variation with loading with em
phasis placed on total integration. The object 
is to achieve the fastest circuit speed within the 
framework of an integrable machine. Overall 
system speed is then achieved through the 
signal path reduction resulting from the use of 
integrated circuit techniques. 

13.2 The Basic Card20 

The basic pluggable assembly is the func
tional card, conceived on a generic card scheme 

whereby multiples of the single card can be 
arranged to form any major logic block in the 
machine. The single card contains 4 modules. 
Each module in turn is composed of eight inte
grated flat-pack-type circuits. Card connections 
are made through blade type connectors and 
are arranged to permit pin densities for com
binations of circuits within the basic card. Inter
connections within the card are consistent with 
the high speed attained throughout the system. 

The basic module, Fig. 17, is composed 
of a copper comb which acts as its main sup
port, heat sink, and ground plane. All microflat 
packs are attached to spring temper brass car-
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riers which slide over the master comb. The 
two printer cricuit cards carryall signals and 
voltages to the lower header assembly. A wave 
soldering operation completes the module pack
age. 

Four of the basic modules are soldered 
into a printed circuit card which becomes the 
smallest pluggable assembly. The end of the 
card contains a plate which acts as a handle, a 
test point plate, and an air baffle. When all 
cards are plugged into a frame, the back pan 
acts as one side of a chimney and the card 
pIa tes act as the opposite side, thus assuring a 
positive unidirectional air flow. 

The entire package is designed for auto
mated assembly. 

13.3 The Page Assembly 

To build a complex of basic cards and 
maintain minimum lead length, a spinal column 
design is used. The entire processor is based 
on a horizontal wiring spinal column with 
branch wiring to all subassemblies. The modular 
hinged pages have hinge points on the bottom 
forward edges of the upper pages and on the 
top forward edges of the lower pages. This 
design allows easy withdrawal and minimum 
system interconnection lengths. Connectors 
mount in the front of each page. Interpage 
wiring proceeds through plastic cable conduits. 
To conserve head room because of the diagonal 
radius from the pivot point, all pages have a 
2 to 1 height-to-width ratio and afford fore-and
aft access to the cabinet. This type of con-
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SYSTEM PLAN 

Figure 18 



struction results in a high volumetric efficiency 
and reduces the number of interpage cables. 

The front of each page contains indi
cators and test points for maintenance opera
tions. In the extracted position, all page panels 
will be oriented for normal viewing. 

High density packaging of high-speed 
circuits is necessary to reduce interconnection 
wire lengths. This reduction minimizes wire 
delay and permits a maximum number of con
nections without recourse to coaxial or similar 
transmission line wiring. Since it becomes 
more difficult to make interconnections as the 
component density increases, a technique has 
been devised which preserves the fast wave 
fronts necessary to small delay switching. Also, 
this technique provides accessibility to the in
dividual elements of the device. 

13.4 The Memory Matrix20 

The Memory Matrix, or interconnection 
bus, Fig. 18, is the central spinal column for the 
main frame. The matrix connects all processors 
and IOeU's to all thin film memory banks. 

Its construction embodies the use of 
modified strip lines in a compact assembly. All 
points in the matrix terminate in fork type con
nectors which are mounted on the matrix top 
face and interconnect all receiver and sender 
circuitry. 

These circuits mount to matrix printed 
circuit cards. A complement of cards is cabled 
to each processor, IOeU, and 8K memory bank. 
Any card complement for a specific machine 
configuration has its own built-:-in circuitry for 
future expansion to the maximum configura
tion. 

13.5 Processors20 

The main frame is comprised of individ
ual processor sections and banks of 32K thin 
film memory. The page design uses the proces
sors to form the left two cabinet sections and 
thin film memory pages to form the right sec
tions. The entire device is constructed in 
modules of processors, IOeU's and banks of 
32K of thin film memory. The spinal column 
wiring assembly is a memory matrix of inter
connection bus which connects all processors to 
all memory banks. 

Each individual processor, like its 212 
and 213 predecessors, will use an overlapped 
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internal organization permitting use of a con
trolled amount of look-ahead. In addition, true 
parallel processing within a single sequence will 
take place in the indexing and operand fetch 
portions of successive instructions due to the 
use of multiple identical units within each 
processor. 

Figure 18 shows details of the page in
stallations, interface cabling, processor and 
memory sizes, power supply locations, and in
dividual page maintenance. 

13.6 Thin Film Memory2o 

The magnetic thin film memory to be 
used in the Advanced Machine is a large ca
pacity, high speed storage unit, packaged on 
modular pages, and communicates with the 
processors through the memory switch. 

The word size of this memory is 50 bits: 
48 information plus 2 parity. The cycle time 
is 250 nanoseconds, read-to-read, and access 
time is 100 nanoseconds, measured from the 
input of the address register to the output of 
the data register. Each memory bank contains 
32,768 words simultaneously addressable in 
8,192 word sections. Two adjacent words are 
read out simultaneously internal to the storage 
unit. Only the selected word is presented to 
the system. The unit is a linear select (word 
organized) unit with destructive read and write 
restore. 

To attain the fast access and cycle time 
desired, the electrical, mechanical, thermody
namic, production, reliability, and maintain
ability aspects of the design are considered as 
an integrated whole. 

The electrical, mechanical, and material 
tolerances require the memory to be linear
select and to operate with destructive read-out 
with digit write-restore. The storage media is 
composed of a matrix of magnetic film sub
strates. Two words are read out simultaneously 
and write-restores to minimize the decoding 
and drive hardware required; the desired word 
is selected in the memory logic section for pres
entation to the Memory Data Register. 

The thin film memory features a special 
disturb-insensitive film allowing complete 
matched strip-line construction with constant 
line impedance, and low impedances to be used 
throughout the system with very low crosstalk 
and minimal word to word coupling. In addi-
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tion to providing a high bit density, the film 
permits strip-line construction. 

The use of matched lines provides no 
ringing on digit or drive lines, and permits use 
of fast rise times and short pulses with the 
resulting larger read-out voltages and shorter 
cycle times. 

A high frequency, balanced, differential 
sense amplifier constructed in micro-technology 
in conjunction with the exact geometric con
struction of the system provides excellent re
sults in read out and lends itself well to the 
integrated system. 

The thin film memory pages (Fig. 14) 
contain blocks of 2,048 words of memory. Two 
plates compose a single page. Four pages make 
up 8K of thin film memory. Associated driver, 
switch, and sense amplifier circuits are ar
ranged to tie closely into. the control and timing 
circuits located in a logic page servicing 4 
memory pages. 

13.7 Mechanical and Thermal Considerations 

Empty pages are positioned throughout 
the cabinetry to allow for interface . cabling. 
Servicing and maintenance is accomplished by 
pulling a top page to its horizontal position 
where it will lock in, and lifting a lower page 
to engage the locked out upper page. Locking 
is accomplished by a quick disconnect at the 
handles. This design precludes an exotic and 
costly holdout mechanism for the lower pages. 
The maj or Processor/System interface occurs 
in the IOCU sections. Cabling enters the cabinet 
through the subfloor and into the IOCU cable 
matrix. 

Thermal densities in the order of .7 
watts/cu. in. occur throughout the main frame. 
With thermal concentrations of these magni
tudes, forced convection cooling is a satisfac
tory technique. The circuits are designed to 
operate in a range of 15°C to 50°C. An average 
internal temperature of 40°C is the top allow
able limit which has been set in order to offset 
the possibility of hot air pockets. 

An important consideration is the ability 
to cool a page in the out, or service, position. 
This is accomplished by the incorporation of 
air-moving devices in each page. These air 
movers are of a type which can deliver approxi
mately 80 CFM at .1 inches of water, and not 

create a loss of head due to own physical size 
since they must stand in the main cabinet air 
stream. Two or three of these fans will ade
quately cool a page in the servicing, or out, 
position. 

An interlock on each page will apply 
power to the fans while the cabinet is closed 
for normal operation. 

There is a blower chamber associated 
with each bank of four pages both top and 
bottom. All chambers are self-contained units, 
which have ,their own inlet ducts, filters, and 
outlets ducts with collapsible ports. The col
lapsible ports will close when a page is opened 
for servicing, thus keeping air paths intact. 
Each blower must deliver approximately 200 
CFM against a .5 inch head. The final selection 
has been made on the basis of CFM and acous
tical levels. 

A forced convection system, as described, 
will adequately maintain the system tempera
tures between the limits of 20°C to 50°C with 
an ambient of 20°C ± 5°C. The normal opera
tion with doors closed will effect a vertical cab
inet air flow sufficient to remove 10 kw. of heat 
load. During normal operation, page fans will 
remain off. Their low surface area will induce 
very little restriction to air flow. During servic
ing, a page is withdrawn, an interlock closes 
power to the saucer fans, and the faulty page 
thus picks up its own air mover. The bottom 
blowers keep air moving in the remainder of the 
lower pages and the top blowers maintain cool
ing air in all top pages. The scheme is entirely 
modular. Depending upon the cabinet popula
tion, processor, IOCU, memory, etc., blower 
assemblies can be added or subtracted, page 
fans can be employed from none to three de
pending upon the cabinet heat load. 

14. SOFTWARE IMPLEMENTATION PLANS 

One of the decisive reasons why we have 
chosen upward compatibility for the 213 and 
Advanced Systems is that we are convinced the 
priceless ingredient of really good software is 
abrasion against challenging users. 

The first 213 systems will operate ini
tially with 212 software. A few months later, 
the following software ite'ms will be delivered: 

a) 213 SYS, a multiprogramming
multiprocessing- executive system 
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b) 213 TAC }The 212 Assembler 
and FORTRAN IV 

c) 213 FORTRAN IV Compiler will be 
generalized to use 
24-bit addresses 
throughout and to 
make use of mass 
memory. 

d) All 212 software, except 32K SYS, TAC, 

and the FORTRAN-II and -IV com
pilers, primarily intended for 32K ma
chine applications, will be integrated to 
run under the new executive system. 

The major products to be integrated are: 
COBOL-61; SORT II; PERT III, PERT COST; 
STAT-2000 statistical analysis system; LP-
2000 linear programming system (input-com
patible with LP-90) ; XORD self-buffering I/O 
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routine; PIOSGEN I/O generator; PIOS I/O 
interpreter; APT-III numerical control system; 
REPORT generator; FILE selection generator; 
SIMSCRIPT system simulator; and LIBrary 
mathematical, utility, and service routines and 
subroutines. 

Work on the 212 Time Sharing System 
will be converted to an extension of the 213 
'executive systenl; this extension will be made 
available for general use about six months later. 

Initial Advanced System hardware de
liveries will be made about two years after 
initial customer-site usage of items a) through 
d). 

Thus, both 213 and Advanced Systems 
will be utilized initially with software that has 
been used for about two years by customers. 

Philco's 1960-released ALTAC compiler, 
and its successors through the present ALTAC
III compiler which includes FORTRAN-II as a 
subset, contain these source language features 
beyond FORTRAN: 

1. Symbolic statement labels (begin with 
alphabetics) . 

2. Compound statements ("statement; 
statement; statement"). 

3. Mixed expressions (integers are 
floated) . 

4. Array dimensionality up to 4. 
5. Greater subscript generality: variable 

subscripts attaining zero or negative 
values are handled properly; subscrip
tion of subscripts to arbitrary depth is 
allowable. 

We are pleased that most of these features, 
among others, are now being considered for 
adoption in newly proposed procedural lan
guages. 212 users have written compilers for 
two of the three recognized dialects of ALGOL-
58, MAD and JOVIAL. We are studying the 
applicability of these languages in addition to 
ALGOL-60, and of other procedural languages 
not yet publicly defined; with the intent of 
selecting appropriate- languages and language 
extensions for future compiler development for 
release as Philco-maintained 213 software 
products. 

15. CONCLUSIONS 

The trend toward broadening the applica
tion of million-or-more-operations-per-second 

computing systems seems to us to be unmis
takable. At one extreme, more comprehensive 
solutions of the most complex problem types 
are being planned, and improvements are being 
made in the rapidity and efficiency with which 
service is provided to the requestor of such 
problem solutions. At the other extreme, the 
computational-colloquy mode of access to large 
systems is making them conveniently available 
to requestors of solutions to relatively small 
problems, providing not only the superior 
economy of the super-scale machine, but also 
its vast power and flexibility together with a 
continually-broadening range of software. This 
mode of access to very large machines is also 
beginning to demonstrate a new order of effec
tiveness of computation service to research and 
development organizations whose technical pro
ductivity is closely related to the promptness 
and predictability with which computer solu
tions to new problems can be prepared and 
extended. 

The effectiveness of multiprogramming 
in large-system efficiency and the planning flex
ibility and graceful degradation potential of the 
multiproeessing system seem to have been ac
cepted as realistic and justifiable goals by many 
of the most advanced large~system users. We 
believe that broad application of these concepts 
in large systems is inevitable. 

The Advanced System that is the subject 
of this paper is intended not only to provide 
much greater speed and economy but to include 
in its hardware and software highly efficient 
and quite general capabilities for facing the 
challenges outlined in Sections 2 and 4, includ
ing that of The Common Routine and Common 
Data. 
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The following are corrections to be entered on the designated pages: 

Amemiya, Hiroshi: "A 105 -Bit High-Speed Ferrite Memory System-Design and Operation" 

Page 124, Figure 2 Caption should read Reading 

142, line 4 
, row 3, col. 3 
, row 4, col. 3 
, row 1, col. 1 

Change to e "IX 

Change to U s 2 - ')'2 

Change to U m 2 

Remove parens 

Weber, J. H.: "UNISM-A Simulation Program for Communications Networks" 

Page 243 Place. after - ]32 in equation 

Trilling, D. R.: "The Use of a Job Shop Simulator in the Generation of Production Schedules" 

Page 277, line 14, right Change to read-These statistics are well known 

279, line 23, right 
, line 45, right 

Change to read-This type of node is a" call-out," 
Change to read-to assign the necessary binary codes. 

282, line 12, right Change to read-point to hypothesize a schedule analyst and-

Raphael, Bertram: "A Computer Program Which 'Understands' " 

582 Add part h (below) to Figure 3 

h. NUMBER 

II VNOEIUUNOI 

,.... JOMN IS , lOY. 

II UNOEltSUNO. 

,.... , 'I~f~ IS ~'~T OF A H'NO' 

II UNUUSUNO. 

I.... HON M'"y FIN'EAS DOES JOHN "AYE g. 

1 I '"I: ABOVE SENUNCE IS AMI"'ooUS •• Bu' I ASSUI'IE 'Hast ",A .. S IHAS AI "'Us), 
II OON.' K"OW W"ETHI:~ FI"~E~ IS 'A~r OF JOHNI 

I.... rHEME IS ONI: "A"O or. fACH A.,., 

.. UNDERSTAND. 

II UNDERSTAND. 

,.... HOW "ANY FIN~E"S DOES JOHIII HAVf O. 

3 "HI: A80VE ~fN'fNCI: 1~,AM81~UOUS •• IU' • ISSUME IHAS' "EI .. S IHAS AS ~A.TSI' 
""OW "AI" FlIleU PEA HAIllO 'li. 

"HI A80VE SENUNCE IS AMB'GUOUS •• BU' I USU"I: IHAst MUI'4S '''AS AS PA,,'U' 
'I UNOE"SUIilO. 

I.... HOW MANY flNGEAS DOtS JOHN HAVE 01 

'TH[ A80VI: SENTENCE IS A"8"ooUS ••• Uf • ISSU"[ IHISI MEANS IHIS '5 'A",S., 
"HE A"SWt •• s 101 
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283, line 32, left 

284, line 4, left 

285, line 19, left 

286, line 17, left 

Change to read-analysis will begin by looking for any case

Change to read-viewpoint of local management, and the policies

Change to read-man should result in a smaller absolute reduction 

Change to read-their effects are studied by separate experi

Appendices I and II should appear at the end of the paper. 

Teitelman, Warren: "Real Time Recognition of Head-Drawn Characters" 
Page 559 Correct author's name to "Warren"; Change first word in second paragraph to "In." 

Talkin, Albert 1.: "The Negative Gradient Method Extended to the Computer Programming of Simultaneous 
Systems of Differential and Finite Equations" 

Page 540 Add derivate dot above x in (1.3); above x in 4th line of Sec: 1.2 above initial X,y,Z, 
and x2, y2, Z2, in third line of (2); initial x, y, and x2, y2 of second line of (3) and (4); 
initial y and second x of (5.2) 

Yang, C. C. and Tou, J. T.: "Systematic Design of Cyrogenic Logic Circuits" 
Page 651, line 7, left 5, 10-13, 15 are references (superscript) 

, line 10, left 9, 10, 12 are references (superscript) 

653 
653, line 41, left 

, line 5, right 
, line 27 

654, line 7 and 

In each case where pairs X; and X; appear, change to X; and X; 
Change to X; = ° 
Change to F(Xm) 
Change second X; to X; 

rest of left Change X; to X; 
, lines 25, 26 right Change X; to X; 

655, last line, left 
, lines 15,17,28, 

right 
, line 30, 43, right 
, line 33, right 

Change second X; to X; 

Change F(Xm) to F(Xm) 
Change to PI through P n 

Change to P k + PkPk+l = Pk + Pk+l 

656, line 3, left Change to P k 

, lines 4,23, 25, left Change to F(X4) 

, lines 15, 16 left 
, lines 27, 28 left 
, right-
, line 1, 
, line 3, 4 
, line 8, 
, line 9, 
, line 10, 
, line 11, 
, line 17, 
, line 26, 
, line 32, 

Change to F(X4) = X 1X 2X aX 4 + X lX 2X aX 4 + X lX 2X aX 4 

Change to F(X4) = X l(X2 + Xa) + X2 + Xa) X 4 + Xl (X2 + X aX 4) 

Change to: 
F(X4) 

F(X4) = (Xl + X 2X a) (X2Xa + X 4) (Xl + X 2 [Xa + X 4]) 

PI = Xl + X2Xa, PI = Xl (X2 + Xa) 
P 2 = X 2Xa + X 4, P2 = (X2 + X a)X4 

P a = Xl + X 2(Xa + X4), 

Pa = X 1(X2 + X aX 4) 

and Pi (i = 1,2, or 3) 
and Xl or X 4 and X4 has 
and Xi possesses 
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657, line 4, left function F(Xm). 
, line 9, left F(X m) should 
, line 2, right form F(Xm), 
, line 36, right F(Xa) = X2Xa + XIX 2X 3 (11) 
,lines 39, 40, right F(X3) = XIX2Xa + XI X 2X a + X IX2X3 (12) 
, lines 43,44, right F(Xa) = X1X2X a + XIX 2Xa + X IX2X a + X IX 2X3 + X IX 2X a 

658, line 13, left 
, line ]4, left 
, line 14, right 
, line 15, right 
, line 16, right 
, line 39 right 

659, left line 1 
, line 3, 
, line 5, 
, line 7, 
, line 16, 
, line 19, 
, line 32 
, line 38-40 
, line 43-44 

659, right line 12 
line 17 
line 18 
line 22 
line 25 

660, left lines 3,4 
line 8 
line 9 
line 11 
line 12 
line 15 
line 16 
line 27 
line 29 
line 33 

of Xi is 
and Xl is 
form F(X4), 

and X3 and 
and X4 are 
Sn(X l , ••• , Xi, ... , Xi , ... , Xm) 

Written Xl, Xi, etc. 
Xl, Xi, Xi, Xm , etc. 
parameters Xl, Xi, etc. 
When Xl, Xi, 
and Xi. 
Variables Xl, ... , Xi, ... , Xi, 

'With Xl, ... , Xi, ... , Xi , .. . 
F(Xm) = Sp,q (Xl, ... , Xi, ... , Xi, ... , Xm) 

= Sp(X l , •.• , Xi, ... , Xi, ... , Xm) 
+ SiX l , ••• , Xi, ... , Xi, ... , Xm) 

F(Xm) = Sp,iX1, ••• , Xi, ... , Xi, ... , Xm 
m 

= L Sk(X l , ••• , Xi, ... , Xi, ... , Xm) 
k=O 

Xl, X2 and Xa 
Sp(X l , .•• , Xi, ... , Xi, ... , Xm) and 
Sq (Xl, ... , Xi, ... , Xi, ... , Xm) 
Sk(X l , •.. , Xi, ... , Xi, ... , Xm 
F(Xm). 

F(Xa) = X IX 2Xa + X lX2X 3 + XIX2X3 
or Xl, X 2 

Xao When Xl andX2 or Xl and X3 are 
Xl, X2, 

X3 by 
Xl, X2 

and X a become 
F(Xa) = S2 (Xl, X 2,Xa) 
F(Xa) = SO,l,3 (X l ,X2,Xa) 

and X a located 

661, left lines 33, 34, 35 Xi is 
line 37 by Xi 
line 39 gate Xj in 
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Avizienis, A.: "Binary-Compatible Signed-Digit Arithmetic" 

Page 665, 667, 669, 671 

667, line 1-8, left 

Replace running head with title above. 

Change column of numbers to; .6 0 7 4; 7 5 0 
.2 7 1 5 0 0 0 

47611750 
- - - --

416 1 150 
010 1 100 

.5 1 7 0 1 5 0 

.5 1"7 0 I 5 0 
.5 1 7 0 0 0 0 

667, lines 20 & 22 right Change to x' = .16 ;x' .177 ... 77 

667, lines 35-41, right Change column of numbers to; .6 0 7 4 7 5 0 
.7 7 7 7 7 7 7' 

668, line 44, left 
line 1, right 
line 16, right 
line 44, right 

669, line 8, left 
line 25, right 
line 37, right 
line 41, right 

670, line 24, left 

15 7 0 3 16 14 7 
- -

5 103 641 
1 100 1 1 1 

.6 1 0 4 7 5 1 

.6 1 0 4 7 5 0 

Change p and x in equation to P X 
Change" recorded" to" recoded" 
Change to "multiples" 
Insert" and" after" form" 

Change to P (j-I) 
Change p to q 
Change to "digits" 
Change to R (j-l) 

Change to" = 4" 

Fricke, L. H.: "The Use of a Portable Analog Computer for Process Identification, Calculation and Control" 

Change running heads to read" Calculation", instead of " Calculating" 

686, left Change words "out" and "in" in the equation to subscripts 

691, line 24, right Change B in equation to a lower case beta 
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Paquette, G. A.: "Progress of Hybrid Computation at United Aircraft Research Laboratories" 

699, Eqs (1),(2),(3) Add derivative dots over final x (double in Eq) (2) 

700, Eqs (6),(7),(8) Add derivative dots over final x in (6); all xs in (7) (double over final x); and double 
over final x in (8) 

701, left, is para Change to read: "The use of a single argument interval often requires an excessively 
large data table to adequately describe the function. Some reduction in table size 
can be accomplished by subdividing the function into regions with different argument 
intervals. Another procedure is to apply an argument modifying function to the prob
lem argument, i.e., 

Carbrey, R. L.: A Strobed Analog Data 

Page 712 Change Fig. 4a to 4b; 4b to 4a 

Frederickson, A. A.: Hybrid Simulation of a Lifting Re-entry Vehicle 

Page 717, lines 3,5,6, right Add double dots over h in h = 0, hi in (1) and single over V 

718, line 11, left 

719, line 2, right 
line 4, right 

728, Eqs (7),(8),(9) 

731, lines 16, 17,21 
left 
lines 26,27,31, 
36, left 

731, Eqs (15), (16) 
731, Eqs (17), (19), 

(20) 

Add derivative dot over h 

Add double dot over h 
Add single dot over V 

Add derviative dot over q 

Add derivative dots over 01. and {j 

Add derivative dot over T, AT, and second Ts 
Add derivative dot over T, intial Ts, final 01., AT, initial {j and final Ts 

Add derivative dot over T and AT 

The following are corrections to AFIPS, Volume 26, Part II: 
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