
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 26
PART II

1964
FALL JOINT
COMPUTER

CONFERENCE

VERY HIGH SPEED
(OMPUIER SYSTEMS

Sponsored by:

Association for Computing Machinery

Institute of Electrical and Electronics Engineers

Simulation Councils, Inc.

American Documentation Institute

Association for Machine Translation and
Computational Linguistics

AFIPS
CONFERENCE
PROCEEDINGS

VO·LUM'E 26 .
PART·,II

1964
FALL '-'OINT
COMPUTER

CONFERENCE

VERY HIGH SPEED
COMPUTER SYSTEMS

Sponsored by:

Association for Computing Machinery

Institute of Electrical and Electronics Engineers

Simulation Councils, Inc.

American Documentation Institute

Association for Machine Translation and
Computational Linguistics

© 1965 .by the American Federation of Information Processing Societies, 211 E. 43rd St.,
New York, N. Y. 10017. All rights reserved. This book, or parts thereof, may not be
reproduced in any form without permission of the publishers.

The ideas and opinions expressed herein are solely those of the
authors and are not necessarily representative of or endorsed by the
1964 Fall Joint Computer Conference Committee or the American
Federation of Information Processing Societies.

Library of Congress Catalog Card Number 55-44701
Spartan Books, Inc.

1106 Connecticut Avenue, N.W.
Washington, D. C.

Sole distributors in Great Britain, the British Commonwealth and the Continent of Europe:
Macmillan and Co., ltd.

St. Ma'rtins Street
London W.C.2

CONTENTS

Preface

The Keynote Address

The Luncheon Address

The Harry Goode Memorial A ward Presentation
Synopsis
The Medalist
The Award
The Presentation, E. L. Harder
The Acceptance, Howard Aiken
The Presentation to Mrs. Harry Goode, Isaac L. Auerbach

The AFIPS Prize Paper Award

Page

v

DAVID SARNOFF 3

GERARD PIEL 13

25

31

TECHNICAL SESSION-VERY HIGH-SPEED COMPUTERS

Parallel Operation in the Control Data 6600 JAMES E. THORNTON 33

An Operating System and B. B. CLAYTON 41
Programming Systems for E. K. DORFF
the 6600 R. E. FAGEN

Remote Time Sharing of a Centralized 6600 B. B. CLAYTON 59
E. K. DORFF
R. E. FAGEN

J. D. JOHNSON

The Model 92 as a Member of the System/360 Family G. M. AMDAHL 69

The Overlap Design of the IBM System/360 Model 92 T'. C. CHEN 73
Central Processing Unit

System Aspect: System/360 Model 92 CARL CONTI 81

A Philco Multiprocessing System H. S. BRIGHT 97

Index 143

PREFACE
Volume 26 of the AFIPS Conference Proceedings is a per

manent record of the papers presented at the 1964 Fall Joint Com
puter Conference. Part I, called AFIPS I, was distributed at the
Conference; this book, which is Part II, hence AFIPS II, includes
information which, because of its nature and timeliness, could not
be made available for publication prior to the time of the Confer
ence.

This departure from the usual pattern of a single volume for
the Conference Proceedings reflects the unique character of the
sessions whose papers comprise the maj or portion of this book. In
recent Conferences, computer systems have been described in bits
and pieces, -and properly so. The, technical programs were carefully
organized to avoid inclusion of material which might have hadother
than technical interest or motivations. Furthermore, since tech
nical sessions are generally organized around particular areas of
specialization, only those specific features of new computer systems
which were within the specialty area and which were intrinsically
of interest could be presented. This approach, it is believed, is
proper and should be maintained, but it has the effect of eliminating
overall descriptions of computer systems, as often presented at
earlier Joint Computer Conferences.

Consequently, as an experiment, the 1964 F JCC Program
Committee under David R. Brown, Program Chairman, decided to
sponsor, on an experimental basis, some sessions devoted to com
puter systems, permitting discussion of an entire system, regardless
of whether or not each feature under discussion was unique or new.
Attempts were made to present a complete description of each
system-the underlying concepts, the hardware, the software, and
the problems encountered in arriving at a final design.

The sessions were called Very High Speed Computers, 1964
-The Manufacturers' Point of View. These' sessions were organ
ized and chaired by Dr. Sidney Fernbach. The major stipulation
placed on each system to be described was that it should be new and
that it must be capable of executing approximately one million
instructions per second. While the manufacturers' point of view is
represented, it is perhaps more relevant to note that this view is
shaped predominantly by the designers of each system.

Publishing a post-Conference volume presented the unusual
opportunity of including a record of some of the events which trans
pired there. Hence, the Keynote Address by David Sarnoff and the
Luncheon Address by Gerard Piel are also in this book. The
opinions advanced by these distinguished individuals should form
the basis for further discussion and consideration and are repre
sentative of the broadening influence and impact of the information
processing field.

Additionally, these pages contain a full account of the back
ground of the Harry Goode Memorial A ward and of its presentation
to its first recipient, Howard H. Aiken. It is especially fitting that,
at this stage in its growth, the information processing field should

v

vi PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

establish the means for honoring those who make notable contribu
tions to it. In that vein, also, a notation of the awarding of the
1964 F JCC Prize Paper Award is included in this book.

In keeping with the recently completed effort to index the
papers presented in earlier Joint Computer Conferences, an index
of terms applicable to the papers in this book is included at the end.

As previously noted, AFIPS I is already in publication and
has been widely distributed. It contains, as do the' other volumes
in the series, all of the papers presented at the usual technical
sessions. These papers were carefully selected from the excellent
material available and cover a wide variety of topics. The Session
Chairmen, together with the Program Committee, performed an
outstanding function in coordinating the choice and presentation of
papers ranging through hardware, software and applications.

In retrospect, the 1964 FJCC was, in many respects, a stimu
lating experience. Its major permanent contribution, however, is
represented by the information contained in the two parts of the
Proceedings, and the contributors to these Proceedings are to be
commended for their efforts and for the contributions they have
made to the rapid advance and diversification of the information
processing sciences.

General Chairman
1964 Fall Joint Computer Conference

KEYNOTE SPEAKER

Brig. Gen. David Sarnoff was the Keynote Speaker for the
26th AFIPS Joint Computer Conference. General Sarnoff is
Chairman of the Board of the Radio Corporation of America.
His life-long association with science, technology, and indus
try has resulted in a unique and unparalleled record of accom
plishment, and the chronicle of his career is itself representa
tive of many of the significant effects of science on society.

The Keynote Address

THE PROMISE AND CHALLENGE

OF THE COMPUTER

David Sarnoff
Chairman of the Board

Radio Corporation of America
October 27, 1964

California has always been synonymous in my mind with
innovation and progress, and the past year has given me fresh
reason to think so.

Seven months ago, at the NBC studios in Burbank, I had
the pleasure of presiding at the inauguration of a new dimension
in business communications. By means of two-way, closed-circuit
color television, two large assemblies of RCA's shareholders-one
in California and the other in New York-were brought into instant
visual and verbal communication at our 45th Annual Meeting. De
spite their continent-wide separation, the two groups were as effec
tively unified as though they were meeting under one roof.

Three months later, the sense of participation was almost
as direct and immediate with the successful performance of Ranger
VII. Again, this was an accomplishment that spanned the con
tinent. RCA cameras and transmitters built in New Jersey, aboard
a spacecraft built in California, completed their. historic mission
at a third point-the moon.

Today, I am glad to be in California and to experience again
this sense of participation in progress. I t is expressed this time
in a gathering of more than 4,000 scientists and engineers from
a new and dynamic industry that traces its line of descent directly
to the beginning of the art and science of electronics. The modern
electronic computer is the precocious offspring of wireless teleg
raphy and radio telephony, and it is creating a new dimension of
progress through the high-speed handling of electronic signals.

Since the birth of RCA in 1919, our principal efforts have
been concentrated on transmitting, receiving, and recording infor
mation by electronic means. It was natural, therefore, that our
scientists and engineers were among the first to begin the study

3

4 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

of electronic computing techniques, and I believe their contributions
to this new art have been significant.

Six years ago, when we entered the computer field com
mercially, it was the logical extension of everything we had been
doing up to that point. We are making good progress-in tech
nology, programming, service, sales, and revenue-and we will
soon announce some significant new product developments which
we believe will contribute to the industry's future growth. Last
month, we crossed over into the promised land of computer profits.
While the trip was rugged, we found the new terrain to our liking,
and we expect to stake out a permanent profit claim.

THE LESSON OF STANDARDS IN ELECTRONICS

During my 58 years in electronics, I have seen several
dynamic industries emerge from conceptual beginnings in the
laboratory. The most memorable were radio communications, radio
broadcasting, sound-movies, black-and-white television, and color
television. While their origins differ.ed in detail, all shared a com
mon experience that has a distinct parallel today in the rise of
computers as another major member of the electronics family.

All were intensely competitive from the beginning and have
remained so. But they began fulfilling their potential only after
agreement had been achieved for technical standards prescribing
the kind and quality of service to the public. A pattern for progress
was thus fashioned without sacrificing the vital stimulus of com
petition in developing newer, better, and more economical equip
ment, and in furnishing more efficient service to the user.

I am convinced that this same process must occur in the
computer industry. Even now, the computer is stirring a revolution
of the brain just as steam power stirred a revolution of the muscle.
The potential effects are almost incalculable-but their full realiza
tion calls for the same definition of ground rules that permitted
the growth of the older electronics industries.

When sight was added to sound with black-and-white tele
vision, the need for technical standards as the basis for orderly
growth was clearly recognized. The receiver in the home and the
transmitter in the studio had to be built to operate on the same
standards. A committee representing all major elements of the
industry obtained practical unanimity on such standards as a pre
condition to the establishment of a public television service. It was
on this foundation that black-and-white television grew so phenom
enally in the post-war era.

Again, in the early 1950s, the industry underwent the
long and difficult process of reaching agreement on a workable
service to the public. This time the issue was color television, and
two sharply different systems and standards were in dispute. One
was based on a mechanical "color wheel" which could produce color
images but whose transmissions could not be received by the black
and-white receivers in the nation's homes. It was therefore incom
patible with existing equipment. The other was an all-electronic
compatible system which could be seen in black-and-white on any
TV set in the home.

THE PROMISE AND CHALLENGE OF THE COMPUTER 5

It was evident that, if the incompatible mechanical standards
were to be adopted, the industry would be saddled with an inferior
system and the public with an inferior, more costly product. To
adapt the 10 million sets then in existence in order to receive a
degraded picture in black-and-white would have cost the public
approximately $500 million. Without an adaptor, the TV screen
would simply go blank.

Clearly, there were many inherent advantages in adopting
an electronic rather than a mechanical system of color television.
For the industry, the basic issue came to this: should the millions
of dollars already invested by television set owners be jeopardized
by an incompatible color television system?

Once more, an industry group was formed to draft signal
specifications and standards. The result, after 32 months of work,
was a complete set of compatible color signal specifications closely
following those that had been developed through long years of
laboratory research and engineering. These ultimately became the
basis for color television in the United States-a business that now
stands with data processing in the forefront of the nation's indus
trial growth.

The industry committee did its work so thoroughly that
every subsequent advance in the color television art has been put
into service with no change whatever in the original standards.

THE NEED FOR STANDARDS IN COMPUTERS

The phenomenal rise of data processing bears certain resem
blances to that of color television. It is' confronted in similar
fashion by a question of compatibility. The investment of the
user is again a primary consideration. The issue becomes more
acute as the growing computer industry intensifies its competitive
drive for new and more ingenious ways to accommodate the user.

From the two-score or so machines in existence barely a
dozen years ago, there are now some 17,000 general-purpose com
puters in the United States alone, and the number is increasing
at a rate of more than 500 a month. Within the coming decade,
the computer population can increase enormously.

Whether it realizes its full growth potential depends in very
large degree, however, on the measures we undertake now to estab
lish the basis for orderly development. The interests of the industry
and the needs of the user demand a far greater measure of com
patibility and standardization among the competing makes of com
puters and the means by which they receive and transmit informa
tion.

Neither the operators nor the machines we have built for
the processing and transmission of information can yet speak to
each other in a commonly understood and accepted language. The
means of preparing data, of forwarding and entering data in the
machine, and of instructing the machine in its use differ sufficiently
from one make of equipment to the next so that none can readily
accept the product of another.

We function today in a technological "Tower of Babel."
There are, by conservative count, more than 1,000 programming

6 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

languages. And there are languages within languages-in one
instance, 26 dialects, and in another, 35 dialects. There are eight
computer word-lengths in use. There are hundreds of character
codes in being, at a ratio of one code for every two machines mar
keted. Four magnetic tape sizes are employed with at least 50
different tape tracks and codes.

Standards have not been accepted even for commonly used
symbols, instruction vocabulary, or program development proce
dures. Words which have currency throughout the industry assume
different meanings, depending on whether a man has trained in
Pasadena, Poughkeepsie, or Camden. We have yet to produce a
universally accepted computer glossary.

No means have yet been perfected for a program in one basic
language to be run efficiently into computers of different makes.
The result has been needless duplication, delay, and waste-both
to the manufacturer and to the user-in cost, in equipment, in
operating efficiency, and in manpower and skills.

Incompatibility has compelled the manufacturer to build
optional choices into peripheral equipment for the input and output
of data. It has required him to maintain various types of the same
equipment, or to build to a customer's specifications on each order.
It has diverted needed engineering and programming talent from
the vital work of new product and systems development.

The burden of incompatibility has been even more onerous
to the user. I t has meant the extra cost of providing hardware and
programs to handle the differences between incompatible systems,
the cost of extra machine time to process data set for another
computer, the cost of training people to do things differently, the
cost of not being able to do the job immediately.

Last year, an estimated $2 billion was spent by American
business and government for privately developed computer pro
grams, representing thousands of man-years of effort. Yet, when
a change to new equipment is made, portions of this effort must
be thrown away because they have no validity to another make of
machine, or they are retrievable only at further cost.

I have heard it said that even a degree of standardization
and compatibility might inhibit· the progress of the art. In my
judgment, this argument is without substance. The nature of a
computer is such that its operation is governed far less by its
internal construction than by the program that is given to it.

The effort to bring order to the flow of computer intelligence
need not affect competition either in creating programs or in seek
ing new generations of increasingly efficient machines. On the con
trary, the result could be a greater concentration of effort toward
this primary goal.

PRELIMINARY STEPS TOWARD INDUSTRY STANDARDS

During the past four years, certain essential preliminary
steps have been taken toward industry standards and compatibility,
largely under the aegis of the American Standards Association
and the Business Equipment Manufacturers Association. Repre
sentatives of the industry, of users, and of technical groups have

THE PROMISE AND CHALLENGE OF THE COMPUTER 7

proposed industry-wide standards in such areas as data transmis
sion, information exchange, and character recognition.

Working with a committee of the International Standards
Organization representing the computer interests of 13 foreign
countries, they have recommended world-wide standards which
would make it possible for a credit card or invoice produced in
any country to be read by equipment anywhere in the world.
Another recommendation, for information interchange, would make
it possible for computers in all countries to talk to each other in
a common language, when it is adopted and implemented by the
manufacturers.

FURTHER ACTION ON STANDARDS IS ESSENTIAL

That phrase-when adopted and implemented by manufac
turers-is central to the resolution of the problem. For in our coun
try, at least, the action is voluntary, and until these and other
standards are put into general use they remain little more than
statements of hope.

Today, Western Europe is energetically seeking to close the
computer gap and is moving toward the establishment of standards.
During the next five years, the use of computers in European indus
try and government is expected to develop at an accelerating rate.
Ten years from now, the foreign market might well equal that of
the United States.

Unless we achieve some coherence in our own ranks, we
may find ourselves following instead of initiating standards.

All of us, in computer manufacturing, in communications,
and among the user groups-at the technical as well as the man
agerial level-share a common interest in the free interchange of
information, and the media and equipment through which it flows.

This demands that we give compatibility the urgent con
sideration which it merits but which it has not yet received. It
requires the wholehearted support by all of us of the standardization
work that is now going forward, and "implementation of the results
with all deliberate speed. It will require that we submerge our dif
ferences, through fair and equitable compromise, to achieve greater
ends.

I do not suggest that existing systems be discarded. That
would be unrealistic as well as costly. Even today's computer has
reached maturity in one basic respect: its average time between
failures, measured in minutes only a decade ago, is now measured
in months. This is a level of operating reliability far beyond that
of either the automobile or the airplane.

But new generations of systems are coming, and the time
to bring order into progress is now, before they have fully arrived.
Standards can be established which, if planned with thought and
foresight, can guide us in the future, linking our separate efforts
and facilitating the common evolution of our industry. Such stand
ards are indispensable to continued progress.

THE COMPUTER'S IMPACT ON THE FUTURE

As the shape of tomorrow's technology takes form, the

8 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

volume and accessibiiity of data stored in the computer will playa
decisive role. All information as to what to do, how to do it, and
what data to do it with, resides in the memory of the machine.
With larger and faster memories there are few limits to the tasks
that can be solved or the speed with which they are completed.

The time is soon coming when these memories will be capable
of storing up to 100 million bits of information, retrievable in
fractional millionths of a second. For external memories, the goal
is a trillion bits, possibly advancing later to capacities that are many
times greater. By these means we can hope to store all of the
information that is presently contained in all the world's libraries.

Tomorrow's standard computers and their peripheral equip
ment will instantly recognize a handwritten note, a design or draw
ing which they will store and instantly retrieve in original form.

The computer of the future will respond to commands from
human voices in different languages and with different vocal inflec
tions.

Its vocabulary will extend to thousands of basic words in
the language of its.country of residence, and machines will auto
matically translate the speech of one country into the spoken words
of another.

The computer itself will become the hub of a vast network
of remote data stations and information banks feeding into the
machine at transmission rates of a billion or more bits of informa
tion a second.

Laser channels will vastly increase both data capacity and
the speeds with which it is transmitted.

Eventually, a global communications network handling voice,
data, and facsimile will instantly link man to machine-or machine
to machine-by land, air, underwater, and space circuits.

We will see computer switchboards in space, similar to those
presently in operation on the ground, routing in milliseconds any
communication to and from virtually any point in the world.

The interlocking world of in~ormation toward which our
technology leads us is now coming closer to realization. It will be
possible eventually for any individual sitting in his office, laboratory,
or home to query a computer on any available subject and within
seconds to receive an answer-by voice response, in hard copy or
photographic reproduction, or on a large display screen.

We will see the eme,rgence of national and global information
processing utilities, serving tens of thousands of subscribers on a
time-sharing basis. These utilities will accommodate the specialized
needs of researchers and engineers, lawyers, medical men, sociolo
gists, or the general needs of the public.

The ordinary citizen may well carry an individual credit card
for use anywhere to charge his bank account electronically over a
worldwide data communications network that would link up with
the telephone systems of all nations.

Such an arrangement could employ simple input units located
in all retail establishments-service stations, restaurants, hotels,
and other public facUities. These would be in direct and instanta
neous communication with a system of banking computers to permit

THE PROMISE AND CHALLENGE OF THE COMPUTER 9

the transfer of funds without the many- duplicate bookkeeping and
mailing steps that characterize the present credit card system.

A scientist will be able to discuss a problem by two-way tele
vision with a colleague anywhere on the globe, and both of them
will be able to query a computer at another terminal point for
assistance in finding the solution.

Private corporations, many of which will be international
in ownership and operation, will have instant access to production
and market information from data stations positioned around the
globe.

Similar systems will operate on a vastly larger scale for
government agencies-'-military, diplornatic, and economic.

The computer will evaluate and offer alternate courses of
action, taking into account all the known and probable variables
of a given situation.

This emerging pattern inevitably will set in motion forces
of change within the social order, extending far beyond the present
or presently predictable applications of the computer. It will affect
man's ways of thinking, his means of education, his relationships
to his phys,ical and social environment, and it will alter his ways
of living.

I believe, for example, that television in a vastly expanded
form will become our major instrument for communicating general
or specialized information. The same broadband channels that
accommodate the TV picture signal can also transmit masses of
computer data at ultrahigh speed for instant display.

One day,' we will receive our newspapers and technical pub
lications, photocomposed by a computer, by direct display on a wall
screen in the horne or office. If we wish to retain any part of
them for further reading or reference, it can instantly be produced
in electrophotographic copy.

As computers become amenable to simple commands, they
will become as indispensable to education as the reference library.
Indeed, they will become tomorrow's reference library, used by
every student from the upper elementary levels through university.

Far from eliminating the need for intense intellectual effort,
they will permit young people to undertake mental explorations
far beyond the boundaries of the present classroom world.

The computer already is opening areas of knowledge long
denied us by the sheer magnitude of the mathematics involved. The
implications are no less fundamental for the social and life sciences
than for the physical disciplines.

By correlating vast quantities of data and uncovering new
relationships we can for the first time obtain significant informa
tion on social and human behavior-from the destructive tendencies
of some to the learning power of all.

THE ULTIMATE CHALLENGE POSED BY THE COMPUTER

The ultimate implication of the computer is that it provides
a means of releasing the productive powers of the human brain to
an almost limitless degree. Yet the computer imposes as a precon-

10 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

dition the sternest discipline to which the mind has yet been sub
jected.

Even to use the machine, we must apply clear and precise
logic to s,ituations which heretofore were assumed to be beyond
analysis. We must state precisely what we know or do not know,
and what we wish to know.

If we are to develop the computer to its full potential as a
reference storehouse of human knowledge, we face the immense
intellectual challenge of researching every major field of human
activity, of assembling, analyzing, and identifying its documents,
and reducing the information to acceptable machine form.

Before the end of the century, I believe that these codification
efforts will coalesce into what unquestionably will become the
greatest adventure of the human mind. We shall achieve a far more
comprehensive understanding than we have today of man and his
environment. We shall do so through the orderly compilation of
accumulated knowledge and wisdom, beginning with the days of
clay tablets and papyrus scrolls. The human horizon will then
encompass all that man has ever known, and all that his science
will enable him to know.

But how swiftly we scale these· heights depends upon the
steps we take today to bring order and compatibility to our art.
It is an urgent task to which all of us who bear the responsibility
for leading this industry into the future must turn our efforts.

It was Socrates who said: "Let him who would move the
world move himself." His words have particular pertinence at this
time and in this place. For we of the computer industry must sur
mount today's challenge before we can advance to tomorrow's
promise.

Let me conclude on a personal note. Whether your individual
role is large or small, the significance and scope of this new science
and industry are such that in a genuine sense you are making his
tory. The impact of your knowledge and talents will echo down
the corridors of time. The quality and content of life on this planet
will be profoundly affected-indeed are already being affected
by your labors.

I am grateful for the opportunity to have shared a few
thoughts with you.

LUNCHEON SPEAKER

The Conference Luncheon Speaker was Gerard Piel, Publisher
of Scientific American. As publisher of a magazine with
broad appeal to the scientific community, Mr. Piel has con
tributed to the difficult task of describing and interpreting
the sometimes bewildering developments in the fields of
science and engineering. He has chosen for the title of his
subject, "The Computer as Sorcerer's Apprentice." Mr. Piel
is a graduate of Harvard University (magna cum laude) and
holds honorary doctorates from Lawrence College, Colby Col
lege, Rutgers University, Columbia University, Tuskegee In
stitute, and the University of Bridgeport. Prior to building
the new Scientific American, he was for six years Science
Editor of Life magazine.

The Luncheon Speech

THE COMPUTER AS SORCERER'S
APPRENTICE

Gerard Piel
Publisher, Scientific American

October 28, 1964

The computer is the engine of this latest phase in the
acceleration of the industrial revolution. The role of the computer
cannot be measured in the simple terms of the number of com
puters at work in the American economy or even in the extraor
dinary variety of functions in which the computer has found work
to do-from accounting routines to industrial process control to
creative enterprise in mathematics itself. More significantly, com
puter technology gathers in and brings to intense focus the most
diverse discoveries on the frontiers of knowledge-from investiga
tion into the nature of matter to speculations at the foundation of
knowledge. It is the agency through which the advance of human
understanding now finds its way to the control of natural forces in
time intervals that grow,shorter year by year and month by month.

Because the time lag between invention and application now
diminishes so swiftly, it becomes possible-and necessary-to fore
cast the ethical, social, and economic implications of this develop
ment. Today in our country and in certain other industrial nations,
men are compelled to recognize and give assent to a profound
transformation in human values. Technological change has already
largely eliminated people from production; it has sundered the
hitherto socially essential connection of work to consumption. The
citizens and the institutions of these nations must accommodate
themselves to the law of material abundance: each individual can
secure increase in his own well-being only through action that
secures increase in the well-being of others.

This novel dispensation stands in contrast to the law of
scarcity which, jin the words of Alexander Herzen (1812-1870),
declares: "Slavery is the first step toward civilization. In order to
develop, it is necessary that things should be much better for some
and much worse for others; then those who are better off can
develop at the expense of the others."

13

14 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

The iron lavl of scarcity underlies the ethical dilemma of
political economy which has sought for nearly three centuries to
discover or to rationalize equity in social institutions long ago
designed to secure the inequitable distribution of goods in scarce
supply. Adam Smith, the first great systematizer of economic
theory, was foremost a moral philosopher. In his Theory of Moral
Sentiments, published in 1759 and the work which brought him
his principal contemporary fame, he traced the roots of moral
action to the "passion of sympathy"-"which leads us into the
situations of other men and to partake with them in the passions
which those situations have a tendency to excite." It was later,
in the Wealth of N atiom published in 1776, that he undertook to
explore "those political regulations which are founded, not upon
the principles of justice, but that of expediency, and which are
calculated to increase the riches, the power and the property of
the state." Against the princely mercantilism of the autocratic
continental powers, Smith asserted the labor theory of value:
"Labour is the real measure of the exchangeable value of all com
modities .. ' .. Equal quantities of labour at all times and places are
of equal value to the labourer Labour alone, therefore, never
varying in its own value, is alone the ultimate and real standard
by which the value of all commodities can at all times and places
be estimated and compared." In the free play of supply and demand
in the open market, the products of human labor found the just
and equitable price at which they were to be exchanged. In the
market, labor, itself a commodity in consequence of the division of
labor, also found its fair price. Under the sure guidance of the
"invisible hand" each man could seek his private interest, confident
in the knowledge that he thereby secured the public weal.

For the generations that launched the industrial revolution
in 18th century England, Adam Smith and his successors in political
economy furnished not only the guidelines to practical action but
the moral assurance necessary to the taking of action. Before the
middle of the 19th century, however, it had become impossible to
conceal-.:in the blight laid upon green England by the carboniferous
phase of industrialization-the failure of their enterprise. Benjamin
Jowett, Master of Balliol and translator of Plato, spoke for the
alienation of the humanities from the sciences when he said: "I have
always felt a certain horror of political economists since I heard
one of them say that the famine in Ireland would not kill more
than a million people, and that would scarcely be enough to do
much good."

Even as Jowett wrote, the first phase of the industrial revolu
tion had ,made such computations obsolete as well as patently
immoral. In 1864, the year of the Emancipation Proclamation,
mechanical horsepower generated by steam engines in the U.S.
economy exceeded for the first time the output of biological horse
power by horses and men. As early as 1900, only 75% of the U.S.
labor force was employed as "producers of goods"; more than half
of these producers were engaged in farming arid the next largest
percentage in unskilled labor functions. By 1960, human muscle
had been all but eliminated from the production process. The census

THE COMPUTER AS SORCERER'S APPRENTICE 15

for that year shows that less than half (46 0/0) of the labor force
was now employed as producers of goods; farmers (7%) and
unskilled laborers (5 %) were approaching statistically negligible
percentages of the labor force. More than half of the producers
were classified as "operatives," that is, human nervous systems
still interposed in process control feedback loops not yet completely
closed by electronics.

In the present phase of acceleration, as is well known, the
industrial revolution is eliminating nervous systems from the
production process. Robots-artificial sensory organs and me
chanical controllers linked by feedback circuits-have been taking
over from human workers in all of the fluid process industries. In
at least 85 plants in the U.S., computers at the center of control
networks have transformed the process streams into truly self
regulating systems. The computer and the feedback control loops
have now begun a corresponding transformation of the discon
tinuous processes of the metalworking industry. The same revolu
tion in technology-for example, transcontinental pipeline trans
portation of fluid commodities under computer and feedback-loop
controls-is under way or impends in all of the production sectors
of the economy.

During the past decade, blue collar employment in American
manufacturing has actually declined, while the output' of these in
dustries has nearly doubled. The rate of increase in productivity in
the production sectors of the economy, which has averaged 5.6 %
over the decade and has been accelerating, is grossly understated
by productivity figures applied to the entire labor force. These,
the figures given widest circulation, have shown an annual improve
ment of only about 2.5 to 3 % .

Until recently, increase in employment in trade and distribu
tion and in the services has compensated for disemployment from
production. The computer, however, finds application even more
readily in the functions that employ human beings in these sectors.
The "white collar" computer, equipped with a typewriter on its input
and output side, is conceptually a much simpler organism than the
computer equipped with sensory organs and muscles that displaces
the blue collar worker. A conservatively estimated million-fold in
crease in the data-processing capacity of organizations equipped
with computers as compared to organizations manned by human
beings and assigned to comparable tasks has already been demon
strated in military command and control systems. Although com
puter technology has just begun to find its way into trade and dis
tribution and the services, increase in employment in these sectors
has already begun to slacken. In the private sector of the economy
it now barely offsets disemployment from the production industries.
During the five-year period from 1957 through 1962, the private
enterprise economy generated less than 300,000 additional new jobs.

The creation of new jobs in the economy as a whole has now
lagged the growth of the labor force for more than a decade. This
is a polite way of saying that the economy is afflicted with a constant
and insidious increase in unemployment. Ever since 1952, the rate
of unemployment has been larger at the peak of each ripple or

16 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

boom!et in the economic cycle, and each recession has left a larger
percentage of the labor force high on the beach.

Debate continues as to whether the country's rising unem
ployment is "cyclical" or "structural." Classical economists-and
nowadays Keynesian economists are "classical"-assure us that the
unemployment is cyclical. They point to the history of the past 60
years in stubborn support of the thesis that the labor-saving effect
of technological progress merely frees labor from one task for em
ployment in another. It is conceded that frictions make for unem
ployment in this turnover of the labor force, especially when prog
ress goes forward rapidly. But sooner or later new jobs, generated
by ever greater economic activity and an ever-expanding Gross
National Product, soak up the unemployed. By tried and tested
and now generally sanctioned counter-cyclical measures-for ex
ample, by the recent Federal tax cut--the fluctuations of the system
can be damped and the peaks and valleys of unemployment smoothed
out. When the Kennedy Administration took office, its official econo
mists were arguing that unemployment at the rate of 4% could be
regarded as normal. Despite the tax cut and the prolongation of
the present boom, unemployment now ranges above 5 % .

Increase in unemployment accompanying expansion of eco
nomic activity would seem to indicate that a rising percentage of
the unemployment is indeed structural-that people, in other words,
are being displaced from the economic system in ever larger num
bers by mechanization, more specifically by the computer and its
accessory and allied technologies. Consider, for example, the com
puter industry itself, thus broadly defined. If employment were
to expand in any industry during this period of intensive mechani
zation, o~e would think first of the payroll of the industry that is
doing the mechanizing. What is more, the technology of electronics
that furnishes your hardware has been notably, if paradoxically,
highly labor-intensive. Until a few years ago, labor would repre
sent up to 60 % of the production cost of a piece of electronic hard
ware. Engineering would constitute the major investment; ma
terials would be a minor cost and capital equipment a negligible
item on the balance sheet. In these respects electronics was like
the garment industry: a business anybody could get into, providing
he had a bright idea and could finance his payroll long enough to
get his product on the market. Within the last 10 years, as I need
not tell you, electronics has- gone solid state. The transistor and the
micromodule are even now yielding to the integrated circuit. With
this development, acre after acre of work benches at which house
wives and high school girls wield pliers and soldering irons has
been disappearing. Labor cost is vanishing in the economics of
electronics. Material costs have now become significant; engineer
ing and plant costs, transcendent.

In other words, the prevailing relationships among the fac
tors of production in electronics are being turned 180 degrees
around. With people being exiled from the computer industry as
rapidly as the computer itself is promoting the disengagement of
people from jobs in other sectors of the economy, the expansion of

THE COMPUTER AS SORCERER'S APPRENTICE 17

this industry will not generate anything approaching a correspond
ing buildup of its payroll.

It cannot be said, any longer, that the industrial revolution is
the same old story. The acceleration of technological change,
driven by the accelerating advance of human understanding,
reaches to the very heart of the institutions of our society; that
is, to the value system upon which those institutions rest.

The unemployment figures present a profoundly misleading
measure of the degree to which our capacity to produce material
abundance has outrun the capacity of our institutions to secure the
distribution of that abundance. It must be reckoned, in the first
place, that some eight million persons are employed in the war
economy and contribute nothing whatever to the flow of material
abundance from the cornucopia of our non-military productive sys
tem. If the production workers in the war economy are subtracted
from the productive work force, then the percentage employed as
producers of goods falls below 40 %. But this figure still overstates
the truth because most of the goods circulating in commerce and
consumed by American citizens are· produced by the very much
smaller percentage of the labor force that is employed by our most
efficient production organizations.

Consider, for example, our farms. Some 85 % of the food
that moves from the farms to the markets comes from less than one
million farms; and the same is true of industry. The few large
and efficient corporations in each industry, with their relatively
smaller payrolls, produce the overwhelming percentage of our indus
trial output. If a small minority of our working force is today
doing most of the production, then, in the future, we c~n expect to
see an even smaller minority of our working force account for all
of the production of goods in our economy. The sorcerer's appren
tice has thrown the switch. The great test of our democracy is to
find ways to distribute or dispose of the mounting flood of abundance.

Actually, by the kind of improvisations that are so character
istic of democracy, we have had some success in coping with this
task starting from the turn of the century. In 1900, 40% of the
adults of our country were not employed; that is to say, they were
either unemployed or they were not in the labor force. In those good
old days, 57 % of the adults of the country. were employed in the
private sector of the economy. Our country still approximated the
description it gave of itself in the Declaration of Independence, as a
people engaged in the pursuit of happiness-in the pursuit of private
interest, either their own or that of their employers. Only 3 % of
the American people were on the public payroll. In 1960, the same
40 % of our population was not employed, either unemployed or not
in the labor force. But only 40 % of the population was now em
ployed in the private sector of the economy. A full 20~:{ of the
American people found their employment either directly on the
public payroll or indirectly through the increasingly huge expendi
tures of governmental agencies for the product and services of
private corpoartions-not only in the war economy but in the con
struction of highways and other major public works ventures. In

18 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

other words, one-third of the working force now owes its employ
ment to public expenditure.

Direct employment in the public sector has been increasing
at five times the rate of increase in the private sector. During the
past five years the public sector generated more than a million of
the less-than-1.5 million new jobs in the economy. Since the Fed
eral payroll remained constant during this period, this gain must
be credited to state and local governments. It can be declared with
pride, furthermore, that the biggest part of the gain was in the pay
roll of our public education system. This, in turn, may be taken
as an ,indication of the responsiveness of our value system to the
evolutionary pressure of abundance.

The national accounts also indicate, however, that the evolu
tion of our social institutions is falling further and further behind
the accelerating pace of technological change. It turns out that the
magnificent industrial apparatus of America has been producing as
much poverty as wealth. Poverty is now officially acknowledged to
be the lot of at least 25% of our population. Contemporary Amer
ican poverty is selective, as Michael Harrington has pointed out. It
tends to settle in places where it disappears from sight-hidden
away geographically, for example, in Appalachia and in the central
cities from which more fortunate members of our society have fled
to set up their new settlements in the suburbs. In New York and
Chicago, the third generation of families on relief has already begun
its blighted existence.

Poverty is selective also with respect to age. Unemployment
rates, which for the labor force as a whole are officially acknowl
edged to exceed 5%, exceed that rate among the youth by at least
twice, and among Negro youths it exceeds the rate among white
youths by more than twice again. In fact, the prevailing rate of
unemployment among Negro youths in the ghettos of our central
cities runs from 40 to 50 %. The high-school drop-out may spend
five years or more in empty limbo between school and his first job.
Out of such alienation of so many of our young people has come the
rise in juvenile delinquency, and out of the rejection of our Negro
youth came the riots in the streets of the north during the past sum
mer. Poverty is equally selective with respect to age at the other
end of life. The 40% of our adult, population not counted in the
labor force now includes several million men and women retired to
live on the pittance of monthly social security checks, under contract
not to seek gainful employment.

Such are the shameful facts that confront us in the midst of
the most prolonged boom since the crash of 1929. Forecasters
predict the boom will hold up well into the first quarter of the new
year. Against the expectations of myself as well as a few other
pessimists, the tax cut has had a strongly stimulating effect on the
economic system. It has encouraged a remarkably high rate of
investment by industry in new capital equipment-one-third of the
investment going to modernization thereby also accelerating the rate
of mechanization. Through the action of the familiar Keynesian
multiplier, these expenditures on the capital investment side have
helped to sustain consumer expenditures at neW highs. The argu-

THE COMPUTER AS SORCERER'S APPRENTICE 19

ment that fiscal measures may help to reduce unemployment, there
fore, finds support in the current movement of the economy.
Although these measures and the prolongation of the boom have not
actually reduced unemployment below the 5 % line, a catastrophic
increase in unemployment has been forestalled.

The financial pages all agree, however, that this boom has a
terminal date; most set it around the end of the first half of 1965.
As the boom runs out, the application of mere counter-cyclical
measures-a further cut in Federal taxes, for example-will be of
no avail. At the same time, responsible citizens and public officials
must face up to the question of the armaments budget. Even in
advance of that distant date when we may see some substantial
measure of disarmament, the military budget must be cut back.
Our country long since acquired the capability of overkill, counting
all the targets in China as well as in the U.S.S.R. Yet, with the
business cycle turning downward, it will take brave men to cope
with the fact that eight million jobs hang directly upon the size of
the military budget.

Plainly, the termination of the present boom will require not
a tax cut but, on the contrary, a considerable expansion in public
expenditure. That expansion has got to come, moreover, in the
Federal budget. It is perfectly plain that the payrolls of local gov
ernments are not equal to short run challenges; they cannot respond
as flexibly and with the same massive effect as Federal expenditures
can. The next Administration will be compelled to seek, therefore,
a vigorous expansion in Federal expenditures on public works and
public welfare.

I don't think I betray the security of the present Administra
tion at this point in the national election campaign by telling you
that task forces in every department in Washington are at work
on the question of how to spend increased sums on non-military
undertakings of the Federal Government. The house economists
of the Kennedy Administration observed some time ago that the
nation had accumulated a backlog of demand for public works and
welfare equal in magnitude to the backlog of demand for consumer
goods and capital goods at the end of World War II. According to
the National Planning Association, such neglected tasks as urban
redevelopment, mass transportation, control of environmental pol
lution, and restoration of natural resources could absorb additional
public investment at a rate of $60 billion per year. The Arms
Control and Disarmament Agency, which is principally responsible
for analyzing the prospective impact of disarmament on the econ
omy, predicts an easy transition from huge outlays for warfare to
huge outlays for welfare-it points to this backlog bf unmet public
needs. Soviet economists join their American colleagues in assur
ing us that capitalism is equal to the task.

All of this is cheering to hear. And it is especially con
siderate of the Soviet economists to give us their encouragement.
But, against a value system that stoutly resists every increase in
Federal expenditure except those that carry the absolute sanction
of the. national defense, any effort to increase public expenditures
for public welfare will encounter heavy political opposition.

20 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

The backward state of our value system is suggested by the
following figures describing the condition of our society: America
has, in fact, the highest rate of unemployment among all the indus
trial nations of the world. If the maintenance of adequate nutrition
is taken to establish the poverty line, then Department of Agricul
ture studies show that not one-quarter but one-third of our fellow
citizens remain not only ill-fed but ill-clothed and ill-housed as well.
Our country has the lowest ratio of public to private expenditures,
even with our gigantic war budget. In the public sector-in Fed
eral, state and local budgets-our economy turns over 25 % of its
Gross National Product. The lowest figure you find in any other
industrial society is 30 %. America has the lowest rate of public
expenditure on public welfare and public works; it comes to some
thing less than 10% for the country as a whole. The lowest figure
in any other industrial nation is nearly three times this percentage.

Last spring, the Johnson Administration took its first tenta
tive steps to meet the impending short-run economic crisis. It
assembled from already on-going and funded activities of the Fed
eral Government an anti-poverty program. Meanwhile private
institutions and individuals were attempting to draw the lines of
long-run perspective. One committee of concerned citizens-the
self-styled Ad Hoc Committee on the Triple Revolution, which in
cluded political economists, historians, former public officials, labor
leaders, civil rights workers, and at least two men who have met
payrolls-looked rather more deeply into the widening gap between
the productive capacity of our industrial system and the effective
demand of our consumer economy. In one conclusion to their
analysis, they envisioned a day when "Society, through its appro
priate legal and governmental institutions, must undertake an
unqualified commitment to provide every individual and every fam
ily with an adequate income as a matter of right."

The idea of paying people incomes whether they work or not
captured attention in newspaper city rooms all across the country.
It seems scarcely necessary to add that the idea also won a great
deal of unfavorable comment. Setting aside the ephemeral essays
of the commentators and pundits who explain the new~ to the rest
of us, the comments of two distinguished public figures are illumi
nating. The Secretary of Labor, Willard Wirtz, declared: "I think
the analysis is right but the prognosis and the prescription is
wrong." He added: "I don't believe the world owes me a living and
I don't believe it owes anyone else a living."

The other comment comes from a man who was, at the time,
candidate for the Republican Presidential nomination. You may
recognize his voice. He said: "Our job as Republicans is to get rid
of people who will even listen to people who say we should pay
people whether they work or not!"

These two statements, taken together, speak faithfully for
the austere premises of classical political economy and the tenacity
of their grip upon the conscience of many members of our society.
Yet the preposterous notion of a guaranteed annual income (or
G.A.I., as it has come to be called) has found its way onto the
agenda of public issues.'

THE COMPUTER AS SORCERER'S APPRENTICE 21

Upon deeper reflection over the summer, for example, Life
mag~zine returned to the subject for the second time on its editorial
page. This time, Life conceded that there is technological disem
ployment: " ... experts can't agree whether technological unemploy
ment is growing by 4,000 or 40,000 jobs a week. But it is growing
fast enough to see that the seeming logic of the . . . plan for free
incomes, or instant socialism, may grow too."

Having frightened itself with this prospect, Life goes on to
say that there can be "more than one radical alternative" and puts
forward one of its own: "It is private capitalism, after all, that has
brought us to the brink of this daunting affluence, and there is an
obvious capitalist solution to the problem that the success of cap
italism is creating. It lies in the ownership of the machines and
the processes that are destroying the old jobs and creating the new
wealth." Life's proposal is that the ownership be spread-to every
body! Endorsing the analysis set forth in The New Capitalists by
Mortimer Adler and Louis Kelso, Life would " ... guarantee bank
loans for new stock acquisitions through a Capital Diffusion Insur-

. ance Corporation modeled on FHA."·
Let us tarry a moment, here, to contemplate the prospects

of instant capitalism. The figures indicate that it would be much
more difficult to achieve Life's worthy purpose by instant capi
talism than by what it calls instant socialism. Consider these
disparities in the wealth of our citizenry: As is well known, the
bottom 20% of our population gets only 5% of the national income
-at the summit of society these percentages are precisely reversed.
The bottom 20 % thus does poorly enough as income earners. But
they show up even worse as capitalists: they hold no liquid assets
whatever, except the cash they may happen to have in their
jeans. The next 30 % of the population above holds liquid assets
not exceeding $500 per family. So the bottom 50 % of our society
holds less than 3 % of our liquid assets. It scarcely need be added
that these people have no equity or debt interest in the productive
system of our land; for 87% of the people have rio such stake in
the system. As for real property, 50 % of our population have an
equity of less than $1,000 in the homes in which they live. You
have to go to the top 10% of income earners before you find people
whose assets begin to equal their annual income; you have to go
to the top 1 % before you find people whose equity and property
holdings keep them in the style to which they are accustomed.
Plainly the proposal that we seek a more equitable distribution of
affluence through the redistribution of ownership presents a more
radical alternative than the achievement of that end by the redis
tribution of incomes.

Life is not alone in its concern with the question of how
American society might now go about the equitable distribution of
the abundance that overburdens institutions framed for the oppo
site purpose. That soft-spoken quarterly, The American Scholar,
the journal of Phi Beta Kappa, devotes most of this quarter's
pages to a symposium on "the problems that unite us." Out of
six articles in this symposium, four plainly reflect thoughtful con
sideration of the possibility of guaranteeing incomes to people.

22 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

I will quote from one author, August Heckscher, a perceptive
and sensitive student of American life who served the Kennedy
Administration as the President's special assistant in cultural
affairs. He begins by saying: "The objections to this approach
[that is, the guaranteed annual income] are obvious," and declares:
"The very idea of large populations doing nothing but pleasing
themselves goes against the American grain." Nonetheless, he
comes forward with a radical alternative of his own: "Suppose
the monetary rewards of society went, as now, to those who work
-and also to those who study. Would this not be a means of
assuring their being saved from a bored and barren existence?"

This author then goes on to suggest other ways in which
the surplus of human capacity might be soaked up: "At the sim
plest level one can readily conceive efforts to organize personal
or household services more imaginatively so that the work can be
done more efficiently. Hours can be made regular and wages can
be more nearly commensurate with those earned in other fields."
A little later in his analysis, touching on the question of how these
increased wages to domestics are to be financed, he comes up with
a truly radical alternative: "The salaries . . . could be supple
mented [from the public treasury] so as to keep the supply
adequate and yet not put the wage out of reach of those who
require such services. To supplement in a similar way the rate
which people are ready to pay handymen or gardeners could sub
stantially cut relief rolls."

This surely goes beyond either instant socialism or instant
capitalism; you might call it instant feudalism. In fact the vision
of instant feudalism comes clearer in this author's next, still "more
far-reaching" suggestion: "It assumes retirement from the indus
trial work force at a considerably earlier age than now, together
with pensions and social security which would be clearly conceived
as 'deferred wages.' ... From such a pool we could draw a host
of talents and services which would make our common life more
various, colorful, and pleasant. . . . We can indeed conceive a
whole second economy-the economy of craftsmanship and service
-growing up alongside the economy of the machine."

Probably, this vision could be more swiftly and effectively
realized in certain of the underdeveloped countries where the econ
omy of craftsmanship still exists and where it is threatened by
destruction through the infectious spread of the industrial revolu
tion. In America we would have to reconstruct the economy of
craftsmanship from the ground up.

Before we start designing Utopias or building the Great
Society, it seems to me, we ought to turn to a more searching and
possibly painful re-examination of our inexplicit premises-our
values. A good way to begin is to ask what we mean by work and
what we mean by leisure. With these two words we precipitate
the crisis. The proposal of a guaranteed annual income presses
the underlying issue in its sharpest and most uncomfortable form.

The objection to the Heckscher vision of the dual crafts
manship-machine society rests upon its hierarchical character, im
plicit in the compulsion that relates the services of the handyman

THE COMPUTER AS SORCERER'S APPRENTICE 23

and the gardener to "us." This defect could, in fact, be cured
by the guarantee of an annual income, paid as a matter of right
and not in compensation for services rendered. There would then
be no reason why the cultures of craftsmanship and machines
could not flourish side by side in moral parity. And there could
even be a third culture-of leisure, which would include, I hope,
dry-fly fishing.

On the other hand, criticism of the G.A.I. notion from the
left expresses the dark suspicion that this is a middle class strata
gem to tranquilize the proletariat by putting the poor on the dole.
Apparently, most people are deeply troubled by the thought of what
other people might or might not do with their leisure time!

Except for the attention it has so recently won in public
discussion, there is nothing very novel or profound about the idea
of a guaranteed annual income. N or is it so novel in practice. A
substantial portion of our society is already living not on a guaran
teed and not on a securely annual income but on an income from
the public treasury. The people get these incomes on the most
humiliating and degrading terms. They get their dole because
they present themselves for certification by the appropriate authori
ties as indigents or paupers; or they get their monthly checks from
Uncle Sam because they take an oath not to go back to work and
earn more than a stated percentage of their Social Security income.
In other words, the American society today offers an income with
out work to a large number of its members but makes the offer
on terms that shame us all. The ugly transactions involved derive
their ethical justification from the deep unconscious of society
from the institutional memory of the days when the lash drove
80 % of the population to work in the fields and mines in order
that the few might get on with the high occupations of making
history and civilization. The cruelty and inhumanity that persists
in our system from those days must be extirpated if we are to
resolve successfully the issues that confront us in the tide of
abundance set running in America by the present culmination of
the industrial revolution.

In my opinion, the issues must be met under two major
headings. First, we must recognize that economic and social insti
tutions are man-made and so subject to human will. We can't see
the invisible hand because, in truth, it isn't there! The enormous
power conferred upon modern societies by industrial technology
must be brought under the witting and rational control of demo
cratic institutions still to be perfected.

Second, we must recognize that abundance sets the founda
tions of an entirely new ethical and moral order. The cultural
deprivation that blights the life of a single child in the racial
ghettos of our central cities ultimately exacts its cost in the lives
of every other citizen. The prolongation of the agony of economic
development threatens to destroy the frail parliamentary insti
tutions of India and bring that poverty-stricken nation into the
nuclear club under a military dictatorship.

At this turn in human affairs it is plain that each man's
well being can increase only to the degree that the well being of

24 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

all other men is increased. The work of the world still remains
in large part to be done. But the instruments to accomplish it are
now in our hands. The work that needs most to be done, especially
here in America, is :in tasks that enrich society as generously as
the individuals who undertake them.

Synopsis

1964 HARRY GOODE

MEMORIAL AWARD

Presentation to
Howard Hathaway Aiken

at the FJCC-October 28, 1964-Jack Tar Hotel
San Francisco

The presentation of the Harry Goode Memorial A ward to
Dr. Howard H. Aiken marked the first time the American Federation
of Information Processing Societies signally honored an outstanding
contributor to the field of computers and information processing.
In conjunction with this first presentation, a Silver Medal was
presented to Mrs. Harry H. Goode in recognition of the late Mr.
Goode's invaluable contributions to the information processing
sciences.

The Medalist

For more than 25 years Howard H. Aiken has given con
tinuing momentum to the growth of computer technology. As a
student, he proposed an automatic calculating machine and col
laborated with IBM engineers in the design of Mark I, the first
large-scale, automatic digital computer, completed in 1944. In the
following years, Dr. Aiken was instrumental in perfecting com
puters, adapting them to non numerical applications, and in guiding
students to productive careers in the computer sciences.

Howard Hathaway Aiken received the S.B. degree in elec
trical engineering from the University of Wisconsin in 1923. From
1923 to 1932 he was associated with Madison Gas and Electric,
Westinghouse, and the Line· Material Company, and he studied
physics at the University of Chicago. He received the S.M. in
physics in 1937 and the Ph.D. in 1939 from Harvard University.
In 1941, after two years as instructor in physics, he became an
associate professor in applied mathematics.

Following Mark I, Dr. Aike~ built three other machines:
Mark II, in 1947, largely an electromechanical machine, was oper
able not only as one machine solving one problem but as two
machines solving two problems simultaneously; Mark III, completed
in 1950, utilized magnetic tape drives and magnetic drums to store

25

26 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

binary-coded decinlal numbers and instructions; :M:ark IV, com
pleted in 1952, relied heavily on solid-state components. It included
magnetic core storage, selenium rectifiers to perform all arithmetic
and control functions, index registers, and an encoding device which
permitted the writing of programs in an algebraic notation quite
similar to that normally used.

With the practicality of computers firmly established, Dr.
Aiken concentrated on establishing sound scientific bases for the
arts of computing and machine design, investigating nonnumerical
applications and establishing an educational program in the com
puting field. Dr. Aiken gave his first course in the computer field
at Harvard University in the academic year 1947-48. Largely
through his leadership, Harvard became one of the first universities
to have extensive graduate and undergraduate programs leading
to degrees in the computer field.

Dr. Aiken encouraged his students to seek adequate mathe
matical methods for investigating the functional behavior of elec
tronic control circuits and to venture into such fields as control
systems engineering, data processing, mathematical linguistics, and
applied discrete mathematics. .

Dr. Aiken was Director of Harvard University's Computa
tional Laboratory for twelve years. He is presently Professor
Emeritus of Harvard University and Director of the University
of Miami's Institute of Informational Science. Dr. Aiken's achieve
ments have received international recognition. He was one of the
first members of the National Research Council's Committee on
High-Speed Calculating Machines. He is a Fellow of the American
Academy of Arts and Sciences, the Association for the Advance
ment of Science, and of the Institute of Radio Engineers, and he is
a member of the Swedish Ingeniors Vetenskaps Academien. In
France, he is a Chevalier de la Legion d'Honneur, and in Spain,
he is a Consejero de Honor del Consejo Superior de Investigaciones
Cientificas. He received the Testimonial of Eminent Professional
Services from the University of Wisconsin, his alma mater, and he
holds an honorary doctorate from Germany's Technische Hoch
schule at Darmstadt. He was awarded Belgium's Officer's Cross of
the Order of the Crown, the U.S. Navy's Distinguished Public
Service Award, and the U.S. Air Force's Decoration for Excep
tional Civilian Service.

The Harry Goode Memorial Award

Harry H. Goode, born in New York City on July 1, 1909,
was a pioneer and leader in the field of system engineering. One
of the first scientists to fully comprehend the powers and abilities
of computers, he formulated many principles of system engineering
and developed techniques for the design, analysis and evaluation
of large-scale systems. He was instrumental in initiating early
systems projects, including the Typhoon and Whirlwind computers
at MIT. Among other activities, he participated in the study which
led to the Bomarc missile, and he conceived and developed the Air
Defense Integrated System Project.

In addition to his scientific contributions, Mr. Goode ad-

1964 HARRY GOODE MEMORIAL AWARD 27

vanced the information processing sciences through his teaching
at the University of Michigan and his many publications on
statistics, stimulation and modeling, vehicular traffic control, and
system design. One of his most important achievements was
coauthoring the first book on Syste1n Engineering which classified
and regularized systems and their design processes.

Mr. Goode, statistician, mathematician, electrical and chemi
cal engineer and professor, was a member of the IRE (now IEEE)
professional group on electronic computers and of the computer
advisory committee of the Society of Automotive Engineers. As
chairman of the National Joint Computer Committee, he led this
group in creating an expanded and strengthened organization,
AFIPS, to help meet the needs arising from the rapidly growing
information processing technology. Mr. Goode died in an auto
mobile accident before AFIPS was formally chartered.

The Harry Goode Memorial A ward has been established in
recognition and appreciation of Mr. Goode's invaluable contribu
tions to the information processing sciences. Its purposes are to
encourage further development of the field and to acknowledge and
honor outstanding contributions to the information processing
sciences.

The Scribe Accl'oupi, the famous Egyptian statue in the
Paris Louvre, inspired the noted European sculptor, Andras Beck,
in the conception of the Harry Goode Memorial Medal. In the sculp
tor's own words, The Scribe allegorizes man's intellectual effort,
while the AFIPS emblem symbolizes the machine that aids and
supports human effort in this field. The arrow is the signature of
the Hungarian-born sculptor, former Professor of Sculpture at the
Budapest Academy of Fine Arts, who has resided in France since
1957.

The A ward Presentation to Howard Aiken

E. L. Harder
Chairman, American Federation of Information Processing

Societies

Shortly after the formation of AFIPS from the Joint Com
puter Committee, work started on the creation of an award which
could be bestowed on the very few individuals who had made the
greatest contribution to this profession. This award, which now
exists, and the first presentation of which will be made today, has
been named the Harry Goode Memorial A ward because of the
unique part played by the late Harry Goode in the organizing and
teaching of the computer and system engineering science and
because of his outstanding leadership in creating this American
Federation of Information Processing Societies itself.

Very fittingly, the Committee has selected as the first recipi
ent the one man in the world who earliest, and with great vision
and foresight and enormous strength of purpose and perseverance,

" led the way straight to the goal of the computers that we have
today, This man is Howard Aiken and he is here today, although
his fame is so great that you might expect he only existed in fairy

28 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

tales. Also, this is a very special day in that lVlrs. Harry Goode,
the wife of the man in whose name this medal stands, is here to
witness this first occasion on which it will be bestowed-on this
illustrious pioneer of today's computers.

The nlace that Harry Goode held in the estimation of his
fellows, his impact on the science of system engineering and of in
formatwn processIng, can hardlY be more forcibly conveyed to you
than by the fact that his fellows have chosen to engrave, with his
image, this medal signifying the highest honor that the computer
societies of America are able to give to any man.

Now, let me tell you about the man who has been selected.
As with all legendary characters, you all know something about
him, but let me put some of the pieces in perspective-something
which is getting a little easier to do as the years roll on. For now
we can associate his work not only with an important scientific
venture but with a great profession and a great industry which he
played a very leading part in creating. This very association,
AFIPS, exists for the purpose of exchanging technical information
upon which the progress of our profession and of our industries
and scientific institutions depends. It exists for the purposes to
which Howard Aiken devoted a good part of his life and in which
he led the way. He set a pattern in visualizing what needed to be
done and what was possible, in persevering in doing it, and in seeing
to it, in a very real way, that this technology became available to
humanity. This he did through organizing the teaching of it in the
universities and by gathering together groups from all over the
world at Harvard to work personally with him in the carrying
through of the Mark I, Mark II, Mark III, and Mark IV programs.
As you travel the world over today, you encounter leaders in the
computer profession and in the industries Who got their early start
through an invitation to come to Harvard and work with Dr. Aiken
on the development of these machines. This will give you some
idea of the breadth of the vision and of the force and vigor with
which it was carried out.

Dr. Howard Aiken, Professor Emeritus of Harvard Univer
sity, you have been honored by many scientific institutions and by
nlany countries, including your own. It is now the computer and
information processing profession itself, which you helped so
greatly to create, that wishes to do you honor. It is the very great
privilege of the American Federation of Information Processing
Societies to bestow upon you, as first recipient, the Harry Goode
Memorial Award-the citation for which I would now like to read
in the presence of these several hundred members of this new
profession-of yoUr' profession.

The Citation for the award follows:

To HOWARD HATHAWAY AIKEN

for his original contribution to the development of
automatic computers that led to the first large-scale,
general-purpose, automatic digital computer ever to
be put into operation;

1964 HARRY GOODE MEMORIAL A WARD 29

for his continuous work in the field of digital com
puters as an Engineer;

and for the knowledge and inspiration imparted to
many as a Teacher.

DR. HOWARD AIKEN

Recipient of the Harry 'Goode Memorial A ward to be made at
the 1964 Fall Joint Computer Conference in San Francisco.

The Reply of the Medalist

Dr. Howard Aiken

It is difficult for me to convey to you how deeply honored I
feel at this moment. I would like to say a few words about the
significance of this event to me. First of all, it is an honor that
comes to me because of my association in the field which is so dear

30 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

to each and everyone of us and for which I feel so great an
affection. Second, it has been a great pleasure to me on this
occasion to find so many of my friends, former associates, and
colleagues here and have the opportunity to see them and think of
old times again. There is, however, still another reason on which
I wish to spend a few more words.

Years ago, when the old Air Materiel Command of the
United States Air Force first discovered the fact that computers
might be useful in the area of logistics, they called in a number of
consultants to assist in programming and choosing machines, debat
ing the various techniques which were to be employed and applying
computational equipment in the supply end of our Air Force. At
that time, I was a consultant to the United States Air Force and
spent a great deal of time-perhaps I should say too much time
traveling back and forth from Cambridge up to Dayton to the
Wright-Patterson Air Force Base. It was, however, a period which
is very pleasant in my life, and it was at this time that I was
associated with Harry Goode who was also an associate consultant
of the Air Force in this problem of making early applications
of machines to logistic problems. It was here that I met Harry,
worked with him, came to respect him, his judgment, and his
influence on the problems in which we were both concerned. It is,
therefore, especially gratifying to me that the award which I have
just received bears his name. Thank you.

Presentation of a Replica Medal to Mrs. Harry Goode

Isaac L. Auerbach
Chairman, Harry Goode Award Committee

The Harry Goode Memorial A ward is the highest recognition
that can be given to anyone within the computer field. It is an
award given by the profession itself to one of its own contributors
for outstanding accomplishments. By our very nature, as scientists
and engineers, we tend to depreciate our achievements that benefit
society and mankind. Following the rules for scientific behavior,
we tend to strip the products of our efforts of all glamour in our
constant search for the ultimate. Therefore, an award by this
hypercritical, intensely analytical profession to one of its own
members is of great significance. There has been no profession
that has influenced civilization's forward movement more than that
of science and engineering, and, within our lifetime, the advent of
the computer is the single most important technical development,
one that will invade every aspect of our lives. It is, therefore,
timely that AFIPS, the foremost national society of societies,
recognize the oustanding contributions made by our colleagues.

Credit should be given to two men who did most within
AFIPS in the preparatory work that led up to this award: Mr.
Claude R. Kagan, first Chairman of the AFIPS A ward Committee,
and Samuel Levine, present Chairman of the Committee. It was
under their guidance that the medal itself was prepared, through

1964 HARRY GOODE MEMORIAL AWARD 31

the assistance of Mortan Astrahan, and they are responsible for
the folders that are at your seats.

The Harry Goode Memorial A ward is a tribute to the mem
ory of a man of rare versatility, talent, vigor and vision. He was
a "regular guy," never elevating himself above his peers or flaunt
ing his accomplishment. He was always concerned about the
feelings of his associates and went out of his way to recognize and
promote the contributions and suggestions· of his co-workers.· AH
a professor at the University of Michigan, he was respected and
revered by his students, and his advice was constantly sought by
his colleagues at the University. His contributions to systems
engineering through his writings and teachings are well known;
he was the senior author of the first book on systems engineering.
His participation in many vital defense and government projects
provided the springboard to some of the most forward thinking
of those projects. He was frequently consulted by the largest
corporations in the United States. His leadership provided thp.
guiding spirit that brought AFIPS into existence, and his example
has provided the encouragement necessary to accomplish its fulfill
ment and growth.

This award, named in honor of the man who forged the
framework of AFIPS, is to recognize outstanding contributions to
the field of information sciences. The beneficial impact of informa
tion sciences on .mankind will be greater than any other techno
logical development in this half-century.

It is therefore fitting and proper that this silver replica of
the Harry Goode Memorial Award, just given to one of the world's
foremost computer scientists, be presented to Mrs. Harry Goode,
the worthy partner of this man we all loved so much. Elsie pro
vided the enthusiastic support and encouragement which made her
husband's achievements possible. She accepted without complaint
the many sacrifices necessitated by his dedication to his profession
because she was aware of the importance of his contributions. We
are indeed happy to honor her today.

\ Harry Goode Memorial Award Committee

Isaac L. Auerbach, ChaiT'man
Samuel N. Alexander John C. McPherson
Alston Householder Jerre D. Noe

-AFIPS PRIZE PAPER AWARD
for the

1964 FALL JOINT COMPUTER CONFERENCE

The recipient of the A ward for the best paper presented
at the 1964 Fall Joint Computer Conference was:

ERROR CORRECTION IN CORe

by David N. Freeman
IBM, General Products Division
Development Laboratory

PARALLEL OPERATION IN THE CONTROL DATA 6600
James E. Thornton

Control Data Corporation
Minneapolis, Minnesota

HISTORY

About four years ago, in the summer of
1960, Control Data began a project which cul
minated last month in the delivery of the first
6600 Computer. In 1960 it was apparent that
brute force circuit performance and parallel
operation were the two main approaches to
any advanced computer.

This paper presents some of the consid
erations having to do with the parallel opera
tions in the 6600. A most important and
fortunate event coincided with the beginning
of the 6600 project. This was the appearance
of the high-speed silicon transistor, which

4096 WORD 4096 WORD
~ CORE MEMORY CORE MEMORY

PERIPHERAL PERIPHERAL
& CONTROL & CONTROL
PROCESSOR PROCESSOR

survived early difficulties to become the basis
for a nice jump in circuit performance.

SYSTEM ORGANIZATION

The computing system envisioned in that
project, and now called the 6600, paid special
attention to two kinds of use, the very large
scientific problem and the time sharing of
smaller problems. For the large problem, a
high-speed floating point central processor with
access to a large central memory was obvious.
Not so obvious, but important to the 6600
system idea, was the isolation of this central
arithmetic from any peripheral activity.

~
4096 WORD 4096 WORD

CORE MEMORY CORE MEMORY

PERIPHERAL PERIPHERAL
& CONTROL & CONTROL
PROCESSOR PROCESSOR

4096 WORD 6600 CENTRAL MEMORY 4096 WORD
CORE MEMORY CORE MEMORY

PERIPHERAL 6600 CENTRAL PROCESSOR PERIPHERAL
& CONTROL & CONTROL
PROCESSOR

6600 CENTRAL MEMORY
PROCESSOR

4096 WORD - 4096 WORD +- ~
4096 WORD 4096 WORD

CORE MEMORY CORE MEMORY CORE MEMORY CORE MEMORY

PHERIPHERAl PERIPHERAL PERIPHERAL PERIPHERAL
& CONTROL & CONTROl. & CONTROL & CONTROL
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Figure 1. Control Data 6600.

33

34 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

It was from this general line of reasoning
that the idea Of a multiplicity of peripheral
processors was formed (FIg. 1). Ten such
peripheral processors have access to the central
memory on one side and the peripheral channels
on the other. The executive control of the
system is always in one of these peripheral
processors, with the others operating on as
signed peripheral or control tasks. All ten
processors have access to twelve input-output
channels and may "change hands," monitor
channel activity, and perform other related
jobs. These processors have access to central
memory, and may pursue independent transfers
to and from this memory.

Each of the ten peripheral processors
contains its own memory for program and
buffer areas, thereby isolating and protecting
the more critical system control operations in
the separate processors. The central processor
operates from the central memory with relocat
ing register and file protection for each program
in central memory.

PERIPHERAL AND CONTROL PROCESSORS

The peripheral and control processors
are housed in one chassis of the main frame.
Each processor contains 4096 memory words /
of 12 bits length. There are 12- and 24-bit

CENTRAL
MEMORY

(60)

PROCESSOR
REGISTERS

READ PYRAM 10

TIME-SHARED
INSTRUCTION

CONTROL

(12)

instruction formats to provide for direct, in
direct, and relative addressing. Instructions
provide logical, addition, subtraction, shift, and
conditional branching. Instructions also pro
vide single word or block transfers to and from
any of twelve peripheral channels, and single
word or block transfers to and from central
memory. Central memory words of 60 bits
length are assembled from five consecutive
peripheral words. Each processor has instruc
tions to interrupt the central processor and to
monitor the central program address.

To get this much processing power with
reasonable economy and space, a time-sharing
design was adopted (Fig. 2). This design
contains a register "barrel" around which is
moving the dynamic information for all ten
processors. Such things as program address,
accumulator contents, and other pieces of in
formation totalling 52 bits are shifted around
the barrel. Each complete trip around requires
one major cycle or one thousand nanoseconds.
A "slot" in the barrel contains adders, assembly
networks, distribution network, and intercon
nections to perform one step of any peripheral
instruction. The time, to perform this step or,
in other words, the time through the slot, is
one minor cycle o:!'" one hundred nanoseconds.
Each of the ten processors, therefore, is allowed

PROCESSOR
MEMORIES

CENTRAL
MEMORY

(60)

REAL TIME

1/0 CHANNELS

EXTERNAL EQUIPMENT

Figure 2. 6600 Peripheral and Control Processors.

PARALLEL OPERATION IN THE CONTROL DATA 6600 35

one minor cycle of every ten to perform one of
its steps. A peripheral instruction may require
one or more of these steps, depending on the
kind of instruction.

In effect, the single arithmetic and the
single' distribution and assembly network are
made to appear as ten. Only the memories are
kept truly independent. Incidentally, the
memory read-write cycle time is equal to one
complete trip around the barrel, or one thousand
nanoseconds.

Input-output channels are bi-directional,
12-bit paths. One 12-bit word may move in
one direction every major cycle, or 1000 nano
seconds, on each channel. Therefore, a maxi
mum burst rate of 120 million bits per second
is possible using all ten peripheral processors.
A sustained rate of about 50 million bits per
second can be maintained in a practical operat
ing system. Each channel may service several
peripheral devices and may interface to other
systems, such as satellite computers.

Peripheral and control processors access
central memory through an assembly network
and a dis-assembly network. Since five periph
eral memory references are required to make
up one central memory word, a natural assem
bly network of five levels is used. This allows

PERIPHERAL AND
CONTROL PROCESSORS

12 INPUT
OUTPUT CHANNELS

five references to be "nested" in each network
during any major cycle. The central memory
is organized in independent banks with the abil
ity to transfer central words every minor cycle.
The peripheral processors, therefore, introduce
at most about 2 % interference at the central
memory address control.

A. single real time clock, continuously
running, is available to all peripheral proces
sors.

CENTRAL PROCESSOR

The 6600 central processor may be con
sidered the high-speed arithmetic unit of the
system (Fig. 3). Its program, operands, and
results are held in the central memory. It has
no connection to the peripheral processors ex
cept through memory and except for two single
controls. These are the exchange jump, which
starts or interrupts the central processor from
a peripheral processor, and the central program
address which can be monitored by a peripheral
processor.

A key description of the 6600 central
processor, as you will see in later discussion, is
"parallel by function." This means that a num
ber of arithmetic functions may be performed

CENTRAL PROCESSOR

24
OPERATING
REGISTERS

Figure 3. Block Diagram of 6600.

36 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

concurrently. To this end, there are ten func
tional units within the central processor. These
are the two increment units, floating add unit,
fixed add unit, shift unit, two multiply units,
divide unit, boolean unit, and branch unit. In
a general way, each of these units is a three
address unit. As an example, the floating add
unit obtains two 60-bit operands from the cen
tral registers and produces a 60-bit result which
is returned to a register. Information to and
from these units is held in the central registers,
of which there are twenty-four. Eight of these
are considered index registers, are of 18 bits
length, and one of which always contains zero.
Eight are considered address registers, are of
18 bits length, and serve to address the five read
central memory trunks and the two store cen
tral memory trunks. Eight are considered float
ing point registers, are of 60 bits length, and
are the only central registers to access central
memory during a central prograrn.

In a sense, just as the whole central proc
essor is hidden behind central memory from
the peripheral processors, so, too, the ten func
tional units are hidden behind the central regis
ters from central memory. As a consequence,
a considerable instruction efficiency is obtained
and an interesting form of concurrency is feasi
ble and practical. The fact that a small number
of bits can give meaningful definition to any
function makes it possible to develop forms of
operand and unit reservations needed for a
general scheme of concurrent arithmetic.

Instructions are organized in two for
mats, a 15-bit format and a 30-bit format, and
may be mixed in an instruction word (Fig. 4).

-
60 BITS
o

m

14 l'---__ --I ,
OPERATION

CODE

RESULT
REG.

(1 of 8)

3

1st OPERAND
REG.

(1 of 8)

k

2nd OPERAND
REG.

(1 of 8)

Figure 4. 15-Bit Instruction Format

15 BITS

o

As an example,· a 15-bit instruction may call
for an ADD, designated by the f and m octal
digits, from registers designated by the j and k
octal digits, the result going to the register
designated by the i octal digit. In this example,
the addresses of the three-address, floating add
unit are only three bits in length, each address
referring to one of the eight floating point regis
ters. The 30-bit format follows this same form
but substitutes for the k octal digit an 18-bit
constant K which serves as one of the input
operands. These two formats provide a highly
efficient control of concurrent operations.

As a background, consider the essential
difference between a general purpose device and
a special device in which high speeds are re
quired. The designer of the special device can
generally improve on the traditional general
purpose device by introducing some form of
concurrency. For example, some activities of
a housekeeping nature may be performed sepa
rate from the main sequence of operations in
separate hardware. The to,tal time to complete
a job is then optimized to the main sequence
and excludes the housekeeping. The two cate
gories operate concurrently.

It would be, of course, most attractive to
provide in a general purpose device some gen
eralized scheme to do the same kind of thing.
The organization of the 6600 central processor
provides just this kind of scheme. With a multi
plicity of functional units, and of operand reg
isters and with a simple and highly efficient
addressing system, a generalized queue and res
ervation scheme is practical. This is called the
scoreboard.

The scoreboard maintains a running file
of each central register, of each functional unit,
and of each of the three operand trunks to and
from each unit. Typically, the scoreboard file
is made up of two-, three-, and four-bit quan
tities identifying the nature of register and
unit usage. As each new instruction is brought
up, the conditions at the instant of issuance are
set into the scoreboard. A snapshot i~ taken,
so to speak, of the pertinent conditions. If no
waiting is required, the execution of the instruc
tion is begun immediately under control of the
unit itself. If waiting is required (for example,
an input operand may not yet be available in
the central registers), the scoreboard controls
the delay, and when released, allows the unit to

PARALLEL OPERATION IN THE CONTROL DATA 6600 37

begin its execution. Most important, this activ
ity -is accomplished in the scoreboard and the
functional unit, and does not necessarily limit
later instructions from being brought up and
issued.

In this manner, it is possible to issue a
series of instructions, some related, some not,
until no functional units are left free or until
a specific register is to be assigned more than
one result. With just those two restrictions
on issuing (unit free and no double result),
several independent chains of instructions may
proceed concurrently. Instructions may issue
every minor cycle in the absence of the two
restraints. The instruction executions, in com
parison, range from three minor cycles for fixed
add, 10 minor cycles for floating multiply, to
29 minor cycles for floating divide.

To provide a relatively continuous source
of instructions, one buffer register of 60 bits is
located at the bottom of an instruction stack
capable of holding 32 instructions (Fig. 5).
Instruction words from memory enter the bot
tom register of the stack pushing up the old
instruction words. In straight line programs,
only the bottom two registers are in use, the
bottom being refilled as quickly as memory con
flicts allow. In programs which branch back
to an instruction in the upper stack registers,
no refills are allowed after the branch, thereby
holding the program loop completely in the
stack. As a result, memory access or memory

INSTRUCTION

STACK

8 60-BIT

WORDS

FROM CENTRAL MEMORY

conflicts are no longer involved, and a consider
able speed increase can be had.

Five memory trunks are provided from
memory into the central processor to five of the
floating point registers (Fig. 6). One address
register is assigned to each trunk (and there
fore to the floating point register). Any in
struction calling for address reg-ister result
implicitly initiates a memory reference on that
trunk. These instructions are handled through
the scoreboard and therefore tend to overlap
memory access with arithmetic. For example,
a new memory word to be loaded in a floating
point register can be brought in from memory
but may not enter the register until all previous
uses of that register are completed. The central
registers, therefore, provide all of the data to
the ten functional units, and receive all of the
unit results. No storage is maintained in any
unit.

Central memory is organized in 32 banks
of 4096 words. Consecutive addresses call for a
different bank; therefore, adjacent addresses in
one bank are in reality separated by 32. Ad
dresses may be issued every 100 nanoseconds.
A typical central memory information transfer
rate is about 250 million bits per second.

As mentioned before, the functional units
are hidden behind the registers. Although the
units might appear to increase hardware dupli
cation, a pleasant fact emerges from this design.
Each unit may be trimmed to perform its func-

t
t

INSTRUCTION
- REGISTERS

t
t
t
t
t
t

Figure 5. 6600 Instruction Stack Operation.

38 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

..
OPERANDS ..

......
RESULTS r-

ADDRESSES {l8-Bln L

AO
~ Al

OPERAND A2
CENTRAL A3
MEMORY ADDRESSES

A4
...... A5

RESULT r A6

ADDRESSES L- A7

INSTRUCTIONS

OPERANDS

(60-Bln
XO

Xl

X2

X3

X4

X5
X6

X7

INCREMENT
(18-'BI1)

BO

B1

B2

B3

B4
B5

B6

B7

f+-

..-

---- 10 FUNCTIONAL

.----.... UNITS

~
I INSTRUCTION

REGISTERS

1 NSTRUCTION
STACK

(UP TO 8 WORDS
60-BIT)

~

+
FIgure 6. Central Processor Operating Registers.

tion without regard to others. Speed increases
are had from this simplified design.

As an example of special functional unit
design, the floating multiply accomplishes the
coefficient multiplication in nine minor cycles
plus one minor cycle to put away the result for
a total of 10 minor cycles, or 1000 nanoseconds.
The multiply uses layers of carry save adders
grouped in two halves. Each half concurrently
forms a partial product, and the two partial
products finally merge while the long carries
propagate. Although this is a fairly large com
plex of circuits, the resulting device was suffi
ciently smaller than originally planned to allow
two multiply units to be included in the final
design.

To sum up the characteristics of the
central processor, remember that the broad
brush description is "concurrent operation."
In other words, any program operating within
the central processor utilizes some of the avail-

able concurrency. The program need not be
written in a particular way, although certainly
some optimization can be done. The specific
method of accomplishing this concurrency in
volves issuing as many instructions as possible'
while handling most of the conflicts during
execution. Some of the essential requirements
for such a scheme include:

1. Many functional units
2. Units with three address properties
3. Many transient registers with many

trunks to and from the units
4. A simple and efficient instruction set

CONSTRUCTION

Circuits in the 6600 computing system
use all-transistor logic (Fig. 7). The silicon
transistor operates in saturation when switched
"on" and averages about five nanoseconds of
stage delay. Logic' circuits are constructed in

PARALLEL OPERATION IN THE CONTROL DATA 6600 39

Figure 7. 6600 Printed Circuit Module.

a cordwood plug-in module of about 21/2 inches
by 2112 inches by 0.8 inch. An average of about
50 transistors are contained in these modules.

Memory circuits are constructed in a
plug-in module of about six inches by six inches
by 2112 inches (Fig. 8). Each memory module
contains a coincident current memory of 4096
12-bit words. All read-write drive circuits and

Figure 8. 6600 Memory Module.

bit drive circuits plus address translation are
contained in the module. One such module is
used for each peripheral processor, and five
modules make up one bank of central memory.

Logic modu12s and memory modules are
held in upright hinged chassis in an X shaped
cabinet (Fig. 9). Interconnections between
modules on the chassis are made with twisted
pair transmission lines. Interconnections be
tween chassis are made with coaxial cables.

Both maintenance and operation are ac
complished at a programmed display console
(Fig. 10). More than one of these consoles may
be included in a system if desired. Dead start
facilities bring the ten peripheral processors to
a condition which allows information to enter
from any chosen peripheral device. Such loads
normally bring in an operating system which
provides a highly sophisticated capability for
multiple users, maintenance, and so on.

The 6600 Computer has taken advantage
of certain technology advances, but more par
ticularly, logic organization advances which now
appear to be quite successful. Control Data
is exploring advances in technology upward
within the same compatible structure, and iden
tical technology downward, also within the
same compatible structure.

40 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 9. 6600 Main Frame Section.

Figure 10. 6600 Display Console.

AN OPERATING SYSTEM AND PROGRAMMING SYSTEMS
FOR THE 6600

B. B. Clayton, E. K. Dorff, and R. E. Fagen
Control Data Corporation
Minneapolis, Minnesota

1. INTRODUCTION

As has been seen from the discussion of
the 6600 organization, the hardware design
leaves a flexible arrangement, and communi
cation between the 10 peripheral processors
(PP's) with the 12 I/O channels and with
central memory has few built-in hardware re
strictions. Similarly, the rules for the central
processor (CP) are also simple but relatively
unrestricted, with the CP operation and com-

SYSTI'M OUTPUT

OPERA TOR OVERRIDE

ADD-DElETI' JOBS,
CHANGE PRIORITY,

STATUS REQUEST,
ETC.

DISPLAY INFORMATION

munication with central memory subject to
control of any of the 10 PP's at any time.
Thus a complete discussion of operation of the
6600 system is possible only in the context of
an operating system. There are many ways in
which an operating system may be organized;
each different way leads in effect to a different
overall system when considered in the light of
the processing of a given work load or problem
mix.

This paper describes SIPROS, Control

SIPROS

SIPROS CONTROL I

EQUIPMENT
ALLOCATION

eM, Disk, Topes, etc.

I/O PROCESSOR

Executive Function
Scheduling,

Priority Update

PROGRAMMING
SYSTEM CONTROL

I
I
I
L_

41

ACCOUNTING
INFORMATION

PROCESSOR

lIBRIOUS

library Control

I
I

OR

8ac:k to S IPROS Control
for Execution Scheduling

42 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Data Corporation's standard operating system
for the 6600. Since a complete description
would fill a number of detailed manuals, this
discussion is limited to a broad outline of those
features that influenced the design of the system
from various points of view. These viewpoints
are loosely categorized as "what the 6600 hard
ware sees," "what the programmer sees," "what
the using installation and operator sees," and
"what a job (or sequence of jobs) sees." While
these four points of view are interrelated, a
clear picture of the total system is best pre
sented as though these are four different topics,
and this description of SIPROS, is organized in
that order.

Control Data's standard programming
system is a single package under SIPROS con
trol consisting of a FORTRAN 66 compiler,
ASCENT (assembly system for the CP), AS
PER (assembly system for the PP's) and a
library system of mathematical, utility, and I/O

POOL PP RESIDENTS
PICK UP I/O REQUESTS
LOAD JOBS
REPORT COMPLETION

JOB AREA
PROGRAM ASSEMBLY
PROGRAM COMPILATION
PROGRAM EXECUTION

CM RESIDENT
COMMUNICATES WITH SYSTEM
INTERPRETS MACROS

CONTROL INFORMATION
RUNNING TIME
PRIORITY
EQUIPMENT REQUIREMENTS

SYSTEM ROUTINES
BATCH LOADER
JOB LOADER
EXECUTIVE OVERLAYS
RESIDENT OVERLAYS
PP PACKAGES

PROGRAMMER SCRATCH AREA
WORK AREA

JOB STACK
JOBS TO BE ASSEMBLED
JOBS TO BE COMPILED
JOBS TO BE EXECUTED

OUTPUT BUFFERS
PRINT DATA
PUNCH DATA

SYSTEM ROUTINES
ALL ROUTINES

routines used by all of the systems. A brief
description of these packages is also included.
Figure 1 gives a block diagram of the relation
ship of the parts of SIPROS and the program
ming systems.

Finally, a short discussion of system
speed and throughput, and a typical example
is given. These are intended more as an indi
cation of what must be considered in compiling
or measuring these quantities than as definite
answers in themselves. The use of super com
puter systems and "multiple processing" are
now about to pass from paper to hardware;
existence of running standard hardware in
actual operational environments will provide
the necessary "laboratories" in which quantities
such as throughput can be empirically deter
mined. This in itself will soon lead to more
meaningful criteria and "problem mixes" than
now exist for measuring and evaluating super
computer systems.

CENTRAL MEMORY

61)7
&

626
TAPES

JOB JOB JOB
13 '2 '1

SOl
LINE PRINTER

CENTRAL
PROCESSOR

COMPUTATIONAL
LOAD

EXECUTWE
CONTROLS SYSTEM
EVALUATES PRIORITIES
SCHEDULES JOBS
MAINTAINS I/O REQUESTS
PROVIDES CONSOLE DISPLAY

MONITOR
MONITORS I/O REQUESTS
CHECKS I/O STATUS

I
I
I
I
~

Figure 2.

OPERATING AND PROGRAMMING FOR THE 6600 43

2. SIPROS-OPERATING SYSTEM FOR
THE 6600

Control Data's objectives in its standard
operating system (SIPROS) have been to pro
vide an efficient and yet widely applicable oper
ating system. In order to do this, and still
provide the possibility for individual installa
tions to add to and tailor the system to their
unique problem mixes, considerable attention
has been given to making the system open
ended, and to leaving as parameters as many of
the system "trade-offs" as possible. To describe
these, we have chosen to present the system
from several points of view.

From the Hardware Point of View
During operation, parts of SIPROS ac

tually reside in different portions of the 6600
system. Figure 2 illustrates where some of these
parts are normally located and what their func
tions are. The executive and monitoring role
of SIPROS is actually contained in one of the
PP's. It is responsible for the control and man
agement of all the other parts of the system,
including allocation of central memory, tasks
assigned to the other peripheral processors, and
allocation of and communication with peripheral
equipment in the system. It should be under
stood at the outset that the 10 peripheral and
control processors play exactly that role during
normal operations; that is to say, although they
appear to the programmer as independent com
puters in their own right, their normal assign
ments are for control of the system and for
I/O buffering and processing. Exceptions can
be made to this, however, in that any of the
peripheral processors and peripheral equipment
can actually be removed from direct control
of SIPROS and assigned to individual jobs.
Thus, if desired, the peripheral processors can
share portions of the computational load, and
this is an easily obtainable programmer's op
tion. However, it is not intended as the normal
mode to be described here.

The PP running the system performs
all of the executive and monitoring functions.
It watches the status of the job currently in
execution in central memory and every 200 f1- sec
checks for changes in status. In addition, it
keeps track of the status of central memory,
all the jobs currently in central memory or 'in
the job stack on the disk, and of the status and

availability of the other peripheral processors
and peripheral equipment. When specific sys
tem or I/O operations must be performed such
as job loading, reading or writing of the disk,
input or output from the tapes or card equip
ment, etc., it directs one or more of the periph
eral processors to perform this operation and
re-assumes control of the PP so assigned once
the task is complete.

Typical of the tasks performed by the
peripheral processors are the following:

1. disk executive and console display driver
2. card reader to disk
3. job loader
4. disk to printer
5. disk to tape, tape to disk
6. disk to printer, punch
7. card to tape, tape to card

Although any of the PP's may be as
signed to any of the tasks described, normal
practice is for the executive to watch the work
load by category of operation and keep individ
ual PP's on the same type of task as long as
possible to avoid loading and unloading of the
necessary PP routines. For example, a tape
handling package may be loaded in an individual
PP and this PP kept on tape handling tasks for
some time. Should the number of demands for
tape operation increase, several PP's may be
semi-permanently allocated to this task. A very
important feature of the system is the use of
the disk which, in normal operation, will be kept
busy almost all the time. To optimize use of
the disk, a disk handling system consisting of
routines for a PP disk executive and two disk
slaves will normally be loaded into three PP's.
Finally, such functions as card reading and job
loading and driving the printer or printers from
the disk may also be semi-permanently loaded
in appropriate PP's. The point to remember,
however, is that these assignments are flexible
and may be altered dynamically by the system
as fluctuations in the types of demands occur.

The disk is used for different functions
as shown in Fig. 3a. These are:

1. storage of the library and programming
systems

2. buffer area for all output to printer, etc.
3. scratch area for programmer and system

use
4. storage of the job stack

44 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Considerable attention has been paid to
optimizing the use of the disk. A disk executive
routine, permanently assigned to the same PP
used for the console display driving package,
serves to process all requests involving reading
or writing the disk. Two disk "slave" PP's

SYSTEM DISK FUNCTIONS

PROGRAMMER SCRATCH AREA
WORK AREA FOR JOBS AND SYSTEM

JOB STACK
JOBS TO BE ASSEMBLED
'JOBS TO BE COMPILED
JOBS TO BE EXECUTED

OUTPUT BUFFERS
PRINT DATA
PUNCH DATA

SYSTEM ROUTINES
ALL ROUTINES

EACH OF THE FOUR AREAS IS BROKEN DOWN
INTO VARIABLE LENGTH LOGICAL RECORDS

A LOGICAL RECORD CONSISTS OF ONE OR MORE
PHYSICAL RECORDS

PHYSICAL RECORD LENGTH IS AN INSTALLATION
PARAMETER AND MAY BE 512 TO 4096 6O-BIT WORDS

VARIABLE LENGTH LOGICAL RECORDS ARE BROKEN
DOWN INTO PHYSICAL RECORDS ON DISK

PHYSICAL RECORDS FOR THE FOUR DIFFERENT AREAS
ARE INTERMIXED ON DISK

PROGRAMMER
SCRATCH AREA

PI

P2

P3

P4

under control of the disk executive PP then take
turns, in cooperative communication with each
other, in writing (or reading) information out
consecutive sectors of the disk and reading (or
writing) information into central memory. Also,
records are organized on the disk in a pre-

VARIABLE LENGTH LOGICAL RECORDS

OUTPUT SYSTEM
JOB STACK BUFFERS ROUTINES

Jl 01 SI

J2 02 S2

J3 03 S3

J4 04 S4

J5 05

06

07

Figure 3a.

OPERATING AND PROGRAMMING FOR THE 6600 45

VARIABLE LENGTH LOGICAL RECORDS ARE BROKEN
DOWN INTO PHYSICAL RECORDS

PHYSICAL RECORDS FOR EACH LOGICAL RECORD
ARE WRITTEN ON BOTH DISKS

PHYSICAL RECORDS FOR THE FOUR DIFFERENT
AREAS ARE INTERMIXED ON DISK

l!'igure 3b.

scribed manner, and a set of record tables and
chaining information is stored in directory form
in central memory and also in certain disk posi
tions. The disk executive uses these tables to

minimize arm repositioning, and "look ahead"
through the request lists to allow as much infor
mation, per revolution, to be transferred as pos
sible. The disk executive is written in such a

, way as to allow for a second disk and automati
cally increase efficiency by overlapping arm
repositioning and reading of tables from one
disk with I/O operations on the other. A more
detailed description of these operations is be
yond the scope of this paper. Figures 3a and 3b
illustrate the type of organization of physical
records used.

In normal operation the system main
tains control of and assigns appropriate periph
eral equipment as required. In addition, it
notifies the operator of special requests such
as mounting or dismounting of tapes and assign
ment of physical units to jobs. The system is
written in a parametric form so that the number,
of peripheral items is unimportant so long as
certain minimum requirements are met. For
example, one disk is necessary, but no assump
tion is needed on the nurnber of tapes present.
(A minimum of one tape' unit is assumed for
disk I/O overflow.) Having two disks requires
no system change, but results in a throughput
gain. The system can run equally well on the
131K or 65K central memory versions of the
6600. Certain nominal values assumed by the
system are actually parameters left to the dis
cretion of the using installation. For example,
the allocation of disk space to the four types of
data mentioned is a parameter. The nominal
choice of 512 central memory words for disk
physical records and the size of I/O buffers
attached to individual jobs in central memory
is another parameter, as is the amount of space
in central memory reserved for system tables
and other status information used by the sys
tem.

From Programmer's Point of View

Problem Programming. While the 6600 is a
multi-processing computer system, the intention
in the design of SIPROS and the programming
systems is to make the machine appear to the
programmer as a traditional serial' machine.
Normally a programmer who is programming
in either ASCENT (central processor assembly
language) or FORTRAN is completely unaware
of the fact that there are peripheral processors
performing his I/O, and he does not explicitly

46 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

program them; neither is he aware of the spe
cific use of disks or tapes in his scratch work,
and he requests scratch operations in terms of
macros defining logical records and logical tape
units. Programming of I/O operations is done

through system macros which are handled by
the operating system and these, of course, call
the appropriate peripheral processor routines
into play and are of no concern to the program
mer. Similarly, checking channel status and

CONTROL CARDS

(*REQUIRED CONTROL CARDS)

JOB IDENTIFICATION
* JOB NAME AND ACCOUNT NUMBER

PRIORITY
CENTRAL PROCESSOR RUNNING TIME LIMIT

EQUIPMENT
SCRATCH TAPE
INPUT TAPE
OUTPUT TAPE
PRINTER
DISK
CARD READER
CARD PUNCH
PERIPHERAL PROCESSOR
VARIATIONS

VARIABLE vs FIXED REQUIREMENTS
EQUIPMENT EXCHANGE
SPECIFIC ASSIGNMENT

MEMORY ESTIMATE
CENTRAL MEMORY

FIXED
VARIABLE

DISK MEMORY
FIXED
VARIABLE

DEBUGGING
MEMORY DUMP
MEMORY MAP
CONSOLE DEBUGGING
ERROR HALT CONDITIONS

OTHER
IGNORE EXPONENT OVERFLOW
IGNORE INDEFINITE RESULT
IGNORE EXPONENT OVERFLOW AND INDEFINITE RESULi
COMPILE PROGRAM

* FINIS

CARD DECK LAYOUT

r '-_____ ·_··..J·f ... ·· · END-Of-JOB CARD

........................... DATA CARDS

••• PROGRAM CARDS

.... ~ -....................... . OPTIONAL CONTROL CARDS

('-_____IJ.f .. _... REQU IRED CO NTROl CARD

Figure 4a.

OPERATING AND PROGRAMMING FOR THE 6600 47

peripheral equipment status is done through the
use of system macros.

While a great number of other programs
will occupy the 6600 system during the execu
tion of a programmer's problem, his own pro
gramming is never concerned with this nor
the possible interference with or from other
programs. The system automatically takes care
of questions of scheduling, loading, allocation
of memory space and peripheral equipment,
relocation of programs within central memory,
and of protection of the various parts of the
program from conflicts with other programs.
This is done through operating system use of
such features as the exchange jump package
and field length restrictions on central memory
references.

The programmer is also presented with

CASE A, JOB COMPILATION

CASE C, JOB EXECUTION (NO OPTIONAL CARDS)

a very simple control card format. Although he
can specify a large number of conditions, esti
mates, and options for his own convenience (as
shown in Fig. 4a), he is actually required to
provide only a job identification card and an
end-of-job card. The other features he can call
for are of convenience either to himself (for
debugging or diagnostic procedures) or for
system convenience (such as level of priority,
estimates of memory required, estimates of
peripheral equipment requirements, etc.), but
are not required. A simple system for control
card provision for program segmentation is also
provided. Figures 4a and 4b summarize the
various possibilities for job deck organization.

Special Systems Programming. In program
ming certain jobs, it is necessary to write pro-

CASE B, JOB COMPILATION AND EXECUTION

CASE D, JOB EXECUTION (OPTIONAL CONTROL CARDS)

Figure 4b.

48 PROCE~DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

grams using peripheral processors in conj unc
tion with the central processor. Examples are:

• real time programming, where on-line
I/O must be handled.

• additions to the operating system due to
novel peripheral additions (multiple re
mote consoles, new peripherals, etc.).

• programs where timing restrictions
cause direct coordination between CP ex
ecution and I/O from a peripheral device.

SIPROS permits such special program-
ming by allowing a programmer's job to consist
of a mixture of central processor and peripheral
processor routines. In addition, assembly lan
guages for both machines are provided as one
package. The programmer organizes his deck
into CP routines (ASCENT) and PP routines
(ASPER) through appropriate control cards.
In assembly, the programming system creates
the necessary communication links between
these (since the programmer can use cross
referenced symbols and COMMON areas be
tween the programs) and the SIPROS loader
will automatically take care of loading the object
program into allocated central memory space,
and allocated PP's. The PP's allocated are re
moved from normal SIPROS control, and "be
long" to the job during execution. The "job"
itself remains under SIPROS control, and the
monitor watches its status and treats the entire

I. J08 TO SYSTEM

END CARD

-r----- COMBINATION OF FORTRAN

r~~~r.fti===== ASCENT AND ASPER ROUTINES
OTHER CONTROL CARDS AS II:EQUIREO

CONTROL CARe SPECIFYING
PPREQUIREMENT

'----- JOI CARe

2. SYSTEM SCHEDULES COMPILATION

J. JOB COMPILED -- COMPILED Joe lACK
TO JOISTACK

". SYSTEM SCHEDULES EXECUTION

s. ENTIRE Joe (INCLUDING PP PROGRAM)
TOCM.

CENTRAL PROCESSOR

SYSTEM REQUIREMENTS

OTHER PROGRAMS

job as any other in the system. In this way,
SIPROS is "open-ended," and a programmer
using ASPER programs can actually be "ad
ding" to the system. In many cases, this
amounts to no more than writing a trivial con
trol or driver routine for the PP with respect
to a peripheral or I/O device. The mechanislll
for writing programs in ASPER is similar to
that for writing ASCENT routines and, except
for the cross-referencing of symbols, a program
mer is in effect writing traditional programs
for two separate and traditional machines, and
the usual programmer and system macros are
provided in both systems. Figure 5 shows the
steps involved in real-time job multi-processing.

From the Operational Point of View

Oper-ator. During norrrtal operation, the opera
tor communicates with the system through his
console with keyboard and two CRT's. SIPROS
(through the PP display driver) provides status
information on the flow of jobs through the
system, and also gives certain n1essages con
cerning necessary operator actions, The opera
tor is provided considerable override capability
in that he can introduce or delete jobs, change
their priorities, cause equipment reservation, or
interrogate the system for status information
not routinely provided.

The operating system also runs at inter
vals or as an idle routine a high-level diagnostic

COMBINATIONS OF ABOVE
ARE POSSIBLE

DISK ExecUTIVE AND ',.,LANCE OF
POOL PP, PERFORMING NORMAL
SYSTEM FUNClIONS.

6. WHEN PRIORITY IS THE HIGHEST,
SYSTEM EXCHANGE JUMP TO CP
PROGRAM. EXECUTION STARTS IN CP.

7. TPP PROGRAMMER MACRO ENCOUNTERED
IN CP PROGRAM.

SYSTEM
COMMUNICATION

AREA

MONITOR

FUNCTION

NAMED ASPU: PROGRAM TRANSFERRED TO PP.

8. EXECUTION STARTS IN PP. SPKIAL PP

CPPROGRAM
(FORTRAN OR ASCENT)

PPPROGRAM(S)
(ASPER) PERFORMS CP ASSIGNEe FUNCTION. PROGRAMS

COMMUNICATE AND TRANSFER I/O INFORMATION
VIA COMMON,AREA.

9. STEPS 7 AND 8 REPEATED FOR All

ASPER SUIROUTINES, OVERLAYS, ETC.

COMMOr;..! AREA INFORMATION
FOR CP·PP COMMUNICA nON

AND SPECIAL I/O STORAGE AND CONTROL

~"igure 5.

POOL PP ASSIGNEe TO
REAL TeME DEVIC£(S) SPECIAL FUNCTION PER

PROGRAMMER II:EQUEST

OPERATING AND PROGRAMMING FOR THE 6600 49

check of the hardware operation, and reports
results to the operator; the operator can call
this job at any time. Features allowing him to
examine selected portions of memory are also
included. Figures 6a and 6b give diagrams of
typical communications. Since most status infor
mation is dynamic, the system keeps a perma-

nent record of job history, which the operator
can call at any time.

F - CHANNEL FUll [
E - CHANNEL EMPTY

A - CHANNEL ACTIVE

D - CHANNEL DISCONNECT

UP TO TEN LINES FOR [
INSTRUCTIONS TO
OPERATOR OR INFORMATION
FROM OPERATOR

LEFT TUBE JOB HISTORY 0 ISP LAY

TIME

MINUTES' THOUSANTHS

XXXX· xxx
XXXX· xxx
XXXX· xxx

IDENTIFICATION

JOB NAME ACCOUNT'

Installation. A thorough set of use information,
broken down by job, is provided for each of
the parts of the 6600 system used by the job,
including maximum central memory use, CP

SIPROS TIME OF DAY
HRS. MIN. SEC.

JOB NAME

JOB ACCOUNT NO.

CHANNEL STATUS

3 4 5 6 7 8 10 11 12

X X X

X X

A X X X X

D X X

MOUNT TAPE 169 ON UNIT 1
ETC.

STATUS

COMPILED
LOADED
READ
PRINT
PUNCH
COMPLETE

Figure 6a.

Figure 6b.

SYSTEM STATUS DISPLAY

JOB NAME AND INTERNAL JOB NUMBER

JOB ACCOUNT'

PRIORITY

I/O PRIORITY

RUN TIME ESTIMATED

TIME USED }

ABSOLUTE LOCATION IN MEMORY ~ !~:L~C~~ ~II~~ .~~~~~~~~~~~OULD
EQUIPMENT ASSIGNMENTS

EQUIPMENT TYPE, LOGICAL UNIT' EQUIPMENT TVPE, PHYSICAL UNIT NUMBER

EQUIPMENT TYPE, LOGICAL UNIT' EQUIPMENT TYPE, PHYSICAL UNIT NUMBER

50 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

elapsed time, and time of peripheral equipment
usage.

From installation to installation, the
actual mix of work or job load will vary con
siderably as could the system throughput. To
facilitate adjustment, SIPROS allows certain
of its parameters to be changed by the installa
tion. These parameters relate mostly to the
trade-offs between time and memory space.
Figure 7 gives a list of these options and param
eters.

Another important installation choice is
the use and regulation of the priority 3ystem.
This is of particular importance in a multi
input system, where jobs entering the system
could come in off-line, on-line, or from a number
of sources with varying priority requirements.
To provide each installation with a wide range
of choice, keep the priorities simple, and still
avoid certain bottlenecks and logical "lockouts"
possible in any queuing system, SIPROS pro-

vides a priority system which itself is paramet
ric, and which is divided into three distinct
priority "classes." The first class has a number
of priority levels; one of these is fixed with the
job, is part of its loading criteria, and does not
change so long as the job is in the system. The
second or intermediate class has an equal num
ber of priority levels. However, these are fur
ther partitioned by the system internally once
the job enters the system, and the levels are
increased incrementally at time intervals. The
time interval is an installation parameter.
Finally, there is a third class of priority which
consists of a single priority level higher than
any possible in the other two classes. This pri
ority is included to handle the case of a job with
real time requirements; when a job of this pri
ority is in execution, no other job can gain
central processor control through internal build
up of its own initial priority. Figures 8a, 8b, and
8c show the relationship between these 'classes.

LIST OF INSTALLATION PARAMETERS

1. CENTRAL MEMORY

A. MEMORY SIZE 131 OR 65K
B. TOTAL SYSTEM REQUIREMENTS
C. I/O BUFFER SIZE (512 CM WORD MINIMUM)
D. SPACE ALLOTTED TO SYSTEM ROUTINES
E. SPACE ALLOTTED TO TRIAL LOAD OF JOB IF MEMORY ESTIMATE NOT

SPECIFIED
F. SIZE OF JOB TABLE AREA

2. DISK

A. SPACE ALLOTTED TO LIBRARY FUNCTIONS
B. SPACE ALLOTTED TO OUTPUT AREA
C. SPACE ALLOTTED TO JOB STACK
D. SPACE ALLOTTED TO PROGRAMMER "SCRATCH" AREA

3. PROGRAMMING SYSTEM

A. SYMBOL TABLE SIZE
B. TEMPORARY STORAGE REGION
C. PROGRAMMER MACRO STORAGE

4. OPERATION

A. INSTALLATION PRIORITY STANDARD
B. CENTRAL PROCESSOR EXECUTION TIME LIMIT
C. PRINT OUTPUT LIMIT. JOB EXCEEDING THIS LIMIT WILL HAVE ALL PRINT

OUTPUT ON TAPE
D. PROGRAMMER DISPLAY TIME LIMIT
E. SYSTEM BALANCE PARAMETERS. TAILORS PP USAGE TO INSTALLATION

NEEDS.

Figure 7.

OPERATING AND PROGRAMMING FOR THE 6600 51

PRIORITY STRUCTURE

I. FOUR BASIC LEVELS OF PRIORITY

HIGHEST
LEVEL

3

HIGH

INTERMEDIATE

LOW o

3. TWO TYPES OF PRIORITIES CAN
BE SPECIFIED:

A. Changing - Priority Incremented
Periodically (Installation
Parameter)

B. Unchanging - No Incrementing

LEVEL 3
U
N

[
C

LEVEL 2 H
A
N

LEVEL I G
I

LEVEL 0 N
G

2. FINER BREAKDOWN WITHIN EACH
LEVEL IS PROVIDED -

LEVel 3
512 SUBLEVelS

4. FOR CHANGING TYPE ONLY
INSTALLATION PARAMET'ERSPECIFIES:

A. Incrementing to Top of level

~
B. Incrementing Across levels

(But Not inta L"vel 3)

LEVEL 3

~ f
LEVEL 2

. LEVEL I

~

LEVEL 0

ACROSS WITHIN
LEVELS LEVE.L

Figure 8a.

Installations are free to use any or all
three classes of priority, and as many of the
levels within each class as they choose. Each
of the classes, and the idea of incrementing
priorities, was included to allow solution to cer
tain possible problems. The second class guar
antees that a job in the job stack will eventually
get loaded into central memory and once there
will eventually get executed. Thus a top level
priority job with all computation and no I/O
could not prevent lower priority jobs with little
computation but considerable I/O to get into
execution and thereby to contribute to overall
system utilization. Existence of the lowest class
allows entry of low priority jobs that at worst
occupy disk space, but where there is genuinely
no concern over when they get run. Finally,
as mentioned, the "real-time" class allows a
real-time requirement to fit with other high
priority but non-real time jobs in the system.
Figures 8a, 8b, and 8c show in more detail the
relations between priority levels and classes.

Flow of Jobs Through the System

Normal Computer Center. During normal oper~-

tions, jobs enter the system either through the
card reader or from magnetic tape with infor
mation stored in card image format. As soon as
space becomes available in the section of the
disk allocated to storage of the job stack, the
system assigns a peripheral processor to read
the cards and enter the job onto the disk.
During this operation the system extracts all
the necessary information from the control
cards, enters these pieces of information into its
own records of job status, and assigns an inter
nal job identification number to the job. Items
logged at this time include such things as job
priority, special equipment requirements, esti
mates of memory space requirements, whether
the job is an execution or requires assembly or
compilation, etc. The job stack as kept on the
disk is open-ended, and whenever the system
notices that disk space is available, it adds to
the job stack from the card reader.

As soon as a job in the job stack meets
certain criteria, the: system, through the job
loader, causes the, job to be loaded intO' central
memory. A diagram of the' route from the job
stack to central me'mory and a list of job load-

52 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

ing criteria is given in F;ig. 9 (parts 1 and 2).
Jobs with priorities of the second class are
assured to be loaded eventually since their
priorities continually build up while in the
stack, and once' they reach the highest priority,
the system will automatically reach a point
where it actually reserves sufficient memory
space and peripheral equipment to satisfy the
job's requirement. This reservation feature is
included to prohibit mutual lock-out situations
where several high priority jobs could be loaded,
but due to equipment or memory space require
ments, none meet the criteria.

The system also keeps as many jobs as
possible in central memory and dynamically re-

allocates memory space as jobs terminate and
release space and/or peripheral equipment. The
system assigns the central processor to execu
tion on the highest priority job in central
memory. As soon as another job in central
memory reaches a higher priority, control
through exchange jump-is transferred to this
job. When the job in execution reaches a
status change such as a request for an input/
output operation, appropriate flags are set in a
status word in that program's area and the
system monitor during its normal cycle will
notice this status change. I/O requests will
be of one or two kinds as designated by the
programmer in his system macro. Either the

PRIORITY

U2'500

U 3 ·0

C 2 ' 470

SIPROS PRIORITY HANDLING

1. IN JOB STACK

LOAD
JOB SEQUENCE PRIORITY

A 2 U2·500

B C2'550

C 3 U 1 ·300

U2·0

~ S
TIME 0 DURING INTERVAL X

A. ONLY JOB B LOADED TO CM
B. JOB C PRIORITY INCREMENTED

SUCH THAT AT TIME X IT REACHED
C 2 ·550'

2. IN CENTRAL MEMORY

A. JOB RUNNING IS NOT INCREMENTED
B. CHANGING PRIORiTY JOBS NOT

RUNNING ARE INCREMENTED
PERIODICAllY. THIS COULD EFFECT
SEQUENCE OF JOBS WAITING TO RUN

3. IN i/O STACKS

A. I/O TASKS PUT IN STACK ACCORDING
TO FUNCTION

B. TASKS NOT IN OPERATION, WITH
CHANGING PRIORITY, ARE INCREMENTED
PERIODICALLY. THIS COULD EFFECT
SEQUENCE OF WAITING TASKS.

Figure 8b.

LOAD
JOB SEQUENCE

A 2

C

D 4

E 3

S S
TIME X

OPERATING AND PROGRAMMING FOR THE 6600 53

FROM PROGRAMMER POINT OF VIEW

1. PRIORITY SPECIFICATION:

SUBLEVEL 0-511

SEPARATOR

lEVEL 0-3

TYPE U - UNCHANGING
C -CHANGING

Examples: C 2 • 0, U 1 • 200, etc.

2. PROGRAMMER QPTIONS:

SPECIFY A. Job Priority and Different I/o Priority

OR B. Job Priority Only
(System Sets I/o Priority == Job Priority)

OR C. No Priority
(Systems Sets I/O ::: Job::: Installation
Standard Priority)

Figure 8e.

JOB MUST HAVE PROPER PRIORITY
MUST 8E SUFFICIENT CENTRAL MEMORY
MUST BE SUffiCIENT DISK SPACE
MUST BE ENOUGH fREE EQUIPMENT

CENTRAL MEMORY

CENTRAL MEMORY

CENTRAL MEMORY

programmer has indicated that the I/O opera
tion must be completed before computation can
resume· (non-buffered mode) or he indicates
that computation can proceed while the I/O
operation is taking place (buffered mode). In
the first case the system will enter the I/O
request on an I/O request list and will turn
control, through an exchange jump, to the job
of next highest priority in the system. In the
second case the system will enter the I/O
request in its request list and allow the pro
graln to retain control of the CPo Thus, a pro
granlmer is not really concerned with buffering
his I/O operations; the system autonlatically
provides for this. An jobs in central memorY1
with the exception of the one currently in execu
tion, have their priorities periodically incre
mented. This assures that jobs which are
mostly computation will not prevent jobs which
have considerable 1/0 from getting into execu
tion and will assure a more uniform use of the
different parts of the hardware. As a job in
execution requests additional memory space,
disk space or tape units, the system automati-

JOB TABLE

H U

PROCESSING STEPS

I . 8A TCH LOADER
LOADS J08 INTO JOB STACK ON DISK FROM CARDS OR
TAPE MAKES ENTRY IN JOB TABLE FOR EACH JOB LOADED

2. EXECUTIVE
EXAMINES JOB fAaLE FOR JOBS TO BE LOADED INTO CM

INSTRUCTS J08 LOADER TO LOAD JOB WITH HIGHEST PRIORITY
(IF IT MEETS LOADING· REQUIREMENTS)

MAKES EQUIPMENT ASSiGNMENTS IN EQUIPMENT TABLE

REQUESTS OPERATOR TO PREPARE EQUIPMENT

OPERATORS REQUEST
MOUNT TAPES

.IOS .E~!a~~NT JOB TABLE '1

3. EXECUTIVE
EXCHANGE JUMPS TO JOII TO 8E EXECUTED

DD - - - .

EXCHANGE :> JUMP --

~'igure 9, Part 1.

54 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

cally assigns these. Provision is made, through
macros, to allow the programmer to spe.cify
dynamic release of any of these items once no
longer necessary to execution.

As a job proceeds in execution, its out
put is collected on the disk; once the job com
pletes in central memory, the task of publishing
the completed output is commenced as a sepa
rate "off,,:,line" operation; this final operation,
of course, is automatic and is treated, as an
I/O request, as one part of the job.

Since input/output requests can build up
from a variety of jobs in various states of com
pletion in central memory, the handling of the
input/ output request queue is performed in a
completely separate manner, and independent
priorities may be assigned to these requests
through control cards by the programmer. The
system takes care of allocation of the required
peripheral processors and peripheral equipment
to satisfy these requests, and attempts to bal-

CENTRAL MEMORY

ance assignments made to the PP's by class of
operation as was mentioned previously.

Multiple Inputs or Controls. In the above, the
operation at a normal computer installation is
described, with the operator's console in com
munication with the one allocated PP display
driver, and with normal job entry to the job
stack being the card reader or magnetic tape.
As will be described in the paper on 6600 appli
cations, SIPROS is designed to allow more than
one station or network of input stations to feed
jobs into the system. Figure 10 illustrates this
type of situation.

The ·normal way of handling another in
put of any sort is to introduce a special job
into central memory, which has communication
with and is under control of SIPROS, but which
has its own PP or PP's assigned and which has
the appropriate ASPER routines in the PP's.
These PP's then are assigned to handle the in-

JOB
'3

EQ~~~~NT JOB TABLE
4. EXECUTIVE

INSTRUCTS JOB LOADER TO LOAD OTHER JOBS INTO
CENTRAL MEMORY UNTIL IT IS FULL

=- . ----.-.. -0- LJ---

CENTRAL MEMORY

JOB JOB
12 '3

E~!:s~~NT JOB TABLE

=--.-- -=-.--EJ-:- --= EJ-=-

CENTRAL MEMORY

Figure 9, Part 2.

MULTIPROCESSES JOBS IN CENTRAL MEMORY

5. EXECUTIVE
DIRECTS OUTPUT DATA FOR PRINTER AND PUNCH TO
OUTPUT BUFFER ON DISK

DIRECTS OUTPUT DATA FOR TAPE TO POOL PP WHICH
WRITES TAPE

6. EX~CUTIVE
SCHEDULES NEW JOB FOR CM WHEN JOB TERMINATES

INSTRUCTS JOB LOADER TO LOAD NEW JOB FROM JOB
STACK ON DISK INTO CM

OPERATING AND PROGRAMMING FOR THE 6600 55

CENTRAL PROCESSOR L
"'---__ --J1

CENTRAL MEMORY

SYSTEM REQUIREMENTS -
[[J SYSTEM AND POOL PPs

FOR NORMAL SYSTEM FUNCTIONS

r-------

OTHER PROGRAMS

s
R
E
5
I
D
E

~
CASE 1: CP PROGRAM

I I t
INFORMATION & CONTROL

CASE 2: CP PROGRAM Il
I
I R

CASE 3: DUMMY CP PROGRAM
E

I s
I

I D

I
E
N

I T

I
1 R

I E
S

I I
D

I E
SYSTEM DISK I N

•
T

NORMAL JOBS
JOB STACK

FROM REMOTE STATIONS
I
I
I

Vo AREA
I OUTPUT

TO REMOTE STATIONS

PROGRAMMER "SCRATCH" AREA

CASE 1

PP

PROGRAM

t

~

CASE 2

PP

!'ROGRAM

CASE 3

PP -PROGRAM

J

NORMAL IN

NORMAL OUT

REAL
TIME

DEVICE

MULTIPLEXER t
c:

CASE 1 -- AUXILIARY

SPECIAL PP PROGRAM PERFORMING
AUXILIARY FUNCTION FOR CP PROGRAM •
NO I/O INVOLVED.

EXAMPLE: EDITING

CASE 2 -- REAL TIME

SPECIAL PP PROGRAM PERFORMING
CONTROL AND TRANSMISSION OF
REAL TIME INFORMATION FOR CP
PROGRAM.

CASE 3 -- REMOTE STATION

SPECIAL PP PROGRAM FUNNELING
NORMAL JOBS IN AND OUT OF
SYSTEM.

REMOTE
DeVICES

Figure 10.

put, and perform the necessary operations.
For example, if the input is a set of jobs from
a remote site, the PP routine would perform
the necessary housekeeping to extract the re
quired system information and enter the jobs
into the job stack along with those originating
"on site." If the job is a real-time computation,
the central memory portion of the program will
control the central processor during the neces
sary time periods. It should be clear from the
description above that the freedom of allocation
of the 10 PP's allows SIPROS to accommodate
a mix of several real-time or remote input net
works on a time-sharing basis.

3. PROGRAMMING SYSTEMS - FORTRAN
66, ASCENT, ASPER

The standard programming system,
under SIPROS control, is a single integrated

package consisting of a FORTRAN 66 compiler
(FORTRAN 63 language, essentially upward
compatible with FORTRAN IV) and assembly
systems for the central processor and peripheral
processors. Figure 11 is a hierarchy diagranl
of these systems. Since a program for compila
tion may contain a mixture of FORTRAN,
ASCE.NT, or ASPER, the system treats the
package as one single entity normally residing
on the system disk. When a job requiring com
pilation is to be loaded in central memory, the
loader loads the programming system and treats
the source program as data to the programming
system for the first pass of compilation. The
output of the second pass of compilation is a
relocatable binary version of the object pro
gram, which is routed to the job stack on the
disk for later execution if this is specified on
the control cards. A typical sequence for com-

56 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

pilation and execution is shown on Fig. 11, in
cluding the inputs, outputs, and processes with
in the two passes.

to intermix FORTRAN and ASCENT on a line
for-line basis, to reference register names in
ASCENT statements, and to reference FOR
TRAN statement numbers in ASCENT. As a
matter of fact, coding in ASCENT with inter
mixed FORTRAN statements and coding in
FORTRAN with intermixed ASCENT state
n1ents are indistinguishable.

Special FORTRAN Features

In implementing FORTRAN 66, two fea
tures aiming at flexibility and efficient object
programs were provided. The first is the ability

Source Language

PASS I ~
ASPER

ASPER ... Control
ASSEMBLER

Program
PASS I Language

A~

FORTRAN

Statements

ndensed Co
Sou rce

.... ASCENT Language

"
ASCENT

Assembler
PASS I

=,~-

... Condensed

.... Source

~,

Memory or
Disk

FORTRAN .. Language ~ ~

Processor

ASCENT

Language

.. Symbol Table ..-...
Literals

- ":'-"''''''''''''''',"'''''" -~- --- -- -- --- >..- - ~ ---- -----------
" "

r'"""~C."-"'''--
ASPER PASS Ii ASCENT ASCENT I ASPER Control

L PASS II Language Program Language -PASS II

Relocatable PP Relocatoble CM
Binary Binary

.. DISK (Cards or Tape) ...

Listings Printer Listings
_ or ...

Tape

Figure 11.

The secO'nd feature in FORTRAN 66
that helps explO'it the hardware design is the
cO'de generatiO'n O'ptimizatiO'n algorithm. This
algO'rithm scans the sequence O'f instructiO'ns
to' be generated, and thrO'ugh simulatiO'n O'f the
multiple functiO'n boxes and operating registers
makes an attempt to optimize the cO'de sequence
by minimizing cO'nflicts and delays that would
O'ccur due to' registe'rs busy, functiO'nal units
busy, etc. Since this O'ptimization will result

. in slO'wer cO'mpilation but faster execution of
O'bject prO'grams, a switch is provided that
allows bypassing the optimization when com
pilation only (as in debug) is desired.

ASCENT-ASPER CommunicatiO'n
As has been mentioned, coding special

systems that must bring peripheral processors
into explicit cooperative operation with the
central prO'cessO'r is facilitated by the communi
catiO'n between ASCENT and ASPER. The
fO'rmat fO'r a card deck having programs with
both ASCENT and ASPER programs is given
in Figures 4 and 4a.

During the second pass of assembly,
the programming system produces relocatable
binary CM or PP programs representing the
ASCENT program (for CP) and the ASPER.
routines (for PP). The ASPER programs are
separated by control cards which represent in
formation to the loader for use at execute time.
System macros, inserted by the programm.er,
request the assignment of a PP at execute
time, and cause the system to assign a PP
(removing it from the SIPROS pool) and cause
the ASPER routine to be loaded. At this time,
the cooperative operation between the routines
in PP and central memory can proceed, and the
common reference to symbols is automatically
achieved by PP routine reference to the appro
priate central memory locations during execu
tion.

4. ESTIMATES AND EXAMPLES

The throughput of a system depends on

57

job mix, and is also affected by memory require
ments of the operating system and program
ming system themselves. The latter are actually
quite complex, since pieces of these reside in
different parts of the system (as shown in
Fig. 2) , and also since the actual memory
requirements are affected by installation
options, estimates provided by job control cards,
etc. However, for some rough comparison pur
poses, it can be estimated that the minimum
central memory requirements for SIPROS itself
is about 10,000 words, and that the program
ming system (when required for compilation
or assembly) requires roughly that amount
also.

Although the disk space allocation also
is a variable, some typical figures might be
100,000 60-hit words for system libraries,
1,000,000 60-bit words for the job stack, 3,000,-
000 words fO'r job and system output area, and
the remainder (approximately 3,000,000 60-bit
words) for programmer scratch area.

As an illustration of throughput gain,
consider a problem requiring 10 seconds of CP
time for compilation, 300 seconds for execution,
and which has an aggregate total of 100 seconds
of input-output interspersed with computation,
during which the program in execution must
wait for the completion of the I/O. Suppose
further that the average central memory re
quirement for the job is 20,000 CM words. In
such a case, the throughput time for a single
run would be 310 seconds. However, if the
exact same job is continuously fed, as though
on an infinite "conveyor," through the 6600
and SIPROS, an average of five copies of the
job could be in "execution" in central memory
at once, and it can easily be seen that the aver
age rate of throughput, per case, is 210 seconds.
Although this example obviously represents a
hypothetical problem land even more hypothet
ical mix, it is typical of the type of situation
that would lead to overall throughput gain due
to the 6600 multi-processing capability.

REMOTE TIME-SHARING OF A CENTRALIZED 6600
B. B. Clayton, E. K. Dorff, R. E. Fagen, and J. D. Johnson

Control Data Corporation
Minneapolis, Minnesota

The Control Data 6600, with its immense
capability, lends itself readily to several new
application or problem areas in which computers
have not previously been fully utilized due to
either technical or economic considerations.
Foremost among these is the area of extre·mely
large problems. In these problems, the size
either prohibited use of existing computers in
all generality or in all detail or else could be
solved only at the expense of a large amount of
computer time. Examples of situations of this
type can be found among some nuclear and
linear programming problems. In particular,
when problems of this type involve real-time
inputs or outputs, an extremely large compute·r
is an absolute necessity. Another variation of
this problem occurs when a special purpose
black box or simulation model has to be con
structed to work in conjunction with presently
existing computers.

As computers become larger and faster,
they are also becoming somewhat more expen
sive. However, the rate of increase in capa-

INSTRUCTIONS/ COST/ COST/

bility is much greater than the rate of increase
in cost. For example, let us consider Fig. 1. In
this figure we consider four machines along
with instructions per second, cost per second,
cost per 10,000 executed instructions, cost-per
formance ratio, and finally the cost to compile
100 FORTRAN statements. We observe that
while the cost per second generally increases
as the capability of the machine increases, the
instructions per second increase at a much
greater rate. This is particularly evident when
we look at the cost per 10,000 instructions and
is further reflected in the cost to compile 100
FORTRAN statements, although the first entry
in that column might be tempered somewhat
by inefficiencies in the compiler. The striking
point to be brought out here is that computing

. costs are actually going down. If the 6600 can
be distributed among a number of users, whose
work loads are themselves insufficient to justify
the high cost of the 6·600, the overwhelming
economic advantages of the 6600 could be' fully
exploited. Each user would have at his disposal

COST TO COMPilE
PERFORMANCE-COST 100 FORTRAN

MACHINE SECOND SECOND 10,000 INSTRUCTIONS RATIO STATEMENTS

704 40,000 $.04 $.01. 1 $16.80

7090 I so, 000 .09 .006 1.6 1.40

3600 400,000 .08 .002 5 .so
6600 3,000,000 .16 .0005 20 .10

PERFORMANCE-COST TABLE

Figure 1.

59

60 PROCEEDINGS-SPRlNG JOINT COMPUTER CONFERENCE, 1964

large machine at a cost approaching that of
present-day medium-sized systems.

The purpose of this paper is to describe
various systems for distributing the computing
the capabilities and powers of an extremely
power of the 6600 to a .number of remote users.
The communications equipment necessary for
this purpose, and to be described later, is pres
ently available standard equipment. All tech
niques and technologies described are within
the current state of the art. Also, as mentioned
in the previous paper, the operating system for
the 6600 (SIPROS) is organized in such a way
as to allow a system with distributed inputs
to operate as though the remote inputs were
simple extensions of the peripheral facilities
in the central facility.

To illustrate the economies inherent in a
centralized system, let us look at two systems.
Figure 2 shows three de-centralized facilities

... LAIIGE
SCIENTifIC COMPUTERS

$280, OlIO/MONTH

$452,OOO/MONTH

CO.ORATE
HEADQUARTERS

• tWGE
IUSINESS COMPUTER

• 5SMALL
BUSINESS COMPUTBS

$9O,OOO/MONTH

• I WGE SCIENTIFIC COMPUTER

• 2 SMAU BUSINESS COMPUTBS

$82,OOO/MONTH

CUlIINT SYSTfM
A

Figure 2.

along with monthly lease costs. This might be
typical of anyone of a number of large users
of present day electronic data processing equip
ment. Figure 3 indicates a different approach
to solve the user's needs and provide the same
or greater capabilities. The several computers
have now been replaced by a single large-scale
centralized computer with remote stations.

These remote stations can be within the same
building, same area, or up to several hundred
miles away. The economic advantages are evi-

• HIGH SPEED DATA
COMMUNICATIONS

• REMOTE STATION

$30, OlIO/MONTH

$t90,OOO/MONTH

• REMOTE STATION

$tO,OOO/MONTH

CENTRALIZED SYSTEM

•

Figure 3.

CORPORATE
HEADQUARTERS

• VERY LARGE
COMPUTER

$t50,OOO/MONTH

dent. In this example the communications costs
are included as a part of the corporate head
quarters facility.

Let us now be a little more specific and
look in particular at a 6600 configuration such
as the one shown in Fig. 4. We will show how
this computing power can be economically dis
tributed at only comparatively slight incre
ments of cost. Since the prime difference in
the systems is one of replacing a large computer
at a remote station, let us begin by looking at
remote stations. Figure 5 depicts a typical
remote system having a ,small-scale computer
with punched cards as the primary input and
line printers providing the primary output. The
punched card inputs could be FORTRAN decks,
COBOL decks, data, information retrieval state
ments, or other commands or requests. The
capability of this remote station is such that
the 1200-card-per-minute card reader and at
least two 1,000-line-per-minute line printers
could be operating simultaneously at full speed.

REMOTE TIME-SHARING OF A CENTRALIZED 6600 61

DATA CHANNELS

6600
MAIN FRAME

AND
MEMORY

131 K
60 BIT WORDS

PERIPHERAL
PROCESSOR

CARD PUNCH

CARD READER

CONSOLE DISPLAY

4-)" TAPE UNITS

4~1/2" TAPE UNITS

4-1" TAPE UNITS

SPECIAL

SPECIAL

UNASSIGNED

DISK

DISK

DISK

6600 SYSTEM
$l20,OOO/MONTH

Figure 4.

Perhaps line printers could be printing out
results from previous runs while the card reader
would be reading in a new job for the next run.
If, for example, the remote station were to be
an output type only, then three 1,OOO-line-per~
minute printers could be kept running at full
speed.

If additional input-output capability is
desired, it can be achieved in several different
ways. Increasing the memory of the computer

will allow additional buffer areas and thereby
allow more peripheral equipment to operate con
currently. Of course, a point is reached where
the bandwidth of the communications network
will have to be increased from Telpak A to
wider bandwidths. The typewriter is included
in the system to allow communication with the
operator. For problems of a repetitive nature
or involving larger amounts of data, magnetic
tape units might be added. The card to tape

62 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

function could be performed at the remote
facility itself without using the central com
puter.

Other types of remote stations are also
available (Fig. 6). A much less expensive one
would be the standard teletype unit such as
used in Project MAC at MIT. Since these
devices are very slow by nature, a multiplexor
could be used to service up to 64 teletype units
on ~ single computer input-output channel. The
teletype could be used for low volume informa
tion retrieval, business reports, and for enter
ing and running short programs. An increase
in capability from this teletype station could
be achieved by having a low speed card reader

COMMUNICAT,ONS
TERMINAL

I
TELPAK A

COMPUTER

8090
8K -12 BIT WORDS

and a low speed line printer at the remote
facility. At remote stations of this type, it
would not be necessary to use a computer at
all. A peripheral adaptor, which in essence
extends the input-output channel of a computer
to remote locations via communications lines, is .
all that would be necessary. This peripheral
adaptor could not operate as many peripheral
devices simultaneously, and requires a buffer
memory in each of the devices. This adaptor
or channel extender, however, does not make.
as efficient use of the communications channel
as a computer would; nevertheless, as you ob
serve, the costs are reduced.

I

As can be seen, the number of possible

PERIPHERAL
EQUIPMENT

BUFFERED} 1200 CARDS
CARD

READER PER MIN.

BUFFERED} 1000 LINES
LINE PER MIN.

PRINTER

BUFFERED} 1000 LINES
LINE PER MIN.

PRINTER

}
250CARDS

CARD PUNCH PER MIN.

TYPEWRITER
(FOR CONTROL)

L MAGNETIC TAPE
- - (OPTIONAL)

TYPICAL ItEMOTE STATION

$6200/MONTH
Figure 5.

REMOTE TIME-SHARING OF A CENTRALIZED 6600 63

TO
CENTRAL

COMPUTER

COMMUNICATIONS
TERMINAL

720
PERIPHERAL

ADAPTER

BUFFERED
CARD
READER

250 CARDS
PERMIN.

BUFFERED
LINE
PRINTER

LOW SPEED REMOTE STATION

$2000/MONTH

TO
COMPUTER

I/O CHANNEL

(CENTRAL OR REMOTE
COMPUTER AREA)

64
TelETYPE

LINES

150 LINES
PER MIN.

TELETYPE
STATIONS

REMOTE TELETYPE STATIONS

Figure 6.

configurations at the remote sites is almost
endless. The remote computers may be of a
small 8090 type as illustrated here, or small to
medium 3100 or 3200 type computers could be
used to advantage as remote stations in certain
types of applications. The communications or
data transfer facilities to handle these remote
stations are presently available. As has been
mentioned, Telpak A may be used for communi
cation with several types of remote facilities.
In addition to this and other common carrier
facilities, several other methods are used for
transmitting data. For distances up to several
miles, a coax cable may be used; for further
distances, a microwave transmission is avail
able. Both the hard line and microwave trans
mission are extremely fast with rates of up to
5 million bits per second.

Now that the remote stations as well as
communications have been discussed, let us
look at the other end of the line. Depending
upon the number and the nature of remote

stations to be utilized in a centralized computing
facility, a number of different methods may be
used to get into the 6600. For example, if the
number of remote stations is small, a connec
tion may be made directly into an available data
channel, as shown in Fig. 7. Herewe show both
microwave facilities directly connected into a
data channel and· 64 multiplexed teletype ter
minals into another data channel on the 6600.

As the number of re·mote stations in
creases, other considerations must enter the
picture. One problem is that of the duty cycle
of the peripheral processors. If the type of
problems are of a nature that require little
input-output activity, then many of the periph
eralprocessors are available to monitor the
remote stations. However, if problems to be
run involve a substantial amount of input
output activity, then a suitable solution for
servicing the communication lines must be
found. If the data rates are slow, a time
sharing method can be used such as the multi-

64 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

CDC 8528 DATA
CHANNEL DIGITAL COMMUNICATIONS

CHANNEL

DATA
CHANNEL

6600
REMOTE INPUT/OUTPUT

Figure 7.

MICROWAVE

REMOTE STATION

plexor that handled the 64 teletypewriters. If
data rates are fast, such as when using Telpak .
or microwave units, and a large number of
these must be handled simultaneously, as nor
mally will be the case, additional input-output
channels must be used. One way of solving
this problem is to add an additional, but much
less expensive computer, to the facility to
handle the ip.creased simultaneous input and
output. This' IS illustrated in Fig.S, which

6600
DATA--.J

CHANNEL

T£LPAK

$SOOO/MONTtt

, INTER-COMPUTER
ADAPTER

., ,fEtefYi>E,

32QO COMPUTER .
32 K - 24 BIT WORDS

COMMUNICATIONS PROCESSOR

Figure 8.

MICRqWAVE

. shows a 32(JO computer serving as a· communica
tions proces.sor:: An additional advantage of

. this system, is that most of the ordinary house
keeping tasks which are necessary for deaIil)g

with communications equipment can now be
handled by the 3200. The additional expense
of this system is very small considering the
increased capability.

Since the 6600 SIPROS operating system
places all inputs on a stack on the system disks,
one further consideration is necessary; that is,
access time to the disk. This 6600 disk access
time is approximately 200 ms in the worst case.
The flexibility of the SIPROS operating system
allows additional disks to be added for stacking
inputs and outputs to the 6600 system, can
allow different allocations of storage stacking
to the multiple disks, and can allow the inputs
to the job stack to be from a variety of sources,
both at the center and from remote sites. How
ever, if the number of remote stations is large
or if the volume of input-output data is sub
stantial, then we must consider the problem of
accessing the disks for all system input and

. output. The disk access time can be buffered
out by transferring long blocks of data to the
disk, thereby decreasing proportionally the
number of disk accesses necessary (Fig. 9).
The buffering occurs in a mass core storage
placed between the communications processing
3200 and the centralized 6600 system. All
,system input-output is stored in blocks of 16,000
to 32,000 characters. per remote device in this
mass core store. By the use of this buffering
technique, effective system transfer rates can
be achieved. We- have now worked our way up
toa large-scale centralized system, completely
illustrated in Fig. 10.

In. the. typical large-scale system shown
here we have 12 remote facilities, a dual 3200
communications processor and the 6600 central
computer. The peripheral equipment at a
typjcal remote facility consists of two 1,000-
lir1e-per~minute printers, a 1200-card-per-minute
reader, and a 250-card-per-minute punch. The
number and type of input-output equipment,
however, varies at the different remot~ facil
ities depending on the load at· each individual
station. . A small-scale 8090 computer is located
at each remote site to service the input-output
equipment. The memQry size, however, of the
8090 varies at the remote stations as according
to the number of external equipments .

The communications terminals shown in
Fig. 10 consist of a Control Data 8529 and a
301-B Data Terminal. Besides interfacing the

REMOTE TIME-SHARING OF A CENTRALIZED 6600 65

6a
DATA

CHANNEL

MASS CORE
STORAGE

131 K -60 8/T WORDS

T

I ,... ___ .1. ___ ,

I C:~~EL I L _____ ..J

REMOTE STATIONS

BUFFERED SYSTEM

Figure 9.

parallel computer interface with the serial
301-B interface, the 8529 units provide for error
checking and detection. A scheme for encoding
and decoding blocks of data by generating a
12-bit cycle code is used. This provides the
following error detection capabilities:

1. Any odd number of errors.

DATA
CHANNElS

DATA

2. All error burst of length 12 or less.
3. 99.95% of all error bursts of length 13.
4. 99.98% of all error bursts of length 14

or greater.

A burst is defined as any pattern of
errors for which the number of bits between
the first and last errors, including these errors,
is the burst length. The cyclic code is one of
the most effective and economical error detec
tion techniques for serial transmission pres
ently known.

Let us now study the data flow in the
system in greater detail. First let us examine
the data transfer between the remote stations
and the communications processor. All such
transfers are made in blocks of eight-unit rec
ords. This block length is an effective trade
off between maintaining high line efficiency and
low core requirements in the remote computer.
The 8090 at the remote site initiates all data
transfers. This is done by generating an inter
rupt to the communi~ations processor, and is
followed by a transfer of a triple redundant
72-bit control word block. The required eight
unit records are now transferred and are fol
lowed by an acknowledgement from the receiv
ing computer (illustrated in Fig. 11 along with

SMAllSCAU
CHANNELS IOtOCOMPUTP

IOOOLlNf!M'f'oIJTENIN1U

I I
I I I I I IOCDLINf/MINUftPlINTn I I I I I
I I I I I I I I r I 1200 CARD/MINUTE IEACEI I I I I I I I I I I I I I I 250 CAlO/MINJtf PUNCHO I I

I I I I I
I I I I I
I I I I I I I I

I. I I I I I
I I I I I I
I I

,
I I I , I 1 I I

I I I I I I
I I' I

I I I I I I .. I I I I I
I I I I I I I I I I I I
I

I t I I
I I I I I I I·

I I I I I I I I I I t ,
t I I I I I ''t I I I I I J I I I I I I I

I I I I I I I I I I I I I I I I I ,
I I I I I I I I I I I , I I
I I I I , I
I I I I I ,
I t I t I

1000 LlICIMINUTE N'NTB

lDDOLINf/MlNJ"PlINlIl

12OI»CAID/MlN.n'fIl~

250 CAlO/MINI~ PUNCHII

IIEMOn
STATIONS

Figure 10..

66 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

1.

2.

3.

4.

TIME

ACTION CARD EQUIPMENT PRINTER

Remote Station to Communications Processor 5 ms 5 ms
Interrupt and Processing

Transfer of 72-bit Control Block 7ms 7ms

Transfer of 8 Unit Records 96 ms 164 ms

Acknowledgement 7ms 7 ms

115 ms 183 ms

COMMUNICATIONS LINK TRANSFER TIME

Figure 11.

Typical Input:

Bulk Core Storage Assignment:

Time to Transfer fram Core to Input Disk·

Time to Transfer Input Disk to Central Memory:

Toto I Disk Time for Transfer fram Core to Central
Memory:

600 Cards Require 30 seconds on 1200 Card/
Minute Reader

18 Cord Readers at 1.6K Words each:

the corresponding times). Here we are assum
ing a propagation delay of 4 ms and data rates
of Telpak A, 40,800 bits per second. You will
note that the complete transfer time required
for eight cards is 115 ms, and for eight lines on
the printer, is 183 ms. Since it takes a 1200-
card-per-minute reader 400 ms to read the eight
cards, then this communications link could
easily handle three 1200-card-per-minute card
readers simultaneously. Further, since a 1,000-
line-per-minute printer requires 480 ms to out
put eight lines of print, data rates are suffi
ciently fast in order to keep two 1,000-line-per
minute printers and one 1200-card-per-minute
card reader fully or simultaneously operating.
From the 3200 communications processor, the
input data is transferred to the appropriate
area in the mass core storage. Each input
output device in the system is dynamically as
signed a certain area of this bulk core. Input
areas are assigned blocks of 16,000 characters
while output devices are assigned areas of

600 cards = 48,000 characters

16K characters/card reader (divided into double buffer
areas)

6 x (220 + 6) ms = 1356 ms

220 ms -+: 36 ms = 256 ms

1356 ms + 256 ms = 1612 ms

30 seconds/l.612 seconds = 18 - number of card readers

28.8K'" 60 Bit Words

INPUT DISK UTILIZATION TIME

Figure 12.

Typical Output:

Bulk Core Storage Assignment:

Time to Transfer Central Memory to Output Disk:

TIme to Transfer Output Disk to Core:

Total Disk TIme for Tronsfer from Central Memory
to Core:

1200 lines Require 72 seconds on 1000 line/
Minute Printer

27 Line Printers at 3.2K words each:

1200 lines = 160,000 characters

32K characters/line printer (divided into double buffer
areas)

220 ms + 122 ms = 342 ms

10 x (220 + 12) ms = 2320 ms

342 ms + 2320 ms = 2662 ms

72 seconds/2.662 seconds = 27 - number of line printers

86.4K - 60 bit words

OUTPUT DISK UTILIZATION TIME

Figure 13.

REMOTE TIME-SHARING OF A CENTRALIZED 6600 67

25 - 1000 LINE/MINUTE PRINTERS AT 3.2 K 80K

18 - 1200 CARD/MINUTE CARD READERS AT 1.6K 28.8K

6 - 250 CARD/MINUTE CARD PUNCHERS AT 3.2K 19.2K

TOTAL STORAGE REQUIREMENTS 128 K

BULK CORE STORAGE UTILIZATION

Figure 14.

32,000 characters. Each of these is divided
into a double buffer area.

Let us examine a typical input of, say,
600 cards or 48,000 characters (Fig. 12). Since
the purpose of the bulk core store is to buffer
out the access time to the system input disk,
we will assume in all further discussions worst
case timing; that is, 220 ms for access and
latency time on the disk. Generally speaking,
however, it will be substantially less than thi'3.
N ow, since a typical input consists of, for this
example, 48,000 characters and each input area
is divided into a double buffer area of 8,000
characters, it is necessary to make six transfers
between the bulk core store and the input disk.
Allowing 220 ms for access and 6 ms for writing
the disk, then the six transfers as shown will
not exceed 1356 ms. The time to transfer in
formation from the input disk to the central
memory is again 220 ms for access, plus 36 ms
for transferring the 48,000 characters. Thus,
full disk time required for transfer from core
to central memory is not greater than 1612 ms;
in fact, generally it will be considerably less.
Now, since 600 cards require 30 seconds on a
1200-card-per-minute reader, 30 seconds divided
by the input disk time necessary to service one
reader yields a figure of 18 for the effective
number of card readers which can be kept
operating simultaneously by using this tech
nique. If these 18 card readers are operating
simultaneously and since each requires 1.6
thousand 60-bit words, a total of 28.8 thousand
60-bit words in the bulk core store is required
to handle the system input.

A similar technique may be employed
in the output case, assuming in this case typical

output consisting of 12,000 lines or 160,000
characters, and bulk core assignment of 32,000
characters per printer (Fig. 13). The time re
quired to transfer from central memory to the
output disk is 220 ms (worse case access) plus
122 ms for the data transfer, yielding a total of
342 ms. Further, since 16,000 characters are
transferred between the output disk and the
bulk core each time, it is necessary to transfer
10 times for the total of 160,000 characters.
These 10 transfers each requiring 220 + 12 ms
yield a total of 2320 ms for the time to transfer
from the output disk to the bulk core. The
total disk time thus necessary for transferring
a typical output from central memory to bulk
core is 2662 ms. Since this typical output of
1200 lines requires 72 seconds on a 1,000-line
per-minute printer, dividing 72 seconds by 2.662
seconds yields 27 as the number of line printers
which can be simultaneously operated by this
system. Further, these 27 line printers at 3200
60-bit words each require a total of 86,400 60-
bit words in the bulk core store whenever they
are all operating simultaneously.

Similar consideration for a 250-card-per
minute punch yields a conservative 3 to 1 trade
off between printers and punches; that is, with
respect to the system, three punches require as
much activity as one line printer. Thus, trading
two printers for six punches, as shown in Fig.
14, we have total storage requirements neces
sary for simultaneously operating 25 1,000-line
per-minute printers, 18 1200-card-per-minute
readers, and 6 250 .. card-per-minute punches.
Further trade-offs between printers and readers
can be accomplished by increasing and decreas
ing corresponding storage- areas in the bulk
core.

What has been demonstrated here is the
way in which the large capability of a central
ized computer such as the 6600 can be effec
tively and economically distributed to a number
of users at a number of remote sites. Further,
this distribution of computing power is eco
nomically accomplished and uses only existing
equipment and existing communications facil
ities. Finally, the capability for such distribu
tion and time-sharing is provided by the organ
ization of the 6600 and the flexibilities in the
design of SIPROS.

THE MODEL 92 AS A MEMBER OF THE

SYSTEM/360 FAMILY

G. M. Amdahl
IBM Corporation

Los Gatos, California

The Model 92 is a full-fledged member
of the System/360 line of processors. At the
beginning of the design of System/360, the
goal was to provide a system capable of satisfy
ing all of the varied computing applications to
which IBM machines were applied in the past.
I t was also desired to apply the new system to
a number of applications for which those older
machines were somewhat inadequately pre
pared to serve. At that time, the previous lines
of machines were evaluated to see which ones
might possibly serve as a base for the start of
the design. The older commercial processors
did not form a suitable base for the scientific
computational capability desired. The scientific
line was also not elected for use as the base.

In the particular instance of the 7090, it
was felt that this was an improper base for
several reasons. First of all, the word size was
really somewhat inadequate for a majority of
the problems that were actually being run in
that word size. Secondly, the address size was
insufficient and improperly constructed to
handle the variable field length processing
which was important, not only from the stand
point of doing commercial work, but from the
standpoint of general data processing in the
scientific area in addition to such things as
compilation.

The Model 92 is completely compatible
with System/360 in every respect except that
decimal arithmetic is not offered. All of the

69

variable field length handling capabilities for
compilation and data processing are provided,
as well as conversion between decimal and
binary and back again. Compatibility also
means that the same systems configuration
flexibility is provided in the Model 92 as in any
other members of the System/360 line (Fig. 1).

The Model 92 can efficiently utilize the
programming support for all of the System/360.
This requires that the codes which are written
for the slower members of System/360 will run
in very nearly optimal fashion on the Model 92.
This can be done because of the internal logical
organization of the Model 92 in which the
optimalization of the execution of code is essen
tially carried out by hardware algorithm rather
than by programming algorithm. This point
will be well worth bearing in mind while read
ing Dr. T. C. Chen's description of the internal
organization of the Model 92.

The same checking techniques are em
ployed in the Model 92 as in the rest of the
System/360 processors. The checking not only
checks the residence of data in memory, but
checks the actual execution of the arithmetic
and logical operations on this data. Further,
the determination of the existence of an error
provides an interrupt which allows transfer of
control to a diagnostic routine which can de
termine whether or not the computation can
be re-entered as well as just determine the
state of the CPU with this error.

70 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 1. Model 92 Circuitry.

The performance gain of the Model 92
above its nearest neighbor, the Model 70, is
markedly greater than the performance gap
that exists between any other pair of the
System/360 processors. In part, this is because
in the search through the possible ways in
which higher performance machines could be
realized, a design was found which was believed

to be the most optimum point on the design
curve existing above Model 70. There are two
ways in which this gain is achieved. First of
all, the use of faster componentry. The memory
used is two times as fast as the memory in
the Model 70. The higher performance cir
cuitry used is between 2V2 and 3 times as fast
(Fig. 2). It is a little hard to get an actual

Figure 2. Model 92 VS. Model 70 Circuitry.

THE MODEL 92 AS A MEMBER OF SYSTEM/360 FAMILY 71

figure for the circuitry itself, since the logic
circuitry employed in the Model 92, has prop
erties which yield a more efficient realization
of many of the hardware algorithms.

However, this factor of 2 to 3 gain from
memory and circuits only inadequately describes
the means by which the performance is
achieved. There is much greater sophistication
within the CPU, such as better algorithms for
the arithmetic operations and also non-sequen
tiallook-ahead and multiple' concurrency, which
makes by far the greatest difference in the
performance gain. This performance gain is on
the order of 15 times that of the Model 70. The
inclusion of the Model 92 in the System/360
line provides then a family of compatible proc
essors which cover approximately a range of
three orders of magnitude in performance.

In the Model 92 memory, one may have
either eight or sixteen boxes of 8,192 64-bit
words in each box, with the boxes interleaved.
Interleaving implies that successive word ad
dresses appear in successive physical boxes.

In addition to the V2 ""sec memory on the
Model 92, one may also have' as addressable
memory the large capacity storage; this is an
8 ""sec full cycle memory in which up to eight
boxes can be interleaved. This is somewhat
in excess of two million 64-bit words. The

impact of such a large memory array will be
discussed in Mr. Carl Conti's paper.

The circuitry employed in the Model 92
is an off-shoot of the SLT circuitry employed
in the rest of the System/360 line. Essentially,
the same ceramic substrate is employed, on
which the circuit components are mounted. In
ACPX technology, there is a multiplicity of
transistors appearing in a single silicon chip;
in the SLT technology, there were a multiplicity
of diodes appearing in a single silicon chip. In
a sense, they are a kind of hybrid between
individual components and integrated compo
nents. It was indicated earlier that the per
formance of the ACPX circuitry was 21;2 to 3
times that of the SLT. The circuit delays
experienced in the ACPX circuitry ranges from
1.2 nanoseconds to 4 nanoseconds, depending
on the loading seen by the logic circuits. The
average in the machine environment appears
to be about 1.7 nanoseconds per stage.

The performance of the circu1t in the
machine environment is, of course, very de
pendent upon the density achieved in the pack
age. In ACPX, densities of something like 6
times that of the SLT packaging are achieved.
This is attained by use of both sides of the
ceramic substrate for placement of the circuit
components and with two ceramic substrates
placed one on top of the other to form a module.

Figure 3. Comparative Card Packaging.

72 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964·

The reduced use of area consuming printed
resistors improves the effective area for active
elements by about 50 %. The number of con
tacts on this module is increased -from the 12
which appeared on the SLT to 16 contacts in
the ACPX. This is done by merely filling in
the inner parts of the grid, which are on tenths
of an inch spacing.

For packaging, a pluggable card is used
which has three times the capacity of the
largest SLT card (Fig. 3). These cards plug
into a board which is about the size of an 81f2 x
11 sheet of paper, and which is equivalent to
the back panel wiring (Fig. 4). The density
achieved by this packaging is about 5,000 cir
cuits per .board.

Figure 4. Fully Populated Board.

THE OVERLAP DESIGN OF THE IBM SYSTEM/360

MODEL 92 CENTRAL PROCESSING UNIT

Tien Chi Chen
IBM Corporation

Poughkeepsie, New York

1. INTRODUCTION

The design of the IBM System/360
Model 92 Central Processing Unit features a
very high degree of overlap and concurrency
in processing, and full compatibility with
other members of the System/360 machine
family.* t

Pitfalls in overlap machine designs are
many. In order to speed up some portions of
the code, the efficiency of other instructions
indeed sometimes the logical coherence of the
program itself-may have to be compromised.
Optimizing techniques frequently have to be
applied externally to avoid pitfalls and enhance
efficiency. On the other hand, the machine
gains speed by internal asynchronism, and the
resources within are rapidly changing functions
of time and instruction context. We have,
therefore, the paradox: the more asynchronism,
the greater the need to optimize, yet the harder
it is to perform the optimization externally.

The Model 92 design is based on a local
autonomy principle, allowing each of the in
dividual units to optimally allocate its resources
within its jurisdiction.

* For· details of IBM System/360 architecture see:
G .. M. Amdahl, G. A. Blaauw and F. P. Brooks, Jr.,
Archit'!ctU're of the IBM System/i'J60, IBM J. Research
and Development, 8 (April 1964), pp. 87-92; also IBM
System/360 Principles of Operation Manual, Form
A22-6821-1 (1964).

t For a comprehensive discussion of overlap designs
the reader is referred to W. Buchholz, Planning a Com
puter System (McGraw-Hill, N. Y., 1962).

73

This local autonomy allows the Model 92
CPU to handle the full System/360 instruction
repertoire (except the decimal instructions)
with no loss of logical coherence, in an optimal
fashion. The need for external optimization,
by hand-honing or by compiler action, is thereby
sharply reduced, and debugging effort is cor
respondingly minimized.

2. MEMORY HANDLING AND INPUT-OUT
PUT

High Speed Memory

The high speed memory of the Model 92
consists of ferrite core arrays of 0.5 JLsec cycle
time, 8K long words (each of 64 information
bits plus eight parity bits) per module, 8 or 16
modules (64K or 128K long words) per com
puter. Th~ addresses are fully interleaved:
consecutive long word addresses refer to differ
ent modules.

Large Capacity Storage

To supplement this, we have the large
capacity storage (LCS) consisting of 8 JLsec
cycle time core arrays, 128K or 256K per
module, 2, 4, 8 or 16 modules (that is, up to
more than 2 million fully addressable long
words) per computer. The LCS modules are
also interleaved up to eight-fold, leading to a
maximum effective rate of one long word per
JLsec. The LCS contents are fully addressable
down to the eight-bit "byte" level, just like
the high speed memory.

74 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Memory Protection

The System/360 memory protect mech
anism applies to the entire storage-LCS as
well as the high speed memory-as adminis
tered by the memory bus control element. For
any request to store, the latter supervises the
matching between the storage lock and the key
of the requestor (CPU or I/O channel); at
tempts at violation are disabled, with an alarm
signal sent to the CPU.

Treatment of Memory Conflicts

Because the decoding time (one cycle, no
more than 90 nanoseconds) and the effective
execution time' (close to one cycle per opera
tion) are small relative to the high speed
memory cycle time of 0.5 p,sec extensive overlap
is required not only for the CPU, but the
memory bus as well. Memory interleaving
reduces the probability of conflicts, but does
not eliminate them. When an attempt to access
more than one long word from the same
memory module is detected, the bus must put
the conflicting requests in a waiting queue, and
install the proper delays.

Further, since each delay can be equal
to several instruction times, the occurrence of
a conflict should not put the entire bus in an
idling state. In the Model 92 there can be eight
independent concurrent memory operations;
several of them could be in conflict without
affecting the remainder.

I/O Handling

Input-output operations are fully over
lapped with CPU action, and are handled via
the memory bus. External devices can com
municate either with the high speed memory,
or LCS.

Storage Transfer Channel

In addition, there is a storage transfer
channel which 'handles memory-to~memory
transmittal in a way similar to I/O channel
operation, with the following major difference:
a programmable spacing parameter a can be
specified such that either

1. consecutive source long words can be
transmitted to the sink area, each sep
ara ted by a long words; or

2. long words from the source area sep-

ara ted by a long words can be trans
mitted to the sink area as consecutive
long words.

3. INSTRUCTION SEQUENCING CONTROL

The Model 92 accepts standard System/
360 instructions. These come in three sizes:
16 bits, 32 bits, and 48 bits. In a program some
of these instructions may overstep the word
boundaries.

The design of the instruction sequencing
control mechanism is to access, decode, and
perform the indexing functions of the instruc
tions at the rate close to one instruction per
cycle. Toward this end an instruction buffer
is provided, consisting of a primary buffer of
eight long words and an alternate buffer of two
long words.

Primary Buffer

In the normal mode of operations, the
primary buffer is kept half-full of new instruc
tions, and half-full of past instructions. The
decoding mechanism extracts instructions from
the buffer, and an instruction-word fetch is
initiated when a long-word boundary is crossed.

The "new instruction" area houses
roughly 10 instructions. When a branch is
decoded and executed, the new instructions in
the primary buffer may have to be rejected.
"Overfetch" of instructions beyond four long
words may mean creation of unneeded memory
conflicts, and is not permitted in the normal
mode.

The Gulf of Ignorance

Because of the slowness of memory
access, the execution of an instruction may lag
the decoding by 0.5 ,usec or more (Fig. 1). For a
given instruction, there is a gulf of ignorance
between the termination of decoding and the
termination of execution. Within the gulf of
ignorance decoding and execution can still pro
ceed normally, but not conditional branch in
structions based on the result of the instruction
creating the gulf. Such conditional branches
are undecidable until the gulf is passed.

Conditional Branches

A branch conditioned upon the outcome
of a long-passed instruction is outside the gulf

OVERLAP DESIGN OF THE CENTRAL PROCESSING UNIT 75

Function

execute

Time~------------------------------~

Figure 1. Symbolization of an instruction in. an .overlap machine. 9ondition branch
instruction based on outcome of executIOn IS marked by questIOn mark.

of ignorance, and is decidable.__ It is handled
like a simple branch or a NO-OPERATION.
Most conditional branches in routine System/
360 programming tend to fall into the decidable
category.

On the other hand, if a conditional
branch instruction occurs immediately after
a condition-generating floating point instruc
tion, it is almost· always undecidable.

Undecidable Branches

For undecidable conditional branches the
machine makes the assumption that the con
dition probably will not bernet. The new in
structions in the primary buffer are thus not
rejected out of hand. However, the assumption
could prove to be wrong, therefore all instruc
tions handled within the gulf of 'ignorance are
issued conditionally, not being allowed to alter
addressable registers. Also, the alternatebuf
fer is made to 'accept two lo:ng words of the
alternate instruction stream.

Upon emergence from the gulf of igno
rance, the condition becomes fully known. If
the branch is not successful, a "proceed nor
mally" signal is sent to all areas. Otherwise the
tentatively issued instructions are cancelled,
and the critical instruction-access problem is
bypassed by having available the contents of
the alternate buffer.

Loop Mode

The Model 92 has a provision for effec
tive handling of short loops. Whenever a suc
cessful branch to a numerically smaller target
address occurs, and if the address of branch
instruction and that of the target both fall into
an eight-long word block (and if the machine
is not already in loop mode), the machine will
enter loop mode.

During loop mode the machine fills the
primary instruction buffer to full capacity
(eight long words, or about 20 instructions),
starting from the word containing the target
down through the loop-creating branch instruc
tion and beyond. The machine will

1. utilize the contents of the buffer with
out further instruction fetch;

2. guard against violations over the eight
long words in the buffer;

3. speed up the loop-creating branch. A
simple branch. will be faster by one
cycle; a . conditional branch will be
treated as "probably successful."

A subset of the primary buffer contents
during loop mode could be a loop also; the latter
already benefits from the loop mode and will
not require additional tre.atment.,

The machine reverts to the normal mode
if the loop-creating branch becomes unsuccess-

76 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

ful, or if a branch outside the primary buffer
is executed.

4. STEP-BY-STEP BUILDUP OF CPU

The design and purpose of the remainder
of the CPU can best be shown via a step-by
step procedure.

Thus far we have discussed the memory,
the memory bus, and the instruction buffers.
In conformity with System/360 specifications;

there are 16 general purpose registers (GPR's),
and four floating-point registers. Because the
GPR's serve as index registers as well as base
registers, aside from being fixed-point accumu
lators, they are put in close proximity of the
decording portion of the machine, forming the
Instruction Unit, or the I-Box.

The floating-point accumulators and the
floating-point arithmetic units are the basis,
for the Execution Unit, or the E-Box.

Figure 2a. Step-by-step CPU buildup.

Figure 2b~ . Floating Point Instruction Stack added.

OVERLAP DESIGN OF THE CENTRAL PROCESSING UNIT 77

A sketch of the design thus far is seen in
Fig. 2a. The floating-point arithmetic organs
include two floating-point adders and a multi
plier-divider.The speeds are as follows:

• normalized floating add:
• normalized floating multiply:
• normalized floating divide:

Floating-Point RR Instructions

2 cycles
3 cycles

10 cycles

A typical floating-point RR instruction
is the following:

ADR 2,4 'ADD DOUBLE NORMALIZED
RR

which means

C (R2) + C (R4) C(R2)

where the + symbolizes a floating-point nor
malized add involving 56-bit hexadecimal frac
tions with corresponding exponent adjustment.

It is noticed that the capability for the
execution of such instructions resides in the
E-Box. It is, therefore, desirable to put the E
Box RR instructions in the E-Box as well.

This is accomplished by the installment
of an eight-level E-Box instruction stack, which
converts the E-Box into a stored program com
puter (Fig. 2b).

The decoding mechanism, upon encoun
tering a floating-point RR instruction, merely
puts the partially decoded instruction in the
next available position in the E-instruction
stack. The E-Box from this point on takes
care of the optimized execution;

Floating-Point RX Instructions

The.other class ·of floating-point instruc
tions are the RX instructions, typified by the
following:

AD 2, DOG (14, 15) 'ADD DOUBLE NOR:..
MALIZED RX

which has the following meaning:

C(X14) + C(B15) + DOG]z4 = m
C(R2) + C(m) C(R2) .

(X 14 is GPR 14, being used as an index reg
ister; B 15 is GPR 15, being used as a base
register; J:!4' means truncation to 24 bits to yield
th&effective address m.)

Upon. careful study it becomes evident
that "mathematician's reasoning." can be gain-

fully employed to reduce the new problem to a
previously solved one.

We note the first equation refers to the
I-box. To handle it properly we need rapid
accessing of the contents of GPR 14, GPR 15,
which should combine with DOG to form the
24-bit effective address in one cycle. A three
input adder is used towards this end.

The second equation can be further
broken into two parts:

C(m) C(R13)
C(R2) + C(R13) C(R2)

The first part belongs to the memory bus, and
the second part is a standard (in appearance,
at least) RR instruction.. To accomplish this
it is necessary to have an E-Box operand stack,
with an addressing. scheme similar to that of
the floating-point accumulators (Fig. 2c).

The floating-point RX ADD instruction
is handled this way:

a) Upon dec.oding, the instruction is dis
covered to be a floating RX fetch-type
instruction.

b) A triple-add is performed to yield m,
the effective address. R13 in the 6-
level E-operand stack is known to be
vacant.

c) m is presented to the memory bus with
R13 as return address.

d) The RX instruction is disguised as an
RR instruction involving R13, and sent
to the E-instruction stack.

e) When R13 becomes full, the treatment
of the pseudo-RR instruction is indis
tinguishable from the "true" RR in
struction.

Fixed-Point Arithmetic

The scheme adopted for, the E-Box is
quite applicable for the fixed-point instructions,
and there is an I-Box instru~tion stack (6
levels), an I-Box operand stack (6 levels), and
a separate fixed-point arithmetic unit. The
protection against logical coherence violation
is, however, different,since the GPR's serve
also as index registers and base registers.

There is a two...;level store 'operand buffer
to handle to-memory instructions from either
I-Box or E-Box, and eight address registers to
guard against logical conflicts involving fetch-

78 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 2c. Floating Point R-X handling. 3-Input Adder and Floating Point Operand
Stack added.

store sequencing. The design now has the ap
pearance of Fig. 2d.

In the handling of System/360 variable
field length instructions, the I-Box and the E
Box pool their buffer resources together to
speed up the processing.

STRETCH design, namely, internal data for
warding. Consider the following floating-point
instructions:

5. INTERNAL FORWARDING

An interesting feature in the System/
360 Model 92 CPU is adapted from the IBM

A
B
C

meaning

A

Figure 2d. Complete CPU.

LD O,P
DD O,Q
ADR 0,2

C(P) C(RO)

OVERLAP DESIGN OF THE CENTRAL PROCESSING UNIT 79

B
C

C(RO)/C(Q)
C(RO) + C(R2)

C(RO)
C(RO)

Since the Model 92 has four floating
point accumulators, the fixation on one accumu
lator could be construed as bad programming.
However, we adopt the point of view that such
programming is not necessarily bad; there are
many situations in which it would be unnatural
to do otherwise. An attempt is therefore made
to run these sequences quite efficiently.

The three instructions lead to the linear
graphs in Fig. 3a. It is assumed that adder A2
is employed for C. The combination has a
double loop. We note that the act of putting
an operand into RO and subsequently removing
it has a high cost for the Model 92.

However, the three instructions can be
synthesized into one macro-instruction, using
cancellation techniques reminiscent of fresh
man chemistry:

A
B
C

yielding

C(P)
C(RO)/C(Q)
C(RO) + C(R2)

ABC C(P)/C(Q) + C(R2)

C(RO)
C(RO)
C(RO),

C(RO)

and the greatly simplified linear graph in Fig.
3b results. The simpler graph is handled vastly
more efficiently than the complicated one, and
the E-Box has the ability to perform the "topo-

logical" path distortion, yielding paths equal
in outcome but enhanced in efficiency.

The situation is even more striking if
two more instructions are added:

D
E

STD
LD

O,R
O,S

The store will be gated directly from the
output of the adder, and instruction E signals
to the E-Box that RO need never be referenced
in handling instructions ABCD at all. Thus,
E begins an independent string of instructions,
capable of being handled concurrently with the
ABCD string, and may even finish before
ABCD.

6. HARDWARE OPTIMIZATION

The System/360 Model 92 decodes in
structions in sequence; the decoding action
distributes the work load to various autonomous
units. From that point on, strict sequence is
no longer adhered to, but is frequently upset.

To the uninformed bystander, the ma
chine seems to replace the orderliness of the
given code by chaos.

This apparent chaos actually results
from the local reorganization of the available
resources. The memory bus concentrates on
the optimum handling of memory requests.
The fixed-point, floating-point units concentrate
on optimum execution of corresponding instruc-

Figure 3a. Linear graph for three instructions A, Band C.

80 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 3b. Optimization through internal forwarding.

tions. The instruction sequenc\ng mechanism
meanwhile optimizes instruction-fetch and
branching. Within each unit, sub-units fre
quently also possess autonomous behavior. The
degree of parallelism is extremely high within
the CPU.

The asynchronism makes it impossible
strictly to predict the detailed behavior within
the CPU, short of a full-fledged simulator. It
is not possible, for instance, to predict conflicts

between an instruction-fetch and a floating
point store. Consequently, it is extremely diffi
cult to optimize a program by external mean3.

However, this external optimizing is not
really necessary. No one is in a better posi
tion to examine the available resources· and
detect bottlenecks in data flow within a given
unit than the very unit itself. It is, therefore,
also provided with hardware tools to seek and
adopt optimizing alternatives.

SYSTEM ASPECT: SYSTEM/360 MODEL 92

Carl Conti
IBM Corporation

Poughkeepsie, New York

In the papers by Dr. Amdahl * and Dr.
Chent an extremely powerful CPU was de
scribed. I would like to illustrate on some
problems just how powerful it is, in order to
better pinpoint its actual performance. With
a CPU of this sort, we had a few problems in
the actual design: to be able to get problems
or applications in and out of the CPU, and to

* The Model 92 as a Member of the System/360
Family.

t The Overlap Design of the IBM System/360 Model
92 Central Processing Unit.

put the processor into an environment where
it is useful.

Unfortunately, when considering high
performance, it is not possible to support the
CPU with conventional I/O used in a conven
tional way. Several unique pieces of equip
mentare available with the 92 to provide the
capability to process problems at the rates we
can achieve in internal CPU performance.
Before these are described, 'let us look at in
ternal performance in a little more detail.

Figure 1 is an extremely simple example

Figure· 1.

81

82 PROCEEDINGS:-SPRING JOINT COMPUTER CONFERENCE, 1964

of cQding. This is, in fact, the inner IQQP Qf a
matrix multiply, where Qne matrix is stQred in
its transpose. We have an RX IQad, an RX
multiply-that is frQm memory to' register,
fQllQwed by a register to' register add to' accu
mulate the sum; finally, we have an indexing
branch (branch Qn index IQW Qr equal) which
is analQgQus to' a DO statement in FORTRAN.

We can IQQk at hQW this particular prQ
gram will prQceed through the CPU by first
observing a single iteratiQn Qf thO'se fQur in
structiQns. This is illustrated in Fig. 2.

On the left, we have the instructiQn de
cQde and memory address generatiQn time. The
instructiQn de cO' de is overlapped in the I bQX
with the memQry address generatiQn Qf each
previQus instructiO'n. There is Qverlap here
Qn a purely functiQnal basis. Next is the mem
Qry fetch time fQr Qperands. At the right is
the executiQn time shQwing the IQad abQve
fQIIQwed by the multiply, then by the Add
Register to' Register.

NQw, clearly in a cQde Qf that sQrt, IQQk
ing at a single iteration, yQU have a completely
dependent series Qf QperatiQns in the IQad mul
tiply add. They have to' prQceed in sequence
sO' that if yQU IQoked at this as Qne iteratiQn Qf
the IQQP, it IQQks like a fairly IQng time to'
prQcess. Because Qf the internal fQrwarding
structure in the' 92, however, when we get intO'

the secQnd iteratiQn SQme interesting things
happen. In Fig. 3, we have instructiQns 1, 2, 3,
and 4 repeated again, shQwing the secQnd itera
tiQn Qf that IQQP. We have a cQmpletely smQQth
flQW in this case, and fQr this reaSQn I have
chQsen this example. This is the kind Qf prQb
lem where things gO' very well. It is executing
cQmpletely in IQQP mQde; therefQre, there are
nO' instructiQn fetches shQwn here. The index
ing branch, the BXLE, requires Qnly three
cycles, at which PQint the first instructiQn fQr
the secQnd iteratiQn IQQP is fetched Qut Qf the
instructiQn buffer dQwn to' the decQder and is
begun in executiQn immediately. YQU will
nQtice these three QperatiQns fQr IQad, multiply,
and add fQr iteratiQn 1 are sQmewhat Qverlapped
with a IQad, multiply, add fQr iteratiQn 2, even
thQugh, because this is a simple rQutine, bQth
sets of sequential QperatiQns require the same
flQating register zerO'. SO' again, this is nQt
PQQr cQde even thQugh it dQes use Qnly Qne
register in that particular PQrtiQn.

There are, hQwever, Qther cases Qf code
that dO' nQt run quite that well. Figure 4 repre
sents a general range Qf CPU perfQrmance.

We have fQund in the prQblems we have
IQQked at that we range from apprQximately 15
to' 120 times an IBM 7090. We rQse frQm as IQW
as 15 times 7090, where the 92, and fQr that
matter any Qther parallel machine, cannQt take

Figure 2.

SYSTEM ASPECT: SYSTEM/360 MODEL 92 83

Figure· 3.

Figure 4.

advantage of the parallelism in the processor,
up to approximately 120 times 7090 for the
partial differential equations type of jobs, the
matrix problems, etc., where things proceed in
a very orderly manner.

The list processing class here is char
acterized by a dependence on memory access
time, and as one moves through a threaded list,
it is impossible to get the data for the next

piece of information until a previous piece of
information has been obtained. All of the
parallelism we can possibly design into a ma
chine does not do much good when prograrn
ming is done in that way. Compile falls at
about the 80 mark, which is around the middle~

, Compilation takes advantage of the VFL and
other instructions which aid scanning.

So far, we might say we are looking at

84 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

the extremely large problems that are found in
a fairly limited number of installations. We have
to worry about applying an extremely huge
capability, or large piece of hardware, to per
form small jobs as well as large ones. When
we begin to consider this class' of jobs which
might be characterized by more I/O relative
to compute than one might like for the high
performance machine, we can go back to the

7090 and look at a typical-and I wince a little
at my choice of the word typical, because I do
not really think there is one-IBM 7090 small
job.

CPU

In Fig. 5, in fact, there is a fairly well
coded example of such a problem. Observe the
overlap of the computer with the CPU time.
This job prob~bly came into the system com
plete with a program followed by its data, prob-

Figure 5.

Typical Short Job-
IBM System/360 Model 92

(Well Organized)
(Same I/O)

I Data
~Move
I -------------,~

CPU
I Data

~

Total Time = 0.9 Units
Performance Improved by 10%

Figure 6.

CPU

I

etc.

SYSTEM ASPECT: SYSTEM/360 MODEL 92 85

Figure 7.

ably Qriginating in cards. It was converted
off-line to tape, placed on an IBM 7090 on a
tape containing program and the data with
about 5 to 10 words per record in the data
portion of the tape. We essentially have a
situation where we do. a little computing, and
before finishing, begin the request for I/O for
the next bit of computing we want to do,' thus
overlapping. We have here a minimum start
time of about seven milliseconds followed by
about a millisecond of data move before we
can begin the next piece of computation, and
we continue in' this particular fashion.

Let us assume the user who has this
program and this hardware buys a Model 92
and uses it exactly the same way. Then we
have the picture in Fig. 6, where the CPU time
is shrunk so. that it's not even visible, but the
I/O time has stayed the same. In that par
ticular problem, we have shown one could run
at about 10% faster than the 7090.

This is one way of increasing the amount
of hardware in the field, but not, apparently,
a very good way of making many people happy.
It is necessary to solve these problems differ
ently, and with much different I/O devices. In
fact, we have proposed a number of alternate
methods.

Let's look at a system organization as
shown in Fig. 7. The key to support on a 92

is drawn in the center of this picture, which is
LCS (large capacity storage.) This is a basic
eight microsecond box of storage in which one
can provide up to 2 million 64-bit words, on
the Model 92. The storage shown is surrounded
by other elements of the computer system, in
cluding CPU, I/O channels, and main working
storage. The broken vertical line separates
functionally the things one is planning to do
when solving a problem in the system. To
the right, we have the front end which we will
assign at this point to basic dealings with the
outside world-referring to the basic input of
that little program that we were worried about
earlier, and such. So, we have I/O devices on
the front end; to the left, or back end, we will
assign the functions of problem solving.

I am not necessarily implying a two
computer or an (n) computer organization.
Both of the CPU's indicated here may be the
same computer; there is no necessary reason
that they be separate. In fact, we allow both
kinds of system configuration. The actual ad
vantage of one over the other depends on ap
plication, so there isn't a single system which
is right. There are a number of them, since
there are a variety of uses they will be put to.

The characteristics of the CPU relative
to LCS are identical to the characteristics of
main working storage and the CPU. That is,

86 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

the large capacity storage (all 2 million words
of it) are directly addressable, so that one
could execute programs out of large capacity
storage or one could fetch data in the inner loop
of the matrix multiply out of large capacity
storage. Clearly there are cases-even with
the interleaving of large capacity storage since
it is a basic eight microsecond cycle-where one
must pay very dearly for using it that way for /

the access time. We have found, however, espe
cially in the list processing end of that perform
ance chart, that the availability of extremely
large storage is as important to system per
formance as is the speed at which things can be
put in and out of that storage.

In addition, the channels also have inter
face with LCS identical to the interface of the
channels to main working s,torage. Thus, you

Figure 8.

Figure 9.

SYSTEM ASPECT: SYSTEM/360 MODEL 92 87

Figure 10.

can move from I/O devices directly into LCS
or directly into the main working memory and
from memory back to I/O devices through the
channels.

If we get back to that short job, let's
envision that through this functional part of
the system w~ place that job, its progrgm, and
all of the data in an extremely small corner of
LCS. In solving the job, we then treat LCS by
the back end CPU just like the tape device
that the" 7090 programmer was moving when
he wrote his code. With all of the program
ming data here, we first move the program to
main working storage, then operate identically
to the mode we had for the IBM 7090, pulling
the 5- or 10-word records of LCS into the main
storage.

In the same operation, but using the
storage channel whi~h was announced with the
Model 92, we can have rapid sequential trans
fers and somewhat non.;,sequential transfers of
information from o1)e area of storage to
another. Transfers can be made ~n the storage
channel for LCS to main storage and the re
verse, and information can be moved between
areas of the same storage.

A study of the characteristics of that
storage channel reveal that it has some other
interesting aspects. First, it operates like an
I/O channel in that it is put into action with

a start I/O operation. It proceeds to the con
clusion of its particular operation independent
of the CPU, save for the very small amount of
memory interference, and causes an interrupt
at the completion of the transfer. This par
ticular transfer at a maximum rate of one
microsecond per 64-bit word is accomplished
just like an I/O transfer. Further, as illus
trated in Fig. 8, there isa scatter-gather capa
bility such that in the· scatter mode one can go
"from sequential words in one area of storage
to non-sequential words in another area of stor
age separated by . a· constant delta specified in
the operation by the programmer. The opposite
or gather case would be the ·transfer in this
direction in which the delta quantity is applied
to the source rather than the sync. An inter
esting aspect of this is that the matrix trans
pose can, in effect, be accomplished on the fly
while bringing the matrix in from large ca
pacity . storage.

We can compare I/O moved this way
with the tape device we had on the 7090. Note
in Fig. 9 the seven millisecond start time, which
is the access time of the tape, and one milli
second data move compared, for LCS, with a
four microsecond analogous start time or access
time and, with only four-way interleaving, a
20 microsecond transfer time, or a ratio of 333
times that on the 7090. In order to accomplish

88 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 11.

Figure 12.

this, the information must be gotten into LeS
initially and, alternately, back out. Hence, the
system must be expanded from that point, and
there are several interesting phenomena that
occur when this is done.

First, if we take a very simple approach,
the original source of information has to be
expanded considerably, i.e., in terms of number

of card readers and such, over what the 7090
needs for a basic support. Next, to avoid mak
ing the numbers in this expansion become ridic
ulously high, new approaches to techniques of
solving problems are also required. Let us just
look at a few possible further system organiza
tions. If we start in a circle (Fig. 10) with
what has been described in the kite diagram as

the Model 92 main system, then we can begin
to add some of the things we need in support
of this system.

As illustrated in Fig. 11, approximately
60 printers are required in order to handle the
output information. Assuming for the moment
that this is acceptable to "everyone and proceed
ing with the design of the system, one then adds
from here. Of course a warehouse will be needed

SYSTEM ASPECT: SYSTEM/360 MODEL 92 89

to store the paper that is going to input to the
printer (Fig. 12). Since warehouses are easy
to build, this step is acceptable and the process
can go on. Then the paper itself is needed
(Fig. 13)-and this step might result in a
lumberjack population increase of about 200%.
As it has already been decided to build one
warehouse, it will not be particularly difficult
to build the second warehouse for the output

Figure 13.

Figure 14.

90 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 15.

Figure 16.

paper (Fig. 14.). But, what is most disturbing
in this situation is what happens when the
programmer enters the picture (Fig. 15.). He
first examines this paper. An incinerator, for
him to burn it, is added, since he doesn't use
it anyway, and he further makes the situation
worse by being very nasty . and re-inputting
another job or that particular job which hasn't
been debugged yet anyway. Things get. even

worse, because the net effect of that program
mer-and only one is being considel'ed here
continues to build up the cycle.

We are providing the equipment and a
possible solution to this probleII.1. The main

. piece . of hardware that can help here is the
IBM Datacell which will store 400 million char
acters of information in a tape strip fashion
with individual portions, actually 40 million

per portion, removable and storable on a shelf.
A reasonable mode of operation for a system
of this sort to avoid the massive print require
ments is to store dumps on the data cell (Fig.
16). Rather than dumping memory dumps to
a printer for the programmer, which usually
represents most of the print load, we place it
in the data cell. We then send to the pr()gram
mer the summary information that he specifi
cally requires with either very conventional
devices such as on line printers or tapes that
will be printed off line, or more sophisticated
devices such as optical displays and very fancy
terminals. This is to know whether the run
is go or no go.

Re then has at his disposal in the data
cell the detailed information which he can re
quest, let us say through the front end portion
of the system. Again, I want to emphasize
that the front end is not necessarily a separate
processor; this concept is not particularly new,
nor is it complete. There is a great deal of
work to be done before we can solve all of the
associa ted programming problems as well as
the language problems. We have the hardware
and a very good start on the programming, but
as hardware designers we recognize that we
are completely at the mercy of the program
mers, both systems and users.

As we proceed down our design path,

SYSTEM ASPECT: SYSTEM/360 MODEL 92 91

our next question is how good is the system or
any other that we might build in a real systems
sense. This is the subject of system evalua
tion. When starting out to evaluate systems,
I think, historically we have looked simply
perhaps at the floating multiply time or the
floating add time, which if we did here, would
look very fine for the Model 92, but it is not a
true measure of system performance. As we
have shown, it is not even a true measure of
CPU performance.

Togo further, I think we have passed a
phase in which we have looked at instruc
tion _ mixes. To calculate average instruction
times, we have reams of data on 7090, etc., as
to what instructions we execute and how often.
The theory then is that one can somehow relate
that instruction mix to another machine,
perhaps get some alternate mix number which
is the millions of instructions per second and
relates the power of one machine to another.

Not all instructions in all machines ac
complish the same actual quantity of useful
work, however. The pure use of instruction
mixes without very sophisticated translations
from one machine to another is completely
useless. The mere quoting of instruction rates
is not very exciting because we can get factors
of three or four differences in performance
between machines that have the same identical

Figure 17.

92 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 18.

mix rates. Therefore, we do not intend to con
tinue on this particular path. An example here
was the matrix' multiply loop which took only
four instructions on the Model 92. With the
7090 this would be perhaps twice as many in
structions. There is no simple instruction ratio
that can tell you anything about performance.
Instead, there is the rate at which you can
actually solve problems in a system environ
ment. This is a meaningful number.

This is what we have a fairly elaborate
scheme for doing. As it happens here, of
course, there are many ways of looking at a
problem. One way that we propose is again
through the experience with a 7090 ,class of
system. We can look at problems already
solved-although this is not an ~deal procedure
because we are talking about problems of the
past, not the future-and the way they were
solved on a 7090. In Fig. 17, FORTRAN is sepa
rated from the machine language, since it is
somewhat machine independent.

Looking mainly at problems run on a
7090 now and in the past, we have built a
hardware device, called POEM, which we at
tached to the 7090 giving us a dynamic trace.
of the actual system performance on a prob
lem for the 7090. Let us look at some of the
characteristics of POEM in Fig. 18. It gives us
a. dynamic 7090 profile; it attaches into the

hardware monitor interface on IBM 7090/94
type equipment and produces a self-contained
tape record of what went on in the IBM 7090
during the solution of the problem. For each
individual portion of CPU time and each in
dividual I/O time there is a specification on the
tape. There are further dependencies shown
here as evidenced by the dotted lines that dem
onstrate that a particular I/O action did not
proceed on the 7090 until the CPU had gotten
so far. I have shown two channels here, since
this is fairly normal.

We then get a very long tape with in
formation of this sort on it related purely to
the 7090. That information as such is not
directly usable to analyze the performance of
any other system other than the 7090, for
which we have many numbers, anyway.

We have developed a set of conversion
programs called POEM conversion programs
that simplify and purify the picture that POEM
produces. It does not end up in a completely
pure picture but a less impure picture than it
started with. Let us look at Fig. 19 and see
what the POEM conversion program does. It
simply makes an attempt to subt~act from the
CPU portion of the 7090 time the 10CS over
head, since we are not interested in that 10CS.
It subtracts from the compute time that amount
which was added to the pure compute time be-

cause of interference by I/O devices in memory
with the computation. Again, this tends to
shrink the 90 CPU time and convert the I/O
time as indicated on the POEM tape to a trans
fer of (n) characters, for instance, rather than
time to transfer the characters. This makes
this particular line device independent so that
when we look at that particular tape in respect
to a 360 system ~uch as a 92, we can plug in

SYSTEM ASPECT: SYSTEM/360 MODEL 92 93

lots of different devices and experiment as to
just how things go.

The net intent here is to provide through
the POEM conversion program an input to
what we call a COMPASS simulator. We can
then put the information on the work that was
done on a 7090 through this path to a systems
simulator for System/360 including the 92
(Fig. 20). We set as parameters to the simu-

Figure 19.

Figure 20.

94 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

lator the specific hardware configuration that
we are currently looking at in the simulation
run. We allow all of the flexibility in the simu
lation that is allowed in the hardware connec
tions themselves, i.e., in all of the shared mem
ories between CPU's, shared I/O devices on
channels, pooled devices, etc.

We also specify -and there is another
simulator involved here-the programming sys
tems parameters such as compile speeds, algo
rithms employed in the control section, etc.
And we get out hopefully accurate information
on thruput which is a little. bit of an un
definable number, but represents essentially the
amount of work done in a given time, turn
around time from input of the job to output
conclusion, then of course both of these in,
statistical form as well as individual form. It
will also indicate equipment utilizations and
queue lengths: how much of the time of the
CPU will be actually used, how much of the
time with each I/O device, and so on. It will
indicate queue lengths and queue times on each
device. '

What we have done with this program
to calibrate it is to take that complete path
from the 7090 and to plug in hardware con
figuration parameters such that we make the
hardware we are looking at look exactly like a
7090. Now, we have run problems on the 7090,

then passed them through our set of programs
with th,e hope that we will get a number simu
lated which is identical to what we measured
with a stop watch on the 7090. In fact, on the
jobs we have done in this way we've been within
8% of being identical in simulated time to 7090.

The basic use of this is to explore various
hardware and software configurations for ma
chines like the 92 so that we can hope to
optimize them. There are other ways of getting
information into the simulator and Fig. 21 es
sentially represents a fairly complete picture
of some of the other things we are doing to
evaluate systems. Among them are counters,
one of which is a modification of the direct
couple system that we have in Poughkeepsie
available to us which allows a front end IBM
7044 (instead of oper~ting as a direct couple
system) simply to monitor the back end IBM
7094 operating in stand alone fashion. Then
we just use the 7044 as a big counter and get
very elaborate statistics on instructions proc
essed in the 7094. We have a program called
the MAP timer which can take a 7090 instruc
tion mix and convert it through a comparison
to 20 other programs we hand-coded to a
System/360.

There is some meaning to instruction
mixes if you have a reasonable conversion pro
cedure. In MAP, a conversion procedure ac-

Figure· 21.

tually works on a linear combination principle
of the instruction mixes and the performances,
etc. From this program we can get for things
run on the 7090 actual CPU times for 360
machines and instruction mixes which we can
input after some hand massaging to the system
simulator compass.

We also can go through a simi!ar pass
on 7030 where we have a fairly elaborate in
struction counter device attached to give us
these instruction counts. The original scheme
described has in it a number of constraints on
the 7090 (Fig. 21) that we are measuring; but
they may not necessarily be true constraints on
the system under evaluation.

For instance, the fact that you've got
two channels means you have only two channel
actions going on at once, so there are artificial
dependencies there. What we will get out of
the final information here is a lower limit on

SYSTEM ASPECT: SYSTEM 360 MODEL 92 95

the 360 performance, although we're not too
concerned with this fact since we feel that the
relative value of different systems is still quite
accurate and not necessarily lower limit.

As we move to the right and do a little
more work we are getting more accurate in
formation for the 360 system, such as the
Model 92. Now as we go clear over to where
the problem is coded and perhaps run it on
some models of 360, or simulate it, then you
have the completely accurate time. However,
you have also done a lot more work since you
must code the problem. The answer, then, to
what the system performance is, is that there
is no single number; it is going to depend on
what is done with the system, but it is our
design obj ective to handle large problems. We
also intend to handle lots of small problems,
and it is our design principle to handle a com
bination of the two.

A PHILCO MULTIPROCESSING SYSTEM

Herbert S. Bright
P hilco Corporation

Willow Grove, Pennsylvania

INTRODUCTION

Although the purpose of this paper is to
describe the Philco Advanced System and the
design and application considerations that gave
rise to it, it will be necessary to review in some
detail the Philco 213 System. The two systems
are quite similar in concept and organization,
and differ only in three respects:

1. Speed-The 213 System operates in the
vicinity of one million single-address
instructions per second for each of one
to four processors; the objective for the
Advanced System will be at least four
times that speed.

2. Technology-The 213 uses present-pro
duction discrete-component circuits, and
ferrite cores for both main memory and
bulk memory; the Advanced System will
use integrated circuits, thin-film main
memory, and ferrite core bulk memory.

3. Vocabulary and Unit Organization-
The Advanced System will be totally up
ward-program-compatible from the 213,
but will contain additional facilities both
in machine language and in internal or
ganization of system units.

In order to explain the reasoning that
has led to many of the new characteristics of
these systems, this paper will review, at an
elementary level, the characteristics of, and
several problems associated with, multipro
gramming and multiprocessing.

97

1. OBJECTIVES

This section discusses, not in any order
of importance or urgency, the objectives Philco
seeks in defining the Advanced System to fol
low the recently announced 213.

Definitions: Two terms that will be ex
tensively used in this paper are defined as
follows:

• Multiprogramming is the time-sharing
of processor(s) by a number of not nec
essarily related programs simultaneously
present in main memory; the number of
programs may be larger than the num
ber of processors.

• Multiprocessing is the use of two or
more self-sufficient processor units with
a single, logically continuous and jointly
addressable main memory.

1.1 Numeric Computation Power Growth

The demand continues for greater and
greater speed and flexibility in performance of
numerical calculations. Experience with lower
powered computers has given rise to descrip
tions of large physical problems that justify
more detailed solutions of more realistic numer
ical models, which are potentially capable of
saving substantial calendar time and of pro
ducing more accurate physical analyses and
better engineering designs.

With the advent of general-purpose
"computational colloquy" time-sharing systems
for large machines, it seems clear that the great

98 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

efficiency, flexibility, and generality of even
higher-powered hardware and software can be
applied to small problems conveniently and
eConomically. The awesome reserve power of
the multimillion-operations-per-second numeric
engine is on reserve as required.

1.2 Non-Numeric Computation Power Growth

Even in scientific laboratories devoted to
large numerical calculations, the workload -of
processing non-numeric tasks (program com ..
pilation, natural language analysis, complex
problems in mathematical logic) grows steadily
and in many installations has already -pre
empted several hours' machine time per day.
This work is characterized by a relatively small
number of macro-operations that are compiled
into many programs, are composed of a rela
tively large amount of character moving and
testing, and are executed with high frequency.

The 213 adds to the 212's vocabulary a
number of character-string testing and manipu
lating hardware macro-commands, which pro
vide modest improvement in program space
and dramatic improvement (in significant cases,
up to 40:1) * in speed of execution of some im
portant functions. The Advanced Syste~ will
extend the 213's vocabulary as indicated by
analysis of actual 213 program workloads.

1.3 Computation Economy Improvement

The 2101 offered a few-hundred-percent
increase in computation capability, as compared
with the highest-powered and most economical
vacuum-tube computers of the preceding gen
eration, at an operating cost increase on the
order of only 10%. The 211 doubled the 210's
capability at another 10 % cost increase. The
212 offered a fivefold increase in power over the
211, at only another 20% cost. With each of
these machines, problems that had been handled
on earlier computers could be solved at substan
tial cost reduction per unit workload. In addi
tion, the effective buffering of data flow between
main magnetic -core memory and magnetic tape
used as auxiliary memory permitted efficient

* As an example, the 213's Move-Break instruction
performs, in about 15 microseconds for the first 8 char
acters and 2.4 microseconds per 8 additional characters,
logical operations that require about 380 microseconds
per 8 characters on the 212. This instruction will be
explained in Section 3;2.

solution of large problems; in the earlier ma
chines, such problems would have been Un
reasonably inefficient unless limited in size by'
core memory .

. The 213 provides new kinds of problem
solution power and flexibility, in addition to
further reduction in the cost per unit of com
putation workload.

The Advanced System will continue the
trend, with a capacity increase of at least a
decade, at a much smaller increase in total
system operating cost.

Highly generalized multiprogramming
capability has, within the past two years, come
to be recognized as a potentially valuable tool
for solving a frustrating problem, viz., the- low
effective speeds of large computers on existing
workloads as compared to the instantaneous or
internal speeds of which the machines are
capable. Even the most highly refined types
of programs seldom utilize more than 70 % of
system capability; i.e., the central processor is
computing effectively less than 70 % of its ob
served productive time. Careful observations
on large working systems by sophisticated
users have disclosed effective utilization of CP
time, averaged over the computing day, between
30% and 50%; hence, a throughput improve
ment by a factor of 2 or more may be available
through highly efficient utilization techniques
without increasing processor internal speed.

For time-sharing users, the continuing
improvement in unit economy of computation
service from super-powered computing systems
is coupled with another kind of computation
service economy: while each user may be com
mitted only to input/output facilities as needed
and to average workload cost, he has available
upon demand the huge power of the high- -
powered system to satisfy his peak require
ments. In many cases, this could avoid the
need for a user with sharply peaked workload
to acquire peak-capacity equipment; in others,
it could permit the economy of specifying an
occasional large problem in optimal fashion
rather than as constrained by small- or medium
scale on-site equipment.

1.4 Turnaround Time Improvement

The values and the problems associated
with improvement of service delay for conven
tional computation jobs in a batch-monitor en-

vironment have been discussed at length in a
previous paper.s

A detailed report on an actual installa
tion workload, and its service delays before. and
after a tape-to-tape monitor system (with off
line device operation) was replaced by an all-on
line dynamic-rescheduling system, was given
by Kory and Berning.4 This system created
queues that were either at least fifteen minutes
duration or comprised at least five jobs, select
ing from among queues not yet executed by
consideration of priority class, arrival sequence,
estimated running time, and estimated output
volume, qualifying run sequence by checking
available tape units and tape requirements.

Kory and Berning observed an average
reduction in turnaround time from 4.1 hours to
1.6 hours. (It may be noted that this service
improvement in a short queue rescheduling sys
temwas not, contrary to the prediction by Pat.,.
rick,6 achieved at the cost of lower system
efficiency:) Kory and Berning observed an aver
age reduction of setup time from 1.3 to 0.5
minutes per job, resulting in an overall reduc
tion in machine time required to handle the·
same volume of workload.

With regard to I/O tanking space, a sim
ulation of their proposed system prior to its
installation, using previously-recorded dual-
7090 workload data, predicted that " ... the
maximum backlog (cards plus print) on disc
would not exceed 2.4 million (six-character)
words." This conclusion supports reasonably
well the original design decision by Lavine"
(discussed in Section 5) for the Philco monitor
212SYS, to allow a minimum I/O tanking space
of 1.5 million (eight-character) words.

We found the Kory-Berning paper to be
particularly significant in that it seems to be
the first occurrenC8 in generally available pub
lished form of a before-and-after study of a
dynamic rescheduling system installation, sup
ported by meaningful empirical data taken
from comprehensive records of an actual work
load.

It demonstrated neatly that significant
improvement in both turnaround time and sys
tem efficiency can be achieved at the same time
merely by optimizing over a few workload pa
rameters the sequence in which short job queues
are executed. We feel that the results are con-

A PHILCO MULTIPROCESSING SYSTEM 99

servative, since none of the compilers were re
written to utilize disc files.

The proposed system will extend the
method by optimizing run sequence over more
parameters and by subdividing unit runs two
levels deeper, to segments of individual jobs.
By means of multiprogramming, the system will
switch a processor to another task when one
job sequence encounters a delay such as an
I/O request or in response to a priority change.
Not only will system efficiency be considerably
higher, but the effectiveness of job segment run
sequence optimization should be improved sub
stantially. Thus this system should attain an
even greater improvement in turnaround time,
as compared with a conventional modern tape
to-tape monitor, than have the first-generation
dynamic reschedulers.

1.5 Computational Colloquy by Time-Sharing
from Multiple Consoles

Bauer proposed a concept that has re
ceived wide acceptance: computer service should
be available as a public utility, in the image of
electric and telephone service, with each user
able to command almost arbitrary amounts of
service. Bauer perceived that it would be neces
sary to provide for automatic assignment, by a
powerful executive system, of memory space
and of a multiplicity of central processors. The
central theme of the present paper seems almost
to be a specific answer to Bauer's challenge of
six years ago.

It has been demonstrated at several
pioneer installations, including Massachusetts
Institute of Technology, Carnegie Institute of
Technology, RAND Corporation, and System
Development Corporation, that prompt-response
dialogue between several concurrent users and
a single computing system can result in sharp
increases in speed of program checkout and in
progress rate on research projects. Such man
machine comm unica tion also makes practicable
concurrent access to large files by many re
questors for very small data manipulation tasks,
which may be coordinated with generalized file
maintenance. The status of the MIT and SDC
projects as of mid-1964 has been summarized
by Fano1 and Schwartz8 •

This concept of computer utilization is
different in principle from the now-conventional
automatic monitoring of "jobs" as submitted to

100 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

a modern computing center. Instead of an en
tire computer request-for-service being pre
pared in advance and submitted as a unit, a
colloquial user communicates with the system
through a two-way console, entering ele'ments
of his request in serial fashion and with system
response possible at many points during the
communication. For instance, a small program
could be keyed into a console in source language,
one character at a time; compilation could be
requested from the console; compilation diag
nostic comments may be presented to the re
questor via the console; execution may be
requested; results may be presented ; another
program may be requested to be brought into
active status from quiescent status in on-line
mass memory; conventional debugging opera
tions may be requested and results observed
either in whole or in selected parts; all by user
activation of a keyboard or other input means
and by system response to the user through
typeout or other visual display.

The distinguishing difference between
the two modes of machine use is that in "job"
mode, a machine run is prepared and submitted
as a single entity, and results are returned in a
single printed report after run completion; in
"colloquy" mode, preparation, request, and re
turn of results occur as a continuing chain of
events with elements of each interspersed
among the others without any predetermined
sequence.2

This type of operation becomes particu
larly effective if a high-powered hardware-soft
ware complex is accessible through a user's
console. Since much of the user's time is spent
in manual or mental operations when accessing
a fast machine for short bursts of computation
service, it is desirable to serialize or "time
share" the central system.

Early time-sharing experiments were
performed using multiprogramming techniques
to permit a few users to memory-space-share
as well as to time-share the system. Hardware
then available, was inadequate to permit ac
commodation of a large number of users with
reasonable efficiency and response speed. The
first relatively large-scale experiment2 made
use of a brute-force scheme of memory
swapping from on-line mass memory.3 It
achieved reasonable system efficiency, with frac
tional second keyboard response and fractional

minute service request response, for up to a
few dozen concurrent "foreground" colloquy
users, with any available central machine time
made available to service a "background" job
mode workload.

At the present time, several time-sharing
systems are being planned, to accommodate
from a few dozen to a few hundred concurrent
on-line users. Different approaches are being
taken to several aspects of system planning:
some provide console multiplexing under direct
control of central processor(s), while others
use auxiliary communication processors. Some
use dialed-up connections from a large number
of remote locations, permitting only a fraction
of the stations to be on line at a time; others
have all stations connected full-time. Some
retain active information in core memory and
attempt to minimize communication with user
files in disc or drum; others process all informa
tion from the rotating machinery, using core
memory primarily as a buffer, as regards proc
essing of user files.

The 213' and Advanced Systems have
adequate flexibility and power to handle con
ventional I/O devices as well as multiple remote
keyboards directly from the central proces
sor(s), although present plans call for use of
one or two Philco Type 170 Communications
Processors to handle the remotes.

1.6 Full Generality

Of central importance is that the new
system must be applicable to all classes of com
putation work for which conventional serial
single-processor computers have become useful.
Its utility must not be dependent upon develop
ment of new mathematical or programming
methods.

One way to meet these requirements,
and the way chosen for these machines, is to
have a processor execute a program segment
seriatim in the manner of a classical Von N eu
mann computer; i.e., instructions are executed
serially and in an order that is completely de
pendent upon each program 'and the data sup
plied to it.

1.7 Efficiency with Procedural Languages

For predictable system economy it is im
portant that the machines be capable of per
forming calculations by executing object lan-

guage programs compiled from source language
programs written in existing procedural lan
guages at "full efficiency," i.e., it must be fea
sible to construct fully automatic compilers that
produce object coding comparable in compact
ness and in execution speed to hand-optimized
machine language coding.

We have rejected, on the basis of inade
quate generality, schemes that achieve full
speedup only for short instruction loops, requir
ing that those loops be executed from a finite
length string of special registers.

1.8 Graceful Degradation

A large system requirement that has
been given close attention in the past by mili
tary users is now assuming significance in the
plans of advanced engineering-scientific and
commercial computer users; the system should
not go out of service in the event of failure of
any unit, even a central processor. A fault
indication should evoke automatic test proce
dures. If found defective, a unit should be
withdrawn from service and the system should
continue in operation with reduced capacity.
The executive function should not assign
further tasks to the defective unit until that
unit has been returned to the system by main
tenance personnel and has been found, by tests
performed under executive control, to be fully
operational.

Such testing, withdrawal of equipment
from assignment to system tasks, proof-testing
after repair, and re-integration of equipment
into the workload pattern, ideally should be per
formed without manual intervention.

This resilient performance under equip
ment fault conditions, sometimes called "crip
pled mode capability," requires that the system
be highly modular in organization and opera
tion and that more than the operational mini
mum number of each type of unit be present.
There must be at least two central processor
units that must operate cooperatively and anon
ymously. Memory must be organized so that
at least one major unit of main memory and
one of mass memory may be withdrawn from
service while the operation continues. Similarly,
the system must be capable of continuing oper
ation with at least one of each type of input/
output device out of service. Finally, at once
the most difficult and the most important con-

A PHILCO MULTIPROCESSING SYSTEM 101

sideration is that switching redundancy must
be built into the system so that no single fault,
however severe, can prevent a successful recon
figuring under program control into an opera
tional crippled-mode system.

In view of its potential importance in
large-scale computing systems of all types, the
concept of crippled-mode operation has received
surprisingly little attention in recent litera
ture. The concept was considered briefly by
Shafritz and others10 in the context of a discus
sion of stored - program - computer - controlled
communication switching systems.

A related but separate consideration,
which becomes significant in the case of a sys
tem fault (such as loss of an area of memory
containing active-status-list information) that
cripples the executive function itself, is that of
system rollback and restart.

In order to guarantee restart capability
after an unscheduled and perhaps disastrous
interruption of operation, it is desirable to per
form periodically a total dump of main fast
memory, critical tables in main slow memory,
and all processor registers. I t is also necessary
to enforce system conventions that avoid the
possibility of irrecoverable faults; thus, for
example, a previous-state copy of a file being
updated must be preserved, together with
source data for the updating, until a later
reserve-master file has been confirmed as cor
rect and has been placed in protected storage.

In the past, system dumps to conven
tional types of tape or disc equipment have
been inordinately expensive because of the ex
cessive time required. The Advanced System
will use the High-Speed Drum for system
dumps, requiring only one drum revolution
(just under 35 milliseconds) per 32,768 words
of fast memory; thus, a typical 131K system
with up to four processors could be dumped in
less than 1/7 second, and dumping once per
minute would consume less than 1/4% of sys
tem time. (The Executive will minimize col
lateral time losses by taking such steps as
choosing, if possible, dump times to occur when
no I/O is waiting.)

In both the 213 and the Advanced Sys
tem, Memory Control is decentralized for two
reasons:

a) Sections of Memory Control are placed in

102 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

clO'se prO'ximity to' prO'cessO'rs in O'rder to'
minimize cable delays, especially fO'r those
signals requiring response and hence sub
ject to' rO'und-trip delays.

b) DecentralizatiO'n limits the memO'ry area
that can be disabled by any O'ne fault,
even in memO'ry switching; in a tWO'
processO'r 213 system with tO'tal memory
size an integral PO'wer O'f 2, fO'r example,
nO' more than half O'f memO'ry can be dis
abled by any O'ne fault, including lO'SS O'f
memory switching O'r loss O'f PO'wer supply
to any unit.

One O'f the mO'st comprehensive systems
O'f the resilient type that has been specified to'
date is the secO'nd phase of the AUTODIN
(AUTOmatic DIgital NetwO'rk) System. Philco
is now designing this system15 and is studying
the applicability O'f the cO'ncept to' a broad
range O'f cO'mputer systems.

The Advanced Syste-m is intended to' be
capable O'f O'perating as O'utlined abO've, with
hands-off system reSPO'nse to' unit-disabling
faults by cO'nversion under program cO'ntrO'I to
crippled-mode O'peratiO'n and with limited lO'SS
of infO'rmation even under loss O'f current ex
ecu ti ve data.

1.9 NO'ReprO'gramming

A frequent gO'al in the development O'f
cO'mputers has been that prO'grams O'peratiO'nal
O'n O'ne type O'f machine- shall O'perate, withO'ut
any conversiO'n effO'rt, O'n a later type O'f
machine.

This absO'lute upward cO'mpatibility was
achieved literally with the Philco 211 fO'llO'wing
the 210, and again with the 212 fO'llO'wing the
211. 212 prO'grams will be O'peratiO'nal withO'ut
change O'n the 213, and 213 prO'grams on the
Advanced System.

In each case where a prO'gram is to be
O'perated in a machine O'ther than that fO'r
which written, not O'nly the hardware envirO'n
ment but the sO'ftware envirO'nment must be
cO'mpatible. Thus either the same executive
mO'nitO'r system must be used in both machines,
O'r apprO'priate steps must be taken to' adapt to'
the secO'nd executive the prO'gram under con
sideratiO'n and its system and' library rO'utine
calls.

In O'rder fO'r upward compatibility for

prO'grams to be realized, it is necessary that
a new machine nO't O'nly IO'gically cO'ntain the
previO'us machine, but that all I/O O'perations
be absO'lutely program-compatible. (It is nO't
necessary, except fO'r file-handling cO'nvenience,
that they be device-compatible. Thus PhilcO'
90K ch/s and 240K ch/s magnetic tape trans
ports use different physical tape, and PhilcO'
120K ch/s IBM-cO'mpatible magnetic tape
transports use not only a different type O'f
tape, but a different reel O'f a different width;
yet the same program will O'perate without any
change O'n Philco 212 O'r 213 cO'mputers using
any O'f the three types O'f transPO'rts with ap
prO'priate tape, provided the prO'grams use the
fixed blO'ck size (1024 characters) that is re
quired fO'r the 90K ch/s transports, O'r O'n either
the 240K ch/s or the 120K ch/s transPO'rts with
any chO'sen blO'ck size.)

A plan nO'w under study in this O'rganiza
tion WO'uid O'bviate O'r greatly reduce the magni
tude O'f prO'gram adaptation to' a new executive.
This plan WO'uid place the O'riginal executive
system under cO'ntrO'I O'f the new executive,
which WO'uld utilize the O'riginal library and
system routines. If successful, this will permit
212SYS .and prO'grams running under it to' O'per
ate as a single jO'b under cO'ntrO'I O'f 213SYS, a
new executive with multiprO'gramming and
multiprO'cessing capability.

1.10 "CO'mmO'n-Access" to' RO'utines and Data

This O'bjective, and our means fO'r attain
ing it, are discussed in SectiO'ns 4.1, 4.2, and
4.3 belO'w.

2. SYSTEM PLANNING FOR MULTIPRO
GRAMMING AND MULTIPROCESSING

2.1 IntrO'ductO'ry Remarks O'n Multiprogram
ming

In the cO'ntext O'f the present paper, the
primary purpO'se O'f multiprO'gramming is to'
keep the central processO'r O'r processO'rs oc
cupied with useful wO'rk as nearly cO'ntinuO'usly
as possible.

ThO'ughtful users realize that a typical
cO'mputer jO'b includes substantial central proc
essO'r wait time. If input/O'utput is nO't well
bufferred, as is surprisingly often the case,
IO'st mainframe time may even be visually
nO'ticeable (at a maintenance cO'nsO'le) ; such a

circumstance in a high-powered system is, and
rightfully so, abhorrent to the cost-conscious
user. The magnitude of central processor time -
wasted through I/O waiting alone may, in even
a well-managed installation~ exceed 50% for
significant periods of time. Hardware micro
timing analysis of operational environments by
several computer manufacturers on behalf of
individual customers during the past two years
has provided (privately) considerable evidence
on this topic.

Even programs of the kinds that typ
ically are tuned to a high order of performance
encounter significant unavoidable delays. Ex
amples of such programs are sorts and matrix
manipulations.

After an initial- startup delay to load
memory with data to get the first string gen
eration process started, internal sorting typ
ically uses all available processor time. The
merge phase, however, which takes most of the
total time, is typically severely limited by
input/output speed. If there are only a limited
number of channels; if the system has a fixed
relationship between particular I/O devices
such as tape units and particular channel num
bers; or if the tape units cannot read back
ward, the processor idles a substantial part of
the time. Thirty per cent or more lost time
averaged over an entire sort-merge would not
be unusual.

In matrix operations, startup delays oc
cur as in sorts. For large problems additional
inefficiencies may exist in that manipUlations are
too complex to be handled with real efficiency
on the number of tape units available, or it
may not be appropriate to adjust the balance
between compute time and tape time to use the
CP at full efficiency. Again, 30 % or more lost
time is not unusual.

When effective processor utilization is
considered as averaged over entire workloads,
the situation looks considerably worse. As re
marked in Section 1.3 above,during the past
we have learned of careful timing results show
ing that indicated net operational time of cen
tral processors lower than 30 '10 of total "pro
ductive" time was not unusual; net CP time was
less than 50 % in all of the test results we have
seen.

Use of random-block-addressable mass
memory instead of tape, and addition of large-

A PHILCO MULTIPROCESSING SYSTEM 103

capaci ty Slow Core memory, can lessen those
difficulties associated with the serial-access
nature of magnetic tape.

If system net CP time of 30 % can be
raised to, say 75%, by multiprogramming at an
added system time cost of no more than 15 %
of total processor time, system throughput for
a given processor speed can be doubled.

Of course this improvement in duty
factor of the CP does not come free of dollar
cost. The most obvious additional hardware
cost is for more memory; in the past large
programs tended to be planned around the
size of usable main memory space, and pro
grams that leave little available memory space
for other programs will vitiate a multiprogram
ming system.

There are several conflicting factors at
work affecting the memory size that is optimal
for a given system in its workload environ
ment:

a) Several techniques discussed in this
paper increase the effectiveness of main
memory utilization in a system.

b) The growing power of mass memory
facilities; their effective use instead of
tape for system service functions not to
be kept in main memory; and the fact
that multiprogramming permits reload
ing of service routines to be overlapped
effectively with other work, now permit
some functions that have typically been
retained in "hard core"* to be brought
in as required from mass memory.

c) The increasingly complex nature of ex
ecutive systems and the many addi
tional buffer spaces needed for I/O in
all-devices-on-line systems are now, de
spite factors a) and b), inexorably
driving upward the amount of memory
space needed for executive functions.

d) The increasing use of mathematical and
data processing techniques that use
(very effectively) large memory space,
and the solution of more and more
complex (i.e., large) problems, are
tending to increase the memory space
demands of important programs.

* Memory space permanently assigned to executive
functions.

104 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

e) Multiprogramming systems, in order
to perform effectively their task of im
proving processor utilization, need con
current access to many cohabiting jobs
in main memory.

f) The cost of high-performance memory
is decreasing relative to the cost of
processors and other parts of large sys
tems.

Factors a) and b) tend to reduce main
memory space demands; factors c), d), e), and
f) tend to make larger main memories desirable
and practicable. We feel that the net result of
these several factors will be substantial increase
in the typical size of memory in large multi
programmed systems, whether single or mul
tiple processors are used. While this will in
crease the total typical cost per system, the
net effect will be to decrease the unit cost of
computation.

So much for the motivation for multi
programming; it is largely economic in nature,
as what significant considerations· in heavy
computing-machinery operations are not?

13IK-f"7"":'f"'"'T"7"""T~

JOB 4

JOB 3

JOB 2

JOB I

EXECUTIVE
PROGRAM

0-

UNUSED MEMORY SPACE

(VACANT OR RELEASED)

(SINGLE)

PROCESSOR

/
/1

I'J/ /
//(,/ 1

/ / / Ii /
/ 1/

/ t/
/

I
/

MULTIPROGRAMMING SYSTEM

Figure 1

Let us' now examine some aspects of
multiprogramming operation of a system.

Figure 1 shows a memory map of an
elementary multiprogramming system shortly
after startup. Initial core loads for the first
4 jobs have been loaded and Job 2 is active;
Le., the processor is at the instant of the picture
executing Job 2.

As in conventional one-job-at-a-time
processing, the processor spends some of its
time as needed in the executive program that
provides for system control and job sequencing.

When Job 2 encounters its first delay, or
when another consideration such as priority
causes another job to get precedence, the proc
essor switches to a job selected by the executive.

A frequently-used signal for the proces
sor to check job segment sequence is the initia
tion of any input/output order.

Figure 2 shows five subsequent memory
maps of this system as some jobs complete,
others come in, and some get moved as needed
to coalesce space for a wa~ting job. Concern
with the time-cost of the moving process has
given rise to considerable interest in hardware
means for making the moving unnecessary.

We are convinced that there are two
serious concerns associated with program and
data moving at job-load time in high-powered
multiprogramming systems:

a) Program modification required pref
atory to the actual move can be un
acceptably time consuming.

b) In general, programmed relocation of
significant areas of memory content in
a multiprogramming system requires
that all currently active and outstand
ing input/ output orders be permitted

I to terminate. In a large system this
can be a prohibitive requirement, again
because of the large potential time loss
associated with .each relocation.

In machines of modern type in the mil
lion-instructions-per-second range, the moving
of memory contents does not appear to be a
significantly costly process. As an example, let
us consider the time to perform a typical move
of memory contents, assuming no special hard
ware for relocation.

Assume main fast memory is 131K
words; half of all jobs entering the system

A PHILCO MULTIPROCESSING SYSTEM 105

131K
V/77/

JOB 5 JOB 5
JOB 7

JOB 3 JOB 3

JOB 9

JOB 5

JOB 2 JOB 8

JOB 6
JOB 3

JOB 6 JOB 7 JOB 7

JOB I JOB I

JOB 3

EXEC EXEC EXEC EXEC EXEC

o -
JOB 4 JOB 2 JOB I JOBS 5,6 JOBS 3,8

COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED

JOB 5 JOB 6 JOBS 5,6,3 JOBS 3,7 JOB 9
LOADED LOADED MOVED MOVED LOADED

JOB 7 JOB 8
LOADED LOADED

W/J UNUSED MEMORY SPACE (VACANT OR RELEASED)

MULTIPROGRAMMING SYSTEM MEMORY MAPS
(SYSTEM WITHOUT PAG I NG)

Figure 2

cause moving of one fourth the contents of
main memory; the time to move one word
(memory read-write under some kind of repeat
control) averages 1.8 microseconds.' Then the
moving time per job is:

0.131 X 106 words X 0.5 X 0.25 X 1.8 X 10-6

second

word
= 0.029 second.

With these assumptions, which we feel
are conservative, average total job time would
have to go down to 3 seconds before moving
time consumed 1 % of machine time. Under
such circumstances we do not foresee an imme
diate justifiability for hardware for removing
the need to move the contents of memory.

For some advanced applications, how
ever, in "computational colloquy" operation, as

mentioned in Section 1.5 above, and as an Ad
vanced System approaches full-scale expansion
with four procersors, we conclude that it will
be necessary to 'Provide for reasonably efficient
execution of job segments as short as 1milli
second.

Paging hardware (not in the basic 213),
in addition to drastically reducing moving time,
provides a convenient way to apply hardware
memory protection to scattered areas of mem
ory by association with particular users in
several different ways. Some kind of applica
tions inherently require greater inter-job se
curity than is required in a typical closed- or
open-shop job-oriented facility or even in a
time-sharing system; in such cases, redundancy
of protection (in addition to that supplied
through !job area assignment by the Executive)

106 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

is mandatory. Paging can provide such re
dundant protection, establishing positive hard
ware identification of small memory blocks with
particular jobs or even with particular users.

For Use in the circumstances described
in the preceding paragraph, we have concluded
that "paging" or "block symbolic" addressing
capability should be planned as a standard hard
ware option for the Advanced System and per
haps as a special hardware modification of the
213, but it will not be used by the software
presently under construction. The paging hard
ware plans will be described in Section 7.

For the basic 213 and Advanced System
we have defined Implicit Base and Limit Regis
ter Selection hardware that permits dynamic
relocation to be performed without interference
with currently-active input/output orders. This
hardware and its application will be described
in Section 3.6.

An ingenious method of displaying the
dynamic memory map of a time-sharing system
in actual operation, showing information that
would be of value in monitoring a multipro
gramming system, was used by H. A. Kinslow:.!!
in his oral presentation. This display repre
sented the contents of each logical block of
memory addresses (in Kinslow's case, 256
words per block) as a character position in
a line of print, with each of several classes of
activity indicated by the identity of the char
acter representing that memory block at that
instant; e.g., X for program now in Execution,
+ for program moving from disc to core, ~
for program in core, not being executed, (blank)
for core space available, • for program going to
drum, - for program going to disc, S for core
space assigned but not yet filled. Each line also
carried other coded information about system
status at that instant of time.

By use of the Kinslow-Johnson dynamic
memory map, the kind of information that was
shown in Fig. 2 merely as an abstraction can
be displayed for a running system on a live
workload.

A cautionary remark must be made here
about the extent to which multiprogramming
can provide calking, as it were, for chinks in
system workload. A suitable supply of sub
dividable tasks must, in fact, exist in order to
be handled in this way.

Some classes of engineering calculations,

notably "nuclear design codes," traditionally
have taxed the capacities of the most powerful
machines available. These programs have been
planned to use available hardware to the utmost,
although this utmost, as mentioned in 1.3, may
be constrained to half-time usage of central
processor time. Such users may have only
incidental amounts of small-problem workload.

For this type workload, three avenues
to greater system throughput seem to be open:

1. Better system balance, with use of
faster mass memory devices, can make
possible higher internal efficiency of the
large programs running alone.

2. Versions of each of several of the larg
est pro grains might be produced that
would operate with less than full
machine facilities, and that complement,
to a significant extent, each other's
limiting demands upon the total system;
two or more such programs, not related
to each other, could then be run concur
rently in a multiprogramming-multi
processing environment.

3. For a multiprocessor system, some large
tasks will justify efforts to apply more
than one processor in some parts of
large· programs, i.e., to solve the single
task multiprocessing problem.

2.2 The Anonymous-Processor-Pool Concept

In this type of system, a generalization
of the single~processor system, any number of
fully independent processors up to a design
limit can operate within a single, jointly-ad
dressable memory.

Each processor may assume the execu
tive function, and must do so in order to obtain
system service', to write in memory areas re
served for executive purposes, or to obtain re
served information. Thus, each processor must
be able to operate in two somewhat different
modes, which we call executive mode (E) and
job mode (J).*

An important executive function is that
of sequencing or· determining what computa
tion job or job segment is to be performed next,

* A third mode, Common Routine (CR), will be
described later.

MAIN MEMORY

INPUT/OUTPUT CONTROL

I
I
I

r---l.---,
, PROCESSOR I
I C I L _______ .J.

I
I
J

ANONYMOUS PROCESSOR POOL SYSTEM

Figure 3

following a change such as completion of one
job.

In this system all input/ output is InI
tiated by an E processor. Any I/O request
from a program in operational status is used
as a signal that the basic sequencing algorithm
is to be executed.

Processors enter and leave E mode fre
quently; hence, little time can be used in ex
ecuting the standard interrupt procedure. A
processor in requesting executive service always
makes itself available to be assigned to it; like
wise, in assigning a job, the processor perform
ing the assignment subsequently becomes the
one most available for assignment. Transfers
of control to and from the executive program
are always carried out by the processor making
the request; thus, some transient status in
formation can be, and in fact is, passed back
and forth in a processor's own registers. For
security purposes as well as for operational effi
ciency, status information on all programs cur
rently in the system is maintained in lists in
the executive area of memory, and complete
information on each job is carried in lists in
that job's assigned memory area. In J mode,
a processor cannot initiate input/output and has
read and write access only to the memory areas
assigned to the particular job on which the
processor is currently working.

Figure 4 illustrates the basic operating
situation in main memory with only one active

A PHILCO MULTIPROCESSING SYSTEM 107

assigned job for each processor, i.e., without
multiprogramming. Local job functions are
performed by Processor A for its currently as
signed job, which is Job 2, and by Processor B,
for Job 1.

In general more than· one, and in the
extreme all, processors can operate within the
executive program at the same time, although
some critical executive functions such as se
quencing must be performed by only one proc
essor at a time.

Thus, in Fig. 4 it is possible that the
physical processor that had been performing
Job 2, upon exiting from E mode, may become
from the executive program's point of view
Processor B and be assigned to (that is, assign
itself to) Job 1, provided Processor B has mean
while been assigned an Executive function.
Thus, the processors themselves are truly
anonymous, assuming identities only for execu
tive job assignment purposes and retaining
them only until returning toE mode.

Figure 5 is a generalization of Fig .. 4 to
include more than one job per processor, i.e.,

13IK-...,....,,.....,....,....,.

JOB I

/

/

/
/

/

PROCESSOR. A

/
/

/

/ ~----------~

/ PROCESSOR B
/

I

,/ ""
,/

,/

~

EXEC- /t/ /'
UTIVE /

PROGRAM /

o - L.-__ ----I

ELEMENTARY MULTIPROCESSING
(WITHOUT MULTIPROGRAMMING)

Figure 4

.108 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

PROCESSOR A

PROCESSOR B

O-I------J

MULTIPROGRAMMING-MULTIPROCESSING SYSTEM
(WITHOUT PAGING)

Figure 5

multiprogramming. At the instant portrayed,
Processor A is in J mode executing Job 13,
while Processor B is in E mode, performing
an executive function. With two sizeable re
leased areas of memory, the system will pre
sumably load at least one more job (perhaps
moving Job 11 to coalesce the available space
if necessary) if a job in the input tanking area
(in this system, on drum) has been found by
the Executive to need little enough memory
space and otherwise to qualify for active status
at this time.

For clarity, this map of physical memory
addresses has been drawn for a traditional-type
main memory system without paging. In a
memory control scheme having hardware pag
ing capability, as described Section 7, available
space as well as assigned single job areas are
scattered throughout the (physical or actual)
memory addresses in sections most of which are
one page in size. Logical address allocations,
as they appear to processors, more closely re
semble the simple map shown in Fig. 5.

2.3 Planning Considerations for Memory Con
trol Hardware

In the 213, which was intended from the
outset to be applied in a multiprogramming
multiprocessing environment, several new hard
ware requirements had to be met. Some of
these (a-fbelow) were evidently mandatory if
good efficiency was to be achieved, and were
included in the basic 213 System. Others (g
and h), while they appeared to be realistic for
typical Advanced System applications, were
considered to be required only in specialized
installations of the 213; hence, g and hare
not in the basic 213 hardware and are not used
in the basic 213 software.

a) Direct addressing of large memory (by
character in the case of character
string-manipulation instructions).

b) Processor status information trans
ferred by hardware.

c) Positive memory protect for each job
with respect to its currently-assigned
memory .area.

d) Dynamic relocation of programs and
data without significant loss of proc
essor speed.

e) Automatic access to (Read-Only) Com
mon Routines (one copy of each) and
to Common Data from any number of
calling programs.

f) Ability to utilize conveniently a hier
archy of main memories.

g) Memory remapping (paging) with in
dividual-job number memory protect
assigned to individual "pages" of mem
ory.

h) Three different modes of memory pro
tect, each different in behavior with
respect to each processor and individual
memory pages in accordance with each,
processor's currently-assigned mode
(Executive, Job, Common-Routine).

Our decision has been to specify the
hardware for dynamic-re~apping and page
oriented memory-protect and the manner in
which software will use them in order to assure
the upward-compatible growth potential of the
213 hardware and software, but to make these
memory control features optional pending de
tailed hardware monitor studies of operational
213's in customer environments. The proposed

paging hardware, and its use, are discussed in
Section 7.

One concern, hitherto unmentioned in
the present paper, has seemed to u~ from the
outset of the 213 system planning work to be a
serious one: There has been growing evidence
of the potentially high value-to-cost ratio of
slow ferrite core memory in large capacities
(hundreds of thousands of words), and hence
of its potentially great importance in high
powered machines. This has brought us to the
conclusion that positive control should be pro
vided over access to a hierarchy of main
(directly -addressable) memories, in flexible and
convenient, preferably automatic, fashion.

By "automatic," we mean the following:
A particular information area, once designated
to the Executive System by a user' as being
suitable (most likely because of low frequency
of access) for assignment to what we will call
"Slow Core," should have symbolic addresses so
assigned by the Executive. It should be ac
cessible, thenceforth, by a program merely
through use of appropriate locally relative-to
zero address references initiated by the as
signed processor .. It should not require that
special control information (such as a bit' in
the instruction or in the address) be supplied
by the program to designate the reference as
being made to Slow Core. Although all Slow
Core assignment to a given job may be re
stricted to a continuous string of physical ad
dresses, this string should be assignable un
related to Fast Core assignment to the same
job.

It will be explained in Section 3.6 how

A PHILCO MULTIPROCESSING SYSTEM 109

this is accomplished l>Y means of ImpJi.cit Selec
tion of Base and Limit Registers.

3. BASIC 213 HARDWARE EXTENSIONS
BEYOND THE 212

3.1 Large Memory Addressing (Fig. 6)

The basic address field length in the
213 and in the Advanced System is 24 bits.
We shall refer to this field as bits numbered 0
through 23 although the actual location of
the 24-bit string may be in Bits 24-47 of a
computer word. Bits 0-20 specify word num
ber over an absolute range of zero through
2,097, 151.

Only the word address is relevant for
full-word-operand-:manipulation instructions.

Bit 21, the upper bit of the character
field, is relevant for some half-word-referenc
ing instructions such as jumps and compound
instructions that use (variable-length) arrays
of half-words to contain jump vectors for
many-way branching functions.

Bits 21-23 specify, for character-string
manipulation instructions only, character num
ber within a word. For the initial 213 machines
only 6-bit characters are handled explicity. The
basic 210-211-212-213 64-character alphabet*

ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890+-* / =.,$ () 'blank
><#&% LJ, ;:?null"@end18

* The subset consisting of the first 48 characters
listed above ("A" through "blank") arc identical, both
in graphics and in coded representation, with the
SHARE 709-7090 alphabet.

,-- Any 2 Successive Half "Words ---------_ ,
Field Lengths

Oescr5.ptions

Bit t~L;mbers

4

N

o~
24 27

3

4 ~..l
2S 29 31

N = Index Register Selection

I • Indirect Address Control

16

Command

F = Lew Order Bit in J~mps to Half Word Commands

21

Word Address

24
-0

44
20'

rULL-WORD INSTRUCTION FORMAT

Figure 6

3

Char. Addr.

12 !:.1.
21 23

rn
~
21

110 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Standal'd f;ode

Example:

-'-'-.1-00-0-1 -,\ = A

1>7 b,

Q

B R

C S

0 T

E U

F V

G W
UNASSIGNED

H X

y

J Z

1011 V
TAB

K

1100 FF S4 < L \

1101 CR S5 M

1110 SO S6 N t
1111 SI S7 0 -

= 4 Bit Subset

Americ'an Standard Code for Information Interchangp

Figure 7

is capable of representing explicitly all cur
rently active procedural compiler source lan
guages [including FORTRAN IV, NPL, CO
BOL, and ALGOL (with shifting instead of
separate lower-case letters)], and also the
information-content subset of the 8-bit ASCII
character code,1u Fig. 7. For these characters
and in instructions that manipulate them, word
content is 8 characters per word and Bits 21-
23 represent an octal number 0-7.

In the future, as other characters of the
ASCII set become defined and as explicit han
dling within general-purpose machines of the
full 8-bit-specified character set becomes neces
sary, as already implemented within modern
communication-processors such as the large
scale Philco 170 AUTODIN computer, an
8-bit-character-set-handling instruction group

will be defined and added to the 213; it is now
planned to be included in the initial Advanced
Systems. For the alphabet of 8-bit characters
stored 6 to a word, Bits 21-23 will represent a
base-6 number; and control counters used by
the 8-bit-character-string-manipulation instruc
tions will carry from Bit 21 into Bit 20 on
count of 6, rather than on count of 8 as in the
6-bit present 213 instructions.

Consideration is also being given to in
cluding as an option in the 213, and as stand
ard in the Advanced System, a set of4-bit
(binary-coded decimal) character string ma
nipulation commands, primarily to meet the
needs of very-large-scale commerical applica
tions. The ASCII 4-bitsubset is the one con
sidered.

Each of the 8 index registers in the 213
(each of the 15 in the Advanced System) *
contains 24 numeric bits numbered 0-23. For
word-oriented instructions, only Bits 0-20 are
relevant. There are also two control bits des
ignated C and Y. As in the 210 and 211, a
"one" value of the C bit causes designated index
register contents to be counted (increased by
one word after each reference to it) when C
is set to 1, and to remain unchanged when C
is zero. As in the 212, the C and Y bits taken
together provide decrementing as well as in
crementing from the address field. Counting
and incrementing/decrementing operate ac
cording to this scheme:

C Y Contents of Selected Index Register
After Reference to It

o 0 lJ ncllanged
1 0 Increased by unity in word address

value
o 1 Previous contents plus value of

instruction word-address field
1 1 Previous contents less value of

instruction word-address field

The word-oriented index register stor-

* In the 210, 211, 212, and 213, eight index registers
are selected by a 4-bit field with binary numbers 1000-
1111 inclusive. In the Advanced System, the additional
bit combinations 0001-0111 inclusive will be activated by
the new format half-word instructions and for all full
word instructions, to designate seven more index regis
ters, with 0000 designating a pseudo-register containing
the constant zero.

age and loading instructions of the basic 213
System treat the index register contents of a
24-hit string, with Bits 0-20 representing their
functions as described above; Bit 21 contain
ing the C bit; Bit 22, the Y bit; and Bit 23,
at present irrelevant. These instructions thus
pack index register contents in computer half
words, two to a word.

3.2 Character Manipulation Instructions

. The guiding principle in the choice of
character-oriented hardware macros was that
program functions must be frequently written
and executed to justify inclusion as explicit
hardware. Furthermore, although the hard- ,
ware macros need not save memory space, they
must save substational processor time if they
are to justify their existence.

An example of the type of function con
sidered is the scan of an input character string
for break characters as is commonly performed
in compiler source language analysis. Each
character in sequence is checked to determine
whether it is one of a set that causes action
to be taken; if it is one of these, control transfer
occurs and the scan pauses or terminates.

Using the word~oriented vocabulary of
the 210-211"':212, a typical scan involves a pro
gram sequence of 33 half-words and from 4
to 12 full-word constants. On the 212, such a
scan requires 400 . microseconds for the first
eight characters in a string and 370 micro
seconds for each additional eight characters.

As Move-Break is implemented in the
213, a mask in the A and Q register~ defines
which of the 64 character configurations are
members of the set of break characters. A
single hardware macro scans (and moves) a
string until a break character is encountered;
a jump is then executed to the address asso
ciated with the specified break character.
An instruction option, Move-Break-Squeeze,
squeezes out blanks en route.

Total space for using this instruction
(including pre-setting of registers) is six full
words plus one half-word for each break char
acter. Total execute time is about 15 micro
seconds for the first 8 characters plus 2.4
microseconds for each succeeding 8 characters.
For a typical scan of up to 62 characters,
averaging 22 characters, the maximum and
average times are 31 and 22 microseconds~

A PHILCO MULTIPROCESSING SYSTEM 111

respectively, as compared with 2.99 and 1.14
milliseconds for the programmed equivalent
sequence on the 212.* The speedup factor for
the average case in this example is 52:1.

In the Advanced System, because of the
facility and economy with which the integrated
circuitry can be used to implement complicated
logic functions, this particular instruction will
lend itself well to parallel instead of serial
processing. Thus, as in the case of other fre
quently executed commands, the speedup over
the 213 will be greater than the "minimum
10 :1."

Because of rapidly developing interest in
non-numeric data processing, the basic 213
character manipulation instructions, which
constitute the core of the set that will be built
into the Advanced System, will now be de
scribed more formally.

3.2.1 . Format1H Character-oriented instructions
that reference character strings do so via index
registers. The conventions are:

Xl-specifies the character address in
memory from which the first of a
string of characters is obtained.

X:!-specifies the character address in
memory into which the first of a
string of characters is stored.

Xa-specifies the (maximum) length of
the character string.

Note that the character count in Xa is i>osi
tioned in the low-order character- position of
the register.

Character-oriented instructions that ref
erence a single character specify the address
in the address. field, with the usual indexing
and indirection options.

3.2.2 Notation1\) The following notation is intro
duced to simplify further discussion:

* In order to give those unfamiliar with the 212 a
feeling for its speed on typical tasks, we offer this
yardstick: The 212· executes about 0.75 million instruc
tions per second on typical object coding, including
floating arithmetic instructions, compiled from FOR
TRAN source language. The fastest 212 operation
we have seen in any program is one sequence of in
structions executed from memory on operands in reg
isters, for which the 212's speed is 1.62 million instruc
tions executed per second.

112 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Xs-the content of Xl at the start of a
character-ori~nted instruction (start
ing address).

Xr-the content of X2 at the start of a
character-oriented instruction (receiv
ing address).

K -the content of Xa at the start of a
character-oriented instruction (maxi
mum string length).

N -the number of characters stored at
the conclusion of a character-oriented
instruction.

P -the number of space characters (60R)

encountered during a transmission.
rA-register A, whose bits are numbered

0-47 from left to right.
rQ-register Q, whose bits are numbered

0-47 from left to right.

3.2.3 Instruction Catalogl9

MOVE -a) copies a character string
of length K from Xs to
Xr •

b) if any character in the
string is numeric (0-9),
bit 45 of rQ is set to one;
if any character is alpha
betic, bit 46 of rQ is set
to one; if any character
is special, bit 47 of rQ is
set to one. Note that this
determination is made as
a character is stored.

c) the final register contents
are as follows:

XI=Xs + K
X2 =Xr + K
Xa=O

MVBRK -a) performs the functions
described under a) and
b) for MOVE.

b) each character leads to
examination of that bit
of r A, rQ corresponding
to the numeric value of
the character. If the bit
is one, transmission
stops; otherwise, the
character is transmitted.

c) if no one bits are found
in rA, rQ (Le., no break

characters are encoun
tered), the instruction
terminates after K char
acters have been trans
mitted. The processor
then performs a jump to
the address specified in
the half-word following
the MVBRK instruction.
The final register con
tents are the same as c)
under MOVE.

c) if no one bits are found
rA, rQ (Le., a break
character is encoun
tered) , the instruction
terminates. The proces
sor counts the number of
one bits, b, to the left
of the bit on which a
"match" occurred. The
processor performs a
jump to the address spec
ified in the (b + 2) nd
half-word following the
MVBRK instruction. The
final register contents
are:

XI=Xs + N
X2 =Xr +N
Xa=K-N

MVBRKSQ-a) performs all the func
t ion s lis ted under
MVBRK.

FILL

b) all characters equal to
60 s (space) are not
transmitted.

c) if no break characters
are encountered, the final
register contents are:

XI=Xs + K
X2 =Xr +K-P
Xa=O

d) if a break character is
encoun teredO, the final
register contents are:

XI=Xs+N +P
X2 =Xr +N
Xa=K-N-P

-a) copies the character in
hits 42-47 of rQ into K

cO'nsecutive character 10'
catiO'ns starting at X r •

b) the final register cO'n-
tents are:

Xl = Xs (unaltered)
X 2 =Xr + K
Xg=O

TCHQR -transfer the character speci-
fied in the address field to'
bits 42-47 O'f rQ.

TCHQL -transfer the character speci-
fied in the address field to'
bits 0-5 O'f rQ.

TQRCH -transfer the character in bits

TQLCH

COMP

42-47 O'f rQ to the specified
character address.

-transfer the character in bits
0-5 of rQ to' the specified
character address.

-a) alphanumeric - cO'mpare
the character strings of
length K starting at X"
and Xl"

b) perfO'rm jump to' the ad
dress cO'ntained at one O'f
three half-wO'rds follO'w
ing the COMP A instruc
tion accO'rding to the fol
lowing:

string X" < string XI'
string Xs = string XI'
string XI> > string Xl'

SCANOT -a) scan the character field
O'f length K starting at
Xl;'
Compare each character
with the character at bits
42-47 O'f rQ. StO'P scan
ning on the first O'ccur
rence O'f a failure to'
match.

b) if the first M characters
did match, then the final
register cO'ntents are:

X 1 =XS + M
X2 = Xl' (unaltered)
X3=K-M

A PHILCO MULTIPROCESSING SYSTEM 113

3.3 PrO'cessor Status InfO'rmatiO'n AutO'mat
ically Transferred By Hardware

All reassignments O'f processO'rs, input
output requests, and calls O'n CO'mmO'n RO'utines
are perfO'rmed under Executive cO'ntrO'l. Since
cO'nsiderable generality is required in cO'ntrO'I
transfer and in interrupt capability in O'rder
that interrupt reSPO'nse time be shO'rt, cO'mplete
infO'rmatiO'n on processO'r status is stO'red rela
tive to' the base of the program segment frO'm
which a particular prO'cessor jumps. If O'ne O'r
mO're proceSsO'rs were in a CO'mmO'n RO'utine
when one or mO're O'f them were interrupted,
status infO'rmation is stored relative to the base
O'f the O'~iginal calling prO'gram (s). Automat
ically transferred status infO'rmatiO'n O'ccupies
a string of three words in a fixed positiO'n rela
tive to' the base of each prO'gram, and includes:

FUNCTION STATUS BITS
Control· Registers

V field 24
Repeat MO'de 1
Repeat Counter 16
Overflow 1
Inhibit Clear Overflow 1
Double PecisiO'n MO'de 4
PrO'cessO'r Number 2
Processor Mode 2

(Executive, CO'mmon
RO'utine, JO'b)

Trap Reasons
Machine Errors

Operand Parity Error 1
Input/Output Parity 1

ErrO'r
Indirect Address 1

Parity Error
Store Parity Error 1
Instruction Parity 1

ErrO'r
Program ErrO'rs

Executive CO'mmand 1
(in CR or J Mode)

Address Limit 1
ViolatiO'n

CO'mmand Fault 1
Trapped Instructions

Halt 1
Breakpoint Jump 1
TO'ggle~ to' D Register 1
Typewriter to' MemO'ry 1

114 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

D Register to Typewriter 1
Input/Output 1

Intentional Trap
Jump to Executive 1

Interval Timer
Time is Up 1

Interrupts
External 1
Executive 1

All other processor registers are address
able and are handled under program control.*

3.4 Inter-Processor Control Communication

In order to perform processor assign
ment, the Executive program must keep cur
rent in its own active lists information on each
processor's status at the time of most recent
execution of the assignment algorithm. In
order to permit selective interruption of proces
sors in consideration of their current status
between points of communication with the
Executive, however, it is necessary that a proc
essor currently in Executive Mode be able to
query and, if necessary, interrupt all other
processors.

Nine basic inter-processor communica
tion commands ha vebeen specified. The first
seven of these are present in the 213 and are
used by its basic software; the other two relate
more particularly to the single-task multiproc
essor problem and are to be included only in
the Advanced System.

It was explained in Section 2.2 how all
processors are anonymous in that any of them
can and does perform Executive functions upon
demand, usually in response to a request issued
by that same processor in a task previously

* At an earlier date, it was planned to include one
pair of hardware macros, SAVE and UNSA VE, for
saving and restoring all index registers and a second
pair, SNAP and UNSNAP, for saving all processor
registers (including ind~x registers). While each of
these macros would have required only a few memory
cycles for execution, subsequent program analysis dis
clos=d that frequency of usage probably would not
justify their inclusion. The SA VE/UNSAVE and
SNAP/UNSNAP instructions have consequently been
deleted from basic machine specifications, will b~ made
available only as machine modifications on 213 and Ad
vanced Systems and, at least initially, will not be used
in standard software.

assigned; and assignments made by a proces
sor while in Executive Mode typically are car
ried out by that same processor as soon as it
has changed back to Job or Common Routine
Mode. This anonymity is limited only on one
respect: each processor contains a 2-bit Proc
essor Number (assigned by manual switch
setting while out of service) so that it can be
identified explicitly in connection with task
assignment. The parameter N in the first three
commands below is this number.

STAY Processor N
RESUME Processor N
TRAP Processor N
ENTER EXEC
ENTER JOB
ENTER COMMON ROUTINE
RDCLR
TRAP Processor(s) in Mode M1!n Advanced
TRAP Processor(s) not in Mode M[System only

The commands ENTER EXEC, ENT'ER
JOB, and ENTER COMMON ROUTINE pro
vide for automatic transfer of a significant
amount of processor information, as listed in
Section 3.3, to fixed memory areas related to
the base locations of programs being entered
and left, as well as expediting storage and
retrieval of the programmable-access regis
ters.These commands provide for efficient
control transfer between processors to be per
formed by the Executive.

The READCLEAR command, applica
tion of which is discussed in Section 4, is
apparently trivial in function but is profound
in significance. Consisting of a memory-read
subcycle only, it transfers the contents of a
specified memory location to the A Register
and stores zeroes in that memory location,
requiring only the first part of a memory cycle
for total execution. Use of this command pro
vides for resolution of race conditions when
more than one processor simultaneously at
tempt to access the same data or program; for
enforcing the convention, necessary in parts
of the Executive Program, that only one proc
essor can be in a particular program segment
at a time,; and for providing information,
through the use of "read-tally" and "write
indicator" words, to make possible Common
Data access as explained in Section 4.3. This in
forms any processor that may inquire what

other activity may be under way in a particular
commonly-accessible data string.

3.5 Basic Single-Segment Dynamic Relocation
and Memory-Protect

In both the 213 and the Advanced Sys
tem, provision is made for all programs to be
loaded relative to local-address-zero; all mem
ory accesses by a processor are offset from
System Zero (Le., physical address zero) by
being added to a relocation register associated
with that processor.

All memory references are checked, in
the course of being issued, by the memory
control hardware in the processor to determine
that they fall between the relocation base and
a limit value (absolute address, not relative to
the base) stored in a limit register also asso
ciated with that same processor.

The base and limit registers are auto
matically loaded under Executive control with
address values designating appropriate mem
ory areas at the time a processor is assigned to
execute a particular job.

Any attempt to reference addresses out
side the assigned range for a particular job
causes a trap to the Executive.

Note two nuances of wording in the
third and second paragraphs back: address
references are checked in the course oj, not
prior to, being issued; and memory areas, not
area, are assigned to a processor in connection
with a task.

Checking address references before
issue would slow down the machine; hence,
they are checked while being issued. Read
references may actually complete before an out
of-range trap is initiated by the hardware;
in that event, the trap win be executed before
the user can use the forbidden information.

W rite references do not cause modifica
tion of memory contents until completion of the
memory-read subcycle; by that time range
checking has been completed; and the previous
contents of a particular location is written
back into it in the event of an out-of-range
Write trap.

The fact that several memory areas,
rather than merely a single string of memory
locations, can be assigned to a processor along
with a job to be executed, will be explained in
the next section. Briefly, it· is because several

A PHILCO MULTIPROCESSING SYSTEM 115

base-limit register pairs exist in each processor
and can be assigned separately by the Execu
tive.

Dynamic memory allocation is per
formed as follows: If a memory area assigned
to a processor for a job is to be changed, the
Executive loads into the appropriate base and
limit registers new address data commen
surate with the new assignment. Subsequent
accesses are relocated and checked in accord
ance with the new assignment.

All input/output, as well as Common
Routine calls, are performed via the Executive.

3.6 Multiple-Segment Dynamic Relocation and
Memory-Protect by Implicitly Selected
Base and Limit Registers1

!)

There are several purposes for which
it is desirable to have a multiplicity of reloca
tion (address base) and address-range-limiting
registers, as opposed to single relocation and
range registers, in each processor. These in
clude facility for:

a) Partitioning of a single program into
non-contiguous areas of memory.

b) Designation that certain infrequently
referenced arrays may be stored in
"slow" main memory when a hier
archy of directly-addressable memory
exists.

c) Access to Common Routines (a single
copy of), which may be executed con
currently by more than one program,
and/or simultaneously by more than
one processor.

d) Common Data access by multiple pro
grams to an arbitrary number of sep
arate tables, with no restriction on
simultaneous read-access (by several
processors) unless one processor is
writing into a particular table, in which
case all others must be automatically
prevented from either writing infQ or
reading that table only.

e) Ability to handle the' single task multi
processor problem.

To this end, each 213 processor contains
two base registers (designated Bo, B1) and two
associated limit registers (designated as Lo,
L1) ; the basic Advanced System will have eight
each Band L registers. The programmer, how-

116 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

ever, has no need to know of the existence of
these registers nor can he address or alter
them.·

The base and limit register operation
may be defined formally: let bi and Ii designate
the contents of Bi and Lh respectively, and Sh
an address. Define the sequence of addresses Si
by

Si = Si-l - li-l + bh i = 1, 2, ... , n

with
So = A + bo,

where A is an effective address. * At each
stage, compare Si with Ii' If Si < lh then a
legitimate memory request exists for physical
location Si' Otherwise, form Si+l and repeat the
process. Either Si < lh for some i, or a request
has been made outside the jurisdiction of this
program.

The effect of the Implicitly Selected Base
Register hardware is to permit execution, dy
namic relocation, memory protect, Common
Routine calls, and Common Data access, as
though every job (program and data, both
shared with other jobs as well as private)
had been loaded into a single, continuously
addressed string of memory locations, ad
dressed via a single relocation register and pro
tected by a single range register. In fact, the
memory allocation may be split into two sepa
rated strings in the 213 and into up to eight,
in the Advanced System. Allocation by the
Executive will take into account that:

a) Several scattered strings of locations
may be available, which together are
sufficient for this job on this run.
(Moving will not occur unless an ade
quate total allocation cannot be patched
together by the Executive for the job
that the sequencing algorithm has
scheduled next.)

b) Some of the space requirements (e.g.,
program, scratch, live data) call for
Slow Core memory. The Executive will
assign strings of fast and, slow memory
as specified by run control information.

c) Some references will be to Common
Routine or to Common File areas; for

* An effective address is the result of indexing and! or
indirect addressing, if used; if not, the effective address
is the instruction address field.

a processor in Job Mode, such refer
ences should be Read-Only protected,
although a processor in Executive Mode
should be able to write into those areas.

The time penalty paid for the automatic
by-hardware selection of base and limit regis
ters is surprisingly small: In the 213, no delay
occurs if a reference is via Bo, Lo, because
multiple-input address arithmetic hardware
handles the entire sequence during normal in
dexing. If the second pair of registers is se
lected, effective instruction execute time, on the
average, increases about 80 nanoseconds. In
the Advanced System these delays will be more
nearly completely covered in address preproc
essing, and the maximum delay, for the eighth
pair of registers, will be less than 15 nano
seconds.

To illustrate the manner in which the
registers operate, let us consider a program
(that, of course, is compiled relative to zero
and) is loaded into memory.

PHYSICAL MEMORY

ADDRESS

1000

•
•
•

1999

5000

•
•
•

5499

COMPILED
ADDRESS

o

•
•
•

999

1000

•
•
•

1499

SPLIT RANGE PROGRAM EXAMPLE

Figure 8

Figure 8 represents a program requIrIng a
total of 1500 words of memory that has been
loaded, at the convenience of the Executive's
memory allocator, into distinct, non-contiguous
areas: physical locations 1000-1999 and 5000-

5499. Note that the program contains legiti
mate references to locations 0-1499.

Before entering the program, the Execu
tive sets the base and limit registers as follows:

Bo == 1000
B1 == 5000

Lo == 2000
L1 == 5500

When the program references location 1200,
the computer forms

So == 1200 + (Bo) == 1200 + 1000 == 2200

and compares with (Lo) == 2000. Since So >
2000, the computer forms

Sl == So - (Lo) + (Bd ==
2200 - 2000 + 5000 == 5200

and compares with (L1) = 5500. Since Sl < Lb
a legitimate memory request exists for physical
location 5200.

In the basic 213 the following restriction
exists: I/O buffer cannot be split between the
two non-contiguous regions Bo, Lo and B1 , L1 •

A later version of the machine, and the Ad
vanced System, will provide facilities in the
I/O control hardware for handling split buffers.
Since large buffers will usually be assigned
(entirely) in Slow Core, we do not feel that
this restriction is a serious one.

4. COMMON-ACCESS PROBLEMS AND A
PROPOSED SOLUTION

4.1 Common Routines

4.1.1 Introduction. We shall discuss in this
Section, and present our first version of a hard
ware-software answer to, a multiprogramming
problem that we believe will assume crucial
importance as systems get more powerful and
with increase in the number of users-especially
computational-colloquy -by -time-sharing users
-concurrently active in a general-purpose
facility.

Comm,?ll Routines as here described
have also been called Pure Procedures,ll Com
mon Procedures,9 Re-Entrant Routines,12 Sin
gle-Copy Routines,13 and various less-polite
names.

The objective is that subroutines, to
arbitrary nesting depth, and large routines
such as compilers and executive routines that
are called upon to perform service for many
users, should be accessible to any number of

A PHILCO MULTIPROCESSING SYSTEM 117

calling routines in memory, whether or not they
are currently being executed by other proces
sors in a multiprocessing system. Execution of
a Common Routine may be· interrupted before
normal exit, and the calling program may re
quest proper continuation of the calculation
even though both calling program and Common
Routine may have moved meanwhile.

We accept as a present restriction the
requirement that subroutine nests must always
be retraced in the reverse order in which they
were called, although entry may be made at
any level in the nest.

Figure 9 shows a much-oversimplified
linkage path from two routines through a
three-level subroutine nest. The subroutines
are shown fixed in location, while each of the
two calling programs moves from time to time.
Program B accesses Subroutine 3 through Sub
routine 2; Program A accesses Subroutine 3
through both Subroutine 1 and Subroutine 2,
in that order.

If the linkages are spread out in time,
they might occur as shown in numerical se
quence. The link 1-2 from Program B in its
Location 1 to Subroutine 2 and return is shown
dotted to denote that B's execution of SR2 was
interrupted before completion.

4.1.2 Com'mon Routine Access.19 Common Rou
tines may be executed simultaneously by more
than one processor. Such routines:

a) Cannot alter themselves or be altered
by calling programs; i.e., must be in a
memory area that is protected as Read
Only (except by the Executive).

b) Must have access to parameters, ar
rays, and scratch areas within the
memory areas assigned to each calling
routine.

c) Must be compiled relative to zero.
d) Require base and limit registers to be

set before entrance.

The design considerations of the 213 and
the Advanced System satisfy the above require
ments of Common Routines. Condition c) is
trivial, since all 213 programs are normally
compiled relative to zero. Condition a) must
be satisfied by the programmer; however, cer
tain processor hardware (discussed below) de-

118 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

PROGRAM
A

LOCATION
I

SUBROUTINE

I

COMMON SUBROUTINE LINKAGES

PROGRAM
B

LOCATION

2

~\
I \

I I 2~ 3

\ ,
PROGRAM

B
LOCATION

I

SUBROUTINE
3

Figure 9

tects and prntects against attempts to. write
into. Cnmmnn Rnutines.

Cnnditinns b) and d) require elabnra
tinn, since they lead to annther kind nf utiliza
tinn nf base registers. We shall assume that
a subrnuntine is called by a jump instructinn
fnllnwed by a list nf parameters cnnsisting nf
the addresses nf variables and arrays. * In the
case nf a call nn a Cnmmnn Rnutine, the jump
will be directed to. the Executive System. The
Executive will then perfnrm the fnllnwing
changes in the cnntents nf the hase registers
(nntatinn as in Sectinn 3.6) :

bo ~ Bl
10 ~ Ll

Start nf Cnmmnn Rnutine ~ Bo
Upper limit nf Cnmmnn Rnutine ~ Lo

* This is consistent with the form used in Philco
FORTRAN IV.

Further, a prncessnr is set to. Cnmmnn Rnutine
Mode, dennting that memnry references rela
tive to. Bo are "Read-Only," prnviding the extra
prntectinn prnmised in the discussinn nf cnndi
tinn (a) above.

The Executive nnw enters the Cnmmnn
Rnutine and supplies it with the address nf the
first parameter (relative to. the base nf the
calling prngram). The Cnmmnn Rnutine may
nnw reference itself (via Bo, in "Read-Only"
mnde) and may reference any parameters and
arrays in the calling rnutine. ** Tn reference
lncatinn X in the calling routine, the Cnmmnn
Rnutine simply refers to. its nwn upper limit
+X.

** The reader will have noted that the Common Rou
tine cannot reference any portion of memory specified
by (Bl Ll) in the 213 ({ B7, L7) in the Advanced System)
prior to the subroutine call.

Note that this scheme permits nesting of
Common Routines. For this case, the Execu
tive at the time of each call alters Bo and Lo to
contain the starting and ending addresses of the
nested subroutine. Further, the Executive
makes space provision in the calling program
for the required parameter tables to be used
and generated by the Common Subroutines, as
well as scratch areas, at all levels of nesting.

4.2 Exclusive-Occupancy Routines19

To complete our discussion of routine
access control, let us consider the antithesis of
the Common Routine: the routine that cannot
be allowed to be executed simultaneously by
more than one processor, or even concurrently
by more than one program. We shall describe
a scheme by which any program can determine
whether another program has entered an Ex
clusive-Occupancy Routine and. either is still in
it or has been interrupted and has hence exited
prior to normal completion.

The RDCLR (Read/Clear) instruction
was introduced to provide a means by which
race conditions involving subroutines and Com
mon Data can be avoided. This instruction
transfers the contents of a specified memory
location to register A and stores zeros in that
memory location. It consists merely of a mem
ory-read subcycle.

RDCLR can also be used to protect
Exclusive-Occupancy Routines. Consider a
subroutine in the Executive that must not be
executed by more than one caller at a time.
By convention, the first word of the subroutine
is used as an "entry word." Before entering
the subroutine, any program must check the
entry word by issuing a RDCLR. If the con
tent of register A is then non-zero, entry is
permissible; further, all other programs are
now alerted to avoid entry since the entry word
is zero. The convention for normal exit from
the subroutine must include as a final gesture
the setting to non-zero of the entry word.

4.3 Common Data Access!!)

It is desirable for an arbitrary number
of calling programs to have access to a com
monly-available memory area while each pro
gram is located in its own job area. Further,
if one program is altering a table in Common
Data, it should be possible to lock out access

A PHILCO MULTIPROCESSING SYSTEM 119

to that particular table by all other programs.
Access to Common Data is provided

through use of the base registers. Bo, Lo are
used to reference the program proper; the
pair Br, Ll are assigned to the Common Data
area.

The RDCLR instruction (defined in 4.2
above), in conjunction with a "write-indicator"
and a "read-tally" word is used to provide for
protected reading and updating of Common
Data tables. A zero write-indicator word con
notes that some program is currently altering
a table entry or is altering the read-tally word;
a non-zero read-tally word connotes that one
or more programs are accessing for "Read
Only" purposes. A program desiring access
to alter the table must ensure that the write
indicator word is non-zero and the read-tally
word is zero. A program desiring to read the
table must perform the following in the indi
cated sequence: ensure that the write-indicator
word is currently non-zero and force its con
tent to be zero (all by a RDCLR instruction) ;
increase the tally in the read-tally word by
unity; reset the write-indicator word to non..,
zero; decrement the tally in the read-tally word
by unity when no further access to the table
is desired.

The method outlined above permits an
arbitrary number of programs to read a Com
mon Data table and provides a tally of the
number of such programs currently reading
the table. A program desiring·· to alter the
table first prevents access by any additional pro
grams and then alters the table only after en
suring that all programs have relinquished
access to the table.

5. JOB SEGMENT SEQUENCING

Lavine 5 discussed dynamic rescheduling
by macro-segmentation; i.e., the treatment of
input processing as one segment, execution (in
cluding scratch I/O) as a second segment, and
output preparation as a third segment, opti
mum sequence of all such job segments to be
determined by a set of algorithms. Input read
ing from cards (not processing) would occur
whenever any unread cards were in any reader,
unless halted by exhaustion of available input
tanking space on drum. Sequencing considered
quantitative factors including time since sub-

120 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

mission, estimated execute time, estimated
printing volume, priority rating, and time of
day. The sequence determination also consid
ered such imperative factors as number of tape
units needed and available and amount of drum
space assignable for I/O tanking, and the op
tional factor of which form is on which printer
at which time.

He pointed out that the nature of the
sequencing algorithm needed was heavily de
pendent upon user installation management
policies, and suggested that a manufacturer
should supply a simple, fast one that is easily
modified as required.

The multiprogramming task as discussed
in the present paper may be seen to be a
generalization of the dynamic rescheduling
concept discussed by Lavine. We feel that all
of his observations are valid and that the se
quencing considerations he outlined must be
taken into account in a realistic multiprogram
ming system planned for general application
in a job-shop environment.

6. MULTIPLE-PROCESSOR ASSIGNMENT

The three levels in assignment of mul
tiple processors will be listed in ascending order
of difficulty.

a) Independent Tasks
The basic sequencing algorithm is in
sensitive to whether there is more than
one processor in the system; hence, the
handling of independent tasks changes
little as the system configuration
changes. Truly independent jobs are
merely stacked and sequenced.

b) Interdependent Tasks
Some jobs depend upon prior comple
tion of others for input data. In these
cases the required prior run (s) are
specified to the executive system by
control card, and the executive checks
for their completion and for the on-line
availability of earlier results before per
mitting the follow-on run.

c) Single Task
We have looked at several aspects of
the problem having several processors
work simultaneously on a single task,
and feel intuitively that this must be
planned in detail by a user who under-

stands a particular application. For
this reason we are supplying some
basic tools for the use of application
programmers, but feel that the serious
problems of single-task multiprocessing
are theirs. Three types of problems,
two of which are similar in nature, ap
pear to be clearly practicable for single
task multiprocessing:
1. In relaxation schemes for manipu

lation of large matrices, mesh
sweeps can be 'started by two proc
essors at opposite boundaries and
can proceed independently toward
the center until two adjoining rows
must be relaxed; the processors then
must check each other at each mesh
point. This amount of inter-proces
sor communication is relatively triv
ial.

2. In Monte Carlo calculations, a large
number' of completely independent
histories of problem elements are
developed. Statistics can be accumu
lated by any number of processors
working essentially independently,
although final results must be ana
lyzed (presumably by one proces
sor).

3. We have seen a number of examples
of large data processing and data
reduction problems in\ which indi
vidual items were essentially inde
pendent and could be examined in
parallel. As in the case of the ran
dom-shot technique mentioned in the
previous paragraph, only the final
summing-up of results need be han
dled as a one-machine task.

7. MEMORY REMAPPING (PAGING) AND
PAGE PROTECT HARDWARE PLANS

This function was introduced in Sections
2.2 and 2.3 and will be discussed in this section.

Figure 10 shows the relationship be
tween some of the hardware elements. *

The 24-bit (non-overlapped) addresses
present in all full-word instructions, in all index

* Present tense will be used in this Section for the
sake of brevity; it should he understood that future
tense is implied.

A PHILCO MULTIPROCESSING SYSTEM 121

MEMORY BANK

M

E
M

o
R

Y

101,:-B~llIT.JW!!!0~R~D~N~U~M~B~E;R~~~~C~~~~=j 48-BITWORDS INTO AND FROM MEMORY I ADDRESS I DATA
II-BIT PHYSICAL
MEMORY BLOCK '"--________ ---1 IIACCESS·OKII
NUMBER

= =1=== =F===

M C
E 0

N
M BLOCK

NUMBERS

II BITS

I
MEMORY
PROTECT

MODE
2 BITS

MEMORY
LOCK

NUMBER
II BITS

o T
R

R
Y 0 II BIT ADDRESS

= ==F== =1==

COMPARISON
CONTROL

COMPARISON
NETWORK f----+II

TRAp
lI

L =F== ~ = = ~ =0=" =1== =F = = =F=
LOGICAL PAGE NUMBER

P

R

o
C

E
S

S

o
R

WORD

2 BITS

PROCESSOR
MODE

REGISTER
(E,J, OR CR)

2 BITS

MEMORY
PROTECT

MODE
REGISTER

MEMORY
KEY

REGISTER

I~BERC IHARACTER NUMBERl 1 I -, FIELD CONTROLJ -------I

BITS 0- 10iBITS 11-20 BITS 21-23

MEMORY
ADDRESS
REGISTER

MEMORY
DATA

REGISTER

MEMORY PAGING CONTROL AND PROTECTION

2 BITS

INSTRUCTION
CLASS

REGISTER

Figure 10

registers, and in all indirect addresses are com
bined to form an Effective Address in the Mem
ory Address Register of each processor. This
24-bit field is treated as consisting of three
parts:

Bits 0-10 identify anyone of the 2,048
1024-word logical pages of main memory. Bits
11-20 identify the word number in a page.
Bits 21-23 constitute character number within
a word for character-string commands; Bit 21

specifies half-word for jumps and indirect ad
dress locations; and these bits are irrelevant
in instructions that reference full-word oper
ands. The three fields are treated in different
ways.

Bits 0-10 select individual 24-bit words
in Control Memory, and may be looked upon as
being one level of indirection (in addition to
indirection that may have been inserted by a
processor) in all full word instructions. Bits

122 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

11-20 are used directly, adjoined to the physi
cal block number contained in the CM word
selected by Bits 0-10. Bits 21-23 are used to
delineate character string boundaries.

Individual memory banks (32K in main
memory or 262K in bulk memory) receive ad
dress information through Memory Control in
two fields, which are adjoined to identify single
words: In both cases the 10-bit Word Number
(within a page) field is transmitted unaltered
from a processor through Memory Control;
each memory bank receives the Physical Block
Number field (bits 6-10 for main memory, Bits
3-10 for bulk memory) from the Page Num
ber section of Control Memory.

For the Advanced System, thin-film
main memory is organized in word pairs; Bit
20 is consequently adjoined to Bits 21-23 in
selecting the field to be presented to the proces
sor's Memory Data Register.

Added to other control signals to the
memory banks, the "Access ok" line signals
that the requested access is acceptable to mem
ory-protect, and permits the access to take
place.

Memory Control contains, in addition to
switching and race-resolution facilitie's, the
Control Memory and circuitry for the memory
protect function.

Control Memory is a 1024-word, 48-bit,
half-word-addressable module using the 'same
technology as used for Main Fast Memory;
for the 213, this is 1.15 microsecond nominal
cycle time magnetic cores; for the Advanced
System, 250 nanosecond nominal cycle time thin
film. Because of the small size of this unit,
actual operating speeds will be somewhat
higher; it will be shown below that the speed
of Control Memory is not a critical determining
factor in system speed.

As pointed out by B. Arden,12 it is
desirable in a remapping (paging) system that
all possible logical addresses exist in the hard
ware, . irrespective of the actual size of physical
memory. In those 213's that are provided with
paging and in all Advanced Machines, all loca
tions from 0 to 2,097,15110 will exist as valid log
ical addresses. The leftmost 11 bits of each logi
cal address select a "logical page number" in
Control Memory, which contains, in addition to
13 bits of memory-protect information appli
cable to the associated 102410-word block of

physical memory addresses, the 11-bit number
identifying that particular physical block num
ber as assigned by the Executive'.

A typical program being executed oper
ates for significant periods of time with two
pages of memory being accessed repetitively;
strings of instructions (most of them half-word
in space occupied) are executed in address
number sequence until a jump occurs, and many
jumps are to other instruction strings within
the same thousand-word page; most instruc
tions contain one address and reference one
operand location, many successive instances of
which either will be in unbroken sequence or
will be in other locations within the same thou
sand-word page. Thus, a page number is likely
to be repeated many times in succession, so
that most references for either program or
data to Control Memory would be redundant
with the previous reference of the same type.

In order to avoid repetitious translation
of page numbers (i.e., evocation of block num
bers and of memory-protect data currently ap
plicable to each), the currently-most-active 16
half-words of Control Memory will be retained
in registers in Memory Control. Reference to
these registers, when appropriate, is auto
matic, * as follows:

Each Active Page Register is 35 bits in
length, consisting of an 11-bit Logical Page
Number and a 24-bit string containing the con
tents of a half-word of Control Memory.

Every memory access request to Mem
ory Control causes all 16 of the 11-bit fields to
be checked simultaneously. An exact match
causes the Control Memory reference to be
bypassed, since the desired paging information
exists in the 24-bit string representing the
desired half-word in Control Memory.

If no match is found, a normal Control
Memory access is performed. The 24-bit string
of information about that page number, in
addition to being applied to the processes of
block selection and memory protect, is then
inserted to replace the previous contents of that
Active Page Register that has been least active
during a fixed previous time period (6 milli-

* We have been unable to determine the author of
this concept; we believe he was a student associated
with one of the university computing centers.

seconds in the 213, 1 ms in the Advanced Sys
tem) as determined by simple digital hardware.

Preliminary examination of samples of
compiled coding from various types of pro
grams has convinced us that, at the thousand
word page size and with two processors active
in either a 213 or an Advanced System, the
probability of a page number currently stand
ing in one of the Active Page Registers is be
tween 0.97 and 0.99; Le., from 97% to 99% of
page translations will not access Control Mem
ory.

Control Memory access times (worst
cases will be about 800 nanoseconds in the 213
and 140 nanoseconds in the Advanced System)
will be covered by other logical operations in
about 30% of the instances in the 213, and
about 80% in the Advanced System; Active
Page Register access times (about 90 and 12
nanoseconds for the two systems) will be cov
ered in about 60 % and 80 % of the instances
respectively.

Thus, the typical time costs of paging
will be as follows:

213: For perhaps one-fiftieth of the in
stances, an average of 550 nanosec
onds; for other instances, an average
of 36 nanoseconds; effective increase
in instruction execution time, about
45 nanoseconds.

Advanced System: For perhaps one-fiftieth
of the instances, 28 nanoseconds; for
others, slightly less than 10 nano
seconds; effective instruction time in
crease, about 10 nanoseconds.

A remark on page size: The dollar cost
of paging hardware and the time cost of its
use both increase rapidly as page size is re
duced. Smaller page sizes permit memory
assignments by the Executive to be performed
with greater precision (Le., with less unassign
able memory within pages) and hence reduce
the· probability that a particular job initiation
will require repaging of all active jobs. Our
earlier thinking tended toward 256 words as
the size of a page; development of the Implicit
Base Register Selection mechanization shifted
the optimum page size to 512 words for the 213
and 1024 words for the Advanced System. The
size chosen is, as noted above, 1024 words for
both systems.

A PHILCO MULTIPROCESSING SYSTEM 123

With regard to the type of Control Mem
ory, our earlier thinking centered on very fast
nondestructive-read memory, which is pres
ently designable with about 80 nanosecond
read-access time and about 5 microsecond write
time. The combination of medium-speed Con
trol Memory plus Active Page Registers is
slightly cheaper and considerably faster at the
present time, and we do not anticipate a rela
tive change in these factors by the time of
manufacture of the first Advanced Systems;
hence, the latter scheme was chosen.

For the remainder of this Section we
shall, for the sake of brevity, refer to page
number accesses as though all were to Control
Memory; as explained above, while they may
be so considered for program planning pur
poses, most memory accesses in fact use only
t~e Active Page Registers.

The second Control Memory field we
shall discuss is Memory Protect Mode, which
contains 2 bits and which is used together with
the 2-hit Processor Mode field and the 2-bit
Instruction Class field to establish the permit
reject decision prior to checking of the proc
essor's numerical key against the memory
page's numerical lock.

Figure 11 displays the results of appli
cation of these four items of information. "I"
indicates that the action is permitted if the key
fits; "0" indicates that an error trap will occur
irrespective of key-lock relationship.

We shall refer to processors in Executive
Mode, Job Mode, and Common Routine Mode

PROCESSOR M.P. READ WRITE I/O JUMP
MODE MODE

EXECUTIVE{

00 00

00 01

00 10 0

r 01 00 0 0 0

JOB l 01 01 0

01 10 0 0 0

{
10 00

COMMON
ROUTINE 10 01 0 I

10 10 0 0

MEMORY PROTECT MODES

Figure 11

124 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

as E processors, J processors, and CR proces
sors, respectively.

Memory Protect Mode 0 is used only for
the executive program and for data reserved
to it. All actions-Read, Write, I/O, Jump
are permitted to E and CR processors; none, to
a J processor.

Memory Protect Mode 1 is used for the
normal job-assigned memory area, for program
and data alike. All actions-Read, Write, I/O,
Jump-again are permitted to E processors;
Read, Write, Jump, to J processors; Read, I/O,
Jump, to CR processors.

Memory Protect Mode 2 is used for Com
mon Routines by E and CR processors, both
of which can Read and Jump to Mode 2 pages;
E processors can Write into them. It is also
used for Common Data by J processors, which,
as explained in Section 4.2, can Write into them
under hardware-controlled protection against
writing into a Common Data area when any
other processor is either Reading or Writing
into that same Common Data area. The latter
(separate) protection scheme is not restricted
to full-page delineation, but may be assigned
under program control to continuous-address
strings of any number of full words for each
Common Data area, within which two words
are required to hold a Read-tally word and a
Write-indicator word.

A Memory Lock Number of 11 bits is
stored in the Control Memory half-word for
each page of memory. A Key Number is placed
in the 11-bit Key Number Register in a proces
sor each time it embarks on a task, whether in
E, J, or CR Mode, and the same nUlnber is as
signed to all memory pages permitted to be
accessed for that task.

The ability to assign different key num
bers for various kinds of executive functions
was provided as a debugging aid, primarily for
the circumstance in which more than one proc
essor is in E Mode at the time of a trap brought
on by a program fault within the Executive
program itself.

In this paging scheme, the actual mov
ing of information in connection with memory
reallocation or job relocation is replaced by
the process of renumbering memory pages,
which in the 213 takes about 2.1 microseconds
per two pages. This corresponds to a move
speed of about 1000 words per microsecond.

It may be remarked that the page
renumbering concept in memory allocation is
analogous to the register-renaming process
used within many of the algorithms in the 212
and the 213 to save the time that would other
wise be required to move data from register
to register.

The paging concept described here is a
particularization of the Adjoint Addressing
scheme proposed by Cheydleur.17

8. CONTROL OF INPUT/OUTPUT
DEVICES BY CENTRAL VS.
AUXILIARY PROCESSORS

Several factors affect the decision as to
the kind of processors to be used for I/O device
control.

At the present time, both total economy
and modularity favor the use of one or more
auxiliary processors. This assertion requires
defense, since a first loqk would lead one to the
reverse conclusion in each case.

As for economy, the auxiliary processor
makes excellent use of automatically-assigned
buffer memory that is no faster than it needs
to be, and is consequently economical. If the
processo'r itself, which is a very-low-cost part
of th~ system, were omitted, most of the I/O
cost would remain: passive switches, unit-rec
ord buffers, and the I/O devices themselves.
Economy is affected by the speed with which
the devices can be operated. As an indication
of observed performance in this area, consider
the operation of the type 101 Processor when
used with our R I N G MAS T E R (multipro
grammed) program to control the flow of data
between magnetic tape and an arbitrary (limited
by memory size because of buffer space require
ments, but not less than eight for a 32,768-
character-memory single processor) number of
I/O devices. When operating with one 600 cards
per-minute reader, one 200-cards-per-minute
punch, and two 900-lines-per-minute printers,
the printers operate at 96 % of rated speed.
Initiation of a third printer function does not
interrupt other operations, and each of the
three printers operates at about 94% of rated
speed. We have concluded that economy alone
does not justify elimination of the auxiliary
processor.

As for modularity, the auxiliary proces-

sor takes its output data from, and sends input
data to, the mass memory (jointly-accessible
drum), and receives its assignment to individ
ual I/O tasks from the Executive. A change in
the number of I/O device channels to more
than eight requires addition of another aux
iliary processor and buffer memory connected
through the existing mass memory controller.
There is no question of a housekeeping load
beginning to affect the speed of the central
processor (s), because all I/O devices are on-line
with the auxiliary processor (s), and control
communication is required only for few-milli
second periods at the initiation and termination
of I/O tasks or in response to error conditions.

For computational - colloquy - by - time -
sharing operation, the above comments are
even more appropriate than for job-oriented
operation. Operation of up to a thousand or
so keyboard consoles, or several hundred such
consoles plus a few dozen high-data-rate CRT
equipped consoles, requires the full resources
of a reasonably high-powered special-purpose
switching computer. The Type 170, as used
in the 212 Time Sharing System now under
development and as used in the second phase
of the AUTODIN project, provides such power
at a fraction of the cost of similar tasks per
formed by a general-purpose processor. As an
example of the kind of power required, consider
that line monitoring and buffer-full checking
alone, for a thousand 10-characters-per-second

"channels, would overtax the full-time capabili
ties of some machines that until recently would
have been considered to be high-powered com
puters!

Another CCTS consideration is that of
remote-service graceful degradation, discussed
in Section 1.8. As the number of on-line users
goes up, the likelihood grows that it will become
utterly unacceptable to shut everyone down
because of a system hardware fault. Re
dundancy of processors, main and auxiliary
memories, system switching, and I/O devices
required for successful support to remote con
soles, together with appropriate system plan
ning and executive programming, will permit
remote service to go on, if at reduced-service
level, while hardware is being repaired. A
reduced-scale version of a single station AUTO
DIN second-phase system would provide the
"foreground" (remote user) assured-continuity

A PHILCO MULTIPROCESSING SYSTEM 125

capability for a thousand keyboard remotes.
Even if the system is not made redundant in
central facility as regards foreground users,
isolation (by a separate processor) of remote
users from direct access to the central facility
reduces the amount of central system time that
can be lost because of faults in lines or remote
units.

The need for over-all system graceful
degradation, however, now seems to favor the
use of the central system for control of the on
line I/O devices.

For that reason, even though raw sys
tem economy is not quite as good as with the
special-purpose stored-program I/O controller,
we intend, for later 213's and for all Advanced
System installations, to provide the option of
central processor control of all local I/O de ...
vices. Initial 213 installations will use one 101
processor for up to eight I/O devices, with
additional 101's as may be required with a
larger number of local or remote card/printer
stations.

Remote CCTS consoles, also, could be
controlled by the central processor (s), but our
present plans call for full-time use of one or
two communications switching stored-program
processors, Philco Type 170, for this purpose.
This choice was made as a result of preliminary
calculations indicating that use of central proc
essor (s) for control of remotes, would add
significant CPU workload if sufficiently-rapid
(100 millisecond) response is to be assured to
an on-line population at the level of 100 con
currently-active users in a 213 system (400 in
an Advanced System). This question will be
given further study by means of system simu
lation.

9. COMMENTS ON AN UNSOLVED PROB
LEM-MEMORY SCAVENGING

Certain basic logical problems, which
must be solved in at least a crude way if we
are to achieve fully automatic job segment
control at a performance level approaching the
optirnum, do not yet seem to have been even
discussed constructively, much less ,solved. As
an example we will mention one simple prob
lem, that of determining optimum time to re
lease memory space, that is frequently men
tioned among sophisticated users but that, to

126 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

the best of our knowledge, has not yet been
seriously worked upon.

How is the system to determine when
main memory space should be released for
reassignment?

For lack of a rational approach to this
problem, we have been forced to avoid it; hence,
in the present 213 Executive, main memory
space is released only when:

a) Control information has been supplied
by the user that specifies when final
use of specified memory areas has been
made, or

b) A job segment terminates.

Common Routine (with which, in this
section, we include Common Subroutine) capa
bility, in order to be used effectively, must be
supported by features in the Executive that
provide for automatic loading of Common Rou
tines when and only when they are needed but
not already in Main Memory and for the auto
matic release of space occupied by them as soon
as they are no longer needed.

As with any job to be loaded, each job
-4-"L.~-4- _______ ~lp~ •• ~~ ~.c n _______ n_ .. -4-~ __ ~ __ •• ~-4-

l,ua l, lua,Y Ulan.1:: Ui::il:: U~ vUUllUUU ~\,u U l,IUI::i::i Ul Ui::i l,

identify at load time those routines in its control
prescript. The special designator signals that
each routine so designated must be treated dif
ferently, as outlined below.

The Executive maintains two lists to
identify the two way association between pres
ently-loaded Common Routines and the pro
grams that call them.

List A, which is in the Executive area,
consists of two-word items: the first word of
each item is the name of a presently loaded
Common Routine, and the other· word is the
current count of calling programs requiring
that routine to be resident in Main Memory.

List B, which is stored in each calling
routine's area, consists of variable-length items:
each item's first word is the designation of a
calling program, and subsequent words of the
item identify all Common Routines that it may
require.

Usage of these, lists will now be evident:
as each calling program having Common Rou
tine requirements is scanned for call informa
tion, its Common Routine requirements are
used to create an item in List B. List A is then

searched to determine whether needed Common
Routines are alre'ady loaded. As each required
Common Routine not yet present is loaded, an
item is added to List A: the first word is the
Common Routine's name', and the second word
contains unity. For each called-for Common
Routine, that is already loaded, the second word
of ' its item on List A is incremented by unity.

As a job segment terminates, its List B
is scanned and the second words of all entries
of List A corresponding to its Common Routine
requirements are decremented by unity and
checked for zero value. Those found to be zero
are deleted from List A and the space assigned
to each corresponding Common Routine is re
leased for reassignment.

While the Common Routine loading con
trol problem as outlined above is relatively
trivial, there is another memory allocation
problem that is not: we must provide for grow
ing and shrinking memory allocations during
a job. The classic example that demonstrates
this need is sorting with magnetic tape as the
scratch medium. During the Sort phase, high
speed requires large memory allocation; during
the Merge phase~ data space requirements are
minimal. Clearly, it is desirable to release much
of the original allocation at the end of the Sort
phase. In the case of the ubiquitous compile
and-go-user, memory space requirements after
compile may go either up or down, and subse
quent executions may have data-dependent run
time space needs. With some restrictions, we
shall meet the growing-shrinking space chal
lenge.

These restrictions relate to the levels of
source language at which dynamism is per
mitted in memory allocation and release. Our
present procedural higher-language processors,
for publicly-recognized versions of FORTRAN
and COBOL, are perforce language-limited to
memory allocation that is fixed at load time.
Having developed hardware with facile provi
sion for dynamic memory allocation, we are at
tracted by the ALGOL concept of automatic
allocation of memory upon entry to a program
block and automatic release upon exit from a
block. We find unappealing a current trend
toward inclusion in higher-language processors
themselves the direct user-specified control of
memory allocation; we feel that this places a
premium upon attention to hardware considera-

tions, which is appropriate only at the hard
ware-oriented language level.

For "job mode" operation as defined in
Section 1.5, release determination based upon
either a) or b), i.e., at user-signified option, is
probably adequate. The job-oriented user can
realistically be expected to pay some attention
to memory space-time strategy, even if he
works in a language that permits some degree
of spiritual detachment from the hardware.

In the computational-colloquy time-shar
ing (CeTS) mode, however, with continually
increasing emphasis upon the user goal
(answer to problem) as opposed to our tradi
tional preoccupation with user means (proce
dure for problem solving), the user/hardware
detachment becomes quite real. In such an
environment, we should have a more realistic
strategy for scavenging memory space than
our present technique of awaiting its evident
abandonment by the user. We shall continue
to seek such a strategy.

10. SYSTEM GROWTH AND
COMP ATIBILITY

10.1 212-213

The 213 logically includes the 212 and
utilizes much of the same hardware technology.
Consequently, some of the 213's operations
occur at about the same speed as those of the
212, although in some (such as multiplication)
the 213 is at least twice as fast and others,
constituting 213 hardware macro-operations,
are carried out at much higher speeds than the
same macro-operations carried out as pro
grammed sequences in the 212.

The outstanding differences between
these systems, as to both hardware and soft
ware, are the increased flexibility and general
ity of the 213 together with its applicability in
large multiprocessor installations.

The 213 will serve as a live test facility
-alive in that it will be applied to advanced
problems by sophisticated user organizations
as well as by Philco Programming Research &
Development-for development of solutions to
the operational problems outlined in Section 3.

New hardware capabilities will handle
efficiently some economically crucial aspects of
the address-manipUlation and program-linkage
problems and will provide significant improve-

A PHILCO MULTIPROCESSING SYSTEM 127

ment over earlier machines in such functions
as memory protection. General answers to some
aspects of multiprogramming problems, how
ever, require further study.

For example, it appears that a com
pletely unrestricted general solution to the
Common Routine problem, permitting arbitrary
linkages to be established among subroutines,
may require, even in a system with paging
hardware, manipulation of both logical and
physical memory page numbers. Approaches
to this problem now under study would require
use of either content-addressed or associative
memory of medium speed in the memory alloca
tionprocess.

Initial 213 hardware and software fairly
frequently will perform relocation of currently
resident routines when job segments are loaded
or reloaded, accepting relatively minor ineffi
ciency, and limitations of the extent to which
automatic micro-segmentation will be econom
ically practicable, for the sake of generality.

10.2 Advanced System

The Advanced System will contain the
213 and like it, will be capable of executing
unchanged-routines written for earlier 2000
systems. In addition to using advanced hard
ware technology, including a number of new
mass memory and input/output devices, and
operating at considerably greater speeds, the
Advanced System will differ from the 213 in
the following respects:

a) Certain engineering design decisions,
such as the optimum organization of
the (automatic-in-hardware) look
ahead and look-aside portions of proc
essor control and the extent of over
iapping of control memory and main
memory access, will be different from
those in the 213 because of the different
relative speeds of some hardware ele
ments and because of the greater oper
ational flexibility that will be required
in the Advanced System. Some design
decisions must await detailed analysis
of actual running programs in user
installations in a multi programmed op
erating mode. These engineering
choices will be deferred until the needed
data are on hand.

128 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

b) The extent of vocabulary extension
that is economically justifiable beyond
that of the 213, will likewise depend
upon 213 experience and dynamic anal
ysis of running programs and, in addi
tion, will be affected by programming
language developments over the next
two years.

c) Software scope for the Advanced Sys
tem will be considerably greater than
that for the 213, although several majo:r;
items will carryover unchanged and; all
213 software will be usable.

11. MASS (BLOCK ACCESS) MEMORY

11.1 In 213

With the 210 and 211, only magnetic
tape (90K chis data rate) was provided for
on-line-accessible program and data files. With
the 212, either 90K chis or 240K chis tape and
a high-data-rate (960K chis) but slow access
(140-240 milliseconds) disc file of 5.2 million
words per unit was provided. With the 213,
additional flexibility was required.

'The 213's Mass Memory Controller pro
vides for up to eight program-compatible units
per controller. The units differ in data rate,
access time, and in capacity per unit; they con
sist of an updated verson of the 212's moving
head disc and two (different-data-rate) ver
sionsof the same drum unit:

a) Disc-10,485,760 (5 X 221) words ca
pacity, 140-240 milliseconds ac
cess time, 960K chis data rate,
8,192 words per revolution, lim
ited to one access at a time for
each unit, 3 milliseconds maxi
mum access time for 8,192-word
transfer if prepositioned.

b) Fast Drum-2,097,152 (221) words per
unit, 50 milliseconds worst-case
access time, 0.6 milliseconds
maximum initiation time for
8,192-word transfer, data rate
1.32 million chis, single-chan
nel.

c) Multi-Channel Drum - 1,835,008(7 X
218) word per unit, 50 millisec
onds worst-case access time, 4
milliseconds maximum initiation

time for 2,048-word transfer,
data rate 320K chis on each of
4 unrestricted channels.

We use the moving-head disc for low
access-rate (less than three accesses per sec
ond) large-volume files. It will for some time be
the most economical unit when considering ca
pacity and cost alone.

The fast drum will be used for job-swap
ping when numbers of users in a time-sharing
system rises to a point that crowds the access
rate capacity of the moving-head disc; the fast
drum is practicable for access rates up to 15
per second, using transfers as large as 8,192
words per message.

The multiple-channel drum is used for
system program files and for inputloutput
tanking. When used with short messages (typi
cal: 128 words [8 unit records for 1/0]), and
with sequence-sorting of messages, access rate
can be up to several hundred per second; with
messages read or written in first-come, first
served sequence, practicable access rate is up to
60 per second. For 2,048-word fixed-size mes
sages, highest practicable access rate is 75 per
second.

One of the drawbacks of high-rate rotat
ing magnetic storage devices has been the large
buffer areas needed for efficient data handling.
The advent of large capacity Slow Core has
changed all that; the fastest device can be
buffered by a Slow Core memory installation
provided only that at least 2 of the quarter
million-word modules are used, and even 8,192-
word buffers pose no problems with directly
addressable main memory that includes at least
half-million-word capacity Slow Core in addi
tion to the Fast Core memory.

11.2 Mass Memory in the Advanced System

In the past, magnetic tape has served
well as the only mass memory device, and it may
continue for a long time as the most economical
carry-away medium. It should continue as the
indicated choice for file processing medium
where data files are to be processed in orderly
sequence and where files are limited to the order
of 100 million characters so that they do not
require multiple reels of tape. In general, how
ever, the several-minute access time and the
mandatory . requirement for handling of reels

or cartridges (because total capacity is too
small to justify leaving files on-line) will, we
believe, limit tape usage primarily to carry
away and ordered-file-processing applications.

While the 213's rotating machinery is
relatively powerful by comparison with other
mass-memory equipment that has been made
available with general-purpose computing sys
tems, a little arithmetic quickly brings one to
the conclusion that the system would be ham
pered in several ways if some limiting param
eters were not changed. The critical variables
are capacity, access time (Read and Write),
data rate, and whether or not carry-away capa
bility exits.

From the standpoint of data rate, the
moving magnetic surface performs well. For
the high-data-rate problem, the Fast Drum
seems likely to continue as the preferred device.
The Advanced System version will have the
same capacity as the 213 version (2 million
words per unit), and the same ability to initiate
a one-revolution order promptly. It will rotate
slightly faster (35 milliseconds per revolution)
and will store 32,768 words per revolution (vs.
8,192 in the 213). It will be capable of one'Read
and one Write operation concurrently at a data
rate of 7.5 million characters per second for
each.

Like other organizations, we are exam
ining the available technologies in search of sig
nificantly better characteristics for three mass
memory functions: (a) Fast Access, implying
up to several thousand accesses per second, for

A PHILCO MULTIPROCESSING SYSTEM 129

blocks of a few hundred characters, are possi
ble; (b) Large Capacity, providing on-line ac
cess in no more than one second to data files
as large as present-day shelf libraries (10,000
reels of magnetic tape) ; and (c) Carry-Away
cartridge-type files at least as large in capacity
as magnetic tape reels but having access times
of less than one second.

For the Fast Access function, modern
high-resolution slow.:.decay magnetic-deflection
electrostatic storage tubes under development
for military applications look interesting. A
single tube can store a few thousand lines of a
few thousand bits each, to be written or read
by slow servo-controlled sweep techniques in a
nlillisecond. The combination of access time,
economy, and "militarizability" offered by such
a device now appears promising; and for this
reason development is being carried forward.

For the Large Capacity function, the
same CRT sweep and encoding technology com
bined with mechanical page-changing in a pho
tographic storage scheme now looks promising;
and this, too, is being studied here.

For the Carry-Away function, car
tridge-mounted multiple magnetic tape strip
devices meet basic requirements. A proposed
tape strip scheme, for example, offers access
time of less than one second to any word in a
cartridge having the capacity of several reels
of magnetic tape.

The characteristics of these three devel
opmental devices are summarized in Table 1.

As a hedge on the development of the

Electronic
Mass Store

Photo Optical
Mass Store

Tape Strip
Mass Store

Capacity, Millions
of Words

Max. Access, milliseconds,
Any Word

Max. Access, milliseconds,
Within Page

Basic
Advantage

fTotal
{Page
fRead
(Write
fRead
(Write

Quick
Access

4.
.065
.1
.2
.1
. 2

Large Capacity

16,000.
1.

1,000.
3.6. million (1 hour)

. 1

.3*
* (Assumes 1 million
word EMS Buffer)

Carry-Away

66.
.016

600.
600.
35 .
35 .

Data Rate, Thousands of fRead 2500. 100. 120.
120. qhar./second {Write 1700. 50.

CHARACTERISTICS OF THREE NEW MASS MEMORY UNITS

Table 1

130 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

electrostatic block-storage device, we have de
signed a drum control hardware scheme for
optimizing the sequence of issuance of short
message read and write orders. This will per
mit fixed-block-size messages (128 words) to
be issued at a rate of up to 2,000 per second,
to or from any block addresses within a group
of our present 1.85 million-word multi-channel
drum units.

12. SYSTEM CONFIGURATIONS

12.1 Minimum System Requirements

The standard 213 and Advanced System
software will require the following minimum
hardware configuration:

One Central Processing Unit
32K Fast Core
One I/O Switch
One Mass Memory Control
One 1.85M Multi-Channel Drum
One 101 I/O Device Control with

One Card Reader
One Card Punch
One Printer
One Magnetic Tape Unit

Or' Tape Strip Unit

Note that the software is insensitive in
particular to the number of, processors in a

I/O
CONTROL

NO.1

DEVICES

I/O
CONTROL

NO.2

DEVICES

MASS
MEMORY
CONTROL

NO.1

MASS
MEMORY
UNITS

system (up to the design limit of four) ; that
fast and slow directly addressable memory can
be mixed in any combination up to the design
maximum of 2 million words; and that mag
netic tape or TapeStrip is used by the software
only for system loading or carry-away pur
poses.

12.2 Switching Redundancy

The configuration diagrams below will,
for simplicity in discussion, show Memory
Switch and Input/Output Switch hardware as
though it were centralized in two separate
units. In fact, for the sake of Graceful Degra
dation (Section 1.8) as well as for performance
and cost considerations, active electronics of
the switching hardware is physically distrib
uted among the Central Processors, as shown in
Fig. 12. It may be seen that every major physi
cal unit (32K units of fast memory, 262K units
of slow memory, each I/O Control and Memory
Control, and each Communications Processor)
is physically connected to each Central Proces
sor Unit with its associated (redundant) Mem
ory Switch and I/O Switch hardware. Thus,
no single fault, including one in the areas of
systelYl switching, can shut down nl0re than
half the system.

The arrangement shown in Fig. 12 does
not provide within the system for redundancy

MASS
MEMORY
CONTROL

NO.2

MASS
MEMORY
UNITS

170
COMMUNICATION

PROCESSOR
NO.1

(1024 LINES)

170
COMMUNICATION

PROCESSOR
NO.2

(1024 LINES)

TO COMMON CARRIER
TELEPHONE/TELETYPE

LINES

TO FULL-TIME
REMOTE

CONSOLES

SYSTEM SWITCHING REDUNDANCY

'Figure 12

MEMORY
321< CHAR.

CARD READER# I

CARD READER 4112

A PHILCO MULTIPROCESSING SYSTEM 131

4X32
240l<C

TAPE
CONTROL

CARD PUNCH

PRINTER # I

MULTI
CHANNEL

DRUM

PRINTER #. 2

CRT- FILM
PRINTER
PLOTTER

DATA - LINI<

TAPE
UNIT

CONTROL

I.Se,M

MULTI
CHANNEL

DRUM
I.se M

213 IN STALLATION INCLUDING ON- L,NE TAPE

Figure 13

in access to remote consoles. The dialed-up
remotes have protection in that initiation of a
remote connection through the common-carrier
network will encounter "busy" signals from
all lines into a 170 that is down and conse
quently will be directed through the other 170.
Connections that are active when a 170 fails,
however, may be vulnerable; and each full-time
remote is shown associated with a particular
170 so that half of them will go down if one
170 fails.

Both of these restrictions can, if desired,
be removed by providing, as mentioned in Sec
tion 12.4, switching redundancy between the
170's and their remote lines.

12.3 213 Systems

A typical medium-size 213 installation
that will use magnetic tape for file processing
is shown in Fig. 13. This particular system
uses four 32K Fast Core memory modules and
two 262K Slow Core memory modules.

A 213 system that does not use magnetic
tape on-line (tape is used only for auxiliary
input/output through each 101 I/O Control) is
shown in Fig. 14. In this system, the CRT
Printer-Plotter is associated only with one 101,
and its service continuity, together with that of
the other I/O devices associated with that 101,
is thus vulnerable. Likewise, the Data Link
interface and the remainder of the I/O devices

132 PROCEEDINGS-'-SPRING JOINT COMPUTER CONFERENCE, 1964

are associated only with the second 101, so that
those devices together with all of the remote
card/printer stations will go down if the sec
ond 101 fails.

12.4 Advanced Systems

An Advanced System configuration in
cluding a single-processor CCTS Time Sharing
facility is shown in Fig. 15. The particular sys-

65KPI
MEMORY

tern shown is intended as a growth replacement
for the system of Fig. 14, with the addition of
CCTS. At this stage, the system will provide
"graceful degradation" as described in Section
1.8 for only job-oriented work; a major failure
in the Type 170 Communications Processor sys
tem could shut down the time-sharing capa
bility until repair has been performed. Note
that only the central processors, high-speed

MEMORY swtTCH

MEM.
32K

CHAR.

CARD READER 41

CARD READER #2

CARD PUNCH #1

PRINTER #1

CRT-FILM
PRI NTER-PLOTTER

TAPE
UNIT

CONTROL

101#1
1/0

CONTROL

INPUT/OUTPUT SWITCH

MEM.
32K

CHAR

CARD READER *3

CARD PUNCH.2

PRINTER #2

DATA LINK

TAPESTRIP
CONTROL

#1
MULTI

CHANNEL
DRUM
1.85M

HIGH
SPEED
DRUM

2M

213 INSTALLAT.ION WITHOUT ON-LINE TAPE

Figure 14

MULTI
CHANNEL

DRUM
I.S5M

HIGH
SPEED
DRUM

2M

A PHILCO MULTIPROCESSING SYSTEM 133

I 65 KTF J
MEMORY

r---- - ---I
I 1049 KP8 :
I MEMORY I
L_ --r----~

I MEMORY SWITCH 1

I 21N 1
CPU r

21N I
CPU

r INPUT/OUTPUT SWITCH

-- -------- ------- ~-------- ---, r 101#1 101~2 MASS MASS I
I AND AND MEMORY MEMORY I
I I/O 1/0 CONTROL 'WI CONTROL *2 :

170

COMMUNICATIONS

PROCESSOR

(1024 LINES) : DEVICES DEVICES AND AND I
, M. M. UNITS M. M. UNITS I
L __________________________ -.J

,--, INDICATES EQUIPMENT RETAINED

I I AFTER 213 REPLACEMENT L __ ...J

ADVANCED SYSTEM WITH SINGLE 170

TO
COMMON
CARRIER
TEL./TEL.

LINES

TO
FULL
TIME

REMOTES

Figure 15

memory, and memory switch need be changed
when upgrading from the 213; the 213 equip
ment retained is in the dotted boxes.

A more comprehensive system providing
for graceful degradation in both job-oriented
and CCTS capabilities is shown in Fig. 16.
This duplex-170 installation, with distri.buted
switching reconfiguration facilities, is modeled
on the pattern of the A UTODIN second-phase
system as mentioned in Section 1.8. Note also
that passive-switch IOCU's have been used for
I/O device control, operated under direct con
trol of the central processors an~' arranged so

that loss of a single IOCU will not cause loss of
any I/O devices (including Data Links to re
mote card/printer stations). Also, redundant
switching Mass Memory Controls have been
used, so that failure of one control unit does
not result in loss of mass memory units.

13. ADVANCED SYSTEM TECHNOLOGY
AND DESIGN20

13.1 Circuits20

To achieve the performance goals of this
advanced system, significant gains are required

134 PROCEEDINGS-SPRING JOINT COMPUTER CONFERE~CE, 1964

iIi the effective circuit speed. The effective cir
cuit speed relates to the speed of the circuitry
as a function of inherent delay, method of inter
connection, complexity of logic performed, and
method of packaging.

The advanced processor, unlike that of
previous computers, requires an extensive inte
gration of circuit logic, and packaging tech
nology.

It is also apparent that unless the system
performance requirements are recognized at
the most fundamental level, namely, the basic
circuit, performance requirements will not be
achieved. The new machine will use circuits

which take full advantage of the advances in
technology yet allow utilization of prior expe
rience in producing large-scale reliable equip
ment.

The system requires circuits capable of
handling nanosecond pulses with minimal dis
tortion. Anti-saturation circuit techniques,
double level logic and smaller geometries are
used to achieve this circuit speed. Particular
emphasis in development has been placed on
those circuit forms which permit total integra
tion.

The advanced system will use a high
speed, anti-saturated, readily integrable diode

1049 KP8
MEMORY

MEMORY SWITCH

I/O DEVICES

INPUT/OUTPUT SWITCH

MASS

MEMORY

CONTROL

'*1

MASS

MEMORY

CONTROL

#2

MASS MEMORY UNITS

ADVANCED SYSTEM WITH FULL REDUNDANCY

Figure 16

170

COM.

PROC.

#1

TO
COMMON

CARRIER
TEL.a TEL.

LINES

170

COM.

PROC.

*2

TO
FULL

TIME
REMOTES

A PHILCO MULTIPROCESSING SYSTEM 135

MICRO FLAT PAC

I--- 15"---l

00--':; 30 CARDS
1III1 ,
1111
1 ___ '_-

I

±
t

TOTAL
240 CARDS
PER PAGE

BLADE TYPE CONTACTS

28"

BASIC PAGE

- PIVOT BAR

THE BASIC CARD

Figure 17

transistor logic element. Typical circuit delays
of 4-6 nanoseconds have been demonstrated
for fanouts up to 6. This circuit features min
imal design variation with loading with em
phasis placed on total integration. The object
is to achieve the fastest circuit speed within the
framework of an integrable machine. Overall
system speed is then achieved through the
signal path reduction resulting from the use of
integrated circuit techniques.

13.2 The Basic Card20

The basic pluggable assembly is the func
tional card, conceived on a generic card scheme

whereby multiples of the single card can be
arranged to form any major logic block in the
machine. The single card contains 4 modules.
Each module in turn is composed of eight inte
grated flat-pack-type circuits. Card connections
are made through blade type connectors and
are arranged to permit pin densities for com
binations of circuits within the basic card. Inter
connections within the card are consistent with
the high speed attained throughout the system.

The basic module, Fig. 17, is composed
of a copper comb which acts as its main sup
port, heat sink, and ground plane. All microflat
packs are attached to spring temper brass car-

136 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

riers which slide over the master comb. The
two printer cricuit cards carryall signals and
voltages to the lower header assembly. A wave
soldering operation completes the module pack
age.

Four of the basic modules are soldered
into a printed circuit card which becomes the
smallest pluggable assembly. The end of the
card contains a plate which acts as a handle, a
test point plate, and an air baffle. When all
cards are plugged into a frame, the back pan
acts as one side of a chimney and the card
pIa tes act as the opposite side, thus assuring a
positive unidirectional air flow.

The entire package is designed for auto
mated assembly.

13.3 The Page Assembly

To build a complex of basic cards and
maintain minimum lead length, a spinal column
design is used. The entire processor is based
on a horizontal wiring spinal column with
branch wiring to all subassemblies. The modular
hinged pages have hinge points on the bottom
forward edges of the upper pages and on the
top forward edges of the lower pages. This
design allows easy withdrawal and minimum
system interconnection lengths. Connectors
mount in the front of each page. Interpage
wiring proceeds through plastic cable conduits.
To conserve head room because of the diagonal
radius from the pivot point, all pages have a
2 to 1 height-to-width ratio and afford fore-and
aft access to the cabinet. This type of con-

FOR SERVICING

PROCESSORS a IOCU

IOCU (SHOWING PAGE AND INTERFACE CAlLING)

SYSTEM PLAN

Figure 18

struction results in a high volumetric efficiency
and reduces the number of interpage cables.

The front of each page contains indi
cators and test points for maintenance opera
tions. In the extracted position, all page panels
will be oriented for normal viewing.

High density packaging of high-speed
circuits is necessary to reduce interconnection
wire lengths. This reduction minimizes wire
delay and permits a maximum number of con
nections without recourse to coaxial or similar
transmission line wiring. Since it becomes
more difficult to make interconnections as the
component density increases, a technique has
been devised which preserves the fast wave
fronts necessary to small delay switching. Also,
this technique provides accessibility to the in
dividual elements of the device.

13.4 The Memory Matrix20

The Memory Matrix, or interconnection
bus, Fig. 18, is the central spinal column for the
main frame. The matrix connects all processors
and IOeU's to all thin film memory banks.

Its construction embodies the use of
modified strip lines in a compact assembly. All
points in the matrix terminate in fork type con
nectors which are mounted on the matrix top
face and interconnect all receiver and sender
circuitry.

These circuits mount to matrix printed
circuit cards. A complement of cards is cabled
to each processor, IOeU, and 8K memory bank.
Any card complement for a specific machine
configuration has its own built-:-in circuitry for
future expansion to the maximum configura
tion.

13.5 Processors20

The main frame is comprised of individ
ual processor sections and banks of 32K thin
film memory. The page design uses the proces
sors to form the left two cabinet sections and
thin film memory pages to form the right sec
tions. The entire device is constructed in
modules of processors, IOeU's and banks of
32K of thin film memory. The spinal column
wiring assembly is a memory matrix of inter
connection bus which connects all processors to
all memory banks.

Each individual processor, like its 212
and 213 predecessors, will use an overlapped

A PHILCO MULTIPROCESSING SYSTEM 137

internal organization permitting use of a con
trolled amount of look-ahead. In addition, true
parallel processing within a single sequence will
take place in the indexing and operand fetch
portions of successive instructions due to the
use of multiple identical units within each
processor.

Figure 18 shows details of the page in
stallations, interface cabling, processor and
memory sizes, power supply locations, and in
dividual page maintenance.

13.6 Thin Film Memory2o

The magnetic thin film memory to be
used in the Advanced Machine is a large ca
pacity, high speed storage unit, packaged on
modular pages, and communicates with the
processors through the memory switch.

The word size of this memory is 50 bits:
48 information plus 2 parity. The cycle time
is 250 nanoseconds, read-to-read, and access
time is 100 nanoseconds, measured from the
input of the address register to the output of
the data register. Each memory bank contains
32,768 words simultaneously addressable in
8,192 word sections. Two adjacent words are
read out simultaneously internal to the storage
unit. Only the selected word is presented to
the system. The unit is a linear select (word
organized) unit with destructive read and write
restore.

To attain the fast access and cycle time
desired, the electrical, mechanical, thermody
namic, production, reliability, and maintain
ability aspects of the design are considered as
an integrated whole.

The electrical, mechanical, and material
tolerances require the memory to be linear
select and to operate with destructive read-out
with digit write-restore. The storage media is
composed of a matrix of magnetic film sub
strates. Two words are read out simultaneously
and write-restores to minimize the decoding
and drive hardware required; the desired word
is selected in the memory logic section for pres
entation to the Memory Data Register.

The thin film memory features a special
disturb-insensitive film allowing complete
matched strip-line construction with constant
line impedance, and low impedances to be used
throughout the system with very low crosstalk
and minimal word to word coupling. In addi-

138 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

tion to providing a high bit density, the film
permits strip-line construction.

The use of matched lines provides no
ringing on digit or drive lines, and permits use
of fast rise times and short pulses with the
resulting larger read-out voltages and shorter
cycle times.

A high frequency, balanced, differential
sense amplifier constructed in micro-technology
in conjunction with the exact geometric con
struction of the system provides excellent re
sults in read out and lends itself well to the
integrated system.

The thin film memory pages (Fig. 14)
contain blocks of 2,048 words of memory. Two
plates compose a single page. Four pages make
up 8K of thin film memory. Associated driver,
switch, and sense amplifier circuits are ar
ranged to tie closely into. the control and timing
circuits located in a logic page servicing 4
memory pages.

13.7 Mechanical and Thermal Considerations

Empty pages are positioned throughout
the cabinetry to allow for interface . cabling.
Servicing and maintenance is accomplished by
pulling a top page to its horizontal position
where it will lock in, and lifting a lower page
to engage the locked out upper page. Locking
is accomplished by a quick disconnect at the
handles. This design precludes an exotic and
costly holdout mechanism for the lower pages.
The maj or Processor/System interface occurs
in the IOCU sections. Cabling enters the cabinet
through the subfloor and into the IOCU cable
matrix.

Thermal densities in the order of .7
watts/cu. in. occur throughout the main frame.
With thermal concentrations of these magni
tudes, forced convection cooling is a satisfac
tory technique. The circuits are designed to
operate in a range of 15°C to 50°C. An average
internal temperature of 40°C is the top allow
able limit which has been set in order to offset
the possibility of hot air pockets.

An important consideration is the ability
to cool a page in the out, or service, position.
This is accomplished by the incorporation of
air-moving devices in each page. These air
movers are of a type which can deliver approxi
mately 80 CFM at .1 inches of water, and not

create a loss of head due to own physical size
since they must stand in the main cabinet air
stream. Two or three of these fans will ade
quately cool a page in the servicing, or out,
position.

An interlock on each page will apply
power to the fans while the cabinet is closed
for normal operation.

There is a blower chamber associated
with each bank of four pages both top and
bottom. All chambers are self-contained units,
which have ,their own inlet ducts, filters, and
outlets ducts with collapsible ports. The col
lapsible ports will close when a page is opened
for servicing, thus keeping air paths intact.
Each blower must deliver approximately 200
CFM against a .5 inch head. The final selection
has been made on the basis of CFM and acous
tical levels.

A forced convection system, as described,
will adequately maintain the system tempera
tures between the limits of 20°C to 50°C with
an ambient of 20°C ± 5°C. The normal opera
tion with doors closed will effect a vertical cab
inet air flow sufficient to remove 10 kw. of heat
load. During normal operation, page fans will
remain off. Their low surface area will induce
very little restriction to air flow. During servic
ing, a page is withdrawn, an interlock closes
power to the saucer fans, and the faulty page
thus picks up its own air mover. The bottom
blowers keep air moving in the remainder of the
lower pages and the top blowers maintain cool
ing air in all top pages. The scheme is entirely
modular. Depending upon the cabinet popula
tion, processor, IOCU, memory, etc., blower
assemblies can be added or subtracted, page
fans can be employed from none to three de
pending upon the cabinet heat load.

14. SOFTWARE IMPLEMENTATION PLANS

One of the decisive reasons why we have
chosen upward compatibility for the 213 and
Advanced Systems is that we are convinced the
priceless ingredient of really good software is
abrasion against challenging users.

The first 213 systems will operate ini
tially with 212 software. A few months later,
the following software ite'ms will be delivered:

a) 213 SYS, a multiprogramming
multiprocessing- executive system

MAINTENANCE
PANEL

A PHILCO MULTIPROCESSING SYSTEM 139

I
I

THIN 'IU.
PLATE.

THIN FILM MEMORY PAGE
Figure 19

b) 213 TAC }The 212 Assembler
and FORTRAN IV

c) 213 FORTRAN IV Compiler will be
generalized to use
24-bit addresses
throughout and to
make use of mass
memory.

d) All 212 software, except 32K SYS, TAC,

and the FORTRAN-II and -IV com
pilers, primarily intended for 32K ma
chine applications, will be integrated to
run under the new executive system.

The major products to be integrated are:
COBOL-61; SORT II; PERT III, PERT COST;
STAT-2000 statistical analysis system; LP-
2000 linear programming system (input-com
patible with LP-90) ; XORD self-buffering I/O

140 PROCEEDINGS--:-SPRING JOINT COMPUTER CONFERENCE, 1964

routine; PIOSGEN I/O generator; PIOS I/O
interpreter; APT-III numerical control system;
REPORT generator; FILE selection generator;
SIMSCRIPT system simulator; and LIBrary
mathematical, utility, and service routines and
subroutines.

Work on the 212 Time Sharing System
will be converted to an extension of the 213
'executive systenl; this extension will be made
available for general use about six months later.

Initial Advanced System hardware de
liveries will be made about two years after
initial customer-site usage of items a) through
d).

Thus, both 213 and Advanced Systems
will be utilized initially with software that has
been used for about two years by customers.

Philco's 1960-released ALTAC compiler,
and its successors through the present ALTAC
III compiler which includes FORTRAN-II as a
subset, contain these source language features
beyond FORTRAN:

1. Symbolic statement labels (begin with
alphabetics) .

2. Compound statements ("statement;
statement; statement").

3. Mixed expressions (integers are
floated) .

4. Array dimensionality up to 4.
5. Greater subscript generality: variable

subscripts attaining zero or negative
values are handled properly; subscrip
tion of subscripts to arbitrary depth is
allowable.

We are pleased that most of these features,
among others, are now being considered for
adoption in newly proposed procedural lan
guages. 212 users have written compilers for
two of the three recognized dialects of ALGOL-
58, MAD and JOVIAL. We are studying the
applicability of these languages in addition to
ALGOL-60, and of other procedural languages
not yet publicly defined; with the intent of
selecting appropriate- languages and language
extensions for future compiler development for
release as Philco-maintained 213 software
products.

15. CONCLUSIONS

The trend toward broadening the applica
tion of million-or-more-operations-per-second

computing systems seems to us to be unmis
takable. At one extreme, more comprehensive
solutions of the most complex problem types
are being planned, and improvements are being
made in the rapidity and efficiency with which
service is provided to the requestor of such
problem solutions. At the other extreme, the
computational-colloquy mode of access to large
systems is making them conveniently available
to requestors of solutions to relatively small
problems, providing not only the superior
economy of the super-scale machine, but also
its vast power and flexibility together with a
continually-broadening range of software. This
mode of access to very large machines is also
beginning to demonstrate a new order of effec
tiveness of computation service to research and
development organizations whose technical pro
ductivity is closely related to the promptness
and predictability with which computer solu
tions to new problems can be prepared and
extended.

The effectiveness of multiprogramming
in large-system efficiency and the planning flex
ibility and graceful degradation potential of the
multiproeessing system seem to have been ac
cepted as realistic and justifiable goals by many
of the most advanced large~system users. We
believe that broad application of these concepts
in large systems is inevitable.

The Advanced System that is the subject
of this paper is intended not only to provide
much greater speed and economy but to include
in its hardware and software highly efficient
and quite general capabilities for facing the
challenges outlined in Sections 2 and 4, includ
ing that of The Common Routine and Common
Data.

16. ACKNOWLEDGEMENTS

On behalf of the people working on the
development of this system, I wish to express
our gratitude to university staff members who
have helped us to understand the nature of
certain programming and hardware problems:
F. J. Corbato', B. Galler, A. Perlis, and several
of their colleagues.

On behalf, in turn, of the rest of Philco
management, I wish to express our gratitude
to the members of the Willow Grove technical
staff who have done the hard-core technical

work. In particular, R. Brown and J. Spratt
of the Engineering Department and G. Cad
wallader, L. Ellerson, J. Guernaccini, and A.
Shapiro of the Programming Research and De
velopment Department have been enthusiastic,
ingenious, and durable.

17. PATENT NOTICE

We believe there is patentable subject
matter here; and patent rights are being
sought. We emphasize this fact with regard
to the hardware-software mechanization of Im
plicit Selection of Base and Limit Registers and
to the consequent procedures for automatic and
protected access to Common Routines, which
are due to J. Guernaccini; and to those for Com
mon Data, and Exclusive-Occupancy Routines,
due to A. Shapiro; in a multiprogramming
multiprocessing computing system.

18. REFERENCES

1. R. Segal, J. Maddox and P. Plano, "Performance
Advances in a Transistorized Computer System," Proc.
EJCC, 1958, p. 168.

2. F. J. Corbato et al., The Compatible Time-Sharing
System, Cambridge, Mass., M.LT. Press, 1963.

3. H. S. Bright and B. F. Cheydleur, "On the Reduc
tion of Turnaround Time," Proc. FJCC 1962, Washing
ton, D. C., Spartan Books, 1962, pp. 161-169.

4. M. Kory and P. Berning, "The STL Integrated
Operating System," Proc. ACM 19th Nat. Conf., Aug.
1.964, N. Y., ACM, pp. E2.1.1-E2.1.25.

5. L. R. Lavine, "The Dynamic Rescheduling Opera
tor System 212SYS," Proc. 13th TUG Meeting, Wash
ington, D. C., Sept. 1963.

6. R. L. Patrick, "Measuring Performance," Data
mation 1017, July, 1964, pp. 24-26; also privately pub
lished report, "Time-Sharing, Its Uses and Abuses,"
1964.

7. R. M. Fano, "The MAC System: A Progress Re
port," Technial Report MAC-TR-12, M.LT., Project
MAC, Cambridg~, Mass., Oct. 1964.

8. Jules 1. Schwartz, "Command Research Labora
tory: Introduction to the Time-Sharing System," SDC
SP-1722, 14 September 1964.

9. J. B. Dennis and E. L. Glaser, "The Structure of an

A PHILCO MULTIPROCESSING SYSTEM 141

On-line Information Processing System," to be pub
lished as a chapter of a forthcoming book, "Information
System Sciences: Proceedings of the Second Congress,"
Washington, D. C., Spartan Books, 1965.

10. A. B. Shafritz, "The Use of Computers in Message
Switching Networks," Proc. ACM 19th Ann. Coni.,
N. Y., ACM, 1964, pp. N2.3.3-4. (See also remarks in
papers by B. R. Jacobellis and F. S. Vigliante, ibid.)

11. A. W. Holt, "Program Organization and Record
Keeping for Dynamic Storage Allocation," Information
Processing 62, Amsterdam, North Holland Publishing
Co., 1962.

12. B. Galler, B. Arden and F. Westervelt, private
communications.

13. A. Perlis, private communications.
14. Phil co Corporation, "Philco 212 Reference Manual

TM-29," Willow Grove, Pa., 1963.
15. Work sponsored under contract with the Defense

Communication Agency.
16. R. W. Bemer et al., "American Standard Code for

Information Interchange," N. Y., Comm/ACM 6/8 Aug.,
1963, pp. 442-426.

17. B. F. Cheydleur, "The X-3 System-A Design
Study," internal report, Philco Computer Div., 1963.

18. H. S. Bright, "A Proposed 64-character Alphabet
for Hardware Implementation of the IAL (ALGOL 58)
R~ference-Level Language," N. Y., Com;m/ACM 2/5
May 1959, pp. 7-9.

19. These sections were written by A. Shapiro.
20. Th2se sections were written by T. N. Timlin.
21. H. A. Kinslow, "The Time-Sharing Monitor Sys

tem," Proc. FJCC, 1964, Washington, D. C., Spartan
Books, 1964, pp. 443-454. (By private communication,
Kinslow credited the dynamic memory mapper to his
fellow worker, O. W. Johnson.)

22. W. F. Bauer, "Computer Design from the Pro
grammer's Viewpoint," Proc. EJCC 19.'58, pp. 46-51. To
quote from Bauer's paper, "The central idea here is that
each large metropolitan area would have one or more of
these super computers. The computers would handle a
number of problems concurrently. Organizations would
have input-output equipment installed on their own
premises and would buy time on the central computer
much the same way that the average householder buys
power and water from utility companies The
accounting procedure would reflect the customer's

~ detailed use The supervisory control units schedule
the multiple problems . . . changing priorities as
required and distributing work among the processing
units A very important characteristic ... is that
it is modular in construction, and large components
can be added or subtracted to make up the configuration
currently in demand at the particular installation. Thus
the computer can grow and change to meet changing
requirements."

Index

ACPX circuitry, 71
Anonymous-processor-pool concept, 106
Ailsen, H. H., recipient Memorial Award, 25-35
ASCENT (assembly system for CP), 42, 55
ASPER,. 55
ASPER (assembly system for PP's) , 42,55
Automatic, 109

Block symbolic addressing capability, 106

Centralized computer, 68
6600 system, 64

Coax cable, 63
Code generation optimization algorithm, 57
Colloquy mode, 100
Common routine access, 117
Communications processor, 64
Compatibility of model 92, 69
Computation economy improvement, 98
Computational colloquy, 99, 105
Computer as Sorcerer's Apprentice, 13-24
Computer, Promise and Challenge of, 3-10
Computer 3100 or 3200 type, 63

6600, 41, 45, 60-68
8090, 63

Computer service, as public utility, 99
Console display, 43
Control Data Corp. 6600, 59

standard operating system, 41-42
Crippled-mode operation, 101

Decentralized facilities, 60
Design of SIPROS, 68
Disk executive, 43
Distributing computing power, 60
Distribution and time-sharing, 68
Dynamic memory allocation, 115

map, 106

143

E-Box, 76, 77, 79
Electronic data processing equipment, 60
Exclusive-occupany routines, 119
Executive and monitoring, 43

mode, 106

FORTRAN, 55
66 compiler, 42, 55

Graceful degradation, 101
Gulf of Ignorance, 74

Harry Goode Memorial Award, 25-30

I-Box, 76, 77
Instruction buffer, 74
Interleaving, 71
Inter-processor control communication, 114

Jo b mode, 100
segment sequencing, 119

Kinslow-J ohnson dynamic memory map, 106

Large capacity storage (LeS), 73

Memorial Award, to H. H. Aiksen, 25-30
Memory control, decentralized, 101
Memory remapping, 120

scavenging, 125
Microwave transmission, 63
Model 70, 70
Model 92, 69,71-74,79
Multiple processing, 42

remote consoles, 48
Multiplexor, 62
Multiprocessing, 57, 97-141
Multiprogramming, 97-141

144 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Non-numeric computation power growth, 98
N umber of remote users, 60

Object language programs, 100-101
Operating system, 41
Optimize use of the disk, 43
Organization of the 6600, 68

Page assembly, 136
protect hardware plans, 120

Paging hardware, 105
Philco Advanced System, 97-141
Philco 213 system, 97
Piel, Gerard, Luncheon Speech, 13-24
Priority system, 50
Prize Paper Award, 31
Processors, System 360, 69
Programming systems, 45

Real-time job multiprocessing, 48
Real time programming, 48
Remote computers, 63, 65

stations, 62-63
input networks, 55

Sarnoff, David, Keynote Address, 3-10
Single large-scale centralized computer with

remote stations, 60
SIPROS, 41, 45, 55

operating system, 64
Slow core, 109
SLT circuitry, 71
Special Systems Programming, 47
Standard programming system, 55
Storage transfer channel, 74
STRETCH, 78
Super computer systems, 42
Switching redundancy, 130
System/360, 73-78

line of processors, 69
System speed and throughput, 42

Telpak A, 63
Thin 'film memory, 137
Throughput of a system, 57
Time-sharing, 55
Turnaround time improvement, 98

Undecidable Branches, 75
Users, at remote site, 68

ERRATA

AFIPS, VOLUME 26,-"PART ·1

ERRATA-AFIPS, VOLUME 26, PART I

The following are corrections to be entered on the designated pages:

Amemiya, Hiroshi: "A 105 -Bit High-Speed Ferrite Memory System-Design and Operation"

Page 124, Figure 2 Caption should read Reading

142, line 4
, row 3, col. 3
, row 4, col. 3
, row 1, col. 1

Change to e "IX

Change to U s 2 - ')'2

Change to U m 2

Remove parens

Weber, J. H.: "UNISM-A Simulation Program for Communications Networks"

Page 243 Place. after -]32 in equation

Trilling, D. R.: "The Use of a Job Shop Simulator in the Generation of Production Schedules"

Page 277, line 14, right Change to read-These statistics are well known

279, line 23, right
, line 45, right

Change to read-This type of node is a" call-out,"
Change to read-to assign the necessary binary codes.

282, line 12, right Change to read-point to hypothesize a schedule analyst and-

Raphael, Bertram: "A Computer Program Which 'Understands' "

582 Add part h (below) to Figure 3

h. NUMBER

II VNOEIUUNOI

,.... JOMN IS , lOY.

II UNOEltSUNO.

,.... , 'I~f~ IS ~'~T OF A H'NO'

II UNUUSUNO.

I.... HON M'"y FIN'EAS DOES JOHN "AYE g.

1 I '"I: ABOVE SENUNCE IS AMI"'ooUS •• Bu' I ASSUI'IE 'Hast ",A .. S IHAS AI "'Us),
II OON.' K"OW W"ETHI:~ FI"~E~ IS 'A~r OF JOHNI

I.... rHEME IS ONI: "A"O or. fACH A.,.,

.. UNDERSTAND.

II UNDERSTAND.

,.... HOW "ANY FIN~E"S DOES JOHIII HAVf O.

3 "HI: A80VE ~fN'fNCI: 1~,AM81~UOUS •• IU' • ISSUME IHAS' "EI .. S IHAS AS ~A.TSI'
""OW "AI" FlIleU PEA HAIllO 'li.

"HI A80VE SENUNCE IS AMB'GUOUS •• BU' I USU"I: IHAst MUI'4S '''AS AS PA,,'U'
'I UNOE"SUIilO.

I.... HOW MANY flNGEAS DOtS JOHN HAVE 01

'TH[A80VI: SENTENCE IS A"8"ooUS ••• Uf • ISSU"[IHISI MEANS IHIS '5 'A",S.,
"HE A"SWt •• s 101

1

283, line 32, left

284, line 4, left

285, line 19, left

286, line 17, left

Change to read-analysis will begin by looking for any case

Change to read-viewpoint of local management, and the policies

Change to read-man should result in a smaller absolute reduction

Change to read-their effects are studied by separate experi

Appendices I and II should appear at the end of the paper.

Teitelman, Warren: "Real Time Recognition of Head-Drawn Characters"
Page 559 Correct author's name to "Warren"; Change first word in second paragraph to "In."

Talkin, Albert 1.: "The Negative Gradient Method Extended to the Computer Programming of Simultaneous
Systems of Differential and Finite Equations"

Page 540 Add derivate dot above x in (1.3); above x in 4th line of Sec: 1.2 above initial X,y,Z,
and x2, y2, Z2, in third line of (2); initial x, y, and x2, y2 of second line of (3) and (4);
initial y and second x of (5.2)

Yang, C. C. and Tou, J. T.: "Systematic Design of Cyrogenic Logic Circuits"
Page 651, line 7, left 5, 10-13, 15 are references (superscript)

, line 10, left 9, 10, 12 are references (superscript)

653
653, line 41, left

, line 5, right
, line 27

654, line 7 and

In each case where pairs X; and X; appear, change to X; and X;
Change to X; = °
Change to F(Xm)
Change second X; to X;

rest of left Change X; to X;
, lines 25, 26 right Change X; to X;

655, last line, left
, lines 15,17,28,

right
, line 30, 43, right
, line 33, right

Change second X; to X;

Change F(Xm) to F(Xm)
Change to PI through P n

Change to P k + PkPk+l = Pk + Pk+l

656, line 3, left Change to P k

, lines 4,23, 25, left Change to F(X4)

, lines 15, 16 left
, lines 27, 28 left
, right-
, line 1,
, line 3, 4
, line 8,
, line 9,
, line 10,
, line 11,
, line 17,
, line 26,
, line 32,

Change to F(X4) = X 1X 2X aX 4 + X lX 2X aX 4 + X lX 2X aX 4

Change to F(X4) = X l(X2 + Xa) + X2 + Xa) X 4 + Xl (X2 + X aX 4)

Change to:
F(X4)

F(X4) = (Xl + X 2X a) (X2Xa + X 4) (Xl + X 2 [Xa + X 4])

PI = Xl + X2Xa, PI = Xl (X2 + Xa)
P 2 = X 2Xa + X 4, P2 = (X2 + X a)X4

P a = Xl + X 2(Xa + X4),

Pa = X 1(X2 + X aX 4)

and Pi (i = 1,2, or 3)
and Xl or X 4 and X4 has
and Xi possesses

2

657, line 4, left function F(Xm).
, line 9, left F(X m) should
, line 2, right form F(Xm),
, line 36, right F(Xa) = X2Xa + XIX 2X 3 (11)
,lines 39, 40, right F(X3) = XIX2Xa + XI X 2X a + X IX2X3 (12)
, lines 43,44, right F(Xa) = X1X2X a + XIX 2Xa + X IX2X a + X IX 2X3 + X IX 2X a

658, line 13, left
, line]4, left
, line 14, right
, line 15, right
, line 16, right
, line 39 right

659, left line 1
, line 3,
, line 5,
, line 7,
, line 16,
, line 19,
, line 32
, line 38-40
, line 43-44

659, right line 12
line 17
line 18
line 22
line 25

660, left lines 3,4
line 8
line 9
line 11
line 12
line 15
line 16
line 27
line 29
line 33

of Xi is
and Xl is
form F(X4),

and X3 and
and X4 are
Sn(X l , ••• , Xi, ... , Xi , ... , Xm)

Written Xl, Xi, etc.
Xl, Xi, Xi, Xm , etc.
parameters Xl, Xi, etc.
When Xl, Xi,
and Xi.
Variables Xl, ... , Xi, ... , Xi,

'With Xl, ... , Xi, ... , Xi , .. .
F(Xm) = Sp,q (Xl, ... , Xi, ... , Xi, ... , Xm)

= Sp(X l , •.• , Xi, ... , Xi, ... , Xm)
+ SiX l , ••• , Xi, ... , Xi, ... , Xm)

F(Xm) = Sp,iX1, ••• , Xi, ... , Xi, ... , Xm
m

= L Sk(X l , ••• , Xi, ... , Xi, ... , Xm)
k=O

Xl, X2 and Xa
Sp(X l , .•• , Xi, ... , Xi, ... , Xm) and
Sq (Xl, ... , Xi, ... , Xi, ... , Xm)
Sk(X l , •.. , Xi, ... , Xi, ... , Xm
F(Xm).

F(Xa) = X IX 2Xa + X lX2X 3 + XIX2X3
or Xl, X 2

Xao When Xl andX2 or Xl and X3 are
Xl, X2,

X3 by
Xl, X2

and X a become
F(Xa) = S2 (Xl, X 2,Xa)
F(Xa) = SO,l,3 (X l ,X2,Xa)

and X a located

661, left lines 33, 34, 35 Xi is
line 37 by Xi
line 39 gate Xj in

3

Avizienis, A.: "Binary-Compatible Signed-Digit Arithmetic"

Page 665, 667, 669, 671

667, line 1-8, left

Replace running head with title above.

Change column of numbers to; .6 0 7 4; 7 5 0
.2 7 1 5 0 0 0

47611750
- - - --

416 1 150
010 1 100

.5 1 7 0 1 5 0

.5 1"7 0 I 5 0
.5 1 7 0 0 0 0

667, lines 20 & 22 right Change to x' = .16 ;x' .177 ... 77

667, lines 35-41, right Change column of numbers to; .6 0 7 4 7 5 0
.7 7 7 7 7 7 7'

668, line 44, left
line 1, right
line 16, right
line 44, right

669, line 8, left
line 25, right
line 37, right
line 41, right

670, line 24, left

15 7 0 3 16 14 7
- -

5 103 641
1 100 1 1 1

.6 1 0 4 7 5 1

.6 1 0 4 7 5 0

Change p and x in equation to P X
Change" recorded" to" recoded"
Change to "multiples"
Insert" and" after" form"

Change to P (j-I)
Change p to q
Change to "digits"
Change to R (j-l)

Change to" = 4"

Fricke, L. H.: "The Use of a Portable Analog Computer for Process Identification, Calculation and Control"

Change running heads to read" Calculation", instead of " Calculating"

686, left Change words "out" and "in" in the equation to subscripts

691, line 24, right Change B in equation to a lower case beta

4

Paquette, G. A.: "Progress of Hybrid Computation at United Aircraft Research Laboratories"

699, Eqs (1),(2),(3) Add derivative dots over final x (double in Eq) (2)

700, Eqs (6),(7),(8) Add derivative dots over final x in (6); all xs in (7) (double over final x); and double
over final x in (8)

701, left, is para Change to read: "The use of a single argument interval often requires an excessively
large data table to adequately describe the function. Some reduction in table size
can be accomplished by subdividing the function into regions with different argument
intervals. Another procedure is to apply an argument modifying function to the prob
lem argument, i.e.,

Carbrey, R. L.: A Strobed Analog Data

Page 712 Change Fig. 4a to 4b; 4b to 4a

Frederickson, A. A.: Hybrid Simulation of a Lifting Re-entry Vehicle

Page 717, lines 3,5,6, right Add double dots over h in h = 0, hi in (1) and single over V

718, line 11, left

719, line 2, right
line 4, right

728, Eqs (7),(8),(9)

731, lines 16, 17,21
left
lines 26,27,31,
36, left

731, Eqs (15), (16)
731, Eqs (17), (19),

(20)

Add derivative dot over h

Add double dot over h
Add single dot over V

Add derviative dot over q

Add derivative dots over 01. and {j

Add derivative dot over T, AT, and second Ts
Add derivative dot over T, intial Ts, final 01., AT, initial {j and final Ts

Add derivative dot over T and AT

The following are corrections to AFIPS, Volume 26, Part II:

Credit portrait of Gen. David Sarnoff, p. 2 to "Karsh, Ottawa"

5

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	_00
	_01
	_02
	_03
	_04
	_05

